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ABSTRACT

In recent years, with the advancement of the internet, there has been an increase in
data available. Alongside various data sources like sensors began to generate data of all kinds.
Extracting useful information from data is a challenging problem in machine learning. The
emerging focus on machine learning research has been the field of deep learning, which aims to
learn multiple layers of abstraction that can be used to interpret data and perform complex tasks.
In fact, the successful results of deep learning rely on the supervised field, which needs a large
amount of labeled data. Unsupervised deep learning models have been proposed to deal with
data without the requirement of annotations, which incorporate the data itself as a clue to guide
the learning process. In that way, this thesis presents Deep Clustering Self-Organizing Map
with Relevance Learning (DCSOM-RL), an unsupervised learning model capable of working
with complex data, such as images and sound, while learning representations more suitable
for clustering in latent spaces. The proposed approach combines deep learning architectures
such as Autoencoders with a SOM layer with time-varying topology. The results show that
the prototypes identified by DCSOM-RL represent frequent variations observed in the input
data. For instance, the different ways to represent the input data. It can also bring insights about
similarities between different categories or feature representations and which dimensions of the
latent space capture important information. The neighborhood learned by the DCSOM-RL leads
to smoother regions of transition between categories in the latent space. Although it does not
present state of the art results in terms of evaluation metrics, the qualitative analysis shows that
the model presents unique properties not available in other methods of Deep Clustering methods.

Keywords: Self-Organizing Maps. Unsupervised Learning. Deep Learning. Autoencoder.



RESUMO

Nos últimos anos, com o avanço da internet, houve um aumento na quantidade de dados
disponíveis. Paralelamente, várias fontes de dados começaram a gerar dados de todos os tipos.
Extrair informações úteis de dados é um problema desafiador na aprendizagem de máquina. O
foco emergente na pesquisa da aprendizagem de máquina tem sido o campo do aprendizado
profundo, que visa aprender várias camadas de abstrações que podem ser usadas para interpretar
dados e realizar tarefas complexas. Na verdade, os resultados de sucesso da aprendizadem
profunda dependem do campo supervisionado, que precisa de uma grande quantidade de dados
rotulados. Modelos de aprendizagem profunda não supervisionados têm sido propostos para
lidar com dados sem a necessidade de anotações, que incorporam os próprios dados como uma
pista para orientar o processo de aprendizagem. Dessa forma, esta Dissertação apresenta o
Deep Clustering Self-Organizing Map with Relevance Learning (DCSOM-RL), um modelo de
aprendizagem não supervisionado capaz de trabalhar com dados complexos, como imagens e
sons, enquanto aprende representações mais adequadas para agrupamento em espaços latentes. A
abordagem proposta combina arquiteturas de aprendizagem profunda, como Autoencoders, com
uma camada SOM com topologia variável no tempo. Os resultados mostram que os protótipos
identificados pelo DCSOM-RL representam variações frequentes observadas nos dados de
entrada. Por exemplo, as diferentes formas de representar um dado de entrada. Também pode
trazer insights sobre semelhanças entre diferentes categorias ou representações de features e quais
dimensões do espaço latente capturam informações importantes. A vizinhança aprendida pelo
DCSOM-RL leva a regiões mais suaves de transição entre categorias no espaço latente. Embora
não apresente resultados estado da arte em termos de métricas de avaliação, a análise qualitativa
mostra que o modelo apresenta propriedades únicas não disponíveis em outros métodos de Deep
Clustering.

Palavras-chave: Self-Organizing Maps. Aprendizagem Não Supervisionada. Aprendizagem
Profunda. Autoencoder. Espaço Latente.
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1 INTRODUCTION

In recent years, with the advancement of the internet, there has been an increase in the
amount of data available. Alongside this, the so-called Internet of Things (IoT) emerged, in
which various data sources such as cameras and other devices began to generate data that were
used for progress in various areas of computing such as data acquisition, data compression, data
storage, data transmission, and processing complex and high dimensional data (Vidal, 2011).
The advancement of IoT brought the development of visualization techniques that allowed
users to understand better how their data is organized and make decisions in more natural ways.
Extracting meaningful information from raw data is a non-trivial activity, especially information
from sensors from different perspectives and time resolutions, which is a challenging problem in
machine learning (ML).

ML algorithms are commonly divided in three main areas: supervised learning, unsuper-
vised learning, and reinforcement learning (Bishop, 2006). Supervised learning is a task-driven
process, in which the training data comprises examples of the input vectors and their correspond-
ing label vectors. In unsupervised learning, the task is driven by the data, in which the training
data comprises only the input vector without the label vector. The Unsupervised Learning algo-
rithm uses the data to create a better representation to solve tasks such as clustering or determine
the distribution of data, known as density estimation, or to map the data from a high-dimensional
space to a lower-dimensional space for tasks such as visualization. In Reinforcement Learning,
algorithms learn to react to an environment, so it essentially calculates some reward for an action
in the environment, and it has to decide if it was good or not to the agent. It discovers the
solution through the process of trial and error (Bishop, 2006). More recently, the emerging focus
of machine learning research has been the field of deep learning, which aims to learn multiple
layers of abstraction that can be used to interpret data (Gubbi et al., 2013). DL techniques have
been using the intersection of these three main areas of ML to create better models in terms of
generalization (Bengio et al., 2007).

Due to the growth of structured data, benchmark datasets, graphics processing units

(GPUs), techniques that have been proposed in the last decades have improved, and now larger
models can be trained effectively and tested in real-world applications. Now, it is possible to
train an artificial neural networks (ANN) with many layers. Therefore, more robust approaches
are available for many important tasks that use ML, e.g., face detection to unlock smartphones
or voice recognition in virtual assistant applications. DL is a powerful tool that creates a useful
representation that can be used to perform complex tasks, such as, object detection (Ren et al.,
2015; Erhan et al., 2014; Redmon & Farhadi, 2018), image classification (Krizhevsky et al.,
2012; Liang & Hu, 2015), audio processing (Lee et al., 2009; McLoughlin et al., 2015; Graves
et al., 2013), natural language processing (Kim, 2014; Kalchbrenner et al., 2014), and many
others tasks. The positive aspect of DL is that manual feature engineering has decreased with
the advance of DL, minimizing errors introduced by handcrafted features. In return, powerful
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machines are needed to compute complex machine learning operations with a significant amount
of data and transform it into useful representations for the models. When applied to traditional
ML competitions, such as ImageNet, DL approaches have overcome classical techniques and, in
some cases, even human performance (Russakovsky et al., 2015). Therefore, DL has become the
standard approach to solving many hard tasks with the usage of data, such as the ones illustrated
in Figure 1 and Figure 2, respectively, the detection of people in images and of robots for soccer
competition.

Figure 1: RoboCIn 2017 members detected using DL models (YOLO architecture pre-trained on
Pascal Dataset). Image provided by the author.

Figure 2: Robot detection during a match of robot soccer competition. Pytorch YOLO architec-
ture trained on images labeled by the author. Image provided by the author.

A large number of companies have been investing in DL techniques because it is practical
to solve specific tasks and, as said before, generally outperform standard handcraft techniques.
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The main success of DL techniques are in supervised learning tasks, but good labels are hard to
obtain. Unsupervised learning models have been proposed to deal with data without the need for
labels, methods that incorporate the data itself as a clue to guide the learning process. In Deep
Learning, models like autoencoders (AE), restricted boltzmann machine (RBM), and generative

adversarial networks (GAN) are being widely used, but they lack the relationship between the
clusters and its neighborhood (topological preservation of the neighborhood), which is important
to understand the relationship between different inputs and its features. A model that preserves
the topology of the input data can manipulate the data without damage in its neighborhood. The
brain can inspire these models because its information is organized in many places with some
relations in such a way that maps with topological order (Haykin, 1994).

Inspired by the neurophysiology of the brain, the SOM was proposed by Kohonen (1990).
SOM networks can map a high-dimensional distribution in a smaller regular grid, managing to
compress information while preserving the topology of the input data. With this, SOM have been
used for clustering tasks. Variations of SOM networks were proposed for subspace clustering
problems with improvements in parameterization and time-varying topology. Unlike common
clustering algorithms, these SOM-based models do not need to know the exact number of clusters
beforehand. However, these models cannot adequately handle more complex data structures,
such as images.

Many tasks that depend on data can become harder or easier, depending on how that data,
e.g., an image, is represented. For example, representing a circle or curve in an image could
make detecting a soccer ball easier than looking at each image pixel. A good representation
is the one that is capable of making the subsequent task easier (Goodfellow et al., 2016). In
computer vision, algorithms like canny edge detector or color image segmentation can extract
low-level features such as borders with filters, and then use transformations in the images to
detect more common patterns. A traditional way is to use abstractions of pixel representations
such as the presence of borders, detection of specific shapes, and identification of categories. In
the end, all this information must be grouped in order to understand the scenario (Bengio et al.,
2009). DL techniques have been shown as a powerful tool to create representations useful for
solving tasks. The work done by Lawrence et al. (1997) introduces a way to combine SOM with
convolutional neural networks (CNN) to deal with images, since SOM do not work well directly
with images like CNN, providing good evidence that these two models can be coupled to solve
complex problems.

The main idea explored in this work is to investigate the use of more SOM-based methods,
exploring its properties of clustering and topologically ordered mapping to guide the process of
learning a good representation in the latent space obtained by deep neural networks. This will
allow learning mappings from a complex input space to a simpler latent space in which SOM
performs its functions.

To work toward our goal and bring SOM for state-of-art deep learning scenario, the SOM
needs to work with high-dimensional data like images, which do not have good results when
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applied directly to SOM and comparing with outstanding results given by CNN models. We also
need to make a deep learning SOM layer and open-source it for the science community validate
and deploy SOM models, a common practice in the deep learning field. Finally, we think that
the SOM have prototype learning properties that could guide the feature learning, so we would
like to test this point in the thesis.

Considering what has been set out, the main objectives of this thesis are listed below:

� Enable the usage of images with self-organizing maps by combining it with super-
vised DL approaches for learning representations.

� Develop a SOM layer compatible with moderns DL frameworks, like PyTorch, and
evaluate it in the unsupervised learning scenario.

� Apply the SOM layer to guide the organization of the latent space of an autoencoder
to achieve a fully unsupervised end-to-end learning model for representation learning
and clustering.

The first objective is achieved with the proposal of a framework combining feature
extraction from images with a pre-trained DL model combined with LARFDSSOM. Later on, the
second objective is achieved with a fully unsupervised learning model, in which the pre-trained
model is replaced by an autoencoder and a SOM layer is trained with the features provided
by the encoder. Finally, the third objective is accomplished with the development of a system
capable of backpropagating the unsupervised error of SOM layer to the encoding layers. The
full framework composes AE with SOM-based models embedded in its latent space and is called
deep clustering self-organizing map with relevance learning (DCSOM-RL). The DCSOM-RL is
an unsupervised learning model capable of cluster and reconstruct complex data while learns
more suitable representations for clustering in latent spaces. The results show that the prototypes
identified by DCSOM-RL represent frequent variations observed in the input data. For instance,
the different ways to represent the input data. It can also bring insights about similarities between
different categories or feature representations and which dimensions of the latent space capture
important information. The neighborhood learned by the DCSOM-RL leads to smoother regions
of transition between categories in the latent space. Although it does not present the state of the
art results in terms of evaluation metrics, the qualitative analysis shows that the model presents
unique properties not available in other methods of Deep Clustering methods.

The rest of this document is organized as follows: Chapter 2 presents essential concepts
related to the areas where this work is inserted in. Chapter 3 introduces work in the literature that
is more closely related to the ideas developed to build the proposed models. Chapter 4 describes
in detail the proposed models. Later on, in Chapter 5, the experimental setup, methodology,
obtained results, and comparisons will be discussed in order to evaluate the models proposed.
Finally, Chapter 6 concludes this thesis by summarizing the results obtained and indicating future
directions and practical applications for the proposed models.
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2 THEORETICAL BACKGROUND

In the current chapter, the theoretical background is presented to consolidate important
concepts required for the understanding of the research. First, Section 2.1 introduces clustering,
subspace clustering, and how relevance learning can be used to deal with subspace clustering
problems. Second, in Section 2.2, an overview of SOM is provided. Third, Section 2.3 describes
advances and incremental modifications on top of SOM to work with dynamic topology and
relevance learning. Finally, in Section 2.4, the concepts of deep representations and autoencoders

are explained.

2.1 CLUSTERING AND SUBSPACE CLUSTERING

The goal of clustering is to separate a set of data points into groups based on similarities
between the data points. Therefore, clustering is considered to be the most natural way of
summarizing and organizing data.

In clustering, a collection of prototype vectors, which may not necessarily be a member
of the data set, is determined by minimizing a distance-based object function. Considering
a training set X = {x1, ...,xN}, where xi = (x(1)i , ...,x(d)i ) ∈ Rd are the d-dimensional feature
vectors. The vector quantization (VQ) codebook, a set of code vectors, which is denoted here as
C = {c1, ...,cK} where K� N, forms the clustering structure of those clustering models.

Subspace clustering is an extension of clustering that consists of identifying the clusters
and relevant dimensions for each cluster. The subspace clustering tasks requires specialized
methods to deal with the intersection of the clusters. The following definition for subspace
clustering is proposed by Vidal (2011): Consider a collection of data points with a union of

subspaces, as illustrated in Figure 3. Specifically, let
{

xj ∈ RD
}N

j=1
be a given set of points

drawn from an unknown union of n≥ 1 linear or affine subspaces {Si}n
i=1 of unknown dimensions

di = dim(Si) ,0 < di < D, i = 1, . . . ,n. The next Equation
�
 �	2.1 define the subspaces:

Si =
{

x ∈ RD : x = µi +Uiy
}
, i = 1, . . . ,n,

�
 �	2.1

where µµµ i ∈ RD is an arbitrary point in subspace Si that can be chosen as µµµ i ∈ RD for linear
subspaces, Ui ∈RD×di is a basis for subspace Si , and y∈Rdi is a low-dimensional representation
for point xxx. The goal of subspace clustering is to find the number of subspaces n, their dimensions
{di}n

i=1, the subspace bases {Ui}n
i=1, the points

{
µµµ i
}n

i=1, and the segmentation of the points
according to the subspaces.
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Figure 3: A set of sample points in R3 drawn from a union of three subspaces: two lines and a
plane. Source: Vidal (2011).

In subspace clustering, the aim is to group the data simultaneously in multiple subspaces
within a data-driven way. This data-driven process works to create clusters that separate better
the intersection of useful features in the feature space. This problem appears in areas such as
image segmentation, motion tracking, or gene expression determination (Vidal, 2011). Figure 4
illustrates an example of a toy problem that can be solved with subspace clustering, in which the
red color feature is among one dimension, and the hexagon shape feature is among the other one,
the intersection of this problem consist of the middle red hexagon and this property can not be
fully disentangled by classical clustering algorithms that do not accomplish subspace clustering
tasks. Hence, algorithms that perform subspace clustering should be capable of identifying and
separating better the intersection of the clusters presented on the before-mentioned toy problem.

Figure 4: Subspace Clustering toy problem. The problem consists of two dimensions features:
color and shape. Algorithms that perform subspace clustering works to identify and separate
better the intersection of those dimensions.

2.2 SELF-ORGANIZING MAP (SOM)

A self-organizing map (SOM), proposed by Kohonen (1990), is a two-layered ANN
with unsupervised learning. This network performs a mapping of a continuous input space to a
discrete output space of a lower dimension, where the topological properties of the inputs are
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preserved as best as possible. Figure 5 illustrates a SOM, with its two layers.

Figure 5: Illustration of a SOM, showing the input pattern (vector x, at the bottom), the nodes
at the input layer, the nodes in the output layer with their lateral connections, and the weights
w ji that represents a connection between the i-th node in the input layer and the j-th node in the
output layer. Source: Bassani & Araújo (2012).

In addition, as SOM have the ability to organize complex dimensional data into groups
(clusters) according to their similarity relationships, in this case, the nodes are also called
prototypes because they summarize a certain region of the input space. SOM does not re-
quire labeled samples, making it ideal for problems in which labels are unknown or undeter-
mined (Haykin, 1994). This type of network is used for a variety of applications, such as
data visualization (da Silva & Wunsch, 2017), speech recognition (Lokesh et al., 2019), image
analysis (Farooq et al., 2017), industrial control processes (Cirera et al., 2020).

In SOM, the neurons in the output layer (also called nodes or units) are organized in a
regular structure, the most commonly used being the two-dimensional hexagonal or rectangular
grid, as illustrated in Figure 6. Each neuron j is associated with a vector of weights, c j

1, with
the same dimension as the input data. The algorithm for training a SOM is a learning algorithm,
in which the patterns are mapped to the neuron which weight vector is closest according to a
distance metric, such as the Euclidean distance or Manhattan distance.

The operation of a SOM can be divided into two stages: training and mapping. Weight
vectors can be initialized randomly or following the sampled patterns of the input dataset. Then,
the following is repeated until convergence: randomly choose a pattern x from the input dataset
and present it to the input layer. For each node in the output layer: the distance between the
weights and the input pattern x is calculated using Equation

�
 �	2.2 , and with this, the weight vector
of the winning neuron i(x), which has the minimum distance, is updated.

1In LARFDSSOM, the notation c is used instead of w following the tradition of time-varying topology models.
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i(x) = argmin
j
[D(x,c j)], j ∈Φ,

�
 �	2.2

where Φ denotes all the nodes of the map and D(x,c j) is the Euclidean distance between x and
the weight vector c j.

The result of this update is to move the weight vector of the winning neuron closer to the
input pattern. This updating step is given by Equation

�
 �	2.3 , where e is the learning rate of the
network (responsible for expressing how far the node will be moved towards the input pattern):

c j = c j + e(x− c j).
�
 �	2.3

The weight vectors of the neighbors of the winner node i(x) in the map are also updated
towards the input pattern, but to a lesser extent, following Equation

�
 �	2.5 , where h( j, i) is a
function responsible for measuring how close in the map are the nodes j and i. Generally, a
radial basis function centered at the winning node is used for the h( j, i) function, as per

�
 �	2.4 .
Remember that the radial basis function decays with the winner’s discrete distance in the output
map, so the nodes closer to the winner are updated with a higher factor.

h j,i(x)(n) = exp

−∥∥r j− ri
∥∥2

2σ2(n)

 , j ∈Φ,n = 0,1,2, ...,
�
 �	2.4

where ri and r j defines the position of the winner i and its neighbor j in the grid, Φ denotes
the set of all the nodes of the map, and σ(n) represents the width or radius of the topological
neighborhood function. The σ(n) function measures the degree to which excited nodes in the
neighborhood participate in the learning process. It starts with an initially defined parameter and
also decreases during the training following an exponential decay function.

c j = c j +h( j, i)e(x− c j),
�
 �	2.5

where i is equal to j the h( j, i) is equal to 1 and the Equation
�
 �	2.5 becomes the Equation

�
 �	2.3 .
During several iterations in the training phase, the weight vectors of the network converge to
model the distribution of the training dataset as best as possible. Then, in the mapping phase,
each input is assigned to the prototype with the closest weight vector. When a SOM adapts to
the distribution of input samples, it stretches to cover the input space, as illustrated in Figure 6.
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Figure 6: SOM grid during the training process adapts to the input space. The input pattern
space is illustrated in blue, the current pattern is in white, the winner node or neuron is in yellow,
and the black grid indicates the neighborhood. Source: Wikipedia (available under Creative
Commons license)

2.3 METHODS BASED ON SOM WITH DYNAMIC TOPOLOGY AND

RELEVANCE LEARNING

As self-organizing map, as applicable in the 2.2 section, it has some limitations that have
been addressed by more recent work. Amongst them:

1. Do not work well for subspace clustering when each grouping needs to be able to
take into account more strongly a different subset of the dimensions of the input
patterns that can be assigned to more than one group.

2. Defining the number of nodes and the topology requires prior knowledge about the
dataset so that an adequate grouping can be done.

The dimension selective self-organizing map (DSSOM) (Bassani & Araújo, 2012) has
been proposed to deal with the first problem, and the second one has already been addressed
by other methods in the literature such as Fritzke (1994, 1995); Marsland et al. (2002), and
these methods inspired the expansion of dimension selective self-organizing map (DSSOM),
which is called local adaptive receptive field dimension selective self-organizing map (LARFDS-
SOM) (Bassani & Araujo, 2014). DSSOM was proposed initially for subspace clustering (Section
2.1), which allows each node to assign different relevance to each dimension to group the patterns
properly. These different levels of relevances are learned throughout the training, as well as the
weight vectors.

2.3.1 DSSOM

When a competition to determine the winning node occurs in SOM, each dimension
of the input space is equally important. However, in dimension selective self-organizing map

(DSSOM), each node can assign a different relevance to each dimension while calculating the
distance. Specifically, given a x pattern, the weighted distance between the j weight vector and
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the x pattern is given by the Equation
�
 �	2.6 , where ω ji is the relevance given by the node j to the

dimension i and m is the number of dimensions of the input data:

Dω(x,wj) =

√
m

∑
i=1

ω2
ji(xi− c ji)2.

�
 �	2.6

The node activation is calculated by Equation
�
 �	2.7 , where ε is a very small value to

avoid division by zero and the numerator is the sum of the components ωωω j of node j, the winner
node of the competition is the one with the highest activation:

ac(Dω(x,w j),ωωω j) =
∑

m
i=0 ω ji

∑
m
i=0 ω ji +Dω(x,c j)+ ε

.
�
 �	2.7

During network training, for each prototype j, a moving average δ ji of the distance in the
dimension i is computed between the weight vector c j and the patterns grouped by j. Then, ωωω j

is calculated as a function of δδδ j, where each value ω ji is inversely proportional to the variance in
the i dimension of the patterns grouped by the prototype j. During the training or final grouping
phases, each chosen pattern is presented to the network several times, and a different winner
is calculated each time to update the DSSOM map (Bassani & Araújo, 2012). Despite being
effective for subspace clustering, its training is difficult to parameterize, and its fixed topology
makes it difficult to adapt the result to the dataset.

2.3.2 LARFDSSOM

In SOM and DSSOM, the number of nodes and the structure formed by their neigh-
borhood connections are fixed. For this reason, an improvement was proposed, local adaptive

receptive field dimension selective self-organizing map (LARFDSSOM), nodes are inserted and
removed during the training, and the connections between them are updated periodically. In
relation to DSSOM, LARFDSSOM has reduced computational cost, simplified parameterization,
and better grouping quality. Each j node, as in the DSSOM, is associated with three vectors of
the same size of the input space, in addition to a competition winner counter (wins j) which is
used to choose which nodes to remove:

1. Weight vector c j.

2. Relevance vector ωωω j
2.

3. Distance vector δδδ j (used to calculate the relevance vector).

The training of LARFDSSOM has two main phases: organization and convergence. The
ANN starts with just one node, and an input pattern is chosen randomly to initialize its weight

2Note that relevances have more connection with the weights of the MLPs synapses than the centers of the nodes.
That is why the ω , similar to w, was used.
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vector. The distance vector is initialized with zeros and the relevance vector with ones. In the
organization phase, there are (tmax ∗n) competitions, where n is the number of input patterns, and
tmax is an input parameter of the algorithm. In each competition, as in the previous SOM, a x
input pattern is chosen at random and presented to the ANN. The distance between x and the
node in LARFDSSOM is calculated, such as DSSOM, and follows Equation

�
 �	2.6 . The activation
of each j node is given by Equation

�
 �	2.7 .
When there is a winner, it has its weight vector and neighbors weight vectors updated,

just like a common SOM competition, with two different learning rates values for the winners
and others following the Equation

�
 �	2.3 . Where, e is the learning rate and satisfies Equation
�
 �	2.8 :

e =

eb, If it is a winner neuron;

en, otherwise,

�
 �	2.8

being 0 < en < eb < 1. Then, the distance vectors are updated according to Equation
�
 �	2.9 , where

β is a parameter that regulates the speed of change of the moving average:

δδδ j = (1− eβ )δδδ j + eβ (
∣∣x−w j

∣∣)−δδδ j).
�
 �	2.9

Finally, the relevance vectors are updated, using the Equation
�
 �	2.10 :

ω ji =


1

1+exp(
δ ji−δ jimean

s(δ jimax−δ jimin)
)
, If δ jimin 6= δ jimax;

1, otherwise,

�
 �	2.10

where, δ jimin is the minimum distance in the distance vector δδδ j, δ jimax is the maximum
distance, δ jimean is the average of the distances. The s is a parameter to control the smoothness
of the relevance vector.

In LARFDSSOM, an important difference concerning previously mentioned algorithms
is that, if the activation of the winner node in a competition does not reach a minimum value
given by the parameter at , the winner node and its neighbors are not updated. Instead, a new
node is created, with its weight vector equal to the input pattern, and its distance vector is filled
with zeros and the relevance vector with ones. It is then connected to existing nodes and inserted
into the map. However, if the number of nodes is at the maximum, defined by the parameter
nmax, no node is created.

Each node j maintains its winsi counter for how many competitions it has won. For
every maxcomp competitions, all nodes with less than (lp ∗maxcomp) wins are removed from the
map, where lp and maxcomp are parameters of the algorithm to control the minimum size of
groups and the frequency of resets, respectively. Note that the maxcomp parameter is multiplied
by the number of patterns in the input before being used in the algorithm. After the removals,
the connections of the remaining nodes are updated and their counters are reset to zero. When a
node is created, it receives (lp ∗wins) wins, where wins is the number of competitions since the
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last reset, to avoid being prematurely removed.
When a node connection is created or updated, it is connected to nodes that give similar

importance to the input dimensions. Specifically, two nodes i and j are connected if Equation�
 �	2.11 is satisfied, m being the number of input dimensions and pconn parameter is used to regulate
connectivity:

∥∥ccci− ccc j
∥∥< pconn

√
m.

�
 �	2.11

After the organization phase, proceeds the convergence phase, which serves to give a
final adjustment to the remaining nodes. The nmax parameter is updated with n, the current
number of nodes, and more maxcomp competitions are held, until a final removal phase. Finally,
to define which patterns belong to which groups, for each pattern, the activation of nodes is
calculated, and it is assigned to every node with activation above the threshold at . If instead of
subspace clustering, the algorithm is configured to perform the projective clustering, in which
every pattern can belong to only one group, then each pattern is associated only with the node
with the highest activation.

It is essential to mention that classical SOM can not accomplish subspace clustering tasks
because, during its train, all dimensions are considered to have the same weight. Experiments
with DSSOM (Bassani & Araújo, 2012) and LARFDSSOM (Bassani & Araujo, 2014), show
that relevance learning works better on subspace clustering because it can learn the relevance
(weight) of each dimension during its train, these algorithms perform better than k-means in
subspace clustering benchmarks. Figure 7 illustrates a qualitative clustering results comparison
of SOM and SOM with relevance learning on a toy problem.
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Figure 7: Cluster results obtained by (b) SOM and (c) LARFDSSOM for the dataset shown
in Figure (a). The centroids are represented by larger symbols. Centroids in both SOM and
LARFDSSOM are almost at the same location, but LARFDSSOM better fits among the intersec-
tion of the two dimensions on the input data because of relevance learning. Source: Bassani &
Araujo (2014).
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2.4 REPRESENTATION LEARNING

The pioneering work in visual attention called feature integration theory (Treisman
& Gelade, 1980) was proposed in psychology, in which the objective was to explain human
perception and cognition. The theory defends the idea that the feature perception comes before
the perception of the object. The features are recorded in the visual field, and then the brain
processes these basic features, later it helps the visual attention to form the concept of what
would be an object. Different visual features, such as color, orientation, spatial frequency,
brightness and direction, are recorded on feature maps. The combination of feature maps forms
a representation of a possible object (Begum & Karray, 2011). The feature integration theory is
an acceptable model of how human visual cortex works. It begins with representation learning
of simple features combined in different levels of complexity until arriving at a more elaborate
abstraction, as parts of the object or even the complete object.

Many tasks that depend on data can become harder or easier, depending on how they
are represented. For example, representing a circle or curve in an image could make detecting
a soccer ball easier than looking at each image pixel. A good representation is the one that is
capable of making the subsequent task easier (Goodfellow et al., 2016). In computer vision, the
algorithms can extract low-level features such as borders with filters, and then use transformations
in the images to detect more common patterns. A traditional way is to use pixel and transform it
into more abstract representations such as the presence of borders, detection of specific shapes,
identification of categories. In the end, all this information must be grouped in order to understand
the scenario (Bengio et al., 2009).

As seen, some human cells perceive more straightforward information from raw input,
and then, the perception of objects or parts of them by cells that perceive more complex
information following a hierarchy as proposed by feature integration theory. This idea inspired
deep learning techniques, which represents with a composition of layers, several hierarchical
transformations of the input regardless of the type of the input, be it: sound, image or another
variety of signal. Figure 8, shows the work developed by Zeiler & Fergus (2014) to represent
low, medium, and high-level features with DNN.

2.4.1 Supervised Representation Learning

The representation can be learned in a supervised way, in which each input needs
a respective label to guide the training process. The trained model can be used to extract
representations. When ANN are composed of many layers, these representations have different
levels of abstractions. If it is closer to the supervised process classifier, it tends to be more
abstract and closer to a representation useful to the aim of the supervised loss function. The
major drawback of supervised representation learning consist is that Labels are essential for this
kind of learning process, but it is expensive to acquire useful labels to solve real-world problems.
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Figure 8: Feature Visualization of DNN - Low, Medium and High Level Features. Source:
Adapted from Zeiler & Fergus (2014).

2.4.1.1 Multilayer Perceptron (MLP)

A fully-connected network (FCN), also known as multilayer perceptron (MLP), consists
of multiple layers of artificial neurons, each artificial neuron is connected, and every connection
has its weight. The MLP, after its training, can be used to extract features of its input and use
its representation for other tasks. The MLP, illustrated in Figure 9, which receives the values
(xi) that will be used as input by the neuron, with their weights (wi), pass through a hidden layer
with the neurons hi and its respective weights w1

i , which pass through an activation function, and
are added generating the output y. The output obtained (y) compared to the desired output (t)
generates an error that is useful to train the ANN.

x1

x2

h1

h2

h3

o

Output
Layer

Hidden
Layer

Input
Layer

y

Figure 9: Multilayer Perceptron (MLP): A class of feedforward artificial neural network. xi are
the input features, with its weights (wi). The hi are the hidden neurons, and o is the output unit.
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The training of ANN can be performed by backpropagation, which is based on the
propagation of errors of layers for previous layers to carry out its weight adjustments. With
backpropagation, the network can adjust its parameters to generate an output with less error.
Here is a description of how to calculate the error to adjust the weights of the ANN in training
phase:

a) Forward Pass: each layer calculate the sum of its inputs multiplied by its owns
weight, followed by an activation function φ , represented in Equation

�
 �	2.12 to train
a network, which y is the current system output, (wi is the weight of the neuron
connection, xi is the current value of the neuron input, n is the number of nodes in
the network:

y = φ

(
n

∑
i=1

wixi

)
.

�
 �	2.12

b) The error E generated by the output is calculated through the error between the
current output y and the desired output t, as shown by Equation

�
 �	2.13 :

E =
1
2
(t− y)2 .

�
 �	2.13

c) Backward Pass propagates the error over the network, in which the value for updating
each weight is given by Equation

�
 �	2.14 , which is called stochastic gradient descent

(SGD) proposed by Nemirovski & Yudin (1978):

wi = wi−η
∂E
∂wi

,
�
 �	2.14

where η is the learning rate and ∂E
∂wi

is the partial derivative of the error in relation
to each neuron weights. The SGD is used to optimize objectives estimating the
parameters of the ANN.

2.4.1.2 Supervised Deep Learning

Supervised Deep Learning techniques can be used for representation learning. After its
training, the deep model can be used to extract features of the input and these features can be
used in other tasks such as clustering. DL consists of several amounts of layers. No one can deny
that deep learning (DL) changed the paradigm of classical machine learning (ML) algorithms.
Until the last decade, ML algorithms relied on feature engineering, in which a feature engineer
was responsible for selecting the best features for the aim problem. Features are transformations
on the input data that helps the algorithm solve a problem. DL techniques aim at finding adequate
features representations automatically by training a deep neural networks (DNN). Deng & Yu
(2014) suggest several definitions of DL. The following list presents some of them:
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1. Class of ML techniques for exploring layers of nonlinear information by process-
ing and extracting supervised and unsupervised features, as well as performing
transformations to analyze and classify patterns.

2. ML subfield that uses algorithms to represent levels to model complex relationships
of the data. Which high-level features are defined in terms of low-level features.

3. A subset of ML methods based on representation learning. An observation (ex: an im-
age), can be represented in several ways (ex: a set of pixels), but some representations
are easier to learn specific tasks.

4. Set of algorithms in ML that aim to learn multiple levels, corresponding to different
levels of abstraction. The levels in learned models correspond to different levels of
concepts, where the highest order concepts are defined through lower-order concepts,
and the low-order concepts can help define several of the high-order concepts.

Therefore, the main goal of a DNN is to create a representation of the data that is
useful for solving complex problems. The success of DL remains on its supervised part. The
unsupervised still needs to be improved to reach good results as compared to supervised.

2.4.2 Unsupervised Representation Learning

In the early days of DL, deep representations researches were composed of unsupervised
learning techniques, e.g. training RBM (Hinton, 2012), or AE based models (Vincent et al.,
2008), like stacked autoencoder (SAE). Generally, SAE were trained in a layerwise fashion
using the backpropagation algorithm with SGD.

Unsupervised learning as a pretraining stage was usual in DL, such as in Hinton et al.

(2006). This learning process is known to produce better DL model initialization (Bengio et al.,
2007) without the worry of acquiring labels. Unsupervised pretraining guides the optimization
towards basins of attractions of minima that allow better generalization from training and add
robustness to a deep architecture (Erhan et al., 2010).

The DL high-level representations can be generally extracted from one layer of ANN,
for example, from autoencoders (AE) (Vincent et al., 2008) or a restricted boltzmann machine

(RBM) (Hinton, 2012), or from CNN layers (Saito et al., 2017). AE are in fact fundamentally
connected to clustering as shown by Baldi (2012). In the following Section 2.4.2.1 explains in
details about autoencoders (AE) and the importance of the latent space generate by its training.

2.4.2.1 Autoencoders

Autoencoders (AE) are a kind of an auto-associative ANN that is used for dimensionality
reduction and feature learning. During training, the AE aims to minimize the reconstruction
error, i.e., the error between its input and the respective output so that it produces an output
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close to the input. The training process of classic AE does not need labels, only the input itself,
and for this reason, it is considered an unsupervised data-driven process. The hidden layer, h,
in the middle is usually constrained to be a narrow bottleneck producing a latent space. The
system can minimize the reconstruction error by ensuring the hidden units capture the most
relevant aspects of the data (Murphy, 2012). The AE network consists of two parts: an encoder
function f (x), where x is the input data, that maps the input to the latent space and a decoder
that produces a reconstruction g( f (x)) = x̂, where x̂ is the reconstructed input data. If the AE
converges adequately, it learns the map g( f (x)) = x. The AE learning process is described as
minimizing Equation

�
 �	2.15 , which can be trained with SGD:

L (x,g( f (x))) =
∥∥x−g( f (x))

∥∥2
,x ∈Φ,

�
 �	2.15

where Φ is the set of samples in the training dataset. When the AE has a constraint where h
dimension is smaller than the input x dimension, it is called undercomplete AE. This constrain
forces the AE to learn the more important and useful features of the input to encode it. A deep
AE can learn more powerful nonlinear generalization compared to principal component analysis

(PCA) (Goodfellow et al., 2016). Figure 10 illustrates an example of undercomplete AE, where
the input is retracted in the encoding layer and expanded in the decoding layer.

Output
Layer

Hidden
Layer

Input
Layer

Figure 10: A simple example of undercomplete AE. The neurons in red represent the input layer,
the neurons in blue represent the hidden layer, and the neurons in orange represent the output
layer.
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3 REVIEW OF THE LITERATURE

Deep Learning (DL) learns how to map one vector to another, given a large amount of
labeled data. The success of DL relies on solving supervised learning problems, which labels are
needed. Several DL techniques have been proposed to tackle unsupervised learning problems,
but none have truly solved it in the same way as the supervised counterpart. The combination of
clustering with deep learning is a family of approaches aiming at unsupervised learning tasks.
These techniques are being applied to obtain richer deep representations of the data, and at the
same time, it creates clusters in an unsupervised fashion way by a data-driven process.

The purpose of this chapter is to introduce some concepts closer to this thesis. Section
3.1 starts with the deep clustering, the next Section 3.2 explains the essential building blocks for
deep clustering, Section 3.3 details the joint loss function for deep clustering, and end Section
3.4 detail the state-of-art deep clustering self-organizing maps baselines.

3.1 DEEP CLUSTERING

The DC research field resulted from the application of DL methods in clustering problems.
In Figure 11, the taxonomy of methods proposed by Nutakki et al. (2019) and adopted in the
rest of this work is illustrated. The DC scenario differs from conventional approaches varying
their algorithm structure, network architectures, loss functions, and optimizations methods for
training. In the following sections, some core concepts will be discussed to introduce the reader
to the DC scenario.

Clustering with Deep Learning

Multi-step Sequential Deep
Clustering Joint Deep Clustering Closed-loop Multi-step Deep

Clustering

Train with
Joint Loss
Function

ClustersInput Data

Pre-
training Clustering

ClustersInput Data Step 1 Step 2

RetrainingDeep 
Representation

Pre-
training Clustering

ClustersInput Data Step 1 Step 2

Deep 
Representation

Figure 11: Deep Clustering taxonomy proposed by Nutakki et al. (2019). It divides the field into
three main sub-fields differing in the number of steps and the presence of feedback from the
clustering step. Source: Adapted from Nutakki et al. (2019).

The Nutakki et al. (2019) taxonomy’s divides clustering with deep learning into three
main topics listed below:

� multi-step sequential deep clustering (MSSDC)

� closed-loop multi-step deep clustering (CLMSDC)
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� joint deep clustering (JDC)

3.1.1 Multi-Step Sequential Deep Clustering

The MSSDC is a forward process divided into two main steps, as illustrated in Figure
12. The first one learns a richer representation of the input data using DL techniques, e.g.,
CNNs or AE. The subsequent step performs clustering on that deep representation (or latent
representation) learned by the previous step. An example of this family of methods is Fast
Spectral Clustering (Banijamali & Ghodsi, 2017), where in the first step, an AE is trained to
produce a latent or deep representation, and in the second step, its representation is used as input
to clustering with k-means.

Pre-training Clustering

Deep 
Representation

ClustersInput Data Step 1 Step 2

Figure 12: Multi-Step Sequential Deep Clustering: A forward Deep Clustering approach com-
posed of two steps: First step for representation learning, and the second for clustering. Source:
Adapted from Nutakki et al. (2019).

Generally, MSSDC is the first DC technique experimented when clustering with DL
algorithm is implemented because it is easier to evaluate the deep learning or clustering algo-
rithms as isolated building blocks. After the evaluation of each block, the one responsible for
representation learning and the other module responsible for the clustering task, the problem is
minimized to discover the best representation that suits the specific clustering technique, where
the dimension of representation matches the clustering algorithm input shape.

In this kind of DC technique, success is related to the representation created in the
first step. Consequently, a good strategy to have better results is evaluating the representation
produced before applying the clustering technique. A simple qualitative analysis consists of
visualizing the representation or how to disentangle its dimensions as performed by Li et al.

(2018). If a dimension is disentangled, its features can generally be isolated, helping the
clustering process, Figure 13 illustrates an example of the disentangled feature.
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Figure 13: Latent features learned in the Flower dataset. The pictures are generated by varying a
latent variable, while others are zero. The color temperature of the flower is an example of a
disentangle feature. Source: Li et al. (2018).

In MSSDC is important to mention that each block of the technique is easy to maintain
and test separated due to its two steps. The principal drawback is the need to run two separate
tasks to perform the whole algorithm demanding a larger running time.

3.1.2 Closed-Loop Multi-step Deep Clustering

The CLMSDC is a family of DC methods similar to MSSDC, however, the clusters can
be used to adjust the deep representation, as illustrated in Figure 14. Therefore, the algorithm
performs one step of, for example, an AE and another step of the clustering method during its
training. An example of this method is the deep embedded clustering (DEC) that uses an AE as
network architecture and k-means for clustering, while training. The algorithm performs one
step of the AE, and one step of the k-means and the AE is adjusted with the cluster loss by
backpropagation.

Pre-training Clustering

Deep 
Representation

ClustersInput Data Step 1 Step 2

Retraining

Figure 14: Closed-Loop Multi-step Deep Clustering: A Deep Clustering approach composed of
two steps, one for representation learning and the second for clustering. The clusters are used to
adjust the feature representation performing a loop. Source: Adapted from Nutakki et al. (2019).

Recently, Caron et al. (2018) proposed the DeepCluster. It is a CLMSDC model that
provides a technique to perform DC using the k-means cluster algorithm to create pseudo-labels
and adjust the weights of a deep neural network. The DeepCluster illustrated in Figure 15, shows
that good representations of visual features can be learned with CLMSDC approach.
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Figure 15: DeepCluster: A clustering method that jointly learns the parameters of a neural
network and the cluster assignments of the resulting features. Source: Caron et al. (2018).

In CLMSDC is important to mention that this technique has the same positive points of
the aforementioned MSSDC method, but it has the advantage of using its clusters to fine-tuning
the representation. The principal drawback involves tuning the clusters the right way to avoid a
significant perturbation that makes the whole system unstable, e.g., degenerating the clusters and
making the loss function diverges rather than fine-tuning it.

3.1.3 Joint Deep Clustering

Differently from the methods above of DC that can be accomplished with two main steps
performed in a sequential way or iteratively, the JDC is performed in only one step, in which
the representation of the data is learned with a combined or joint loss function responsible for a
good representation learning while also performs clustering, as illustrated by Figure 16.

Train with joint loss
functions

Deep Representation
and clustersInput Data

Figure 16: Joint Deep Clustering: Deep Clustering approach that learns representation and
clustering jointly. Source: Adapted from Nutakki et al. (2019).

In this scenario, FaceNet proposed by Schroff et al. (2015), illustrated in Figure 17,
combines a CNN and a Triplet Loss (a loss that receives positive and negative samples to
approximate and separate objects in the clusters in the space) to perform tasks such as face
recognition and clustering jointly.

Deep
Architecture

L2
 Normalization Embeddings

Batch

Triplet Loss

Figure 17: FaceNet: Combines a CNN and a Triplet Loss to perform tasks such as face recogni-
tion and clustering jointly. Source: Adapted from Schroff et al. (2015).
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In JDC is important to mention that due to the combined loss function, it tends to learn
better representations when the loss function is fine-tuned, and it only requires one step to
perform the algorithm. The main drawback consists of debugging errors that can exist in the
whole process, due to the combination of each loss function term, it is harder to know which
model is damaging more the learning process.

3.2 ESSENTIAL BUILDING BLOCKS FOR DEEP CLUSTERING

The development of a framework to achieve DC needs some suitable crucial components,
such as useful representations and a robust cluster algorithm, or a loss function that captures
the essential points of these representations to perform clustering. The present section briefly
introduces a set of tools commonly used for unsupervised learning and to build DC models

3.2.1 Artificial Neural Network Architecture for Deep Clustering

The ANN are essential to transform the input data into a new feature representation
useful to DC. The following list details the work done by Aljalbout et al. (2018) and Min et al.

(2018) to address some of these architectures that are useful for DC:

� Convolutional Neural Network (CNN): (LeCun et al., 1998) is one of the most
powerful and applied tools to run with complex high-dimensional data (e.g., image
and sound). The idea behind the CNN is the ability to, during its train, learn the best
convolution filters (kernels, or weights) to solve a task based on its loss function. The
CNN can be trained with a clustering loss function directly without a pretraining step,
although a good initialization would significantly boost the performance (Min et al.,
2018).

� Deep Belief Network (DBN): deep belief networks (DBN) are generative graphical
models composed of several unsupervised networks such as RBM (Hinton, 2009) or
AE (Bengio et al., 2007). Each unsupervised network can be seen as a hidden layer
that serves as a visible layer for the next one. Those layers are named latent variables
or hidden units. This class of DNN holds connections between the layers, but not
between units inside each layer. In DBN, the unsupervised networks are responsible
for learning to extract a deep representation of the input data. When trained in an
unsupervised fashion strategy, it can be employed to reconstruct its input, and the
layers then learn to detect features. Commonly, after the unsupervised training, a
fine-tuned process makes the neural network adjusted to perform classification.

� Variational Autoencoder (VAE): variational autoencoders (VAE) is a class of AE
able of performing sample generation. The VAE determines the data distribution
making its encoder learns, a vector of means, and a vector of standard deviation, using
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Bayesian inference (Kingma & Welling, 2013; Rezende et al., 2014). The Bayesian
inference is a statistical inference method in which Bayes’ theorem is applied to
update probabilities of the model.

The list mentioned above is a useful source of architectures for developing a DC frame-
work. To pick these architectures, many aspects of the ANN need to be considered and adjusted
with the research goal. In this work, the AE was chosen as a start point because the latent space
features have been used for clustering tasks, but the others could also be used as the base ANN
architecture.

3.2.2 Deep Clustering Loss Functions

The purpose of the loss function is to guide the training process towards its objective.
A DC loss function leads the ANN to learn clustering-friendly representations. In DC, Min
et al. (2018) categorize the loss functions in two sets: the clustering loss and the non-clustering
loss. The clustering loss is responsible for the cluster centroids and cluster assignments of
samples, within this loss, the neural network can obtain the clusters directly (e.g., k-means
loss (Yang et al., 2017), cluster assignment hardening loss (Xie et al., 2016), agglomerative
clustering loss (Beeferman & Berger, 2000)). The non-clustering loss makes small adjustments
in the neural network, guiding to learn more interesting representations for clustering (e.g.,
locality-preserving loss (Huang et al., 2014), group sparsity loss (Huang et al., 2014), sparse
subspace clustering loss (Peng et al., 2017)).

Nutakki et al. (2019) describe the four most important types of losses that can be used
in DC. The first one comes purely from learning a deep representation using deep learning
techniques, and does not depend on any clustering quality measure (e.g., the reconstruction error
of an autoencoder or matrix factorization). The second is similar to the principal clustering
loss of Min et al. (2018), which comes from a clustering process. The third type is a joint loss
function that combines clustering loss and the non-clustering with a hyperparameter. The fourth
is a loss function to obtain harder cluster partitions in case of soft clustering. The soft clustering
allows that an input belongs to multiple clusters.

Here, the main type of loss consider is joint loss function. The joint loss function can be
divided into two main parts: non-clustering loss and clustering loss. The first, one responsible for
the representation learning (e.g., AE loss, ANN loss); in the case of AE, it is called reconstruction
loss. The second part is responsible for creating a better clustering representation (e.g. k-Means
loss, SOM loss1). The following list detail some of these losses:

� ANN Loss: This is the standard scenario of a deep learning model, in which the model
is trained as usual with its loss function. After the training, the model weights can be
used to extract features, and these features subsequently can be used in clustering
algorithms.

1The SOM loss is described in deep embedded self-organizing map (DE-SOM) algorithm.
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� AE Reconstruction Loss: The reconstructions loss of an AE, already described in�
 �	2.15 , can be used for learning representations in the latent space, extracting features
that can be used for clustering.

� k-Means Loss: This loss ensures that the new representation is k-means-friendly (Yang
et al., 2017), i.e., the input data are distributed around the cluster centers. To accom-
plish this task, an ANN is trained with the following loss function:

L (θ) =
N

∑
i=1

K

∑
k=1
‖zi−µk‖2 ,

�
 �	3.1

where zi is an embedded data point, µk is a cluster center, N is the number of
embedded data points, and K is the number of clusters. The goal of minimizing this
loss function is to make the distance between the data point and its assigned cluster
small.

3.3 DEFINING JOINT LOSS FUNCTIONS

In the case of the joint loss function, which a clustering and a non-clustering loss function
are used, this work is going to follow the definition of Aljalbout et al. (2018) to combine the two
different losses, as described by the following equation

�
 �	3.2 , which if the hyperparameter α is
set to one it has only clustering loss, and if α is set to zero, it has only non-clustering loss:

L (θ) = αLc +(1−α)Ln(θ),
�
 �	3.2

where Lc(θ) is the clustering loss, Ln(θ) is the non-clustering loss, and α ∈ [0;1] is a constant
specifying the weighting between the two different losses contribution. This constant is an
additional hyperparameter for the ANN training. This hyperparameter can be adjusted during
training following some schedule, e.g., if it hits a clustering metric plateau, it can decrease or
increase the parameter to adjust the contribution of the clustering loss, depending on if the metric
is being maximized or minimized. The following are strategies to assign and schedule these
values of α:

� Pre-training, fine-tuning: The training method is classified as a MSSDC, which first,
α is set to 0, i.e., the ANN is trained using the non-clustering loss only. Next, α is
set to 1, i.e., the non-clustering network branches are removed (e.g., autoencoder’s
decoder) the features are extracted, and the clustering loss is used to train (fine-tune)
the obtained network or to cluster these features.

� Combine the different joint training losses: This training method is classified as a
JDC, in which both losses contribute to the training process. The hyperparameter
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α varying between 0 and 1 exclusively (0 < α < 1), e.g α = 0.5, i.e. the network
training is affected by both loss functions equally.

� Dynamically adjust hyperparameter: The α is varied during the training depending
on a chosen schedule. For instance, start with a low value for α and gradually
increase it in every phase of the training, i.e., the non-clustering loss starts with the
weighting of one for the training process and decays to zero, while the clustering
loss counterpart increases complementary (going from zero to one), so first the ANN
adjust its representation and after it adjusts the clusters.

The concepts described above are frequently adopted in DL for combining different loss
components and optimize them.

3.4 DC BASELINES WITH SOM

In this section, the DE-SOM and self organizing map variational autoencoder (SOM-
VAE) are introduced to explain some ideas that were applied to the development of our proposed
SOM algorithm. The mathematical notation of each baseline method was preserved as presented
in each original paper, but some interpretations and observations were added to understand these
methods.

3.4.1 Deep Embedded Self-Organizing Map (DE-SOM)

The DE-SOM (Forest et al., 2019) uses an AE combined with a classical bidimensional
SOM grid. The DE-SOM is a JDC algorithm that jointly learns the latent space with the AE
and cluster with SOM loss. Forest et al. (2019) claim that the AE can learn a low-dimensional
representation that improve the SOM performance, while self-organization and representation
learning is achieved in the same step improving the model performance (in terms of classification
and training speed convergence). The principal points of the DE-SOM consist of learning a
continuous latent space with the AE, and also, apply a Gaussian neighborhood with exponential
radius decay to categorize each prototype. Figure 18 illustrates the DE-SOM architecture with
the SOM learning to cluster in the latent space.
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Figure 18: DE-SOM architecture with an 8×8 map, it learns 64 prototypes. The architecture
consists of an autoencoder with a SOM coupled in the latent space features. Source: Forest et al.
(2019)

The SOM contains K units representing the prototype vectors {mmmk}16k6K . δ (., .) is the

distance between two nodes on the map. A Gaussian neighborhood function κT (d) = e
−d2

T 2 was
used to control neighborhood’s radius, which depends on a parameter T . This parameter decays
exponentially at each training iteration. WWW e is the encoder and WWW d the decoder parameters. The
features in the latent space are represented by zzzi = fff we

(xxxi), which embeds the input xxxi, and the
decoders’ reconstruction is described by x̃xxi = gggWd

(zzzi). The combined DE-SOM loss is composed
of two parts, described by the following Equation

�
 �	3.3 :

L (WWW e,WWW d,mmm1, ...,mmmK,χ) = Lr(WWW e,WWW d)+ γLSOM(WWW e,mmm1, ...,mmmK,χ),
�
 �	3.3

where the first term is the AE reconstruction loss (Lr) and the second term is the SOM loss
(LSOM). The coefficient γ trades off between reconstruction and SOM losses. The SOM
loss depends on the parameters mmmk and the assignment function χ(z) = argmink ‖zzz−mmmk‖2.
The authors do not explain the hole of δ (., .) in the loss function, but it seems to be a factor
that penalizes the nodes that are distant in the map but have similar features and vice-versa.
Equation

�
 �	3.4 describes this loss:

LSOM = ∑
i

K

∑
k=1

κ
T (δ (χ( fffWe

(xxxi)),k))
∥∥∥ fffWe

(xxxi)−mmmk

∥∥∥2
.

�
 �	3.4

When the parameter T approaches zero, the SOM loss becomes identical to a k-means
loss, as in Equation

�
 �	3.5 :

lim
T→0

LSOM = ∑
i

∥∥∥ fffWe
(xxxi)−mmm(χ( fffWe(xxxi))

∥∥∥2
.

�
 �	3.5
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These peculiarities make the DE-SOM capable of adjusting the latent representation
during the training. When the model converges, the latent space becomes more stable, allowing
SOM to work more effectively. DE-SOM is one of the baseline methods that will be compared
with our proposed model.

3.4.2 Self Organizing Map Variational Autoencoder (SOM-VAE)

The SOM-VAE (Fortuin et al., 2018) is a JDC model that combines ideas from SOM
with vector quantised-variational autoencoder (VQ-VAE) in a discrete latent space. The authors
devised a novel framework for interpretable discrete representation learning on time series and
show that the latent probabilistic model improves clustering. In Figure 19, the SOM-VAE model
is illustrated.

Figure 19: Schematic overview of SOM-VAE architecture. In green, the time series is the input
data encoded by an ANN into the latent space. The encoded points (ze) in the latent space is
assigned to a cluster zq by SOM, in red. A Markov transition model, in blue, is learned to predict
the next discrete representation (zt+1

q ) given the current one (zt
q). The discrete representations

can then be used as input to the decoder to reconstruct the encoded data into the input space.
Source: Fortuin et al. (2018).

In SOM-VAE, an input x ∈ Rd is encoded to ze ∈ Rm by computing ze = fθ (x), where
fθ (.) represents the encoder. The data encoded in the latent space is then assigned to a prototype
zq ∈Rm with the prototypes being element of the dictionary E =

{
e1, ...,ek|ei ∈ Rm} by sampling

zq ∼ p(zq|ze). The distribution of zq is modeled by a categorical distribution with probability
mass 1 on the closest embedding to ze, i.e. p

(
zq | ze

)
= 1

[
zq = argmine∈E ‖ze− e‖2

]
, where

1 [.] is 1 if zq ∈ E or 0 if zq /∈ E.
The reconstruction x̂ of the input can then be computed as x̂ = gφ (z), where gφ (·) is the

output of the decoder network. Since the encodings and prototypes are in the latent space, two
different reconstructions can be computed, one derived of the directly input encoding ze and
other from the cluster zq, namely x̂e = gφ (ze) and x̂q = gφ

(
zq
)
.

The SOM-VAE loss function for a input x is described by
�
 �	3.6 :

LSOM-VAE
(
x, x̂q, x̂e

)
= Lreconstruction

(
x, x̂q, x̂e

)
+αLcommitment (x)+βLSOM(x),

�
 �	3.6

where x, ze, zq, x̂e and x̂q are defined as above and α and β are weighting hyperparameters. Every
term in the SOM-VAE loss function was designed to optimize a different model component. The
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first term, Lreconstruction
(
x, x̂q, x̂e

)
, is the VAE reconstruction term:

Lreconstruction
(
x, x̂q, x̂e

)
=
∥∥x− x̂q

∥∥2
+‖x− x̂e‖2 ,

�
 �	3.7

where the first subterm
∥∥x− x̂q

∥∥2 encourages the assigned SOM node zq(x) to be an informative
representation of the input and ‖x− x̂e‖2 encourages the encoding ze(x) to also be an informative
representation. This term correspond to the evidence lower bound (ELBO) of the VAE (Kingma &
Welling, 2013). The ELBO is optimized using the Kullback–Leibler divergence (KL divergence).
The KL divergence, also called relative entropy is a measure of how one probability distribution
is different from a second. The KL divergence of a discrete probability distributions P and Q

defined on X probability space can be calculate with DKL(P‖Q) = ∑x∈X P(x) log
(

P(x)
Q(x)

)
.

The term Lcommitment helps the encoded input and the prototype to be close to each
other and is defined as Lcommitment (x) =

∥∥ze(x)− zq(x)
∥∥2. In fact, the closeness of encodings

and prototypes should be expected with the Lreconstruction term, but the commitment term was
explicitly added to get the gradient information about zq.

The last term is the SOM loss defined as LSOM(x) =∑ẽ∈N(zq(x))

∥∥ẽ− sg
[
ze(x)

]∥∥2, where
N(·) is the collection of neighbors in the discrete space as defined above and sg[·] is the gradient
stopping operator used to set the gradient to 0 during the backward pass. The stop operator helps
the neighbors of the prototype zq to also be close to ze guiding the organization process of the
SOM. These peculiarities make the SOM-VAE capable of adjusting the latent representation
during the training. SOM-VAE is the second baseline method that is going to be used to compare
with our proposed model.
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4 PROPOSED MODEL

In this chapter, we are going to detail the path and the main points in the development of
this work. We split it into three principal items: (i) LARFDSSOM in multi-step sequential deep

clustering (MSSDC), (ii) SOM-RL in multi-step sequential deep clustering (MSSDC) and (iii)
SOM-RL in joint deep clustering (JDC). The LARFDSSOM in MSSDC consists in bring the
LARFDSSOM model to the deep clustering (DC) context using a supervised pre-trained model
to extract features and train LARFDSSOM with these features to perform cluster. The SOM-RL
in multi-step sequential deep clustering (MSSDC) consists on a SOM layer that we trained with
unsupervised features from a pre-trained encoder. In SOM-RL in joint deep clustering (JDC), we
propose some losses capable to train the SOM-RL in a fully unsupervised way in JDC, training
jointly the autoencoder and the SOM.

The division of this work splits our contributions to each of our main objectives: (i) Use
complex data such as images with SOM and DL models, (ii) develop a SOM layer capable of
being trained fully unsupervised, and (iii) train the SOM layer end-to-end performing clustering
and representation learning simultaneously. First, we start with the MSSDC approach to test the
capabilities of LARFDSSOM algorithm with DL in clustering images. Second, we evolved the
model to a layer that learns in the MSSDC scenario. Third, we define and trained a SOM layer
in the JDC task. The subsequent sections explain each one of these items.

4.1 LARFDSSOM IN MSSDC

The LARFDSSOM in MSSDC scenario, exemplified in Figure 20, was the first module
that we proposed in this research. We extended the work of Tuytelaars et al. (2010); Kinnunen
et al. (2011) for UVOC tasks using MSSDC (Medeiros et al., 2019).

GoogLeNet Feature
Extractor LARFDSSOM

Deep 
Representation

ClustersInput Data Step 1 Step 2

Figure 20: Proposed LARFDSSOM in the MSSDC model: In the first step, GoogLeNet’s feature
extractor is responsible for transform the input data into deep representation, and in the next step,
the LARFDSSOM uses the deep representation input for clustering.

The UVOC task consists of learning to recognize basic entities in images typically using a
bag-of-visual-features representation, Figure 21 illustrates such UVOC procedure. In Tuytelaars
et al. (2010), interest points are detected with many classical detectors. Then, the extracted
features are grouped by similarity to build a set of features clusters, i.e., an alphabet of features
used after the learning process to produce image representations. Therefore, each image is
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represented by its histogram of the occurrence of features throughout the features alphabet.
Finally, images with similar histograms, closer enough in the feature space considering euclidean
distance with a threshold, should contain similar objects; hence, they should be grouped in the
same cluster.

Figure 21: UVOC task using feature extraction and object clustering. First, the features are
extracted, and in the following step, these features are clustered. Source: Medeiros et al. (2019)

During the development of our module, we selected the GoogLeNet CNN (Szegedy et al.,
2015) pre-trained on ImageNet (Deng et al., 2009) dataset as a feature extractor. The GoogLeNet,
which is shown in Figure 23, achieved the best results in classification and competition image
tasks ImageNet Large Scale Visual Recognition Challenge (ILSVRC2014) (Szegedy et al., 2015).
The architecture is composed of several Inception modules, illustrated in Figure 22, to allow
more efficient computation. These modules have convolution operation running in parallel with
three different filter sizes: (1× 1), (3× 3), and (5× 5), followed by max-pooling. The 1× 1
filters reduce the dimensions of the ANN and perform faster computations when compared with
fully-connected layers.

Figure 22: Inception module v1 with max-pooling. Source: Szegedy et al. (2015)
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Figure 23: GoogLeNet Architecture: In green is the input data, in red the convolutions and the
last classifier, in yellow the pooling and normalization layers, in blue the inception module, and
in purple the probability output. Source: Adapted from (Szegedy et al., 2015)

In Figure 24, the model is described, so first, we removed the GoogLeNet last classifier
and extracted the features from the input dataset after we used the LARFDSSOM for clustering
these features. This approach is a good starting point for developing a DC framework, remember-
ing that after we evaluate each sub-module responsible for the feature extraction and the SOM
module responsible for the clustering, we can run them together in two-steps to perform the
DC task. We used the original C++ implementation of LARFDSSOM developed by Bassani &
Araujo (2014).

conv1/7x7_s2

conv1/relu_7x7
pool1/3x3_s2 pool1/norm

conv2/3x3_reduce

conv2/relu_3x3_reduce
Data

conv2/3x3

conv2/relu_3x3
conv2/norm2pool2/3x3_s2

pool/3x3_s2 inception_4a

pool4/3x3_s2

LARFDSSOM

pool5/7x7_s1

inception_4b inception_4c inception_4d

inception_4einception_5ainception_5b

inception_3b inception_3a

Figure 24: Proposed Architecture of the LARFDSSOM in MSSDC. We replaced the last
classifier of the GoogLeNet Architecture and used the features extracted by the module in our
LARFDSSOM clustering algorithm. In green is the input data, in red the convolutions, in yellow
the pooling and normalization layers, in blue the inception module, and in purple LARFDSSOM.
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4.2 DCSOM-RL IN MSSDC

In this scenario, we proposed a SOM layer implemented in PyTorch, so that it can be
placed into DL models. The SOM layer developed is called SOM-RL, and it was designed to
support batches of samples during its training as usually done in DL models. In our proposed
model, SOM-RL was coupled in the latent space of the AE. The full framework with the AE is
called DCSOM-RL, and it was designed to answer the following question: Is it possible to build
a deep learning SOM layer that could be trained fully unsupervised? This step is important to
remove the necessity of having the data labeled, a large amount of data available on the internet
are not labeled, and making the clustering process driven by the data. Following, we explain
how the layer was developed. The Figure 25 illustrates SOM-RL performing MSSDC.
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Figure 25: Proposed DCSOM-RL Model. In the first step, the Autoencoder is trained, and in the
second step, the pre-trained encoder is used to guide the training of the SOM-RL model.

Differently from LARFDSSOM, to avoid having to keep track of node connections,
SOM-RL presents a dynamic neighborhood that works as a radial basis function centered at
the input pattern (h(r) = exp(− r

γ
), where γ controls the decay rate and r is the activation rank

of the node). It also has a node removal method that is more suitable for online learning,
and implementation focused on parallelism that avoids sequential operations that are usually
performed in SOM-based methods with loops and multiple conditions. Moreover, similarly to
LARFDSSOM, the model also has a time-varying structure, a local receptive field that is adapted
for each prototype that is correlated with its local variance and can learn different relevances for
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each input dimension on each prototype. These characteristics are detailed in the next sections.

4.2.1 Nodes Structures of SOM-RL

Basically, as in LARFDSSOM (Bassani & Araujo, 2014), each prototype j in SOM-RL
assumes the role of a cluster prototype, associated three m-dimensional vectors, where m is the
number of input dimensions:

� Center Vector: c j = {c ji, i = 1, · · ·,m} represents the prototype of each cluster j.

� Relevance Vector: ωωω j = {ω ji, i = 1, · · ·,m}, in which each component represents
the estimated relevance, a weighting factor within [0,1], that the prototype j applies
for the ith input dimension.

� Distance Vector: δδδ j = {δ ji, i = 1, · · ·,m} stores a moving average of the observed
absolute distance between the input patterns and the center vector, i.e., |x− c j(n)|. It
is only used to update the relevance vector.

4.2.2 Competition in SOM-RL

In SOM-RL, each node in the map competes to become a winner and form clusters of
input patterns. The input samples (assumed to be in [0,1] interval) are processed in batches of
arbitrary sizes. Whenever a batch is presented to the map, a competition begins by calculating
the activation of each node j to each sample xxx in the batch (a parallel operation). The samples of
the batch associated with each winner node are grouped, and the average position of the group
is computed. This average is then used as an input pattern xxx to update the map. The activation
is expressed by ac(Dω(xxx,ccc j),ωωω j), and is computed as a radial basis function of a weighted
distance Dω(xxx,ccc j) with the receptive field adjusted as a function of ωωω j, as shown by

�
 �	4.1 .

ac(Dω(xxx,ccc j),ωωω j) =

m
∑

i=1
ω ji

m
∑

i=1
ω ji +Dω(xxx,ccc j)+ ε

,
�� ��4.1

where Dω(xxx,ccc j) is a distance function weighted by ωωω j, calculated by the following Equa-
tion

�
 �	4.2 .

Dω(xxx,ccc j) =
m

∑
i=1

ω ji(xi−w ji)
2.

�� ��4.2

Despite being the same equations used in other models, such as LARFDSSOM, it serves
for a different purpose: the model aims to find not only the most activated node but also the
intensity of each one. Such intensity will define the neighborhood to be updated as well as their
intensities with

�
 �	4.1 .
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4.2.3 Node Insertion and Update

In SOM-RL, after the competition, samples that the most active node presents an acti-
vation below a certain threshold parameter at defined by LHS sampling algorithm, the model
creates a new node j with its center ccc j initialized as xxx, the relevance vector ωωω j initialized with
ones, and the distance vector δδδ j with zeros. Winner nodes and neighbors with activation above
at are updated towards xxx, as per

�
 �	4.3 .

ccc j(n+1) = ccc j(n)+ lr[(xxx− ccc j(n))],
�� ��4.3

where lr is the learning rate, which is maximum for the winner and smaller for the neighbors, ccc

is the center of the node in the map.
In order to update the relevance vector δδδ j, first, the average distance of each node to

the input patterns it clusters is estimated. This is done by computing a moving average of the
observed distance between the input pattern and the current center vector:

δδδ j(n+1) = (1−β ∗ lr)δδδ j(n)+(β ∗ lr)|xxx− ccc j(n+1)|,
�� ��4.4

where lr is the learning rate used in
�
 �	4.3 , β ∈]0,1] controls the rate of change of the moving

average, and the operator | · | denotes the absolute value applied to the components of the vector.
Each component ω ji of the relevance vector is calculated by an inverse logistic function

of the distances δ ji, as per
�
 �	4.5 .

ω ji =


1

1 + exp

(
δ jimean−δ ji

s(δ jimax−δ jimin)

) if δ jimin 6= δ jimax

1 otherwise,

�� ��4.5

where s > 0 controls the slope of the logistic function. The relevances go to zero for dimensions
with distances close to the maximum δ jimax, whereas in the other dimensions, they are set within
[0, 1]. At the end of the training, we compute the activations among the remaining nodes to
define connection and relations between them, and, thus, the final topology of the map. The
nodes that are mutually activated, above at threshold, are connected.

4.2.4 Node Removal in SOM-RL

In SOM-RL, we introduce a concept of life to each node. They begin at 100% and lose
their vitality by a parameter factor ld ∈ [0%,100%] every time they do not win a competition,
i.e., present an activation that is not the highest. Therefore, whenever a node achieves a life value
of 0, it is removed from the map. Alternatively, the life of a node is restored to 100% when it
wins a competition.
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4.2.5 Neighborhood in SOM-RL

The neighborhood of SOM-RL is not fixed but defined dynamically at each update step as
a function of the nodes activation rank, from the highest to the lowest. Therefore the neighbors of
the winner node are also updated towards the input pattern, but with lower learning rates since it
decays exponentially as a function of the position of the neighbor in the rank, as h(r) = exp(− r

γ
),

where r is the rank, and γ a parameter that controls the decay rate.
Before updating the nodes, the final learning rate is computed by lr ∗h(r). Notice that

the most active node will be fully updated according to lr since h(r) is 1 for rank 0 and decays
as the rank increases and activation decreases.

Therefore, as the neighborhood of SOM-RL is not related to the nodes themselves but to
the input patterns presented to the model, a sample-driven approach.

4.2.6 SOM-RL Forward Pass Algorithm

The SOM-RL training procedure is described in Algorithm 1. Note that the variable n

is used to control the current number of nodes in the map, and nmax defines its limit. It is used
solely for implementation purposes, once we have to define a fixed shape for the matrices and
vectors to avoid concatenation operations, that leads to a loss of performance. The operations to
control the active nodes are performed by using logical masks.

At this point, the SOM-RL can perform clustering following the next steps: First, we train
an autoencoder to create a representation in the latent space (unsupervised learning). Second, we
extract the features with the encoder. Third, we train the SOM-RL with these features.

4.3 DCSOM-RL IN JDC

In this scenario, we use the SOM-RL layer to compute the unsupervised error (error
between the prototype of SOM and the input data) and backpropagate it to adjust the AE weights,
through a loss that combines both AE and SOM errors. The DCSOM-RL, illustrated in Figure
26, can propagate the unsupervised error to adjust artificial neural network weights to train
both models simultaneously in an end-to-end unsupervised fashion. This will allow us to learn
mappings from a complex to a simple disentangled representation space that SOM can handle
with smooth transitions between cluster points. With this approach, we expect that the model
can learn a better representation with smooth transitions between the cluster regions.
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Algorithm 1: SOM-RL Forward Pass
Input :Batch of Input Patterns xxx
Require :Initialize parameters at , lr, ρ , ld, β , s, nmax

1 Function SOM-RL(xxx):
2 if map is empty then
3 Initialize the map with one node with ccc j initialized at x, ωωω j ← 1, δδδ j ← 0, life j ← 1;

Set the number of nodes n← 1;
4 else
5 Compute the activations A of all nodes for each xxxi ∈ xxx

�� ��4.1 ;
6 Find the winners si with the highest activation for each xxxi ∈ xxx;
7 forall si ∈ sss | Ai,si < at and n < nmax do
8 Create a new node j and set: ccc j ← xsi , ωωω j ← 1, δδδ j ← 0, life j ← 1;
9 Set n← n+1;

10 forall si ∈ sss | Ai,si ≥ at do
11 Compute the learning rates lllrrrn of the neighbors by ranking Ai;
12 Update the winner nodes and its neighbors towards xsi with lr and lllrrrnnn,

respectively:
13 - Update the distance vectors δδδ si and δδδ n

�� ��4.4 ;
14 - Update the relevance vectors ωωωsi and ωωωn

�� ��4.5 ;
15 - Update the center vectors cccsi and cccn

�� ��4.3 ;
16 Decrement the life of all nodes j 6∈ sss to life j← life j− ld;

17 Remove all nodes j with life j < 0; Decrement n according to number of removed
nodes;
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Figure 26: Proposed DCSOM-RL Model. In the first step, the Autoencoder and the SOM-RL
are trained jointly.

Here, the AE is architecture used is based on Xie et al. (2016). To achieve this, we
designed a new loss function based on the distance between the input sample and the winner
prototype that can be used to backpropagate errors to previous layers.

Lets denote the encoder and decoder parameters as θe and θd , respectively. An input
x ∈ Rd is mapped to a latent space encoding ze ∈ Rm. Bassani & Araujo (2014) have shown
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that it is easier to adjust the parameters of SOM when the input dimensions are scaled to the [0,
1] interval. To maintain this behavior, zzze is computed by zzze = sigmoid( fθe(xxx)). The encoding
is then fed as input to a forward pass of SOM-RL and a decoder pass of the AE architecture.
At this point, a reconstruction x̂xx of the input can be computed as x̂xx = gθd(zzze). This component
is used to calculate the reconstruction loss Lrec(xxx, x̂xx) = ‖xxx− x̂xx‖2. It is well-know that AE can
minimize the reconstruction error ensuring that hidden units capture the most relevant aspects of
the data (Murphy, 2012).

In SOM-RL, a competition starts to find the winner as the most active node for the latent
representation in zzze, when it is fed as input, as per Equation

�
 �	4.1 . Then, the winner and its
neighbors move towards the input by updating the center vectors, and the new relevance vectors
are estimated. Notice that when there is no node sufficiently activated, according to a threshold
parameter, SOM-RL will create and insert new nodes into the map due to its time-varying
structure, at the position of the input pattern. At the end of this process, the winner prototype
for zzze, cccz is used to compute the clustering loss, defined as LSOM−RL(zzze) = Dω(xxx,cccz), that is
the distance weighted by the each dimension relevances found by SOM-RL calculated with
Equation

�
 �	4.2 . It is expected that LSOM−RL creates a tendency to approximate encodings to
prototypes. Due to the latent space constraints (all dimensions between [0, 1]), and the fast
convergence characteristics of SOM-RL, even with a small number of samples, LSOM−RL will
frequently converge to small values in few epochs.

To achieve the main challenge of optimizing our complete framework, but more precisely
the representations (prototypes) learned by our SOM-RL, the AE is trained jointly with the
SOM-RL. To do so, we add the LSOM−RL, weighted by an α , to the Lrec in order to add the
gradient information about zzze with respect to the SOM-RL state. The complete loss function to
be minimized is given by Equation

�
 �	4.6 :

LDCSOM−RL(xxx, x̂xx) = Lrec(xxx, x̂xx)+αLSOM−RL(xxxz).
�
 �	4.6

This chapter explained the proposed models in each scenario: (i) LARFDSSOM in
MSSDC, (ii) SOM-RL in MSSDC and (iii) SOM-RL in JDC. Next, we are going to validate the
models with several experiments to consolidate each model and build the necessary understanding
of each designed scenario to accomplish our main objective to train a SOM layer in a fully
unsupervised way with images.
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5 EXPERIMENTS AND RESULTS

This chapter describes experiments that aim to validate the proposed models, and it is
divided as follow: First we present the metrics (Section 5.1), the dataset benchmarks (Section
5.2) and the parameters setting (Section 5.3), subsequently, we validate the work in different
scenarios (LARFDSSOM in MSSDC (Section 5.4), DCSOM-RL in MSSDC (Section 5.5) and
DCSOM-RL in JDC (Section 5.6)).

5.1 METRICS

In this section, we present the metrics used in this work. First, we consider the clustering

error (CE)(Section 5.1.1) metric for the LARFDSSOM scenario, because it is currently used in
recent literature of SOM models such as Bassani & Araújo (2012); Bassani & Araujo (2014);
Braga & Bassani (2018, 2019). Purity (Section 5.1.2) and NMI (Section 5.1.3) datasets are
commonly used in DC, so we bring them to validade our DC model and compare it to SOM
with DC benchmarks (Fortuin et al., 2018; Forest et al., 2019). It is important to mention that
the analisis of the NMI is essential because we can measure the amount of information is being
described by the clusters.

5.1.1 Clustering Error (CE)

Among the metrics described and analyzed in Patrikainen & Meila (2006) and Müller
et al. (2009), the CE has been used to evaluate SOM-based models. The following definition
proposed by Patrikainen & Meila (2006) is important to understand the CE metric: A cluster-
ing C is a partitioning of the set of m data points into disjoint clusters C1,C2, ...,CK of sizes
m1,m2, ...,mK , where ∑i mi = m. Assume that we have two clusterings C = {C1,C2, ...,CK}
and C′ =

{
C′1,C

′
2, ...,C

′
K′
}

. The confusion matrix M = (mi j) is a K×K′ matrix whose i j− th

element is the number of points in the intersection of clusters Ci and C′j, i.e., mi j =
∣∣∣Ci∩C′j

∣∣∣.
For computing CE, consider a clustering algorithm that has found C′ clusters, when the

correct number of categories in the dataset is C. The clustering is represented by a confusion
matrix MC′×C. The clusters are matched to the ground-truth labels by finding the row or column
permutation of M that maximizes the sum of its diagonal elements, solved in polynomial time by
the Hungarian method (Kuhn, 1955), after ensuring that the confusion matrix is a square matrix
by inserting rows or columns filled with zeros. After that, the final CE measure is given by the
following equation:

The name of the metric (CE) is unusual in the ML community because the idea of error
is ideal with something that we want to minimize. Considering this, we are going to adopt in this
work the CE as a metric that is going to be minimized differing from the original metric.
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CE(C,C′) =
|U |−Dmax

|U |
,

�
 �	5.1

where Dmax is the maximized sum of the diagonal elements of M and |U | is the number of data
matrix elements in the union of C and C′. CE is a metric that takes into account not only the
produced groupings but also the relevant dimensions found for each group and penalizes results
with too many groupings. CE is calculated as a percentage of points that are grouped differently,
considering an optimal coincidence between the desired groupings and those obtained. The
metric used ranges from zero to one and higher values indicate better groupings, despite its
misleading name.

5.1.2 Purity

A clustering result satisfies homogeneity if all of its clusters contain only data points
that are members of a single class. Purity is a homogeneity metric of a cluster labeling given
ground-truth labels. The metric is the maximum class probabilities for the ground-truth category
labels X and obtained cluster labels Y . Given variables (x,y) sampled from the finite discrete
joint space X×Y (Tuytelaars et al., 2010). The metric is given by the following Equation

�
 �	5.2 :

Purity(X |Y ) = ∑
y∈Y

p(y)max
x∈X

p(x|y).
�
 �	5.2

5.1.3 Normalized Mutual Information (NMI)

The Mutual Information is a symmetric measure I(X |Y ) = I(Y |X) to quantify the statis-
tical information shared between two distributions (X and Y ) (Cover & Thomas, 1991). The
following Equation

�
 �	5.3 , describes the mutual information of two random variables, where H(.)

is the entropy:

I(X |Y ) = H(X)−H(X |Y ).
�
 �	5.3

The normalized mutual information (NMI) (Strehl & Ghosh, 2002) provides an indication
of the shared information between a pair of clusters. The metric varies between 0 (no mutual
information) and 1 (perfect correlation) due to its normalization. Equation

�
 �	5.4 describes the
arithmetic normalization of the NMI metric:

NMI(X |Y ) = I(X |Y )
1
2

[
H(Y )+H(X)

] , �
 �	5.4

where Y denotes the ground-truth labels, X denotes the clusters labels, I(X |Y ) is the mutual
information metric between X and Y , and H(.) is the entropy. Equation

�
 �	5.5 describes the
geometric normalization version:
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NMI(X |Y ) = I(X |Y )√
H(X)H(Y )

.
�
 �	5.5

In this work, we choose the NMI arithmetic version as the NMI metric due to the fact
that the scikit-learn implementation of the metric is more stable than the geometric.

NMI is a more balanced measure for clustering performance than purity due to the
penalty term for the number of clusters. Purity may lead to a scenario in which results that
present a high number of clusters are rewarded in detriment of more meaningful representations.

5.2 BENCHMARK DATASETS

In this section, we present the benchmark datasets used in this work. The Caltech-256
(Section 5.2.1) is used in the UVOC field as an alternative to ImageNet. We used this dataset to
evaluate clustering algorithms such as k-means, SOM, LARFDSSOM. MNIST (Section 5.2.2)
and Fashion-MNIST (Section 5.2.3) datasets are commonly used in DL, so we bring them to
validade our DC model.

5.2.1 Caltech-256

The Caltech-256 dataset has 256 categories with 30,507 colored images with different
sizes, Figure 27 illustrates some samples of this dataset. In this work, we used the Easy Subset of
Caltech-256 comprising 20 hand-picked categories by Tuytelaars et al. (2010) (Table 1), twelve
other 20-category subsets from Caltech-256 (first subset was taken from categories 1 to 20,
second from 21 to 40 and so on)1.

Table 1: Easy Subset - Categories selected by Tuytelaars et al. (2010).

American flag diamond ring dice fern
fireworks French horn ketch 101 killer whale
mandolin motorbikes 101 pci card rotary phone
tombstone Pisa tower zebra airplanes 101
fire extinguisher leopards 101 roulette wheel faces easy 101

5.2.2 MNIST

The MNIST dataset is a handwritten digits dataset commonly used for evaluating machine
learning algorithms. It is composed of a training set of 60,000 samples and a test set of 10,000
samples. Introduced by LeCun (1998), the dataset is used nowadays as a standard dataset to
evaluate novel deep learning techniques due to its simplicity and wide usage by the research

1All subset lists can be found in http://homes.esat.kuleuven.be/~tuytelaa/unsup_data.
html

http://homes.esat.kuleuven.be/~tuytelaa/unsup_data.html
http://homes.esat.kuleuven.be/~tuytelaa/unsup_data.html
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(a) American flag (b) Diamond ring (c) Dice

Figure 27: Examples of Easy Subset of Caltech-256: The images have different sizes and
represent only one class per image.

community. This dataset was built as a subset of the NIST images pre-processed as the following
method to become the MNIST dataset: the images were centered in a 28×28 image by computing
the center of mass of the pixels. After that, the images were translated to position this point at the
center of the 28×28 field (LeCun et al., 1998). Figure 28 illustrate images from MNIST dataset.

Figure 28: Examples from the MNIST dataset.

5.2.3 Fashion-MNIST

The Fashion-MNIST dataset is based on fashion products from Zalando’s research. It
has different photos of many products, for example, trousers, coats, and bags. Xiao et al. (2017)
selected the images and pre-processed to make them similar to the format of MNIST. The
Fashion-MNIST has 70,000 28×28 grayscale images of 10 categories of fashion products, with
7,000 images per category. The training set has 60,000 images, and the test set has 10,000
images. Figure 29 illustrates images from the MNIST dataset.
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Figure 29: Examples from the Fashion-MNIST dataset.

5.3 PARAMETERS TUNING

The parameter tuning was used to explore the parameter’s sensibility and how each
parameter impacts the proposed models. When the parameters are tuning for different scenarios,
we can evaluate the range that the parameter works for that task and if it positively or negatively
influences the model. We can also use parameter tuning to remove parameters that do not impact
the model. In our work, we applied a statistical method for parameter sampling for the parameters
tuning of our experiments. The method used is the latin hypercube sampling (LHS) (McKay
et al., 2000; Helton et al., 2005), it guarantees the full coverage of the range of each parameter
in the parameter space.

Let x = {X1, ...,Xk} be the values of k input parameters, and S be the sample space of
x. The LHS aims to represent all areas of the sample space S of x partitioning S into L disjoint
intervals. It ensures that all portions of S are sampled and that each of the input parameters, Xi

has all portions if its distributions represented by input values. To make it attainable, it splits the
range of each parameter Xi into N intervals of the same probability of 1/N, resulting in a random
selection of a single value from each interval. After that, each sampled component from Xi is
matched at random with the other various Xi. LHS ensures that each component is represented,
no matter the importance that a component might have (McKay et al., 2000; Helton et al., 2005).

5.3.1 SOM-RL Parameters

Batch Size, Epochs, and SOM learning rate (lr), by intuition, do not need further
explanation. For fair comparisons with state of the art competitors, we fixed the batch size to 256.
Moreover, the number of epochs was defined at first hand to range from 10 to 1,000. Nonetheless,
an extensive empirical analysis showed that 30 epochs are more than enough for the model to
stabilizes.

Clustering Loss weighting factor (α). It is the weighting factor that penalizes the
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clustering loss. It is an empirical value that is used to control the influence (or contribution) of
the clustering loss to the final loss.

SOM-RL input dimensions. It is the number of dimensions given as input to the model.
It defines the dimensionality of the latent space after the input is encoded.

Activation threshold (at). Activation threshold. During training, if the activation of the
winner node is below this level, a new node is inserted to define a new cluster.

Life decay (ld). It is the life decreasing rate that is applied when a node does not win a
competition. Whenever the life of a node reaches zero, the node is removed from the map.

Relevance rate (β ). Rate of change of the moving average used to compute the relevance
vector. Higher values make the nodes to adapt faster to the relevant dimensions. Too high values
provoke instability. Lower values produce a smoother adaptation.

Neighborhood decay (γ). This parameter controls how strong will be the update of
neighbors towards the input pattern. The winners are fully updated according to the lr, but the
neighbors are updated with a lower factor, according to their activation. Distant nodes have a
low activation and are barely influenced.

Relevance smoothness (s). It represents the slope of the logistic function when calculat-
ing relevances. Values close to zero, produce a sharp slope. As the value increases, the slope
becomes less prominent and all relevances tend to be similar. Values higher than 1.0 result in
similar relevances values around 0.5 for all dimensions.

Max number of nodes (nmax). This value should be higher than the number of expected
clusters in the dataset to allow exploration of the search space. It also may be used to prevents
trivial solutions, suchlike one cluster for each data point, and to control memory usage. It is
important to mention that this parameter, when other parameters are set correctly it should not
influence significantly the outcome due to the time-varying topology of the model that inserts
and removes nodes when it is necessary during the self-organizing process.

5.3.2 Parameter Ranges

In the first scenario, while AP and k-means have only one parameter to be tuned, SOM,
LDA and LARFDSSOM have 5, 7 and 8 respectively. Thus we followed the LHS to test several
different parameter combinations. First, we define a wide sampling range for all parameters and
run each method with 100 LHS samples drawn inside the range. Then we repeat this process
narrowing the sampling ranges to the observed sweet spots of each parameter. For k-means, the
number of the clusters in the dataset, k, is the only parameter. Therefore, we run k-means with
values for k varying around the actual number of clusters in the dataset (i.e., ranging from 10 to
30 in a 20 categories datasets). With k-means, we achieve 100 samples by running the method 5
times with each of the 20 values chosen for k, with a different random seed. Table 2 shows the
range of parameters used for the LARFDSSOM.

In the second scenario we run over the LHS for a wider range with 50 LHS points. For
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Table 2: Parameter Ranges for LARFDSSOM. Source: Bassani & Araujo (2014).

Parameters min max
Activation threshold (at) 0.7 0.999
Lowest cluster percentage (l p) 0.1% 10%
Relevance rate (β ) 0.001 0.1
Max competitions (maxcomp) 1×S∗ 100×S∗

Winner learning rate (eb) 0.001 0.1
Neighbors learning rate (en) 0.0001× eb 0.5× eb
Relevance smoothness (s) 0.01 0.1
Connection threshold (c) 0 0.5
*S is the number of input samples in the dataset.

the adjusted ranges, an adjusted range from the tendency analysis of the metrics and parameters,
we run for 30 different sets of parameters. Finally, for this scenario, we run only one experiment
with the adjusted set up. Table 3 shows the range of parameters used for SOM-RL in this
scenario.

Table 3: Parameter values starting from initial ranges, then an intermediate step of Adjusted
Ranges, and finally, the best values for each dataset. The best-reported values come from the
adjusted ranges.

Parameters Initial Ranges Adjusted Ranges Best Values

min max min max MNIST

Batch Size 16 512 256 - 256
SOM input dimensions 10 100 10 - 10

Activation threshold (at) 0.85 0.999 0.95 0.999 0.979
SOM learning rate (lr) 0.0001 0.01 0.0001 0.003 0.001

Life decay (ld) 0.05 0.5 0.1 0.5 0.2255
Relevance rate (β ) 0.001 0.5 0.005 0.5 0.15845

Neighborhood decay (γ) 0.1 4.0 0.1 4.0 0.8734
Relevance smoothness (s) 0.01 0.1 0.05 0.1 0.0505

Max number of nodes (nmax) 10 150 10 80 64

In the third scenario, Table 4 shows the range of parameters used for SOM-RL with JDC.
For initial ranges, the model was executed 30 times 30 different parameter settings. For adjusted
ranges, the model was run 10 times with 10 different sets of parameters. Finally, for the final
round of experiments, we fixed the best values varying the seed over 10 runs to extract the mean
and standard deviation.
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Table 4: Parameter values starting from initial ranges, then an intermediate step of Adjusted
Ranges, and finally, the best values for each dataset. The best-reported values come from the
adjusted ranges.

Parameters Initial Ranges Adjusted Ranges Best Values

min max min max MNIST Fashion-MNIST

Batch Size 16 512 256 - 256 256
Epochs 10 1,000 30 - 30 30

Lc weighting factor (α) 0.01 1.00 0.01 0.15 0.1145 0.024
SOM input dimensions 10 50 20 30 22 22

Activation threshold (at) 0.95 0.999 0.99 0.999 0.99425 0.99885
SOM learning rate (lr) 0.001 0.3 0.05 0.15 0.1426 0.1383

Life decay (ld) 0.01 0.6 0.1 0.5 0.36 0.46
Relevance rate (β ) 0.01 0.5 01 0.15 0.067 0.0195

Neighborhood decay (γ) 0.17 7.0 2.0 6.0 1.382 4.916
Relevance smoothness (s) 0.01 0.7 0.4 0.7 0.426 0.658

Max number of nodes (nmax) 20 300 50 250 200 200

5.4 SOM AND LARFDSSOM IN MSSDC

In this section, we present the evaluation of the clustering algorithms in the MSSDC
scenario. It is important to remember that this task worked with transfer-learning, which we
extracted the Caltech-256 features using GoogLeNet pre-trained in ImageNet. Due to this, the
input images had to be resized for 224×224. We divided the section into two parts: the first one
to present the results of the model and the second one to analyze and discuss it.

We compare LARFDSSOM with other clustering algorithms applied for UVOC in
MSSDC: k-means, Latent Dirichlet Allocation (LDA) (Blei et al., 2003), SOM (Kohonen, 1990)
and Aggregated Partition (AP) (López-Sastre, 2016). The k-means and LDA implementations
were obtained from the scikit-learn Python package and LARFDSSOM from Bassani & Araujo
(2014) C++ implementation. For AP, we ran the Matlab code provided by the authors. The
results reported are the mean CE of 10 runs with the best parameter sample found with LHS.

First, we evaluated the influence of image representation on the clustering performance.
We assessed SIFT features on interest points detected by Harris-Laplace, Hessian-Laplace,
Hessian-Affine, and dense detectors, along with deep CNN features obtained with GoogLeNet
(Szegedy et al., 2015). The SIFT features were extracted using the implementation provided by
collaborative work between the Visual Geometry Group, Katholieke Universiteit Leuven, Inria
Rhone-Alpes, and the Center for Machine Perception 1.

1SIFT features implementation: http://www.robots.ox.ac.uk/~vgg/research/affine/
index.html

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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5.4.1 Results

In Table 5, we used the Caltech-256 Easy Subset to compare the different clustering
algorithms over different image descriptions with the CE metric. Next, in Table 6, we evaluated
all subsets proposed by Tuytelaars et al. (2010) with CE, extending our previous result using
more subsets of Caltech-256, and analysing the most relevant parameters of the LARFDSSOM:
The activation parameter (at), the winner prototype learning rate (eb) and the neighborhood
prototypes learning rate (en).

Table 5: Clustering error followed by standard deviation of different algorithms over the Easy
subset of Caltech-256. Images are represented with SIFT descriptor (combined with several
interest point detectors) or GoogLeNet. Lower is better. In bold, the best result for each
descriptor. Algorithms marked with an asterisk are statistically equal to the best performing one.
In parentheses, the number of categories found. Combo features refer to the combination of
HarLap+Heslap+dense features. These CE results were evaluated by us.

LARFDSSOM AP SOM k-means LDA
HarLap 0.446±0.000 (17) 0.725±0.008 (147) 0.542±0.000* (26) 0.579±0.009* (15) 0.674±0.011 (19)
HesLap 0.578±0.000 (6) 0.767±0.004 (136) 0.576±0.000 (16) 0.597±0.000 (17) 0.725±0.011 (21)
Dense 0.629±0.010 (17) 0.752±0.001 (101) 0.583±0.000* (14) 0.634±0.014* (13) 0.634±0.003* (19)
Combo 0.530±0.000* (11) 0.730±0.002 (90) 0.526±0.000 (27) 0.583±0.025* (10) 0.707±0.035 (17)
HesAff 0.596±0.020 (13) 0.756±0.003 (103) 0.616±0.025* (13) 0.643±0.023 (10) 0.706±0.016 (17)
GoogLeNet 0.044±0.000 (27) 0.179±0.005 (35) 0.133±0.000 (21) 0.185±0.067 (19) 0.130±0.042* (23)

Table 6: Clustering error followed by standard deviation and the best parameters of LARFDS-
SOM. Images are represented with GoogLeNet features. Lower is better. The correct number of
categories for each set is in brackets on the first column. In CE column, the number in brackets
represents the number of clusters found. These CE results were evaluated by us.

Dataset CE at eb en
Easy (20) 0.037±0.000 (20) 0.9897849 0.043 0.222
Subset1 (20) 0.155±0.008 (22) 0.972673 0.096 0.031
Subset2 (20) 0.101±0.007 (21) 0.986542 0.058 0.020
Subset3 (20) 0.129±0.010 (24) 0.968689 0.053 0.039
Subset4 (20) 0.087±0.013 (22) 0.983551 0.149 0.075
Subset5 (20) 0.094±0.007 (22) 0.982757 0.049 0.039
Subset6 (20) 0.132±0.009 (19) 0.987612 0.073 0.095
Subset7 (20) 0.143±0.019 (20) 0.991315 0.091 0.045
Subset8 (20) 0.099±0.016 (20) 0.980394 0.055 0.054
Subset9 (20) 0.130±0.012 (20) 0.972480 0.111 0.030
Subset10 (20) 0.149±0.007 (19) 0.977887 0.075 0.056
Subset11 (20) 0.114±0.021 (21) 0.982614 0.084 0.023
Subset12 (20) 0.158±0.016 (23) 0.973440 0.112 0.041
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5.4.2 Analysis of the Results

We focused on UVOC, covering image description methods. For the first time, LARFDS-
SOM was evaluated in this challenging field, obtaining the best CE results in clustering. We
performed a brief image description evaluation, comparing SIFT descriptors combined with sev-
eral standard interest point detectors, and GoogLeNet, a DNN approach to image categorization.
The results showed that the GoogLeNet-based image description allowed for significantly better
clustering results than its SIFT counterpart.

Table 6 shows that the optimum value of en tends to increase slightly for easier datasets,
while the reverse also holds (see Easy rows). It might be because, in easy datasets, class clusters
are much more compact (i.e., images that belong to the same class are close to each other in
the feature space), thus higher en may induce this kind of clustering behavior. However, other
parameters do not show such a straightforward relation regarding dataset difficulty.

Overall, the results obtained in UVOC were consistent and precise (as low as 10% of
error in certain subsets). This means that we achieved data assignments considerably similar
to those made by humans, a relevant achievement for an unsupervised learning method. We
attribute this primarily to the subspace clustering capabilities of LARFDSSOM (i.e., relevance
learning), because this is the most notable difference between SOM and LARFDSSOM when
the number of nodes of SOM is set to the number of clusters, and yet, LARFDSSOM has been
significantly better than SOM in such conditions. These results show the powerful capability
of using LARFDSSOM in combination with DL methods of representation learning. This is a
good indication that using a SOM-layer in the DC scenario can be a promising approach. This is
evaluated in the next sections.

5.5 DCSOM-RL IN MSSDC

In this scenario, we evaluate the developed SOM layer with an AE, which in AE replace
the classifier model. The following experiments evaluate the results from quantitative and
qualitative perspectives of our SOM layer implemented in the PyTorch framework. For the
first, two common metrics were used on the MNIST dataset: NMI and Purity, following the
same experimental setup of DE-SOM. For the latter, the quality of the latent representations was
explored using the relations between the encoded features of the dataset and the prototypes of
DCSOM-RL, and the top ten samples closest to each DCSOM-RL prototype.

The setup was based on Forest et al. (2019) to permit one-to-one comparisons. The
models were trained for 1,000 iterations with a batch size of 256, as in DE-SOM. The AE is
consistent with the architecture proposed by Xie et al. (2016). A latent space of 10 features is
obtained after passing through the encoder stage, which finishes with a sigmoid function. The
encoded sample is then fed as input to SOM-RL. The maximum number of prototypes is 64 to
be consistent with the 8×8 grid defined in Forest et al. (2019). The α parameter varies between
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0 and 1, but the best value for this scenario was 0.001.

5.5.1 Quantitative Analysis

Table 7: Evaluation metrics on MNIST dataset: Purity and NMI for the best parameters of
DCSOM-RL compared with k-means and DC SOM benchmarks. Higher is better. Only
the DCSOM-RL was evaluated by us.

METHOD
MNIST

PURITY NMI
K-MEANS 0.791 0.537
SOM-VAE 0.868 0.595
DE-SOM 0.939 0.657
SOM-RL 0.921 0.615

Table 7 shows the clustering quality in terms of NMI and purity of DCSOM-RL in
comparison with DE-SOM and SOM-VAE. The results show that the proposed model achieves
competitive results while reducing the dimensionality from 784 input features to 10 features in
latent space. However, the results are close, showing a promising path to follow. It is important
mentioning that the main idea is not necessarily to outperform in terms of metric value but to
build solid representations with meaningful topological properties that can not be achieved with
a dimensional grid.

5.5.2 Qualitative Analysis

We analyzed the reconstructed image of each prototype and its top ten closest samples.
In Figure 30, notice that the prototypes shown represent two ways of writing the numbers of
MNIST dataset, except number one that only had one prototype representing it. In that figure, we
see some differences that the prototypes catches like in number 6 prototypes with angle variation
when analyzing the two different prototypes’ angle. We can also see the different prototypes
representing the number 2, got different writing ways of round the bottom part of this number.

Then, we evaluate a plot in t-SNE space (Maaten & Hinton, 2008) of the datapoints
in relation to the cluster prototypes for the test samples (Figure 31). The t-SNE is a nonlinear
dimensionality reduction technique for visualization of high-dimensional data in a low-dimension
space, and similar objects are modeled closer in this space. t-SNE was chosen because our map
does not present a 2D disposal grid, as the related competitors. The edges between prototypes
represent topological neighborhood found, i.e., connected prototypes are considered somehow
similar by the model. Notice that the model was able to create at least one cluster for each
class with some connections among prototypes representing the same class and it rarely has
connections with prototypes of different classes. The observed connections between nodes of
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Figure 30: On the left, a column with the prototypes. On the right, the top ten samples closest to
the prototypes. We selected two prototypes for each MNIST dataset class, except for the number
one that only had one prototype representing it.

−80 −60 −40 −20 0 20 40 60 80

−75

−50

−25

0

25

50

75

0
1
2
3
4
5
6
7
8
9
Prototypes

Figure 31: t-SNE: MNIST Test Data + DCSOM-RL Prototypes.

different class regions make sense in a semantic perspective, e.g., the number 9 shares similarities
with 4 and 7, in which the roundness of number 4 can transform it into a number 9, and vice
versa. These interesting results allow us to observe the characteristics of prototypes found and
features shared by prototypes of different categories. These results describe the potential of the
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developed SOM layer, and it fulfilled its purpose of learning a useful representation by learning
prototypes and performing clustering.

5.6 DCSOM-RL IN JDC

In this section, we evaluate the DCSOM-RL in JDC scenario. The JDC learns the feature
space and the clustering in an end-to-end step. It is important to remember that JDC is a harder
scenario when compared with previous, due to the fact, that the incorporation of the SOM loss
function can make the optimization process diverges if it did not being correctly tuned.

Our focus was to evaluate the model preventing the trivial solutions (one cluster repre-
senting the median centroid of all data points in the feature space, or a solution with one cluster
per input data point) and creating useful clusters in an end-to-end situation. Considering one
cluster representing the median centroid can be avoided with prototypes being attractors regions
for similar input data and repulsive regions with lower learning rates for input data that is not so
close to the winner prototype, e.g., second winners activations. The over-segmentation of clusters
can be avoided controlling the at parameter, due that this parameter influences the creation of
new nodes in the algorithm.

The analysis was done comparing the results of the DCSOM-RL against the competi-
tors in terms of evaluation metrics, and also, analyzing the reconstructed prototypes, and the
visualization of the t-SNE space, showing the relationship of the clusters.

We highlight that all compared models used the same number of clusters. However, due
to the time-varying feature of SOM-RL, we need to specify just a limit in the number of clusters.

The next scenario, (JDC), is done with a more rigorously set up, so after we run the LHS
to get the best parameters, we run for 10 times changing the seed of each experiment to get the
mean and variance of the model.

5.6.1 Results

We expanded the previous section experiments conducting more experiments on MNIST
handwritten digits (LeCun et al., 1998), and also, Fashion-MNIST article images (Xiao et al.,
2017). For all experiments, the same architecture was used and the results were evaluated from
both quantitative and qualitative perspectives.

After adjusting the parameters of the model with LHS, we run a comparison with the
other models on the standard MNIST and Fashion-MNIST test sets. It is important to remember
that in this scenario (JDC), the losses are combined with learning the latent space and the
clustering simultaneously. Because of this, it is essential to investigate the prototypes and the
latent space representations carefully.

2The authors did not provide a standard deviation, and the public source code was not possible to run.



696969

Table 8: Clustering performance of DCSOM-RL and some baselines on MNIST and Fashion-
MNIST in terms of Purity and NMI. The values are the means of 10 runs ± the respective
standard deviations. Each method used 64 embeddings/clusters, except DCSOM-RL, due to its
time-varying structure. Only the DCSOM-RL was evaluated by us.

Method
MNIST Fashion-MNIST

Purity NMI Purity NMI

k-means 0.791 ± 0.005 0.537 ± 0.001 0.703 ± 0.002 0.492 ± 0.001
SOM-VAE 0.868 ± 0.003 0.595 ± 0.002 0.739 ± 0.002 0.520 ± 0.002
DE-SOM2 0.939 0.657 0.752 0.538

DCSOM-RL 0.884 ± 0.014 0.521 ± 0.007 0.679 ± 0.009 0.404 ± 0.005

5.6.2 Analysis

The analysis was done comparing the results of the DCSOM-RL against the competitors,
similar to the previous experimental scenario. We also did a more detailed quantitative and
qualitative analysis, as mentioned before. We run the LHS to get the best parameters, followed by
10 runs of the DCSOM-RL, changing the seed of each experiment to get the mean and variance.

5.6.2.1 Quantitative Analysis

The results are shown in Table 8. We found that our method achieves competitive
results concerning its competitors. Although we did not get the best results, we built robust
representations with meaningful properties, which will be explored qualitatively. Note that the
parameter nmax is specified for limiting the amount of memory required.

Moreover, other models are originally trained over 10,000 epochs. However, DCSOM-
RL is consistently able to achieve the reported results in less than 30 epochs.

5.6.2.2 Qualitative Analysis

In order to assess whether our model can learn interpretable representations, we analyzed
the relevances learned by the model. Note that DCSOM-RL can find samples that live in different
subspaces may belong to more than one cluster, the DCSOM-RL is the only model capable
of doing it compared to the evaluated baselines. It is a consequence of taking into account
different input dimensions’ subsets, according to their relevances for what the prototype is trying
to represent. A good interpretable behavior happens when the prototype does not represent the
raw class itself, but specific characteristics. So, changing its relevant dimensions can degrade
part of the prototype without mischaracterizing it. This change can damage the used metrics, but
for other tasks that require compositionality, it could be useful, the relevances of the important
features may become high, whereas the irrelevant ones become low. In this case, we hypothesize
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that changes to these irrelevant features will not degrade the prototype’s main characteristics
when it is decoded. Analogously, when an important feature is changed, we expect that the
prototype loses its properties, and a mischaracterization of the category occurs.

In an effort towards understanding the relevances learned by the model, we analyze the
distribution of relevance values found among all prototypes. Figure 32 presents this information.
Note that in this particular case, the model considered 35% of the dimensions as highly important
(Figure 32a, relevance values close to 1.0 in the x-axis). Fashion-MNIST (Figure 32b) presented
30% of highly important dimensions, and 30% of moderately important dimensions.

(a) MNIST (b) Fashion-MNIST

Figure 32: Histograms of relevances (relevances values on the x-axes) for MNIST and Fashion-
MNIST.

To demonstrate the importance of the relevant and irrelevant dimension to the recon-
structions, we start from an example prototype (Figure 33a) and disturb the dimensions with
low relevance values, such as < 0.3. In this case, we expect that changes in the latent space’s
dimensions will not have a strong impact on the reconstructed images. Figure 33b shows that
the prototype retains its main characteristics. If we expand the perturbation to more relevant
dimensions, such as < 0.4 (Figure 33c), we start seeing an impact on the reconstruction. If we
push this threshold to dimensions with relevance < 0.5 (Figure 33d), the effect is evident. It
degrades, as we expected to see, though it still is recognizable as the digit 4. In opposition, if we
disturb the most relevant dimensions for this particular node (> 0.6) the degradation takes place
in a sense the node loses its original characteristic (Figure 33e). So, the relevance values found
by the model are indeed meaningful. Intuitively, the contrary statement also showed to be true.
Low values of relevance mean, in fact, unimportant dimensions for the prototype at hand.

(a) Prototype (b) < 0.3 (c) < 0.4 (d) < 0.5 (e) > 0.6

Figure 33: The decoded prototype on the left (a). Perturbation in dimensions with relevances
values less then 0.3 (b), 0.4 (c), and 0.5(d) is inserted. For small values, the prototype does not
lose its characteristics. However, when the relevance value increases, the prototype starts to
degrade. When only relevant dimensions are changed (e), the node loses its original characteristic.
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If we further explore the highest relevance, it is possible to highlight some interesting
behaviors. Figure 34 shows the pictures generated by decoding the prototype after varying a
single relevant dimension on the latent space. In this particular case, the learned factors relate
to an important characteristic that differentiates the numbers 0 and 8, which is the constraint in
the middle. If we decrease, it becomes a zero, if we increase, it becomes an eight, in between
it is similar to a 3. The proximity between these digit categories can also be observed in
Figure 35a. So, the model succeeds in representing specific characteristics of images on its
relevant dimensions.

Figure 34: Latent factors learned on MNIST: Transition from 0 to 3, and to 8 obtained by
changing only relevant features in the latent space.

(a) MNIST Test Data (b) Fashion-MNIST Test Data

Figure 35: t-SNE for MNIST and Fashion-MNIST Test Data alongside decoded DCSOM-RL
Prototypes.

To illustrate the topological structure in the latent space, we present the t-SNE projec-
tion (Maaten & Hinton, 2008) of the encoded samples alongside the prototypes found by the
model (Figure 35). Notice that, for the MNIST dataset, the model was able to create at least one
cluster for each class, connecting more densely prototypes of a same class, and the connections
between nodes in regions of different classes usually make sense in a semantic perspective (e.g.,
the number 9 shares similarities with 4 and 7, the number 7 with 1). For the Fashion-MNIST
dataset, we observed some relations between Sandal and Sneaker, Pullover and Coat, but more
investigations need to be done to make its feature space more disentangled. These results reveal
interesting characteristics of the datasets, expressed in the prototypes found, such as features
shared by prototypes of different categories.

With this, we conclude the analysis of the proposed models. In this section, we validated
our model for the DC field, more specifically, the JDC scenario, which is an essential factor to
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bring powerful models such as LARFDSSOM to the DL in an end-to-end training way. In the
next section, we remark some points that are important about the relevance of the work and also
discuss some points that still need improvements to bring this approach to the state-of-art.
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6 FINAL CONSIDERATIONS

In this thesis, we presented SOM-based models to the context of DL. The proposed DCSOM-
RL presents a model combining AE with a customized SOM (SOM-RL). It presents a novel way
to deal with high dimensional data, such as images and sound, while learns representations more
suitable for clustering in latent spaces. The prototypes identified represent frequent variations
observed in the input data. For instance, the different ways to represent the input is caught
by the prototypes. It can also bring insights about similarities between different categories or
feature representations and which dimensions of the latent space capture then in relation to the
prototypical representations found. The neighborhood established leads to smoother regions of
transition between categories in the latent space. The work is also the first to use the CE metric
for the UVOC tasks, considering its importance for the subspace clustering penalty.

In the current chapter, we draw the final considerations of this Thesis. First, Section 6.1
introduces some analysis of the proposed models discussing for each scenario if the goals of the
work were reached. Second, in Section 6.2, we address the main contributions of this Thesis.
Third, Section 6.3 describes its limitations. Fourth, Section 6.4 proposes some applications of
the models in different scenarios. Finally, in Section 6.5, we present future works that could
improve and expand our work.

6.1 ANALYSIS OF THE PROPOSED MODELS

In the first scenario, we focused on UVOC, covering image description methods. For the
first time, LARFDSSOM algorithm was evaluated in this challenging field, obtaining the best CE
results. We performed a brief image description evaluation, comparing SIFT descriptors com-
bined with several standard interest point detectors, and GoogLeNet. This scenario contributed
to our main objective to understand and showed that SOM-based models are compatible with the
representations produced by DL models. The main drawback of this scenario was the usage of
transfer-learning to extract the features of a pre-trained model, so it was required a pre-trained
classifier, which needed labeling for its training.

In the second scenario, we developed the SOM-RL, a SOM layer implemented in PyTorch,
with time-varying structure and relevance learning that can process data in batches, to perform
training without labels, in a fully unsupervised way. First, we pre-train the AE, and second, we
extract the features of the AE and use it on the SOM-RL. This scenario was essential to evaluate
the SOM-RL layer in a fully unsupervised context. The main drawback of this scenario was the
two steps needed to train the approach because it is not efficient and we also had to specify the
number of epochs to pre-train the AE before training SOM-RL. We achieved competitive results
compared to DE-SOM and SOM-VAE, but it was an initial study that needs many variables to
be considered. In our scenario, the autoencoder was pre-trained with 10x fewer epochs than
the number of epochs of DE-SOM and yet it was capable of converging in the trained datasets,
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showing the fast convergence of the model. These results showed that the layer called SOM-RL
reached our second objective to develop a SOM deep learning layer.

The third scenario was the most ambitious compared to the previous ones. In this
scenario, we increased the framework and trained the model end-to-end in a fully unsupervised
way. The DCSOM-RL supports complex data and can be used to train deep learning architectures
with the same objectives of previous scenarios, but it can also deal with our third objective to
guide the organization of the latent space in an end-to-end training fully unsupervised way
composed of a SOM and an AE. A question that comes up from the results is why the DCSOM-
RL does not improves quantitative results in relation to competitors. We believe that the lack of
reproducibility of the experimental setup of DE-SOM model using the same data preprocessing
and training hyperparameters may have directly impacted the comparison. Examining the
qualitative results, we observed those good prototypes representations and features were obtained
that our competitors do not describe in their models. A potential problem of the SOM with DC
field is the lack of qualitative analysis of the AE latent space and a detailed analysis of SOM
prototypes.

6.2 CONTRIBUTIONS TO SCIENCE

The following list details the main contributions of this work:

� We developed a model capable of backpropagating the unsupervised error of self-
organizing maps to artificial neural networks.

� We introduced self-organizing maps based model features for the deep clustering
research field.

� We implemented a deep learning layer with self-organizing maps capable of dealing
with complex high-dimensional data.

� We proposed a framework capable of studying the latent space of autoencoders.

� We open-source the project for reproduction purposes to stimulate the development
of the field.

During the development of this thesis, the article related to the model LARFDSSOM
with MSSDC, was published in the Computer Vision and Image Understanding (CVIU), 2019.
This work was produced in collaboration with Felipe B. Duque and Aluizio F. Ribeiro. The
SOM-RL with MSSDC done in collaboration with Pedro H. Braga was evaluated in a semi-
supervision, and it was published at the International Joint Conference on Neural Networks
(IJCNN), 2020. To conclude, the SOM-RL with MSSDC was presented on the LatinX workshop
at LatinX 2020, and it was also done in collaboration with Pedro H. Braga and Hansenclever F.
Bassani. The following list describes the published works:
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� Medeiros,H.R., de Oliveira, F.D., Bassani, H.F. and Araujo, A.F., 2019. Dynamic
topology and relevance learning SOM-based algorithm for image clustering tasks.
Computer Vision and Image Understanding, 179, pp.19-30.

� Braga, P. H. M., Medeiros,H.R. and Bassani, H. F., Deep Categorization with Semi-
Supervised Self-Organizing Maps. Proceedings of the International Joint Conference
on Neural Networks (IJCNN). IEEE, 2020.

� Medeiros,H.R., Braga, P. H. M. and Bassani, H.F. Deep Clustering Self-Organizing
Maps with Relevance Learning. LatinX in AI Research Workshop at the 37th
International Conference on Machine Learning (ICML), 2020.

6.3 LIMITATIONS OF THE WORK

Here, we present some limitations of our work. The following list describes some of its
limitations:

� It lacks an extensive study of the influence of the architecture in the cluster’s compo-
sitions.

� A larger study in the generalization capabilities of DCSOM-RL, and it also needs to
address more challenging datasets, e.g., ImageNet, CIFAR-10, and CIFAR-100.

� The results maybe do not reflect a real comparison due to the lack of reproducibility
of the baselines methods.

� Our models are sensitive to certain parameters like at , and it needs to be tuned with a
considerable number of trials.

� A robust methodology to study the features disentangle is required to evaluate if the
features are disentangled quantitatively and not qualitatively.

� A better way to evaluate the quality of the latent space is needed.

6.4 POSSIBLE APPLICATIONS

The work developed in this thesis can help in DL model explainability, e.g., the activated
prototypes are useful for explaining some features response due to a specific input, and we can
also make small perturbations in the encoded prototypes in the latent space to understand its
topology. The DCSOM-RL can be employed to learn concepts and understand its relationship
to objects or words using the relevances. It is important to remember that the DCSOM-RL is a
clustering model, so in principle, it can be applied to an extensive list of tasks involving clustering,
e.g., image retrieval in cloud databases like in search engines and recommendation system based
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on relevances based on the user profile like in media services. The implementation of the
SOM-RL as a PyTorch layer makes the layer capable of being used in real-time applications,
due to its optimizations to GPU usage, so it could, for example, perform object categorization in
computer vision applied to robots.

6.5 FUTURE WORK

Because this Thesis proposed several scenarios, it opens a broad research field with
SOM-RL-based models in DC tasks. The closed-loop model was not proposed in this work, but a
framework that could use the cluster’s information to train the latent space could also be essential
to make better disentangle dimensions. Disentangle metrics, such as β -vae score (Higgins et al.,
2016), could be employed to perform an online parameter learning to dynamically control the
proportion of the loss combination in JDC scenario. We also want to adjust the model for semi-
supervised tasks, because it can incorporate learning vector quantization (LVQ) skills (Braga
& Bassani, 2018, 2019) or a triplet loss (Schroff et al., 2015) to separate better the latent space
features to improve cluster. The work done in this thesis could be extended to add more DC
variations, e.g., more DL architectures, and it could also be improved to work with online
scenarios for example in a real-world computer vision task, where a robot could use the SOM-RL
layer in its model to cluster new objects while performing its path-planning. The DCSOM-RL
could also have some online analysis of its latent space features using some disentangle metric.
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