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ABSTRACT

The 3-connected matroids, fundamental in matroid theory, have two families of ir-
reducible matroids with respect to the operations of deletion and contraction. This result
is known as Tutte’s Wheels and Whirls Theorem, established in [I1]. Lemos, in [4], con-
sidered seven reduction operations to classify the triangles-free 3-connected matroids, five
in addition to the two considered by Tutte. The results obtained by Lemos generalize
those obtained by Kriesell [2]. Considering only the first three reduction operations de-
fined in [4], we prove that 4 local structures formed by squares and triads behave like
"building blocks" for these families of irreducible. Subdividing the seventh reduction, we
add another family of triangle-free 3-connected matoids: diamantic matroids. We have
established, in a constructive way, that for each matroid in this family there is a unique
totally triangular matoid associated. The construction of this one-to-one correspondence
is based on the generalized parallel connection and passes through a matroid, unique up
to isomorphisms, which corresponds to the barycentric subdivision in the case of graphic

matroids.

Keywords: Matroids. 3-connectivity. Triangles. Triads. Squares.



RESUMO

As matroides 3-conexas, fundamentais na teoria das matroides, possuem duas familia
de irredutiveis com relacao as operagoes de delecao e contracao. Este resultado é conhe-
cido como Teorema da Roda e do Redemoinho de Tutte [I1]. Lemos, em [4], considerou
sete operagoes de redugdo para classificar as matroides 3-conexas livre de triangulos irre-
dutiveis, cinco além das duas consideradas por Tutte. Os resultados obtidos por Lemos
generalizam os obtidos por Kriesell [2]. Considerando apenas as trés primeiras operagoes
de reducao definidas em [4], provamos que 4 estruturas locais formadas por quadrados e
triades se comportam como "blocos construtores” para estas familias de irredutiveis. Sub-
dividindo a sétima reducao, acrescentamos mais uma familia de matroides 3-conexas livre
de tridngulos irredutiveis: diamantic matroids, em inglés. Estabelecemos, de uma forma
construtiva, que para cada matroide nesta familia existe um tnica matroide totalmente
triangular associada. A construcao desta correspondéncia biunivoca é baseada na conexao
em paralelo generalizada e passa por uma matroide, inica a menos de isomorfismos, que

corresponde a subdivisao baricéntrica no caso de matroides graficas.

Palavras-chaves: Matroides. 3-conectividade. Triangulos. Triades. Quadrados.
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1 INTRODUCTION

1.1 THE ORIGIN OF THE PROBLEM

With rare exceptions, for matroid theory we use the notations and terminologies set
n [10]. An edge of a 3-connected graph G is called essential if the 3-connection of G is
destroyed both when the edge is deleted and when it is contracted to a single vertex. In
paper A theory of 3-connected graphs, 1961, W. T. Tutte established the Wheel Theorem
for graphs:

Theorem 1.1.1. Let G be a 3-connected finite graph with at least 4 edges. Fach edge
e € F(QG) is essential if and only if G is isomorphic to a wheel.

The Wheel: Let C' be a cycle with length n > 3. Adding a new vertex x incident to all
vertices of C', we obtain a plane graph W,, with V' (W,,) = V (C)U{z} and |E (W,,))| = 2n.
This graph is known as the n-wheel. We will also call n-wheel the cycle matroid M (W,,)
and will abuse of notation W, to refer to both. The edges set £ (C') is a circuit-hyperplane
of matroid W,,, called rim of W,,, and E (W,) — C' is the spokes set.

Figure 1 — W5 denotes both this graph and its cycle matroid. Dashed edges are the spokes.

In 1966 Tutte established, in [I1], the Wheels and Whirls Theorem, generalizing the

previous theorem to matroids.

Theorem 1.1.2. Let M be a non-empty 3-connected matroid. For each elemente € E (M)
we have that both M\e and M/e are not 3-connected if and only if M is isomorphic to

either the cycle matroid of a wheel or isomorphic to a whirl.

The Whirl: If W, is a n-wheel, we denote by W,, the matroid obtained from W,, by
relaxing its rim. The rank of W, is the same of W,,, which is n. More information on the

relazation operation, see Oxley’s [10].
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In many situations, we must avoid triangles. The question of classifying triangle-free
3-connected graphs and matroids comes up. On the class of triangle-free 3-connected
graphs, in [2], M. Kriesell considered the following reduction operations (in the sense that
they decrease the number of edges of the graph without leaving the class of triangle-free
3-connected graphs):

i) Deletion of an edge that is not incident with any vertex of degree 3;

it) Contraction of an edge that is not in a cycle with length 4;

i17) Suppose that e is an edge incident with just one vertex of degree 3, say v. Let f
be another edge incident with v. Then we delete e and contract f;

iv) Suppose that e is an edge incident with two vertices of degree 3 | say v and v'. Let
f and f’ be edges, distinct from e, incidents on v and ', respectively. So we delete e and
we contract {f, f'};

v) Deletion of a degree-3 vertex;

vi) Contraction of the peak in a cube fragment; A cube fragment is a set F' of four
vertices of degree 3 in a graph G such that the graph obtained from G| (F U N¢ (F')) by
adding a new vertex at Ng (F') is a cube. Here, Ng (F') denotes the set of neighbours of
Fin G. If F' is a cube fragment then F' contains exactly one vertex x not adjacent to any

vertex in Ng (F), which is called its peak.

In this context, a triangle-free 3-connected graph G is said to be irreducible, according
to Kriesell, if in performing any of the above operations on elements of G we leave the

class of triangle-free 3-conected graphs. Kriesell [2] states the following results:

Theorem 1.1.3. Let G be a triangle-free 3-connected finite graph. If G is irreducible,
then G is isomorphic to Ks 3 or to a double-wheel D,,. Moreover, all these reductions are

necessary.

Double-wheel: Let W, be a n-wheel of even rank n > 6. There is just one 3-connected
graph N with edges set £ (N) = E (W,,)U{e}, for a new element e, such that N is triangle-
free and N/e = W,,. The graph D,, = N\e is called double-wheel with rank n + 1. In [2],
D,, is called by biwheel. By abuse of notation, we let D,, to refer to both the graph and

the cycle matroid associated to D,,.
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Figure 2 — Dg denotes both this graph, deleting dashed edge e, and its cycle matroid.

1.2 A BRIEF RESUME OF LEMOS'S RESULTS ON TRIANGLE-FREE 3-CONNECTED
MATROIDS

Circuits with 4 elements will be called by squares and cocircuits with 3 elements
by triads. In order to extend Kriesell’s result to matroids, Lemos considered, in [4], the
following reductions on a triangle-free 3-connected matroid M:

First reduction: A triangle-free 3-connected matroid M is said 1-reducible if there is
an element e such that M\e is a triangle-free 3-connected matroid. Since the deletion of
an element does not create triangles, M\e is triangle-free. Therefore, a matroid is said to
be 1-irreducible if the deletion of any element of the matroid destroys its 3-connectivity.
In the case of M be graphic, this reduction corresponds to reduction (7) used by Kriesell.

Second reduction: A triangle-free 3-connected matroid M is said 2-reducible if there
is e € E (M) such that M/e is a triangle-free 3-connected matroid. Note that when e is
in some square then M /e is not triangle-free. In the case of M be graphic, this reduction
corresponds to reduction (i) used by Kriesell.

Third reduction: A triangle-free 3-connected matroid M is said 3-reducible when
there are squares ()7 and @)y such that Q; N Q2 = {f} and f belongs to a unique triad
T* ={e, f, g} such that M\ f/e is triangle-free 3-connected matroid. If M have a square
() that contains e and avoid f then this matroid will not be triangle-free. On graphs this
reduction is more restrictive than the reduction (7ii) of Kriesell since his does not require
the existence of squares.

Fourth reduction: A triangle-free 3-connected matroid M is said 4-reducible when
has squares ()1 and @2 such that Q1 N Qs = {f} and f is contained in exactly two triads
T = {e, f, g} and T = {¢, f, ¢'}, satistying that M\ f/{e, €'} is a triangle-free 3-

connected matroid. The reduction (7v) of Kriesell resembles this reduction, except for the
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existence of the squares @)1 and @)s.

Fifth reduction: We say that a triangle-free 3-connected matroid M is 5-reducible
when M has squares (1 and ()3 such that Q1 N Qs = {f}, for some element f belonging
to just three triads T = {e, f, g}, T = {€, f, ¢’} and T"* = {€", f, ¢"} of M and N
is a triangle-free 3-connected matroid, where N is obtained from M\ f/ {e, ¢/, ¢} after a
A —Y operation along the triangle {g, ¢’, ¢”}. As f belongs to three triads, this reduction
is not necessary in graphic matroids. We will deal with A —Y operation in the chapter [6]

Sixth reduction: If there is a triad 7" and pairwise disjoint triads 7§, 77 and 7% such
that [T NT*| = 1, say T N1 = {e;}, T; = T* = {fi, i} and Qs = {e, g, €ita, fira}
is a square of M, for every i € {1,2,3} where the indices are taken modulus 3, and N is
a triangle-free 3-connected matroid, where N i obtained from M/ {go, g1, g2} \T™ after a
A —Y operation along the triangle { fo, f1, fo}, then we say that M is 6-reducible.

Seventh reduction: We say that a triangle-free 3-connected matroid M is 7-reducible
when:

i) There are disjoint triads T = {eo, €1, e2} and T = {ef, €}, €4} such that Qy =
{eo, €1, €p, €} and Q1 = {ey, e, €, €4} are squares of M and M\T™* is 3-connected; or

it) There are pairwise different elements ey, e1, ea, fo, f1, f2, 9o, g1 and go of M such
that T = {eo, €1, e2}, Qi = {ei, gi, €iv1, fiy1} is a square of M and @Q; — T* C T} for
some triad T} of M, for i = {0, 1, 2}, where the indices are taken modulus 3, and M\T*
is 3-connected;

When I C {1, 2, 3,4, 5, 6, 7}, we say that a matroid M is I-irreducible provided M
is a triangle-free 3-connected and is not ¢-reducible for all ¢ € I. We will use abe...-
irreducible instead {a, b, c,...}-irreducible. We will say that M is irreducible when is
1234567-irreducible.

Squares and triads plays a very important role in classifying irreducible classes of
triangle-free 3-connected matroid. In the process of generalizing Kriesell’s result to ma-
troids, Lemos had to consider a possibility that does not occur in graphic matroids: a

triad contained in a square.

Definition. A matroid M is said to be semi-binary provided T* ¢ @ for every triad T*

and every square ) of M. Otherwise its said non-semi-binary.
The main result of [4] on semi-binary matroids is:

Theorem 1.2.1. Suppose that M is semi-binary with at least 14 elements. Then M is
irreducible if, and only if, M is isomorphic to the graphic matroid of a double-wheel, when
it’s rank is an odd integer exceeding 7, or to a matroid obtained from a triadic Mbius

matroid deleting it’s tip with even rank at least §.

Triadic Mbius matroids: For n > 7, there is just one 3-connected binary matroids
N whose ground set £ (N) = E (W,,) U{e}, for a new element e, such that N is triangle-
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free and N/e = W,,. When n is odd, the matroid N is called triadic Mbius matroid and
the element e called tip of N. Mayhew, Royle and Whittle [6] denoted N by ,,. Its rank
isn+1.

The previous theorem generalizes the Kriesell’s Theorem in the same way as the
Tutte’s Wheels and Whirls Theorem generalize the Wheels Theorem. The main results

on non-semi-binary matroids of Lemos [4] is:

Theorem 1.2.2. Suppose that M is a 1234-irreducible matroid with at least 10 elements.
The matroid M is non-semi-binary if, and only if, M is isomorphic to an almost-double-

wheel or an almost-double-whirl having rank at least 6.

The almost-double-wheel and almost-double-whirl are non-semi-binary matroids defi-
ned and constructed by Lemos in Section 5 of the above-cited article.

Almost-double-wheel and Almost-double-whirl: Let £ = {1, 2,..., 2m, 2m + 1}
with m > 5. Then there are exactly two non-isomorphic triangle-free 3-connected matroids
over F having:

i) {1, 2, 3, 4} as a square; and
it) for every i € {1, 2, ..., m}, {2i — 1, 2i, 2i + 1} as a triad; and
iii) for every 1 € {2, 3, ..., m — 1}, {20 — 2, 2i — 1, 20 + 1, 2i + 2} as a square;

The subset I = {i € E/ : i is odd} is a circuit-hyperplane of one of theses matroids,
say M. We say that M is an almost-double-wheel and the matroid obtained from M
relaxing the circuit-hyperplane [ is called an almost-double-whirl. Moreover, we have that
r(M) = m+ 1, I is a Hamiltonian circuit of M* and P = {i € E : i is even} is an
independent-hyperplane of M.

Follows an auxiliary graph to illustrate these squares and triads:

2m +1

Figure 3 — The 3-set of edges incident with vertices of degree 3 illustrate the triads and the 4-set of dashed
lines is a square containing the triad {1, 2, 3}.
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Lemos realized that certain configurations of triads and squares are like building blocks
for the irreducible matroids. These configurations of triads and squares have already
appeared in the description of the reduction operations:

Sapphire

A sapphire with nucleus f is a union of two squares Q1 and ()3 such that Q1NQy = {f}
and f is contained in two triads, say T* = {e, f, g} and T = {¢, f, ¢'}. Denoting
{fi} =Q;— (T*UT"™), for i = 1 and 2, we will say that the sapphire S = Q; U Q3 is pure
provided S is fullclosed, that is closed in both M and M*, and T"* = {f, f1, fo} is also a
triad of M. Note that a non-pure sapphire is the configuration of triads and squares where
it is possible to apply the 4-reduction and the pure sapphire where it is possible to apply
the 5-reduction. A pure sapphire does not occur in graphics matroids. A matroid M is
called sapphire-free if has not sapphire. The squares )7 and ()2 are the faces of sapphire
S.

Sapphires enjoy an important role in the structure of the triangle-free 3-connected
matroids. For example, all the irreducible classes that we have described so far are full of
sapphires: M (K33), double-wheels and triadic Mbius matroid, even deleting its tip, just
like the almost-double-wheels and almost-double-whirls. All these matroids are made of
sapphire.

In the main results of [5], Lemos prove that the 4-reduction can be avoided provided

the number of families of irreducible matroids is increased by four:

Theorem 1.2.3. Let M be a 123-irreducible matroid with at least 11 elements. If M 1is
4-reducible, then M is isomorphic to M (G), where G is a ladder or a Mbius ladder graph,

or M s isomorphic to a non-binary ladder or to a relaxed non-binary ladder.

These four matroids cited in the above theorem was studied by Lemos in [5].
Ladder: For n > 4, the ladder L, with 2n vertices is the graph illustrated in Figure
[ just like L,, denotes its cycle matroid.

Figure 4 — Ladder L,, with 2n vertices. The 3-set of edges incident in a vertex of degree 3 are triads of
cycle matroid associated to L,,.
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Mbius Ladder: If in Figure [4 we delete the edges T7T and T7*T"*, and we add an
edge incident with both 77* and T and other incident with 77 and 7/ * then we get the
Mbius ladder L, with 2n vertices.

Non-binary ladder and relaxed non-binary ladder: For n > 4, let (G,, be the
auxiliary graph displayed in Figure [5 Set

D:{al,aQ,...,an, bl,bg,...,bn}

Then the relazed non-binary ladder R,, of rank 2n is a matroid over E (G),) such that
C (R,) = CUD, where

i) C € C if and only if C' is a circuit of the cycle matroid associated with G,, and
C # D U{co, c,}; and

it) C' € D if and only if C' = E (T), where T is a tree of G,, such that: each leaf vertex
of T is incident in G, with ¢y or ¢,, and every vertex incident with ¢ or ¢, in G,, is a

vertex of 7.

% * * * * *
Tl ay T2 ag T3 ) TH*Q Ap—1 T,171 an 7171

o Ql €1 QQ C2 Cp—2 Qn—l Cn—1 Qn Cn

0 bhooTy koo T bt b T

n

Figure 5 — Auxiliary graph G,

The 2n-set D is a basis of R,,. There is a matroid P, over E (G,,) such that
C(P,) =I[C(R,) —{DUc¢|0<i<n}|—{D}

and R, is obtained from P, by relaxing the circuit-hyperplane D. We say that P, is the

non-binary ladder of rank 2n.

The next result, due to Lemos [4], deals with sapphires in semi-binary 123-irreducible

matroids:

Theorem 1.2.4. Suppose that M is a semi-binary 123-irreducible matroid with at least

12 elements. If S is a sapphire whose nucleus belongs to 3 triads of M, then S is pure
and M is 5-reducible.
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Rubies

Suppose that M has triads 7, T, T7 and T3, such that T N T} = &, for i # j, and
let’s denote T*NTF = {e;}, T —T* = {f;, 9;} and Q; = {e;, gi, €ir1, fix1} is a square of
M, where the indices are taken modulus 3. So R :ALQJ T is called to ruby with nucleus
T*. We say that R is pure provided is fullclosed. Nogothat a ruby is the configuration of
triads and squares where it is possible to apply the 6-reduction. Lemos verified that when
M is l-irreducible with at least 12 elements then the circuits of M contained in R are
the graphic circuits of R. When M is graphic, a ruby R is the cube fragment referred to
Kriesell.

The following result obtained by Lemos, Lemma 6.2 of [4], shows that rubies occur

quite rigidly in triangle-free semi-binary 3-connected matroids:

Theorem 1.2.5. Let M be a semi-binary 123-irreducible matroid with at least 1/ ele-
ments. If R it is a ruby then R is pure and M 1is 6-reducible.

According to Theorem 7.29 of [4]:

Theorem 1.2.6. Suppose that M is a semi-binary 1234-irreducible matroid with at least
14 elements. If M has a sapphire, then

i) M is isomorphic to the graphic matroid of a double-wheel, or to a matroid obtained
from a triadic Mbius matroid deleting it’s tip; or

i1) Every sapphire of M is pure or is contained in a pure ruby.
The Theorem 1.7 of [4] deals with the structures mentioned above:

Theorem 1.2.7. Suppose that M is a 1234 7-irreducible matroid with at least 1/ elements.
Then:

(i) M is isomorphic to an almost-double-wheel to an almost-double-whirl having rank
at least 8;
(ii) M is isomorphic to the graphic matroid of a double-wheel, or to a matroid obtained
from a triadic Mbius matroid deleting it’s tip; or

(ii) M is (m, n)-triangular;

The family of (m, n)-triangular matroids is a huge class of triangle-free 3-connected

matroids described by Lemos in [4]:

(m, n)-triangular matroid: A matroid M is said to be (m,n)-triangular, for non-
negative integers m and n such that m 4+ n > 2, when M is obtained from a matroid N
whose ground set is partitioned into m+n triangles, say 11, . .., Tp,, 17,... T, and whose

simplification is 3-connected by
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(i) adding an element €’ in series with each element e of N;
(i) for each i € {1,..., m}, adding an element e; such that, for every e € T}, {e;, e, €'}
is a triad of M; and
(7ii) for each i € {1,..., n}, adding elements e;, f;, g; such that {e;, fi, g:}, {e:, a;, a.},
{fi, b, b} and {g;, ¢;, ¢;} are triads of M, where T} = {a;, b;, ¢;}.

Every (m, n)-triangular matroid is a semi-binary 12347-irreducible matroid such that

is b-reducible or 6-reducible provides m # 0 or n # 0 respectively.

1.3 DIAMANTIC MATROID AND TOTALLY TRIANGULAR MATROID: AN IDENTIFICA-
TION THEOREM

Lemos described most of the 123-irreducible matroids. Grouping Lemos results, we

have the following theorem.

Theorem 1.3.1. Let M be a 123-irreducible matroid. Then:

i) If M is non-semi-binary and 4-reducible with at least 11 elements then M is iso-
morphic to a non-binary ladder or to a relaxed non-binary ladder;
it) If M is non-semi-binary and 4-irreducible with at least 10 elements then M is iso-
morphic to an almost-double-wheel or an almost-double-whirl having rank at least 6;
i) If M is semi-binary and 4-reducible with at least 11 elements then M is isomorphic
to M (G), where G is a ladder or G is a Mbius ladder graph;
w) If M is semi-binary and 4-irreducible with |E (M)| > 14 and:
iv.1) M is 567-irreducible, then M is isomorphic to the graphic matroid of a double-wheel,
or to a matroid obtained from a triadic Mbius matroid deleting it’s tip;

i.2) M is 7-irreducible, then M is (m, n)-triangular.

Note that all non-semi-binary 123-irreducible matroids with at least 11 elements are
described by Lemos, just like every semi-binary 4-reducible matroid. But not all semi-
binary 1234-irreducibel matroids is described. In this work we will describe other class of
semi-binary 1234-irreducible matroid.

For this purpose, we studied the effect of 7-reduction by dismembering it into two
cases. In order not to change the nomenclature given by Lemos, we name these cases as
eighth reduction and ninth reduction:

Eighth reduction: Let M be a triangle-free 3-connected matroid. If there are disjoint
triads T* = {ey, €1, ez} and T7* = {e¢, €], €5} such that Qo = {ey, €1, €p, €)1} and Q; =
{e1, eq, €}, €4} are squares of M and M\T™ is 3-connected, then M is said 8-reducible and
M\T* a 8-reduction of M. This reduction corresponds to the part (i) of the 7-reduction.

Ninth reduction: Let M be a triangle-free 3-connected matroid. Suppose that there
are pairwise different elements eg, e, es, fo, f1, f2, 9o, g1 and g of M such that T* =
{eg, €1, ea} is a triad, Q; = {ei, gi, €ir1, fir1} is a square of M and Q; — T* C T; for
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some triad T} of M, for i = {0, 1, 2}, where the indices are taken modulus 3, and M\T*
is 3-connected. Then M is said 9-reducible. This reduction corresponds to the part (i) of

the 7-reduction.

For future gain in text simplicity, we will name these two structures described in the
reductions above. Note that a matroid M is 7-irreducible if and only if is 89-irreducible.
Diamond: Let Q;, i € {0, 1, 2}, be squares as described in the ninth reduction. The

2
union D =J Q; was called diamond by Lemos [4] . The triad
=0

T" = (QoNQ1)U(QoNQ)U(QiNQ2)

is the nucleus of D. A diamond D is said pure when its nucleus T* does not intersect
another triad of M. A matroid M is said diamond-free if it has not diamond. The squares
Qi, i € {0, 1, 2}, are the faces of D.
Emerald: Let 7% and 7" be the triads, Qy and )1 the squares as described in the
eighth reduction. Then
E=T"UT" =QyUQ

will be called an emerald. When Qo /AQ) is a square, the emerald £ is said pure. A matroid

M is said emerald-free if it has not emerald. The squares Qg and @), are the faces of £.

On diamonds, Lemma 6.3 of [4] establish that:

Lemma 1.3.2. Let M be a semi-binary 7-irreducible matroid. If D is a diamond with
nucleus T* then there is a triad T™ distinct of T* such that T* NT"™ # &.

With this results, if M is semi-binary and has a pure diamond D with nucleus T
then M\T* is 3-connected and M is 7-reducible. We will prove a similar result to this for
emeralds in Lemma 3.2.3]

Our first result is a covering theorem to semi-binary 123-irreducible matroid. In Chap-
ter [4] we will establish the following result:

Theorem Suppose that M is a semi-binary 123-irreducible matroid with at
least 11 elements. Then each element of M belongs to a triad contained in a sapphire, an
emerald or to a nucleus of a pure diamond.

As corollary, we have:

Theorem Let M be a semi-binary 1254568-irreducible matroid with at least 11

elements. Then each element of M belongs to a nucleus of a pure diamond.

Definition. A diamantic matroid M is an emerald-free 3-connected matroid such that

each element of M belongs to a nucleus of a pure diamond.
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We will see in Chapter [5|that Lemma [5.1.1| implies that there is no diamantic matroid
with less than 12 elements. Diamantic matroids are 1234568-irreducible, only 9-reduction
can be applied.

So, there is no coincidence in the fact that for each matroid cited in Theorem [1.3.1
its elements belongs to sapphires. As consequence, every 12389-irreducible matroid with
at least 14 elements is described in Theorem [L.3.1]

To prove Theorem [4.1.6] it was necessary to develop certain configurations consisting
by triads and squares, and this is done in Chapter [3

And, in Chapter [0, we will prove the following identification theorem:

Theorem [6.3.7.If M is a rank m diamantic matroid withn > 4 triads, |E (M)| = 3n,
then M" is a totally triangular 3-connected matroid with rank m — n and n triangles.
Conversely, if M is a rank m totally triangular matroid with n triangles, n > 4, then M?*

E (Mﬁ)‘ =3n, and r (Mﬁ) = n + m. Moreover,

s a diamantic matroid with n triads,

(M) = M and (M7) = M.

Definition. A 3-connected matroid M is said totally triangular if:
i) Each element belongs to at least 2 triangles; and

ii) Every pair of triangles intersects in at most 1 element; and

iii) M has no triads.

The previous result was obtained through successive operations involving triads and
triangles. These operations are based on the generalized parallel connection operation.
This process involves the generalization of the barycentric subdivision operation for ma-
troids.

Barycentric subdivision is a graph operation that involves the notion of vertex. Here
resides the difficulty of extending it to matroids: there is no notion of vertex in matroid
theory. We did this for the case where it involves triangles, circuits of length 3. Unfortu-

nately, we cannot apply the same process to circuits with length n > 4.
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2 PRELIMINARY RESULTS

As mentioned earlier, we are using terminologies and notations set in [10], with rare
exceptions. One of these exceptions will be the connectivity function: If M denotes a

matroid, its connectivity function is
& oBE(M) N
such that
E(X) = r(X)+r(BEM)—-X)—r(M)+1
= r(X)+r(X)—|X|+1
where r is the rank function of M and r* of M*. A subset X C E (M) is a k-separating

set, for k > 1, if
§(X) <k < min{|X], |E(M)— X[}

As&(X) =& (E (M) — X), we have that X is a k-separating set if and only if £ (M) —
X is too. If X is a k-separating set, the partition {X, E (M) — X} is said a k-separation.
A k-separation {X, F (M) — X} is exact if £ (X) =¢(E (M) — X) = k.

A matroid M is said n-connected if there is no k-separation for k < n

In this chapter we will discuss important results on 3-connected matroids. Are results
that deal with circuits and cocircuits in 3-connected matroids and how the connectivity

is affected by deletions or contractions of certain elements.

2.1 KNOWNS RESULTS ON 3-CONNECTED MATROIDS
We start with some key results on 3-connected matroids.
From Lemos [3], we use the following result:

Theorem 2.1.1. Let M be a 3-connected matroid and C' a circuit of M such that M\e

is not 3-connected for all e € C'. Then there are at least two triads of M intersecting C'.
Most times we only need a weaker version of the above result, due to Oxley [7]:

Theorem. FEach circuit of a minimally 3-connected matroid meets at least two triads.
The main result of Bixby [1]:

Theorem 2.1.2. (Bizby’s Theorem) If M is 3-connected and e € M, then:
i) Every 2-separation for M\e is trivial and so co (M\e) is 3-connected; or

it) Every 2-separation for M /e is trivial and so si (M/e) is 3-connected.

The Tuttes’s Triangle Lemma:
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Lemma 2.1.3. (Tutte’s Triangle Lemma) Let M be a 3-connected matroid having at least
4 elements and suppose that {e, f, g} is a triangle of M such that neither M\e nor M\ f

is 3-connected. Then M has a triad that contains e and exactly one of f and g.

Following are two auxiliary results that is widely used throughout this text.

From Oxley [8], we use the result:

Lemma 2.1.4. Suppose that e and f are distinct elements of a n-connected matroid M
with |E(M)| > 2(n—1), n > 2. Assume that M/e\ f is n-connected but M \ f is not.

Then M has a cocircuit with length n containing e and f.

Lemma 2.1.5. Suppose that T is a triangle and T* is a triad of a 3-connected matroid
M such that {e} =T* —T. Then si(M/e) is 3-connected.

Demonstragio. co(M\e) can not be 3-connected because the cosimplification of M\e
involves the contraction of an element of 7’N7T™. Then Theorem implies that si (M /e)

is 3-connected. O
The following Lemmas are in Section 2 of Lemos [4]:

Lemma 2.1.6. Let M a I-irreducible matroid with |E (M)| > 7. If Q1 and Qo are different
squares of M, then |Q1 N Q2| < 2.

Lemma 2.1.7. Suppose that M is a semi-binary 2-irreducible matroid. Then each coline

of M has at most 3 elements.

2.2 FULLCLOSURE OPERATOR AND SEQUENTIAL SEPARATION

The terminologies for fullclosure operator and sequential separations was introduced
by Oxley, Semple and Whittlel [9]. Let M be a matroid. We define the fullclosure operator
as the function

felyy - 2FOD 9B (M)

such that
fely (X)=min{Z CEM)| X CZ=c(Z)=cd"(2)}

Where ¢l denotes the closure operator of M and cl* of M*. Note that fcly (X) =
fely= (X). We denote by fel (X) when it does not cause confusion.

One way of obtaining the fullclosure of a subset X C E (M) is to take alternately
closure and coclosure and so on until neither the closure nor the coclosure operator adds

new elements. Consequently, the elements of fcl (X) — X can be ordered
fe(X) =X ={x1,..., z,}

such that z; € cl (X U{x1,..., zi_1}) or z; € cl* (X U{xq,..., xi_1}).



23

The following results holds for k-separating sets with & > 1, but our only interest is
in the case k = 2 and 3:

Lemma 2.2.1. (Lemma 3.1 - [§]) Let {X, Y} be an exact k-separation for a matroid M.
i) For e € Y, the partition {X Ue, Y — e} is a k-separation iff e € cl(X) ore €

cl* (X);

it) For e € Y, the partition {X Ue, Y — e} is an exact k-separation iff

eefcd(X)Nncd (Y —e)|Alc™ (X)Nc* (Y —e)];

iti) The elements of fcl (X) — X can be ordered {x1, ..., x,} such that X U{xy,..., x;}
is k-separating for alli € {1,..., n}.

Definition. A k-separation {X, Y} for a matroid M is said sequential provided fcl (X) =
E (M) or fc(Y)=E(M). Otherwise, {X, Y} is said non-sequential.

Example 2.2.2. A trivial 2-separation {X, Y’} for a connected matroid M is also se-
quential. Indeed, suppose that |Y| = 2, where Y = {41, y2}. Since that M is connected,
Y is a parallel or a series class. Hence yo € ¢l (y1) or yo € cl* (y1). If yo € ¢l (y1) then
y2 € cl (X), otherwise y2 € cl* (y1) and £ (Y') = 1, contradicting the connectivity of M. So
we have that Y C ¢l (X). By duality, if y» € ¢l* (y1) then y, € ¢l* (X) and so Y C cl* (X).

Lemma 2.2.3. Suppose that M is a triangle-free 3-connected matroid with at least 5

elements. Given e € E (M), every 2-separation for M /e is non-sequential.

Lemma 2.2.4. Suppose that M is a triangle-free 3-connected matroid and e € E (M). If
{X, Y} is a non-trivial 2-separation for M\e then {X, Y} is non-sequential or e belongs to
a coline with at least 4 elements. Moreover, when M is also semi-binary and 2-irreducible,

{X, Y} is non-sequential.

2.3 FORCED SETS

This section is based on section 4 of Lemos [4].

Definition. Let M be a matroid with ground set £ (M). A subset ' C E (M) is forced
provided, for every e € E (M) — F and 2-separation {X, Y} for any N € {M\e, M/e},
there is Z € {X, Y} such that F' C fcly (Z).

Forced sets are not separated by 2-separations on matroids resulting from contraction
or deletion of elements outside F'. If F' intersects both sets of a 2-separation, the elements

of one can be pulled to the other using the closure and coclosure operators.

Example 2.3.1. If for every W C F, F C fclyy (W) or F C felpy (F— W) then F
is a forced set of M. Take e € E(M) — F and let {X, Y} be a 2-separation of N €
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{M\e, M/e}. We can suppose that F' C fclp (X N F) and denote W = X N F. We can
take ' = W U {x1,..., x,} such that x; € ¢l (W) U cl* (W) and

T; € cl (W U {iL’l, ceey iﬂi,l}) U el* (W U {513'1, RN $¢,1})

for i > 1. Let C; be a circuit or cocircuit contained in W U {z1, ..., z;} and contains z;,
for i > 1. So C; is a circuit or cocircuit of N, since e ¢ C;, and then F' C fcly (X).

Lemma 2.3.2. (Lemma 4.1 - Lemos [{§)]) If F is a forced set of M and e is spanned by
F in M or M* then F'Ue is a forced set in M.

Demonstragao. It follows from the fact that fely (FUe) = fely (F). O

Lemma 2.3.3. (Lemma 4.2 - Lemos [§]) Suppose that M is a triangle-free 3-connected
matroid with at least 5 elements and F' is a forced set of M. If e € cl* (F) — F then M/e
is 3-connected. Moreover, when M is 2-irreducible there is a square Q) of M that contains

€.

Lemma 2.3.4. (compare with Lemma 4.3 - Lemos []]) Suppose that F' is a forced set of
a triangle-free 3-connected matroid M. If e € cl (F) — F then:

i) Every 2-separation for M\e is trivial and so co (M\e) is 3-connected; or exclusively
it) e belongs to a coline with at least 4 elements.

Moreover:

it1) When (i) occurs, e is spanned by F' in M and M*;
iv) When M is semi-binary and 2-irreducible, (i) happens.

Demonstragao. Suppose that (i) is false. Theorem implies that every 2-separation for
M /e is trivial and so si (M /e) is 3-connected. Since M is triangle-free si (M/e) = M/e. Let
{X, Y} be a non-trivial 2-separation for M\e. By Lemmal[2.2.4] {X, Y’} is non-sequential
or e belongs to a coline with at least 4 elements.

Suppose that {X, Y} is non-sequential. We can take Z = fclyn. (X) such that ' C Z.
So {Z,Y — Z} is a 2-separation for M\e and |Y — Z| > 3, then Z U e is a 2-separating
set for M; a contradiction. Hence, there is a coline with at least 4 elements containing e.

Take L* a coline containing e with at least 4 elements. {L* —e, E (M) — L*} is a
non-trivial 2-separation for M\e.

When (7i) occurs, if C' denote a circuit of M such that e € C' C F U e, there is a
triad 7% = {e, f, g} C L* such that f € (T*NC) — e. There is h € L* — T* such that
T* = {f, g, h} is a triad of M and f € C. Then g or h belongs to C, say h, and so
{e, f, h} is a triad of M intersecting F' in at least f and h. Hence e € cl* (F). (iv) is

consequence of Lemma [2.1.7] O

Corollary 2.3.5. If M is I-irreducible, F a forced set of M and e € ¢l (F) — F then e
belongs to a triad of M.
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Lemma 2.3.6. (compare with Lemma 4.5 - Lemos [J)]) Let M be a triangle-free 3-
connected matroid, F a 3-separating and forced set of M. If there is a triad T* = {e, f, g}
such that:
i) T* is the unique triad containing f and T* N F = {e, f};
it) There is a square Q of M such that {e, f} CQ C F;
iti) Each elements of Q — {e, f} belongs to a triad contained in F';
iv) Every square of M containing g avoids e; and
v) co(M\f) is 3-connected.
Then M is 2-reducible or 3-reducible.

Demonstra¢io. By (i), T* is the unique triad that contains f and so co (M\ f) = M\ f/g.
By (v), M\f/g is 3-connected. The dual form of the Lemma implies that M/g is
3-connected. So M is 2-reducible or there is a square )’ of M containing g. If M is 2-
irreducible, by orthogonality and by (iv), we have that f belongs to ' too. Suppose that
Q' —gC F,then g € cl (F)Ncl* (F) and so F'U g is 2-separating for M; a contradiction.
Hence there is ¢ € Q' — (F'Ug). If |Q N Q| = 2, then there is a triad 7"* contained in F
intersecting ' and, since (%), we have that ¢’ € F'; a contradiction. So @ N Q' = {f} and
M is 3-reducible. O

Lemma 2.3.7. (compare with Lemma 4.6 - Lemos [])]) Let M be a triangle-free 3-
connected matroid and F a 3-separating forced set of M. Suppose that M|F is coloopless
and |E (M) — F| > 5. If C* is a cocircuit of M such that |C* — F| =1 and each element
of C* N F belongs to a triad contained in F' then M is (1 or 2 or 3)-reducible.

Demonstragao. Let e be the element in C* — F. The Lemma implies that M /e is
3-connected and M is 2-reducible or there is a square () of M containing e. Suppose that
M is 2-irreducible. By orthogonality with C*, there are distinct elements x and y belongs
to @ N C* N F. So there are triads of M contained in F' that contains = and y. If @ is
contained in F'Ue, then e is spanned by F'in both M and M*, a contradiction. So Q) — F
has just two elements, say {e, f}.

We have that F' = F'U{e, f} is a 3-separating set of M, provided |E (M) — F'| > 3,
and forced. Moreover, f can’t be spanned by F'Ue in both M and M*, otherwise F’ will
be 2-separating. Then Lemma implies that every 2-separation for M\ f is trivial and
co (M\f) is 3-connected.

If co(M\f) = M\ f, M is 1-reducible. Otherwise, there is a triad 7" containing f and
this triad can’t be contained in F’, and so |7* N Q| = 2. This triad do not intersect F:
suppose that T* N Q = {f, z} and = # e. Since M is coloopless, F' is dependent on M|F
that has a circuit containing x and, by orthogonality, 7™ is contained in F".

So T*N@Q = {f, e} and T* is the unique triad that contains f. Let g be the element
in 7% — @, hence co(M\f) = M\f/g. The Lemma implies that there is a square
Q' of M containing g. By orthogonality with 7%, e or f belongs to Q. If e € (', the
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orthogonality with C* and the hypothesis that each element of C* N F' belongs to a triad
contained in F implies that ()’ C F'Ug and so F'Ug is 2-separating for M, a contradiction.
So @'NQ = {f} then M is 3-reducible, since every square containing g intersects @) only
in f. O]



27

3 ON INTERSECTION OF SQUARES

In this section we will describe the behaviour of squares and triads in some specific
configurations of intersection of squares. Sapphires, emeralds and pure diamonds will
naturally appear in the study of these structures. The results of this section will be useful

in the proof of the covering theorem, which we will see in the next chapter.

3.1 SQUARES HAVING JUST ONE ELEMENT IN COMMON

This section contains an auxiliary result that will be very useful in the course of this

work.

Lemma 3.1.1. Let M be a minimally 3-connected matroid with Q1 and Qo squares of
M such that Q1 N Qs = {f}. Suppose that f belongs to a unique triad T* = {e, f, g}.
We can assume that e € Q1 and g € Qs. If M /e is 3-connected and if there is a triad T'
containing Qa — T* then co (M\ f) = M\ f/e is 3-connected.

e z* g
1 f Q2

T/*

Figure 6 — Setup quoted in the following demonstration.

Demonstragio. Suppose that co (M\ f) = M\ f/e is not 3-connected. Denote by {z, y} =
Q1 — T*. As T* is the unique triad containing f, there is no triad of M /e that contains
f. We have that Q; —e = {f, z, y} is a triangle of M /e, M/e is 3-connected and M\ f/e
is not 3-connected. Tutte’s Triangle Lemma implies that M/e\z and M/e\y are both 3-
connected, otherwise there would be a triad of M /e containing f. Lemma implies that
there are triads containing {e, 2} and {e, y}, since M\z and M\y are not 3-connected.
A possible representation of this configuration of triads and squares is done in the graph
of Figure [0

Bixby’s Theorem implies that there is non-trivial (exact) 2-separation for M\ f, say
{X, Y}. We will establish that {X, Y} is non-sequential. Suppose that {X, Y} is sequen-
tial. Lemmaimplies that we can put an orderon X or Y, say Y = {1, ..., Yn—2, Yn—1, Un},
with n > 3, such that {y,—2, ¥n—1, yn} and {y,—1, yn} are both 2-sparating set for
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M\f. Then {y,_1, yn} is in a series class of M\ f and so {y,—1, yn} = {e, g}. Since
fM/f ({yn—Q, €, g}) = 2 we have that

Sy ({Yn-2, € 9}) = manvg {Yn-2, € 9}) + 730y {Yn—2: €, 9}) =3 +1
= v ({Un-2, €, 9}) + 73 {Yn-2s €, 9, f}) —1-3+1
= T& ({yn—Qa € g, f})

and so {y,_2, €, g, } is a triad of M. Hence y,,_2 € Q1 N Q2, because of orthogonality;
a contradiction. Therefore {X, Y’} is non-sequential.

Denote by T, and T} the triads of M that contains {e, v} and {e, y}, respectively.
We can suppose that | X N7} > 2 and that X is fullclosed. If y € X then f belongs
to ¢l (X) and this is a contradiction. So ’Ty* N Y‘ > 2 and then Ty # T}. Since e is in
series with g, we have that g € X and so |T"* NY| > 2. Therefore 7" U {e, g} C cl* (Y),
YUT™*U{e, g} is a 2-separating set for M\ f and f € ¢l (Y UT"™ U {e, g}); a contradiction.
Thus co (M\ f) = M\ f/e is 3-connected. O

3.2 SQUARES HAVING TWO ELEMENTS IN COMMON

In this section, we will establish results about the local structure of the union of two

squares having two elements in common.

Lemma 3.2.1. Let T be a triad of a semi-binary matroid M that intersects Q1 U Q2,
where Q1 and Q3 are squares of M such that |Q1 N Qs = 2. Then

P)T*NEF €{Q1— Q2, Q2 — Q1, Q1 N Qa}; or
i) [T N (Qr — Q)| = T"N(Q2 — Q)| = [T N (Q1 N Q)| = 1.

Demonstragio. Since M is semi-binary, we have that |T* N Q;| € {0,2}, for ¢ € {1, 2}. If
T*NQ; =0 then T* N F = Qo — Q. Similarly if 7% N Q5 = (). If both intersections are
non-empty, the orthogonality implies that 7% N F' = Q) N Q2 or (i) occurs. ]

Definition. In the previous lemma, when (i) happens we say that T* is type-1 with

respect to Q1 U Q2. Otherwise, when (i) happens we say that T* is type-2 with respect
to Ql U QQ.

Lemma 3.2.2. Let M be a semi-binary triangle-free 3-connected matroid with at least 9
elements. If Q)1 and Q2 are squares of M such that |1 N Qa| = 2 and Q1 U Qo contains
at least two triads of M, then Q1 U Qs is a 3-separating forced set of M.

Demonstracao. Let T* and T" be distinct triads contained in F' = Q1 U (2. Since we can
delete one element of each square, which is not contained in the other square, without

reducing the rank of F, then we have to r (F') < 4. The same occurs with the triads,
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without reducing the corank of F, and so r* (F) < 4. Hence
E(F)=r(F)+r"(F)—|F|+1<8-6+1=3

and |E (M) — F| > 3. The 3-connectivity of M implies that the above inequality is in
fact an equality, otherwise we have to £ (F') < 2 and |E (M) — F| < 1 contradicting the
fact of |E'(M)] > 9. Therefore F' is a 3-separating set with r (F) = r* (F) = 4.

If |”T*NT"™| =2 then L* = T*UT"™ is contained in a coline. In this case, L* intersects
one of the squares and so this square contain a triad; a contradiction.

If |T*NT"™| =1 then F is a forced set of M, since for each subset W C F' we have
that F' C fel (W) or F C fcl (F — W) (see Example [2.3.1)).

So we can assume that 7% NT"™ = (), that is Q; U Q)5 is an emerald. Suppose that
F is a non-forced set of M. There are e € E(M) — F, N € {M\ e,M/e} and {X,Y}
2-separation for N such that F ¢ fely (X) and F ¢ fely (Y). If [X N F| > 4 then
F C fely (XNF) C fely (X). So we can take | X N F| = |Y N F| = 3 and, moreover,
fely (X NF)NF = XNF and the same holds for Y.

If XNF intersect T* or 7" only in 2 elements then F' C fely (X N F'), a contradiction.
So we have that {X N F, Y NF} ={T* T"}. As {T*, T"} is not 2-separation for M|F,
it follows that M|F # N|F. Hence N = M/e.

As 3 <r(N|F) <r(M|F) =4, we have

Enip (T%) = {730 (T7) + e (T) = 34 1,
if r (N|F) =3 — {1, (T* Ue)try (T Ue)
N|IF (T*) + N|IF (T/*) — 4+ 1,

then e € clp (T*) Ucly (T™), and so T* Ue or T"™ Ue is a square of M; a contradiction
because M is semi-binary. Thus F' is a forced set of M. O

Follows a sufficient condition to a matroid M be &-reducible.

Lemma 3.2.3. Let M be a semi-binary 123-irreducible matroid with at least 11 elements.
If T* and T™ are triads of M such that T*UT"™ is an emerald then M\T"* is 3-connected
and M is S8-reducible.

Demonstragio. Denote by T* = {e, e1, ea} and T" = {ey, €/, €4} triads of M such that
Qo = {eo, €1, €, €1} and Q1 = {e1, ey, €, €4} are squares of M. Suppose that M\T"* is
not 3-connected. Let {X, Y} be a k-separation for M\T"™, with k = 1 or kK = 2. We can
suppose that [ X NT%*| > 2. If |Y| =1 then £k = 1 and Y is a coloop of M/T"™ and T" UY

is a coline. A contradiction since M is semi-binary and 2-irreducible. Thus |Y| > 2.
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Let’s denote M’ = M\ (T™ — ef). Since

k=&ne- (X) = ranes (X) +ripps (X) = [X[+1

(X NT* >2) S (X UTY) = Epne (X UTY)

rar (X UT*) + 15, (XUT*Ue)) — rapfeg) — | X UT™| 4+ 1
ra (X UT*Uep) + 14, (XUT*Uep) — [ XUT*Uep| + 1
Evr (X UT*Uep)

v

(ep is a coloop in M')

Y]

We have that {X UT*, Y —T*} is a k-separation for M\T™ or |[Y — T*| < k < 2.
Since {X UT*, Y —T*} is a k-separation for M\T"™, and ry (T* Uep) = 4, we have
that F' C felpy (X UT* Uep) and so

k = §M’ (XUT*UGB)
= ry (XUT*Ue)) +rip (XUT Ue)) — | X UT*Uep| + 1
> oy (XUT UT™) + 1% (XUT*UT™) — [ X UT UT™| +1

Eny (X UT UT™)

Therefore {X UT*UT™, Y —T*} is a k-separation for M, which is a contradiction.
So|Y —=T* =1,T*¢ X and |Y| = 2. Taking Y = {ep, g} with g ¢ F, there is a cocircuit
D* of M such that Y = D* —T"™. Hence D* — F' = {g¢}. Since F is a 3-separating forced
set and |E (M) — F| > 5, then Lemma implies that M is (1 or 2 or 3)-reducible; a
contradiction. Thus M\T™ is 3-connected and M is 8-reducible. [

From now on, until the end of this section, M denotes a semi-binary 1238-irreducible
matroid with at least 11 elements, Q1 and Qs are squares of M such that |Q1 N Qs] = 2
and ()1 U (s is not an emerald. Denote by F' = (1 U Q.

Lemma 3.2.4. F' contains at most one type-2 triad.

Demonstrag¢ao. Suppose, for contradiction, that 7} and 77 are both type-2 triads for F'.
Lemma [3.2.2] implies that F' is a 3-separating forced set and the previous lemma implies
that |7 N7 | = 1. Denote by f the element in F' — (75 U TY). Since M is 1-irreducible,
M\ f is not 3-connected.

Sub-lemma m1 FEvery 2-separation for M\ f is trivial.

Suppose that {X,Y} is a non-trivial 2-separation for M\ f. By Lemma [2.2.4] {X, Y}
is non-sequential. We can take X such that | X N7} > 2 for some i € {0, 1}, say i = 0,
| X is maximum. By Lemmal[2.2.1] we can assume that X is fullclosed. Therefore Tg C X,
{X, Y} is a 2-separation for M\ f and |Y| > 3. If | X NT}| > 2 the same happens with
Ty and T7 C X, implying that f is spanned by X in M, then X U f will be a 2-separating
set for M. So T} — Ti; C Y. Denote by e the element in common to 7 and 77. We have
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that

ey (X —€) = rangeny (X —€) +7ipgeny (X —e) —[X —e[+1
= g (X =) 73 (X) =i g (€) = | X[+ 2
(e ¢ clang (X =€) ) = rang (X) = 1475 (X) = 1= [X] +2
= &g (X)—1=1
Therefore {X — e, Y} is a 1-separation for M \ {e, f}. As T§ and T are both type-2

triads, we have that

{e. f} e{Q1—Q2, Q2 — Q1, Q1N Q2}

There is no circuit of M\ f intersecting both X —e and Y, then {e, f} = Q1 N Q2 and
Q12Q is not a circuit of M. So (Q1AQ2) Ue and (Q1AQ2) U f are both circuits of M.
we have that {X — e, Y Ue} is a 2-separation for M\ f and T} C Y Ue. By the choice of
{X,Y}, we have that | X| > |Y Ue|, and so

21X —e|+1> [ X|+Y|[+1=EM)|>11

and then | X —e| > 5.
We have that
2 = &g (X) = rang (X) + 75 (X) = [X]+1
= g (X —€)+ripn (X —e) = [X —e[+1
= ru (X —e)+ry (X —e)uf) —|X —¢f
= {&y (X —¢),
fécly- (X —e)
S (X —e) =1,

Since M is 3-connected, we have to f € cly+ (X —e) and &y (X — e) = 3. Take

{a:} =Qi—=Y U{e, f} C T}

We have that {X — {e, ¢1},Y U{e, f, ¢1}} is a 3-separation for M. Then &y (Y U{e, f,q1,q2}) =
2, provided ¢y is spanned by Y U {e, f,¢1 } in both M and M*. Therefore

{X - {67 q1, QQ} 7YU {e, f7 q1, QQ}}

is a 2-separation for M, which is a contradiction.
Sub-lemma (3.2.4.2. There is a unique triad T* containing f and T* N F = {e, f}.
By previous lemma, every 2-sparation for M\ f is trivial and so co (M \ f) is 3-connected.

Then there is a triad T™ containing f and 7™ can not be of type-2, because of Lemma
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2.1.7, Therefore T* N F' = {e, f}, because of Lemma [3.2.1] and there is no other triad

that contains f.

Let’s denote T* = {e, f, g}.

Sub-lemma [3.2.4.3. Fvery square containing g avoids e.

Suppose that @ is a square of M such that {e, g} C Q. Since e € T§ NT; there is
e; € TF —e, i € {0, 1}, such that Q = {ey, €1, €, g} . Therefore g € cly (F) N clp (F)
and hence F'U g is a 2-separating set for M; a contradiction.

Applying Lemma , M is (2 or 3)-reducible; a contradiction. O

Lemma 3.2.5. F' = Q1 UQ> is a union of triads of type-1 such that Q3 = Q1AQs is also
a square of M.

Demonstracao. We will prove this result in some sub-lemmas.

Sub-lemma [3.2.5.1. There are at least 3 triads that meets I

Suppose false. The Theorem implies that there are two triads 7% and 7" inter-
secting F' and one of them must be a type-1 triad. If F' intersects just two triads and both
are of type-2, then at least one circuit contained in F' intersects just one triad; a contra-
diction. Then we can assume that 7% is a type-1 and T is a type-2 triads. Moreover,
also by Theorem 2.1.1), T* N F' = Q1 N Q2. Then Q3 = Q1AQ> is a square of M, provided
the exchange axiom for circuits and the orthogonality with 7. The contradiction occurs
since 1" is the unique triad intersecting ()3. Therefore, there are at least 3 triads that

meets F'.

Sub-lemma [3.2.5].2. There are type-1 triads, Ty and Ty such that Ty NF = Q1 — Q2
and Ty N EF = Qg — Q1.

We have that at least 3 triads intersects F' and at most one of them is a type-2 triad. So
we have at least two type-1 triads 77 and 7. f TYNF = Q1 — Q2 and Ty N F = Q9 — Q1
then the problem is solved. Otherwise, we can assume that 77 N F' = @1 — Q)2 and
TyNEF =0Q2N Q. Then Q3 = Q1AQ: is a square such that F' = Q2 UQs, T} = Q3 — Q2
and Ty = (Y3 — (3. Now, just replace Q)1 by Qs.

Sub-lemma (3.2.5|.3. There is a type-1 triad, T3, such that Ty = Q1 N Q2.

Suppose false. There are just 3 triads intersecting F', T}, T5 and T, such that T is
a type-2 triad. There is g € F' — T™ such that g does not belongs to any triad of M. So
co(M\g) = M\g is not 3-connected and has non-trivial 2-separations. Choose {X, Y'}
2-separation for M\g such that

n={ie{l,2} | T'NFCXorT;NFCY}

is maximum. Lemma implies that {X, Y} is non-sequential. If n < 2, we can assume
that Ty NF ¢ X and Ty NF € Y, moreover that |77 N X| = 2. Then {X UT}, Y — T}
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is a 2-separation for M\ g, contradicting the maximality of the choice of { X, Y'}. Therefore
n=2.

FTPNFCXand Ty NF CX,s0T* Cclapg (X) and then {XUT* Y —T*} is a
2-separation for M\ g such that g € cly (X UT*), a contradiction. Then we can assume
that Ty N F C X, Ty N F C Y and, without lost of generality, |X NT™*| = 2. Therefore
X UT* is 2-separating for M\g and g € clp (X UT*), a contradiction. O

We will denote T, for i € {1, 2,3}, the type-1 triads for F' such that TN F = {f;, g;}
and {e;} =T — F. Also, Q3 = Q1AQ> is a square of M.

Figure 7 — Type-1 triads intersecting Q1 U Q.

Lemma 3.2.6. Fori € {1,2,3}, M/e; is 3-connected.

Demonstracao. By symmetry, it is sufficient to establish the result for ¢ = 1. Suppose,
for contradiction, that M/e; is not 3-connected. Let {X, Y} be a (exact) 2-separation for
M /e;. By Lemma [2.2.3] {X, Y} is non-sequential. We can assume that | X N75| > 2 and
that X is fullclosed, because Lemma [2.2.1] and so 75 C X. As e; can not be spanned
by X or Y in M*, otherwise we would have a 2-separation for M, we have T N X # @&
and Ty NY # &. Then |Q3 N X| > 3 and Q3 C X, since X is fullclosed; a contradiction
provided (75 NY) C Qs. O

Lemma 3.2.7. For each i € {1, 2, 3} there are squares Q) containing T} — F such that:
i) |QiNF|=1; or

i) for some j € {1, 2, 3} — {i}, T; UT} is an emerald with Q; C T; U T},
Moreover, if (ii) does not occur, then ‘Q; N Q% <1 for each 2-subset {4, j} C {1, 2, 3}.

Demonstragio. Since M is 2-irreducible, there are triangles 7; in M/e; such that Q) =
T; Ue; is a square of M. Assume that |Q) N F| > 1. As |Q| NTY| = 2, provided M is
semi-binary, we have that |Q] N Ty| = 2 or |Q] N T3] = 2. Without lost of generality, we



34

can assume |@Q] N Ty = 2. In this case we have Ty — F C @), otherwise |Q] N Q3| = 3,
which is a contradiction because of Lemma 2.1.6] Then |Q} N Q3] = 2 and T} and Ty are
both type-2 triads for Q] U @3, and so @} U @3 is an emerald.

Suppose that (ii) does not occur. Assume, by contradiction, that |Q} N Q5| = 2. As (ii)
does not occur, we have that |Q; N F| =1. Then Q1 NQ, =Q, —T7, fori=1and i =2.
As T} and Ty are both type-1 triads for Q] UQ%, we have that there is a triad 7" such that
TN (Q) U Q) = Q) NQS,. Then Q) AQ) is a square of M such that |(Q1AQ%5) N Q3| = 2.
So T} and T3 are both type-2 triads for (Q}AQ%) U Q3; a contradiction. O

Lemma 3.2.8. For each i € {1, 2, 3}, if |Q; N F| =1 then T} is the unique triad of M
that contains Q; N Q).

Demonstragdo. Suppose that T* is another triad, different to 77, such that Q1 NQ; C T*.
So T*NF # () and T* # Ty, then T* is type-2 with respect F' and then |Q] N F| > 1; a
contradiction.

]

Let’s take {e;} =T — F, {fi} = Q:NQ} e {9;} =T — {es, f;}, for i =1, 2 and 3.
Thus:

Lemma 3.2.9. For eachi € {1, 2,3}, co(M \ f;) = M\ f;/e; is 3-connected and there
are squares Q} of M such that Q! NTF =T — f; = {e;, g;} where Q! N F = {g;} and
Q' N Q. ={e;}. Moreover, T} is the unique triad containing g;.

Demonstracao. We can apply Lemma to the squares @); and @, concluding that
co(M\f;) = M\fi/e; is 3-connected. As M is 3-irreducible, there is a triangle 7' in
M\ fi/e; such that Q7 = T Ue; is a square of M\ f;. By orthogonality with 7}, we have
that g; € Q7. If T™ is another triad containing g; then 7" is a type-2 triad for Q1 U Qs,
and so Q)7 intersect ()1 or ()2 in two elements. Because of the configuration of the triads,

this is impossible. O

Corollary 3.2.10. F' is contained in a union of three type-1 triads and no other triad

intersects F'.

If there is a triad other than T7*, say T*, that contains e; then @, U QY is a sapphire
with nucleus e;. The case where T} is the unique triad containing e; will be studied in the
next section. In this case @Q; U @, U QY is a pure diamond with nucleus T}

The union of squares having two elements in common has the following configuration:

Lemma 3.2.11. Let M be a semi-binary 123-irreducible matroid with |E (M)| > 11. Let
Q1 and Q2 be squares of M such that |Q1 N Q2| = 2. Then F = Q1 U Q2 is an emerald,
and M is 8-reducible, or there are just 3 triads T}, i € {1, 2, 3}, intersecting F' such that

{ITTNF,T;NF, TN FE={Q1 — Q2, Q2 — Q1, Q1 NQ2}
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Q3 = Q1 AQs is a square of M and for each i € {1, 2, 3} we have that:

i) T} UT} is an emerald, for some j € {1, 2, 3} — {i}; or
it) T is a nucleus of a pure diamond D such that D N F € {Q1, Q2, Q3}; or
i) T — F is a nucleus of a sapphire S such that SN F =T; N F.

(0

7

Figure 8 — Squares having two elements in common in matroids semi-binary 1238-irreducible

3.3 LAPPING PURE DIAMONDS

In the previous section we studied the configuration in which two squares intersects in
two elements. We have established that, in a semi-binary 123-irreducible matroid, there
are only 3 possibilities for developing of this configuration: sapphires, pure diamonds and
emeralds. Similar result occurs with pure diamonds.

Our goal in this section will describe the surrounding structure of a diamond in a
similar way to the union of squares having two elements in common. The main result of

this section is:

Lemma 3.3.1. Let M be a semi-binary 123-irreducible matroid with |E (M)| > 11 . Let
D =QoU Q1 UQy be a pure diamond with nucleus T* and triads T}, i € {0, 1, 2}, such
that T N D = Q; — (Q; U Qy) with {i, j, k} = {0, 1, 2}. Then for each i € {0, 1, 2}:
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i) TX UT* is an emerald; or
it) T is a nucleus of a pure diamond D; such that D; N D = Q;; or
iii) T — D is a nucleus of a sapphire S; such that S; N D =T N D.

We will prove this result with a sequence of lemmas. In this section, M will denote a
semi-binary 123-irreducible matroid with |E (M)| > 11. Let Qo, @1 and Q2 be squares of
M such that D = QoUQ1UQ> is a pure diamond with nucleus T*. For every i € {0, 1, 2},
there is a triad T of M such that 7 N D = Q; —T*. We have that T} is the unique triad
of M that intersect @Q; — T, otherwise if another triad 7}* intersect @); then T;* U T}* is
contained in a coline, a contradiction provided M is semi-binary and 2-irreducible. See
Lemma 2.1.7

Figure 9 — Pure diamond.

From now until the end of this section, we will set the labels above for the cited triads.
Lemma 3.3.2. If e belongs to nucleus of a pure diamond then M /e is 3-connected.

Demonstragio. Take e € T*. Suppose that the result is false and consider {X, Y} a
2-separation for M/e. By Lemma [2.2.3) {X, Y} is a non-sequential 2-separation. Since
neither X nor Y can to span e in M*, we have that T*N X # @ and T*NY # &. Denote
by T*NX = {f} and T*NY = {g}. We have that {f, g} U(T; N D) is a face of diamond
D for some i € {0, 1, 2}, say i = 2.

There are Z € {X, Y} and a fixed 2-subset {i,j} C {0, 1, 2} such that |7} N Z| > 2
and ‘TJ* Nz ‘ > 2. Without lost of generality, we can assume that Z = X and that X is
a fullclosed set in M /e. Therefore T UT; C X. If Ty C X then g € clyy. (T5 U f) C
clyje (X) = X and hence e € clj, (X), a contradiction. Thus we must have to TyUT} C X.
In this case, g € clyy. (T; UTT) € X and then e € cl}; (X); a contradiction

[

Lemma 3.3.3. Let Q; be a face of diamond D, and e € Q; NT*. If we denote by {e;} =
T — Qq, then M/ {e, e;} is 3-connected or T* UT; is an emerald.
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Demonstragio. By previous lemma, M/e is 3-connected. We have that T; = @; — e is a
triangle and T* is a triad of M/e. If there is a square () of M that contains both e and
e;, then QQ U @); is a union of squares having two elements in common with 7 and T}
type-2 triads for QQ U );, so Lemma implies that 7" U T} is an emerald. Otherwise,
Lemma implies that si (M/ {e, e;}) = M/ {e, e;} is 3-connected.

m

Lemma 3.3.4. Let’s denote {e;} =T, — D. If T* UT; is not an emerald then M/e; is

3-connected.

Demonstragao. Suppose that M/e; is not 3-connected. Since (M /e;) /e is 3-connected,
because of previous lemma, then e belongs to a series class of M/e; that is a series class

of M too; a contradiction. n

Lemma 3.3.5. If M/e; is 3-connected then there are squares Q' and QY of M such that
{ei} =QiNQ}, 1QiNQ=1and |Q;NQ]| =1

Demonstra¢io. As M is 2-irreducible, there are a triangle T; in M/e;. Then Q) = T; U e;
is a square of M. Since M is semi-binary, )} contains just another one element of 7;*. The
configuration of triads and the Lemma m prevents that @)} intersects the nucleus 7.
Let’s denote {f;} = Q;NQ’. Lemma applying to @; and @} implies that co (M\ f;) =
M\ f;/ei is 3-connected. So there is a square @)} such that Q/ N7 = {e;, ¢;}, where
{9:} = TF — {e;, fi}, provided M is 3-irreducible. O

/7

Ty

Figure 10 — Lapped diamond D. Here we have displayed the 3 possibilities: 77 UT™* is an emerald, Ty is
a nucleus of a pure diamond and 75 — D is a nucleus of a sapphire.
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4 AN IRREDUCIBLE CLASS

The main result of this chapter is a covering theorem: each element in a triangle-free
semi-binary 123-irreducible matroid M, with at least 11 elements, belongs to a sapphire,
pure diamond or an emerald. Thus, sapphires, pure diamonds and emeralds are the "buil-
ding blocks" of a semi-binary 123-irreduclible matroid with at least 11 elements.

In this chapter M denotes a semi-binary 123-irreducible matroid with at least 11
elements. We denote by F the union of every sapphires, pure diamonds and emeralds of
M. Our goal is to show that F = E (M).

41 A COVERING THEOREM

Lemma 4.1.1. Let Q be a square of M and T* a triad such that T*NQ # 0. Ife € Q—T*,
then:

i) M/e is not 3-connected. In this case there is a triad containing e; or
it) M /e is 3-connected and there is a square Q' such that T* C QU Q' and |Q N Q'| = 1;
or
iti) M/e is 3-connected and there is a square Q" such that T* C QU Q" and QU Q' is an

emerald.

Figure 11 —e € @Q — T™.

Demonstragao. Suppose that M /e is not 3-connected. Since si(M/e) = M/e, Bixby’s
Theorem implies that co (M\e) is 3-connected. Therefore co (M\e) # M\e and e belongs
to a triad of M.

Suppose that M /e is 3-connected. We will denote by f the unique element in 7% — Q).
Lemma implies that si (M/ {e, f}) is 3-connected.

If si(M/{e, f}) # M/ {e, f} then the contraction of f created a parallel class in
M/ {e, f} and so f belongs to a triangle 7" of M /e. In this case, ' = T"Ue is a square of
M containing e and f. By orthogonality with 7™, we have to @)’ intersect ) in a element
different than e. So |@ NQ’'| = 2 and then T* is contained in @ U @’. Because of Lemma

3.2.11, we have that Q U ()’ is an emerald.
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If si(M/{e, f}) = M/{e, f} we have that M/f is 3-connected too. Consequently,
there is a square Q" of M containing f and avoiding e, and so T* C QU Q’. Lemma |3.2.11
implies that [Q N Q| =1 or Q U Q' is an emerald. ]

Now, we will establish that every square of M is contained in F. It will be done in

the next two lemmas.

Lemma 4.1.2. Let ) be a square of M. Suppose that T} and Ty are distinct triads of M
such that Ty NTy N Q # O then Q C F.

Demonstragao. Suppose, by contradiction, that @ is a square of M such that Q ¢ F and
Ty NTy NQ # O for some triads 77 and Ty of M. Denote by g the unique element in
Ty NTy N Q. If there is a square Q' # Q such that ¢ € Q' then Lemma implies
that [Q NQ’| = 1, because of triads, and so @ U @’ is a sapphire. Therefore @Q C F; a
contradiction.

So @ is the unique square that contains g. We denote by T;* = {g, fi, 9}, i € {1, 2},
and @ = {e, fi, f2, g} where e ¢ T7 U Ty. Under these notations, we have that:

R I

fr Q f2

Figure 12 — (@ is the unique square that contains 77 N 75

Sub-lemma [4.1.2}1. M /e is not 3-connected.

Suppose, by contradiction, that M /e is 3-connected. Since Q@ ¢ F, the previous lemma
implies that there are squares (7 and @5 such that 7 C QU Q; and Q N Q; = {fi},
for i € {1, 2}. We have that T} is the unique triad that contains f;, otherwise Q U Q;
is a sapphire. Since () is the unique square that contains ¢ and its also contains f;, we
have that co (M\ f;) = M\ fi/g is triangle-free and then is not 3-connected because M is
3-irreducible. We have that () — e and T are triangle and triad, respectively, in M /e that
is 3-connected. The dual form of Lemma implies that co (M/e\ f1) = M/ {e, g} \ /i
is 3-connected. Since co (M\ f1) = M\ f1/g is not 3-connected, we have that e is in a series
class of M\ f1/g. This is a contradiction because the unique series class of M\ f is {g, g1}

and so M\ f1/g have not series classes. Therefore M /e is not 3-connected.

Sub-lemma [4.1.2}2 There is a triad T; such that T; N Q = {e, g}.

As M /e is not 3-connected, Lemma implies that there is a triad 775 that contains
e. If g ¢ T then its contains f; for some ¢ € {1, 2}. Suppose, without lost of generality,
that f; € T5. Since si (M/e) = M/e is not 3-connected, Bixby’s Theorem implies that
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co (M\e) is 3-connected. Since {fi1} = Ty N Ty N Q and Q ¢ F, we have that @ is the
unique square that contains fi; and then {fo} = @ — (77 U T5) plays the role of e in the
previously sub-lemma. Hence M/ fo = si (M/ fs) is not 3-connected and Bixby’s Theorem
implies that co (M\ f2) is 3-connected. Then M /g, and M /g are both 3-connected, because
of the dual form of Tutte’s Triangle Lemma. Therefore M has a square )’ that contains
g2 and so Q@ N Q' = {f2}, since that @ is a unique squared that contains g. Then Ty is
the unique triad that contains fo and so co (M\ fa) = M\ f2/g2 is 3-connected. As M is
3-irreducible, there is a square ) that contains g, and avoids f,. By orthogonality with
Ty, we have that g € Q"; a contradiction. Therefore T5 N Q = {e, g}.

Denote by f3 the unique element in 7§ — Q. We have to M/f; and M/g are both
3-connected, because of the dual form of Tutte’s Triangle Lemma. There is a square )’
of M such that f3 € @' and Lemma implies that {e} = Q N ', since Q is the
unique square that contains g. Therefore 7% is the unique triad that contains e, otherwise
Q U Q' is a sapphire. Since si (M/e) = M /e is not 3-connected, Bixby’s Theorem implies
that co (M\e) = M\e/fs is 3-connected. Then there is a triangle 7" in M\e/f; and so
Q" = T" U f3 is a square of M that avoid e. By orthogonality with 73 we have that
g € @", that is a contradiction. Conclusion: |77 N T35 N Q| = 0. O

Lemma 4.1.3. If Q) is a square of M such that QNTy N1y = & for every pair of distinct
triads T7 and Ty then Q C F. As consequence of the previous lemma, every square of M

1s contained in JF.

Demonstracao. Because of Theorem , we have that there are triads 77 = {e;, fi, g:},
for i € {1, 2}, such that @ = {f1, g1, fa, 92} and {e;} = T;* — Q. By hypothesis T} is the
unique triad that contains f; or g;. As consequence of Tutte’s Triangle Lemma, there is
x; € TF N Q such that M/z; is 3-connected, for i = 1 and 2. We can assume that x; = f;.

Figure 13 — Unique triads intersecting Q.

Because of Lemma [2.1.5| for {i, j} = {1, 2}, we have that si (M/f;/e;) is 3-connected.
If si (M/fi/e;) # M/ fi/e;, there is a parallel class in M/ f;/e; caused by contraction

of e; and so there is a square ()’ that contains { f;, e;}. In this case, by orthogonality with
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Tr, we have |Q NQ'| = 2 and so e; # ey. In this case, Q U Q' is an emerald, because of
Lemma [3.2.11] and @ C F.

Suppose that si (M/fi/e;) = M/ f;/e;. Then M/f;/e; is 3-connected and so M/e; is
3-connected too. By 2-irreducibility of M, there is a square @' containing e;. If e; = ey
we have that @' intersect ) in two elements, because of the orthogonality with the triads,
and so Q U @' is an emerald and Q C F. If e; # ey, Lemma implies that there
are squares )1 and Q9 such that T;" C Q U @, for i € {1, 2}. We can assume that
|Q NQ;| = 1, otherwise Q U @; is an emerald. Because of Lemma , we have that
co(M\ (QNQ;)) = M\ (QNQ;)/e; is 3-connected. Since M is 3-irreducible, there are
squares ) and @), such that @)} contains e; and avoid the element in ) N Q;. Thus, with
the labels we are using , 77 N Q; =T — Q N Q; and Q; N Q; = {e;}. If T} is the unique
triad that contains e;, then Q U @; U )’ is a pure diamond with nucleus 7. Otherwise,
Q; U Q) is a sapphire with nucleus e;. Anyway, in this configuration, @ C Ty U Ty C F .

If there are a square of M such that is not contained in F, we have a contradiction

because of the previous lemma.

O
Lemma 4.1.4. FEvery triad of M is contained in F .

Demonstragio. Suppose that the result fails. Let T* = {e, f, g} be a triad of M such that
T* ¢ F. Then there is a element in T, say e, such that M /e is not 3-connected, otherwise
every element in 7™ belongs to a square and by the previous lemma, 7% C F. By dual
form of Tutte’s Triangle Lemma, we have that M/f and M /g are both 3-connected. So
there are squares of M containing f and g, and then {f, g} C F. Since e can not belongs
to any square of M, we have that there is a square @) of M such that T* N Q = {f, ¢}

and {e} = T* — Q. Denote by Q = {/f, g, =, y}.

Figure 14 — Square intersecting 7.

By Lemma we have that M /x and M/y are both not 3-connected and both the
elements belongs to triads of M. The dual form of Tutte’s Triangle Lemma implies that

there is no triad of M containing {z, y}.
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Let T} be a triad containing x. Since y ¢ T}, we have that T} intersects T because
of orthogonality with Q. Without lost of generality, we can suppose that 77 N T* = {f}.
As x € Ty, the dual form of Tutte’s Triangle Lemma implies that M/g; is 3-connected,
where {¢1} =T} — Q. As M/ g, is 3-connected, there is a square ()’ containing g;. Since
T C QUQ and [Ty NT*| = 1, Lemma implies that |Q N Q'| = 1 otherwise
Q U Q' is an emerald containing 77 and M\T is not 3-connected, since |17 NT*| = 1,
contradicting Lemma [3.2.3] Therefore Q N Q" = {z}.

Note that every square of M that contains ¢; avoids f. Indeed, if @ is a square that
contains {f, g1} then g € Q, because e ¢ Q. We have that 7* CQUQ , |Q N Q‘ =2 and
Ty NT* = {f}. Lemma implies that Q U Q is an emerald containing T7 and M\Ty

is not 3-connected, contradicting Lemma |3.2.3|

Figure 15 — Graphic representation of a square that intersects 7, with labels given in the above des-
cription.

If T is the unique triad that contains z, then co (M\x) = M\z/f. Since every square
that contains g; avoids f, the Bixby’s Theorem implies that co (M \z) is 3-connected and
so M is 3-reducible; a contradiction. Therefore, there is another triad 735 that contains
z and so Q U @' is as sapphire with nucleus x. Because of {x, y} € Ty, we have that g
belongs to a triad T and we will to label Ty = {z, g, fo}, where fs € Q' — Q.

Analogously, let T be a triad that contains y. There is u € {f, g} such that T; =
{y, u, f3} where {f3} = T; — Q. Denote by {v} ={f, g} — {u}. There is a square Q" of
M such that @ N Q" = {y}, and every square that contains f3 avoids u. Then there is
another triad 7 that contains y, otherwise M would be 3-reducible. Then @ U Q" is a
sapphire with nucleus y and T} = {y, v, g4} where {gs} =T, — Q.

We will denote {w'} = Q'— ZﬁJl TF and {w"} = Q"— iél T?. There is no problem if

w’ = w”. To reinforce, we have the following labels: ) = {f,_g, z, y}, Q' =A{x, g1, fa, W'}
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and Q/l = {y> f37 94, w//} are squares of M7 with fa f?a f?n g9, 91, 94, T, Y and w'’ pairwise
different. We have that 77 = {f, =, g1}, T5 = {9, =, fo}, T3 = {u, y, f3} and T} =
{v, y, g4} are triads, where u = f and v = g, or u = g and v = f . In the figure below,

we show a representation of a possible configuration.

Figure 16 — Representation with labels given in the above description.

We will to show that the above configuration of square and triads implies that for
every 2-sparation {X, Y} of M/e, X or Y span e in M*; a contradiction.

Denote by F'= QU Q'UQ". Take {X, Y} 2-separation for M/e. By Lemma[2.2.3 we
have that { X, Y} is non-sequential. We can suppose that X is fullclosed and | X N F| > 5,
since 9 < |F| < 10. We have that e can not be spanned by X nor Y in M* so we
can assume without lost of generality that f € X and g € Y. If [Ty NY| = 2, then
YUT} =Y U [ is a 2-separating set for M /e, and so Y U {e, f} is a 2-separating set for
M; a contradiction. Hence |77 N X| > 2 and so T} C X. If f, € X then | X NTy| > 2
and then g € X, and this is a contradiction. Hence f; € Y and so w' € Y, otherwise
Q' — fo C X. Therefore, we have that = € cl}; (Y) and so Y Uz is a 2-separating set for
M/e. As Q' — g1 C Y Uz we have that Y U {z, ¢1} is also a 2-separating set for M/e.
Since Q' C Y U{x, g1}, we have that f € cl},; (Y U{z, ¢1}) and then Y U {z, ¢1, f} is a
2-separating set for M /e. This is a contradiction because e € ¢l (Y U {z, g1, f}). O

Lemma 4.1.5. Fvery element of M belongs to a triad.

Demonstracio. Let e be an element of M. Suppose, by contradiction, that there is no
triad that contains e. Then co (M\e) = M\e is not 3-connected and so Bixby’s Theorem
implies that si (M/e) = M/e is 3-connected. Thus e belongs to a square @) of M. By
Lemma [£.1.3] we have that e € F and so, by the fact of that there is no triad that

contains e, we can suppose e belongs to a sapphire S = Q U Q)" and there are triads 77
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and Ty contained in S such the e ¢ TYUTy. If we denote F' = S —e, we have that for every
W CF,FC fcy (W)or F C fcy (F—W), then F is a forced set of M according to
the Example [2.3.1] Lemma implies that co (M\e) is 3-connected, contradicting the

claim above. O

Last lemma establish that each element in a semi-binary 123-irreducible matroid, with
at least 11 elements, belongs to a triad. In Theorem [5.2.1] we will see that this results

holds even when the matroid has less then 11 elements.

Theorem 4.1.6. Suppose that M is a semi-binary 123-irreducible matroid with at least 11
elements. Then each element of M belongs to a triad contained in a sapphire, an emerald

or to a nucleus of a pure diamond.

As consequence, if we add to the last theorem Lemmas [1.3.2] and [3.2.3] then every
1237-irreducible matroid with at least 11 elements is described in Theorem [L.3.1]

4.2 AVOIDING THE 9TH REDUCTION

If M is an emerald-free 3-connected matroid, with |E (M)| > 11, such that each
element of M belongs to a nucleus of a pure diamond then M is a sapphire-free semi-

binary 1238-irreducible matroid.

Theorem 4.2.1. Let M be a semi-binary 123-irreducible matroid, with at least 11 ele-
ments, without sapphires nor emeralds. Then each element of M belongs to a nucleus of

a pure diamond.

Definition. A diamantic matroid M is an emerald-free 3-connected matroid such that

each element of M belongs to a nucleus of a pure diamond.

We will see in the next chapter that Lemma [5.1.1f implies that there is no diamantic
matroid with less than 12 elements. Diamantic matroids are 1234568-irreducible, only
9-reduction can be applied.

Later, in Chapter [6] we will establish a one-to-one correspondence between diamantic
and totally triangular matroids. Diamantic matroids are a huge class of semi-binary 123-

irreducible matroids.
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Figure 17 — The cycle matroid of this graph, having 10 vertices of degree 3 and 5 of degree 6, is a diamantic
matroid with 10 triads. The triads are illustrated by vertices of degree 3.

Pure diamonds are graphical structures, in the sense that the circuits contained therein
are the circuits of a graph. This local behaviour of pure diamonds is not necessarily global:

diamantic matroids need not be graphically representable.
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5 ON TRIANGLE-FREE 3-CONNECTED MATROIDS WITH FEW ELEMENTS

Before we study further the diamantic matroids, we will establish two results on
triangle-free 3-connected matroids with few elements. The first of them is an auxiliary
result that implies that there is no diamantic matroid with less then 12 elements. The
latter, along with Lemma [4.1.5 shows that every element in a semi-binary 123-irreducible

matroid belongs to a triad.

5.1 ON PURE DIAMONDS

Lemma 5.1.1. If M is a 123-irreducible matroid with at most 10 elements then M has

not a pure diamond.

Demonstragcio. Suppose that D = Q1 U Q2 U Q3 is a pure diamond with nucleus T*. As
M has at most 10 elements, we have that T} — Q; = {e} for every i € {1, 2, 3} and
|E (M)| = 10. We will adopt the following labels described in the graphic representation

below.

Figure 18 — Graphic representation of a pure diamond.

Suppose that M /e is not 3-connected. Let {X, Y} be a 2-separation for M/e. Since e ¢
cliy (X)Ucly, (Y), we can assume that {f1, fo, f3} € X, {91, 92, 93} C Y and |[T* N X| >
2. Therefore, there is g; € cly. (X) for some i € {1, 2, 3} and hence {X Ug;, Y — g;} is
a 2-separation for M /e, and this is a contradiction because f; € X.

So, M /e is 3-connected. There is a square () containing e, because M is 2-irreducible.
We can assume that Q = {e, fi, fo, f3}, by orthogonality with 7;". Applying Lemma [3.1.1]
to QU@ we have that co (M\ f;) = M\ f1/e is 3-connected. Since M is 3-irreducible, there
is a square ()’ containing {e, g1 }. If |[QNQ’| =1 then Q U Q' is a sapphire with nucleus
e; a contradiction. Therefore we can assume that f3 € Q" and hence Q' = {e, g1, g2, f3}

As QN Q" = {e, f3s} C T3, we have that QAQ" = {f1, f2, g1, g2} is a square of M.
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There is a circuit of M contained in ((QAQ")UQ2) — fo = {es, e, f1, g1, g2}. Because
of orthogonality with Ty we have that {es, e3, f1, g1} is a square; a contradiction with
Lemma [2.1.6l O

Corollary 5.1.2. There is no diamantic matroid with less than 12 elements.

5.2 TRIADS COVERS THE MATROID

This section is all dedicated to proving the following result:

Theorem 5.2.1. If M is a semi-binary 123-irreducible matroid with at most 10 elements

then each elements of M belongs to a triad.

We will prove by contradiction. Take e € E (M) and suppose that there is no triad
containing e. Then co (M\e) = M \e is not 3-connected because M is 1-irreducible. Bixby’s
Theorem implies that si (M/e) = M /e is 3-connected, hence there is a square @) containing
e, because M is 2-irreducible. Theorem implies that there is two triads 77 and 7%
intersecting Q. Since every triads avoids e, Lemma[2.1.7 implies that |77 N 75| = 1. Denote
by TF = {e;, fi, g} where g is the unique element in 77 N 7Ty and Q = {e, f1, fo, g}

As consequence we have that |E (M)| > 6. Follows a graphic representation for such

configuration.
fi I7 €1
€ Q g
fa T+ €2

Figure 19 — Element that do not belongs to a triad.

Lemma 5.2.2. We have that r (77 UTy) > 4 and |E (M)| > 7. Moreover, if T} U Ty is
independent then |E (M)| > 8.

Demonstragio. We will prove this lemma by contradiction. If (77 UT5) < 4 then
r(Ty UTy) = 3, because M is triangle-free. There is a circuit C' C Ty U Ty and |C| < 4.
Since M is a triangle-free 3-connected matroid we have that C'is a square of M. Because M
is semi-binary, g ¢ C' and C' = (T7 UTy) —g. As g € clp (C), there is a circuit (a square)
contained in 77 U T35 such that contains g; a contradiction. Therefore r (T U T5) > 4.
Suppose that |E (M)| = 6. Then r* (M) = |E (M)|—r (M) < 6 —4 = 2, contradicting
the fact of every 3-set containing e is coindependent in M. Note that if r (77 UTy) =5
then |E (M)| > 8. O

Now we can apply Lemma [2.1.6, We have so:
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Corollary 5.2.3. Different squares of M intersects in at most 2 elements.
Lemma 5.2.4. Every square that contains e; avoids e, fori € {1, 2}.

Demonstragao. Suppose that Q) is a square of M containing {e, e;}. By orthogonality
with T}, we have that |Q N Q1| = 2. We have two possibilities, @ N Q1 = {e, f1} or
QNQ ={e g}

Assume that @ N Q; = {e, fi}. Denote by g; the element in Q; — (77 U Q). By
orthogonality, g1 ¢ T5.

4 N
’ Q1 \

/ . \
1 fi 7 ¢ \
1
1
Ve ) g

\ ¢

\

fa T+ €2

Figure 20 — Square containing e and e;.

Lemma implies that there is another triad T3 intersecting (). Since e ¢ T and
{er, i} € T3, we have that g; € T5. If {X, Y} is a 2-separation for M\e then {X, Y}
is non-trivial, because there is no triad containing e, and is non-sequential, because of
Lemma [2.2.4, We can suppose that X intersects two of above cited triads in at least 2
elements each. Therefore e belongs to cly, ( felane (X )) and this is a contradiction, since
{fclM\e (X),Y — felane (X)} is a 2-separation for M\e as we saw in Lemma [2.2.1}

As consequence, () is the unique square that contains {e, f1} and {e, f2}.

Then QN Q; = {e, g} and Q1 = {e, €1, es, g}, because of orthogonality with 7} and
T5. We denote by F'=Q U ;.

Figure 21 — Another possibility to square.

Sub-Lemma [5.2.4l1. There is no other triad that intersects .
If T* is another triad that intersects F' then T* is a type-1 triad for F', since T is not
contained in F’ because of Lemma We can assume that T* N F = ) — ), without
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lost of generality. Let {X, Y} be a 2-separation for M\e. Then {X, Y} is non-trivial
and non-sequential 2-separation. We can suppose that X intersects two of above cited
triads in at least 2 elements each. Therefore e belongs to clys ( felane (X )) and this is a
contradiction, since { felane (X), Y — felane (X )} is a 2-separation for M\e as we saw
in Lemma 2.2.71 This sub-lemma ends.

As |E(M)| > 7, there is an element x € £ (M) — F.

Sub-Lemma [5.2.4}2. There is a triad T* containing x.

Otherwise, there is a square () containing z just like Figure 21 with x playing role
of e. Since M has at most 10 elements, the triads that intersects ) also intersects F'.
Therefore, by previous sub-proposition, these triads are the same triads contained in F'.
This implies that g € Q2 and so Qs = {e1, f2, g, x} or Q3 = {ea, fi1, g, x}, because M is
sapphire-free. We can assume that Qo = {e1, f2, g, z}.

If {X, Y} is a 2-separation for M\e then {X, Y} is non-trivial and non-sequential,
and we can suppose that |77 N X| > 2. So Ty C fclyne (X) and then {es, fo, 2} CY (fo
because of (), e, because of Q1 and x because of {e1, g} C @Q2). Hence {g, fi} C felane (Y)

and e € cly ( felane (Y)); a contradiction. This prove the sub-lemma.

So, there is a triad T* containing = such that 7*NF = (). Let’s denote T* = {z, vy, 2}.
Hence |E (M)| > 9 and F is a 3-separating forced set, by Lemma [3.2.2] Because of dual
version of Tutte’s Triangle Lemma, we can suppose that M/x is 3-connected. As M is
2-irreducible, there is a square ()3 containing x. We can suppose that Q N T* = {z, y},
because of orthogonality. Since |E (M)| < 10, we have that @)y intersects F. We must be
Q2N F| =2.1f |Q2 N F| # 2 then Q2 N F' = {e}, because each other element belongs to
a triad contained in F'. Therefore Qs = {e, z, y, w} where w ¢ F U {z}. There is a triad
T™ containing w and z or y. Since each coline has at most 3 elements, z ¢ T"* and so T
intersects F'; a contradiction. Therefore |Qs N F| = 2.

Since |Q2 N F| = 2, we have that ), intersects F' in a pair of elements belonging to a
same triad. Then e ¢ Q5 and g ¢ @, by orthogonality. So Q2 = {z, y, €;, fi} for i =1
or i = 2. We can assume that Qs = {x, y, e1, f1}. Since M/e; or M/ f; is 3-connected,
Lemma implies that si (M/{ey, z}) or si (M/{f1, z}) is 3-connected. We can as-
sume, without lost of generality, that si (M/ {e;, z}) is 3-connected. If si (M/{e1, z}) #
M/ {ey, z} then there is a square @)’ containing {e;, z} and then x or y belongs to ()'. Since
g ¢ @', because of orthogonality with T, we have that f; € Q' and then |Q' N Q5] = 3;
a contradiction. Therefore si (M/ {ey, z}) = M/ {e1, z}.

As si (M/{e1, z}) = M/ {e1, z} is 3-connected, we have that M/z is 3-connected too

and there is a square ()3 containing z and avoid e;. If Q3 intersects 77 then

Q3 € {{fb g, T, Z}? {fh 9, Y, Z}}
and this contradicts the orthogonality with 7%
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So QsNTy =0 and Q2N Q3 € {{z}, {y}}. Since M is sapphire-free, T* is the unique
triad containing Q2 N Q3. We have that @3 intersects F'. So, as we have seen, |Q3 N F| = 2
and then Q3 NE = {62, fg}

Iy

Figure 22 — Intersection of new squares.

Lemma implies that co (M\ (Q2 N Q3)) = M\ (Q2 N Q3) /2 is 3-connected. Since
M is 3-irreducible, there is a square ()4 such that

QuNT* =T" - (Q2NQs)

Since |E (M)| < 10, we have that Q4 intersects F' and so Q4 N F = {e;, f;} for some
i € {1, 2}; a contradiction. O

As consequence of Lemma [5.2.4] we have that

st(M[{e, ei}) = M/ {e, ei}

that is 3-connected, because of Lemma [2.1.5| Then M/e; is 3-connected. Since M is 2-

irreducible, there is a square (); containing e;.
Lemma 5.2.5. Every square containing e; avoids g too, for v =1 and i = 2.

Demonstragio. Let @1 be a square containing e and g. Then es ¢ @, because M is
sapphire-free. By orthogonality, fo € @1 and so {e1, f2, g} C Q1. Therefore Q; N Q =
{f2, g} €T3 and so

Q3 = Q1AQ = {6, e1, fi, 37}

is a square of M, where x ¢ T; U Ty U Q. Therefore, there is a triad T containing
{z, e1} or {z, f1}. Let {X, Y} be a 2 separation for M\e, then {X, Y} is non-trivial and
non-sequential. We can assume that | X N7} > 2 for two indices ¢ € {1, 2, 3}. Therefore
e € cly (fclM\6 (X)), contradicting the 3-connectivity of M. Then Q1NT} = {e1, f1}. O

Thus, we have two possibilities:
P1) |Q N Q;| = 2, in this case Q1 = Q2 = {e1, €2, f1, fo}; or
P2)1Q N Q1] = [Q N Q2| = 1,in this case Q;NQ = { f;} and Q;NT; = O for {7, j} = {1, 2};
Let’s see that both lead to contradictions:
P1)If @y = {eu, €2, f1, f2} is asquare of M, then there is no other triad that intersects
Q U Q;. Otherwise, with similar arguments to those presented in Sub-Lemma [5.2.41, we
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came to the conclusion that for each 2-separating set X for M\e, e € cly, ( felane (X ))
or e € cly ( felane (B (M) - X ))7 a contradiction. Follows a graphic representation of
squares () and ()1

Figure 23 — Possibility 1

Let’s denote F' = Q U Q. There is an element = ¢ F because |E (M)| > 7. Suppose
that x do not belongs to any triad of M. Thus there is a square ' containing x, just like
Figure 20| with x in the place of e. Since M has at most 10 elements, we have that g € '
and so |Q" N Q| = 2 since M is sapphire-free. Then

QI S {{97 €1, f27 .I’}, {g7 €2, f17 LC}}

We can assume that Q' = {g, €1, fo, z}. If {X, Y} is a 2-separation for M\e, then
{X, Y} is non-trivial and non-sequential. We can suppose that X intersects 7 in at least
two elements. Then fo ¢ fclyne (X) and {es, 2} C Y. Therefore e € cly (fclM\e (Y)); a
contradiction. Hence x belongs to a triad M and this triad do not intersects F.

Denote by T* = {z, y, z}. Then |E (M)| > 9 and so F is 3-separating forced set of
M, because of Lemma . We can suppose that M/z is 3-connected, because of dual
version of Tutte’s Triangle Lemma. As M is 2-irreducible, there is a square ()5 containing
x. We can suppose that Q2 N T* = {z, y}, because of orthogonality. Since |F (M)| < 10,
we have that @, intersects F'. We must be |Q2 N F'| = 2, otherwise @, N F' = {e} because
each other element belongs to a triad contained in F'. Therefore Qo = {e, =, y, w} where
w ¢ FU{z}. There is a triad 7" containing w and x or y. Since each coline has at most
3 elements, z ¢ T" and so 7" intersects [I'; a contradiction. Therefore |Q2 N F| = 2.

Since |Q2 N F| = 2, we have that e ¢ Q2 and g ¢ Q2. Then Qo = {z, y, ¢e;, f;} fori =1
or i = 2. We can assume that Qs = {x, y, €1, f1}. Since M /e; is 3-connected, Lemma
implies that si (M/{e1, z}) is 3-connected. If si (M/ {eq, z}) # M/ {e1, z} then there is
a square )’ containing {e;, z} and then = or y belongs to @)’. Since g ¢ @', because of
orthogonality with T3, we have that f; € @' and then |Q' N Q2| = 3; a contradiction.
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Therefore si (M/{e1, z}) = M/ {ey, 2z} is 3-connected. With arguments similar to those
given after Sub-Lemma [5.2.4]2, we ends case P1.

P2)1QN Q1| =]QNQ: =1, in this case Q;NQ = {fi} and Q;NT; = 0 for {i, j} =
{1, 2}. There are elements x; and y;, for i € {1, 2}, such that Q; — (T7 UTy UQ) =

{z;, y;}. Follows a graphic representation of squares above referred.

€1 Tl q Tj‘ €a

Figure 24 — Possibility 2.

As M is sapphire-free, T is the unique triad containing f;. Since M/e; is 3-connected
and @ is a square of M/e; that intersects just one triad, Theorem implies that
M /ey \z is 3-connected for some x € Q). As fy and g belongs to T3, a triad of M /ey, then
x € {e, f1}. Because of M\e is not 3-connected, M\e/e; is not 3-connected, otherwise
there would be a triad containing e on M. Hence M\ fi/e; = co(M\ f1) is 3-connected.
Since M is 3-irreducible, there is a square of M containing {e;, g}, contradicting the

previous lemma.

Theorem 5.2.6. If M is a semi-binary 123-irreducible 3-connected matroid the each

element belongs to a triad.
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6 GENERALIZED PARALLEL CONNECTION ON 3-CONNECTED MATROIDS:
AN IDENTIFICATION THEOREM

Going back to the case of irreducible classes, we will establish that for each dia-
mantic matroid M with m triads there is a unique totally triangular matroid N, up to
isomorphism, with m triangles such that:

i) There is an amalgam B of M and NV;
it) For each triad T of M, there is a unique triangle Y of N such that Y surrounds 7™
in B.

The process of constructing this correspondence uses the generalized parallel connec-

tion and its properties.

6.1 GENERALIZED PARALLEL CONNECTION AND A —Y EXCHANGE

The reference to this subsection is the Oxley’s book [10], sections 11.4 and 11.5, where
we find much more results on parallel connection. For the sake of clarity of the text and in
order to avoid using the book to recall some knowns results about connection in parallel,

we put this first section.

6.1.1 Generalized parallel connection

Let M; and M5 be two matroids with ground sets E; and Fs, respectively. We will
denote by r; and cl; the rank function and closure operator of M;, for i = 1 and 2.
Analogously, we denote by to 7} and ¢/} rank function and closure operator of M;*. Suppose
that My|T = M,|T, where T' = F; N Ey. We denote N = M;|T = M,|T.

Definition. An amalgam of M; and M is a matroid M with ground set £ = E; U E,
such that M|E; = M;. The free amalgam of M; and My is the amalgam M such that for

any other amalgam M’ every independent set in M’ is independent in M.

First, there may not be an amalgam of M; and Ms. Even when there is an amalgam,
there may not be the free amalgam. See Example 11.4.1 of Oxley [10].
By sub-modularity of rank function, for every amalgam M of M; and M; we have
that:
(X)) <ri (XNE)+ry(XNEy) —ry(XNT)

for all X C F.
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Definition. The free amalgam M of M; and M, is called proper amalgam if for every
XCF,

ry (X)=min{r (YNE)+rn(YNE)—ry(YNT): XCY CE}
Some free amalgams are not proper, as Example 11.4.4 of Oxley [10] shows.

Definition. A closed set Z of a matroid M is called modular flat if for every closed set
X CE(M),
TM(XUZ):TM(X)—i-TM(Z)—TM(XﬂZ)

A matroid M is called modular if every closed set X C E (X) is a modular flat.

Theorem 6.1.1. (Theorem 11.4.10, Oxley [10]) If either of the following conditions holds,
then the proper amalgam of My and My exists:
i) T is a modular flat of My;

it) N is a modular matroid.

Definition. When FE (si(N)) is a modular flat of si (M;), the proper amalgam is cal-
led the generalized parallel connection of My and My across T, and will be denoted by

Pr (My, M,). The existence of Pr (M, Ms) is guaranteed by previous theorem.

If M = Pr (M, M) and, for X C E, we denote by [X], = X Ucl; (X N E;), then we
have that:

{73 (X) =71 (X, 0 B 4re ([X]; 0 Ey)—ry ([X]; U[X],) NT) ely (X) = ey ([X], N Ey)Uels (X,
(6.1)

Lemma 6.1.2. Let Pr (M, M) be the generalized parallel connection of n-connected
matroids My and My with min {|E\|, |Es|} > 2n — 2, n > 2. Then Pr (M, M) is n-
connected if and only if |T| > n — 1.

Proposition 6.1.3. (Proposition 11.4.14, Oxley [10]) The generalized parallel connection
has the following properties:
i) If si(N) is a modular flat in si (M) as well as in si (M), then Pr (M, My) =
Pr (M, M,);
it) The ground set of si (Ms) is a modular flat of the si (Pr (M, Ms));
iii) If e € By — T, then Pp (M, M) \e = Pr (Mj\e, Ms);
w) If e € By —cly (T), then Pr (M, Ms) /e = Pr (My/e, My);
v) If e € Ey — T, then Pr (My, My)\e = Pr (M, Ms\e);
vi) If e € Ey — cly (T'), then Pp (M, Ms) /e = Pr (M, My/e);
vit) If e € T', then P (M, Ms) /e = Prj. (My/e, Ms/e);
viii) Pr (My, My) /T is the direct sum (My/T) & (My/T);
iz) The classes of graphic, regular, binary and ternary matroids are all closed under the

operation of generalized parallel connection (see Proposition 11.4.18 of [10]).
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6.1.2 A — Y exchange in 3-connected matroids

Let T = {ey, ey, e3} be a triangle of matroid M. Denote by W3 a 3-wheel with ground
set {e1, ea, €3, Y1, Yo, Y3}, spokes set Y = {1, y2, y3} and rim T such that YNE (M) = ().
As M|T = W5|T and T = E (si (N)) is a modular flat in W3 = si (W3), Theorem [6.1.1]
implies that the parallel connection Pr (W3, M) is well defined.

Figure 25 — 3-wheel with rim 7' = {ey, es, e3} and spokes set Y = {y1, y2, ys}.

Here, we have an important feature of the 3-wheel: if n > 4 then the rim of W, is not
a modular flat in W,,.
When M is 3-connected, Lemma implies that Pr (W5, M) is 3-connected.

As T is a coindependent in M, we have that:
Lemma 6.1.4. (Lemma 11.5.6, Ozley [10]) The setY is a triad of Pr (W3, M)\T ;

Analogously, if M is a 3-connected matroid such that T"= {ej, ey, e3} is a triad of M
then Pr (W3, M*) is well defined.

Definition. Let M be a 3-connected matroid and 7' a triangle of M. The delta-wye
exchange on T is defined as the matroid Ap (M) obtained from Pp (Wj, M)\T after
relabel each y; by e;. Note that E (Arp (M)) = E (M) and T is a triad of Ay (M). With
the fixed labels, the matroid Ay (M) is uniquely determined. In case of 7™ be a triad of

M, instead a triangle, the wye-delta exchange on T* is defined as the matroid Vo« (M) =
(A (M7))".

Some properties of delta-wye exchange is describe in the following proposition:

Proposition 6.1.5. Let M be a matroid and T be a triangle of M. Then:
i)r(Ap (M) =r(M)+1;

it) When M is 3-connected, co(Ar (M)) is 3-connected;

itt) Ap (M)\T = M\T and Ap (M) /T = M/T;

i) For alli € {1, 2, 3}, Ap (M) \e;/ (T —e;) = M/e;\ (T — ¢;);
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v) Vr (Ar (M)) = M (in case of T be a triad of M, instead a triangle, we have Ar (V1 (M)) =
M);

vi) If v € E(M) — cly; (T) then Ap (M) \z = Ap (M\z);

vii) If v € E(M) — clp (T) then Ap (M) Jz = Ar (M/x);

viii) A subset of E (M) is a basis of Ap (M) if and only if is a member of one of the

following sets:
{ {TUB : B is a basis of M/T, or{(T —e;) UB : B is a basis of M/e;\ (T — e;), for all i € {1, 2

For this and more contents about the above properties see [10], pages 452 to 456.

6.2 TRIANGULATION AROUND A TRIAD

Definition. Let M be a matroid, T* a triad and Y a triangle of M. We say that Y

surrounds T* if M| (T*UY) is isomorphic to a cycle matroid of a 3-wheel.

There is a simple way to put a triangle around a triad 7™ on a 3-connected matroid
M: denoting by W3 a 3-wheel with spokes set T* and rim Y, such that Y N E (M) = (),
we have that

A7 (M) = si [Py (W3, Pr. (W3, M") /T")]

is a 3-connected matroid with ground set E (M) U Y, having Y and T* as triangle and
triad, respectively. We have that A« (M)\Y = M and Y surrounds 7.

In this section we will study the circuits of Aps (M), its triads and how Ap- (M)
behaves according to 7. Moreover, when M is semi-binary then Ap« (M) is also semi-
binary. In the end of this section we will describe the triads of Ar« (M) and what happens
when T™ is contained in an emerald. These results will be required for the construction
described in the next section.

Follows a graphic representation:

\/ \/

T T

M \ / A7 (M) \

~

Figure 26 — Putting a triangle Y around T'x.
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Let M be a 3-connected matroid and T* = {ey, ey, ez} a triad of M. We will denote
by W3 a 3-wheel with ground set E (W3) = {ey, es, €3, Y1, ¥2, y3}, spokes set E (W3) N
E(M)=T*"and rim Y = {y1, yo, y3}. We take the labels of Y such that {y;, e;, e} is a
triangle of W3 for {i, j, k} = {1, 2, 3}.

We have that T* is independent in M, T* is a modular flat of W3 and si (W3|T*) =
W3 |T*. Theorem implies that Pj. (W3, M*) is well defined and we have the following

properties:
Proposition 6.2.1. Properties of Pf. (Wg, M*):
i) E(Pp. (W3, M*)) = E(M)UE(Ws) = E(M)UY;
i) v (Pps (Wg, M*)) =7 (M*)+1, and so r (Pj. (W5, M*)) =r (M) +2;
iii) Because of Proposition [6.1.3(iii) we have that

Pr. (W, M*) Y = [Pr (W5, MO)\YT = [Pr- (W5\Y, M*)]" = [M"]" = M

iv) Lemma implies that Pr. (W3, M*) is 3-connected;

v) Lemma implies that Y is a triangle of Pf. (W5, M*) /T*;

vi) Because of Proposition [6.1.5(i) we have that r (Pj. (W5, M*) /T*) =r (M) — 1;

vii) Proposition[6.1.5(i) implies that si (Pj. (W3, M*) /T*) is 3-connected;

vitt) For indices {i, j, k} = {1, 2, 3}, we have that {y;, y;, ex} is a triangle of W3 and so
is a triangle of Pp« (W3, M*). Therefore it is a triad of Pf. (W3, M*), just like T*.

First, we will study the circuits of Py. (W3, M*) a little further and how they relate
to the circuits of M.

Lemma 6.2.2. Y is a triangle of Pj. (W3, M*). Moreover, Y is the unique circuit of
Py, (W3, M*) contained in E (W3) (see Figure[27).

Demonstragio. First, we will prove that Y is a triangle of Pj. (W5, M*). Since Pj. (W3, M*)
is 3-connected, its sufficient to show that rp;, (Y) = 2, where rpy, 1s the rank function of
Pr. (W, M*). If rp,.. denotes the rank function of Pp« (W3, M*), then we have that

res, (V) =Y +rp. (E=Y)—(r(M*)+1)=rp. (E-Y)—1r(M")+2
where E = E(M)UFE (W3). As E—~Y = E(M) and
{ [E=Yw; =(E—Y)Ucw; ((E=Y)NE(W3)=E(M),[E—-Y],.=(E-Y)Ucy- (E-Y)N
then, by (6.1]), we have that

TP (E=Y) = 1ty (E(M)NE(W))+ry- (E(M)) = ragep+ (T7)
= 24r(M*) -2
= r(r)
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therefore rp» (Y) =2, and so Y is a triangle of Pr. (W3, M™).

Now, suppose that C'is a circuit of Pj. (W5, M*), different to Y, contained in E (W3).
Since Y ¢ C, we have that |C| < 5. If T* C C then C' = T*, otherwise C'—T* is a loop or a
parallel class of Pj. (W3, M*) /T* contained in Y; a contradiction because Y is a triangle
of Py. (W5, M*) /T*. If C'=T*, we have that C is a triangle and triad of Pj. (W5, M*),
contradicting its 3-connectivity. Therefore 7% ¢ C'. Since T* and Y are both not contained
in C, we have that CNY # 0 and CNT* # () . Then C — T* is a loop or a parallel class
of Py (W5, M*) /T* contained in Y’; a contradiction. O

Lemma 6.2.3. If C is a circuit of Pf. (W5, M*) contained in E (M) then C is a circuit
of M\T*.

Demonstragio. As T} = {e;, y;, yx} is a triad of Pp. (W3, M*) for {1, j, k} = {1, 2, 3},
by Proposition (viii), we have that C'NT* = (). Since C' do not intersect 7%, C' is
a circuit of Pj. (W5, M*)\T*. Proposition (viii) implies that Py. (W5, M*)\T* =
(W3\T*) & (M\T*). Therefore C is a circuit of M\T*and then its a circuit of M. O

Proposition (viii) implies that Py. (W3, M*)\T* = (W3\T*) & (M\T*) and so

the previous lemma implies
C(M\T*) ={C eC(Pp. (W5, M7)) |C C E(M)}
What happens with circuits of M that intersects 77

Lemma 6.2.4. Let C be a circuit of M such that C NT* # ().

i) If CNT* = {e;, e;}, then C Uy is a circuit of Pp. (W5, M*), where {i, j, k} =
{1, 2, 3}. By circuit elimination axiom C U{y;, y;} is a circuit of Py. (W5, M*) too;
i) If T* C C, then C' U{y,, y;} is a circuit of Pr. (W5, M*), for every 2-subset {i, j} C
{1, 2, 3};

Demonstracao. We will adopt the symbols rp,.. and r Pr. for the rank functions of Pr« (W5, M*)
and Pj. (W3, M*) respectively. Denote by T} = {v;, y;, ex}, for {i, j, k} = {1, 2, 3}. Re-
member that T} is a triad of Pj. (W5, M*) for k =1, 2 and 3.

Suppose that C' NT* = {ejy, ea}. Denote by X = C' U y3. In this case

[E = Xly: = (B = X)Uclw; ({1, y2, e3}) = E - X

and
E—-X],,=FE-X)Ucy(E(M)-C)=FE—-X

By (61]) we have that

TP (B — X) = rws ({y1, Y2, e3}) + 7= (E (M) — C)) — a7+ (€3)
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and so rp., (E—X)=ry- (E(M)—-C))+1=r(M"), because E (M) — C' is a hyper-
plane of M*. Therefore rp:, (X) = |X[+rp,. (EF— X)—7r(M*)—1=[X|—1 and hence
X is dependent in Py. (W5, M*). Now we will prove that X is a circuit.

If X is not a circuit of Pf. (W5, M*), there is a circuit Z C X. Because of orthogonality
with T} and Ty, we have that C' can not be a circuit of Pj. (W5, M*), since C NY = 0.
Therefore y3 € Z. The orthogonality with 77 and Ty implies that {e;, es} € Z. Then Z —
y3 is a circuit of P (W5, M*) /ys. Proposition[6.1.3[(iii) implies that Pp- (W5, M*) \ys =
Pr« (W3i\ys, M*). Then E — (Z — y3) is a hyperplane of Pr« (W5\ys, M*).

Denote by ' the rank function of Ppr- (W3\ys, M*). From (6.1I)) we have that

r(E—=(Z=ys)) = rwivs ([E—(Z—ys)ly- N (E(Ws) = ys))
+1 <[E - (Z - Z/S)]W;\yg N(E (M))>
—raree (([B = (Z = y3)lp ULE = (Z = ys)lwnrys) N T7)

where

{ [E=(Z =y3)p- = (E = (Z —y3))Uclu» (B = (Z —y3)) NE(M)),and [E — (Z — y3)]w;\y3

Since (E— (Z —y3))NE(M)=E(M)—Zand E(M)—C C E(M) — Z, we have
that

chu (B = (Z —ys)) N E(M)) = E (M)

and so [E — (Z — y3)],;» = E. Because (E — (Z — y3)) N (E (W3) — ys)= {v1, y2, €3} is a
triangle of W3\ys, we have that [E — (Z — yg,)]wg\y3 E — (Z — y3). Therefore

" (E—=(Z—-wys)) = rw; (EN(EW3) —y3)) +7rm (B —(Z —y3) N (E(M)))
—rw; (EU(E—=(Z —y3)NT")
= 3+ru- (E(M) = (Z —ys)) —2
= r(M*)+1
= 7 (Pr- (W3\ys, M*))

contradicting the fact that £ — (Z — y3) is a hyperplane of Pr. (W3\ys, M*). Therefore
C Uz is a circuit of P (W5, M*).

Since Y is a triangle of Pr. (W5, M*) and Y N (C'Uy;) = {ys}, we have that there
is a circuit D of Pj. (W3, M*) contained in C' U {y;, y2}. Lemma implies that
D N {y, y2} # 0, otherwise the orthogonality implies that D N T* = () and then D is
a circuit of M contained in C'; a contradiction. The orthogonality with 73 and the fact
of e3 ¢ D implies that {y1, y2} C D. Therefore D — {y;, y2} and C are both circuits of
Pr. (W3, M*) /Y , and then D — {y;, yo} = C. Consequently C' U {y1, y2} is a circuit of
Pi. (W5, M*) too.
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From now on, we will suppose that T C C.
First, we will prove that for every i € {1, 2, 3} we have that C' Uy, is an independent
of Pj. (W5, M*). Denote by X = C' U ys, for example. In this case, we have that

{ [E—=Xw; = (E - X)Ucws ({1, ¥2}) ,and [E — X] .. = (E — X)Ucly- (E (M) - C)

Then clw; ({y1, y2}) = {¥1, vo, €3} and cly- (B (M) —C) = E (M) — C, because
E (M)—C'is a hyperplane of M*. Therefore [E — X]Ws* = (F—-C)Uegand [ — X],,. =
E — X. Hence

e (B = X) = 1wy ({y1, y2}) + ra- (B (M) — C) Ues) — rasi- (e3)
and so rp,, (E—X)=ry (E(M)—C)Ue)+1=r(M*)+1. Then
res, (X) = [X[+rp (B = X)—r (M) = 1=[X[+ (r (M) +1) —r (M) =1 =|X]|

Consequently, X = C'U ys is an independent of Pj. (W3, M*). More generally, C' U y; is
an independent of Pj. (Wy, M*).

Now, we will prove that C' U {y;, y;} is a dependent of Pj. (W3, M*). Take X =
CU{y1, y2}. we have that

{ [F—Xw; =(E—X)Uclw; ({ys}),and [E — X] . = (B — X) Ucly- (B (M) - C)

Then clw; ({y1, ¥2}) = {ys} and cly- (E (M) — C) = E(M)—C. Therefore [E — X]Wg =
FE — X and [EF — X],,. = E — X. Hence

e (B = X) = rw; ({ys}) + e (B (M) =€) = 7o+ (0)
and so rp,. (B —X)=ry- (E(M)—C)Ue)+1=r(M*). Then
res, (X) = [X|+rpn (BE—X)—r(M") —1=[X]|-1

Consequently, X = CU{y, y2} is a dependent of Pj. (W5, M*). Hence, there is a circuit
D contained in C' U {y;, y2}. Suppose, by contradiction, that D C C U {y;, y=}. Since
C Uy, and C' Uy, are both independents of Pj. (W3, M*), we have that {y1, yo} C D.
As y3 ¢ D, the orthogonality with 7} and T3 implies that {e;, ea} C D. Therefore
D = (C U{y1, y2})—e3. There is a circuit D’ contained in (D U Y")—y;. The orthogonality
with 75 implies that yo ¢ D’ and so D' = (C — e3) U y3, otherwise D' C E (M) — T*
and this is a contradiction. Then D' = C' — e3 is a circuit of Py (WJ, M*)/Y = M; a

contradiction. ]
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Corollary 6.2.5. Let C be a circuit of Pj. (W5, M*). Then for {i, j, k} = {1, 2, 3}:

i) C =Y, a triangle of Py. (W3, M*); or
it) CNY = {y;, y;}. Then C=Y is a circuit of M intersecting T* in two or three elements;
or
i) CNY = {y;}. Then C =Y is a circuit of M intersecting T in {e;, ex} ande; ¢ C—Y;
or
w) CNY =0 and then C is a circuit or M\T*.

Corollary 6.2.6. There is no square of Pf. (W3, M*) containing T*. Consequently,
Py (W3, M*) /T* is not 3-connected if and only if it has parallel classes. Moreover, if
M is semi-binary then Py. (W3, M*) is semi-binary.

Figure 27 — Graphic representation of local structure of Py. (W5, M*) around T, highlighting the triads
that intersects T™.

Consider the matroid
Py (Ws, Pr. (W3, M") /T")
We have that:
e Y is a triangle of Py (W3, P (W35, M*) /T*);
o r(Py (Ws, Pr. (W3, M*) /T7)) = r (Ws)+r (Pp. (W5, M*) /T*)=r (Ws|Y) = r (M);
« Because of Proposition [6.1.5|(v), we have that Py (W5, Py (W3, M*) /T*)\Y = M;

Lemmal6.1.2]implies that if P (W3, M*) /T* is 3-connected then Py (W3, Py. (W3, M*) /T™)
is 3-connected too.

Now, we will look for the parallel classes of Pj. (W3, M*) /T*. Note that V- (M) is
obtained from Pj. (W3, M*) /T* changing y; to e;.

Lemma 6.2.7. A 2-set {x, y} is a parallel class of Pf.. (W3, M*) /T* if and only if there is
a square Q of Pr. (W3, M*) such that QNT* = {e;, e;}, {z, y} CQ, x € E(M)—E (W3)
and y = yx, for {i, j, k} = {1, 2, 3}.
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Figure 28 — {x, y3} is a parallel class of Py. (Wg, M*) /T*.

Demonstragio. If Q is a square of Py. (W5, M*) such that QNT™* = {ey, ea}, {z, y} CQ
and y = y3, then Q — T* = {x, y} is a a parallel class of Pj. (W3, M*)/T*.

There is no triangle of Pj.. (W3, M*) that intersect 7 in just one element, because of
orthogonality with 7. If T" is a triangle of Pj. (W3, M*) that intersect T* in two element,
the orthogonality with T} = {e;, v;, yx}, {3, 7, k} = {1, 2, 3}, implies that 7" C E (Wj3),
contradicting Lemma [6.2.2

Suppose that C' is a circuit of Pj. (W3, M*) with five elements such that 7% C C.
Because of orthogonality with 7" = {e;, y;, ur}, {¢, j, k} = {1, 2, 3}, we have that C' =
{e1, €2, €3, yi, y;}, for some 2-subset {7, j} C {1, 2, 3}, and so C' C E (W3), contradicting
Lemma [6.2.2]

We have that if {z, y} is a parallel class of Pj. (W3, M*) /T* then there are a square
Q of Pj. (W3, M*) such that intersects 7™ in just two elements, say {e1, ea}. Since @ is
not contained in E (W3), there is x € E (M) — T* such that z € Q. The orthogonality
with 7} and 7 implies that y3 € Q. O

Corollary 6.2.8. P;. (W5, M*) /T* has a parallel class if and only if there is a triangle
T of M such that T N'T* # ()

Lemma 6.2.9. Py (W3, Pf. (W3, M*) /T*) is not 3-connected if and only if there is a
triangle of M that intersects T*, and si (Py (W35, Pf. (W5, M*) /T*)) is 3-connected.

Demonstracio. If Py (W3, Pf. (W3, M*) /T*) is not 3-connected then Pj. (W5, M*) /T*
is not 3-connected and so there is a triangle 7" of M such that. If there is a triangle T’
of M such that T'NT* # () then Pj. (W5, M*) /T* has a parallel class that is a parallel

class of
Py (Ws, Pr. (W3, M*) /T)

too. O
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Corollary 6.2.10. If M is a triangle-free 3-connected matroid then Py (Ws, Pr. (W3, M*) /T*)
is 3-connected for each triad T* of M.

Definition. Let M be a 3-connected matroid and 7™ a triad of M. Take W3 a 3-wheel
with spokes set T* and rim Y, such that YN E (M) = (). We define a triangulation around
T as the matroid

Ar (M) = si [Py (Wa, Ph (W5, M*) JT*)] (6.2)

\

Figure 29 — Triangulation around T*.

When M has a triangle T intersecting 7%, there is a parallel class on Py (W3, Py (W5, M*) /T*)
containing the element on 7' — 7 and a element of Y (see {z, y3} in Figure [28). In this
case, we will treat this class representative as an element of £ (M) or £ (W3) convenien-

tly, for the sake of textual fluidity. With this caution warned, it now makes sense write

Ap (M) | (T*UY) = W;s. If M has a triangle surrounding 7™ then Ap- (M) = M.

Proposition 6.2.11. Let Ap- (M) be a triangulation around a triad T* of M with ground
set E (Aps (M)) = E(M)UY, where Y is the triangle surrounds T* on Aps (M). Then
A7 (M) is 3-connected and:

i) Aps (M) |E (M) = M;
it) r (Aps (M)) =1 (M);
iii) Aps (M)\T* is 3-connected and r (A« (M)\T*) =r (M) —1;
i) If N is a 3-connected matroid with ground set E = E (M)UY such that N|E (M) = M,
T* is a triad of N and Y is a triangle surrounding T*on N, then N = Ap« (M);
v) If T* is a nucleus of a pure diamond of M then every element of Y belongs to at least
two triangles of Aps (M)\T*.

Demonstragio. i) If we denote by

Y =Y — {y € Y|y belongs to a parallel class of Py (W3, Pi. (W, M*) /T*)}
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then

A (M)\Y = si[Py (Ws, Pp. (Wy, M*) /T*)]\Y
= [Py W5, P (W5, M7) /TH\ (Y = V)] \Y
= Py (Ws, Pr. (W3, M*) [T*)\Y
= Ap- (Vp- (M))
(by Proposition [6.1.5[(v) ) = M
i) v (Ags (M)) = r (Py (Ws, Pr. (W3, M*) /T*)) = r (M).
i)

Ar (M\T* = si[Py (Wa, Ph (Wi, M*) /T \T
Py (Ws, Pr. (W3, M*) /T*)\T"]
Py (Ws\T*, Py (Wi, M*) /T)]
si[Pg. (W3, M*) /T

[
= sif
(Proposition [6.1.3|(ii7) ) = si
st |
that is 3-connected because of Proposition [6.1.5(ii), and r (si [Pj. (W5, M*) /T*]) =
r(M)—1;

iv) Since Y is a triangle surrounding 7*on N, we have that
N = A7 (N) = Ap- (N|E(M)) = Ap- (M)

v) Take y € Y. Since T™ is a nucleus of a pure diamond, there is a square @) of M
such that (Q NT*)U{y} is a triangle of A« (M). Therefore (Q — T*) U {y} is a triangle,
because of circuit elimination axiom and orthogonality. The self Y is the other triangle

containing y on Ap- (M) \T*. O

Lemma 6.2.12. Let M be a 3-connected matroid and T a triad of M. Denote by Y the
triangle surround T* on Ap+ (M). Suppose that for each triangle T of M that intersects
T* we have that T — T* do not belongs to any triad of M (equivalently, M\ (T — T*) is
3-connected). Then there is no triad of Arps (M) intersecting Y .

Demonstragio. Suppose that T™ is a triad of Ap« (M) that intersects Y. Since Ap« (M) | (T*UY)
is a 3-wheel with spokes set T and rim Y, we have that there is e € T and a 2-set
{1, yo} C Y such that T = {e, 1, y2}. As T"™ is not contained in E (M), we have that
{y1, yo} € E(M). If y; and y, are both not containing in £ (M) then there is a base B
of M such that e ¢ B. As r (A7« (M)) = r (M), we have that B is a base of Ay« (M)
that do not intersects T"*; a contradiction. So we can assume that y;, € £ (M). Since M
is 3-connected, there is a base B of M that do not intersects {e, y;}, and then B is a base

of Aps (M) that do not intersects 7"*; also a contradiction. O
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Lemma 6.2.13. Let M be a 3-connected matroid and T* a triad of M. Suppose that
for each triangle T of M that intersects T, M\ (T —T*) is 3-connected. Then the triads
of Ap« (M) are T* and the triads of M that do not intersects T*. The triads of M that
intersects T*, different of it self, are destroyed.

Figure 30 — Triads destroyed on triangulation around a triad in L4 = Ds.

Demonstragio. Denote by Y the triangle surround 7* on Az« (M) and take
Y =Y —{y €Y : ybelongs to a parallel class of Py (Ws, Pp. (Wi, M*) /T*)}
By (6.2), we have that
Ar- (M) = Py (Ws, P (W5, M) /T)\ (Y = V)

Lemma implies that T* is a triangle of Py (W3, Pf. (W3, M*) /T*) that do not
intersects Y — 17, since each element of Y — Y belongs to a triangle of M that intersects
T*. Therefore T* is a triangle of Ak. (M).

Take T™ a triad of M such that 7" NT* = (. Therefore T is a triangle of M*\T*.

Since

A (M)\Y = [P; (Ws, Py (W3, M*)/T*)/( f/)] \Y

Py (Ws, Py (W, M*) JT*)\Y]/ (Y =Y)

Py (Ws, Py. (W, M*) /T*) /Y] /(Y = V)
(Ws/Y) @ (Pg. (W, M) JT*/Y)]" [ (Y = V)
(W\Y) @ (P (Wi, M)\ (T*UY))]/ (Y =)
(

[
[
(Proposition [6.1.3] (viii)) = |
[
[(W\Y) @ (MAN\T)] /(Y = T)
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and T do not intersects Y — Y, we have that T' is a triangle of A%. (M)\Y’, and so of
Ab (M) It T™ # T* is a triad of M such that 7 N'T* # () then 7™ is not a triad of
A%, (M) because of Y surrounds T*. O

Lemma 6.2.14. Let M be a 3-connected matroid such that M has a triangle Y sur-
rounding a triad T*. If a subset X C'Y do not intersects any triad of M then M\X is
3-connected and M = Ap« (M\Y').

Demonstragio. Suppose that X # () and take x; € X. Since si (M/z1) is not 3-connected,
because has a parallel class, Bixby’s Theorem implies that co(M\zy) = M\z; is 3-
connected. If X — x; # (), take 2o € X — xy. There is a triangle of M containing
xo that avoids z; and intersects T, then this triangle is also a triangle of M\x;. So
st [(Ap« (M) \v1) /y2] is not 3-connected, provide involves a deletion of one element of 7.
Therefore co (M\z1) \x2) = M\ {z1, x5} is 3-connected. Analogously to the case X =Y.
Because of Proposition [6.2.11)(iv), M = Ap+ (M\Y). O

Corollary 6.2.15. If M is a triangle-free 3-connected matroid and Ap- (M) is a trian-
gulation around a triad T* of M, then Ap« (M)\X is 3-connected for every X C Y, the

triangle surrounding T* on Ap~ (M).
Now, in the end of this section, we will look at how triangulation relates to emeralds:

Lemma 6.2.16. Let M be a 3-connected matroid with T* and T"* different triads of M.
Then Aps (M) = A= (M) if and only if T* UT™ is a pure emerald of M. Moreover, if

T*UT"™ is a non-pure emerald then Ap- (M) is non-semi-binary.

Demonstracio. 1f Ar« (M) = Ap~ (M) then there is a triangle Y surrounding both 7™
and T". Circuit elimination axiom implies that 7% U T" is a pure emerald. If 7% U T"
is a pure emerald of M and Y is the triangle surrounding 7* on A« (M), then circuit
elimination axiom implies that Y also surrounds 7"*. Therefore Ap« (M) = Apis (M).

Now, suppose that 7% UT" is a non-pure emerald. Then there is squares Q and Q' of
M such that T* UT"™ = Q U Q" and QAQ' is not a squares of M. By circuit elimination
axiom, there is a circuit contained in Q U @)’ — e for each e € Q N @Q’. Since there is no
triangle contained in QAQ’, because of triads, we have that Q U @)’ — e is a circuit of M
foreache e QN Q. Take e € QNQ' NT*. Then QU Q' —e =T U (T* — e) is a circuit
of M, and so of Ap« (M). If Y = {z, y, 2} is the triangle surrounding 7 then, by circuit
elimination axiom, {z} U (Q NT"™) and {y} U (Q' NT") are triangles of Az (M). Since YV’
do not surrounds 7", there is no triangle containing z contained in 7" U {z}, otherwise
this triangle would be intersects {z} U (Q NT") or {y} U (Q' NT") in two elements.

We have that 7" U (T* — e) and (T* — e) U {z} are both circuits of Ap« (M). Circuit

elimination axiom and orthogonality implies that 7" U {z} is a circuit of Ap« (M). O
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6.3 AN IDENTIFICATION THEOREM: ASSOCIATED TRIANGULAR MATROID

As first application of the triangulation around a triad operation, we will establish that
the family of 3-connected diamantics matroids is in a one-to-one correspondence with the

family of 3-connected totally triangular matroids.

Definition. A 3-connected matroid M is said triangular if each element belongs to at
least 2 triangles. A triangular matroid is said totally triangular if:

i) Every pair of triangles intersects in at most 1 element; and

ii) M has no triads.

Note that M is totally triangular if and only if M* is a triangle-free 3-connected
matroid such that each element belongs to at least 2 triads and every pair of triads of

intersects in at most 1 element.

Example 6.3.1. A 3-wheel is a triangular 3-connected matroid such that each element
belongs to a two triads, therefore a 3-wheel is a non-totally triangular matroid. The Fano

matroid F% is an example of a totally triangular matroid.

Fy ki

Figure 31 — Geometric representation to F7 and its dual.

Let M be a triangle-free 3-connected matroid such that each element belongs to a

unique triad. If we denote by

then we can put an order on family of triads of M,
{17, T, ..., T}

For each k € {1,2,...,n}, we will denote by W¥ the 3-wheel with ground set
E (ng) = Ty UY) such that T} is the spokes set of WF Vi the rim of W¥ and
Y N (E (M)i# kUY:) = 0.
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Denote by M, = Ay (M) and for each k > 1, we define
My = Ars (My—1)

By Lemmal|6.2.13] we have that M}, has the same triads of M foreach k € {1, 2, ..., n}.
Lemma [6.2.9| implies that M} is 3-connected for every k.

For each k € {1, 2, ..., n}, consider the following sets

Y=Y — {y € Y}, : y belongs to a parallel class of Py, (Wf, Pjig (Wf*, M,jfl) /T,j)}

— ko~
Note that Y7 =Y;. We have that E (M) = E (M) U (U Y}).
i=1

Lemma 6.3.2. For every k € {1, 2, ..., n}, My is a 3-connected matroid such that:
i) Mk\?k = Mj._1, and so M\ 6 Y, = M ;

ii) v (My) = r (M); -

ii1) Mg\ ‘L]_ﬁjl T* is a 3-connected matroid with rank r (M) — k;

(2

k
w) If every triad of M is a nucleus of a pure diamond then every element of U Y; belongs

i=1

to at least two triangles of M\ U T,
v) The triads of My, are the same tmads of M;

Demonstragao. Items (i), (4) and (#i7) are consequence of Proposition|6.2.11{ (%), () and
(#7), applied k times.
Item (iv): case k = 1 is consequence of Proposition [6.2.11] (v). Suppose valid for k — 1.
k
Take y €U Yi. If y € Y] for j < k then y belongs to at least two triangles of Mj_;, and
i=1
so of My. If y € Y}, then we can apply the same arguments as Proposition 6.2.11] (v).

Item (v) is consequence of [6.2.13] since each element of M belongs to a unique triad.
O

Note that M, is a triangular 3-connected matroid with r (M,) = r (M) such that
M,|E (M) = M. When every triad of M is a nucleus of a pure diamond then M,,\ ,L_le T
is a 3-connected triangular matroid without triads, with rank r (M) — n. Moreover, if

every emerald of M is pure (for example when M is diamantic) then M,\ 'Ql Tr is a
totally triangular matroid (see Lemma [6.2.16)).

Lemma 6.3.3. M, does not depend on the order of the triads.
Demonstragio. Take o : {1, 2, ..., n} — {1, 2, ..., n} a permutation. Denote by
1’;/* — * ) T*

then {T7*, Ty*, ..., T'*} is another ordination for the triads. As W5 denotes a 3-wheel
with spokes set Tj and rim Y, then M,, has ground set £ (M,,) = E (M) U <G Y;-). For
i=1
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each k € {1,..., n}, take Wi* a copy of a 3-wheel with spokes set T}* = T;, and rim Y},

such that
YN (E(Mn)u (U Y/)) =0
itk

{ M = Agp (M), M} = Aqy- (M]_,) ,for each k > 1.

We denote by

We will to prove that M) = M,, up to relabel of the triangles that surrounds the
triads.
By Lemma M, and M/ has the same triads of M. For each k € {1,..., n} we
have that
M, = A7~ (M \Y5,)

because of Lemma [6.2.141 So, we have that

M, = Ag-(M\Y,,)
= Az (A (M\Y,)\Ys,)

If we denote by

then we have that

AT{* (Mn\thl) \Y02 = st {PY{ (Wéla v ([Wél] [M \Yo'l]*) /Tll*)} \Y02
(Corollary 5-28) = Py (W3', Py ([Wg I, MY, ) /T ) \Ye,
(Proposition [E-13(v) = Py (W', Prp. (W4T, [M\Yo]") /T{\Yo) \ (Yo, = Vo)
(Proposition BT3vi)) = Py (Wi, P (W5, [a0\ & Yo ] ) /70 )\ (Yo - Vo)
= Ag- (Mn\ ) YUZ.) \ (Yo, = Ya,)
Since there is no triangle of M, \Y,, intersecting 77*, we can apply Corollary in
the second equality.

For fourth equality, we have to show that Ya2 N clagzyy,, (T77) = 0. Suppose that
Yy < Ygg N ClM?{/Yol (TI ), then

2=rmyy, (T U{y}) = ray (7 U{y} UYs,) — gy (Yo)

and ry: (T7* U{y} UY,,) = 5. So, for some e € T7*, we have that (77" —e)U{y} UY;, is
a circuit of M that contains y € Y,, but do not intersects 75*. A contradiction since Y,
surrounds 73",

Therefore

My = g (g (M (U Vo) )\ (Ve - 722))
( _
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and, if we take

Y03 == Yog_ U YO'Z'
then we have that
3 —— —_—
M, = g <AT2,* <AT{* (Mn\ (U Ygi>> \ (Y(,Q - Y02)> \ (Ygs — Y03)>
i=1
and so on, until

My = Az (wl* (...ATé* (w <Mn\ ([j y)) \ (Yoo~ 22) ) (Yo - YA)) \ (Yo - ?;))

i=1

n

By previous lemma, we have that M,,\ (U YUZ.) = M. Then
i=1

A (Mn\ (Q Ym)) \ (Yo, = Yo, ) = Agy- (M)
and

Ar (.T{* (Mn\ ((] y>) \ (Yo, - ?;)) \(Yao — V) = g (Az- (1)

=1

Continuing this, we obtain that

M, = Ary- (Ars (A (A (M)))) = M;,

Because of previous result, we will denote M,, by B (M).
Denote by

e 3" ={M : 3-connected with n triads and each element belongs to a nucleus of a pure diamo
e " ={M € 3" : M is a diamantic matroid};

o T" the class of 3-connected triangular matroids without triads having n triangles;

o V" the class of totally triangular matroids having n triangles;

Because of Lemma [5.1.1], we have that " = ) for n < 4. Note that " = {) for n < 4.
Denoting by 7* the set of triads of M, previous lemma implies that b : " — T"
such that

b (M) =M =B(M)\T* € 7 JT*

is a function, unless re-labelling the triangles. Note that b|,» is injective and b (p™) C V"
This function is not injective over 3™ because of the pure emeralds. If M € 3™ and has

a non-pure emerald then M° ¢ Yn.
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Definition. For M € o", we say that M” is the triangular matroid associated to M.

Example 6.3.4. If M denotes the cycle matroid of graph described in Figure [17] then
M’ = M (K3) is its associated triangular matroid, where K5 denotes the complete graph

with 5 vertices.

Definition. If M is a diamantic matroid then B (M) is an amalgam of M and M having
the same triads of M such that each triad has a unique triangle surround it. B (M) is the

barycentric subdivision of M.

Now, we will to show that b|,» is a bijection of p™ on Y". From now until the end of

this section, M will denotes a triangular 3-connected matroid. Denote by
{-}/vl? }67 R Yn}

the family of triangles of M.
For each k € {1, 2, ..., n}, we take W} as the 3-wheel with spokes set T} and rim Y},
where

TE 0 (E(M)i # kUTY) = 0
We define M! = Py, (W3, M) and for k > 1,

MY = Py (W, M)

By Lemma m, Ty is a triad of M. Since Y5 is a triangle of M, is also a triangle of M.
Therefore Yy, is a triangle of M*~1 and so M* is well defined for every k € {1, 2, ..., n}.
Lemma implies that 7} is a triad of M*, for every k.

Lemma [6.1.4] implies that 7} is a triangle of Py, (W?f, Mkfl) /Yy = M* Y}, then is
a triad of M*\Y};. We have that

MMTY = Py, (WE, MFD)\T; = M+

therefore M*\ @1 Tr = M.

We have that MN\Y, = Py, (Wg, M)\Y; is 3-connected iff Py (W3, M) /Yy is 3-
connected. Proposition [6.1.5] (77) implies that si (P{il (W3, M)/ Yl) is 3-connected and
Py (Wy, M) /Y1 has no loop. Therefore Lemma implies that M'\Y; is 3-connected

if, and only if, there is no triad of M intersecting Y;.

k
Lemma 6.3.5. Suppose that M € T, then M*\ 'L_Jl Y; is a 3-connected matroid and has
{Ty,..., T;} as the set of triads, for every k € {1, 2, ..., n}.

Demonstragio. For every k, we have that M* = Py, (Wf, M) is 3-connected. Lemma

6.2.2| implies that T} is the unique cocircuit of M* containing in F (Wf) Now, we will
to show that {T}, Ty, ..., Ty} are the triads of M*.
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For k = 1, if T* # T} is a triad of M then we have that T* intersects T} or T*NT} = ()
and both are prohibited by Corollary . Therefore, T} is the unique triad of M?*.

Suppose that the triads of M*~! are {Tl*, Ty, ..., T,;Ll}. Take T* a triad of M*. Since
MF = Py, (Wf, M), Corollary |6.2.5 implies that 7% = T} or T* N T; = (), and hence T*
is a triad of M*~1/Y}. So, in last case T* € {Tl*, Ty, .. T,j_l}.

Since the triads of M* are {T}, Ty, ..., Ty}, for each k, we have that M*\Y}, is 3-
connected because of Corollary . Moreover, if we denote by Y, =Y and for k > 1

V=Y~ UV

i=1
ko —~ k
then we have that ‘!1 Y; :91 Y; and

—

MR OV = (MAT)\ U Y,

Since M* is a 3-connected matroid and Y} is a triangle surrounding 7} on M* such
that Y3 do not intersects any triad of M*, then Lemma implies that M k\}//; is
3-connected. We have that Yj_; is a triangle surrounding 77 ; on M k\ﬂ//; Lemma
implies that M k\ﬁ\fl;l is 3-connected. Continuing with this precedence, we obtain that

k
MF\ 15} Y; is 3-connected. O

If M € T"™ then M™\ @1 Y; is a 3-connected matroid such that each element belongs

to a unique triad.

Lemma 6.3.6. M"™ does not depend on the order of the triangles.

Demonstragio. Take o : {1, 2, ..., n} — {1, 2, ..., n} a permutation. Denote by
Y/ =Y,0 =Y,

then {Y/, Yy, ..., Y/} is another ordination for the triangles. If W¥ denotes a 3-wheel with

spokes set T} and rim Y}, then M™ has ground set £ (M™) = E (M) U (CJ TZ*) For each
i=1

k€ {1,..., n}, take Wi* a copy of a 3-wheel with spokes set T}* and rim Y} =Y, , such

that
T, N (E (M™)u (U T;*)) =0
ik

{M" =Py (W3, M), M"™ = Py, (Wik, M*71) for each k > 1.

We denote by

We will to prove that M'™ = M"™, unless label of the triads surrounded by triangles.
Note that for every k, T;* UT7 is a pure emerald of Py (Wék, M ”) Then

M® = Py (W3, MM)\TY
= PYk’ (Wéka Mn) \T;k
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and T; C E(M") —Y}. Then
M™ = Py, (W3, M™TY?)
We have that
M™ = Pyy (W32, MM)\Ty" = Py (W32, Pyy (We!, M™\ (T3, 0T3,)))
Going on until
M" = Py, (Wg", Py (Wgnl, ... Py (ng, M™\ ([j TG>)>>
- MM -
since M™\ (61 T;Z> =M. O
Denoting by 7 the set of triangles of a M, we have a function f : Y* — " such that
8(M) =M = M"Y € 7 JY
is injective, unless re-labelling the triads.

Definition. Given M € Y™, we have that M* is semi-binary (Corollary [6.2.6) and 123-
irreducible. We say that # (M) = M?* is the diamantic matroid associated to M.

Theorem 6.3.7. If M is a rank m 3-connected diamantic matroid with n > 4 triads,
|E(M)| = 3n, then M’ is a totally triangular 3-connected matroid with rank m — n
and n triangles. Conversely, if M is a rank m totally triangular 3-connected matroid
with n triangles, n > 4, then M?* is a 3-connected diamantic matroid with n triads,

‘E (Mﬁ)‘ =3n, and r (Mﬁ) = n+ m. Moreover, (Ml’)ti = M and (Mﬁ)b =M.

Demonstracao. Take M € p™. Then

() = (e B
= (A BTN
Note that
(v 8 77) = B (Wi b B, 77) = b 0,77
and

n 2 n n
(3 O 17) = P (W2, 200\ O, 17) = 0\ O 7

and so on until
(M O 77) " =M,
Therefore

(Mb)ﬁ = M\ Z’Q1 Yi=M

b
Analogously we can check that (M ﬁ) =M, for M € Y™ O]
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As consequence, if M is a totally triangular matroid then M"™ = B (M ﬁ) and so:

Definition. If M and N are diamantic and totally triangular matroids associated each
others, then B (M) =B (N) =B (M, N) denotes its barycentric subdivision of M or N.

Example 6.3.8. The Fano matroid F% is a rank 3 totally triangular matroid with 7
triangles such that different triangles intersects in exactly one element. Then (F7)jj is a
3-connected diamantic matroid with ‘E [(Fﬂﬁ” =21 and r ((F7)ﬁ) = 10. We have that

(F{)ﬁ is a diamantic matroid, with ‘E KF;)ﬁH =18 and r ((F{)ﬁ> =9.
Example 6.3.9. For n > 4, the dual of Ladder, L}, and dual of Mbius Ladder, L7, are

two non-isomorphic totally triangular matroids. We have that £ (L)) and £ (L)) are two

non-isomorphic diamantic matroids with 6n elements and rank 3n + 1.
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