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ABSTRACT

Financial portfolio optimization problems may become computationally infeasible
when some practical constraints are considered in the model. In these circumstances,
it is difficult to find an optimal solution in a reasonable time. An investment strategy
that aims to replicate the performance of a stock market index, whose model solution is
included in this class of difficult problems, is called index tracking. This work brings an
analysis, spanning the last decade, about the advances in solution approaches for index
tracking. The systematic literature review covered important issues, such as the most
relevant research areas, solution methods, and model structures. Also, the author presents
a novel application of Greedy Randomized Adaptive Search Procedure (GRASP) for index
tracking. It was sought to implement and adapt a heuristic that was not yet applied
to the index tracking problem and evaluate its performance relative to a commercial
solver. It was necessary to develop a new greedy function and to compare the results after
greedy and random solution construction. Besides, a way is proposed to improve a local
search component in the selected GRASP metaheuristic. By conducting computational
experiments, GRASP and a general-purpose solver have been compared using benchmark
instances. The results showed that GRASP found solutions with almost the same quality
as those of CPLEX solver in a smaller time. Moreover, it was observed that the proposed
local search component implied in obtaining better solutions relative to those of the
reference GRASP metaheuristic. Not performing statistical tests when comparing solution
methods, using only benchmark instances and one index tracking model can be considered
as limitations of this work. The practical implication of this research is the achievement
of good solutions for the index tracking problem in a smaller time and new perspectives
for building GRASP heuristics for portfolio optimization problems. As far as we know,
this is the first time that a GRASP heuristic was used in this type of problem. GRASP
has a great potential in portfolio optimization, more specifically in solving index tracking
problems. With a simple parameter tuning procedure, it was possible to obtain good
solutions in a smaller time.

Keywords: GRASP. Index tracking. Heuristic. Systematic Review.



RESUMO

Formulações de problemas de otimização de portfólio de investimento podem se tornar
computacionalmente inviáveis a partir da inserção de determinadas restrições práticas,
tornando o processo de obtenção da solução ótima mais custoso e até impossível, dadas
as limitações de recursos físicos e temporais. Uma estratégia de investemento que visa
replicar o desempenho de um índice de mercado de ações, cuja solução do modelo está
contida nesta classe de problemas difíceis, é denominada index tracking. Este trabalho traz
uma análise, abrangendo a última década, sobre os avanços nas abordagens de solução
para o problema de index tracking. A revisão sistemática da literatura abordou questões
importantes, como as áreas de pesquisa mais relevantes, métodos de solução e estruturas
de modelos. Também foi apresentada uma nova aplicação da metaheurística GRASP
para modelos de index tracking. Buscou-se implementar e adaptar uma heurística ainda
não aplicada ao problema de index tracking e avaliar seu desempenho com relação à
um solver comercial. Foi necessário desenvolver uma nova greedy function e comparar,
respectivamente, os resultados após as construções gananciosa e aleatória da solução. Além
disso, foi proposta uma melhoria para o componente de busca local da metaheuristica
GRASP adotada. Através de experimentos computacionais, a heurística e um solver
comercial foram comparados utilizando instâncias da literatura. Os resultados mostram
que a heurística desenvolvida encontrou soluções com qualidade próxima das soluções
do solver CPLEX em um menor período de tempo. Também foi possível observar que
o componente de busca local desenvolvido implica na obtenção de melhores soluções
que àquelas da metaheurística GRASP escolhida como base. A não realização de testes
estatísticos nas comparações entre os métodos de solução, utilização exclusiva de dados
da literatura e de um único modelo de index tracking podem ser consideradas limitações
deste trabalho. A implicação prática desta pesquisa é a obtenção de boas soluções para o
problema de index tracking em um instante de tempo reduzido e novas perspectivas para
construção de soluções GRASP para o problema de portfólio. Até onde sabemos esta foi a
primeira vez que uma heurística GRASP foi utilizada neste tipo de problema. GRASP
tem um grande potencial no problema de otimização de portfólio, mais especificamente
em problemas de index tracking, onde a partir de um procedimento simples de calibração
dos parâmetros foi possível obter boas soluções em um instante de tempo menor.

Palavras-chaves: GRASP. Index tracking. Heurística. Revisão sistemática.
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1 INTRODUCTION

Investment analysis is a strategic process for an organization and individual investors as
it involves capital allocations that need to be made efficiently. In this scenario, financial
agents constantly deal with the tradeoff between walking through a riskier path (under the
perspective of higher returns) and taking less risk and being satisfied with lower (but less
uncertain) returns. The uncertainty and ambiguity regarding information (LOTFI; ZENIOS,
2018; YOSHIDA, 2020), fluctuations in stock prices (DUTTA et al., 2018; ARAUJO et al., 2018;
ARAUJO et al., 2019), and adequation of the model constraints to reflect real world issues
(FERREIRA et al., 2018) represent some of the challenges that researchers face.

Since the seminal studies by Markowitz (1952) and Roy (1952), which represented
the starting points of Modern Portfolio Theory, several papers have been published
and advances have been observed in the portfolio selection problem, as shown in Kolm,
Tuetuencue & Fabozzi (2014). The classical Markowitz Mean-Variance Optimization (MVO)
consists of a quadratic optimization model, the objectives of which are the maximization
of returns and the minimization of risk. Markowitz (1952) showed that, for each particular
level of risk, an optimal return can be obtained. Therefore, an efficient frontier is obtained.
The same result can be achieved by retaining levels of return and obtaining a minimal risk
for them.

Kolm, Tuetuencue & Fabozzi (2014) affirm that financial experts are apprehensive
about the application of the classical MVO in real data, especially because of the sensitivity
of the optimal weight allocation relative to the perturbation of the model inputs. Also, the
generalized difficulty intrinsic to parameter estimation, as discussed by Fama (1970), being
impossible to predict future returns one or more days before the portfolio’s rebalancing
day, brings more difficulties concerning the consistency and robustness of results produced
using this model. In this way, the result of the optimization using this historical data
approach leads to counter-intuitive portfolios, therefore more robust forecasts are needed
(FABOZZI et al., 2007). Besides criticisms, MVO formulations are largely applied in portfolio
optimization studies, where the most commonly used risk measure is variance (ERTENLICE;

KALAYCI, 2018).

1.1 MOTIVATION

Among the advances found in the literature concerning the Portfolio Theory, several
applications consider implementing new constraints to make the model more realistic
(JALOTA; THAKUR, 2018; CACADOR; DIAS; GODINHO, 2020; GUPTA et al., 2020). Examples
include transaction costs, class and cardinality constraints. Cardinality constraints limit
the portfolio size (control the number of assets) and are important to reduce transaction
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costs (FABOZZI et al., 2007). On the other hand, the additional considerations can make
the model computationally infeasible, thereby increasing computational complexity and
making classical exact models inefficient. For instance, Mutunge & Haugland (2018) calls
attention to the strong computational costs imposed by cardinality constraints. These
extended problems are NP-hard (FABOZZI et al., 2007). Thus, using metaheuristics as
alternative approaches has grown in past years to deal with complex portfolio optimization
models (DUTTA et al., 2018; LIAGKOURAS; METAXIOTIS, 2018b; EFTEKHARIAN; SHOJAFAR;

SHAMSHIRBAND, 2017).
A fund manager normally needs to choose between an active strategy and a pas-

sive strategy. An active strategy consists of trying to outperform the market by moves,
such as picking the winner stocks (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-

RODRIGUEZ, 2015). In the passive strategy, known as index tracking, the aim is to reproduce
the performance of a chosen benchmark by allocating capital to a subset of assets that
represent the index (MUTUNGE; HAUGLAND, 2018; WANG; XU; DAI, 2018; SCOZZARI et

al., 2013). The use of a subset (partial allocation) is necessary to deal with the high
transaction costs, as discussed in Wang, Xu & Dai (2018) and Sant’Anna et al. (2017),
that can negatively impact accumulated returns. Thus, constraints on the number of
assets are incorporated in this type of model (MUTUNGE; HAUGLAND, 2018), making them
computationally infeasible as the number of constituent assets in the benchmark grows.

1.2 RELEVANCE OF THE RESEARCH PROBLEM

Passive fund management emerged from the efficient market hypothesis of Fama (1970),
where the best strategy an investor can perform is to follow the market, otherwise, he/she
will perform worse than the market. This type of approach is an alternative for conservative
investors since it is less risky and usually brings returns close to the benchmark index
that is being tracked by the model (RUIZ-TORRUBIANO; SUAREZ, 2009). Stock market
indexes contain hundred of assets and its full replication implies high transaction costs,
therefore harming portfolio returns (FABOZZI et al., 2007; SANT’ANNA et al., 2019; SANT’ANA;

CALDEIRA; FILOMENA, 2020).
Index tracking models are used to replicate the performance of a stock market index

by investing in a subset of the constituent stocks. This problem is difficult for a computer
to solve as the number of stocks grows. Recently, many computational studies have
been developed for this kind o problem, since it is important to find a good solution
within a reasonable period of computational time. Those studies were developed mainly
by the popularization of metaheuristics/heuristics as tools to search for approximate
optimal solutions (ANDRIOSOPOULOS et al., 2019), and also the importance of considering
rebalancing process strategies (STRUB; BAUMANN, 2018; SANT’ANNA et al., 2019).

The relevance of this problem is important for the maintenance of investment oppor-
tunities, since the solutions of index tracking models contribute to the construction and
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decisions relative to the management of Exchange Trading Funds (ETFs) (SANT’ANNA et

al., 2019). This work brings to light the state-of-the-art solution methods developed for the
index tracking problem in the last decade and the development of a novel application of a
heuristic that was not yet tested in this type of problem. The GRASP heuristic was chosen
since it has not yet been deeply explored in the modern portfolio theory context. In section
3.3 the only three works on GRASP related to portfolio selection are presented, indicating
that GRASP has a competitive performance to deal with financial portfolio selection
(ANAGNOSTOPOULOS; CHATZOGLOU; KATSAVOUNIS, 2010; BAYKASOGLU; YUNUSOGLU;

OZSOYDAN, 2015; OTKEN et al., 2019). Amongst these works, only Baykasoglu, Yunusoglu
& Ozsoydan (2015) compared GRASP with other heuristic approaches, such as genetic algo-
rithms, particle swarm optimization and tabu search, showing that GRASP a competitive
performance. Thus, since until now there is no application or study with regard to GRASP
for solving the index tracking problem, and given the potential of the GRASP based
metaheuristic developed by Baykasoglu, Yunusoglu & Ozsoydan (2015), this dissertation
will study the adaptation and evaluation of a GRASP approach for building index tracking
portfolios.

1.3 OBJECTIVES

1.3.1 General objective

Contribute to the financial portfolio optimization literature by investigating the state-
of-the-art solution approaches to the index tracking problem and proposing a GRASP
heuristic for the index tracking problem

1.3.2 Specific objectives

• Build a conceptual literature review regarding advances in solution approaches for
the financial portfolio optimization problem

• Build a systematic literature review concerning advances in solution approaches for
the index tracking problem in the last decade

• Build a systematic literature review on current GRASP applications to financial
portfolio problems

• Implement and adapt a reference GRASP metaheuristic for the index tracking
problem

• Implement a GRASP heuristic containing incremental modifications

• Search and collect data in the literature

• Select an index tracking model to evaluate the solutions approaches
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• Test the proposed heuristic approaches against a benchmark commercial solver

1.4 METHODOLOGY

The methodology of this work is presented in Figure 1. The first stage consisted of
determining the chronogram of the research, selecting scientific databases and books
and defining the research questions for systematic literature reviews. In the second stage
a theoretical foundation is constructed, conceptual (portfolio selection) and systematic
literature reviews (index tracking and GRASP for portfolio selection) are developed. Stage
3 consists of bibliometric analysis and identification of gaps in the literature. At stage 4
the tools and materials are selected and prepared. In the next stage, the experimentation
and calculation of performance metrics are made. In the final stage, experimental data is
consolidated and interpreted. Finally, discussions and conclusions are drawn.

Figure 1 – Methodology

1.5 CONTRIBUTIONS

We present a literature review comprising solution approaches for the index tracking
problem over the last decade and an implementation of a metaheuristic named GQ to
solve an index tracking problem. The first contribution of this dissertation is the literature
review, which raises relevant questions such as most used model structures, most used
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solution approaches, most relevant solution methods and most used data sources. This
brings an overview of the development of index tracking research over the last decade.

The GRASP procedure was first explored in specific problems, such as the set covering
problem (FEO; RESENDE, 1989) and the maximum independent set problem (FEO; RESENDE;

SMITH, 1994). It then became a broad approach for combinatorial optimization problems,
as discussed in FEO & RESENDE (1995), and several applications have been presented in
the literature for different fields, such as scheduling, routing, logic, partitioning, location,
layout, and manufacturing (FESTA; RESENDE, 2009b; RESENDE; RIBEIRO, 2016). On the
other hand, GRASP has not been broadly explored in portfolio selection. The studies by
Anagnostopoulos, Chatzoglou & Katsavounis (2010), Baykasoglu, Yunusoglu & Ozsoydan
(2015) and Otken et al. (2019) are the ones that were identified. To the best of our
knowledge, applications of GRASP for index tracking problems were not found.

Contributions relative to the implementation of GRASP to the index tracking problem
are threefold. First, it introduces the use of GRASP for index tracking problems, thereby
extending the state of art considering GRASP applications for portfolio selection. Second,
it proposes a greedy function considering the goal of following a specific index. Finally, it
modifies a local search procedure to reduce the computational cost necessary to find a good
solution. The efficiency of the proposed algorithm is compared with CPLEX commercial
solver. This solver was also used for this purpose in Sant’Anna et al. (2017), Lejeune
& Samatli-Pac (2013), Guastaroba & Speranza (2012). The experiments to evaluate a
GRASP metaheuristic adapted for the index tracking problem are designed in the light of
the goals of theoretical studies about stochastic algorithms (MARTI; PARDALOS; RESENDE,
2018).

1.6 ORGANIZATION OF THE DISSERTATION

The rest of this work is organized as follows:
2 Theoretical Foundation: Presents theoretic concepts which the author considered

necessary as basic knowledge to start developing this work
3 Literature Review: Chapter 3 gives a brief review of recent metaheuristic, heuristic

and other solution applications for portfolio selection. Also, the systematic literature reviews
that support the development and innovation of this work are presented.

4 Proposed GRASP approach for the Index Tracking Problem: details the
proposed GRASP.

5 Experiments and results: presents results and discussions.
6 Conclusions and Future Work: The last chapter draw some conclusions and

make suggestions for future lines of research.
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2 THEORETICAL FOUNDATION

2.1 COMBINATORIAL OPTIMIZATION, TRACTABLE AND INTRACTABLE PROBLEMS

Mathematical models of optimization can be represented using the following general form:

minimize 𝑓(𝑥) (2.1)

subject to 𝑋 (2.2)

Where 𝑓 : 𝑋 → ℜ represents a cost function and 𝑋 is a set of available choices for 𝑥,
in other words, it is a constraint set. What we want is to find an optimal solution 𝑥* ∈ 𝑋

for this problem, such that:

𝑓(𝑥*) ≤ 𝑓(𝑥),∨𝑥 ∈ 𝑋 (2.3)

One of the most important features of an optimization problems is if it is discrete
or continuous. Continuous problems are those where the constraint set 𝑋 is infinite.
Discrete or combinatorial problems are those where the constraint set 𝑋 is finite. Linear
programming problems occur when 𝑓 is specified by linear equations and 𝑋 is specified by
linear inequations: 𝑓 = 𝑐𝑇 𝑥 and 𝑋 = {𝑥|𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0}, where 𝑥 is a 𝑛-dimensional
column vector and the instance of the problem (input data) is defined by 𝑐𝑛×1, 𝐴𝑚×𝑛 and
𝑏𝑚×1. Nonlinear programming problems occur when 𝑓 or 𝑋 are specified by nonlinear
equations, i.e. quadratic optimization problems where 𝑓 = 𝑥𝑇 𝐵𝑥 and 𝐵 is a 𝑛-dimensional
square coefficient matrix (BERTSEKAS, 1999).

Consider an instance of an one-dimensional optimization problem with 𝑋 = [0, 𝑆] and
cost function 𝑓 shown in figure 2. The points A, B and C are locally optimal among their
respective neighbors, but only B is globally optimal. Depending on the instance of some
problems (linear or nonlinear) finding an optimal solution can be very difficult but it
is often possible to find a good solution, in a region of the search space defined by the
constraint set X, which is the best relative to its neighbors (PAPADIMITRIOU; STEIGLITZ,
1998).

Some applications require formulating and solving Integer Programming, i.e. 𝑥𝑖 is the
number of items of type 𝑖 produced or bought by a company. Linear Integer Programming
consists in the following optimization problem:
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Figure 2 – A 1-dimensional Euclidian optimization problem. Adapted from Papadimitriou
& Steiglitz (1998).

minimize 𝑐′𝑥 (2.4)

subject to 𝐴𝑥 ≤ 𝑏 (2.5)
𝑥 ≥ 0 (2.6)
𝑥 is integer (2.7)

Integer programming can assume different complex forms, depending on the specifica-
tions of the problem, which can result in a Mixed-Integer Programming (MIP) formulation,
i.e. 𝑥𝑖 indicates if company’s 𝑖 stock is included in a portfolio (𝑥𝑖 = 1) or not (𝑥𝑖 = 0) and
𝑤𝑖 is the proportion of company 𝑖 stock in a portfolio (if included). The Mixed-Integer
Programming structure is represented by the following optimization problem (FLOUDAS,
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1995):

minimize 𝑓(𝑥, 𝑦) (2.8)

subject to h(𝑥, 𝑦) ≤ 𝑏 (2.9)
𝑥 ∈ 𝑋 ⊂ R (2.10)
𝑦 is integer (2.11)

Where 𝑥 is a vector of 𝑛 continuous variables, 𝑦 is a vector of 𝑘 integer variables,
𝑓(𝑥, 𝑦) is the objective function and h(𝑥, 𝑦) are 𝑚 inequality constraints. Some problems
of this type cannot be solved in a reasonable time. Before defining what is an "intractable
problem", some other concepts must be presented.

2.1.1 Polynomial time algorithms

A problem is defined by (GAREY; JOHNSON, 1979):

1. A general description of all its parameters

2. A statement of what properties the answer (solution) is needed to satisfy

Consider the MIP formulation as an example on how to define a problem. A general
instance of this problem is given by vectors 𝑐 ∈ Q𝑛+𝑘, 𝑏 ∈ Q𝑚 and a matrix of constraints
coefficients 𝐴 ∈ Q𝑚×(𝑛+𝑘). A solution to this problem is a concatenated vector of float
and integer-valued vectors [𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑦1, 𝑦2, ..., 𝑦𝑘], that gives the minimum value of 𝑓 ,
subject to h. An algorithm is said to solve a problem if this algorithm can be applied to
any instance of this problem and produce a solution for that instance. The most efficient
algorithm is the fastest to solve a problem (GAREY; JOHNSON, 1979).

The time requirements of an algorithm depend on the "size" of a problem instance.
Thus, in order to define time requirements in a more precise manner, it is necessary to
define the size of an instance in a formal mathematical way (GAREY; JOHNSON, 1979).
Other concepts related to this formalization are defined below (GRÖTSCHEL; LOVáSZ;

SCHRIJVER, 1988):

• Alphabet: A finite set of symbols, i.e. binary encoding: {0, 1}

• Encoding scheme: Maps problem instances into finite strings using an alphabet.
The length of these strings, named encoding length, is the size of the problem.

A time complexity function 𝑓 : N→ N models the maximum time 𝑓(𝑛), measured
in steps, required by an algorithm to solve any problem instance size of at most 𝑛 ∈ N.
A polynomial time algorithm is an algorithm whose time complexity function 𝑓(𝑛)
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satisfies 𝑓(𝑛) ≤ 𝑝(𝑛), for all 𝑛 ∈ N and a polynomial function 𝑝 (GRÖTSCHEL; LOVáSZ;

SCHRIJVER, 1988).

2.1.2 The classes P and NP

It is convenient to analyse an optimization problem as a decision problem, so that we
can distinguish between "easy" and "hard" problems. A decision problem is one that
has only two possible solutions: "yes" or "no". An example of the decision version of an
integer programming optimization problem is: Given a 𝑚×𝑛 matrix A of integer numbers,
integer vectors 𝑏 ∈ Z𝑚, 𝑐 ∈ Z𝑛 and an integer 𝐵, is there a vector 𝑥 ≥ 0, 𝑥 ∈ Z𝑛, such
that 𝐴𝑥 ≤ 𝑏 and 𝑐𝑥 ≤ 𝐵? (RESENDE; RIBEIRO, 2016).

The decision version of an optimization problem cannot be harder than the optimiza-
tion version. Thus, if a decision problem cannot be solved in polynomial time, then its
optimization version cannot be solved in polynomial time (RESENDE; RIBEIRO, 2016).
Considering this fact, a special class of decision problems is defined (GRÖTSCHEL; LOVáSZ;

SCHRIJVER, 1988; RESENDE; RIBEIRO, 2016):

• Class P: The class of decision problems that can be solved in polynomial time. It is
the class of "easy" decision problems.

Some examples of problems solved in polynomial time are the shortest path problem
and the minimum spanning tree problem (RESENDE; RIBEIRO, 2016). To identify a more
extensive class of decision problems, some concepts will be defined. Given a decision
problem 𝒫 and a "yes" instance ℐ, a certificate 𝑐(ℐ) is a string that encodes a solution
and proves that the answer for this instance ℐ is affirmative (RESENDE; RIBEIRO, 2016).
The class NP is defined as follows (RESENDE; RIBEIRO, 2016):

• Class NP: A decision problem 𝒫 belongs to this class if there exists a certificate-
checking algorithm, that can prove the answer "yes" for any certificate and associated
"yes" instance ℐ of 𝒫 in polynomial time. The certificate-checking algorithm can be a
combination of a recognition algorithm (feasibility checking) with the cost function
algorithm (computes cost function).

Now NP-complete and NP-hard problems will be defined (RESENDE; RIBEIRO, 2016):

• Polynomial-time reduction: Consider two decision problems 𝒫1 and 𝒫2. There is
a polynomial-time reduction from 𝒫1 to 𝒫2 iff the first can be solved by an algorithm
𝒜1 that is equivalent to a polynomial number of calls to solve 𝒫2 by an algorithm 𝒜2

• Polynomial-time transformation: A special case of a polynomial-time reduction.
There is a polynomial-time transformation from 𝒫1 to 𝒫2 if an instance of 𝒫2 can be
constructed in polynomial time from any instance of 𝒫1, such that the instance of
𝒫1 is a "yes" instance iff the instance of 𝒫2 is a "yes" instance.
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• NP-complete: A problem 𝒫 ∈ NP is NP-complete if any other problem in NP
can be transformed to 𝒫 in polynomial time. Then, if there is a polynomial-time
algorithm for 𝒫 , there are also polynomial-time algorithms for all other problems in
NP.

• NP-hard: A problem 𝒫 is NP-hard if any other problem in NP can be transformed
to 𝒫 in polynomial time, but 𝑃 is not proved to be in NP. Optimization problems
whose decision versions are NP-Complete are NP-hard because they are not in NP
(they are not decision problems). An NP-hard problem is at least as hard as an
NP-complete problem.

2.1.3 Solution approaches to intractable problems

The majority of combinatorial optimization problems are NP-complete and NP-hard. The
fact that these problems are intractable does not except the necessity of finding a solution
to them. Some solution approaches are described below (PAPADIMITRIOU; STEIGLITZ,
1998; MARTI; PARDALOS; RESENDE, 2018; RESENDE; RIBEIRO, 2016; BURIOL et al., 2020,
no prelo):

• Exact algorithms: Routinely applied to solve large instances of combinatorial
problems in an accessible CPU time, i.e. branch-and-bound (B&B). B&B enumerates
all the feasible points of a combinatorial optimization problem using binary trees.
Fortunately, not all the feasible solutions are going to be reached due to the bound
mechanism, so that only the most promising leaves/nodes are branched to generate
other children. A more detailed algorithm is presented in Section 5.2. When a
feasible integer solution is found, a bound will occur and this node is designated as
fathomed. Considering the minimization case, if this fathomed is better than the
current incumbent solution (the best feasible integer solution of the search tree), then
it becames the current incumbent solution and its objective function value becomes
the new upper bound, otherwise it is killed and no incumbent update is performed.
A Lower bound/best bound is the minimum of the objective function values of the
linear programming relaxation of all open search tree nodes. Using the Lower bound
value, it is possible to construct a proof of optimality without exhaustive search.
Considering the upper U and lower L bounds, the ratio in which a feasible integer
solution is within the optimal integer solution is calculated as follows: 𝐺𝐴𝑃 = 𝑈−𝐿

𝐿
.

When the 𝐺𝐴𝑃 value is zero, then the optimality has been proved.

• Heuristics: Any algorithm that provides a feasible solution without quality and
computational time guarantees. Heuristics are classified as constructive, local search
or metaheuristic.
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2.2 PORTFOLIO OPTIMIZATION

Traditionally, the problem of portfolio selection, which possess a central role in financial
management, involves the computation of proportions of capital that must be allocated in
a set of available assets with the objective of maximizing return and minimizing risk of an
investment portfolio. For this problem, the rule of expected return-variance or E-V rule
provides efficient and, often, diversified portfolios (MARKOWITZ, 1952). Given that 𝑝𝑖𝑡 is
the price of asset 𝑖 a time 𝑡, where 𝑡 ∈ {1, ..., 𝑇}, the return of asset 𝑖 after 𝑑 periods is
defined as 𝑟𝑖𝑡 = 𝑝𝑖𝑡−𝑝𝑖(𝑡−𝑑)

𝑝𝑖(𝑡−𝑑)
.

Portfolio selection problems that give optimal utility based on expected return and
variance, as proposed by Markowitz (1952), are classified as mean-variance optimization
problems (MVO), a case of quadratic optimization problem (KOLM; TUETUENCUE; FABOZZI,
2014). The risk aversion formulation of the classical MVO is presented below.

minimize 𝑤𝑇 Ω𝑤 − 𝜆𝑤𝑇 𝜇 (2.12)

subject to
𝑁∑︁

𝑖=1
𝑤𝑖 = 1 (2.13)

𝑤𝑖 ≥ 0 (2.14)

Equation (2.12) is the objective function and it expresses preferences of the decision-
maker relative to risk and return. 𝜆 is the risk aversion factor, which reflects the investor’s
objectives, ranging from 0 (risk-averse investor) to 10 (highly tilted toward higher returns)
(FABOZZI et al., 2007), 𝑤𝑖 represents stock’s 𝑖 proportion in the portfolio, Ω is the covariance
matrix of the returns of assets composing the index, 𝜇𝑖 is the expected return of stock 𝑖 and
𝑁 is the number of assets in the universe. (2.13) is the budget constraint. In this model,
non-dominated solutions are generated and a set of portfolios, named efficient frontier, is
formed. If one chooses a solution contained in the set of non-dominated portfolios, one
cannot change to another solution contained in this set without deteriorating one of the
objectives (BEASLEY, 2013; RESENDE; RIBEIRO, 2016) (return or risk). Then, if one wants
to improve return, it must deteriorate risk and vice-versa. A generic plot of this frontier
is illustrated in Figure 3, where the horizontal and vertical axis represents the standard
deviation and the expected return of the portfolio, respectively.

Investors’ attitude towards risk and return is used as an indicator for the choice of a
portfolio belonging to this frontier. If the investor is more tilted to high return, then it
may select an asset that produces the highest expected return possible, otherwise, it may
diversify his/her portfolio to mitigate risk or, if there is full risk aversion, choose an asset
that contains the minimum standard deviation possible (FABOZZI et al., 2007).
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Figure 3 – The efficient frontier

2.2.1 Practical Portfolio Optimization

It is possible to modify or extend this classical framework, incorporating, for example,
additional criteria or constraints, such that it becomes more realistic, reflecting the
context and objectives of the financial agent, and also to obtain a more diversified
portfolio. Extensions inserted in the model can include lot sizing, transaction costs,
portfolio cardinality, various types of constraints reflecting specific characteristics of the
investment, financial agent or country involved; alternative risk measures or modeling and
quantification of the impact of wrong estimates of risk and return (FABOZZI et al., 2007;
KOLM; TUETUENCUE; FABOZZI, 2014; BEASLEY, 2013).

2.2.1.1 Alternative risk measures

The advances of research on portfolio management include the development of new risk
measures. Artzner et al. (1999) defined properties that a measure of risk 𝜌 must satisfy to
be considered coherent:

1. Monotonicity: Consider two asset returns 𝑋 and 𝑌 , which are random variables. If
𝑋 ≥ 𝑌 , then 𝜌(𝑋) ≤ 𝜌(𝑌 ). Fabozzi et al. (2007) shows another way of seeing this
property. If 𝑋 ≥ 0, then 𝜌(𝑋) ≤ 0. In other words, if there are only positive returns,
then the risk should be non-positive.

2. Subadditivity: Merging assets in a portfolio do not create extra risk. 𝜌(𝑋 + 𝑌 ) ≤
𝜌(𝑋) + 𝜌(𝑌 )

3. Positive homogeneity: For any positive real number 𝜆, 𝜌(𝜆𝑋) = 𝜆𝜌(𝑋). Portfolio size
influences risk. In other words, large portfolio positions implies that their required
liquidation time will also be large.
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4. Translational invariance: For any real number 𝛼, 𝜌(𝑋 + 𝛼𝑟) = 𝜌(𝑋)− 𝛼. The main
function of a risk measure is to rank risks. Therefore, inclusion of cash or any risk
free asset does not contribute to portfolio risk,

Fabozzi et al. (2007) categorizes risk measures in two classes: Dispersion and Downside.
Dispersion measures are measures of uncertainty that equally penalize overperformance
and underperformance relative to the mean. Some types of these measures are listed below:

• Variance of return: Incorporated in the works of Markowitz (1952) and one of the
most known dispersion measures.

𝑉 𝐴𝑅(𝑅𝑝) = 𝐸

[︃(︂ 𝑁∑︁
𝑖=1

𝑤𝑖𝑅𝑖 − 𝐸
[︂ 𝑁∑︁

𝑖=1
𝑤𝑖𝑅𝑖

]︂)︂2
]︃

(2.15)

• Mean Absolute Deviation (MAD): Introduced by KONNO & YAMAZAKI
(1991). Uses absolute deviations in place of squared deviations. It is a dispersion
measure based on the absolute deviations from the mean. The resulting optimization
problem is linear, which is more solver-friendly than the MVO problem.

𝑀𝐴𝐷(𝑅𝑝) = 𝐸

⎡⎣⃒⃒⃒⃒⃒
𝑁∑︁

𝑖=1
𝑤𝑖𝑅𝑖 −

𝑁∑︁
𝑖=1

𝑤𝑖𝜇𝑖

⃒⃒⃒⃒
⃒
⎤⎦ (2.16)

The resulting optimization problem is:

minimize
∑︀𝑇

𝑡=1 𝑦𝑡

𝑇
(2.17)

subject to 𝑦𝑡 +
𝑁∑︁

𝑖=1
𝑎𝑖𝑡𝑤𝑖 ≥ 0 (2.18)

𝑦𝑡 −
𝑁∑︁

𝑖=1
𝑎𝑖𝑡𝑤𝑖 ≥ 0 (2.19)

𝑁∑︁
𝑖=1

𝑟𝑖𝑤𝑖 ≥ 𝜌 (2.20)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (2.21)

𝑤𝑖 ≥ 0 (2.22)

Where 𝑟𝑖𝑡 is the realization of the random variable 𝑅𝑖 in period 𝑡 ∈ (1, ..., 𝑇 ),
𝑟𝑖 = 𝐸[𝑅𝑖] and 𝑎𝑖𝑡 = 𝑟𝑖𝑡 − 𝑟𝑖.

A model that uses a downside risk measure aims to maximize the probability of
satisfying a certain return threshold.
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• Semi-Variance (SV): Variance equally penalizes overperformance and underper-
formance. Markowitz (1959) presented this measure as an increment to its original
variance measure of risk.

• Value-at-Risk (VaR): Measures the predicted maximum loss at a specified prob-
ability threshold 1− 𝛼 (eg. 𝛼 = 5% ).

• Conditional Value-at-Risk (CVaR): Rockafellar & Uryasev (2000) proposed
this measure in order to repair VaR deficiencies. This measure is a coherent risk
measure, as it satisfies all the properties established by Artzner et al. (1999). Also,
its optimization model is linear and can be solved very efficiently by optimization
software.

2.2.1.2 Practical constraints

Depending on the institution or investor context, some constraints can be incorporated
to the model in order to reflect practical issues. The optimization output may contain a
few large positions and many small positions. This is undesirable due to extra transaction
costs (FABOZZI et al., 2007). In this case, threshold/holding/floor-ceiling constraints can be
included in the model:

𝜖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜎𝑖𝑍𝑖 for each 𝑖 ∈ 1, ..., 𝑁 (2.23)

Where 𝑍𝑖 are binary variables. 𝑍𝑖 = 1 if asset 𝑖 is included in the portfolio and 𝑍𝑖 = 0
if 𝑖 is not included. Equation (2.23) ensures that if an asset 𝑖 belongs to the portfolio, then
its proportion 𝑤𝑖 must lie between 𝜖𝑖 and 𝜎𝑖, otherwise, if 𝑖 is not contained in the portfolio,
𝑤𝑖 = 0. Investors might want to restrict their portfolio size, for example to build an index
tracking portfolio and keep transactions cost low (FABOZZI et al., 2007; SANT’ANNA et al.,
2017).

𝑁∑︁
𝑖=1

𝑍𝑖 = 𝐾 (2.24)

Equation (2.24) restrict the number of assets contained in the portfolio to 𝐾. Those
constraints generate discontinuous efficient frontiers (CHANG et al., 2000). This is because
some non-dominated portfolios of the original continuous efficient frontier would not be
considered by any rational investor, as Fabozzi et al. (2007) exemplifies, there can be
portfolios with less risk and greater returns. Thus, from incorporating these new constraints
to MVO, a Cardinality Constrained Portfolio Optimization (CCPO) model is assembled
and shown below.



29

minimize 𝑤𝑇 Ω𝑤 − 𝜆𝑤𝑇 𝜇 (2.25)

subject to 𝜖𝑍𝑖 ≤ 𝑤𝑖 ≤ 𝜎𝑖𝑍𝑖 for each 𝑖 ∈ 1, ..., 𝑁 (2.26)
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (2.27)

𝑁∑︁
𝑖=1

𝑤𝑖 = 1 (2.28)

𝑍𝑖 ∈ {0, 1} (2.29)

Other practical constraints can be incorporated into this model, i.e. class/sector, lot
size, and transaction costs constraints.

2.2.1.3 Active and Passive strategies

Fund management and portfolio can be classified in two broad approaches: (BEASLEY;

MEADE; CHANG, 2003; FABOZZI et al., 2007; JORION, 2003; ROLL, 1992):

• Active management: Markets are not fully efficient and management teams can
work to make the portfolio achieve better performance than the market, using
available information and their experience. Incurs high fixed costs, paid to the
managers, and high transaction costs, because of frequent trading.

• Passive management: It is assumed that markets are efficient, so that market
prices fully reflect risk and return. Incurs in lower fixed costs and lower transaction
costs, but, if the market falls, the return falls.

Those two strategies are pure, but mixed strategies are possible too. This is the case
when a portion is invested passively and the remainder is invested actively. This alternative
can be illustrated with a model that aims to minimize Variance of Tracking-Error (TEV)
conditional to a certain excess return target (ROLL, 1992):

minimize 𝑥𝑇 Ω𝑥 (2.30)

subject to 𝑥𝑇 𝜇 = 𝐺 (2.31)
𝑁∑︁

𝑖=1
𝑥𝑖 = 0 (2.32)

(2.33)

Where x = w𝑝 − w𝑏 is a vector representing the difference between the managed
portfolio and the benchmark proportions. 𝐺 is the manager’s expected performance
relative to the benchmark.
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2.2.2 Index Tracking problems

A passively managed fund is known as index fund/tracker fund. A manager that adopts
this strategy could buy all the stocks of a given stock index and reproduce it perfectly
(full replication), but this strategy has some disadvantages (BEASLEY; MEADE; CHANG,
2003; CANAKGOZ; BEASLEY, 2009; SANT’ANNA et al., 2017):

• The composition of the index is revised periodically. Therefore, the holdings of all
stocks will change periodically to reflect the new composition’s weights of the index.

• Transaction costs associated with the index’s stocks cannot be limited since it is
necessary to trade all stocks to reduce tracking error periodically.

The index tracking problem is concerned with index replication, but limiting transaction
costs by using fewer stocks. Decisions concerning the maintenance of the tracking portfolio
are enclosed in a decision support system. Important components of this system are
(GAIVORONSKI; KRYLOV; WIJST, 2005):

• Benchmark or Index to be tracked

• Risk measure relative to deviations from the index (tracking error)

• Rebalancing strategies to reflect price changes in the market in portfolio weights

• Specify trade-off: maximum portfolio size and maximum tracking error allowed

• Decision rules regarding the cash flow generated by the portfolio (i.e. dividends)

• Decision rules regarding changes in the benchmark composition (i.e. merges)

There is a variety of country/world indexes to be tracked and these are provided by
firms such as S&P (2019) and B3 (2019), that compute indexes’ theoretical weights using
their own methodology. Some risk measures relative to the benchmark, which are going to
be identified as TE, are presented below (GAIVORONSKI; KRYLOV; WIJST, 2005; RUDOLF;

WOLTER; ZIMMERMANN, ):

• MAD relative to an index: Absolute deviations between the benchmark and
portfolio returns are minimized. Implies in a linear model.

𝑇𝐸 = 1
𝑇

𝑇∑︁
𝑡=1

⃒⃒⃒⃒
⃒𝑅𝑡 −

𝑁∑︁
𝑖=1

𝑟𝑡
𝑖𝑤𝑖

⃒⃒⃒⃒
⃒ (2.34)

Where 𝑅𝑡 is the benchmark return in period 𝑡 ∈ {1, ..., 𝑇}.
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• Mean squared error: Quadratic deviations between the benchmark and portfolio
returns are minimized.

𝑇𝐸 = 𝐸

[︃(︂
𝑅𝑡 −

𝑁∑︁
𝑖=1

𝑟𝑖𝑡𝑤𝑖

)︂2
]︃

(2.35)

• TEV: Its formulation is presented in Section 2.2.1.3. The associated formulation is
a quadratic optimization problem and it requires the benchmark weights.

𝑇𝐸 = (𝑤𝑝 − 𝑤𝑏)𝑇 Ω(𝑤𝑝 − 𝑤𝑏) (2.36)

𝑤𝑝 is a vector that represents the portfolio weights to be optimized and w𝑏 is a
vector representing the benchmark proportions

• VaR relative to an index: Similar to VaR measure. It is the largest value 𝑤 by
which the portfolio return can miss the index target in 1− 𝛼 fraction of cases.

𝑇𝐸 = 𝑉 𝑎𝑅𝐼𝛼 = inf
𝑤
{𝑤|𝑃 (𝜇𝑇 𝑤 ≥ 𝑅𝑏 − 𝑤) ≥ 1− 𝛼} (2.37)

• CVaR relative to an index: It shows the mean deviation relative to the benchmark
in the worst 𝛼 cases.

𝑇𝐸 = 𝐸
(︂

𝑅𝑏 − 𝜇𝑇 𝑤
⃒⃒⃒
𝜇𝑇 𝑤 < 𝑅𝑏 − 𝑉 𝑎𝑅𝐼𝛼

)︂
(2.38)

Even though constraint (2.24) is obligatory for this kind of problem, these risk measures
can be combined with other practical constraints, such as those presented in Section 2.2.1.2,
to reflect the context in which the tracking portfolio of an investor/institution is applied.

2.3 GRASP METAHEURISTIC

GRASP is a metaheuristic procedure that consists of an iterative process in which two
phases are considered for each step: the construction phase and the local search phase
(FEO; RESENDE, 1995). During the construction phase, a Restricted Candidate List (RCL)
is formulated and a feasible solution is interactively constructed, one element at a time,
according to its benefit, measured by a greedy function (FEO; RESENDE, 1995; FESTA;

RESENDE, 2009a). As the solution constructed is not guaranteed to be a local optimum
(FESTA; RESENDE, 2009a), this solution can be improved by the use of the local search
procedure (FEO; RESENDE, 1995). Since GRASP was first presented in 1995, different
GRASP formulations have been proposed. Several studies have proposed adaptations to
GRASP, such as using alternative construction mechanisms, path-relinking (backward,
forward, truncated, evolutionary, etc), and hybridizations of GRASP (GENDREAU; POTVIN,
2010; FESTA; RESENDE, 2009a).
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2.3.1 Basic GRASP theory

Combinatorial optimization problems are characterized by a solution S and a cost function
that must be minimized 𝑓(𝑆). Solution approaches to this type of problem construct 𝑆

from scratch, choosing an unpicked element 𝑖 ∈ 𝑆𝑐 based on a criterion 𝑐𝑖 and inserting it
on the partial solution. The elements are inserted, one at a time, in the partial solution
until 𝑆 is feasible. The cost function could assume, for example, 𝑓(𝑆) = ∑︀

𝑖∈𝑆 𝑐𝑖. The
criterion 𝑐𝑖 can indicate the cost contribution of an element 𝑖 if it is included in the partial
solution 𝑆, i.e. 𝑐𝑖 = the cost variation in 𝑓 by including 𝑖 in 𝑆. Some algorithms designed
for solution construction of combinatorial optimization problems (minimization case) will
be described (RESENDE; RIBEIRO, 2016):

• Greedy algorithm: constructs 𝑆 by choosing elements containing the least cost 𝑐𝑖

• Adaptive greedy algorithm: A greedy algorithm, but the cost 𝑐𝑖 of an element 𝑖

is affected by previous choices. Then, a constant cost is replaced by a greedy choice
function 𝑔(𝑖) that measures the suitability of including 𝑖 in 𝑆. This choice function
produces an ordered list from the most suitable to the least suitable element. The
greedy algorithm will always choose the most suitable element.

• Semi-greedy/randomized-greedy algorithm: The former algorithms choose the
best element based on a ordering generated by a criterion (𝑐𝑖 or 𝑔(𝑖)). The greedy
approach is not suitable for all problems since there’s a chance that the algorithm
fails to construct a feasible solution or that the constructed solution is bad (far
from the optimal). To get better-constructed solutions, one can adopt a randomized
approach. In this approach, only a subset of the ordered list 𝑆𝑐 is used. Then,
elements are randomly selected from this subset, named RCL, to increase the chances
of constructing a "better" 𝑆.

After building a feasible solution by using one of the previous algorithms, it is possible
to increment this solution towards a better or the optimal solution. This procedure is called
local search. Assume that 𝐹 is the set of feasible solutions. 𝑁(𝑆) ⊆ 𝐹 is a neighborhood
of a solution 𝑆 ∈ 𝐹 . Each solution 𝑆 ′ ∈ 𝑁(𝑆) can be reached by the move operator. This
operator moves from 𝑆 to 𝑆 ′ by exchanging one or more elements in 𝑆. The main phases
of a local search method are shown below (RESENDE; RIBEIRO, 2016):

1. Start: Build an initial solution using a solution construction algorithm

2. Neighborhood search: Apply a secondary search to improve the initial solution

3. Stop: Define a criterion to terminate the search. One example of a stopping criterion
is when a locally optimal solution 𝑆+ is encountered with respect to neighborhood 𝑁 .
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The locally optimal solution is defined as a solution 𝑆+ with respect to neighborhood
𝑁 iff 𝑓(𝑆+) ≤ 𝑓(𝑆), ∀𝑆 ∈ 𝑁(𝑆).

Metaheuristics are procedures that coordinate simple heuristics and rules to find
good or even optimal solutions for hard optimization problems. The customization of
some metaheuristic to a specific problem is denoted as a heuristic to the problem. GRASP
is a metaheuristic that uses a multistart framework to incorporate a hybridization of a
semi-greedy algorithm with a local search method (RESENDE; RIBEIRO, 2016).

2.3.2 Multistart procedure

A multistart procedure is an algorithm that applies a solution construction algorithm until
a maximum number of iterations is reached. Two types can be used (RESENDE; RIBEIRO,
2016):

• Random multistart: Uses a semi-greedy algorithm adopting an RCL size equal to
the size of the unpicked elements list 𝑆𝑐. Then, all elements are randomly allocated
to 𝑆, since when |𝑅𝐶𝐿| = |𝑆𝑐| there is an equal chance to pick any available element.

• Semi-greedy multistart: Uses a semi-greedy algorithm with an RCL size less than
the size of the unpicked elements list 𝑆𝑐. As |𝑅𝐶𝐿| decreases, the chance to get the
most suitable elements increases. In other words as |𝑅𝐶𝐿| decreases, the multistart
procedure will perform a more greedy construction.

2.3.3 GRASP procedure

Algorithm 1: GRASP
1: 𝑓 * ←∞
2: 𝑆* ← {}
3: while stopping criterion not satisfied do
4: 𝑆 ← SEMI-GREEDY
5: if 𝑆 is not feasible then
6: 𝑆 ← Repair(𝑆)
7: end if
8: 𝑆 ← LOCAL-SEARCH(𝑆)
9: if 𝑓(𝑆) < 𝑓 * then

10: 𝑆* ← 𝑆
11: 𝑓 * ← 𝑓(𝑆)
12: end if
13: end while
14: return 𝑆*

GRASP is the product of embedding solution construction and local search procedures
into a multistart procedure. The pseudo-code for this metaheuristic is shown in Algorithm
1 (RESENDE; RIBEIRO, 2016).
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SEMI-GREEDY function calls for the semi-greedy procedure described in subsection
2.3.1. LOCAL-SEARCH function calls any implementation of a local search method. As
any metaheuristic, GRASP offers a way to overcome some of the main limitations of
construction and local search algorithms, such as the sensitivity to the initial solution and
tendency to fall in local optima (RESENDE; RIBEIRO, 2016).

2.4 CHAPTER CONCLUSION

In this chapter, the necessary concepts to develop this work were presented. Combinatorial
optimization, Portfolio optimization and GRASP were the main topics that build the
theoretical foundations to guide the literature reviews and proposed solution method for
the index tracking problem.
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3 LITERATURE REVIEW

Metaheuristics consist of methods that perform interactions between local search and
higher-level strategies, resulting in a process that can escape from local optima and apply a
robust search in a solution space (GENDREAU; POTVIN, 2010). They are used for portfolio
optimization in situations in which traditional exact models are computationally costly to
conduct. This chapter illustrates recent developments of solution approaches for portfolio
selection and GRASP.

3.1 RECENT DEVELOPMENTS IN SOLUTION APPROACHES FOR CCPO

An investigation concerning the current solution approaches to the CCPO problem was
developed and is presented in this section. The majority of the solution approaches for
portfolio optimization are focused on solving MVO deterministic models with approximate
algorithms (KALAYCI; ERTENLICE; AKBAY, 2019). Ertenlice & Kalayci (2018) present a
survey on algorithms and applications of Swarm Intelligence (SI) for portfolio optimization.
In their survey, they found that Particle Swarm Optimization (PSO) was the most used
kind of SI algorithm.

Although most solution approaches are concentrated in some metaheuristics, researchers
continue to explore and propose different heuristics to deal with specific characteristics
of practical financial portfolio optimization models, such as non-convexity generated by
practical constraints. Taking into account the possible inconsistencies expected under
Utility Theory, Gong et al. (2018) proposed a Adaptive Real-coded Genetic Algorithm
(ARCGA) to deal with a portfolio selection problem under the Cumulative Prospect Theory.
Fairbrother, Turner & Wallace (2018) proposed a problem-driven scenario-generation
approach to the single-period portfolio selection problem involving tail risk measures. The
author presented a new heuristic based on the Sample Average Approximation (SAA)
method. Bacevic et al. (2019) proposed a Variable Neighborhood Search heuristic to
deal with constraints that introduce nonconvexity to a cardinality constrained portfolio
optimization problem. The results show that this method can be applied to large-scale data
sets. Salehpoor & Molla-Alizadeh-Zavardehi (2019) combined a diversification mechanism
with many evolutionary algorithms. The metaheuristic algorithms were implemented
and tested in four cardinality constrained models: MVO, MAD, SV and variance with
skewness. Simulated Annealing (SA) had the best overall performance. Boudt & Wan (2020)
developed a binary PSO algorithm and documented the performance of this algorithm
parameters when the cardinality of the portfolio is small compared to the universe of
assets.

Besides that finding the true CCPO efficient frontier becomes impractical when the
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size of the asset universe increases, since it is a NP-hard problem (FABOZZI et al., 2007),
the manager may want to include more objectives in the model. Thus, the CCPO frontier
can be computed iteratively by transforming the single-objective optimization problem
into a multi-objective optimization problem. Different configurations of Multi-objective
Evolutionary Algorithm (MOEA) and the impact of real-world portfolio selection constraints
are tested in Liagkouras & Metaxiotis (2018a). It includes a discussion of the budget,
floor/ceiling, cardinality, class, turnover and transaction constraints. Meghwani & Thakur
(2018) applied evolutionary algorithms to address a multi-objective approach for a multi-
period problem with practical constraints, which had three objectives: to minimize risk
and transaction costs and to maximize returns. An investigation into whether the 2-Phase
Nondominated sorting genetic algorithm II (NSGA-II) outperforms NSGA-II is made
by Eftekharian, Shojafar & Shamshirband (2017), indicating a better performance of
2-Phase NSGA-II according to some of the metrics tested. Silva, Herthel & Subramanian
(2019) brings a unified multi-objective PSO approach to solve the MVO constrained
with cardinality, round-lot, floor-ceiling and pre-assingment constraints. Babazadeh &
Esfahanipour (2019) developed a new repairing mechanism for NSGA-II applied to a MVO
model subject to a set of practical constraints, using a real data set from the S&P100 index.
Liagkouras (2019) designed a MOEA for large-scale multi-objective portfolio optimization
problems, evaluated in five alternative formulations using real data. Zhou et al. (2019)
presented a novel MOEA named Mucard algorithm, which enables knowledge reuse and
exchange among genetic individuals applied in multi-scenario CCPO. Akbay, Kalayci
& Polat (2020) (parallel variable neighborhood search) and developed Kalayci, Polat &
Akbay (2020) (combined components of artificial bee colony, ant colony optimization and
genetic algorithms) hybrid search algorithms to compute efficient frontiers. The algorithms
achieved a competitive performance compared with state-of-the-art solution approaches,
but couldn’t outperform some of these approaches in certain instances, such as Baykasoglu,
Yunusoglu & Ozsoydan (2015) GRASP-QUAD algorithm.

Fuzzy set theory is being adopted by researchers as a way to represent the uncertainty
of model parameters. Jalota & Thakur (2018), proposed a new algorithm named BEXPM-
RM and considered fuzzy returns in the model. Fuzzy multi-period portfolio optimization
problems, considering transaction costs, were discussed and solved using evolutionary
algorithms in Liu, Zhang & Zhao (2018) and Liagkouras & Metaxiotis (2018b). Liagkouras
& Metaxiotis (2019) proposed an information-based evolutionary algorithm to solve a
multi-period fuzzy model with cardinality and liquidity constraints. A fuzzy formulation
is also developed by Dutta et al. (2018), who implemented a Genetic Algorithm (GA) to
solve a portfolio problem by using a stochastic price scenario. A fuzzy portfolio model for
international investments is discussed in Liu, Zhang & Gupta (2018). Rangel-Gonzalez
et al. (2020) performed a fuzzy multi-objective particle swarm optimization using three
criteria and proposed a mechanism to automatically adjust the fuzzy rules.
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Recent research also investigates the performance of solution approaches considering
the uncertainty representation of multi-objective model parameters. Solares et al. (2019)
presented a novel application of Multi-objective Evolutionary Algorithm based on Decompo-
sition (MOEA/D) applied in the context of representing uncertainty with interval analysis.
This approach presented robust performance even in the 2008 crisis period. Chen, Li & Liu
(2019) developed a hybrid algorithm of a Imperialist competitive algorithm (ICA) and a
Firefly Algorithm (FA) to solve the transformation of a cardinality constrained multiperiod
multi-objective uncertain portfolio model into a single-objective problem. The authors
considered that stock returns are uncertain variables and are subjectively determined by
experts.

3.2 SOLUTION APPROACHES FOR INDEX TRACKING IN THE LAST DECADE

The literature covers applications of heuristic/metaheuristic and non-heuristic for solving
these types of problems. The rest of this section focuses on a comprehensive literature
review concerning these applications on index tracking problems.

3.2.1 Methodology

The procedures and rules that conducted the systematic literature review were based on
Kalayci, Ertenlice & Akbay (2019). The authors presented a comprehensive literature
review about solution approaches for the portfolio selection problem guided by research
questions.

3.2.1.1 Research questions set up

In order to guide the result analysis and scope of this work, some research questions were
defined. The research questions are presented in Table 18

3.2.1.2 Material collection and selection

The search was conducted by covering papers published from 2010 to 2019. The bibliography
collection process took place at the Web of Science database using the keyword structure
presented in Table 2. This keyword combination structure was built from the author’s
a priori knowledge of the field. Levels 1 and 2 guides the search for financial portfolio
optimization problems. Level 3 restricts the financial portfolio problem class to index
tracking.

The filtering process is shown in Figure 4. The first filter was used to select only articles
that were written in English language. The final filter was performed by fully reading
the papers and selecting those that fitted in the scope of this work. Many of the out of
the scope works appeared because of the first and second levels keywords. A total of 53
articles were selected after applying all the filters. Some research questions needed analysis
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RQ Description

#1 Are index tracking solution methods more relevant to journals focusing
on operations research and computer science?

#2 Are there specific heuristic methods applied to specific quantitative modelling
frameworks?

#3 Has there been a growth in the number of non-heuristic methods applied to
the index tracking problem?

#4 Has there been a growth in the number of heuristics/metaheuristics applied
to the index tracking problem?

#5 Are heuristic approaches more used than non-heuristic approaches for
index tracking problems?

#6 Do heuristic approaches have more cite impact than non-heuristic
approaches for index tracking problems?

#7 Is there a prevalence of using a specific heuristic/metaheuristic
in index tracking problems?

#8 Is there an integration between heuristic and general purpose solvers?

#9 Is there a prevalence of using specific evaluation metrics for heuristic
approaches?

#10 Is there a prevalence of using a specific solution method to
compare with heuristic approaches?

#11 Is there a prevalence of solving for a specific tracking error objective
function when using heuristic approaches?

#12 Is there a prevalence of solving for specific practical constraints when
using heuristic approaches?

#13 Which databases were most adopted in heuristic approaches?

Table 1 – Research questions for index tracking systematic literature review

Level Search Terms

1 Portfolio OR Investment OR Asset
AND

2 Optimization OR Management OR Selection
AND

3 "Index Tracking" OR "Tracking Error" OR Tracking-Error

Table 2 – Proposed keyword combination structure for the index tracking systematic
review

of bibliometric tools. Bibliometrix (ARIA; CUCCURULLO, 2017) and Web Of Science were
adopted to perform these analyses.
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Figure 4 – Filtering process of the index tracking literature review

3.2.2 Results and discussion of the index tracking systematic review

3.2.2.1 Most relevant sources for index tracking applications

The answer to RQ#1 was constructed by considering scientific journals that are responsible
for publications involving index tracking applications. Table 3 presents the percentage of
sources according to their associated number of publications.

Publications Number of journals (%)Journals (%) Accumulated

1 28 75.68 75.68
2 4 10.81 86.49
3 3 8.12 94.61
4 2 5.39 100.00

Total 37 100

Table 3 – Percentage of sources according to their publication number

The majority of article sources (28), which represents 75.68% of the total sources, are
responsible for only one publication. This result shows that, despite being new literature,
where the first research papers developed by Consiglio & Zenios (2001) and Konno &
Wijayanayke (2001), index tracking papers are scattered in a wide range area spectrum,
such as economy, statistics, computer science and operations research. that investigate this
kind of model. the wide. A more specific analysis was developed by considering 9 journals
that had published more than one article (14.62% of the total sources) in the considered
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period. The total number of articles published on the selected sources is equal to 25. Table
4 shows the name of the source, the number of publications, the relative percentage of
publications and the associated Web of Science research category.

Name Publications % of 25 Categories

European Journal of
Operational Research 4 16.00 Operations Research and

Management

Quantitative Finance 4 16.00
Business & Finance, Economics

, Mathematics and Mathematical
Methods in Social Sciences

Annals of Operations
Research 3 12.00 Operations Research

Computers & Operations
Research 3 12.00

Computer Science, Engineering
Industrial and Operations

Research
Journal of the Operational

Research Society 3 12.00 Management and Operations
Research

Applied Soft Computing 2 8.00 Computer Science and
Artificial Intelligence

Computational Statistics &
Data Analysis 2 8.00 Computer Science and

Mathematics
Journal of Economic
Dynamics & Control 2 8.00 Economics

Optimization Letters 2 8.00 Operations Research and
Applied Mathematics

Table 4 – Selected sources

The following Web of Science research categories were reached: Operations Research,
Management, Business & Finance, Economics, Mathematics, Mathematical Methods in
Social Sciences, Computer Science, Engineering Industrial, Artificial Intelligence and
Applied Mathematics. Table 5 contains the number of journals and publications associated
with each of the categories that were found. The most relevant journals are those covering
operations research and computer science research areas.

3.2.2.2 Categorization - Quantitative modeling frameworks and solution approaches

To answer RQs #2, #3, #4, #5 and #6 it was necessary to categorize the modeling frame-
work first and then to categorize the solution approach. Three categories of quantitative
modeling frameworks were defined: mathematical programming frameworks, statistical
techniques frameworks, and other frameworks. Table 6 shows the publications associated
with each category.

Figure 5 depicts the relative percentage of published articles per quantitative modeling
framework. It can be observed that the majority of works on the index tracking problem are
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Category Number of related
journals

Number of related
publications

Operations Research 5 15
Computer Science 3 7

Management 2 7
Economics 2 6

Mathematics 2 4
Business & Finance 1 4

Mathematical Methods
in Social Sciences 1 4

Engineering Industrial 1 3
Artificial Intelligence 1 2
Applied Mathematics 1 2

Table 5 – The relevant categories

exploring more mathematical programming frameworks than any other type of modeling
framework for this problem. The total number of articles allocated to the heuristic group
and non-heuristic is 21 and 32, respectively. Thus, the majority of works on index tracking
adopted non-heuristic solution methods.

Figure 5 – Percentage of works that used each modelling framework
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Framework Modelling technique Publications

Mathematical
Programming Linear Programming (GOEL; SHARMA; MEHRA, 2018); (KUSIAK, 2013);

(SHARMA; UTZ; MEHRA, 2017); (THEOBALD; YALLUP, 2010);

Mixed-integer
linear programming

(CHEN; KWON, 2012); (GOEL; SHARMA; MEHRA, 2018);

(GUASTAROBA; SPERANZA, 2012); (HUANG; LI; YAO, 2018);

(MEZALI; BEASLEY, 2013); (MEZALI; BEASLEY, 2014);

(WANG et al., 2012); (WU; KWON; COSTA, 2017)

Mixed-integer
Non-linear programming

(ANDRIOSOPOULOS et al., 2013);

(ANDRIOSOPOULOS; NOMIKOS, 2014);

(GARCIA; GUIJARRO; OLIVER, 2018);

(FASTRICH; PATERLINI; WINKER, 2014);

(GRISHINA; LUCAS; DATE, 2017); (HUANG; LI; YAO, 2018);

(MUTUNGE; HAUGLAND, 2018); (NI; WANG, 2013);

(SANT’ANNA et al., 2017);

(SANT’ANNA; FILOMENA; CALDEIRA, 2017);

(SANT’ANNA et al., 2019); (SCOZZARI et al., 2013);

(STRUB; TRAUTMANN, 2019); (VALLE; MEADE; BEASLEY, 2015);

(WANG; XU; DAI, 2018); (XU; LU; XU, 2016)

Conic Programming (LING; SUN; YANG, 2014); (SHARMA; UTZ; MEHRA, 2017)

Mixed-integer
Conic Programming (WU; WU, 2019)

Stochastic programming
(BARRO; CANESTRELLI, 2014);

(BARRO; CANESTRELLI; CONSIGLI, 2019);

(STOYAN; KWON, 2010)

Dynamic programming (CHENG; CHEN; LIU, 2013); (STOYAN; KWON, 2010)

Multi-Objective
Optimization

(BILBAO-TEROL; ARENAS-PARRA; CANAL-FERNANDEZ, 2012);,
(CHIAM; TAN; MAMUN, 2013); (GARCIA; GUIJARRO; MOYA, 2011);

(GARCIA; GUIJARRO; MOYA, 2013); (LI; BAO; ZHANG, 2014);

(NI; WANG, 2013); (WU; TSAI, 2014)

Statistical Techniques Cointegration
(ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(PAPANTONIS, 2016); (SANT’ANNA; FILOMENA; CALDEIRA, 2017);

(SANT’ANNA et al., 2019)

Regression with
regularization

(BENIDIS; FENG; PALOMAR, 2018);

(FASTRICH; PATERLINI; WINKER, 2014)

(GIUZIO; FERRARI; PATERLINI, 2016);

(GIUZIO, 2017); (TAS; TURKAN, 2018); (XU; LU; XU, 2016)

Regression with
regularization and
variable selection

(WU; YANG, 2014); (WU; YANG; LIU, 2014);

(YANG; WU, 2016); (ZHAO; LIAN, 2016)

Other framework Machine Learning (OUYANG; ZHANG; YAN, 2019); (NAKAYAMA; YOKOUCHI, 2018)

Sampling (DJOKO; TILLE, 2015)

Pure heuristics (AFFOLTER et al., 2016)

Table 6 – Publications associated with each framework category
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3.2.2.3 Comparison of production and impact of the solution approaches

After associating each article with its solution approach, an analysis of production growth
and citation impact was developed. Figure 6 shows the total publications per year for each
solution approach. Publications adopting non-heuristic methods had an annual growth
rate of 12.98%. Publications using heuristic/metaheuristic solution approaches had an
annual growth rate of 9.05%. Since there has been a growth in the number of non-heuristic
and heuristic methods applied to the index tracking problem, the answer for both RQ
#3 and #4 is positive. The answer to RQ #5 is negative since the production rate of
papers adopting non-heuristic approaches is bigger than that of papers adopting heuristic
approaches.

Figure 6 – Comparison of annual total publications for papers using heuristic and non-
heuristic approaches

Three metrics were evaluated to answer RQ #6: total citations in the last decade,
annual mean total citations and annual mean total citations per article. Figure 7 show
the annual total mean citations for each solution approach and Figure 8 shows the annual
mean total citations per article. It is obvious that the mean total citations tend to fall
over the years because the number of citable years decreases.

Papers that adopted heuristic approaches obtained a total of 216 citations over the
last decade. The non-heuristic group obtained a total of 160 citations. Yearly mean
total citations of heuristic solution approaches overcome that of non-heuristic solution
approaches in most years. This result is also observed for the annual total mean citations
per article metric. The answer to RQ #6 is positive because the heuristic group surpassed
the non-heuristic group in all three metrics. An interesting observation concerning the
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production and citation impact result is that although the production of heuristic papers
is lower, their impact is higher.

Figure 7 – Comparison of annual total mean citations for heuristic and non-heuristic
approaches

Figure 8 – Comparison of annual total mean citations per article for heuristic and non-
heuristic approaches
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3.2.2.4 Categorization - adopted heuristics/metaheuristics

An exploratory work was made to find all heuristics used in each of the 21 articles to answer
RQs #2 and #7. Also, an investigation concerning the hybridization of the heuristics with
general-purpose solvers was performed to answer RQ #8. The heuristics found were: Genetic
Algorithm (GA), Differential Evolution (DE), Tabu Search (TS), Greedy Construction
(GC), Best Exchange by one (BEBO), Combinatorial Search (CS), Local Branching (LB),
Lagrangian-based (LGR), Kernel Search (KS), Variable Neighborhood Search (VNS),
Decomposition Algorithm (DA), Multi-objective Genetic Algorithm (MOGA) and Invasive
Weed Optimization (IWO). In Table 7 the allocation result of papers to a heuristic is
shown.

Not Hybrid Hybrid

GA

(ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(ANDRIOSOPOULOS et al., 2013);

(ANDRIOSOPOULOS; NOMIKOS, 2014);

(FASTRICH; PATERLINI; WINKER, 2014);

(GARCIA; GUIJARRO; OLIVER, 2018);

(GIUZIO, 2017); (GRISHINA; LUCAS; DATE, 2017);

(NI; WANG, 2013);

(SANT’ANNA et al., 2017); (WANG et al., 2012);

(WANG; XU; DAI, 2018); (XU; LU; XU, 2016);

(STRUB; TRAUTMANN, 2019)

DE
(ANDRIOSOPOULOS et al., 2013);

(ANDRIOSOPOULOS; NOMIKOS, 2014);

(GRISHINA; LUCAS; DATE, 2017);

(SCOZZARI et al., 2013)

TS (GARCIA; GUIJARRO; OLIVER, 2018);

GC (MUTUNGE; HAUGLAND, 2018);

BEBO (MUTUNGE; HAUGLAND, 2018);

CS (SCOZZARI et al., 2013)

LB (STRUB; TRAUTMANN, 2019)

LGR (WU; WU, 2019);

KS (GUASTAROBA; SPERANZA, 2012);

VNS (WU; KWON; COSTA, 2017)

DA (STOYAN; KWON, 2010)

IWO (AFFOLTER et al., 2016)

MOGA (CHIAM; TAN; MAMUN, 2013);

Table 7 – Heuristic categorization result

Since there are 11 hybridized heuristics, then the answer to RQ #8 is positive. Solvers
are integrated with heuristics mainly to perform the capital allocation. Then, in those cases,
heuristics were used to perform asset selection only. Table 8 summarizes the associated
quantitative framework subcategory, the number of times that a specific heuristic was
applied to a specific model. An interesting result is that all heuristics/metaheuristics
applied to Mixed-Integer Linear Programming (MILP) are hybridized. Figure 9 presents
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the relative number of works that performed/did not performed hybridization of heuristic-
s/metaheuristics.

Figure 9 – Percentage of works that performed/did not performed hybridization

The answer to RQ #2 is positive. From Table 8 it can be observed that the vast
amount of the developed heuristics/metaheuristics solutions were applied to mathematical
programming formulations more often, more specifically to Mixed-Integer non-linear
programming (MINLP) formulations. Figure 10 shows the relative number of works per
heuristics/metaheuristics. The two main heuristics were highlighted and the other heuristics
(applied only once) were clustered as a single group.

The answer to RQ #7 is positive. The works that use heuristic/metaheuristic solution
approaches are focused on the application of two heuristics: Genetic and Differential
Evolution algorithms.

3.2.2.5 Analysis of heuristic/metaheuristic performance evaluations

An heuristics/metaheuristics success is indicated by evaluation metrics. In this subsection,
all evaluation metrics used to analyze heuristics in the index tracking problem in the last
decade were identified. 34 different metrics were found. Then, it was decided to highlight
the most used (applied at least 3 times) metrics among the 34. 9 out of 34 metrics were
applied at least 3 times, which were: CPU time, GAP, Correlation With Respect to the
Index (CWRTI), Mean Squared Error (MSE), Information Ratio (IR), Root Mean Squared
Error (RMSE), Mean Excess Return (MER), Annualized Return (ANNR) and Annualized
Tracking Error (ANNTE). Table 9 shows the highlighted metrics and the associated
articles.
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Framework Algorithm 𝑁 𝑁ℎ𝑦𝑏𝑟𝑖𝑑

Mixed-integer
Non-linear programming GA 9 4

DE 4 1
TS 1 0
GC 1 0

BEBO 1 0
CS 1 1
LB 1 1

Mixed-integer
linear programming GA 1 1

KS 1 1
VNS 1 1

Mixed-integer
Conic programming LGR 1 0

Stochastic Programming DA 1 1

Multi-objective
Optimization GA 1 0

MOGA 1 0

Cointegration GA 1 0

Regression with
regularization GA 2 0

Pure heuristic IWO 1 0

Total 29 11

Table 8 – Heuristic applications summary

Figure 11 presents the percentage of works that applied each of the nine highlighted
metrics and the other 25 metrics. The answer to RQ #9 is positive since those nine metrics
are prevalent among the other 25 metrics.

To answer RQ #10, a search about comparison types was performed. The identified
comparison types were: Heuristic against Heuristic, Heuristic against CPLEX, Heuristic
against Gurobi, Heuristic against Projected Gradient algorithm, Heuristic against interior
point algorithm, Heuristic against Cyclic Coordinate Descent algorithm and Heuristic
against Random Selection. Table 10 shows the comparison types and related papers.

Figure 12 presents the percentage of articles that performed each type of comparison.
It can be observed that the answer to RQ #10 is positive since most of the authors that
developed a heuristic/metaheuristic compared it against another heuristic/metaheuristic
or the commercial solver CPLEX.
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Figure 10 – Percentage of works per heuristic. The two main heuristics were highlighted.

Figure 11 – Percentage of works per evaluation metrics. The nine main evaluation metrics
were highlighted.

3.2.2.6 Analysis of index tracking models solved by metaheuristics/heuristics

The objective functions found were: Root Mean Squared Error (RMSE), Mean Squared
Error (MSE), Mean Absolute Deviation (MAD), Absolute Deviation (AD), Tracking Error
Variance (TEV), Sum of Errors Squares (SES), Correlation, Mean Index Excess Return
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Metric Articles

CPU Time

(GARCIA; GUIJARRO; OLIVER, 2018); (GRISHINA; LUCAS; DATE, 2017);

(MUTUNGE; HAUGLAND, 2018); (SANT’ANNA et al., 2017);

(STRUB; TRAUTMANN, 2019); (WANG; XU; DAI, 2018);

(GUASTAROBA; SPERANZA, 2012); (STOYAN; KWON, 2010);

GAP (GUASTAROBA; SPERANZA, 2012); (SANT’ANNA et al., 2017);

(SCOZZARI et al., 2013); (WU; KWON; COSTA, 2017);

CWRTI
(ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(ANDRIOSOPOULOS et al., 2013); (ANDRIOSOPOULOS; NOMIKOS, 2014);

(SCOZZARI et al., 2013);

MSE (CHIAM; TAN; MAMUN, 2013); (NI; WANG, 2013);

(GARCIA; GUIJARRO; OLIVER, 2018); (STRUB; TRAUTMANN, 2019);

IR (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(ANDRIOSOPOULOS; NOMIKOS, 2014); (GIUZIO, 2017);

RMSE (ANDRIOSOPOULOS et al., 2013); (ANDRIOSOPOULOS; NOMIKOS, 2014);

(SANT’ANNA et al., 2017)

MER (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(ANDRIOSOPOULOS et al., 2013); (ANDRIOSOPOULOS; NOMIKOS, 2014);

ANNR (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(ANDRIOSOPOULOS et al., 2013); (ANDRIOSOPOULOS; NOMIKOS, 2014);

ANNTE (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(GIUZIO, 2017); (SCOZZARI et al., 2013);

Table 9 – Evaluation metrics summary

(MIER), Accumulated Excess Return (AER), Augmented Dickey-Fuller t statistic (ADF),
return, utility, Transaction Costs (TC). The classification of each article in an objective
function is presented in table 11.

The relative frequency of works per objective function is shown in Figure 13. The
answer to RQ #11 is positive since a good part of the works adopts RMSE and MSE.

Two main constraints are usually applied to index tracking problems: cardinality and
holding. These constraints were adopted by articles that used mathematical programming
only since their use is obligatory for the index tracking model in this framework. In
this work, more practical constraints were taken into account to answer RQ #12. The
constraints found were: Transaction Costs, Tracking Error, Turnover, Market Regulations,
Class, CVaR and Round-lot. As well as the two main constraints, these practical constraints
only occurred in the mathematical programming modeling framework. The relative number
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Comparison Type Articles

Heuristic
Vs

Heuristic

(ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

(ANDRIOSOPOULOS et al., 2013); (ANDRIOSOPOULOS; NOMIKOS, 2014);

(CHIAM; TAN; MAMUN, 2013); (GARCIA; GUIJARRO; OLIVER, 2018);

(GRISHINA; LUCAS; DATE, 2017); (NI; WANG, 2013);

(WU; KWON; COSTA, 2017);

Heuristic
Vs

CPLEX

(MUTUNGE; HAUGLAND, 2018); (SANT’ANNA et al., 2017);

(SCOZZARI et al., 2013); (STOYAN; KWON, 2010);

Heuristic
Vs

Gurobi
(STRUB; TRAUTMANN, 2019); (WANG; XU; DAI, 2018);

Heuristic
Vs

ProjGrad
(GIUZIO, 2017); (XU; LU; XU, 2016);

Heuristic
Vs

IntPoint
(GIUZIO, 2017);

Heuristic
Vs

CycD
(GIUZIO, 2017);

Heuristic
Vs

Random
(AFFOLTER et al., 2016);

Table 10 – Comparison types summary

of works per constraint is shown in Figure 14.
Since the constraints are well distributed among the articles, there is no prevalence

of a specific practical constraint when applying heuristics/metaheuristics and the answer
relative to RQ #12 is negative. Table 12 shows the mathematical programming subcategory,
constraint name and associated articles.

Even though this literature review focuses on the characteristics of models solved by
heuristics/metaheuristics, the results presented in this part of the review may also be
useful for researchers that are developing index tracking models. They can compare their
objective functions and practical constraints with other authors’ models that also included
them in a specific quantitative modeling framework.
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Figure 12 – Percentage of works per comparison type.

Figure 13 – Percentage of works per objective function.

3.2.2.7 Categorization - data sources for index tracking problems solved by heuristic/meta-
heuristic

To answer research question RQ #13 it was necessary to identify all data sources. The
following data sources were identified: OR-library, Datastream, Historical Stock Data
Downloader (HSDD), Economatica, Bloomberg, Markit, Academic research lab (University)
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Framework Objective Articles

Mixed-integer
Non-linear programming RMSE (ANDRIOSOPOULOS; NOMIKOS, 2014);

(ANDRIOSOPOULOS et al., 2013);

MSE

(GARCIA; GUIJARRO; OLIVER, 2018);

(SANT’ANNA et al., 2017);

(SCOZZARI et al., 2013);

(STRUB; TRAUTMANN, 2019);

MAD (GRISHINA; LUCAS; DATE, 2017);

SES (WANG; XU; DAI, 2018);

(XU; LU; XU, 2016);

TEV (MUTUNGE; HAUGLAND, 2018);

Mixed-integer
linear programming MAD (WANG et al., 2012)

AD (GUASTAROBA; SPERANZA, 2012);

Correlation (WU; KWON; COSTA, 2017);

Mixed-integer
Conic programming MIER (WU; WU, 2019);

Stochastic Programming AD (STOYAN; KWON, 2010);

Multi-objective
Optimization RMSE (NI; WANG, 2013);

MSE (CHIAM; TAN; MAMUN, 2013);

AER (NI; WANG, 2013);

TC (CHIAM; TAN; MAMUN, 2013);

Cointegration ADF (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

Correlation (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

Regression with
regularization SES (XU; LU; XU, 2016);

MSE (GIUZIO, 2017);

Pure heuristics Return (AFFOLTER et al., 2016);

Table 11 – Objective function occurrence summary

and Yahoo Finance. Table 13 shows all the databases and associated articles.
Figure 15 shows the percentage of works per data source. OR-library and Datastream

were adopted by most of the works that are transparent about their databases. Then, the
answer to RQ #13 is OR-library and Datastream.
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Figure 14 – Percentage of works per constraint.

Figure 15 – Percentage of works per database.
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Framework Constraint Articles

Mixed-integer
Non-linear programming Tracking Error (SANT’ANNA et al., 2017);

Turnover (SCOZZARI et al., 2013);

Market regulation (SCOZZARI et al., 2013);

(STRUB; TRAUTMANN, 2019);

Class (WANG; XU; DAI, 2018);

CVaR (WANG; XU; DAI, 2018);

Round-lot (WANG; XU; DAI, 2018);

Mixed-integer
linear programming Transaction costs (GUASTAROBA; SPERANZA, 2012);

(WU; KWON; COSTA, 2017)

Class (WU; KWON; COSTA, 2017);

CVaR (WANG et al., 2012);

Mixed-integer
Conic programming Tracking Error (WU; WU, 2019);

Stochastic Programming Turnover (STOYAN; KWON, 2010);

Class (STOYAN; KWON, 2010);

Multi-objective
Optimization Transaction costs (NI; WANG, 2013);

Turnover (NI; WANG, 2013);

Round-lot (CHIAM; TAN; MAMUN, 2013);

Table 12 – Practical constraint occurrence summary
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Data source Articles

Datastream (AFFOLTER et al., 2016); (ANDRIOSOPOULOS et al., 2013);

(ANDRIOSOPOULOS et al., 2013); (STRUB; TRAUTMANN, 2019);

OR-library

(GARCIA; GUIJARRO; OLIVER, 2018); (GRISHINA; LUCAS; DATE, 2017);

(MUTUNGE; HAUGLAND, 2018); (STRUB; TRAUTMANN, 2019);

(GUASTAROBA; SPERANZA, 2012); (WANG et al., 2012);

(CHIAM; TAN; MAMUN, 2013);

HSDD (MUTUNGE; HAUGLAND, 2018);

Economatica (SANT’ANNA et al., 2017);

Bloomberg (SANT’ANNA et al., 2017);

Markit (WU; WU, 2019);

University (WU; KWON; COSTA, 2017);

Yahoo Finance (ACOSTA-GONZALEZ; ARMAS-HERRERA; FERNANDEZ-RODRIGUEZ, 2015);

Table 13 – Data sources summary
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3.3 GRASP APPROACH FOR THE FINANCIAL PORTFOLIO PROBLEM.

A systematic literature review concerning GRASP applied to the financial portfolio
optimization problem was developed in this work. The methodology and results will be
presented and discussed in the next subsections.

3.3.1 Methodology

The procedures and rules that conducted the systematic literature review were based on
Kalayci, Ertenlice & Akbay (2019).

3.3.1.1 Research questions set up

In order to guide the result analysis and scope of this work, some research questions were
defined. The research questions are presented in Table 14

RQ Description
#1 Are there any GRASP applications in the index tracking problem?
#2 In which financial portfolio optimization problems GRASP was applied?
#3 What were the most used types of objective functions?
#4 Non-convex or convex models?
#5 Was CPU time performance taken into consideration?

#6 Did any solvers, metaheuristics or heuristics were used as benchmark
for performance comparisons?

#7 Which databases were adopted?

Table 14 – Research questions for GRASP systematic literature review

3.3.1.2 Answering the first research question

The most important research question related to this work is the first one since it represents
the core contribution. The keyword structure used to answer RQ#1 is presented in Table
15

The search was conducted by covering papers published from 2000 to 2019 and written
in English language. No papers were found on the selected databases. This result shows
that using GRASP for index tracking models brings innovation to the literature since this
metaheuristic was never experimented in this kind of problem. Now, another search will
be performed to investigate the state-of-the-art of GRASP applications in the financial
portfolio optimization context and aiming to answer the other research questions.
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Level Search Terms

1 GRASP OR "Greedy Randomized Adaptive Search Procedure"
AND

2 Heuristic* OR Metaheuristic* OR Meta-heuristic*
AND

3 Portfolio OR Investment OR Asset
AND

4 Optimization OR Management OR Selection
AND

5 "Index Tracking" OR "Tracking Error" OR Tracking-Error

Table 15 – Proposed keyword combination structure for the GRASP applied to index
tracking systematic review

3.3.1.3 Material collection and selection to answer the remaining research questions

The search was conducted by covering papers published from 2000 to 2019 and written
in English language. The bibliography collection process took place at Scopus and Web
of Science databases using the keyword structure presented in Table 16. This keyword
combination structure was built from the author’s a priori knowledge of the field. Levels 1
and 2 refer to the main solution approach. Levels 3 and 4 guides the search for financial
portfolio optimization problems. Level 5 restricts the financial portfolio problem class to
index tracking.

Level Search Terms

1 GRASP OR "Greedy Randomized Adaptive Search Procedure"
AND

2 Heuristic* OR Metaheuristic* OR Meta-heuristic*
AND

3 Portfolio OR Investment OR Asset
AND

4 Optimization OR Management OR Selection

Table 16 – Proposed keyword combination structure to accquire GRASP material

A total of 9 and 13 papers were found at Web of Science and Scopus databases,
respectively.

3.3.1.4 Filtering process

The filtering was performed by fully reading the papers. This filter removes articles that
do not match the scope of this work. Many of the filtered works appeared in the results
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because of the "optimization" and "investment" keywords. A total of two (Web of Science)
and three (Scopus) articles were selected by this filter. An extra article was found at the
Scopus database, the other two appeared on both databases. Then, 3 GRASP applications
to the financial portfolio optimization problem were found.

3.3.2 Results and discussion of the GRASP systematic review

The first work regarding the adaptation of GRASP in portfolio optimization was conducted
by Anagnostopoulos, Chatzoglou & Katsavounis (2010) when the authors proposed a
reactive GRASP to solve the classical formulation of the portfolio selection model with
the addition of a cardinality constraint. The proposed algorithm was not applied to any
instance of the problem.

A more recent application of GRASP for portfolio optimization was developed by
Baykasoglu, Yunusoglu & Ozsoydan (2015). The authors proposed a metaheuristic named
GQ to solve cardinality constrained problems. These authors used GRASP to select
stocks for compiling a portfolio, and a quadratic programming model for determining
the proportions of each stock. The results showed GQ successfully solved the problem
and achieved competitive performances when compared with alternatives in the literature
(BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015).

Based on GQ (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015), Otken et al. (2019)
designed a fast GRASP & SOLVER and GRASP & SOLVER with turnover cost and
applied them on an extended MVO problem, on an active portfolio management approach.
The model decision variables and objective function structure is equivalent to those used by
ROLL (1992), representing an active manager aiming to beat a benchmark, but extended
with practical constraints. The practical constraints were tracking error, active share and
cardinality and the heuristic solutions were applied in a real-life S&P500 data set ranging
from 2007 to 2016. The turnover cost algorithm performed better in terms of annual return.
The summary of the answers to the research questions is presented in Table 17.

In summary, GRASP has not been much explored for solving portfolio selection
problems. More specifically, a research gap was identified regarding the application of
GRASP for passive fund management formulations, which is covered in the present paper.
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RQ Anagnostopoulos, Chatzoglou
& Katsavounis (2010)

Baykasoglu, Yunusoglu
& Özsoydan (2015)

Ötken et al. (2019)

#2 Markowitz (1952) Markowitz (1952) ROLL (1992)

#3 Cardinality & holding Cardinality & holding

Cardinality, holding
turnover, active share,

risk factor,
class & tracking error

#4 No Yes No
#5 No No Yes
#6 No Yes No

#7 None Beasley OR library Principal Global
Investors (S&P500)

Table 17 – Summary of the answers to the remaining RQ’s of the GRASP applied to the
financial portfolio problem literature review

3.4 CHAPTER CONCLUSION

This chapter presented current developments of the financial portfolio optimization problem
and two systematic literature reviews. The objective of the first systematic review was to
develop an investigation concerning the current solution approaches for the index tracking
problem using a set of research questions. The set of research question was divided in two
parts. The first part refers to general solution approaches for the index tracking problem
and comparison among two groups: heuristic and non-heuristic methods. The second part
refers to a specific analysis of heuristic/metaheuristic approaches applications developed
for this problem.

The second systematic literature review refers to GRASP applications on the financial
portfolio optimization field. There are three applications of the GRASP metaheuristic on
the mean-variance CCPO framework. Applications of GRASP to the index tracking problem
were not found. Then, taking the results presented in this chapter into consideration, this
dissertation proposes an innovation for the portfolio optimization field by developing an
adaptation and application of the GRASP metaheuristic for the index tracking problem.
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RQ Description

#1 Index tracking solution methods are more relevant to journals focusing
on operations research and computer science

#2 The vast amount of the developed heuristics/metaheuristics solutions
were applied to mathematical programming formulations more often

#3 There has been a growth in the number of non-heuristic methods applied to
the index tracking problem

#4 There has been a growth in the number of heuristics/metaheuristics applied
to the index tracking problem

#5 Heuristic approaches are not more used than non-heuristic approaches for
index tracking problems

#6 Heuristic approaches have more cite impact than non-heuristic
approaches for index tracking problems

#7 There is a prevalence of using Differential Evolution and Genetic algorithms
in index tracking problems

#8 Solvers are integrated with heuristics. A total of 11 hybridized
heuristics were found

#9 There is a prevalence of using specific evaluation metrics for heuristic
approaches. The most used metrics were RMSE and MSE

#10 Yes heuristics are more compared against other heuristics
or against the CPLEX solver

#11
There is a prevalence of solving for a specific tracking error objective

function when using heuristic approaches. A good part of the
works adopted RMSE and MSE

#12 Is there a prevalence of solving for specific practical constraints when
using heuristic approaches?

#13 The most used databases were OR-library and datastream

Table 18 – Summary of the answers to each research question of the index tracking
systematic literature review
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4 PROPOSED GRASP APPROACH FOR THE INDEX TRACKING PROBLEM.

The systematic literature about GRASP applied to the financial portfolio problem devel-
oped in this work showed that GRASP has been applied in the portfolio optimization
problem. There are three applications of GRASP to this problem, where two among them
use the hybrid GQ metaheuristic (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015). The
formulation considered by Baykasoglu, Yunusoglu & Ozsoydan (2015) is a cardinality con-
strained MVO problem. This metaheuristic was applied in the mathematical programming
modeling framework, more specifically in a MINLP formulation.

As it can be observed from the index tracking literature review, hybrid metaheuristic-
s/heuristics are mostly compared with general-purpose solvers such as CPLEX and Gurobi
(GUASTAROBA; SPERANZA, 2012; SANT’ANNA et al., 2017; SCOZZARI et al., 2013; STOYAN;

KWON, 2010; STRUB; TRAUTMANN, 2019; WANG; XU; DAI, 2018). That is because hybrid
heuristics simulate a branch-and-bound procedure that select active search nodes in a
more objective way, also, these methods can be instructed to never compute incomplete
solutions. The trade-off is that hybrid heuristics cannot guarantee optimality and behave
in a stochastic way, but can find a good solution in less time. Then, it is interesting to
evaluate the gain of betting on the searchability of a hybrid heuristic instead of trying to
find the optimal solution using a general-purpose solver. For instance, compare the quality
of the solution produced by the hybrid heuristic and the general-purpose solver, taking
into consideration the required time to generate each solution.

We select the GQ metaheuristic to evaluate an adaptation of GRASP for the index
tracking problem. To the best of our knowledge, this is the first time GRASP is used
to solve the index tracking problem. This section presents an index tracking model to
test the adapted modification of the GQ (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015)
metaheuristic for index tracking. Also, an alternative algorithm for a component of the
local search procedure is presented. The proposed approaches were developed so that their
performance could be evaluated against that of a solver when trying to find a good solution
for an index tracking problem.

4.1 THE INDEX TRACKING MODEL.

The first criteria considered for the index tracking model selection were adaptation necessity
and applicability. In other words, the selected model must have been solved by a hybrid
heuristic/metaheuristic and its quantitative modeling framework must be the same as
the one that was solved by GQ. GQ (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015)
was designed for problems within the mathematical programming quantitative modeling
framework. Index tracking models solved by hybrid heuristics are mostly modeled as
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MINLP or MILP. That is the perfect match, since GQ can be adapted to the majority of
available index tracking models. An initial set of models was assembled by considering
MINLP and MILP index tracking models approached by hybrid heuristics/metaheuristics
that were compared with general-purpose solvers. The works and their respective objective
functions are presented in Table 19.

Article Objective Function

(GUASTAROBA; SPERANZA, 2012) AD
(SANT’ANNA et al., 2017) MSE
(SCOZZARI et al., 2013) MSE

(STRUB; TRAUTMANN, 2019) MSE
(WANG et al., 2012) MAD

(WANG; XU; DAI, 2018) SES

Table 19 – First model set

Three models contain the same type of objective function MSE. It was decided to pick
one model to represent this MSE class of models. (STRUB; TRAUTMANN, 2019) adopted a
model similar to that of (SCOZZARI et al., 2013). Both of them used constraints to reflect the
European Union Derivative UCITS (Undertaking for Collective Investment in Transferable
Securities) rules. Since those models were designed for European Union markets, then
they were discarded to prevent loss of generality in the application developed in this work.
Therefore, (SANT’ANNA et al., 2017) model will represent the MSE class of models. Table
20 shows the final model set and their notation.

Article Notation

(GUASTAROBA; SPERANZA, 2012) ADG
(SANT’ANNA et al., 2017) MSES

(WANG et al., 2012) MADW
(WANG; XU; DAI, 2018) SESW

Table 20 – Final model set

Next, the models contained in this final alternative set are depicted in alphabetical
order. All the models contain constraints (2.23) and (2.24) which were presented in Section
2.2. (GUASTAROBA; SPERANZA, 2012) ADG index tracking model is shown below.
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minimize 𝑇𝐸 =
𝑇∑︁

𝑡=1

(︂
𝜃𝐼𝑡 −

𝑛∑︁
𝑗=1

𝑞𝑗𝑡𝑋
1
𝑗 + 2𝑢𝑡

)︂
(4.1)

subject to
𝑛∑︁

𝑗=1
𝑞𝑗𝑇 𝑋1

𝑗 ≤ 𝐶 (4.2)

𝑛∑︁
𝑗=1

𝑍𝑗 ≤ 𝐾 (4.3)

𝐿𝑖𝑍𝑖 ≤ 𝑋1
𝑗 𝑞𝑗𝑇 /𝐶 ≤ 𝑈𝑖𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑁 (4.4)(︁

𝑋1
𝑗 −𝑋0

𝑗

)︁
𝑞𝑗𝑇 + 2𝑠𝑗 ≤ 𝑈𝑗𝐶𝑤𝑗 , 𝑗 = 1, 2, ..., 𝑛 (4.5)

𝑛∑︁
𝑗=1

[︁(︁
𝑋1

𝑗 −𝑋0
𝑗

)︁
𝑐𝑏

𝑗𝑞𝑗𝑇 + (𝑐𝑏
𝑗 + 𝑐𝑠

𝑗)𝑠𝑗 + 𝑓𝑗𝑤𝑗

]︁
≤ 𝛾𝐶 (4.6)

𝜃𝐼𝑡 −
𝑛∑︁

𝑗=1
𝑞𝑗𝑡𝑋

1
𝑗 + 𝑢𝑡 ≥ 0 𝑡 = 1, 2, ..., 𝑇 (4.7)

(︁
𝑋1

𝑗 −𝑋0
𝑗

)︁
𝑞𝑗𝑇 + 𝑠𝑗 ≥ 0 , 𝑗 = 1, 2, ..., 𝑛 (4.8)

𝑋1
𝑗 ≥ 0, 𝑠𝑗 ≥ 0, 𝑍𝑗 ∈ {0, 1}, 𝑤𝑗 ∈ {0, 1}, 𝑗 = 1, 2, ..., 𝑛 (4.9)

𝑢𝑡 ≥ 0, 𝑡 = 1, 2, ..., 𝑇 (4.10)

Where:
𝑇𝐸 = tracking error measure represented by positive and negative deviations from

the index return
𝑡 = 1, 2, ..., 𝑇 is the time index
𝑗 = 1, 2, ..., 𝑛 is the asset index
𝑞𝑗𝑡 = Value of asset j at time t
𝐼𝑗 = Index value at time t
𝑏𝑗 = Total purchase value of asset j
𝑠𝑗 = Total selling value of asset j
𝑐𝑗

𝑏 = Proportional transaction cost paid for buying asset j
𝑐𝑗

𝑠 = Proportional transaction cost paid for selling asset j
𝑓𝑗 = Fixed transaction cost paid for selling or buying asset j
𝑤𝑗 = Is equal to 1 if the investor buys or sells any quantity of asset j. It assumes 0

otherwise.
𝑋0

𝑗 = proportion of stock j in the portfolio before rebalancing
𝑋1

𝑗 = proportion of stock j in the portfolio after rebalancing
𝑍𝑗 = Indicates if stock j is included in the portfolio or not
𝐾 = Maximum number of assets in the portfolio
𝐿𝑗 = Lower bound on stock i
𝑈𝑗 = Upper bound on stock i
𝐶 = Capital available for investment in scenario T
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Both Equation (4.1) and constraint (4.7) model an AD objective function. The objective
is to minimize the AD tracking error between the portfolio value and index value. Inequality
(4.2) is the budget constraint, (4.3) is the cardinality constraint and (4.4) is the holding
constraint. Inequality (4.6) imposes a limit on the total transaction costs. Inequality (4.5)
represents a transaction indicator, forcing 𝑤𝑗 to be 1 when a transaction occurs, thus
adding the associated fixed cost of asset 𝑗. (4.8) is used to connect selling quantities and
buying quantities of each asset 𝑗.

(SANT’ANNA et al., 2017) MSES index tracking model is shown below.

minimize 𝑇𝐸 = 1
𝑇

𝑇∑︁
𝑡=1

[︁ 𝑁∑︁
𝑖=1

𝑥𝑖𝑟𝑖𝑡 −𝑅𝑡

]︁2
(4.11)

subject to
𝑁∑︁

𝑖=1
𝑥𝑖𝑟𝑖𝑡 −𝑅𝑡 ≥ 𝛾 , 𝑡 = 1, 2, ..., 𝑇 (4.12)

𝑁∑︁
𝑖=1

𝑥𝑖𝑟𝑖𝑡 −𝑅𝑡 ≤ 𝜃 , 𝑡 = 1, 2, ..., 𝑇 (4.13)

𝑁∑︁
𝑖=1

𝑍𝑖 ≤ 𝐾 (4.14)

0 ≤ 𝑥𝑖 ≤ 𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑁 (4.15)
𝑁∑︁

𝑖=1
𝑥𝑖 = 1 (4.16)

𝑍𝑖 ∈ {0, 1}, 𝑖 = 1, 2, ..., 𝑁 (4.17)

Where:
𝑇𝐸 = tracking error measure represented by positive and negative deviations from

the index return
𝑡 = 1, 2, ..., 𝑇 is the time index
𝑖 = 1, 2, ..., 𝑁 is the asset index
𝛾 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑒𝑟𝑟𝑜𝑟

𝜃 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑒𝑟𝑟𝑜𝑟

𝑖 = 1, 2, ..., 𝑁 is the asset index
𝑅𝑡 = Index return at time t
𝑟𝑖𝑡 = Stock i return at time t
𝑥𝑖 = Stock i proportion in the portfolio
𝑍𝑖 = Indicates if stock i is included in the portfolio or not
𝐾 = Maximum number of assets in the portfolio

The objective function (4.11) aims to minimize the mean squared error of portfolio
returns relative to the index returns. Constraints (4.12) and (4.13) allow the tracking error
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to vary between 𝛾 and 𝜃 at each time 𝑡 (4.14) is the cardinality constraint. (4.22) is the
budget constraint.

(WANG et al., 2012) MADW index tracking model is shown below.

minimize 𝑇𝐸 = 1
𝑇

𝑇∑︁
𝑡=1

(𝑞+
𝑡 + 𝑞−

𝑡 ) (4.18)

subject to (𝑞+
𝑡 + 𝑞−

𝑡 ) = 𝑅𝑡 −
𝑁∑︁

𝑖=1
𝑟𝑖𝑡𝑥𝑖 , 𝑡 = 1, 2, ..., 𝑇 (4.19)

𝑁∑︁
𝑖=1

𝑍𝑖 = 𝐾 (4.20)

𝐿𝑖𝑍𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑁 (4.21)
𝑁∑︁

𝑖=1
𝑥𝑖 = 1 (4.22)

𝑍𝑖 ∈ {0, 1}, 𝑖 = 1, 2, ..., 𝑁 (4.23)
𝑞+

𝑡 ≥ 0, 𝑞−
𝑡 ≥ 0, 𝑡 = 1, 2, ..., 𝑇 (4.24)

Where:
𝑇𝐸 = tracking error measure represented by positive and negative deviations from

the index return
𝑡 = 1, 2, ..., 𝑇 is the time index
𝑖 = 1, 2, ..., 𝑁 is the asset index
𝑞+

𝑡 , 𝑞−
𝑡 = Variables used to linearize the Mean Absolute Deviation function

𝑅𝑡 = Index return at time t
𝑟𝑖𝑡 = Stock i return at time t
𝑥𝑖 = Stock i proportion in the portfolio
𝑍𝑖 = Indicates if stock i is included in the portfolio or not
𝐾 = Number of assets in the portfolio
𝐿𝑖 = Lower bound on stock i
𝑈𝑖 = Upper bound on stock i

The objective function (4.18) and constraint (4.19) represent a piecewise and not
differentiable MAD objective function. The constraint (4.20) is the cardinality constraint,
(4.21) limits the proportion of stocks with lower and upper bounds and (4.22) is the budget
constraint. This model was originally applied for a single period optimization.

(WANG; XU; DAI, 2018) SESW index tracking model is shown below.
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minimize (1− 𝜆)𝑉 (𝑍) + 𝜆𝑇𝐸 (4.25)

subject to
𝑁∑︁

𝑖=1
𝑍𝑖 = 𝐾 (4.26)

𝑙𝑗 ≤
𝑆𝑗∑︁

𝑖=𝑆𝑗−1+1
𝑍𝑖 ≤ 𝑢𝑗 , 𝑗 = 1, 2, ..., 𝑀 (4.27)

𝐿𝑖𝑍𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑁 (4.28)
𝑁∑︁

𝑖=1
𝑥𝑖 = 1 (4.29)

𝑍𝑖 ∈ {0, 1}, 𝑖 = 1, 2, ..., 𝑁 (4.30)
(4.31)

Where:
𝑇𝐸 = tracking error measure. 𝑇𝐸(𝑤) = (𝐼−𝑅𝑤)𝑇 (𝐼−𝑅𝑤)

𝑇

𝑉 = Estimation accuracy
𝜆 = Tuning parameter
𝑗 = 1, 2, ..., 𝑀 is the class index
𝑖 = 1, 2, ..., 𝑁 is the asset index
𝑥𝑖 = Stock i proportion in the portfolio
𝑍𝑖 = Indicates if stock i is included in the portfolio or not
𝐾 = Number of assets in the portfolio
𝐿𝑖 = Lower bound on stock i
𝑈𝑖 = Upper bound on stock i
𝑙𝑖 = Lower bound on the sample size of te 𝑗th class
𝑢𝑖 = Upper bound on the sample size of te 𝑗th class

The objective (4.25) aims to minimize a merit function. This merit function combines
the estimation accuracy and tracking error using a parameter 𝜆 defined by the investor.
Constraint (4.27) gives the scope of sample size of the 𝑗th class. (4.28) is the floor-ceiling
constraint, (4.26) is the cardinality constraint and (4.29) is the budget constraint.

The selected metaheuristic GQ (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015) was
originally designed to handle cardinality and floor-ceiling constraints only. Even though
these two obligatory constraints occur in almost all MINLP and MILP models, RQ #12,
answered in Section 3.2, confirms that, apart from these obligatory constraints, there was
no prevalence in the inclusion of other specific restrictions whatsoever. Considering these
two facts, it was decided to adopt (WANG et al., 2012) model to test the adaptation of GQ,
since it contains only these two obligatory constraints and hence avoids loss of generality
of the application. Other observations concerning advantages of the (WANG et al., 2012)
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model is that its relaxation (model without the cardinality constraint) is convex and linear,
thereby it can be solved very easily by algorithms contained in general-purpose solvers,
such as simplex and interior point.

4.2 ADAPTED GRASP-QUAD METAHEURISTIC

GQ (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015) was originally designed for the mean-
variance CCPO, which is an NP-Hard problem, also the case of index tracking optimization.
One of the main advantages of using GQ is that it reduces the computational cost of
solving the combinations of stocks and allocating weights to stocks. The name GQ comes
from linking GRASP and quadratic programming, but adjustments can make it work
with linear programming too. It constructs feasible solutions at two levels: stock selection
and proportion/weight optimization. After constructing the solution, it performs a local
search using two components, namely a MiLS and a MaLS. When MiLS occurs, a search is
performed in the following manner: one stock from 𝑆 is exchanged by another stock from
𝑆𝑐. When the multistart procedure ends, MaLS occurs. In MaLS, every stock contained in
𝑆 is exchanged by all those stocks contained in 𝑆𝑐, one by one. GQ algorithm is shown in
Algorithm 2. Further details are given in Baykasoglu, Yunusoglu & Ozsoydan (2015):

The first level of GQ occurs in the following manner: first, stocks are sorted according
to their associated greedy values, obtained by using a greedy function; and after that, 𝐾

stocks are chosen from the RCL, and this meets the cardinality constraint. The RCL is
the main component of the first level and is the primal search mechanism of GRASP. The
size of this component influences the greediness and randomness of the search.

The extreme scenarios of 𝑅𝐶𝐿𝑠𝑖𝑧𝑒 are: to build a solution within a local optimum or
blindfolded. Using a relatively small 𝑅𝐶𝐿𝑠𝑖𝑧𝑒, the search will be conducted in a greedy
way, choosing the most desired stocks, which in the case of minimization are the ones
with the smallest greedy values. Adopting a relatively bigger 𝑅𝐶𝐿𝑠𝑖𝑧𝑒 results in a random
search, thereby diluting the effects of the greedy values. Figure 16 shows distributions of
solutions generated by semi-greedy and random searches.

This result shown in Figure 16 was presented in Resende & Ribeiro (2016) for an
instance of the max covering problem and will be used to illustrate the effect on the
distribution of solutions for different sizes of the RCL. Solutions generated by multistart
procedures using a relatively smaller 𝑅𝐶𝐿𝑠𝑖𝑧𝑒 (semi-greedy search) are on average much
better than solutions generated by multistart procedures using a relatively larger 𝑅𝐶𝐿𝑠𝑖𝑧𝑒

(random search). Also, the semi-greedy search produces solutions with less variability.
Nevertheless, it is interesting to choose a 𝑅𝐶𝐿𝑠𝑖𝑧𝑒 that balances the trade-off between
greediness and randomness.

The greedy function 𝑔𝑖 proposed in this work was built based on the original non-linear
objective function of the index tracking problem of Wang et al. (2012). This greedy function
is presented in equation (4.32) and it computes the sum of absolute deviations of the
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Algorithm 2: GRASP-QUAD - Minimization case
1 Input: 𝑖𝑡𝑒𝑟𝑀𝐴𝑋 , 𝑅𝐶𝐿𝑠𝑖𝑧𝑒, 𝑝𝑀𝑖𝐿𝑆, 𝐾, 𝑈𝐵𝑀𝑖𝐿𝑆

2 Output: 𝑓𝑣𝑎𝑙, 𝑆𝑓𝑖𝑛𝑎𝑙

1: 𝑖𝑡𝑒𝑟 ← 1, 𝑓𝑣𝑎𝑙←∞, 𝑆𝑓𝑖𝑛𝑎𝑙 ← {}
2: while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑀𝐴𝑋 do
3: 𝑆 ← {}, 𝑆𝑐 ← {𝑠𝑡𝑜𝑐𝑘1, 𝑠𝑡𝑜𝑐𝑘2, ..., 𝑠𝑡𝑜𝑐𝑘𝑁}
4: while |𝑆| < 𝐾 do
5: 𝑔 ← 𝑔𝑒𝑡𝐺𝑟𝑒𝑒𝑑𝑦𝑉 𝑎𝑙𝑠(𝑆, 𝑆𝑐)
6: 𝑅𝐶𝐿← 𝑔𝑒𝑡𝑅𝐶𝐿(𝑔, 𝑆𝑐, 𝑅𝐶𝐿𝑠𝑖𝑧𝑒)
7: 𝑠← 𝑟𝑎𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑒(|𝑅𝐶𝐿|, 1)
8: 𝑆 ← 𝑆 ∪𝑅𝐶𝐿(𝑠)
9: 𝑆𝑐 ← 𝑆𝑐 −𝑅𝐶𝐿(𝑠)

10: end while
11: 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠(𝑆)
12: if 𝑟𝑎𝑛𝑑(0, 1) ≤ 𝑝𝑀𝑖𝐿𝑆 then
13: [𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆, 𝑆𝑀𝑖𝐿𝑆]←𝑀𝑖𝐿𝑆(𝑆, 𝑈𝐵𝑀𝑖𝐿𝑆)
14: if 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆 < 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝 then
15: 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝← 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆

16: 𝑆 ← 𝑆𝑀𝑖𝐿𝑆

17: end if
18: end if
19: if 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝 < 𝑓𝑣𝑎𝑙 then
20: 𝑓𝑣𝑎𝑙← 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝
21: 𝑆𝑓𝑖𝑛𝑎𝑙 ← 𝑆
22: end if
23: end while
24: [𝑓𝑣𝑎𝑙, 𝑆𝑓𝑖𝑛𝑎𝑙]←𝑀𝑎𝐿𝑆(𝑆𝑓𝑖𝑛𝑎𝑙)

Figure 16 – Comparison of solution distribution generated by semi-greedy and random
search. Adapted from Resende & Ribeiro (2016)

return of a naïve portfolio, composed by a candidate stock 𝑖 and stocks 𝑗 which were
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Figure 17 – The trial solution 𝑆 and unselected stocks 𝑆𝑐, when 𝐾 = 4 and |𝑈 | = 10

already included in the trial solution, in relation to the index return at time 𝑡.

𝑔𝑖 =
𝑇∑︁

𝑡=1
|𝑅𝑡 − 1

|𝑆|+ 1

⎛⎝𝑟𝑡
𝑖 +

∑︁
𝑗∈𝑆

𝑟𝑡
𝑗

⎞⎠| (4.32)

where 𝑇 is the in-sample period size. 𝑆 and 𝑆𝑐 are illustrated in Figure 17, considering
that the universe 𝑈 is a set of assets from a stock market. It would have a a considerably
high computational cost to consider all assets available in an specific stock market, thus,
it is necessary to consider a reduced set with a selected number of stocks. There is a rule
of thumb that recommends to include those stocks that compose the index to be tracked.

An equally-weighted allocation was considered because there is no clue on how to
allocate weights according to the problem formulation before the capital allocation phase.
After choosing 𝐾 stocks, the second level of GQ is initiated. At this level, the proportion
of 𝑆 is adjusted by a linear/quadratic solver, based on the mathematical programming
model of choice, and 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝 will be computed. The commercial solver CPLEX was set
for this level.

After the first weight optimization of 𝑆, MiLS can be performed with probability 𝑝𝑀𝑖𝐿𝑆,
performing a local search in the neighborhood of the newly found trial solution. MiLS is
simple because the search for better solutions is made by exchanging a stock from the
trial solution 𝑆 with a stock from the complement of the trial solution 𝑆𝑐. Finally, the
objective function value of the trial solution, 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝, is compared with the objective
function value of the best solution found until then, 𝑓𝑣𝑎𝑙. If 𝑓𝑣𝑎𝑙𝑡𝑒𝑚𝑝 is better than 𝑓𝑣𝑎𝑙,
the current best trial solution 𝑆𝑓𝑖𝑛𝑎𝑙 is updated.

When the number of iterations reaches its maximum value, MaLS is applied to the best
trial solution found. This second component of the local search tests new combinations
with all ignored stocks (𝑆𝑐) until it is no longer possible to improve the trial solution
anymore. The GQ process flowchart is shown in Figure 18.
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Figure 18 – GQ flowchart.
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4.3 PROPOSED 𝜑-DEPTH MINOR LOCAL SEARCH (𝜑-DMILS)

The 𝜑-Depth Minor Local Search (𝜑-DMiLS) proposed in this work is a modification of
GQ original MiLS (GQ-MiLS). The development of 𝜑-DMiLS was inspired by the fact
that it is possible to input a poor trial solution in MaLS that will make it produce a poor
final solution, which means that this solution will not be within the neighborhood of the
optimal solution.

It was decided to perform a deeper search in the neighborhood of a solution constructed
by the RCL, exchanging one or more assets simultaneously, at the cost of a higher CPU
time relative to GQ-MiLS, in order to input better solutions in MaLS. The algorithm of
𝜑-DMiLS is shown in Algorithm 3.

The main principle that governs 𝜑-DMiLS is to keep a deep search, exchanging more
than one stock, while the solution is poor, and reduce the depth as the solution improves.
The modified GQ flowchart is shown in Figure 19
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Algorithm 3: 𝜑-Depth Minor Local Search - Minimization Case
1 Input: 𝑆, 𝑆𝑐, 𝑓𝑣𝑎𝑙, 𝜑, 𝑈𝐵𝑀𝑖𝐿𝑆

2 Output: 𝑓𝑣𝑎𝑙𝜑−𝐷𝑒𝑝𝑡ℎ, 𝑆𝜑−𝐷𝑒𝑝𝑡ℎ

1: while 𝜑 > 0 do
2: 𝑆𝑀𝑖𝐿𝑆 ← 𝑆, 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆 ← 𝑓𝑣𝑎𝑙, 𝑏𝑜𝑜𝑙_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑← 0
3: while 𝑖 < 𝑈𝐵𝑀𝑖𝐿𝑆 do
4: 𝑆𝑡 ← 𝑆
5: 𝑠1 ← 𝑟𝑎𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑒(|𝑆|, 𝜑) # choose 𝜑 assets without replacement
6: 𝑠2 ← 𝑟𝑎𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑒(|𝑆𝑐|, 𝜑)
7: for 𝑖𝑛𝑑𝑒𝑥𝑠 = 1 : 𝜑 do
8: 𝑆𝑡(𝑠1(𝑖𝑛𝑑𝑒𝑥𝑠))← 𝑆𝑐(𝑠2(𝑖𝑛𝑑𝑒𝑥𝑠)) # exchange 𝑠1 by 𝑠2
9: end for

10: 𝑓𝑣𝑎𝑙𝑡 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠(𝑆𝑡)
11: if 𝑓𝑣𝑎𝑙𝑡 < 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆 then
12: 𝑏𝑜𝑜𝑙_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑← 1
13: 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆 ← 𝑓𝑣𝑎𝑙𝑡
14: 𝑆𝑀𝑖𝐿𝑆 ← 𝑆𝑡

15: end if
16: 𝑖← 𝑖 + 1
17: end while
18: if 𝑏𝑜𝑜𝑙_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 then
19: # maintain depth
20: 𝑆 ← 𝑆𝑀𝑖𝐿𝑆, 𝑆𝜑−𝐷𝑒𝑝𝑡ℎ ← 𝑆𝑀𝑖𝐿𝑆

21: 𝑆𝑐 ← {𝑠𝑡𝑜𝑐𝑘1, ..., 𝑠𝑡𝑜𝑐𝑘𝑁} − 𝑆𝑀𝑖𝐿𝑆

22: 𝑓𝑣𝑎𝑙← 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆, 𝑓𝑣𝑎𝑙𝜑−𝐷𝑒𝑝𝑡ℎ ← 𝑓𝑣𝑎𝑙𝑀𝑖𝐿𝑆

23: else
24: # get shallower
25: 𝜑← 𝜑− 1
26: end if
27: end while
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Figure 19 – Modified GQ flowchart.
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4.4 CHAPTER CONCLUSION

This chapter presented the proposed GRASP approach and the model it will solve. The
adopted GRASP metaheuristic is the one developed by (BAYKASOGLU; YUNUSOGLU;

OZSOYDAN, 2015), named GQ. A new greedy function was proposed to adapt to the index
tracking problem GQ. Also, a modified local search component was modified. In this
modification more than one asset is exchanged and the number of assets exchanged per
iteration is maintained if a solution improvement occurs. In the next chapter the proposed
GRASP approach will be evaluated against a commercial SOLVER.
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5 EXPERIMENTS AND RESULTS

This section exposes the results of experiments over parameter configuration and evaluation
of the best parameter setup of the GRASP heuristics applied to the selected index
tracking model. Initial experiments concern parameter configuration, since the choice of
the parameters of a heuristic will influence in the quality of the final solution (MARTI;

PARDALOS; RESENDE, 2018). The final experiments determine the best algorithm for
the considered index tracking model. All the performance evaluations are relative to the
solutions obtained by a general purpose solver.

5.1 EXPERIMENT DESIGN FOR THE PROPOSED ADAPTATION AND THE INCREMENT
OF THE GQ LOCAL SEARCH

The goal of theoretical studies about stochastic algorithms are (MARTI; PARDALOS; RE-

SENDE, 2018):

• Select and apply stochastic algorithms to choose the best for the given problem

• Define the best algorithm parameters

• Modify the design of the algorithms to achieve better ones

The original GQ was adapted and modified. Then, taking the objectives mentioned
above into consideration, experiments were run guided by the experiment design presented
in Figure 20

Figure 20 – Experiment design
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The first step is the selection of the database and the benchmark solver. Next, solutions
are computed for the associated instances of the Wang et al. (2012) model by the selected
benchmark solver. Having these solutions in hand, groups of parameters can be estabilished.
Those groups are divided in two so that the effectiveness of the greedy function can be
measured. The effect of the greedy function will be reflected by a greedy group, which
configures a semi-greedy search, balancing greediness and randomness. The group that
dilute the effect of the greedy function is the random group. The sets in each group will be
compared using the solutions obtained by the solver. The same happens with the random
group. After finding the best parameter set for each group, a final evaluation using MaLS
is performed to define the best heuristic and to check the effectiveness of the proposed
greedy function.

5.2 BENCHMARK SOLVER AND PERFORMANCE EVALUATION

It was decided to choose CPLEX as the benchmark solver since it can solve the chosen
model and it is the most used solver for benchmarking against heuristic in index tracking
problems, as discussed in Secion 3.2. The solution generated by CPLEX is obtained through
the branch-and-cut algorithm (IBM, 2020), which is a combination of the B&B Algorithm,
shown in algorithm 4 (PAPADIMITRIOU; STEIGLITZ, 1998), and using cutting planes to
reduce the number of branches.

Algorithm 4: Basic branch-and-bound algorithm
1: 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡← {0} # 0 is the original problem
2: 𝑈 ←∞
3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡← {}
4: while 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ̸= ∅ do
5: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒← 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡(𝑘) # choose a node k, where k ∈ activeSet
6: 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡← 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡− {𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒}
7: 𝐶 ← 𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡) # generate children 𝑖 and their lower bounds 𝑧𝑖

8: for 𝑖 ∈ 𝐶 do
9: if 𝑧𝑖 ≤ 𝑈 then

10: if 𝑖 is a complete solution then
11: 𝑈 ← 𝑧𝑖

12: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡← 𝑖
13: else
14: 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡← 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ∪ {𝑖}
15: end if
16: end if
17: end for
18: end while

In Algorithm 4, the 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 contains open search nodes, 𝑈 is the upper bound and
min∀𝑗∈𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 𝑧𝑗 is the lower bound. The While loop from line 4 to line 18 holds when
there still exists open search nodes. In the beginning of the loop, a search node is selected
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to be branched. The feasible region of the problem in the selected node is divided into
two, therefore generating two children nodes. The optimal solution 𝑧𝑖 of the relaxed linear
problem is computed in each children node 𝑖. If cutting planes are used to tighten the linear
programming relaxations, the algorithm becomes branch-and-cut, such as in CPLEX’s
MIP solvers. If a complete solution is found (integer feasible solution) then this branch is
bounded and the children becomes a fathomed. If the solution is feasible and 𝑧𝑖 ≤ 𝑈 it
becomes the upper bound (the best integer solution), otherwise this node is killed. If an
incomplete feasible solution is found, this children is stored in 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 and becomes an
open search node. In CPLEX MIP solvers, the search proceeds depending on the chosen
criteria. For instance, one can set a 𝐺𝐴𝑃 or time tolerance if he/she accepts to stop before
finding an optimal integer solution.

The performance of the heuristic was measured in terms of the 𝐺𝐴𝑃 between its
solution and the CPLEX solution (5.1). Based on other works that compared commercial
solvers and heuristics/metaheuristics (ANDRADE et al., 2015; GONCALVES; RESENDE, 2015;
GUASTAROBA; SPERANZA, 2012), a runtime limit of one hour was set for all models solved
by CPLEX.

𝐺𝐴𝑃 = 100 *
(︃

𝑓𝑔 − 𝑓𝑤

𝑓𝑤

)︃
(5.1)

Where 𝑓𝑤 is the solution obtained by CPLEX and 𝑓𝑔 is the solution obtained by GQ

5.3 DATABASE

The index tracking data used in this study is available from Beasley OR library at
<http://people.brunel.ac.uk/$\sim$mastjjb/jeb/orlib/indtrackinfo.html>. This database
was selected because, according to Section 3.2 analysis, this is the most used database by
works that approach index tracking models with heuristics/metaheurstics. Details about
the five instances selected from this database are shown in the first two columns of Table 21.
These five instances were also used in Baykasoglu, Yunusoglu & Ozsoydan (2015) and works
concerning the evaluation of metaheuristics for the index tracking problem (BEASLEY;

MEADE; CHANG, 2003; RUIZ-TORRUBIANO; SUAREZ, 2009; GUASTAROBA; SPERANZA, 2012;
WANG et al., 2012) to analyse the performance of the metaheuristic when the size of the
index to be tracked grows.

5.4 RESULTS.

The experiments were performed using an Intel(R) Core(TM) I7 3.4 GHz with 8GB RAM.
Matlab 2017b was used to implement the heuristic and as the main modelling language
comprising CPLEX commercial solver API.

http://people.brunel.ac.uk/$\sim $mastjjb/jeb/orlib/indtrackinfo.html
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Instance N K In-sample (weeks) 𝑇𝑖𝑚𝑒𝐶𝑃 𝐿𝐸𝑋 (s) 𝐺𝐴𝑃𝐶𝑃 𝐿𝐸𝑋(%)

Hang Seng (indtrack1) 31 10 145 3.73 0
DAX100 (indtrack2) 85 10 145 3619.58 24.69
FTSE100 (indtrack3) 89 10 145 3641.11 41.02
S&P100 (indtrack4) 98 10 145 3606.02 40.20

Nikkei225 (indtrack5) 225 10 145 3604.87 85.48

Table 21 – Instances and model information

5.4.1 CPLEX solutions.

Table 21 summarizes all instances, number of stocks N associated, portfolio cardinality K
adopted, total elapsed CPU time in CPLEX solver and 𝐺𝐴𝑃𝐶𝑃 𝐿𝐸𝑋 obtained by each one.

For the index tracking model adopted in this study, only ‘indtrack1’ had its optimal
integer solution found by CPLEX in less than 1 hour. 𝐺𝐴𝑃𝐶𝑃 𝐿𝐸𝑋 is an output provided by
CPLEX after the end of the optimization. It indicates the percentage difference between
the objective value of the best feasible integer solution found and the minimum of the
objective values of the relaxed index tracking problem in the active set of nodes. So, if
𝐺𝐴𝑃𝐶𝑃 𝐿𝐸𝑋 is equal to 5%, then CPLEX has found a feasible integer solution which is
proved to be within 5% of the integer optimal solution.

5.4.2 Experiments to Define Parameters and to Compare MiLS algorithms.

Solution construction phase and MiLS efficiency depends on how their parameters and
greedy functions are set. That efficiency will affect the quality of solutions to be input
into MaLS and also the time for it to compute a final solution. Some experiments were
performed for both types of solution construction: greedy and random, thereby aiming to
examine the effects of the chosen greedy function and local features.

Section 5.4.2.1 presents the greedy construction evaluation and Section 5.4.2.2 presents
the random construction evalutaion. Two groups of experiments will be performed in
both sections 5.4.2.1 and 5.4.2.2. The first group of experiments consisted in adopting
the ‘indtrack1’ instance to define parameters for GQ and at the same time compares
both MiLS Algorithms. The second group of experiments evaluated the best parameter
configuration and MiLS algorithms against other problem instances (different values of
𝑁).

Each experiment inside a group consists of 30 runs of GQ. As discussed in 4.3, the
quality of the solution was measured using the mean of the GAP and the precision of the
heuristic is indicated by the standard deviation of GAP. If the mean GAP is big and the
GAP standard deviation is very small, this can indicate that the search is stuck in a local
optimum. To measure the cost of a solution, CPU time mean and standard deviation were
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observed.

5.4.2.1 Results for Greedy Parameter Sets.

Table 22 summarizes all parameter sets (columns) and the associated parameter values
used (lines) and Table 23 shows the results for each parameter set and for both MiLS
algorithms used by GQ in instance 1.

1 2 3 4 5 6 7 8

𝑖𝑡𝑒𝑟𝑀𝐴𝑋 50 100 50 50 50 50 50 50
𝑅𝐶𝐿𝑠𝑖𝑧𝑒 0.35N 0.35N 0.25N 0.45N 0.45N 0.45N 0.45N 0.45N
𝑝𝑀𝑖𝐿𝑆 0.4 0.4 0.4 0.4 0.2 0.6 0.4 0.4

𝑈𝐵𝑀𝑖𝐿𝑆 0.15R 0.15R 0.15R 0.15R 0.15R 0.15R 0.25R 0.15R
𝜑 3 3 3 3 3 3 3 2

*𝑅 = 𝑅𝐶𝐿𝑠𝑖𝑧𝑒

Table 22 – Greedy parameter sets

The first two parameters set were used to evaluate how the number of iterations impact
the quality and cost of the trial solution, using a base value of 50 iterations, which is
not too time consuming, and these are doubled to 100 iterations to verify if a significant
impact on the mean GAP occurred. Note from Table 23 that doubling the number of
maximum iterations doubles the mean CPU time for both types of MiLS and reduces only
4% of the GAP. This result shows that it is not worth doubling the maximum number of
iterations, so, for the following experiments, parameter set 1 will be put to test.

Parameter sets 1, 3 and 4 were compared to evaluate the impacts of a high, medium
and low, respectively, greedy 𝑅𝐶𝐿𝑠𝑖𝑧𝑒 in the trial solution. It was possible to obtain better
solutions for both MiLS algorithms using a less greedy 𝑅𝐶𝐿𝑠𝑖𝑧𝑒, this being worth the
increase in 𝜇(CPUtime) for the 𝜑-DMiLS algorithm. Thus, parameter set 4 is the best
choice until this point. It is important for the reader to understand that the term ‘better
solution’ used here refers to finding a solution that dominates the reference solution
with respect to all the four performance metrics: smallest 𝜇(GAP) and 𝜎(GAP), smallest
𝜇(CPUTime) and 𝜎(CPUTime).

The MiLS parameters were set using the same comparison procedure. The results
for parameter sets 4, 5 and 6, containing medium, lower and higher values of 𝑝𝑀𝑖𝐿𝑆,
respectively, were compared in order to determine which set could offer the best solutions.
𝑝𝑀𝑖𝐿𝑆 included in parameter set 4 produced the best solutions, since it balances 𝜇(GAP)
and 𝜇(CPUtime). Now it will be ascertained if an increase in 𝑈𝐵𝑀𝑖𝐿𝑆 can produce better
solutions. For this verification, results from parameter sets 4 and 7 were compared, where
the last set has a higher 𝑈𝐵𝑀𝑖𝐿𝑆 value. It was concluded that a lower 𝑈𝐵𝑀𝑖𝐿𝑆 produces
the best solutions for both algorithms. Finally, parameter sets 4 and 8 were compared to
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Par Set MiLS 𝜇(GAP)(%) 𝜎(GAP)(%) 𝜇(CPUtime)(s) 𝜎(CPUtime)(s)

1 GQ 57.981 6.566 7.087 0.294
𝜑-D 40.086 8.966 12.871 1.379

2 GQ 54.901 5.609 14.226 0.385
𝜑-D 36.040 11.317 25.241 1.748

3 GQ 58.421 10.389 6.376 0.331
𝜑-D 44.289 9.185 11.196 0.994

4 GQ 53.766 8.599 7.529 0.518
𝜑-D 27.468 7.747 19.974 2.869

5 GQ 59.837 8.518 6.224 0.384
𝜑-D 33.839 11.643 12.109 2.595

6 GQ 53.684 6.613 8.443 0.376
𝜑-D 21.496 7.244 27.667 2.941

7 GQ 56.781 8.437 8.524 0.709
𝜑-D 17.847 5.740 30.790 3.735

8 GQ 53.766 8.599 7.529 0.518
(𝜑 = 2)-D 27.468 7.747 19.974 2.869
(𝜑 = 3)-D 29.437 10.386 16.848 2.007

Table 23 – Results for greedy parameter sets and the MiLS algorithm

verify what happens when a lower 𝜑 value is used. In this case, nothing could be concluded
as the solutions produced by both the parameter sets are similar. Then, both 𝜑 values
will be used in the next group of experiments. In Figure 21 we can visualize the greedy
parameter configuration results.

Next, parameter set 4 and 8 were tested in different instances. This experiment was
performed to evaluate the efficiency of the parameters and MiLS algorithms for larger
values of N. The results are shown in Table 24.

Note that no matter the value of 𝑁 , 𝜑-DMiLS will always produce a lower 𝜇(GAP)
relative to GQ-MiLS. Although 𝜑-DMiLS produces a better 𝜇(GAP), it does so at the
cost of a relatively high computational effort. Again, results for the two values of 𝜑 are
similar. Thus, 𝜑 = 3 (parameter set 4) was selected for the experiments in section 4.3,
because it produces slightly better solutions in relation to 𝜑 = 2. Figure 22 summarizes
GAP and CPU time results for other instances. The associated MiLS column of parameter
set 8 in Figure 22 is equal to the MiLS column of parameter set 4 because this parameter
set only changes 𝜑, which is a parameter that only exists in the new 𝜑-DMiLS.
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Figure 21 – Semi-greedy configuration results

N MiLS 𝜇(GAP)(%) 𝜎(GAP)(%) 𝜇(CPUtime)(s) 𝜎(CPUtime)(s)

85 GQ 84.681 11.669 13.162 0.942
𝜑 = 3 26.086 5.802 65.560 11.957
𝜑 = 2 27.651 6.526 62.341 10.022

89 GQ 61.475 7.689 14.231 1.241
𝜑 = 3 28.948 5.743 61.472 7.737
𝜑 = 2 30.294 6.049 60.560 8.654

98 GQ 72.641 8.152 15.082 1.359
𝜑 = 3 30.154 4.411 71.556 10.310
𝜑 = 2 34.021 6.541 66.052 9.598

225 GQ 61.210 7.614 33.277 2.618
𝜑 = 3 27.094 4.422 196.010 37.580
𝜑 = 2 30.059 3.531 173.683 26.571

Table 24 – Results of semi-greedy construction (parameter sets 4 and 8) and MiLS algo-
rithms for different values of N



82

Figure 22 – Semi-greedy configuration results for other instances

5.4.2.2 Results for Random Parameter Sets.

Table 25 summarizes all random parameter sets considered. Only the 𝑅𝐶𝐿𝑠𝑖𝑧𝑒 value was
changed in these experiments, since MiLS parameters have already been defined in Section
5.4.2. Table 26 shows the results for each parameter set and for both MiLS algorithms
used by GQ.

1 2 3

𝑖𝑡𝑒𝑟𝑀𝐴𝑋 50 50 50
𝑅𝐶𝐿𝑠𝑖𝑧𝑒 N 0,85N 0,75N
𝑝𝑀𝑖𝐿𝑆 0,4 0,4 0,4

𝑈𝐵𝑀𝑖𝐿𝑆 0,15R 0,15R 0,15R
𝜑 3 3 3

MaLS Off Off Off

Table 25 – Random parameter sets

Figure 23 summarizes the results for GAP and CPU time associated with random
construction in instance 1. GQ-MiLS combined with random solution construction seems to
produce almost the same mean and standard deviation for either GAP and computational
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MiLS 𝜇(GAP)(%) 𝜎(GAP)(%) 𝜇(CPUtime)(s) 𝜎(CPUtime)(s)

1 GQ 49.189 10.883 10.351 0.872
𝜑-D 13.729 5.991 47.257 5.898

2 GQ 47.868 15.383 9.573 0.734
𝜑-D 18.599 6.326 34.706 5.116

3 GQ 48.794 13.492 9.708 0.769
𝜑-D 16.205 8.049 36.065 5.073

Table 26 – Results for random parameter sets and MiLS algorithm

N MiLS 𝜇(GAP)(%) 𝜎(GAP)(%) 𝜇(CPUtime)(s) 𝜎(CPUtime)(s)

85 GQ 71.621 10.091 19.885 2.508
𝜑-D 15.826 5.077 138.170 25.681

89 GQ 52.279 8.012 21.585 2.780
𝜑-D 21.605 3.920 129.870 27.312

98 GQ 66.620 7.650 20.782 2.550
𝜑-D 20.595 3.551 145.937 21.009

225 GQ 61.647 6.366 46.222 7.737
𝜑-D 23.040 4.151 340.673 47.296

Table 27 – Results of random construction (random parameter set 3) and MiLS algorithms
for different values of N

time for any trial solutions independent of the random parameter set. Also, better 𝜇(GAP)
values were achieved but the precision was reduced (𝜎(GAP) increased), obviously, since
the selection of stock is more random. On the other hand, now 𝜑-DMILS solutions are
even more expensive, though they produce lower 𝜇(GAP). Randomness hinders the search
and, as a consequence, more effort is made by 𝜑-DMILS to improve solutions. Another
feature of 𝜑-DMILS is that it produces similar precision values for either greedy or random
constructions. Parameter set 3 was adopted for the following experiments, so as to reduce
the level of randomness, thereby avoiding a completely blind search. Figure 24 summarizes
GAP and CPU time results for other instances.

Table 27 presents the results obtained by running GQ with random parameter set 3
for different values of N.

The superiority of 𝜑-DMiLS relative to GQ-MiLS in relation to 𝜇(GAP) remains. As
expected, the 𝜑-DMiLS computational effort increased when compared to results in Table
23. GQ-MiLS 𝜇(CPUtime) also increased for all instances.
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Figure 23 – Random configuration results

5.4.3 Evaluating the Final Solution.

This last group of experiments evaluates how MiLS impacts MaLS. If spending more
time on MiLS can be compensated by getting better and faster results in MaLS, then
it is worth paying the computational cost required for the 𝜑-DMiLS algorithm. Now
that parameters were defined for each search mode, the best MiLS algorithm can be
obtained combining it with MaLS. The parameter ‘random fit’, associated with MaLS
(BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015), was not used in the final experiments due
to bad results in preliminary tests.

Because of the expensive runtime required for these experiments, only three instances
were used: ‘indtrack 1’; ‘indtrack 4’ also representing ‘indtrack 2’ and ‘indtrack 3’, because
they have almost the same number of assets that comprise the index, and ‘indtrack
5’.Results for the final tests are shown in Table 28 and Table 29.

On comparing results from Table 28 and Table 29, it is inferred that as 𝑁 gets higher,
the importance of the greedy function also gets higher. Greedy construction found similar
solutions in terms of quality in less time than random construction did, for both MiLS
algorithms when 𝑁 = 98 and 𝑁 = 225. It also can be observed that the use 𝜑-Depth
MiLS, independent of the construction type, reduces the time interval to compute a final
solution and it can still can get a higher quality solution relative to GQ-MiLS. This leads
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Figure 24 – Random configuration results for other instances

N MiLS 𝜇(GAP)(%) 𝜎(GAP)(%) 𝜇(CPUtime)(s) 𝜎(CPUtime)(s)

31 GQ 0.576 1.309 93.07 17.31
𝜑-Depth 0.648 1.490 86.53 17.09

98 GQ 8.302 6.893 478.00 134.68
𝜑-Depth 5.712 3.720 369.97 93.88

225 GQ 12.478 4.676 1066.74 249.58
𝜑-Depth 11.604 5.199 841.37 222.12

Table 28 – Result of MiLS (greedy construction) and MaLS combination

to the conclusion that a greedy 𝜑-Depth MiLS is the suitable option for the problem.
The measures 𝜇(𝐺𝐴𝑃 ) and 𝜇(𝐶𝑃𝑈𝑡𝑖𝑚𝑒) showed that GQ can produce good solutions

in less time in comparison to the commercial solver CPLEX. For instance, in Table 28 a
𝜇(𝐺𝐴𝑃 ) = 5.72% was achieved for 𝑁 = 98 in a mean time of 7 minutes. In other words,
GQ, in about 7 minutes, could get a solution almost as good as the solution that was
found by CPLEX in a time interval of 1 hour. Figures 25 and 26 show the final results for
greedy and random configurations, respectively.
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N MiLS 𝜇(GAP)(%) 𝜎(GAP)(%) 𝜇(CPUtime)(s) 𝜎(CPUtime)(s)

31 GQ 0.230 0.876 93.09 17.03
𝜑-Depth 0.612 1.403 87.19 11.68

98 GQ 7.294 6.193 488.75 119.02
𝜑-Depth 4.220 3.779 425.03 108.71

225 GQ 14.590 6.739 1079.76 304.05
𝜑-Depth 12.917 3.514 933.07 266.83

Table 29 – Result of MiLS (random construction) and MaLS combination

Figure 25 – Final results for semi-greedy configuration
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Figure 26 – Final results for random configuration
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5.5 CHAPTER CONCLUSION

This chapter presented the results of the proposed GRASP metaheuristic adapted for the
index tracking problem. The adopted database was OR-library (BEASLEY; MEADE; CHANG,
2003) and CPLEX was selected as a benchmark against the heuristic. The results showed
that the proposed GRASP adaptation outperforms the commercial solver CPLEX. The
semi-greedy solution results showed that better final solutions are obtained due to the new
greedy function proposed. Besides, since the modified local search component provided
better solutions for MaLS it produced better final solutions than that of the original local
search component. In the next chapter, conclusions about this work are drawn.
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6 CONCLUSIONS AND FUTURE WORK

With the growth of heuristic and non-heuristic solution approaches applied to the index
tracking problem in the last decade, journals encompassing operational research and com-
puter science areas were the most promising destinations for research papers concerning
this problem. Despite their relatively low production rate in the last decade, heuristic-
s/metaheuristics have more citation impact than non-heuristic solution approaches. Also, it
was possible to verify that heuristics/metaheuristics solution approaches are concentrated
in the MINLP quantitative modeling framework.

Most of the papers that adopted heuristics/metaheuristics as a solution approach
implemented genetic and differential evolution algorithms to their index tracking formula-
tion. Not only pure heuristics were applied to this problem, but also hybridizations using
both heuristics and commercial solvers. CPU time and correlation with respect to the
index were one of the most used evaluation metrics to indicate heuristics/metaheuristics
success. These evaluation metrics were used most often when comparing different heuris-
tics/metaheuristics or when using the CPLEX solver as the main benchmark solution
method.

A diversity of objective functions was found among works in index tracking models,
such as minimization of tracking error measures, transaction costs minimization and return
maximization. A good part of the objective functions used in the formulations solved
by heuristics solution approaches consisted of two tracking error measures: Root Mean
Squared Error and Mean Squared Error. Although different types of practical constraints
were used in index tracking problems solved by heuristic methods in the last decade, such
as round-lot and CVaR, there is no prevalence of using any of these. With respect to
databases adopted, the most used is the OR-library followed by Datastream. The former
database contains public data and the later is a commercial database.

For this work, the selected index tracking model was (WANG et al., 2012) because is
best fit for building a base comparison of the GQ metaheuristic, also, there is no loss
of generality, since GQ not only can be applied to other models with the same set of
constraints but also evaluated and tested in models adopting different objective functions.
The adopted database was OR-library because it is widely used in the index tracking
literature and is publicly available. The commercial solver CPLEX was selected because it is
the most used solver for benchmarking against heuristic solution methods in index tracking
problems. The metaheuristic GQ (BAYKASOGLU; YUNUSOGLU; OZSOYDAN, 2015) was
adopted because it was the first GRASP adapted for the cardinality constrained financial
portfolio optimization. An adaptation of the GQ greedy function for the tracking error
criterion was developed, considering that GQ was originally designed for the mean-variance
cardinality constrained model. Also, a local search component of GQ was modified and
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evaluated.
The experiments performed in this work showed that GRASP has great potential in

portfolio optimization, more specifically in solving index tracking problems. With a manual
parameter tuning procedure it was possible to obtain 𝜇(𝐺𝐴𝑃 ) values less than 12% at
time intervals of less than 1 hour, using fixed parameters of the GQ for all instances.

Comparing 𝜑-DMiLS trial solutions with GQ-MiLs trial solutions it is evident that the
better the quality of the solutions obtained before MaLS, the faster it will compute a good
quality final solution. The computational time of 𝜑-DMiLS before MaLS is compensated
because it produces higher quality solutions. These experiments also put the formulation
used for the greedy function to test. It was noticed that on using this greedy function
formulation, a time-relative gain was achieved as N grows.

6.1 FUTURE WORK

As to future lines of research, there are many other index tracking formulations, containing
practical and robust constraints, and other instances which can be explored and experi-
mented with using GRASP. Future works include the comparison with other heuristics in
experiments, such as those presented in Amorim et al. (2020), that have not been concluded
in time to be presented in this dissertation, although it shall appear in future publications.
The reformulation of greedy functions is also important to increase the chances of finding
near-optimal solutions in a shorter time interval and to test GRASP adaptations in other
objective functions. Furthermore, it is interesting to implement search increments in the
proposed metaheuristic. The path-relinking mechanism can provide a long-term memory
structure for GRASP (RESENDE; RIBEIRO, 2016; MARTI; PARDALOS; RESENDE, 2018), and
can be incremented with restart strategies (RESENDE; RIBEIRO, 2011). Also, instead of
using manual parameter adjustments, it is interesting to explore the automated tune-in of
the parameters of the GRASP approach applied to the index tracking problem by adopting
reactive search procedures (RESENDE; RIBEIRO, 2016; MARTI; PARDALOS; RESENDE, 2018)
and Iterated F-Race (IRace) (LóPEZ-IBáñEZ et al., 2016).
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