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ABSTRACT

In 1937, Myron Mathisson initiated a research program with the aim of de-
scribing extended bodies in General Relativity, similar to what is done with rigid
bodies in Classical Mechanics. In his theory, the internal structure of the bod-
ies is described by using the so-called multipolar moments. When considering the
spin of the particle beyond its translational motion, the motion of the particle
is not necessarily geodesic anymore, being described by the so-called Mathisson-
Papapetrou-Dixon (MPD) equations. In the early 1980s, R. Rudiger published two
articles dedicated to study the most general conserved charges associated to the
motion of particles with spin moving in a curved spacetime and described by the
MPD equations. In particular, it was shown that, besides the well-known conserved
quantity associated to Killing vectors, there is also another conserved quantity that
is linear in the spin of the particle and which involves a Killing-Yano tensor. It was
also shown in these papers that in order of this new scalar to be conserved, two ob-
scure conditions involving the Killing-Yano tensor and the curvature tensor must
be satisfied. In this thesis, we seek to shed light over these conditions, by trying de-
limitate the possible spacetimes in which these conditions are satisfied, i.e. in which
this new conserved quantity is allowed to exist. In order to extract the content of
the Rudiger conditions, some essential mathematical tools are introduced along
the text. In this sense, we discuss about the so-called integrability conditions for
the Killing-Yano tensors and also we introduce the Petrov classification, which is
an important algebraic classification for the Weyl tensor valid in four-dimensional
spacetimes. However, before discuss these tools, a revision concerning Mathisson’s
theory and the MPD equations is made.

Keywords: Extended bodies. General Relativity. Mathisson-Papapetrou-Dixon
equations. Conserved charges. Killing-Yano tensor.



RESUMO

Em 1937, Myron Mathisson iniciou um programa de pesquisa com a finalidade
de descrever corpos extensos em Relatividade Geral, de uma forma semelhante ao
que é feito com corpos rígidos em Mecânica Clássica. Em sua teoria, a estru-
tura interna dos corpos é descrita através dos chamados momentos multipolares.
Quando consideramos o spin da partícula além do seu movimento translacional, o
movimento da partícula não é mais necessariamente geodésico, e passa a ser des-
crito pelas chamadas equações de Mathisson-Papapetrou-Dixon (MPD). No início
da década de 1980, R. Rüdiger publicou dois artigos dedicados a estudar as car-
gas conservadas mais gerais associadas ao movimento de partículas com spin se
movendo num espaço-tempo curvo e que são descritas pelas equações MPD. Em
particular, foi mostrado que, além da bem conhecida quantidade conservada asso-
ciada a vetores de Killing que essas partículas admitem, existe ainda uma outra
quantidade conservada linear no spin da partícula e que envolve um tensor de
Killing-Yano. Foi provado ainda nesses artigos que, para que esse novo escalar
seja conservado, duas condições obscuras envolvendo o tensor de Killing-Yano e o
tensor de curvatura devem ser satisfeitas. Nessa tese, buscamos esclarecer o con-
teúdo dessas duas condições, buscando delimitar os possíveis espaços-tempos em
que essas condições são satisfeitas, isto é, em que a nova quantidade conservada
é permitida existir. Com a finalidade de extrair o conteúdo das condições de Rü-
diger, algumas ferramentas matemáticas essenciais são introduzidas ao longo do
texto. Deste modo, discutimos sobre as chamadas condições de integrabilidade dos
tensores de Killing-Yano e também introduzimos a classificação de Petrov, que é
uma importante classificação algébrica para o tensor de Weyl válida em espaços-
tempos em quatro dimensões. Contudo, antes de discutirmos essas ferramentas,
uma revisão a respeito da teoria do Mathisson e das equações MPD é feita.

Palavras-chaves: Corpos extensos. Relatividade Geral. Equações de Mathisson-
Papapetrou-Dixon. Cargas conservadas. Tensor de Killing-Yano.
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1 INTRODUCTION

The problem of describing the motion of an extended body is well-known in New-
tonian mechanics. There, the description can be understood as the composition of
two independent motions, namely, the translation of some representative point of
the body and the rotation around this chosen point. So, one needs first to define
the representative point of the body, which is usually taken as its center of mass,
and then determine the orientation of the body. This can be implemented by intro-
ducing two coordinate systems: one fixed, which measures the coordinates of the
reference point by means of three parameters, and another which is attained to the
body, whose orientation in relation to the fixed system is described by three other
independent parameters (Euler angles), such that the extended body is described
by six degrees of freedom.

The idea of treating extended bodies within the framework of General Rela-
tivity arose since the beginning of Einstein’s theory. One approach, developed by
Einstein and others, considered bodies with comparable masses with the assump-
tion that their velocities are small in comparison with the velocity of light [1].
Another approach, due to Mathisson and Papapetrou mainly, consisted of treating
the problem supposing that one of the bodies possessed a mass much smaller than
the other. In this latter approach, the Einstein field equations are used to deter-
mine the gravitational field generated by the more massive body, while another
equation, namely ∇𝛽𝐼𝛼𝛽 = 0, with 𝐼𝛼𝛽 being the energy-momentum tensor asso-
ciated to the body with smallest mass, is used to determine its motion. In other
words, the smallest body is considered as a test body. In this thesis, we will focus
on the latter approach.

The motivation for studying this area is straightforward. Indeed, since the
bodies found in the universe perform not only translational motion, but also a
rotational one, the consideration of the internal motion of these bodies (such as
the spin) in the general theory of relativity, certainly will modify some equations
of the theory. In fact, as we will see later, when spin is considered, the motion
of the body is not necessarily geodesic anymore. As usually is made, the bodies
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are modelled as point particles, so that considerations of their internal structure
are neglected. Since general relativity is the best theory of gravitation we have up
to now, it could be interesting include spin in order to make the equations of the
theory more precise. This precision is required if we are interested in the correct
description of some systems in the universe, such as binary systems, for example,
or in the study of gravitational waves generated by these systems.

This work is structured as follows. A review of the theory which treats ex-
tended bodies in GR is made in chapters 2 and 3. In particular, chapter 2 is
devoted to derive the equations of motion for a spinning test particle, the so-called
Mathisson-Papapetrou-Dixon (MPD) equations, while in chapter 3 a discussion
is made about the so-called spin supplementary conditions, which are conditions
used to supplement the MPD equations, since, as we will see along this thesis,
these equations are not sufficient to determine all necessary degrees of freedom. In
chapter 4, we talk about Killing and Killing-Yano tensors, which are special tensors
that generate the so-called hidden symmetries, and some important mathematical
tools such as Petrov classification are introduced. Finally, in chapter 5, we solve
the central problem of this thesis, concerning conserved quantities for the spinning
test particle.

Specifically, we are interested in analysing the conserved quantity found by Rü-
diger in Ref. [25], and how it can be useful in the problem of integrability of MPD
equations. It is well-known how conserved quantities are useful in the integrability
of the equations of motion. In fact, for a particle travelling along a geodesic path,
the geodesic equation is not directly integrated. Instead, we make use of the con-
served quantities associated with the Killing vectors that the spacetime possesses.
In particular, in Kerr spacetime, the complete integrability of geodesic equation is
achieved only if, besides the conserved quantities associated with Killing vectors,
we use the conserved quantity associated with a Killing tensor of rank two admit-
ted by the spacetime (actually, this Killing tensor comes from a more fundamental
object called Killing-Yano tensor). In Rüdiger’s work, it is found for the spinning
particle a conserved quantity related with a Killing-Yano tensor. The main aim
of this thesis is to study this conserved quantity, and to seek to answer the ques-
tion if this conserved quantity could be or not useful for the integrability of MPD
equations in some spacetimes.
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2 MULTIPOLAR MOMENTS: TREATING EXTENDED BODIES IN GR

It is an implicit assumption of the matter coupling to Einstein’s General Rela-
tivity (GR) that bodies moving in spacetime are treated as particles, i.e., objects
without internal structure, described only by translational degrees of freedom.
With this assumption, we can establish many known results of the theory, as for
example the fact that free particles (particles subjected only to the gravitational
force) move along geodesics. However, if we decide to relax this assumption and
try to describe extended bodies, many interesting questions arise.

In particular, how can we treat extended bodies in GR? How does this change
modify the results of the theory? Essentially, there are two ways to approach this
problem. The first, due to Einstein, Infeld and others, treats the problem consi-
dering two bodies of comparable masses. In this approach, both bodies generate
relevant gravitational fields, and the motion of each body should be considered
with respect to the gravitational field generated by the other body. The second,
due to Mathisson, Papapetrou, Dixon and others, describes the motion of bodies
(called test particles) moving in an external gravitational field. In this approach,
these bodies are supposed to have very small masses such that their gravitational
fields can be neglected in comparison to the external gravitational field. In this
thesis we will handle the problem of extended bodies from the point of view of the
second approach.

In this chapter, we start introducing some fundamental concepts of GR which
will be necessary along the thesis. Then, we describe Mathisson’s formalism of
multipolar moments which describes bodies of finite size in GR. In what follows
we always work in a four-dimensional spacetime of signature 𝑠 = −2 (Lorentzian
manifold). Symmetrization and antisymmetrization of indices are denoted by round
and square brackets around these indices, respectively. In particular, for some
tensor 𝑇𝜇𝜈 we have 𝑇(𝜇𝜈) = 1

2(𝑇𝜇𝜈 + 𝑇𝜈𝜇) and 𝑇[𝜇𝜈] = 1
2(𝑇𝜇𝜈 − 𝑇𝜇𝜈). In tha same

way, 𝑇[𝛼𝛽𝛾] = 1
3!(𝑇𝛼𝛽𝛾 + 𝑇𝛾𝛼𝛽 + 𝑇𝛽𝛾𝛼 − 𝑇𝛽𝛼𝛾 − 𝑇𝛼𝛾𝛽 − 𝑇𝛾𝛽𝛼), and so on. Besides,

∇𝜇𝑉 𝛼 = 𝜕𝜇𝑉 𝛼 + Γ𝛼
𝜇𝛽𝑉 𝛽 denotes the covariant derivative of a vector field 𝑉 𝛼,

being Γ𝛼
𝜇𝛽 the Christoffel symbol.
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2.1 SOME BASIC CONCEPTS AND USEFUL RELATIONS IN GR

Let us start by defining the spacetime as a continuum formed by events, with
an event being a point in space at a determined instant of time. It is assumed that
for each event, we can always assign a set of four numbers, i.e. there is always
a one-to-one mapping relating the spacetime with the set R4. In the language of
differential geometry, it is said that the spacetime is a four-dimensional differential
manifold.

In Einstein’s gravitation theory, gravity is seen as curvature. The presence of
matter and energy deforms the spacetime and gives its geometry. In the absence
of curvature, we recover the flat spacetime of Special Relativity (Minkowski spa-
cetime). In the flat spacetime, two covariant derivatives commute, i.e.,

(∇𝜇∇𝜈 − ∇𝜈∇𝜇)𝑉 𝛼 = 0, (2.1)

for any vector 𝑉 𝛼. In the context of GR, however, it follows from differential
geometry that the right-hand side of (2.1) does not vanish. Rather, in this case we
have

(∇𝜇∇𝜈 − ∇𝜈∇𝜇)𝑉 𝛼 = 𝑅𝛼
𝛽𝜇𝜈𝑉 𝛽, (2.2)

which is known as Ricci identity. Of course, the formula (2.2) can be easily genera-
lized for the application of the operator 2∇[𝜇∇𝜈] on a tensor of any type, in which
case we only gain additional terms on the right-hand side of (2.2). The tensor
𝑅 which appears in (2.2), is called Riemann tensor or curvature tensor, and its
components with respect to a coordinate basis {𝜕𝜇} are given by

𝑅𝛼
𝛽𝛾𝛿 = 2𝜕[𝛾|Γ𝛼

𝛽|𝛿] + 2Γ𝛼
𝜖[𝛾|Γ𝜖

𝛽|𝛿], (2.3)

where the notation above means antisymmetrization in the pair 𝛾𝛿 only, and Γ𝛼
𝛽𝛾

are the components of the Levi-Civita connection (Christoffel symbols). As its own
name suggests, the curvature tensor describes the cuvature of the metric represen-
ting the spacetime (technically the curvature of the connection). In particular, in
the flat spacetime, 𝑅 vanishes at all points of the spacetime.

The curvature tensor possesses some symmetries that reduces significantly the
number of its independent components. In particular, it satisfies the following
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relations:
𝑅𝛼𝛽𝛾𝛿 = −𝑅𝛽𝛼𝛾𝛿 = −𝑅𝛼𝛽𝛿𝛾 = 𝑅𝛾𝛿𝛼𝛽. (2.4)

In addition, 𝑅 also satisfies the identities [2]:

𝑅𝛼[𝛽𝛾𝛿] = 0 , (2.5)
∇[𝜇𝑅𝛼𝛽]𝛾𝛿 = 0 , (2.6)

which are known as first and second Bianchi identities, respectively. A significant
reduction is achieved in the degrees of freedom of the curvature if we consider
the above symmetries. In fact, in a four-dimensional spacetime, the 44 = 256
independent components of a general tensor with four indices reduces to only 20
if the tensor has the symmetries given in Eqs. (2.4) and (2.5).

An important fact that comes from the second Bianchi identity is that the
Einstein tensor has null divergence. In fact, contracting ∇[𝜇𝑅𝛼𝛽]𝛾𝛿 = 0 twice with
the metric tensor, we obtain

∇𝜇

(︂
𝑅𝜇𝜈 − 1

2𝑅𝑔𝜇𝜈
)︂

= 0 ⇒ ∇𝜇𝐺𝜇𝜈 = 0, (2.7)

where we define the Einstein tensor 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 , with 𝑅𝜇𝜈 standing for

the Ricci tensor (𝑅𝜇𝜈 = 𝑅𝛼
𝜇𝛼𝜈), 𝑅 for the Ricci scalar and 𝑔𝜇𝜈 for the metric

tensor. Also, the curvature tensor can be decomposed into its irreducible blocks
with respect to the action of the Lorentz group, which are given by the Weyl tensor
𝐶𝛼𝛽𝛾𝛿, the traceless part of the Riemann tensor (𝐶𝛼

𝛽𝛼𝛾 = 0), the Ricci tensor and
the Ricci scalar as follows:

𝑅𝛼𝛽𝛾𝛿 = 𝐶𝛼𝛽𝛾𝛿 + 𝑔𝛼[𝛾𝑅𝛿]𝛽 − 𝑔𝛽[𝛾𝑅𝛿]𝛼 − 1
3𝑅𝑔𝛼[𝛾𝑔𝛿]𝛽, (2.8)

where we define the Weyl tensor 𝐶𝛼𝛽𝛾𝛿. Equation (2.8) means that from the 20
independent components of the Riemann tensor, 10 are encoded in 𝑅𝜇𝜈 and 10 in
the Weyl tensor. In addition, we define the traceless part Φ𝜇𝜈 of the Ricci tensor
as Φ𝜇𝜈 = 𝑅𝜇𝜈 − 1

4𝑅𝑔𝜇𝜈 satisfying the relation 𝑔𝛼𝛽Φ𝛼𝛽 = 0. In terms of the tensor
\Φ, the above decomposition writes

𝑅𝛼𝛽𝛾𝛿 = 𝐶𝛼𝛽𝛾𝛿 + 𝑔𝛼[𝛾Φ𝛿]𝛽 − 𝑔𝛽[𝛾Φ𝛿]𝛼 + 1
6𝑅𝑔𝛼[𝛾𝑔𝛿]𝛽, (2.9)

a relation which will be useful in the fourth chapter.
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A totally antisymmetric tensor 𝜔 with 𝑝 indices, i.e., 𝜔𝑎1...𝑎𝑝 = 𝜔[𝑎1...𝑎𝑝], is
called a differential form of rank 𝑝, or simply a 𝑝-form. One can define some useful
operations on differential forms, as its exterior derivative and the so-called Hodge
duality.

The exterior derivative 𝑑 of a 𝑝-form 𝜔 is by definition a 𝑝 + 1-form defined by
the relation

(𝑑𝜔)𝜇𝑎1...𝑎𝑝 = (𝑝 + 1)𝜕[𝜇𝜔𝑎1...𝑎𝑝]. (2.10)

In particular, the exterior derivative of a 0-form is the gradient 𝜕𝜇𝜔. We can also
define the exterior product ∧ between two forms by

(𝜔1 ∧ 𝜔2)𝜇1...𝜇𝑝+𝑞 = (𝑝 + 𝑞)!
𝑝!𝑞! (𝜔1)[𝜇1...𝜇𝑝(𝜔2)𝜇𝑝+1...𝜇𝑝+𝑞 ], (2.11)

with 𝜔1 being a p-form and 𝜔2 being a q-form.
In addition, in a four-dimensional manifold, a 𝑝-form 𝜔 is always related to a

(4 − 𝑝)-form by the star operation:

𝜔⋆
𝑎1...𝑎4−𝑝

= 1
𝑝!𝜖

𝑏1...𝑏𝑝

𝑎1...𝑎4−𝑝
𝜔𝑏1...𝑏𝑝 , (2.12)

which is called Hodge duality, being 𝜖 the Levi-Civita tensor.
Besides, throughout this thesis, the following formula giving the contraction

between two Levi-Civita tensors will also be useful:

𝜖𝑎1...𝑎𝑝𝑏𝑝+1...𝑏4𝜖𝑎1...𝑎𝑝𝑐𝑝+1...𝑐4 = −𝑝!(4 − 𝑝)!𝛿[𝑏𝑝+1
𝑐𝑝+1 ...𝛿𝑏4]

𝑐4 . (2.13)

2.2 DESCRIPTION OF THE METHOD

In this section, we will derive the set of equations that describe the motion of
a spinning test particle in GR. The deduction follows the seminal paper A New
Mechanics of Material Systems (translated title) of 1937 by Myron Mathisson [3].
In this article, the author proposes a method by which one can treat bodies of
finite size in GR by the use of the so called multipolar moments. The idea to treat
extended bodies by means of multipolar moments was first proposed by Mathisson
to derive the equations of motion of a spinning particle. However, we point out
that the same set of equations derived in [3] was also derived afterwards in different
ways by other authors, including a Lagrangian formulation [4, 5, 7-9].
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The central idea of Mathisson’s paper was to introduce the concept of gra-
vitational skeleton of a body, which consists in substituting the extended body
by an infinite set of multipolar moments. Then, we obtain an integral equation
from which all the dynamics of the extended body is extracted. In other words,
the integral equation should determine the form and dynamics of the multipolar
moments.

The equations of motion of a spinning test particle, here referred as Mathisson-
Papapetrou-Dixon (MPD) equations, read

𝑝̇𝛼 = −1
2𝑅𝛼

𝛽𝛾𝛿𝑣
𝛽𝑆𝛾𝛿 ,

𝑆̇𝛼𝛽 = 2 𝑝[𝛼𝑣𝛽] , (2.14)

where 𝑝𝛼, 𝑣𝛼 and 𝑆𝛼𝛽 are the momentum, velocity and spin of the particle, res-
pectively, and dot means covariant differentiation in velocity direction, 𝑆𝛼𝛽 being
antisymmetric (𝑆𝛼𝛽 = −𝑆𝛽𝛼). In particular, 𝑝̇𝛼 = 𝑣𝛽∇𝛽𝑝𝛼. We note that in this
theory there are thirteen degrees of freedom, four from 𝑝𝛼, six from 𝑆𝛼𝛽 and th-
ree from 𝑣𝛼, once the velocity is supposed to satisfy the normalization condition
𝑣𝛼𝑣𝛼 = 1. However, the system of equations (2.14) has only ten equations, which
tells us that such equations cannot fix all the degrees of freedom. So, the system
needs to be supplemented by other three equations. This point will be discussed
in the next chapter. In the present chapter, we focus on the derivation of the
equations (2.14).

The MPD equations were derived by a variety of different methods. In [3],
they are obtained by the use of multipole moments supposing that the particle
moves in a background which is solution of the vacuum Einstein field equations.
In [4], a non-covariant deduction is made starting from the conservation equation
∇𝛽𝐼𝛼𝛽 = 0, with 𝐼𝜇𝜈 being an energy-momentum tensor associated to the particle.
In [5], the author simplifies the deduction made in [3] introducing the use of the
Dirac delta function in this theory. A covariant formalism is proposed in [7] in
which the covariance is maintained along the entire derivation. In addition, in [8]
the equations are deduced through a canonical dynamic approach by making use
of Poisson brackets in a phase space, whereas in [9] they are derived from a Lagran-
gian formulation. In the present thesis, we will derive the set of equations (2.14)
following Mathisson’s method, although without requiring that the background in
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which the particle moves needs to be an Einstein spacetime (spaces with Ricci ten-
sor proportional to the metric, solutions of Einstein’s equations in vacuum with a
possible cosmological constant). At the end of this chapter, we also illustrate how
one can obtain the MPD equations from a Lagrangian approach.

Our starting point is supposing that the dynamics of the gravitational field is
described by the Einstein-Hilbert action, that is,

𝑆𝐸𝐻 =
∫︁ √

−𝑔𝑅𝑑4𝑥. (2.15)

If we sum the above action with the action of the matter fields, then the application
of the principle of least action leads to the Einstein field equations:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 , (2.16)

where 𝑇𝜇𝜈 is the energy-momentum tensor of the matter fields and 𝜅 = 8𝜋𝐺, with
𝐺 representing the Newtonian constant of gravitation. The assumption (2.15) is
what properly defines GR, which is a theory that describes gravity at low energy
levels (classical level). We note however that if we are interested in high energy
effects, the action (2.15) is not sufficient anymore, and the use of other theories
can be necessary, as is the case for example of the modified theory of gravity 𝑓(𝑅)
[11], where the Ricci scalar 𝑅 in action (2.15) is substituted by a function 𝑓(𝑅) of
the Ricci scalar, and string theory [12]. Nevertheless, we note that these theories
always should recover GR in low energy limits.

As we saw above, the Einstein tensor has zero divergence. From this fact it
follows from (2.16) that 𝑇𝜇𝜈 should also obey

∇𝛽𝑇 𝛼𝛽 = 0, (2.17)

i.e., 𝑇 satisfies a conservation equation.
In what follows, the particle is supposed to move in an external gravitational

field 𝑔𝛼𝛽 (which is called background) which is solution of the Einstein equation
(2.16). The gravitational field generated by the moving particle is supposed to be
very small in comparison with the field of the background. In other words, the
energy-momentum tensor associated to the particle does not enter in the right-
hand side of (2.16) for the computation of the metric of the background. A body
with this feature is what we call a test particle.



17

For the description of the extended body, we will proceed as follows. We assign
for the extended body an energy-momentum tensor 𝐼𝜇𝜈 . Along its motion, the
body describes a world tube in the spacetime, and we suppose that the tensor
𝐼𝜇𝜈 vanishes outside this world tube. Within this world tube we select a line 𝐿 of
reference which we choose as the representative curve of the body’s trajectory. The
coordinates of the reference line are denoted by 𝑥𝛼

𝑜 and are functions of the proper
time. With that scenario in mind, let us consider the integral in the spacetime∫︁

𝑉
𝐼𝛼𝛽𝜉𝛼𝛽

√
−𝑔 𝑑4𝑥, (2.18)

for arbitrary symmetric tensor fields 𝜉𝛼𝛽 that vanish at infinity. Now, in any point
𝑃 of the reference line 𝐿, we consider the Taylor expansion for the tensor fields 𝜉

𝜉𝛼𝛽 = 𝜉𝛼𝛽|𝑜 + 𝛿𝑥𝛾(𝜕𝛾𝜉𝛼𝛽)|𝑜 + 1
2!𝛿𝑥𝛿𝛿𝑥𝛾(𝜕𝛿𝜕𝛾𝜉𝛼𝛽)|𝑜 + ... , (2.19)

where we are using the compact notation 𝜕𝜇 = 𝜕
𝜕𝑥𝜇 and 𝛿𝑥𝛼 = 𝑥𝛼−𝑥𝛼

𝑜 . Substituting
the expansion in the integral, we have∫︁

𝐿
𝑑𝜏
(︂

𝜉𝛼𝛽

∫︁
𝑑3𝑥

√
−𝑔 𝐼𝛼𝛽 + 𝜕𝛾𝜉𝛼𝛽

∫︁
𝑑3𝑥

√
−𝑔 𝛿𝑥𝛾𝐼𝛼𝛽

+ 1
2!𝜕𝛿𝜕𝛾𝜉𝛼𝛽

∫︁
𝑑3𝑥

√
−𝑔 𝛿𝑥𝛿𝛿𝑥𝛾𝐼𝛼𝛽 + ...

)︂
, (2.20)

which can be put into the form of the line integral∫︁
𝐿

(︂
𝑀𝛼𝛽𝜉𝛼𝛽 + 𝑀𝛾𝛼𝛽𝜕𝛾𝜉𝛼𝛽 + 1

2!𝑀
𝛾𝛿𝛼𝛽𝜕𝛾𝜕𝛿𝜉𝛼𝛽 + ...

)︂
𝑑𝜏, (2.21)

with the identifications:

𝑀𝛼𝛽 =
∫︁

𝑑3𝑥
√

−𝑔 𝐼𝛼𝛽, 𝑀𝛾𝛼𝛽 =
∫︁

𝑑3𝑥
√

−𝑔 𝛿𝑥𝛾𝐼𝛼𝛽, ... (2.22)

and so on. Now, we supplement in (2.21) the ordinary derivatives of 𝜉𝛼𝛽 in order to
transform them into covariant derivatives. At the end, we arrive at an expression
involving the tensor field 𝜉𝛼𝛽 and its covariant derivatives ∇𝛾𝜉𝛼𝛽, ∇𝛾∇𝛿𝜉𝛼𝛽 and so
on, with each of these terms contracted with expressions involving the 𝑀 ’s defi-
ned in (2.22), the components of the connection Γ𝛼

𝛽𝛾 and their partial derivatives.
Identifying these expressions with quantities 𝑚’s, we eventually arrive at∫︁

𝐿

(︂
𝑚𝛼𝛽𝜉𝛼𝛽 + 𝑚𝛾𝛼𝛽∇𝛾𝜉𝛼𝛽 + 1

2!𝑚
𝛾𝛿𝛼𝛽∇𝛾∇𝛿𝜉𝛼𝛽 + ...

)︂
𝑑𝜏 . (2.23)
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The tensors 𝑚𝛼𝛽, 𝑚𝛾𝛼𝛽, 𝑚𝛾𝛿𝛼𝛽 etc... which are symmetric in 𝛼 and 𝛽 and in the
remaining set of indices, are called multipolar moments of the extended body, while
the particles described by these moments are called multipolar particles. These
infinite set of moments is what Mathisson called the gravitational skeleton of the
body. All the description of the body should be contained in these moments, and
the description of the body motion reduces to obtaining the form and evolution of
such moments. So, we have the relation∫︁

𝑉
𝐼𝛼𝛽𝜉𝛼𝛽

√
−𝑔 𝑑4𝑥 =

∫︁
𝐿

(︂
𝑚𝛼𝛽𝜉𝛼𝛽 + 𝑚𝛾𝛼𝛽∇𝛾𝜉𝛼𝛽 + 1

2!𝑚
𝛾𝛿𝛼𝛽∇𝛾∇𝛿𝜉𝛼𝛽 + ...

)︂
𝑑𝜏.

(2.24)
At this point, we postulate that the tensor 𝐼𝛼𝛽 obeys the conservation equation

∇𝛽𝐼𝛼𝛽 = 0, (2.25)

and we suppose that the tensor field 𝜉 is the derivative of an arbitrary vector field
𝜒, that is,

𝜉𝛼𝛽 = ∇(𝛼𝜒𝛽). (2.26)

Using (2.25) and (2.26), we can transform by Gauss theorem the integral of the
left-hand side of (2.24) into a surface integral over the boundary 𝜕𝑉 of the volume
𝑉 , which vanishes, so that we finally arrive at the equation:∫︁

𝐿

(︂
𝑚𝛼𝛽∇𝛼𝜒𝛽 + 𝑚𝛾𝛼𝛽∇𝛾∇𝛼𝜒𝛽 + 1

2!𝑚
𝛾𝛿𝛼𝛽∇𝛾∇𝛿∇𝛼𝜒𝛽 + ...

)︂
𝑑𝜏 = 0. (2.27)

Equation (2.27) is what Mathisson called the variational equation of mechanics,
which is the central equation of Mathisson’s work. All the dynamics of the multi-
polar moments should follow from that equation. Therefore, all the work from now
on consists in extracting all the consequences of the variational equation (2.27).

2.2.1 The pole particle

We are using the infinite set of multipolar moments to describe an extended
body. However, we observe that we do not need all the moments for the description
of the body in practice. In fact, since we are working with test particles, some
higher multipole moments can be neglected. As an initial example, one supposes
that the particle is small enough in a way that it is sufficiently described by the first
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moment 𝑚𝛼𝛽 only. That is possible because from the integral expressions (2.22)
of the multipolar moments, we note that higher order moments depend on higher
powers of 𝛿𝑥𝛼, in such a way that they can be neglected if the body is taken as a
point particle. Later we will treat the more general case of the pole-dipole particle.

Let us illustrate in this section how we can determine the content of equation
(2.27), i.e, how we can extract the form and evolution of multipolar moments. In
this case we have the integral equation∫︁

𝐿
𝑚𝛼𝛽∇𝛼𝜒𝛽 𝑑𝜏 = 0. (2.28)

At this point, we observe that the velocity 𝑣𝜇 of the test particle is a well defined
quantity at each point of the reference world line 𝐿 and as this line is parametrized
by the proper time we should have the normalization condition 𝑣𝜇𝑣𝜇 = 1. Then, at
each point of the world line 𝐿 we split the degrees of freedom of the moment 𝑚𝛼𝛽

into degrees parallel and orthogonal to the velocity 𝑣𝜇. So, we have the following
decomposition into the three independent blocks [3]:

𝑚𝛼𝛽 = 𝑚 𝑣𝛼𝑣𝛽 + 2 𝑚(𝛼𝑣𝛽) + 𝑚̂𝛼𝛽, (2.29)

where 𝑚 is some scalar which depends on the proper time (𝑚 = 𝑚(𝜏)) while 𝑚𝛼

and 𝑚̂𝛼𝛽 are tensors orthogonal to 𝑣𝛼 (𝑚𝛼𝑣𝛼 = 0 and 𝑚̂𝛼𝛽𝑣𝛽 = 0), with 𝑚̂𝛼𝛽 being
symmetric (𝑚̂𝛼𝛽 = 𝑚̂(𝛼𝛽)). In fact, it is easy to see that all the degrees of freedom of
the symmetric tensor 𝑚𝛼𝛽 are contained into the three blocks of the righ-hand side
of (2.29). In particular, for the case we are interested (four dimensional spacetimes),
𝑚𝛼𝛽 contains ten degrees of freedom, while the first, second and third term of the
right-hand side of (2.29) contain one, three and six degrees of freedom, respectively.

In the same way, the tensor ∇𝛼𝜒𝛽 can be decomposed as follows

∇𝛼𝜒𝛽 = 𝜒𝑣𝛼𝑣𝛽 + 2 𝜒̃(𝛼𝑣𝛽) + 𝜒̂𝛼𝛽, (2.30)

with 𝜒̃𝛼 and 𝜒̂𝛼𝛽 being orthogonal to velocity and 𝜒̂ being a symmetric tensor.
In the decomposition (2.30), 𝜒, 𝜒̃𝛼 and 𝜒̂𝛼𝛽 are completely arbitrary components,
once the vector field itself 𝜒𝛼 (and so its derivative also) is arbitrary. Substituting
the decomposition (2.29) into the integral equation (2.28), we obtain∫︁

𝐿
𝑚 𝑣𝛼𝑣𝛽 ∇𝛼𝜒𝛽 𝑑𝜏 +

∫︁
𝐿

2 𝑚(𝛼𝑣𝛽)∇𝛼𝜒𝛽 𝑑𝜏 +
∫︁

𝐿
𝑚̂𝛼𝛽∇𝛼𝜒𝛽 𝑑𝜏 = 0. (2.31)
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This latter expression involves the integration of directional derivatives of 𝜒 which
are independent of each other, once it involves derivatives parallel and orthogonal
to velocity. The independence of the three integrals above can be seen more clearly
if we align the velocity 𝑣𝛼 with the time direction of some Lorentz frame. In this
frame, the first term involves only the time derivative of the time component of
𝜒 (∇0𝜒0), while the second involves derivatives like ∇0𝜒𝑖 and ∇𝑖𝜒0, and the third
involves only spatial derivatives of spatial components of 𝜒 (∇𝑖𝜒𝑗). Then, it implies
that each line integral of (2.31) should vanish separately. In particular, we should
have ∫︁

𝐿
𝑚(𝛼𝑣𝛽)∇𝛼𝜒𝛽 𝑑𝜏 = 0, and

∫︁
𝐿

𝑚̂𝛼𝛽∇𝛼𝜒𝛽 𝑑𝜏 = 0. (2.32)

Again, once ∇𝛼𝜒𝛽 is arbitrary, the only way to guarantee that the above integrals
always vanish is that all the coefficients of ∇𝜒 vanish, that is,

𝑚(𝛼𝑣𝛽) = 0, and 𝑚̂𝛼𝛽 = 0. (2.33)

Contracting the first equation of (2.33) with 𝑣𝛽, we get 𝑚𝛼 = 0. Substituting these
results into (2.31), we get∫︁

𝐿
𝑚𝑣𝛼𝑣𝛽∇𝛼𝜒𝛽𝑑𝜏 =

∫︁
𝐿

𝑑

𝑑𝜏
(𝑚 𝑣𝛽𝜒𝛽)𝑑𝜏 −

∫︁
𝐿

𝑣𝛼∇𝛼(𝑚 𝑣𝛽)𝜒𝛽𝑑𝜏 = 0. (2.34)

The first term vanishes because the field 𝜒𝜇 is supposed be zero at infinity, and
the second term implies finally

𝑣𝛽∇𝛽(𝑚𝑣𝛼) = 0, (2.35)

Equation (2.35) is a constraint not only on the evolution of the pole particle but
also on the evolution of the scalar 𝑚. In fact, contracting it with 𝑣𝛼, we get

𝑑𝑚

𝑑𝜏
+ 𝑚 𝑣𝛼𝑣𝛽∇𝛽𝑣𝛼 = 0. (2.36)

The second term clearly vanishes since 𝑣𝛼𝑣𝛼 = 1. Therefore, we conclude

𝑑𝑚

𝑑𝜏
= 0, (2.37)

which substituting into (2.35) produces the geodesic equation as we know

𝑣𝛽∇𝛽𝑣𝛼 = 0. (2.38)
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Therefore, the pole particle case tells us that the test particle should describe a
geodesic equation with a parameter 𝑚 being conserved along the motion of the
particle. That was expected, since if we consider only the first moment we are in
the case of point particle, so that the basic assumptions of GR should be recovered.

2.2.2 The pole-dipole particle

In the pole case, we saw that the geodesic equation is predicted by the method.
Let us now analyse the more interesting case of the so called pole-dipole appro-
ximation, when the first two moments 𝑚𝛼𝛽 and 𝑚𝛾𝛼𝛽 are considered. Retaining
these two multipolar moments, the variational equation reads∫︁

𝐿
(𝑚𝛼𝛽∇𝛼𝜒𝛽 + 𝑚𝛾𝛼𝛽∇𝛾∇𝛼𝜒𝛽)𝑑𝜏 = 0. (2.39)

In this case, in addition to decomposition (2.29), we need also to split the moment
𝑚𝛾𝛼𝛽 into components parallel and orthogonal to 𝑣𝛼. We start by observing that
in this case the integral equation (2.39) has the property of remaining unchanged
by the transformations

𝑚𝛼𝛽 → 𝑚𝛼𝛽 + 𝑛̇𝛼𝛽 and 𝑚𝛾𝛼𝛽 → 𝑚𝛾𝛼𝛽 + 𝑣𝛾𝑛𝛼𝛽, (2.40)

for any symmetric tensor 𝑛𝛼𝛽. It means that the variational equation (2.39) for the
pole-dipole particle is not able to determine the multipole moments uniquely. For
this reason, Mathisson imposes on the moment 𝑚𝛾𝛼𝛽 the supplementary condition

𝑣𝛾𝑚𝛾𝛼𝛽 = 0, (2.41)

a choice that eliminates the arbitrariness in the determination of the multipolar
moments. Then, considering this condition we have the following decomposition:

𝑚𝛾𝛼𝛽 = 𝑛𝛾𝑣𝛼𝑣𝛽 + 2𝑆(𝛼|𝛾𝑣|𝛽) + 𝑚̃𝛾𝛼𝛽, (2.42)

where 𝑛𝛼𝑣𝛼 = 0, and 𝑆𝛼𝛽 and 𝑚̃𝛾𝛼𝛽 are orthogonal to 𝑣𝛼 in all indices, with
𝑚̃𝛾𝛼𝛽 being symmetric in 𝛼 and 𝛽. It is also easy to see that all the degrees of
freedom present in the left-hand side of (2.42) are preserved in the right-hand side
of the above decomposition. In fact, since one has 𝑣𝛾𝑚𝛾𝛼𝛽 = 0, it follows that the
multipolar moment 𝑚𝛾𝛼𝛽 has thirty degrees of freedom, while the first, second and
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third term of the right-hand side have three, nine and eighteen degrees of freedom,
respectively.

In principle, terms involving the moments 𝑚𝛼𝛽 and 𝑚𝛾𝛼𝛽 can be analysed
separately, since they are related to first and second derivatives of the vector field
𝜒, which seems independent. However, we note that terms of second derivatives
containing velocity vectors can be transformed into lower order derivative terms,
such that these terms are not independent of the terms involving first derivatives
of 𝜒 in (2.39). Taking only the second derivative terms which are independent of
the first derivative ones, we have∫︁

𝐿
𝑆𝛼𝛾𝑣𝛽𝜕𝛾𝜕𝛼𝜒𝛽 𝑑𝜏 +

∫︁
𝐿

𝑚̃𝛾𝛼𝛽𝜕𝛾𝜕𝛼𝜒𝛽 𝑑𝜏 = 0. (2.43)

As the second derivatives of 𝜒 are arbitrary, it implies that the symmetric part
(in the indices 𝛼 and 𝛾) of its coefficients should vanish:

𝑆(𝛼𝛾)𝑣𝛽 = 0 and 𝑚̃(𝛾𝛼)𝛽 = 0. (2.44)

Contracting with 𝑣𝛽 the first equation of (2.44) implies that the symmetric part
of 𝑆𝛼𝛽 is zero, which means that 𝑆𝛼𝛽 is antisymmetric (𝑆𝛼𝛽 = 𝑆[𝛼𝛽]). The second
equation of (2.44) establishes 𝑚̃(𝛾𝛼)𝛽 = 0, which means that 𝑚̃𝛾𝛼𝛽 is antisymmetric
in the first pair of indices. It is simple to prove by manipulation of indices that
any tensor of three indices which is symmetric in the last pair and antisymmetric
in the first pair is zero. So, we conclude that 𝑚̃𝛾𝛼𝛽 = 0. Then, using the Ricci
identity (2.2) and the symmetry properties of the Riemann tensor, we can obtain
the relation:
∫︁

𝐿
(𝑆𝛼𝛾𝑣𝛽 + 𝑆𝛽𝛾𝑣𝛼)∇𝛾∇𝛼𝜒𝛽 𝑑𝜏 = 1

2

∫︁
𝐿

𝜒𝛿𝑅𝛿𝛽𝛾𝛼(𝑆𝛾𝛼𝑣𝛽 + 2𝑆𝛾𝛽𝑣𝛼) 𝑑𝜏

−
∫︁

𝐿
𝑆̇𝛽𝛾∇𝛾𝜒𝛽 𝑑𝜏 (2.45)

Now, we note that the last integral of (2.45) has the same structure of the terms
involving the moment 𝑚𝛼𝛽 in the original expression (2.39) (all of them containing
first derivatives of 𝜒). Then, decomposing the antisymmetric tensor 𝑆̇𝛽𝛾 as

𝑆̇𝛽𝛾 = 𝑆𝛽𝛾 + 2 𝐿[𝛽𝑣𝛾], (2.46)
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with 𝑆𝛼𝛽𝑣𝛽 = 0 and 𝐿𝛼𝑣𝛼 = 0, and collecting all these terms together, we obtain
the expression:∫︁

𝐿
𝑆𝛼𝛽∇𝛼𝜒𝛽 𝑑𝜏 +

∫︁
𝐿
(𝐿𝛼 + 𝑚𝛼)𝑣𝛽∇𝛼𝜒𝛽 𝑑𝜏 +

∫︁
𝐿

𝑚̂𝛼𝛽∇𝛼𝜒𝛽 𝑑𝜏 = 0. (2.47)

Again, this implies the vanishing of each of the coefficients of ∇𝜒. Then we have
𝑆𝛼𝛽 = 0, 𝑚̂𝛼𝛽 = 0 and (𝐿𝛼 + 𝑚𝛼)𝑣𝛽 = 0, whose contraction with 𝑣𝛽 leads to the
result 𝐿𝛼 + 𝑚𝛼 = 0. Therefore, by contracting (2.46) with 𝑣𝛾 we conclude that
𝐿𝛼 = 𝑣𝛾𝑆̇𝛼𝛾, which allows us finally express (2.46) as

𝑆̇𝛼𝛽 + 𝑣𝛼𝑣𝛾𝑆̇𝛽𝛾 − 𝑣𝛽𝑣𝛾𝑆̇𝛼𝛾 = 0. (2.48)

The remaining terms of (2.39) read∫︁
𝐿

[︂
𝑣𝜈∇𝜈(𝑚 𝑣𝛼) − 1

2𝑅𝛼
𝛽𝛾𝛿(𝑆𝛾𝛿𝑣𝛽 + 2 𝑆𝛽𝛿𝑣𝛾) − 2𝐿̇𝛼

]︂
𝜒𝛼 𝑑𝜏 = 0, (2.49)

which implies that the expression in square brackets is zero. Once that 𝐿𝛼 = 𝑣𝛾𝑆̇𝛼𝛾,
we obtain

𝑣𝜆∇𝜆(𝑚 𝑣𝛼 + 𝑣𝛽𝑆̇𝛼𝛽) = −1
2𝑅𝛼

𝛽𝛾𝛿 𝑣𝛽𝑆𝛾𝛿. (2.50)

If we identify
𝑝𝛼 = 𝑚 𝑣𝛼 + 𝑣𝛽 𝑆̇𝛼𝛽 (2.51)

as the momentum of the spinning particle, the equations (2.50) and (2.48) finally
become the MPD equations as presented in (2.14). This set of equations are the
basic equations that govern the motion of a test particle with spin in GR.

A study of the pole-dipole particle, i.e., the particle which obeys the system of
equations (2.14) will be the goal of the present work. However, of course we can
proceed considering terms of higher order in the expansion. The general case can
be found at [10]. For our purpose, it is sufficient to stop in the second multipole
moment.

2.3 A LAGRANGIAN FORMULATION

Other approaches have also been proposed in literature in order to treat the
spinning test particle by other means that do not use multipolar moments, as
is the case of the lagrangian approach developed in [9, 13]. In [9], a lagrangian
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formulation for the spinning particle is made in the flat spacetime, and in [13]
the treatment is extended for curved spacetimes with nonvanishing torsion. Let
us illustrate the method for curved spacetimes endowed with a connection with
vanishing torsion.

In the lagrangian method, the particle’s equations of motion should arise from
the variation of an action describing the particle with respect to all degrees of
freedom of the system. So, one needs to say what are the degrees of freedom that
will describe the particle. For a spinning particle, we need of course translational
and rotational degrees of freedom. The momentum equation must emerge from the
variation of the action with respect to the translational degrees of freedom, while
the spin equation must emerge from the variation with respect to the rotational
ones. For the description of the translational motion of the particle, we take the
set of four coordinates 𝑥𝜇(𝜏) functions of the proper time, by means of which we
can define the velocity of the test particle:

𝑣𝜇 = 𝑑𝑥𝜇

𝑑𝜏
= 𝑥̇𝜇, (2.52)

and for the description of the rotational motion, we take the tensor [9]:

𝜎𝜇𝜈 = 𝜂𝑎𝑏𝑒𝜇
𝑎 𝑒̇𝜈

𝑏 , (2.53)

which is identified with the angular velocity of the particle. By the term angular
velocity, we mean only a tensor which has the right properties to be the analog
of the usual angular velocity 𝜔𝑖𝑗 of a rotating frame, with the velocity of a point
relative to the origin given by

𝑑𝑥𝑖/𝑑𝑡 = −𝜔𝑖𝑗𝑥𝑗. (2.54)

In fact, it is natural to identify rotational degrees of freedom with antisymmetric
tensors. One way to see this is by observing that the generators of the Lorentz
group, in which are included spatial rotations, are formed by antisymmetric ma-
trices.

The set of vectors {𝑒𝜇
𝑎} in (2.53) forms a tetrad (where greek indices denote

tensorial indices and latin indices label the vectors of the tetrad) which is attached
to the particle and obeys the relation 𝑔𝜇𝜈 𝑒𝜇

𝑎 𝑒𝜈
𝑏 = 𝜂𝑎𝑏, with 𝜂𝑎𝑏 = 𝑑𝑖𝑎𝑔(+, −, −, −)
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being the Minkowski metric. In fact, it is easy to see that 𝜎𝜇𝜈 is antisymmetric
(𝜎𝜇𝜈 = 𝜎[𝜇𝜈]), which means that it has only six degrees of freedom, which is expec-
ted for the angular velocity from a classical point of view (actually, it is expected
only three degrees of freedom for 𝜔𝑖𝑗, which correspond to the three spatial rota-
tions. A restriction on the degrees of freedom of 𝜎𝜇𝜈 , or more precisely in 𝑆𝜇𝜈 , will
be made when we study the spin supplementary conditions in the next chapter).
In addition, we have the relation

𝑒̇𝜇
𝑎 = −𝜎𝜇𝜈𝑒𝑎𝜈 , (2.55)

with 𝑒𝑎𝜈 = 𝑔𝜇𝜈𝑒𝜇
𝑎 , which is the same expression satisfied by the antisymmetric an-

gular velocity tensor 𝜔𝑖𝑗 for the classical spinning top (Eq. (2.54)), which reinforces
the interpretation of 𝜎𝜇𝜈 as angular velocity.

At this point, one takes the lagrangian depending on the velocities 𝑥̇𝜇 and
𝜎𝜇𝜈 only, and depending on these variables by means of four scalars 𝐼1 = 𝑣𝜇𝑣𝜇,
𝐼2 = 𝜎𝜇𝜈𝜎𝜇𝜈 , 𝐼3 = 𝑣𝛼𝜎𝛼𝛽𝜎𝛽𝛾𝑣𝛾 and 𝐼4 = 𝜎𝛼𝛽𝜎𝛽𝛾𝜎𝛾𝛿𝜎

𝛿𝛼, which are the only relevant
Poincaré invariants for this construction, as argued in [9]. Defining the lagrangian
with the structure ℒ(𝐼1, 𝐼2, 𝐼3, 𝐼4), we define the momentum 𝑝𝜇 and the spin 𝑆𝜇𝜈

of the particle as
𝑝𝜇 = 𝜕ℒ

𝜕𝑣𝜇
, 𝑆𝜇𝜈 = 𝜕ℒ

𝜕𝜎𝜇𝜈
. (2.56)

Therefore, we have the relations:

𝑝𝜇 = 2 𝑣𝜇𝐿1 + 2 𝜎𝜇𝛼𝜎𝛼𝛽𝑣𝛽𝐿3 ,

𝑆𝜇𝜈 = 4 𝜎𝜇𝜈𝐿2 + 2(𝑣𝜇𝜎𝜈𝛼𝑣𝛼 − 𝑣𝜈𝜎𝜇𝛼𝑣𝛼)𝐿3 + 8 𝜎𝜈𝛼𝜎𝛼𝛽𝜎𝛽𝜇𝐿4 , (2.57)

where we define 𝐿𝑖 = 𝜕ℒ
𝜕𝐼𝑖

. Defining the antisymmetric variation 𝛿𝜃𝜇𝜈 = 𝜂𝑎𝑏 𝑒𝜇
𝑎(𝛿𝑒𝜈

𝑏 +
Γ𝜈

𝜆𝜌 𝑒𝜆
𝑏 𝛿𝑥𝜌), one can obtain the formula [13,14]:

𝛿𝜎𝜇𝜈 = ˙(𝛿𝜃𝜇𝜈) + 𝜎𝜇𝜆𝛿𝜃 𝜈
𝜆 − 𝛿𝜃𝜇𝜆𝜎 𝜈

𝜆 − (𝑅 𝜇𝜈
𝛼𝛽 𝑣𝛽 + Γ𝜇

𝛼𝛽𝜎𝛽𝜈 + Γ𝜈
𝛼𝛽𝜎𝜇𝛽)𝛿𝑥𝛼. (2.58)

Varying the action with respect to the fundamental variables that describe the test
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particle, we obtain

𝛿𝒮 =
∫︁ (︃

𝜕ℒ
𝜕𝑣𝜇

𝛿𝑣𝜇 + 𝜕ℒ
𝜕𝜎𝜇𝜈

𝛿𝜎𝜇𝜈

)︃
𝑑𝜏

=
∫︁ [︂(︂

𝑝̇𝛼 + 1
2𝑅𝛼𝛽𝛾𝛿𝑣

𝛽𝑆𝛾𝛿
)︂

𝛿𝑥𝛼 + (𝑆̇𝜇𝜈 + 𝑆𝜈𝛼𝜎𝛼
𝜇 − 𝑆𝜇𝛼𝜎𝛼

𝜈)𝛿𝜃𝜇𝜈

− 𝑑

𝑑𝜏
(𝑝𝜇𝛿𝑥𝜇 + 𝑆𝜇𝜈𝛿𝜃𝜇𝜈)

]︃
𝑑𝜏. (2.59)

Using the equation (2.57) along with some mathematical identities from appendix
A of [9], it is possible to prove the identity 𝑆𝛼[𝜇𝜎 𝜈]

𝛼 = −𝑝[𝜇𝑣𝜈]. Imposing 𝛿𝒮 = 0,
and considering the arbitrary variations 𝛿𝑥𝜇 and 𝛿𝜃𝜇𝜈 which vanish in the limits
of integration, one eventually arrive at the MPD equations (2.14).

It is remarkable that we obtain the same set of equations from a completely
different formalism, constructing a lagrangian where one requires only some simple
reasonable hypotheses on it. That suggests that the MPD equations should be
in fact the correct equations for the description of a spinning test body from a
perspective of a relativistic gravitational theory. In the next section, we will shed
light on the content of these equations.

As already pointed out, the MPD equations give only a subset of the necessary
equations that we need to determine the momentum and the spin of the parti-
cle. These equations are not enough to close the system, so that they need to
be supplemented by other three equations. In [3], Mathisson chose the condition
𝑆𝛼𝛽𝑣𝛽 = 0 to supplement his equations, and that choice is intimately related to the
solutions he obtained for the MPD equations in flat spacetime, which are known
as Mathisson’s helical motions. However, in [5] Tulczyjew proposed 𝑆𝛼𝛽𝑝𝛽 = 0 as
supplementary equations for (2.14), and showed that this condition leads to the
expected equations for the motion of a spinning particle in flat spacetime (the
helical motions do not appear). The equations that are used to supplement MPD
equations are very important and are known in the literature as spin supplementary
conditions. We will see that each condition has some special features. In particular,
for the Mathisson condition, the scalar 𝑚 is conserved, while in Tulczyjew condi-
tion the scalar 𝜇2, which is related to the norm of the momentum, is conserved.
Depending on the type of problem we are interested in, it can be convenient to use
one condition or the other. The next chapter is dedicated to explain these supple-
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mentary conditions, illustrate the differences existing between them and describe
in what scenarios it could be adequate to use one condition or another.
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3 SPIN SUPPLEMENTARY CONDITIONS

As anticipated in the previous chapter, Mathisson imposed the spin supple-
mentary condition 𝑆𝛼𝛽𝑣𝛽 = 0 (a condition which comes from 𝑣𝛾𝑚𝛾𝛼𝛽 = 0, see
Eq. (2.41)) in order to make his equations determined. In fact, we saw that the
MPD equations (2.14) by themselves comprise a total of ten equations for thirteen
degrees of freedom, so that three other equations are necessary. These additional
equations that must be imposed are the so-called spin supplementary conditions.

Besides, we mentioned that there is an infinite set of trajectories that describe
the motion of the body satisfying the Mathisson supplementary condition, the fa-
mous Mathisson’s helical solutions. However, it would be natural in flat spacetime
to expect that a determined system leads to a unique trajectory, something that
does not happen with the condition 𝑆𝛼𝛽𝑣𝛽 = 0, a fact which will be properly un-
derstood in this chapter. Some years later than Mathisson, Tulczyjew proposed as
supplementary condition 𝑆𝛼𝛽𝑝𝛽 = 0 rather than that proposed in [3], and showed
that this condition leads to a unique trajectory, in which the helical solutions do
not appear [5]. These differences seem to lead us to conclude that different dyna-
mics arise depending on what supplementary condition is chosen. Nevertheless, it
will be showed that this conclusion is merely apparent, since both supplementary
conditions describe the same body, only changing the point of view, that is, the
observer [16].

As Mathisson’s solutions predict particles that could move in trajectories with
a radius of arbitrary size, they were considered unphysical solutions [17,18]. In this
sense, these solutions need to be properly understood and their origins clarified.
For this, it will be fundamental to discuss how one can define the center of mass of
an extended body in relativity. We know from Newtonian mechanics the relevance
of that special point of the body. In particular, an extended body is properly
described if we know the dynamics of its center of mass and of its internal motion
relative to the center of mass, such that it would be interesting if we could define
something similar in relativity. In fact, many authors have discussed about how
we can define the center of mass in relativity [19,20].
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For the treatment of an extended body in relativity, we have seen that a body
of finite size describes a world tube along its motion, representing the world lines
of each point that forms the body, and that we chose a reference curve 𝐿 inside this
world tube. It will be discussed in this chapter that the point of the body which
describes the curve 𝐿 is precisely its center of mass when any of the supplementary
conditions are used, i.e. for any condition of the type 𝑆𝛼𝛽𝑢𝛽 = 0, with 𝑢𝛽 being a
timelike vector [16]. It is fundamental, however, to keep in mind that in relativity
the CM of an extended body is observer-dependent [20], such that does not exist
a universal point that all the observers agree to be the CM of the body. Given
this fact, we will see that the spin supplementary condition actually chooses the
observer, which in turn measures the body’s center of mass.

Although the supplementary conditions 𝑆𝛼𝛽𝑣𝛽 = 0 and 𝑆𝛼𝛽𝑝𝛽 = 0 are the best
known, other conditions were also proposed [14,21]. In particular, in Ref. [14] a
relaxed version of the Tulczyjew condition has been proposed to treat massless
particles.

In addition, a discussion on massless particles will be made, by defending
𝑆𝛼𝛽𝑣𝛽 = 0 as an appropriate supplementary condition to treat the massless case,
in agreement with precedent works where some authors concluded the same result
[22,23].

In this section, we will elucidate some differences between these two supplemen-
tary conditions. From now on, the condition 𝑆𝛼𝛽𝑣𝛽 = 0 is occasionally referred to
as Mathisson-Pirani condition (or simply MP condition) and 𝑆𝛼𝛽𝑝𝛽 = 0 as Tulczy-
jew condition.

3.1 THE TULCZYJEW SUPPLEMENTARY CONDITION: 𝑆𝛼𝛽𝑝𝛽 = 0

This section is devoted to explore the main properties of the condition 𝑆𝛼𝛽𝑝𝛽 =
0. Let us begin to understand the differences between Tulczyjew (𝑆𝛼𝛽𝑝𝛽 = 0) and
Mathisson-Pirani (𝑆𝛼𝛽𝑣𝛽 = 0) conditions by studying the conserved quantities of
the spinning test particle.

There are some scalars which are conserved in both supplementary conditions,
as is the case of the quadratic spin 𝑆2 = 𝑆𝜇𝜈𝑆𝜇𝜈 . In fact, contracting the spin
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equation of MPD equations (2.14) with 𝑆𝛼𝛽, we obtain

𝑆𝛼𝛽𝑆̇𝛼𝛽 = 2𝑆𝛼𝛽𝑝𝛼𝑣𝛽 = 0 ⇒ 𝐷(𝑆𝛼𝛽𝑆𝛼𝛽)
𝐷𝜏

= 0, (3.1)

where it was used 𝑆𝛼𝛽𝑢𝛽 = 0, with 𝑢𝛼 = 𝑝𝛼 if the Tulczyjew condition is chosen
and 𝑢𝛼 = 𝑣𝛼 if the MP condition is chosen. Equation (3.1) tells us that the scalar
𝑆𝜇𝜈𝑆𝜇𝜈 is conserved along the particle’s trajectory. Besides, for both conditions,
we have that the scalar

𝑄𝑘 = 𝑘𝛼𝑝𝛼 + 1
2∇𝛼𝑘𝛽𝑆𝛼𝛽 (3.2)

is conserved if 𝑘 is a Killing vector field (KV) of the spacetime. In fact, to prove
the conservation of (3.2) we only need the MPD equations, without mention of
any supplementary condition. Explicitly, by deriving (3.2), we get

𝑄̇𝑘 = ∇𝛼𝑘𝛽𝑣(𝛼𝑝𝛽) − 1
2𝑘𝛾𝑅𝛾

𝜇𝛼𝛽𝑣𝜇𝑆𝛼𝛽 + 1
2𝑣𝜇∇𝜇∇𝛼𝑘𝛽𝑆𝛼𝛽, (3.3)

where MPD equations have been used. We prove 𝑄̇𝑘 = 0 by considering that
for a Killing vector field we have ∇(𝜇𝑘𝜈) = 0, which in turn implies ∇𝜇𝑘𝜈 =
∇[𝜇𝑘𝜈], and by using the identity 𝑘𝛾𝑅𝛾

𝜇𝛼𝛽 = ∇𝜇∇𝛼𝑘𝛽, which is valid for any KV
as a consequence of Ricci identity (2.2). The scalars 𝑄𝑘 are important conserved
quantities whose Killing vectors associated with them give us information about
the symmetries of the spacetime. We will return to this point and study this
conserved charge in more detail in the next chapter.

Nevertheless, there are some scalars that are conserved just in one of the sup-
plementary conditions used. In particular, the scalar 𝜇2 = 𝑝𝛼𝑝𝛼, which is the mass
of the particle in the frame where the 3-momentum vanishes (𝑝𝑖 = 0), is conserved
only if 𝑆𝛼𝛽𝑝𝛽 = 0 is considered. In fact, for the scalar 𝑝𝛼𝑝𝛼, contracting the spin
equation (2.14) with 𝑝̇𝛼𝑝𝛽, we have

𝑝̇𝛼𝑝𝛽𝑆̇𝛼𝛽 = 𝑚𝑝̇𝛼𝑝𝛼 − 𝑚𝑝̇𝛼𝑣𝛼, (3.4)

where 𝑚 = 𝑣𝛽𝑝𝛽. Since 𝑝̇𝛼𝑣𝛼 = 0 (which can be seen immediately by contracting
the momentum equation of (2.14) with 𝑣𝛼) and considering that 𝑝𝛼𝑝̇𝛼 = 1

2
𝐷(𝑝𝛼𝑝𝛼)

𝐷𝜏
,

we have
𝐷(𝑝𝛼𝑝𝛼)

𝐷𝜏
= 2

𝑚
𝑝̇𝛼𝑝𝛽𝑆̇𝛼𝛽 = 0, (3.5)
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where in the last equality the derivative of the condition 𝑆𝛼𝛽𝑝𝛽 = 0 and the
antisymmetry of 𝑆𝛼𝛽 have been used.

An advantage of the condition 𝑆𝛼𝛽𝑝𝛽 = 0 over 𝑆𝛼𝛽𝑣𝛽 = 0 concerns the so-called
momentum-velocity relation. The Tulczyjew condition has a very interesting and
useful property that the actual degrees of freedom of the particle separate naturally,
covariantly, in that condition. For example, the quantities that describe the particle
are represented by 𝑣𝛼, 𝑝𝛼 and 𝑆𝛼𝛽. However, these components are not independent
of each other, since the MPD equations connect these variables. For the condition
𝑆𝛼𝛽𝑝𝛽 = 0, in addition to the fact that the spin tensor can be expressed as a
function of the momentum 𝑝𝛼 (as suggested by the supplementary condition), we
also can get a covariant expression in which the velocity is written in terms of
the momentum and the spin. That expression will be referred to from now on as
momentum-velocity relation. The momentum-velocity relation can be obtained as
follows. Contracting the spin equation of (2.14) with 𝑝𝛽 and using the derivative
of the condition 𝑆𝛼𝛽𝑝𝛽 = 0, we eventually arrive at

𝑣𝛼 = 𝑚

𝜇2 𝑝𝛼 − 1
2𝜇2 𝑆𝛼𝛽𝑅𝛽𝛾𝜌𝜎𝑣𝛾𝑆𝜌𝜎 , (3.6)

where the momentum equation of (2.14) has been used. We rewrite the above
equation in a compact form as

𝑣𝛼 = 𝑎 𝑝𝛼 + 𝐷𝛼
𝛾𝑣𝛾, (3.7)

where we do the identifications

𝑎 = 𝑚

𝜇2 , and 𝐷𝛼
𝛾 = − 1

2𝜇2 𝑆𝛼𝛽𝑅𝛽𝛾𝜌𝜎𝑆𝜌𝜎 . (3.8)

Inserting repeatedly the velocity expression (3.7) in the velocity of the right-hand
side of the same expression, we obtain the series

𝑣𝛼 = 𝑎
[︁
𝑝𝛼 + 𝐷𝛼

𝛾1𝑝𝛾1 + 𝐷𝛼
𝛾1𝐷𝛾1

𝛾2𝑝𝛾2 + ...
]︁

. (3.9)

Now, we note that the Tulczyjew supplementary condition allows us to express the
spin tensor as follows:

𝑆𝛼𝛽 = 𝜖𝛼𝛽𝛾𝛿𝑆𝛾 𝑝𝛿 , (3.10)
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with 𝜖𝛼𝛽𝛾𝛿 standing for the Levi-Civita tensor. In fact, the solution for 𝑆𝛼𝛽𝑝𝛽 = 0
is given by 𝑆𝛼𝛽 = 𝐴𝛼𝛽𝛾𝑝𝛾, for some completely antisymmetric tensor 𝐴 (𝐴𝛼𝛽𝛾 =
𝐴[𝛼𝛽𝛾]). However, a completely antisymmetric tensor of rank 3 (or a 3-form, in the
language of the differential forms) is always related in four-dimensional spaces to
some vector 𝑆𝜇 by Hodge duality, i.e. the following relation is valid:

𝐴𝛼𝛽𝛾 = 𝜖𝛼𝛽𝛾𝛿𝑆𝛿, (3.11)

from which follows the equation (3.10). We also note that the transformation
𝑆𝛾 → 𝑆𝛾 + 𝜆𝑝𝛾, for an arbitrary 𝜆, does not change 𝑆𝛼𝛽 in Eq. (3.10), so that we
could impose 𝑆𝛾𝑝𝛾 = 0 without loss of generality. Besides, one can prove that from
(3.10) it follows the relation 𝑆[𝛼𝛽𝑆𝜇]𝜈 = 0, which in turn we use to show that

𝐷𝛼
𝛾1𝐷𝛾1

𝛾2𝑝𝛾2 = 1
2𝐷𝛼

𝛾1𝐷𝛾2
𝛾2𝑝𝛾1 = 𝑑

2𝐷𝛼
𝛾1𝑝𝛾1 , (3.12)

where 𝑑 = 𝐷𝛼
𝛼. From the latter relation, it follows that

𝐷𝛼
𝛾1𝐷𝛾1

𝛾2𝐷𝛾2
𝛾3𝑝𝛾3 =

(︃
𝑑

2

)︃2

𝐷𝛼
𝛾1𝑝𝛾1 , (3.13)

and so on. With these results, the series (3.9) is written as

𝑣𝛼 = 𝑎

(︃
𝑝𝛼 + 𝐷𝛼

𝛽𝑝𝛽
∞∑︁

𝑛=0

𝑑𝑛

2𝑛

)︃
, (3.14)

whose summation leads to

𝑣𝛼 = 𝑎

(︃
𝑝𝛼 +

𝐷𝛼
𝛾𝑝𝛾

1 − 𝑑/2

)︃

= 𝑚

𝜇2

(︃
𝑝𝛼 − 2𝑆𝛼𝛽𝑅𝛽𝛾𝜌𝜎𝑝𝛾𝑆𝜌𝜎

4𝜇2 − 𝑅𝜇𝜈𝛾𝛿𝑆𝜇𝜈𝑆𝛾𝛿

)︃
, (3.15)

where in the last equality the definitions of 𝑎, 𝑑 and 𝐷𝛼
𝛽 have been used. The

momentum-velocity relation (3.15) was first obtained by Kunzle in [8]. We note
that it could also be established projecting equation (3.6) onto an orthonormal
Lorentz frame, solving the equations for the velocity components and then by
recovering the covariance of the expression, as made in [8,25]. In the deduction
presented here, however, no covariance breaking was necessary [26].
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Now, as a final discussion, let us see in flat spacetime the solutions of MPD
equations along with 𝑆𝛼𝛽𝑝𝛽 = 0 in order to shed some light on its content. We
have in this scenario the following set of equations:

𝑝̇𝛼 = 0 , 𝑆̇𝛼𝛽 = 𝑝𝛼𝑣𝛽 − 𝑝𝛽𝑣𝛼 and 𝑆𝛼𝛽𝑝𝛽 = 0 . (3.16)

Then, we see immediately that the momentum 𝑝𝛼 is conserved along the particle
motion. From the momentum-velocity relation (3.15), we conclude that 𝑣𝛼 = 𝑚

𝜇2 𝑝𝛼,
such that in this scenario, Tulczyjew and MP conditions become the same. In other
words, we have proved that condition 𝑆𝛼𝛽𝑝𝛽 = 0 implies condition 𝑆𝛼𝛽𝑣𝛽 = 0 in
flat spacetime. We could also conclude this from Eq. (3.6). However, as we will
see further, the contrary is not true. Contracting the momentum-velocity relation
found with 𝑣𝛼 leads us to 𝑚 = 𝜇, which in turn allows us to express this relation
simply as 𝑣𝛼 = 𝑝𝛼/𝜇. The substitution of this latter equation in the spin equa-
tion leads also to the conservation of the spin tensor (𝑆̇𝛼𝛽 = 0). Integrating the
momentum-velocity relation, we have

𝑥𝛼(𝜏) = 𝑝𝛼

𝜇
𝜏 + 𝐶𝛼, (3.17)

where the integration constants 𝐶𝛼 are related to initial values of the position.
Therefore, the solution of MPD equations with 𝑆𝜇𝜈𝑝𝜈 = 0 tells us that the repre-
sentative world line of the particle describes straight lines with a uniform rotatio-
nal motion. This property of Tulczyjew condition of predicting a unique trajectory
in flat spacetime is the reason why many authors defend it as the more natural
choice for massive particles [5,7]. We point out that this uniqueness of the condition
𝑆𝜇𝜈𝑝𝜈 = 0 is maintained in curved spacetimes [27,28]. In [28], the MPD equations
are integrated numerically along with condition 𝑆𝜇𝜈𝑝𝜈 = 0 in a Kerr spacetime.
For maximally symmetric spaces with nontrivial curvature (de Sitter and anti-de
Sitter), where the curvature tensor is written as 𝑅𝛼𝛽𝜇𝜈 = 𝜅(𝑔𝛼𝜇𝑔𝛽𝜈 − 𝑔𝛼𝜈𝑔𝛽𝜇), we
can extract directly from Eq. (3.15) that 𝑣𝛼 = 𝑚

𝜇2 𝑝𝛼, which in turn implies that
𝑝̇𝛼 = 0 and 𝑆̇𝛼𝛽 = 0, so that the trajectories of spinning bodies are the geodesics
of the de Sitter (or anti-de Sitter) space. Therefore, even in presence of spin, the
MPD equations with Tulczyjew condition 𝑆𝛼𝛽𝑝𝛽 = 0 predicts no deviation from
the geodesic trajectory.
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3.2 THE MATHISSON-PIRANI SUPPLEMENTARY CONDITION: 𝑆𝛼𝛽𝑣𝛽 = 0

Let us see now the differences that MP condition 𝑆𝛼𝛽𝑣𝛽 = 0 has in relation
to 𝑆𝛼𝛽𝑝𝛽 = 0. First, we note that the scalar 𝑚 = 𝑣𝛼𝑝𝛼, which is the mass of the
particle in the frame where the 3-velocity is zero (𝑣𝑖 = 0), i.e. the proper mass,
is conserved if 𝑆𝛼𝛽𝑣𝛽 = 0 is considered, whereas 𝜇 = √

𝑝𝛼𝑝𝛼 is not conserved
anymore. In fact, for the scalar 𝑚 = 𝑣𝜇𝑝𝜇, we have

𝑚̇ = 𝐷(𝑣𝛼𝑝𝛼)
𝐷𝜏

= 𝑣̇𝛼𝑝𝛼 + 𝑣𝛼𝑝̇𝛼. (3.18)

Contracting the momentum equation of (2.14) with 𝑣𝛼, we obtain immediately
𝑣𝛼𝑝̇𝛼 = 0, and contracting the spin equation of (2.14) with 𝑣̇𝜇𝑣𝜈 , we get

𝑣̇𝛼𝑝𝛼 = 𝑣̇𝛼𝑣𝛼𝑆̇𝛼𝛽 + 𝑚𝑣̇𝛼𝑣𝛼. (3.19)

Once 𝑣𝛼𝑣𝛼 = 1, it follows that 𝑣̇𝛼𝑣𝛼 = 0, so that substituting in (3.18) we finally
obtain

𝑚̇ = 𝑣̇𝛼𝑣𝛽𝑆̇𝛼𝛽 = 0, (3.20)

when the derivative of the condition 𝑆𝛼𝛽𝑣𝛽 = 0 is used.
Now, concerning a relation of the type (3.15), we point out that it was derived a

momentum-velocity relation for the Mathisson-Pirani condition [21]. The relation
the authors found turns out to be equivalent to the restriction 𝑆𝛼𝛽𝑣𝛽 = 0, and it
was used to integrate numerically the MPD equations. However, since the expres-
sion found in [21] is equivalent to MP condition, the substitution of 𝑆𝜇𝜈 expression
(Eq. (3.22) given below) in that relation of course provides a trivial identity, as
pointed out by the authors themselves, such that the expression cannot be used
to conduct a similar investigation of that made in [25] in order to find the most
general linear conserved charge in MP condition. Nevertheless, we observe that it
is possible at least to obtain an equation for the derivative of the velocity in terms
of the momentum and spin in MP condition, as shown in [27].

Up to now, we are discussing only massive particles, for which the equation
𝑣𝛼𝑣𝛼 = 1 is valid. However, it is worth mentioning here the massless case. This case
is interesting once the condition 𝑆𝛼𝛽𝑣𝛽 = 0 is perhaps the appropriate condition
for the description of massless particles. A discussion about what are the best
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equations that supplement the MPD equations for massless particles can be found
in [22,23]. In [22] the MPD equations are solved using 𝑆𝛼𝛽𝑣𝛽 = 0 and 𝑣𝛼𝑣𝛼 = 0
to supplement (2.14) and then it is showed that 𝑚 = 𝑣𝛼𝑝𝛼 = 0 is satisfied. In
addition, it was also shown that a massless particle satisfying this set of equations
necessarily follows a null geodesic 𝑣𝛽∇𝛽𝑣𝛼 = 0. In [23], in turn, the authors adopted
MP condition along with 𝑚 = 𝑣𝛼𝑝𝛼 = 0 as the adequate supplementary conditions
for (2.14) in the massless case and also considered the possibility of 𝑣𝛼𝑣𝛼 ̸= 0. We
point out that these latter equations are perhaps the appropriate equations which
supplement (2.14). In fact, if we consider MPD equations along with conditions
𝑆𝛼𝛽𝑣𝛽 = 0 and 𝑚 = 𝑣𝛼𝑝𝛼 = 0, it is straightforward to show that the charge

𝑄 = 𝑘𝜇𝑝𝜇 + 1
2∇𝜇𝑘𝜈𝑆𝜇𝜈 (3.21)

is conserved, with 𝑘̂ being a conformal Killing vector (CKV), that is, it satisfies
the equation ∇(𝛼𝑘𝛽) = 𝑓 𝑔𝛼𝛽, with 𝑓 = 1

4∇𝛼𝑘𝛼. In fact, from the case of a spinless
particle we know that CKV’s are related to conserved charges in null geodesics, in
the same way as KV’s are related to conserved charges along arbitrary geodesics.
Namely, for spinless particles, the scalar 𝑘𝜇𝑝𝜇 is conserved along arbitrary geodesics
(with 𝑘 a KV), while 𝑘𝜇𝑝𝜇 is conserved along null geodesics (with 𝑘̂ a CKV).

At this point, as we made for the condition 𝑆𝛼𝛽𝑝𝛽 = 0, it is important to make
a discussion concerning the solutions of MPD equations in flat spacetime with
MP condition. First, we note that for the case 𝑆𝛼𝛽𝑣𝛽 = 0, we have similarly the
following expression for the spin tensor:

𝑆𝛼𝛽 = 𝜖𝛼𝛽𝜇𝜈Σ𝜇𝑣𝜈 , (3.22)

for some vector Σ𝜇. For the Mathisson-Pirani condition, we have the set of equa-
tions:

𝑝̇𝛼 = 0 , 𝑆̇𝛼𝛽 = 𝑝𝛼𝑣𝛽 − 𝑝𝛽𝑣𝛼 and 𝑆𝛼𝛽𝑣𝛽 = 0 . (3.23)

Considering the spin tensor as given by (3.22) and taking the derivative of this
expression, we have:

𝑆̇𝛼𝛽 = 𝜖𝛼𝛽𝜇𝜈Σ̇𝜇𝑣𝜈 + 𝜖𝛼𝛽𝜇𝜈Σ𝜇𝑣̇𝜈 , (3.24)

since the Levi-Civita tensor is covariantly constant (∇𝜇𝜖𝛼𝛽𝛾𝛿 = 0). Using the spin
equation of MPD and contracting it with 𝜖𝛼𝛽𝛾𝛿𝑣

𝛾, we get the dynamic equation
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for the spin vector Σ:
Σ̇𝛿 = −𝑣̇𝛾Σ𝛾𝑣𝛿, (3.25)

where we have used 𝑣𝛾Σ𝛾 = 0. The orthogonality between 𝑣 and Σ can be esta-
blished from the spin tensor equation (3.22), once the Σ𝜇 in that expression can
be decomposed as Σ𝜇 = Σ‖

𝜇 + Σ⊥
𝜇 , with Σ‖

𝜇 and Σ⊥
𝜇 being parallel and orthogonal

to velocity, respectively. Since Σ||
𝜇 ∝ 𝑣𝜇, this component does not contribute to the

spin tensor 𝑆𝛼𝛽, once we will have something like 𝜖𝛼𝛽𝜇𝜈𝑣𝜇𝑣𝜈 , which is automatically
zero due to the simultaneous symmetry and antisymmetry in the indices 𝜇 and 𝜈.
Then, we can take Σ‖

𝜇 = 0 without loss of generality, which amounts to the validity
of 𝑣𝛼Σ𝛼 = 0. Besides, expression (3.25) can be further simplified by proving that
𝑣̇𝛼Σ𝛼 = 0. This can be done as follows. Contracting again the spin equation with
𝑣𝛽 and using the derivative of 𝑆𝛼𝛽𝑣𝛽 = 0, we have for the momentum:

𝑝𝛼 = 𝑚𝑣𝛼 − 𝑣̇𝛽𝑆𝛼𝛽. (3.26)

Of course, from the spin equation (3.22) it follows that 𝑆𝛼𝛽Σ𝛽 = 0. Using this
latter relation and contracting (3.26) with Σ𝛼, we conclude that Σ𝛼𝑝𝛼 = 0. Now,
by deriving the momentum equation (3.26), using the set of equations (3.23) and
contracting the resulting expression with Σ𝛼, we prove finally that Σ𝛼𝑣̇𝛼 = 0,
which then implies that the spin vector is parallel transported (Σ̇𝛼 = 0). With this
latter result, equation (3.24) becomes

𝑆̇𝛼𝛽 = 𝜖𝛼𝛽𝜇𝜈Σ𝜇𝑣̇𝜈 . (3.27)

Now, substituting the spin equation 𝑆̇𝛼𝛽 = 2 𝑝[𝛼𝑣𝛽] into Eq. (3.27) and then by con-
tracting the resulting expression with 𝜖𝛼𝛽𝜇𝜈Σ𝜈 , we arrive at the dynamic equation
for 𝑣𝛼:

𝑣̇𝛼 = − 1
Σ2 𝜖𝛼𝛽𝜇𝜈Σ𝛽𝑝𝜇𝑣𝜈 , (3.28)

where we define Σ2 = Σ𝜇Σ𝜇, which is constant. At this point, we take the particular
frame where the 3-momentum of the spinning particle vanishes (𝑝𝑖 = 0), that is,

𝑝𝛼 = (𝜇, 0⃗). (3.29)

This amounts to align the momentum 𝑝𝛼 with the time direction of a Lorentz
frame, which can always be accomplished once the momentum is timelike. From
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the orthogonality relation Σ𝛼𝑝𝛼 = 0, it follows that the time component of Σ𝛼 is
zero, i.e, it has the form Σ𝛼 = (0, Σ⃗). By means of a rotation, we can align the vector
Σ⃗ with the z-direction such that Σ𝛼 = (0, 0, 0, Σ), which in turn implies that the
z-component 𝑣3 of the velocity is zero, since Σ𝜇𝑣𝜇 = 0. With these simplifications
and taking the velocity as 𝑣𝛼 = (𝑣0, 𝑣1, 𝑣2, 0), equation (3.28) becomes

𝑣̇0 = 0, 𝑣̇1 = − 𝜇

Σ𝑣2, 𝑣̇2 = 𝜇

Σ𝑣1. (3.30)

The first equation provides 𝑣0 constant, and the last two coupled equations can be
separated such that each component obeys

𝑣𝑗 + 𝜔2𝑣𝑗 = 0 , (3.31)

with 𝜔 = 𝜇/Σ and 𝑗 = 1, 2. The solutions of (3.31) are given by

𝑣1 = 𝑥̇(𝜏) = 𝐴 𝑠𝑖𝑛(𝜔𝜏) + 𝐵 𝑐𝑜𝑠(𝜔𝜏) , (3.32)
𝑣2 = 𝑦̇(𝜏) = 𝐴′ 𝑠𝑖𝑛(𝜔𝜏) + 𝐵′ 𝑐𝑜𝑠(𝜔𝜏) . (3.33)

By integrating them and imposing the restrictions given by Eq. (3.30), we get:

𝑥(𝜏) = −𝐴 𝑐𝑜𝑠(𝜔𝜏) + 𝐵 𝑠𝑖𝑛(𝜔𝜏) + 𝐶 , (3.34)
𝑦(𝜏) = −𝐵 𝑐𝑜𝑠(𝜔𝜏) − 𝐴 𝑠𝑖𝑛(𝜔𝜏) + 𝐶 ′ , (3.35)

with 𝐴, 𝐵, 𝐶 and 𝐶 ′ being integration constants, and where the redefinitions
𝐴/𝜔 → 𝐴, 𝐵/𝜔 → 𝐵 have been made. This can be put into the form

(𝑥(𝜏) − 𝐶)2 + (𝑦(𝜏) − 𝐶 ′)2 = 𝐴2 + 𝐵2 , (3.36)

which is the equation of a circumference with center at (𝑥𝑐, 𝑦𝑐) = (𝐶, 𝐶 ′) and
radius 𝑟 = (𝐴2 + 𝐵2)1/2. Therefore, the general solution of the problem in the
frame 𝑝𝑖 = 0 is

𝑥𝛼(𝜏) = (𝛾𝜏, 𝑥(𝜏), 𝑦(𝜏), 𝑧0). (3.37)

The solution (3.37) describes the so-called Mathisson’s helical motions, a point
that follows a circular path while the time evolves. We obtain for the radius of the
circumference:

𝑟 = 𝛾2𝑣Σ
𝑚

. (3.38)
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Once that 𝛾 can take arbitrary values, these solutions were considered as unphysical
[29]. However, a more recent work defends that this consideration is due to a
misconception [16]. In fact, it was defended in the literature that the circular
motions predicted by the condition 𝑆𝛼𝛽𝑣𝛽 = 0 were not contained in a finite
radius, which supported the wrong interpretation. However, as pointed out in [16],
one can prove that all the trajectories are contained in a radius with finite size
given by 𝑟𝑚𝑎𝑥 = 𝑆𝑟=0/𝜇, with 𝑆𝑟=0 being the magnitude of the spin vector for the
trajectory with 𝑟 = 0. This interpretation is totally consistent with Moller’s work
[20].

Therefore, the solution of MPD equations along with MP supplementary con-
dition in flat spacetime predicts many possible curves which can be followed by the
spinning particle, that is, there is an infinite set of solutions obeying 𝑆𝛼𝛽𝑣𝛽 = 0.
That non-uniqueness can be explained as follows, which gives the physical inter-
pretation of the supplementary conditions. The fact is that in relativity, unlike
Newtonian mechanics, the center of mass of a body is observer-dependent, such
that it is necessary to specify the frame in which the center of mass is calculated.
A condition of type 𝑆𝛼𝛽𝑢𝛽 = 0 always selects as reference curve the worldline of
the center of mass of the body. The difference between the supplementary condi-
tions is the observer which measures the center of mass. The condition 𝑆𝛼𝛽𝑣𝛽 = 0
describes the center of mass as measured by observers who see the body’s center of
mass not in the center of the rotating body. Then, this observer sees the center of
mass displaced relative to the observer who sees the center of mass in the center.
Thus, depending on the relative velocity between the observers, they will measure
different trajectories, each one referring to the center of mass observed, which is
precisely the many trajectories predicted by the solution (3.37). This interpretation
explains why the condition 𝑆𝛼𝛽𝑝𝛽 = 0 gives just one solution, since this condition,
according to the mentioned interpretation, means that the center of mass is at rest
in relation to the observer which moves with 4-velocity 𝑣𝛼 ∝ 𝑝𝛼 constant in flat
spacetime, and it corresponds to the unique point that does not rotate (𝑟 = 0).

Summing up, the Tulczyjew condition 𝑆𝜇𝜈𝑝𝜈 = 0 seems to be the appropriate
condition for massive particles, since as we have seen it leads to a unique trajectory
for the spinning particle in flat and curved spacetimes, while the MP condition
𝑆𝜇𝜈𝑣𝜈 = 0 seems to be adequate to handle massless particles, once among other
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reasons it leads to the correct conserved charge involving CKV’s.

3.3 SUPPLEMENTARY CONDITIONS AND THE CENTER OF MASS OF THE
BODY

Now, we use 𝑆𝛼𝛽𝑢𝛽 = 0, with 𝑢𝛽 any timelike unity vector to show that the
supplementary conditions always select the curve which represents the center of
mass of the body as seen by an observer which moves with velocity 𝑢𝛼. There are
many works which discuss the problem of defining the center of mass in relativity,
as [19,20]. In special relativity, the momentum and spin of an extended body are
given by the integral relations:

𝑝𝛼 =
∫︁

𝜎
𝑇 𝛼𝛽𝑑𝜎𝛽 and 𝑆𝛼𝛽 =

∫︁
𝜎
(𝑥[𝛼 − 𝑧[𝛼(𝜏))𝑇 𝛽]𝛾𝑑𝜎𝛾, (3.39)

where 𝜎 is a 3-dimensional spacelike hypersurface orthogonal to 𝑢𝛼 which generates
the body and 𝑧𝛼(𝜏) is a point over the reference curve 𝐿. The conditions of the kind
𝑆𝛼𝛽𝑢𝛽 = 0 are the appropriate conditions to supplement MPD equations since they
determine the center of mass in the rest frame of an observer which moves with
velocity 𝑢𝛼. In fact, in that frame we have 𝑢𝑖 = 0, which implies 𝑆𝛼𝛽𝑢𝛽 = 𝑆𝑖0𝑢0.
For the calculation of 𝑆𝑖0 we have

𝑆𝑖0 =
∫︁

(𝑥𝑖 − 𝑧𝑖(𝜏))𝑇 0𝛾𝑑𝜎𝛾 −
∫︁

(𝑥0 − 𝑧0(𝜏))𝑇 𝑖𝛾𝑑𝜎𝛾. (3.40)

Since the integration is performed in the hypersurface 𝑢𝛼(𝑥𝛼 − 𝑧𝛼(𝜏)) = 0 (or
simply 𝑥0 = 𝑧0(𝜏)) orthogonal to 𝑢, it follows that the second integral above is
zero. Then, we get

𝑆𝑖0 =
∫︁

𝑥𝑖𝑇 0𝛾𝑑𝜎𝛾 − 𝑧𝑖(𝜏)𝑚(𝑢), (3.41)

with 𝑚(𝑢) the mass as measured in this reference frame. The first term of the
above equation is by definition 𝑚(𝑢) 𝑥𝑖

𝐶𝑀(𝑢), with 𝑥𝑖
𝐶𝑀(𝑢) the coordinates of the

mass center in the frame, since 𝑑𝜎𝛾 has only the zero component 𝑑𝜎0 and the
component 𝑇 00 of the energy-momentum tensor is related to the mass of the body.
Then, we obtain

𝑥𝑖
𝐶𝑀(𝑢) − 𝑧𝑖 = −𝑆𝛼𝛽𝑢𝛽

𝑚(𝑢) , (3.42)

where 𝑚(𝑢) = 𝜇 for 𝑆𝛼𝛽𝑝𝛽 = 0 and 𝑚(𝑢) = 𝑚 for 𝑆𝛼𝛽𝑣𝛽 = 0. Then, establishing
𝑆𝛼𝛽𝑢𝛽 = 0 gives that 𝑧𝑖(𝜏) is the center of mass of the body, as stated earlier.
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In the next chapter, we will learn more about symmetries of the spacetime
and the so called hidden symmetries. The generators of these symmetries, that
is, Killing vectors, and Killing and Killing-Yano tensors, will also be properly
discussed.
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4 KILLING-YANO TENSORS AND THEIR INTEGRABILITY CONDITI-
ONS

We have seen in section 3.1 that Tulczyjew supplementary condition 𝑆𝜇𝜈𝑝𝜈 = 0
has, among other features, the property of admitting a covariant relation expressing
velocity in terms of the momentum and the spin of the particle, given in Eq. (3.15)
and called momentum-velocity relation. This property was explored by Rüdiger
in [25] in order to obtain the most general conserved linear charge which can be
constructed in the pole-dipole approximation. Of course, the conserved scalar (3.2)
should emerge from Rudiger’s method, as it actually does. Nevertheless, besides
the scalar (3.2) it was also found by the author that the scalar

𝑄𝑌 = 𝑌 ⋆
𝜇𝜈𝑆𝜇𝜈 , (4.1)

where star means Hodge duality, is conserved if 𝑌 is a Killing-Yano tensor (KY),
i.e. an antisymmetric tensor (𝑌𝜇𝜈 = 𝑌[𝜇𝜈]) which satisfies ∇(𝛼𝑌𝜇)𝜈 = 0. So, 𝑄𝑌 needs
𝑌 to exist. Quadratic conserved quantities, in turn, as 𝑆2 and 𝑝𝛼𝑝𝛼, should emerge
from an investigation of the most general conserved charge which is quadratic in
momentum and spin, an investigation which was carried out by the same author
in a subsequent paper [30]. In this chapter, we will understand Rüdiger’s work in
detail, since the problem tackled in this thesis is based on it.

The interesting thing about Rüdiger’s work is precisely the appearance of the
new conserved charge (4.1) involving a Killing-Yano tensor. Killing-Yano tensors,
together with Killing tensors are the antisymmetric and symmetric generalizations
of Killing vectors, respectively, and they are related to symmetries of the phase
space of the geodesic motion, in the same way that Killing vectors are related to
symmetries of the spacetime [31]. For that reason these symmetries are sometimes
referred to as hidden symmetries. Nevertheless, the interesting thing about space-
times which admit the existence of a KY tensor is that it can be showed that these
spacetimes satisfy a set of algebraic equations known as integrability conditions,
which involve the curvature tensor. Therefore, if a spacetime admits a KY tensor,
these conditions on the curvature necessarily need to be satisfied. In this chapter
we will learn about these objects and their integrability conditions, once they will
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be essential to the problem we consider in this thesis.

4.1 KILLING AND KILLING-YANO TENSORS

A conformal Killing-Yano tensor (CKY) of rank 𝑝 is a totally antisymmetric
tensor 𝑌𝛼1𝛼2...𝛼𝑝 = 𝑌[𝛼1𝛼2...𝛼𝑝], i.e., a 𝑝-form, satisfying the equation [32]

∇𝜇𝑌𝛼1𝛼2...𝛼𝑝 = ∇[𝜇𝑌𝛼1𝛼2...𝛼𝑝] + 2 𝑔𝜇[𝛼1𝑌𝛼2...𝛼𝑝], (4.2)

with 𝑌 being related to the divergence of 𝑌 . In fact, by tracing expression (4.2)
we obtain

𝑌𝛼2...𝛼𝑝 = 𝑝

2(5 − 𝑝)∇𝜇𝑌𝜇𝛼2...𝛼𝑝 . (4.3)

Equation (4.2) can also be displayed in an equivalent way by the expression

∇(𝜇𝑌𝛼1)𝛼2...𝛼𝑝 = 𝑔𝜇[𝛼1𝑌𝛼2...𝛼𝑝] + 𝑔𝛼1[𝜇𝑌𝛼2...𝛼𝑝]. (4.4)

As one can see from the definition (4.2) of a CKY, the derivative of this object
is formed by two terms, one involving its exterior derivative and other its inte-
rior derivative (divergence). From this definition one can define two important
objects, the Killing-Yano tensor (KY) and the closed conformal Killing-Yano ten-
sor (CCKY). A KY is by definition a CKY with zero divergence (𝑌 = 0), which
amounts to having zero at the right-hand side of (4.4). Then, a KY is a 𝑝-form
which obeys the equation

∇(𝜇𝑌𝛼1)𝛼2...𝛼𝑝 = 0. (4.5)

A KY can be seen as the antisymmetric generalization of a KV. In fact, we see
that for 𝑝 = 1 the above equation satisfies the Killing equation.

A generic 𝑝-form 𝜔 is said to be closed if its exterior derivative is zero, that
is, 𝑑𝜔 = 0. Then, a closed CKY, or CCKY, is an object which obeys (4.2) with
vanishing exterior derivative ∇[𝜇𝑌𝛼1𝛼2...𝛼𝑝] = 0, that is,

∇𝜇𝑌𝛼1𝛼2...𝛼𝑝 = 2 𝑔𝜇[𝛼1𝑌𝛼2...𝛼𝑝]. (4.6)

It can be proved that the Hodge dual of a KY is a CCKY and vice versa. In fact,
for the Hodge duality we have

(𝑌 ⋆)𝛼1...𝛼𝑛−𝑝 = 1
𝑝!𝜖

𝛽1...𝛽𝑝

𝛼1...𝛼𝑛−𝑝
𝑌𝛽1...𝛽𝑝. (4.7)
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Supposing that 𝑌 ⋆ is a KY, it obeys, from (4.2), the relation

∇𝜇(𝑌 ⋆)𝛽1...𝛽𝑝 = ∇[𝜇(𝑌 ⋆)𝛽1...𝛽𝑝]. (4.8)

Contracting this latter expression with 1
𝑝!𝜖

𝛽1...𝛽𝑝

𝛼1...𝛼𝑛−𝑝
and using (4.7) we get

∇𝜇𝑌𝛼1...𝛼𝑛−𝑝 = 1
𝑝!(𝑛 − 𝑝)!𝜖

𝛽1...𝛽𝑝

𝛼1...𝛼𝑛−𝑝
𝜖

𝛼̃1...𝛼̃𝑛−𝑝

[𝛽1...𝛽𝑝
∇𝜇]𝑌𝛼̃1...𝛼̃𝑛−𝑝 . (4.9)

Developing the antisymmetrization of the right-hand side, we obtain finally that
𝑌 satisfies the CCKY equation (4.6). Similarly, we can prove the converse, that is,
by starting from a tensor 𝑌 ⋆ obeying the CCKY equation, prove that its Hodge
dual (𝑌 ⋆)⋆ = 𝑌 obeys a KY equation.

In addition, one can also prove that the Hodge dual of a CKY is also a CKY.
In other words, under Hodge duality, the exterior derivative becomes interior de-
rivative and vice versa, a fact which explains this latter result and the previous
one. As a remark, we point out that the CKY equation (4.2) can also be put into a
more compact form by using the language of differential forms [33]. This approach
has the advantage that the fact that two CKY’s are related via Hodge duality, in
the same way as a KY and a CCKY, it can be shown more easily in this notation.
However, this language will not be adopted here.

Another important object we can define is the Killing tensor (KT). A KT of
rank 𝑝 is by definition the symmetric generalization of a KV, that is, a completely
symmetric tensor 𝐾𝛼1...𝛼𝑝 = 𝐾(𝛼1...𝛼𝑝) which satisfies the equation

∇(𝜇𝐾𝛼1...𝛼𝑝) = 0. (4.10)

In fact, we see immediately that a KT of rank 𝑝 = 1 satisfies a Killing equation.
Furthermore, we have the important property that, given a KY, its square is a
KT, that is, the tensor 𝐾 defined by the contraction

𝐾𝛼𝛽 = 𝑌𝛼𝛼2...𝛼𝑝𝑌
𝛼2...𝛼𝑝

𝛽 (4.11)

is a rank 2 Killing tensor if 𝑌 is a Killing-Yano tensor of any order 𝑝.
The interesting point about KY’s and KT’s is that they are related to con-

served quantities for the motion of a free particle [31]. It is widely known that
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for the motion of a spinless particle in GR, the Killing vectors are related to con-
served quantities along the geodesic motion. Indeed, if 𝑘 is a Killing vector field,
then the scalar 𝑘𝜇𝑝𝜇 is a constant of motion for the particle. This result is very
important once it is closely related to the problem of integrating the geodesic equa-
tion in curved spacetimes. In fact, even in spacetimes with many symmetries, as
Schwarzschild spacetime, the geodesic equation is not integrated directly. Rather,
one uses the Killing vector fields of the spacetime, which generates the isometries,
in order to use the conserved charges associated to these symmetries and then
integrate the geodesic equation. In the same way as Killing vectors, Killing ten-
sors are also related to conserved quantities for the geodesic motion. In fact, if we
consider scalars of type 𝐶 = 𝐾𝜇𝜈𝑝𝜇𝑝𝜈 , for some tensor 𝐾𝜇𝜈 , we have by derivation
in the direction of motion:

𝐶̇ = 𝑣𝛼∇𝛼𝐾𝜇𝜈 𝑝𝜇𝑝𝜈 + 𝐾𝜇𝜈 𝑝̇𝜇𝑝𝜈 + 𝐾𝜇𝜈𝑝𝜇𝑝̇𝜈 . (4.12)

Imposing 𝐶̇ = 0, and since the motion is geodesic, i.e. 𝑝𝜇 ∝ 𝑣𝜇 and 𝑣̇𝜇 = 0, then
the last two terms above vanish and we conclude that 𝐶̇ ∝ ∇𝛼𝐾𝜇𝜈𝑣𝛼𝑣𝜇𝑣𝜈 = 0,
which is satisfied for an arbitrary geodesic curve only if ∇(𝛼𝐾𝜇𝜈) = 0, i.e., 𝐾 is a
rank 2 Killing tensor field. For instance, the metric tensor 𝑔𝜇𝜈 is a trivial example
of a rank 2 Killing tensor, once ∇𝛼𝑔𝜇𝜈 = 0. This KT is related to the conserved
quantity 𝑔𝜇𝜈𝑝𝜇𝑝𝜈 = 𝑝𝜇𝑝𝜇 for the spinless particle. In the same way, if a spacetime
admits a KY, we can form a KT by means of (4.11), so that we can always generate
a conserved scalar with the structure 𝐾𝜇𝜈𝑝𝜇𝑝𝜈 .

Therefore, KY’s and KT’s are related to conserved quantities even for the
geodesic motion, and not only for the case of a particle with spin. We note, however,
the particularity of the Rüdiger’s result (4.1), since for the geodesic motion the
generators of hidden symmetries (in this case, Killing tensors) appear in conserved
quantities quadratic in the momenta, while for the spinning particle the Killing-
Yano tensor appears already in the linear case.

After this presentation, we are ready to investigate the integrability conditions
of these objects. In particular, we will focuses our attention on the Killing-Yano
tensor, which is the relevant object which appears in the conserved charge we
are interested in. However, before discussing about integrability conditions, it is
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necessary to introduce an important classification which will be very relevant to
subsequent topics, the Petrov classification.

4.2 THE PETROV CLASSIFICATION

In four-dimensional spacetimes, there is an important classification which allows
us to classify the spacetimes in six different types. This classification is known as
Petrov classification, and it is an algebraic classification for the curvature tensor,
or more precisely, the Weyl tensor.

Petrov classification can be presented by a variety of different approaches [34].
In this thesis, however, we will present only one of them, which classify the Weyl
tensor according to which components of this tensor can be made simultaneously
zero by transforming a null tetrad frame under the action of Lorentz group. We
point out that, as proposed originally by Petrov [35] and further developed by Pen-
rose [36], the classification is valid only in four dimensional spacetimes. However,
in [34,37] can be found a discussion on how this classification can be generalized
to higher dimensions.

The Weyl tensor can be defined as the traceless part of the curvature tensor.
Then, it obeys the same algebraic identities of the curvature tensor, with the
additional property of being traceless, i.e., it satisfies

𝐶𝛼𝛽𝜇𝜈 = 𝐶[𝛼𝛽][𝜇𝜈], 𝐶𝛼[𝛽𝜇𝜈] = 0 and 𝐶𝜇
𝛼𝜇𝛽 = 0. (4.13)

As pointed out in chapter 2, the Weyl tensor in four dimensions has only ten
independent components. It is possible to accommodate these ten components in
five complex scalars by using a null tetrad frame, which we denote by {ℓ, 𝑛, 𝑚, 𝑚̄}.
A null tetrad frame is a set of four vectors {ℓ, 𝑛, 𝑚, 𝑚̄}, where ℓ and 𝑛 are real
vector fields, whereas 𝑚 is complex with 𝑚̄ being its complex conjugate. By
definition, all the tetrad vectors are null and the only nonvanishing inner products
in this frame are the following:

ℓ𝜇 𝑛𝜇 = 1 and 𝑚𝜇 𝑚̄𝜇 = −1 . (4.14)

For instance, if {𝑒0, 𝑒1, 𝑒2, 𝑒3} is a Lorentz frame, with their inner products yielding
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the Minkowski metric 𝜂𝜇𝜈 , then

ℓ = 1√
2

(𝑒0 + 𝑒1) , 𝑛 = 1√
2

(𝑒0 − 𝑒1) ,

𝑚 = 1√
2

(𝑒2 + 𝑖𝑒3) , 𝑚̄ = 1√
2

(𝑒2 − 𝑖𝑒3) ,

is a null tetrad frame.
The complex scalars, which are called Weyl scalars, are defined as projections

of the Weyl tensor in the vectors of the tetrad in the following way:

Ψ0 ≡ 𝐶𝛼𝛽𝜇𝜈ℓ𝛼𝑚𝛽ℓ𝜇𝑚𝜈 ; Ψ1 ≡ 𝐶𝛼𝛽𝜇𝜈ℓ𝛼𝑛𝛽ℓ𝜇𝑚𝜈 ; Ψ2 ≡ 𝐶𝛼𝛽𝜇𝜈ℓ𝛼𝑚𝛽𝑚̄𝜇𝑛𝜈 ;

Ψ3 ≡ 𝐶𝛼𝛽𝜇𝜈ℓ𝛼𝑛𝛽𝑚̄𝜇𝑛𝜈 ; Ψ4 ≡ 𝐶𝛼𝛽𝜇𝜈𝑛𝛼𝑚̄𝛽𝑛𝜇𝑚̄𝜈 .
(4.15)

In this language, the spacetimes are classified depending on which Weyl scalars
can be made zero.

In addition, the Weyl tensor can be expressed in terms of the null tetrad frame
introduced. In order to present the expression, let us introduce the following no-
tation:

{ℓ𝛼𝑛𝛽𝑚𝜇𝑚̄𝜈} ≡ 4ℓ[𝛼𝑛𝛽]𝑚[𝜇𝑚̄𝜈] + 4𝑚[𝛼𝑚̄𝛽]ℓ[𝜇𝑛𝜈]. (4.16)

The Weyl tensor is then expressed as

𝐶𝛼𝛽𝜇𝜈 = 1
2(Ψ2 + Ψ̄2)[{ℓ𝛼𝑛𝛽ℓ𝜇𝑛𝜈} + {𝑚𝛼𝑚̄𝛽𝑚𝜇𝑚̄𝜈}] − 1

2(Ψ2 − Ψ̄2){ℓ𝛼𝑛𝛽𝑚𝜇𝑚̄𝜈}

+Ψ̄0{𝑛𝛼𝑚̄𝛽𝑛𝜇𝑚̄𝜈} + Ψ̄4{ℓ𝛼𝑚𝛽ℓ𝜇𝑚𝜈} − Ψ̄2{ℓ𝛼𝑚𝛽𝑛𝜇𝑚̄𝜈}

+Ψ̄1[{ℓ𝛼𝑛𝛽𝑛𝜇𝑚̄𝜈} + {𝑛𝛼𝑚̄𝛽𝑚̄𝜇𝑚𝜈}] + Ψ̄3[{ℓ𝛼𝑚𝛽𝑚𝜇𝑚̄𝜈} − {ℓ𝛼𝑛𝛽ℓ𝜇𝑚𝜈}] + 𝑐.𝑐. ,

(4.17)
where 𝑐.𝑐. means the complex conjugate of all previous terms.

An important feature on Petrov classification is that it is local, i.e. the Petrov
type of the Weyl tensor can change from point to point of the spacetime. However,
it is observed that in general the Petrov type is kept invariant throughout the
spacetime, at least for most of the known spaces, and it is thanks to this property
that Petrov classification becomes useful to distinguish spacetimes. For example,
black hole solutions as Schwarzschild and Kerr spacetimes are Petrov type 𝐷 in
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all points of the manifold, while solutions as plane gravitational waves are type 𝑁 .
In particular, according with the definition presented in the table below of Petrov
classification in terms of Weyl scalars, it means that in these spacetimes we can
always find a null tetrad which allows us to vanish all the Weyl scalars (in all points
of the manifold) except Ψ2 and Ψ4, respectively. The following table summarizes
which Weyl scalars can be made zero depending on the corresponding Petrov type.

Petrov Type Vanishing Weyl Scalars
𝐼 Ψ0 , Ψ4

𝐼𝐼 Ψ0 , Ψ1 , Ψ4

𝐼𝐼𝐼 Ψ0 , Ψ1, Ψ2 , Ψ4

𝐷 Ψ0 , Ψ1, Ψ3 , Ψ4

𝑁 Ψ0 , Ψ1, Ψ2 , Ψ3

𝑂 Ψ0 , Ψ1, Ψ2 , Ψ3, Ψ4

Tabela 1 – Petrov types and its relation with the possibility of annihilating the
Weyl scalars by a suitable choice of null tetrad frame. Note that the
type 𝑂 means a conformally flat spacetime, i.e. the Weyl tensor is
identically zero in such a case.

Lorentz transformations can be understood in terms of rotations in the tetrad
frame. We can distinguish all possible rotations in a null tetrad frame in three
different types. They are [34,38]

(𝑖) ℓ → ℓ; 𝑛 → 𝑛 + 𝑤𝑚 + 𝑤̄𝑚̄ + |𝑤|2ℓ; 𝑚 → 𝑚 + 𝑤̄ℓ; 𝑚̄ → 𝑚̄ + 𝑤ℓ ,

(𝑖𝑖) ℓ → ℓ + |𝑧|2𝑛 + 𝑧𝑚 + 𝑧𝑚̄; 𝑛 → 𝑛; 𝑚 → 𝑚 + 𝑧𝑛; 𝑚̄ → 𝑚̄ + 𝑧𝑛 ,

(𝑖𝑖𝑖) ℓ → 𝜆 ℓ; 𝑛 → 𝜆−1𝑛; 𝑚 → 𝑒𝑖𝜃𝑚; 𝑚̄ → 𝑒−𝑖𝜃𝑚̄ ,

with 𝜆 and 𝜃 being real numbers, 𝑧 and 𝑤 being complex numbers, and where (i)
means rotation around the null direction ℓ, (ii) rotation around the null direction
𝑛 and (iii) a Lorentz boost. Performing the transformation (ii), the Weyl scalars
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transform in the following way

Ψ0 → Ψ′
0 = Ψ0 + 4𝑧Ψ1 + 6𝑧2Ψ2 + 4𝑧3Ψ3 + 𝑧4Ψ4 ;

Ψ1 → Ψ′
1 = 1

4
𝑑
𝑑𝑧

Ψ′
0; Ψ2 → Ψ′

2 = 1
3

𝑑
𝑑𝑧

Ψ′
1 ;

Ψ3 → Ψ′
3 = 1

2
𝑑
𝑑𝑧

Ψ′
2; Ψ4 → Ψ′

4 = 1
2

𝑑
𝑑𝑧

Ψ′
3 = Ψ4.

(4.18)

Establishing Ψ′
0 = 0, we will have a fourth order polynomial equation in the

variable 𝑧, which possesses four roots that we designate by {𝑧1, 𝑧2, 𝑧3, 𝑧4}. It means
that is always possible to annihilate Ψ0 by means of a convenient choice of the
frame. The different Petrov types of the Weyl tensor are then established depending
on the characteristic of these four roots. For instance, we can have a situation where
the four roots 𝑧𝑖 (𝑖 = 1, 2, 3, 4) are distinct, in which case the roots do not possess
degeneracy, or cases where some of the roots coincide, in which case is said that
the roots possess degeneracy of order 𝑟, with 𝑟 being the number of equal roots.
Each one of these possible situations will be associated with a Petrov type.

Let us illustrate how this association can be done using as example the case
where two of the roots coincide, i.e., are of the kind 𝑧1 = 𝑧2 ̸= 𝑧3 = 𝑧4. Firstly, we
call attention to the important mathematical fact that in the equation (4.18) the
transformed Weyl scalars are always the derivative of the precedent Weyl scalar.
This important fact will allow us to establish the different Petrov types. In the
proposed case, the polynomial Ψ′

0 can be expressed as Ψ′
0 = Ψ4(𝑧 − 𝑧1)2(𝑧 − 𝑧3)2

(= 0). The remaining transformed Weyl scalars can be obtained by derivation in
relation to 𝑧, and they read

Ψ′
1 = 1

2Ψ4(𝑧 − 𝑧1)(𝑧 − 𝑧3)(2𝑧 − 𝑧1 − 𝑧3) ;

Ψ′
2 = 1

3Ψ4
[︁
(𝑧 − 𝑧1)(𝑧 − 𝑧3) + 1

2(2𝑧 − 𝑧1 − 𝑧3)2
]︁

;

Ψ′
3 = 1

2Ψ4(2𝑧 − 𝑧1 − 𝑧3); Ψ′
4 = Ψ4.

(4.19)

Choosing 𝑧 = 𝑧1 for example, we see that the scalars Ψ0 and Ψ1 become zero
simultaneously. Similarly, if after this we perform a transformation of the type



49

(i), one proves that the scalars Ψ3 and Ψ4 also vanish, while Ψ0 and Ψ1 are kept
invariant, i.e., equal to zero. Then, the situation where two of the roots coincide
admits just Ψ2 ̸= 0 after Lorentz transformations, i.e., it is identified as the Petrov
type 𝐷 case. Similarly, we show that the each of the remaining situations involving
the four roots of the polynomial equation Ψ′

0 = 0 is related to a specific Petrov
type of the Weyl tensor. This classification will be useful in calculations made in
the next chapter.

4.3 INTEGRABILITY CONDITIONS

Suppose that 𝑍𝛼 is a covariantly constant vector field, i.e., it satisfies ∇𝛼𝑍𝛽 = 0.
A vector field with this property, due to the Ricci identity (2.2), satisfies the
equation

2∇[𝜇∇𝜈]𝑍
𝛼 = 𝑅𝛼

𝛽𝜇𝜈𝑍𝛽 = 0 .

The latter equation is said to be an integrability condition for the existence of
a constant vector field. Thus, if the curvature of a spacetime is such that there
exists no vector field 𝑇 𝛼 satisfying 𝑅𝛼𝛽𝜇𝜈𝑇 𝛼 = 0, then we can already state that
no covariantly constant vector field exists, without having to try to integrate the
differential equation ∇𝛼𝑍𝛽 = 0 for a generic vector field 𝑍𝛼. In the same way, if
one wants that a KY exists in a spacetime, some integrability conditions should be
satisfied. For instance, concerning KY’s of rank two, 𝑌𝜇𝜈 , the following constraints
must hold [39-41]:

0 =𝑅𝛼
(𝜇 𝑌𝜈)𝛼 , (4.20)

0 =𝐶
𝜎

𝛼𝛽[𝜇 𝑌𝜈]𝜎 + 𝐶
𝜎

𝜇𝜈[𝛼 𝑌𝛽]𝜎 , (4.21)

where 𝑅𝛼
𝜇 stands for the Ricci tensor whereas 𝐶𝜇𝜈𝛼𝛽 denotes the Weyl tensor.

Thus, the curvature of the spacetime must obey some algebraic restrictions if a
spacetime admits a KY.

A general treatment of the integrability conditions valid for CKY’s of any order
is given in [41]. However, we are interested in understanding the conserved scalar
(4.1) found by Rudiger in [25]. Therefore, from now on, it is sufficient to investigate
the integrability conditions associated to KY’s of rank 𝑝 = 2. Considering this
simplification, let us illustrate how to obtain the integrability condition (4.21). For
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this purpose, we start from the more general equation of a conformal KY of rank
2, which according to (4.4) reads

∇𝜈𝑌𝛼𝛽 + ∇𝛼𝑌𝜈𝛽 = 2 𝑔𝜈[𝛼𝑌𝛽] + 2 𝑔𝛼[𝜈𝑌𝛽]. (4.22)

The integrability conditions for a CKY are algebraic conditions satisfied by the
curvature tensor necessary for its existence, that is, if we suppose that a spacetime
admits the existence of a CKY, then its curvature tensor necessarily should satisfy
some algebraic conditions. Then, starting from (4.22) and since we are looking for
an algebraic expression, we need to eliminate all the derivatives of the CKY 𝑌 .
For this purpose, we proceed as follows. Deriving the above relation and by making
cyclic permutations of the indices (𝜇𝜈𝛼), we get

∇𝜇∇𝜈𝑌𝛼𝛽 + ∇𝜇∇𝛼𝑌𝜈𝛽 = 2 ℎ𝜇[𝛽𝑔𝛼]𝜈 + 2 ℎ𝜇[𝛽𝑔𝜈]𝛼,

−∇𝛼∇𝜇𝑌𝜈𝛽 − ∇𝛼∇𝜈𝑌𝜇𝛽 = −2 ℎ𝛼[𝛽𝑔𝜈]𝜇 − 2 ℎ𝛼[𝛽𝑔𝜇]𝜈 ,

∇𝜈∇𝛼𝑌𝜇𝛽 + ∇𝜈∇𝜇𝑌𝛼𝛽 = 2 ℎ𝜈[𝛽𝑔𝜇]𝛼 + 2 ℎ𝜈[𝛽𝑔𝛼]𝜇, (4.23)

where the second equation was multiplied by −1 and we define ℎ𝛼𝛽 = ∇𝛼𝑌𝛽.
Summing the three equations above and using the Ricci identity (2.2), we arrive
at

2∇𝜇∇𝜈𝑌𝛼𝛽 = 𝑅 𝛾
𝛼 𝜇𝜈𝑌𝛾𝛽 + 𝑅 𝛾

𝛽 𝜇𝜈𝑌𝛼𝛾 − 𝑅 𝛾
𝜈 𝜇𝛼𝑌𝛾𝛽 − 𝑅 𝛾

𝛽 𝜇𝛼𝑌𝜈𝛾 − 𝑅 𝛾
𝜇 𝜈𝛼𝑌𝛾𝛽

− 𝑅 𝛾
𝛽 𝜈𝛼𝑌𝜇𝛾 + 2 ℎ𝜇[𝛽𝑔𝛼]𝜈 + 2 ℎ𝜇[𝛽𝑔𝜈]𝛼 − 2 ℎ𝛼[𝛽𝑔𝜈]𝜇 − 2 ℎ𝛼[𝛽𝑔𝜇]𝜈

+ 2 ℎ𝜈[𝛽𝑔𝜇]𝛼 + 2 ℎ𝜈[𝛽𝑔𝛼]𝜇. (4.24)

Now, starting from (4.2) for 𝑝 = 2, expanding its anti-symmetrization symbols,
and then deriving with ∇𝜇 the resulting expression we get

2 ∇𝜇∇𝜈𝑌𝛼𝛽 = 3𝑔𝜈𝛼ℎ𝜇𝛽 − 3𝑔𝜈𝛽ℎ𝜇𝛼 − ∇𝜇∇𝛽𝑌𝜈𝛼 + ∇𝜇∇𝛼𝑌𝛽𝜈 . (4.25)

Using equation (4.24) to build explicit expressions for ∇𝜇∇𝛽𝑌𝜈𝛼 and ∇𝜇∇𝛼𝑌𝛽𝜈 ,
and then substituting the results in the equation above, we obtain

2 ∇𝜇∇𝜈𝑌𝛼𝛽 = −3𝑅𝛾
𝜇[𝜈𝛼𝑌𝛽]𝛾 + 2

(︁
𝑔𝜈𝛼ℎ𝜇𝛽 − 𝑔𝜈𝛽ℎ𝜇𝛼 − 3𝑔𝜇[𝜈ℎ𝛼𝛽]

)︁
. (4.26)

Since we have established Eq. (4.24) by using Ricci identity and Eq. (4.25) by
merely index manipulation, then we have two independent equations for the term
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2 ∇𝜇∇𝜈𝑌𝛼𝛽. Thus, equating the right-hand side of (4.24) and (4.26), we get, after
some algebra,

𝑅𝛾
𝜇𝛼𝜈𝑌𝛽𝛾 + 𝑅𝛾

𝜈𝛽𝜇𝑌𝛼𝛾 + 𝑅𝛾
𝛼𝜇𝛽𝑌𝜈𝛾 + 𝑅𝛾

𝛽𝜈𝛼𝑌𝜇𝛾 + 2𝑔𝜇𝛼∇(𝜈𝑌𝛽)

+ 2𝑔𝜈𝛽∇(𝜇𝑌𝛼) − 2𝑔𝜇𝜈∇(𝛼𝑌𝛽) − 2𝑔𝛼𝛽∇(𝜇𝑌𝜈) = 0. (4.27)

Equation (4.27) is still dependent on derivatives of 𝑌 through 𝑌 , such that it
should be eliminated in order to arrive at the integrability condition. This can
be made by contracting (4.27) with 𝑔𝜇𝜈 , which allows us to express the derivative
∇(𝛼𝑌𝛽) only in terms of the product of the CKY with the Ricci tensor, that is,

∇(𝛼𝑌𝛽) = 1
2𝑅𝛾

(𝛼𝑌𝛽)𝛾. (4.28)

Substituting Eq. (4.28) into Eq. (4.27), and expressing the curvature tensor in
terms of the Weyl tensor, eventually leads to

𝐶 𝛾
𝛼𝛽[𝜇 𝑌𝜈]𝛾 + 𝐶 𝛾

𝜇𝜈[𝛼 𝑌𝛽]𝛾 = 0, (4.29)

which is the integrability condition for the existence of a conformal Killing-Yano
tensor.

We can now work out the consequences of the integrability condition (4.20) for
the Ricci tensor. In the next chapter we will be more interested in the traceless
part of the Ricci tensor, which is defined by

Φ𝜇𝜈 = 𝑅𝜇𝜈 − 1
4 𝑅 𝑔𝜇𝜈

As already mentioned in section 1.1, a spacetime is called an Einstein spacetime
whenever its Ricci tensor is proportional to the metric, which is equivalent to
say that Φ vanishes. Note that, in terms of the null tetrad frame, the traceless
condition 𝑔𝛼𝛽Φ𝛼𝛽 = 0 implies

𝑔𝛼𝛽Φ𝛼𝛽 = (2ℓ(𝛼𝑛𝛽) − 2𝑚(𝛼𝑚̄𝛽))Φ𝛼𝛽 = 0 ⇒ Φℓ𝑛 = Φ𝑚𝑚̄ , (4.30)

where the compact notation Φ𝛼𝛽ℓ𝛼𝑛𝛽 = Φℓ𝑛 and Φ𝛼𝛽𝑚𝛼𝑚̄𝛽 = Φ𝑚𝑚̄ has been used.
At this point, we need to digress on bivectors and their classification. By de-

finition, a bivector 𝐵 at a point 𝑥 of a manifold is any antisymmetric tensor of
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second order. If its components are 𝐵𝜇𝜈(= 𝐵[𝜇𝜈]), then its Hodge dual is defined
as follows:

𝐵⋆
𝜇𝜈 = 1

2𝜖𝜇𝜈𝛼𝛽𝐵𝛼𝛽. (4.31)

A nonzero bivector can be of two algebraic types: null or non-null. A null bivector
is such that the contractions 𝐵𝜇𝜈𝐵𝜇𝜈 and 𝐵𝜇𝜈𝐵⋆

𝜇𝜈 are both zero. Otherwise, it is
called a non-null bivector. Once introduced a null tetrad frame {ℓ, 𝑛, 𝑚, 𝑚̄}, it is
possible to express the two algebraic types of the bivector in terms of the tetrad
vectors. It turns out that given a real bivector 𝐵 one can always find a null frame
in which the bivector is written in one of the following forms depending on its
algebraic type [42]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Null Bivector: 𝐵 = ℓ ∧ (𝑚 + 𝑚̄)

Non-Null Bivector: 𝐵 = 𝑓 ℓ ∧ 𝑛 + 𝑖ℎ 𝑚 ∧ 𝑚̄ ,

(4.32)

where 𝑓 and ℎ are real functions that cannot both be identically zero. We can
see this, proceeding in a similar way we did on Petrov classification. In terms
of a null tetrad, we define the components of a bivector 𝐵𝜇𝜈 as 𝐵0 = 𝐵𝜇𝜈ℓ𝜇𝑚𝜈 ,
𝐵1 = 𝐵𝜇𝜈ℓ𝜇𝑛𝜈 , 𝐵2 = 𝐵𝜇𝜈𝑚𝜇𝑚̄𝜈 and 𝐵3 = 𝐵𝜇𝜈𝑛𝜇𝑚̄𝜈 . By means of a rotation around
the null vector 𝑛, these components transforms in the following way:

𝐵′
0 = 𝐵0 + 𝑧(𝐵1 − 𝐵2) − 𝑧2𝐵3; 𝐵′

1 = 1
2

(︃
𝑑𝐵′

0
𝑑𝑧

+ 𝑑𝐵̄′
0

𝑑𝑧

)︃

𝐵′
2 = 1

2

(︃
𝑑𝐵̄′

0
𝑑𝑧

− 𝑑𝐵′
0

𝑑𝑧

)︃
; 𝐵′

3 = 𝐵3. (4.33)

Establishing 𝐵′
0 = 0, we have a polynomial equation of second order in 𝑧 (at first,

two different roots {𝑧1, 𝑧2}). We classify the bivector 𝐵𝜇𝜈 depending on which
scalars can be made zero simultaneously. In particular, when we can write 𝐵′

0 =
−𝐵3(𝑧 − 𝑧1)2 (case 𝑧1 = 𝑧2), Eq. (4.33) implies that only 𝐵3 ̸= 0, in which case
the bivector can be written as 𝐵 = ℓ ∧ (𝑚 + 𝑚̄) (null bivector).

Now, assuming that the KY is a null bivector, i.e., it can be written as 𝑌 =
ℓ ∧ (𝑚 + 𝑚̄), for some null tetrad frame, then inserting this form into Eq. (4.20),
and finally contracting the free indices of this equation with the vectors of the null
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tetrad we eventually conclude that

𝑌 Null:

⎧⎪⎨⎪⎩ Φℓℓ = Φℓ𝑚 = Φℓ𝑚̄ = Φ𝑛𝑚 + Φ𝑛𝑚̄ = 0 ,

Φ𝑚𝑚 = Φ𝑚̄𝑚̄ = −2Φℓ𝑛 .
(4.34)

Analogously, assuming that the KY is non-null and writing it in the standard form
given in Eq. (4.32), it follows that the integrability condition (4.20) implies

𝑌 Non-Null:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φℓ𝑚 = Φℓ𝑚̄ = Φ𝑛𝑚 = Φ𝑛𝑚̄ = 0 ,⎧⎪⎨⎪⎩ 𝑓 ̸= 0 ⇒ Φℓℓ = Φ𝑛𝑛 = 0

ℎ ̸= 0 ⇒ Φ𝑚𝑚 = Φ𝑚̄𝑚̄ = 0 .

(4.35)

Thus, for a generic non-null KY, i.e. when the real functions 𝑓 and ℎ appearing
in the standard form of Eq. (4.32) are both nonvanishing, we have that Φℓℓ, Φ𝑛𝑛,
Φ𝑚𝑚, and Φ𝑚̄𝑚̄ all vanish. However, if ℎ vanishes then we cannot assert that
Φ𝑚𝑚 = Φ𝑚̄𝑚̄ = 0, whereas if 𝑓 vanishes the integrability condition does not imply
Φℓℓ = Φ𝑛𝑛 = 0. We recall that the functions 𝑓 and ℎ cannot vanish simultaneously,
otherwise the KY tensor would be trivial.

In addition, we see that the integrability condition (4.29) involves the Weyl
tensor, so that it must imply some restrictions on this tensor. In fact, it is possible
to prove that Eq.(4.29) implies that the following conclusion holds [41]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Null KY: Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 ,

Non-Null KY: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 .

(4.36)

Indeed, let us take as an example the case where the bivector 𝑌 is null. Inserting
𝑌 = ℓ ∧ (𝑚 + 𝑚̄) into Eq.(4.29), we get

𝐶 𝛾
𝛼𝛽𝜇 (ℓ[𝜈𝑚𝛾] + ℓ[𝜈𝑚̄𝛾]) − 𝐶 𝛾

𝛼𝛽𝜈 (ℓ[𝜇𝑚𝛾] + ℓ[𝜇𝑚̄𝛾])
+ 𝐶 𝛾

𝜇𝜈𝛼 (ℓ[𝛽𝑚𝛾] + ℓ[𝛽𝑚̄𝛾]) − 𝐶 𝛾
𝜇𝜈𝛽 (ℓ[𝛼𝑚𝛾] + ℓ[𝛼𝑚̄𝛾]) = 0 . (4.37)

Contracting the above equation with ℓ𝛼𝑚𝛽ℓ𝜇𝑛𝜈 , we obtain 𝐶ℓ𝑚ℓ𝑚 = Ψ0 = 0.
Similarly, we can take other contractions such that we eventually arrive at (4.36).

Therefore, from the algebraic type of the Weyl tensor it is possible to rule out
the existence of a KY of rank two. For example, if we suppose that a spacetime
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is Petrov type 𝐼𝐼𝐼, then it cannot admit a rank two KY. This statement can be
done prior to any attempt of integrating the KY equation. In the next chapter
we shall use this tool along with other two conditions, that are required in order
to guarantee that the scalar 𝑄𝑌 = 𝑌 ⋆

𝛼𝛽𝑆𝛼𝛽 is conserved along a solution of MPD
equations, and conclude that very few spacetimes allow this conserved charge. In
particular, we will prove that this scalar is useless for Einstein spacetimes.

4.4 RÜDIGER’S CONSERVED CHARGE

In this section, we follow the steps adopted by Rüdiger in Ref. [25] in order
to obtain the most general conserved scalar for the spinning free particle that is
linear in its linear and angular momentum. The most general scalar of this type is
given by

𝑄 = 𝑘𝜇𝑝𝜇 + 𝐿𝜇𝜈𝑆𝜇𝜈 , (4.38)

for some tensors 𝑘𝜇 and 𝐿𝜇𝜈 = 𝐿[𝜇𝜈]. Now, let us impose that 𝑄 is conserved
along the particle’s trajectory described by MPD equations and then verify what
conditions this requirement implies for the tensors 𝑘 and 𝐿. Derivating (4.38)
along the trajectory of the particle, we obtain

𝑄̇ = 𝑣𝛼
(︂

∇𝛼𝑘𝜇𝑝𝜇 − 1
2𝑘𝜇𝑅𝜇

𝛼𝛽𝛾𝑆𝛽𝛾 + ∇𝛼𝐿𝜇𝜈𝑆𝜇𝜈 + 2 𝐿𝜇𝛼𝑝𝜇
)︂

= 0, (4.39)

where the MPD equations have been used. Now, it is desirable to express the
latter relation only in terms of the independent degrees of freedom of the spinning
particle. This can be accomplished by substituting 𝑣𝛼 by 𝑝𝛼 and 𝑆𝛼𝛽 using (3.15).
Doing this and after some algebra, we arrive at the following equation:

𝑄̇ = 4𝜇2∇𝛼𝑘𝛽𝑝𝛼𝑝𝛽 − (2𝜇2𝑘𝜇𝑅𝜇
𝛼𝛽𝛾𝑆𝛽𝛾𝑝𝛼 − 4𝜇2𝑝𝛼∇𝛼𝐿𝜇𝜈𝑆𝜇𝜈)

− (𝑅𝜇𝜈𝜌𝜎𝑆𝜇𝜈𝑆𝜌𝜎∇𝛼𝑘𝛽𝑝𝛼𝑝𝛽 + 2𝑆𝛼𝛽𝑅𝛽𝜈𝜌𝜎𝑝𝜈𝑆𝜌𝜎∇𝛼𝑘𝜇𝑝𝜇 (4.40)
+ 4𝑆𝛼𝛽𝑅𝛽𝜈𝜌𝜎𝑝𝜈𝑆𝜌𝜎𝐿𝜇𝛼𝑝𝜇)

+
(︂1

2𝑘𝛿𝑅
𝛿

𝛼𝛽𝛾𝑆𝛽𝛾𝑝𝛼𝑅𝜇𝜈𝜌𝜎𝑆𝜇𝜈𝑆𝜌𝜎 − 𝑅𝛼𝛽𝜌𝜎𝑆𝛼𝛽𝑆𝜌𝜎𝑝𝛾∇𝛾𝐿𝜇𝜈𝑆𝜇𝜈

+ 𝑆𝛼𝛾𝑅𝛾𝜈𝜌𝜎𝑝𝜈𝑆𝜌𝜎𝑘𝜇𝑅𝜇
𝛼𝛽𝛾𝑆𝛽𝛾 − 2𝑆𝛼𝛾𝑅𝛾𝛿𝜌𝜎𝑝𝛿𝑆𝜌𝜎∇𝛼𝐿𝜇𝜈𝑆𝜇𝜈

)︁
= 0,

In order to extract the conditions necessary to guarantee that 𝑄 is conserved, we
need to replace 𝑆𝛼𝛽 by the spin vector 𝑆𝛼 in the expression above, since 𝑆𝛼𝛽 and
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𝑝𝛼 are not independent variables, once they must obey 𝑆𝛼𝛽𝑝𝛽 = 0. Since 𝑝𝜇 and 𝑆𝜇

are completely arbitrary, we see that the above equation implies four conditions on
the tensors 𝑘 and 𝐿, once Eq. (4.40) has terms containing four different orders in
these variables. These terms are independent and they need to vanish separately.
The first condition, which involves only terms quadratic in momentum implies

∇𝛼𝑘𝛽𝑝𝛼𝑝𝛽 = 0 . (4.41)

Since the momentum 𝑝𝛼 is arbitrary, it implies simply that ∇(𝛼𝑘𝛽) = 0, i.e., 𝑘

is a Killing vector field. Once it has been established, we can use in subsequent
calculations the identity 𝑘𝜇𝑅𝜇

𝛼𝛽𝛾 = ∇𝛼∇𝛽𝑘𝛾, which is valid for an arbitrary KV.
The second condition that arises from equation (4.40) is formed by terms which

are quadratic in 𝑝 and linear in 𝑆, and it reads

𝜖𝜇𝜈𝛾
𝛼∇𝛽

(︂
𝐿𝜇𝜈 − 1

2∇𝜇𝑘𝜈

)︂
𝑝𝛼𝑝𝛽𝑆𝛾 = 0, (4.42)

where the fact of 𝑘 being a KV has been used. Since 𝑝 and 𝑆 are completely
arbitrary, it follows from (4.42) the condition

𝜖𝜇𝜈𝛾
(𝛼∇𝛽)

(︂
𝐿𝜇𝜈 − 1

2∇𝜇𝑘𝜈

)︂
= 0. (4.43)

Now, defining the tensor

𝑌𝛼𝛽 ≡ 1
2𝜖𝜇𝜈

𝛼𝛽

(︂
𝐿𝜇𝜈 − 1

2∇𝜇𝑘𝜈

)︂
, (4.44)

it follows from Eq. (4.43) that 𝑌 obeys the equation ∇(𝛼𝑌𝛽)𝜈 = 0, i.e., it must be
a Killing-Yano tensor. In other words, the second condition states that the tensor
𝐿 appearing in the conserved charge should be written as 𝐿𝜇𝜈 = 1

2∇𝜇𝑘𝜈 + 𝑌 ⋆
𝜇𝜈 ,

with 𝑌 ⋆ being the Hodge dual of the Killing-Yano 𝑌 , that is, a CCKY.
Finally, two other conditions can still be extracted from Eq. (4.40), one being

of fourth order in 𝑝 and second order in 𝑆, and the other being of fourth order in
𝑝 and third order in 𝑆. These conditions can be put in the form:

(⋆𝑅
⋆𝜅(𝛼𝛽)

(𝜇𝑔𝜈𝜌 +⋆ 𝑅
⋆𝜅 (𝛼

(𝜇𝜈 𝛿𝛽)
𝜌 )𝑌 ⋆

𝜎)𝜅 = 0 (4.45)

and
(𝑅⋆(𝛼𝛽

𝜇 𝑔𝜈𝜌 + 𝑅⋆𝜅 (𝛼
𝜇𝜈 𝛿𝛽

𝜌 )∇𝜅𝑌 𝛾)
𝜎 = 0, (4.46)
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where we introduce the double Hodge dual as

⋆𝑅⋆
𝛼𝛽𝛾𝛿 = 1

4𝜖𝛼𝛽𝛼′𝛽′𝑅𝛼′𝛽′𝛾′𝛿′
𝜖𝛾𝛿𝛾′𝛿′ , (4.47)

and

𝑅⋆
𝛼𝛽𝜇𝜈 = 1

2𝜖𝛼𝛽𝛼′𝛽′𝑅𝛼′𝛽′

𝜇𝜈 .

As pointed out by Rüdiger in Ref. [25], Eqs. (4.45) and (4.46) can be further
simplified. Indeed, after some algebra, one can prove that they are equivalent to
the following two constraints, respectively:

⋆𝑅
⋆𝜎(𝛼𝛽)

(𝜇 𝑌 ⋆
𝜈)𝜎 − 1

6𝐺𝜎(𝛼𝛿
𝛽)
(𝜇𝑌 ⋆

𝜈)𝜎 + 1
4

⋆𝑅
⋆𝜌𝜎(𝛼

(𝜇𝛿
𝛽)
𝜈) 𝑌

⋆
𝜌𝜎 = 0 , (4.48)

𝐽 (𝛼𝑅
⋆𝛽 𝛾)
(𝜇𝜈) − 𝐽𝜅𝑅

⋆ (𝛼
𝜅(𝜇𝜈) 𝑔𝛽𝛾) − 𝐽𝜅𝑅

⋆ (𝛼𝛽
𝜅 (𝜇 𝛿

𝛾)
𝜈) = 0 , (4.49)

where 𝐽𝛼 is the divergence of 𝑌 ⋆, namely 𝐽𝛽 = ∇𝛼𝑌 ⋆
𝛼𝛽, whereas 𝐺𝜇𝜈 stands for

the Einstein tensor. Let us illustrate how we can obtain the simplified versions
given above. For Eq. (4.45), we note first that we can take only three independent
traces: the first involving a contraction of one up index with one down (𝛼 with
𝜇 for example), the second involving a contraction between two down indices (𝜇
with 𝜈 for example) and the third being the contraction with the both up indices
(𝛼 with 𝛽). The second and third traces are given by

4Φ(𝜇
𝜆𝛿

(𝛼
𝜈) 𝑌 ⋆𝛽)

𝜆 − 6Φ(𝛼
(𝜇𝑌 ⋆𝛽)

𝜈) − 7𝑔𝛼𝛽Φ(𝜇
𝜆𝑌 ⋆

𝜈)𝜆 − 𝑔𝜇𝜈Φ𝜆(𝛼𝑌 ⋆𝛽)
𝜆 + 2𝛿

(𝛼
(𝜇Φ𝛽)𝜆𝑌 ⋆

𝜈)𝜆

− 14𝐶𝜆(𝛼𝛽)
(𝜇𝑌 ⋆

𝜈)𝜆 − 3𝑌 ⋆
𝜅𝜆𝐶𝜅𝜆(𝛼

(𝜇𝛿
𝛽)
𝜈) + 2𝑌 ⋆𝜆(𝛼𝐶𝛽)

(𝜇𝜈)𝜆 = 0 (4.50)

and

𝑔𝜈(𝛼Φ𝛽)
𝜆𝑌 ⋆

𝜇𝜆 + 𝑔𝜈(𝛼|Φ𝜇
𝜆𝑌 ⋆

|𝛽)𝜆 + 𝑔𝜇(𝛼Φ𝛽)
𝜆𝑌 ⋆

𝜈𝜆 + 𝑔𝜇(𝛼|Φ𝜈
𝜆𝑌 ⋆

|𝛽)𝜆

+𝑔𝜇𝜈Φ(𝛼
𝜆𝑌 ⋆

𝛽)𝜆 + 𝑔𝛼𝛽Φ(𝜇
𝜆𝑌 ⋆

𝜈)𝜆 = 0, (4.51)

respectively. Combining the traces (4.50) and (4.51), we arrive at the simplified
equation (4.48). Then, it proves that Eq. (4.45) implies Eq. (4.48). To prove now
the equivalence between them, we need only to show the contrary, i.e., that Eq.
(4.48) also implies Eq. (4.45). This is made by substituting the first trace along
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with Eq. (4.48) into Eq. (4.45) and showing that this leads to the trivial identity
0 = 0. Therefore, (4.45) and (4.48) are equivalent expressions, and then all the
content of (4.45) is contained in (4.48). Similarly, one can prove the equivalence
between (4.46) and (4.49). Hereafter, the third and fourth conditions (which we
will call sometimes additional conditions) that make 𝑄 constant are taken to be
Eq.’s (4.48) and (4.49). (We call the attention for the different sign in the middle
term of Eq. (4.48) in comparison with Eq. (4.9) of Ref. [25], where in the latter the
sign in front of the fraction 1/6 is positive, although the correct sign is negative, as
written here. Indeed, as noted by Rüdiger himself, the additional conditions should
be identically satisfied for maximally symmetric spacetimes, i.e., spacetimes whose
curvature tensor has the structure

𝑅𝛼𝛽𝜇𝜈 = 𝜅(𝑔𝛼𝜇𝑔𝛽𝜈 − 𝑔𝛼𝜈𝑔𝛽𝜇), (4.52)

which is not accomplished if the sign is positive. Thus, there must have been a
typo at this point in Ref. [25]).

Summing up, assuming Tulczyjew supplementary condition 𝑆𝛼𝛽𝑝𝛽 = 0, we have
proved that the most general conserved charge for MPD equations that is linear
in momenta is given by

𝑄 =
(︂

𝑘𝜇𝑝𝜇 + 1
2∇𝜇𝑘𝜈𝑆𝜇𝜈

)︂
+ 𝑌 ⋆

𝜇𝜈𝑆𝜇𝜈 , (4.53)

where 𝑘 is a Killing vector and 𝑌 is a rank two KY tensor. In addition, the
constraints (4.48) and (4.49) must hold. Since 𝑘 and 𝑌 are totally independent
from each other and the latter constraints do not depend on 𝑘,

𝑄𝑘 = 𝑘𝜇𝑝𝜇 + 1
2∇𝜇𝑘𝜈𝑆𝜇𝜈 and 𝑄𝑌 = 𝑌 ⋆

𝜇𝜈𝑆𝜇𝜈 ,

are independently conserved. Indeed, it is widely known that 𝑄𝑘 is conserved for
any Killing vector 𝑘, as proved in section 3.1. The important result of Ref. [25] is
that the scalar 𝑄𝑌 is conserved as long as 𝑌 is a KY and conditions (4.48) and
(4.49) hold. The problem is that the latter conditions are quite obscure and have
not been tackled in the literature so far. The main goal of the present thesis is to
shed light over the meaning of these constraints and determine the scenarios in
which the conserved charge 𝑄𝑌 is allowed to exist.
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5 THE CONSERVED CHARGE 𝑄𝑌

This chapter aims to investigate if the additional conserved quantity (4.1),
found by Rüdiger in Ref. [25], can be useful in spacetimes of physical interest. In
other words, we plan to answer the question: which spacetimes admit a Killing-
Yano tensor satisfying the additional conditions (4.48) and (4.49)? The problem
of delimiting the possible spacetimes is a very interesting question since conserved
charges reveal to be very useful in the integrability of the equations of motion
of the particle. For example, in the integrability of the geodesic equation in Kerr
spacetime for the general case (i.e., for orbits not necessarily contained in the
equatorial plane), the conserved charges associated to the Killing vectors are not
sufficient to integrate the trajectory of the particle, which is accomplished just
if we also consider the conserved charge associated to the Killing-Yano tensor
admitted by the Kerr geometry (more precisely, the conserved charge associated
to the Killing tensor, which can be constructed by the square of a KY, as discussed
in chapter 3) [43,44]. Therefore, if the Rüdiger’s new constant exists in physically
interesting spacetimes, it can be useful in the integrability of the MPD equations,
as will be explained further in this chapter.

We have seen in the previous chapter that four conditions arise when we require
that the scalar 𝑄 given by (4.38) be conserved. The first two conditions have very
simple interpretations, namely that 𝑘 must be a KV and 𝑌 must be a KY tensor,
which does not happen with the last two ones. The point in this chapter is to use
some mathematical tools introduced along previous chapters in order to shed light
on the content of the two somewhat obscure conditions (4.48) and (4.49).

This chapter is based on our published article [26].

5.1 SPACETIMES ALLOWING THE CONSERVED CHARGE

We will use the decomposition of the Riemann tensor as given by (2.9), which
writes the curvature in terms of the Weyl tensor 𝐶, the traceless part of the Ricci
tensor Φ and the Ricci scalar 𝑅. We repeat the decomposition here for convenience



59

of the reader:

𝑅𝛼𝛽𝛾𝛿 = 𝐶𝛼𝛽𝛾𝛿 + 𝑔𝛼[𝛾Φ𝛿]𝛽 − 𝑔𝛽[𝛾Φ𝛿]𝛼 + 𝑅

6 𝑔𝛼[𝛾𝑔𝛿]𝛽 . (5.1)

In particular, the spacetime is said to be maximally symmetric if 𝐶𝛼𝛽𝜇𝜈 and Φ𝜇𝜈

vanish simultaneously. We observe that each of the irreducible blocks of the above
decomposition have a simple transformation with respect to the double Hodge
dual, such that taking the star operation twice, we get

⋆𝑅⋆
𝛼𝛽𝛾𝛿 = −𝐶𝛼𝛽𝛾𝛿 + 𝑔𝛼[𝛾Φ𝛿]𝛽 − 𝑔𝛽[𝛾Φ𝛿]𝛼 − 𝑅

6 𝑔𝛼[𝛾𝑔𝛿]𝛽 .

Then, using this expression along with 𝐺𝛼𝛽 = Φ𝛼𝛽 − 𝑅
4 𝑔𝛼𝛽, it follows that the

condition (4.48) can be written as

𝐶
𝜅(𝛼𝛽)

(𝛾𝑌 ⋆
𝛿)𝜅 + 1

4𝑌 ⋆
𝜖𝜅𝐶

𝜖𝜅(𝛼
(𝛾𝛿

𝛽)
𝛿) − 1

2Φ(𝛼
(𝛾𝑌

⋆ 𝛽)
𝛿) (5.2)

+ 1
2𝑔𝛼𝛽Φ 𝜅

(𝛾 𝑌 ⋆
𝛿)𝜅 − 1

12𝛿
(𝛼
(𝛾 Φ𝛽)𝜅𝑌 ⋆

𝛿)𝜅 − 1
4Φ 𝜅

(𝛾 𝛿
(𝛼
𝛿) 𝑌 ⋆𝛽)

𝜅 = 0.

In the same way, condition (4.49) is written as

𝐽𝜅𝐶
⋆ (𝛼
𝜅(𝜇𝜈) 𝑔𝛽𝛾) − 𝐽 (𝛼𝐶

⋆𝛽 𝛾)
(𝜇𝜈) + 1

2𝐽𝜅𝜖
(𝛼| 𝛿

(𝜇| 𝜅 Φ𝛿|𝜈)𝑔
|𝛽𝛾)

+ 𝐽𝜅𝐶
⋆ (𝛼𝛽
𝜅 (𝜇 𝛿

𝛾)
𝜈) − 1

2𝐽𝜅𝜖
𝛿 (𝛼

(𝜇|𝜅 Φ 𝛽
𝛿 𝛿

𝛾)
|𝜈) = 0. (5.3)

In the sequel, we will clarify the content of Eqs. (5.2) and (5.3) using a null te-
trad frame and the Petrov classification. For this, let us consider the two possible
algebraic forms of the Killing-Yano tensor 𝑌 , namely null and non-null. These
possibilities will be considered separately in what follows.

5.1.1 Null Killing-Yano tensor

In what follows we will consider that the KY tensor is a null bivector, so that
there exists a null frame such that 𝑌 = ℓ ∧ (𝑚 + 𝑚̄), so that its Hodge dual is̃︁𝑌 = 𝑖ℓ ∧ (𝑚 − 𝑚̄). In this case the integrability condition of the KY implies that
Weyl tensor is of Petrov type 𝑁 (or more special, namely 𝑂), i.e., the only Weyl
scalar that can be different from zero is Ψ4, as explained in the previous section.
Hence, the Weyl tensor can be written as:

𝐶𝜇𝜈𝛼𝛽 = 4Ψ4 ℓ[𝜇𝑚𝜈]ℓ[𝛼𝑚𝛽] + 4Ψ̄4 ℓ[𝜇𝑚̄𝜈]ℓ[𝛼𝑚̄𝛽] , (5.4)
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where Ψ̄4 stands for the complex conjugate of Ψ4. In addition, several components
of the traceless part of the Ricci tensor vanish, in accordance with Eq. (4.34). The
only components that can, in principle, be different from zero are

Φ𝑛𝑛 , Φ𝑛𝑚 , Φ𝑛𝑚̄ , Φ𝑚𝑚 , Φ𝑚̄𝑚̄ , Φℓ𝑛 , Φ𝑚𝑚̄ .

In addition, the following constraints must hold:⎧⎪⎨⎪⎩ Φ𝑛𝑚̄ = −Φ𝑛𝑚 ,

Φ𝑚𝑚 = Φ𝑚̄𝑚̄ = −2Φ𝑚𝑚̄ = −2Φℓ𝑛 ,
(5.5)

Thus, just three degrees of freedom are left for Φ𝛼𝛽, namely Φ𝑛𝑛, Φ𝑛𝑚 and Φℓ𝑛.
Now, contracting Eq. (5.2) with 𝑛𝛼𝑛𝛽𝑚𝛾𝑚𝛿 and 𝑚𝛼𝑚𝛽𝑚𝛾𝑛𝛿 leads to Φ𝑛𝑚 = 0 and
Φ𝑚𝑚 = 0, respectively. Then, taking Eq. (5.5) into consideration, it follows that
Φ𝑛𝑚̄, Φ𝑚̄𝑚̄, Φℓ𝑛, and Φ𝑚𝑚̄ are also zero. Hence, the only component of Φ𝛼𝛽 that
can be different from zero is Φ𝑛𝑛. Finally, contracting Eq. (5.2) with 𝑛𝛼𝑛𝛽𝑛𝛾𝑚𝛿,
we obtain

Ψ4 + 1
2Φ𝑛𝑛 = 0. (5.6)

Therefore, Φ𝑛𝑛 vanishes if, and only if, Ψ4 vanishes. Thus, if either Φ𝑛𝑛 or Ψ4

vanish then the spacetime is maximally symmetric, since in this case 𝐶 and Φ
both vanish, in which case the conserved quantity 𝑄𝑌 is useless, once the Killing
vectors are sufficient for the integrability of MPD equations [45]. In particular, if
the spacetime is Einstein, i.e., if Φ𝛼𝛽 vanish identically, then Ψ4 vanishes and we
have the trivial case.

Concerning the condition (5.3), contracting it with 𝑚𝛼𝑚𝛽𝑚𝛾𝑛𝜇𝑚̄𝜈 , we obtain
𝐽ℓΨ4 = 0, where it has been used that Ψ4 is real, which is a consequence of Eq.
(5.6). Similarly, contracting with 𝑛𝛼𝑛𝛽𝑛𝛾𝑚̄𝜇𝑚̄𝜈 , 𝑛𝛼𝑛𝛽𝑛𝛾ℓ𝜇𝑚𝜈 and 𝑚𝛼𝑚𝛽𝑚𝛾𝑛𝜇𝑛𝜈

implies that 𝐽𝑛Ψ4 = 0, (𝐽𝑚 + 𝐽𝑚̄)Ψ4 = 0 and 𝐽𝑚Ψ4 = 0, respectively. Therefore,
the constraint (5.3) leads to

𝐽𝛼Ψ4 = 0 , (5.7)

meaning that either Ψ4 = 0, which again lead to the trivial case of a maximally
symmetric spacetime, or 𝐽𝛼 = 0, which means that 𝑌 is covariantly constant.
Indeed, the KY equation can equivalently be written as ∇𝛼𝑌𝜇𝜈 = ∇[𝛼𝑌𝜇𝜈]. Thus,
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if 𝐽𝛼 vanishes it follows that ∇𝛼𝑌 ⋆
𝛼𝛽 = 0, which is equivalent to the condition

∇[𝛼𝑌𝜇𝜈] = 0, which implies that 𝑌 is covariantly constant.
However, if 𝑌 is covariantly constant so is its Hodge dual 𝑌 ⋆. Particularly, this

implies that 𝑌 ⋆ is also a KY, so that it is reasonable to suppose that the scalar 𝑄𝑌 ⋆

is conserved, although this is not a necessary requirement as it is independent from
the requirement that 𝑄𝑌 is conserved. Nevertheless, if besides the conservation of
𝑄𝑌 we also assume that 𝑄𝑌 ⋆ is conserved, it follows that the condition (5.2) must
also hold if we replace 𝑌 by 𝑌 ⋆. Performing this replacement and then contracting
Eq. (5.2) with 𝑛𝛼𝑛𝛽𝑛𝛾𝑚̄𝛿, we arrive at the equation:

Ψ4 − 1
2Φ𝑛𝑛 = 0. (5.8)

Composing Eqs. (5.6) and (5.8) lead us to the conclusion that Ψ4 and Φ𝑛𝑛 = 0,
which then imply that the spacetime is maximally symmetric, in which case the
conserved charges are useless. This can be understood as a consequence of the fact
that in these spacetimes the number of independent Killing vectors is ten, which
lead to ten conserved charges of type 𝑄𝑘, which in turn are enough to obtain
expressions for the ten unknowns 𝑝 and 𝑆 in terms of the initial conditions of the
particle. In addition, since we are using the supplementary condition 𝑆𝛼𝛽𝑝𝛽 = 0,
we can use Eq. (3.15) to obtain also an expression for the velocity 𝑣 of the particle,
which can in principle be integrated in order to give the trajectory of the particle.
In fact, in Ref. [45], the complete integrability of the MPD equations was explicitly
obtained for the de Sitter spacetime. Thus, we can say that the conservation of
𝑄𝑌 is somehow trivial for maximally symmetric spacetimes. At the end of this
chapter, we will seek for some non-trivial examples where the conditions (4.48)
and (4.49) hold.

Summing up, in order for the conserved charge 𝑄𝑌 be nontrivial for the case of
a KY tensor whose algebraic type is null, the Weyl tensor must be Petrov type 𝑁

and the only component of Φ𝛼𝛽 that can be different from zero is Φ𝑛𝑛. In addition,
the KY must be covariantly constant, which is a very restrictive hypothesis, since
a very narrow class of spaces admit covariantly constant bivectors [46,47]. Due to
the latter fact, it follows that 𝑌 ⋆ is also a KY. If we further impose that 𝑄𝑌 ⋆

is conserved, in addition to 𝑄𝑌 , we conclude that the spacetime is maximally
symmetric and the conserved charges are useless.
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5.1.2 Non-null Killing-Yano tensor

Now, let us assume that the Killing-Yano tensor is non-null, which means that
there exists some null frame such that 𝑌 = 𝑓 ℓ ∧ 𝑛 + 𝑖ℎ 𝑚 ∧ 𝑚̄, where 𝑓 and ℎ

are real functions that cannot vanish simultaneously. The Hodge dual of the KY
is then given by 𝑌 ⋆ = ℎ ℓ ∧ 𝑛 − 𝑖𝑓 𝑚 ∧ 𝑚̄. As discussed in Sec.4.3, in this case the
integrability condition of the KY implies that the Weyl tensor is Petrov type 𝐷,
that is, the only Weyl scalar that can be different from zero is Ψ2, so that, from
Eq. (4.17), the Weyl tensor can be written as follows:

𝐶𝜇𝜈𝛼𝛽 = (Ψ2 + Ψ̄2)
(︁
ℓ[𝜇𝑛𝜈]ℓ[𝛼𝑛𝛽] + 𝑚[𝜇𝑚̄𝜈]𝑚[𝛼𝑚̄𝛽]

)︁
− (Ψ2 − Ψ̄2)

(︁
ℓ[𝜇𝑛𝜈]𝑚[𝛼𝑚̄𝛽] + 𝑚[𝜇𝑚̄𝜈]ℓ[𝛼𝑛𝛽]

)︁
− Ψ2

(︁
ℓ[𝜇𝑚𝜈]𝑛[𝛼𝑚̄𝛽] + 𝑛[𝜇𝑚̄𝜈]ℓ[𝛼𝑚𝛽]

)︁
− Ψ̄2

(︁
ℓ[𝜇𝑚̄𝜈]𝑛[𝛼𝑚𝛽] + 𝑛[𝜇𝑚𝜈]ℓ[𝛼𝑚̄𝛽]

)︁
. (5.9)

In addition, the following components of the trace-free part of the Ricci tensor
must vanish due to the fact that 𝑌 is a KY, as discussed in chapter 4:

Φℓ𝑚 = Φℓ𝑚̄ = Φ𝑛𝑚 = Φ𝑛𝑚̄ = 0 . (5.10)

Now, taking Eqs. (5.9) and (5.10) into consideration, we are ready to analyse
Eq. (5.2), which is necessary for 𝑄𝑌 to be conserved. Contracting (5.2) with
𝑛𝛼𝑛𝛽𝑛𝛾ℓ𝛿, ℓ𝛼ℓ𝛽ℓ𝛾𝑛𝛿, 𝑚𝛼𝑚𝛽𝑚𝛾𝑚̄𝛿, and 𝑚̄𝛼𝑚̄𝛽𝑚̄𝛾𝑚𝛿 we obtain, respectively:

Φ𝑛𝑛 = 0 , Φℓℓ = 0 , Φ𝑚𝑚 = 0 , Φ𝑚̄𝑚̄ = 0 . (5.11)

Since the trace-free condition obeyed by Φ means that Φℓ𝑛 = Φ𝑚𝑚̄, it follows that
both components Φℓ𝑛 and Φ𝑚𝑚̄ represent the same degree of freedom. Thus, from
Eqs. (5.10) and (5.11) one concludes that only one degree of freedom of Φ can be
different from zero, which we take as Φℓ𝑛.

Then, contracting Eq. (5.2) with 𝑛𝛼𝑛𝛽ℓ𝛾ℓ𝛿 and 𝑚𝛼𝑚𝛽𝑚̄𝛾𝑚̄𝛿, we arrive at the
following relations, respectively:

ℎ 𝑅𝑒{Ψ2} + 𝑓 𝐼𝑚{Ψ2} + 1
3ℎ Φ𝑛ℓ = 0 ,

−𝑓 𝑅𝑒{Ψ2} + ℎ 𝐼𝑚{Ψ2} + 1
3𝑓 Φ𝑚𝑚̄ = 0 . (5.12)
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Finally, using Φ𝑛ℓ = Φ𝑚𝑚̄, we conclude that

Ψ2 = 1
3

𝑓 − 𝑖ℎ

𝑓 + 𝑖ℎ
Φ𝑛ℓ . (5.13)

Thus, if the spacetime is Einstein, i.e., if Φ𝛼𝛽 = 0, then Ψ2 vanishes. Therefore,
since in this case Ψ2 is the unique Weyl scalar that can be different from zero,
then we conclude that the whole Weyl tensor vanishes. Hence, if the spacetime is
Einstein it will also be conformally flat (Weyl tensor zero) and these two conditions
means that the spacetime is maximally symmetric, so that the conserved quantity
𝑄𝑌 is trivial.

Now, considering Eq. (5.3), one eventually arrive at

𝐽𝛼 Ψ2 = 0 ,

where Eq. (5.13) has been used. Hence, either the space is maximally symmetric
(if Ψ2 = 0, which then implies Φ𝛼𝛽 = 0), or the KY is covariantly constant (if
𝐽𝛼 = 0). Thus, the only non-trivial case in which 𝑄𝑌 is conserved for a non-null KY
is when this tensor is covariantly constant, the Weyl tensor is Petrov type 𝐷 and
with the only nonvanishing components of Φ𝛼𝛽 being Φℓ𝑛 = Φ𝑚𝑚̄. Furthermore,
the relation between Ψ2 and Φℓ𝑛 given in Eq. (5.13) must hold. These are quite
restrictive conditions.

Now, since 𝑌 is covariantly constant, it follows that its Hodge dual is also a KY.
Then, we can require that 𝑄𝑌 ⋆ is also conserved along the trajectories described
by the MPD equations, but it is important to keep in mind that this actually is
an independent requirement. Comparing the expressions for 𝑌 and 𝑌 ⋆,⎧⎪⎨⎪⎩ 𝑌 = 𝑓 ℓ ∧ 𝑛 + 𝑖ℎ 𝑚 ∧ 𝑚̄

𝑌 ⋆ = ℎ ℓ ∧ 𝑛 − 𝑖𝑓 𝑚 ∧ 𝑚̄
,

we note that 𝑌 ⋆ can be obtained from 𝑌 by making the changes 𝑓 → ℎ and
ℎ → −𝑓 . Thus, since Eq. (5.13) must hold in order to guarantee that 𝑄𝑌 is
conserved, it follows that the analogous condition

Ψ2 = 1
3

ℎ + 𝑖𝑓

ℎ − 𝑖𝑓
Φ𝑛ℓ (5.14)

must hold in order to assure the conservation of 𝑄𝑌 ⋆ . Hence, assuming that the
scalars 𝑄𝑌 and 𝑄𝑌 ⋆ are both conserved, it follows that Eqs. (5.13) and (5.14)
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are satisfied simultaneously. Equating both expressions for Ψ2 and assuming that
Φℓ𝑛 ̸= 0, so that the spacetime is nontrivial, lead us to the condition

ℎ + 𝑖𝑓

ℎ − 𝑖𝑓
= 𝑓 − 𝑖ℎ

𝑓 + 𝑖ℎ
⇒ 𝑓 2 + ℎ2 = 0 .

Since 𝑓 and ℎ are real functions, the unique solution for the latter constraint turns
out to be the trivial one, 𝑓 = ℎ = 0, which is unacceptable, since by hypothesis
𝑌 is a nonvanishing KY. Thus, we conclude that the only case in which 𝑄𝑌 and
𝑄𝑌 ⋆ are both conserved is when Φℓ𝑛 = 0, which then implies Ψ2 = 0. This means
that the spacetime is maximally symmetric and, therefore, the conserved scalars
of interest have no applicability.

Therefore, we have proved that, when the conditions (4.48) and (4.49) are
analysed together, they provide very restrictive impositions, such that just a very
narrow class of spacetimes obey them. In particular, we have mentioned that for
maximally symmetric spacetimes, i.e., Minkowski, de Sitter and anti-de Sitter spa-
cetimes, the conserved charge 𝑄𝑌 is useless.

5.1.3 Physical restrictions by energy conditions

As we have seen, the integrability conditions for the KY along with the additio-
nal conditions required for 𝑄𝑌 be conserved impose huge restrictions over the Weyl
and Ricci tensors. In the present subsection, we are interested in physical restric-
tions that may come from the so-called energy conditions [48]. Energy conditions
are inequalities satisfied by reasonable energy-momentum tensors. Then, in this
subsection we shall make use of Einstein’s equation in order to convert the restric-
tions we have over the Ricci tensor onto restrictions over the energy-momentum
tensor of the background. More precisely, we shall analyse the implications of the
weak energy condition (WEC) over the Ricci tensor. In what follows, we will as-
sume that the spacetime is not maximally symmetric, which means that we are
requiring that just 𝑄𝑌 is conserved, while 𝑄𝑌 ⋆ is not a conserved scalar, otherwise
Φ𝜇𝜈 would vanish identically, as discussed in the previous section. In addition, we
also assume that the KY exists.

In suitable units, Einstein’s equation reads 𝐺𝜇𝜈 = 𝑇𝜇𝜈 , where 𝑇𝜇𝜈 is the energy-
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momentum tensor of the background matter. This can be equivalently written as

𝑇𝜇𝜈 = Φ𝜇𝜈 − 𝑅

4 𝑔𝜇𝜈 .

The weak energy condition then amounts to the constraint 𝑇𝜇𝜈𝑍𝜇𝑍𝜈 ≥ 0 for any
timelike vector field 𝑍𝜇, which means that the energy density of the matter is not
negative as measured by an arbitrary observer. Writing the vector field 𝑍 in terms
of the null tetrad frame we have

𝑍 = 𝑍𝑛 ℓ + 𝑍ℓ 𝑛 − 𝑍𝑚̄ 𝑚 − 𝑍𝑚 𝑚̄.

The WEC then reads

Φ𝜇𝜈𝑍𝜇𝑍𝜈 − 𝑅

2 (𝑍𝑛𝑍ℓ − 𝑍𝑚𝑍𝑚̄) ≥ 0 , (5.15)

for any vector 𝑍 such that 𝑍𝑛𝑍ℓ > 𝑍𝑚𝑍𝑚̄. Since most of the components of
Φ𝜇𝜈 vanish when 𝑄𝑌 is conserved, the above restriction becomes simpler to be
analysed. In what follows let us consider the two possible algebraic types of the
KY separately.

When the KY is null, the only component of Φ𝜇𝜈 that can be different from
zero is Φ𝑛𝑛, so that Eq. (5.15) becomes

Φ𝑛𝑛𝑍ℓ𝑍ℓ − 𝑅

2 (𝑍𝑛𝑍ℓ − 𝑍𝑚̄𝑍𝑚) ≥ 0 .

Defining 𝜁 ≡ (𝑍𝑛𝑍ℓ − 𝑍𝑚̄𝑍𝑚) /(𝑍2
ℓ ), it follows that the timelike condition reads

𝜁 > 0, so that the WEC becomes

Φ𝑛𝑛 ≥ 𝑅

2 𝜁 , for all 𝜁 > 0 .

This is possible only if Φ𝑛𝑛 ≥ 0 and 𝑅 ≤ 0. Thus, besides the geometrical res-
trictions found in subsection 5.1.1, there exists the physical restriction that the
Ricci scalar cannot be positive whereas the component Φ𝑛𝑛 cannot be negative.
Otherwise the background spacetime is not generated by a physically reasonable
matter.

Now, let us consider that the KY has a non-null algebraic type, in which case
the only components of Φ𝜇𝜈 that can be different from zero are Φℓ𝑛 = Φ𝑚𝑚̄, so
that Eq. (5.15) becomes

Φℓ𝑛(𝑍ℓ𝑍𝑛 + 𝑍𝑚̄𝑍𝑚) − 𝑅

4 (𝑍𝑛𝑍ℓ − 𝑍𝑚̄𝑍𝑚) ≥ 0 .
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Since the timelike condition for 𝑍 reads

𝑍𝑛𝑍ℓ > 𝑍𝑚𝑍𝑚̄ = |𝑍𝑚|2 ,

it follows that 𝑍𝑛𝑍ℓ is positive and, therefore, defining 𝜉 ≡ (𝑍𝑛𝑍ℓ −|𝑍𝑚|2)/(𝑍𝑛𝑍ℓ +
|𝑍𝑚|2), it follows that 𝜉 is positive, so that the WEC for spacetimes with conserved
𝑄𝑌 for a non-null KY is given by

Φℓ𝑛 ≥ 𝑅

4 𝜉 , for all 𝜉 > 0 .

This, in turn, implies that Φℓ𝑛 cannot be negative and the Ricci scalar cannot be
positive.

5.2 LOOKING FOR EXPLICIT EXAMPLES

The aim of the present section is to find non-trivial examples of spacetimes
obeying the several restrictions necessary to assure the conservation of the scalar
𝑄𝑌 . We shall start considering the case in which the KY is null and after this we
consider the non-null case.

5.2.1 An example with a null KY

As argued in Sec. 4.3, when the algebraic type of the KY is null the Weyl tensor
must be Petrov type 𝑁 . A well known class of type 𝑁 spacetimes is given by the
so-called 𝑝𝑝−wave metrics [49]. The 𝑝𝑝−wave spacetimes (or plane-fronted waves
with parallel rays) are a family of solutions of Einstein’s field equations whose
metric, in some coordinate system, is given by

𝑑𝑠2 = 2𝐹 (𝑢, 𝑧, 𝑧) 𝑑𝑢2 + 2 𝑑𝑢𝑑𝑟 − 2 𝑑𝑧 𝑑𝑧 , (5.16)

where 𝑢 and 𝑟 are real coordinates, whereas 𝑧 is a complex coordinate with 𝑧 being
its complex conjugate. The function 𝐹 is an arbitrary real function of the coordi-
nates 𝑢, 𝑧 and 𝑧. These spacetimes can also be defined more elegantly through a
coordinate-free definition by establishing that they are all spacetimes admitting a
covariantly constant null vector field 𝑉 , i.e., there is a null 𝑉 𝛼 such that

∇𝛼𝑉𝛽 = 0. (5.17)
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A null tetrad frame for the spacetime (5.16) is given by

ℓ = 𝜕𝑟 , 𝑛 = 𝜕𝑢 − 𝐹𝜕𝑟 , 𝑚 = 𝜕𝑧 , 𝑚̄ = 𝜕𝑧 . (5.18)

Indeed, it is easy to check that all the inner products (4.14) are satisfied by (5.18).
The null vector field ℓ is the covariantly constant vector that characterizes the
𝑝𝑝−wave spacetime. In the null frame (5.18), the unique Weyl scalar that is diffe-
rent from zero is

Ψ4 = −𝜕𝑧𝜕𝑧𝐹 , (5.19)

whereas the only component of the Ricci tensor that is different from zero, in this
null frame, is

𝑅𝑛𝑛 = Φ𝑛𝑛 = 2𝜕𝑧𝜕𝑧𝐹 .

The null bivector 𝑌 = ℓ∧ (𝑚+𝑚̄) is covariantly constant and, therefore, is also a
KY. Thus, out of the restrictions necessary in order to be 𝑄𝑌 conserved, the only
that remains to be imposed is the one given in Eq. (5.6), namely Ψ4 + 1

2Φ𝑛𝑛 = 0.
Imposing the latter equation, we arrive at the partial differential equation

𝜕𝑧𝜕𝑧𝐹 (𝑢, 𝑧, 𝑧) = 𝜕𝑧𝜕𝑧𝐹 (𝑢, 𝑧, 𝑧), (5.20)

whose general solution is given by

𝐹 (𝑢, 𝑧, 𝑧) = 𝐹1(𝑢, 𝑧 + 𝑧) + 𝐹2(𝑢, 𝑧) , (5.21)

where 𝐹1 and 𝐹2 are general real functions of their arguments. In addition, we
observe that if we take the complex conjugate of Eq. (5.6), it follows that Ψ4 must
be a real function. Indeed, since the Ricci tensor and the null vector 𝑛 are real, it
follows that the complex conjugate of (5.6) should produce Ψ̄4 + 1

2Φ𝑛𝑛 = 0, whose
comparison with (5.6) lead to Ψ4 = Ψ̄4. Therefore, from this reality condition and
using Eq. (5.19), it follows that

Ψ4 = Ψ̄4 ⇒ 𝜕𝑧𝜕𝑧𝐹 = 𝜕𝑧𝜕𝑧𝐹 .

This condition, along with Eq. (5.21) implies that the function 𝐹 must have the
form

𝐹 (𝑢, 𝑧, 𝑧) = 𝐹3(𝑢, 𝑧 + 𝑧) , (5.22)
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where 𝐹3 is an arbitrary real function of 𝑢 and 𝑧 + 𝑧. This choice of function 𝐹

leads to the most general 𝑝𝑝−wave spacetime such that the scalar

𝑄\𝑌 = 𝑆𝜇𝜈𝑌 ⋆
𝜇𝜈 = 2𝑖 (𝑆ℓ𝑚 − 𝑆ℓ𝑚̄) = 2𝑖 (𝑆𝑟𝑧 − 𝑆𝑟𝑧)

is conserved along the trajectories of the MPD equations, where in the last equality
it has been used that 𝑌 is the bivector 𝜕𝑟 ∧ (𝜕𝑧 + 𝜕𝑧).

However, it turns out that the bivector 𝑌 ⋆ = 𝑖𝜕𝑟 ∧ (𝜕𝑧 − 𝜕𝑧) is also a KY
(actually, it is covariantly constant). Imposing the scalar 𝑄𝑌 ⋆ to be conserved we
would find from Rüdiger’s conditions that the function 𝐹 appearing in the line
element should have the form

𝐹 (𝑢, 𝑧, 𝑧) = 𝐹4(𝑢, 𝑧 − 𝑧) . (5.23)

Note that Eqs. (5.22) and (5.23) hold simultaneously only if 𝐹 is a function of 𝑢

alone, 𝐹 = 𝐹 (𝑢), in which case the spacetime would be maximally symmetric, in
agreement with what has been obtained in Sec. 5.1.1 when the constancy of 𝑄𝑌

and 𝑄𝑌 ⋆ are imposed simultaneously.

5.2.2 Looking for an example with a non-null KY

Unfortunately, it is not known in literature the most general metric whose
associated Weyl tensor is Petrov type 𝐷 and admitting a covariantly constant
bivector 𝑌 . However, it is available the most general type 𝐷 metric possessing a
KY and two commuting Killing vector fields [50]. These spacetimes are physically
relevant since every star in the universe, once it reaches the equilibrium regime,
should generate a stationary and axisymmetric gravitational field, which means
that its associated metric possess the two Killing vectors 𝜕𝑡 and 𝜕𝜙. In particular,
Kerr metric is a member of this class of spacetimes. As presented in Ref. [50], the
most general metric possessing these properties is given by

𝑑𝑠2 = 𝑆(𝑥, 𝑦)
[︂

𝐴2(𝑦)Δ2

(𝑥2 + 𝑦2)2 (𝑑𝑡 + 𝑥2𝑑𝜙2)2 − 𝑑𝑦2

Δ2

− 𝐴1(𝑥)Δ1

(𝑥2 + 𝑦2)2 (𝑑𝑡 − 𝑦2𝑑𝜙2)2 − 𝑑𝑥2

Δ1

]︂
, (5.24)
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where Δ1 and Δ2 are arbitrary functions whereas 𝐴1(𝑥), 𝐴2(𝑦) and 𝑆(𝑥, 𝑦) are
functions given by

𝐴1(𝑥) = 𝑥2

(𝑏1𝑥2 + 𝜂1)(𝑏2𝑥2 + 𝜂2)
,

𝐴2(𝑦) = 𝑦2

(𝜂1 − 𝑏1𝑦2)(𝑏2𝑦2 − 𝜂2)
,

𝑆(𝑥, 𝑦) =𝑏3𝑥
2 + 𝜂3

𝑏1𝑥2 + 𝜂1
+ 𝑏3𝑦

2 − 𝜂3

𝜂1 − 𝑏1𝑦2 ,

with the 𝑏’s and 𝜂’s being arbitrary constants. For the metric (5.24), we define the
following null tetrad frame:

ℓ = 1√
2𝑆Δ2

(︃
𝑦2

√
𝐴2

𝜕𝑡 + 1√
𝐴2

𝜕𝜙 − Δ2𝜕𝑦

)︃
,

𝑛 = 1√
2𝑆Δ2

(︃
𝑦2

√
𝐴2

𝜕𝑡 + 1√
𝐴2

𝜕𝜙 + Δ2𝜕𝑦

)︃
,

𝑚 = 1√
2𝑆Δ1

(︃
𝑥2

√
𝐴1

𝜕𝑡 − 1√
𝐴1

𝜕𝜙 + 𝑖 Δ1𝜕𝑥

)︃
,

𝑚̄ = 1√
2𝑆Δ1

(︃
𝑥2

√
𝐴1

𝜕𝑡 − 1√
𝐴1

𝜕𝜙 − 𝑖 Δ1𝜕𝑥

)︃
,

such that 𝑔𝛼𝛽 = 2ℓ(𝛼𝑛𝛽) − 2𝑚(𝛼𝑚̄𝛽). The KY is given by

𝑌 = 𝑓(𝑥)ℓ ∧ 𝑛 + 𝑖ℎ(𝑦)𝑚 ∧ 𝑚̄ ,

where
𝑓(𝑥) = −

√︃
𝑏2𝑥2 + 𝜂2

𝑏1𝑥2 + 𝜂1
and ℎ(𝑦) =

√︃
𝑏2𝑦2 − 𝜂2

𝜂1 − 𝑏1𝑦2

Using this frame it follows that the only Weyl scalar that is different from zero
is Ψ2, whereas the components of Φ𝜇𝜈 all vanish apart from Φℓ𝑛 and Φ𝑚𝑚̄, with
Φℓ𝑛 = Φ𝑚𝑚̄ due to the traceless condition for Φ. Then, the only constraints that
remain to be imposed in order to assure that 𝑄𝑌 is conserved along the solutions of
the MPD equations are Eq. (5.13), which connects Ψ2 and Φℓ𝑛, and the requirement
that 𝑌 must be covariantly constant. In particular, imposing the latter constraint
we find that either 𝑏3/𝜂3 = 𝑏1/𝜂1 or 𝑏2/𝜂2 = 𝑏1/𝜂1. If we assume that 𝑏3/𝜂3 = 𝑏1/𝜂1,
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it leads to a vanishing function 𝑆(𝑥, 𝑦) and, therefore, a vanishing metric. This is
the reason why we eliminate this possibility. Thus, we must have 𝑏1/𝜂1 = 𝑏2/𝜂2.
However, in this case either 𝐴1 or 𝐴2 becomes negative, so that the signature ceases
to be Lorentzian, i.e., the spacetime is nonphysical. Thus, for the broad class of
spacetimes considered in this case, there exists no example in which the scalar 𝑄𝑌

is conserved along the solutions of the MPD equations.
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6 CONCLUSIONS AND PERSPECTIVES

In this work, we were interested in studying conserved quantities for spinning
particles whose motion is described by the MPD equations. We demonstrated that
the conserved charge found by Rüdiger has no applicability for the majority of the
physically interesting spacetimes. We have shown that Rüdiger’s additional condi-
tions imply that the spacetimes admitting the conserved charge 𝑄𝑌 = 𝑌 ⋆

𝜇𝜈𝑆𝜇𝜈 must
possess a covariantly constant Killing-Yano tensor, a fact that certainly decreases
significantly the spacetimes allowed. In the search of explicit examples of spaceti-
mes satisfying all the conditions necessary in order to make 𝑄𝑌 conserved, we have
found a specific subclass of spacetimes within the 𝑝𝑝-wave spacetimes, where the
function 𝐹 which characterizes the spacetime in some coordinate system (see Eq.
(5.16)) must have a specific form. In other words, even for the 𝑝𝑝-wave spacetimes
(a very specific class of spacetimes), we have found that 𝑄𝑌 is not conserved (does
not satisfy all Rüdiger’s conditions), except if the function 𝐹 has a specific form,
which restricts even more this class of spacetimes. This leads us to the conclu-
sion that the new charge 𝑄𝑌 can hardly be helpful for the integrability of MPD
equations.

Besides these mathematical restrictions, we have shown that we can impose
further restrictions on the spacetime coming from a physical origin, by means of
the so-called energy conditions.

In addition, we have seen that if we make an additional requirement, namely,
that the scalar 𝑄𝑌 ⋆ be also conserved, the conclusion is even more restrictive,
implying that the unique spacetimes satisfying Rüdiger conditions are maximally
symmetric spacetimes. We note, however, that even without imposing this additi-
onal requirement, the restrictions on the spacetime are already very strong.

As perspective, we can explore conserved charges for massless spinning par-
ticles. As mentioned in chapter 3, for massless particles, we were able to find a
conserved charge involving a conformal Killing vector in this theory. This charge
can be helpful in the integrability of MPD equations for the massless case. In fact,
it is known that conformally flat spacetimes possess the maximal number of confor-
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mal Killing vector fields. For four-dimensional spacetimes, this number is fifteen,
which in principle allow for the complete integrability of MPD equations. As an
example, by counting degrees of freedom, we know that it is possible in principle to
achieve the complete integrability of MPD equations studying massless particles
in FLRW spacetime, which is an interesting space with applications in Cosmology.
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