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ABSTRACT

In this dissertation we review the article "On the Six-dimensional Kerr Theorem
and Twistor Equation" [1], introducing advanced topics from general relativity along the
way. We start by introducing how the concept of a spinor appears in physics from the
simple requirement of Lorentz invariance on a field theory that would describe the electron.
We then introduce ideas from representation theory so that we can approach the spinor
concept from a more mathematical point of view and with that know its properties so we
can apply the formalism as we wish. We then show the correspondence between tensors
and spinors in four dimensions and rewrite General Relativity in terms of spinors, and
we see that this allows us to simplify several equations in terms of the Newman-Penrose
formalism. The concept of congruences is introduced, and its study in turn leads us to the
Kerr Theorem and the notion of a twistor. Then, we move on to six-dimensional space-time,
where we see that the correspondence between tensors and spinors in six dimensions is
quite different than the one we described for the four-dimensional case, but group theory
allows us to easily obtain the spinor form of the desired tensors. The Kerr Theorem is
obtained in six dimensions, and its generalization to generic even dimensions is discussed.
We then study the six-dimensional twistor equation and see that it imposes an algebraic
constraint on the form of the Weyl tensor, and a family of examples that exhibits this
property is discussed.

Keywords: General Relativity. Spinors. Kerr Theorem. Twistors.



RESUMO

Nessa dissertação, revisamos o artigo "On the Six-dimensional Kerr Theorem and
Twistor Equation" [1], introduzindo tópicos avançados de Relatividade Geral ao longo do
caminho. Começamos mostrando como o conceito de espinor aparece na física a partir
da necessidade por invariância de Lorentz numa teoria de campo que então descreveria o
elétron. Nós então introduzimos conceitos de teoria de representação para que possamos
abordar espinores de um ponto de vista mais matemático, e com isso obter suas propriedades
e aplicar o formalismo da maneira desejada. Mostramos então a correspondência entre
tensores e espinores em quatro dimensões e reescrevemos a Relatividade Geral em termos
de espinores, e vemos que isso nos permite simplificar diversas equações em termos do
formalismo de Newman-Penrose. O conceito de congruências é introduzido, e seu estudo
então nos leva ao teorema de Kerr e à noção de um twistor. Nós então seguimos para
o espaço-tempo de seis dimensões, onde vemos que a correspondência entre tensores e
espinores em seis dimensões é um tanto diferente da estudada no caso anterior, mas a
teoria de grupo nos permite obter a forma espinorial do tensores desejados facilmente. O
teorema de Kerr é obtido em seis dimensões , e sua generalização para dimensões pares
genéricas é discutida. Estudamos então a equação do twistor em seis dimensões e vemos
que ela impõe uma limitação algébrica na forma do tensor de Weyl, e encerramos com
uma discussão sobre uma família de exemplos que exibe essa propriedade.

Palavras-chave: Relatividade Geral. Espinores. Teorema de Kerr. Twistors.



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 SPINORS FROM PHYSICS . . . . . . . . . . . . . . . . . . . . . . 12
2.1 The Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 The Generators of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 The j = 1

2 representation of SU(2) . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Lorentz Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Representations of the Lorentz Group . . . . . . . . . . . . . . . . . . . . 19
2.4.1.1 The (0, 0) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1.2 The (1

2 ,0) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1.3 The (0, 1

2) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1.4 The Relation Between Spinor Representations . . . . . . . . . . . . . . . . . 21
2.4.1.5 The (1

2 , 1
2) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 The Spinor on the Dirac equation . . . . . . . . . . . . . . . . . . . . . . 23
2.5 The n Dimensional Vector Representations . . . . . . . . . . . . . . . 24
2.6 Clifford Algebra and the n Dimensional Spinor Representations . . . 24

3 SPINORS IN GENERAL RELATIVITY . . . . . . . . . . . . . . . . 27
3.1 Spinor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Spin Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 The connection between tensors and spinors . . . . . . . . . . . . . . . . . 28
3.1.3 The Levi-Civita spinor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 General Relativity with Spinors . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 The Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 The Riemann Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 The Ricci Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 The Ricci Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Einstein Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Topics from General Relativity . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 The Newman-Penrose Formalism . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Null Shear-Free Congruences . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 The Kerr Theorem and Twistors . . . . . . . . . . . . . . . . . . . . . . . 37



4 SIX DIMENSIONAL KERR THEOREM . . . . . . . . . . . . . . . . 40
4.1 Spinors on Six Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Higher dimensional irreducible representations of SU(4) . . . . . . . . . . . 41
4.1.2 Null Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The Kerr Theorem in 6 dimensions . . . . . . . . . . . . . . . . . . . 45
4.3 The Kerr Theorem in Generic Even Dimensions . . . . . . . . . . . . 47
4.4 Isotropic Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Six-Dimensional Twistors . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Symmetries and Quaternions . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 The Kerr-Schild Class of Solutions . . . . . . . . . . . . . . . . . . . . 51

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



10

1 INTRODUCTION

The field of General Relativity is over a 100 years old by now, and it showed us
beautiful new physics, like gravitational waves and black holes, and also solved old mysteries
such as the precession of the perihelion of Mercury as well as explaining facts about the
large-scale universe through cosmology [2]. Despite its many successes, it was a difficult
theory to deal with from the beginning, and it remains so, since in four dimensions it is
described by a set of 10 non-linear partial differential equations describing the dynamics of
the space-time itself. Obtaining new solutions corresponding to different physical systems
would prove to be very difficult, and new mathematical tools would be needed to analyze
the integrability aspects of the theory as well as solving the equations for given conditions.
Many of these new tools were introduced by Roger Penrose, which in the 60’s used spinors
in the study of General Relativity [3] and also introduced the concept of a twistor [4] as a
possible candidate of a way to quantize gravity [5]. Along with that, with the advent of
String Theory, the interest in understanding the forces of nature in more dimensions than
four rose [6, 7], which again poses the problem of choosing the appropriate tools to deal
with the theory in this setting.

The objective of this dissertation is twofold: to present a review of [1] explaining
the methods presented therein, and also to give a brief introduction to some methods and
tools of General Relativity that are more advanced than those encountered in a first course,
such as group theory, spinors, the Newman-Penrose tetrad formalism and twistors. Those
are all well introduced in the great pioneering books by Roger Penrose and Wolfgang
Rindler [8,9], but not always in a very comprehensive manner. So, for the reader interested
in these tools, this dissertation also serves as a collection of references that trail the easiest
path.

This work is divided into three chapters. With the objective of introducing the
ideas presented on [1] in mind, we start with chapter 2 by introducing the concept of a
spinor in four-dimensional space-time [10], first motivated from the physics point of view,
as done by Dirac [11], and then the rest of the chapter is devoted to introducing spinors
from the group theory point of view, following mostly [12] and [13], while also obtaining
more general properties that would help us in the following chapters. We also make a
rudimentary introduction to the ideas of representation theory along the way so that those
not familiarized with group theory can keep up.

In chapter 3, we start to mix the ideas from chapter 2 with General Relativity. A
correspondence between SO(4) tensors and SU(2)⊗ SU(2) is shown, and from that we
are able to describe General Relativity in terms of spinors, where we obtain the spinor
equivalent of the important tensorial quantities of the field. We finish the chapter talking
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about the Newman-Penrose formalism, which enables us to discuss how certain parameters
should behave in order for us to have null shear free congruences, which in turn leads us
to the Kerr Theorem for the first time, while also arriving at the concept of twistors, both
central points of discussion of [1].

Finally, in chapter 4, we have the necessary tools to discuss [1] in its entirety. This
time, we are talking about six-dimensional spaces, and akin to the previous chapters,
we first discuss spinors, which this time comes from SU(4), and their relation to SO(6)
tensors, and proceed to list the spinor equivalents of some tensors that will be of use.
We then study how null vectors are represented by spinors, which leads us to the notion
of isotropic spaces and, together with the Frobenius’ Theorem, we arrive at the Kerr
Theorem in 6 dimensions. This shows us a pattern of how to obtain the Kerr Theorem in
generic even dimensions, and such generalization is discussed. As usual, the Kerr Theorem
defines implicitly the notion of a Twistor, and we analyze how the twistor equation in six
dimensions constrains algebraically the Weyl tensor, then finishes by discussing a family
of examples with this property.
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2 SPINORS FROM PHYSICS

Rotational symmetries always played an important role in physics, but in the last
century we saw two major advances born out of this symmetry, the first was achieved by
studying rotations in the Minkowski space, which led to the Lorentz Transformations and
opened the field of Special Relativity. The second one came from the development of the
spinor theory from Elie Cartan [10] and its introduction in physics by Paul Dirac [14]. In
this chapter, we introduce the spinor concept first starting from the historical point of view
in physics, and then by introducing it as an object that can be Lorentz transformed by a
certain representation of SO(1,3). Group theory is briefly introduced so that we can make
a more systematic discussion about rotations and symmetries in general, and different
representations of the Lorentz group in four dimensions are studied.

2.1 The Dirac Equation

In 1926, Erwin Schrödinger published the paper "An undulatory theory of the
mechanics of atoms and molecules" [15] where he introduced the now famous Schrödinger
equation:

i~
∂ϕ

∂t
= Ĥϕ (2.1.1)

Where ψ is the wave function, a scalar field that contains all the information about
the system [16]. If we consider the free particle case, we get

i~
∂ϕ

∂t
= −~2∇2ϕ

2m , (2.1.2)

where we can see that space and time are clearly treated differently, and as consequence
the equation is not Lorentz invariant.

One way we could try to obtain a relativistic version of the Schrödinger equation
would be to use the relativistic expression for the energy, i.e.,

E =
√
p2c2 +m2c4, (2.1.3)

and, by promoting the energy to the Hamiltonian operator and using it on (2.1.1), we
have:

i~
∂ϕ

∂t
=
√
c2∇2 +m2c4ϕ (2.1.4)

Now, this equation still treats space and time differently, even though we are using
the relativistic expression. One way to fix this is to square the operator by multiplying the
whole equation by Ĥ = i~

∂

∂t
and get

−~2∂
2ϕ

∂t2
= −~2∇2ϕ+m2c4ϕ, (2.1.5)
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From now on we use units where c = ~ = G = 1. We note that −∂2
t + ∇2 =∑

µ
∂µ∂

µ = ∂µ∂
µ = ∂2, where we use Einstein’s sum convention, and the equation becomes:

(∂2 +m2)ϕ = 0 (2.1.6)

which is known as the Klein-Gordon (KG) equation and is indeed Lorentz invariant.
According to Dirac [17], Schrödinger himself arrived at this relativistic version before
publishing his famous equation, but found out that it didn’t describe correctly the fine
splitting of the hydrogen atom. Later, he realized that the non-relativistic limit of (2.1.1)
would still be of use to describe the quantum phenomena known at the time.

As Schrödinger correctly guessed, the lack of success of the Klein-Gordon equation
on describing the hydrogen atom, an electron on a Coulomb potential, was due to the
intrinsic angular momentum of the electron, that was suggested to be ~

2 by George
Uhlenbeck and Samuel Goudsmit in 1926 [18]. Indeed, the KG equation describes the
dynamics of a particle associated with a scalar field, which means it has no intrinsic
angular momentum, or spin, as it would become known.

What about the dynamics of a particle with non-zero spin? By 1928, Dirac tried
a different approach on the search for a relativistic quantum mechanical equation [11].
Dirac’s reasoning was that he wanted to find an equation that was of first order in both
time and space derivatives,

i
∂ϕ

∂t
= Ĥϕ, (2.1.7)

where Ĥ = −iαi∂i + α0m and α1, α2, α3 and α0 are constant quantities. Now, if we regard
these quantities as components of a vector, we see that αi∂i defines a preferred direction in
space, and the result would be clearly a non-relativistic equation. To avoid this problem, we
regard the alphas as matrices αµmn where µ labels the different matrices α1

mn, α
2
mn, α

3
mn

and α0
mn and the indices m and n labels the components of said matrices. Writing the

full equation, we have
i
∂ϕ

∂t
= −iαimn∂iϕ+ α0

mnmϕ, (2.1.8)

where we see that, for our conditions to hold, ϕ cannot be a scalar field anymore, or we
would have a scalar on the left side, and a matrix on the right side of the equation. Instead,
ϕ is different object, which for now we will just treat as a multi component quantity and
write

i∂tΨm = −iαimn∂iΨn + α0
mnmΨn (2.1.9)

Where we now write this quantity as Ψn to distinguish it from the scalar wave function ϕ.
Dirac also imposed that, as a relativistic equation, this should also contain the relativistic
energy relation E2 = p2 + m2, so it should imply the Klein-Gordon equation somehow.
This is done by "squaring" the Dirac hamiltonian (2.1.8), where we obtain

−∂2
t Ψ = −αiαj ∂2Ψ

∂xi∂xj
− im(αiα0 + α0αi)∂Ψ

∂xi
+ (α0)2m2Ψ (2.1.10)



Chapter 2. Spinors from Physics 14

where we suppressed the matrix component indices and αiαj is to be understood as the
usual matrix product. This gives us the following restrictions on the alphas:

α(iαj) = 1
2(αiαj + αjαi) = δijI (2.1.11)

αiα0 + α0αi = 0 (2.1.12)

(α0)2 = I (2.1.13)

Where I is the identity matrix. With these conditions we get, by squaring the Dirac
equation, the Klein-Gordon equation. Now, by making use of (2.1.13), we can multiply
(2.1.9) by α0 to get:

(γµ∂µ +m)Ψ = 0 (2.1.14)

Where γ0 = −iα0 and γi = −iα0αi and we can write (2.1.11) and (2.1.12) in terms of γµ

as
1
2(γµγν + γνγµ) = ηµνI, (2.1.15)

where ηµν is the metric of flat space-time defined by the line element

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2. (2.1.16)

Equation (2.1.14) is finally a relativistic equation for the electron, now known as
the Dirac equation. We also see that in order to obtain such an equation, we arrived at
a new kind of multi-component quantity that we labeled Ψn. So, what’s new about it,
exactly? First, as we shall see, it is not a vector, since it does not transform as such under
the usual Lorentz transformations. Ψn is called a spinor, a different object with a different
Lorentz transformation which is closely related to (2.1.15), which we call Clifford Algebra
[19].

2.2 Group Theory

Last section we arrived at a different kind of object, which we called spinor, by
trying to build a relativistic equation for the spin ~

2 particle. In four dimensions, the spinor
in the Dirac equation has four components, but we know from experiment that an electron
has 2 spin states, up and down. Where does those extra 2 components come from? In this
section, we arrive at the spinor concept from a more mathematical point of view and also
explain why we need a 4 component spinor to achieve Lorentz invariance in field equations.
We will follow mainly the works of [12, 13]. See also [20,21].
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2.2.1 Lie Groups

A group (G, ◦) is a set G, with a binary operation ◦ that satisfies the following
axioms:

∗ Closure: ∀ g1, g2 ∈ G, g1 ◦ g2 ∈ G

∗ Associativity: ∀ g1, g2, g3 ∈ G, g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3

∗ Existence of the identity element: ∃e ∈ G such that ∀ g ∈ G, e ◦ g = g = g ◦ e

∗ Existence of the inverse element: ∀ g ∈ G ∃g−1 ∈ G such that g◦g−1 = g−1◦g = e

For the purposes of this dissertation, we define a Lie group as a continuous group
whose elements depend on one or more real parameters θi, with i = 1, 2, 3...n.

2.2.2 Lie Algebra

Lie group theory is the framework which deals with continuous symmetries, like
the rotations of a circle. A useful concept emerges when we consider a transformation that
is close to identity. If such a transformation is described by an element g(θ) of a Lie group,
then our infinitesimal transformation is given by

g(ε) = 1 + εX (2.2.1)

where we regard ε as a really small number and X is called the generator of the transforma-
tion. By doing successive infinitesimal transformations we arrive at a finite transformation
given by

h(θ) = lim
N→∞

(1 + θ

N
X)N = eθX (2.2.2)

and so, the generator of a given transformation is

X = dh(θ)
dθ
|θ=0 (2.2.3)

A Lie algebra G is the set of generators Y together with an operation [, ] such that etY ∈ G.
The relation between ◦ and [, ] is given by the Baker-Campbell-Hausdorff formula:

eX ◦ eY = eX+Y+ 1
2 [X,Y ]+ 1

12 [X,[X,Y ]]− 1
12 [Y,[X,Y ]]+... (2.2.4)

The operation [, ] is called Lie bracket, and for the groups considered here, is given simply
by [X, Y ] = XY − Y X which is called commutator.
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2.3 SU(2)

The first Lie group we are interested in is the SU(2), which is the set of all unitary
2x2 matrices with unit determinant. We start by building a general 2x2 matrix

U =
a b

c d

 (2.3.1)

where unitarity means that U † = U−1, so: d −b
−c a

 =
a∗ c∗

b∗ d∗

 (2.3.2)

Together with the requirement that det(U) = 1 we have:

U =
a −c∗
c a∗

 (2.3.3)

and aa∗ + cc∗ = 1 which leaves three free parameters. If we choose a and c to be
real, we have a2 + c2 = 1 which can be parametrized as:

U =
cos(θ) − sin(θ)

sin(θ) cos(θ)

 (2.3.4)

which as we can see, is the rotation matrix in two dimensions. With the other two free
parameters, SU(2) acts on vectors as the rotation group in three dimensions. In a more
complete definition, a Lie group is also a manifold, and the SU(2) group is the 3-sphere
manifold, which we call S3.

2.3.1 The Generators of SU(2)

To obtain the generators of SU(2) we work with the parameters set to unit and
the convention of putting an "i" before the generators in each element of the group, so we
write an arbitrary element of the group as eiJi . We then have

U †U = e−iJ
†
i eiJi = 1 = e−iJ

†
i +iJi+ 1

2 [−iJ†
i ,iJi]... (2.3.5)

Which means J†i = Ji. Now, for the condition detU = det eiJi = 1 gets us:

det(eiJi) = eitr(Ji) = 1 (2.3.6)

So,
tr(Ji) = 0 (2.3.7)
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The generators of SU(2) are then hermitian matrices of null trace, the same properties of
the Pauli matrices σi. We then define Ji = 1

2σi and the Lie algebra follows:

[Ji, Jj] = iεijkJk (2.3.8)

We now define the following operators

J2 = J2
1 + J2

2 + J2
3 (2.3.9)

J+ = J1 + iJ2 (2.3.10)

J− = J1 − iJ2 (2.3.11)

where
[J+, J−] = 2J3 (2.3.12)

and identify J and J± as the total angular momentum and ladder operators from quantum
mechanics, respectively (see [22] for a detailed treatment). J2 is called the Casimir operator,
which means that it commutes with every other generator of the group. The eigenvalues
of a Casimir operator of a group labels its different representations which, in this case,
will act on a 2j + 1 dimensional space, where j is a integer or half integer obtained via the
relation:

J2~vi = j(j + 1)~vi (2.3.13)

where ~vi are the eigenvectors of J3, and j labels its largest eigenvalue. In Dirac notation,
for example, we have

J3 |j,m〉 = m |j,m〉 (2.3.14)

and j is the maximum value for m.

2.3.2 The j = 1
2 representation of SU(2)

We now treat the case where j = 1
2 , which will be important when we talk about

representations of SO(1,3), the Lorentz Group. This representation acts on a space of
dimension 21

2 + 1 = 2, and J3 will be given by:

J3 =
j 0

0 j − 1

 = 1
2

1 0
0 −1

 (2.3.15)

and we can find J1 and J2 by using that J1 = 1
2(J+ + J−), J2 = 1

2i(J+ − J−) and calculate
its matrix elements:

[J1]m′m = 〈12 ,m
′| J1 |

1
2 ,m〉 , (2.3.16)
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[J2]m′m = 〈12 ,m
′| J2 |

1
2 ,m〉 (2.3.17)

and we obtain:

J1 = 1
2

0 1
1 0

 , (2.3.18)

J2 = 1
2

0 −i
i 0

 (2.3.19)

2.4 The Lorentz Group

The Lorentz group is the group of Lorentz transformations, defined as the set of
transformations that do not change the inner product between two vectors in Minkowski
space, i.e.

x′αηαβx
′β = xµηµνx

ν (2.4.1)

where x′µ is a Lorentz transformed vector defined as x′α = Λα
µx

µ, so the defining condition
of the Lorentz group becomes:

Λα
µΛβ

νηαβ = ηµν (2.4.2)

We may now consider the infinitesimal transformation case where Λα
µ = δαµ + iεKα

µ, and
by applying it in the definition, we obtain:

(δαµ + iεKα
µ)(δβν + iεKβ

ν)ηαβ = ηµν ⇒ Kα
µηαν +Kβ

νηµβ = 0 (2.4.3)

Which means: 
−a e i m

−b f j n

−c g k o

−d h l p

 =


a b c d

−e −f −g −h
−i −j −k −l
−m −n −o −p

 (2.4.4)

And we obtain the general form of the generator

K =


0 b c d

b 0 g h

c −g 0 l

d −h −l 0

 (2.4.5)

which has 6 parameters for the 3 boosts and 3 rotations, amounting to the total of 6
Lorentz transformations. We can now consider the following solutions for the generators
of boosts:

K1 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , K3 =


0 0 0 i

0 0 0 0
0 0 0 0
i 0 0 0

 (2.4.6)
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and rotations:

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , J2 =


0 0 0 0
0 0 0 i

0 0 0 0
0 −i 0 0

 , J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 (2.4.7)

from which we can obtain the corresponding transformations by using

Λ = ei
~θ· ~J+i~φ· ~K . (2.4.8)

Where Λ is a general Lorentz transformation. We can now calculate the corresponding Lie
algebra, which gives us

[Ja, Jb] = iεabcJc, (2.4.9)

[Ja, Kb] = iεabcKc, (2.4.10)

[Ka, Kb] = −iεabcJc (2.4.11)

We can now define the following combinations:

N±i = 1
2(Ji ± iKi) (2.4.12)

which have the following algebra:

[N+
a , N

+
b ] = iεabcN

+
c (2.4.13)

[N−a , N−b ] = iεabcN
−
c (2.4.14)

[N+
a , N

−
b ] = 0 (2.4.15)

This means that we have two copies of SU(2) in the Lorentz group, each characterized by
its own j, which will label the different representations of the Lorentz group.

2.4.1 Representations of the Lorentz Group

As seen, the Lorentz Group is made up of two copies of SU(2), and as such
will be characterized by the duplet (j, j′). We now investigate the cases where (j, j′) =
{(0, 0), (1

2 , 0), (0, 1
2), (1

2 ,
1
2)}.

2.4.1.1 The (0, 0) Representation

This is a trivial case made by 1x1 matrices, called the scalar representation. It
describes objects which don’t change under a Lorentz transformation.
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2.4.1.2 The (1
2 ,0) Representation

In this representation, we only use N+
i and take N−i to be zero. This means that

N−i = 1
2(Ji − iKi) = 0⇒ Ji = iKi, so:

N+
i = 1

2(Ji + iKi) = 1
2(iKi + iKi)⇒ Ki = −iσi2 , (2.4.16)

where we used the known relation Ji = σi
2 from SU(2). In this representation, the

corresponding rotations and boosts are given by:

Rx(θ1) = eiθ1J1 = eiθ1
σ1
2 =

 cos( θ1
2 ) i sin( θ1

2 )
i sin( θ1

2 ) cos( θ1
2 )

 , (2.4.17)

Ry(θ2) = eiθ2J2 = eiθ2
σ2
2 =

 cos( θ2
2 ) sin( θ2

2 )
− sin( θ2

2 ) cos( θ2
2 )

 , (2.4.18)

Rz(θ3) = eiθ3J3 = eiθ3
σ3
2 =

ei θ3
2 0

0 e−i
θ3
2

 , (2.4.19)

and

Bx(φ1) = eiφ1K1 = eφ1
φ1
2 =

cosh(φ1
2 ) sinh(φ1

2 )
sinh(φ1

2 ) cosh(φ1
2 )

 , (2.4.20)

By(φ2) = eiφ2K2 = eφ1
φ1
2 =

 cosh(φ2
2 ) −i sinh(φ2

2 )
i sinh(φ2

2 ) cosh(φ2
2 )

 , (2.4.21)

Bz(φ3) = eiφ3K3 = eφ3
φ3
2 =

eφ3
2 0

0 e−
φ3
2

 , (2.4.22)

respectively.

2.4.1.3 The (0, 1
2) Representation

This time, we only use N−i instead of N−i . This means that N+
i = 1

2(Ji − iKi) =
0⇒ Ji = −iKi, so:

N−i = 1
2(Ji − iKi) = 1

2(−iKi − iKi)⇒ Ki = iσi
2 , (2.4.23)

where, again, we used that Ji = σi
2 . In this representation, the corresponding rotations

and boosts are given by:

Rx(θ1) = eiθ1J1 = eiθ1
σ1
2 =

 cos( θ1
2 ) i sin( θ1

2 )
i sin( θ1

2 ) cos( θ1
2 )

 , (2.4.24)

Ry(θ2) = eiθ2J2 = eiθ2
σ2
2 =

 cos( θ2
2 ) sin( θ2

2 )
− sin( θ2

2 ) cos( θ2
2 )

 , (2.4.25)
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Rz(θ3) = eiθ3J3 = eiθ3
σ3
2 =

ei θ3
2 0

0 e−i
θ3
2

 , (2.4.26)

and

Bx(φ1) = eiφ1K1 = e−φ1
φ1
2 =

 cosh(φ1
2 ) − sinh(φ1

2 )
− sinh(φ1

2 ) cosh(φ1
2 )

 , (2.4.27)

By(φ2) = eiφ2K2 = e−φ2
φ2
2 =

 cosh(φ2
2 ) i sinh(φ2

2 )
−i sinh(φ2

2 ) cosh(φ2
2 )

 , (2.4.28)

Bz(φ3) = eiφ3K3 = e−φ3
φ3
2 =

e−φ3
2 0

0 e
φ3
2

 , (2.4.29)

respectively.

2.4.1.4 The Relation Between Spinor Representations

In the last two sections, we derived two representations of the Lorentz group, which
defines rotations in the same way but differ by a minus sign on the boosts. It is now time
to investigate the objects they act on, which are very similar, and the relations between
them.

The (1
2 , 0) representation acts on a object called the left chiral spinor, defined as:

ψL = ψa =
ψ1

ψ2

 , (2.4.30)

while the (0, 1
2) representation acts the right chiral spinor, defined as:

ψR = ψȧ =
ψ1

ψ2

 . (2.4.31)

Now, consider the matrix iσ2. It is easy to check that iσ2 is invariant under any
Lorentz transformation in the spinor representations, be it (1

2 , 0) or (0, 1
2), that is:

iσ2 = ΛT
s iσ2Λs, (2.4.32)

where Λs is a Lorentz transformation in the spinor representation. We can also define the
following transformation:

ψ̄L = iσ2(ψL)∗. (2.4.33)

Now consider a boost in ψL, then we see that ψ̄L transforms as:

ψ̄
′

L = iσ2(ψ′

L)∗ = iσ2(e
φiσ

i

2 ψL)∗ = e−
φiσ

i

2 iσ2(ψL)∗ = e−
φiσ

i

2 ψ̄L, (2.4.34)
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which is the transformation law for the (0, 1
2) representation. In the same way, we will

have:
ψ̄R = e

φiσ
i

2 ψ̄R. (2.4.35)

The quantity that we defined as iσ2 is, as we shall see next chapter, the Levi-Civita spinor,
which plays a role similar to the metric tensor, in the sense that it defines an inner product
in spin space.

2.4.1.5 The (1
2 , 1

2) Representation

We now turn our attention to the (1
2 ,

1
2) representation, the last we will show

here. Now that we have both copies of SU(2) working at the same time, we will have
a corresponding object that has two indices, where each transforms according to each
copy of SU(2). The components of such an object, say XAA′ , can be represented by a
2x2 matrix which we will choose to be hermitian, because as we will see, this matrices
corresponds to our usual vectors, and by choosing them to be hermitian, we guarantee
that our vectors will be real. So, we have:

XAA′ = 1√
2

 x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

 , (2.4.36)

where the choice of splitting the diagonal components in a sum will make itself clear in
a few moments, and the factor of 1√

2 is so that we have consistent notation with next
chapter and the results we will obtain. Now, this can also be written in the form:

XAA′ = 1√
2

(x0I + x1σ1 + x2σ2 + x3σ3 = xµσµ
AA′). (2.4.37)

What we are seeing here as XAA′ is the position vector xµ represented in spin space, and
the quantities that make the connection between them, σµAA

′ , are called Van der Waerden
symbols. To see that this is true, we must only show that XAA′ transforms as a vector
under a Lorentz transformation. That is [23]:

X ′ = L†XL, (2.4.38)

or, in component form:
X ′BB

′ = ΛB
AΛA′

B′
XAA′

. (2.4.39)

The matrix L is an element of SL(2, C) the group of 2x2 matrices with complex entries
and unit determinant, which double covers the Lorentz group, which can be seen from the
fact that L and −L define the same transformation. Now, if we make these transformations
infinitesimal, as in ΛB

A = (I + i
2θiσ

i − 1
2φiσ

i)BA and its complex conjugate, we obtain that:

X ′BB
′ = 1√

2

 x′0 + x′3 x′1 + ix′2

x′1 − ix′2 x′0 + x′3

 , (2.4.40)
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where 
x′0

x′1

x′2

x′3

 =


x0

x1

x2

x3

 +


0 iθ1 iθ2 iθ3

iθ1 0 iφ3 −iφ2

iθ2 −iφ3 0 iφ1

iθ3 iφ2 −iφ1 0




x0

x1

x2

x3

 (2.4.41)

which is exactly the Lorentz transformation law for vector components.

2.4.2 The Spinor on the Dirac equation

We can now ask ourselves again the question posed in the beginning: why the
object that appears in the Dirac equation, which we called a spinor, has four entries? The
answer to this is in the other two transformations not considered yet that satisfy (2.4.2).
They are the parity Λp and time reversal Λt transformations, which were not treated in
the same way as the other transformations because they are not connected to the identity,
and are defined as:

Λp =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , Λt =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.4.42)

which transform the generators in the following way:

ΛpKi(Λp)T = −Ki, (2.4.43)

ΛpJi(Λp)T = Ji, (2.4.44)

ΛtKi(Λt)T = −Ki, (2.4.45)

ΛtJi(Λt)T = Ji, (2.4.46)

and so:
N± ⇐⇒ N∓ (2.4.47)

where we see that the (1
2 , 0) representation is changed into the (0, 1

2) representation and
vice-versa. This means that in order to have a truly relativistic invariant equation, we
need both representations together to build the four component spinor that we see in the
Dirac equation that transforms according to the (1

2 , 0)⊕ (0, 1
2) representation.
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2.5 The n Dimensional Vector Representations

In n dimensions, there will be n(n−1)
2 generators for the Lorentz group, no matter

the signature, where we can obtain the finite transformations by exponentiating said
generators. Instead of labelling them by a single index, we can encode these generators
on a skew-symmetrical n dimensional matrix. So, (Jµν)ab is the generator of the Lorentz
transformation that can be either a boost or a rotation between the µ and ν directions and
a, b labels the matrix components of such generators that will have the following form:

(Jµν)ab = −i(ηµaηνb − ηνaηµb), (2.5.1)

which is great, because it works in any dimension or signature and the four dimensional
case is easily recovered. The Lie algebra then can be proved to be:

[Jµν , Jρλ] = i(ηλµJρν − ηλνJρµ − ηρµJλν + ηρνJλµ), (2.5.2)

and now we can obtain vector representations of the Lorentz group in any dimension,
which can certainly be useful, given the interest in higher dimensions in theoretical physics.

2.6 Clifford Algebra and the n Dimensional Spinor Representations

Last section gave us a way to get vector representations of the Lorentz group in
any dimension we want, but what about spinor representations? For that, we need to
revisit an idea that we naturally arrived while trying to obtain the Dirac equation: Clifford
Algebra. For the purposes of this work, it is sufficient to define a Clifford Algebra in n
dimensions as the set of n matrices γµ that satisfy:

γµγν + γνγµ = 2ηµνI (2.6.1)

Now, what does this has to do with spinor representations of the Lorentz group, exactly?
First, let us define the matrix:

Sµν = i

4[γµ, γν ] (2.6.2)

The commutation relation of this set of matrices can be shown to be:

[Sµν , Sρλ] = i(ηλµSρν − ηλνSρµ − ηρµSλν + ηρνSλµ), (2.6.3)

which is exactly the Lorentz algebra defined last section. Lets pick a specific solution of
the Clifford Algebra to see how it works:

γµ =
 0 σµ

σ̄µ 0

 , (2.6.4)
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where σ̄µ = (I,−σ1,−σ2,−σ3) and σi are the usual Pauli matrices, so that γµ are 4x4.
That way, we have:

Sµν = i

4

σµσ̄ν − σν σ̄µ 0
0 σ̄muσν − σ̄νσµ

 . (2.6.5)

From that, a general Lorentz transformation will be given by:

Λ = eiωµνS
µν (2.6.6)

Knowing Sµν amounts to knowing the commutation relations of the Pauli matrices, which
are given by:

[σi, σj] = 2iεijkσk (2.6.7)

and from that, it is easy to show that boosts and rotations generators will be given by:

Ki = i

2

−σi 0
0 σi

 , (2.6.8)

J i = 1
2

σi 0
0 σi

 , (2.6.9)

where we make the identifications S12 = J3, S31 = J2, S23 = J1 and S0i = Ki. Now lets
treat the Dirac spinor as a two component column matrix, where each component is itself
a two component column matrix, similar to what we’re doing with the generators here:

ψ =
ψ1

ψ2

 , (2.6.10)

and now let us check how finite Lorentz transformations act on them. The boosts and
rotations will be given by

B(~φ)ψ = eiφiK
i

ψ =
eiφi σi2 0

0 e−iφi
σi

2

 ψ1

ψ2

 (2.6.11)

,

R(~θ)ψ = eiθiJ
i

ψ =
eiθi σi2 0

0 eiθi
σi

2

 ψ1

ψ2

 , (2.6.12)

which indeed is the spinor transformation law. Not only that, we also have explicitly that
under boosts:

ψ′1 = eiθi
σi

2 ψ1, (2.6.13)

ψ′2 = e−iθi
σi

2 ψ2, (2.6.14)

and we see that ψ1 = ψR and ψ2 = ψL. This is not the case in general, but it happened here
because of our choice of the gamma matrices. This particular choice of gamma matrices
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gives us what is called the Chiral representation of the Lorentz group. For an arbitrary
representation, we can also decompose the Dirac spinor into ψL and ψR, and to do that,
we start by defining:

γ4 = −γ0γ1γ2γ3, (2.6.15)

which has the important properties

{γ4, γµ} = 0, ∀µ; [Sµν , γ4] = 0 ∀µ, ν. (2.6.16)

With that, we now define the operators

P± = 1
2(1± γ4), (2.6.17)

which obey P+P+ = P+, P−P− = P− and P+P− = P−P+ = 0, which tells us that they are
projection operators. It can be shown [13] that

P+ψ
′ = eiωµνS

µν

P+ψ = ψ′R, (2.6.18)

and analogously
P−ψ

′ = ψ′L, (2.6.19)

so P+ and P− project ψ into ψR and ψL, respectively, and it works for any given represen-
tation.

With that, we showed the main basic elements of spinors as they appeared in
quantum field theory. We are now set to tackle spinors from a more general point of view
and apply it to general relativity.
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3 SPINORS IN GENERAL RELATIVITY

Last Chapter we saw how the concept of spinor emerges as a requirement for
Lorentz invariance in the spin 1

2 field equations and investigated how the same concept
appears when one studies different representations of the Lorentz Group. In this chapter,
we are going to study the algebraic properties of the spinor in 4 dimensions, also called
2-spinor or spin vector. After that, we show how we can reformulate Einstein’s Field
Equations in terms of spinors. Our main goal here is to prove the Kerr theorem and with
that make a brief discussion about twistors, and to be able to do that we first review some
topics of General Relativity.

3.1 Spinor Algebra

In this section, we are going to study the spinor algebra and its properties. We are
going to employ Penrose’s abstract index notation when needed [8], where ξA refers not to
the spinor’s components, but to the spinor itself. When talking about components, we will
denote it as ξA.

3.1.1 Spin Space

Last chapter we arrived at four kinds of spinors and the relations between them,
which we can exemplify here as {ξA, ξA, ξA

′
, ξA′} and are related to each other by con-

jugation and the spinor metric. Spin vectors ξA are elements of the spin-space SA, a
two-dimensional vector space over the complex field C with a skew-symmetric, bilinear
and non-degenerate inner product [, ].

For such space, we consider a basis, which we call dyad, {o, ι} such that [o, ι] =
1 = −[ι,o]. That way, we can write any spin-vector ζ as:

ζ = ζ0o+ ζ1ι, (3.1.1)

which means that the inner product [, ] between two spin-vectors ζ and η is given by:

[ζ,η] = ζ0η1 − ζ1η0 (3.1.2)

as a consequence of bi-linearity and the choice of the basis.

We also have the following identity:

[ζ,η]τ + [η, τ ]ζ + [τ , ζ]η = 0, (3.1.3)
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which can be checked by writing explicitly their components:

(ζ0η1 − ζ1η0)(τ 0, τ 1) + (η0τ 1 − η1τ 0)(ζ0, ζ1) + (τ 0ζ1 − τ 1ζ0)(η0, η1) = 0 (3.1.4)

which is obviously satisfied.

We denote the dual space of SA as SA, and denote complex conjugation with a bar, as
in SA = SA

′ and SA = SA′ , which are the vector spaces of ξA, ξA, ξA
′ and ξA′ , respectively. So

ξA ∈ SA, ξA ∈ SA, ξA
′ ∈ SA′ and ξA′ ∈ SA′ are univalent spinors, or a (1, 0; 0, 0), (0, 0; 1, 0),

(0, 1; 0, 0), (0, 0; 0, 1) spinors, respectively. The most general kind of spinor is a multilinear
map ξA1...ApB′

1...B
′
q
C1...CrD′

1...D
′
s

: SA1 ...⊗SAp⊗SB′
1 ...⊗SB′

q⊗SC1 ...⊗SCr⊗SD′
1
...⊗SD′

s
→ S

where ξA1...ApB′
1...B

′
q
C1...CrD′

1...D
′
s
∈ SA1...ApB′

1...B
′
q
C1...CrD′

1...D
′
s
is a (p, q; r, s) spinor, and (p, q;

r, s) is called the spinor valence.

3.1.2 The connection between tensors and spinors

As stated, the purpose of this chapter is to show the spinor formalism of General
Relativity, and for that to happen we need a way to write the analogous of tensorial
quantities as elements of spin space, such as the metric, the curvature tensor etc. This is
possible by using the van der Warden symbols:

σ0
AA′ = 1√

2

1 0
0 1

 , σ2
AA′ = 1√

2

0 1
1 0

 , σ3
AA′ = 1√

2

 0 i

−i 0

 , σ4
AA′ = 1√

2

1 0
0 −1

 ,
(3.1.5)

which can be written in component form as σaAA′ with a vector index that can be lowered
with the metric gab. As an example of its use, let’s see the spinor version of position vector:

XAA′ = Xaσa
AA′ =

x00′
x01′

x10′
x11′

 =
 x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

 , (3.1.6)

and for a rank 2 tensor, we would have:

TAA′BB′ = Tabσ
a
AA′σbBB′ . (3.1.7)

From now on, we will employ the convention of not showing the van der warden symbols
explicitly, and follow the rule that each tensor index µ corresponds to a pair of spinor
indices UU ′ wi, so:

Tab = TAA′BB′ = TABA′B′ , (3.1.8)

where primed and unprimed indices can be interchanged at will.

3.1.3 The Levi-Civita spinor

Equation (3.1.1) defines the inner product in Spin space, which implies the existence
of a bilinear, anti-symmetric form εAB ∈ SAB such that:

[ζ,η] = ζBη
B = εABζ

AηB, (3.1.9)
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where εAB = −εBA is called the Levi-Civita spinor, and plays a role analogous to the
metric tensor in spinor algebra. The same relation exists for SA′

, SA and SA′ , and we have:

εAB =
 0 1
−1 0

 , (3.1.10)

εAB =
 0 1
−1 0

 , (3.1.11)

and their complex conjugates. With that in mind, we can expand (3.1.4) as:

εABζ
AηBτC + εABη

AτBζC + εABτ
AζBηC = 0 (3.1.12)

which can be rewritten as:

(εABεCD + εBCεA
D + εCAεB

D)ζAηBτC = 0 (3.1.13)

where εAB = −εBA = εACε
CB. Now, since ζ,η and τ are in general different from zero, we

take the term between parenthesis to be zero. That way, we get the following important
identities:

εABεC
D + εBCεA

D + εCAεB
D = 0, (3.1.14)

εABεCD + εBCεAD + εCAεBD = 0, (3.1.15)

εABε
CD = εA

CεB
D − εBCεAD, (3.1.16)

and the complex conjugate of the three equations are also satisfied. Both (3.1.15) and
(3.1.16) come from index lowering and raising from (3.1.14) and are very useful to calculate
the spinorial form of tensors. Let’s take gab as an example:

gab = g(ab)

⇒ gAA′BB′ = 1
2(gAA′BB′ + gBB′AA′)

= 1
2(gABA′B′ + gABB′A′) + 1

2(gBAB′A′ − gABB′A′)

= g(AB)(B′A′) + g[AB][B′A′].

(3.1.17)

Where we interchanged primed and non-primed indices freely, since their order don’t
matter. Now, by applying (3.1.16) to g[AB][B′A′], we get:

gAA′BB′ = g(AB)(B′A′) + 1
4εABεA

′B′gc
c (3.1.18)

Which looks a lot like the usual decomposition of a symmetric tensor Tab = T(ab) into a
symmetric, trace free part P(ab) such that Paa = 0, and a part proportional to the metric:

Tab = Pab + 1
4gabTc

c (3.1.19)
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and indeed it is the same relation but in spinor form. For the metric, we have Pab = 0 and
so:

gab = gAA′BB′ = εABεA′B′ (3.1.20)

which shows that ε indeed has a metric meaning beyond just raising or lowering spinor
indices. By an analogous procedure, one can show that the electromagnetic field tensor
Fab = −Fba can be written as [24]

Fab = FAA′BB′ = −FBB′AA′ , (3.1.21)

which can be written as

FAA′BB′ = 1
2(FABA′B′−FABB′A′)+ 1

2(FABB′A′−FBAB′A′) = FAB[A′B′] +F[AB]B′A′ (3.1.22)

and again, by applying (3.1.16), we have

Fab = 1
2εA

′B′FABC′
C′ + 1

2εABFC
C
B′A′ , (3.1.23)

where from (3.1.21) we have that

2φAB = FABC′
C′ = FBAC′

C′
, 2 ¯φA′B′ = FC

C
B′A′ = FC

C
A′B′ , (3.1.24)

and then we write
Fab = φABεA′B′ + φ̄A′B′εAB (3.1.25)

where φAB = φ(AB) is called the electromagnetic spinor. Note that it only has 3 independent
components

φ0 = φ00, φ1 = φ10 = φ01, φ2 = φ22, (3.1.26)

such that [25]
φAB = φ2oAoB − 2φ1o(AιB) + φ0ιAιB. (3.1.27)

3.2 General Relativity with Spinors

We will now obtain the spinor form of the Einstein field equations. For that to
happen, we need to obtain the spinor equivalents of the general relativity ingredients, that
is, the covariant derivative, the Riemann tensor, the Ricci tensor and the Ricci scalar.

3.2.1 The Covariant Derivative

Since the covariant derivative is a tensorial quantity, in the sense that it transforms
as a tensor, its spinorial components are given as usual by

∇a 7−→ ∇AA′ = σaAA′∇a. (3.2.1)
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However, its action on spinors is not defined yet. Here, we define the covariant derivative ∇
of a (p, q; r, s) spinor field as a map into a (p, q; r + 1, s+ 1) spinor field with the following
properties [26]:

∇AA′σ = 0, ∇AA′εCD = 0,

∇AA′(πBκC) = κC∇AA′πB + πB∇AA′κC , ∇AA′φ = ∂AA′φ.
(3.2.2)

Also, it can be directly computed by the formula [27]

∇AA′κB = ∂AA′κB − ΓCAA′BκC , (3.2.3)

where ΓCAA′B is the spinor affine connection, related to Γcab by

ΓCiB = −σ
CD
k

2 (∂iσkBD + σjBDΓkij). (3.2.4)

3.2.2 The Riemann Tensor

Since our goal is to ultimately obtain the spinorial form of Gab = 8πTab, lets
start with the Riemann tensor. The thing is, as we noted in the case of the metric
tensor, something like Rabcd = RAA′BB′CC′DD′ is not quite the answer we are looking for.
What we are truly interested in is "breaking" this tensor into smaller parts, that we call
irreducible representations, by making use of its symmetries. For that, we could use group
theoretical arguments straight away and obtain RAA′BB′CC′DD′ in terms of such irreducible
representations, and, indeed, this is what we are going to do next chapter on the six
dimensional case, but here the relatively low dimension lends us more intuition, and we can
obtain it using Penrose’s kind of pedagogical method [8], [24]. As is known, the Riemann
tensor has the following symmetries:

Rabcd = R[ab][cd], (3.2.5)

Rabcd = Rcdab, (3.2.6)

Ra[bcd] = 0. (3.2.7)

As usual, we define:
Rabcd = RAA′BB′CC′DD′ . (3.2.8)

Now, having the symmetries in mind and repeating an analysis analogous to the one we
did for gab, we obtain:

RAA′BB′CC′DD′ = XABCDεA′B′εC′D′+ΦABC′D′εA′B′εCD+Φ̄A′B′CDεABεC′D′+X̄A′B′C′D′εABεCD,

(3.2.9)
where XABCD = 1

4RABE′
E′
CDF ′

F ′

and ΦABC′D′ = 1
4RABE′

E′
F

F

C′D′ are called curvature
spinors.
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3.2.3 The Ricci Tensor

Now, the Ricci tensor is obtained from the Riemann tensor by Rab = Rac
c
b. For its

spinor counterpart, this means:

RAA′BB′ = εBDεB
′D′
RAA′BB′CC′DD′ = XACB

CεA′B′ − ΦABB′A′ − Φ̄A′B′BA +XA′C′B′
C′
εAB

(3.2.10)
Before proceeding any further, let’s take a moment and analyze the curvature spinors
symmetries from the symmetries of the Riemann tensor. From (3.2.5) we have:

XABCD = X(AB)(CD),ΦABC′D′ = Φ(AB)(C′D′) (3.2.11)

which from (3.2.6) we also get that Φ is real.

Now, let’s analyze an specific part of the Riemann tensor called the right dual,
defined as:

R∗abcd = 1
2εcd

efRabef (3.2.12)

and we can also see that (3.2.7) can be written as:

Ra[bcd] = −1
3εhbcdR

∗
ae
he = 0 (3.2.13)

where this implies that R∗aehe = 0. Then we have that:

R∗abcd = i

2(εCEεDF εC′
F ′
εD′

E′ − εCF εDEεC′
E′
εD′

F ′)RAA′BB′EE′FF ′ = iRAA′BB′CD′DC′ .

(3.2.14)
From (3.2.9) and paying attention to the symmetries we already know, we see that

R∗abcd = −iXABCDεA′B′εC′D′ + iΦABC′D′εA′B′εCD − iΦ̄A′B′CDεABεC′D′ + iX̄A′B′C′D′εABεCD.

(3.2.15)
Now, by doing R∗aehe = 0, we obtain:

XABC
BεA′C′ = X̄A′B′C′

B′

εAC (3.2.16)

Now, if we act on this equation with εA′C′
εAC , we obtain

Λ̄ = Λ = 1
6XAB

AB, (3.2.17)

which gives us that XABC
B = 3ΛεAC which also means XAB

AB = X[A|B|C]
B.

Now we have what we want to finish the calculation of the Ricci tensor. By applying
our knowledge of the curvature spinors to (3.2.10), we finally obtain

Rab = RAA′BB′ = 6ΛεABεA′B′ − 2ΦABA′B′ (3.2.18)
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3.2.4 The Ricci Scalar

For the Ricci scalar, we must only take the trace of the Ricci tensor, that we already
know the spinor equivalent. We have

R = Ra
a = RAA′

AA′ = 24Λ− 2ΦA
A
A′
A′

, (3.2.19)

but, as we can see, Φ has vanishing trace, since ΦA
A
A′
A′

= ΦACA′C′εACεA
′C′ = Φ(AC)(A′C′)ε

ACεA
′C′ =

0. Then, the Ricci scalar is given by:

R = 24Λ (3.2.20)

3.2.5 Einstein Field Equations

Now we can see what the spinor equivalent of the Einstein Field Equations look
like. First, we have the Einstein tensor Gab which is given by

Gab = GAA′BB′ = −6ΛεABεA′B′ − 2ΦABA′B′ (3.2.21)

and since Gab = 8πTab − λgab where Tab is the energy-momentum tensor and λ is the
cosmological constant, we have

−6ΛεABεA′B′ − 2ΦABA′B′ = 8πTAA′BB′ − λεABεA′B′ , (3.2.22)

which, by contraction with εABεA′B′ gives

Λ = π

3TA
A
A′
A′

+ λ

6 (3.2.23)

and then, we finally have that the Einstein Field Equations are given by:

ΦABA′B′ = 4π(TABA′B′ − 1
4TC

C
C′
C′
εABεA′B′) (3.2.24)

3.3 Topics from General Relativity

In this section, we’re going to talk shortly about some topics of General Relativity
that will be useful in order to present and prove the Kerr Theorem.

3.3.1 The Newman-Penrose Formalism

The first of these topics is the Newman Penrose formalism, which is basically a way
to study the relevant quantities of general relativity with a particular choice of basis. This
basis is given by four null vectors ea = (la, na,ma, m̄a) called null tetrads, where ma and
m̄a are complex conjugates of one another. We are using lower case latin letters for tetrad
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indices and greek letters for the usual tensor indices. Those vectors satisfy the following
relations:

l · n = −m · m̄ = 1, (3.3.1)

and every other inner product between them is null. That way, we can write the metric as:

ηab = 2(l(anb) −m(am̄b)) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , (3.3.2)

and we have
ds2 = ηabe

aeb, (3.3.3)

where ea = eaµdx
µ.

A vector which is written in terms of a coordinate basis can be expressed in a
tetrad basis as:

Va = ea
µVµ = laV0 + naV1 +maV2 + m̄aV3. (3.3.4)

In terms of the spin dyad, the tetrad vectors can be written as:

la = oAōA
′
, na = ιAῑA

′
,ma = oAῑA

′
, m̄a = ιAōA

′
, (3.3.5)

where clearly we still have m = m̄, and {l,n} are still real, while (3.3.5) is obviously
satisfied.

In this formalism, we give special attention to the directional derivatives, which
now have their own symbols, given by:

D = la∇a,∆ = na∇a, δ = ma∇a, δ̄ = m̄a∇a. (3.3.6)

Now, since we can have oAιA = c where c is a complex constant, we have that

oA∇̄ιA = ιA∇̄oA, (3.3.7)

where ∇̄ is any of the directional derivatives defined previously. With that in mind, we
can define a set of 12 scalars called connection coefficients defined as:

oADoA = κ, oA∆oA = τ, oAδoA = σ,

oAδ̄oA = ρ, oADιA = ε, oA∆ιA = γ,

oAδιA = β, oAδ̄ιA = α, ιADιA = π,

ιA∆ιA = ν, ιAδιA = µ, ιAδ̄ιA = λ.

(3.3.8)

Now, these scalars satisfy a set of 18 coupled first order differential equations which also
involve the Ricci and Weyl spinors, as well as the Ricci scalar, and this set is called The
Newman-Penrose field equations. We will not go into further detail here, since they wont



Chapter 3. Spinors in General Relativity 35

be used on this work, apart from commenting that they are quite useful on the study and
search for solutions of the Einstein Field Equations. The equations and their applications
can be checked in [25] and [28].

The equations that we are interested in are those differential equations satisfied by
the null tetrad, the differential operators defined in (3.3.6) and the connection coefficients.
Those are:

Dl = (ε+ ε̄)l − κ̄m− κm̄, ∆l = (γ + γ̄)l − τ̄m− τm̄,

δl = (ᾱ + β)l − ρ̄m− σm̄, Dn = −(ε+ ε̄)n+ πm+ π̄m̄,

∆n = −(γ + γ̄)n+ νm+ ν̄m̄, δn = −(α + β̄)n+ µm+ λ̄m̄,

Dm = π̄l − κn+ (ε− ε̄)m, ∆m = ν̄l − τn+ (γ − γ̄)m,

δm = λ̄l − σn+ (β − ᾱ)m, δ̄m = µ̄l − ρn+ (α− β̄)m.

(3.3.9)

The point of introducing the Newman-Penrose formalism here was so that we could
define all the quantities needed to present this set of equations, which we will use on the
next topic. As an example of the use of this formalism, the source-free Maxwell’s Equations
can be written as [28]

Dφ1 − δ̄φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2, (3.3.10)

Dφ2 − δ̄φ1 = −λφ0 + 2πφ1 − (ρ− 2ε)φ2, (3.3.11)

∆φ0 − δφ1 = (2γ − µ)φ0 − 2τφ1 + σφ2, (3.3.12)

∆φ1 − δφ2 = νφ0 − 2µφ1 + (2β − τ)φ2, (3.3.13)

where φi are the ones defined on (3.1.26).

3.3.2 Null Shear-Free Congruences

The advantage of the NP formalism is that by making physical requirements about
spacetime, we get certain constraints on the connection coefficients, and those will be true
for any solution of the Einstein Field Equations that share the same requirements we did
in the first place. Our requirement in this work will be that the spacetime admits a null
shear-free congruence.

A null geodesic congruence Γ in a region U of a spacetime M is a set of null
geodesics such that through each point of U passes one and only one null geodesic. We
can define la as the tangent vector of the congruence, which obeys the geodesic equation:

Dla = 0 = oADoA, (3.3.14)
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where we also see that κ = 0 and ε+ ε̄ = 0. We also propagate the spin dyad along Γ by
the conditions:

DoA = DιA = 0. (3.3.15)

Now, lets define another vector w with the condition:

Llwa = 0, (3.3.16)

where Ll is the Lie derivative with respect to the vector field l, and its action on another
vector field ωa is defined as [2]

Llωa = lb∇bω
a − ωb∇bl

a, (3.3.17)

and then, condition (3.3.16) gives us

Dwa = wb∇bl
a. (3.3.18)

Now let’s consider that at a point p, w and l are orthogonal. Then, we have that

D(lawa) = laDwa = lawb∇bla = 1
2w

b∇b(lala) = 0, (3.3.19)

which guarantees that w is always orthogonal to Γ. With that, we can construct the vector
w as a linear combination of the null tetrad vectors:

wa = ula + z̄ma + zm̄a, (3.3.20)

where na is absent since lana = 1 and we want lawa = 0. Now we compute Dwa expressing
w with the spin dyad

Dwa = wb∇bl
a ⇒ oAōA

′
Du+oAῑA′

Dz̄+ιAōA′
Dz = z̄oAδōA

′ + z̄p̄A′
δoA+zoAδ̄ōA′ +zōA′

δ̄oA,

(3.3.21)
which, by contracting with oAῑA′ we get

−Dz = z̄oAδo
A − zoAδ̄oA, (3.3.22)

and by substituting the connection coefficients defined last section, we get:

Dz = −ρz − σz̄ (3.3.23)

where we used the fact that oAoA = 0 and so

∇̄(oAoA) = oA∇̄oA + oA∇̄oA = 0⇒ oA∇̄oA = −oA∇̄oA. (3.3.24)

We obtained an equation that tells us how z behaves along Γ, and this behavior is related
to the connection coefficients σ and ρ and also to the complex conjugate of z. Considering
that z = x+ iy, lets analyze some cases.
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ρ = Re{ρ}, σ = 0:
Dx = −ρx,Dy = −ρy, (3.3.25)

ρ = −iω, σ = 0:
Dx = −ωy,Dy = ωx, (3.3.26)

ρ = 0, σ = Re{σ}:
Dx = −σx,Dy = σy. (3.3.27)

If we follow a circle in the plane defined by {m, m̄} along Γ, (3.3.25), (3.3.26) and (3.3.27)
represent an isotropic expansion, a rotation and a shear, respectively, as can be seen by
integrating those equations. Geometrically, the shearing of the circle means that it will
turn into an ellipse.

The general case will then be a combination of these behaviors, but when studying
solutions of the Einstein’s Field Equations, we can start by making the requirement that
σ = 0, for example, meaning that such solution will have shear-free geodesics.

3.3.3 The Kerr Theorem and Twistors

Let’s now consider the case of the null shear-free congruence defined last section in
Minkowski space. Since oADoA = oAoB ōB

′∇BB′oA = 0 and oAδoA = oAoB ῑB
′∇BB′oA = 0,

we can write both conditions with the equation:

oAoB∇BB′oA = 0. (3.3.28)

Now, let’s write oA in terms of a normalized constant dyad {αA, βA}:

oA = λ(αA − Y βA) (3.3.29)

where αA = (1, 0) and βA = (0, 1). Now (3.3.28) reads

∇0A′Y − Y∇1A′Y = 0. (3.3.30)

By using coordinates such that ds2 = dudv + dzdz̄, the equations become:

∂Y

∂z̄
− Y ∂Y

∂u
= 0, ∂Y

∂v
− Y ∂Y

∂z
= 0. (3.3.31)

These equations can be solved by the method of characteristics [29], and their
solutions are given implicitly by any analytic function of three variables satisfying

F (Y, u+ z̄Y, vY − z, Y ) = 0, (3.3.32)

which can also be written as

f(−ixA′AoA, oB) = f(Zα) = 0, (3.3.33)
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where f is a homogeneous function such that:

F (a, b, c) = f(−ia,−ib, c, 1). (3.3.34)

This is called the Kerr Theorem, which states that the general null shear free congruence
in Minkowski space is defined by f(Zα) = 0, where f is an arbitrary homogeneous analytic
function of four variables.

Even though our analysis was conducted on Minkowski space, the Kerr theorem
allows other kinds of space time. Among the important solutions of (3.3.32) are a class of
spaces known as Kerr-Schild, with metric defined as [30]

gab = ḡab − 2Slalb, (3.3.35)

where ḡab is a maximally symmetric space, S is a function and la is a null GSF 1-form.
This class of metrics is given by the choice that (3.3.32) is given by

F = φ(Y ) + (q + pY )(u+ z̄Y )− (c+ qY )(vY − z) = 0, (3.3.36)

where p and c are real constants, q is a complex constant and φ(Y ) is an arbitrary analytic
function of Y. The function S is given in terms of Y by

S = −m2 P
−3(ρ+ ρ̄) P = pY Ȳ + qȲ + q̄Ȳ + c. (3.3.37)

One of the important solutions given by this class is that of the Kerr black hole. In its
Kerr-Schild form, the metric is given by

ds2 = −dt2+dx2+dy2+dz2+ mr3

r4 + a2z2 (dt+ (rx+ ay)dx+ (ry − ax)dy
r2 + a2 + z

r
dz)2, (3.3.38)

with r defined implicitly by
x2 + y2

r2 + a2 + z2

r2 = 1. (3.3.39)

This solution is achieved by the particular choice

φ = −iaY, q = 0, p = c = 2− 1
2 , (3.3.40)

and now m and a are identified with the mass and angular momentum of the black hole,
respectively. For a proof of the Kerr Theorem on a Kerr-Schild background, see [31].

Equation (3.3.33) also defines something called twistor, which we denoted by Zα

on (3.3.33). Here we will look only at its basics, for more complete accounts see [32], [33]
and [9]. The twistor here is defined as the pair of spinors given by

Zα = (Z1, Z2, Z3, Z4) = (ωA, πA′), (3.3.41)

where
Z1 = ω1, Z2 = ω2, Z3 = π1′ Z4 = π2′ . (3.3.42)
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We can also define the dual twistor Wα = (λA, µA
′) and the twistor conjugation where

Z̄α = (π̄A, ω̄A
′) W̄α = (µ̄A, λ̄A′), (3.3.43)

with that we can define an inner product in twistor space

ZαWα = ωAλA + µA
′
πA′ . (3.3.44)

Another way to define a twistor is given by the differential equation on a field
ωA(x)

∇AA′ωB = −iδBAπA′ , (3.3.45)

which is known as the four dimensional twistor equation [9] and, in flat space, has the
following solution:

ωA(x) = ωA − ixAA′
πA′ , (3.3.46)

where ωA(0) = ωA and πA′ are the constant spinors that define Zα. Now, let’s consider
the points of complexified Minkowski space such that ωA(x) = 0

ωA = ixAA
′
πA′ , (3.3.47)

this equation represents the set of points given by

xAA
′ = xAA

′

0 + κAπA
′
, (3.3.48)

with κA a varying spinor and xAA′
0 a constant position spinor. This set of points defines a

totally null complex 2-plane called an α-plane. Now, we define a null electromagnetic field
as the one such that FabF ab = 0, it will be self-dual if

Fab = φAφBεA′B′ , (3.3.49)

and anti-self dual if
Fab = φ̄A′φ̄B′εAB. (3.3.50)

If we have a self-dual null Maxwell tensor of the form

Fab = φoA′oB′εAB, (3.3.51)

we see from (3.1.26) that φ0 = φ1 = 0 and φ = φ2 and so, from the Maxwell’s equations,
we get that σ = κ = 0, and so, Dla = (ε+ ε̄)la. This is called the Mariot-Robinson theorem,
and it states that if Fab is a null electromagnetic field, then its repeated null direction
generates a null GSF congruence [25]. Since we can use a simple null bivector to describe
a null plane [34], the Mariot-Robinson theorem connects the existence of null 2-planes and
null GSF congruences.
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4 SIX DIMENSIONAL KERR THEOREM

In this chapter, we are finally able to study the ideas from [1]. Here, we are
concerned with six-dimensional spaces, and we will have a different approach to topics
that we already encountered before. We will start by, again, establishing a correspondence
between spinors and tensors, so that we can obtain the spinor version of all the quantities
needed in our discussion. Here, we also introduce the idea of an isotropic subspace, e how
its existence is related to the Kerr theorem. We will talk about twistors in six dimensions
and how the twistor equation constrains the Weyl tensor algebraically, and then return to
the Kerr-Schild family of metrics and show that it exhibits this property.

4.1 Spinors on Six Dimensions

So far, we have studied the spinorial formalism in 4 dimensions and noticed that
there are two copies of SU(2) in the Lorentz Group. The key for studying spinors in six
dimensions is noting that there is an isomorphism between SO(6) and SU(4), both having
15 generators. This can be seen from the fact that the Clifford algebra for SO(2n) is made
from 2n gamma matrices that are 2n× 2n each [23]. So, analogously to (2.6.15), we define

γ6 = −γ0γ1γ2γ3γ4γ5, (4.1.1)

and with that
P± = 1

2(1± γ6), (4.1.2)

which again decomposes the Dirac spinor ψ into its left chiral part and right chiral part,
but this time the Dirac spinor has 23 = 8 components, and so each part will have four
components. That way, by applying P± on the transformation ψ′ = eiωµνS

µν
ψ (see (2.6.2))

we get
P±ψ

′ = eiωµνS
µν

P±ψ = (eiωµνSµνP±)(P±ψ), (4.1.3)

where we used that P±P± = P±. From that, we get

ψ
′R = (eiωµνSµνP+)ψR, ψ

′

L = (eiωµνSµνP−)ψL (4.1.4)

This means that the general Lorentz transformation in each spinor space is given by

ΛS = eiωµνS
µν

P± (4.1.5)

which has 15 independent transformations and defines a set of 15 hermitian, unit de-
terminant 4× 4 matrices, which is exactly the definition of SU(4). Now, instead of two
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component spinors as in SO(3,1), we will have four component spinors that transform
according to:

ξA ⇒ ξ
′A = UA

Bξ
B; (4.1.6)

ζA ⇒ ζ
′

A = ŪA
B
ζB, (4.1.7)

where U is an SU(4) matrix defined by (4.1.4) and Ū its complex conjugate [23]. Note
that there are no primed indices here, since that there’s only one copy of SU(4) in the
isomorphism to SO(6), where in the four dimensional case we have two copies of SU(2) on
the isomorphism with SO(4). We denote the spinor representation by 4 and its complex
conjugate by 4̄, where the corresponding spinors have an upper index or a lower index,
respectively.

We now pose the question: how do we go from vectors to spinors in six dimensions?
To answer this, lets define the totally anti-symmetric symbols of SU(4), εABCD and εABCD,
and see how they transform:

εABCD ⇒ ŪA
P
ŪB

Q
ŪC

R
ŪD

S
εPQRS = detUεABCD = εABCD, (4.1.8)

where we used the defining condition for a SU matrix that det(U) = 1. Now that we see
that εABCD is invariant under SU(4), and the same happens for εABCD, then it might be
related to the metric of the Euclidean space, which is invariant under SO(6). That way,
the inner product must be defined as:

V µgµνV
ν = 1

2V
ABεABCDV

CD, (4.1.9)

where V AB = V [AB] is given by
V AB = ΣAB

µ V µ. (4.1.10)

Clearly, V µ and V AB share the same number of components, and since we also have that

V AB = 1
2ε

ABCDVCD, (4.1.11)

VAB = 1
2εABCDV

CD, (4.1.12)

then we can go from V AB to VAB by only making use of ε and without complex conjugation.
So, for both V AB and VAB we have the same representation which we denote by 6.

4.1.1 Higher dimensional irreducible representations of SU(4)

It is also of interest to build higher dimensional irreducible representations of SU(4),
irreps for short, if we want to express SO(6) tensors in the spinor formalism. For example,
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an antisymmetric tensor T ab = T [ab] has 15 independent components, so we should look
for a 15 representation in SU(4), and we can do this by taking direct products of smaller
representations.

Equation (4.1.10) tells us that the corresponding SU(4) tensor of a SO(6) rank two
tensor should have the form T [AB][CD] = ΣAB

a ΣCD
b T ab, which means that this tensor is in

the 6⊗ 6 representation. Note, however, that 6⊗ 6 = 36, so the idea is to “break” the 36
representation into a sum of irreducible representations [12].

As usual, we can write a tensor from SO(n) as a sum of its symmetric and anti-
symmetric parts and its trace. For a general rank two tensor from SO(6), we have:

T ab︸︷︷︸
36

= 1
6 δab︸︷︷︸

1

+Aab︸︷︷︸
15

+Bab︸︷︷︸
20

, (4.1.13)

where Aab = T [ab] and Bab = T (ab), with Ba
a = 0. Then, we have:

6⊗ 6 = 1⊕ 15⊕ 20. (4.1.14)

This is hardly striking news, and SU(4) didn’t really have any special input on.
For that special input, now consider the 4⊗ 4̄ representation, which is made of objects of
the form TAB. Again we are invited to take out its trace and, in the absence of further
symmetries, we are left out with

4⊗ 4̄ = 1⊕ 15. (4.1.15)

The presence of 15 here means that in SU(4) an anti-symmetric tensor Aab transforms as
AAB, where ABB = 0. This means that AABCD = Aab can be written as

AABCD = A[A
Eε

B]ECD − A[C
Eε

D]EAB, (4.1.16)

which can also be expressed by:

AAB = 1
4A

ACDEεCDEB. (4.1.17)

This comes from the requirement that AABCD = A[AB][CD] = A[CD|AB] = A[AB|CD] and the
fact that ε is invariant under SU(4). The spinor representation of Bab = B(ab) will be
given by [35]

Bab = BAB
CD, BAB

CB = 0. (4.1.18)

This is the basics of building higher dimensional irreducible representations for
SU(4). For higher representations, the idea is the same: explore the symmetries and take
out the trace to express the tensor in its irreducible parts. The larger the dimension is, the
harder it gets, so the use of Young Tableaux [36] is usually employed. For further details
into SU(4) and its representations we refer to [37] and [38]
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4⊗ 4 = 6⊕ 10
4⊗ 4̄ = 1⊕ 15
6⊗ 6̄ = 1⊕ 15⊕ 20
10⊗ 1̄0 = 1⊕ 15⊕ 84
15⊗ 1̄5 = 1⊕ 15⊕ 15⊕ 20⊕ 45⊕ 4̄5⊕ 84

Table 1 – Some useful irreps of SU(4)

As one example of interest, lets obtain the spinorial equivalent of the Riemann
tensor from Table 1. The Riemann tensor can be defined by:

(∇AB∇CD −∇CD∇AB)κE = RABCD
E
Fκ

F (4.1.19)

where we note that R has the same symmetries in {ABCD} as an antisymmetric tensor
Aab has on its four spinorial indices. So, from (4.1.17), we can write R as

RAB
CD = 1

4ε
EFGCRAEFGB

D. (4.1.20)

Before going further, note that one of the irreducible parts of the Riemann tensor is the
Weyl tensor, which on n dimensions has Cn = n

12(n+ 1)(n+ 2)(n− 3) components [39]. So,
for n = 6, the Weyl tensor is in the 84 representation, then we must look for representations
that have 84 as one of its irreducible parts. On the other hand, the Riemann tensor has
Rn = n2

12 (n2 − 1) components [40], which gives R6 = 105 in six dimensions, so by taking a
look at 1 we see that 10⊗ 1̄0 is too small for R to fit in, so we go for 15⊗ 15, where we
see that 1⊕ 20⊕ 84 add up to 105 as we need, being the trace, the antisymmetric and
symmetric parts of RAB

CD, respectively.

RAB
CD = Λ(δCAδDB − 4δDA δCB) + ΦAB

CD + ΨAB
CD, (4.1.21)

where Λ, as in the four dimensional case, is related to the Ricci scalar, ΦAB
CD = Φ[AB]

[CD]

with ΦAB
AD = 0 is the spinor analogue of the Ricci tensor, and ΨAB

CD = Ψ(AB)
(CD) with

ΨAB
AD = 0 is the spinor analogue of the Weyl tensor.

As a quick wrap up, Table 2 has the spinor analogues of the SO(6) tensors we will
consider in this work [35].

4.1.2 Null Vectors

As in the four-dimensional case, we can write a vector as a tensor product of two
spinors. First, lets choose a spinor basis κAi normalized such that:

εABCDκ
A
1 κ

B
2 κ

C
3 κ

D
4 = 1. (4.1.22)

Then, we can expand any vector as a combination of totally antisymmetric tensor products
of κi:

V = α1κ1 ∧ κ2 + α2κ1 ∧ κ3 + α3κ1 ∧ κ4 + α4κ2 ∧ κ3 + α5κ2 ∧ κ4 + α6κ3 ∧ κ4. (4.1.23)
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SO(6) Tensor Corresponding SU(4) Tensor
V µ V AB = V [AB]

Aµν = A[µν] AAB; ABB = 0
Bµν = B(µν) BAB

CD; BAB
CB = 0

T µνρ = T [µνρ] τABCD = TA[Bδ
C]
D + 1

2 T̄DEε
EABC ;

τABCD = 1
12T

CBAEFGεEFGD
Rµνρσ = −Rνµρσ = −Rµνσρ = Rρσµν ;

Rµ[νρσ] = 0 RAB
CD; RAB

AD = 0; RAB
CA = −15ΛδCB

Cµνρσ = −Cνµρσ = −Cµνσρ = Cρσµν ;
Cµ[νρσ] = 0;Cµνρν = 0 CAB

CD = C(AB)
(CD); CABAD = 0

Table 2 – SO(6) tensors and its SU(4) equivalents

Now, note that if the expansion does not involve all of the basis spinors κi, then the vector
will necessarily be null. Let’s build a vector using only {κ1,κ2,κ3} as an example:

V AB = α1κ
A
1 ∧ κB2 + α2κ

A
1 ∧ κB3 + α3κ

A
2 ∧ κB3 . (4.1.24)

Now, we calculate VAB = 1
2εABCDV

CD. From (4.1.22), we have:

VAB = α1εAB12 + α2εAB13 + α3εAB23, (4.1.25)

then, we have the inner product given by:

VµV
µ = 1

2VABV
AB = 0, (4.1.26)

because of the total antisymmetry of εABCD. We can also recast (4.1.24) as:

V AB = (κ1 + α3

α2
κ2) ∧ (α1κ2 + α2κ3) = χ[AξB], (4.1.27)

so as in the four dimensional case, a null vector can be expressed as the outer product of
spinors. Now, consider a general spinor given by:

κA = aκA1 + bκA2 + cκA3 + dκA4 . (4.1.28)

We can build a set of null vectors by doing outer products of this spinor with the basis
spinors in the following way:

V AB
i = κ[Aκ

B]
i . (4.1.29)

Even though there are four elements in the spinor basis, there are only 3 linearly independent
vectors defined by (4.1.29) as can be easily checked from

V AB
1 = − b

a
V AB

2 − c

a
V AB

3 − d

a
V AB

4 . (4.1.30)

Note that every vector in this subspace is a linear combination of the null vectors that
generate it, and since a linear combination of a null vector is also a null vector, this null
subspace is called isotropic 3-plane, and it’s relation to the Kerr theorem will be discussed
up next. The spinor κA is then associated with the null subspace generated by the set of
three vectors {Vi}, and a spinor with such property is called pure spinor [19,41,42].
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4.2 The Kerr Theorem in 6 dimensions

Last chapter we obtained the Kerr Theorem by studying the congruences of a
submanifold in Minkowski space. This time, we approach it differently, and first we need
to talk about distributions and integrability.

Consider a n-dimensional Manifold M endowed with a metric g, an m-dimensional
distribution [38,43] is a map that associates to every point p ∈M an m-dimensional vector
space Up ∈ TpM . If a set of vector fields {Vi} span the vector space Up ∀ p ∈M , we say
that they generate the distribution, which is said to be integrable when there exists a
family of submanifolds of M such that their tangent spaces are Up.

Now, given a set of m vector fields {Vi}, then the tangent space can be described
by {Vi,Wj}, where {Wj} is a set of (n−m) vector fields. Also, we have the dual frame
{ϑi,ωj} with the relations ϑi ·Vj = ωi ·Wj = δij and ϑi ·Wj = ωi ·Vj = 0. The Frobenius
theorem says that the distribution generated by the set {Vi} is integrable if, and only if:

dωk ∧ ω1 ∧ ω2 ∧ ... ∧ ω(n−m) = 0 ∀k ∈ {1, ..., n−m}. (4.2.1)

The Frobenius theorem as presented here is in its dual formulation. For a more complete
account, see [43].

Now, back to the case at hand, let’s see how the Kerr theorem, defined before as an
implicit solution to all NSF congruences in flat space, relates to the problem of existence
of integrable null distributions. We begin with flat 6-dimensional space with signature
(−,+,+,+,+,+) and coordinates given by:

ds2 = dudv + dz1dz̄1 + dz2dz̄2. (4.2.2)

Then we start with the following fields of null 1-forms [44]:

e0 = du+ Ȳ idzi + Y idz̄i − YiȲ idv, ei = dzi − Ȳidv. (4.2.3)

According to the Frobenius theorem, these null 1-forms will determine an integrable
distribution if they satisfy (4.2.1). Then, the condition that de0 ∧ e0 ∧ e1 ∧ e2 = 0 gives us
the following equations:

∂vY
1 + Y 2∂2Y

1 + Y 1∂1Y
1 − Y 1Ȳ 1∂uY

1 − Y 1Ȳ 2∂uY
2 + Ȳ 1∂̄1Y

1 + Ȳ 2∂̄1Y
2 = 0, (4.2.4)

∂vY
2 + Y 2∂2Y

2 + Y 1∂1Y
2 − Y 2Ȳ 1∂uY

1 − Y 2Ȳ 2∂uY
2 + Ȳ 1∂̄2Y

1 + Ȳ 2∂̄2Y
2 = 0, (4.2.5)

∂̄2Y
1 − ∂̄1Y

2 + Y 1∂uY
2 − Y 2∂uY

1 = 0, (4.2.6)
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Y 2(∂vY 1 + Ȳ 2∂̄1Y
2 − Y 1∂2Y

2 + Y 2∂2Y
1 + Ȳ 1∂̄1Y

1)

− Y 1(∂vY 2 + Ȳ 1∂̄2Y
1 + Y 1∂1Y

2 − Y 2∂1Y
1 + Ȳ 2∂̄2Y

2) = 0,
(4.2.7)

and the conditions dei ∧ e0 ∧ e1 ∧ e2 = 0 give:

∂̄1Y
i − Y 1∂uY

i = 0, (4.2.8)

∂̄2Y
i − Y 2∂uY

i = 0, (4.2.9)

Y 2∂̄1Y
i − Y 1∂̄2Y

i = 0. (4.2.10)

These equations can be solved, but first they must be decoupled. Note that (4.2.8) and
(4.2.9) imply (4.2.6) and (4.2.10). We also see that if we multiply (4.2.8) by Ȳ 1 and set
i = 1, we get:

Ȳ 1∂̄1Y
1 − Ȳ 1Y 1∂uY

1 = 0, (4.2.11)

which gets rid of two terms in (4.2.4). If we multiply (4.2.8) by Ȳ 2 and set i = 2 we get

Ȳ 2∂̄1Y
2 − Ȳ 2Y 1∂uY

2 = 0, (4.2.12)

which gets rid of another two terms in (4.2.4). By doing the same thing between (4.2.5)
and (4.2.9), we get the decoupled equations given by:

(∂̄i − Y i∂u)Y j = 0, (∂v + Y i∂i)Y j = 0, (4.2.13)

for i, j = 1, 2, and their complex conjugate. We recognize the resemblance of these equations
with (3.3.31), and indeed they can also be solved by the method of characteristics [29],
whose solution is given implicitly by:

F (Y 1, Y 2, vY 1 − z1, vY
2 − z2, u+ z̄1Y

1 + z̄2Y
2) = 0, (4.2.14)

where F is an general function of five complex arguments. To obtain the spinoral interpre-
tation as we did last chapter, let us introduce the spinors:

κA =


Y 1

Y 2

0
1

 κ̄A =


Ȳ 2

−Ȳ 1

1
0

 , (4.2.15)

which, as seen, generate the null vector ka = κ[Aκ̄B], and κ̄A is related to κA by:

κ̄A = BABκ∗B, B = 1⊗ iσ2. (4.2.16)
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where B amounts to a choice of a real slice of SU(4), which in turn gives ka = κ[Aκ̄B] as a
real vector. Now, we introduce the position vector xAB = Σµ

ABxµ in spinor space given by:

xAB =


0 v −z̄1 −z2

−v 0 −z̄2 z1

z̄1 z̄2 0 u

z2 −z1 −u 0

 , (4.2.17)

so we can write (4.2.14) as:
F (κA, ξB) = 0, (4.2.18)

where ξA = xABκ
B. Because of the antisymmetry of xAB, we see that (4.2.18) needs

only to be defined for κAξA = 0. Again, this defines implicitly the notion of a twistor
Zα = (κA, ξB), and its equation will be investigated shortly.

4.3 The Kerr Theorem in Generic Even Dimensions

Lets now make a more generic discussion about the Kerr theorem. A flat, n = 2m-
dimensional Lorentzian metric can be expressed by null coordinates as

ds2 = dudv +
m−1∑
i=1

dzidz̄i. (4.3.1)

In such manifold, we will have the null 1-forms that determine an integrable distribution
defined in a analogous way

e0 = du+ Ȳ idzi + Y idz̄i − YiȲ idv, ei = dzi − Ȳidv, i = 1, 2, ...,m− 1, (4.3.2)

where we see that a 2m-dimensional space will have at maximum a m dimensional null
integrable subspace defined by the m null 1-forms, and as such are called maximally
isotropic subspaces. (4.3.2) together with the Frobenius theorem will now lead to the
differential equations

(∂̄i − Y i∂u)Y j = 0, (∂v + Y i∂i)Y j = 0, i, j = 1, ...,m− 1 (4.3.3)

and their complex conjugates. Their solutions will, again, be given implicitly by a homoge-
neous function of 2m− 1 complex arguments [29]

F ({Y i}, {vY i − zi}, uz̄iY i) = 0. (4.3.4)

Note that, for the four dimensional case, we have now arrived at this result from two
apparently distinct starting points that are actually equivalent, that is, the requirement
that κ = σ = 0 determines the existence of (4.3.2) that spam an integrable distribution
and vice versa. Defining and working with the Newman-Penrose spin coefficient method in
higher dimensions can be cumbersome, since there’ll be a lot more directional derivatives,
more spinors in the basis, and consequently, more coefficients, so starting with the null
forms defining the distribution is more reasonable.
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4.4 Isotropic Subspaces

Now, we show how we can define an n-dimensional isotropic subspace through a
simple null n-form [38]. In the four-dimensional case, for example, the maximally isotropic
subspace would be a 2-plane defined by B = e0 ∧ e1. In six dimensions, however, we have
three different 2-planes defined by the 2-forms B1 = e0∧ e1, B2 = e0∧ e2 and B3 = e1∧ e2

and one 3-plane defined by T = e0 ∧ e1 ∧ e2, let’s see how these are expressed in spinorial
language in a discussion that follows [35].

For a one-dimensional isotropic subspace, we would need only a null vector to fully
describe it, so this space is said to be generated by V µ = ξ[AηB] as described on our section
about null vectors in six dimensions.

For a two dimensional isotropic subspace, we need two null vectors {V µ
1 , V

µ
2 }

satisfying V1µV
µ

1 = V2µV
µ

2 = V1µV
µ

2 = 0 so that Bµν = B[µν] = V
[µ

1 V
ν]

2 . In spinorial
language this would read

Bµν = BABCD = 1
2(ξ[AηB]ξ[CκD] − ξ[CηD]ξ[AκB]), (4.4.1)

but since a anti-symmetric bivector [45] can be expressed by BA
B = 1

4B
AEFGεEFGB where

BA
A = 0, we obtain

BA
B = 1

8ξ
A(εBCDEξCηDκE), (4.4.2)

where we write γB = 1
8εBCDEξ

CηDκE. For a three dimensional isotropic subspace, we
will need three vectors {V µ

1 , V
µ

2 , V
µ

3 } satisfying ViµV µ
j = 0,∀i, j = 1, 2, 3 so that T µνρ =

T [µνρ] = V
[µ

1 V ν
2 V

ρ]
3 . Since the three vector will be equivalent to the pair (TAB, T̄AB) from

Table (2), there will be two ways to achieve this:

1) V µ
1 = ξ[AηB], V µ

2 = ξ[AκB] and V µ
3 = ξ[AχB], where

(TAB, T̄AB) = (ξAξB, 0), (4.4.3)

2) V µ
1 = ξ[AηB], V µ

2 = ξ[AκB] and V µ
3 = η[AκB], where

(TAB, T̄AB) = (0, γAγB), (4.4.4)

and γA = εABCDξ
BηCκD. TABC as determined by (4.4.3) is a self-dual tensor, while (4.4.4)

is an anti self-dual tensor.

4.5 Six-Dimensional Twistors

Here, we discuss a few general facts about twistors in six dimensions in comparison
with the four-dimensional counterpart and its relation to integrability of 3 planes. We
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start by remarking that, as in the four-dimensional case, for a flat spacetime the twistor
equation [46]

∇ABκ
C = π[Aδ

C
B] (4.5.1)

has the solution κA = ψA+xABπB which defines the object we call a twistor Zα = (κA, πB)
with an inner product defined by

ZαWα = κAλA + πBξ
B (4.5.2)

for a twistor Wα = (ξB, λA), in complete analogy with the four dimensional case.

Now, as we saw last section, the subspace generated by the 3 vector Tabc = T[abc],
which is completely determined by the pair (TAB, T̃AB), is an self-dual isotropic 3-plane
when T̃AB = 0 and TAB = κAκB. From the Frobenius’ theorem, this will determine an
integrable distribution if:

∇ABT
AB = ∇ABκ

AκC = 0⇒ κA∇ABκ
C = −κC∇ABκ

A, (4.5.3)

which can be solved by the six-dimensional twistor equation (4.5.1) for πAκA = 0, as can
be seen from

κA∇ABκ
C = κAπ[Aδ

C
B] = −1

2κ
CπB = −κC∇ABκ

A. (4.5.4)

Now, the Ricci identity (4.1.19) gives an integrability condition for κA:

(∇AB∇CD −∇CD∇AB)κE = RABCDF
EκF , (4.5.5)

and, by contracting with εBCDG, we get

εBCDG(∇AB∇CD −∇CD∇AB)κE = RAF
GEκF (4.5.6)

where, as we defined previously, RAB
CD = εFGHCRAFGHB

D. Now, by using that (4.5.1),
we have

εBCDG(∇ABπ[Cδ
E
D] −∇CDπ[Aδ

E
B]) =

= εBCEG

2 ∇ABπC −
εBEDG

2 ∇ABπD −
εECDG

2 ∇CDπA + εBCDG

2 δEA∇CDπB
, (4.5.7)

which leads to

εBCEG∇ABπC − εBEDG∇ABπD − εECDG∇CDπA + εBCDGδEA∇CDπB = 2RAF
GEκF . (4.5.8)

Now, by contracting A and E, we will have RAF
GA on the right side, which by (4.1.21) we

know to be

εBCAG∇ABπC − εBADG∇ABπD − εACDG∇CDπA + 4εBCDG∇CDπB = −30ΛδGF κF , (4.5.9)

which, by assigning the right letters to the summed indices, we get:

εABCD∇ABπC = −6ΛκD. (4.5.10)
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The anti-symmetric part of the left hand side gives us

∇ABπC = −ΛεABCDκD. (4.5.11)

which we can contract it with εABEF , we obtain

∇ABπC = −4Λδ[A
C κ

B]. (4.5.12)

Now, by taking the symmetric traceless part of the EG indexes in (4.5.8) we get an
algebraic condition on the Weyl spinor

ΨAF
EGκF = 0, (4.5.13)

and by doing an analogous analysis to πC and using (4.5.12), we obtain the similar
condition

ΨAF
EGπG = 0. (4.5.14)

With a more unifying view, we see the Weyl spinor ΨAB
CD as an operator that has the

twistor Zα = (κA, πC) as an eigenvector with zero eigenvalue. Spinors with the properties
(4.5.13) and (4.5.14) are called principal spinors.

4.6 Symmetries and Quaternions

As seen, the Kerr Theorem defines an integrable 3-plane generated by the spinors
{κA, ζB}. Since our study of integrability is concerned with the 3-plane, we can ask ourselves
what is the set of transformations that leave the plane invariant, and that would be

κA → ακA + βζ̄A, ζB → αζB + βκ̄B. (4.6.1)

Since a linear transformation on the generators of the plane defines the same plane. This
transformation can be understood in terms of quaternions, so lets first review the properties
of its algebra H. A quaternion [47] q ∈ H is a set of four real numbers {q0, q1, q2, q3} written
in the form

q = q0 + q1i+ q2j + q3k, (4.6.2)

where {i, j, k} are Hamilton’s imaginary numbers that obey

i2 = j2 = k2 = ijk = −1. (4.6.3)

Now, a set of four complex numbers {z1, z2, z3, z4}, we can embed them into a pair a
quaternions by doing

(z1, z2, z3, z4)→ (z1 + jz2, z3 + jz4) (4.6.4)

which is a quaternion since zi = z′i + iz′′i , where {z′i, z′′i } ∈ R, so

(z1 + jz2, z3 + jz4) = (z′1 + iz′′1 + jz′2 − kz′′2 , z′3 + iz′′3 + jz′4 − kz′′4 ) (4.6.5)
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so indeed we have (z1 + jz2, z3 + jz4) = (a, b) where {a, b} ∈ H. This allows us to see
symmetry (4.6.1) as a right multiplication by a quaternion q = α + βj on the spinors
(κA, ζB), so that κA

ζB

 =
ακA + βζ̄A

αζB + βκ̄B

 . (4.6.6)

So, in six dimensions an integrable 3-plane corresponds to multiple spinors related to each
other by (4.6.6) through the choice a quaternionic line. This means that the Kerr theorem
defines a function F on HP1, the one dimensional quaternionic projective space [48].

4.7 The Kerr-Schild Class of Solutions

An important family of spaces satisfying the Kerr theorem, and consequently
allowing for a principal spinor, is given by the Kerr-Schild spaces, defined by the metric

gab = ḡab − 2Skakb, (4.7.1)

where ḡab is a maximally symmetric, S is a function of the coordinates satisfying DS =
ka∇aS = 0 and ka is a geodesic, shear-free null vector field with respect to ḡab. Those
informations are actually not stated beforehand, but obtained through the field equations
[49, 50]. Now, defining the covariant derivatives associated with each metric ∇agbc =
∇̄aḡbc = 0, their relation is given by the relative connection Cc

ab between the derivatives
defined as

(∇̄a −∇a)ωb = Cc
abωc (4.7.2)

and given by [40]
Cc
ab = 1

2g
cd(∇̄agbd + ∇̄bgad − ∇̄dgab), (4.7.3)

which, by inserting the metric (4.7.1) and using the defined properties of S and ka, we get

Cc
ab = (∇̄aS)kckb + (∇̄bS)kcka − (∇̄cS)kakb + 2S(DS)kckakb. (4.7.4)

With that, we use that Ricci identity to compute the relation between the Riemann tensors
of each metric

Rabc
dωd = (∇a∇b −∇b∇a)ωc =

= (∇a(∇̄bωc − Cd
bcωd)−∇b(∇̄aωc − Cd

acωd))

= (R̄abc

d − ∇̄aC
d
bc∇̄bC

d
ac + Ce

acC
d
eb − Ce

bcC
d
ea)ωd

(4.7.5)

where R̄abc

d is maximally symmetric, so:

R̄abcd = R̄

30(gacgbd − gadgbc). (4.7.6)
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So, by lowering ‘d’ on the Riemann tensor, applying the properties, and using (4.7.4), we
get

Rabcd = R̄abcd −
R

15S(k[aḡb]ckd − k[aḡb]dkc)− 2k[a(∇̄b]∇̄cS)kd − 2k[a(∇̄b]∇̄dS)kc. (4.7.7)

Now, the Weyl tensor in 6 dimensions is defined as [39], [2]

Cabcd = Rabcd + 1
4(Radgbc −Racgbd +Rdcgab −Rbdgac) + R

30(gacgbd − gadgbc), (4.7.8)

with that, we compute Cabcdkbkd and obtain

Cabcdk
bkd = Rabcdk

ckd − R

30kakc, (4.7.9)

and from (4.7.7) we see that Rabcdk
bkd = R̄abcdk

bkd = R
30kakc, so

Cabcdk
bkd = 0. (4.7.10)

Now, the Weyl spinor is given by

ΨAE
IJ = C[AB][CD][EF ][GH]ε

BCDIεFGHJ , (4.7.11)

so, in spinorial language, (4.7.10) translates to

ΨAE
IJκ[Aκ̄B]κ[Eκ̄F ] = 0, (4.7.12)

where we wrote kb = κ[Aκ̄B]. If we complete {κA, κ̄B} to a basis such that εABCD =
κ[Aκ̄B(π∗)C(π̄∗)D], then we also have

ΨAE
IJ = ΨAE

IJπ[I π̄B]π[J π̄F ], (4.7.13)

these two equations constrain the Weyl tensor so that ΨAE
IJκE = 0, as we concluded last

section.
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5 CONCLUSIONS

As seen, the study of spinors makes for an important tool in general relativity and
can lead to a variety of techniques that can help us discover new solutions of Einstein’s
field equations or to better analyze existing ones. However, the spinor approach doesn’t
generalize trivially to higher dimensions, and a more careful study of symmetries of the
space considered in terms of representation theory is necessary, so the spinor formulation
of general relativity will have different subtleties in each different dimensions, but besides
that, the Kerr theorem can be generalized to arbitrary even dimensions [51].

The study of integrable planes, both in the four-dimensional and the six-dimensional
case, led us to the concept of a twistor, and its equation was showed to restrict the Weyl
tensor, a property shared by the family of solutions known as Kerr-Schild spaces. This was,
however, a somewhat trivial example which is already well-known in the literature, and we
hope to address other cases in the future. The choice of studying physics in six dimensions
could be seen as kind of arbitrary, but since the latter half of the last century, higher
dimensional physics was shown to be an invaluable laboratory for theoretical physics and,
in particular, the study of integrability in six dimensions is interesting because it can be
applied to lower-dimensional, conformally flat spaces such as AdS5, where it will be seen
as embedded in a higher-dimensional space. An important case is the one where we have
a (4, 2) signature, so the symmetry group is given by SO(4, 2), which can be seen as the
conformal group for four-dimensional Minkowski space, and twistor methods find their
way on applications to the AdS/CFT correspondence [52].

The twistor programme was used by Penrose to describe solutions of wave equations
and of massless fields in twistor space by making use of what we call the Penrose transform
[9], so we want to check if this idea can be used in six dimensions and how it connects to
these lower-dimensional embedded spaces. That being said, we worked in a (5, 1) signature,
but the results could be generalized by working with a complexified space and then taking
the suitable real slices by imposing complex conjugate relations between the coordinates
[38].
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