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ABSTRACT

The lambda calculus is a universal programming language that represents the func-
tions computable from the point of view of the functions as a rule, that allow the evaluation
of a function on any other function. This language can be seen as a theory, with certain
pre-established axioms and inference rules, which can be represented by models. Dana
Scott proposed the first non-trivial model of the extensional lambda calculus, known as
𝐷∞, in order to represent the 𝜆-terms as the typical functions of set theory, where it is
not allowed to evaluate a function about itself. This thesis propose a construction of an
∞-groupoid from any lambda model endowed with a topology. We apply this construc-
tion for the particular case 𝐷∞ and we observe that the Scott topology does not provide
relevant information about of the relation between higher equivalences. This motivates
the search for a new line of research focused on the exploration of 𝜆-models with the
structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g.,
𝛽-equality, 𝜂-equality) to higher proof in 𝜆-calculus.

Keywords: Lambda calculus. Extensional lambda model. Infinity groupoid.



RESUMO

O cálculo lambda é uma linguagem de programação universal que representa as fun-
ções computáveis do ponto de vista das funções como regra, que permitem a avaliação de
uma função em qualquer outra função. Essa linguagem pode ser vista como uma teoria,
com certos axiomas e regras de inferência pré-estabelecidos, que podem ser representados
por modelos. Dana Scott propôs o primeiro modelo não-trivial do cálculo lambda ex-
tensional, conhecido como 𝐷∞, para representar os 𝜆-termos como as funções típicas da
teoria dos conjuntos, onde não é permitido avaliar uma função sobre si mesmo. Esta tese
propõe a construção de um ∞-groupoid a partir de qualquer modelo lambda dotado de
uma topologia. Aplicamos esta construção para o caso particular 𝐷∞ e observamos que
a topologia Scott não fornece informações relevantes sobre a relação entre equivalências
superiores. Isso motiva uma nova linha de pesquisa focada na exploração de 𝜆-modelos
com a estrutura de um ∞-groupoide não trivial para generalizar as provas de conversão
de termos (e.g., 𝛽-igualdade, 𝜂-equalidade) à provas do ordem superior em 𝜆-calculus.

Palavras-chaves: Calculo lambda. Modelo extensional lambda. Groupoide infinito.



LISTA DE ABREVIATURAS E SIGLAS

c.p.o. complete partial order

Caml Categorical Abstract Machine Language

ML Metalanguage

MLTT Martin-Löf Type Theory

SML Standard Metalanguage



LISTA DE SÍMBOLOS

N The numbers natural set

𝐷,𝐷′, 𝑋, 𝑌 Arbitrary sets

𝑎, 𝑏, . . . 𝑥, 𝑦 Members of these sets

𝑓, 𝑔, 𝐹,𝐺, 𝜑, 𝜓 Functions

∈ Belongs

𝜏 Topology

⟨𝐷, 𝜏⟩ Topology space

⊥ The least element in 𝐷

⊑ Partial ordering in 𝐷

⨆︀
𝑋 the least upper bound (supremum) of 𝑋

⟨𝐷,⊑⟩ c.p.o.

(𝐷 → 𝐷′) The the set of all functions from 𝐷 to 𝐷′

D Infinity groupoid generated by space 𝐷

𝜋𝑛(𝐷, 𝑑) The n-group fundamental based in the point 𝑑 in the space 𝐷

𝜋∞(𝐷) The ∞-group fundamental based in the space 𝐷

Π∞(𝐷, 𝑎, 𝑏) The fundamental ∞-groupoid based in the points 𝑎, 𝑏 ∈ 𝐷

Π∞(𝐷) The fundamental ∞-groupoid on topology space 𝐷



.
SUMÁRIO

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 CONTEXTUALIZATION AND MOTIVATION . . . . . . . . . . . . . . . . 11
1.2 RELATED PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 RESEARCH PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 WORK ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 HIGHER GROUPS OF HOMOTOPY . . . . . . . . . . . . . . . . . . . . 14
2.2 STRICT ∞-GROUPOIDS . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 EXTENSIONAL 𝜆-THEORIES AND 𝜆-MODELS . . . . . . . . . . . . . . 22
2.4 THE 𝜆-MODEL SCOTT’S 𝐷∞ . . . . . . . . . . . . . . . . . . . . . . . 27

3 THE EXTENSIONAL 𝜆-MODEL D∞ . . . . . . . . . . . . . . . . . 32
3.1 THE ∞-GROUPOID D∞ GENERATED BY AN ARBITRARY TOPOLO-

GICAL SPACE 𝐷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 HIGHER FUNDAMENTAL GROUPS OF A C.P.O. . . . . . . . . . . . . . 35
3.3 THE 𝜆 MODEL D∞ AND ITS FUNDAMENTAL ∞-GROUPOID . . . . . 37
3.4 INTERPRETATION OF 𝛽-EQUALITY PROOFS IN 𝐷∞ . . . . . . . . . . 39

4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



11

1 INTRODUCTION

In what follows we put in context the research problem in light of the related publications
to the topic of this thesis, together with the objectives and organization of the work.

1.1 CONTEXTUALIZATION AND MOTIVATION

The lambda calculus is a programming language in which the computable functions are
seen as rules instead of sets. Since the origin of Computer Science, lambda calculus has
been widely used, since it constitutes the essence of functional programming languages
Call-by-Value and the languages of the Metalanguage (ML) family, such as Categorical
Abstract Machine Language (Caml), Standard Metalanguage (SML) and Haskell. It is also
of great interest the study of lambda calculus from the point of view of the types, since
it allows the detection of errors without the need to execute a given program. There are
extensions of typed lambda calculus such as Martin-Löf Type Theory (MLTT), also known
as Intuitionistic Type Theory or Intentional Type Theory, where unlike lambda calculus
there are dependent types such as identity type 𝐼𝐴(𝑎, 𝑏), with 𝑎 and 𝑏 terms of a type 𝐴.

Under the so-called Curry-Howard isomorphism, the type 𝐼𝐴(𝑎, 𝑏) represents the pro-
position which says that 𝑎 is equal to 𝑏 in the type 𝐴, and its terms (if these exist) would
be proofs of this equality. If there is a proof 𝑝 of 𝐼𝐴(𝑎, 𝑏), this does not imply that 𝑎 = 𝑏 in
the primitive or extensional sense of equality, since it can happen that 𝑎 and 𝑏 are inten-
tionally equal, but not necessarily extensionally equal. In the other direction, if 𝑎 = 𝑏 this
implies that there is an equal proof of 𝐼𝐴(𝑎, 𝑏). Thus, 𝐼𝐴(𝑎, 𝑏) is a weaker type of equality
than primitive equality, but it can gather more information regarding the multiple proofs
of the equality. The type 𝐼𝐴(𝑎, 𝑏) is known as a propositional equality.

Furthermore, let two proofs of equality 𝑝 and 𝑞 in 𝐼𝐴(𝑎, 𝑏), then we can consider the
type 𝐼𝐼𝐴(𝑎,𝑏)(𝑝, 𝑞), and we can continue iterating indefinitely to obtain an infinite sequence
of higher identity types, which carries an algebraic structure known as ∞-groupoid.

In Homotopy Type Theory (HoTT), the types of MLTT are interpreted as topological
spaces, and proofs of identity 𝑝 of 𝐼𝐴(𝑎, 𝑏) are seen as continuous paths from 𝑎 to 𝑏. The
proofs ℎ of identity proofs in 𝐼𝐼𝐴(𝑎,𝑏)(𝑝, 𝑞) are interpreted as homotopies ℎ from 𝑝 to 𝑞,
and so on, the fundamental ∞-groupoid Π∞𝐴(𝑎, 𝑏) is obtained this way.

Since MLTT is a formalization of typed lambda calculus, it can also carry an algebraic
∞-groupoid structure; if the types are seen, not simply as sets, but as topological spaces,
one has a rich mathematical structure to model complex phenomena such as computations.
Our motivation is to study type-free lambda calculus from a model that allows us to clearly
see the ∞-groupoid structure.
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1.2 RELATED PUBLICATIONS

The system of MLTT with identity types (MARTIN-LÖF, 1975) was originally developed
to give a formalization of proofs of identity statements. By studying the relationship
between two elements of a certain type (i.e., two proofs of a proposition), the relation
of two proofs of identity proofs, and so on, one could have the formal counterpart to
such a hierarchical structure of globular sets. Later (HOFMANN; STREICHER, 1994) comes
up with the idea of using higher order categories for the interpretation of MLTT, and
later on (AWODEY; WARREN, 2009) manages to establish the connection between MLTT
and algebraic topology, in the sense of which types of identity can be interpreted as
equivalence of homotopies. This led (VOEVODSKY, 2010) to formulate the Univalence
Axiom , which gives rise to Homotopy Type Theory (HoTT) (PROGRAM, 2013), where
MLTT is interpreted in an ∞-groupoid (BERG; GARNER, 2011).

Since MLTT is an extension of simply-typed 𝜆-calculus, it can also be seen as an
∞-groupoid in this topological interpretation given by (SCOTT, 1993). Also, for type-free
𝜆-calculus, Dana Scott presented the model 𝐷∞ in order to give an interpretation to 𝜆-
terms into the theory of ordered sets. This model is semantically rich in the sense that
it is an ordered set with a topology. This allows for generating a 𝜆-model D∞ with the
structure of an ∞-groupoid and an operation of composition between cells based on the
operation of path concatenation in the topology of 𝐷∞.

1.3 RESEARCH PROBLEM

From the 𝜆-model Scott’s 𝐷∞, is it possible to generate a 𝜆-model with an ∞-groupoid
structure for some composition operation between cells?.

1.4 OBJECTIVES

Objective of this work is to build the ∞-groupoid D from a topological space 𝐷 through
higher groups homotopy (GREENBERG, 1967; HATCHER, 2001) and thus show how to
calculate all higher groups generated by any complete partial order (c.p.o.), with the
Scott topology (ACOSTA; RUBIO, (2002)). Finally, apply the construction of Chapter 3 for
the particular case of the c.p.o. 𝐷∞ to obtain an ∞-groupoid D∞, and prove that this is
isomorphic to 𝐷∞, which shows that D∞ is indeed an extensional 𝜆-model.

1.5 WORK ORGANIZATION

The remaining sections of this thesis are structured as follows.
2 Preliminaries: introduces definitions, lemmas and basic theorems related to the

problem that are used for the elaboration of this work.
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3 The extensional 𝜆-model D∞: shows the construction of the infinity groupoid
from any topological space, through the use of higher fundamental groups and proves that
the ∞-groupoid generated by 𝐷∞ is also an extensional 𝜆-model.

4 Conclusions: presents the final considerations on the main topics covered in this
thesis, including the contributions achieved and indications of future work.
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2 PRELIMINARIES

In this section we present some basic notions about infinite-groupoids, topological spaces,
continuity, higher fundamental groups and extensional lambda models, to set up the
groundwork for this thesis. All the proofs of results can be seen in the suggested references.

2.1 HIGHER GROUPS OF HOMOTOPY

Below we present the definition of topological space, continuity, group, higher group with
some useful results.

Definition 2.1.1 (Topological space). Let 𝐷 be a set. A topology 𝜏 is a collection of
subsets of 𝐷, which satisfies the following axioms

1. ∅, 𝐷 ∈ 𝜏

2. ⋂︀
𝜇 ∈ 𝜏 , for all finite sub-collection 𝜇 of 𝜏 ,

3. ⋃︀
𝜇 ∈ 𝜏 , for all sub-collection 𝜇 of 𝜏 ,

The ordered par (𝐷, 𝜏) is called topological space, and each set 𝐴 ∈ 𝜏 we say it is an open
of 𝜏 .

Definition 2.1.2 (Continuous map). Let (𝐷, 𝜏) and (𝐷′, 𝜏 ′) be topological spaces. A
map 𝑓 : (𝐷, 𝜏)→ (𝐷′, 𝜏 ′) is continuous if for every it 𝐴 ∈ 𝜏 ′ satisfies 𝑓−1(𝐴) ∈ 𝜏 , where
𝑓−1(𝐴) := {𝑑 ∈ 𝐷 : 𝑓(𝑑) ∈ 𝐴}.

The pair (𝐷, 𝜏) will be called simply 𝐷.

Example 2.1.1 (Euclidean topology). The usual topology on R is defined by: 𝐴 is
open if it is the union of open intervals.

Example 2.1.2 (Inherited topology). Take R with the usual topology. The topology
inherited by R to interval [0, 1], is defined as the collection of all intersections 𝐴 ∩ [0, 1],
such that 𝐴 is a usual open in R.

Example 2.1.3 (Quotient topology). Let (𝑋, 𝜏) be a topological space, 𝑌 a set and
𝑓 : 𝑋 → 𝑌 a surjective function. The quotient topology on 𝑌 is a collection

𝜏 𝑓𝑌 = {𝑉 ⊆ 𝑌 : 𝑓−1(𝑉 ) ∈ 𝜏}.

Example 2.1.4 (Box topology). Take [0, 1] with the topology inherited by R. The box
topology on [0, 1]𝑛 is defined as the collection of all Cartesian products 𝐴1 ×𝐴2 · · · ×𝐴𝑛,
such that 𝐴𝑖 is open in [0, 1] for each 1 ≤ 𝑖 ≤ 𝑛.
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Definition 2.1.3 (Compact space). A topological space 𝐷 is compact if, for any family
of opens 𝒞 such that 𝐷 ⊆ ⋃︀ 𝒞, there is a finite subfamily ℱ ⊆ 𝒞 such that 𝐷 ⊆ ⋃︀ℱ .

Example 2.1.5 (Compact in R). For each 𝑛 ≥ 1. [0, 1]𝑛 is a compact subspace of R.

Example 2.1.6 (Open compact topology). Given a topological space 𝐷. Let 𝐶([0, 1]𝑛, 𝐷)
the set of all continuous functions from [0, 1]𝑛 to 𝐷. Define the open compact topology on
𝐶([0, 1]𝑛, 𝐷) as the collection of all unions and finite intersections of sets

𝑆(𝐾,𝑈) = {𝑓 ∈ 𝐶([0, 1]𝑛, 𝐷) : 𝑓(𝐾) ⊆ 𝑈},

where 𝐾 is a compact subspace of [0, 1]𝑛 and 𝑈 an open of 𝐷.

We write 𝐶𝑜.𝑝([0, 1]𝑛, 𝐷) to emphasize that the set 𝐶([0, 1]𝑛, 𝐷) has the open compact
topology.

Remark 2.1.1. Let 𝐷 be a topological space. A map ℎ : [0, 1]× [0, 1]𝑛 → 𝐷 is continuous
iff the function 𝐻 : [0, 1] → 𝐶𝑜.𝑝([0, 1]𝑛, 𝐷) is continuous, where 𝐻(𝑡) := ℎ𝑡 and ℎ𝑡(𝑠) =
ℎ(𝑡, 𝑠) with 𝑡 ∈ [0, 1] and 𝑠 ∈ [0, 1]𝑛.

Definition 2.1.4 (Continuous path). Let 𝐷 be a topological space and interval [0, 1]
with the inherited topology by R. Define a path 𝑓 from point 𝑎 ∈ 𝐷 to point 𝑏 ∈ 𝐷, written
as 𝑓 : 𝑎 𝑏, as the continuous map 𝑓 : [0, 1]→ 𝐷 such that 𝑓(0) = 𝑎 and 𝑓(1) = 𝑏.

and define the product between paths 𝑓 : 𝑎 𝑏 and 𝑔 : 𝑏 𝑐, as the path

𝑓 * 𝑔 :=

⎧⎪⎨⎪⎩𝑓(2𝑡) if 0 ≤ 𝑡 ≤ 1
2 ,

𝑔(2𝑡− 1) if 1
2 ≤ 𝑡 ≤ 1.

Definition 2.1.5 (Homotopy between paths). Let 𝑓 : 𝑎  𝑏 and 𝑔 : 𝑎  𝑏 be paths
on space 𝐷. The paths 𝑓 and 𝑔 are homotopies, 𝑓 ≃ 𝑔, if there is a map continuous
ℎ : [0, 1]× [0, 1]→ 𝐷 such that

(a ) ℎ(𝑡, 0) = 𝑎 and ℎ(𝑡, 1) = 𝑏, for all 𝑡 ∈ [0, 1],

(b ) ℎ(0; 𝑡) = 𝑓(𝑡) and ℎ(1; 𝑡) = 𝑔(𝑡), for all 𝑡 ∈ [0, 1],

where [0, 1]× [0, 1] = [0, 1]2 has the box topology (see Figure 1).

The homotopy is a relation of equivalence, where [𝑓 ] is homotopy class of 𝑓 , i.e, the
class of all the homotopy paths with 𝑓 . The set of all homotopy classes, indicated by
Π1(𝐷), it is known as fundamental 1-groupoid, where the product between classes is
defined naturally by [𝑓 ] * [𝑔] := [𝑓 * 𝑔]. A groupoid is category where the morphisms are
isomorphism.

By the Remark 2.1.1, the homotopy ℎ can be interpreted as ℎ : 𝑓  𝑔 into open com-
pact topology 𝐶𝑜.𝑐([0, 1], 𝐷). Thus, if we have two homotopies ℎ1 : 𝑓  𝑔 and ℎ2 : 𝑓  𝑔,
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we can talk about the homotopy of homotopies ℎ : ℎ1  ℎ2 into space 𝐶𝑜.𝑐([0, 1]2, 𝐷). This
homotopy of homotopies is an equivalence relation that generates the class of homotopy
classes Π2(𝐷), known as the fundamental 2-groupoid.

We can keep iterating and get the infinite sequence of fundamental groupoids Π1(𝐷),
Π2(𝐷), Π3(𝐷), . . ., known as the fundamental∞-groupoid, written as Π∞(𝐷). If we have
two 𝑛-paths 𝑓 and 𝑔 such that [𝑓 ] = [𝑔], so this fact induces an intentional equality relation
=ℎ between the 𝑛-paths 𝑓 and 𝑔, i.e., 𝑓 =ℎ 𝑔 and we say 𝑓 and 𝑔 are homotopically
equivalent.

Figura 1 – Homotopy ℎ : [0, 1]× [0, 1]→ 𝐷

∙
𝑎

∙
𝑏

⊂ 𝐷

𝐼2

𝑓
ℎ(𝑡1, 1)

𝑔

ℎ(𝑡1, 0)

Sink: The author (2020)

Let us now generalize the notion of a continuous path from point 𝑎 to point 𝑏, to
𝑛-paths based on points 𝑎 and 𝑏 in any space 𝐷.

Notation 2.1.1. Take a map 𝑝 : [0, 1]𝑛 → 𝐷. Write 𝑝[ 𝑠𝑟] : [0, 1]𝑛−1 → 𝐷 for the map
such that

𝑝[𝑠𝑟](𝑡1, . . . , 𝑡𝑟−1, 𝑡𝑟+1, . . . , 𝑡𝑛) := 𝑝(𝑡1, . . . , 𝑠𝑟, . . . , 𝑡𝑛),

(𝑝[𝑠𝑟])[𝑘𝑠] := 𝑝[𝑠𝑟, 𝑘𝑠],

and for a fixed 𝑎 ∈ [0, 1], write 𝑝[𝑡𝑟 = 𝑎] : [0, 1]𝑛−1 → 𝐷 for the map such that

𝑝[𝑡𝑟 = 𝑎](𝑡1, . . . , 𝑡𝑟−1, 𝑡𝑟+1, . . . , 𝑡𝑛) := 𝑝(𝑡1, . . . , 𝑡𝑟−1, 𝑎, 𝑡𝑟+1, . . . , 𝑡𝑛),

(𝑝[𝑡𝑟 = 𝑎])[𝑡𝑠 = 𝑏] := 𝑝[𝑡𝑟 = 𝑎, 𝑡𝑠 = 𝑏].
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Definition 2.1.6 (n-path). Let 𝐷 be a topological space. For each 𝑛 ∈ N, define an
𝑛-path based in the points 𝑎, 𝑏 ∈ 𝐷 as continuous function 𝑝 : [0, 1]𝑛 → 𝐷 such that

𝑝[𝑡𝑛 = 0](𝑡1, . . . , 𝑡𝑛−1) = 𝑎 and 𝑝[𝑡𝑛 = 1](𝑡1, . . . , 𝑡𝑛−1) = 𝑏,

for each 𝑡1, . . . , 𝑡𝑛−1 ∈ [0, 1].

• For each 𝑟 < 𝑛, define the product *𝑟 of 𝑛-paths 𝑝 and 𝑞 as

1. if 𝑝[𝑡1 = 1] = 𝑞[𝑡1 = 0], define the n-path

(𝑝 *𝑛−1 𝑞)(𝑡1, . . . , 𝑡𝑛) :=

⎧⎪⎨⎪⎩𝑝(2𝑡1, 𝑡2, . . . , 𝑡𝑛) if 0 ≤ 𝑡1 ≤ 1
2 ,

𝑞(2𝑡1 − 1, 𝑡2, . . . , 𝑡𝑛) if 1
2 ≤ 𝑡1 ≤ 1.

2. if 𝑟 < 𝑛− 1 and 𝑝[𝑡1 = 1, . . . , 𝑡(𝑛−1)−𝑟 = 1] = 𝑞[𝑡1 = 0, . . . , 𝑡(𝑛−1)−𝑟 = 0], define
the n-path 𝑝 *𝑟 𝑞 such that

(𝑝 *𝑟 𝑞)[𝑡1, . . . , 𝑡(𝑛−1)−𝑟] := 𝑝[𝑡1, . . . , 𝑡(𝑛−1)−𝑟] *𝑟 𝑞[𝑡1, . . . , 𝑡(𝑛−1)−𝑟].

• For each n-path 𝑝, define the identity (n+1)-path as the constant path 𝑐(𝑝) : [0, 1]𝑛+1 →
𝐷 such that (𝑐(𝑝))[𝑡1] = 𝑝 for all 𝑡1 ∈ [0, 1].

We have that each (n+1)-path is an equivalence relation between two n-paths, since
(n+1)-path 𝑝 : [0, 1]𝑛+1 → 𝐷 can be seen as a continuous path from 𝑛-path 𝑝[𝑡1 = 0] to the
𝑛-path 𝑝[𝑡1 = 1] into space 𝐶𝑜.𝑐([0, 1]𝑛, 𝐷) (open compact topology), i.e., as the continuous
function 𝑃 : [0, 1] −→ 𝐶𝑜.𝑐([0, 1]𝑛, 𝐷) such 𝑃 (0) = 𝑝[𝑡1 = 0] and 𝑃 (1) = 𝑝[𝑡1 = 1].

Thus, the set of all equivalence classes on the set of 𝑛-paths along with the product of
𝑛-paths, it generates a groupoid; where the product between classes is defined naturally
by [𝑝] *𝑟 [𝑞] := [𝑝 *𝑟 𝑞], which satisfies [𝑐𝑛−𝑟(𝑝[𝑡1 = 0, . . . , 𝑡𝑛−𝑟 = 0])] *𝑟 [𝑝] = [𝑝] and
[𝑝] *𝑟 [𝑐𝑛−𝑟(𝑝[𝑡1 = 1, . . . , 𝑡𝑛−𝑟 = 1])] = [𝑝], and for each 𝑛-path 𝑝 there is a 𝑝 such that
𝑝[𝑡1, . . . , 𝑡𝑛−𝑟] = 𝑝[1 − 𝑡1, . . . , 1 − 𝑡𝑛−𝑟], for which it holds that [𝑝] *𝑟 [𝑝] = [𝑐𝑛−𝑟(𝑝[𝑡1 =
0, . . . , 𝑡𝑛−𝑟 = 0])] and [𝑝] *𝑟 [𝑝] = [𝑐𝑛−𝑟(𝑝[𝑡1 = 1, . . . , 𝑡𝑛−𝑟 = 1])].

Let 𝑝 and 𝑞 be n-paths. If [𝑝] = [𝑞], we write 𝑝 =ℎ 𝑞 and we say 𝑝 and 𝑞 are equivalent
higher homotopies. Write Π𝑛(𝐷, 𝑎, 𝑏) for the set of 𝑛-paths based at 𝑎, 𝑏 ∈ 𝐷 governed by
intensional equality =ℎ. In the literature the infinite sequence

Π0(𝐷, 𝑎, 𝑏),Π1(𝐷, 𝑎, 𝑏),Π3(𝐷, 𝑎, 𝑏), . . . ,Π𝑛(𝐷, 𝑎, 𝑏), . . .

is known as the fundamental ∞-groupoid based at 𝑎, 𝑏 ∈ 𝐷, and Π∞(𝐷) is simply the
fundamental ∞-groupoid for any 𝑎, 𝑏 ∈ 𝐷.

Example 2.1.7. For 𝑛 = 2, any 2-path 𝑝 would be homotopy between paths (1-paths)
𝑝[𝑡1 = 0] and 𝑝[𝑡1 = 1] as in the Figure 2. The 𝑟-product between the 2-paths 𝑝 and 𝑞 is
given according to the cases:
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Figura 2 – 2-path (homotopy) 𝑝 : [0, 1]2 → 𝐷

∙
𝑎

∙
𝑏

⊂ 𝐷

𝐼2

𝑝[𝑡1 = 0] 𝑝[𝑡2 = 1]

𝑝[𝑡1 = 1]

𝑝[𝑡2 = 0]

Sink: The author (2020)

1. If 𝑝[𝑡1 = 1] = 𝑞[𝑡1 = 0], the 1-product is

(𝑝 *1 𝑞)(𝑡1, 𝑡2) :=

⎧⎪⎨⎪⎩𝑝(2𝑡1, 𝑡2) if 0 ≤ 𝑡1 ≤ 1
2 ,

𝑞(2𝑡1 − 1, 𝑡2) if 1
2 ≤ 𝑡1 ≤ 1.

so (𝑝 *1 𝑞)[𝑡1 = 0] = 𝑝[𝑡1 = 0] and (𝑝 *1 𝑞)[𝑡1 = 1] = 𝑞[𝑡1 = 1], i.e., (𝑝 *1 𝑞) is a
homotopy from path 𝑝[𝑡1 = 0] to path 𝑞[𝑡1 = 1] as seen in Figure 3.

Figura 3 – The product 𝑝 *1 𝑞

𝑎 𝑏

𝑝

𝑞

Sink: The author (2020)

2. If 𝑝[𝑡2 = 1] = 𝑞[𝑡2 = 0], the 0-product is given by

(𝑝 *0 𝑞)(𝑡1, 𝑡2) := (𝑝[𝑡1] *0 𝑞[𝑡1])(𝑡2) :=

⎧⎪⎨⎪⎩𝑝[𝑡1](2𝑡2) if 0 ≤ 𝑡2 ≤ 1
2 ,

𝑞[𝑡1](2𝑡2 − 1) if 1
2 ≤ 𝑡2 ≤ 1.

then (𝑝*0𝑞)[𝑡1 = 0] = 𝑝[𝑡1 = 0]*0𝑞[𝑡1 = 0] and (𝑝*0𝑞)[𝑡1 = 1] = 𝑝[𝑡1 = 1]*0𝑞[𝑡1 = 1],
i.e., (𝑝*0𝑞) is a homotopy from path 𝑝[𝑡1 = 0]*0 𝑞[𝑡1 = 0] to path 𝑝[𝑡1 = 1]*0 𝑞[𝑡1 = 1]
as in Figure 4.
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Figura 4 – The product 𝑝 *0 𝑞

𝑎 𝑏 𝑐𝑝 𝑞

Sink: The author (2020)

Next we define closed 𝑛-paths based at some 𝑑0 ∈ 𝐷, with the purpose of building the
fundamental 𝑛-group 𝜋𝑛(𝐷, 𝑑0).

Definition 2.1.7 (Closed 𝑛-path). Let 𝐷 be a topological space. An 𝑛-path based on
𝑑0 ∈ 𝐷 is a continuous map 𝜎 : [0, 1]𝑛 → 𝐷 which sends border of [0, 1]𝑛 to 𝑑0.

It defines the product of closed 𝑛-paths, 𝛼 * 𝛽 = 𝛾, as the 𝑛-path

𝛾(𝑡1, . . . , 𝑡𝑛) =

⎧⎪⎨⎪⎩𝛼(2𝑡1, 𝑡2, . . . , 𝑡𝑛) if 0 ≤ 𝑡1 ≤ 1
2 ,

𝛽(2𝑡1 − 1, 𝑡2, . . . , 𝑡𝑛) if 1
2 ≤ 𝑡1 ≤ 1.

Definition 2.1.8 (Homotopic 𝑛-paths). Two 𝑛-paths 𝛼, 𝛽 are homotopic in 𝑑0, 𝛼 ≃ 𝛽,
if there exists a continuous map 𝐻 : [0, 1]× [0, 1]𝑛 → 𝐷, such that

(a ) 𝐻(0; 𝑡1, . . . , 𝑡𝑛) = 𝛼(𝑡1, . . . , 𝑡𝑛), for (𝑡1, . . . , 𝑡𝑛) ∈ [0, 1]𝑛,

(b ) 𝐻(1; 𝑡1, . . . , 𝑡𝑛) = 𝛽(𝑡1, . . . , 𝑡𝑛), for (𝑡1, . . . , 𝑡𝑛) ∈ [0, 1]𝑛,

(c ) 𝐻(𝑠; 𝑡1, . . . , 𝑡𝑛) = 𝑑0, for each 𝑠 ∈ [0, 1] and each (𝑡1, . . . , 𝑡𝑛) ∈ 𝜕([0, 1]𝑛).

This homotopy is an equivalence relation, and one writes [𝜎] for the class of homotopic
𝑛-paths to the 𝑛-path 𝜎. The set of all homotopy classes is denoted by 𝜋𝑛(𝐷, 𝑑0), where
the product between classes is defined in the natural way [𝛼] * [𝛽] := [𝛼 * 𝛽].

Definition 2.1.9 (Group). A group is an ordered pair (𝐺, *), where 𝐺 is a set and
* : 𝐺×𝐺→ 𝐺 is a binary operation, which satisfies the following axioms

1. (𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦) (𝑎 * 𝑏) * 𝑐 = 𝑎 * (𝑏 * 𝑐) for each 𝑎, 𝑏, 𝑐 ∈ 𝐺,

2. (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡) there exits an element 𝑒 ∈ 𝐺, such that 𝑎 * 𝑒 = 𝑒 * 𝑎 = 𝑎 for all
𝑎 ∈ 𝐺,

3. (𝑖𝑛𝑣𝑒𝑟𝑠𝑒) there is an element 𝑎̄ ∈ 𝐺 for each 𝑎 ∈ 𝐺, such that 𝑎 * 𝑎̄ = 𝑎̄ * 𝑎 = 𝑒.

Theorem 2.1.1. 𝜋𝑛(𝐷, 𝑑0) is a group, called the fundamental group of 𝐷 on 𝑑0 of di-
mension 𝑛.

The identity element of the group 𝜋𝑛(𝐷, 𝑑0) is the homotopy class of the constant
𝑛-path 𝑐𝑛(𝑑0) : [0, 1]𝑛 → 𝐷, i.e., 𝑐𝑛(𝑑0)(𝑡1, . . . , 𝑡𝑛) = 𝑑0 for all 𝑡1, . . . , 𝑡𝑛 in [0, 1].
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Definition 2.1.10 (Homotopic functions). Let 𝐷 be a topological space. Two conti-
nuous functions 𝑓, 𝑔 : 𝐷 → 𝐷 are homotopic, 𝑓 ≃ 𝑔, if there exists a continuous map
𝐻 : 𝐷 × [0, 1] → 𝐷 such that 𝐻(𝑑, 0) = 𝑓(𝑑) and 𝐻(𝑑, 1) = 𝑔(𝑑) for all 𝑑 ∈ 𝐷. 𝐻 is
called a homotopy between continuous functions.

Definition 2.1.11 (Contractible space). A topological space 𝐷 is said to be contractible
if there exists a constant function 𝑓𝑐 : 𝐷 → 𝐷, 𝑓𝑐(𝑑) = 𝑐 for each 𝑑 ∈ 𝐷, homotopic to
the identity function 𝐼𝐷 : 𝐷 → 𝐷. The homotopy 𝐻 : 𝑓𝑐 ≃ 𝐼𝐷 is called a contraction.

Theorem 2.1.2. If 𝐷 is contractible, then 𝜋𝑛(𝐷, 𝑑0) = {[𝑐𝑛(𝑑0)]} for each 𝑛 ≥ 0.

Remark 2.1.2. Let 𝐷 be contractible. For each 𝑡1, . . . , 𝑡𝑛 ∈ [0, 1] we have

𝑐𝑛(𝑑0)(𝑡1, 𝑡2, . . . , 𝑡𝑛) = 𝑒𝑛(𝑡1)(𝑡2) · · · (𝑡𝑛) = 𝑑0,

where 𝑒𝑛 : [0, 1]→ Π𝑛−1(𝐷, 𝑑0) is the constant path in 𝑒𝑛−1 defined by

𝑒0 = 𝑑0,

𝑒𝑛 = 𝑐𝑒𝑛−1 ,

then 𝜋𝑛(𝐷, 𝑑) ∼= {𝑒𝑛} (group isomorphisms).

2.2 STRICT ∞-GROUPOIDS

In the literature we can find two types of ∞-groupoids: strict and weak ∞-groupoids
(LEINSTER, 2003). For this thesis we shall only work with the first type. It is well known
that every strict ∞-groupoid is weak. It is usual to call a weak ∞-groupoid just ∞-
groupoid.

Definition 2.2.1 (∞-globular set). An ∞-globular set 𝐷 is a diagram

· · ·⇒𝑠
𝑡 𝐷𝑛 ⇒

𝑠
𝑡 𝐷𝑛−1 ⇒

𝑠
𝑡 · · ·⇒𝑠

𝑡 𝐷1 ⇒
𝑠
𝑡 𝐷0,

of sets and functions such that

𝑠(𝑠(𝑑)) = 𝑠(𝑡(𝑑)), 𝑡(𝑠(𝑑)) = 𝑡(𝑡(𝑑)),

for all 𝑛 ≥ 2 and 𝑑 ∈ 𝐷𝑛.

Definition 2.2.2. Let 𝐷 be a globular set and 𝑛 ∈ N. For each 0 ≤ 𝑝 < 𝑛 define the
relation into 𝐷𝑛 ×𝐷𝑛 as the set

𝐷𝑛 ×𝐷𝑝 𝐷𝑛 = {(𝑑′, 𝑑) ∈ 𝐷𝑛 ×𝐷𝑛 : 𝑡𝑛−𝑝(𝑑) = 𝑠𝑛−𝑝(𝑑′)}.

Definition 2.2.3 (strict ∞-groupoid). Let 𝑛 ≥ 2 be a natural number. A strict ∞-
groupoid is an ∞-globular set 𝐷 equipped with
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• a function ∘𝑝 : 𝐷𝑛 ×𝐷𝑝 𝐷𝑛 → 𝐷𝑛 for each 0 ≤ 𝑝 < 𝑛, where ∘𝑝(𝑑′, 𝑑) := 𝑑′ ∘ 𝑑 and
call it a composite of 𝑑′ and 𝑑,

• a function 𝑖 : 𝐷𝑛 → 𝐷𝑛+1 for each 𝑛 ≥ 0, where 𝑖(𝑑) := 1𝑑 and call it the identity
on 𝑑,

satisfying the following axioms:

(a ) (sources and targets of composites) if 0 ≤ 𝑝 < 𝑛 and (𝑑′, 𝑑) ∈ 𝐷𝑛 ×𝐷𝑝 𝐷𝑛 then

𝑠(𝑑′ ∘𝑝 𝑑) = 𝑠(𝑑) 𝑎𝑛𝑑 𝑡(𝑑′ ∘𝑝 𝑑) = 𝑡(𝑑′) 𝑖𝑓 𝑝 = 𝑛− 1,

𝑠(𝑑′ ∘𝑝 𝑑) = 𝑠(𝑑′) ∘𝑝 𝑠(𝑑) 𝑎𝑛𝑑 𝑡(𝑑′ ∘ 𝑑) = 𝑡(𝑑′) ∘𝑝 𝑡(𝑑) 𝑖𝑓 𝑝 ≤ 𝑛− 2,

(b ) (sources and targets of identities) if 0 ≤ 𝑝 < 𝑛 and 𝑑 ∈ 𝐷𝑛 then 𝑠(1𝑑) = 𝑑 = 𝑡(1𝑑),

(c ) (associativity) if 0 ≤ 𝑝 < 𝑛 and 𝑑, 𝑑′, 𝑑′′ ∈ 𝐷𝑛 with (𝑑′′, 𝑑′), (𝑑′, 𝑑) ∈ 𝐷𝑛×𝐷𝑝 𝐷𝑛 then

(𝑑′′ ∘𝑝 𝑑′) ∘𝑝 𝑑 = 𝑑′′ ∘𝑝 (𝑑′ ∘𝑝 𝑑),

(d ) (identities) if 0 ≤ 𝑝 < 𝑛 and 𝑑 ∈ 𝐷𝑛 then

𝑖𝑛−𝑝(𝑡𝑛−𝑝(𝑑)) ∘𝑝 𝑑 = 𝑑 = 𝑑 ∘𝑝 𝑖𝑛−𝑝(𝑠𝑛−𝑝(𝑑)),

(e ) (binary interchange) if 0 ≤ 𝑞 < 𝑝 < 𝑛 and 𝑑, 𝑑′, 𝑒, 𝑒′ ∈ 𝐷𝑛 ×𝐷𝑞 𝐷𝑛 with

(𝑒′, 𝑒), (𝑑′, 𝑑) ∈ 𝐷𝑛 ×𝐷𝑝 𝐷𝑛, (𝑒′, 𝑑′), (𝑒, 𝑑) ∈ 𝐷𝑛 ×𝐷𝑞 𝐷𝑛,

then
(𝑒′ ∘𝑝 𝑒) ∘𝑞 (𝑑′ ∘𝑝 𝑑) = (𝑒′ ∘𝑞 𝑑′) ∘𝑝 (𝑒 ∘𝑞 𝑑),

(f ) (nullary interchange) if 0 ≤ 𝑞 < 𝑝 < 𝑛 and 𝑑, 𝑑′ ∈ 𝐷𝑝×𝐷𝑞 𝐷𝑝, then 1𝑑′ ∘𝑞 1𝑑 = 1𝑑′∘𝑞𝑑.

(g ) (inverse) if 0 ≤ 𝑝 < 𝑛 and 𝑑 ∈ 𝐷𝑛 then exist 𝑑 ∈ 𝐷𝑛 with 𝑠𝑛−𝑝(𝑑) = 𝑡𝑛−𝑝(𝑑),
𝑡𝑛−𝑝(𝑑) = 𝑠𝑛−𝑝(𝑑) such that

𝑑 ∘𝑝 𝑑 = 𝑖𝑛−𝑝(𝑠𝑛−𝑝(𝑑)), 𝑑 ∘𝑝 𝑑 = 𝑖𝑛−𝑝(𝑡𝑛−𝑝(𝑑)).

If 𝑑 ∈ 𝐷𝑛, we say that 𝑑 is an n-cell or an 𝑛-isomorphism from some 𝑎 ∈ 𝐷𝑛−1 to
some 𝑏 ∈ 𝐷𝑛−1. Or, in other words, we say that 𝑎 and 𝑏 are n-equivalent if there is an
𝑛-isomorphism between 𝑎 and 𝑏.

For example in the fundamental ∞-groupoid Π∞(𝐷), the 𝑛-isomorphisms are the
𝑛-paths class [𝑓 ] in Π𝑛(𝐷). Even thought the n-paths 𝑓 : 𝑎  𝑏 may not satisfy the
properties of a strict ∞-groupoid, the 𝑛-paths class [𝑓 ] does satisfy them. Thus Π∞(𝐷)
is not a strict ∞-groupoid strict, but it is a weak ∞-groupoid.
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Notation 2.2.1. Write (𝑎 ≃𝑛 𝑏) the set of all 𝑛-isomorphisms between 𝑎 and 𝑏. Note that
this set can be empty.

Since ≃𝑛 is an equivalence relation and the set (𝑎 ≃𝑛 𝑏) can have cardinality greater
than one, we can see ≃𝑛 as an intensional equality =𝑛, i.e., the equivalence 𝑎 ≃𝑛 𝑏 can
be seen as the intensional equal 𝑎 =𝑖𝑛𝑡 𝑏, which motivates a more precise definition of
intensional equality between n-cells.

Definition 2.2.4 (Extensional and Intensional equality). Two 𝑛-morphisms 𝑎 and
𝑏 are intentionally equal, 𝑎 =𝑖𝑛𝑡 𝑏, if there is 𝑑 ∈ (𝑎 ≃𝑛 𝑏). Two 𝑛-morphisms 𝑎 and 𝑏 are
extensionally equal if 𝑎 = 𝑏 in the primitive sense of equality.

Note that if 𝑎 = 𝑏 then 𝑎 =𝑖𝑛𝑡 𝑏, since 1𝑎 ∈ (𝑎 ≃𝑛 𝑏). The converse does not always
hold. For example, for the fundamental groupoid Π1{0, 1}, where {0, 1} has the topology
{{0, 1}, ∅}, we have that 0 =𝑖𝑛𝑡 1, but 0 ̸= 1.

2.3 EXTENSIONAL 𝜆-THEORIES AND 𝜆-MODELS

Next we present a brief introduction to the theories and extensional lambda models. The
proofs of the theorems can be consulted in (HINDLEY; SELDIN, 2008).

Definition 2.3.1 (𝜆-terms). Suppose that there is an infinite sequence of expressions
called variables, and a sequence of expressions called atomic constants, different form the
variables. The set of expressions called 𝜆-terms is defined inductively as follows

(a ) all variables and atomic constants are 𝜆-terms (called atoms);

(b ) if 𝑀 and 𝑁 are any 𝜆-terms, then (𝑀𝑁) is a 𝜆-term (called application);

(c ) if 𝑀 is any 𝜆-term and 𝑥 is any variable, then (𝜆𝑥.𝑀) is 𝜆-term (called an abstraction).

Write 𝐹𝑉 (𝑀) for the set of free variables of 𝑀 i.e. all the variables of 𝑀 that are not
bound by 𝜆, and [𝑁/𝑥]𝑀 the term that results from replacing 𝑥 with 𝑁 into 𝑀 .

Definition 2.3.2 (𝛼-conversion). Let 𝑃 be a 𝜆-term and assume it contains terms of
form 𝜆𝑥.𝑀 . If 𝑦 /∈ 𝐹𝑉 (𝑀) and we replace in 𝑃 any term 𝜆𝑥.𝑀 by 𝜆𝑦.[𝑦/𝑥]𝑀 , and the
result is 𝑄, we say 𝑃 is 𝛼-converts to 𝑄 and we write 𝑃 ≡𝛼 𝑄.

Definition 2.3.3 (𝛽𝜂-contracting). Let 𝑃 a 𝜆-term. If 𝑃 contains a term of form
(𝜆𝑥.𝑀)𝑁 (called 𝛽-redex) or of form 𝜆𝑥.𝑀𝑥 such that 𝑥 /∈ 𝐹𝑉 (𝑀) (called 𝜂-redex)
and we replace in 𝑃 the term (𝜆𝑥.𝑀)𝑁 by [𝑁/𝑥]𝑀 (𝛽-contracts) or 𝜆𝑥.𝑀𝑥 by 𝑀 (𝜂-
contracts), and the result is 𝑃 ′, we say that 𝑃 𝛽𝜂-contracts to 𝑃 ′ and we write it as
𝑃 B1𝛽𝜂 𝑃

′.
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Definition 2.3.4 (𝛽𝜂-equality). We say that 𝑃 is 𝛽𝜂-equal to 𝑄, 𝑃 =𝛽𝜂 𝑄 if there exist
𝑃1, 𝑃2, . . . , 𝑃𝑛 such that

(∀𝑖 ≤ 𝑛− 1)(𝑃𝑖 B1𝛽𝜂 𝑃𝑖+1 𝑜𝑟 𝑃𝑖+1 B1𝛽𝜂 𝑃𝑖 𝑜𝑟 𝑃𝑖 ≡𝛼 𝑃𝑖+1),

where 𝑃1 = 𝑃 and 𝑃𝑛 = 𝑄.

The equality =𝛽𝜂 can be axiomatized in an extensional theory of 𝜆𝛽𝜂 as seen below.

Definition 2.3.5 (𝜆𝛽𝜂-theory of equality). The extensional 𝜆-theory consists of the
all 𝜆-terms and a relation symbol =, where the 𝜆-formulas are just 𝑀 = 𝑁 for all 𝜆-terms
𝑀 and 𝑁 . The axioms are the cases 𝛼, 𝛽 and 𝜌 below, for all 𝜆-terms 𝑀 , 𝑁 an d all
variables 𝑥, 𝑦. The rules are 𝜇, 𝜈, 𝜉, 𝜏 and 𝜎 below. Axiom-schemas:

(𝛼) 𝜆𝑥.𝑀 = 𝜆𝑦.[𝑦/𝑥]𝑀 if 𝑦 /∈ 𝐹𝑉 (𝑀);

(𝛽) (𝜆𝑥.𝑀)𝑁 = [𝑁/𝑥]𝑀 ;

(𝜂) 𝜆𝑥.𝑀𝑥 = 𝑀 if 𝑥 /∈ 𝐹𝑉 (𝑀);

(𝜌) 𝑀 = 𝑀 ,

Rules of inference:

(𝜇) 𝑀 = 𝑀 ′

𝑁𝑀 = 𝑁𝑀 ′ ; (𝜏) 𝑀 = 𝑁 𝑁 = 𝑃

𝑀 = 𝑃
;

(𝜈) 𝑀 = 𝑀 ′

𝑀𝑁 = 𝑀 ′𝑁
; (𝜌) 𝑀 = 𝑁

𝑁 = 𝑀
;

(𝜉) 𝑀 = 𝑀 ′

𝜆𝑥.𝑀 = 𝜆𝑥.𝑀 ′ .

Note that the axiom 𝛽 defines the equality relation =𝛽 between 𝜆-terms. This 𝛽-
equality generates the theory called 𝜆𝛽, here to simplify notation we call it just 𝜆-theory.

Definition 2.3.6 (Extensional 𝜆-models). An extensional 𝜆-model is a triple ⟨𝐷, ∙, J K⟩,
where 𝐷 is a set, ∙ : 𝐷×𝐷 → 𝐷 is a binary operation and J K is a mapping which assigns,
to 𝜆-term 𝑀 and each valuation 𝜌 : 𝑉 𝑎𝑟 → 𝐷, a element J𝑀K𝜌 of 𝐷 such that

(a ) J𝑥K = 𝜌(𝑥);

(b ) J𝑃𝑄K𝜌 = J𝑃 K𝜌 ∙ J𝑄K𝜌;

(c ) J𝜆𝑥.𝑃 K𝜌 ∙ 𝑑 = J𝑃 K[𝑑/𝑥]𝜌 for all 𝑑 ∈ 𝐷;

(d ) J𝑀K𝜌 = J𝑀K𝜎 if 𝜌(𝑥) = 𝜎(𝑥) for 𝑥 ∈ 𝐹𝑉 (𝑀);

(e ) J𝜆𝑥.𝑀K𝜌 = J𝜆𝑦.[𝑦/𝑥]𝑀K𝜌 if 𝑦 /∈ 𝐹𝑉 (𝑀);
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(f ) if (∀𝑑 ∈ 𝐷)
(︁
J𝑃 K[𝑑/𝑥]𝜌 = J𝑄K[𝑑/𝑥]𝜌

)︁
, then J𝜆𝑥.𝑃 K𝜌 = J𝜆𝑥.𝑄K𝜌;

(g ) J𝜆𝑥.𝑀𝑥K𝜌 = J𝑀K𝜌 if 𝑥 /∈ 𝐹𝑉 (𝑀),

where [𝑑/𝑥]𝜌 means: replace 𝜌(𝑥) with 𝑑 in the interpretation of 𝜆-term in question.

Definition 2.3.7 (Combinatory logic terms, or CL-terms). Suppose that there is
an infinite sequence of expressions called variables, and a sequence of expressions called
atomics constants, different form the variables. The set of expressions called CL-terms is
defined inductively as follows

(a ) all variables and atomic constants, including I, K, S, are CL-terms;

(b ) if 𝑋 and 𝑌 are CL-terms, then so is (𝑋𝑌 ).

Definition 2.3.8 (Weak reduction). Let 𝑃 be a CL-term. If 𝑃 contains a term of the
form 𝐼𝑋, 𝐾𝑋𝑌 or 𝑆𝑋𝑌 𝑍 (called 𝛽-redex) and we replace into 𝑃 the term 𝐼𝑋 by 𝑋,
𝐾𝑋𝑌 by 𝑋 or 𝑆𝑋𝑌 𝑍 by 𝑋𝑍(𝑌 𝑍), and the result is 𝑃 ′, we say that 𝑃 (weakly) contracts
to 𝑃 ′ and we write it as 𝑃 B1𝑤 𝑃

′. If there is a finite sequence of contractions from 𝑃 to
𝑃 ′, we write 𝑃 B𝑤 𝑃 ′.

Definition 2.3.9 (Weak equality). We say that 𝑃 is weakly equal to 𝑄, 𝑃 =𝑤 𝑄 if
there exist 𝑃1, 𝑃2, . . . , 𝑃𝑛 such that

(∀𝑖 ≤ 𝑛− 1)(𝑃𝑖 B1𝑤 𝑃𝑖+1 𝑜𝑟 𝑃𝑖+1 B1𝑤 𝑃𝑖),

where 𝑃1 = 𝑃 and 𝑃𝑛 = 𝑄.

Definition 2.3.10 (Abstraction). For every CL-term 𝑀 and every variable 𝑥, a CL-
term written [𝑥].𝑀 is defined by induction on 𝑀 , thus:

(a ) [𝑥].𝑀 := 𝐾𝑀 if 𝑥 /∈ 𝐹𝑉 (𝑀);

(b ) [𝑥].𝑥 := 𝐼;

(c ) [𝑥].𝑈𝑥 := 𝑈 if 𝑥 /∈ 𝐹𝑉 (𝑈);

(d ) [𝑥].𝑈𝑉 := 𝑆([𝑥].𝑈)([𝑥].𝑉 ) if neither (a) or (c) applies.

Similar to the lambda calculus abstraction, the combinatorial logic abstraction satisfies
the analogous property to 𝛽-contraction, i.e.,

([𝑥].𝑀)𝑁 B𝑤 [𝑁/𝑥]𝑀.

Definition 2.3.11. For all variables 𝑥1, . . . , 𝑥𝑛 (not necessarily distinct),

[𝑥1, . . . , 𝑥𝑛].𝑀 = [𝑥1].([𝑥2].(. . . ([𝑥𝑛].𝑀) . . .)).
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The equality =𝑤 can be axiomatized in an 𝐶𝐿𝑤-theory of as seen below.

Definition 2.3.12 (𝐶𝐿𝑤, or theory of weak equality). The extensional 𝐶𝐿𝑤-theory
consist of the all 𝐶𝐿-terms and a relation symbol =, where the 𝐶𝐿-formulas are just
𝑀 = 𝑁 for Four axiom-schemes below, for all 𝐶𝐿-terms 𝑋, 𝑌 and 𝑍. The rules are 𝜇,
𝜈, 𝜏 and 𝜎 below. Axioms-schemas:

(𝐼) 𝐼𝑋 = 𝑋;

(𝐾) 𝐾𝑋𝑌 = 𝑋;

(𝑆) 𝑆𝑋𝑌 𝑍 = 𝑋𝑍(𝑌 𝑍);

(𝜌) 𝑋 = 𝑋,

Rules of inference:

(𝜇) 𝑋 = 𝑋 ′

𝑍𝑋 = 𝑍𝑋 ′ ; (𝜏) 𝑋 = 𝑌 𝑌 = 𝑍

𝑋 = 𝑍
;

(𝜈) 𝑋 = 𝑋 ′

𝑋𝑍 = 𝑋 ′𝑍
; (𝜎) 𝑋 = 𝑌

𝑌 = 𝑋
;

Definition 2.3.13 (Extensional combinatory algebra). A combinatory algebra is a
pair ⟨𝐷, ∙⟩ such that there are elements 𝑘, 𝑠 ∈ 𝐷 which satisfy

(a ) (∀𝑎, 𝑏 ∈ 𝐷) 𝑘 ∙ 𝑎 ∙ 𝑏 = 𝑎;

(b ) (∀𝑎, 𝑏, 𝑐 ∈ 𝐷) 𝑠 ∙ 𝑎 ∙ 𝑏 ∙ 𝑐 = 𝑎 ∙ 𝑐 ∙ (𝑏 ∙ 𝑐);

and it is an extensional combinatory algebra if it also meets

(𝑐 ) (∀𝑎, 𝑏 ∈ 𝐷) if 𝑎 ∙ 𝑐 = 𝑏 ∙ 𝑐 for all 𝑐 ∈ 𝐷, then 𝑎 = 𝑏.

A model of 𝐶𝐿𝑤 is a quintuple ⟨𝐷, ∙, 𝑖, 𝑘, 𝑠⟩ such that ⟨𝐷, ∙⟩ is a combinatory algebra and
𝑘 and 𝑠 satisfies (a), (b), and 𝑖 = 𝑠 ∙ 𝑘 ∙ 𝑘.

Definition 2.3.14 (Interpretation of CL-terms). Let ⟨𝐷, ∙, 𝑖, 𝑘, 𝑠⟩ a model of 𝐶𝐿𝑤
and 𝜌 : 𝑉 𝑎𝑟 → 𝐷 a valuation of variables. Using 𝜌, we assign to every 𝐶𝐿𝑤-term 𝑋 a
member of 𝐷 called its interpretation or J𝑋K𝜌, thus:

(a ) J𝑋K𝜌 := 𝜌(𝑥);

(b ) J𝐼K := 𝑖, J𝐾K := 𝑘, J𝑆K := 𝑠;

(c ) J𝑋𝑌 K𝜌 := J𝑋K𝜌 ∙ J𝑌 K𝜌.

To simplify we write J𝑋K instead of J𝑋K𝜌.
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Definition 2.3.15 (Combinatory complete). An par ⟨𝐷, ∙⟩ is called combinatorially
complete if: for all sequence 𝑥1, . . . , 𝑥𝑛 of distinct variables, and every combination 𝑋 of
𝑥1, . . . , 𝑥𝑛 only, there exist 𝑎 ∈ 𝐷 such that, for all 𝑑1, 𝑑2, . . . , 𝑑𝑛,

𝑎 ∙ 𝑑1 ∙ · · · ∙ 𝑑𝑛 = J𝑋K[𝑑1/𝑥1]···[𝑑𝑛/𝑥𝑛]𝜌,

where 𝜌 is arbitrary.

With respect to abstraction in 𝐶𝐿 we will have to make sure that interpretation of
[𝑥].𝑀 satisfies, for all 𝑑 ∈ 𝐷

J[𝑥].𝑀K ∙ 𝑑 = J𝑀K[𝑑/𝑥].

Theorem 2.3.1. ⟨𝐷, ∙⟩ is a combinatory algebra, then it is combinatorially complete.

Proof. Let 𝑋 a combination of variables 𝑥1, . . . , 𝑥𝑛, we have that the formula

([𝑥1, . . . , 𝑥𝑛]𝑋)𝑥1 . . . · 𝑥𝑛 = 𝑋

is true in ⟨𝐷, ∙, 𝑖, 𝑘, 𝑠⟩, if we take 𝑎 = J[𝑥1, . . . , 𝑥𝑛]𝑋K it get the equality of Definition
2.3.15, thus ⟨𝐷, ∙⟩ is a combinatorially complete.

Note that if ⟨𝐷, ∙⟩ is complete combinatory algebra and 𝑃 is a combination of variables
only, then there is a unique 𝑎 ∈ 𝐷 such that 𝑎 ∙ 𝑑 = J𝑃 K[𝑑/𝑥]𝜌 for each 𝑑 ∈ 𝐷. Thus we
can interpret abstraction as J𝜆𝑥.𝑃 K = 𝑎, which meets (𝑐) and (𝑓) of Definition 2.3.6.

Theorem 2.3.2. If ⟨𝐷, ∙⟩ a extensional combinatory algebra, then ⟨𝐷, ∙, J K⟩ is a exten-
sional 𝜆-model, where J K is defined for each evaluation 𝜌 : 𝑉 𝑎𝑟 → 𝐷 by

(a ) J𝑥K𝜌 = 𝜌(𝑥),

(b ) J𝑃𝑄K𝜌 = J𝑃 K𝜌 ∙ J𝑄K𝜌,

(c ) J𝜆𝑥.𝑃 K𝜌 = 𝑎, where (∀𝑑 ∈ 𝐷)(𝑎 ∙ 𝑑 = J𝑃 K[𝑑/𝑥]𝜌).

Proof. We have that ⟨𝐷, ∙, J K⟩ satisfies (𝑎), (𝑏) and (𝑐) of Definition 2.3.6, so we must
prove from (𝑑) to (𝑔) in this same definition.

(𝑑 ) By induction on 𝑀 we have:

(𝑖 ) if 𝑀 = 𝑥 and 𝜌(𝑥) = 𝜎(𝑥) is clear that J𝑥K𝜌 = J𝑥K𝜎,

(𝑖𝑖 ) If 𝑀 = 𝑃𝑄, so J𝑃𝑄K𝜌 = J𝑃 K𝜌 ∙ J𝑄K𝜌 and J𝑃𝑄K𝜎 = J𝑃 K𝜎 ∙ J𝑄K𝜎, by induction
hypothesis we have J𝑃 K𝜌 = J𝑃 K𝜎 and J𝑄K𝜌 = J𝑄K𝜎, thus J𝑃𝑄K𝜌 = J𝑃𝑄K𝜎.

(𝑖𝑖𝑖 ) If 𝑀 = 𝜆𝑥.𝑃 , then for each 𝑑 ∈ 𝐷 it hold J𝜆𝑥.𝑃 K𝜌 ∙𝑑 = J𝑃 K[𝑑/𝑥]𝜌 and J𝜆𝑥.𝑃 K𝜎 ∙
𝑑 = J𝑃 K[𝑑/𝑥]𝜎, by induction hypothesis J𝑃 K[𝑑/𝑥]𝜌 = J𝑃 K[𝑑/𝑥]𝜎 for all 𝑑 ∈ 𝐷. Since
⟨𝐷, ∙⟩ is an extensional combinatory algebra, then J𝜆𝑥.𝑃 K𝜌 = J𝜆𝑥.𝑃 K𝜎.
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Thus J𝑀K𝜌 = J𝑀K𝜎 if 𝜌(𝑥) = 𝜎(𝑥) for each 𝑥 ∈ 𝐹𝑉 (𝑀).

(𝑒 ) For each 𝑑 ∈ 𝐷 we have

J𝜆𝑦.[𝑦/𝑥]𝑀K𝜌 ∙ 𝑑 = J[𝑦/𝑥]𝑀K[𝑑/𝑦]𝜌 = J𝑀K[𝑑/𝑥]𝜌 = J𝜆𝑥.𝑀K𝜌 ∙ 𝑑

where 𝑦 /∈ 𝐹𝑉 (𝑀) So by extensionality J𝜆𝑦.[𝑦/𝑥]𝑀K𝜌 = J𝜆𝑥.𝑀K𝜌.

(𝑓 ) If each 𝑑 ∈ 𝐷 we have J𝑃 K[𝑑/𝑥]𝜌 = J𝑄K[𝑑/𝑥]𝜌, then

J𝜆𝑥.𝑃 K𝜌 ∙ 𝑑 = J𝑃 K[𝑑/𝑥]𝜌 = J𝑄K[𝑑/𝑥]𝜌 = J𝜆𝑥.𝑄K𝜌 ∙ 𝑑

for all 𝑏 ∈ 𝐷. By extensionality J𝜆𝑥.𝑃 K𝜌 = J𝜆𝑥.𝑄K𝜌.

(𝑔 ) If 𝑥 /∈ 𝐹𝑉 (𝑀), for each 𝑑 ∈ 𝐷 it has

J𝜆𝑥.𝑀𝑥K𝜌 ∙ 𝑑 = J𝑀𝑥K[𝑑/𝑥]𝜌 = J𝑀K𝜌 ∙ 𝑑.

Thus J𝜆𝑥.𝑀𝑥K𝜌 = J𝑀K𝜌.

Therefore ⟨𝐷, ∙, J K⟩ is an extensional 𝜆-model.

2.4 THE 𝜆-MODEL SCOTT’S 𝐷∞

Below is a summary of the construction of the 𝐷∞ 𝜆-model through c.p.o.’s. The proofs
of the results can be seen in (HINDLEY; SELDIN, 2008) and (BARENGREGT, 1984).

Definition 2.4.1 (Partial order and least element). A partial order is a pair ⟨𝐷,⊑⟩,
where 𝐷 is a set and ⊑ is a binary relation on 𝐷, which satisfies for each 𝑎, 𝑏, 𝑐 ∈ 𝐷

(a ) (reflexivity) 𝑎 ⊑ 𝑎;

(b ) (anti-symmetry) 𝑎 ⊑ 𝑏 and 𝑏 ⊑ 𝑎, then 𝑎 = 𝑏;

(c ) (transitivity) 𝑎 ⊑ 𝑏 and 𝑏 ⊑ 𝑐, then 𝑎 ⊑ 𝑐.

If there is ⊥ ∈ 𝐷, such that
(∀𝑑 ∈ 𝐷) ⊥ ⊑ 𝑑,

⊥ is called the least element of 𝐷, or bottom.

Definition 2.4.2 (Least upper bound l.u.b.). Let ⟨𝐷,⊑⟩ be a partial order and let
𝑋 ⊆ 𝐷. An upper bound (u.b.) of 𝑋 is any 𝑏 ∈ 𝐷 such that

(a ) (∀𝑎 ∈ 𝑋) 𝑎 ⊑ 𝑏.

The least upper bound (𝑙.𝑢.𝑏.) or supremum of 𝑋 is called ⨆︀
𝑋, it is an upper bound 𝑏 of

𝑋 such that



28

(𝑏 ) (∀𝑐 ∈ 𝐷) (if 𝑐 is an u.b. of 𝑋, then 𝑏 ⊑ 𝑐).

Definition 2.4.3 (Directed set). Let ⟨𝐷,⊑⟩ be a partially ordered set. A non-empty
subset 𝑋 ⊂ 𝐷 is said to be directed if for all 𝑎, 𝑏 ∈ 𝑋, there exists 𝑐 ∈ 𝑋 such that 𝑎 ⊑ 𝑐

and 𝑏 ⊑ 𝑐.

Definition 2.4.4 (Complete partial orders c.p.o.’s). A c.p.o. is a partially ordered
set (𝐷,⊑) such that

(a ) 𝐷 has a least element (called ⊥),

(b ) every directed subset 𝑋 ⊂ 𝐷 has l.u.b. (called ⨆︀
𝑋).

The pair (𝐷,⊑) will be called 𝐷.

Definition 2.4.5 (The set N+). Choose any object ⊥/∈ N, and define N+ = N ∪ {⊥}.
For all 𝑎, 𝑏 ∈ N+, define

𝑎 ⊑ 𝑏⇐⇒ (𝑎 =⊥ 𝑎𝑛𝑑 𝑏 ∈ N) 𝑜𝑟 𝑎 = 𝑏.

Clearly N+ is a c.p.o., since every directed subset is finite so has l.u.b and ⊥ is the
least element as seen in Figure 5.

Figura 5 – The c.p.o. N+

0 1 2 3 · · ·

⊥

Sink: Adapted of (HINDLEY; SELDIN, 2008)

On other hand, every c.p.o. has a topology called the Scott topology, which we define
below.

Definition 2.4.6 (Final and inaccessible set). Let 𝐷 a c.p.o. and 𝐴 ⊆ 𝐷. The set 𝐴
is final if it satisfies

𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑎 ⊑ 𝑏 =⇒ 𝑏 ∈ 𝐴,

and 𝐴 is inaccessible by directedness if for every directed subset 𝑋 of 𝐷,
⨆︁
𝑋 ∈ 𝐴 =⇒ 𝑋 ∩ 𝐴 ̸= ∅.

Definition 2.4.7 (Scott topology). Let 𝐷 be a c.p.o. The Scott topology is defined as
follows

𝜎 = {𝐴 ⊆ 𝐷 : 𝐴 is final and inaccessible by directedness}.
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Definition 2.4.8 (The function-set [𝐷 → 𝐷′]). For c.p.o.s 𝐷 and 𝐷′, define [𝐷 →
𝐷′] to be set of all continuous functions from 𝐷 to 𝐷′ in Scott’s topology. For 𝜑, 𝜓 ∈
[𝐷 → 𝐷′], define

𝜑 ⊑ 𝜓 ⇐⇒ (∀𝑑 ∈ 𝐷)(𝜑(𝑑) ⊑′ 𝜓(𝑑)).

Remark 2.4.1. There is a result that says, if 𝐷 and 𝐷′ c.p.o’s, then [𝐷 → 𝐷′] is a c.p.o.
(see proof in (HINDLEY; SELDIN, 2008)). It would allow from a c.p.o. initially generate
inductively an infinite sequence of c.p.o’s as below in the Definition 2.4.10.

Definition 2.4.9 (Projections). Let 𝐷 and 𝐷′ be c.p.o’s. A projection from 𝐷′ to 𝐷 is
a pair ⟨𝜑, 𝜓⟩ of functions, where 𝜑 ∈ [𝐷 → 𝐷′] and 𝜓 ∈ [𝐷′ → 𝐷], such that

𝜓 ∘ 𝜑 = 𝐼𝐷, 𝜑 ∘ 𝜓 ⊑ 𝐼𝐷′ .

In this case we say that 𝐷 ⪯ 𝐷′.

Next we define the increasing sequence of c.p.o’s 𝐷0 ≺ 𝐷1 ≺ 𝐷2 ≺ · · · from the initial
c.p.o. 𝐷0 = N+.

Definition 2.4.10 (The sequence 𝐷0, 𝐷1, 𝐷2, . . .). For each 𝑛 ≥ 0, define 𝐷𝑛 by
recursion

𝐷0 := N+,

𝐷𝑛+1 := [𝐷𝑛 → 𝐷𝑛].

The ⊑-relation on 𝐷𝑛 will be called just ‘ ⊑’. The least element of 𝐷𝑛 will be called ⊥𝑛.

By Remark 2.4.1, every 𝐷𝑛 is a complete partial order (c.p.o.)

Below we define from the initial projection ⟨𝜑0, 𝜓0⟩ the projection ⟨𝜑𝑛, 𝜓𝑛⟩ between
two arbitrary consecutive c.p.o’s 𝐷𝑛 and 𝐷𝑛+1 in order to define the c.p.o. 𝐷∞, which
results from inverse limit

𝐷0 ←−𝜓0 𝐷1 ←−𝜓1 · · · ←−𝜓𝑛−1 𝐷𝑛 ←−𝜓𝑛 𝐷𝑛+1 ←−𝜓𝑛+1 · · ·

Definition 2.4.11 (Projection from 𝐷𝑛+1 to 𝐷𝑛). For every 𝑛 ≥ 0 define the pro-
jection ⟨𝜑𝑛, 𝜓𝑛⟩ from 𝐷𝑛+1 to 𝐷𝑛 by the recursion

𝜑0(𝑑) := 𝜆𝑎 ∈ 𝐷0.𝑑, 𝜓0(𝑔) := 𝑔(⊥0),

𝜑𝑛+1(𝑑) := 𝜑𝑛 ∘ 𝑑 ∘ 𝜓𝑛, 𝜓𝑛+1(𝑔) := 𝜓𝑛 ∘ 𝑔 ∘ 𝜑𝑛,

where 𝜆𝑎 ∈ 𝐷0.𝑑 ∈ [𝐷0 → 𝐷0] is the constant function to 𝑑 ∈ 𝐷0.

Definition 2.4.12 (Construction of 𝐷∞). We define 𝐷∞ to be the set of all infinite
sequences

𝑑 = ⟨𝑑0, 𝑑1, 𝑑2, . . .⟩ ,
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such that 𝑑𝑛 ∈ 𝐷𝑛 and 𝜓𝑛(𝑑𝑛+1) = 𝑑𝑛, for all 𝑛 ≥ 0.

A relation ⊑ on 𝐷∞ is defined by

𝑑 ⊑ 𝑑′ ⇐⇒ (∀𝑛 ≥ 0)(𝑑𝑛 ⊑ 𝑑′
𝑛).

In (BARENGREGT, 1984)𝐷∞ coincides with the inverse limit of its projections sequence
𝜓0, 𝜓1, 𝜓2, . . . in the category of c.p.o’s. Also 𝐷∞ is a c.p.o., since the last element is given
by

⊥ = ⟨⊥0,⊥1,⊥2, . . .⟩,

where each ⊥𝑛 is the least element from c.p.o 𝐷𝑛, and for each directed set 𝑋 ⊆ 𝐷∞ the
l.u.b is given by ⨆︁

𝑋 = ⟨
⨆︁
𝑋0,

⨆︁
𝑋1,

⨆︁
𝑋2, . . .⟩,

where 𝑋𝑛 = {𝑑𝑛 : 𝑑 ∈ 𝑋}, since that 𝑋 is directed so each 𝑋𝑛 also is directed.

Next we define from consecutive projections ⟨𝜑𝑛, 𝜓𝑛⟩ the projection ⟨𝜑𝑚,𝑛, 𝜑𝑛,𝑚⟩ between
two arbitrary c.p.o’s 𝐷𝑚 and 𝐷𝑛 in order to define for each 𝑛 ≥ 0 the projection
⟨𝜑𝑛,∞, 𝜑∞,𝑛⟩ from 𝐷∞ to 𝐷𝑛 and with it define the application operation

∙ : 𝐷∞ ×𝐷∞ → 𝐷∞.

Definition 2.4.13. For all pairs 𝑚,𝑛 ≥ 0, a map 𝜑𝑚,𝑛 : 𝐷𝑚 → 𝐷𝑛 is defined by

𝜑𝑚,𝑛 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜑𝑛−1 ∘ 𝜑𝑛−2 ∘ · · · ∘ 𝜑𝑚+1 ∘ 𝜑𝑚 if 𝑚 < 𝑛,

𝐼𝐷𝑚 if 𝑚 = 𝑛,

𝜓𝑛 ∘ 𝜓𝑛+1 ∘ · · · ∘ 𝜓𝑚−2 ∘ 𝜓𝑚−1 if 𝑚 > 𝑛.

Let 𝑚 < 𝑛. The pair ⟨𝜑𝑚,𝑛, 𝜑𝑛,𝑚⟩ is a projection from 𝐷𝑛 to 𝐷𝑚.

Definition 2.4.14 (Projection from 𝐷∞ to 𝐷𝑛). The projection ⟨𝜑𝑛,∞, 𝜑∞,𝑛⟩ from
𝐷∞ to 𝐷𝑛 is defined by

𝜑∞,𝑛(𝑑) := 𝑑𝑛,

𝜑𝑛,∞(𝑎) := ⟨𝜑𝑛,0(𝑎), 𝜑𝑛,1(𝑎), 𝜑𝑛,2(𝑎), . . .⟩ .

For all 𝑎, 𝑏 ∈ 𝐷∞ and for each 𝑛 ≥ 1 it holds that

𝜑𝑛,∞(𝑎𝑛+1(𝑏𝑛)) ⊑ 𝜑𝑛+1,∞(𝑎𝑛+2(𝑏𝑛+1)).

Thus the set {𝜑𝑛,∞(𝑎𝑛+1(𝑏𝑛)) : 𝑛 ≥ 0} is an increasing sequence, then it is a directed
set; hence it has l.u.b. which allows the definition of application operator in 𝐷∞.

Definition 2.4.15 (Application in 𝐷∞). Let 𝑎, 𝑏 ∈ 𝐷∞. Define the application of 𝑎 to
𝑏 by

𝑎 ∙ 𝑏 :=
⨆︁
𝑛≥0

𝜑𝑛,∞(𝑎𝑛+1(𝑏𝑛)).
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Remark 2.4.2. ⟨𝐷∞, ∙⟩ is an extensional combinatory algebra. Consider the combinator

𝑘 = ⟨⊥0, 𝐼𝐷0 , 𝑘2, 𝑘3, 𝑘4, . . .⟩,

where 𝑘𝑛+2 = 𝜆𝑎 ∈ 𝐷𝑛+1.𝜆𝑏 ∈ 𝐷𝑛.𝜓𝑛+1(𝑎) for each 𝑛 ≥ 0. Then one has that 𝑘 ∈ 𝐷∞

and meets
𝑘 ∙ 𝑎 ∙ 𝑏 = 𝑎,

and consider the other combinator

𝑠 = ⟨⊥0, 𝐼𝐷0 , 𝜓2(𝑠3), 𝑠3, 𝑠4, . . .⟩,

where 𝑠𝑛+3 = 𝜆𝑎 ∈ 𝐷𝑛+2.𝜆𝑏 ∈ 𝐷𝑛+1.𝜆𝑐 ∈ 𝐷𝑛.𝑎(𝜑𝑛(𝑐))(𝑏(𝑐)) for each 𝑛 ≥ 0. Its combina-
tor belongs to 𝐷∞ and satisfies

𝑠 ∙ 𝑎 ∙ 𝑏 ∙ 𝑐 = 𝑎 ∙ 𝑐 ∙ (𝑏 ∙ 𝑐).

Therefore, by the Remark 2.4.2 and Theorem 2.3.2 we have ⟨𝐷∞, ∙, J K⟩ is an extensi-
onal 𝜆-model.

In (BARENGREGT, 1984) can be seen another way to prove that 𝐷∞ is a 𝜆-model
through the result: If 𝐷 is a c.p.o. for which there exists a projection ⟨𝐹,𝐺⟩ from [𝐷 → 𝐷]
to 𝐷 such that 𝐹 ∘ 𝐺 = 𝐼[𝐷→𝐷], then the triple ⟨𝐷, ∙, J K⟩ defined for every assignment
𝜌 : 𝑉 𝑎𝑟 → 𝐷 by

(a ) 𝑎 ∙ 𝑏 := 𝐹 (𝑎)(𝑏) for each 𝑎, 𝑏 ∈ 𝐷,

(b ) J𝑥K𝜌 := 𝜌(𝑥),

(c ) J𝑃𝑄K𝜌 := J𝑃 K𝜌 ∙ J𝑄K𝜌,

(d ) J𝜆𝑥.𝑃 K𝜌 := 𝐺(𝜆𝑑 ∈ 𝐷.J𝑃 K[𝑑/𝑥]𝜌),

is a 𝜆-model. Also if 𝐺 ∘ 𝐹 = 𝐼𝐷, i.e., 𝐺 = 𝐹−1 and 𝐷 ∼= [𝐷 → 𝐷], then ⟨𝐷, ∙, J K⟩ is an
extensional 𝜆-model.

So in the particular case of 𝐷∞, it holds that 𝐷∞ ∼= [𝐷∞ → 𝐷∞] where the iso-
morphism between c.p.o’s 𝐹 : 𝐷∞ → [𝐷∞ → 𝐷∞] is given for each 𝑎 ∈ 𝐷∞ by

𝐹 (𝑎) = 𝜆𝑏 ∈ 𝐷∞.𝑎 ∙ 𝑏,

whose inverse 𝐹−1 : [𝐷∞ → 𝐷∞]→ 𝐷∞ corresponds to

𝐹−1 = 𝜆𝑓 ∈ [𝐷∞ → 𝐷∞].
⨆︁
𝑛≥0

𝜑𝑛,∞(𝜆𝑎 ∈ 𝐷𝑛.(𝜑∞,𝑛 ∘ 𝑓 ∘ 𝜑𝑛,∞)(𝑎)).

Therefore ⟨𝐷∞, ∙, J K⟩ is an extensional 𝜆-model.
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3 THE EXTENSIONAL 𝜆-MODEL D∞

Next we show the construction of the infinity-groupoid from any topological space, th-
rough the use of higher fundamental groups. Finally this construction is applied for the
particular case 𝐷∞ to generate the 𝜆-model D∞ with ∞-groupoid structure.

3.1 THE ∞-GROUPOID D∞ GENERATED BY AN ARBITRARY TOPOLOGICAL SPACE
𝐷

Definition 3.1.1. Let 𝐷 a topological space. For each 𝑛 ∈ N, define the ∞-globular set
D

· · ·⇒𝑠
𝑡 D𝑛 ⇒

𝑠
𝑡 D𝑛−1 ⇒

𝑠
𝑡 · · ·⇒𝑠

𝑡 D1 ⇒
𝑠
𝑡 D0,

as follows
D𝑛 := {𝜋𝑛(𝐷, 𝑑) : 𝑑 ∈ 𝐷},

where 𝜋0(𝐷, 𝑑) := 𝑑, 𝜋𝑛(𝐷, 𝑑) is the fundamental group of dimension 𝑛 ≥ 1 and

𝑠(𝜋𝑛+1(𝐷, 𝑑)) = 𝑡(𝜋𝑛+1(𝐷, 𝑑)) := 𝜋𝑛(𝐷, 𝑑).

Remark 3.1.1. Clearly D is an ∞-globular set, since 𝑠 = 𝑡, i.e., every morphism is an
automorphism, then 𝑠 ∘ 𝑠 = 𝑠 ∘ 𝑡 and 𝑡 ∘ 𝑡 = 𝑡 ∘ 𝑠, see Figure 6.

Figura 6 – ∞-Globular set D.

Sink: The author (2020)

Remark 3.1.2. For each 𝑛 ∈ N, the following holds:

𝜋𝑛(𝐷, 𝑑) = 𝜋𝑛(𝐷, 𝑑′)⇐⇒ 𝑑 = 𝑑′.
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The fact that 𝐷 is connected by paths, and thus 𝜋𝑛(𝐷, 𝑑) ∼= 𝜋𝑛(𝐷, 𝑑′) (isomorphic groups),
it does not imply that they are equal.

Notation 3.1.1. For each 𝑛 ∈ N, write

D𝑛+1(𝑑0) := {d ∈ D𝑛+1 : 𝑠(d) = 𝑡(d) = 𝜋𝑛(𝐷, 𝑑0)}.

Proposition 3.1.1. For each 𝑛 ∈ N, the following holds

D𝑛+1(𝑑0) = {𝜋𝑛+1(𝐷, 𝑑0)}.

Proof. Let d ∈ D𝑛+1(𝑑0), then there is 𝑑 ∈ 𝐷 such that d = 𝜋𝑛+1(𝐷, 𝑑). By Definition
3.1.1 𝑠(d) = 𝑡(d) = 𝜋𝑛(𝐷, 𝑑). Since d ∈ D𝑛+1(𝑑0), then 𝜋𝑛(𝐷, 𝑑) = 𝜋𝑛(𝐷, 𝑑0), so 𝑑 = 𝑑0

by Remark 3.1.2, thus d = 𝜋𝑛+1(𝐷, 𝑑0).

Definition 3.1.2 (Diagonal). Let 𝐷 a set. Define the diagonal on 𝐷 ×𝐷 as

𝐷𝑖𝑎𝑔(𝐷 ×𝐷) := {(𝑑, 𝑑′) ∈ 𝐷 ×𝐷 : 𝑑 = 𝑑′}

Lemma 3.1.1. For any natural number 𝑛 ≥ 1 and for each 0 ≤ 𝑝 < 𝑛,

D𝑛 ×D𝑝 D𝑛 = 𝐷𝑖𝑎𝑔(D𝑛 ×D𝑛).

Proof.

D𝑛 ×D𝑝 D𝑛 = {(d, d′) ∈ D𝑛 ×D𝑛 : 𝑡𝑛−𝑝(d) = 𝑠𝑛−𝑝(d′)}

= {(d, d′) ∈ D𝑛 ×D𝑛 : 𝜋𝑛−(𝑛−𝑝)(𝐷, 𝑑) = 𝜋𝑛−(𝑛−𝑝)(𝐷, 𝑑′)}

= {(d, d′) ∈ D𝑛 ×D𝑛 : 𝜋𝑝(𝐷, 𝑑) = 𝜋𝑝(𝐷, 𝑑′)}

= {(d, d′) ∈ D𝑛 ×D𝑛 : 𝑑 = 𝑑′}

= {(d, d′) ∈ D𝑛 ×D𝑛 : d = d′}

= 𝐷𝑖𝑎𝑔(D𝑛 ×D𝑛).

Lemma 3.1.1 indicates that it is enough to define the composition for pairs (d, d) ∈
D𝑛 ×D𝑛.

Definition 3.1.3 (Composition). For each 0 ≤ 𝑝 < 𝑛, define the composition of d ∈ D𝑛

with itself by
d ∘𝑝 d := {𝑥 *𝑝 𝑦 : 𝑥, 𝑦 ∈ d}

where *𝑝 is the paths concatenation operator.

Lemma 3.1.2. For all 𝑛 ≥ 1, 0 ≤ 𝑝 < 𝑛 e d ∈ D𝑛,

d ∘𝑝 d = d.
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Proof. Since (d, *𝑝) is a group, it is clear that d ∘𝑝 d ⊆ d. On the other hand, if 𝑥 ∈ d then
𝑥 = 𝑥*𝑝 𝑒 ∈ d∘𝑝d, where 𝑒 is the identity element of the group (d, *𝑝). Thus d∘𝑝d = d.

Definition 3.1.4 (Identity). For each 𝑛 ∈ N e d = 𝜋𝑛(𝐷, 𝑑) ∈ D𝑛, define the identity
function 𝑖 : D𝑛 → D𝑛+1, 𝑖(d) = 1d as follows

1d := 𝜋𝑛+1(𝐷, 𝑑).

Theorem 3.1.1. D is an ∞-groupoid.

Proof. Let 𝑛 ≥ 1, 0 ≤ 𝑝 < 𝑛. For the axioms related to composition of morphisms, Lemma
3.1.1 allows us to verify them by the composition of d = 𝜋𝑛(𝐷, 𝑑) ∈ D𝑛 with itself, then

(a) (sources and targets of composites) by Lemma 3.1.2 and Lemma 3.1.3 we have

𝑠(d ∘𝑝 d) = 𝑠(d) = 𝑠(d) ∘𝑝 𝑠(d),

𝑡(d ∘𝑝 d) = 𝑡(d) = 𝑡(d) ∘𝑝 𝑡(d),

(b) (sources and targets od identities) by Definition 3.1.3 and Definition 3.1.4

𝑠(1d) = 𝑠(𝜋𝑛+1(𝐷, 𝑑)) = 𝜋𝑛(𝐷, 𝑑) = d,

𝑡(1d) = 𝑡(𝜋𝑛+1(𝐷, 𝑑)) = 𝜋𝑛(𝐷, 𝑑) = d,

(c) (associativity) by Lemma 3.1.2

(d ∘𝑝 d) ∘𝑝 d = d ∘𝑝 d = d ∘𝑝 (d ∘𝑝 d),

(d) (identities) by Definition 3.1.3, Definition 3.1.4 and Lemma 3.1.2

𝑖𝑛−𝑝(𝑡𝑛−𝑝(d)) ∘𝑝 d = 𝑖𝑛−𝑝(𝜋𝑝(𝐷, 𝑑)) ∘𝑝 d = 𝜋𝑝+𝑛−𝑝(𝐷, d) ∘𝑝 d = d ∘𝑝 d = d,

d ∘𝑝 𝑖𝑛−𝑝(𝑠𝑛−𝑝(d)) = d ∘𝑝 𝑖𝑛−𝑝(𝜋𝑝(𝐷, 𝑑)) = d ∘𝑝 𝜋𝑝+𝑛−𝑝(𝐷, d) = d ∘𝑝 d = d,

(e) (binary interchange) let 0 ≤ 𝑞 < 𝑝 < 𝑛, by Lemma 3.1.2

(d ∘𝑝 d) ∘𝑞 (d ∘𝑝 d) = d ∘𝑞 d = (d ∘𝑞 d) ∘𝑝 (d ∘𝑞 d),

(f) (nullary interchange) let 0 ≤ 𝑞 < 𝑝 < 𝑛, by Lemma 3.1.2

1d ∘𝑞 1d = 1d = 1d∘𝑞d,

(g) (inverse) by Lemma 3.1.2 and (d)

d ∘𝑝 d = d = 𝑖𝑛−𝑝(𝑡𝑛−𝑝(d)) = 𝑖𝑛−𝑝(𝑠𝑛−𝑝(d)),

thus d is the inverse of itself.
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Next we define D∞ as a set in the sense of ZFC set theory.

Definition 3.1.5 (The set D∞). Define D∞ as the set of all the infinite sequences

d := ⟨d0, d1, d2, . . .⟩,

such that d𝑛 ∈ D𝑛 e 𝑠(d𝑛+1) = 𝑡(d𝑛+1) = d𝑛, for each 𝑛 ∈ N.

Equality in D∞ is defined as

a = b⇐⇒ a𝑛 = b𝑛,

for all 𝑛 ∈ N.

Proposition 3.1.2. d ∈ D∞ if and only if there exists 𝑑 ∈ 𝐷 for all 𝑛 ∈ N, such that
d𝑛 = 𝜋𝑛(𝐷, 𝑑).

Proof. Let d ∈ D∞, then d0 ∈ D0, i.e., d0 = 𝜋0(𝐷, 𝑑) for some 𝑑 ∈ 𝐷. Suppose that
d𝑛 = 𝜋𝑛(𝐷, 𝑑) and we will prove by induction that d𝑛+1 = 𝜋𝑛+1(𝐷, 𝑑). Since d ∈ D∞,
by induction hypothesis 𝑠(d𝑛+1) = 𝑡(d𝑛+1) = d𝑛 = 𝜋𝑛(𝐷, 𝑑). By Proposition 3.1.1 we
have d𝑛+1 = 𝜋𝑛+1(𝐷, 𝑑). On the other hand, if d𝑛 = 𝜋𝑛(𝐷, 𝑑) for every 𝑛 ∈ N, then
𝑠(d𝑛+1) = 𝑡(d𝑛+1) = 𝜋𝑛(𝐷, 𝑑) = d𝑛 for all 𝑛 ∈ N, thus d ∈ D∞.

Proposition 3.1.3. Let a, b ∈ D∞, such that a𝑛 = 𝜋𝑛(𝐷, 𝑎) and b𝑛 = 𝜋𝑛(𝐷, 𝑏) for all
𝑛 ∈ N, then

a = b⇐⇒ a0 = b0.

Proof. If a = b, by Definition 3.1.5 we have a0 = b0. If 𝑎 = a0 = b0 = 𝑏, clearly
a𝑛 = 𝜋𝑛(𝐷, 𝑎) = 𝜋𝑛(𝐷, 𝑏) = b𝑛.

3.2 HIGHER FUNDAMENTAL GROUPS OF A C.P.O.

Next we show that every higher fundamental groupoids on any c.p.o. are trivial, particu-
larly those generated by 𝐷∞.

Lemma 3.2.1. Let 𝐷 be a c.p.o. with the Scott topology. If 𝐴 ̸= 𝐷 is an open, then
⊥/∈ 𝐴.

Proof. Let 𝐴 be an open from 𝐷. Suppose ⊥∈ 𝐴. Since 𝐷 is a c.p.o, then for all 𝑑 ∈ 𝐷
we have ⊥⊑ 𝑑. Since 𝐴 is final, ⊥∈ 𝐴 and ⊥⊑ 𝑑, then 𝑑 ∈ 𝐴. Thus 𝐴 = 𝐷, which is a
contradiction.

Theorem 3.2.1. If 𝐷 is a c.p.o. with the Scott topology, then 𝜋𝑛(𝐷, 𝑑) = {[𝑐𝑛(𝑑)]} for
all 𝑑 ∈ 𝐷 and 𝑛 ≥ 0.
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Proof. By Theorem 2.1.2, it is enough to check that 𝐷 is contractible, i.e., one has to
check that for the identity function 𝐼𝐷 : 𝐷 → 𝐷 there exists some constant function
𝑓𝑐 : 𝐷 → 𝐷 such that 𝑓𝑐 ≃ 𝐼𝐷. Consider the map 𝐻 : 𝐷 × [0, 1]→ 𝐷 defined by

𝐻(𝑥, 𝑡) =

⎧⎪⎨⎪⎩⊥ if 𝑡 = 0,

𝑥 if 𝑡 ∈ (0, 1]

and let us show that 𝐻 is a contraction from 𝐷. Clearly 𝐻( · , 0) = 𝑓⊥(·) and 𝐻( · , 𝑡) =
𝐼𝐷(·) if 𝑡 ∈ (0, 1]. Now take any open 𝐴 ̸= 𝐷, then

𝐻−1(𝐴) = {(𝑥, 𝑡) ∈ 𝐷 × [0, 1] : 𝐻(𝑥, 𝑡) ∈ 𝐴}

= ({𝑥 ∈ 𝐷 : 𝐻(𝑥, 0) =⊥∈ 𝐴} × {0}) ∪ ({𝑥 ∈ 𝐷 : 𝑥 ∈ 𝐴} × (0, 1])

= (∅ × {0}) ∪ (𝐴× (0, 1]) (by Lemma 3.2.1 ⊥/∈ 𝐴)

= 𝐴× (0, 1],

which is an open from 𝐷 × [0, 1], then 𝐻 is continuous. Thus 𝐻 is a contraction from
𝐷.

Definition 3.2.1 (Parallel paths). Two 𝑛-paths 𝑝 and 𝑞 based 𝑎, 𝑏 ∈ 𝐷 are parallel if
for each 𝑟 = 1 . . . , 𝑛− 1 satisfies

1. 𝑝[𝑡1 = 0, . . . , 𝑡𝑟 = 0] = 𝑞[𝑡1 = 0, . . . , 𝑡𝑟 = 0],

2. 𝑝[𝑡1 = 1, . . . , 𝑡𝑟 = 1] = 𝑞[𝑡1 = 1, . . . , 𝑡𝑟 = 1].

Corollary 3.2.1. If 𝑝 and 𝑞 are parallel 𝑛-paths based 𝑎, 𝑏 ∈ 𝐷∞, then 𝑝 =ℎ 𝑞.

Proof. Since 𝑝 and 𝑞 are parallel, we have

𝑝[𝑡1 = 1, . . . 𝑡𝑛−1 = 1] = 𝑞[𝑡1 = 1, . . . , 𝑡𝑛−1 = 1] = 𝑞[𝑡1 = 0, . . . , 𝑡𝑛−1 = 0],

by definition of product

(𝑝 *0 𝑞)[𝑡1, . . . , 𝑡𝑛−1] = 𝑝[𝑡1, . . . , 𝑡𝑛−1] *0 𝑞[𝑡1, . . . , 𝑡𝑛−1]

where
(𝑝 *0 𝑞)[𝑡1, . . . , 𝑡𝑛−1](0) = 𝑝[𝑡1, . . . , 𝑡𝑛−1](0) = 𝑎,

(𝑝 *0 𝑞)[𝑡1, . . . , 𝑡𝑛−1](1) = 𝑞[𝑡1, . . . , 𝑡𝑛−1](1) = 𝑎,

for each 𝑡1, . . . , 𝑡𝑛−1 ∈ [0, 1].

Then (𝑝*0𝑞)[𝑡1, . . . , 𝑡𝑛−1] is a 1-path closed in 𝑎 for all 𝑡1, . . . , 𝑡𝑛−1 ∈ [0, 1]. By Theorem
3.2.1, it has (𝑝 *0 𝑞)[𝑡1, . . . , 𝑡𝑛−1] =ℎ 𝑐(𝑎) = 𝑐𝑛(𝑎)[𝑡1, . . . , 𝑡𝑛−1] for each 𝑡1, . . . , 𝑡𝑛−1 ∈
[0, 1], where 𝑐(𝑎) is the constant path in 𝑎, i.e., 𝑐(𝑎)(𝑡) = 𝑎 for each 𝑡 ∈ [0, 1], and
𝑐𝑛(𝑎)[𝑡1, . . . , 𝑡𝑟] = 𝑐𝑛−𝑟(𝑎). Thus 𝑝 *0 𝑞 =ℎ 𝑐

𝑛(𝑎), so it 𝑝 =ℎ 𝑞.
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Notation 3.2.1. Write Π𝑛(𝐷∞, 𝑎, 𝑏) for the 𝑛-groupoid (weak) of 𝑛-paths based at 𝑎, 𝑏 ∈
𝐷∞. And write Π∞(𝐷∞, 𝑎, 𝑏) for the globular set

· · ·⇒𝑠
𝑡 Π𝑛(𝐷∞, 𝑎, 𝑏)⇒𝑠

𝑡 Π𝑛−1(𝐷∞, 𝑎, 𝑏)⇒𝑠
𝑡 · · ·⇒𝑠

𝑡 Π1(𝐷∞, 𝑎, 𝑏)⇒𝑠
𝑡 Π0(𝐷∞, 𝑎, 𝑏),

where 𝑠(𝑝) := 𝑝[𝑡1 = 0] and 𝑡(𝑝) := 𝑝[𝑡1 = 1].

Therefore, by the Corollary 3.2.1 the n-groupoid Π𝑛(𝐷∞, 𝑎, 𝑏) is trivial for each 𝑛 ≥ 0,
i.e., under the intensional equal =ℎ only there is one parallel n-path which inhabits into
Π𝑛(𝐷∞, 𝑎, 𝑏). Since 𝐷∞ is connected by paths, given 𝑎′, 𝑏′ ∈ 𝐷∞ holds that Π𝑛(𝐷∞, 𝑎, 𝑏) ∼=
Π𝑛(𝐷∞, 𝑎

′, 𝑏′). Thus any n-groupoid Π𝑛(𝐷∞, 𝑎, 𝑏) can be written simply as Π𝑛(𝐷∞).

On other hand, note that if 𝑎 = 𝑏 then the 𝑛-groupoid Π𝑛(𝐷∞, 𝑎, 𝑏) = Π𝑛(𝐷∞, 𝑎, 𝑎) :=
Π𝑛(𝐷∞, 𝑎) is contained in the 𝑛-group 𝜋𝑛(𝐷∞, 𝑎) for each 𝑛 ≥ 0. So the fundamental ∞-
groupoid Π∞(𝐷∞, 𝑎) contains to the fundamental ∞-group 𝜋∞(𝐷∞, 𝑎).

3.3 THE 𝜆 MODEL D∞ AND ITS FUNDAMENTAL ∞-GROUPOID

According to Definition 3.1.5, let D∞ be the∞-groupoid generated by the c.p.o. 𝐷∞ with
the Scott topology. By Proposition 3.1.2 we have that for each d ∈ D∞ there is 𝑑 ∈ 𝐷∞

such

d = ⟨𝜋0(𝐷∞, 𝑑), 𝜋1(𝐷∞, 𝑑), 𝜋2(𝐷∞, 𝑑), . . .⟩

= ⟨{𝑑}, {[𝑐(𝑑)]}, {[𝑐2(𝑑)]}, . . .⟩
∼= ⟨[𝑑], [𝑐(𝑑)], [𝑐2(𝑑)], . . . , ⟩ ∈ 𝜋∞(𝐷∞, 𝑑) (by Definition 3.1.5).

Therefore D∞(𝑑) ∼= 𝜋∞(𝐷∞, 𝑑) (isomorphism of groups). Other interpretation by
Definition 2.4.12, Theorem 3.2.1 and Remark 2.1.2, we have that 𝜋0(𝐷∞, 𝑑) = 𝑑 =
⟨𝑑0, 𝑑1, 𝑑2, . . . ⟩, 𝜋1(𝐷∞, 𝑑) ∼= {𝑐𝑑}, 𝜋2(𝐷∞, 𝑑) ∼= {𝑐𝑐𝑑

}, . . . . Thus, according to Definition
3.1.5 each d ∈ D∞ can be seen as the infinite matrix

d ∼= ⟨𝑑, 𝑐𝑑, 𝑐𝑐𝑑
, . . .⟩ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑0 𝑐𝑑0 𝑐𝑐𝑑0
· · ·

𝑑1 𝑐𝑑1 𝑐𝑐𝑑1
· · ·

𝑑2 𝑐𝑑2 𝑐𝑐𝑑2
· · ·

... ... ... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Definition 3.3.1 (Application in D∞). For a, b ∈ D∞ such that a𝑛 = 𝜋𝑛(𝐷∞, 𝑎) and
b𝑛 = 𝜋𝑛(𝐷∞, 𝑏), define the product 𝜋𝑛(𝐷∞, 𝑎) with 𝜋𝑛(𝐷∞, 𝑏) as

𝜋𝑛(𝐷∞, 𝑎) ∙ 𝜋𝑛(𝐷∞, 𝑏) := 𝜋𝑛(𝐷∞, 𝑎 ∙ 𝑏),

so the application of a to b in D∞ as the infinite sequence

a ∙ b = ⟨a0 ∙ b0, a1 ∙ b1, a2 ∙ b2, . . .⟩ = ⟨𝑎 ∙ 𝑏, 𝜋1(𝐷∞, 𝑎 ∙ 𝑏), 𝜋2(𝐷∞, 𝑎 ∙ 𝑏), . . .⟩ .
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Theorem 3.3.1. ⟨D∞, ∙⟩ ∼= ⟨𝐷∞, ∙⟩. So ⟨D∞, ∙⟩ is an extensional 𝜆-model.

Proof. It is enough to show that the mapping 𝐹 : ⟨𝐷∞, ∙⟩ → ⟨D∞, ∙⟩ such that (𝐹 (𝑎))𝑛 =
𝜋𝑛(𝐷∞, 𝑎) for each 𝑛 ∈ N, is an isomorphism.

(𝐹 (𝑎) ∙ 𝐹 (𝑏))𝑛 = (𝐹 (𝑎))𝑛 ∙ (𝐹 (𝑏))𝑛
= 𝜋𝑛(𝐷∞, 𝑎) ∙ 𝜋𝑛(𝐷∞, 𝑏)

= 𝜋𝑛(𝐷∞, 𝑎 ∙ 𝑏)

= (𝐹 (𝑎 ∙ 𝑏))𝑛 ,

for all 𝑛 ∈ N. This is 𝐹 (𝑎) ∙ 𝐹 (𝑏) = 𝐹 (𝑎 ∙ 𝑏).

𝐹 is injective. Let 𝐹 (𝑎) = 𝐹 (𝑏), by Proposition 3.1.3 we have

𝑎 = (𝐹 (𝑎))0 = (𝐹 (𝑏))0 = 𝑏.

𝐹 is surjective. Let a ∈ D∞, then we have a0 = 𝑎 for some 𝑎 ∈ 𝐷∞. Thus 𝐹 (𝑎) = a.

Next we will study the topological structure of D∞ and its relation with 𝐷∞.

Definition 3.3.2 (Partial order in D∞). For each a and b in D∞ define the partial
order in D∞ as

a ⊑ b⇐⇒ 𝑎 ⊑ 𝑏,

where a𝑛 = 𝜋𝑛(𝐷∞, 𝑎) and b𝑛 = 𝜋𝑛(𝐷∞, 𝑏) for each 𝑛 ≥ 0.

Theorem 3.3.2. ⟨D∞,⊑⟩ ∼= ⟨𝐷∞,⊑⟩. So ⟨D∞,⊑⟩ is a c.p.o. and the quotient topology
on D∞ is exactly the Scott topology.

Proof. By the bijection 𝐹 : 𝐷∞ → D∞ of proof Theorem 2.3.2 one can easily see it is
the isomorphism between both partial orders. So ⟨D∞,⊑⟩ is a c.p.o., since 𝐹 (⊥) is the
least element in D∞, and give a directed set 𝑋 in D∞ we have that 𝐹−1(𝑋) is directed in
𝐷∞ then ⨆︀

𝑋 = 𝐹 (⨆︀
𝐹−1(𝑋)). On the other hand, the quotient topology on D∞ of map

𝐹 : ⟨𝐷∞, 𝜏𝑆𝑐𝑜𝑡𝑡⟩ → D∞ is given by

𝜏𝐹𝐷∞ = {𝑋 ⊆ D∞ : 𝐹−1(𝑋) ∈ 𝜏𝑆𝑐𝑜𝑡𝑡}.

Clearly the Scott topology 𝜏 ′
𝑆𝑐𝑜𝑡𝑡 is contained in 𝜏𝐹𝐷∞ , since the map 𝐹 : ⟨𝐷∞, 𝜏𝑆𝑐𝑜𝑡𝑡⟩ →

⟨D∞, 𝜏
′
𝑆𝑐𝑜𝑡𝑡⟩ is continuous, i.e., 𝐹 (⨆︀

𝑋) = ⨆︀
𝐹 (𝑋) for each directed set 𝑋 in 𝐷∞. Given

𝑋 ∈ 𝜏𝐹𝐷∞ , so 𝐹−1(𝑋) is final and inaccessible by directedness, thus 𝐹 (𝐹−1(𝑋)) = 𝑋 is
final and inaccessible by directedness. Therefore 𝜏𝐹𝐷∞ = 𝜏 ′

𝑆𝑐𝑜𝑡𝑡.
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3.4 INTERPRETATION OF 𝛽-EQUALITY PROOFS IN 𝐷∞

In 𝜆-calculus we have that two 𝜆-terms 𝑀 and 𝑁 are 𝛽-equal, 𝑀 =𝛽 𝑁 , if there is a
sequence of 𝜆-terms 𝑁1, 𝑁2,. . . ,𝑁𝑛 such that

(∀𝑖 ≤ 𝑛− 1)(𝑁𝑖 B1𝛽 𝑁𝑖+1 𝑜𝑟 𝑁𝑖+1 B1𝛽 𝑁𝑖 𝑜𝑟 𝑁𝑖 ≡𝛼 𝑁𝑖+1),

where 𝑁1 = 𝑀 and 𝑁𝑛 = 𝑁 . Thus the equality of the theory 𝜆𝛽 can be seen as an
intensional equality, in the sense that the chain

𝑀 = 𝑁0 =𝛽 𝑁1 =𝛽 · · · =𝛽 𝑁𝑛 = 𝑁,

it would be a proof 𝑃 of equality 𝑀 =𝛽 𝑁 , which can be interpreted in some topo-
logical model ⟨𝐷, ∙, J K⟩ as a continuous path 𝑝 : J𝑀K  J𝑁K which passes through the
intermediate points J𝑁1K, J𝑁2K . . . , J𝑁𝑛−1K. Then we could ask ourselves if given two 1-
proofs 𝑃 and 𝑄 of equality 𝑀 =𝛽 𝑁 , in space 𝐷 is there a homotopy (2-path) between the
paths 𝑝 := J𝑃 K and 𝑞 := J𝑄K?. Now if we have some intensional definition (with relation
to 𝐷) of 𝐷-equality between the proofs of equality 𝑃 and 𝑄 such that its interpretation
into 𝐷 is a homotopy from 𝑝 to 𝑞, we could ask again if for the 2-proofs 𝐹 and 𝐺 of the
equality 𝑃 =𝐷 𝑄 is there a homotopy of homotopies (3-path) between the homotopies
𝑓 := J𝐹 K and 𝑔 := J𝐺K? And so on, we can continue asking with the purpose of forming
from model topology 𝐷 a ∞-groupoid structure in 𝜆-calculus.

We have that 𝐷∞ is an topological 𝜆-model, but its topological structure does not
allow to capture relevant information about equality between higher proofs at 𝜆-calculus,
since the ∞-groupoid generated by 𝐷∞ is trivial. The reason is that any proof 𝑃 of
equality 𝑀 =𝛽 𝑁 given by the chain

𝑃 : 𝑀 = 𝑁0 =𝛽 𝑁1 =𝛽 · · · =𝛽 𝑁𝑛 = 𝑁,

would be interpreted by some path 𝑝 : J𝑀K J𝑁K that passes through the intermediate
points J𝑁1K, . . . , J𝑁𝑛−1K, but all these points are equal in space 𝐷∞, i.e.,

𝑝 : J𝑀K = J𝑁0K = J𝑁1K = · · · = J𝑁𝑛K = J𝑁K.

Therefore the interpretation of proof 𝑃 is some closed path 𝑝 : J𝑀K J𝑀K, we wrote
such interpretation as J𝑃 K := 𝑝. Since 𝜋1(𝐷∞, J𝑀K) is trivial by Theorem 3.2.1, then 𝑝 is
homotopically equal to the constant path 𝑐(J𝑀K), i.e., 𝑝 =ℎ 𝑐(J𝑀K). Now given any other
proof

𝑄 : 𝑀 = 𝑁 ′
0 =𝛽 𝑁

′
1 =𝛽 · · · =𝛽 𝑁

′
𝑛 = 𝑁,

of equality 𝑀 =𝛽 𝑁 , with interpretation J𝑄K = 𝑞, by Corollary 3.2.1 we have 𝑝 =ℎ 𝑞,
so we could assert that 𝑃 =𝐷∞ 𝑄 (see Figure 7). Thus the class of all the proofs of any
equality is trivial with respect to 𝐷∞.



40

Figura 7 – Interpretation of equal proofs 𝑃,𝑄 : (𝑀 =𝛽 𝑁) on 𝐷∞.

Sink: The author (2020)

If we continue at the next level, i.e., given any 2-proofs 𝐹 and 𝐺 of equality 𝑃 =𝐷∞ 𝑄,
we have that the interpretation of 𝐹 and 𝐺 is given for some pair of homotopies (2-paths)
𝑓, 𝑔 : 𝑝  𝑞, where 𝑝, 𝑞 : J𝑀K  J𝑀K, by Corollary 3.2.1 it has 𝑓 =ℎ 𝑔 thus 𝐹 =𝐷∞ 𝐺.
Therefore the class of all 2-proofs of any proof equality 𝑃 =𝐷∞ 𝑄 is also trivial.

A better way to study the intentionality of equality =𝛽 would be to set aside the set
equality of the Definition 2.3.6 and opt rather for homotopic models (or some homotopy
variation) defined below.

Definition 3.4.1 (Homotopic 𝜆-model). A homotopic 𝜆-model is a triple ⟨𝐷, ∙, J K⟩,
where 𝐷 is a topological space, ∙ : 𝐷×𝐷 → 𝐷 is a binary operation and J K is a mapping
which assigns, to 𝜆-term 𝑀 and each assignment 𝜌 : 𝑉 𝑎𝑟 → 𝐷, an element J𝑀K𝜌 of 𝐷
such that

(a ) J𝑥K = 𝜌(𝑥);

(b ) J𝑃𝑄K𝜌 = J𝑃 K𝜌 ∙ J𝑄K𝜌;

(c ) J𝜆𝑥.𝑃 K𝜌 ∙ 𝑑 =ℎ J𝑃 K[𝑑/𝑥]𝜌 for all 𝑑 ∈ 𝐷;

(d ) J𝑀K𝜌 = J𝑀K𝜎 if 𝜌(𝑥) = 𝜎(𝑥) for 𝑥 ∈ 𝐹𝑉 (𝑀);

(e ) J𝜆𝑥.𝑀K𝜌 = J𝜆𝑦.[𝑦/𝑥]𝑀K𝜌 if 𝑦 /∈ 𝐹𝑉 (𝑀);

(f ) if (∀𝑑 ∈ 𝐷)
(︁
J𝑃 K[𝑑/𝑥]𝜌 = J𝑄K[𝑑/𝑥]𝜌

)︁
, then J𝜆𝑥.𝑃 K𝜌 = J𝜆𝑥.𝑄K𝜌.

The homotopic model ⟨𝐷, ∙, J K⟩ is an extensional homotopic model if it satisfies the ad-
ditional property: J𝜆𝑥.𝑀𝑥K𝜌 =ℎ J𝑀K𝜌 with 𝑥 /∈ 𝐹𝑉 (𝑀).

To solve the triviality problem of proofs interpretation on 𝐷∞, we would have to
propose a 𝜆-homotopic model 𝐷 with another topology, for which must there exist two
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proofs 𝑃,𝑄 : (𝑀 =𝛽 𝑁) whose interpretations are not homotopically equal, 𝑝 ̸=ℎ 𝑞 (of
course there must also be different equality proofs whose interpretations are homotopically
equal), as can be seen in the Figure 8. It would allow us to capture more information
about the multiple 𝛽-contractions and reverse 𝛽-contractions of an equality proof than a
traditional model based on extensional equality between sets.

Figura 8 – Proofs 𝑃,𝑄 : (𝑀 =𝛽 𝑁) on an homotopic 𝜆-model 𝐷.

Sink: The author (2020)

On other hand, if we forget the homotopies between continuous paths in 𝐷∞ (or
D∞) and consider simply extensional equality between functions, we could define the
interpretation of the equality proof 𝑃 : 𝑀 = 𝑁0 =𝛽 · · · =𝛽 𝑁𝑛 = 𝑁 as a concatenation of
continuous paths

𝑝 := 𝑟1 * 𝑟2 * 𝑟3 * · · · * 𝑟𝑛,

where each continuous path 𝑟𝑖 : [0, 1]→ 𝐷∞ is given by

𝑟𝑖(𝑡) :=

⎧⎪⎨⎪⎩𝑎 if 𝑡 ∈ [0, 1/2) ∪ (1/2, 1],

⊥ if 𝑡 = 1/2

with 𝑎 = J𝑀K = J𝑁1K = · · · = J𝑁𝑛K = J𝑁K. We write the interpretation of 𝑃 in 𝐷∞ as
J𝑃 K := 𝑝 and each 𝑟𝑖 is called a time period, thus we say that 𝑝 consists of 𝑛 time periods
and is written as 𝑡(𝑝) = 𝑛.

Now if we have another proof of equality 𝑄 : 𝑀 = 𝑁 ′
0 =1𝛽 · · · =1𝛽 𝑁

′
𝑚 = 𝑁 whose

interpretation would be
𝑞 := 𝑟1 * 𝑟2 * 𝑟3 * · · · * 𝑟𝑚,

where it is clear that 𝑡(𝑞) = 𝑚. So we say that the equality proofs 𝑃,𝑄 : 𝑀 =𝛽 𝑁 are
equal according to model 𝐷∞, noted by if their respective interpretations are equal in the
traditional sense of set theory, i.e.,

𝑃 =𝐷∞ 𝑄⇐⇒ 𝑝 = 𝑞,
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thus we would have
𝑃 =𝐷∞ 𝑄⇐⇒ 𝑡(𝑝) = 𝑡(𝑞).

Thus we have that two proofs 𝑃 and 𝑄 of 𝑀 =𝛽 𝑁 are “equal” if they require at same
time to complete the proof or else, if 𝑃 and 𝑄 are sequences of the same length.

Although the extensional equality 𝑝 = 𝑞 manages to capture information about the
length of the 𝑃 and 𝑄 proofs in 𝜆-calculus, the nature of its extensionality does not allow
to capture more information about the 2-proofs of proof equality: 𝑃 =𝐷∞ 𝑄, since there
is only one canonical way to prove 𝑃 =𝐷∞ 𝑄, so the generated ∞-groupoid by =𝐷∞ it
would be trivial for 2-equality, 3-equality and so on.
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4 CONCLUSIONS

This section aims to present the final considerations on the main topics covered in this
thesis, including the contributions achieved and indications for future work.

4.1 CONTRIBUTIONS

Starting from any topological space that models 𝜆-calculus, we propose a method to build
an∞-groupoid that also models 𝜆-calculus. This construction was applied to a particular
c.p.o. with the Scott topology, resulting in a constant cell infinite sequences set, where
each cell sequence is naturally isomorphic to a constant higher paths infinite matrix.

4.2 FUTURE WORKS

The next step would be to see the implications of the ∞-groupoid constructed in this
work, in the theory of extensional 𝜆-calculus, particularly in its syntax; in what refers to
the “equality” between two equality proofs of two 𝜆-terms, “equality” between proofs of
equality proofs, and so on.

We can also apply this construction of∞-groupoids for other lambda models that are
endowed with a topological structure, to see their consequences in the syntax of “equality”
proofs in lambda calculus.

With a little more difficulty, we could try to build homotopic 𝜆-model in order to
avoid trivialities in the fundamental ∞-groupoid associated with the topology of the
model, which would allow to capture relevant information about the higher equality proof
in the 𝜆-calculus syntax.
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