‘&-ntro .
&demformatlca

Pos-Graduacdo em Ciéncia da Computacao

Pedro Henrique Dreyer Leuchtenberg

Time Aware Sigmoid Optimization: A New Learning Rate Scheduling Method

L=g
e~

¢

®

S

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
http://cin.ufpe.br /~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Pedro Henrique Dreyer Leuchtenberg

Time Aware Sigmoid Optimization: A New Learning Rate Scheduling Method

A M.Sc. Dissertation presented to the Centro de
Informaticaof Universidade Federal de Pernam-
buco in partial fulfillmentof the requirements for
the degree of Master of Science inComputer Sci-
ence.

Concentration Area: Computational Intelli-
gence

Advisor: Cleber Zanchettin

Co-Advisor: David Macédo

Recife
2019

Catalogagéao na fonte
Bibliotecaria Mariana de Souza Alves CRB4-2105

L652t Leuchtenberg, Pedro Henrique Dreyer.
Time Aware Sigmoid Optimization: a new learning rate scheduling method/ Pedro
Henrique Dreyer Leuchtenberg. — 2019.
61 f..il., fig.

Orientador: Cleber Zanchettin.
Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin, Ciéncia da
Computacgédo. Recife, 2019.
Inclui referéncias.

1. Inteligéncia computacional. 2. Aprendizagem de maquinas. 3. Redes neurais
profundas. 4. Taxa de aprendizado. |. Zanchettin, Cleber (orientador). Il. Titulo.

006.31 CDD (22. ed.) UFPE-CCEN 2020-149

Pedro Henrique Dreyer Leuchtenberg

“Time Aware Sigmoid Optimization: A New Learning Rate
Scheduling Method”

Dissertagdo de Mestrado apresentada ao
Programa de Pds-Graduacdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtengdo do titulo de Mestre em Ciéncia da
Computagdo.

Aprovado em: 6 de setembro de 2019.

BANCA EXAMINADORA

Prof. Dr. Adriano Lorena Inacio Oliveira
Centro de Informatica/UFPE

Profa. Dra. Aida Arauajo Ferreira
Instituto Federal de Pernambuco/Campus Recife

Prof. Dr. Cleber Zanchettin
Centro de Informatica / UFPE
(Orientador)

ACKNOWLEDGEMENTS

To my mother, who always supported me in every single aspect. Your constant kindness
and goodwill gave me the strength to finish this Masters Degree.

To Cleber, my advisor, who was always available. Thanks for not giving up on me;
you deserved a better student.

To David, my co-advisor, thanks for your enthusiasm. No matter the results, you were
always interested in discussing it and coming up with new ideas.

To my grandmother, sister, co-workers in GPRT, and all other people I had daily
contact. Thanks for all the help during the last two and a half years.

ABSTRACT

The correct choice of hyperparameters for the training of a deep neural network is a
critical step to achieve a good result. Good hyperparameters would give rise to faster train-
ing and a lower error rate, while bad choices could make the network not even converge,
rendering the whole training process useless. Among all the existing hyperparameters,
perhaps the one with the greatest importance is the learning rate, which controls how the
weights of a neural network are going to change at each interaction. In that context, by
analyzing some theoretical findings in the area of information theory and topology of the
loss function in deep learning, the author was able to come up with a new training rate
decay method called Training Aware Sigmoid Optimization (TASO), which proposes a
dual-phase during training. The proposed method aims to improve training, achieving a
better inference performance in a reduced amount of time. A series of tests were done to
evaluate this hypothesis, comparing TASO with different training methods such as Adam,
ADAGrad, RMSProp, and SGD. Results obtained on three datasets (MNIST, CIFAR10,
and CIFAR100) and with three different architectures (Lenet, VGG, and RESNET) have
shown that TASO presents, in fact, an overall better performance than the other evaluated

methods.

Keywords: Machine learning. Deep neural networks. Learning rate.

RESUMO

A correta escolha dos hiper-parametros para o treinamento de uma rede neural pro-
funda é um passo essencial para obter um bom resultado. Bons hiper-parametros vao
levar a um treinamento rapido e a uma menor taxa de erro, enquanto que escolhas ruins
podem fazer a rede nao convergir, inutilizando todo o processo de treinamento. Dentre
todos os hiper-parametros existentes, talvez o mais critico seja a taxa de aprendizagem,
que irad controlar a magnitude com qual os pesos da rede neural irda atualizar em cada
interacdo. Nesse contexto, esse trabalho avaliou um novo método de mudanca na taxa
de aprendizagem denominado Training Aware Sigmoid Optimization(TASO), que propde
uma fase dupla de treinamento. O método proposto tem como objetivo melhorar o treina-
mento, obtendo uma melhor inferéncia em um menor tempo decorrido. Uma série de testes
foi feitas de forma a validar essa hipotese, Comparando TASO com outros métodos de
treinamento mais comuns como Adam, ADAGrad, RMSProp, e SGD. Resultados Obtidos
em trés datasets (MNITS, CIFAR10, e CIFAR100) e trés diferentes arquiteturas (Lenet,
VGG, e RESNET) mostraram que TASO apresenta uma melhor performance do que os

outros métodos avaliados.

Palavras-chaves: Aprendizagem de maquinas. Redes neurais profundas. Taxa de apren-
dizado.

Figure 1 —
Figure 2 —

Figure 3 —
Figure 4 —

Figure 5 —
Figure 6 —

Figure 7 —
Figure 8 —
Figure 9 —
Figure 10 —
Figure 11 —
Figure 12 —
Figure 13 —
Figure 14 —
Figure 15 —

Figure 16 —

Figure 17 —

LIST OF FIGURES

Representation of how an image is interpreted by a computer. 15
[lustration on how a deep learning architecture receives a raw of pixel
inputs and construct higher-level concepts such as gradient, edges and
objects parts on each layer L. 17
Classical Perceptron’s representation 20
Visualization of the XOR problem. A perceptron is able to divide the
input space using a straight line. However, there is no straight line that
correctly divides the two different classes. 21
MLP fully connected structure. 22
Example of overfitting. The black dots are the measured training ex-

amples, the red line the real function and the black line the learned

function given by the neural network. 24
Convolutional Neural Network model. 25
Sigmoid and ReLU activation functions. 26

Example of how a gradient descent algorithm would find a minimum
of a function. 29
Example of how an algorithm using gradient descent would find a local
minimum of a function.o o oo 35
Plot of the training error of a critical point regarding its ratio of negative
eigenvalues in its Hessian matrix. 36
Example of how the hyperparameter choice can create a degenerate
case where the two-phase training is not well implemented. 38
Effects on hyperparameters changes on TASO with €; equal to 0.05, €
equal to 0.0025 and 100 total epochs. 39
Examples of the used datasets. 42
Comparison between the SGD algorithms training the VGG19 archi-
tecture in the CIFAR10 dataset. Solid lines are from the training set
and dashed lines from the test set. 46
Comparison between the best Adam algorithms for the CIFAR10 dataset
and VGG19 architecture. Solid lines are from the training set and
dashed lines from the test set. 48
Comparison between the best Rmsprop algorithms for the CIFAR10
dataset and VGG19 architecture. Solid lines are from the training set
and dashed lines from the test set. 50

Figure 18 — Comparison between the best set of hyperparameters for each algorithm
on the CIFAR10 dataset and VGG19 architecture. Solid lines are from
the training set and dashed lines from the test set.

Figure 19 — Comparison between the best set of hyperparameters for each algorithm
on the CIFARI10 dataset and VGG19 architecture for 25 epochs. Solid
lines are from the training set and dashed lines from the test set.

Figure 20 — Comparison between the best set of hyperparameters found in the
VGG19 architecture and CIFAR10 dataset. CIFAR100 dataset and
VGG19 architecture. Solid lines are from the training set and dashed

lines from the test set.

53

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table &8
Table 9

LIST OF TABLES

Different learning rates and type of moments tested for the SGD algo-
rithm. CIFAR10 dataset and VGG19 architecture. The moment is equal
to 0.9 for both non-Nesterov and Nesterov versions.
Different moments values test for SGD non-Nesterov algorithm. CI-
FARI10 dataset and VGG19 architecture. Learning rate equal to 0.05. . .
Different learning rates tested for the Adam Algorithm. CIFAR10 dataset
and VGG19 architecture.
Different Learning rates and centered parameter for the Rmsprop algo-
rithm. CIFAR10 dataset and VGG19 architecture.
Results of the tests for the Adagrad algorithm comparing multiple learn-
ing rates. CIFAR10 dataset and VGG19 architecture.

Comparison among multiple sets of hyperparameters of the TASO algo-

Results for each training algorithm using the best set of hyperparame-
ters. CIFAR10 dataset and VGG19 architecture.
Results of the best run of each algorithm for 25 epochs.
Results using the best hyperparameters found using the VGG19 archi-
tecture and CIFAR10 dataset. CIFAR100 dataset and VGG19 architec-

ture. . . . s

Table 10 — Results using the best hyperparameters found using the VGG19 archi-

tecture and CIFAR10 dataset. CIFAR10 dataset and Resnet18 architec-

ture. . ..o e

Table 11 — Results using the best hyperparameters found using the VGG19 archi-

tecture and CIFAR10 dataset. MNIST dataset and Lenet5 architecture.

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Network
CNN Convolutional Neural Network
CPU Central Processing Unit
MLP Multi-Layer Perceptron

MLP Graphics Processing Unit
NLP Natural Language Processing

TASO Training Aware Sigmoid Optimization

Vay

AGB

LIST OF SYMBOLS

Gradient of y with respect to x

Element-wise product of A and B

Loss function of x samples with # parameters
The i-th example from the dataset

The target associated with z(®

1.1
1.2

2.1
2.2

2.3
2.3.1
2.3.2
2.3.3
234
2.3.5
2.4
241
24.2
243
244
2441
2442
2443
245

4.1
4.2

4.3

4.4

4.5
45.1
4511
4512
4513
4514

CONTENTS

INTRODUCTION e e e e e e e e e e 14
OBJECTIVES e 18
DOCUMENT STRUCTURE 18
THEORETICAL BACKGROUND 20
NEURAL NETWORKS 20
GENERAL WORKING PRINCIPLES 23
DEEP LEARNING APPROACHES 25
Architectures 25
Activation Functions 26
Regularization oo 26
Data Normalization 27
Other improvements 27
TRAINING ALGORITHMS 28
Vannila Gradient Descent 29
Stochastic Gradient Descent 29
SGD with Momentum 30
Adaptive Learning Methodso 31
Adagrad 31
Rmsprop 32
Adam . . . 33
Second-Order Methods 33
PROPOSED METHOD i et e i e e e 35
EXPERIMENTS e e e e e e e e e 40
TRAINING ALGORITHMS o . 40
DATABASES 41
ARCHITECTURES 42
EXPERIMENT DESIGN 42
RESULTS 44
VGG10 and CIFAR10 44
SGD . . . 44
Adam L 47
Rmsprop 49

4515
45.1.6
4.5.2
453
4.5.4

Overall results 51
VGG19 and CIFAR100 54
RESNET18 and CIFAR10 55
MNIST and LENETS 55
CONCLUSION e e e e e e e e e e e e e e e e 56
FUTURE WORKS 56

REFERENCES e e e e e 58

14

1 INTRODUCTION

Humans like to automate things. We can probably describe any major invention and

technological advancement as basically as a way of automating something.

o Electric light? An "automation" of the process of creating light using fire.
o Telephones? An "automation" of the process of communication across long distances.

o Automobiles? An "automation" of the process of locomotion.

We may argue that one of the significant differences between the human race now and
from ten thousand years ago is how good we became in "automate" the different necessities
of our basic needs. However few things can be done today that could not be achieved by
humans with primitive technology. Of course, the amount of effort in some cases would
be gigantic, but possible nevertheless. Just look at the Egyptians pyramids, to see what
can be done using only very basic technology but quasi-infinite free human labor.

So, while in general terms automating things do not necessarily increase the bound-
aries of human achievements. In practical terms, this could not be further from the truth.
Automation makes several activities more accessible, faster, and safer, and sometimes,
the change brought forth is so massive that it can completely modify how human society
works. In reality, the automation of human activities is the driving force behind the most
considerable changes in the human way of life since pre-historic times. In the Neolithic
revolution, human society started to live in large settlements thanks to the advancements
of agriculture and animal husbandry, which can be thought of as automation of the ac-
tivities of hunting and gathering. Following that, we have the industrial revolution, which
automated human labor through the use of the steam engine. Even now, we are under-
taking a new revolution originated from the developments in automation — namely, the
advent of the electronic computer and how it can automate mental labor.

While the title of the first computer can be a topic of discussion (Does electromechan-
ical computers count? Does it need to be programmable? What about Turing Complete?)
the undeniable fact is that its advent made possible the automation of several high com-
plex calculation that would take several human counterparts with significant mathemat-
ical knowledge a considerate amount of time. One of the classic examples of this era is
the use of computers in the calculation of torpedoes trajectory in moving targets and
cryptography analysis of ciphered messages during the second world war.

The following years were accompanied by a great interest in the scientific community
on the new field of Artificial Intelligence (AI) (NEWELL; SIMON, 1956), (TURING, 1950),
which consists on the study on how to implement human-like reasoning in a computer. It

then became clear that computers and humans have a very different concept of complexity.

15

Remember the calculations made by the first computers mentioned above? While they
seemed complex to us, they can be easily described in a series of simple mathematical
equations and formal rules, which computers can readily calculate with high speed and
perfect repeatability. However, "simple" tasks done every day by humans independent of
specific domain knowledge, such as understanding spoken words and recognizing familiar
faces, were incredibly tricky for computers until very recently. Let us take a look at the
problem of image classification and the challenges one would have to tackle to create a
hard-coded algorithm to get some insight on the matter.

Computers interpret images as depicted in Figure 1. For them, images are nothing more
than a list of numbers representing luminosity intensity. The job of an image classification

algorithm is to, by using those values, output what exactly is being depicted.

Figure 1 — Representation of how an image is interpreted by a computer.

255] 255 255 255|255 | 255 | 255 255 | 255 | 255 | 255
255]1255(20 | O |255(255|255|255(255|255] 255

255(255| 75| 75 | 255 255] 255255 | 255 | 255 255

255(75| 95| 95 | 75 | 255] 255[255 | 255 255| 255

255 96 | 127 145| 175 255 255|255 | 255 | 255 255

2551127 [145|175 175|175 | 255|255 | 255 | 255 | 255
2551127145/ 200200175 175| 95 | 255 255|255

255|127 145[200)| 200175 175| 95 | 47 |255|255

255|127 (145(145|175(127 [127 | 95 | 47 |255|255

255| 74 (127|127 |127 | 95 | 95 | 95 | 47 | 255|255

255(255| 74 | 74 | 74 | 74 | 74 | 74 |255| 255|255

255] 255 255 255|255 [255 | 255 255 | 255 | 255 | 255

255|255 255 255|255 | 255 | 255 255 | 255 | 255 | 255
255|255 255] 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255

0 = black; 255 = white

Source:<http://edtech.engineering.utoronto.ca/files/2d-image-digital-representation>

Imagine how you would describe a cat to someone that never had seen such an animal
before. You could say that it is an animal with four legs, long tail, covered with soft fur,
and around half a meter in size. Seems pretty good, right? Now notice how many of those
characteristics could also apply to a dog. Practically all of them. So we need to be more
specific. We could mention that cats have long whiskers on their nose, that their head has
a more rounded shape, or that its legs are longer, and so on. It is hardly a simple task.
You could spend a whole day trying to explain what a cat looks like, and the other person
could still not be 100% confident of detecting a cat when seeing one. However, once this
person has seen a cat, subsequent identifications are going to be much easier. The person
has "learned", via real-world examples, what a cat looks like.

Now imagine doing all this, but instead of a person, you need to come up with a
cat identifier computer algorithm. Different than a human, a computer had no formal
definition of softness, roundness of any other characteristics. They do not even comprehend
underlying physical phenomena like changes of perceived size with distance, brightness,

shadows, and occlusion, to name a few. The only thing the computer has is the image

http://edtech.engineering.utoronto.ca/files/2d-image-digital-representation

16

representation with its pixels values, as shown in Figure 1. This is not a simple task. In
fact, until the last decade, robust image classification similar to human levels was unheard
of.

The problem was already mentioned. Computers only have the pixel values of the
image but have no other information. Somehow is up to the computer’s programmer
job to codify all those real-world constructs in a virtual machine that only interprets
0’s and 1’s. However, how one describes soft fur to a computer? Long whiskers? Or even
occlusion and shadow formation? There is not a definitive answer. For more than 40 years,
researchers try to come up with handcrafted features for doing image classification with
little success. Nevertheless, what if there is another way to build a cat classifier? Could
not computers learn by example, like humans, and thus making the job easier?

Machine Learning is a subset of Al that tries to come up with solutions by presenting
the computer with examples instead of relying on hard-coded solutions. Ideally, a machine
learning algorithm would receive a series of cat images, and "learn" how to identify cats
in subsequent images. While a fantastic principle, classical Machine Learning was not
the solution to every problem. It worked well with tabular data. On the other hand,
it struggled to deal with most problems that involved sensory input, such as computer
vision, natural language processing, and speech recognition. The thing was that the raw
input data was in a format too hard to be interpreted by the computer.

We were still dependent on creating handcrafted features. The difference now was
that machine learning algorithms could "learn" how much of its feature each class had.
For example, it could learn that cats have 0.8 soft fur and 0.9 head-roundness while dogs
are 0.3 soft fur and 0.4 head-roundness.

For many years feature engineering could be considered the principal bottleneck in the
field of machine learning. Most of the more successful models relied heavily on handcrafted
features to archive a good performance (GOODFELLOW; BENGIO; COURVILLE, 2016).

A possible solution for this problem is to have the machine learning algorithm itself
trying to come up with the best features possible, a strategy called representation learning.
While being a theoretically sound idea and being used in several areas of research, such
as data compression and image classification, representation learning strategies such as
dictionary learning were not as revolutionary as hoped.

It was only with the development of deep learning approaches that computers could
reliably automate the creation of consistently high-quality representation and achieve
inference performance close, or in most cases, higher than the features developed by human
domain experts. Figure 2 shows how a deep learning architecture creates hierarchical
features, increasing in complexity on each successive layer.

Nowadays, deep learning is being used in many different fields with amazing results.
Especially in areas that classical machine learning struggled historically. Image classifica-

tion and segmentation (BULO; PORZI; KONTSCHIEDER, 2017), speech recognition (SAON

17

Figure 2 — Illustration on how a deep learning architecture receives a raw of pixel inputs
and construct higher-level concepts such as gradient, edges and objects parts
on each layer

Qutput
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Source:(GOODFELLOW; BENGIO; COURVILLE, 2016)

et al., 2017) and Natural Language Processing (NLP) (DEVLIN et al., 2018) are all areas
where deep learning is state-of-the-art. However, while the results are auspicious, deep
learning has its obstacles. While the problem of feature engineering may be in the past,
we come up with new challenges, mainly the fields of architecture engineering and train-
ing optimization. Continued research and development are necessary to push further our
understanding of these topics, which hopefully will bring even more promising results.

Deep learning networks are composed of several parameters called weights, which will,
given the network input, produce a particular output. In other words, it is the weights
that will determine if a given architecture is going to identify, for example, cats, dogs, or
any other thing. Initially, the weights start in a random state, without much practical use.
However, by showing new examples to the network, we can tweak the values of the weights
in a process called "training". In simple terms, the training process is the following one:
For each input presented to the network, it will give an output. In supervised learning
cases, this output is then going to be compared to the expected result. The difference
between them is used to update the weights’ values in a manner that if the same input is
presented again, it will give an output closer to the expected value.

The training algorithm controls the details of how each weight parameter is going
to be updated. Similar to different algorithms in computer science, such as sorting or

graph search algorithms, there are multiple flavors of training algorithms. Each kind of

18

training algorithm has its particularities like aiming to be faster, easier to implement,
or promote a better inference performance. Most of the training algorithms have some
hyperparameters which will tune how training is going to proceed and, different from the
network parameters, are not changed throughout training but need to be set beforehand.
The selection of proper hyperparameters values is not a deterministic process being usually
guided by heuristics or past experiences.

A further particularity with all training algorithms is a hyperparameter called the
learning rate, which dictates how fast the values of the weights are changing during the
training process. While it seems to be a pretty simple issue, the correct tuning of the
initial learning rate and how it is going to vary thought the training is a very complex
problem. It is then, in the field of training optimization that this work tries to contribute.

Most training algorithms use a fixed training rate or vary it using a simple monotonic
decaying function. In that sense, a relevant question to ask would be if there was not any
better way to choose or decay the learning rate; one, not as simple as the already used
methods, but which at the cost of some complexity improve the inference performance of
the training process of a Deep Neural Network.

Following this line of thought and after some theoretical research and practical experi-
ments, it was hypothesized that by using a two-phase training, where each training phase
would focus on different optimization goals, we could see some improvement. Those stud-
ies and tests culminated with the proposal of a new learning rate decay method, created
by the author, called Training Aware Sigmoid Optimization (TASO). Moreover, as the
name implies, the learning rate is going to be varied following general sigmoid function,

used here to archive a smooth transition between the two distinct learning rates used.

1.1 OBJECTIVES

This work has as principal objective to evaluate a novel learning rate decay method Called
TASO, which aims to improve the overall training performance during deep learning tasks.
We evaluate the method comparing its results to more commonly used learning algorithms,
e.g., Adam, Rmsprop, and Adagrad.

A secondary objective is to analyze the process of hyperparameter selection in this

new method and evaluate different possible heuristic to guide future uses.

1.2 DOCUMENT STRUCTURE

This Document is structured in the following manner:

o In Chapter 2, we have the Theoretical Background, which presents concepts used
throughout the document, detailing the deep learning algorithm and its nuances.
There is also an explanation on topics such as architectures, activation and loss

functions, regularization, and training algorithms.

19

o Chapter 3 explain the Proposed Method, TASO, a type of learning rate schedule
that complements the SGD algorithm. It contains a mathematical definition of the

model, as well as an analysis of its hyperparameters and how to better select them.

o In Chapter 4, denominated Experiments, we have the reasoning behind the selec-
tion of databases and architectures and overall experiment design followed by the

results and discussion of the tests.

o Finally, in Chapter 5, there is the Conclusion where we discuss the overall results

and possible future works.

20

2 THEORETICAL BACKGROUND

2.1 NEURAL NETWORKS

While deep learning research started to get traction in the mid 2000s with the development
of (HINTON; OSINDERO; TEH, 2006) and (BENGIO et al., 2006). Much of its theoretical basis
comes from the field of Artificial Neural Network (ANN). ANN was developed during the
second half of the last century, and as its name implies, takes great inspiration from the
design of the human brain. The main idea behind ANN is that we have a series of units,
which are interconnected between themselves, and depending on the input received will
output a particular output. The ANN model tries to learn the mapping relation from the
input to the output based on statistical patterns of the input data.

In Figure 3, we can see the classical representation of one of the most used units called,
a perceptron, and some of its keys features, such inputs, weights, and activation function.
It is easy to see the parallel between this and the human brain, where the perception is
a single neuron, the weights represent the synapses and its strength, and the activation

function simulates the behavior of biological neurons.

Figure 3 — Classical Perceptron’s representation

Inputs Weights Net input Activation
function function

@ » output

Source:<https://sebastianraschka.com/Articles/2015_ singlelayer neurons.html>

While biological inspiration played a very important role during the earliest of ANN’s
research, it became clear that it was not enough to propel it forward. More specifically,
(MINSKY; PAPERT, 1969) proved that ANN’s designs used at the time could not come up
with a correct generalization of the XOR problem, as shown in Figure 4. This single result
was enough to practically put a halt in ANN research for more than a decade. It was only
with the advent of backpropagation (LINNAINMAA, 1976) and its overall recognition as a
useful tool with the work of (RUMELHART; HINTON; WILLIAMS, 1986) that the interest of
ANN'’s started to pick up again.

The most important consequence of the development of backpropagation was that it

made it possible to train a Multi-Layer Perceptron (MLP) networks. Different than the

https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

21

Figure 4 — Visualization of the XOR problem. A perceptron is able to divide the input
space using a straight line. However, there is no straight line that correctly
divides the two different classes.

.4
X X Y 1“
00 0 o .’
0o 1 1 i .
1 0 1 i
1 1 o I
Y = X1 ®BXe
L W
\ o+
DT L. 1

Source:<http://www.ece.utep.edu/research /webfuzzy />

previous design, which has only an input and output layer, those new kinds of networks
could have any number of arbitrary "hidden" layers. The results of employing more layers
were immediate. Not only the new networks could solve the XOR problem, but it could
also, theoretically, solve any other possible problem. This result is known as the Universal
approximation theorem (CYBENKO, 1989), which in formal terms state that a multi-layer
perceptron network with at least one hidden layer and a finite number of neurons can
approximate any continuous function to any degree of precision.

However, while backpropagation was an essential tool for ANN’s, it not biological
feasible (HUNSBERGER; ERIC, 2018). Meaning it cannot be considered a model on how our
brains work. While for some researches (mainly in the area of computational neuroscience
which studies how the brain works in an algorithmic level), this meant that ANN’s were
becoming not so much an interesting line of work for most of the scientific community it
was a very welcomed addition. From this time on, biological inspirations and feasibility
became more an afterthought than actually guiding principles.

From the development of backpropagation in the 80’s, neural networks got quite a
lot of traction as being one of the most researched topics in Machine Learning. But by
the early 2000’s it was clear that while multi-layer perceptrons were far from being able
to achieve the kinds of results that the Universal Approximation Theorem stated. The
problem was that, while a multi-layer neural network could approximate any arbitrary
function most of the time, it was not possible to train it to reach the desired result. Let
us look at the problem of image classification using classical multi-layer perceptrons to
understand the issue better.

In the classic architecture of MLP’s, every subsequent layer is fully connected to

the previous one, as shown in Figure 5. In this Figure, we have six inputs, nine hidden

http://www.ece.utep.edu/research/webfuzzy/

22

units, and four outputs, thus giving us 90 weight parameters. Imagine now dealing with
a 1,000x1,000 image and a hidden layer with one million neurons. Suddenly, we have 10!
parameters that need to be adjusted the represent the input/output mapping. Considering
that a 16-byte float point number represents each weight, we would need 16 terabytes only
to hold its values. Even if space were not a problem, such a massive network would need

a massive amount of data to be appropriately trained and to avoid underfitting.

Figure 5 — MLP fully connected structure.

hidden layer

Source: <https://bit.ly/20Ni525>

One way to mitigate this problem is to use multiple hidden layers instead of one.
Deeper architectures are intrinsically more efficient than shallow ones (PASCANU; MONT-
UFAR; BENGIO, 2013), so we would need less hidden units and consequently fewer param-
eters. Deep architectures would also be preferred since they could theoretically build up
knowledge in a hierarchical fashion, as shown in Figure 2. Unfortunately, MLP models
with multiple hidden layers suffer a problem called vanishing gradients (KREMER, 2001),
where the backpropagation algorithm stops doing significant updates to the weight for
each subsequent layer away from the output. This problem effectively stops the training
process.

Those problems made MLP’s very limited on the kind of problem they could solve. It
functioned as a novel machine learning model in the 80’s, but one that appeared to face
similar issues as other machine learning methods (still depending on feature engineering,
for example). By the early 2000’s the MLP approach was already being surpassed by
more newer developments such as Support Vector Machines (CORTES; VAPNIK, 1995) and
random forests (BREIMAN, 2001).

https://bit.ly/2ONi52S

23

Note that while there were different types of architectures of ANN’s the rest of this
work will focus on the ones presented so far, namely the MLP (also called feedforward

networks) and its deep learning equivalents.

2.2 GENERAL WORKING PRINCIPLES

In general terms a neural network is a model that try to approximate an arbitrary function
of the format y = f(x) by an approximate function 3y’ = f'(z,w), with y ~ 3. On those
equations, x represents the inputs, and w is the network parameters (also called weights
and bias). In the beginning, the parameters are initialized from a random distribution,
which makes f’ pretty different than f. The job of the network is to update its parameters
using as a basis the available problem information data.

Every time a data sample is presented to the network, it will output a value. The
network compares its output with the correct output using something called the loss
function, which will quantify how ’wrong’ our network output is from the desired one.
There are different types of loss functions for different types of problems. For classification,
the most used is the cross-entropy loss. The network will then calculate the gradient of
the loss function concerning the weights of the previous layer. Thus, giving a general
magnitude and direction that each weight must change to minimize the loss function.
Finally, the backpropagation algorithm is used to calculate the gradient of the loss function
to each subsequent layer. The weights are then updated, multiplying the value of the
gradient by a scalar named the learning rate, which will dictate how fast the parameters
are going to change. Once all weights are updated, one full interaction of the learning
algorithm is done. Usually, thousands of those interactions are going to be needed to
train a network properly.

While the minimization of the loss function is the primary goal of the network, it
cannot follow this goal blindly. Most machine learning models could, if tweaked to do
so, have an output that would perfectly match the desired output of the training data.
However, as we are going to see, the resulting model would probably fare rather poorly
when presented with new data that was not used during training. Just imagine a case
where we would like to develop a model that would determine the volume of a cube given

1 We could measure the cube side with a ruler and its

the length of one of its sides
volume with water, for example. Since we are getting real-world measures, there is bound
to be some measurement error. So, for example, instead of measuring a side of 2cm and a
volume of 2cm? we could obtain a side of 2.1cm and a volume of 1.95¢m?. An unrestricted
neural network would become a direct mapping between the training data inputs and the
desired output. Instead of "learning" that the volume of a cube is equal it is side length

to the cube, it would come up with a much rather complex function, unrelated to the

1 While this is an elementary problem which we know how to solve analytically, it is useful as a toy

example

24

real world, but which would give perfect results on the training data. Figure 6 gives a

visualization of what it would look like.

Figure 6 — Example of overfitting. The black dots are the measured training examples,
the red line the real function and the black line the learned function given by
the neural network.

y

(B)

Test error

\

Training error

X Complexity
Source: <https://puntomedionoticias.info/album/overfitting-large-dataset.htm>

In Figure 6 the available data points are the dots, the red line represents the real
function, and the black is the function outputted by the network. Note that the black line
passes perfectly across all the data points. On the other hand, it behaves erratically in
every other place. Now, instead of training the network with all the data available, what
if we divide it beforehand and only use part of it for training? In this case, we could use
the remaining data points only to test our network, and see how well it is generalizing
new inputs. Those two datasets are an integrating part of any machine learning algorithm
and are known as training and test datasets. The objective of machine learning is then
to minimize both the error of the test and training sets. When both errors are high, the
network is underfitting, while when the training error is low, and the test error is high,
the network is in overfitting.

While we have seen that it is not desirable to either underfit or overfit, and it is possible
to verify that one or the other is happening by comparing the training the test error, what
can be done to reduce its occurrence? As depicted in Figure 6, overfitting and underfitting
are correlated to the complexity of the machine learning model. Simple models tend to
underfit, while overcomplex models tend to overfit. In the case of neural networks, the
model complexity is related to its architecture, weight values, and the number of training
interactions. So, normally, to prevent underfitting, we need to pick a capable enough
architecture (in the XOR case, one that has at least one hidden layer) and to train it long
enough. The training algorithm is going to update the weights until our training and test
errors are small. If training continues for more interactions, the test error is going to stop
decreasing or even increase. This means that further training is not going to improve the

model. In that sense, stopping the training at the right time can both reduce overfitting

https://puntomedionoticias.info/album/overfitting-large-dataset.htm

25

and underfitting. Another strategy used to diminish overfitting is called regularization,

which is a method to control further restrain model complexity.

2.3 DEEP LEARNING APPROACHES

As it was mentioned in the previous section, Neural Networks based on the classical
MLP had some shortcomings. However, a series of improvements, mainly in the areas
of activation functions, architecture design, and regularization, allowed to improve the
results by a significant degree, achieving results unmatched so far in the field of machine
learning. Since those changes made possible the use of deep (more than one hidden layer)

architectures, this new phase on ANN’s research is called "Deep Learning'".

2.3.1 Architectures

The fully connected architecture has a severe flaw of not scaling well with very high dimen-
sional inputs such images. This was not the case with architectures, such as Convolutional
Neural Network (CNN). In Figure 7, we can see the principal components of a CNN, which
are its convolutional and pooling layers. The convolutional layers, as the name implies,
perform a convolution operation with the input image. The result is an image roughly the
same size but with some of its features highlighted. After that, it passes by the pooling
layer, which will reduce the dimensionality of the image. The combined work of several of
those layers is going produces hierarchical features exactly as the ones presented in Figure
2. Finally, in the last layer, we flatten the resulting image in a one-dimensional array and

use a fully connected layer, much like the ones used in a classical MLP.

Figure 7 — Convolutional Neural Network model.

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—M
5 ¥ 5) kerl:nel Max-Pooling 6 X 5) kerr.lel Max-Pooling (with
valid padding (2x2) valid padding (2x2)

INPUT n1channels nl channels n2 channels n2 channels ||| E / ' 9
(28x28x 1) (24 x24 xn1) (12x12xn1) (8x8xn2) (4x4xn2) | '

‘, ~ ouTpuTt

n3 units

Source: <https://zhuanlan.zhihu.com/p/58882714>

https://zhuanlan.zhihu.com/p/58882714

26

2.3.2 Activation Functions

The usual activation functions used in MLP’s were a logistic function of the format H%
which general shape seen in Figure 8 . They had nice mathematical properties such as
being continuously derivable, having bottom and upper thresholds, and also having its
derivative be an expression of itself. However, its derivative would tend to zero near
its saturation values, making training slow sometimes and thus creating the vanishing
gradient problem. Its non-symmetry around zero was known to raise some issues that
would slow down training, as pointed out by (MONTAVON; ORR; MULLER, 2012) and
(GLOROT; BENGIO, 2010). To avoid the symmetry problem, we can scale the sigmoid

function around zero, given origin to the tanh function.
Figure 8 — Sigmoid and ReLLU activation functions.

sigmoid " RelLU

. R(z) =maz(0, z)l

-10 -5 [] E) jul -10 -5 0 5 10

Source: <https://mlblr.com/includes/mlai/index.html>

Nowadays, most practical uses of Deep Learning uses the ReLU function (JARRETT et
al., 2009), shown in Figure 8 and which have activation function equal to max{0, z}. As
can be seen, those units have two regions of linear behavior: when the internal state of the
neuron is negative, the output is zero, and when the internal state is positive, the output is
the state itself. This brings a few interesting properties. First of all, its derivative is always
equal to one when the unit is active, meaning we are always going to have some amount
of training, solving the vanishing gradient problems. Second, its behavior is mostly linear,
meaning that it should be easier to optimize (GOODFELLOW; BENGIO; COURVILLE, 2016).
While the RelLU units still have some properties not wanted in the activation function,
such not being symmetric around zero, much of the deep learning understanding come
from general heuristics and tests results, which seems to indicate, so far, that the usage

of a ReLLU activation function improves training considerably.

2.3.3 Regularization

A central problem in machine learning is how to develop an algorithm that will not only
perform well in the training data but as well in new data points. The set of strategies
developed to reduce this test errors, sometimes at the expense of the training error is

known as regularization strategies.

https://mlblr.com/includes/mlai/index.html

27

The most common regularization used in MLP’s is called weight decay, and it consists
of modifying the loss function to add a term dependent to the root square sum of the
weights. In other words, if several of the weights are non-zero, our loss function is going to
increase. This change makes the network try to compromise a small training error while
maintaining most of the errors close to zero and thus limiting the complexity of the model.

Beyond weight decay, other samples of regularization methods are dataset augmenta-
tion, early stopping, and addition of noise (GOODFELLOW; BENGIO; COURVILLE, 2016),
which were being used long before then the development of deep learning.

A new type of regularization, developed exclusively for deep learning architectures,
is called dropout (SRIVASTAVA et al., 2014). In this method, for each training epoch, the
network is going to be presented with a subset of its training samples, and each con-
nection between neurons has a probability of being removed. Once training is done, the
full network is used with its weights being scaled according to its probability of being
removed. In other words, we are training in the same architecture many different net-
works in a subset of data, much like the assembly method called bagging (GOODFELLOW;
BENGIO; COURVILLE, 2016). However, different from bagging, where all networks are in-
dependent, in dropout, the sub-networks all come from a single initial network and have
its parameters shared. This makes it possible to train an exponentially higher number of
sub-networks in a fraction of the time and space required for ensemble methods.

The sharing of parameters between the sub-networks also forces different combina-
tions of hidden units to work equally well, which further increases the generalization
capability of the overall network. This makes dropout not only a more efficient bagging

approximation algorithm but also having a much more powerful regularization effect.

2.3.4 Data Normalization

A common practice used to avoid numerical instabilities in most machine learning models
is to normalize the input variables. This process homogenizes the data, ensuring that each
variable is going to have a zero mean and unity standard deviation. The same concept
could be done for each layer of a deep network where the activation values are normalized
across a minibatch of inputs. In other words, the output of each layer is going to have zero
mean and unity variance. This method is called batch normalization (IOFFE; SZEGEDY,
2015), and while simple, in theory, it was responsible for improving training times of deep
learning architectures significantly. This strategy can also be seen as a way of network

regularization.

2.3.5 Other improvements

Trying to balance underfitting, overfitting, vanishing gradients, hyperparameters, and
handcrafted features, to name a few, made the training very laborious from a practical

point of view. The problem was so common that a popular concept was that the training of

28

a neural network was more an art than a science. However, the need for handcrafting and
hyperparameter tuning is inverse proportional to the amount of data available. In other
words, the higher the amount of data, the better a deep learning algorithm is going to
perform. In that sense, Deep learning models need huge datasets to be adequately trained.
However, for much of machine learning history, such datasets did not exist. Furthermore,
even if they existed, to train them would take an incredible amount of time. It was only
during the last decade with the creation of larger datasets such as Imagenet (DENG et al.,
2009), that training deep learning models to achieve human-level performance became a
possibility.

Another massive development was the use of Graphics Processing Unit (MLP) for
training Deep Networks. Different than Central Processing Unit (CPU), which are de-
signed to be able to do several different computation routines and more fitted to im-
plement most machine learning algorithms, GPU is projected to do multiplications in a
highly paralyzed way. Since most deep learning algorithms are nothing more than a vast
series of multiplications, using GPU’s to them made the process significantly more fast
(20 times as fast in some cases). While one can argue that this reducing in training time
was not strictly necessary to enable any of the results observed so far, I think it is not
the case. Just imagine, instead of taking three weeks to train the winning submission for
the Imagenet 2014 challenge, it took one year? Another important consideration is that
Deep learning research, while backed up with theoretical formulation, is a field where
empirical results are responsible for great leaps in performance. The capacity for testing
more assumptions in less time is responsible much of the high speed of development in

the last few years.

2.4 TRAINING ALGORITHMS

Training algorithms are probably the most crucial part of any Machine Learning model.
They will directly control how the parameters of the model are going to adjusted. It is
them no surprise that when ill applied, they can make even the state of the art deep
learning model, with a correct chosen architecture, plenty of training samples, balanced
classes, non-noisy data, in other words, a data scientist dream; utterly fail.

While most of the other components of a deep learning system, such as architecture,
activation function, and loss function, have an evident selecting process, the same could
not be said for training algorithms. The thing that differentiates them from the other
components is that training algorithms have something called hyperparameters, which
will dictate how they conduct the training process. Perhaps the most essential hyperpa-
rameters of all, and shared between every learning algorithm, is the learning rate, which
controls the magnitude of how each parameter changes on every interaction.

The main issue is that depending on the peculiarities of the training data and architec-

ture, we have a different set of hyperparameters that would optimally train the network.

29

While some heuristics generally guide its selection, its usefulness is limited, and most
of the time, some experiments are necessary to make a choice correctly. The following

subsections will describe some of the most traditional training algorithms.

2.4.1 Vannila Gradient Descent

One of the oldest optimization techniques is the so-called Gradient Descent (CAUCHY,
1847). It finds the minimum of a function using an interactive process where at each
interaction, the gradient of the function is evaluated, and a small step is taken in that

direction. The visualization of such a process is presented in Figure 9

Figure 9 — Example of how a gradient descent algorithm would find a minimum of a
function.

Cost
A

Learning step

I
1
I
I
I
I .
I Minimum
I
I
I
|

Random W W
initial value

Source: <https://towardsdatascience.com/an-introduction-to-logistic-regression>

2.4.2 Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) is a form of gradient descent very similar to
the vanilla Gradient Descent described above. The main difference being it uses a subset
of the training samples, called mini-batches, instead of the whole training set. A formal
definition of SGD can be seen in Algorithm 1.

The standard error of a given estimate varies according % (JAMES et al., 2014), where
o is the standard deviation of the sample values and n is the number of samples. While,
according to the above equation, the larger the batch size, the more accurate is the
estimate of the gradient, the returns are not linear as we increase the batch size. So, for
example, if we want to have an estimator ten times more precise, we need to use 100
times more data points. Even if smaller returns with larger batch size was not enough to
justify not using the whole training set, most learning algorithms converge faster if they

update more frequently, even if the estimate of the gradient is a bit off. The usage of small

https://towardsdatascience.com/an-introduction-to-logistic-regression

30

Algoritmo 1: SGD algorithm

1 Require: Learning rate €

2 Require: Initial parameters 6

3 while stopping criterion not met do

4 Sample a minibatch of n examples from the training set {z(M, ... 2™} with

corresponding targets y®.
Compute gradient estimate: g < +=Vy >, L(f(z%:0),y")
Apply update: 0 < 6 — eg

(=B

mini-batches also seems to have a regularization effect, as shown in (WILSON; MARTINEZ,
2003).

For its simple implementation, and excellent properties, enabling training massive
deep learning data sets in smaller batches, the SGD algorithm is still one of the most

used algorithms for training.

2.4.3 SGD with Momentum

While pure SGD is a sound strategy, it is typically used with a momentum term, first
proposed by (POLYAK, 1964), which usually accelerate the learning on cases of small
or noisy gradients, and high curvatures. The term momentum comes from the physical
analogy of this algorithm in which the gradient can be considered as an external force
acting on a particle traveling on the Loss function space. In more mathematical terms,
we are now applying a moving exponential average on the gradient term, which makes
the gradient term to take into consideration its past values. The formal definition of the

SGD with momentum can be seen in Algorithm 2.

Algoritmo 2: SGD with momentum

Require: Learning rate ¢, momentum parameter «

Require: Initial parameters 6, initial velocity v

while stopping criterion not met do

Sample a minibatch of n examples from the training set {z(") ... 2™} with

W N =

corresponding targets y*).
Compute gradient estimate: g < +Vq 3, L(f(z®;0), y™)
Compute velocity update: v < av — €g
Apply update: 0 < 0 + v

[=2 I

The momentum hyperparameter « is going to dictate how much the previous values
of the gradient are going to affect the current direction with higher values making the
previous values have a stronger influence. a will also determine the highest update value a
step can archive; if the gradient has a constant direction and value equal to g, its highest

terminal velocity is given by L.

31

Nesterov Momentum, a variant of the momentum algorithm, was developed by (SUTSKEVER

et al., 2013). The formal definition of Nesterov momentum is given in Algorithm 3. The

difference between Nesterov and the original variation is that the gradient is evaluated
after the current velocity is applied. It was proved (GOODFELLOW; BENGIO; COURVILLE,

2016) that this modification increases the rate of convergence for a convex problem us-

ing the whole training set to calculate each gradient step. However, since deep learning

training is a non-convex problem, and we usually are using mini-batches, its theoretical

properties are not granted.

Algoritmo 3: SGD with Nesterov momentum

BRwW N =

x N o O

Require: Learning rate ¢, momentum parameter «

Require: Initial parameters 6, initial velocity v

while stopping criterion not met do

Sample a minibatch of n examples from the training set {zV),... 2™} with
corresponding targets y).

Apply interim update: 0+ 6+ av

Compute gradient (at interim point): g < +Vo 3, L(f(2@;0), y@)

Compute velocity update: v <+ av — €g

Apply update: 0 < 0 + v

2.4.4 Adaptive Learning Methods

CChoosing the correct learning rate can have a very profound effect on the speed and

quality of training. Trying to reduce this effect, there were a series of adaptive learning

methods created in the last few years, that try to calculate a particular learning rate

for each set of parameters. The basic idea behind them is that the global learning rate

is going to be scaled by each parameter, past gradient absolute values. So, if a param-

eter has consistently big gradients, its learning rate is going to have a more significant

decrease, while parameters with constantly small gradients will have a smaller reduction

in comparison. The expected results for those kinds of algorithms is to transverse small

sloped regions in the Loss function space more rapidly.

2.4.4.1 Adagrad

The Adagrad algorithm (DUCHI; HAZAN; SINGER, 2011) scales the global learning rate by

the inverse square root of the sum of all squared values of the gradient. While having some

good theoretical properties for the convex optimization case, AdaGrad does not perform

so well for deep learning training tasks. One of the main issues seems to be that the

accumulative term is a monotonic increasing function, meaning that it is always getting

larger. This can lead to an excessive decrease in the learning rate during later parts of

the training. The Adagrad Algorithm can be seen in Algorithm 4

32

Algoritmo 4: Adagrad algorithm

Require: Global learning rate €

Require: Initial parameters 6

Require: Small constant §, normally 1077, for numerical stability

while stopping criterion not met do

Sample a minibatch of n examples from the training set {z(, ... (™} with

[S; SNV R SR

corresponding targets y(i).
Compute gradient estimate: g < +Vq 3; L(f(2®;0), y®)
Accumulate squared gradient: r < r+ g ® g
Compute update: Af <+ —ﬁ ©g

9 Apply update: 0 < 6 + Af

=N o

2.4.4.2 Rmsprop

The RMSProp algorithm (TIELEMAN; HINTON, 2012) was proposed as a modification of
AdaGrad by changing the accumulation of gradients into a weighted moving average,
similar to the SGD Momentum algorithm. The idea behind this change is that ideally,
we want to arrive in local minima, which could be seen as having a quasi-convex neigh-
borhood. Since Adagrad accumulative term is always increasing by time, the algorithm
would have arrived in a convex region; it could have passed for many non-convex ones,
which would reduce the learning rate considerably and thus diminish its convergence ca-
pabilities. If we used an exponential mean, older gradients would have a smaller influence
in the accumulative term. Meaning that once we reached a convex structure, the good
theoretical properties shared by the RMSProp with the Adagrad algorithm would make

it converge faster. The Rmsprop algorithm can be seen in Algorithm 5

Algoritmo 5: RMSProp algorithm

1 Require: Global learning rate ¢, decay rate p
2 Require: Initial parameters 6
3 Require: Small constant §, normally 1079, for numerical stability
4 while stopping criterion not met do
5 Sample a minibatch of n examples from the training set {z(", ... (™} with
corresponding targets y(i).
6 | Compute gradient estimate: g «+ +Vy >, L(f(2;), y®)
7 Accumulate squared gradient: r <— pr + (1 — p)g ® g
Compute update: Af <+ _\/657 ®g
9 Apply update: 0 < 6 + Af

Another variation of RMSProp was proposed in (GRAVES, 2013). In this version, the
gradient is normalized by an estimation of its variance. It seems that this modification

improved the results for recurrent network structures.

33

2443 Adam

The Adam algorithm (KINGMA; BA, 2014) is a combination of RMSPRop and the momen-
tum used in SGD. The two methods are called first-moment term and second-moment
term in the Adam algorithm. It also includes a bias correction term to account for the

initialization of the momentum terms at zero. The formal Adam algorithm can be seen in
the Algorithm 6.

Algoritmo 6: Adam algorithm

Require: Learning rate €

Require: Exponential decay rates for moment estimates, p; and p, in [0, 1)
Require: Small constant §, normally 1078, for numerical stability

Require: Initial parameters 0

while stopping criterion not met do

Sample a minibatch of n examples from the training set {zV),... 2™} with

[N, B N VU R

corresponding targets y(i).
Compute gradient estimate: g < +Vq 3; L(f(2®;0), y™)
tt+1
Update biased first moment estimate: s <— p1s+ (1 — p1)g
10 Update biased second moment estimate: ¢ <— por + (1 — p2)g © ¢
11 Correct bias in first moment: § < 1_37

T

l—p’é

®

12 Correct bias in second moment: 7 <

8

Vi+s

13 Compute update: Af + —¢
14 Apply update: 6 < 6 + Af

Recent research (REDDI; KALE; KUMAR, 2019) has found some theoretical shortcomings
of the Adam algorithm, where the usage of exponential moving average caused the non-
convergency on a convex toy-problem. An alternative method, called Amsgrad, was then

developed to overcome this deficiency.

2.4.5 Second-Order Methods

The methods mentioned above all use the gradient of the loss function to update the
weights. Since they use the first derivative, they are called first-order methods. We also
have the second-order methods (GOODFELLOW; BENGIO; COURVILLE, 2016), such as the
Newton method, Conjugate gradients, and BFGS, which use the second derivative to
improve optimization. While second-order methods tend to work better than first-order
in more general optimization problems, the same cannot be said for the deep learning
case. First of all, there is the computational cost of applying such methods. The basis of
all those methods is the Hessian matrix, composed by the partial derivatives of all the
network parameters. So if the network has k parameters, the Hessian is going to have
k x k elements; a considerable number of variables. This Hessian matrix will also need

to be calculated at each interaction since the parameters change at each step. Because of

34

those limitations, only small networks can be trained with such algorithms. The second
problem is that most second-order methods are attracted to saddle points and points of
local maxima, arriving at non-ideal solutions, making the results worse than first-order
methods. For these factors, second-orders methods are generally not used for deep learning

optimization.

35

3 PROPOSED METHOD

The loss function space is highly dimensional (the dimension is equal to the number of
parameters of the network) with quite complex geometry. It is filled with local minima,
and saddle points that would slow down or halt training. Training methods that use some
sort of gradient descent are attracted to local minima, meaning they will converge for one
and stay there if no other action is made. An example of such case is presented of Figure
10 where we have a bi-dimensional loss function for different values of two parameters
wy and wsy. In Figure 10, the parameter initialization made the initial point closer to
one particular local minimum. By using a learning algorithm based on gradient descent,
the direction of greater descent was dominated by this local minimum, thus making the
parameters converge to it. Note that we have a smaller minimum value, but since gradient
descent only calculates the gradient locally, it is oblivious of the general shape of the loss

function.

Figure 10 — Example of how an algorithm using gradient descent would find a local min-
imum of a function.

7

w2

wl

Source: Adapted from <http://www.deeplearning.ai/ai-notes/optimization/>

For a long time, this was deemed to be a shortcoming on gradient training methods
since the local minimum loss value could be much higher than the true global minimum,
and the algorithm would not know better. However, new research on the field (DAUPHIN
et al., 2014) seems to indicate that the higher the dimension of an optimization space,
the smaller the chance of local minima appearing, with saddle points being much more
common. Another observed behavior was that the error of critical points was correlated

with the fraction of negative eigenvalues (local minima have only positive eigenvalues,

http://www.deeplearning.ai/ai-notes/optimization/

36

local maxima only negative, and saddle points have both) on its hessian matrix; meaning
that if a critical point has an error much bigger than the global minimum it’s is highly
probable it is a saddle point or a local maxima. This behavior is depicted in Figure 11,
where we have the training error for different critical in a typical loss function space
of a deep learning network. There we can see that the higher the fraction of negative
eigenvalues, the greater the error. Similarly, when we have only positive eigenvalues (zero

on the x-axis of Figure 11) the error is very close to zero.

Figure 11 — Plot of the training error of a critical point regarding its ratio of negative
eigenvalues in its Hessian matrix.

35 1

= N N W

v o wu o
o

®

Train Error (%)

o
L
[}

51 o L L ‘.o >
KX

0.00 0.05 0.10 0.15 0.20 0.25
Ratio of negative eigenvalues

Source: Adapted from (DAUPHIN et al., 2014).

The two points above could be summarized as such: in cases of a high dimensional
space (which is the case of deep learning optimization), local minima are rare and with
loss values close to the global minimum. Saddle points are also usually surrounded by
regions of small curvature called plateaus, where the learning process can become very
slow because of small gradients. So one can argue that there are two different phases on the
correct training of a deep learning network: First correctly move between the much more
present saddle points, avoiding unnecessary slowdowns, and then once close to a local
minimum, converge to it. In that sense, in the initial portion of training, I propose that
a higher learning rate would be more advisable to make traversing the plateaus easier.
Once we arrive near the vicinity of local minima, a lower learning rate is more suited
to converge to this critical point. With these arguments, I propose a scheme of learning
rate decay with two distinct phases !, suited for the two phases of training optimization
laid out above. While there are other training methods which propose a learning rate

decay, the novelty regarding this one is the fact that it takes into consideration the total

L Another line of research that corroborate that are two distinct phases during training was done by

(SHWARTZ-ZIV; TISHBY, 2017), who presents arguments using information theory background.

37

number of epochs, and escalates the transition point between the two phases of training
accordingly. The hyperparameters also control when and how fast the change between the
two phases in training occur, which could also be of interest.

The proposed method is called Training Aware Sigmoid Optimization (TASO). The
mathematical formulae of TASO is shown in Equation 3.1, where ¢; and €; are the initial
and final learning rate respectively, k is the current epoch, k; is the total number of epochs,
and «, 3 are hyperparameters. The formal definition of TASO can be seen in Algorithm
7. The formula is a sigmoid function in the form of Hex;p(w)’ with the hyperparameters

added to fine control the sigmoid behavior.

€
T Tvexpla(f - 9)

+ € (3.1)

Algoritmo 7: TASO algorithm

1 Require: initial learning rate ¢; and final learning rate ¢

2 Require: hyperparameters a and (3

3 Require: Initial parameters 0

4 while stopping criterion not met do

5 Sample a minibatch of n examples from the training set {zV),... 2™} with
corresponding targets y).

6 Compute gradient estimate: g < +2Vy 32, L(f(z";6),y?)

7 Compute new learning rate: € <— WW + €5

8 Apply update: 0 < 6 — eg

An example of the function behavior is shown in Figure 12, where we have an initial
learning rate that is maintained for the initial part of training and after a certain number of
epochs decrease to a lower learning rate for the remaining of training. With this approach,
we can attain the desired behavior intended for the learning rate, with two distinct phases
with a simple mathematical definition.

The idea is that to obtain a function that at the beginning of training has a learning
rate equal to ¢; and during later parts of training has a learning rate equal to €;. Equation
3.2 and Equation 3.3 shows how TASO learning rate evaluates in the first and last epoch

respectively.

€; . €;
T+expla(Z—53) 47 1+ exp(—ap)

€heo = +ermetepReg (3.2)

€; . €
- 1+ exp(a(% - p)) ter= 1+ exp(a(l —05))

Note that the hyperparameters ¢; and €; were characterized as the initial and final

€=k + €f N €f (33)

learning rates. However, this is not the case, since for both equations, as seen above, there

is an approximation sign. Thus, by restricting the choices of o and 3, we can make the

38

difference small enough to be negligible. As a useful heuristic, both af and «(1 — () to be
higher than 6 as to maintain errors bellow 5%. These values were empirically defined. An
example of how the choice of non-conforming values of a and f can create degenerative

cases can be seen if Figure 12

Figure 12 — Example of how the hyperparameter choice can create a degenerate case where
the two-phase training is not well implemented.

1.0 1

0.8 1

o
o

©
IS

Learning Rate

0.2 1

0.0 1

0 20 40 60 80 100
Epoch

—— Good hyperparameter selection aB <6 ——-MI—M<6]

Source: The Author

Apart from the learning rates, the hyperparameters of the TASO method are «, (.
Where « controls how steep the decrease in the logistic function occurs, and 5 dictates
when does the learning rate reaches its halfway point. The change of a and £ on the
overall shape of the learning rate can be seen in Figure 13. Note what happens when the
heuristics for the selection of o and 3 are not respected. In the first case with @ = 10 and
B = 0.3, we have af equal to 3, making the initial learning rate not close enough then our
expected value of 0.05. In the second case with « = 10 and 8 = 0.7, we have «(1 — f3) also

equal to 3, which makes the final learning rate not reach the expected value of 0.0025.

39

Figure 13 — Effects on hyperparameters changes on TASO with ¢; equal to 0.05, €, equal
to 0.0025 and 100 total epochs.

0.05 1 —— a=50and B=0.7
--- a=25and B=0.7
—— a=10and §=0.7
—— a=50and B=0.5
--- a=25and B=0.5
—-— a=10and B=0.5
—— a=50and B=0.3
--- a=25andB=0.3
—— a=10and =0.3

0.04 1

Learning Rate
o
o
w

©
o
]

0.01 1

0.00 1
0 20 40 60 80 100 120 140
Epochs

Source: The Author

40

4 EXPERIMENTS

In the experiments, I would like to compare TASO with the more commonly used training
algorithms in different architectures and datasets. In the first pair of architecture-dataset
experiments, there is going to be a grid search to find the best learning rate and other
hyperparameters. Once the best set of hyperparameters is found, they are going to be re-
used on further experiments with different datasets and architectures. The motive behind
this choice is to first, reduce the amount of training time to find the best hyperparameters

1

for each architecture-dataset pair, and second, to test the robustness ' of the training

algorithms being tested with sub-optimal hyperparameters.

4.1 TRAINING ALGORITHMS

For the selection of the training algorithms, it was used the ones tested by (WILSON et al.,
2017), which are SGD and its momentum version, RMSProp, Adam, and Adagrad. This
work also tries to compare different learning algorithms and have a robust evaluation
procedure, making o good pick as a starting point. The hyperparameter selection was
also guided by it. Thew framework I used for the tests was Pytorch version 1.1, which
has all these methods already implemented. The Computer used to run the tests had the

following configuration:

e CPU: intel Core i7-7700K
« GPU: NVidia TitanXP

« RAM: 16GB
The learning rate tested for each algorithm was the following ones:

« SGD: [2,1,0.5,0.25,0.05,0.01,0.001]
« RMSProp: [0.01,0.005,0.001, 0.0005, 0.0003, 0.0001]
« Adagrad: [0.1,0.05,0.01,0.0075, 0.005]

« Adam: [0.005,0.001,0.0005,0.0003,0.0001, 0.000005]

For the RMSProp algorithm, I opted to use the default value of 0.99 for the exponential

decay rate and not to test other values since it seems to have little influence on the overall

1 Ideally we want a algorithm that perform well with a large set of hyperparameters and not only

with the best hand-picked ones after several initial tests. The concept of robustness characterizes
such behaviour. So when we said that given algorithm is robust it means that its final result doesn’t
depends so much on the set of hyperparameters chosen

41

result. Still, for RMSprop, I also choose to test the alternate version proposed by (GRAVES,
2013). In the tests, it is named RMSProp centered. Together with Adam, I will evaluate
its alternative version, AMSGrad. For both Adam and AMSGrad, the exponential decay
terms p; and po were left at the default values of 0.9 and 0.99 as similar to the RMSProp
case, changes on their values do not seem to impact training in a very significant manner.
Finally, for TASO I will be testing the values of hyperparameters showed in Figure 13
which are o = [10, 25, 50] and 8 = [0.3,0.5,0.7]=, which seems to encompass a good range
of possible configurations. For the initial learning rate, I am going to use the best one to
be found in the SGD experiment, and the final one is going to be 20 times smaller than
the initial one, empirically defined. Note that are two cases where the choices of a and
B fall out of the recommended zone defined in section 3.1. This was done to check if not

following the determined heuristic would be accompanied with worse results.

4.2 DATABASES

The tests were done using three different databases the MNIST, CIFAR10, and CIFAR100.
All of them are image classification datasets but with different degrees of complexity and
size.

MNIST (LECUN et al., 1998) is a dataset of handwriting digits composed of 70,000
greyscale images. It has a training set of 60,000 examples and a test set of 10,000 images.
The images have a size of 28 pixels by 28 pixels with the digits being normalized and
centralized. Figure 14b show a small subset of the MNIST dataset. While this dataset is
quite old, originating in 1998, it is still useful. Its simplicity makes it very easy and fast
to properly train, making it very useful to evaluate if novel algorithms are appropriately
tuned.

CIFAR10 and CIFAR100 are both subsets of the Tiny image dataset (TORRALBA;
FERGUS; FREEMAN, 2008) differing from each other regarding the number of classes.
CIFARI10 has 10 classes and CIFAR100 has 100 classes. They both have 60,000 color
images divided between 50,000 training images and 10,000 test images. The images have
a size of 32 pixels by 32 pixels. Figure 14a show an example of images comprising the
CIFARI10 dataset.

42

Figure 14 — Examples of the used datasets.

arpane SARHEE™ - HE@lZs 0°¢9=0009°0
automobite [[7 T 8 g ST BES SEW S SR E2 SOV s
bird Smll NES BBt i i
cat FEoESE 22333333%)
seer I~ E Y FAdHE g4 4Ly
w FE<SHAsBE §5555535 55
frog MEESES «LEbLC6 L6 &
oo SRR V9 i e BT A AL
we IR it M i Al 1P e abi e -mlk
e AR 1975799997
(a) CIFAR10 database (b) MNIST database

Source:<https://ai-coordinator.jp/mnist-ng>

4.3 ARCHITECTURES

Three CNN architectures are going to be used in experiments. Lenet5 (LECUN et al., 1998)
VGGNet19 (SIMONYAN; ZISSERMAN, 2014) and Resnetl8 (HE et al., 2015). Lenetb was
developed in 1998 with the purpose of identifying handwriting digits. It has seven-layer
in total, three convolutional layers, two subsampling layers, one fully connected layer,
and an output layer formed with Euclidean Radial Basis Functions (to give the classes
probabilities). It is one of the first CNN models to present good overall results. While
it is pretty old, and applying some practices not in use anymore, such as Radial basis
functions in the output layer and hyperbolic tangent activation function, it is a reliable
option to make fast and simple tests in older databases such as the MNIST.

VGGNet was created in 2014 and was one of the runner ups of the ILSVRC 2014
competition. It has 19 weight layers(16 convolutional layers plus three fully connected
layers). All the convolutional layers use 3x3 filters, a strategy applied to reduce the number
of trainable parameters and to make it possible to increase the number of layers.

Resnet was created in 2015 and won several image classification competitions (ILSVRC
2015 image detection and localization, 2015 COCO detection and segmentation). It is
characterized by the use of skip connections and massive batch normalization. It uses
only a fully connected layer in the output, reducing the number of parameters to be
trained and making it possible to archive much higher depths (the network used to won
ILSVRC 2015 used 152 layers).

4.4 EXPERIMENT DESIGN

When designing the experiments, we want to come up with a test scheme that would

allow us to compare the different learning algorithms. One that via analyzing its results,

https://ai-coordinator.jp/mnist-ng

43

we could infer if any of the available algorithms are better then the other. In that sense,

the items bellow were used as guiding principles to the design of the experiment.

« Reproducible: By the intrinsic nature of deep learning algorithms, we can arrive
at different results, even when working with the same dataset, architecture, and
learning algorithm. Things such as weight initialization, batch size, and data order-
ing influence the final result. In that sense, we must present a way to us (or any
other researcher) to reproduce our findings. This was done by precisely describing
our experimental protocol and fixing a seed for the random number generator, which

will make every random step deterministic.

» Statistical Significance: As was mentioned above, there are a series of factors
that can influence the final result of the deep learning training task. Usually, this
results in differences in the range of 1-2% in the loss function across multiple runs
of the training algorithm. Nevertheless, however small the difference may be, it is a
good practice to do some statistical testing to evaluate the performance of different
algorithms correctly. A heuristic usually applied is to do 30 runs of each test to
have enough data to make educated assumptions. Unfortunatelly, using such a high
number of repetitions was not viable in most deep learning approaches since the
training time is very long. In that case, we compromised to doing five runs, as it
would be enough at least to calculate the mean and standard deviation, and have a

partial notion of the statistical distribution of the results.

o Information Tracking: At each test, we need to select what kind of parameters
we would like to track across the experiment as to later be able to analyze them.
We opted to track the accuracy and loss function across each interaction and epoch

from the training and test sets.

« Wide Hyperparameters Search: Each training algorithm has a series of hyper-
parameters that will change the training result. Thus it is necessary to test several

configurations to see how they interfere with the algorithm performance.

In summary, we are doing a test with a fixed seed (reproducible), with five runs
(statistical significance), tracking the loss function and accuracy value across each epoch
varying some hyperparameters (hyperparameters search) for each learning algorithm.

Regarding hyperparameters choices, ideally, we should perform a grid or random
search, across all hyperparameters available. However, this approach is usually not doable,
considering the amount of time necessary to train a deep learning network. For this rea-
son, we decided on some tests to evaluate each hyperparameter individually, maintaining
all the other ones constant. While not an ideal approach, since we can always have a
combination of hyperparameters not tested with better performance, it presents a good

compromise between reducing test time and finding a better result.

44

Another important topic regarding hyperparameters is that the ideal set is dependent
on the choice of architecture and dataset. However, as the grid search argument, to search
for a different set of hyperparameters each time you face a new problem is counterpro-
ductive. A good training algorithm, beyond having an ideal set of hyperparameters, that
would result in good inference performance, is one which default hyperparameters could
be used across different experiments and give a good result. In that sense, I decided to
do a full hyperparameter search only in the first dataset and architecture, and use the
best results found in this test on subsequent tests. With this approach, we are not only
testing the best possible result in each learning algorithms but also its robustness, which
is a more important measure in real-world usability than the ideal best performance.

Lastly, with the intent of improving transparency and also to help further research on
the topic, I made public the code necessary to run all the tests presented here. It can be

found in <https://github.com/pedro-dreyer/masters code>

45 RESULTS

4.5.1 VGGI10 and CIFAR10
4511 SGD

For the SGD algorithm, we tested seven learning rates starting from 2 until 0.001. We
opted to use a moment of 0.9, with and without the Nesterov version. We also tested the
same learning rates with no moment at all. The overall results can be seen in Table 1 2.

For further comparison, we pick up the best results of each approach and compare the
training progression. The results can be seen in Figures 15. While the final value of the
three algorithms is very similar, the non-Nesterov version has a better overall performance.
Other values of moments were tested as well their results can be seen in Table 2 From
those tests, we can conclude that the best parameters were a learning rate of 0.05 with a

Non-Nesterov moment of 0.9.

2 All values presented on tables in this document are referent to the results obtained in the test set

https://github.com/pedro-dreyer/masters_code

45

Table 1 — Different learning rates and type of moments tested for the SGD algorithm.
CIFARI10 dataset and VGG19 architecture. The moment is equal to 0.9 for
both non-Nesterov and Nesterov versions.

Method Learning Rate Accuracy Loss
2 35.91 (£ 36.64) 1.69 (£ 0.87)
1 88.94 (£ 0.18) 0.47 (£ 0.01)
0.5 89.72 (£ 0.42) 0.42 (£ 0.03)
SGD 0.25 90.39 (+ 0.29) 0.41 (£ 0.01)
0.05 89.66 (£ 0.18) 0.44 (£ 0.02)
0.01 86.00 (£ 0.14) 0.52 (£ 0.01)
0.001 78.78 (£ 0.10) 0.62 (£ 0.01)
2 10.05 (£ 0.03) 2.48 (£ 0.15)
1 10.04 (£ 0.03) 2.33 (£ 0.01)
0.5 25.82 (4 22.38) 1.94 (£ 0.53)
SGD Momentum 0.25 55.32 (£ 33.12) 1.33 (£ 0.74)
0.05 91.01 (£ 0.13) 0.37 (£ 0.00)
0.01 90.55 (£ 0.11) 0.40 (£ 0.01)
0.001 86.38 (£ 0.13) 0.50 (£ 0.01)
2 10.14 (£ 0.10) 2.32 (£ 0.00)
1 10.08 (£ 0.09) 2.31 (% 0.00)
0.5 10.02 (£ 0.02) 2.30 (£ 0.00)
SGD Nesterov 0.25 28.70 (£ 26.22) 1.93 (£ 0.54)
0.05 90.00 (£ 0.71) 0.41 (£ 0.01)
0.01 90.49 (4+ 0.28) 0.40 (£ 0.01)
0.001 86.56 (£ 0.22) 0.51 (£ 0.00)

Table 2 — Different moments values test for SGD non-Nesterov algorithm. CIFARI10
dataset and VGG19 architecture. Learning rate equal to 0.05.

Momentum Acurracy Loss
0.1 90.01 (4 0.08) 0.44 (£ 0.03)
0.3 90.32 (+ 0.42) 0.42 (£ 0.01)
0.5 90.67 (£ 0.06) 0.40 (£ 0.02)
0.7 90.90 (£ 0.44) 0.38 (£ 0.01)
0.9 91.01 (£ 0.13) 0.37 (£ 0.00)
0.99 54.64 (£ 32.65) 1.34 (£ 0.75)

46

Figure 15 — Comparison between the SGD algorithms training the VGG19 architecture
in the CIFAR10 dataset. Solid lines are from the training set and dashed lines
from the test set.

100
95 -
90 e e PN Dl v -
>
()
©
S 851
(9}
(O]
<
80 1
75 A — SGD
—— SGD Momentum
—— SGD Nesterov
70 T - T : r r r
0 20 40 60 80 100
Epochs

Source: The Author

47

4512 Adam

For the Adam algorithm, we tested six learning rates varying from 0.005 to 0.00005.
We also compared two versions of the algorithm, the Amsgrad and the original version.
A summary of the results is shown in Table 3. A plot comparing the best result of each
experiment can be seen in Figure 16 From the experiments, we note that the learning rates
0.001, 0.0005, and 0.0003 have very close results. While the Amsgrad version presented
a better training accuracy, its test accuracy appears to be very similar to the original
Adam algorithm. For further tests, the Amsgrad Adam algorithm is going to be used

with learning rate 0.0005, since it was the one with the highest accuracy.

Table 3 — Different learning rates tested for the Adam Algorithm. CIFAR10 dataset and
VGG19 architecture.

Method Learning Rate Accuracy Loss
0.005 90.173 (£ 0.050) 0.397 (£ 0.014)
0.001 90.933 (£ 0.347) 0.381 (£ 0.003)

ADAM 0.0005 91.027 (4 0.042) 0.374 (£ 0.013)
0.0003 90.773 (£ 0.183) 0.378 (£ 0.004)
0.0001 88.967 (£ 0.094) 0.446 (£ 0.006)
5e-05 86.540 (£ 0.237) 0.522 (£ 0.007)
0.005 90.387 (£ 0.146) 0.401 (£ 0.005)
0.001 91.013 (4 0.343) 0.376 (£ 0.013)

. 1. + 0.1 . + 0.01

ADAM amsgrad 0.0005 91.333 (£ 0.157) 0.369 (£ 0.013)
0.0003 91.063 (£ 0.273) 0.370 (£ 0.004)
0.0001 88.667 (£ 0.115) 0.458 (£ 0.004)
5e-05 86.403 (£ 0.097) 0.536 (£ 0.004)

48

Figure 16 — Comparison between the best Adam algorithms for the CIFAR10 dataset and
VGG19 architecture. Solid lines are from the training set and dashed lines
from the test set.

100

—— adam
—— amsgrad
95 -

- - —
DI ’)\ti\v-'\’-*:“:’-—’a“/\‘\’\‘w'/
- \

90 1

85 1

Accuracy

80 1

75 1

70 T r r r r
0 20 40 60 80 100

Epochs
Source: The Author

4.5.1.3 Rmsprop

For the Rmsprop algorithm, we evaluated six learning rates ranging from 0.01 to 0.0001.
We also evaluated the opting of using a centered and non-centered version of the method.
Table 4 presents the best results for each hyperparameter set. Figure 17 compares the best
results for centered and non-centered versions. The learning rates from 0.0003 to 0.001
presented similar results across both algorithms, and there is to appear little difference
between the centered and non-centered version of the algorithm. For further tests, the

non-centered version with a learning rate of 0.00005 is going to be used, since it presented

the best overall results.

Table 4 — Different Learning rates and centered parameter for the Rmsprop algorithm.

CIFAR10 dataset and VGG19 architecture.

Method

Learning Rate Accuracy

Loss

0.01
0.005
0.001
0.0005
0.0003
0.0001

RMSPROP

89.947 (& 0.130)
90.107 (+ 0.321)
90.743 (+ 0.012)
90.773 (+ 0.074)
00.547 (& 0.152)
88.753 (£ 0.399)

0.442 (£ 0.022)
0.426 (£ 0.012)
0.407 (£ 0.014)
0.392 (& 0.020)
0.402 (£ 0.012)
0.462 (£ 0.014)

0.01
0.005
.001
RMSPROP centered 0.00
0.0005
0.0003

0.0001

89.967 (+ 0.174)
90.00 (& 0.177)

00.653 (& 0.262)
90.760 (+ 0.214)
90.580 (+ 0.161)
88.720 (+ 0.380)

(

(
0.433 (% 0.019)
0.425 (+ 0.010)
0.390 (& 0.030)
0.388 (= 0.020)
0.387 (& 0.031)
0.467 (£ 0.011)

50

Figure 17 — Comparison between the best Rmsprop algorithms for the CIFAR10 dataset
and VGG19 architecture. Solid lines are from the training set and dashed
lines from the test set.

100

—— normal
—— centered
95 -

-~ L
Al oo N LA g A
4 AR A S atB VAl et Y 7
; NI\ N
f’\\\llj>\l1‘§/L ~ Wy ’ ' !
\

90 1
v

85 1

Accuracy

80 1

75 1

70 r r r r
0 20 40 60 80 100

Epochs
Source: The Author

o1

4.5.1.4 Adagrad

For the Adagrad method, we tested five learning rates ranging from 0.1 to 0.005. From

the results, a learning rate of 0.05 was chosen for further experiments.

Table 5 — Results of the tests for the Adagrad algorithm comparing multiple learning
rates. CIFARI10 dataset and VGG19 architecture.

Learning Rate Accuracy Loss

0.1 89.183 (£ 0.163) 0.453 (& 0.017)
0.05 89.52 (£ 0.311) 0.451 (4 0.006)
0.01 88.772 (£ 0.091) 0.462 (£ 0.019)
0.0075 88.092 (£ 0.020) 0.471 (£ 0.011)
0.005 87.805 (£ 0.095) 0.452 (£ 0.006)

4515 TASO

The TASO experiments were done using the best learning rate of the SGD experiments
(0.05). The tests analyzed how two sets of hyperparameters, « and 3, would interfere in
training. As mentioned in the section of Experiment Design, three values of « (10, 25,
and 50) and three values of 5 (0.3, 0.5, 0.7) were tested.

The results of training across the hyperparameters configurations can be seen in Table
6, where the accuracy and loss function of the test set is shown considering 100 epochs. Ac-
cording to the results, we see a small difference varying o and 3 with the best performance
being archived by a « of 25 and a 3 of 0.7. There was also two tests were the hyperpa-
rameters were out of the proposed range, namely a = 10, § = 0.3 and o = 50,3 = 0.7.
While the first case presented the lowest accuracy, the second one performed well. While
these are only preliminary results, the heuristic of maintaining both af and «(1 —)
greater than six is still recommended. It was also verified that the new calculations added
in the TASO algorithm did not interfere with the training time. A expected result since
the backpropagation algorithm itself is much more computationally intensive than the

calculation of the new learning rate each interaction added by TASO.

451.6 Overall results

Finally the comparison between the best result for each method can be seen in Figure
18 and Table 7. Observing the graphics, we can note that around epoch 40, the training
accuracy continues to increase where the test accuracy starts to plateau. Those signs
are indications that an increase of training time would bear ever-diminishing returns. In
other words, we can assume that 100 epochs were time enough to converge all the training

algorithms.

52

Table 6 — Comparison among multiple sets of hyperparameters of the TASO algorithm.

a B Acurracy Loss

10 0.3 90.96 (+ 0.12) 0.37 (+ 0.01)
10 0.5 91.66 (£ 0.31) 0.38 (£ 0.00)
10 0.7 91.97 (£ 0.19) 0.38 (£ 0.02)
25 0.3 90.73 (£ 0.17) 0.37 (£ 0.01)
25 0.5 91.61 (£0.27) 0.37 (£ 0.00)

25 0.7 91.98 (+0.19) 0.35 (+ 0.01)
50 0.3 90.85 (+ 0.30) 0.36 (£ 0.01)
50 0.5 91.94 (+0.04) 0.37 (« 0.00)
50 0.7 91.95 (+0.25) 0.37 (& 0.00)

The tests were also re-run using the best parameters for each training method for only
25 epochs. The aim is to verify how the algorithms would fare having a limited training
time to make weights adjustment. The result can be found in Table 8 and Figure 19.
On both epochs choices, the TASO method achieves a better result, while being more
significant in the 25 epochs case. Also, in both experiments, we can easily visualize a
bump in the accuracy close to the 20 and 70 epoch mark, where the learning rate of the
TASO algorithm started to decrease.

Table 7 — Results for each training algorithm using the best set of hyperparameters. CI-
FAR10 dataset and VGG19 architecture.

Training method Acurracy Loss

SGD 91.08 (£ 0.13) 0.36 (£ 0.00)
Adagrad 89.40 (£ 0.31) 0.42 (& 0.01)
Adam 91.33 (£ 0.16) 0.37 (£ 0.01)
RMSProp 90.77 (£ 0.01) 0.41 (& 0.01)
TASO 91.98 (£ 0.19) 0.36 (£ 0.02)

Table 8 — Results of the best run of each algorithm for 25 epochs.

Training method Acurracy Loss

SGD 88.52 (£ 0.02) 0.38 (4 0.01)
RMSProp 88.20 (+ 0.33) 0.41 (& 0.01)
Adagrad 86.10 (& 0.27) 0.4 (& 0.01)
Adam 88.56 (£ 0.16) 0.38 (£ 0.00)

TASO 90.02 (+ 0.41) 0.34 (£ 0.01)

53

Figure 18 — Comparison between the best set of hyperparameters for each algorithm on
the CIFAR10 dataset and VGG19 architecture. Solid lines are from the train-
ing set and dashed lines from the test set.

100 — —
95 1
901 s B A TN A i v
> ,,7‘—\ l’\}/k\;'.'\'ﬂ—/ ‘l/\ /'/\/\,V‘(:Q—\/—"v_—\l—‘
O I"\\Il '\//\»’-/ ~
©)‘IIJ,'\ /‘/\/"\I'
S 85- A
<
8071 —— SGD
—— Adagrad
75_ — Adam
—— Rmsprop
—— TASO
70 +— r r r r T
0 20 40 60 80 100

Epochs
Source: The Author

Figure 19 — Comparison between the best set of hyperparameters for each algorithm on
the CIFAR10 dataset and VGG19 architecture for 25 epochs. Solid lines are
from the training set and dashed lines from the test set.

100
— SGD
—— Adagrad
—— Rmsprop
901 — Adam o —ootez-
— /:\q-:’, :"-~~ pr
""""" \\ I’ Se-”
\ /
.. 807 v
[}
o
o
9]
<
70 -
60 -
1
i
1
1
1
1
50 r T r :
5 10 15 20 25

Epochs
Source: The Author

54

4.5.2 VGG19 and CIFAR100

Using the best hyperparameters from the previous experiment, the same architecture but
now using the CIFAR100 dataset, was now evaluated. The results can be seen in Table
9 and Figure 20. We note once again that the TASO has the best overall result. A more
profound case of overfitting is happening here since the training accuracy is very close to
100% while the test accuracy is much smaller. Probably if we increased the weight decay,
the result would improve. Note as well that the Adagrad failed to converge, indicating

the non-reliability of the algorithm.

Table 9 — Results using the best hyperparameters found using the VGG19 architecture
and CIFAR10 dataset. CIFAR100 dataset and VGG19 architecture.

Training method Acurracy Loss

Adagrad 1.330 (£ 0.064) 4.770 (£ 0.179)
Adam 61.463 (£ 0.138) 1.902 (< 0.040)
RMSProp 55.020 (£ 0.546) 2.043 (£ 0.054)
SGD 64.213 (+ 0.538) 1.772 (& 0.046)
TASO 65.083 (+ 0.479) 1.768 (+ 0.012)

Figure 20 — Comparison between the best set of hyperparameters found in the VGG19
architecture and CIFAR10 dataset. CIFAR100 dataset and VGG19 architec-

ture. Solid lines are from the training set and dashed lines from the test set.

100 4 —— Adagrad
Adam
Rmsprop

80 1

60 1

Accuracy

40 A

20 1

0 20 40 60 80 100
Epochs

Source: The Author

95

4.5.3 RESNETI18 and CIFAR10

The results of changing the architecture but maintaining the CIFAR10 datasets can be
seen in Table 10. Those are so far the best results, where the TASO method archives more
than 2% from the second-best performing algorithm. This more significant improvement
could come from the fact that Resnet has a much deeper architecture than VGG19, which
could contribute to having a more complex loss function space, and thus making it harder
to optimize without changing the learning rate. Note as well that Adagrad, while did

converge this time, have much lower accuracy than the other methods.

Table 10 — Results using the best hyperparameters found using the VGG19 architecture
and CIFAR10 dataset. CIFAR10 dataset and Resnet18 architecture.

Training method Acurracy Loss

Adagrad 19.033 (£ 0.784) 2.197 (£ 0.007)
Adam 92.357 (£ 0.298) 0.353 (£ 0.019)
RMSProp 92.130 (£ 0.286) 0.372 (£ 0.009)
SGD 92.550 (£ 0.159) 0.364 (£ 0.014)
TASO 93.150 (4 0.086) 0.358 (£ 0.012)

4.5.4 MNIST and LENETS

The last test, comparing the LENETS Architecture and MNIST dataset, is shown in Table
11. The results showed that all the methods except for Adagrad managed to archive near-
perfect accuracy and thus could be considered equivalent to the task of best training this
particular dataset and architecture. In that sense, we can not really use its results to make

any particular claim regarding which algorithm was the best one.

Table 11 — Results using the best hyperparameters found using the VGG19 architecture
and CIFAR10 dataset. MNIST dataset and Lenet5 architecture.

Training method Acurracy Loss

Adagrad 75.160 (£ 8.010) 1.152 (& 0.369)
Adam 99.030 (+ 0.036) 0.030 (& 0.001)
RMSProp 99.097 (& 0.037) 0.030 (& 0.001)
SGD 99.083 (+ 0.046) 0.030 (& 0.002)
TASO 99.093 (+ 0.038) 0.030 (& 0.002)

56

5 CONCLUSION

The problem of correctly training a machine learning algorithm is an old one, existing
since the development of the first algorithms on the field. While the last years we saw a
significant improvement in the deep neural networks field, with results never before seen,
the old dilemma on how to properly train the network still remains. The crux of the matter
is that the deep learning networks have millions, if not billions of parameters, giving rise to
a multidimensional loss space with extremely complex non-convex geometry, making the
finding of global minima not intuitive. In that sense, backed up theoretical discoveries, and
empirical tests, this document proposed a novel learning rate decay method named TASO.
TASO conducts training in two distinct phases using as a basis a sigmoid function and
has a new approach compared to other training algorithms on how it uses the information
of the total number of epochs to properly tune how the learning rate decay is going to
take place.

Several tests were done to evaluate the overall performance of TASO, using three
architectures encompassing old (LENET5) and more recent (VGG19, RESNET18) archi-
tectures on three image classification datasets(CIFAR10, CIFAR100, and MNIST) with
different complexity levels. The performance of TASO was compared with other training
algorithms (SGD, ADAM, RMSProp, and Adagrad) that are used in many tasks of deep
learning across multiple other papers. The results have shown that even with minimal
hyperparameter tuning, TASO was able to perform better or equal than all the other
methods compared on tasks related to image classification without any increase in the
overall training time. Overall the proposed method seems to be robust since it works on
different datasets and architectures using the same set of hyperparameters, appearing to

be well suited for training a general deep learning network.

5.1 FUTURE WORKS

While TASO appears to work reliably in the datasets and architectures evaluated so far,
further tests are necessary. First, instead of five repetitions, it would be advised to do
at least thirty runs to get some more samples. This would enable us to do some statis-
tical tests such as Kruskal-Wallis, which would evaluate with some degree of statistical
significance if TASO is better than the other training methods.

Second, a more diverse task set would be advisable. Deep learning is being used across
multiple fields, but yet the tests realized only cover image classification. Future tests
should include NLP, handwriting analysis, speech recognition to name a few.

Finally, there are also interesting new discoveries such as proposed by (SMITH; TOPIN,
2017) that, together with transfer learning, can get state of the art results with as little

o7

as four epochs. It would be interesting to know if TASO could help improve even further

those results.

o8

REFERENCES

BENGIO, Y.; LAMBLIN, P.; POPOVICI, D.; LAROCHELLE, H. Greedy layer-wise
training of deep networks. In: Proceedings of the 19th International Conference on Neural
Information Processing Systems. Cambridge, MA, USA: MIT Press, 2006. (NIPS’06), p.
153-160. Disponivel em: <http://dl.acm.org/citation.cfm?id=2976456.2976476>.

BREIMAN, L. Random forests. Mach. Learn., Kluwer Academic Publishers,
Norwell, MA, USA, v. 45, n. 1, p. 5-32, out. 2001. ISSN 0885-6125. Disponivel em:
<https://doi.org/10.1023/A:1010933404324>.

BULO, S. R.; PORZI, L.; KONTSCHIEDER, P. In-place activated batchnorm for
memory-optimized training of dnns. CoRR, abs/1712.02616, 2017. Disponivel em:
<http://arxiv.org/abs/1712.02616>.

CAUCHY, A. Méthode générale pour la résolution des systémes d’équations simultanées.
In: Compte rendu des séances de l'académie des sciences. [S.l.: s.n.], 1847. p. 372-379.

CORTES, C.; VAPNIK, V. Support-vector networks. Mach. Learn., Kluwer Academic
Publishers, Norwell, MA, USA, v. 20, n. 3, p. 273-297, set. 1995. ISSN 0885-6125.
Disponivel em: <https://doi.org/10.1023/A:1022627411411>.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems (MCSS), Springer London, v. 2, n. 4, p. 303-314, dez.
1989. ISSN 0932-4194. Disponivel em: <http://dx.doi.org/10.1007/BF02551274>.

DAUPHIN, Y. N.; PASCANU, R.; GULCEHRE, C.; CHO, K.; GANGULI,

S.; BENGIO, Y. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. CoRR, abs/1406.2572, 2014. Disponivel em:
<http://arxiv.org/abs/1406.2572>.

DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K.; FEI-FEI, L. ImageNet: A
Large-Scale Hierarchical Image Database. In: CVPR09. [S.1.: s.n.], 2009.

DEVLIN, J.; CHANG, M.; LEE, K.; TOUTANOVA, K. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.
Disponivel em: <http://arxiv.org/abs/1810.04805>.

DUCHI, J.; HAZAN, E.; SINGER, Y. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., JMLR.org, v. 12, p. 2121-2159, jul.
2011. ISSN 1532-4435. Disponivel em: <http://dl.acm.org/citation.cfm?id=1953048.
2021068>.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward
neural networks. In: In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and
Statistics. [S.1.: s.n.], 2010.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.1.]: MIT Press,
2016. <http://www.deeplearningbook.org>.

http://dl.acm.org/citation.cfm?id=2976456.2976476
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1712.02616
https://doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1007/BF02551274
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1810.04805
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://www.deeplearningbook.org

99

GRAVES, A. Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850, 2013. Disponivel em: <http://arxiv.org/abs/1308.0850>.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. Disponivel em: <http://arxiv.org/abs/1512.03385>.

HINTON, G. E.; OSINDERO, S.; TEH, Y.-W. A fast learning algorithm for deep belief
nets. Neural Comput., MIT Press, Cambridge, MA, USA, v. 18, n. 7, p. 1527-1554, jul.
2006. ISSN 0899-7667. Disponivel em: <http://dx.doi.org/10.1162/neco.2006.18.7.1527>.

HUNSBERGER; ERIC. Spiking Deep Neural Networks: Engineered and Biological
Approaches to Object Recognition. UWSpace, 2018. Disponivel em: <http://hdl.handle.
net/10012/12819>.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. Disponivel em:
<http://arxiv.org/abs/1502.03167>.

JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. An Introduction to Statistical
Learning: With Applications in R. [S.1.]: Springer Publishing Company, Incorporated,
2014. ISBN 1461471370, 9781461471370.

JARRETT, K.; KAVUKCUOGLU, K.; RANZATO, M.; LECUN, Y. What is the
best multi-stage architecture for object recognition? In: 2009 IEEE 12th International
Conference on Computer Vision, ICCV 2009. [S.l.: s.n.], 2009. p. 2146-2153. ISBN
9781424444205.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. 2014.

Cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd
International Conference for Learning Representations, San Diego, 2015. Disponivel em:
<http://arxiv.org/abs/1412.6980> .

KREMER, S. C. Field Guide to Dynamical Recurrent Networks. 1st. ed. [S.L]:
Wiley-IEEE Press, 2001. ISBN 0780353692.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning
applied to document recognition. Proceedings of the IEFE, v. 86, n. 11, p. 22782324,
Nov 1998. ISSN 0018-9219.

LINNAINMAA, S. Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics, v. 16, n. 2, p. 146-160, Jun 1976. ISSN 1572-9125. Disponivel em:
<https://doi.org/10.1007/BF01931367>.

MINSKY, M.; PAPERT, S. Perceptrons. Cambridge, MA: MIT Press, 1969.

MONTAVON, G.; ORR, G. B.; MULLER, K. (Ed.). Neural Networks: Tricks of the Trade
- Second Edition. Springer, 2012. v. 7700. (Lecture Notes in Computer Science, v. 7700).
ISBN 978-3-642-35288-1. Disponivel em: <https://doi.org/10.1007/978-3-642-35289-8>.

NEWELL, A.; SIMON, H. The logic theory machine—a complex information processing
system. IRE Transactions on Information Theory, v. 2, n. 3, p. 61-79, Sep. 1956. ISSN
0096-1000.

http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://hdl.handle.net/10012/12819
http://hdl.handle.net/10012/12819
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/978-3-642-35289-8

60

PASCANU, R.; MONTUFAR, G.; BENGIO, Y. On the number of response regions
of deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098, 2013.

POLYAK, B. Some methods of speeding up the convergence of iteration methods. Ussr
Computational Mathematics and Mathematical Physics, v. 4, p. 1-17, 12 1964.

REDDI, S. J.; KALE, S.; KUMAR, S. On the convergence of adam and beyond. CoRR,
abs/1904.09237, 2019. Disponivel em: <http://arxiv.org/abs/1904.09237>.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning Representations
by Back-propagating Errors. Nature, v. 323, n. 6088, p. 533-536, 1986. Disponivel em:
<http://www.nature.com/articles/323533a0>.

SAON, G.; KURATA, G.; SERCU, T.; AUDHKHASI, K.; THOMAS, S.; DIMITRIADIS,
D.; CUI, X.; RAMABHADRAN, B.; PICHENY, M.; LIM, L.; ROOMI, B.; HALL, P.
English conversational telephone speech recognition by humans and machines. CoRR,
abs/1703.02136, 2017. Disponivel em: <http://arxiv.org/abs/1703.02136>.

SHWARTZ-ZIV, R.; TISHBY, N. Opening the black box of deep neural networks via
information. CoRR, abs/1703.00810, 2017. Disponivel em: <http://arxiv.org/abs/1703.
00810>.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale
image recognition. arXiv 1409.1556, 09 2014.

SMITH, L. N.; TOPIN, N. Super-convergence: Very fast training of residual
networks using large learning rates. CoRR, abs/1708.07120, 2017. Disponivel em:
<http://arxiv.org/abs/1708.07120>.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUT-
DINOV, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res., JMLR.org, v. 15, n. 1, p. 1929-1958, jan. 2014. ISSN 1532-4435. Disponivel
em: <http://dl.acm.org/citation.cfm?id=2627435.2670313>.

SUTSKEVER, 1I.; MARTENS, J.; DAHL, G.; HINTON, G. On the importance
of initialization and momentum in deep learning. In: Proceedings of the 30th

International Conference on International Conference on Machine Learning -

Volume 28. JMLR.org, 2013. (ICML’13), p. 11I-1139-111-1147. Disponivel em:

<http://dl.acm.org/citation.cfm?id=3042817.3043064>.

TIELEMAN, T.; HINTON, G. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. 2012. COURSERA: Neural Networks for Machine
Learning.

TORRALBA, A.; FERGUS, R.; FREEMAN, W. T. 80 million tiny images: A large
data set for nonparametric object and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 30, n. 11, p. 1958-1970, Nov 2008. ISSN 0162-8828.

TURING, A. M. Computing machinery and intelligence. Mind, Oxford University Press
on behalf of the Mind Association, v. 59, n. 236, p. 433-460, 1950. ISSN 00264423.
Disponivel em: <http://www.jstor.org/stable/2251299>.

http://arxiv.org/abs/1904.09237
http://www.nature.com/articles/323533a0
http://arxiv.org/abs/1703.02136
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1708.07120
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=3042817.3043064
http://www.jstor.org/stable/2251299

61

WILSON, A. C.; ROELOFS, R.; STERN, M.; SREBRO, N.; RECHT, B. The
marginal value of adaptive gradient methods in machine learning. In: GUYON, L;
LUXBURG, U. V.; BENGIO, S.; WALLACH, H.; FERGUS, R.; VISHWANATHAN, S.;
GARNETT, R. (Ed.). Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 2017. p. 4148-4158. Disponivel em: <http://papers.nips.cc/paper/
7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning. pdf>.

WILSON, D.; MARTINEZ, T. R. The general inefficiency of batch training for
gradient descent learning. Neural Networks, v. 16, n. 10, p. 1429 — 1451, 2003.
ISSN 0893-6080. Disponivel em: <http://www.sciencedirect.com/science/article/pii/
S0893608003001382>.

http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
http://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
http://www.sciencedirect.com/science/article/pii/S0893608003001382
http://www.sciencedirect.com/science/article/pii/S0893608003001382

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of symbols
	Contents
	Introduction
	Objectives
	Document Structure

	Theoretical Background
	Neural Networks
	General working principles
	Deep Learning Approaches
	Architectures
	Activation Functions
	Regularization
	Data Normalization
	Other improvements

	Training Algorithms
	Vannila Gradient Descent
	Stochastic Gradient Descent
	SGD with Momentum
	Adaptive Learning Methods
	Adagrad
	Rmsprop
	Adam

	Second-Order Methods

	Proposed Method
	Experiments
	Training Algorithms
	Databases
	Architectures
	Experiment Design
	Results
	VGG10 and CIFAR10
	SGD
	Adam
	Rmsprop
	Adagrad
	TASO
	Overall results

	VGG19 and CIFAR100
	RESNET18 and CIFAR10
	MNIST and LENET5

	Conclusion
	Future Works

	References

