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ABSTRACT

Extracting information about Web entities has become commonplace in the academy
and industry alike. In particular, data about places distinguish themselves as rich sources
of geolocalized information and spatial context, serving as a foundation for a series of appli-
cations. These entities, however, are inherently noisy and introduce several normalization
problems, which need to be tackled in order to obtain a clean database. Record linkage,
also known as entity resolution, refers to the detection of replicated data from potentially
multiple sources, and is one of the most critical cleaning processes to be conducted in
a data set. This work presents a novel record linkage solution for large scale Web-based
places data, being composed of three steps: generation of potential duplicate place pairs,
place pair deduplication, and clusterization of the classification results. The detection of
duplicate places is the solution’s core, being a complex and seldom approached problem
in this domain. Hence, the main contribution of this work is in the form of a model based
on a deep neural network architecture, which utilizes encoders for different information
levels of names, addresses, geographical coordinates, and categories. Each encoder uses
distinct structures to generate representation vectors, which are concatenated, compared,
and transported to a feature space that represents duplications and non-duplications.
Additionally, this work proposes alternative classification models for real time usage by
means of APIs. The complete solution is analyzed, with the classification model for place
pairs being evaluated on top of two distinct data sets and compared against the state-
of-the-art. As a result, the proposed solution is shown to handle large quantities of data
in a production environment, and the classification model outperforms the baselines in
both data sets, thus constituting a complete and efficient solution for the record linkage
problem in the places data domain.

Keywords: Places. Record Linkage. Deep Learning. Representation Learning.



RESUMO

A extração de informações sobre entidades da Web é uma prática comum tanto na
academia quanto na indústria. Em particular, dados sobre pontos de interesse destacam-se
como uma fonte rica de informação geolocalizada e contexto espacial, servindo como base
para uma variedade de aplicações. Estas entidades, porém, são inerentemente ruidosas
e introduzem diversos problemas de normalização, que precisam ser resolvidos para que
possa se obter uma base de dados limpa. Resolução de entidades, que se refere à detec-
ção de dados replicados vindos potencialmente de diversas fontes, é um dos processos de
limpeza mais críticos a serem realizados. Este trabalho apresenta uma solução original de
resolução de entidades para dados de pontos de interesse oriundos predominantemente da
Web em grande escala, sendo composto por três etapas: geração de potenciais pares de
pontos de interesse duplicados, classificação de pares em duplicações ou não-duplicações,
e geração de clusters a partir dos resultados da classificação de pares duplicados. A de-
tecção de pontos de interesse duplicados destaca-se como o cerne da solução, sendo um
problema complexo e pouco abordado. Como principal contribuição do trabalho, portanto,
é apresentado um modelo baseado em uma arquitetura de redes neurais profundas, que
utiliza encoders para os diferentes níveis de informação de nomes, endereços, coordenadas
geográficas, e categorias. Cada encoder utiliza estruturas distintas para gerar vetores de
representação, que são concatenados, comparados, e transportados para um espaço de
features que representa duplicações e não-duplicações. Adicionalmente, são propostas al-
ternativas de modelos de classificação para uso em tempo real por meio de APIs. A solução
completa é analisada, sendo o modelo para a classificação de pares de pontos de interesse
avaliado em dois conjuntos de dados distintos e comparado com o estado da arte na área.
Como resultado, a solução proposta mostra-se capaz de lidar com grandes quantidades
de dados em um ambiente de produção, e o modelo de classificação obtém performance
superior a dos modelos comparados em ambos os conjuntos de dados, constituindo uma
solução completa e eficaz para o problema.

Palavras-chave: Pontos de Interesse. Resolução de Entidades. Aprendizado Profundo.
Representation Learning.
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1 INTRODUCTION

The creation and management of data sets collected from the Web has become com-
monplace in academia and industry alike. However, it is a process which suffers from
several issues pertaining a noisy and unstructured nature. While the amount of infor-
mation covered by the Web grows steadily, only 60.3% of its websites display their data
in some structured manner (W3TECHS, 2020). On top of that, one may also encounter
well-structured but ill-defined data, which not only is harder to treat, but also lessens the
informational value of it.

Our domain consists of data about places around the world, gathered mostly from the
Web by a focused Web crawler. Each place represents a real physical space with a given
name, location, and several other attributes which are further presented in this work. Thus,
places are a rich source of location-sensitive information and geospatial context, with data
providers such as Factual1 and Safegraph2 collecting them for commercial purposes.

Through this context, they spark interest in applications such as recommendation
platforms3, where users may post reviews and receive suggestions on places to visit, and
check-in apps4, where users may check-in to a place and share their experience. Places also
play a central role in the analysis of users’ behavior patterns for engagement solutions,
such as the one developed by Inloco5, where this research was conducted.

However, places are also complex entities, since their locations display a lot of noise
and several of their fields are subjective. One of the most prominent normalization issues
that must be addressed in this context is replicated data. Replicated places in a database
may lead to problems such as fragmentation of user activity in analytical systems, where
the visitation pattern of an user may be wrongly determined.

For instance, if an analytical system depends on the frequency of visits to a category
of place by a given user to infer their preferences, and a restaurant entity is replicated
𝑁 times in its database, the system would account for 𝑁 separate visits to a restaurant
instead of a single one, making this user’s preferences misleading. Moreover, if this system
uses some kind of reliability calculation based on the number of potential places attributed
to an user visit, the sample replicated restaurant could lower said reliability.

Another issue caused by replicated places data is bad user experiences in recommen-
dation and review platforms. For instance, when visiting a website with nearby places to
visit, replicated entities could not only fill the top results, but also receive separate reviews
from different users, thus making the platform fail to provide an aggregated evaluation of
1 <https://www.factual.com/data-set/global-places/>
2 <https://www.safegraph.com/>
3 <https://www.tripadvisor.com/>
4 <https://www.swarmapp.com/>
5 <https://www.inloco.com.br/solutions>

https://www.factual.com/data-set/global-places/
https://www.safegraph.com/
https://www.tripadvisor.com/
https://www.swarmapp.com/
https://www.inloco.com.br/solutions


16

the place.
Record linkage, also commonly known as entity resolution, entity matching, or dedu-

plication, is a field which refers to the detection of redundant data. This field has evolved
considerably since its inception, as the problem not only persists but is also enhanced,
because the Web is mostly open to user input and there are usually a plethora of websites
which display the same kind of information in different forms.

Despite the advances on information retrieval pipelines, including streamlined focused
Web crawlers such as the one developed by Qiu et al. (2015), the task of linking records
is not trivially solved without a full view of the database in question, and thus most are
agnostic to the problem. Limiting the retrieval scope could also be considered a valid
strategy to solve the problem by avoiding fetching duplicates at all, but replicated data
are present even inside the same Web domain at a large scale, as Dalvi et al. (2014) show.

The detection of replicated place records is also affected by toponym ambiguity (BUS-

CALDI, 2009), that is, different correct names for the same real-world place, such as sy-
nonyms, abbreviations, and representations of a toponym in a different language (transli-
terations), or different places with the same same in different geographical positions. This
ambiguity adds to the noise present in Web data to make textual information of place
entities cumbersome to deal with.

A popular approach for record linkage and similar matching tasks in the recent ye-
ars is utilizing machine learning techniques to perform comparisons between records or
representations of them (HU et al., 2014; GUO et al., 2016; XIONG; ZHONG; SOCHER, 2017;
SANTOS; MURRIETA-FLORES; MARTINS, 2017; SANTOS et al., 2017; MARINHO, 2018; BAR-

BOSA, 2018; YANG et al., 2019). On the other hand, none of the previous works dealing
with record linkage in the places Web data domain, to the best of our knowledge, pro-
vide an end-to-end solution for the problem in a production scenario. Thus, the following
problem arises: given a Web-based database of places, how can one detect sets of place
entities which represent the same real-world place?

The contribution of this work is then twofold: first, it proposes a novel pipeline for
linking place records in databases built predominantly from Web data in a large scale. Se-
cond, it proposes a deep neural network for classifying place pairs using multiple encoders.
The pipeline itself is composed of three steps:

• Record Blocking: first, it generates pairs of potential duplicate place entities from
the raw database;

• Classification Model: second, it classifies these place pairs as duplicates or non-
duplicates;

• Duplicate Clustering: third, it clusterizes the duplicate classification results.
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In addition to that, we also show that our preliminary attempts at implementing a
Classification Model may be ported to a set of API’s and be utilized to solve the place
record linkage problem in real time. In this way, we tackle the record linkage problem in
both on-line and off-line fashions.

While the Record Blocking and Duplicate Clustering steps of our pipeline bond to-
gether with the Classification Model to form a cohesive end-to-end solution for the place
record linkage problem, our research in the topic of classifying place pairs into duplicates
or non-duplicates culminates in a model which builds effective representations for place
pairs on top of different attributes. Given these representations and an effective training
process, this approach outperforms previous approaches and machine learning baselines
on the same task in terms of imbalance-aware metrics such as the normalized Gini coeffi-
cient (GINI, 1912) and the area under precision-recall curves. We then elect it as the main
contribution of this work.

This model, named 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 for Places Entity Resolution Network, is a deep neural
network that utilizes four encoders to capture distinct information about place fields on
different levels, transforming them into compact vector representations. More specifically,
the network uses word and character encoders for place names and addresses, a cate-
gory encoder for a place’s category list, and a geographical encoder, which operates on
top of geographical distance metrics between places. The representation vectors for each
place are then concatenated, compared, and transported to a vector space which repre-
sents duplications and non-duplications. Finally, a fully-connected network processes the
transformed vectors, and a sigmoid layer outputs a probability of the two places being
duplicates.

Differently from Yang et al. (2019), which attempt to build generic representations
for places in an unsupervised manner with a costly smoothing process, and use them for
the deduplication task, our network builds representations solely focused on place pairs.
These representations are built during the duplicate detection process itself. While this
hinders us from utilizing these representations for many other purposes, experimentation
on two different data sets shows that:

• The proposed pipeline is able to operate on top of 28 million place records seamlessly;

• 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 obtains performances surpassing those of competitive ensemble classifiers
trained on the duplicate detection task in all tested scenarios;

• 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 also obtains better results than previous heuristics and deep learning
approaches on the same task;

• The preliminary proposed models are suited for on-line usage, having low execution
times.
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1.1 OBJECTIVES

The main objective of this work is providing an end-to-end solution for the record linkage
problem in the places data domain, with a focus on detecting duplications among place
pairs. In order to do that, the following tasks are required:

• Understand the data in question, and further our knowledge on place entities and
their issues;

• Create a blocking strategy which prunes trivial non-duplications but keeps duplica-
tes;

• Develop a deep neural network to capture multi-level information about place pairs
and use it to detect duplications;

• Create a way to clusterize results from the duplicate classification step;

• Generate a ground truth set for the duplicate detection task;

• Evaluate the pipeline and, mainly, the deep neural network for duplicate detection.

1.2 WORK STRUCTURE

This work is comprised of 9 chapters, including this introductory one. Chapter 2 presents
the fundamental concepts necessary for the understanding of this work, touching upon
basic record linkage works, string similarity metrics and heuristics, as well as common spa-
tial partitioning approaches. It also presents explanations on recurrent and convolutional
neural networks, representation learning and embedding vectors, followed by dissections
of performance metrics which account for class imbalance.

Then, Chapter 3 provides the definition of a place entity in the scope of this work,
comparing it against previous ones. Furthermore, it describes the fields present in each
place of our work, and dissects their issues. Following that, Chapter 4 discusses previous
works related to ours, which deal with the record linkage problem directly in the places
data domain.

Next, Chapter 5 dissects the proposed pipeline for linking place records, without going
into details about our deep neural network. It first explains our record blocking strategy
in Section 5.1, while Section 5.2 displays preliminary attempts at classifying place pairs
with heuristics and traditional machine learning models. Finally, Section 5.3 explains the
clustering technique utilized on top of the classification results, and Section 5.4 talks
about how we are able to solve the record linkage problem in real time by porting models
to APIs, providing technical details on it.

Our deep neural network for classifying place pairs, 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , is presented in detail
at Chapter 6, with each of its encoders being presented in Sections 6.1 through 6.4, and
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the final affinity generation step, which compares the results from each encoder, being
dissected in Section 6.5. Section 6.6 explains the model’s training process, and Section 6.7
briefly discusses failed attempts we had during the development of this network, in order
to aid other researchers facing similar issues.

In Section 7.1, the data sets utilized for the development of the proposed solutions
and in the experiments are explained in detail, while Section 7.2 offers an explanation on
the ground truth generation process. External ground truths which have been evaluated
by us but deemed infeasible for our use case are described in Section 7.3.

Chapter 8 presents the experiments we conducted, their performance metrics, setup
process, and the obtained results, discussing them afterwards. Finally, Chapter 9 concludes
the work by summarizing our results and describing steps for future work.

1.3 LIST OF PUBLICATIONS

During the development of this work, the following publication was made:

• COUSSEAU, V.; BARBOSA, L. Industrial paper: Large-scale record linkage of
web-based place entities. In: Anais Principais do XXXIV Simpósio Brasileiro de
Banco de Dados. Porto Alegre, RS, Brasil: SBC, 2019. p. 181–186. ISSN 0000-0000.
Available at: <https://sol.sbc.org.br/index.php/sbbd/article/view/8820>.

https://sol.sbc.org.br/index.php/sbbd/article/view/8820
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2 FOUNDATIONS

This Chapter describes the fundamental concepts to grasp our work. First, it describes
the problem of record linkage, its seminal works, and how the problem is commonly
structured. Next, common string matching and spatial blocking techniques utilized in
record linkage works are detailed. Then, the Chapter offers overviews on representation
learning and sequence-based neural networks, highlighting how they fit the record linkage
problem. These explanations assume a basic understanding of deep learning. Lastly, the
performance metrics which account for imbalance in data sets and are utilized in this
work are explained in detail.

2.1 RECORD LINKAGE

The field of record linkage, also known as entity resolution, entity matching, or duplicate
record detection, has been studied in several contexts. One of the first recorded explorati-
ons of the problem was performed by Dunn (1946), who presented it in the public health
record-keeping sector and proposed a simplistic deterministic approach to tackle it. In
their work, Fellegi and Sunter (1969) develop a probabilistic foundation for the problem,
where an agreement weight 𝑤𝑚 is computed for each entity field by:

𝑤𝑚 = ln 𝑚
𝑢

(2.1)

and a disagreement weight 𝑤𝑢 is computed by:

𝑤𝑢 = ln 1−𝑚
1− 𝑢 (2.2)

where 𝑚 is the probability that the given field is an exact match in a duplicate pair, and
𝑢 is the probability that the given field is not an exact match on a non-duplicate pair.
These probabilities may be calculated from a ground truth set. Then, to compute a score
for a pair of records, each of their fields are compared. If they match, its agreement weight
is added, and, if not, the disagreement weight is. This sum of weights can be compared
against a decision threshold 𝜃 to produce a final classification result.

This framework serves as a baseline, and has been studied and improved over the
years. Notably, Wilson (2011) provides mathematical proof on the equivalence between the
probabilistic model from Fellegi and Sunter (1969) and a naive Bayes classifier (LANGLEY;

IBA; THOMPSON, 1998). Since naive Bayes classifiers are among the simplest models due
to their hard independence assumptions, this proof implies that using more advanced
machine learning models could provide significant improvements over the probabilistic
record linkage framework.
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Modern record linkage techniques commonly approach the problem in two main steps
(STEFANIDIS et al., 2014): record blocking and entity matching or deduplication. Moreo-
ver, a third step, usually named as merging or grouping, is applied on top of the entity
matching results (BERJAWI, 2017). The blocking step (CHRISTEN, 2011) is responsible
for reducing the search space explored by the matching algorithm, since comparing all
possible record pairs in a data set of size 𝑛 would imply in a complexity of 𝑂(𝑛2). When
dealing with spatial records containing latitude and longitude information, these tech-
niques usually employ grid subdivision strategies (CHRISTEN, 2011; DALVI et al., 2014;
BERJAWI, 2017; COUSSEAU; BARBOSA, 2019), which are discussed in Section 2.3.

Next, the matching step is responsible for deciding whether or not two records re-
present the same real world entity. Traditional approaches for the matching task usually
rely either on computing similarity measures between fields and applying a threshold to
produce binary results (COHEN; RAVIKUMAR; FIENBERG, 2003; MOREAU; YVON; CAPPé,
2008), or combining several comparison metrics to do so. This metric combination strategy
can be done through deterministic rules (BERJAWI, 2017; DENG et al., 2019) or through
learning how to combine them (SANTOS; MURRIETA-FLORES; MARTINS, 2017; COUSSEAU;

BARBOSA, 2019). In their work, Köpcke, Thor and Rahm (2010) label these two kinds of
techniques as non-learned and learned.

Despite being quick to implement and relatively effective, non-learned techniques re-
quire previous specialized knowledge on the data domain in question. Moreover, they do
not scale well in a real scenario, since the number of rules may grow indefinitely over time,
leading to bug-prone code. With a high number of similarities being computed and rules
being chained, it also becomes hard to visualize the exact rule chain a record pair goes
through to be matched, which takes away from the maintainability of the system.

Adding to that, learned methods are able to capture more intricacies in the input data.
For instance, as Santos, Murrieta-Flores and Martins (2017) show, even a basic form of
combining string similarity metrics through state-of-the-art machine learning models is
able to achieve good results. Thus, when data sets are complex enough, learned models
are often favored.

Be it for the blocking or matching step, most record linkage solutions use some kind
of string similarity metric in their pipeline. In light of that, we provide a description of
common string matching techniques in the context of the problem.

2.2 STRING MATCHING TECHNIQUES

String matching methods receive two strings as input and return either a similarity value,
a distance value, or a binary value for those, indicating whether or not and how closely
they match one another. The works from Cohen, Ravikumar and Fienberg (2003), Moreau,
Yvon and Cappé (2008) display and compare several string matching metrics and methods
in the context of record linkage. More specifically, Moreau, Yvon and Cappé (2008) discern
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them into three types: sequential character methods, Bags-of-words (BOW) methods, and
special measures which mix both others.

The value of string matching techniques for this research lie in the fact that place en-
tities possess textual fields, which can be analyzed in terms of their similarity to approach
the problem of record linkage. Thus, the three types of techniques given by Moreau, Yvon
and Cappé (2008) are subsequently described.

2.2.1 Sequential Character Methods

Among character based methods, the most prolific ones in record linkage works are the
Levenshtein edit distance (LEVENSHTEIN, 1966) and Jaro-Winkler similarity (WINKLER,
1990). The former is a metric which indicates how many character insertions, deletions, or
substitutions are needed to transform one string into another, with lower distances being
better and a distance of 0 meaning exact matches.

Using an example from Moreau, Yvon and Cappé (2008), for the two strings kitten (𝑥)
and sitting (𝑦), two substitution and one addition operations must be performed, totalling
in a Levenshtein distance of 3: 𝑑(𝑘𝑖𝑡𝑡𝑒𝑛, 𝑠𝑖𝑡𝑡𝑖𝑛𝑔) = 3 (𝑘 ↦→ 𝑠, 𝑒 ↦→ 𝑖, 𝜀 ↦→ 𝑔). Then, the
normalized Levenshtein similarity metric is calculated by 1− 𝑑/𝑚𝑎𝑥(|𝑥|, |𝑦|). In the case
of the sample strings, this similarity would be equal roughly to 0.57. Albeit intuitive to
understand and implement, this metric is inefficient for long strings of characters.

The other previously mentioned common character based approach is the Jaro-Winkler
similarity metric, which is a variation of the original Jaro metric (JARO, 1989). It adds a
prefix scale that weighs strings whose initial characters match more heavily. The original
Jaro metric is computed for two strings 𝑥 and 𝑦 by:

Jaro(x,y) = 1
3 ·
(︃
𝑚

|𝑥|
+ 𝑚

|𝑦|
+ 𝑚− 𝑡

𝑚

)︃
(2.3)

where 𝑚 is the number of matching characters between 𝑥 and 𝑦, such that they are the
same and are at most D characters apart, with:

𝐷 =
⌊︃
𝑚𝑎𝑥(|𝑥|, |𝑦|)

2

⌋︃
(2.4)

Then, given a constant scaling factor 𝑝 and the number of characters 𝑙 that match in
the start of both strings, up to a maximum of 4, the Jaro-Winkler metric is computed by:

Jaro-Winkler(𝑥, 𝑦) = Jaro(𝑥, 𝑦) + 𝑙 · 𝑝 · (1− Jaro(𝑥, 𝑦)) (2.5)

In the context of place entities matching, this prefix boosting makes sense for the
English language, where most relevant words are usually found at the start of names, but
other languages may not present this pattern. The Portuguese language is an example
of that: the string Café do João translates roughly to John’s Coffee in English, where
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Café ≡ Coffee. Moreover, different tasks may present different placement of most relevant
tokens. Thus, the prefix boosting is not always desirable.

To account for that, two variations of the Jaro-Winkler metric have been proposed
by Christen (2006): sorting and permutation. In the sorted version, strings are tokenized
and their tokens are sorted in lexicographical order. In the permuted version, the Jaro-
Winkler similarity is calculated for all possible permutations of the strings’ tokens and the
maximum value is returned. Santos, Murrieta-Flores and Martins (2017) further propose
a version of the metric which reverses both strings to be compared before computing the
Jaro-Winkler metric, to boost suffixes instead of prefixes.

While all variations of the metric are valid, Santos, Murrieta-Flores and Martins (2017)
point out that string similarities are highly task-dependant, and there is not a generic way
to pick the best among them. Even though one could argue that the permuted version
is prone to be the best, since it attempts all possible combinations of token orderings,
it is computationally expensive to perform and may lead to higher average values of
similarities, which may be undesirable for some tasks.

2.2.2 Bag-of-words Methods

BOW methods represent each string to be matched as a set of tokens, and compute
similarities between those sets. Among those, the most common one in the record linkage
task is calculating the cosine similarity between TF-IDF vectors. TF-IDF, in turn, refers
to computing the Term Frequency (TF) of each word in strings to be matched by the
Equation 2.6:

TF(𝑤, 𝑠) = 𝑛𝑤,𝑠∑︀
𝑤′∈𝑠 𝑛𝑤′,𝑠

(2.6)

where 𝑛𝑤,𝑠 is the number of times the word 𝑤 appears in string 𝑠; computing the Inverse
Document Frequency (IDF) of each word in the to-be-matched strings by Equation 2.7:

IDF(𝑤) = log
(︃

|𝑆|
|{𝑠 ∈ 𝑆 |𝑤 ∈ 𝑠}|

)︃
(2.7)

or one of its many variations (BAEZA-YATES; RIBEIRO-NETO et al., 1999); and finally mul-
tiplying them to achieve a final result for each word, as Equation 2.8 shows.

TF-IDF(𝑤, 𝑠) = TF(𝑤, 𝑠) · IDF(𝑤) (2.8)

Having computed the TF-IDF values for each matching word of two strings to be
matched, one may build two sparse feature vectors from these values, transporting them
to a vector space where each word composes a dimension. Then, the cosine similarity
between two of those vectors 𝑢 and 𝑣 can be calculated by Equation 2.9:

cosine(𝑢, 𝑣) = 𝑢 · 𝑣
||𝑢|| ||𝑣||

(2.9)
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This approach is more flexible about token positioning in a string, however, small dif-
ferences in words may lead to big differences in results, since only exactly matching words
are taken into consideration. For instance, the strings Record Linkage and RecordLinkage,
when tokenized by spaces, have no common tokens and receive a cosine similarity of 0 by
default.

2.2.3 Mixed Methods

To address problems pertaining to the previous methods, Cohen, Ravikumar and Fienberg
(2003) propose a method named Soft TF-IDF, which leverages the best characteristics
from both sequential character and BOW methods. It does so by modifying the TF-IDF
cosine similarity algorithm to account for non-exact matches in words; given two strings
𝑠 ans 𝑠′, instead of only computing the cosine similarity for strictly equal words, a set
𝐶𝐿𝑂𝑆𝐸 of close words is first populated with all tokens 𝑤 from 𝑠 such that there is a
token in 𝑠′ with sim(𝑠, 𝑠′) ≥ 𝜃, where sim is a secondary character based similarity and 𝜃
is a threshold. Putting it into an equation, we have:

𝐶𝐿𝑂𝑆𝐸(𝑤, 𝑠′, 𝜃) = {𝑣 ∈ 𝑠′ | sim(𝑤, 𝑣) ≥ 𝜃} (2.10)

Then, a weighted cosine similarity between 𝑠 and 𝑠′, which is the final Soft TF-IDF
value 𝑆, is computed by Equation 2.11:

𝑆(𝑠, 𝑠′) =
∑︁

{𝑤,𝑤′ | 𝐶𝐿𝑂𝑆𝐸(𝑤,𝑠′,𝜃)̸=∅∧ 𝑤′∈𝐶𝐿𝑂𝑆𝐸(𝑤,𝑠′,𝜃)}
cosine(𝑤,𝑤′) · sim(𝑤,𝑤′) (2.11)

Using the same example from Section 2.2.2, the strings Record Linkage and RecordLin-
kage would have a Soft TF-IDF greater than 0, since their Jaro-Winkler similarity is 0.99.
While there are other mixed methods in the literature, such as the Monge-Elkan measure
(MONGE; ELKAN, 2001), the Soft TF-IDF has been shown to outperform them (COHEN;

RAVIKUMAR; FIENBERG, 2003), and is thus more commonly utilized in the record linkage
task.

2.3 SPATIAL BLOCKING

To perform record blocking for spatial data, i.e. data which contain location fields such
as latitude and longitude pairs, many works utilize a grid subdivision approach (CHRIS-

TEN, 2011; DALVI et al., 2014; BERJAWI, 2017; COUSSEAU; BARBOSA, 2019). The intuition
behind this is that dividing entities into buckets and then comparing all pairs for each
of those buckets avoids having to compute trivial non-duplications in the data set, thus
alleviating the time complexity of the computation.

In the specific case of latitude and longitude coordinates, a simple grid subdivision
approach consists of choosing a desired precision based on degrees. An approximation
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shows, for instance, that to create grids with lengths of 11 meters in the equator, latitude
and longitude values need to be divided in increments of 0.0001. This simplistic approach
poses two main issues: first, choosing a grid size is not straightforward, and second, grid
sizes fluctuate greatly in proportion to distance from the equator, due to the non-Euclidian
nature of the calculations.

The Geohash geocoding system1 (MORTON, 1966) improves the aforementioned sim-
plistic approach, offering an intuitive way to define hierarchical grids. As Figure 1 shows,
in this system, each grid (Geohash) is defined by a string of characters. The more cha-
racters a Geohash has, the more granular it is, and by truncating characters from the
Geohash string, one is able to obtain a less granular grid which encompasses this one.

Figure 1 – Geohash with a precision of 6 characters contained inside a Geohash with 5
characters.

Source: (COUSSEAU, 2020)

The shape of each Geohash varies with its character precision: while character strings
of even lengths describe square grids, Geohashes with an odd number of characters are
shaped like a rectangle. This may prove troublesome for some use cases. In addition to
that, Geohashes do not tackle the issue of varying grid sizes according to the distance
from the equator. More specifically, Geohashes are not proper geographical projections,
and as such, they disregard the non-Euclidian geometry involved.
1 <https://web.archive.org/web/20080221111539/http://blog.labix.org/author/admin/>

https://web.archive.org/web/20080221111539/http://blog.labix.org/author/admin/
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To tackle these issues, the H3 indexing system (BRODSKY, 2018) approximates Earth’s
surface as a sphere and wraps it in an icosahedron, using a gnomonic projection (SNYDER,
1987) to project Earth as a spherical icosahedron. This projection generates 20 different
planes (faces of the icosahedron), upon which a hexagonal grid of 122 cells is laid out, and
more granular hexagons are generated procedurally. Each hexagon in the H3 system is
represented by a string of characters, similarly to Geohash strings. Also akin to Geohashes,
each H3 string might be truncated to obtain a less granular hexagon which encompasses
the current one. Due to having a full-blown projection system included in its pipeline, the
H3 system avoids distortion issues.

The previously presented methods, however, do not account for different entity den-
sities in the record linkage task. In the places data domain, for instance, the distribution
of places around the world is not uniform, since first and foremost about 71% of Earth’s
surface is water-covered2 and places tend to be concentrated in a few high density areas
around the world. Moreover, they also suffer from edge cases, where two potentially du-
plicated entities to be matched may be close to one another but still be partitioned during
the grid subdivision.

Even so, both techniques are suitable for the problem of linking place records, because
they provide good space partitioning strategies. The distortion issue caused by the dis-
tance from the Equator is not crucial for this domain, since the size of spatial grids has
room for variation in small scales. Thus, geohashes are applied in our work to perform
spatial blocking.

2.4 REPRESENTATION LEARNING

Choosing how to represent data or extract features is one of the key components in the
performance of machine learning models (BENGIO; COURVILLE; VINCENT, 2013). Because
of that, traditional attempts to employ machine learning to solve problems require a
big time investment in understanding, pre-processing, and extracting relevant features
from data, a process which is commonly referred to as feature engineering. This process,
however, is labor intensive and requires prior domain knowledge. Its own existence, as
Bengio, Courville and Vincent (2013) point out, highlights the inability of traditional
algorithms to extract and organize relevant information from the data.

In that sense, efforts have been made to develop methods which learn relevant repre-
sentations from data as a step to solve complex problems, such as Speech Recognition
and Natural Language Processing (NLP), spawning a research area in of itself named
Representation Learning. As a way to generate expressive and progressively abstract re-
presentations, deep learning has been successfully employed in Representation Learning
tasks (HINTON; OSINDERO; TEH, 2006). Albeit presenting advantages, this approach is
2 <https://phys.org/news/2014-12-percent-earth.html>

https://phys.org/news/2014-12-percent-earth.html
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Figure 2 – Representations of words as vectors.

(a) One-hot encodings. (b) Word embeddings.

Source: Adapted from (TENSORFLOW, 2020)

particularly difficult because it raises the question of what is a good objective for training
those representations, which can lead back to the original issues of feature engineering.

The field of NLP has seen a particular boom of Representation Learning advances, spe-
cially since NLP works often deal with textual Web data, which are massive in size, noisy,
and possibly unstructured. In that context, techniques often attempt to build vector re-
presentations for words. Since places have some textual fields, we utilize word embeddings
to a great extent in our work.

2.4.1 Word Embeddings

As exemplified in Figure 2b, word embeddings are a common name given both to proces-
ses which transport words to real-valued compact vector representations, and the vector
representations themselves. The main concepts behind word embeddings are (1) reducing
the dimensionality of the input data, in a way that machine learning models are able to
consume a dense matrix of real values; and (2) creating a space where similar words have
similar encodings.

A comparable approach to encode words is through one-hot encodings, shown in Figure
2a. However, it leads to extremely sparse representations, e.g. for a dictionary of 100,000
words, each word would be represented by a vector with 99.999% of empty spaces (zeroes).
Another possible approach would be to assign a unique integer value to each word in the
dictionary. Albeit producing dense representations, the integer encodings have no explicit
relationship, i.e. the index 2 is no more similar to the index 3 than the index 50,000.
Moreover, some classifiers which do not account for feature scaling may fail to achieve
meaningful results. Word embeddings tackle all of those issues.

2.4.2 Word2Vec

One of the most common approaches to build word embeddings are Word2Vec models
(MIKOLOV et al., 2013; MIKOLOV et al., 2013). Word2Vec refers to a family of unsupervised
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neural network models which attempt to build contextual representations of words, trans-
porting them to a compact space where similar words are near one another, and vector
operations such as King - Man + Woman produce semantically meaningful results like
Queen. In their core, the architecture of Word2Vec models consists of two layers, receiving
randomly initialized vectors as input: one projection layer, which which projects the input
vectors to another space, and an output layer.

Figure 3 – Architecture of CBOW and Skip-gram Word2vec models.

Source: (MIKOLOV et al., 2013)

As Figure 3 shows, the shape of the input and output values vary among the two
canonical Word2Vec models, which are named Continuous Bags-of-words (CBOW) and
Continuous Skip-Gram (skip-gram). While the CBOW model receives a set of surrounding
context words from a sentence as input and attempts to predict a current word, the skip-
gram model receives the current word as input and attempts to predict its context. In
this manner, the skip-gram model is often slower to train, but is able to work with less
training data and represent rarer words better than the CBOW one3.

Mikolov et al. (2013) further improve training times of the skip-gram model for big
data sets by proposing a negative sampling strategy. With it, instead of using the whole
weight matrix with size equal to the vocabulary to calculate the output values, the network
is able to utilize just a few negative contextual samples instead.

An issue with Word2Vec models is that they do not account for the morphology of
words, that is, they ignore the internal structures of the words and instead build agnos-
tic representations for them. Bojanowski et al. (2017) indicate that this causes issues for
learning representations of rare words, and learning representation of words in morpho-
logically rich languages. Thus, the authors propose a new approach which extends the
traditional skip-gram model with character representations, named FastText.
3 <https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ>

https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ
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2.4.3 FastText

The FastText model represents each word as a bag of character n-grams, and learns
vector representations for each of those n-grams instead of the word itself. Then, each
word is represented by the sum of its character n-gram embedding vectors. The model
also differentiates between n-grams and complete words, by including the full word into
the bag of n-grams, and using special characters < and > denoting the start and end of
sequences. For instance: using an n-gram size of 3, the bag of n-grams for the word where
is composed of <wh, whe, her, ere, re>, <where>. In this example, the authors note that
the subword her for where differs from the word <her>.

Another benefit of capturing subword information is enabling the generation of em-
beddings for words which are not included in the initial vocabulary, by decomposing them
into their character n-grams. For instance, assuming a vocabulary composed of the word
where, FastText would be able to generate a word embedding for there by using the n-
grams her, ere, re>. One downside of the model is its slower training time, upwards of
1.5 times slower than the traditional skip-gram model with negative sampling as reported
by its creators.

The FastText model has been thoroughly analyzed and compared against other word
embedding approaches (MIKOLOV et al., 2018). It has also been trained in a corpus compo-
sed of CommonCrawl and Wikipedia data for 157 different languages. Both the pre-trained
vectors and the model itself are public to download, use, and extend4.

2.5 SEQUENCE-BASED NEURAL NETWORKS

In the context of record linkage on the web, most available data assume the form of textual
sequences of some kind. Indeed, two of the main attributes in the places data domain are
place names and addresses, both being short sequences of texts. In this context and
more generally in the NLP area, two types of networks are ubiquitously utilized with
success: Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN).
This Section describes these two types of networks, both of which are utilized in our
research to extract representations from places, and their most common architectures.

2.5.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks that process inputs in multiple
iterations, as Figure 4 shows. By doing so, they are able to store information about past
inputs and utilize them to aid in the present task. As Olah (2015) points out, this idea is
aligned with how humans think, since we continuously utilize past information to infer, for
instance, the meaning of a text when reading it. When processing textual data, each word
4 <https://fasttext.cc/>

https://fasttext.cc/
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or character in a sentence can be fed sequentially to the RNN for it to learn relationships
between those words.

Figure 4 – Overview of a traditional RNN processing input sequence 𝑥.

Source: (OLAH, 2015)

Even though they date back to 1990 (JORDAN, 1990), the popularization of RNNs was
triggered by the development of the Long Short-Term Memory (LSTM) architecture (HO-

CHREITER; SCHMIDHUBER, 1997). LSTM networks account for the fact that traditional
RNNs are not able to store relevant information for longer sequences (BENGIO; SIMARD;

FRASCONI, 1994), by utilizing a cell state which is shared between all time steps in the
network. This cell state may have information added or removed from it by a series of
internal operations named gates: a forget gate, an input gate, and an output gate, as
Figure 5 shows. In the Figure, layers are represented in light yellow, pointwise operations
in red, and vector operations by the arrows.

Figure 5 – Internal structure of a LSTM network.

Source: (OLAH, 2015)

The forget gate is responsible for reading the past hidden state and the current input
to decide how much of the previous state should be kept in the cell state. Then, the
input gate reads the current input and the last hidden state to decide which values to
be updated in the cell state, and how to update them. In Figure 5, a hyperbolic tangent
(tanh) function is applied to the input value and last hidden state to decide how to update
them, but this activation function may be modified.
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The cell state is updated with the outputs from the forget and input gate. Finally,
the output gate reads the updated cell state and the current input to generate the hidden
state of the current time step. The last hidden state of LSTM networks may be utilized as
the final output for a sentence, but the hidden states from each cell may also be processed
in some manner, like a max pooling operation, to achieve a final result.

Expressing a LSTM mathematically, we have:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶𝑡 = tanh(𝑊𝑐 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 * 𝐶𝑡−1 + 𝑖𝑡 * 𝐶𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 * tanh(𝐶𝑡)

(2.12)

where 𝑓𝑡 is the forget gate, 𝑖𝑡 is the input gate, 𝑜𝑡 is the output gate, 𝐶𝑡 is the cell state
at time step 𝑡, and ℎ𝑡 is the hidden state at time step 𝑡.

A widely used variation of LSTM networks is Gated Recurrent Unit (GRU) networks
(CHO et al., 2014). Among the many changes made to the LSTM base cell, this model
most notably merges the cell state and the hidden state, thus limiting the output values
of each cell to a single vector, instead of two. In general, GRU networks have been found
to provide similar or better results than LSTMs for shorter sentences, and are trained
faster.

While LSTM networks and its variations excel at handling long sequences of data and
finding relevant patterns among each entry, some tasks require the network to focus on
specific input steps rather than others. In the case of sentence translation, two LSTM
networks are usually utilized: one serves as an encoder, which processes the original sen-
tence to be translated, and the second one serves as a decoder, which receives the encoded
representations as input and outputs translated words.

In this case, linguistic differences may cause some words from the original sentence
to have an offset in the desired output sentence. When this happens, LSTM networks
may fail to remember the necessary context from previous words to correctly translate
them. In their work, Bahdanau, Cho and Bengio (2015) propose the concept of attentive
training for translating sentences with RNNs. In short, the attention mechanism serves
as an extra layer between the encoder and decoder which has its weights calculated based
on comparisons between the states of the two networks at each time step. By multiplying
those learned weights by the encoder outputs, the decoder is able to focus on different
words at different time steps, independently of alignment with the original sentence.
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2.5.2 Convolutional Neural Networks

Convolutional Neural Networks (LECUN et al., 1989) are networks which utilize a com-
bination of convolutional filter layers on top of the input data to capture a collection
of local features from it. In the context of machine learning, a convolution is composed
of a kernel, which is a matrix of weights that is applied to the input values through a
mathematical operation of the same name. CNNs have been widely utilized in the image
processing field (KRIZHEVSKY; SUTSKEVER; HINTON, 2017), where some known kernels
detect features such as edges.

Apart from utilizing multiple convolutional filters, CNNs usually employ aggregation
operations, such as max pooling, between each convolutional layer. The intuition behind
applying these operations is that CNNs attempt to find distinguishing local features, so
the most important information for them is knowing whether or not a certain feature
appears in a sequence, and not necessarily how or where the feature precisely occurs in
each step of the input data.

One dimensional CNNs have also been employed for textual data with great success
(COLLOBERT et al., 2011; KIM, 2014). Each convolutional layer of a 1D-CNN receiving a
sequence of size 𝑛 may be defined by a kernel (window) of size 𝑘, a filter matrix 𝐹 ∈ R𝑘×𝑑,
and an activation function. Then, sub-sequences of size 𝑘 are extracted from the input,
and 𝑛−𝑘+1 vectors of 𝑑 dimensions are generated, passed through the activation function,
and returned.

In the work of Kim (2014), a 1D-CNN is trained on sentences following the architecture
described by Figure 6. In this architecture, each word in a sentence is attributed to a pre-
trained word embedding. Then, a convolutional layer using multiple filters with different
window sizes extracts features from sub-sequences of words, which are defined by the
concatenation of their respective word vectors. For instance, one of those filters with a
window size of 2 may extract features from the sub-sequence < 𝑤𝑎𝑖𝑡, 𝑓𝑜𝑟 >, while other
one with a window size of 3 extracts feature from < 𝑣𝑖𝑑𝑒𝑜, 𝑎𝑛𝑑, 𝑑𝑜 >. These features are
then passed through a max pooling over time, generating a final vector representation for
the sentence.

The network from Kim (2014), for instance, is trained for several different tasks in-
volving text: sentiment analysis, binary classification of positive or negative reviews, sub-
jectivity classification, multi-label question classification, and opinion polarity detection.
In most of them, the network is shown to surpass the results of other methods in the
state-of-the-art at the time with little amounts of training, which shows the power of
1D-CNNs when dealing with textual data.
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Figure 6 – CNN architecture for extracting features from sentences.

Source: (KIM, 2014)

2.6 CLASSIFICATION METRICS FOR IMBALANCED SETS

The problem of detecting duplicate places suffers from class imbalance, that is, the number
of actual duplicates is much lower than the number of non-duplicates. Thus, the chosen
metrics need to account for that. By choosing a standard metric such as accuracy, for
instance, any classifier considering all pairs as non-duplicates would achieve misleading
scores for a data set with a skew towards negative samples. Common metrics accounting
for imbalance, which are utilized in our work, are the normalized Gini coefficient (GINI,
1912; DIXON et al., 1987; DAMGAARD; WEINER, 2000), the 𝐹𝛽=0.5 score, also referred to as
e-measure (RIJSBERGEN, 1979), and precision-recall curves alongside the area under said
curves (AUC).

2.6.1 Gini Coefficient

There are several interpretations and ways to calculate the Gini coefficient. Computati-
onally, it attempts to measure how far apart are the probabilistic results from random
guessing. It may do so by the following process5: first, it sorts the predictions 𝑝 into as-
cending order, then this ordering is used to sort the labels 𝑦𝑖 ∈ {0, 1}, generating a new
label list 𝑦′. By counting the number of necessary swaps between adjacent labels in 𝑦′ to
transform 𝑦′ back to 𝑦, then dividing by the number of swaps necessary to transform a
random list of zeroes and ones into 𝑦, one reaches the normalized Gini coefficient.

While the swap-counting explanation for the Gini coefficient is intuitive, it relies on a
bubble sort operation that has a quadratic worst-case complexity to count the number of
necessary swaps. Thus, another way to compute the Gini coefficient is by implementing
Equation 2.13, proposed by Damgaard and Weiner (2000):

𝐺 = 2∑︀𝑛
𝑖=1 𝑖𝑦

′
𝑖

𝑛
∑︀𝑛

𝑖=1 𝑦
′
𝑖

− 𝑛+ 1
𝑛

(2.13)

5 <http://www.rhinorisk.com/Publications/GiniCoefficients.pdf>

http://www.rhinorisk.com/Publications/Gini Coefficients.pdf
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where 𝑛 is the number of samples being evaluated and 𝑦′ is a list of labels sorted accor-
ding to the predictions given to them in ascending order, like in the first approach. An
implementation of this Equation in Python is provided in Appendix A.

Even though the normalized Gini coefficient is well-suited for problems with class
imbalance, it does not provide an intuitive explanation on how frequently a given model
will classify a sample correctly. Furthermore, it requires probabilistic outputs to function
correctly.

2.6.2 F-measure

The 𝐹𝛽=0.5 score is an intuitive metric which does not depend on probabilistic outputs,
and may additionally be broken up into its precision and recall components to improve
understandability. It is described in Equation 2.14.

𝐹𝛽=0.5 = (1 + 𝛽2) · precision · recall
𝛽2 · precision = 1.25 · precision · recall

0.25 · precision (2.14)

The 𝐹𝛽=0.5 score and its precision and recall components are not optimally suited
for imbalanced problems. However, they provide a clearer indication on how the model
performs in the case of positive and negative pairs.

The 𝛽 coefficient for the F-score is set as 0.5 to account for the fact that precision, i.e.
correctly detecting a duplication when given a true one, outweighs recall, i.e. detecting all
possible duplications, in place record linkage cases. This stems from place pairs incorrectly
classified as duplicates leading to possibly unrecoverable states in a database.

2.6.3 Precision-recall Curves

Precision-recall curves show the relationship between the precision and recall metrics for
different classification thresholds. Thus, they indicate how much precision is to be expected
when given a certain recall value, and vice-versa. This ability to evaluate a model under
different metric constraints not only improves visualization over other alternatives (SAITO;

REHMSMEIER, 2015), but is desirable for production scenarios, where a certain level of
precision, for instance, may be required by the clients of the model.

Furthermore, one may calculate the area under the precision-recall curve (AUC) to
obtain a metric indicating the overall model quality. This metric has the advantage of
evaluating the model’s performance under different scenarios without depending on the
classification threshold, just like the normalized Gini Coefficient.

2.7 CHAPTER SUMMARY

This Chapter presented the fundamental concepts utilized in our work. The record linkage
problem definition and preliminary record linkage approaches were presented, followed by
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different types of string similarity techniques. These techniques are thoroughly utilized
in our work to compare textual fields from place entities. Next, the Chapter dissected
spatial blocking methods, which are utilized in the context of place records’ linkage to
partition the space. Then, the concept of representation learning was explained with exam-
ples and current prolific techniques to generate representations for words and characters.
This concept is expanded by the explanation of sequence-based neural networks. Finally,
evaluation metrics for classification models dealing with imbalanced data sets, which are
utilized in our experiments, were explained.

Chapter 3 expands the current one by presenting the concept of place entities in the
context of this research, the fields which they possess and are utilized by us, and common
challenges in dealing with them. They then bond together to complete the preliminaries
of this work.
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3 BACKGROUND: PLACES

This work attempts to detect replicated place entities in databases built from Web data,
which are commonly created and populated following a fixed definition of what a place
entity is. Due to the noisy nature of Web data, however, the entities present in these
databases suffer from a series of data quality and consistency issues. Thus, an explanation
of those is necessary to fully understand our research.

This Chapter serves as a foundation for understanding the data records dealt with
by our proposed solution. It provides a thorough explanation of what a place entity is in
the context of this work, which attributes are commonly associated with it, and issues
pertaining to each attribute.

3.1 PLACE ENTITY DEFINITION

Albeit having a clear definition in dictionaries, the “place” term is used ambiguously
when referring to an entity type in a database. For instance, Google Places API1 defines
a place as “...establishments, geographic locations, or prominent points of interest”, while
Yang et al. (2019) seem to utilize a broader concept that encompasses any page created in
Facebook’s online service labelled as a place by the user. Dalvi et al. (2014) and Goodchild
and Hill (2008) also utilize broader concepts, in which “...a place is defined as any entity
that has a name and a physical location.” and “place is defined simply as a geographic
location and more expansively as a geographic location that has been identified and
referenced as a social construct”, respectively.

Adding to that, some place APIs and previous works also refer to places simply as
Points of Interest (POI) (YANG et al., 2017; DENG et al., 2019; FACTUAL, 2020), and a few
other authors also refer to places as toponyms in an interchangeable manner (SANTOS;

MURRIETA-FLORES; MARTINS, 2017; SANTOS et al., 2017; MARINHO, 2018; KAFFES et al.,
2019), mainly when dealing exclusively with place names. These inconsistencies derive
from the intrinsic characteristics of each database and from the business interests involved
in common place services. While we do not aim to tackle these differences in nomenclature,
we consider it crucial to first provide a formal place definition in the context of our work:

Definition 3.1.1. [Place entity]. A place entity in our database is a direct represen-
tation of a physical location in the real world which has well-defined boundaries, a clear
purpose for visitation, and an area sufficient for a person to be enclosed in.

Definition 3.1.1 is narrower than the ones previously described, and aims to only
encompass entities that may not be ambiguously defined. We provide a few examples of
1 <https://developers.google.com/places/web-service/intro>

https://developers.google.com/places/web-service/intro
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entities and whether or not they fit out definition in Table 1.

Table 1 – Examples of entities and whether or not they fit the definition of a place in our
work.

Entity Fits our place definition Reason

A Beach no Boundaries are not well
defined.

A store on a beach yes Meets all of the
requirements.

A small statue no Does not have a
considerable size.

The Statue of Liberty yes Meets all of the
requirements.

A building floor no Has no clear purpose for
visitation.

A random street no Has no clear purpose for
visitation.

Champs-Élysées yes Meets all of the
requirements.

An office in a corporate
building

yes Meets all of the
requirements.

A private mall parking lot no Has no clear purpose for
visitation; is part of a
shopping mall place.

Source: (COUSSEAU, 2020)

Some applications such as recommendation systems, engagement solutions, and review
platforms are only able to function with information about places. To achieve this, they
rely on places having a plethora of fields, some of which fall outside of this work’s scope.

Hence, we describe the most relevant place fields for record linkage solutions in Ta-
ble 2, using the schema from our use case as an example. For ease of explanation, we
overload the nomenclature of the address field with a composition of the thoroughfare and
sub_thoroughfare sub-fields, since they see most usage, and note that the parent_place_id
field of a place represents another place in the database which encompasses it, e.g. a store
inside a shopping mall. Additionally, for our use case, the categories field has 122 pre-
defined values to choose from. Some examples of categories are bar, restaurant, store,
landmark, and corporate_building.

For the sake of formalism, we notate these fields as an 𝑖𝑑 (a unique textual identifier),
a name 𝑛, a geo location 𝑔 (expressed in latitude and longitude coordinates), a textual
address 𝑟, a list of categories 𝑐, a 𝑝ℎ𝑜𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟, a ℎ𝑜𝑚𝑒𝑝𝑎𝑔𝑒 URL, and a parent place
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Table 2 – Description of fields for place entities, using the schema from our database.

Field Sub-field Type Obligatory Example

id - Textual yes 507f1f77bcf86cd799439011

name - Textual yes Empire State Building

geo_location - Latitude
and
longitude
coordina-
tes

yes 40.7484629, -73.9856671

phone_number - Textual no +1 212-736-3100

homepage - Textual,
URL

no <https:
//www.esbnyc.com/>

categories - List of
pre-
defined
values

no [landmark,
corporate_building]

parent_place_id - Textual no 507f1f77bcf86cd799438012

address

country Textual no US

admin_area Textual no New York

sub_admin_area Textual no New York City

locality Textual no Manhattan

sub_locality Textual no Midtown South

thoroughfare Textual no W 34th St

sub_thoroughfare Textual no 20

postal_code Textual no 10001

Source: (COUSSEAU, 2020)

id 𝑝𝑎𝑟𝑒𝑛𝑡 (which is an 𝑖𝑑 of another place which encompasses the current one, if any).
Only the 𝑖𝑑, the name 𝑛, and the location 𝑔 are obligatory in our work.

3.2 CHALLENGES OF DEALING WITH PLACE FIELDS

This collection of fields presents several issues which may be encountered in any Web-based
database in this domain. First of all, textual fields suffer from normalization problems,
meaning that even if the sources from which they are gathered offer structured ways
to insert the field, the value inside this structured field may have no strict ruling. This
results, for example, in places named Aeroporto Internacional de Guarulhos, Aeroporto
International de São Paulo - GRU and Aeroporto Governador André Franco Montoro

https://www.esbnyc.com/
https://www.esbnyc.com/


39

Figure 7 – Common ways to input geo location fields of places in applications.

(a) Receiving full adresss to be geocoded. (b) Using GPS sensors.

(c) Manually pinning.

Source: (a,c) (COUSSEAU, 2020) (b) (FOURSQUARE, 2020)

representing the same real world place.
Moreover, textual fields are prone to typing errors and differences in the use of ac-

cents and special characters. Some of these differences are classified as toponym ambi-
guities (BUSCALDI, 2009): different correct names for the same real-world place, such as
synonyms, abbreviations, and representations of a toponym in a different language (trans-
literations), or different places with the same same in different geographical positions. The
geographical position of a place is a crucial attribute to deal with some forms of ambiguity,
like places with the same name in different locations.
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The geo_location field is often attached to a place entity by manual tagging with pin-
point precision, shown in Figure 7c, or by a process named geocoding (CENTER, 2010),
which converts textual addresses like those of Figure 7a into latitude and longitude pairs.
In mobile applications, humans are often prompted for an address which is then geocoded,
instead of manually pinning. In addition, some applications such as Swarm2 - exemplified
in Figure 7b - and Facebook allow their users to create new places using the latitude and
longitude coordinates obtained from GPS sensors in smartphones and other devices.

All of the commonplace approaches to obtain geographical coordinates for a place
entity may fail to consistently provide correct results with high precision due to these
factors:

• For geocoded addresses, small modifications or lack of data in the original provided
address, as well as failures in the geocoding system, may lead to different results;

• Locations obtained through GPS sensors in applications may vary because the GPS
system is inaccurate in environments such as indoor ones, that pose interference, in
which humans spent 87% of their time in 2001 (KLEPEIS et al., 2001). Users may also
attempt to create a place far away from their current location and wrongly provide
it as the place’s (DALVI et al., 2014);

• Manual pinning, albeit free from algorithmic noise and precise given sufficient tools
and attentive users, is seldom utilized in mobile applications due to user experience
faults. It also may lead to confusion in cases where a place has no clear latitude
and longitude due to its dimensions, e.g. a shopping mall, and lead users to create
replicated places.

The address sub-fields present normalization issues in addition to those already pertai-
ning to textual fields, due to different countries and regions having different conventions
for administrative levels and abbreviations. For instance, while US street addresses often
present their sub_thoroughfare information at the beginning of the address, e.g. 34 First
Avenue, Brazilian street addresses usually contain the same information at the end of the
address. This, in turn, hinders the development of heuristics for detecting address fields,
and may affect deduplication models.

The parent_place_id and categories fields may be scraped from the Web or derived
from other heuristics and models. For our use case, in short, a heuristic for parent place
detection utilizes textual similarities between place names to detect cases such as Jer-
sey Gardens being a parent of Abercrombie - Jersey Gardens. Meanwhile, categories are
generated by a multi-label classification model, which accounts for places that may be-
long to several categories, such as a bar which is also a restaurant during the day. Their
main issue is exactly that: any approach developed for detecting parentage relationships
2 <https://www.swarmapp.com/>

https://www.swarmapp.com/
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or categories is prone to imperfections. Finally, problems with the phone_number and
homepage fields are less frequent, and their main issue is being rarer to find.
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4 RELATED WORK

This Chapter offers an overview of previous similar works, drawing parallels to ours. In
this analysis, we prioritize works which propose strategies for the duplicate detection step
as a partial solution for the record linkage problem in the places domain, since the main
contribution of this work resides there. We also highlight those which handle pre-detection
or post-detection steps when applicable.

For the sake of legibility, we divide the related works into two categories, based on
how they approach the duplicate classification task: (i) traditional approaches and (ii)
deep learning approaches. The following sections discuss these works in detail.

4.1 TRADITIONAL APPROACHES

The solution developed by Dalvi et al. (2014) approaches the problem of detecting du-
plicate places by using information from place names and latitude and longitude pairs
to build a name model and a spatial context model. The main concept behind the work
is that places names are sufficiently represented from a set of core words, the remaining
ones being background words. For instance, a place named Starbucks Coffee is sufficiently
represented by Starbucks alone, so when compared to another place named Peete’s Coffee,
the word Coffee should not have a big influence in similarity computations between both
places.

The concept of core words guides the authors’ process of generating a name model:
they propose an Expectation-maximization (EM) algorithm (DEMPSTER; LAIRD; RUBIN,
1977) where a probability distribution of core words and a probability distribution of
background words are progressively calculated from initial random states. This EM algo-
rithm is expanded to account for a spatial context model. In this expansion, the authors
perform a grid subdivision, and allocate each place to a tile. Then, a probabilistic back-
ground word distribution is calculated not only globally, but also for each tile during each
step of the extended EM algorithm. The spatial context model tries to capture the fact
that the relevance of each word is tied to the place’s position on the globe: while the
word NYC might not be relevant at all for places in New York City, the same word in
Amsterdam might be highly relevant, as it would be more uncommon.

Finally, the work computes the probability of two places being duplicates by using the
probability of the core word set from both of them being equal. They then expand this
concept to include string edit operations by providing a dynamic programming algorithm.
This approach, however, does not learn relationships between words and is constrained
by a small feature set, leading to an algorithm which is prone to errors. As Chapter 8
shows, the EM algorithm is also slow to train.
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In his thesis, Berjawi (2017) studies the problem of linking place records from different
Location Based Services (LBS), such as Google Maps1, in a broad scope. Among others,
he proposes a spatial blocking method to detect potential pairs, a similarity algorithm to
match places, and a data fusion algorithm for the detected duplicates.

A key aspect of the thesis is dealing directly with LBS, instead of receiving a full-
blown places data set as input. Hence, the proposed spatial blocking strategy is based on
two specific queries made through each API of the LBS: for a given place, the first query
returns all places in a given radius with the same category as the original one, and the
second one returns all nearby places with at least one common token in their name. The
union of those queries generates potential pairs of duplicate places.

The matching algorithm developed by Berjawi (2017), named Global Similarity, uses a
probabilistic approach to combine multiple traditional similarity metrics such as Levensh-
tein (LEVENSHTEIN, 1966) and Trigram (ULLMANN, 1977) distances for multiples fields,
and spatial distances comparing geo locations between place pairs. It follows the intuition
that each similarity metric by itself presents specific pitfalls, and combining many of them
alleviates this.

The probabilities resulting from the Global Similarity are processed by a decision
algorithm that applies a threshold to produce a binary classification result. Finally, the
classification results are merged through an algorithm that takes the global similarity for
each pair into account, to not only expand the matching to sets of more than two places,
but to choose the best values among them.

There is a limitation in dealing with data from LBS, which restricts the data to be
matched, as seen with the proposed blocking algorithm. It also ensures a higher level of
data quality than that of raw Web entities, such as those dealt with by our work. This
work is also more focused on creating a new database rather than improving the quality
of an existing one, and uses a set of probabilistic rules which is hard to maintain and
visualize in a production system.

The work by Deng et al. (2019) tackles the record linkage problem for two different
data sets obtained from Chinese LBS. Similarly to other traditional approaches, they
use a multi-attribute matching strategy to classify duplicate places, having access to the
name, address, geo location, and category of each place. The core of their work, on the
other hand, resides in the combination strategy for these similarities, using an improved
version of the Dempster–Shafer (D-S) evidence theory (DEMPSTER, 1967; SHAFER, 1976).

For computing spatial similarities, they use a normalized Euclidian distance between
the places. Then, to compute name similarities, the authors utilize a modified version
of the Levenshtein edit distance which accounts for differences in Chinese words. Akin
to that, the address similarities are calculated by means of a feature extraction step
based on pre-constructed Chinese word segmentation dictionaries and knowledge bases,
1 <https://www.google.com/maps>

https://www.google.com/maps
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and a subsequent cosine similarity calculation for each of the feature vectors. Finally, the
similarity between categories is computed by a tree matching algorithm, which depends
on a manual step to fuse category schemata from different LBS.

The similarity values for each attribute are then considered as independent evidences,
and are used to construct basic probability models using the D-S evidence theory. Next,
the authors improve the basic models by accounting for cases where evidence is highly
conflicting, improving the D-S framework for their use case, and decision thresholds are
applied to produce final duplicate detection results. Their work is tested on top of data sets
from two LBS, Baidu2 and Gaode3, from which approximately 300 entities representing
the same real-world place in the two data sets are manually detected and labeled.

Similarly to the work by Berjawi (2017), dealing directly with data from APIs of LBS
implies in less noise and a more strict data quality than the Web’s. Furthermore, many of
the similarity strategies proposed by their work are tailored towards Chinese places, and
the category similarity assumes knowledge and manual fusing of the category schema from
each source. Due to those reasons, albeit providing an insightful take on combining multi-
attribute similarity metrics, most of the findings from the research are not applicable to
our use case.

4.2 DEEP LEARNING APPROACHES

The work of Yang et al. (2019) draws inspiration from previous solutions for entity reso-
lution and person re-identification tasks in different domains to create unsupervised re-
presentations of place entities from the Facebook Web service, noting that the user-facing
nature of the service leads to place replications. They name this step as unsupervised fe-
ature generation, and utilize places’ names, addresses, locations, and categories to do so.
Then, they apply a metric learning (LU; HU; ZHOU, 2017) step which transports the place
representations into a metric space where duplicate places are close, and non-duplicated
places are far apart.

For the unsupervised feature generation step, they utilize FastText (BOJANOWSKI et

al., 2017; MIKOLOV et al., 2018) to create name word embeddings, using a corpus of 1.9
trillion words from public Facebook posts in the last 10 years, and a skip-gram Word2Vec
(MIKOLOV et al., 2013) model trained on top of words from place addresses to create
address word embeddings. Next, they incorporate category and geo location information
by first applying a grid subdivision, then creating a places graph where places in the same
grid or belonging to the same category are connected, and finally smoothing this graph
by training a skip-gram objective function with negative sampling (PEROZZI; AL-RFOU;

SKIENA, 2014).
2 <http://map.baidu.com/>
3 <https://www.amap.com/>

http://map.baidu.com/
https://www.amap.com/
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This feature generation method is dubbed NF+AS+CS by the authors, and its results
are passed through an MLP network which uses a novel pairwise contrastive loss, an
adapted version of a triplet loss. This model, named PE, is further improved by batch-
wise hard sampling (PEH), source-based attentive training (PEHA) and cluster-based
label denoising (PEHAD) (GUO et al., 2017).

The batch-wise hard-sampling uses a secondary distance metric, which is mentioned
but apparently not explained in their work, to discard samples below a certain percentile
of distances in the batch from contributing to the training loss. Meanwhile, the attentive
training aims to attribute different weights based on the source of each labelled place
pair, due to the sources used in their data set having different quality levels. Finally, the
proposed label denoising technique draws inspiration from self-training networks to create
clusters for the positive and negative classes of samples, and updates their representatives
during the training process. These clusters are then utilized to detect labelled pairs too
distant from their respective clusters, lessening their effect on the model training process.

Their approach is similar to ours in many aspects, since our 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 model also
leverages embeddings to build vector representations for places using the same attributes.
However, our solution is built from the ground up with a focus on detecting duplicate pla-
ces, and, as such, the network generates embeddings in a pairwise and supervised manner,
using unsupervised training only for initializing embeddings layers in the word encoder.
Furthermore, the places graph generated during the embedding smoothing is costly to
build and maintain, and usage of the text corpus of 1.9 trillion words is inaccessible to
most researchers and companies alike, both due to its scale and its proprietary aspect.

In their work, Santos et al. (2017) tackle the problem of toponym matching, which
means that they attempt to detect duplicate places taking only their names into conside-
ration. Their main argument is that using only word-level information for matching names
has a performance plateau, due to them demanding common substrings to function. This,
in turn, causes word matching approaches to fail during transliterations, typing errors, or
slight semantic changes to toponyms over time.

Based on that, they propose a deep architecture with two layers of siamese GRU
networks processing character sequences for two place names, generating an embedding
for each place, and merging them through a series of operations. This result is passed
through a feed-forward network with Dropout regularization (SRIVASTAVA et al., 2014)
and a final sigmoid layer produces a probabilistic output indicating if the two places are
duplicates.

They compare this solution to previous string matching heuristics and supervised
learning approaches for combining string similarity metrics (SANTOS; MURRIETA-FLORES;

MARTINS, 2017), showing significant improvements over all of them. This attests to the
representational power of characters in the task of name matching, however, the results
presented by the authors are biased by transliterations, a case which is uncommon in our
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database.
Marinho (2018) further attempts to enhance the work from Santos et al. (2017) by

applying attention techniques, shortcut connections, and highway networks. They perform
extensive experimentation on four data sets, but most of the results show little to no
improvement of these techniques over the original model, which advocates for choosing
the simplest and most effective solution instead of the most complex one, as Yang et al.
(2019) also point out.

4.3 SUMMARY OF APPROACHES

Table 3 sums up the main characteristics of each of the related works discussed in the
Chapter.
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Table 3 – Related works, their approaches, features, and limitations.

Work Features Approach Limitations

Dalvi et
al. (2014)

names, geo locations EM for core words
detection with spatial
contexts

Few features; does
not learn
relationships
between words.

Berjawi
(2017)

names, geo locations,
addresses, categories

Combination of multiple
string and spatial
similarity metrics by a
probabilistic approach;
data fusion system

Deals directly with
data from APIs;
set of generational
rules is hard to
maintain

Deng et
al. (2019)

names, geo locations,
addresses, categories

Combination of multiple
string and spatial
similarity metrics by a
probabilistic approach

Deals directly with
data from APIs;
tailored towards
Chinese places;
uses a small data
set

Yang et
al. (2019)

names, geo locations,
addresses, categories,
label sources

Unsupervised feature
generation for places;
metric learning on top of
learned representations;
novel loss function,
sampling, attentive
training, and label
denoising

Depends on some
constraints in the
data set; trained
on inaccessible
corpora; costly to
build

Santos et
al. (2017)

names Siamese GRU networks
for character sequences

Few features;
results are biased
towards
transliterations

Marinho
(2018)

names Improvement of Santos et
al. (2017) with attentive
training and other
techniques

Results are
equivalent to those
of the original
work

Source: (COUSSEAU, 2020)
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5 PLACE RECORDS’ LINKAGE PIPELINE

In order to tackle the problem of record linkage for place entities, we propose an end-to-
end pipeline that, given a database of places, outputs clusters of replicated entities in it.
This Chapter presents this pipeline in a step-wise manner, highlighting our contributions
and implementation process.

The pipeline is composed of three steps, as shown in Figure 8. First, the Record
Blocking step is responsible for partitioning and blocking the database of 𝑃 places in
Geohashes with a precision of 6 characters, and then transforming them into pairs of
duplicates <𝑃𝑖, 𝑃𝑗> ⊆ 𝑆(𝐺𝑘), where 𝐺 is the set of all Geohashes and 𝑆(𝐺𝑘) ∈ 𝑃 2 is the
set of all pairwise combinations inside Geohash 𝐺𝑘. Afterwards, it filters these pairs by
computing a filtering function 𝐽 for place pairs in each Geohash, pruning trivial cases.

These pairs are then processed by a Classification Model that predicts if two given
places <𝑃𝑎, 𝑃𝑏> are duplicates 𝑃𝑎 ∼ 𝑃𝑏, with a binary output 𝑜<𝑃𝑎,𝑃𝑏> based on each geo
location 𝑔, category list 𝑐, name 𝑛, address 𝑟, 𝑖𝑑, parent place id 𝑝𝑎𝑟𝑒𝑛𝑡, and homepage ℎ.
Finally, the Duplicate Clustering step creates clusters of replicated places 𝑅 by employing
a graph-based approach. A sequence diagram for the pipeline is displayed in Figure 20 at
Appendix B.

Figure 8 – Overview of our pipeline with sample values.

Source: (COUSSEAU, 2020)

With this pipeline we are able to process a places database in its entirety. As a result,
it produces a list of replicated place entities to be cleaned up or merged by Data Fusion
techniques (BERJAWI, 2017) in batches. At the same time, it enables the provisioning of
real-time duplicate detection via an API by porting the Classification Model.

In the following sections, we provide an in-depth description of our pipeline steps in
the same data flow presented in Figure 8. Thus, we firstly describe our Record Blocking
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algorithm in Section 5.1, and our preliminary attempts to develop a Classification Model
in Section 5.2. Finally, dissections of the Duplicate Clustering step and of APIs using
the Classification Model are performed in Sections 5.3 and 5.4, respectively. While this
Chapter offers explanations on the first Classification Models developed by us, which
serve as a baseline for our final solution, the final deep neural architecture for 𝑃𝑙𝑎𝑐𝐸𝑅𝑁
is explained in Chapter 6.

5.1 RECORD BLOCKING

The first major objective in our places’ linkage pipeline is generating place pairs that
need to undergo a duplicate detection process from our Classification Model. The simplest
approach for solving this would be generating all place pairs in the database and then
processing them, by using the rationale that the model should be good enough to discard
obvious non-duplicates.

This, however, has some implications: (1) processing all pairwise combinations of places
is computationally expensive, since its complexity is 𝑂(𝑛2), where 𝑛 is the size of the
places’ database; and (2) there is a considerable imbalance between duplicates and non-
duplicates, i.e., the data is highly skewed towards non-duplicates, which can compromise
the performance of the duplicate classifier (HE; GARCIA, 2009).

Algorithm 1: Record blocking algorithm, with partitioning and filtering phases.
input : 𝑃 ← set of places

𝐺 ← set of Geohashes
𝜆 ← similarity threshold

output: Set of potential duplicates 𝐽

1 𝑆 ← ∅;
2 for 𝑃𝑖 ∈ 𝑃 do
3 𝑆(Geohash(𝑃𝑖)).append(𝑃𝑖);

4 for 𝐺𝑙 ∈ 𝐺 do
5 𝑆(𝐺𝑙)← Combinations(𝑆(𝐺𝑙));

6 𝐽 ← ∅;
7 for 𝐺𝑙 ∈ 𝐺 do
8 for <𝑃𝑖, 𝑃𝑗> ∈ 𝑆(𝐺𝑙) do
9 if JaroWinkler(𝑛𝑃𝑖

, 𝑛𝑃𝑗
) ≥ 𝜆 then

10 𝐽(𝐺𝑘).append(<𝑃𝑖, 𝑃𝑗>);

11 return 𝐽

To deal with these issues, and consequently make our solution scalable, we implement a
two-step record blocking strategy. First, the places are grouped based on their geographical
regions (partitioning phase) and then only places within the same region are compared in
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a pairwise fashion to identify candidate duplicates (filtering phase). Algorithm 1 describes
the record blocking step with its two separate phases programmatically.

More specifically, the partitioning step in lines 1 to 5 of Algorithm 1 prunes the search
space by allocating the places in a spatial grid using the Geohash system (MORTON, 1966;
NIEMEYER, 2008), a public domain hierarchical geocoding system which subdivides the
world into buckets of variable precision determined by a string of characters. Differently
from simpler subdivison alternatives, as described in Section 2.3, Geohashes provide an
intuitive way to partition the space and navigate through different resolutions.

We utilize a resolution of 6 characters, which was empirically defined in the early stages
of our work and aims to keep the place density in a grid cell high enough to encompass
relevant pairs, but low enough to ease up on the computational costs. This resolution
represents an area of approximately 744𝑚2 and a diagonal distance of approximately
1364𝑚, that vary depending on the actual location being partitioned due to the non-
Euclidean nature of the calculations.

While the H3 system (BRODSKY, 2018) could tackle the distortion issues, they are
not crucial to our solution. The reason behind this lies in the most important role of
the partitioning system, which is generating intuitive, well-distributed, disjoint tiles, and
small-scale variations in their size do not increase the computational complexity of our
record blocking to unfeasible values.

In the filtering step (lines 6 to 10), all possible place pairs <𝑃𝑖, 𝑃𝑗> within each
Geohash 𝐺𝑘, noted as 𝑆(𝐺𝑘), are generated with a complexity of 𝑂(|𝐺𝑘|2), where |𝐺𝑘|
is the number of places in 𝐺𝑘. Place pairs are then filtered by comparing both place
names 𝑛𝑃𝑖

and 𝑛𝑃𝑗
with the Jaro Winkler string similarity (WINKLER, 1990), akin to

previous record linkage approaches (COHEN; RAVIKUMAR; FIENBERG, 2003; MOREAU;

YVON; CAPPé, 2008; CHRISTEN, 2011; SANTOS; MURRIETA-FLORES; MARTINS, 2017) which
have used them and achieved good results.

Next, a threshold 𝜆, which should be low enough to preserve duplicates, and high
enough to prune trivial non-duplicate pairs, is applied to the pairwise comparisons. The
result of this filtering step is deemed as 𝐽 , as Equation 5.1 shows. The filtering step thus
reduces the amount of pairs to be further stored and processed, consequently reducing
the complexity of other steps down in the pipeline.

𝐽 = 𝐽(<𝑃𝑖, 𝑃𝑗> ⊆ 𝑆(𝐺𝑙), ∀ 𝑙) = <𝑃𝑖, 𝑃𝑗> | JaroWinkler(𝑛𝑃𝑖
, 𝑛𝑃𝑗

) ≥ 𝜆 (5.1)

We note, however, that this filtering step has a limitation, since it may drop duplicate
pairs with dissimilar names. More specifically, the Jaro Winkler similarity metric weights
tokens in the start of each text more heavily. Thus, name pairs like Starbucks Coffee
and Coffee Starbucks would display a very low similarity value: 0 in this specific case.
Chapter 2 touched upon proposed alternative versions of the Jaro Winkler method, such
as ordering tokens before comparison. Since these variations also bring other error cases
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along with them, as explained in Section 2.2, we use the original version of the metric,
and leave improvements to this step as future work.

For both the partitioning and filtering steps, we use the Apache Spark Framework
(ZAHARIA et al., 2016) for distributing computation among several machines. Since our
records are partitioned first into Geohashes, thus gaining a partitioning key, and then
must be processed and aggregated, our use case is a canonical one of the MapReduce
programming model (DEAN; GHEMAWAT, 2008) implemented in Apache Spark.

5.2 PRELIMINARY CLASSIFICATION MODELS

Several methods were incrementally developed to try and solve the problem of binary clas-
sification for place pairs during the extent of this work. Since we reason that a heuristics-
first approach can yield a better understanding of the data domain, as well as some
preliminary results to base ourselves upon, we present it first. Given that it does not
provide satisfactory results, however, we attempt more elaborate solutions using machine
learning techniques, basing ourselves upon literature. These later approaches are subse-
quently explained.

5.2.1 Heuristic Approach

Similarly to Dalvi et al. (2014), the heuristic approach taken to deduplicate place entities
relies on the concept of core and background words for a given place. Using the authors’
own example, the place named Peete’s Coffee is sufficiently defined by the word Peete’s
alone, while Coffee is simply adding context, i.e. the category of the place in this case.
These concepts translate to the duplicate detection problem by providing a basis on
which to compare place names upon. For instance: when faced with a place pair with
names Peete’s Coffee and John’s Coffee, given CoreWord(Peete’s Coffee) = {Peete’s} and
CoreWord(John’s Coffee) = {John’s}, most simple edit distance metrics would be able to
assert non-duplication between the two cases by comparing core words only.

Moreover, the location-sensitive aspect of place entities causes some words to be more
relevant to the composition of a core word set in some locations than others. Places
containing street names or folklore references are exemplary of this behavior, e.g. for a
place named Bar 48 in a street named 48th Street, 48 could be irrelevant if there were
several other establishments with 48 in their names, but the same name in a street named
Main Street could have 48 as its most relevant word.

The method from Dalvi et al. (2014) utilizes the core word concept to deduplicate
places, extracting them by probabilistic methods which take the aforementioned spatial
context into consideration. Our approach differs from Dalvi et al. (2014), however, in the
sense that it presents a simpler method of calculating the relevance of each word to a
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place’s name, while also restricting the cardinality of the core word set to 1. We name
this approach as Word Relevance Heuristics (WRH).

Given a word set 𝑊 composed of all words in all place names, and a set of place names
𝑁 , for each word 𝑤 ∈ 𝑊 , we calculate its global Document Frequency (DF) value with
Equation 5.2.

𝐷𝐹𝑔𝑙𝑜𝑏𝑎𝑙(𝑤,𝑁) = |𝑛 ∈ 𝑁 : 𝑤 ∈ 𝑛| (5.2)

The document frequency is calculated instead of the IDF to facilitate the selection of
thresholds, and the TF value for each word is not taken into account due to place names
with repeating words being uncommon. Then, to take each place’s location into account,
we also calculate local DF values: given 𝑊 , 𝑁 , and 𝐺 - containing places partitioned by
all 6-character Geohashes - for each 𝑤 ∈ 𝑊 in each 𝑔 ∈ 𝐺 we calculate a local DF value
with Equation 5.3.

𝐷𝐹𝑙𝑜𝑐𝑎𝑙(𝑤, 𝑔,𝑁) = |𝑛 ∈ 𝑔 : 𝑤 ∈ 𝑛| (5.3)

The core word of each place, 𝑐𝑜𝑟𝑒𝑃𝑖
, is then calculated by Algorithm 2. It tokenizes

the place name in line 2, and compares each token’s local DF value to an usage threshold
in line 4, which dictates how many times a word is allowed to appear in that specific
Geohash. Additionally, a locality threshold 𝐿 is utilized to check if appearances of a given
word are tied to a specific Geohash, attempting to find localized words. If a token passes
these filters and has a lower global DF than the current core one, it is deemed as the new
core word.

Algorithm 2: Core Word Detection (CoreWord).
input : 𝑃𝑖 ← a place

𝑈 , 𝐿 ← usage and locality thresholds
output: the core word for 𝑃𝑖

1 𝑐𝑜𝑟𝑒← 𝑛𝑃𝑖
;

2 𝑡𝑛𝑎𝑚𝑒← Tokenize(𝑛𝑃𝑖
);

3 for 𝑤𝑜𝑟𝑑 ∈ 𝑡𝑛𝑎𝑚𝑒 do
4 if 𝑑𝑓𝑠𝑙𝑜𝑐𝑎𝑙[Geohash(𝑃𝑖)][𝑤𝑜𝑟𝑑] < 𝑈 and 𝑑𝑓𝑠𝑙𝑜𝑐𝑎𝑙[Geohash(𝑃𝑖)][𝑤𝑜𝑟𝑑]

𝑑𝑓𝑠𝑔𝑙𝑜𝑏𝑎𝑙[𝑤𝑜𝑟𝑑] < 𝐿 then
5 if 𝑐𝑜𝑟𝑒 = 𝑛𝑃𝑖

or 𝑑𝑓𝑠𝑔𝑙𝑜𝑏𝑎𝑙[𝑤𝑜𝑟𝑑] < 𝑑𝑓𝑠𝑔𝑙𝑜𝑏𝑎𝑙[𝑐𝑜𝑟𝑒] then
6 𝑐𝑜𝑟𝑒← word;

7 return 𝑐𝑜𝑟𝑒

𝑊𝑅𝐻 then attempts to classify two places 𝑃𝑎 and 𝑃𝑏 into duplicates 𝑃𝑎 ∼ 𝑃𝑏 by
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Equation 5.4:

𝑃𝑎 ∼ 𝑃𝑏 ←→{𝑐𝑜𝑟𝑒𝑃𝑎 = 𝑐𝑜𝑟𝑒𝑃𝑏
,

𝑑ℎ(𝑔𝑃𝑎 , 𝑔𝑃𝑏
) ≤ D,

𝑠(𝑐𝑃𝑎 , 𝑐𝑃𝑏
),

𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑎 ̸= 𝑖𝑑𝑃𝑏
,

𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑏
̸= 𝑖𝑑𝑃𝑎}

(5.4)

where 𝑑ℎ is the Haversine distance, 𝐷 is a distance threshold, and 𝑠 is a similarity function
between categories.

Algorithm 3 implements Equation 5.4, performing an exact match comparison on the
core word of each of the two places in line 5. Lines 6 to 9 of the Algorithm use additional
fields to avoid false positives, such as Peete’s Coffee and Peete’s Hospital. In this sample
case, both Hospital and Coffee could have been discarded as possible core words, but by
having access to each place’s category - coffee and hospital, respectively - our approach
would be able to disregard the pair.

Algorithm 3: Word relevance heuristics (WRH).
input : 𝑑𝑓𝑠𝑔𝑙𝑜𝑏𝑎𝑙 ← hash map of size |𝑊 |

𝑑𝑓𝑠𝑙𝑜𝑐𝑎𝑙 ← hash map of size |𝐺| × |𝑊 |
𝐽 ← list of place pairs in the form of <𝑃𝑎, 𝑃𝑏>
𝐷 ← distance threshold

output: list of binary results 𝑜

1 𝑜← ∅;
2 for <𝑃𝑎, 𝑃𝑏> ∈ 𝐽 do
3 𝑜<𝑃𝑎,𝑃𝑏> ← 0;
4 𝑐𝑜𝑟𝑒𝑃𝑎 ← CoreWord(𝑃𝑎);
5 𝑐𝑜𝑟𝑒𝑃𝑏

← CoreWord(𝑃𝑏);
6 if 𝑐𝑜𝑟𝑒𝑃𝑎 ̸= 𝑐𝑜𝑟𝑒𝑃𝑏

then continue;
7 if 𝑑ℎ(𝑔𝑃𝑎 , 𝑔𝑃𝑏

) > 𝐷 then continue;
// s() uses a manually defined mapping

8 if not s(𝑐𝑃𝑎 , 𝑐𝑃𝑏
) then continue;

9 if 𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑎 = 𝑖𝑑𝑃𝑏
or 𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑏

= 𝑖𝑑𝑃𝑎 then
10 continue;

11 𝑜<𝑃𝑎,𝑃𝑏> ← 1;

12 return 𝑜

𝑊𝑅𝐻 depends on several manually defined thresholds, as well as a manually defined
mapping of similar categories. Additionally, the comparison between core words is very
simplistic, avoiding any kind of edit distance metrics. This all leads to a hard to maintain
and easily breakable method, failing to handle typing errors or small modifications in a
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place’s name. It also highlights the inherent complexity of developing heuristics involving
place entities, due to their abundance of noisy information and outliers - pitfalls which
are noted in the literature.

5.2.2 Supervised Learning Approach

To tackle the pitfalls encountered in our heuristic approach, we attempt a supervised lear-
ning solution for performing record linkage on place entities, since they have been reported
to successfully produce relevant results for matching tasks (SANTOS; MURRIETA-FLORES;

MARTINS, 2017). Additionally, Wilson (2011) proves that machine learning models expand
the mathematical foundations of record linkage and thus are prone to offer better results.
Our first model for the detection of duplicates among place pairs (COUSSEAU; BARBOSA,
2019) is trained with the pairwise features described in Table 4.

This model still relies on the place’s core word as a feature (core_word_jaro), which
is detected by the logic in Algorithm 2. It also utilizes Soft TF-IDF (COHEN; RAVIKU-

MAR; FIENBERG, 2003) comparisons for the name (name_soft_tfidf) and thoroughfare
(address_soft_tfidf) attributes, since the Soft TF-IDF algorithm compares words which
surpass a secondary similarity threshold, thus being more resilient to typing errors, diffe-
rent verbal tenses and acronyms.

Table 4 – Pairwise features and their descriptions for our preliminary supervised classifi-
ers.

Feature Description

core_word_jaro Jaro Winkler similarity between core words

name_soft_tfidf Soft TF-IDF between normalized names

address_soft_tfidf Soft TF-IDF between normalized street names

sub_thoroughfare_diff Difference between numeric sub thoroughfares

categories_jaccard Jaccard similarity between category lists

distance Distance in meters between two geo locations

homepage_matches Exact homepage match

parent_place_match Exact match between an id and parentage

siblings_match Exact match between parentages

Source: (COUSSEAU, 2020)

Additionally, we add parentage id (parent_place_match) and sibling comparison fe-
atures (siblings_match), which are decomposed into separate one-hot vectors, as shown
in Figure 9. With the parentage feature, we aim to induce the model to learn that places
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in a pair which are encompassed by their counterpart, e.g. a store inside a shopping mall,
have a lower chance of being duplicates.

Figure 9 – Structure of the one-hot vectors utilized to represent the parent_place_match,
siblings_match, and homepage_matches features in our preliminary classifiers.

Source: (COUSSEAU, 2020)

In a similar manner, the sibling comparison feature indicates whether the two places
in a pair are encompassed by the same place, which also tends to indicate that they are
likely non-duplicates. There are some cases, however, of sibling places which are indeed
duplicates, thus we expect the siblings feature to have a small impact after all.

Furthermore, the model also relies on a homepage comparison represented as a one-
hot vector feature (homepage_matches), which indicates whether or not the two places
in a pair share the same normalized host name in their homepage URL. The homepage
comparison feature, as noticed by us, presents some cases where places sharing the same
homepage URL are not duplicates, but instead places of a same chain store. This lessens
the feature’s discriminative power.

Algorithm 4: 𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀 Classification.
input : <𝑃𝑎, 𝑃𝑏> ← a place pair

𝑡𝑐 ← a classification threshold
𝑀 ← a Classification Model ∈ {𝑃𝑅𝐹, 𝑃𝐿𝐺𝐵𝑀}

output: binary classification result 𝑜<𝑃𝑎,𝑃𝑏> ∈ {0, 1}

1 𝑣 ← [];
2 𝑣.append(JaroWinkler(CoreWord(𝑃𝑎), CoreWord(𝑃𝑏)));
3 𝑣.append(SoftTfIdf(𝑛𝑃𝑎 , 𝑛𝑃𝑏

));
4 𝑣.append(SoftTfIdf(𝑟𝑃𝑎 , 𝑟𝑃𝑏

));
5 𝑣.append(NumericDiff(𝑟𝑃𝑎 , 𝑟𝑃𝑏

));
6 𝑣.append(Jaccard(𝑐𝑃𝑎 , 𝑐𝑃𝑏

));
7 𝑣.append(d(𝑔𝑃𝑎 , 𝑔𝑃𝑏

));
8 𝑣.append(Match(ℎ𝑃𝑎 , ℎ𝑃𝑏

));
9 𝑣.append(Match(𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑎 , 𝑖𝑑𝑃𝑏

, 𝑖𝑑𝑃𝑎 , 𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑏
));

10 𝑣.append(Match(𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑎 , 𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑏
));

11 𝑠←𝑀.predict(𝑣);
12 𝑜<𝑃𝑎,𝑃𝑏> ← 𝑠 ≥ 𝑡𝑐;
13 return 𝑜<𝑃𝑎,𝑃𝑏>
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Algorithm 4 sums up this feature generation process, in which each place pair is
represented as a row vector 𝑣 ∈ R18, and is then processed by a Random Forest model in
the first implementation of the duplicate classifier. Random Forests are initially chosen
as they tend to excel at handling skewed data and finding a good bias-variance trade-off
without the need for feature scaling. The model itself returns a probability of a pair being
a duplicate 𝑠 ∈ [0, 1], and we experimentally define a classification threshold 𝑡𝑐 to dictate
which results 𝑜<𝑃𝑎,𝑃𝑏> would be classified as duplicates 𝑃𝑎 ∼ 𝑃𝑏, with 𝑠 ≥ 𝑡𝑐, and which
would be classified as non-duplicates, with 𝑠 < 𝑡𝑐. We name this model Pairwise Random
Forest (PRF).

As we also have to solve the record linkage problem in an on-line fashion, we explore
more lightweight alternatives in terms of performance and memory usage for our Random
Forest model. We then train a LightGBM (LGBM) model (KE et al., 2017) with the same
features described above, as it offers higher efficiency with lower memory usage whilst
being capable of handling large-scale data. We refer to this model as Pairwise LGBM
(PLGBM) in the following sections, and further discuss how using it instead of a Random
Forest in a real-time constrained environment benefits our classification performance and
memory footprint in Section 5.4.

5.3 DUPLICATE CLUSTERING

The results produced by our Classification Models are in the form of tuples of binary
results for place pairs 𝑜<𝑃𝑎,𝑃𝑏>. These results would be sufficient if there was at most one
replication per place entity in a given database, however, acquiring places from different
sources leads to an average replication factor that supersedes the former. As an example,
if a database is built by sourcing the complete list of all Starbucks coffee shops in the US
from 𝑝 different providers, assuming that they are all correct, a single Starbucks Coffee
shop would appear as an entity 𝑝 times.

Hence, the pairwise outputs produced by the detection of duplicate pairs are not
enough for a full-blown record linkage system, as they alone do not provide client applica-
tions with all the necessary information to actuate on top of the database. For instance, we
consider a sample data fusion system consuming pairwise outputs <𝐴,𝐵> and <𝐴,𝐶> in
a sequential manner from Classification Models. This system chooses one or more records
to delete and keeps one of them with the newly merged information. By first merging
<𝐴,𝐵>, thus deleting 𝐴 from the database and keeping 𝐵 with the new information,
processing <𝐴,𝐶> becomes infeasible since the record 𝐴 no longer exists.

As lines 1 to 5 of Algorithm 5 show, to relax our solution to tuples of arbitrary sizes,
we first transform each tuple <𝑃𝑎, 𝑃𝑏> where 𝑜<𝑃𝑎,𝑃𝑏> = 1 in the Classification Model’s
result set as connected nodes in an unweighted and undirected places graph, by using
their 𝑖𝑑 fields as a representation. Then, we use a simple breadth-first search algorithm
starting at each vertex to detect the graph’s connected components in line 5.
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A simple pruning step is then applied on top of the connected components, checking
for degenerate cases where either connected component with size ≥ 𝜌 has been formed, or
two members of the connected component belong to a manual blacklist of cases in lines
8 to 15. A sample blacklisted case is a component where two places with a parentage
relationship are present. The large components and the blacklisted cases are discarded
and logged to be verified by a human.

The remaining components 𝑅, in turn, represent tuples of replicated place records.
Using the same values of the previous example, the places graph would have tuples
<𝐴,𝐵> and <𝐴,𝐶> form a connected component <𝐴,𝐵,𝐶>, which would transmit
all necessary information for the data fusion system to properly function. We note that
this is not a full-blown data fusion system like the one from Berjawi (2017), as it does not
attempt to choose the how to merge the data, instead only indicating the entities needing
to be fused.

Algorithm 5: Duplicate Clustering.
input : 𝑜 ← set of binary outputs for place pairs <𝑃𝑎, 𝑃𝑏>

𝜌 ← cluster size threshold
output: list of duplicate place tuples 𝑅

1 𝑔𝑟𝑎𝑝ℎ← ∅;
2 for 𝑜<𝑃𝑎,𝑃𝑏> ∈ 𝑜 do
3 if 𝑜<𝑃𝑎,𝑃𝑏> = 1 then
4 𝑔𝑟𝑎𝑝ℎ(𝑖𝑑𝑃𝑎).append(𝑖𝑑𝑃𝑏

);

5 𝐶 ← connected_components(𝑔𝑟𝑎𝑝ℎ);
6 𝑅← [];
7 for 𝐶𝑘 ∈ 𝐶 do
8 if size(𝐶𝑘) ≥ 𝜌 then
9 continue;

10 𝑅𝑘 ← 𝐶𝑘;
11 for 𝑖𝑑𝑃𝑐 ∈ 𝐶𝑘 do
12 if 𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑐 ∈ 𝐶𝑘 then
13 𝑅𝑘.remove(𝑖𝑑𝑃𝑐);
14 𝑅𝑘.remove(𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑐));

15 𝑅← 𝑅.append(𝑅𝑘);

16 return 𝑅

5.4 APPLICATION PROGRAMMING INTERFACES

By connecting the Record Blocking, Classification Model, and Duplicate Clustering steps,
our pipeline is able to solve the places record linkage problem in an off-line and batch-
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processing manner. However, clients of this pipeline may also need to be able to detect
replicated place records before they even get inserted in the database itself.

The detection of duplicate places in an online fashion enables not only the prevention
of a degraded database waiting for a batch job to run and deduplicate its records, but
also helps researchers and engineers alike to preview results. Thus, it facilitates debug
processes and improves knowledge about the Classification Model itself. On the other
hand, it is not feasible to run our whole pipeline for every single deduplication request.

Ergo, to solve record linkage in real time whilst dealing with the issues that accompany
it, we design a Representational state transfer (REST) API named Duplicate Detection
API, which is responsible for providing a way to query a Classification Model in real time.
While this API provides real time duplicate places detection, abstracting our blocking
steps for a real time environment is still necessary. Thus, we create a library named Places
Lib which makes use of both the Duplicate Detection API and another API implemented
by us, named Places API.

The Duplicate Detection API accepts HTTP bodies according to the JSON format
displayed at Listing C.1 in Appendix C. We utilize the Flask1 library with gunicorn2 as
a WSGI server to create the communication layer of our API. A first implementation
of this API utilizes 𝑃𝑅𝐹 , ported to the real-time environment with joblib3. The API
converts the place pair information into the required pairwise features, queries 𝑃𝑅𝐹 , and
then returns the binary result to the caller. The Soft TF-IDF values are stored in an
in-memory Redis4 database. The 𝑃𝑅𝐹 model, however, has a memory footprint upwards
of 1.8Gb, and causes some latency spikes due to a lack of concurrency in its predictions.
It is then substituted by 𝑃𝐿𝐺𝐵𝑀 , which offers out-of-the-box concurrency support and
has a memory footprint of only 30Mb, reducing the observed latency spikes.

Meanwhile, the Places API provides a spatial search endpoint, described in Table 5.
The Places Lib receives a single place entity as input, and attempts to generate possible
pairs with it by a best-effort approach: it queries the spatial search endpoint from Places
API, creates all possible pairs, and then filters them by applying the same threshold
filtering step from our Record Blocking. Finally, the Duplicate Detection API is queried
with a user-chosen classification threshold. The Duplicate Detection API may also be
queried as a stand-alone application, and it does not account for clusters of replicated
places, as the off-line pipeline is responsible for batch detection.

We display a final sequence diagram of the APIs involved in tackling places record
linkage in our ecosystem in Figure 10:
1 https://flask.palletsprojects.com/en/1.1.x/
2 https://gunicorn.org
3 https://joblib.readthedocs.io/en/latest/
4 https://redis.io
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Table 5 – Contract for the spatial search endpoint of our Places API.

Method Endpoint Query Parameter Description

GET /places/nearby

lat Latitude from which to
draw radius.

lng Longitude from which to
draw radius.

radius Search radius in meters.

limit Limit of places to return.

Source: (COUSSEAU, 2020)

Figure 10 – Sequence diagram for place record linkage in real time with our proposed
APIs.

Source: (COUSSEAU, 2020)

5.4.1 Human Input in The Machine Learning Loop

Manual inspection of our model’s results and other related works (YALAVARTHI; KE; KHAN,
2017; YANG et al., 2019) reveal that including human quality assurance (QA) input in the
machine learning loop could help us improve the quality of our ground truth. We then
create another API, named Places Playground API, to support this. As shown in Table
6, this API receives input in the form of votes for a given place pair, where a positive vote
indicates duplicates and a negative vote indicates non-duplicates, with a skip (neutral)
option also being available. An additional threshold 𝑡𝛽 is defined for our supervised models,
and place pairs classified with a score 𝑠, 𝑡𝛽 ≤ 𝑠 < 𝑡𝑐 are sent up for voting.
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Table 6 – Simplified contract of our Places Playground API.

Method Endpoint Body Value Description

POST
/duplicate_candidates

first_place_id Id of the first place in the
candidate pair.

second_place_id Id of the second place in the
candidate pair.

/duplicate_candidates/id/vote vote_type Value among positive,
negative or neutral.

Source: (COUSSEAU, 2020)

5.5 CHAPTER SUMMARY

This Chapter presented our proposed pipeline to link place records. The Chapter overview
has shown that our pipeline is divided into three steps: Record Blocking, Classification
Model, and Duplicate Clustering. Each of these steps was subsequently explained in Secti-
ons 5.1 through 5.3. One heuristic approach (𝑊𝑅𝐻) and two different supervised learning
models (𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀) were proposed as preliminary solution for the Classification
Model step. Lastly, Seciton 5.4 presented a set of APIs which enable some of these models
to solve the record linkage problem for place entities in a real-time, latency constrained
scenario.

The pipeline proposed herein, as noted in Chapter 1, is one of the two main con-
tributions of this work. The next Chapter presents our second contribution, which is a
Classification Model based on deep neural network which builds representations for place
pairs and use them to predict if they are duplicates or not.
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6 DEEP NEURAL NETWORK FOR CLASSIFYING PLACE PAIRS

Deep learning approaches have obtained state-of-the-art results for matching (HU et al.,
2014; GUO et al., 2016; XIONG; ZHONG; SOCHER, 2017) and recognition tasks (SUN; WANG;

TANG, 2015; TAIGMAN et al., 2014) in different data domains, ranging from facial images
to textual corpora.

Drawing inspiration from these findings, we devise a Classification Model based on a
deep neural network. The model, named Places Entity Resolution Network (𝑃𝑙𝑎𝑐𝐸𝑅𝑁),
captures multi-level information for each place using intermediate mappings and non-
linearities, and then compares these representations in order to predict whether a place
pair is a duplicate or not. It is crucial to highlight the fact that duplicate cases are
uncommon, and thus handling class imbalance gracefully is important for the classifier’s
performance.

Figure 11 – Diagram of our deep neural network architecture for classifying place pairs,
𝑃𝑙𝑎𝑐𝐸𝑅𝑁 .

Source: (COUSSEAU, 2020)

The deep neural network architecture is laid out in Figure 11. For each place pair
<𝑃𝑎, 𝑃𝑏>, the network receives its names 𝑛, addresses 𝑟, category lists 𝑐, and geographical
information 𝑔 in the form of latitude and longitude pairs. Then, to capture different views
of the input, each place is processed by four different encoders that transform its original
representation into ones more suitable for the classification task. More specifically, word
and character encoders are applied on each place’s textual fields (name and address),
a category encoder on the category list, and a geographical encoder on the Haversine
distance1 calculated from the places’ latitude and longitude.
1 <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.

html>

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
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Next, the different representations produced by the encoders for each place, with the
exception of the geographical one, are concatenated and compared against each other in an
Affinity Generation step in order to generate similarity values using different metric stra-
tegies. The resulting merged tensor is then concatenated with the geographical distance
embedding generated by the geographical encoder, and passed through a feed-forward
network with dropout regularization between each pair of layers. Finally, the final tensor
is processed by a sigmoid-activated layer with a single neuron, generating a probabilistic
output, which is then passed through a classification threshold to predict if 𝑃𝑎 ∼ 𝑃𝑏.

In the sections that follow, we explain each encoder of the proposed architecture
in more detail, alongside the final Affinity Generation steps. We also shed some light on
failed attempts to improve our model, so as to achieve a better explanation of our thought
process and assist other researchers. Value descriptions of all hyperparameters are left for
Chapter 8, aiming to improve readability.

6.1 WORD ENCODER

The word level representation encoder depicted in Figure 12 attempts to capture features
of words in each place’s name 𝑛 and address 𝑟, producing a word level place embedding
𝑒𝑤. By doing so, it is expected that words that appear in similar contexts, like Cacau and
Chocolates in the example, reside closely in the embedded space, thus pulling both places
in a pair closer.

Following Figure 12 and its formal sequence diagram in Figure 21 at Appendix B,
we first transform 𝑛𝑃𝑎 , 𝑛𝑃𝑏 , 𝑟𝑃𝑎 , and 𝑟𝑃𝑏 into indexed padded sequences of size 𝑆𝑤 by
the pseudocode expressed in Algorithm 6. Names and addresses are tokenized in line 1,
transformed into a priori assigned indexes in lines 2 to 4, and padded with zeroes if needed
in lines 5 to 7.
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Figure 12 – Word encoder processing a pair of places 𝑃𝑎 and 𝑃𝑏, producing intermediate
embedding sequences 𝛼𝑃𝑖 and 𝛽𝑃𝑖 where 𝑖 ∈ {𝑎, 𝑏}, and output embeddings
𝑒𝑃𝑎

𝑤 and 𝑒𝑃𝑏
𝑤 , with sample 𝑆𝑤 = 5.

Source: (COUSSEAU, 2020)

Algorithm 6: Pseudocode for Sequence function, pre-processing texts into in-
dexed padded sequences.

input : 𝑡 ← a string
𝑆 ← a size threshold

output: a sequence of indexes of size 𝑆 representing string 𝑡

1 𝑡𝑜𝑘𝑒𝑛𝑠← Tokenize(𝑡);
2 𝑖𝑛𝑑𝑒𝑥𝑒𝑠← [];
3 for 𝑡𝑜𝑘𝑒𝑛 ∈ 𝑡𝑜𝑘𝑒𝑛𝑠 do
4 𝑖𝑛𝑑𝑒𝑥𝑒𝑠.append(GetIndex(𝑡𝑜𝑘𝑒𝑛));

5 if Length(indexes) > 𝑆 then
6 for 𝑖← (0, (𝑆 − Length(indexes))) do
7 𝑖𝑛𝑑𝑒𝑥𝑒𝑠.left_append(0);

8 return 𝑖𝑛𝑑𝑒𝑥𝑒𝑠
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The indexed and padded sequences are then transmitted fed into separate embedding
layers for names and addresses, taking advantage of transfer learning by being initialized
with pre-trained embeddings:

• For name embeddings, a case-insensitive skip-gram model was trained on top of
the corpus of all tokenized place names in our data set;

• For address embeddings, we utilized case-sensitive embeddings trained with the
FastText model on top of a Wikipedia and Common Crawl corpus (GRAVE et al.,
2018).

The reasoning behind the different embedding sources for names and addresses is that
place names may contain unique words, not seen much in other corpora because they
are relevant in establishing an identity for the place. Meanwhile, the presence of these
unique words in addresses is unusual. This led us to believe and validate that training an
address embedding on top of our data set would not yield better results while imposing
an additional computation step.

After producing sequences of name embeddings 𝛼𝑃𝑖 and address embeddings 𝛽𝑃𝑖 - with
every embedding vector {𝛼, 𝛽}𝑃𝑖

𝑗 ∈ R𝑚 - for places 𝑃𝑎 and 𝑃𝑏 respectively, the encoder
passes them through a siamese bidirectional GRU (CHO et al., 2014) layer. This means that
our network contains two GRUs: 𝐺𝑅𝑈𝑎 and 𝐺𝑅𝑈𝑏, with a shared number of dimensions
𝑙, weights, and parameters. Embedding sequences for place 𝑃𝑖 are passed through 𝐺𝑅𝑈𝑖

both in order and in reverse order, and the concatenated hidden states from the last GRU
cells for each ordering are used as output.

Thus, 𝐺𝑅𝑈𝑖(𝛼𝑃𝑖) produces name word embeddings 𝑒𝑃𝑖
𝑛𝑤
∈ R2𝑙 and 𝐺𝑅𝑈𝑖(𝛽𝑃𝑖) produces

address word embeddings 𝑒𝑃𝑖
𝑟𝑤
∈ R2𝑙. Finally, 𝑒𝑃𝑖

𝑟𝑤
and 𝑒𝑃𝑖

𝑛𝑤
are concatenated to form the

place word level embedding 𝑒𝑃𝑖
𝑤 ∈ R4𝑙.

6.2 CHARACTER ENCODER

While our word level encoder attempts to build an embedded space in which places
with similar words in their names 𝑛 or addresses 𝑟 are close to each other, it does not
account for the fact that contextual word similarity does not always translate to duplicate
places. For instance, if trained with a reasonable amount of duplicate place samples whose
names contain the contextually similar words Steaks and Burgers, the word encoder could
consider the non-duplicate places named 72 Steaks and 72 Burgers as duplicates. Burgers
and Steaks, however, are very different in a character level view.

Figure 13 and the formal sequence diagram in Figure 22 at Appendix B depict our
character level encoder, which aims to build representations for each character and then
use those embeddings to build a character-based embedding 𝑒𝑐ℎ for each place. Given
places 𝑃𝑎 and 𝑃𝑏, their names and addresses are first transformed into indexed padded
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Figure 13 – The character encoder consuming a pair of places 𝑃𝑎 and 𝑃𝑏, and producing
embeddings 𝑒𝑃𝑎

𝑐ℎ and 𝑒𝑃𝑏
𝑐ℎ .

Source: (COUSSEAU, 2020)

character sequences of size 𝑆𝑐ℎ
𝑛 for names and 𝑆𝑐ℎ

𝑟 for addresses, using Algorithm 6 with
a character tokenizer.

Akin to the word encoder, we build two separate embedding layers for name and
address characters. Both embedding layers are initialized with random weights, which
lets the character encoder receive each place pair’s indexed sequences as input.

Afterwards, the sequence of name and address character embeddings, Φ𝑃𝑖 and Ψ𝑃𝑖 -
with every embedding vector {𝜑, 𝜓}𝑃𝑖

𝑗 ∈ R𝑚 - for places 𝑃𝑎 and 𝑃𝑏 respectively -, are each
passed through distinct 1D-CNNs, with the same kernel size 𝑘 and filters 𝐹 ∈ R𝑘×𝑑, but
different random weight initialization.

For the sake of simplicity, we name the 1D-CNN which processes name characters
as 𝐶𝑁𝑁𝑛 and the 1D-CNN which processes address characters as 𝐶𝑁𝑁𝑟. When used
with textual data, the 1-dimensional convolution operations performed by 1D-CNNs may
be interpreted as window-based feature extractors, where the relationship between sub-
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sequences of words inside a sequence are analyzed instead of single words.
Since the sequence length is one of the main bottlenecks in RNNs and character

sequences are naturally longer than their word counterparts, while having a lower number
of dimensions, 1D-CNNs also present better time efficiency as character feature extractors.
Furthermore, 1D-CNNs have proved to be efficient in dealing with sequences of noisy data
(WANG et al., 2018; KIRANYAZ et al., 2019).

Consequently, 𝐶𝑁𝑁𝑛(Φ𝑃𝑖) = 𝐸𝑃𝑖
𝑛𝑐ℎ

, with 𝐸𝑃𝑖
𝑛𝑐ℎ
∈ R(𝑆𝑐ℎ

𝑛 −𝑘+1)×𝑑, and 𝐶𝑁𝑁𝑎(Ψ𝑃𝑖) = 𝐸𝑃𝑖
𝑟𝑐ℎ

,
with 𝐸𝑃𝑖

𝑟𝑐ℎ
∈ R(𝑆𝑐ℎ

𝑟 −𝑘+1)×𝑑. The internal representations produced by the 1D-CNNs are then
passed through a global max pooling layer which generates the name character embeddings
𝑒𝑃𝑖

𝑛𝑐ℎ
and address character embeddings 𝑒𝑃𝑖

𝑟𝑐ℎ
for each place, with 𝑒𝑃𝑖

{𝑛𝑐ℎ,𝑟𝑐ℎ} ∈ R𝑑. As a final
step, we perform concatenations 𝑒𝑃𝑖

𝑛𝑐ℎ
∘ 𝑒𝑃𝑖

𝑟𝑐ℎ
, 𝑖 ∈ {𝑎, 𝑏} to generate our final character

embeddings 𝑒𝑃𝑎
𝑐ℎ and 𝑒𝑃𝑏

𝑐ℎ , with 𝑒𝑃𝑖
𝑐ℎ ∈ R2𝑑.

6.3 CATEGORY ENCODER

Our category encoder deals directly with the category attribute 𝑐, which is a list of
values pertaining to a fixed set of place categories. Its goal is generating a category level
embedding 𝑒𝑐𝑡 for each place, following the intuition that places belonging to the same or
similar categories have a higher change of being duplicates.

The importance of a category level representation in the deduplication context resides
in the fact that even though places may present their category in their own names or
addresses, e.g. John’s Bar, both the word and character encoders can be incapable of
capturing the necessary latent patterns required in order to discern between places of
different categories. Moreover, some places do not expose their category directly via their
names, e.g. McDonald’s, and some, such as a sunglass chain store named Chilli Beans,
may be misleading.

Category information, however, is not a standalone way of detecting duplicate places,
because despite there being some duplicate place pairs which have the same or similar
categories, there are also, by definition, non-duplicate pairs under the same situation, such
as two different bars or restaurants. Moreover, since our category information is mostly
gathered by a focused Web crawler and processed by a multi-label classification model,
it is prone to be imprecise. Thus, representing places in a category level should be seen
only as a way to reinforce certain patterns and detect a limited set of features.

As Figure 14 and the formal sequence diagram in Figure 23 at Appendix B show, the
categories of input places 𝑃𝑎 and 𝑃𝑏 are first transformed into index sequences of a fixed
size 𝑆𝑐𝑡 by Algorithm 7, a modified version of Algorithm 6 which accepts a token list as
input instead of a string. These sequences are then consumed by an embedding layer,
producing embedding sequences Θ𝑃𝑎 and Θ𝑃𝑏 .
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Figure 14 – Our category level module, which produces embeddings 𝑒𝑃𝑎
𝑐𝑡 and 𝑒𝑃𝑏

𝑐𝑡 .

Source: (COUSSEAU, 2020)

Algorithm 7: Pseudocode for CategorySequence function, pre-processing cate-
gories into indexed padded sequences.

input : 𝑐 ← a list of categories
𝑆 ← a size threshold

output: a sequence of indexes of size 𝑆 representing category list 𝑐

1 𝑖𝑛𝑑𝑒𝑥𝑒𝑠← [];
2 for 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ 𝑐 do
3 𝑖𝑛𝑑𝑒𝑥𝑒𝑠.append(GetIndex(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦));

4 if Length(indexes) > 𝑆 then
5 for 𝑖← (0, (𝑆 − Length(indexes))) do
6 𝑖𝑛𝑑𝑒𝑥𝑒𝑠.left_append(0);

7 return 𝑖𝑛𝑑𝑒𝑥𝑒𝑠

The embedding layer is initialized before training begins by using the pre-trained
word embeddings for place names mentioned in Section 6.1, as it provides better initial
results than using random initialization. More specifically, for each word in a category
name, their embeddings are summed and L2-normalized to create an initial embedding
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space in which categories with contextually similar words are close. For instance, gi-
ven the category Hardware Store, we construct an initial embedding 𝜃ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒_𝑠𝑡𝑜𝑟𝑒 =
𝐿2(𝑝𝑟𝑒ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 + 𝑝𝑟𝑒𝑠𝑡𝑜𝑟𝑒), 𝜃ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒_𝑠𝑡𝑜𝑟𝑒 ∈ R𝑚, where 𝑝𝑟𝑒 are the pre-trained word em-
beddings. We highlight that the aforementioned step is performed a priori, and does not
depend on our network being trained beforehand.

After being generated, the embedding sequences Θ𝑃𝑎 and Θ𝑃𝑏 undergo a global max
pooling operation, followed by an L2 normalization. This pipeline results in embeddings
𝑒𝑃𝑎

𝑐𝑡 ∈ R𝑚 and 𝑒𝑃𝑏
𝑐𝑡 ∈ R𝑚.

6.4 GEOGRAPHICAL ENCODER

The last encoder in our architecture is the geographical level one, whose goal is generating
an embedding 𝑒<𝑃𝑖,𝑃𝑗>

𝑔𝑒𝑜 for each pair of places, which encapsulates the properties pertaining
to the geographical distance between them. It operates on top of the Haversine distance2

𝑑ℎ between the locations 𝑔 of the two places, which is already a pairwise metric. Because
of that, the encoder’s output is only consumed right before the Affinity Generation step
which is described in Section 6.5.

Possible alternatives for inserting geographical context into a deep network include
incorporating raw latitude and longitude pairs as features (WANG et al., 2018; YANG et

al., 2019), or transporting latitude and longitude pairs to an embedded space which si-
mulates the non-Euclidian distance calculation in the real world. While the former has
been proven to have a negligible effect on deep networks for place entity matching due to
their small dimensionality (YANG et al., 2019), the latter presented its own issues during
initial experiments, which are further discussed in Chapter 6.7. Furthermore, as Jiang et
al. (2017) show, discretizing real values with a good subdivision strategy is sufficient for
a network to capture the latent patterns of said value without losing information

Adding to that, in the place deduplication task, duplicate places usually do not have
the same latitude and longitude information due to the errors described in Chapter 3,
and places closer to each other should usually have a higher chance of being duplicates
than places which are far apart. Thus, their surroundings should not matter as much.
Take for instance the sample places John’s Bar and Peete’s Restaurant, which are both
present in similar neighborhoods but are a few kilometers apart from each other. By taking
both of their geographical contexts into account when building an embedded space, it is
possible that both neighborhoods would be close to each other due to their similarity
in the real world. This could in turn increase the likelihood of the two places being
considered duplicates when comparing the embedding vectors, even with the places being
a few kilometers apart.
2 <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.

html>

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.haversine_distances.html
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Algorithm 8: Algorithm for the discretization of geographical distances.
input : 𝐽 ← pairs data set

𝐵 ← number of buckets to create
output: range of distances for each bucket

1 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 0.0;
2 for <𝑃𝑎, 𝑃𝑏> ∈ 𝐽 do
3 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← Max(𝑑ℎ(𝑃𝑎, 𝑃𝑏),𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒);

4 𝛿 ← 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝐵;
5 𝑏𝑢𝑐𝑘𝑒𝑡𝑠← [];
6 for 𝑖← (0, 𝐵 − 1) do
7 𝑏𝑢𝑐𝑘𝑒𝑡𝑠.append((𝑑𝑒𝑙𝑡𝑎 · 𝑖, 𝑑𝑒𝑙𝑡𝑎 · 𝑖+ 1));

8 return 𝑏𝑢𝑐𝑘𝑒𝑡𝑠

So as to discretize the distances between places, we utilize Algorithm 8. We firstly
calculate the maximum distance amongst all place pairs in the data set in line 1, which
is in fact limited by our blocking strategy. By trivially assuming a minimum distance of
0 meters, we then create 𝐵 distance buckets by equal-width discretization in lines 4 to
7. Each bucket then represents an interval of distances [𝑏𝑡, 𝑏𝑡+1[, and an embedding layer
is randomly initialized for each of those buckets. Finally, for a pair of places 𝑃𝑎 and 𝑃𝑏,
their Haversine distance is calculated, they are attributed to the respective bucket, and
then the geographical encoder outputs a final embedding 𝑒<𝑃𝑎,𝑃𝑏>

𝑔𝑒𝑜 ∈ R𝑚.
This embedding layer is trained alongside the other encoders in the network, leading

to embeddings which hold the relationship between the distance of two places and they
being duplicates or not. That is, for each distance bucket, its embedding will be able to
indicate how likely is a place pair inside a given distance bucket a duplication.

6.5 AFFINITY GENERATION

With all of the embeddings 𝑒{𝑃𝑎,𝑃𝑏}
𝑤 , 𝑒{𝑃𝑎,𝑃𝑏}

𝑐ℎ , 𝑒{𝑃𝑎,𝑃𝑏}
𝑐𝑡 , and 𝑒<𝑃𝑎,𝑃𝑏>

𝑔𝑒𝑜 produced by our en-
coders for a pair of places 𝑃𝑎 and 𝑃𝑏, our deep neural architecture then proceeds to
perform comparisons in order to learn a similarity metric between the two places. Before
comparing the embeddings, however, the network performs a merging operation on the
embeddings pertaining to a single place - namely every one but the geographical - to
produce an appropriate embedding for each place. Hence, we form the place embeddings
𝑒𝑃𝑖 = 𝑒𝑃𝑖

𝑤 ∘ 𝑒
𝑃𝑖
𝑐ℎ ∘ 𝑒

𝑃𝑖
𝑐𝑡 , with 𝑒𝑃𝑖 ∈ R4𝑙+2𝑑+𝑚 and 𝑖 ∈ {𝑎, 𝑏} .

Comparisons between the place embeddings are then performed by a series of opera-
tions in a merge layer:

• A concatenation of the two embeddings, 𝑒𝑃𝑎 ∘ 𝑒𝑃𝑏 ;

• An element-wise L2 distance between the two embeddings, (𝑒𝑃𝑎 − 𝑒𝑃𝑏)2;
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• An element-wise multiplication of the two embeddings, 𝑒𝑃𝑎 · 𝑒𝑃𝑏 .

These results are then concatenated into a tensor 𝑣<𝑃𝑎,𝑃𝑏>
𝑚𝑒 = 𝑒𝑃𝑎 ∘ 𝑒𝑃𝑏 ∘ (𝑒𝑃𝑎 − 𝑒𝑃𝑏)2 ∘

(𝑒𝑃𝑎 · 𝑒𝑃𝑏), with 𝑣<𝑃𝑎,𝑃𝑏>
𝑚𝑒 ∈ 𝑅16𝑙+8𝑑+4𝑚. Subsequently, the geographical distance embed-

ding 𝑒<𝑃𝑎,𝑃𝑏>
𝑔𝑒𝑜 is concatenated with the merge result since it already represents a merge

operation itself, resulting in the final merged tensor 𝑣<𝑃𝑎,𝑃𝑏>
𝑎𝑓𝑓 = 𝑣<𝑃𝑎,𝑃𝑏>

𝑚𝑒 ∘ 𝑒<𝑃𝑎,𝑃𝑏>
𝑔𝑒𝑜 , with

𝑣<𝑃𝑎,𝑃𝑏>
𝑎𝑓𝑓 ∈ R16𝑙+8𝑑+5𝑚.

Afterwards, the 𝑣<𝑃𝑎,𝑃𝑏>
𝑎𝑓𝑓 tensor is passed through a feed-forward network of 𝐿 fully

connected layers using the ReLU activation function (NAIR; HINTON, 2010). The first of
these layers has 𝐻0 neurons, and each of the following 𝑗 ones has 𝐻𝑗 = 𝐻0

2𝑗 neurons, where
𝑗 ∈ [1, 𝐿]. For ease of explanation, we name the results from each of the dense layers as
𝑣<𝑃𝑎,𝑃𝑏>

𝑗 .
It is relevant to notice that each of those layers produce an increasingly compact

representation of the learned affinity metric. Also, to reduce overfitting, we add Dropout
regularization with a fixed ratio between each pair of fully connected layers in the feed
forward network, as this regularization mechanism has proved to be quick and efficient
(SRIVASTAVA et al., 2014).

Finally, the resulting tensor from the last dense layer in the feed forward network,
𝑣<𝑃𝑎,𝑃𝑏>

𝐿 , is sent to a single neuron layer with a sigmoid activation function, that produces
a probabilistic result. A threshold 𝑡𝑐 is then applied to generate a binary classification
result. Summarizing, the final output of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 is defined by the following equation:

𝑜<𝑃𝑎,𝑃𝐵> =

⎧⎪⎨⎪⎩1.0 if 𝜎(𝑊𝑙 · 𝑣<𝑃𝑎,𝑃𝑏>
𝐿 + 𝑏) ≥ 𝑡𝑐

0.0 if 𝜎(𝑊𝑙 · 𝑣<𝑃𝑎,𝑃𝑏>
𝐿 + 𝑏) < 𝑡𝑐

(6.1)

where 𝑊𝑙 ∈ R1× 𝐻0
2𝐿 is the layer’s weight matrix, 𝑏 is the layer’s bias, and 𝑡𝑐 is the decision

threshold. The sigmoid function outputs the probability of two places matching, and the
decision threshold 𝑡𝑐 may be tuned according to some quality metric. A final output value
of 1 means that 𝑃𝑎 ∼ 𝑃𝑏, and a value of 0, otherwise.

6.6 MODEL TRAINING

To train the model while accounting for the expected high imbalance factor in the record
linkage task, we utilize the Focal Loss training function (LIN et al., 2017), minimizing it.
This function expands the traditional binary cross-entropy function by adding a modula-
ting factor with a tunable focusing parameter 𝛾. It leads the model to focus on samples
which are presenting more error than the others, and reduces the contribution brought
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by easier, more abundant samples. Mathematically, the focal loss of a sample labeled as
𝑦 ∈ {0, 1}, with prediction 𝑝, is defined by:

FL(𝑝, 𝑦) =

⎧⎪⎨⎪⎩−(1− 𝑝)𝛾 log(𝑝) if 𝑦 = 1

−𝑝𝛾 log(1− 𝑝) if 𝑦 = 0
(6.2)

The class-balanced focal loss based on the effective number of samples, proposed by
Cui et al. (2019), was also analyzed as an option, but failed to improve results during
initial experiments.

6.7 FAILED ATTEMPTS IN OUR DEEP NEURAL NETWORK

Throughout the development of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , we attempted several approaches to build
and improve our results that were met with failure. Thus, this section describes said
failures, in order to help researchers facing similar issues. Even so, given that an exhaustive
exploration of all of them could divert this work’s focus, we highlight only the ones which
had the most impact on our research.

The first failed attempt to highlight is using publicly available FastText embeddings
(MIKOLOV et al., 2018) for place names. We expected these pre-trained embeddings to be
a good match since they were trained on a Wikipedia and Common Crawl text corpus,
and also expected its out-of-vocabulary token generation feature to account for missing
tokens in its corpus. However, due to the unique nature of place names, the pre-trained
embeddings were shadowed by the skip-gram model trained on our own corpus.

Next, we attempted different architectures of siamese GRU networks for the word
encoder: separate GRUs for names and addresses, max pooling over GRU hidden states,
and stacked GRUs with skip connections, similar to those in the work of Santos et al.
(2017). The first of these decreased performance, with manual investigation showing that
names and addresses shared a sufficient amount of words and patterns such that preventing
a GRU from receiving data from both fields actually decreased its learning capacity. Max
pooling over the hidden states also failed to improve our results, mainly due to the short
length of place names and addresses. Finally, the increase in model complexity brought
by stacked GRUs did not proportionally increase our representational power, which was
a trigger for increasing variance.

Another attempt to improve our word level encoder was using the concept of co-
attention, or attention over attention, following the intuition that it could be a natu-
ral extension of the concept of core words for places. More specifically, we adapted our
word encoder to use the implementation from Xiong, Zhong and Socher (2017), and gi-
ven context tensors 𝑐𝑛 for names and 𝑐𝑟 for addresses, the network produced a tensor
𝑣

′<𝑃𝑎,𝑃𝑏>
𝑎𝑓𝑓 = 𝑣<𝑃𝑎,𝑃𝑏>

𝑎𝑓𝑓 ∘ 𝑐𝑛 ∘ 𝑐𝑛. However, this implementation failed to improve our metrics
and, in fact, lowered them, while slowing down the process of training the network and ad-
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ding more complexity to the code. Marinho (2018) also reports little to no improvements
brought by using attention in the similar problem of toponym matching.

Siamese GRU networks were the first attempt at implementing the character encoder,
the main difference between them and those present in the word encoder being the average
length of sequences, which is higher for characters. This imposed a bottleneck in the
network, increasing training times tenfold, and did not improve the evaluation metrics.
The main suspicion behind this resides in the higher convergence time needed by the
character-level GRUs, which is cut short by early stopping criteria during training due
to the other encoders converging faster. Thus, 1D-CNNs were used as an alternative, as
described in Section 6.2.

Finally, albeit shown in section 6.4 that other alternatives to incorporate geographical
context into the deep network do not fit our use case as nicely as the implemented one, first
attempts to implement the geographical encoder included building an embedded space
where similar regions are close to each other, and expanding raw latitude and longitude
coordinates. The former was done by grid subdivision with the H3 system and building
embeddings for each grid, but failed to improve our results due to the region embeddings
not translating to the duplicate detection case, and due to insufficient data in some grids.
The latter, which followed the implementation of Wang et al. (2018), also failed to provide
good results, mainly due to the original work using sequences with lengths upwards of 50,
while ours had a fixed size of 2.

6.8 CHAPTER SUMMARY

This Chapter presented 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , a deep neural network for detecting duplicate places
which uses multiple encoders on top of different place attributes to generate represen-
tations for a pair and use them to output a final result. The Chapter first introduced
the network architecture, its goal, and formalism. Then, each encoder of the network was
explained: the Word Encoder in Section 6.1, the Character Encoder in Section 6.2, the Ca-
tegory Encoder in Section 6.3, and the Geographical Encoder in Section 6.4. Afterwards,
our Affinity Generation and training steps were dissected in Sections 6.5 and 6.6, and
failed attempts to improve 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 were exposed in Section 8.6.3.

As a result, this Chapter has shown, with plenty examples, that 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 was desig-
ned to be able to capture different cases of similarities between places 𝑃𝑎 and 𝑃𝑏 in a pair
that are relevant in establishing if they are duplicates (𝑃𝑎 ∼ 𝑃𝑏) or not. With the main
contributions of this work being explained in Chapter 5 and this one, the following Chap-
ters explain the data sets utilized to evaluate 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 and our pipeline, and proceed to
display the experiments themselves.
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7 EXPERIMENTAL DATA PREPARATION

This work contributes to the state-of-the-art both by providing an end-to-end pipeline for
performing record linkage of place entities and by proposing a deep learning model for
classifying place pairs as duplicates or non-duplicates, which is the central issue in our
record linkage pipeline. Thus, our experimental analysis had to be performed both on the
pipeline’s efficiency and each of the Classification Model’s performance.

While evaluation of the pipeline itself does not require data preparation steps, because
it consumes the whole data set available, measuring the performance of our deep neural
network depends on having one or more ground truth sets of labelled place pairs. Adding
this to the fact that our proposed solution for pairwise classification is our work’s main
contribution among all other pipeline steps, this Chapter is dedicated to the explanation
of our deduplication ground truth building process.

We first provide details on our places data set, from which the ground truth sets are
created, in Section 7.1. This creation process is expounded in Section 7.2. Furthermore,
we also search for external labelled data sets for us to perform additional experiments on,
however, Section 7.3 describes how none of them are deemed adequate to our use case
and, thus, lead us to solely utilize our own ground truth sets.

7.1 DATA ANALYSIS

The data set utilized in this work is a snapshot, created circa 2018 from a places database
which was being utilized in a production environment with upwards of 700 million daily
queries. This data set, referred to as 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵 from here on, contains 28,467,486 place
records from 227 different countries and annexed territories, with multiples languages and
characteristics. It was created both by scraping structured data, such as schema.org1, from
the Web and by manual insertions from an internal company team. Table 7 presents an
aggregation of number of records per country, as well as the total number of records in
𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵.

As shown in Table 7, around 60.1% of all places in 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵 are located either in the
US or in Brazil, while remaining countries share small percentages of the database to fill
the remaining 40%. Thus, we focus our efforts only on Brazilian and American places.
Given that the Portuguese and English languages present different linguistic features and
the record linkage task, by definition, does not need to consider records from two different
countries, we further partition 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵 into a data set of places from the US, 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆,
and a data set of places from Brazil, 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅.
1 <https://schema.org/>

https://schema.org/


74

Table 7 – Places by country for the top 10 countries in 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵.

Country #records Percentage

United States of America 12,320,561 43.28%

Brazil 4,788,454 16.82%

Japan 679,348 2.39%

Turkey 533,469 1.87%

Italy 345,437 1.21%

Russia 313,344 1.10%

Indonesia 295,057 1.03%

United Kingdom 263,541 0.93%

France 252,412 0.89%

Spain 251,291 0.88%

All 28,467,486 100%

Source: (COUSSEAU, 2020)

To verify that 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 and 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 hold enough information for our pipeline to
run on, we analyze the coverage of each place field for both sets, and display the results
in Table 8 with the values of 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵 being added for the sake of comparison.

Table 8 – Place fields coverage in 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆, 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅, and 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵.

𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵

id 100% 100% 100%

name 100% 100% 100%

geo_location 100% 100% 100%

phone_number 91.01% 27.04% 50.21%

homepage 7.33% 2.60% 7.26%

categories 70.01% 67.83% 70.20%

parent_place_id 0.55% 1.07% 1.31%

address 97.50% 99.89% 86.54%

Source: (COUSSEAU, 2020)

As we may see from these results, the id, name, and geo_location attributes present
a coverage of 100% over all data sets, which happens trivially because these three are
obligatory in our database. The fields which present the lowest coverage values for the
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𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵 and 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 data sets are parent_place_id, homepages, and phone_number,
due to they being rarer to find in the Web and other sources.

In the 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 set, however, phone_number coverage reaches 91.01%, which is more
than three times the Brazilian set coverage, and almost double the global coverage. This
indicates that sources for US places put more care into completeness than its counterparts.
As later shown, we experience better results when training and evaluating our solution
on top of the 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 data set, and this completeness takes part in it since it is often
accompanied by correctness in the provided data.

The low presence of parent places points to the fact that most places in the data sets
are not encompassed by another one, which is an expected scenario in the real world.
However, some of the missing data in this field may be attributed to failures in the
algorithm that generated this association, as described in Chapter 3.

In a similar way, the categories field being covered in about 70% places of all sets
implies that the algorithms utilized to classify each place into one or more categories
have imperfections. This field receives a special treatment during this analysis because
the point_of_interest category is a default value, thus we consider places with only that
category as having no category at all.

Moreover, our set of 122 categories does not provide enough granularity for classifying
all places into at least one category: categories for factories and medical supply stores,
for instance, were not taken into account by the category list at the time of the snapshot
creation.

Figure 15 – Place category distribution for the top five categories in 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆, 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅,
and 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵.

Source: (COUSSEAU, 2020)

Figure 15 displays the distribution of places on the top-5 categories in 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅,
𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆, and 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵, excluding point_of_interest. The goal behind this analysis is
asserting that the data sets are not being represented by just a small set of categories out
of the 122 possible. Alas, the category distribution indicates that even though all data
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sets share a similar set of popular types of venues, the top two of them being store and
restaurant, none of them represents a big share of places by itself.

Overall, the 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 and 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 data sets present similar coverage values for each
place field between themselves, with the exception of the phone_number field. To ensure
that the places in each set are not concentrated on a few specific spots, thus biasing
algorithms and models on properties of a specific location, we also compute heat maps
for places in both data sets, as Figure 16 shows. The heat maps confirm that places in
𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 and 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 are well distributed over each country

Figure 16 – Heat maps of places in 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 and 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅.

(a) Heat map for 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 .

(b) Heat map for 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅.

Source: (COUSSEAU, 2020)
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7.2 NOVEL GROUND TRUTH SETS

The first step towards building our ground truth is generating pairs from the places in
the data sets. In order to do that, we utilize the same blocking algorithm described in
Section 5.1 on top of 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 and 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅, as it guarantees training and evaluating
our model with the same data distribution as a production environment would present.

To select the 𝜆 Jaro Winkler similarity threshold used in the blocking step, we divide
the place pairs from the 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 and 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 sets into similarity buckets and manually
inspect 100 random pairs from each of them. As Table 9 shows, a 𝜆 value between 0.8 and
0.9 is a good trade-off between cleaning up trivial non-duplicates and avoiding duplicates
exclusion. We choose 𝜆 = 0.8 to perform blocking, and this process results in an order of
magnitude of 107 pairs for the 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆 data set, and 106 for the 𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 one.

Table 9 – Percentage of duplicate pairs among the first 100 randomly-select pairs of each
similarity bucket for our blocking algorithm.

Interval Duplication

[0.4, 0.5[ 0%

[0.5, 0.6[ 0%

[0.6, 0.7[ 0%

[0.7, 0.8[ 0%

[0.8, 0.9[ 4%

[0.9, 1.0] 28%

Source: (COUSSEAU, 2020)

Afterwards, we generate labels indicating duplication or non-duplication for each of
the place pairs produced by the blocking algorithm. Albeit usually generating a higher
quality of labels, manually labelling all of the generated samples is infeasible given our
available resources.

We also considered using the MTurk2 crowdsourcing marketplace to distribute the
labelling effort. However, the platform did not offer the necessary Portuguese language
support at the time, and a previous work by Yalavarthi, Ke and Khan (2017) pointed
out that aggregation processes had to be executed on top of the crowdsourced results to
achieve a good label quality for harder tasks, such as the deduplication one.

In light of that, we utilize the phone_number attribute, present in 27.04% of places in
𝑃𝑙𝑎𝑐𝑒𝑠𝐵𝑅 and 91.01% of places in 𝑃𝑙𝑎𝑐𝑒𝑠𝑈𝑆, to generate labels for each pair, excluding it
from every other step of our pipeline to avoid data leakage. This follows findings that a
reasonable number of the place pairs which share a phone number represent duplications
2 https://www.mturk.com/



78

in our data sets. Hence, place pairs with phone numbers are selected from each set, have
their special digits such as “+” and “-” removed, and then are compared through exact
match to produce a positive or negative label.

Next, we manually curate samples of these results, fixing certain erratic patterns such
as different places inside a shopping mall or belonging to the same chain store having the
same phone number. This generates the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 and 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 silver truth sets, whose
characteristics are displayed in Table 10.

Table 10 – Characteristics of our 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 and 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 silver truth sets.

Data set #pairs #places #positive
pairs

#negative
pairs

Skew

𝑃𝑎𝑖𝑟𝑠𝑈𝑆 3,009,428 2,267,885 325,809 2,683,619 8.24

𝑃𝑎𝑖𝑟𝑠𝐵𝑅 597,452 365,092 24,892 572,560 24.0

Source: (COUSSEAU, 2020)

Both sets preserve a low ratio of duplicates to non-duplicates. Also, we note that the
𝑃𝑎𝑖𝑟𝑠𝐵𝑅 set has almost three times the skew of the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 one, meaning that the ratio
of duplicates to non-duplicates in it is much higher. Since the exact ratio of duplicates
in a database varies greatly over locations and over time, this difference in skew allows
us to train and evaluate our models under different data quality scenarios. Moreover, the
general differences in both sets make our evaluation stronger and broader.

7.3 INADEQUACIES IN EXTERNAL GROUND TRUTHS

To expand our experiments and more aptly compare our work against others, we searched
for additional ground truth sets. We first looked for sets with already consolidated and
labelled place pairs used by previous works, as Table 11 shows. Each of them, however,
posed some kind of issue which made it impractical or impossible to use, for instance:
albeit being very similar to ours in terms of available attributes and class distribution,
the data sets from Dalvi et al. (2014) and Yang et al. (2019) are both proprietary to
Facebook, and the ground truth from Deng et al. (2019) is also not reproducible.

In his work, Marinho (2018) performed the related task of toponym (location names)
matching in three different data sets: one built on top of data from Geonames3, a web
database of locations around the world, another one adapted from data of Ehrmann,
Jacquet and Steinberger (2016) in the European Commission’s Joint Research Centre
(JRC), and a last one composed of historical places. The three datasets had 50% of
their pairs being duplicates and the other half being non-duplicates, which represented
3 http://www.geonames.org
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Table 11 – Characteristics and issues of external place pair data sets.

Data set Attributes #records Publicly
available

Issues

Dalvi et al.
(2014)

names, latitude
and longitude
pairs

14,000 No Small size and unavailable
to the public.

Deng et al.
(2019)

names,
addresses,
categories,
latitude and
longitude pairs

323 No Small size and unavailable
to the public.

Marinho
(2018) -
Historical

names, distance 2,024 Yes Small size and all positive
pairs have a distance of 0.

Marinho
(2018) - JRC

names 800,000 Yes Contains mostly
transliterated records. Uses
names only.

Marinho
(2018) -
Geonames

names 5,000,000 Yes Uses names only,
duplications are mostly
transliteralions or
normalizations, artificial
distances.

Yang et al.
(2019)

names,
addresses,
categories,
latitude and
longitude pairs

4,600,000 No Unavailable to the public,
the huge text corpus of 1.9T
words would be hard to
process.

Source: (COUSSEAU, 2020)

an unreal imbalance factor in the real world, and all of them utilized a different concept
of place entities than our work’s.

Each entry in the raw Geonames database contained a name for a location alongside
alternative names for it, which were in most cases transliterated or normalized versi-
ons of the original name. Thus, place pairs were created from it by using the available
transliterations and alternative names for each record to generate positive labels, and by
picking similar names from random different locations to generate negative pairs. This
created positive samples with a distance of 0, and negative samples with artificially high
distance values. Furthermore, since our pipeline was not built to handle transliterations,
most positive labels would be filtered during blocking steps.

The JRC data set contained pairs of names for organizations. It fell under some of the
same issues present in the Geonames data set, since it contained only place names and
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the majority of them were just transliterations. Finally, the Historical data set from the
same author was extremely small in size, and all positive pairs in it had a distance of 0
meters.

Given the issues in the previous pairwise data sets, we looked for raw public places
data sets for us to generate labelled pairs using some additional attribute, similarly to our
process of generating the novel ground truth sets. Our search resulted in the place data
sets described by Table 12, which did not enable any way of automatically generating
duplicates and, in fact, did not present any duplicate records after manual inspection of
their samples.

Table 12 – Characteristics and issues of external raw place data sets.

Data set Attributes #records Issues

Yelp4 names,
addresses,
latitude and
longitude pairs,
categories,
working hours

192,608 No automatic way to
generate duplicates.

Cho, Meyers
and Leskovec
(2011) -
Gowalla5

names, latitude
and longitude
pairs

120,997 No automatic way to
generate duplicates.

Weeplaces6 latitude and
longitude pairs

7,658,369 No place names: check-in
data set.

Facebook
Kaggle
competition7

latitude and
longitude

- No place names: check-in
data set.

Gazetteer8 names,
addresses,
latitude and
longitude pairs

50,000 Different concept of place
entities, no automatic way
to generate duplicates.

Source: (COUSSEAU, 2020)

Not having an automatic way to generate duplicate place pairs from these data sets
meant that this process would have to be performed manually, which in turn was an
endeavor that we did not have the necessary resources to partake in. Moreover, the data
4 <https://www.yelp.com/dataset>
5 <https://snap.stanford.edu/data/loc-gowalla.html>
6 <https://www.yongliu.org/datasets/>
7 <https://www.kaggle.com/c/facebook-v-predicting-check-ins/>
8 <http://gazetteer.org.uk/purchase>

https://www.yelp.com/dataset
https://snap.stanford.edu/data/loc-gowalla.html
https://www.yongliu.org/datasets/
https://www.kaggle.com/c/facebook-v-predicting-check-ins/
http://gazetteer.org.uk/purchase
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sets from Weeplaces and the Facebook Kaggle competition contained only latitude and
longitude pairs for check-in events.

Due to all of the inadequacies in both pairwise and raw place data sets encountered
during our research, we opted to use our 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 to evaluate our models.
Our experiments using these ground truth sets are described in detail at Chapter 8.
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8 EXPERIMENTS

So as to assess the quality of the preliminary classification models presented in Chapters
5 and 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , presented in Chapter 6, each of them is evaluated. While the full re-
cord linkage pipeline is measured in regards to its execution time on top of the whole
𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵, this Chapter focuses mostly on the comparison of the proposed Places Entity
Resolution Network (𝑃𝑙𝑎𝑐𝐸𝑅𝑁) against our preliminary versions and baseline methods.
The reasoning behind this follows our work’s main objective of contributing to the state
of the art in the detection of duplicate place records to be linked.

Both of our silver truth sets are split into training, validation, and test sets, using a
fixed split of 70%, 20%, and 10%, respectively, preserving the class distribution in each
of them. Following recommendations from Ng (2019), we also sample some entries from
the validation set and use them as our Eyeball validation set, which allows us to probe
for error patterns in our models’ results so as to look for data insights.

In the following sections, we explain the chosen metrics and baseline methods, the
setup for each of the models and the algorithm being experimented, and implementation
details. Finally, we present the results observed and discuss them.

8.1 RUNTIME ENVIRONMENT

The experiments for deep neural networks are executed in machine instances provided by
Google Colab1, containing 13Gb RAM, an Intel Xeon CPU, and a mix of NVidia K80, T4,
P4, and P100 GPUs. Meanwhile, the CPU-bound tests make use of an instance with 16Gb
RAM, and an Intel Core i7-7500U CPU. In addition to that, the full pipeline experiments,
as well as any steps requiring distributed computation, utilize 7 AWS m4.xlarge instances,
each having 16Gb of memory and 4vCPUs.

8.2 PERFORMANCE METRICS

Since the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data sets suffer from class imbalance, the chosen per-
formance metrics need to account for that. The accuracy of any classifier considering all
pairs as non-duplicates, for instance, would be 0.958 for the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 data set and 0.891
for the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 one, which is misleading.

Ergo, each model is evaluated on the task of detecting place duplications according
to two main metrics. The first of them is the normalized Gini coefficient (GINI, 1912;
DIXON et al., 1987; DAMGAARD; WEINER, 2000), while the second is the 𝐹𝛽=0.5 score, also
referred to as e-measure (RIJSBERGEN, 1979). To provide insights on their capability of
being tuned according to either precision or recall, we also present precision-recall curves
1 https://colab.research.google.com
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and the area under the curve (AUC) for some models. Explanations on these metrics are
given in 2.6.

8.2.1 Hyperparameter Tuning

Hyperparameters are tuned with the validation set in regards to the normalized Gini
coefficient first, and then the probabilistic outputs are transformed into binary labels by
applying a threshold 𝑡𝑐, chosen by optimization of the 𝐹𝛽=0.5 score in a separate grid
search. The tuned hyperparameters for each model and their best values for each data set
are described by Tables 18, 19, and 20 in Appendix D.

We also provide the time consumed by each model during training and execution to
highlight this positive aspect about simpler approaches, even if the metrics provided by
them end up proving to be lower in general. Finally, the full proposed pipeline is evaluated
by the means of aggregated execution time, split by each of its steps.

8.3 SETUP FOR BASELINE METHODS

In these experiments, we utilize two works as baselines:

• (DALVI et al., 2014): this approach utilizes EM to build probability distributions for
words of a place’s name, splitting them into core and background words, then the
core words are used to compare if two places are duplicates. We implement this
model in Python 3 with the numpy2 library, and the probability of a place pair
representing duplicate places is calculated directly by the core word comparison
probability derived in their work. The authors also propose a dynamic programming
algorithm to take edit operations into account during comparisons, but the provided
pseudocode seems to be non-functional.

• (YANG et al., 2019): this work proposes an unsupervised learning step to generate
place embeddings. Then, a Multi-layer Perceptron (MLP) is trained on top of the
place embeddings, and is gradually improved with: a novel contrastive loss function
(PE), batch-wise hard-sampling (PEH), source-attentive training (PEHA), and la-
bel denoising (PEHAD). Our implementation is adapted from the PE model, out-
putting the euclidean distance between the two places in the metric space, whose
complement is then interpreted as the positive class probability. We were unable to
implement the full PEHAD model, partially due to either missing details or incom-
patibility with our data sets. Furthermore, we contacted the authors regarding the
model parameters, who recommended a search on a given range of values for the
negative sampling ratio in the smoothing step, among others. All steps are imple-

2 <https://numpy.org/doc/stable/index.html>

https://numpy.org/doc/stable/index.html
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mented with Keras 2.3.1 and Tensorflow 1.15.2, with the aid of gensim (ŘEHŮŘEK;

SOJKA, 2010).

According to our literature review, these are the most prolific works dealing directly
with places deduplication, and specifically with Web data. None of these works, however,
provide implementations for their methods, so we implement our own versions.

We utilize optkeras3, which is a wrapper over optuna4, to tune the parameters of PE,
and a grid search for the model of Dalvi et al. (2014), both using validation data. The
EM algorithm from Dalvi et al. (2014) is executed for 10 iterations in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 5
iterations in 𝑃𝑎𝑖𝑟𝑠𝑈𝑆, while PE runs for 100 optuna trials in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 50 trials in
𝑃𝑎𝑖𝑟𝑠𝑈𝑆, using a median pruner after 5 warm-up trials and 3 warm-up steps. Geohashes
are utilized as a means for the creation of tiles in all methods, and all hyperparameters
are described in Table 18.

8.4 SETUP FOR PRELIMINARY PROPOSED METHODS

Both 𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀 are evaluated on top of the split 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data
sets in terms of their classification performance. The 𝑊𝑅𝐻 algorithm is unable to be
executed in the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data set due to access to its code being lost.

In addition, the effect of resampling techniques on these models is studied in the
scope of the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 data set, by simultaneously applying Tomek Links (TOMEK, 1976)
for undersampling non-duplicates too similar to positive cases, and SMOTE (CHAWLA et

al., 2002) for oversampling duplicate pairs, resulting in a data set named 𝑃𝑎𝑖𝑟𝑠𝑅
𝐵𝑅. This

resampling is applied directly into the features, and not the place entities themselves.
The 𝑃𝑅𝐹 model is implemented using the scikit-learn and pandas libraries for Python

3 (PEDREGOSA et al., 2011; TEAM, 2020), while 𝑃𝐿𝐺𝐵𝑀 uses the LightGBM package for
Python 3 (KE et al., 2017). Meanwhile, the 𝑊𝑅𝐻 algorithm and the feature generation
step for the other models are implemented in Scala5 with Apache Spark for distributed
computation (ZAHARIA et al., 2016).

While no time is spent automatically tuning 𝑊𝑅𝐻 model due to its access being lost,
both other preliminary models are tuned with optuna for 100 trials in the scope of the
𝑃𝑎𝑖𝑟𝑠𝐵𝑅, 𝑃𝑎𝑖𝑟𝑠𝑈𝑆, and 𝑃𝑎𝑖𝑟𝑠𝑅

𝐵𝑅 validation data sets. All of their hyperparameters are
described in Table 19, with any parameter not listed assuming the default value provided
by their respective libraries.
3 <https://github.com/Minyus/optkeras>
4 <https://optuna.readthedocs.io/en/stable/index.html>
5 <https://www.scala-lang.org/>

https://github.com/Minyus/optkeras
https://optuna.readthedocs.io/en/stable/index.html
https://www.scala-lang.org/
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8.5 SETUP FOR PLACERN

To implement 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , we utilize the ReLu activation function (NAIR; HINTON, 2010)
in the 𝐿 = 3 feed-forward network layers, the first of them having 𝐻0 = 256 neurons.
Glorot uniform initialization (GLOROT; BENGIO, 2010) is utilized for the character and
geographical encoder embedding layers, while the embedding layers from other encoders
are initialized with pre-trained embeddings, as mentioned in Chapter 6. For the CNN
layers in the character encoder and the RNN layers in the word encoder, the hyperbolic
tangent is utilized as an activation function. Finally, regarding the sequence lengths noted
in Chapter 6, we use the 90th percentile of lengths for each field to extract 𝑆𝑤 = 5, and
𝑆𝑐𝑡 = 3 for both sets, 𝑆𝑐ℎ

𝑛 = 42, 𝑆𝑐ℎ
𝑎 = 32 for 𝑃𝑎𝑖𝑟𝑠𝐵𝑅, and 𝑆𝑐ℎ

𝑛 = 26, 𝑆𝑐ℎ
𝑎 = 23 for

𝑃𝑎𝑖𝑟𝑠𝑈𝑆. We use 𝐵 = 100 distance buckets in the geographical encoder, and 𝑚 = 100
dimensions for the embedding layers.

The network is implemented with Keras 2.3.1 and Tensorflow 1.15.2, with the aid of
gensim. To use the pre-trained FastText embeddings in our model, their dimensionality
is reduced to 𝑚 = 100 beforehand by means of a Principal Component Analysis (PCA)
(PEARSON, 1901) dimensionality reduction script6. In order to improve reproducibility,
we also fix Tensorflow’s, numpy and Keras random seeds as 6810818.

The model is tuned with optkeras, a wrapper over optuna, for 50 trials on top of the
𝑃𝑎𝑖𝑟𝑠𝐵𝑅 validation data set and 20 trials in the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 one, with a median pruner after 3
warm-up trials and 1 warm-up step. An additional early stopping callback with a patience
of 2 epochs and a minimum change of 10−3 is also added as insurance against degenerate
cases not detected by the median pruner. Training is performed with the ADAM optimizer
(KINGMA; BA, 2015), with a batch size of 64 for 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 1024 for 𝑃𝑎𝑖𝑟𝑠𝑈𝑆, and all
hyperparameters and their values are described in Table 20.

8.6 RESULTS

The results of comparing each of our models with the baseline methods in the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅

and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 test data sets are displayed in Table 13. Figure 17 expands on that by
displaying plots of the precision-recall curves for all applicable models on both data sets.

As presented in Table 13, 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 obtains the best values of 𝐹𝛽=0.5 and normalized
Gini scores in both data sets. More specifically, its 𝐹𝛽=0.5 for 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 are
0.609 and 0.809, respectively, while its normalized Gini coefficients are 0.929 and 0.959. It
also reaches the best precision in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 (0.628) and the best recall in 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 (0.712).
By comparing 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 with 𝑃𝐿𝐺𝐵𝑀 , which has the second-best results in both data
sets in terms of 𝐹𝛽=0.5, we see relative gains upwards of 7.14% in the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 data set
and 5.61% in the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data set.
6 <https://github.com/facebookresearch/fastText/blob/master/reduce_model.py>

https://github.com/facebookresearch/fastText/blob/master/reduce_model.py
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Table 13 – Comparison of all models on test samples from 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆.

Data set Model Precision Recall 𝐹𝛽=0.5 Normalized
Gini

AUC

𝑃𝑎𝑖𝑟𝑠𝐵𝑅

Dalvi et al.
(2014)

0.300 0.240 0.285 0.601 0.204

PE - Yang
et al.
(2019)

0.590 0.246 0.462 0.778 0.396

𝑊𝑅𝐻 0.560 0.06 0.210 - -

𝑃𝑅𝐹 0.498 0.581 0.513 0.915 0.498

𝑃𝐿𝐺𝐵𝑀 0.616 0.412 0.560 0.924 0.552

𝑃𝑙𝑎𝑐𝐸𝑅𝑁 0.617 0.542 0.600 0.929 0.606

𝑃𝑎𝑖𝑟𝑠𝑈𝑆

Dalvi et al.
(2014)

0.750 0.240 0.526 0.693 0.568

PE - Yang
et al.
(2019)

0.837 0.547 0.757 0.896 0.775

𝑃𝑅𝐹 0.844 0.543 0.760 0.930 0.795

𝑃𝐿𝐺𝐵𝑀 0.801 0.652 0.766 0.938 0.816

𝑃𝑙𝑎𝑐𝐸𝑅𝑁 0.837 0.712 0.809 0.959 0.857

Source: (COUSSEAU, 2020)

Analyzing the AUC alongside Figures 17a and 17b further shows that 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 offers
an improvement over its competitors in almost all precision-recall ratios, that is: it is able
to be more thoroughly tailored to attend specific demands of precision or recall ratios. For
instance, in 𝑃𝑎𝑖𝑟𝑠𝑈𝑆, 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 has an AUC of 0.857 against 0.816 from 𝑃𝐿𝐺𝐵𝑀 and
0.775 from PE. Moreover, fixing precision at 0.8, 𝑃𝐿𝐺𝐵𝑀 has a recall close to 0.7 while
𝑃𝑙𝑎𝑐𝐸𝑅𝑁 reaches a value close to 0.8 in the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data set. These results confirm that
𝑃𝑙𝑎𝑐𝐸𝑅𝑁 is able to better capture the place features with its encoders, independently of
the size of the training data set or its imbalance factor.

However, by analyzing the precision-recall curves, we see that 𝑃𝐿𝐺𝐵𝑀 has equivalent
metrics to 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 at some points. Furthermore, 𝑃𝐿𝐺𝐵𝑀 is able to constantly surpass
the methods from Dalvi et al. (2014) and Yang et al. (2019) in all evaluated metrics.
Summing these results with the simpler approach taken by 𝑃𝐿𝐺𝐵𝑀 , they confirm that
𝑃𝐿𝐺𝐵𝑀 , while being an overall worse choice than 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 for the record linkage task,
may be a good alternative for a quick and competitive solution for the problem.

Regarding 𝑃𝑅𝐹 , Table 13 and Figure 17a show that it lags behind 𝑃𝐿𝐺𝐵𝑀 in
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Figure 17 – Overlapping precision-recall curves in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 for all possible
models.

(a) Precision-recall curves in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅. (b) Precision-recall curves in 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 .

Source: (COUSSEAU, 2020)

𝑃𝑎𝑖𝑟𝑠𝐵𝑅 by a considerable margin. For the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data set, however, 𝑃𝑅𝐹 provides
a performance closer to that of 𝑃𝐿𝐺𝐵𝑀 in all evaluated metrics. This points to the fact
that 𝑃𝐿𝐺𝐵𝑀 is better able to handle class imbalance with fewer data points than a
traditional Random Forest model.

We also notice that 𝑊𝑅𝐻 is surpassed in almost all metrics by the other methods, due
to its simplistic and constrained approach. More specifically, while it provides a precision
value of 0.56, which is close to the best result in the data set, its recall rate is only
0.06, confirming that in order to achieve a relatively good precision, it must adhere to an
unreasonably low recall value.

Finally, Table 13 shows that both baseline methods achieve lower 𝐹𝛽=0.5 and norma-
lized Gini coefficient values when compared to our preliminary models and 𝑃𝑙𝑎𝑐𝐸𝑅𝑁

itself, with PE surpassing the heuristic approach of Dalvi et al. (2014) in every evaluated
metric. According to the precision-recall curves for the Brazilian data set, the PE model
from Yang et al. (2019) has consistently lower metrics than all of our proposed solutions.
Namely, we observe a difference of 0.151 in the normalized Gini coefficient when compa-
ring 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , the best-performing model, with PE in the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 data set, and 0.146
when comparing 𝑃𝐿𝐺𝐵𝑀 to PE in the same set. Comparing 𝐹𝛽=0.5 further exacerbates
this pattern.

It is important to note that the normalized Gini coefficient achieved by PE in the
𝑃𝑎𝑖𝑟𝑠𝑈𝑆 set is only 0.063 points below the best performer’s value, with its 𝐹𝛽=0.5 score
being 0.052 lower. Given that its performance on 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 was lackluster, this may indicate
that the PE model, without the additional modifications proposed by its authors, is unable
to handle class imbalance as well as the other models, and relies on a bigger data set to
learn. We acknowledge, however, that the full PEHAD model proposed by Yang et al.
(2019) displays a significant improvement over PE in their own work, so perhaps a full-
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blown implementation might have a better performance in this data set than the other
models.

We also note that PE is measured in its original work in regards to a different novel
evaluation metric, under different scenarios. Meanwhile, the work from Dalvi et al. (2014)
is originally evaluated on a smaller, manually curated, and more balanced data set.

8.6.1 Ablation Study

In order to verify the impact of each encoder in the 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 model, we begin from a
basic model consisting only of the word encoder (𝑊𝐸). Then, we gradually add other
modules: the character encoder is added (𝑊𝐸 + 𝐶𝐻𝐸), then the geographical encoder
is added (𝑊𝐸 + 𝐶𝐻𝐸 + 𝐺𝐸), and finally the category encoder is added, composing the
final model 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 . The order of removals and additions follows the feature importance
values obtained from studying our other models, as Section 8.6.3 shows. Each of these
models has its parameters optimized by the same process applied to 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 . The
results for this ablation study in all data sets are presented in Table 14.

Table 14 – Results of the ablation study for the final 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 model.

Data set Model Precision Recall 𝐹𝛽=0.5 Normalized
Gini

𝑃𝑎𝑖𝑟𝑠𝐵𝑅

𝑊𝐸 0.577 0.508 0.562 0.9

𝑊𝐸 +
𝐶𝐻𝐸

0.588 0.573 0.585 0.92

𝑊𝐸 +
𝐶𝐻𝐸 +
𝐺𝐸

0.6 0.557 0.591 0.921

𝑃𝑙𝑎𝑐𝐸𝑅𝑁 0.617 0.542 0.600 0.929

𝑃𝑎𝑖𝑟𝑠𝑈𝑆

𝑊𝐸 0.822 0.694 0.793 0.946

𝑊𝐸 +
𝐶𝐻𝐸

0.826 0.678 0.791 0.95

𝑊𝐸 +
𝐶𝐻𝐸 +
𝐺𝐸

0.849 0.668 0.805 0.956

𝑃𝑙𝑎𝑐𝐸𝑅𝑁 0.837 0.712 0.809 0.959

Source: (COUSSEAU, 2020)

From the results, we see that the full model, 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , achieves the best 𝐹𝛽=0.5

and normalized Gini scores in both data sets. Each encoder adds ups to the model’s
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performance, making the full model present an increase of 0.038 in the 𝐹𝛽=0.5 score and
0.029 in the normalized Gini coefficient when compared to 𝑊𝐸 only, in the Brazilian set.

The most impact brought by the addition of an encoder may be seen in the 𝑊𝐸

+ 𝐶𝐻𝐸 version, where adding the character encoder boosts the 𝐹𝛽=0.5 by 0.023. These
results are even less noticeable in the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 set, our main supposition being the lar-
ger amount of training data. The fact that none of the encoders display a considerable
impact on the score by itself points to the fact that the word encoder is a very powerful
classification tool by itself, and each of the additions to the model serves to improve it in
some difficult cases.

8.6.2 On The Effects of Resampling

Additional experiments are conducted to study the effect of resampling in the 𝑃𝑅𝐹

and 𝑃𝐿𝐺𝐵𝑀 models, with the goal of discovering if applying such techniques could
improve our preliminary models. Resampling studies are not provided for 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 as
its higher dimensionality results in a bottleneck for oversampling techniques. As Table
15 shows, resampling both lowers the normalized Gini coefficient and the 𝐹𝛽=0.5 score
for the 𝑃𝐿𝐺𝐵𝑀 model by 0.012 and 0.032, respectively, and lowers the normalized Gini
coefficient by 0.003 while increasing the 𝐹𝛽=0.5 score by 0.005 for the 𝑃𝑅𝐹 model.

Table 15 – Comparison of 𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀 in regards to resampling.

Model Data set Precision Recall 𝐹𝛽=0.5 Normalized
Gini

Training
Time (s)

𝑃𝑅𝐹
𝑃𝑎𝑖𝑟𝑠𝐵𝑅 0.498 0.581 0.513 0.915 27.23

𝑃𝑎𝑖𝑟𝑠𝑅
𝐵𝑅 0.517 0.522 0.518 0.912 103.44

𝑃𝐿𝐺𝐵𝑀
𝑃𝑎𝑖𝑟𝑠𝐵𝑅 0.616 0.412 0.561 0.924 7.93

𝑃𝑎𝑖𝑟𝑠𝑅
𝐵𝑅 0.545 0.473 0.529 0.912 8.5

Source: (COUSSEAU, 2020)

The impact brought by resampling thus ranges from minor trade-offs in terms of
metrics to all-around worse results. Adding to that, training the 𝑃𝑅𝐹 models on 𝑃𝑎𝑖𝑟𝑠𝑅

𝐵𝑅

took 76.21 more seconds when compared to the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 version. While this 3.8 times
increase is not very significant in this work’s data sets, it could impact larger data sets in
a more relevant way. These results show that the preliminary models are already heavily
optimized, thus, no resampling techniques are used for them in other experiments.
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Figure 18 – Bar plots of mean absolute SHAP values for 𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀 in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅.

(a) SHAP values for 𝑃𝑅𝐹 . (b) SHAP values for 𝑃𝐿𝐺𝐵𝑀 .

Source: (COUSSEAU, 2020)

8.6.3 Feature Importance Study

SHAP (LUNDBERG; LEE, 2017) are conducted on the feature set for the 𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀
models, to infer the importance of each place attribute and transfer this knowledge to the
development of other models such as 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 . SHAP is a game-theoretic approach
which assigns an importance value to each feature for a particular prediction, and is able
to aggregate those importance values to produce a general analysis on the effect of each
feature in the model.

Figure 18 presents the mean absolute SHAP values for each of the features in the
𝑃𝑅𝐹 (a) and 𝑃𝐿𝐺𝐵𝑀 (b) models in the scope of validation data from 𝑃𝑎𝑖𝑟𝑠𝐵𝑅. The
one-hot encoded features are broken up into their respective components, and features
are ordered from top to bottom by their mean absolute SHAP value, which means that
the higher a feature is in the plot, the higher is its importance. These results show that
the name_soft_tfidf, sub_thoroughfare_diff, address_soft_tfidf, and core_word_jaro
features have the most overall impact on the models, which in turn indicates that the
most important information to detect replicated places are present in their names and
addresses, with the distance between them being a good additive.

Figure 19 expands on that analysis, by presenting the SHAP summary plots for each
of the features in the 𝑃𝑅𝐹 (a) and 𝑃𝐿𝐺𝐵𝑀 (b) models in the scope of validation data
from 𝑃𝑎𝑖𝑟𝑠𝐵𝑅. Each dot represents a sample, and a high absolute SHAP value indicates
that a feature has more influence on the model classification, with dots in red representing
higher feature values and dots in blue representing otherwise. In the Figure, features are
ordered from top to bottom according to the sum of their absolute SHAP values for all
samples. Note that the scale bar on the right refers to the color (feature value) of the
predictions alone, and does not relate to the ordering of features in the y axis.
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Figure 19 – Summary plots of SHAP values for 𝑃𝑅𝐹 and 𝑃𝐿𝐺𝐵𝑀 in 𝑃𝑎𝑖𝑟𝑠𝐵𝑅.

(a) SHAP sumary for 𝑃𝑅𝐹 . (b) SHAP summary for 𝑃𝐿𝐺𝐵𝑀 .

Source: (COUSSEAU, 2020)

From Figure 19, we see that textual features are correlated with positive outputs, i.e.
higher values for the features imply duplicate pairs for the model. The distance feature,
as expected, is inversely correlated with positive samples, i.e. lower values push the model
towards non-duplicates. The core_word_jaro feature provides relevant SHAP values for
positive samples, but is shown to be unreliable for negative samples, due to the mixture
of colored dots closer to negative SHAP values.

Furthermore, one is able to assert that the categorical features are either unreliable
descriptors by themselves, as is the case with homepage_both_missing, or are reliable
descriptors of a single class, such as parent_place_ match. In all cases, the magnitude of
their influence on the model is much lower than their counterparts’, even when summing
all of the one-hot encoded components. This analysis of the SHAP values leads us to focus
the development of other models on place names, addresses and geographical coordinates,
which is the approach taken in 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 .

8.6.4 Training and Execution Times

Since the end goal of the models for classifying place pairs into duplicates or non-duplicates
is being part of a full record linkage pipeline, we analyze the training and execution times
for each model in Table 16, without accounting for pre-processing or post-processing
steps. Analyzing training time is relevant to our use case because place databases are
often dynamic, so recurrent training guarantees the quality of results over time. In a
similar way, execution time matters for real-time use cases.

Whilst 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 is the best performer in both data sets in terms of classification sco-
res, it takes 3149 seconds to train in the 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 data set. When compared to 𝑃𝐿𝐺𝐵𝑀 ,
for instance, its training time is roughly 397 times higher.
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Table 16 – Training and execution times for all models, with percentage reductions from
worst result.

Data set Model Training time (s) Execution time (s)

𝑃𝑎𝑖𝑟𝑠𝐵𝑅

Dalvi et al. (2014) 7879.00 (-8.36%) 4.83 (-99.87%)

PE - Yang et al. (2019) 8598.00 2.97 (-99.92%)

𝑊𝑅𝐻 - 3600.00

𝑃𝑅𝐹 27.23 (-99.68%) 0.31 (-99.99%)

𝑃𝐿𝐺𝐵𝑀 7.93 (-99.91%) 0.19 (-99.99%)

𝑃𝑙𝑎𝑐𝐸𝑅𝑁 3149 (-63.37%) 80.83 (-97.75%)

𝑃𝑎𝑖𝑟𝑠𝑈𝑆

Dalvi et al. (2014) 131610.00 25.44 (-89.05%)

PE - Yang et al. (2019) 130742.00 (-0.01%) 9.40 (-95.96%)

𝑃𝑅𝐹 364.26 (-99.72%) 1.56 (-99.33%)

𝑃𝐿𝐺𝐵𝑀 32.05 (-99.98%) 1.28 (-99.45%)

𝑃𝑙𝑎𝑐𝐸𝑅𝑁 542.00 (-99.59%) 232.42

Source: (COUSSEAU, 2020)

Similarly, the training times of the model from Dalvi et al. (2014) and the PE model
stand out as being at least one order of magnitude higher than the other models’, especially
in the 𝑃𝑎𝑖𝑟𝑠𝑈𝑆 data set, where they reach upwards of 36 hours to train. It is relevant to
note that most of the training time for PE comes from the embedding smoothing process,
which relies on the construction of a places graph. This process is taken into account
because, in a real scenario, these smoothed embeddings for each place would need to be
re-generated to account for new entities and temporal changes in past ones. While training
time does not disqualify a model for usage in a production environment, any researcher
or engineer aiming to use it would have to dispense more resources to do so.

In regards to execution time, 𝑃𝐿𝐺𝐵𝑀 takes only 0.19 seconds to classify the 60,925
test samples from 𝑃𝑎𝑖𝑟𝑠𝐵𝑅 and 1.28 seconds to classify the 307,017 test samples from
𝑃𝑎𝑖𝑟𝑠𝑈𝑆, surpassing every other evaluated model. More noticeably, 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 takes lon-
ger than 𝑃𝐿𝐺𝐵𝑀 , 𝑃𝑅𝐹 , and each baseline method to execute, without using batch
predictions. This points to the fact that 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 is more suited to a batch-wise or off-
line case than a real-time, latency-constrained one. These results also do not account for
concurrency in real-time services, which may present itself as a bottleneck. In that regard,
the LGBM library offers out-of-the-box concurrency and distribution support.

Finally, the execution times in seconds for the record blocking and duplicate clustering
steps of the record linkage pipeline, averaged over 5 runs in the full 𝑃𝑙𝑎𝑐𝑒𝑠𝐷𝐵 and without
considering the classification model utilized, are shown in Table 17. Although we do not
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offer comparisons of these run times to other alternatives, they serve to show that the
full pipeline using any of our proposed models is able to be executed in less than 3 hours
for a data set with up to 28 million records, attesting to its applicability in production
environments.

Table 17 – Execution times for the record linkage pipeline, averaged over 5 runs.

Record Blocking (s) Duplicate Clustering (s) Total (s)

Mean 7301.80 2617.20 9919.00

Std. Dev. 187.44 150.00 163.88

Source: (COUSSEAU, 2020)

8.7 DISCUSSION

By considering the results presented in the previous section, one can conclude that our
linkage pipeline for place records using a multi-view classifier, 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , is able to suc-
cessfully detect replicated places in large quantities of data in a reasonable time. This
is sustained by experiments which show that: (i) 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 outperforms our preliminary
heuristic and supervised learning approaches in detecting duplicate places on all tested
data sets; (ii) 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 surpasses baseline approaches from other authors in the state-of-
the-art in terms of all evaluated metrics; (iii) The full linkage pipeline is able to process
up to 28 million place records in under 3 hours; (iv) 𝑃𝐿𝐺𝐵𝑀 also obtains better results
than the baseline methods, and is extremely fast to train and execute, proving itself as a
good alternative for solving the linkage problem in an on-line fashion with the proposed
set of APIs.

Our results also show that resampling does not influence supervised learning techniques
so much in the places record linkage task, even with a high imbalance factor. This points
towards the fact that the models utilized by us are able to inherently deal with imbalance
during their training process.

Furthermore, the experiments attest that the place’s name and address information
are the two most important fields to extract relevant information from, when attempting
to detect duplicate places. Latitude and longitude values also serve as a good way to
improve results. These findings are particularly fortuitous, because these are the most
common attributes present in places data from the Web.

In regards to the architecture of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , explained at depth in Chapter 6, we find
that the word encoder for names and addresses is already a powerful duplicate detection
tool by itself. The additional encoders further increase the model’s performance by small
increments, making it easier to detect edge cases. Given the impact which classification
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errors in the record linkage task may cause in a database, each of these increments is a
relevant addition.
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9 CONCLUSIONS AND FUTURE WORK

This chapter concludes our work by presenting a summary of the obtained results, as well
as its main contributions and limitations. Furthermore, some direction is given in terms
of future works that may improve or extend this one.

9.1 CONCLUSION

This work presented an end-to-end pipeline for linking place records using a record bloc-
king step, a deep neural network to detect duplicate places, and a duplicate clustering
step. The network, dubbed 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , utilizes four different encoders to capture multi-
level information about places: a word encoder, a character encoder, a category encoder,
and a geographical encoder. Each of these encoders learns a representation for place pairs,
which are then aggregated and compared to generate an affinity between two places, in-
dicating whether they are duplicates or not. Other supervised learning approaches in the
form of a pairwise Random Forest model and a pairwise LGBM classifier, alongside a set
of APIs to expose them, were offered as alternatives for real-time environments.

Experimentation on these models and the full pipeline, on top of two data sets with
varying characteristics, indicated that our final solution was able to outperform previous
attempts and baseline methods from the state-of-the-art on the detection of duplicate
places. Likewise, we showed that our preliminary models also surpassed other competitors
in this task, and are able to be ported to an on-line environment with latency constraints.
In addition to that, the full pipeline is also shown to handle large quantities of data in a
reasonable amount of time.

9.2 MAIN CONTRIBUTIONS AND LIMITATIONS

We consider the main contributions of this work to be:

1. A novel classifier using multiple encoders is proposed for the task of detecting du-
plicate places;

2. This classifier outperforms previous attempts and baseline methods on the same
task;

3. Preliminary supervised learning approaches to the problem also surpass baseline
methods, and have better training and execution times;

4. Record blocking and duplicate clustering steps are proposed, composing an end-to-
end solution for the record linkage problem in the places data domain;
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5. A set of APIs is described in order to solve the linkage problem in an on-line fashion.

In terms of limitations, we highlight the fact that 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 does not seem suitable for
on-line environments, with the preliminary approaches tending to be better. Furthermore,
the record blocking step drops some relevant duplicate cases, and could be improved.

9.3 FUTURE WORK

As possible improvements or extensions to this work, we suggest the following:

• Exploring the usage of additional encoders for other place attributes such as their
parentage information;

• Adapting 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 to real-time environments;

• Analyzing alternative similarity metrics for the record blocking step, preventing it
from dropping relevant cases;

• Utilizing active learning to improve the proposed model, by using manual labels
generated with the proposed APIs or other similar services;

• Exploring self-attention in the context of the word and character encoders to capture
core words and characters.
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APPENDIX A – IMPLEMENTATION OF THE GINI COEFFICIENT

Listing A.1 – Python code for computing the Gini coefficient.
1 import numpy as np

2
3 def gini ( y_actual , y_pred ) :
4 """ Calculates the Gini coefficient .

5
6 Keyword arguments :

7 y_actual -- numpy array with truth values (0 or 1)

8 y_pred -- list - like object with predictions in [0.0 , 1.0]

9 """

10 total_predictions = len ( y_actual )
11 sorted_y_actual = y_actual [ np . argsort ( y_pred ) ] [ : : - 1 ]
12 cumulative_y_actual = sorted_y_actual . cumsum ( )
13 cumulative_y_actual_normalized = ( cumulative_y_actual
14 / sorted_y_actual . sum ( ) )
15 gini_coeff = ( cumulative_y_actual_normalized . sum ( )
16 - ( total_predictions + 1) / 2 . 0 )
17 return 2 . ∗ gini_coeff / total_predictions

18
19 def gini_normalized ( y_actual , y_pred ) :
20 """ Calculates the normalized Gini coefficient .

21
22 Keyword arguments :

23 y_actual -- numpy array with truth values (0 or 1)

24 y_pred -- list - like object with predictions in [0.0 , 1.0]

25 """

26 return gini ( y_actual , y_pred ) / gini ( y_actual , y_actual )
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APPENDIX B – SEQUENCE DIAGRAMS

Figure 20 – Sequence diagram for our proposed pipeline, consuming a set of 𝑃 places and
producing a set 𝑅 of replicated places.

Source: (COUSSEAU, 2020)
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Figure 21 – Sequence diagram for the word encoder of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , consuming a pair of
places and producing word-level embeddings for both of them.

Source: (COUSSEAU, 2020)
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Figure 22 – Sequence diagram for the character encoder of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , consuming a pair
of places and producing character-level embeddings for both of them.

Source: (COUSSEAU, 2020)
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Figure 23 – Sequence diagram for the category encoder of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 , consuming a pair
of places and producing category-level embeddings for both of them.

Source: (COUSSEAU, 2020)
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APPENDIX C – DUPLICATE DETECTION API BODY

Listing C.1 – Sample JSON body format accepted by our Duplicate Detection API.
1 {

2 "places": [

3 {

4 "id": string,

5 "name": string,

6 "geo_location": {

7 "lat": double,

8 "lng": double

9 },

10 "address": {

11 "thoroughfare": string,

12 "sub_thoroughfare": string

13 },

14 "labels": [string],

15 "homepages": [string]

16 },

17 ...

18 ],

19 "threshold": double

20 }
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APPENDIX D – HYPERPARAMETERS

Table 18 – Hyperparameters of the baseline methods and the best values obtained in each
data set.

Model Hyperparameter Values Value
𝑃𝑎𝑖𝑟𝑠𝐵𝑅

Value
𝑃𝑎𝑖𝑟𝑠𝑈𝑆

Dalvi
et
al.
(2014)

𝜆 0.0, 0.9 0.0 0.0

Geohash characters None, 5, 6 None None

𝛼 0.1, 0.3, 0.5, 0.7,
0.9

0.3 0.9

𝑡𝑐 0.5, 0.6, 0.7, 0.8,
0.9, 0.95

0.5 0.5

PE
-
Yang
et
al.
(2019)

𝛼 [0.1, 0.9],
increments of 0.1

0.4 0.5

smoothing negative
sampling

5, 10, 20 20 5

smoothing random
walk length

10 10 10

smoothing random
walks

100,000 100,000 100,000

smoothing epochs 10 10 10

smoothing minimum
frequency

1 1 1

smoothing half window
size

5 5 5

first layer neurons 256, 512 512 512

second layer neurons 128, 256 128 128

third layer neurons 128, 256 128 128

training batch size 512, 1024 512 1024

𝑡𝑐 [0.5, 1.0],
increments of
0.05

0.75 0.75

Source: (COUSSEAU, 2020)
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Table 19 – Hyperparameters of our preliminary methods and the best values obtained in
each data set.

Model Hyperparameter Values Value
𝑃𝑎𝑖𝑟𝑠𝐵𝑅

Value
𝑃𝑎𝑖𝑟𝑠𝑈𝑆

Value
𝐼𝑛𝑙𝑜𝑐𝑜𝑅

𝐵𝑅

𝑊𝑅𝐻

Usage threshold 𝑈 5 5 - -

Locality threshold 𝐿 0.1 0.1 - -

Distance threshold 𝐷 200 meters 200 - -

𝑃𝑅𝐹

n_estimators 100, 110, 120,
130, 140, 150

110 150 110

max_features sqrt, log2 log2 sqrt log2

max_leaf_nodes None, 50, 100,
150

150 150 150

min_samples_split 2, 3, 4, 5 3 5 3

class_weight balanced balanced balanced balanced

oob_score True True True True

𝑡𝑐 [0.5, 1.0],
increments of
0.05

0.9 0.9 0.9

𝑃𝐿𝐺𝐵𝑀

lambda_l1 log uniform in
[10−7, 10.0]

1.247 ·
10−8

1.132 ·
10−8

4.919 ·
10−8

lambda_l2 log uniform in
[10−7, 10.0]

0.659 0.247 8.708

num_leaves [2, 256] 95 256 243

feature_fraction [0.4, 1.0] 0.5 0.62 0.678

bagging_fraction [0.4, 1.0] 1.0 1.0 0.759

bagging_freq [0, 7] 0 0 3

min_child_samples [5, 100] 5 20 100

class_weight balanced balanced balanced balanced

early_stopping_rounds 10 10 10 10

iterations 100 100 100 100

𝑡𝑐 [0.5, 1.0],
increments of
0.05

0.5 0.5 0.8

Source: (COUSSEAU, 2020)
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Table 20 – Hyperparameters of 𝑃𝑙𝑎𝑐𝐸𝑅𝑁 and its ablated versions, with the best values
obtained in each data set.

Data set Hyperparameter Values Value
𝑃𝑙𝑎𝑐𝐸𝑅𝑁

Value
𝑊𝐸

Value
𝑊𝐸+
𝐶𝐻𝐸

Value
𝑊𝐸 +
𝐶𝐻𝐸+
𝐺𝐸

𝑃𝑎𝑖𝑟𝑠𝐵𝑅

learning rate [0.001, 0.01],
increments of
0.001

0.001 0.005 0.001 0.002

focal loss 𝛾 0.0, 1.0, 1.5, 2.0 1.5 2.0 2.0 0.0

dropout rate [0.05, 0.4],
increments of
0.05

0.15 0.05 0.1 0.35

GRU dimensions 𝑙 50, 100, 150, 200 150 100 200 200

CNN filters 𝑑 64, 128, 256, 512 512 - 128 512

CNN kernel size 𝑘 2, 3, 4, 5 4 - 5 4

𝑡𝑐 [0.5, 1.0],
increments of
0.05

0.5 0.5 0.5 0.4

𝑃𝑎𝑖𝑟𝑠𝑈𝑆

learning rate [0.001, 0.01],
increments of
0.001

0.001 0.001 0.001 0.001

focal loss 𝛾 0.0, 1.0, 1.5, 2.0 2.0 2.0 1.0 1.5

dropout rate [0.05, 0.4],
increments of
0.05

0.2 0.25 0.05 0.15

GRU dimensions 𝑙 50, 100, 150, 200 100 150 150 100

CNN filters 𝑑 64, 128, 256, 512 128 - 512 256

CNN kernel size 𝑘 2, 3, 4, 5 3 - 4 5

𝑡𝑐 [0.5, 1.0],
increments of
0.05

0.55 0.55 0.65 0.6

Source: (COUSSEAU, 2020)
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