
Igor Simões de Oliveira Lima

Leveraging Diversity to Find Bugs in JavaScript Engines

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2020

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Igor Simões de Oliveira Lima

Leveraging Diversity to Find Bugs in JavaScript Engines

A M.Sc. Dissertation presented to the Center of
Informatics of Federal University of Pernambuco
in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science.

Concentration Area: Software Engineering,
Software Testing
Advisor: Marcelo Bezerra d’Amorim

Recife
2020

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

L732l Lima, Igor Simões de Oliveira

Leveraging diversity to find bugs in JavaScript engines / Igor Simões de
Oliveira Lima. – 2020.

 53 f.: il., fig., tab.

 Orientador: Marcelo Bezerra d’Amorim.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2020.
 Inclui referências.

 1. Engenharia de software. 2. JavaScript. I. d’Amorim, Marcelo Bezerra
(orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2020 - 124

Igor Simões de Oliveira Lima

“Leveraging Diversity to Find Bugs in JavaScript Engines”

 Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Mestre em Ciência da

Computação.

Aprovado em: 17 de janeiro de 2020.

BANCA EXAMINADORA

Prof. Dr. Breno Alexandro Ferreira de Miranda

Centro de Informática/UFPE

Prof. Dr. Igor Scaliante Wiese

Departamento Acadêmico de Ciência da Computação/UTFPR

Prof. Dr. Marcelo Bezerra d'Amorim

Centro de Informática/UFPE

(Orientador)

Dedico este trabalho à minha família e amigos que foram meus alicerces perante as difi-
culdades deste percurso.

ACKNOWLEDGEMENTS

Primeiramente, agradeço a minha família que mesmo estando longe, me apoiaram em
todas as decisões que tomei na vida. Até hoje me recordo de quando saí de casa para
estudar em outra cidade e vocês sempre me incentivando para buscar novos horizontes.
De 2010 até hoje, passei pelas cidades de Aracaju/SE, Arapiraca/AL e Recife/PE. Eu
não estaria aqui se não fosse por todo sacrifício que vocês fizeram por mim. Obrigado.

Computação sempre foi uma paixão, desde o acesso ao primeiro computador até a
implementação do primeiro programa. Fiz o curso de Ciência da Computação da Univer-
sidade Federal de Alagoas campus Arapiraca, ao qual tive excelente professores e desde
então meu gosto pela área só aumentou. Deixo meus agradecimentos aos professores Mário
Hozano e Alexandre Barbosa pela iniciação científica no LAMP (Laboratório de Análise,
Modelagem e Programação).

Em 2016, fui selecionado para a 18ª turma de residência em análise de testes de soft-
ware do projeto Motorola/CIn-UFPE, ao qual me incentivou a seguir a área de testes de
software. Fiz grandes amigos durante esse percurso, em especial, o pessoal do laboratório
de automação ao qual aprendi muito com eles e todo pessoal da minha turma, que se
tornaram meus melhores amigos aqui em Recife.

Com a residência em testes, me interessei pela área e decidi fazer o mestrado em Ciência
da Computação do Centro de Informática. De todo lugar que já passei, o CIn/UFPE será
sempre minha referência de melhor instituição. Fiz grandes amigos por aqui, em especial,
meus irmãos acadêmicos Luis Melo, Jeanderson Cândido, Sotero Júnior e Davino, só a
gente sabe o que o laboratório do INES nos representou nestes anos. Agradeço também
a meus amigos da pós e de apartamento, Raphael Dourado, Francisco Cabeça, Ramon
Maciel e Edton Lemos.

E por fim, agradeço ao meu orientador Marcelo d’Amorim por acreditar em meu
trabalho, estar sempre presente e por incentivar o gosto pela pesquisa. Graças ao nosso
esforço, tivemos até o momento dois papers aceitos, o que para mim, era meu objetivo
inicial ao entrar no programa e me sinto honrado em contribuir de alguma forma para a
pesquisa acadêmica.

Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better (BECKETT, 1983).

ABSTRACT

JavaScript is a very popular programming language today with several implemen-
tations competing for market dominance. Although a specification document and a con-
formance test suite exist to guide engine development, bugs occur and have important
practical consequences. This work evaluates the importance of different techniques to find
functional bugs in JavaScript engines. For that, we explored two existing techniques—test
transplantation and cross-engine differential testing. The first technique runs test suites
of a given engine in another engine. The second technique fuzzes existing inputs and then
compares the output produced by different engines with a differential oracle. We consid-
ered engines from four major players in our experiments–V8, SpiderMonkey, ChakraCore,
and JavaScriptCore. We present a tool capable of running tests on any javascript engine
and obtaining reports based on the test output. It was possible to run the four engines
in a test suite extracted from open-source projects, using the two techniques mentioned
and we analyzed the behavior of each engine, classifying the output as a bug or not. The
results indicate that both techniques revealed several bugs, many of which confirmed by
developers. Overall, we reported 50 bugs in this study. Of which, 36 were confirmed by
developers and 29 were fixed. To sum, our results show that the techniques are easy to
apply and very effective in finding bugs in complex software, such as JavaScript engines.

Keywords: Diversity. Test Transplantation. Differential Testing. JavaScript.

RESUMO

Atualmente, o JavaScript é uma linguagem de programação muito popular, com
várias implementações competindo pelo domínio do mercado. Embora exista um docu-
mento de especificação e um conjunto de testes de conformidade para orientar o desen-
volvimento do motor (do inglês, engine), bugs ocorrem e têm importantes consequências
práticas. Este trabalho avalia a importância do uso de diferentes técnicas para encontrar
erros funcionais nos motores JavaScript. Para isso, exploramos duas técnicas de testes ex-
istentes - teste de transplante e teste diferencial entre motores. A primeira técnica executa
suítes de teste de um determinado mecanismo em outro mecanismo. A segunda técnica
aplica fuzzing nas entradas de teste e depois compara o resultado produzido em diferentes
motores através de um oráculo diferencial. Consideramos os quatro principais motores da
atualidade em nossos experimentos - V8, SpiderMonkey, ChakraCore e JavaScriptCore.
Apresentamos uma ferramenta capaz de executar testes em qualquer motor javascript e
obter relatórios baseado na saída dos testes. Com esta ferramenta, foi possível executar
os quatro motores em uma suíte de testes extraídos de projetos open-source, utilizando as
duas técnicas citadas e analisamos o comportamento de cada motor, classificando a saída
como um bug ou não. Os resultados indicam que ambas as técnicas revelaram vários bugs,
muitos dos quais já foram confirmados pelos desenvolvedores. No geral, relatamos 50 bugs
neste estudo. Dos quais, 36 foram confirmados pelos desenvolvedores e 29 foram corrigi-
dos. Em resumo, nossos resultados mostram que as técnicas são fáceis de aplicar e são
muito eficazes para encontrar bugs em softwares complexos, como motores JavaScript.

Palavras-chaves: Diversidade. Teste de Transplante. Teste Diferencial. JavaScript.

LIST OF FIGURES

Figure 1 – Evolution of ECMAScript Specifications 15
Figure 2 – Summary of bug reports. 16
Figure 3 – JavaScript Code Classifier . 22
Figure 4 – Example of a mined test using the classifier. 23
Figure 5 – Overview of the infrastructure. 24
Figure 6 – Differential Testing infrastructure overview. 25
Figure 7 – Example of a “lo” warning. 26
Figure 8 – Warning captured involving unary plus expression. 37
Figure 9 – Warning classified as true positive in V8 engine. 38
Figure 10 – Warning captured involving a non-callable object. 38
Figure 11 – Warning classified as incompatibility by design. 38

LIST OF TABLES

Table 1 – Engines selected. 20
Table 2 – Number of test files. 21
Table 3 – Percentage of passing tests on the Test262 conformance suite. 30
Table 4 – Number of failures with Test Transplantation. 30
Table 5 – Distribution of FP and TP (TT). 32
Table 6 – List of bugs reports from Test Transplantation. 32
Table 7 – Number of hi warning reports per engine. 35
Table 8 – Distribution of FP and TP (DT). 35
Table 9 – List of bugs reports from Differential Testing. 36
Table 10 – Overview of the experiments. 37

LIST OF ABBREVIATIONS AND ACRONYMS

DT Differential Testing

FP False Positives

JS JavaScript

NaN Not a Number

TP True Positives

TT Test Transplantation

CONTENTS

1 INTRODUCTION . 14
1.1 RELATED IDEAS . 15
1.2 RESEARCH METHODOLOGY . 16
1.3 RESULTS . 17
1.4 KEY FINDINGS . 17
1.5 CONTRIBUTIONS . 17

2 BACKGROUND . 19
2.1 JAVASCRIPT . 19
2.2 ENGINES STUDIED . 19
2.3 MINED JS FILES . 20
2.4 MINING TESTS FROM ISSUE TRACKERS 21

3 OBJECTS OF ANALYSIS . 24
3.1 INFRASTRUCTURE . 24
3.1.1 Prioritization . 25
3.1.2 Clusterization . 26
3.1.3 Fuzzers . 26

4 EVALUATION . 29
4.1 RESULTS . 29
4.1.1 Answering RQ1 (Conformance) . 29
4.1.2 Answering RQ2 (Test Transplantation) 30
4.1.2.1 Methodology . 30
4.1.2.2 Results . 31
4.1.3 Answering RQ3 (Differential Testing) 33
4.1.3.1 Methodology . 33
4.1.3.2 Results . 34
4.2 DISCUSSION . 36
4.2.1 Overview . 36
4.2.2 Example Bug Reports . 37

5 KEY FINDINGS AND LESSONS 40

6 THREATS TO VALIDITY . 41
6.1 INTERNAL VALIDITY . 41
6.2 EXTERNAL VALIDITY . 41

6.3 CONSTRUCT VALIDITY . 42

7 RELATED WORK . 43
7.1 DIVERSITY IN TESTING . 43
7.2 DIFFERENTIAL TESTING . 43
7.3 TESTING JS PROGRAMS . 44
7.4 TESTING JS ENGINES . 44

8 CONCLUSIONS . 46

REFERENCES . 47

14

1 INTRODUCTION

JavaScript (JS) is one of the most popular programming languages today (Stackify,
2018; RedMonk, 2018), which is used in various software development segments including,
web, mobile, and, more recently, the Internet of Things (IoT) (Simply Technologies, 2018)
and Machine Learning (ELLIOTT, 2019). The interest of the community for the language
encourages constant improvements in its specification (TC39, 2018c). It is natural to expect
that such improvements lead to sensible changes in engine implementations (Kangax, 2018).
Even small changes can have high practical impact. For example, in October 2014 a new
attribute added to Array objects resulted in the MS Outlook Calendar web app, which is
built in JS, to fail under Chrome (Chromium, 2015; ESDiscuss, 2014).

JS engines are virtual machines that parse source code, compile it in bytecodes, and
run these bytecodes. These engines implement some version of the ECMAScript (ES),
which emerged with the goal to standardize variants of the language, such as Netscape’s
JavaScript and Microsoft’s JScript1. There are several implementations of engines by
the community, the popular engines are embedded in browsers (e.g. Google Chrome and
Mozilla Firefox), but engines also provides a runtime environment to run JS everywhere
(e.g. Node.js runtime 2).

An organization exists to regularize the JS language specifications. The ES specifica-
tion is regulated by Ecma International (Ecma Internacional, b) under the TC39 (TC39, b)
technical committee. Every year, a new version of the ES specification is produced with
new features and minor fixes. The canonical spec today is ES6 (TC39, 2018b; TC39, 2018c).

Finding functional bugs in JS engines is an important problem given the range of appli-
cations that could be affected with those bugs. It is also challenging due the specifications
are intentionally incomplete as to enable development flexibility. In addition, they evolve
frequently (see Figure 1) to accommodate the pressing demands from developers (TC39,
2018b). The Figure 1 shows the number of small, medium and large features over the
years, the ES6 introduced hundreds of modifications and until today some features are
not implemented yet, for example, the tail call optimization (Kangax, 2018). An official
conformance test suite exists for JS (TC39, b), but, naturally, many test scenarios are not
covered in the suite. In addition, we noticed that a significant fraction (5 to 15%) of the
tests fail regularly in the most popular engines, reflecting the struggle of developers in
keeping up with the pace of spec evolution (see Table 3).

This work, which is empirical in nature, reports on a study to evaluate the impor-
tance of finding bugs in JS engines; it covers two complementary diversity-aware testing
techniques.

1 The name JavaScript still prevails today, certainly for historical reasons.
2 The official NodeJS website. Available at <https://nodejs.org>

https://nodejs.org

15

0

30

60

ES5 (2014) ES6 (2015) ES7 (2016) ES8 (2017) ES9 (2018) ES10 (2019) ES11 (2020)

N
um

be
r

of
 fe

at
ur

es

Figure 1 – Evolution of ECMAScript Specifications

• Test Transplantation (TT) leverages diversity of test cases. This technique evaluates
the effect of running test files written for a given engine in other engines. The
intuition is that developers design test cases with different objectives in mind. As
such, replaying these tests in different engines could reveal unanticipated problems.

• Cross-engine Differential Testing (DT) leverages diversity of engine implementa-
tions. This technique fuzzes existing test inputs 3 and then compares the output
produced by different engines.The intuition is that interesting inputs can be created
from existing inputs and multiple engines can be used to address the lack of oracles.

The study measures the ability of these techniques in finding bugs and the impact of
False Positives (FP) on their practicality.

In addiction, we propose a tool to run suites of JS test cases to generate alarms based
on outputs from JS engines. It is possible to integrate any JS engine and pure JS test
files. The test cases are extracted from open source repositories and bug trackers. For the
files in bug trackers, we obtain the attached files and we also selected JS code from bug
trackers comments through a classifier implemented as an external component, responsible
for extracting JS code in comments.

1.1 RELATED IDEAS

The idea of test set diversity dates back to the eighties (WHITE; COHEN, 1980; OS-

TRAND; BALCER, 1988). In contrast to prior work on this topic, this study explores diver-
sity of implementations and diversity of sources of test cases as opposed to diversity of the
test cases themselves. Section 7.1 elaborates related work on this topic. DT (BRUMLEY et

al., 2007) has been applied in a variety of contexts to find bugs (YANG et al., 2011a; CHEN;

SU, 2015; ARGYROS et al., 2016; CHEN et al., 2016; PETSIOS et al., 2017; SIVAKORN et al.,
2017; ZHANG; KIM, 2017). It has shown to be specially practical in scenarios where the
observation of difference gives a strong signal of a real problem. For example, Mozilla runs
JS files against different configurations of a given build of their SpiderMonkey engine (e.g.,

3 Fuzz Testing of Application Reliability. Available at <http://pages.cs.wisc.edu/~bart/fuzz/>

http://pages.cs.wisc.edu/~bart/fuzz/

16

0

5

10

15

20

Chakra JavaScriptCore V8

status

1−New
2−Confirmed
3−Fixed

(a) Bug reports per engine.

0
5

10
15
20
25

Diff Trans

status

1−New
2−Confirmed
3−Fixed

(b) Bugs reports per technique.

Figure 2 – Summary of bug reports.

trying to enable or not eager JIT compilation4). A positive aspect of the approach is that
it can be fully automated—as only one engine is used, the outcomes of the test in both
configurations are expected to be identical. The Mozilla team uses this approach since
2002; they have been able to find over 270 bugs since then (Mozilla, a), including security
bugs. Cross-engine differential testing, in contrast, has not been widely popularized. One
possible reason is that it is still not practical to fully automate the technique due to the
distinct configurations of each engine, as well as a universal oracle that would indicate
possible true positives, this tasks still requires human inspection. In contrast to other
applications of differential testing, a number of legitimate reasons exist, other than a bug,
for a test execution to manifest discrepancy (see Tables 5 and 8). To sum up, variations
of these ideas have been explored before in different contexts. The goal of the study is to
assess the ability of the techniques aforementioned in finding bugs on JavaScript engines.

1.2 RESEARCH METHODOLOGY

The main purpose of this study is to finding and reporting functional bugs in JS
engines. We conducted our study in JS engines, empirical in nature, to investigate the
stability of the popular engines. We used three methods to reach the results described as
Conformance Test, Test Transplantation and Differential Testing. In the first dimension
we ran the conformance suite provided by the technical committee across the engines that
we selected according the criteria (described in Section 2.2) to observe how the popular
engines are stable compared to the current specification. In this case, we did not analyze
the reports because these test cases are the basic requirements for a JS engine develop-
ment and the development team is aware of the problems. The Test Transplantation and

4 These files are created with the grammar-based fuzzer jsfunfuzz. Look for option “compare_jit” from
funfuzz.

17

Differential Testing are similar, in nature. We ran the tests, compare the output of them
and manually analyzed the results. The analysis is basically a manual log inspection made
by experience developers (e.g. Test Transplantation), students in exploratory inspections
and the authors with a guideline (e.g. Differential Testing). We used standard metrics
to determine the effectiveness of the testing techniques, for example, the number of bugs
confirmed, fixed and their severity.

1.3 RESULTS

We considered the following engines–Chakra (Microsoft), JavaScriptCore (Apple), V8
(Google), and SpiderMonkey (Mozilla). Figure 2 shows the breakdown of bug reports
per engine (2a) and per technique (2b). Each stacked bar breaks down the bugs per
status (e.g., “1-New”). The prefix number indicates the ordering that status labels are
assigned. Several of these reports have the label “3-Fixed”, indicating that bug fixes
have been incorporated into the code already. Note that most of these bugs affected two
engines–Chakra and JavaScriptCore (JSC). We reported five bugs in V8 (four confirmed)
and none in SpiderMonkey. Furthermore, our results show that both techniques revealed
several bugs, most of which confirmed by developers. Test transplantation revealed 28
bugs (of which, 21 were confirmed and 18 were fixed) whereas differential testing revealed
22 bugs (of which, 15 were confirmed and 11 were fixed). Overall, results indicate that
both techniques were successful at finding bugs. The number of bug reports were similar,
if we consider only those confirmed or fixed. Most bugs we found are of moderate severity
because these violations are not involving engine crashes or security bugs.

1.4 KEY FINDINGS

The list of findings of this work includes–1) Not only multiple different implementa-
tions can be leveraged in differential testing, but differences in test suites can also be
important. 2) Even for problems with fairly clear specifications, as in JavaScript, there is
likely to be (a lot of) variation between different implementations. 3) Differential testing
is feasible on real, complex, widely used pieces of software. The Chapter 5 expands and
elaborates key findings and lessons learned.

1.5 CONTRIBUTIONS

The most important contribution of this work is empirical: we provide a comprehensive
study analyzing the effectiveness of diversity-aware techniques to find functional bugs in
popular JavaScript engines. Additional contributions are: 1) A number of bugs found and
fixed. We reported a total of 50 bugs. Of these, 36 bugs were confirmed and 29 bugs were

18

fixed. 2) An infrastructure for diversity-aware testing. The scripts to run the experiments
and the data are publicly available on our repository 5.

To summarize, this study provides initial, yet strong evidence that exploring diversity
should be encouraged to find functional bugs in JS engines.

5 JSEngines repository. Available at <https://github.com/damorimRG/jsengines-differential-testing>

https://github.com/damorimRG/jsengines-differential-testing

19

2 BACKGROUND

2.1 JAVASCRIPT

The specification of JavaScript is incomplete for different reasons. Certain parts of the
specification are undefined; it is responsibility of engineers to decide how to implement
these functionalities. The JavaScript spec uses the label “implementation-dependent” to
indicate these cases, where behavior may differ from engine to engine. One reason this
flexibility in the spec exists is to enable compiler optimizations. For example, the JS for-in

loop construct does not clearly specify the iteration order of elements (StackOverflow com-

munity, 2018; John Resig, 2018) and different engines capitalize on that for loop optimiza-
tions (Camilo Bruni–V8 engineer, 2018). As another example, the specification states that
if the Number.toPrecision() function is called with multiple arguments then the floating-
point approximation is implementation-dependent (Ecma Internacional, c). Various other
cases like these exist in the specification. Given the speed the specification changes and
the complexity of the language some features are not fully implemented as can be observed
by the Kangax compatibility table (Kangax, 2018). It is also worth noting that, as in other
languages, some elements in JS have non-deterministic behavior (e.g., Math.random and
Date). A test that make decisions based on these elements could, in principle, produce
different outcomes on different runs. Carefully-written test cases should not manifest this
kind of flaky behavior. As previously mentioned, all those aspects make testing JS engines
challenging.

2.2 ENGINES STUDIED

We selected JS engines according to the following criteria: 1) Released latest version
after Jan 1, 2018, 2) Contains more than 1K stars on GitHub, and 3) Uses a public issue
tracker. We looked for highly-maintained (as per the first criterion) and popular (as per
the second criterion) engines. As we wanted to report bugs, we also looked for project with
public issue trackers. Table 1 lists the engines we analyzed. It is worth noting that we used
Google Chrome Lab’s JSVU (Javascript Version Updater) tool 1 to automatically install
and configure versions of different JS engines in our host environment. This is important
as we aim to use the most recent stable versions of each engine as to avoid reporting old
and already-fixed bugs to developers.

1 JSVU tool. Available at <https://github.com/GoogleChromeLabs/jsvu>

https://github.com/GoogleChromeLabs/jsvu

20

Table 1 – Engines selected.

Team Name URL # Stars DOB

Apple JSC (WebKit) WebKit 3300+ Jun 2001
Google V8 Chromium 9800+ Jun 2008

Microsoft Chakra Microsoft 7200+ Nov 2009
Mozilla SpiderMonkey Mozilla 1100+ Mar 1996

2.3 MINED JS FILES

A good test set is critical for finding bugs with the techniques used in this work. For
that reason, we looked for JS files from various sources: 1) test files from the Test262 (TC39,
b) conformance suite of the ECMA262 specification (TC39, 2018c), 2) test files from the
test suite of the selected engines (see Section 2.2); these files are accessible from the
engine’s official repositories, 3) test files from the suites of public engines, and 4) test files
mined from issue trackers of these engines.

Table 2 shows the breakdown of tests per engine. Column “full” shows the number
of test cases associated with each engine. Column “pass-in-par.” shows the number of
test cases that pass in their parent engine. We discarded tests that fail in their parent
engine as we could not reliably indicate the reason for the failure, so we assumed the test
could be broken. We removed 63 test cases that fail for that reason–6 tests from JSC
and 57 tests from SpiderMonkey. Column “type-in-all” shows the number of test cases
whose executions do not throw dynamic type errors in any of the engines because of an
undefined variable or property. These cases were captured by looking for the presence of
ReferenceError and TypeError in the output. A ReferenceError (respectively, TypeError) is
raised when test execution attempts to access an undefined variable (respectively, property
of an object). We discarded those tests to avoid noise in the experiments as they clearly
indicate some missing feature as opposed to bugs. For example, some tests use non-
portable names (e.g., JSC’s drainMicrotasks() and SpiderMonkey’s Error.lineNumber)
or use functions that, albeit part of the spec, not all engines currently support. For the
evaluation of test transplantation, we used the 6,602 tests included in the dashed rectangle
under column “type-in-all”, i.e., all tests under that column but the Test262 tests. We did
not consider tests from the conformance suite as they are more likely to indicate missing
features as opposed to bugs. In addition, engine developers have access to these test and
are encouraged to run them. Finally, column “no-fail-in-all” shows the tests for which all
engines pass. Note that the set of tests in this column is a subset of the “type-in-all”
test set. This test set is used in the evaluation of differential testing as fuzzing seeds.
The guarantee that they pass in all engines assures that, if discrepancies occur, they are
related to the changes in the input as opposed to the original cause of failure.

[Cleansing] We noticed that some of the tests we found depend on external libraries,

21

Table 2 – Number of test files.

Name Source
JS files

total pass-in-par. type-in-all no-fail-in-all

Test262 GitHub 31,276 - 29,846 17,639

JSC GitHub 1,265 1,130 1,122 1,054
SpiderMonkey GitHub 3,122 2,155 2,103 1,837

V8 GitHub 1,084 482 478 426

Duktape GitHub 1,195 1,195 921 915
JerryScript GitHub 1,951 1,951 1,878 1,837

JSI GitHub 99 99 63 63
Tiny-js GitHub 49 49 37 37

40,041 7,061 36,448 23,808

which not all selected engines support. We decided to discard those. For example, many
tests we found required a Node.js runtime for execution. Also, we did not consider tests
from the Chakra repository because they depend on non-portable objects. Finally, note
that the number of tests in V8 is low; that happens because V8 uses many tests from
Mozilla and JSC; we discarded those to avoid repetition and to give credit where it is
due. [Test Harness] It is also worth mentioning that some engines use a custom shell
to run tests, including a harness with specific assertions. For that, we needed to make
minor changes in the testing infrastructure to be able to run the tests uniformly across
all engines. More precisely, we needed to mock non-portable harness functions, which are
only available in certain engines.

2.4 MINING TESTS FROM ISSUE TRACKERS

We observed that issue trackers are an important source of test data and should not
be ignored. Analyzing a sample of issues, we observed that developers either 1) add test
cases as attachments of issues or 2) embed test cases within the textual description of
an issue. The test cases in attachments are longer compared to the test cases embedded
in issue descriptions whereas the latter are more common. Consequently, we thought we
should handle both cases.

To obtain test files included as attachments, we wrote a crawler to visit the issue
trackers of V8 and SpiderMonkey listed in Table 1 and we were able to retrieve a total of
490 files. To mine tests from the textual descriptions we implemented a separated compo-
nent and proceeded as follows. First, we broke the text describing the issue in paragraphs
and used a binary classifier to label each paragraph as “code” or “not code” (i.e., natural
language). Then, based on that information, we merged consecutive paragraphs labeled
as “code” and used a JS parser to check well-formedness of the retrieved code fragment.

https://github.com/tc39/test262{}
https://github.com/WebKit/webkit/tree/master/JSTests/es6{}
https://github.com/mozilla/gecko-dev/tree/master/js/src/tests/non262{}
https://github.com/v8/v8{}
https://github.com/svaarala/duktape{}
https://github.com/jerryscript-project/jerryscript{}
https://github.com/technosaurus/jsish{}
https://github.com/gfwilliams/tiny-js{}

22

Using that method we were able to retrieve a total of 1,240 files. All those files were
included in Table 2.

For the classification of “code” vs. “not code”, we used a pipeline of two Neural Net-
works (NN), a popular design for solving NLP classification problems (KUSNER et al.,
2015). The first net in the pipeline takes as input an arbitrary sentence and produces on
output a characterization vector for that sentence. The second net in the pipeline takes
that vector on input and produces a yes/no answer, determining whether or not the input
sentence was code. During the training phase, the second neural net in the pipeline takes
additionally on input the value for the class attribute for the sample; in this case, “code”
or “not code”.

More in detail, the Figure 3 illustrates how the model was created. For the first net,
we used word2vec (MIKOLOV et al., 2013), a popular NLP technique to produce word em-
beddings. A word embedding is a mapping of words to vectors of real numbers. We chose
the Word2Vec technique to extract context information of each JS token or english word.
Since the dictionary of a programming language is shorten than english natural language,
we could identify similarity between JS tokens thought the distance vector in the embed-
ding matrix maximizing the likelihood that words are predicted from their context (LING

et al., 2015). For the second net, we used a multi-layer perceptron (RUMELHART; HINTON;

WILLIAMS, 1986) to infer the probability of the input belonging or not to the class. The
classifier labels the input as code if the predicted probability of the input being code is 0.7
or higher. We used a corpus with 25K samples of English paragraphs and 25K snippets
of JS code to train and test the classifier and obtained an accuracy of 98%.

Figure 3 – JavaScript Code Classifier

The Figure 4 shows a case of a valid js file extracted from v8 bug tracker. The Figure 4a
shows a bug that violates the specification (under revision) of the function toString that
should throws a TypeError if the object is not acceptable.

The bug tracker mining works as following: a) It converts the text of the first com-
ment in the issue to a list of sentences. b) For each item in the list, we used the model
described in this section to verify if the sentence is a code or not; c) The sentences clas-
sified as code is added in a JS file (see Figure 4b). Notice the extracted code is missing
the line print("BT_FLAG"), it occurs because the print function is not a standard func-
tion and our model was trained with the console.log to get the outputs. Although the

23

(a) Bug reported in V8 bug tracker (b) Test file extracted from bug tracker

Figure 4 – Example of a mined test using the classifier.

print(p_1.toString()); was classified as a code because the toString method is a com-
mon type conversion function and our dataset contains several snippets of codes involving
this function. However, this issue2 was defined as a WontFix status due the specification
violated was a older revision, a V8’s developer confirmed that the V8 supports the correct
specification.

This classifier is publicly available from our repository as a separate component at
<https://github.com/damorimRG/jsengines-differential-testing>.

2 V8 Bug#8109. Available at <https://bugs.chromium.org/p/v8/issues/detail?id=8109>

https://github.com/damorimRG/jsengines-differential-testing
https://bugs.chromium.org/p/v8/issues/detail?id=8109

24

3 OBJECTS OF ANALYSIS

3.1 INFRASTRUCTURE

This section describes the infrastructure that we used in our experiments. The Figure 5
illustrates the workflow of the infrastructure. In general, we have three main components:
the JS files, the engines and the fuzzers. In the first step, we mine the test files (see
Section 2.3) to obtain the suites of testing, in this case each suite is a set of JS files
extracted from a source. In the next step, we need to download the engines and make it
runnable by command-line to run a test as a parameter (e.g. ./v8 test.js). As described
in Section 2.2, we used JSVU tool to download the binaries and keep updating the engines.
It is possible to run the testing files in two configurations, running the original files and
running with fuzzing (e.g. radamsa and quickfuzz). We described the fuzzing ecosystem
in Section 3.1.3. We used the first configuration to run the conformance test and the
transplantation testing across engines, the other configuration we used for cross-engine
differential testing.

Figure 5 – Overview of the infrastructure.

Figure 6 illustrates the workflow of the approach of the step 2 and step 3. It takes on
input a list of JS files and generates warnings on output. Numbered boxes in the figure
denote the data processors and arrowed lines denote data flows. The cycle icons indicate
repetition–the leftmost icon indicates that each file in the input list will be analyzed in
separate whereas the rightmost icon shows that a single file will be fuzzed multiple times.

The bug-finding process works as follows. For a given test input, the toolchain produces
new inputs using some off-the-shelf input fuzzer (step 1). (Section 3.1.3 describes the
fuzzers we selected.) Then, the oracle checks whether or not the output produced for
the fuzzed file is consistent across all engines (step 2). In case the test passes in all
engines or fails in all engines (i.e., the output is consistent), the infrastructure ignores the
input. Otherwise, it considers the input as potentially fault-revealing; hence, interesting for
human inspection. Finally, to facilitate the human inspection process, the infrastructure

25

Fuzzer
(e.g., radamsa)

Cluster Input i Checker
(e.g., eshost-cli)i’

o

JavaScriptCore
V8

Chakra
SpiderMonkey




 

Figure 6 – Differential Testing infrastructure overview.

prioritizes warnings and clusters them in groups (step 3). We describe these features
in Sections 3.1.1 and 3.1.2. Note that a number of reasons exist, other than a bug, to
explain discrepancy (see Tables 5 and 8) and there is no clear automatic approach to
precisely distinguish false and True Positives (TP). As such, a human needs to inspect
the warning to classify the issue. As mentioned earlier, this justifies why differential testing
is challenging to automate at the functional level.

For step 2, we considered using the open-source tool eshost-cli 1, also used at Microsoft,
for checking output discrepancy. However, we noticed that eshost-cli does not handle
discrepancies involving crashes, but our oracle checks if there are a crash report on the
running. It is also important to note that our checker does not support the case where
the test fails in all engines but the kind of failure (e.g., exception thrown) is different.
Currently, our infrastructure does not report discrepancy for that case. For that, it would
be necessary to properly parse the error message to retrieve the error types. We left that
as future work as we already found several discrepancies even without that.

3.1.1 Prioritization

We prioritized warnings based on their types, reflecting likelihood of manifesting a
real bug. We defined two types—“hi” and “lo”.

Warnings of the kind “hi” are associated with the cases where the test code executes
without violating any internal checks, but it violates an assertion declared in the test itself
or its harness. The rationale is that the test data is more likely to be valid in this case
as execution does not raise exceptions in application code. Warnings of kind “lo” cover
the remaining cases. These warnings are more likely to be associated with invalid inputs.
They reflect the cases where the anomaly is observed during the execution of application
functions as opposed to assertions. We observed that different engines often check pre-
conditions of functions differently. It can happen, for example, that one engine enforces a
weaker pre-condition, compared to another engine, on the inputs of a function and that is
acceptable. In those cases, the infrastructure would report a warning that is more likely to
be associated with an invalid input produced by the fuzzer, i.e., it is likely to be a “bug”

1 Eshost-cli. Available at <https://github.com/bterlson/eshost-cli>

https://github.com/bterlson/eshost-cli

26

Figure 7 – Example of a “lo” warning.

in the test code as opposed to a bug in the engine. Recall that, for differential testing, we
only use seed tests that pass in all engines.

Despite the problem mentioned above, “lo” warnings can reveal bugs. Figure 7 shows
one of these cases. In this example, the test instantiates an ArrayBuffer object and
stores an 8-bit integer at the 0 position. According to the specification (TC39, 2018d),
a RangeError exception should be thrown if a negative value is passed to the function
ToIndex, indirectly called by the test case from the function call getInt8(). In this case,
however, the Chakra engine did not throw any exception, as can be confirmed from the
report that our infrastructure produces starting with text “Engine Messages” at the bot-
tom of Figure 7. This is a case of undocumented precondition. It was fixed by Chakra
developers and is no longer present in the most recent release of Chakra.

3.1.2 Clusterization

Clusterization is complementary to prioritization; it helps to group similar warnings
reported by our infrastructure. We only clustered “lo” warnings as “hi” warnings produce
messages that arise from the test case, which are typically distinct.

Figure 7 shows, at the bottom, a sequence of three elements that we use to characterize
a warning–1) the identifier of an engine, 2) the exception it raises, and 3) the message
it produces on a “lo” warning. This sequence of triples defines a warning signature that
we use for clustering. It is worth mentioning that we filter references to code in messages
as to increase ability to aggregate warnings. Any warnings, including this one, that has
this same signature will be included in the same “bucket”. Considering the example from
Figure 7, the signature for that cluster will be [(JavaScriptCore, “RangeError”, “byteOff-
set cannot be negative”), (SpiderMonkey, “RangeError”, “invalid or out-of-range index”),
(V8, “RangeError”, “Offset is outside the bounds of the DataView”)].

3.1.3 Fuzzers

Fuzzers are typically categorized in two main groups–those that build inputs anew
(generational) and those that modify existing inputs (mutational). We used two black-box
mutational fuzzers in this study. In the following, we provide rationale for this selection.

27

Generational fuzzers are typically grammar-based. These fuzzers generate a new file
using the grammar of the language whose inputs should be fuzzed. Intuitively, those
fuzzers implement a traversal of the production rules of the input grammar to create
syntax trees, which are then pretty-printed. Consequently, this approach produces inputs
that are syntactically valid by construction. We analyzed four grammar-based fuzzers–
Grammarinator (HODOVÁN; KISS; GYIMÓTHY, 2018), jsfunfuzz 2, LangFuzz (HOLLER;

HERZIG; ZELLER, 2012), and Megadeth (GRIECO; CERESA; BUIRAS, 2016). Unfortunately,
none of those were effective out of the box. For example, we produced 100K inputs with
Grammarinator and only few inputs were valid. With Megadeth, we were able to pro-
duce morevalid inputs as it contains some heuristics to circumvent violations of certain
typing rules. Nonetheless, running those inputs in our infrastructure we were unable to
find discrepancies. Inspecting those inputs, we realized that they reflected very simple
scenarios. To sum up, a high percentage of inputs that Grammarinator and Megadeth
generated were semantically-invalid that we needed to discard whereas the valid inputs
manifested no discrepancies. Considering jsfunfuzz, we noticed that, in addition to the
issues mentioned above, it produces inputs that use functions that are only available in
the SpiderMonkey engine. We would need either to mock those functions in other engines
or to discard those tests. Considering LangFuzz (HOLLER; HERZIG; ZELLER, 2012), the
tool is not publicly available. Another fundamental issue associated with generational
fuzzers in our context is that the tests they produce do not contain assertions; to enable
the integration of this kind of fuzzers in our infrastructure—we would need to look for
discrepancies across compiler error messages as opposed to assertion violations. All in all,
although grammar-based fuzzers have been shown effective to find real bugs (HOLLER;

HERZIG; ZELLER, 2012), we did not consider those fuzzers in this study for the reasons
above.

Mutational fuzzers can be either white-box or black-box. White-box mutational fuzzers
are typically coverage-based. American Fuzz Lop (AFL) 3 and LibFuzzer 4 are examples
of this kind of fuzzers. These fuzzers run tests inputs against instrumented versions of
the program under testing with the typical goal of finding universal errors like crashes
and buffer overflows. The instrumentation adds code to collect branch coverage and to
monitor specific properties5. AFL uses coverage to determine inputs that uncover a new
branch and hence should be fuzzed more whereas libFuzzer uses evolutionary generation–it
tries to minimize the distances to still-uncovered branches of the program. AFL takes the
instrumented program binary (say, a JS engine) and one seed input to that program (say,
a JS program) and produces on output fault-revealing inputs, if found. Considering our

2 Mozilla jsfunfuzz. Available at <https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/
js/jsfunfuzz>

3 American Fuzz Loop. Available at <http://lcamtuf.coredump.cx/afl/>
4 LibFuzzer. Available at <https://llvm.org/docs/LibFuzzer.html>
5 There are options in the clang toolchain to build programs with fuzzing instrumentation (LIBFUZZER).

clang provides several sanitizers for property checking (LLVM).

https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/js/jsfunfuzz
https://github.com/MozillaSecurity/funfuzz/tree/master/src/funfuzz/js/jsfunfuzz
http://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html

28

context of application, we needed to instrument one runtime engine for fuzzing. We chose
V8 for that. Unfortunately, we found that most of the inputs produced by AFL violate
the JS grammar. Furthermore, the fuzzing task can take days for a single seed input and
there is no simple way to guide the exploration6. That happens because the fuzzer aims
to explore the entire decision tree induced from the engine’s main function, including the
branches associated with the higher layers of the compiler (e.g., lexer and parser). It is
worth mentioning that Google mitigates that problem with libFuzzer by asking developers
to create fuzz targets for specific program functions (GOOGLE, b; GOOGLE, a). Although
that approach has shown to be effective, it requires domain knowledge to create the calling
context to invoke the fuzz target. For that, we decide not to consider coverage-based in
this study.

We used two black-box mutational fuzzers in this study–radamsa and quick-
fuzz (GRIECO; CERESA; BUIRAS, 2016). These fuzzers require no instrumentation and
domain-knowledge. They mutate existing inputs randomly. The strength of the approach
is limited by the quality of the test suite and the supported mutation operators, which
are typically simple. We chose these specific fuzzers because, conceptually, one com-
plements the other. quickfuzz creates mutations like radamsa. However, in contrast to
radamsa, quickfuzz is aware of the JS syntax; it is able to replace sub-trees of the syntax
tree (GRIECO; CERESA; BUIRAS, 2016) with trees created anew.

6 Exchanged emails with the tool author.

29

4 EVALUATION

4.1 RESULTS

The goal of this work is to assess ability of techniques that leverage diversity to find
functional bugs in JavaScript engines. Based on that, we pose three questions:

RQ1. How conformant are the engines to the Test262 suite?

RQ2. How effective is test transplantation to find bugs?

RQ3. How effective is cross-engine differential testing to find bugs?

The first question focuses on the conformance of our selected engines to the official
Test262 suite (TC39, a) (Section 4.1.1). In the limit, bugs would have low relevance if
the engines are too unreliable. The second question focuses on the effectiveness of test
transplantation (Section 4.1.2). The rationale for using inputs from different engines is that
developers consider different goals when writing tests—suites written for a given engine
may cover scenarios not covered by a different engine. The third question evaluates the
effectiveness of cross-engine differential testing to find bugs (Section 4.1.3). The rationale
for this question is that fuzzing inputs may explore scenarios not well-tested by at least
one of the engines.

4.1.1 Answering RQ1 (Conformance)

The ECMA Test262 (TC39, a) test suite serves to check conformance of engines to
the JS standard. It is acceptable to release engines fulfilling the specification only par-
tially (Kangax, 2018). We expect that the pass rate on this suite provide some indication
of the engine’s maturity. In the limit, it is not desirable to flood bug reports on engines
at early stages of development. For this experiment, we ran the suite once a day for seven
consecutive days and averaged the passing ratios. Table 3 shows the average number of
passing tests over this period. The variance of results was negligible; for that reason, we
omitted standard deviations. We noticed that all four engines but Chakra used some vari-
ant of the Test262 suite as part of their regression process, but we used the same version
in this experiment (TC39, a).

Results show that there are still many unsupported scenarios as can be observed from
the percentages in the Table 3. The number of passing tests is high and similar for JSC,
V8, and SpiderMonkey whereas Chakra performs worse compared to the other engines.
Note also that Chakra is both the engine that has the lowest passing ratio in this test
suite and the one we were able to find more bugs (as per Figure 2), the engine is recent as
well (see Table 1). Although it is plausible to find correlation between the passing ratios

30

Table 3 – Percentage of passing tests on the Test262 conformance suite.

engine % passing

JSC 92%
V8 95%

Chakra 75%
SpiderMonkey 93%

Table 4 – Number of failures with Test Transplantation.

test suite\engine JSC V8 SpiderMonkey Chakra
JSC - 10 10 59
V8 41 - 3 5

SpiderMonkey 218 107 - 281
Duktape 0 4 4 1

JerryScript 23 25 22 23
JSI 0 0 0 0

Tiny-js 0 0 0 0
total 282 146 39 369

and reliability as measured by the number of bugs found, we do not imply causality. It is
important to note that failures in this conformance test suite indicates missing features
as opposed to bugs.

Summary: All engines seem to adhere well
to the JS standard. Except for Chakra, the
passing ratio of all engines is above 90%.

4.1.2 Answering RQ2 (Test Transplantation)

This section reports results of test transplantation. More specifically, we analyzed
the failures observed when running a test suite original from a given engine in another
engine. Intuitively, we want to assess how effective is the idea of cross-fertilization of
testing knowledge among JS developers.

4.1.2.1 Methodology

In this experiment, a developer with experience in JS analyzed each test failure, af-
fecting a particular engine, and classified that failure as potentially fault-revealing or not.
The authors supervised the classification process to validate correctness. For the poten-
tially fault-revealing cases, one of the authors inspected the scenario and, if agreed on the
classification, reported the bug to the issue tracker of the affected engine. Notice that we
did not tracking the time-consuming of the experiments and the time required to analyze
these alarms.

31

4.1.2.2 Results

Table 4 shows the number of failures observed for each pair of test suite and engine.
The first column shows the test suites and the first row shows the engines that run those
tests. We use a dash (“-”) to indicate that we did not consider the combinations that
associate a test suite with its parent engine; failures in those cases would either indicate
regressions or flaky tests as opposed to unknown bugs for that engine. As explained in
Section 2.3, we used in this experiment the 6,602 tests included in the rectangle area under
column “type-in-all” from Table 2. Running those tests we observed a total of 836 failures
manifested across 612 distinct files (9.2% of total). Table 4 shows that SpiderMonkey was
the engine that failed the least whereas Chakra was the engine that failed the most. The
SpiderMonkey test suite also revealed more failures than any other, as expected, given
that it is the suite with more tests (see Table 2).

The sources of False Positives (FP) found in this experiment are as follows: Undefined
Behavior. FP of this kind are manifested when tests cover implementation-dependent
behavior, as defined in the ECMA262 specification (TC39, 2018c). For example, one of the
tests from JerryScript uses the function Number.toPrecision([precision]), which trans-
lates a number to a string, considering a given number of significant digits. The floating-
point approximation of the real value is implementation-dependent, making that test to
pass only in Chakra. Timeout/OME1. FP of this kind typically manifest when the en-
gine that runs the test does not optimize the code as the original engine of the test. As
result, the test fails to finish at the specified time budget or it exceeds the memory budget.
For example, a test case from JSC defines a function with a tail-call recursion. The test
fails in all engines but JSC, which implements tail-call optimization. Not implemented.
FP of this kind manifest when a test fails because it covers a function that is part of the
official spec, but is not implemented in the target engine yet. For example, at the time of
writing, Chakra did not implement by default various properties from the Symbol object.
These properties are only available activating the ES6 experimental mode with the flag
-ES6Experimental. Non-Standard Element. These cases manifest when a function or
an object property is undefined in the execution engine but we were unable to capture
that by looking for error types like ReferenceError and TypeError. Other. This category
includes other sources of FP. For example, it includes the cases where the test was valid
for some previous version of the spec but is no longer valid for the current spec.

Table 5 shows the distribution of False Positives (FP) and True Positives (TP). The
sum of the numbers in this table correspond to the number of files that manifested failures,
i.e., 612. Considering false positives, “Undefined Behavior” was the most predominant
source. Considering TP, we found a reasonable number of duplicate reports, but not high
enough to justify attempting to automate the detection of duplicates.

Table 6 lists all bugs we found with test transplantation. The first column shows
1 ome is for out of memory error.

32

Table 5 – Distribution of FP and TP (TT).

source #

FP

Undefined Behavior 204
Timeout/OME 23

Not Implemented 54
Non-Standard Element 122

Other 174

TP
Duplicate 12

Bug 25
WontFix 1

Table 6 – List of bugs reports from Test Transplantation.

Issue# Date Engine Version Status Url Severity Suite
1 4/18 JSC 606.1.9.4 New #184749 - JerryScript
2 4/23 Chakra 1.9 Confirmed #5033 2 SpiderMonkey
3 4/29 Chakra 1.9 Fixed #5065 2 SpiderMonkey
4 4/29 Chakra 1.10-beta Confirmed #5067 2 SpiderMonkey
5 JSC 606.1.9.4 New #185130 - SpiderMonkey
6 5/02 JSC 606.1.9.4 New #185208 - SpiderMonkey
7 5/02 JSC 606.1.9.4 Fixed #185211 2 SpiderMonkey
8 Chakra 1.10-beta Fixed #5087 3 SpiderMonkey
9 5/17 Chakra 1.10-beta Fixed #5187 2 JSC

10 5/21 Chakra 1.10-beta Fixed #5203 2 SpiderMonkey
11 6/28 Chakra 1.11-beta Fixed #5388 2 JSC
12 7/10 Chakra 1.11-beta Confirmed #5442 2 JerryScript
13 7/18 Chakra 1.10.1 Fixed #5478 2 SpiderMonkey
14 7/18 JSC 233840 Duplicated #187777 2 JerryScript
15 7/18 Chakra 1.10.1 Fixed #5549 2 JerryScript
16 8/07 Chakra 1.10.1 Fixed #5576 3 JerryScript
17 8/07 JSC 234555 Fixed #188378 2 JerryScript
18 8/07 Chakra 1.10.1 Fixed #5579 3 JerryScript
19 8/07 JSC 234654 Fixed #188382 2 JerryScript
20 8/08 V8 7.0.181 Fixed #8033 3 JerryScript
21 8/08 JSC 234689 New #188407 - JerryScript
22 8/16 V8 7.0.237 WontFix #8064 2 Duktape
23 8/22 Chakra 1.10.2 Fixed #5621 2 SpiderMonkey
24 8/22 JSC 235121 Fixed #188874 2 SpiderMonkey
25 8/22 JSC 235121 Fixed #188875 2 SpiderMonkey
26 V8 7.0.244 Fixed #8082 2 SpiderMonkey
27 Chakra 1.10.2 Fixed #5624 2 SpiderMonkey
28 8/23 JSC 235121 New #188877 - SpiderMonkey

the identifier we assigned to the bug,column “Engine” shows the affected engine, column
“Status” shows the status of the bug report at the time of the writing. The status string
appears in bold face for status “Confirmed” or higher, i.e., “Assigned” and “Fixed”. Col-
umn “Severity” shows the severity of confirmed bugs, and, finally, column “Suite” shows
the name of the engine that originated the test. Considering severity levels, we found that
JSC (Apple, 2018) and SpiderMonkey (Mozilla, 2018) developers use five levels, whereas
Chakra (Microsoft, 2018) and V8 (The Chromium Project, 2018) developers use only three.
As usual, the smallest the severity value the highest the severity of the bug. We use a

https://bugs.webkit.org/show_bug.cgi?id=184749
https://github.com/Microsoft/ChakraCore/issues/5033
https://github.com/Microsoft/ChakraCore/issues/5065
https://github.com/Microsoft/ChakraCore/issues/5067
https://bugs.webkit.org/show_bug.cgi?id=185130
https://bugs.webkit.org/show_bug.cgi?id=185208
https://bugs.webkit.org/show_bug.cgi?id=185211
https://github.com/Microsoft/ChakraCore/issues/5087
https://github.com/Microsoft/ChakraCore/issues/5187
https://github.com/Microsoft/ChakraCore/issues/5203
https://github.com/Microsoft/ChakraCore/issues/5388
https://github.com/Microsoft/ChakraCore/issues/5442
https://github.com/Microsoft/ChakraCore/issues/5478
https://bugs.webkit.org/show_bug.cgi?id=187777
https://github.com/Microsoft/ChakraCore/issues/5549
https://github.com/Microsoft/ChakraCore/issues/5576
https://bugs.webkit.org/show_bug.cgi?id=188378
https://github.com/Microsoft/ChakraCore/issues/5579
https://bugs.webkit.org/show_bug.cgi?id=188382
https://bugs.chromium.org/p/v8/issues/detail?id=8033
https://bugs.webkit.org/show_bug.cgi?id=188407
https://bugs.chromium.org/p/v8/issues/detail?id=8064
https://github.com/Microsoft/ChakraCore/issues/5621
https://bugs.webkit.org/show_bug.cgi?id=188874
https://bugs.webkit.org/show_bug.cgi?id=188875
https://bugs.chromium.org/p/v8/issues/detail?id=8082
https://github.com/Microsoft/ChakraCore/issues/5624
https://bugs.webkit.org/show_bug.cgi?id=188877

33

dash (“-”) in place of the severity level for the cases where the bug report is pending
confirmation. Of the 28 bugs we reported in this experiment, 21 were promoted from the
status “New” to “Confirmed”. Of these, 19 are severity-2 bugs. Although we did not find
any critical bugs, most of the bugs are seemingly important as per the categorization
given by engineers. Analyzing the issue tracker of Chakra, we found that severity-1 bugs
are indeed rare. Considering the number of bug reports confirmed by developers, Chakra
was the engine with the highest number–14 (with 11 bugs fixed). Considering the remain-
ing engines, V8 developers confirmed the three bugs we reported, fixing two. Curiously,
Google engineers confirmed the issued bug reports in a few hours. Overall, we found that
development teams of other engines, specially JSC took much longer to analyze bug re-
ports as can be observed in the JSC stacked bar from Figure 2a. However, the bugs the
JSC team confirmed were quickly fixed.

Summary: Test transplantation was effective
at finding functional bugs. Although the cost
of classifying failures was non-negligible, the
approach revealed several non-trivial bugs in
three of the four engines we analyzed.

4.1.3 Answering RQ3 (Differential Testing)

This section reports the results obtained with cross-engine differential testing. More
precisely, we report results obtained by fuzzing test inputs, running those inputs on dif-
ferent engines, and checking the outcomes with a differential oracle.

4.1.3.1 Methodology

The experimental methodology we used is as follows. As explained in Section 3.1.3, we
used Radamsa 2 and QuickFuzz (GRIECO; CERESA; BUIRAS, 2016) for fuzzing. To avoid
experimental noise, we only fuzz test files that pass in all engines–a total of 23,808 tests
satisfy this restriction. Those tests appear under the column “no-fail-in-all” on Table 2.
We want to avoid the scenario where fuzzing produces a fault-revealing input based on
a test that was already revealing failures on some engine. This decision facilitates our
inspection task; it helps us establish cause-effect relationship between fuzzing and the
observation of discrepancy. We configured our infrastructure (see Figure 6) to produce 20
well-formed fuzzed files per input file, i.e., the number of fuzzing iterations can exceed
the number above as we discard generated files that are syntactically invalid.

[Exploratory Phase.] For the first three months of the study, our inspection process
was exploratory. In this phase, we wanted to learn whether or not black-box fuzzers could
reveal real bugs and how effective was the hi-lo warning classification. We expected the

2 Radamsa official repository. Available at <https://github.com/aoh/radamsa>

https://github.com/aoh/radamsa

34

number of warnings to increase dramatically compared to the previous experiment and,
if we realized that the ratio of bugs from lo warnings was rather low, we could focus
our inspection efforts on hi warnings. To run this experiment, we trained eight students
in analyzing the warnings that our infrastructure produces. The students were enrolled
in a graduate-level testing class. We listed warnings in a spreadsheet and requested the
students to update an “owner” column indicating who was working on it, but we did
not enforce a strict order on the warnings the students should inspect. Recall from Sec-
tion 3.1.2 that we clustered lo warnings in buckets. For that reason, we only listed one lo
warning per representative class/bucket in the spreadsheet. First, we explained, through
examples, the possible sources of false alarms they could find and then we asked the stu-
dents to use the following procedure when finding a suspicious warning. Analyze the parts
of the spec related to the problem and, if still suspicious, look for potential duplicates on
the bug tracker of the affected engine using related keywords. If none was reported, in-
dicate in the spreadsheet that that warning is potentially fault-revealing. We encouraged
students to use lithium 3 to minimize long test cases. A bug report was filed only after
one of the authors reviewed the diagnosis. Each student found at least one bug using this
methodology.

[Non-Exploratory Phase.] Results obtained in the exploratory phase confirmed our
expectations that most of the bugs found during the initial period of investigation were
related to hi warnings. For that reason, we changed our inspection strategy. This time,
only the co-authors inspected the bugs using a similar procedure as before. However, the
set of warnings inspected and the order of inspection changed. We restricted our analysis
to hi warnings and, aware that we would be unable to analyze each and every warning
reported, we grouped those warnings per engine, analyzing each group in a round-robin
fashion. At each iteration, we analyzed five warnings in each group. A warning belongs to
the group of a given engine if only that engine manifests distinct behavior, i.e., it produces
a distinct output compared to others. We separated in a distinct group the warnings for
which two engines diverge. The rationale for this methodology was to give attention to
each engine more uniformly, enabling more fair comparison across engines.

4.1.3.2 Results

Table 7 shows statistics of hi warnings. The table breaks down hi warning by the
affected engine, i.e., the engine manifesting distinct output among those analyzed. Column
“+1” shows the cases where more than one engine disagree on the output. Note from the
totals that the ordering of engines is consistent with the one observed on Table 4, with
Chakra and JSC in first and second places, respectively, in number of warnings.

Table 8 shows the distribution of false positives per source. The sources of imprecision
3 Lithium official repository. Available at <https://github.com/MozillaSecurity/lithium>

https://github.com/MozillaSecurity/lithium

35

Table 7 – Number of hi warning reports per engine.

fuzzer\engine JSC V8 Chakra SpiderMonkey +1

radamsa 151 50 331 94 628
quickfuzz 83 63 351 21 403

total 234 113 682 115 1031

Table 8 – Distribution of FP and TP (DT).

radamsa quickfuzz

FP

Undefined Behavior 42 16
Timeout/OME 30 15
* Invalid Input 46 55

* Error Message Mismatch 41 12

TP
Duplicate 36 28

Bug 15 7

are as defined in Section 4.1.2 with the addition of two new sources, which we did not
observe before. These new sources are marked with a “*” in the table. The source “Invalid
Input” indicates that the test input violated some part of the specification. For exam-
ple, the test indirectly invoked some function with unexpected arguments; this happens
because fuzzing is not sensitive to function specifications. Consequently, it can replace
valid with invalid inputs. The source “Error Message Mismatch” corresponds to the cases
where the fuzzer modifies the assertion expression (e.g., some string expression or regular
expression).

Table 9 shows the list of bugs we reported. The table shows the fuzzing tool used
(“Fuzzer”), the JS engine affected (“Engine”), the status of the bug report (“Status”),
the severity of the bug report (“Sev.”), the priority that we assigned to the warning that
revealed the bug (“Priority”), and the test suite from the original test input (“Suite”).
So far, fifteen of the bugs we reported were confirmed, eleven of which were fixed. Note
that one bug report that we submitted was rejected on the basis that the offending JS
file manifested an incompatibility across engine implementations that was considered to
be acceptable. As of now, we did not find any new bugs on SpiderMonkey; the bugs we
found were duplicates and were not reported. For V8, we reported 2 bugs, all of them
confirmed and fixed.

Summary: Cross-engine differential testing
was effective at finding JS engines bugs, sev-
eral of which have been fixed already.

Data Availability. The data, including the tests, warning reports, and diagnos-

36

Table 9 – List of bugs reports from Differential Testing.

Issue# Date Fuzzer Engine Version Status Url Sev. Priority Suite
1 4/12 radamsa Chakra 1.9 Fixed #4978 2 lo JSC
2 4/12 radamsa Chakra 1.9 WontFix #4979 - hi JSC
3 4/14 radamsa JSC 606.1.9.4 New #184629 - hi JSC
4 4/25 radamsa Chakra 1.9 Fixed #5038 2 hi JerryScript
5 4/29 radamsa JSC 606.1.9.4 Fixed #185127 2 hi JerryScript
6 4/30 radamsa Chakra 1.10-beta Confirmed #5076 2 hi TinyJS
7 4/30 radamsa JSC 606.1.9.4 New #185156 - hi TinyJS
8 5/02 radamsa JSC 606.1.9.4 Fixed #185197 2 lo SpiderMonkey
9 5/10 radamsa Chakra 1.10-beta Confirmed #5128 3 hi JerryScript

10 5/17 radamsa Chakra 1.10-beta Fixed #5182 2 hi V8
11 5/24 radamsa JSC 606.1.9.4 Fixed #185943 2 hi JSC
12 6/26 radamsa JSC 606.1.9.4 Fixed #187042 2 hi JerryScript
13 7/10 quickfuzz JSC 606.1.9.4 Fixed #187520 2 hi JerryScript
14 7/10 quickfuzz Chakra 1.11-beta Confirmed #5443 2 hi JerryScript
15 8/21 radamsa Chakra 1.10.2 Fixed #5617 3 hi Test262
16 8/21 radamsa V8 7.0.244 Fixed #8078 2 hi Test262
17 8/23 quickfuzz JSC 235121 New #188899 - hi Test262
18 8/23 quickfuzz V8 7.0.244 Fixed #8088 3 hi Test262
19 8/24 quickfuzz Chakra 1.10.2 Confirmed #5630 2 hi Test262
20 8/24 quickfuzz JSC 235318 New #188920 - hi Test262
21 8/24 quickfuzz JSC 235318 New #188930 - hi Test262
22 8/21 radamsa Chakra 1.11.6.0 WontFix #5968 3 hi SpiderMonkey

tic outcomes, is publicly available from a preserved repository <https://github.com/
damorimRG/jsengines-differential-testing>.

4.2 DISCUSSION

4.2.1 Overview

Table 10 shows the overview of the warnings found and reported in this study. Notice
that there are 3 rejected bugs reported, we observed that the behavior of the engines
affected working as intended, two of them refer to lack of memory in Chakra and the
other in V8, the test case was not well implemented. The duplicated bugs are related to
warnings that we obtained in manual analysis, but only the issue#14 was reported in
JSC engine. It was duplicated due to an older issue4 reported in 2016 which reports an
incorrect behavior on Array methods with objects whose length exceeds the max value.
In this study, we reported a total of 50 with 36 confirmed and 29 fixed. In Section 4.2.2
we described how the engines are violated by those bugs.

4 WebKit Issue#163417. Available at <https://bugs.webkit.org/show_bug.cgi?id=163417>

https://github.com/Microsoft/ChakraCore/issues/4978
https://github.com/Microsoft/ChakraCore/issues/4979
https://bugs.webkit.org/show_bug.cgi?id=184629
https://github.com/Microsoft/ChakraCore/issues/5038
https://bugs.webkit.org/show_bug.cgi?id=185127
https://github.com/Microsoft/ChakraCore/issues/5076
https://bugs.webkit.org/show_bug.cgi?id=185156
https://bugs.webkit.org/show_bug.cgi?id=185197
https://github.com/Microsoft/ChakraCore/issues/5128
https://github.com/Microsoft/ChakraCore/issues/5182
https://bugs.webkit.org/show_bug.cgi?id=185943
https://bugs.webkit.org/show_bug.cgi?id=187042
https://bugs.webkit.org/show_bug.cgi?id=187520
https://github.com/Microsoft/ChakraCore/issues/5443
https://github.com/Microsoft/ChakraCore/issues/5617
https://bugs.chromium.org/p/v8/issues/detail?id=8078
https://bugs.webkit.org/show_bug.cgi?id=188899
https://bugs.chromium.org/p/v8/issues/detail?id=8088
https://github.com/Microsoft/ChakraCore/issues/5630
https://bugs.webkit.org/show_bug.cgi?id=188920
https://bugs.webkit.org/show_bug.cgi?id=188930
https://github.com/Microsoft/ChakraCore/issues/5968
https://github.com/damorimRG/jsengines-differential-testing
https://github.com/damorimRG/jsengines-differential-testing
https://bugs.webkit.org/show_bug.cgi?id=163417

37

Warnings #

Reported 50
New 10

Confirmed 36
Fixed 29

Rejected 3
Duplicated 67
Severity-2 31
Severity-3 8

Table 10 – Overview of the experiments.

4.2.2 Example Bug Reports

This section discusses a sample of bugs reports. The selection criteria we used was: (i)
to cover all engines we found bugs–Chakra, JSC, and V8, (ii) to cover each technique–test
transplantation and differential testing (with radamsa and with quickfuzz), (iii) to cover
a case of rejected bug report, and (iv) to use short tests (for space).

Issue #4, Table 9. The code snippet in Figure 8 shows a test that reveals a bug in
Chakra.

Figure 8 – Warning captured involving unary plus expression.

The object property valueOf stores a function that returns a primitive value identify-
ing the target object (MDN, a). The original version of this code returns an empty string
whereas the version of the code modified by the radamsa fuzzer returns a string repre-
sentation of a null character (NUL).The unary plus expression "+a", used in the assertion,
is equivalent to the operation ToNumber(a.valueOf()) that converts a string to a number,
otherwise the operation returns Not a Number (NaN) (MDN, b). This test fails in all
engines but Chakra. For all three engines the string cannot be parsed as an hexadecimal.
As such, they produce a NaN as result and the test fails as expected. Chakra, instead,
incorrectly converts the string to zero, making the test to pass. As Table 9 shows, the
Chakra team fixed the issue soon after we reported the problem.

Issue #18, Table 9. The code in Figure 9 shows the test input we used to reveal a bug in

38

V8. This code snippet was obtained by fuzzing a Test262 test with quickfuzz. In its original
version, a string (omitted for space), passed as argument to the eval function, encoded
the actual test. The fuzzer replaced the string argument with a function whose body is
a break statement outside a valid block statement. Section B.3.3.3 from the spec (Ecma

Internacional, a) documents how eval should handle code containing function declarations.
According to the spec (Ecma Internacional, d), the virtual machine should throw an early
error–in this case, a SyntaxError–if the break statement is not nested in an iterable or a
switch statement. All engines, but V8, behave as expected in this case.

Figure 9 – Warning classified as true positive in V8 engine.

Issue #18, Table 6. The code snippet in Figure 10 shows the test input we used to
reveal a bug in JSC. This test originates from JerryScript test suite; the bug was found
during the test transplantation experiment.

Figure 10 – Warning captured involving a non-callable object.

According to the specification (TC39, 2018a), the parameter to the Array.sort func-
tion should be a comparable object or an undefined value, otherwise it should throw a
TypeError. In this case, JSC accepts a non-callable object as argument to sort and the
test fails in the subsequent step. The other engines raise a TypeError as expected.

Issue #2, Table 9. The code snippet below shows an example input related to a bug
report that we issued to the Chakra development team, but they did not accept.

Figure 11 – Warning classified as incompatibility by design.

39

This is a testcase original from the JSC suite that the radamsa fuzzer modified. The
original test used the integer literal 3 as argument to repeat(), but this test uses a long
integer instead. As result, the engine crashes. The team answered that this was an incom-
patibility by design as the function was not expected to receive such a long value.

40

5 KEY FINDINGS AND LESSONS

The main findings of this study are as follows.

• Reporting defects in open source projects;

• Both techniques we investigated were successful in revealing bugs (overall, 50 bugs
reported);

• Even simple black-box fuzzers can create surprisingly interesting inputs. We conjec-
ture that there is room to find more bugs using other fuzzers;

• Mozilla’s SpiderMonkey appears to be the most reliable JS engine we analyzed, with
Google’s V8 after it.

The main lessons we learned from this study are as follows: 1) Even for software
projects with fairly clear specifications, as the case of JavaScript (TC39, 2018c), there
is likely to be (a lot of) variation between different implementations and, therefore, op-
portunities for bugs. 2) Not only multiple different implementations can be leveraged
in differential testing, but differences in test suites can also be important. 3) Finding
functional/non-crash bugs with differential testing is feasible on real, complex, widely
used pieces of software. 4) Further reducing cost of inspection is an important problem.
Although the inspection activity was not uninterrupted, it is safe to say that each warning
required a substantial amount of time to analyze for potential false alarms. In fact, many
hi warnings reported with differential testing were not analyzed. In determining cost, we
observed, from experience, that the complexity of the JS specifications that the original
test covers increases cost of diagnosing (as developers need to read and understand those)
and the availability of alternative implementations (for the cases warnings are revealed
through differential testing) reduces the cost of diagnosis. We prefer to see such prob-
lem as an opportunity for future research. For example, applying learning techniques to
prioritize the warnings more likely to be faulty (in the spirit of the work of Chen and
colleagues (CHEN et al., 2017)) may be a promising avenue to explore. Recall that the rate
of TP of the techniques we studied is rather small. 5) We learned that reporting real bugs
is a great way to train (and encourage) students in software testing. Students praised the
experience of diagnosing failures, understanding part of the specs (as needed), writing bug
reports, participating in discussions on issue trackers, and observing the change of status.
That was a relatively self-contained hands-on activity that enabled students to engage in
a real-life serious industrial project.

41

6 THREATS TO VALIDITY

As it is the case for most empirical evaluations, our findings are subject to internal,
external, and construct validity threats.

6.1 INTERNAL VALIDITY

Considering internal validity, conceptually, it is possible that the authors of this pa-
per made mistakes in the implementation of the scripts supporting the experiments. To
mitigate this threat, we carefully inspected the implementation and results, looking for
inconsistencies whenever possible. For example, in our initial experiments, we intended to
report some warnings that affects the engines as true bug which involves infinite recur-
sion. We added a timeout on our experiments to ignores those cases. We applied fixes to
some test files that had no assertions functions, but we inspectioned very cautious those
fixes to avoid unexpected failures. There are test suites that require an external library
to perform test file assertions, we have implemented a way to merge these files to run just
on file per engine. Students participated in this experiment and were well advised and
critical on executing, inspecting and reporting bugs.

6.2 EXTERNAL VALIDITY

As for external validity, our results might not generalize to other test inputs and en-
gines. To mitigate this threat, we carefully selected inputs from various sources according
to a well-defined criteria. Likewise, we selected the engines by using using a well-defined
criteria and found that the engines selected were associated, certainly not by coincidence,
with the browsers informally considered the most popular in the market.

The classifier described in Section 2.4 might not generalize to other language scenarios
or inputs involving the new features of ES using the same params and constants, but to
improve this classifier, the scripts to generate it are available and can easily updated for
the new scenarios.

We ran the fuzzers without tracking seeds, but the metrics proposed in this study
do not use this feature to measure performance and time spent to find bugs. Every JS
engine can be integrated into our infrastructure, but with minor fixes if its supports the
criteria. At this point, test files from frontend libraries using NodeJS cannot be integrated
to run with the engines chosen. In addition, some of the selected suites contains failing
tests. We removed those cases to not influence the experiments on DT. Finally, we ran the
transplantation and mined suites several times to remove flaky tests (e.g. tests involving
non-determinism).

42

6.3 CONSTRUCT VALIDITY

In terms of construct validity, we used standard metrics to determine the effective-
ness of the testing techniques we studied (e.g., number of bugs confirmed and fixed and
severity).

Engine developers were responsible for determining the labels of the bug reports and
their severity. Consequently, these metrics originate from a trusted source.

43

7 RELATED WORK

7.1 DIVERSITY IN TESTING

The idea of test set diversity dates back to the eighties (WHITE; COHEN, 1980; OS-

TRAND; BALCER, 1988). The assumption behind test set diversity is that faults often
spread contiguously in the input domain. Consequently, it should be beneficial to par-
tition the input domain and explore it more evenly as to find bugs faster. Later in the
nineties, Chen and Yu (Chen; Yu, 1996) analyzed numerical software and confirmed the
continuity assumption. They found that faults, most often, manifest themselves in regular
patterns across the input domain (CHEN et al., 2010; FELDT et al., 2016). Such observations
led researchers to investigate generalizations of the approach to non-numerical data types
and strategies to explore the input (or output) space to solve different problems in Soft-
ware Engineering (e.g., test input generation and test selection) (MAYER, 2005; BUENO;

WONG; JINO, 2007; CIUPA et al., 2008; ALSHAHWAN; HARMAN, 2012; ALSHAHWAN; HAR-

MAN, 2014; FELDT et al., 2016). This study explores diversity of sources of test cases and
diversity of engine implementations. We remain to investigate the diversity of test cases
themselves. In principle, that could help reduce the number of alarms to inspect, for
example.

7.2 DIFFERENTIAL TESTING

Several different applications of differential testing have been proposed in recent years.
Chen and colleagues (CHEN et al., 2018) recently proposed a technique to generate X.509
certificates based on Request For Proposals (RFC) as specification with the goal of detect-
ing bugs in different SSL/TLS implementations. Those bugs can compromise security of
servers which rely on these certificates to properly authenticate the parties involved in a
communication session. Lidbury and colleagues (LIDBURY et al., 2015) and Donaldson and
colleagues (DONALDSON et al., 2017) have been focusing on finding bugs in programs for
graphic cards (e.g., OpenCL). These programs use the Single-Instruction Multiple-Data
(SIMD) programming abstraction and typically run on GPUs. Perhaps the application
of differential testing that received most attention to date was compiler testing. In 1972,
Purdom (PURDOM, 1972) proposed the use of a generator of sentences from grammars
to test correctness of automatically generated parsers. After that, significant progress has
been made. Lammel and Shulte proposed Geno to cross-check XPath implementations us-
ing grammar-based testing with controllable combinatorial coverage (LÄMMEL; SCHULTE,
2006). Yang and colleagues (YANG et al., 2011b) proposed CSmith to randomly create C
programs from a grammar, for a subset of C, and then check the output of these programs
in different compilers (e.g., GCC and LLVM). Le and colleagues (LE; AFSHARI; SU, 2014)

44

proposed “equivalence modulo inputs”, which creates variants of program which should
have equivalent behavior compared to the original, but for which the compiler manifests
discrepancy. Differential testing has also been applied to test refactoring engines (DANIEL

et al., 2007), to test symbolic engine implementations (KAPUS; CADAR, 2017), to test dis-
assemblers and binary lifters (PALEARI et al., 2010; KIM et al., 2017), and very recently
to test JavaScript debuggers (LEHMANN; PRADEL, 2018). All in all, it has shown to be
flexible and effective for a wide range of applications. Surprisingly, not much work has
been done on differential testing of JS engines. Mozilla uses differential testing to look
for discrepancies across different configurations of the same version of its SpiderMonkey
engine (using the “compare_jit” flag of jsfunfuzz whereas we focus on discrepancy across
engines). Patra e Pradel (2016) evaluated their language-agnostic fuzzing strategy using
differential testing. Their focuses on finding differential bugs across multiple browsers.
As such they specialized their fuzzer to HTML and JS (see Section 7.4). In Chen et al.
(2016) is presented the classfuzz, a tool that uses coverage-directed fuzzing technique to
improving the generation of valid mutants on different JVM implementations. In this case,
their focuses is the Java environment and evaluate their technique with another coverage-
directed fuzzing. In contrast to Patra e Pradel (2016) and Chen et al. (2016), we did not
propose new techniques; our contribution was empirical.

7.3 TESTING JS PROGRAMS

Patra and colleagues (PATRA; DIXIT; PRADEL, 2018) proposed a lightweight approach
to detect conflicts in JS libraries that occur when names introduced by different libraries
collide. This problem was found to be common as the design of JS allows for overlaps in
namespaces. A similar problem has been investigated by Nguyen and colleagues (NGUYEN;

KäSTNER; NGUYEN, 2014) and Eshkevari and colleagues (ESHKEVARI et al., 2014) in the
context of PHP programs, which are popular in the context of Content Management
Systems as WordPress. The focus of this work is on testing JS engines as opposed to JS
programs. Our goal is therefore orthogonal to theirs.

7.4 TESTING JS ENGINES

The closest work to ours was done by Patra e Pradel (2016). Their work proposes a
language-agnostic fuzzer to find cross-browser HTML+JS discrepancies.The sensible parts
of the infrastructure they built are the checks of input validity (as to reduce waste/cost)
and output correctness (as to reduce FP). Patra and Pradel work is complementary to
ours–in principle, we could use their fuzzer in our evaluation. Recently, Han, Oh e Cha
(2019) shows a tool called CodeAlchemist which is a fuzzing tool for semantics-aware
generation of test cases to find vulnerabilities in JS engines. The work proposed the
technique to fragmentize JS seeds into blocks of code, those code bricks represents a

45

valid JS Abstract Syntax Tree (AST). The tool generates a test case semantically and
syntactically valid and evaluates on real-world engines and found 19 bugs whereas 11 are
exploitable bugs. The main difference of our work to theirs is in goal–we aim at assessing
reliability of JS engines and find bugs on them using simple approaches whereas they aim
at proposing a new technique. Fuzzing is an active area of investigation with development
of new techniques both in academia and industry. Several fuzzing tools exist focused on
JS. Section 3.1.3 briefly explain different fuzzing strategies and tools. Existing techniques
prioritize automation with a focus on finding crashes; see the sanitizers used in libFuzzer 1,
for instance. In general, it is important for these tools that a warning reveals something
potentially alarming as a crash given that fuzzing is a time-consuming operation, i.e.,
the ratio of bugs found per inputs generated is often very low. Our approach contrasts
with that aim as we focus on finding errors manifested on the output, which rarely result
in crashes and, consequently, would go undetected by current fuzzing approaches. It is
should be noted, however, that such problems are not unimportant as per the severity
levels reported in Tables 6 and 9.

1 Libfuzzer tutorial. Available at <https://github.com/google/fuzzer-test-suite/blob/master/tutorial/
libFuzzerTutorial.md>

https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md

46

8 CONCLUSIONS

JavaScript (JS) is very popular today. Bugs in engine implementations often affect
lots of people and organizations. Implementing correct engines is challenging because the
specification is intentionally incomplete and evolves frequently. Finding bugs in JS engines
is challenging for similar reasons.

This study reports on a study to evaluate two diversity-aware techniques for finding
bugs in JS–test transplantation and cross-engine differential testing. The first technique
explores diversity of test sources; it runs the test suite of one given engine in another
engine. The second technique explores diversity of implementations; it fuzzes existing
inputs and then compares the output produced by different engines with a differential
oracle.

We found that both techniques were very effective at finding bugs in JS engines.
Overall, we reported 50 bugs in this study. Of which, 36 were confirmed by developers
and 29 were fixed. Although more work is necessary to reduce cost of manual analysis,
we found that our results provide strong evidence that exploring techniques should be
encouraged to find functional bugs in JavaScript engines.

For the future work, more research needs to be done to improve automation of the
tool. We plan to explore techniques to prioritize the warnings reported by these tech-
niques. Using machine learning techniques for prioritization, similar to what Chen and
colleagues (CHEN et al., 2017) did to prioritize the warnings reported by CSmith (YANG et

al., 2011b). We need to provide support for addition of new engines. Recently, the Face-
book released the open-source engine called Hermes 1 which performs optimizations on
Android applications in React Native 2 and seems a promising context for finding new
bugs.

The scripts to run the experiments for this study is available in our repository at
<https://github.com/damorimRG/jsengines-differential-testing> and the data with the
bugs reported is publicly available at <https://figshare.com/s/ee2e3821c2f022c7f5cc>.

1 Hermes engine. Available at <https://hermesengine.dev/>
2 React Native. Available at <https://facebook.github.io/react-native/>

https://github.com/damorimRG/jsengines-differential-testing
https://figshare.com/s/ee2e3821c2f022c7f5cc
https://hermesengine.dev/
https://facebook.github.io/react-native/

47

REFERENCES

ALSHAHWAN, N.; HARMAN, M. Augmenting test suites effectiveness by increasing
output diversity. In: Proceedings of the 34th International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2012. (ICSE ’12), p. 1345–1348.
ISBN 978-1-4673-1067-3. Disponível em: <http://dl.acm.org/citation.cfm?id=2337223.
2337414>.

ALSHAHWAN, N.; HARMAN, M. Coverage and fault detection of the output-uniqueness
test selection criteria. In: Proceedings of the 2014 International Symposium on Software
Testing and Analysis. New York, NY, USA: ACM, 2014. (ISSTA 2014), p. 181–192. ISBN
978-1-4503-2645-2. Disponível em: <http://doi.acm.org/10.1145/2610384.2610413>.

Apple. Severity levels WebKit bugs (JavaScriptCore). 2018. Available at <https:
//webkit.org/bug-prioritization/>.

ARGYROS, G.; STAIS, I.; JANA, S.; KEROMYTIS, A. D.; KIAYIAS, A. Sfadiff:
Automated evasion attacks and fingerprinting using black-box differential automata
learning. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: ACM, 2016. (CCS ’16), p. 1690–1701.
ISBN 978-1-4503-4139-4. Disponível em: <http://doi.acm.org/10.1145/2976749.
2978383>.

BECKETT, S. Worstward ho. [S.l.]: John Calder London, 1983.

BRUMLEY, D.; CABALLERO, J.; LIANG, Z.; NEWSOME, J.; SONG, D. Towards
automatic discovery of deviations in binary implementations with applications
to error detection and fingerprint generation. In: Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium. Berkeley, CA, USA: USENIX
Association, 2007. (SS’07), p. 15:1–15:16. ISBN 111-333-5555-77-9. Disponível em:
<http://dl.acm.org/citation.cfm?id=1362903.1362918>.

BUENO, P. M. S.; WONG, W. E.; JINO, M. Improving random test sets using the
diversity oriented test data generation. In: Proceedings of the 2nd international workshop
on Random testing: co-located with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007). Association for Computing Machinery,
2007. (ASE07), p. 10–17. Disponível em: <https://doi.org/10.1145/1292414.1292419>.

Camilo Bruni–V8 engineer. for-in undefined behavior. 2018. Available at <https:
//v8project.blogspot.com/2017/03/fast-for-in-in-v8.html>.

CHEN, C.; TIAN, C.; DUAN, Z.; ZHAO, L. Rfc-directed differential testing of certificate
validation in ssl/tls implementations. In: Proceedings of the 40th International Conference
on Software Engineering. New York, NY, USA: ACM, 2018. (ICSE ’18), p. 859–870. ISBN
978-1-4503-5638-1. Disponível em: <http://doi.acm.org/10.1145/3180155.3180226>.

CHEN, J.; BAI, Y.; HAO, D.; XIONG, Y.; ZHANG, H.; XIE, B. Learning to prioritize
test programs for compiler testing. In: Proceedings of the 39th International Conference
on Software Engineering. Piscataway, NJ, USA: IEEE Press, 2017. (ICSE ’17), p. 700–711.
ISBN 978-1-5386-3868-2. Disponível em: <https://doi.org/10.1109/ICSE.2017.70>.

http://dl.acm.org/citation.cfm?id=2337223.2337414
http://dl.acm.org/citation.cfm?id=2337223.2337414
http://doi.acm.org/10.1145/2610384.2610413
https://webkit.org/bug-prioritization/
https://webkit.org/bug-prioritization/
http://doi.acm.org/10.1145/2976749.2978383
http://doi.acm.org/10.1145/2976749.2978383
http://dl.acm.org/citation.cfm?id=1362903.1362918
https://doi.org/10.1145/1292414.1292419
https://v8project.blogspot.com/2017/03/fast-for-in-in-v8.html
https://v8project.blogspot.com/2017/03/fast-for-in-in-v8.html
http://doi.acm.org/10.1145/3180155.3180226
https://doi.org/10.1109/ICSE.2017.70

48

CHEN, T. Y.; KUO, F.-C.; MERKEL, R. G.; TSE, T. H. Adaptive random
testing: The art of test case diversity. J. Syst. Softw., Elsevier Science Inc., New
York, NY, USA, v. 83, n. 1, p. 60–66, jan. 2010. ISSN 0164-1212. Disponível em:
<http://dx.doi.org/10.1016/j.jss.2009.02.022>.

Chen, T. Y.; Yu, Y. T. On the expected number of failures detected by subdomain
testing and random testing. IEEE Transactions on Software Engineering, v. 22, n. 2, p.
109–119, Feb 1996. ISSN 0098-5589.

CHEN, Y.; SU, T.; SUN, C.; SU, Z.; ZHAO, J. Coverage-directed differential
testing of jvm implementations. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. New York, NY,
USA: ACM, 2016. (PLDI ’16), p. 85–99. ISBN 978-1-4503-4261-2. Disponível em:
<http://doi.acm.org/10.1145/2908080.2908095>.

CHEN, Y.; SU, Z. Guided differential testing of certificate validation in ssl/tls
implementations. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. New York, NY, USA: ACM, 2015. (ESEC/FSE 2015), p. 793–804.
ISBN 978-1-4503-3675-8. Disponível em: <http://doi.acm.org/10.1145/2786805.
2786835>.

Chromium. V8 JavaScript Engine. Available at <https://chromium.googlesource.com/
v8/v8.git>.

Chromium. Issue 4247. 2015. Available at <https://bit.ly/2O08uW2>.

CIUPA, I.; LEITNER, A.; ORIOL, M.; MEYER, B. Artoo: Adaptive random testing
for object-oriented software. In: Proceedings of the 30th International Conference on
Software Engineering. New York, NY, USA: ACM, 2008. (ICSE ’08), p. 71–80. ISBN
978-1-60558-079-1. Disponível em: <http://doi.acm.org/10.1145/1368088.1368099>.

DANIEL, B.; DIG, D.; GARCIA, K.; MARINOV, D. Automated testing of refactoring
engines. In: Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. New York, NY, USA: ACM, 2007. (ESEC-FSE ’07), p. 185–194. ISBN
978-1-59593-811-4. Disponível em: <http://doi.acm.org/10.1145/1287624.1287651>.

DONALDSON, A. F.; EVRARD, H.; LASCU, A.; THOMSON, P. Automated testing
of graphics shader compilers. Proc. ACM Program. Lang., ACM, New York, NY,
USA, v. 1, n. OOPSLA, p. 93:1–93:29, out. 2017. ISSN 2475-1421. Disponível em:
<http://doi.acm.org/10.1145/3133917>.

Ecma Internacional. Changes to EvalDeclarationInstantiation. Avail-
able at <https://www.ecma-international.org/ecma-262/8.0/index.html#
sec-web-compat-evaldeclarationinstantiation>.

Ecma Internacional. Ecma Internacional. Available at <https://www.ecma-international.
org>.

Ecma Internacional. Number.toPrecision specification. Available at <https://www.
ecma-international.org/ecma-262/8.0/index.html#sec-number.prototype.toprecision>.

http://dx.doi.org/10.1016/j.jss.2009.02.022
http://doi.acm.org/10.1145/2908080.2908095
http://doi.acm.org/10.1145/2786805.2786835
http://doi.acm.org/10.1145/2786805.2786835
https://chromium.googlesource.com/v8/v8.git
https://chromium.googlesource.com/v8/v8.git
https://bit.ly/2O08uW2
http://doi.acm.org/10.1145/1368088.1368099
http://doi.acm.org/10.1145/1287624.1287651
http://doi.acm.org/10.1145/3133917
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-web-compat-evaldeclarationinstantiation
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-web-compat-evaldeclarationinstantiation
https://www.ecma-international.org
https://www.ecma-international.org
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-number.prototype.toprecision
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-number.prototype.toprecision

49

Ecma Internacional. Static Semantics: Early Errors. Available
at <https://www.ecma-international.org/ecma-262/8.0/index.html#
sec-break-statement-static-semantics-early-errors>.

ELLIOTT, T. The State of the Octoverse: machine learning. 2019. Available at
<https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/>.

ESDiscuss. Array new attributed caused bugs. 2014. Available at <https://esdiscuss.org/
topic/array-prototype-values-is-not-web-compat-even-with-unscopables>.

ESHKEVARI, L.; ANTONIOL, G.; CORDY, J. R.; PENTA, M. D. Identifying and
locating interference issues in php applications: The case of wordpress. In: Proceedings
of the 22Nd International Conference on Program Comprehension. New York, NY,
USA: ACM, 2014. (ICPC 2014), p. 157–167. ISBN 978-1-4503-2879-1. Disponível em:
<http://doi.acm.org/10.1145/2597008.2597153>.

FELDT, R.; POULDING, S.; CLARK, D.; YOO, S. Test set diameter: Quantifying
the diversity of sets of test cases. In: 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST). [S.l.: s.n.], 2016. p. 223–233.

GOOGLE. Getting Started with libFuzzer at Chromium. <https://chromium.
googlesource.com/chromium/src/+/master/testing/libfuzzer/getting_started.md>.

GOOGLE. libFuzzer Tutorial. <https://github.com/google/fuzzer-test-suite/blob/
master/tutorial/libFuzzerTutorial.md>.

GRIECO, G.; CERESA, M.; BUIRAS, P. Quickfuzz: an automatic random fuzzer for
common file formats. In: ACM. Proceedings of the 9th International Symposium on
Haskell. [S.l.], 2016. p. 13–20.

HAN, H.; OH, D.; CHA, S. K. Codealchemist: Semantics-aware code generation to find
vulnerabilities in javascript engines. In: Proceedings of the 27th Network and Distributed
System Security Symposium (NDSS’19). [S.l.: s.n.], 2019.

HODOVÁN, R.; KISS, Á.; GYIMÓTHY, T. Grammarinator: a grammar-based open
source fuzzer. In: ACM. Proceedings of the 9th ACM SIGSOFT International Workshop
on Automating TEST Case Design, Selection, and Evaluation. [S.l.], 2018. p. 45–48.

HOLLER, C.; HERZIG, K.; ZELLER, A. Fuzzing with code fragments. In:
Proceedings of the 21st USENIX Conference on Security Symposium. Berkeley,
CA, USA: USENIX Association, 2012. (Security’12), p. 38–38. Disponível em:
<http://dl.acm.org/citation.cfm?id=2362793.2362831>.

John Resig. JavaScript in Chrome. 2018. Available at <https://johnresig.com/blog/
javascript-in-chrome/>.

Kangax. ECMAScript6 compatibility. 2018. Available at <http://kangax.github.io/
compat-table/es6/>.

KAPUS, T.; CADAR, C. Automatic testing of symbolic execution engines via
program generation and differential testing. In: Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering. Piscataway, NJ, USA:
IEEE Press, 2017. (ASE 2017), p. 590–600. ISBN 978-1-5386-2684-9. Disponível em:
<http://dl.acm.org/citation.cfm?id=3155562.3155636>.

https://www.ecma-international.org/ecma-262/8.0/index.html#sec-break-statement-static-semantics-early-errors
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-break-statement-static-semantics-early-errors
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://esdiscuss.org/topic/array-prototype-values-is-not-web-compat-even-with-unscopables
https://esdiscuss.org/topic/array-prototype-values-is-not-web-compat-even-with-unscopables
http://doi.acm.org/10.1145/2597008.2597153
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/getting_started.md
https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/getting_started.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
http://dl.acm.org/citation.cfm?id=2362793.2362831
https://johnresig.com/blog/javascript-in-chrome/
https://johnresig.com/blog/javascript-in-chrome/
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es6/
http://dl.acm.org/citation.cfm?id=3155562.3155636

50

KIM, S.; FAEREVAAG, M.; JUNG, M.; JUNG, S.; OH, D.; LEE, J.; CHA, S. K. Testing
intermediate representations for binary analysis. In: Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering. Piscataway, NJ, USA:
IEEE Press, 2017. (ASE 2017), p. 353–364. ISBN 978-1-5386-2684-9. Disponível em:
<http://dl.acm.org/citation.cfm?id=3155562.3155609>.

KUSNER, M.; SUN, Y.; KOLKIN, N.; WEINBERGER, K. From word embeddings to
document distances. In: International Conference on Machine Learning. [S.l.: s.n.], 2015.
p. 957–966.

LÄMMEL, R.; SCHULTE, W. Controllable combinatorial coverage in grammar-based
testing. In: UYAR, M. Ü.; DUALE, A. Y.; FECKO, M. A. (Ed.). Testing of
Communicating Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 19–38.
ISBN 978-3-540-34185-7.

LE, V.; AFSHARI, M.; SU, Z. Compiler validation via equivalence modulo inputs. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. New York, NY, USA: ACM, 2014. (PLDI ’14), p. 216–226. ISBN
978-1-4503-2784-8. Disponível em: <http://doi.acm.org/10.1145/2594291.2594334>.

LEHMANN, D.; PRADEL, M. Feedback-directed differential testing of interactive
debuggers. In: Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. [s.n.],
2018. p. 610–620. Disponível em: <https://doi.org/10.1145/3236024.3236037>.

LIBFUZZER. LibFuzzer. <https://llvm.org/docs/LibFuzzer.html>.

LIDBURY, C.; LASCU, A.; CHONG, N.; DONALDSON, A. F. Many-core
compiler fuzzing. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. New York, NY, USA:
ACM, 2015. (PLDI ’15), p. 65–76. ISBN 978-1-4503-3468-6. Disponível em:
<http://doi.acm.org/10.1145/2737924.2737986>.

LING, W.; DYER, C.; BLACK, A. W.; TRANCOSO, I. Two/too simple adaptations
of word2vec for syntax problems. In: Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. [S.l.: s.n.], 2015. p. 1299–1304.

LLVM. clang documentation. Available at <http://clang.llvm.org/docs/>.

MAYER, J. Lattice-based adaptive random testing. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering. New York,
NY, USA: ACM, 2005. (ASE ’05), p. 333–336. ISBN 1-58113-993-4. Disponível em:
<http://doi.acm.org/10.1145/1101908.1101963>.

MDN. Object.valueOf documentation. <https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Object/ValueOf>.

MDN. Unary Plus - ES6 specifications. <https://www.ecma-international.org/ecma-262/
8.0/index.html#sec-unary-plus-operator>.

Microsoft. ChakraCore. Available at <https://github.com/Microsoft/ChakraCore>.

http://dl.acm.org/citation.cfm?id=3155562.3155609
http://doi.acm.org/10.1145/2594291.2594334
https://doi.org/10.1145/3236024.3236037
https://llvm.org/docs/LibFuzzer.html
http://doi.acm.org/10.1145/2737924.2737986
http://clang.llvm.org/docs/
http://doi.acm.org/10.1145/1101908.1101963
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/ValueOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/ValueOf
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-unary-plus-operator
https://www.ecma-international.org/ecma-262/8.0/index.html#sec-unary-plus-operator
https://github.com/Microsoft/ChakraCore

51

Microsoft. Severity levels Chakra bugs. 2018. Available at <https://github.com/
Microsoft/ChakraCore/wiki/Label-Glossary>.

MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO, G.; DEAN, J. Distributed
representations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2013. p.
3111–3119.

Mozilla. jsfunfuzz at Mozilla. Available at <https://mzl.la/2LsctZL>.

Mozilla. SpiderMonkey Project. Available at <https://github.com/mozilla/gecko-dev>.

Mozilla. Triage Process for Firefox Components in Mozilla-central and Bugzilla.
2018. Available at <https://github.com/mozilla/bug-handling/blob/master/policy/
triage-bugzilla.md>.

NGUYEN, H. V.; KäSTNER, C.; NGUYEN, T. N. Exploring variability-aware execution
for testing plugin-based web applications. In: ICSE. [S.l.: s.n.], 2014. p. 907–918.

OSTRAND, T. J.; BALCER, M. J. The category-partition method for specifying
and generating fuctional tests. Commun. ACM, ACM, New York, NY, USA,
v. 31, n. 6, p. 676–686, jun. 1988. ISSN 0001-0782. Disponível em: <http:
//doi.acm.org/10.1145/62959.62964>.

PALEARI, R.; MARTIGNONI, L.; ROGLIA, G. F.; BRUSCHI, D. N-version
disassembly: Differential testing of x86 disassemblers. In: Proceedings of the 19th
International Symposium on Software Testing and Analysis. New York, NY, USA:
ACM, 2010. (ISSTA ’10), p. 265–274. ISBN 978-1-60558-823-0. Disponível em:
<http://doi.acm.org/10.1145/1831708.1831741>.

PATRA, J.; DIXIT, P. N.; PRADEL, M. Conflictjs: Finding and understanding conflicts
between javascript libraries. In: Proceedings of the 40th International Conference on
Software Engineering. New York, NY, USA: ACM, 2018. (ICSE ’18), p. 741–751. ISBN
978-1-4503-5638-1. Disponível em: <http://doi.acm.org/10.1145/3180155.3180184>.

PATRA, J.; PRADEL, M. Learning to fuzz: Application-independent fuzz testing with
probabilistic, generative models of input data. [S.l.], 2016.

PETSIOS, T.; TANG, A.; STOLFO, S.; KEROMYTIS, A. D.; JANA, S. Nezha: Efficient
domain-independent differential testing. In: 2017 IEEE Symposium on Security and
Privacy (SP). [S.l.: s.n.], 2017. p. 615–632.

PURDOM, P. A sentence generator for testing parsers. BIT Numerical Mathematics,
v. 12, n. 3, p. 366–375, Sep 1972. ISSN 1572-9125. Disponível em: <https:
//doi.org/10.1007/BF01932308>.

RedMonk. The RedMonk Programming Language Rankings: June 2018. 2018. Available
at <https://redmonk.com/sogrady/2018/08/10/language-rankings-6-18/>.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. In: RUMELHART,
D. E.; MCCLELLAND, J. L.; GROUP, C. P. R. (Ed.). Cambridge, MA, USA: MIT Press,

https://github.com/Microsoft/ChakraCore/wiki/Label-Glossary
https://github.com/Microsoft/ChakraCore/wiki/Label-Glossary
https://mzl.la/2LsctZL
https://github.com/mozilla/gecko-dev
https://github.com/mozilla/bug-handling/blob/master/policy/triage-bugzilla.md
https://github.com/mozilla/bug-handling/blob/master/policy/triage-bugzilla.md
http://doi.acm.org/10.1145/62959.62964
http://doi.acm.org/10.1145/62959.62964
http://doi.acm.org/10.1145/1831708.1831741
http://doi.acm.org/10.1145/3180155.3180184
https://doi.org/10.1007/BF01932308
https://doi.org/10.1007/BF01932308
https://redmonk.com/sogrady/2018/08/10/language-rankings-6-18/

52

1986. cap. Learning Internal Representations by Error Propagation, p. 318–362. ISBN
0-262-68053-X. Disponível em: <http://dl.acm.org/citation.cfm?id=104279.104293>.

Simply Technologies. Why is JavaScript So Popular? 2018. Available at <https:
//www.simplytechnologies.net/blog/2018/4/11/why-is-javascript-so-popular>.

SIVAKORN, S.; ARGYROS, G.; PEI, K.; KEROMYTIS, A. D.; JANA, S. Hvlearn:
Automated black-box analysis of hostname verification in SSL/TLS implementations. In:
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-
26, 2017. [s.n.], 2017. p. 521–538. Disponível em: <https://doi.org/10.1109/SP.2017.46>.

Stackify. Most Popular and Influential Programming Languages of 2018. 2018. Available
at <https://stackify.com/popular-programming-languages-2018/>.

StackOverflow community. Elements order in a “for (. . . in . . .)” loop. 2018. Available
at <https://stackoverflow.com/questions/280713/elements-order-in-a-for-in-loop>.

TC39. Official ECMA262 Conformance Test Suite. Available at <https://github.com/
tc39/test262>.

TC39. TC39 GitHub repo. Available at <http://tc39.github.io/>.

TC39. Array sort. 2018. Available at <https://tc39.github.io/ecma262/#sec-array.
prototype.sort>.

TC39. ECMA262 repository. 2018. Available at <https://tc39.github.io/ecma262/>.

TC39. ECMAScript 2017 Language Specification . 2018. Available at <https:
//www.ecma-international.org/ecma-262/8.0/>.

TC39. TypeConversion, ToIndex function. 2018. Available at <https://tc39.github.io/
ecma262/#sec-toindex>.

The Chromium Project. Chromium Bug Labels. 2018. Available at <https:
//www.chromium.org/for-testers/bug-reporting-guidelines/chromium-bug-labels>.

WebKit. WebKit Project. Available at <https://github.com/WebKit/webkit/tree/
master/Source/JavaScriptCore>.

WHITE, L. J.; COHEN, E. I. A domain strategy for computer program testing.
IEEE Transactions on Software Engineering, SE-6, n. 3, p. 247–257, May 1980. ISSN
0098-5589.

YANG, X.; CHEN, Y.; EIDE, E.; REGEHR, J. Finding and understanding
bugs in c compilers. In: Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. New York, NY, USA:
ACM, 2011. (PLDI ’11), p. 283–294. ISBN 978-1-4503-0663-8. Disponível em:
<http://doi.acm.org/10.1145/1993498.1993532>.

YANG, X.; CHEN, Y.; EIDE, E.; REGEHR, J. Finding and understanding
bugs in c compilers. In: Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. New York, NY, USA:
ACM, 2011. (PLDI ’11), p. 283–294. ISBN 978-1-4503-0663-8. Disponível em:
<http://doi.acm.org/10.1145/1993498.1993532>.

http://dl.acm.org/citation.cfm?id=104279.104293
https://www.simplytechnologies.net/blog/2018/4/11/why-is-javascript-so-popular
https://www.simplytechnologies.net/blog/2018/4/11/why-is-javascript-so-popular
https://doi.org/10.1109/SP.2017.46
https://stackify.com/popular-programming-languages-2018/
https://stackoverflow.com/questions/280713/elements-order-in-a-for-in-loop
https://github.com/tc39/test262
https://github.com/tc39/test262
http://tc39.github.io/
https://tc39.github.io/ecma262/#sec-array.prototype.sort
https://tc39.github.io/ecma262/#sec-array.prototype.sort
https://tc39.github.io/ecma262/
https://www.ecma-international.org/ecma-262/8.0/
https://www.ecma-international.org/ecma-262/8.0/
https://tc39.github.io/ecma262/#sec-toindex
https://tc39.github.io/ecma262/#sec-toindex
https://www.chromium.org/for-testers/bug-reporting-guidelines/chromium-bug-labels
https://www.chromium.org/for-testers/bug-reporting-guidelines/chromium-bug-labels
https://github.com/WebKit/webkit/tree/master/Source/JavaScriptCore
https://github.com/WebKit/webkit/tree/master/Source/JavaScriptCore
http://doi.acm.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/1993498.1993532

53

ZHANG, T.; KIM, M. Automated transplantation and differential testing for clones. In:
Proceedings of the 39th International Conference on Software Engineering. Piscataway,
NJ, USA: IEEE Press, 2017. (ICSE ’17), p. 665–676. ISBN 978-1-5386-3868-2. Disponível
em: <https://doi.org/10.1109/ICSE.2017.67>.

https://doi.org/10.1109/ICSE.2017.67

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Related Ideas
	Research Methodology
	Results
	Key Findings
	Contributions

	Background
	JavaScript
	Engines Studied
	Mined JS Files
	Mining tests from issue trackers

	Objects of Analysis
	Infrastructure
	Prioritization
	Clusterization
	Fuzzers

	Evaluation
	Results
	Answering RQ1 (Conformance)
	Answering RQ2 (Test Transplantation)
	Methodology
	Results

	Answering RQ3 (Differential Testing)
	Methodology
	Results

	Discussion
	Overview
	Example Bug Reports

	Key Findings and Lessons
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Diversity in Testing
	Differential Testing
	Testing JS Programs
	Testing JS Engines

	Conclusions
	References

