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“By far, the greatest danger of Artificial Intelligence is that  

people conclude too early that they understand it.” 

Eliezer Yudkowsky  



  

ABSTRACT 

 

Artificial intelligence-based algorithms have evolved dramatically over the last couple 

of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have 

emerged as solutions for many tasks previously unreachable, bringing innovation to the 

industry, with autonomous driving cars and smart houses, and revolutionizing the society with 

applications going from movie recommendation to medical diagnosis. In this context, this thesis 

proposes and brings discussion to ML and DL methodologies successfully developed for three 

distinct problems in applications related to risk and reliability engineering. In the first, a 

drowsiness detection model is developed to avoid accidents caused by inattention in the context 

of human reliability. The second problem deals with estimations of remaining useful life of 

bearings in the prognostic and health management context. In the last problem, a system to 

detect usage of personal protective equipment in the context to support safety monitoring is 

presented. In ML methodologies, support vector machines are used, while convolutional neural 

networks are applied to DL models. Considering the availability and accessibility of datasets, 

the obtained results demonstrate adequation of methodologies as tools to provide valuable 

information to support decisions. 

 

Keywords: Machine learning. Deep learning. Human drowsiness detection. Remaining useful 

life. Personal protection equipment monitoring.  

  



  

RESUMO 

 

Algoritmos baseados em inteligência artificial evoluíram drasticamente ao longo das 

últimas décadas. Especificamente, modelos de Machine Learning (ML) e Deep Learning (DL) 

surgiram como soluções para muitas tarefas anteriormente inacessíveis, trazendo inovações à 

indústria, com criação de carros autônomos e smart houses, e revolucionando a sociedade, com 

aplicações indo desde recomendações de filmes a diagnósticos médicos. Neste contexto, esta 

tese desenvolve e discute metodologias de ML e DL empregadas com sucesso em três cenários 

distintos em aplicações relacionadas à engenharia de confiabilidade e risco. A primeira 

aplicação visa desenvolver um modelo de detecção de sonolência para evitar acidentes causados 

por desatenção no contexto da confiabilidade humana. O segundo problema trata das 

estimativas de vida útil remanescente de rolamentos no contexto de prognostic and health 

management. No último problema, um sistema para detectar o uso de equipamentos de proteção 

individual é apresentado como suporte no contexto de monitoramento de segurança. Nas 

metodologias ML, support vector machines são usadas, enquanto redes neurais convolucionais 

são aplicadas em modelos de DL. Considerando a disponibilidade e acessibilidade dos 

conjuntos de dados, os resultados obtidos demonstram a adequação de tais metodologias como 

ferramentas para fornecimento de informações valiosas para o suporte às decisões. 

 

Palavras-chave: Machine learning. Deep learning. Tempo de vida útil residual. Detecção de 

sonolência humana. Monitoramento de equipamento de proteção individual.  
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1 INTRODUCTION 

In today’s competitive business environment, industrial processes need to achieve high 

flexibility and efficiency, which require companies to deal with data issues of rapid decision-

making for improved productivity. Industrial automation is computerizing devices to complete 

manufacturing tasks with a limited human involvement producing goods quickly and more 

accurately (AL-FUQAHA et al., 2015). 

Transformation from current process in which operators control machines, managers 

design logistic schedules and machines only perform the assigned tasks, into more intelligent 

structures requires further advancement in the science by tackling several issues (LEE; KAO; 

YANG, 2014). According to Lasi et al. (2014), the combination of future-oriented technologies 

in the field of smart objects (machines and products) seems to result in a new fundamental 

paradigm shift in industrial production, which is the basis of an advanced digitalization within 

industries. The great potential for revolutionizing all aspects in society relies on the growing 

body of information hidden in the unprecedented volumes of non-traditional data, which 

requires both the development of advanced technologies and interdisciplinary teams working 

in close collaboration (CHEN et al., 2014). 

In this context, the term ‘Industry 4.0’ collectively refers to a wide range of 

technological concepts in which manufactures would: (1) be completely equipped with sensors, 

actors, and autonomous controlled systems to monitor production and safety; (2) process 

parameters of components underlying degradation recorded digitally to provide real condition 

of the system; and (3) design new manufacturing systems to follow and alert human safety and 

needs instead of the reverse (LASI et al., 2014).  

The goals of Industry 4.0 are to achieve a higher level of operational efficiency and 

productivity, as well as a higher level of automatization (THAMES; SCHAEFER, 2016). To 

that end, it should combine the smart objects with big data analytics (WANG et al., 2016). 

Almost all disciplines and research areas, including engineering, computer science, 

business, and medicine, are currently deeply involved in this spreading computational culture 

of big data due to its broad reach of potential influence in multiple disciplines (BOYD; 

CRAWFORD, 2012). In recent years, sensors have become cheaper and readily available for 

industries (SAN MARTIN et al., 2019). Specifically, the massive amount of industrial data 

generated in these manufacturing environment provides new possibilities for further 

improvement of reliability and efficiency (REN et al., 2017). 
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1.1 MOTIVATION AND JUSTIFICATION 

Generally, reliability and risk analysis involves the analysis of the data to quantify a 

prediction and/or to make a decision, which can be, for instance, the probability of failure of 

one system, remaining useful life of a structure, or trading strategies. Therefore, whether the 

predictions are acceptable is heavily dependent on how much useful information can be 

extracted from the original data and how to conduct the analysis (JIANG et al., 2017). Thus, 

the big data wave only matters if it is useful.  

In other words, if not accurately and completely understandable, big data could also 

bring problems in data quality and data usage. Many manufacturing systems are not ready to 

manage big data due to the lack of analytic tools (LEE; KAO; YANG, 2014). Analysis based 

on data with errors results in biased or wrong conclusions and it is necessary to have a deeper 

understanding of the quality issues of big data and its consequent problems (LIU et al., 2016). 

Therefore, new types of advanced manufacturing and industrial processes involving 

machine-to-human collaboration and symbiotic product realization are emerging (THAMES; 

SCHAEFER, 2016) and the development of algorithms for dealing with data is one of the major 

challenges in Industry 4.0 (LU, 2017).  

Artificial Intelligence (AI) algorithms are transforming large segments of the economy 

with expectations created about the intrusion of algorithmic machines into aspects of life 

previously dependent on human judgment. With the increase in complexity and multiplicity of 

problems in real world, decisions have been taking place in environments in which the 

consequences of possible actions are not accurately known and decision making may be 

uncertain, leading to an unclear future state of the system. 

Hence, advanced tools to support decision in economic, environmental, safety and 

technical contexts have emerged and AI predictive algorithms – such as Machine Learning 

(ML) and Deep Learning (DL) - are the keys to unlocking the data that can precisely inform 

real-time decisions (CHEN; ASCH, 2017).  

The effect of these learning approaches can already be seen in products and services, 

including medical diagnoses, product marketing, recognition of spoken language and self-

driving cars as well as in industry-related problems, such as consumer services, fault diagnosis 

in complex systems, control of logistics chains and recognition of human patterns (JORDAN; 

MITCHELL, 2015). It can be far easier to train a system by showing it examples of desired 

input-output behavior than to program it manually by anticipating the desired response for all 

possible inputs and their ability to deliver impressive forecasting power and speed are 
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transforming many facets of society (COGLIANESE; LEHR, 2016).  

Research on real-time systems to interpret acquired data and utilize them to make critical 

decisions advances significantly in areas that constitute a large portion of overhead costs in 

many industries, such as reliability, maintenance and safety management (Tamilselvan and 

Wang 2013, Teizer 2015). Therefore, this thesis presents development and discussion of 

modern ML and DL algorithms in the contexts of risk and reliability engineering.  

1.2 OBJECTIVES  

The objectives can be identified by general objective and specific objectives. 

1.2.1 General Objective 

The main purpose of this thesis is to develop and provide discussion of new technologies 

and AI-based methodologies to monitor key parameters in distinct risk and reliability contexts. 

Different Machine (ML) and Deep Learning (DL) models are created for three contexts: (i) 

drowsiness detection in human reliability context; (ii) Remaining Useful Life (RUL) 

estimations in the context of Prognostic and Health Management (PHM); and (iii) personal 

protection equipment detection in safety monitoring. 

1.2.2 Specific Objectives 

In order to achieve the general objective, some specific targets are defined: 

a) General understanding and brief review of ML and DL algorithms, focused on Support 

Vector Machines and Convolutional Neural Network, respectively; 

b) Development of ML model to provide real time monitoring of alertness. Analysis and 

validation of the model on a real data base of drowsiness detection; 

c) Creation of ML and DL approaches for RUL predictions. Analysis and validation of 

model on a real data base of degradation bearing; 

d) Adaptation of a pre-trained DL object detection model to identify PPE detection in real 

time. Application of ML model to verify if PPE is correctly worn. 

1.3 OUTLINE OF THE THESIS  

Besides this introduction chapter, this thesis has five additional chapters briefly 

described as follows:  
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a) Chapter 2: Presents the concise theoretical background about ML and DL with 

emphasis on the specific algorithms used in the application problems (i.e. Support 

Vector Machine (SVM) and Convolutional Neural Networks (CNN));  

b) Chapter 3: Provides the first application problem, in which ML is used in the context 

human reliability. Specifically, a real-time drowsiness detection model is created to 

warn about human attention; 

c) Chapter 4: Provides the second application problem, in which ML and DL are used in 

the context of Prognostic and Health Management (PHM). Specifically, predictions of 

Remaining Useful Life (RUL) are made to support maintenance policies; 

d) Chapter 5: Provides the third application problem, in which DL is used in the context 

safety monitoring. Specifically, a real-time Personal Protection Equipment (PPE) 

algorithm is created to monitor safety in industrial environments; 

e) Chapter 6: Contains a summary of the main aspects and results presented in this thesis 

along with propositions for future work. 

In the three application (i.e., Chapter 3, Chapter 4 and Chapter 5), several techniques 

are applied aiming to develop a suitable model for each specific problem. In Table 1, a brief 

presentation of the core techniques, which are further explained in Chapter 2, and the support 

techniques, explained in its respective chapter, applied on this thesis is displayed. 

 
Table 1 – Core and support techniques applied in this thesis  

Chapter Title Core Techniques Support Techniques 

3 
Development of real-time system 
for autonomous drowsiness 
detection using eye aspect ratio 

Support Vector Machine; 
Histograms of Oriented 
Gradient; 

4 
Methodologies for estimation of 
remaining useful life from 
vibration signal 

Support Vector Machines; 
Convolutional Neural 
Networks; 

Empirical Mode 
Decomposition; 
Short-time Fourier Transform; 
Wavelet Transform. 

5 
Construction of personal 
protective equipment detector 
using video images 

Convolutional Neural 
Networks. 
Support Vector Machines; 

- 

Source: The Author (2020) 
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2 THEORETICAL BACKGROUND  

‘‘I am convinced that the crux of the problem of learning is recognizing relationships 

and being able to use them’’ - Christopher Strachey in a letter to Alan Turing, 1954 (NICKEL 

et al., 2016). 

This chapter presents definitions and explanations about the fundamental topic of this 

work: Machine Learning, Support Vector Machines, Deep Learning and Convolutional Neural 

Network. The applications provided in sections 3.3, 4.2 and 5.3 use these concepts.  

2.1 MACHINE LEARNING  

The central goal of Artificial Intelligence (AI) is to provide a set of algorithms and 

techniques that can automatically and efficiently solve problems that humans perform 

intuitively. Machine Learning (ML) is a field of computational learning in AI that looks for the 

automated detection of meaningful patterns in data and to solve problems which are impossible, 

or impractical, to be represented by explicit algorithms (BEN-DAVID; SHALEV-SHWARTZ, 

2014). While AI embodies a large, diverse set of work related to automatic machine reasoning 

(knowledge, inference, planning), ML subfield tends to be specifically interested in pattern 

recognition and learning from data. 

Basically, the learning problem could be defined according to its output as (i) 

classification problems, in which the output assumes discrete values that represent categories; 

and (ii) regression problems, in which the output is real-valued and its relation with the input is 

given by a function. Essentially, there are three characteristics in which ML has achieved 

successful results: (1) a pattern exists; (2) it is not possible (or viable) to mathematically 

represent it; (3) there exists data relating variables.  

The performance of ML algorithms depends heavily on the representation of the data 

they are given (BENGIO; COURVILLE; VINCENT, 2013). Each piece of information 

included in the representation is known as a feature. Traditionally, a feature aims to extract 

useful information presented in the data by means of a high-level representation of the raw data 

while it reduces the dimension of the problem to be solved, achieving better performance in 

generalization for unknown data. Many AI tasks can be solved by designing the right set of 

features to extract for that particular problem, then providing these features to a simple ML 

algorithm. However, it is often difficult to know what features should be extracted. Manually 
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designing features for a complex task requires a great deal of human time and effort, which can 

consume greater resources of an entire community of researchers for pre-processing 

(GOODFELLOW; BENGIO; COURVILLE, 2016).  

ML methods could be broadly divided in: (i) supervised learning, (ii) unsupervised 

learning; and (iii) reinforcement learning. In supervised learning, each pattern is a pair, which 

includes an input object and a desired output value. In contrast, unsupervised learning models 

do not need an “expert” intervention and the model is able to find hidden structures in its inputs 

without knowledge of outputs (KOTSIANTIS; ZAHARAKIS; PINTELAS, 2006). In 

reinforcement learning, algorithms try to find the best ways to earn the greatest reward (MNIH 

et al., 2016). 

The most successful application of ML is, definitely, seen in supervised problems. ML 

models find relations between inputs and outputs, which allows its usage in context such as data 

mining, pattern recognition and forecasting problems, for instance. These contexts are 

particularly interesting because one has to work with big datasets and the task of preprocessing, 

data preparation and/or prediction can be undertaken by ML models (VOYANT et al., 2017).  

Considering the class of supervised learning, well-known methods are generalized linear 

models, Neural Networks (NN), Naive Bayes, Random Forest (RF) and Support Vector 

Machines (SVM) (VOYANT et al., 2017). Conversely to most of ML methods, such as NN 

and RF, that may be trapped on local minima, the SVM resolution entails a convex and 

quadratic optimization problem in which the Karush-Kuhn-Tucker (KKT) conditions are 

necessary and sufficient to provide a global optimum (MAIOR; MOURA; LINS, 2019). 

Therefore, details SVM are described in section 2.2  

2.2 SUPPORT VECTOR MACHINE 

According to Wang (2005), Support Vector Machine (SVM) is as a supervised learning 

method which aims at creating a mapping function between an input vector 𝒙 and an output 

scalar 𝑦 based on the training data set 𝐷 = {(𝒙𝟏, 𝑦ଵ), … (𝒙𝒎, 𝑦௠)}. The objective is to find the 

function 𝑓(𝒙) with the smallest penalization with respect to the deviation from the real data 

and, at the same time, as flat as possible.  

SVM, firstly proposed by Vladimir Vapnik, is based on the principle of the structural 

risk minimization, with its concepts built on the Statistical Learning Theory (VAPNIK, 2000). 

This means to solve a convex and quadratic optimization problem in which the Karush-Kuhn-

Tucker (KKT) condition are necessary and sufficient conditions to guarantee a global optimum. 
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The goal is not to look for the perfect alignment between the function 𝑓(𝒙) and 𝐷, but the best 

representation for the mapping (i.e. a trade-off between the data fitness and the generalization 

ability to predict new data), not requiring any assumption or previous information about neither 

the function behavior nor the relation between input and output. The regression hyperplane 

equation is represented by: 

𝑓(𝒙) =  𝒘𝑻𝒙 + 𝑏 (1) 

with 𝒙 expressing the input data, and 𝒘𝑻 and 𝑏 the coefficients of the model. To estimate 

its values, it is necessary to optimize (i.e. minimize) the regularized risk function provided in 

Equation ((2):  

min
ఠ,௕

 𝐶
1

𝑚 
෍ 𝜓ఌ(𝑦௜, 𝑓௜) +

1

2

௠

௜ୀଵ

𝒘𝑻𝒘 
(2) 

in which 

𝜓ఌ(𝑦௜, 𝑓௜) = ቄ
|𝑦௜ − 𝑓௜| − 𝜀          𝑖𝑓        |𝑦௜ − 𝑓௜| ≥ 𝜀    

     0                            otherwise
 (3) 

where 𝑦௜ is the 𝑖-th real output (i.e. the original data) while 𝑓௜ is the 𝑖-th estimated value. 

Equation (3) is known as the Vapnik’s 𝜀 -insensitive loss function, which implies a non-

penalization when the points are inside a tube with radius 𝜀. Hence, 𝜀 measures the performance 

in the training process related to the first term of Equation ((2). The second term of the same 

equation is used as a smoothness function of 𝑓(𝒙) and is related to the machine’s capacity of 

generalization represented by 𝒘𝑻𝒘. Yet, 𝐶 is a trade-off for penalization between the empirical 

risk and the model smoothness.  

In addition, the problem could be formulated using the primal-dual relation, which states 

that the solution from the dual problem is also solution for the primal one. In practice, the dual 

problem is the one actually solved and, from the KKT conditions, a global solution is achieved. 

For more information related with the primal-dual problem, see Wright (2011). Hence, the 

optimal estimated regression function 𝑓(𝒙) is obtained in terms of the dual problem from 

Equation (1) as follows: 

𝑓(𝒙, 𝛼, 𝛼∗)  = ෍(𝛼௜ − 𝛼௜
∗)

௠

௜ୀଵ

𝒙௜
்𝒙 +  𝑏 (4) 
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where 𝛼௜ and 𝛼௜
∗  are the dual Lagrange multipliers. To solve the linear regression, it is 

necessary to calculate the dot products, 𝒙௜
்𝒙, 𝑖 = 1, 2, … , 𝑚.  

To generalize and deal with non-linearity, mapping functions 𝛷(𝑥) are applied and the 

dot product, 𝛷்(𝑥)𝛷(𝑥), is solved in higher dimension. However, in addition to the selection 

of a proper mapping function, the explicit calculation of the dot products with mapped input 

vectors can be computationally expensive. In this way, dot products are replaced by kernel 

functions 𝐾(𝒙௜, 𝒙), , 𝑖 = 1, 2, … , 𝑚, defined in the input space that implicitly map 𝒙 into a higher 

dimension. One can see an interesting tutorial about kernel methods in Jäkel, Schölkopf & 

Wichmann (2007). Therefore Equation (4) becomes Equation (5): 

𝑓(𝒙, 𝛼, 𝛼∗) = ෍(𝛼௜ − 𝛼௜
∗)𝐾(𝒙௜ , 𝒙) + 𝑏

௠

௜ୀଵ

 (5) 

A common kernel function is the gaussian Radial Basis Function (RBF), which is 

expressed by 𝐾൫𝑥௜ , 𝑥௝൯ = exp (−𝛾ฮ𝑥௜ − 𝑥௝ฮ
ଶ

), where 𝛾 is also a model parameter. One of 

several advantages of RBF over others kernel functions is to provide great flexibility requiring 

just one parameter (Lins et al. 2013). In this thesis, SVM models are explored in section 4.2.1, 

as well as in section 3.3. Also, SVM is used for a specific task in section 5.3.2. 

2.3 DEEP LEARNING  

Conventional ML techniques, such as SVM, have already been successfully applied on 

a diversity of reliability problems (e.g. Rocco S. and Zio 2007; Moura et al. 2011; Souto Maior 

et al. 2016). Even so, Lecun et al. (2015) state that these common approaches have limitation 

on their ability to process natural data in their raw form and alternatives, such as Deep Leaning 

(DL), should be studied. Recent advances in deep neural networks, in which several layers of 

nodes are used to build up progressively more abstract representations of the data, have made 

it possible for artificial neural networks to learn concepts such as object categories directly from 

raw sensory data (MNIH et al., 2015)  

The current success of DL is directly related with the spread of cheap, multi-processor 

graphics cards or Graphics Processing Units (GPUs). GPUs are widely used for video games, 

inserted in a huge and competitive market that has driven down hardware prices. GPUs provide 

fast matrix and vector multiplications required not only for convincing virtual realities but also 

for training networks, where they can speed up learning by a factor of 50 and more 
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(SCHMIDHUBER, 2015). Hence, GPU computing allows increase the speed and decrease the 

training time when creating a DL model (VERSTRAETE et al., 2017).  

Inspired by biological observations on human brain mechanisms for processing of 

natural signals, DL have been on the spotlight of the academic community (CHEN et al., 2014). 

It is a specific field that attempts to learn high-level abstractions in data by utilizing hierarchical 

architectures (GUO; CHEN; SHEN, 2016). In contrast to most conventional learning methods, 

that considered using shallow-structured learning architectures, DL uses supervised and/or 

unsupervised strategies to automatically learn hierarchical representations in deep architectures 

(RANZATO; BOUREAU; LECUN, 2008). DL attracted wide-spread attention outperforming 

alternative ML methods since 2009, winning many official international pattern recognition 

competitions and achieving the first superhuman visual pattern recognition results in limited 

domains (CIREŞAN et al., 2012). It has presented better performance in a variety of problems 

such as image classification, natural sentence classification, and image segmentation than 

previous methods based on shallow architectures. 

There is no consensus on which problem size divides shallow learning (standards ML) 

and DL and discussions with experts have not yet yielded a conclusive answer. However, a 

notion is to consider networks with depth > 3 as DL once problems of depth > 10 are 

considered very DL (SCHMIDHUBER, 2015).  

Even though most DL techniques are capable of automatic feature extraction, great care 

must be taken when choosing which technique to use when dealing with a specific task 

(COFRE-MARTEL et al., 2019). Within these techniques, Convolutional Neural Networks 

(CNN) have proven to be better than to deep neural networks at obtaining a representation of 

the input data involving grid type data such as images or matrices. Details about this method 

are described in section 2.4. 

2.4 CONVOLUTIONAL NEURAL NETWORKS 

A standard artificial Neural Network (NN) is a class of ML algorithms inspired by the 

structure and function of the brain and consists of many simple, connected processors called 

neurons, each producing a sequence of real-valued activations. Input neurons get activated 

through sensors perceiving the environment while other neurons get activated through weighted 

connections from previously active neurons. Shallow NN-like models with few stages have 

been around for many decades (JAIN; MAO; MOHIUDDIN, 1996). For further information of 

NN, see Cheng and Titterington (1994). 
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Based on useful insights, architecture and results previously achieved by NN, the 

majority of DL models focus on training networks with many more hidden layers that are 

capable of hierarchal learning where simple concepts are learned in the lower layers and more 

abstract patterns in the higher layers of the network.  

Particularly, an operator that is especially interesting for high-dimensional data, such as 

images and time-series data, is convolution. Indeed, CNN, a dominant architecture of DL for 

image classification, can rival human accuracies in many tasks (VERSTRAETE et al., 2017). 

CNN uses hierarchical layers of tiled convolutional filters to mimic the effects of human 

receptive fields - on feedforward processing in early visual cortex - thereby exploiting the local 

spatial correlations present in images, and building in robustness to natural transformations such 

as changes of viewpoint or scale (MNIH et al., 2015).  

Conversely to fully connected layers, in a convolutional setting, each input neuron is 

not connected to each output neuron in the next layer, but is divided into locally connected 

segments instead (LANGKVIST; KARLSSON; LOUTFI, 2014). CNNs encompass special 

kinds of NN that include the feature extractor within its training process. The fact that CNNs 

turned the manual feature extraction design into an automated process is its primary feature and 

advantage. In an elementary view, CNN is a NN that uses a convolution operation in place of 

general matrix multiplication (KHAN; YAIRI, 2018). 

Even though the best achieved results comes for image representation, CNN could 

handle data that are in the form of different types of multiple arrays: 1D for signals and 

sequences (e.g. time series); 2D for images (e.g. videos); and 3D (e.g. volumetric images) 

(LECUN; BENGIO; HINTON, 2015). A typical CNN is composed of many layers of hierarchy 

with some layers for feature representations (or feature maps) and others as a type of 

conventional neural networks for classification (CHEN et al., 2014).  

The core layers of CNN, convolutional layers, creates a feature maps of the signal 

analyzed (e.g. an image) connecting with the previous layer with a set of weights called filter 

bank. Normally, most of architecture starts with convolutional layers to organize the units in 

feature maps and subsampling (pooling) layers to merge similar features into one feature. 

Subsampling layers reduce the sizes of proceeding layers by averaging pixels within a small 

neighbourhood (or by max-pooling) and is normally performed between two convolutional 

layers. Pooling also reduces the output dimensionality but keeps the most salient information.  

After multiple stacks of these layers are completed, the output can be fed into the final 

stage of the CNN, a fully connected feed forward NN (i.e. multilayer perceptron (MLP)). The 
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outputs of the final pooling layer are used as an input to map labels provided for the data 

(VERSTRAETE et al., 2017). 

The basic structure for CNNs is represented as follows Figure 1: Convolutional – 

Pooling – Fully Connected Layers. However, deeper architectures including sequences of 

Convolution-Pooling layers as well as layers for normalization and dropout, are commonly used 

(LIU et al., 2018). 

Figure 1 - Generic two-dimensional CNN  

 

In many applications, CNNs are currently responsible for pushing the state-of-the-art 

forward in unlikely related fields from speaker recognition (NAGRANI et al., 2020) and person 

identification (LI; JIANG; HWANG, 2020) to website categorization for e-commerce (BRUNI; 

BIANCHI, 2020), for example. For an interesting review of the history of NN and DL, see 

Goodfellow, Bengio, and Courville (2016). In this thesis, CNN models are explored in section 

4.2.2 as well as in section 5.3.  



25 

 

 

3 DEVELOPMENT OF REAL-TIME SYSTEM FOR AUTONOMOUS 

DROWSINESS DETECTION USING EYE ASPECT RATIO  

Some results discussed in this chapter have been published on the Probabilistic Safety 

Assessment & Management (Los Angeles) in 2018 and are under revision on the journal Expert 

System with Application in 2019. 

3.1 CONTEXT 

Nowadays, numerous interventions have been made by governments and industries 

around the world to improve process safety, with human reliability focusing its attention on 

risks generated by human errors with high impact of loss involved (BHAVSAR; 

SRINIVASAN; SRINIVASAN, 2017). Specially, consequences of performance failure by 

operators in safety-critical task scenarios had increased concerns and drove important research 

since an inattention or distraction could negatively affect the entire system, including the 

integrity of the people on it (MAIOR et al., 2018). 

Despite the highly reliable equipment, complex safety management regimes and modern 

automation and control system employed in industries, human operators still have a central role 

in the execution of complex tasks in which cognitive functions (e.g. working memory, attention, 

information processing speed) strongly influence their performance, particularly in emergency 

situations. In addition, high demands in life outside of work – as sleep disturbances and stress 

– rise as a challenge that may not allow humans for responding effectively to their tasks. Indeed, 

even temporary failure of cognitive and mental capacities can lead to serious consequences, 

especially when accurate and immediate response is required (ANSIAU et al., 2008). Hence, 

understanding the role human errors play in previous accidents is a key information to avoid 

happening again in the future (RAMOS et al., 2017).  

Several studies on alertness have already confirmed that, despite genuine intentions, few 

watch-keepers remain unwaveringly vigilant while engaged in monotonous monitoring tasks 

(MAKEIG; INLOW, 1993). Often, the cause of distraction could be related to some kind of 

tiredness such as mental fatigue and/or drowsiness. The distinction between both is that the 

former does not rapidly fluctuate over periods of a few seconds, while the latter does. In this 

way, the challenge remains to detect signals of drowsiness as promptly as the operator (user) 

starts to present its evidence. 
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Recognizing human activities from video is a remarkable applications of Computer 

Vision (CV) (TURAGA et al., 2008). Thus, it is possible to monitor performance of operator 

to ensure the correct execution of tasks, extracting fatigue related characteristics in real-time by 

using image/video processing (Vural and Akgul 2009, Rani, Subhashree, and Devi 2016). An 

important research domain in CV is object detection (BABENKO; MING-HSUAN YANG; 

BELONGIE, 2011), which has already been applied to different contexts such as surveillance 

and security (GONZÁLEZ GARCÍA et al., 2017), industrial control (MARTYNENKO, 2017), 

robotics (HADDADIN, 2014), among others. Indeed, the same concept is also used to track the 

human body (e.g. eye, mouth, arms) (LI et al., 2013b), recognize its shape and movement 

(MOESLUND; HILTON; KRÜGER, 2006), create diagnosis (WANG et al., 2010), and infer 

future behavior (ZELINSKY; PENG; SAMARAS, 2013). 

In this chapter, CV tools are used to extract and identify signals of abnormal states (i.e. 

drowsiness) observed in operator images/videos sensors. The goal is not to detect aspects and 

status after the failure happens, but proactively identify behaviors performed by the operator 

before it actually takes place, avoiding all disturbance caused by the error.  

Specifically, eye blinks detection plays an important role in systems that monitor human 

operator’s vigilance (Fernandez et al. 2016, Salehian and Far 2015). In this context, blink 

analysis has been object of study applied to memory performance (ZHANG et al., 2015), reflex 

reaction (ANOKHIN et al., 2003) and drowsiness detection (Schleicher et al. 2008, Verwey 

and Zaidel 2000). However, most works required specialized and highly intrusive machinery to 

collect data (e.g. biological signals such as electroencephalogram (EEG) and/or 

electrooculogram (EOG) (ROY et al., 2016). Others come with the CV approach, yet 

commonly still demands high computational costs/heavy hardware (KIM et al., 2017), having 

limitations related with user’s mobility and camera position (CAVUSCULU; YETIK; 

YEGINER, 2017), and/or requiring special devices to process (DEMENTYEV; HOLZ, 2017).  

Therefore, an adaptable method is created to detect drowsiness directly from an ordinary 

web cam is valuable. In order to evaluate blinks, it was used here a simple yet robust metric 

called eye aspect ratio (EAR), which does not require intensive signal and computer processing 

(such as EEG and EOG). Indeed, for the EAR evaluation, the proportion between height and 

width of the eye is calculated (i.e. higher values for open eyes and smaller for closed eyes) 

which easily extract a single feature from the whole image, reducing the amount of 

computational processing and storage memory required.  
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EAR has already been successfully adopted in works related with human alertness state 

(Soukupová and Cech 2016, W. O. Lee, Lee, and Park 2010). However, in this chapter, it was 

adapted and improved so that it could be applied not only for detecting blinks, but also to 

evaluate drowsiness in a real-time approach. Then, it would be possible to determine if a user 

(operator) is awake or sleepy based on the eye behavior.  

To that end, the ML approach was here adopted. Although it is not fully clear which ML 

method performs better for activity recognition, SVM has confirmed successful application in 

several areas including heterogeneous types of recognition and pattern analysis (Anguita et al. 

2012; Tripathy, Agrawal, and Rath 2016; I. D. Lins et al. 2013; Maior et al., 2016). Moreover, 

compared with recent DL methods (GOODFELLOW et al., 2016), SVM does not require 

powerful hardware and extensive training time, allowing usage on ordinary computers.  

Thus, a useful tool for high-risk environments in which safety-critical tasks involve 

significant levels of alertness, such as industrial control rooms in process plants (e.g. nuclear and 

oil and gas) and airport traffic control towers is developed. Indeed, the majority of accidents 

(over 80%) in the chemical and petrochemical industries have human failure as a primary cause 

(BORGHINI et al., 2014). Moreover, at the best of the author’ knowledge, there is no work of 

this nature and approach applied to those fields. Furthermore, the model is able to run in 

standard computers and could be extended to almost every all-day work in which computers 

are required (e.g. financial services, database administrator, software developer).  

3.2 COMPUTER VISION  

CV is an interdisciplinary field aiming to investigate and develop software with high-

level understanding from digital images or videos, describing the world that we see and to 

reconstruct its properties (SZELISKI, 2010). From the perspective of engineering, it seeks to 

automate tasks that the human visual system can do extracting information from images and 

videos (SONKA; HLAVAC; BOYLE, 2008). Information can mean anything from 3D models, 

camera position, object detection and recognition to group and search image content (JAN 

ERIK SOLEM, 2012).  

CV gathers knowledge from many fields, such as image processing, pattern recognition, 

mathematics and AI. One of its main goal is to enable computers to reproduce core functions 

of human vision, such as motion perception and scene understanding. Taking advantage of these 

visual characteristics, computer vision is the feasible and appropriate technology to treat the 

problem of the drowsiness detection (FLORES; ARMINGOL; DE LA ESCALERA, 2010). 
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In this context, in the last couple of years, camera-based drowsiness detection devices 

using lid movement parameters have undergone intensive development. However, many 

interesting ideas do not seem to get beyond prototypes partly due to difficulties brought by large 

inter-individual differences (Jacobé de Naurois et al. 2018, Schleicher et al. 2008), which are 

characterized by distinct behavior when comparing different subjects. Distinct facial 

characteristics, either race or ethnics, could seriously impact model accuracy, and, thus, a 

feedback approach was here developed (see section 3.3.1.2.). 

Fernandez et al. (2016) provide a valuable review of CV for system monitoring to detect 

attention. Authors define fundamental methods for face detection and tracking, as well as for 

facial landmark estimations, exploring algorithms for cognitive and visual distraction.  

A specific challenge is to deal with the tracking problem. As stated by Zafeiriou, Zhang, 

and Zhang (2015), face detection is deeply studied not only because of the challenging nature 

of face, but also due to the countless applications that require face detection as a first step. The 

first practical, and yet well-known, algorithm to provide real time object detection was 

described by Viola & Jones (VIOLA; JONES, 2001). Even though several new tracking 

methods have been developed based on the cascade Viola-Jones algorithm (LEE; LEE; PARK, 

2010), (WANG; GUO; CHEN, 2017), they still remain time consuming (JENSEN; LARSEN, 

2008). One possible solution is to improve classical approaches for human detection such as 

scale invariant feature transform (SIFT) (JAIN et al., 2015), local binary patterns (LBPs) 

(JUEFEI-XU; SAVVIDES, 2014) and histograms of oriented gradients (HOG) (BECERRA-

RIERA; MORALES-GONZÁLEZ; MÉNDEZ-VÁZQUEZ, 2017).  

Recently, deep convolutional neural networks (DCNN) appear as other possible 

solution, showing remarkable performance for object categorization (Krizhevsky, Sutskever, 

and Hinton 2012) with similar approach applied to face detection (VIJAYAN; SHERLY, 2019). 

DCNN and boosting based approaches using HOG/SIFT type features have common 

characteristics. Intuitively, it is possible to postulate that all DCNN layers contribute to the 

development of features invariant to face deformations as provided by classical methods 

(ZAFEIRIOU; ZHANG; ZHANG, 2015).  

However, the gains in performance brought by DCNN have their price, which also limits 

its use. Indeed, DCNN requires a learning process from a large-capacity database and is 

computationally intensive using GPUs for fast parallel computation (Kim et al. 2017, Gu et al. 

2018), which makes application in low-cost/standard computers difficult. In contrast, 

investigation of feature sets for human detection showed that locally normalized HOG 
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descriptors provide excellent performance relative to other existing non-computational 

demanding feature sets (DALAL; TRIGGS, 2005) and is particularly suitable to characterize 

facial expression peculiarities (CARCAGNÌ et al., 2015). As HOG descriptors are consistently 

used for object detection in CV, it was here adopted to perform facial landmark detection. 

3.3 APPLICATION  

Eyes, as one of the most salient facial features, reflect individuals’ affective states, focus 

of attention and is considered a remarkable information source in face analysis (SONG et al., 

2013). Moreover, compared with yawns and eyebrow rising (JIMENEZ-PINTO; TORRES-

TORRITI, 2012), eye-related metrics (e.g. blinks) are more reliable for drowsiness detection 

because gestures, such as laughing or talking with exaggerated lip movements, are easily 

misinterpreted, leading to false positives (BACIVAROV; IONITA; CORCORAN, 2008).  

After performing face and eye detection, blink monitoring could be executed in order to 

track user alertness. An alternative for blink detection is using multiple cameras, which provides 

satisfactory results (ESPINOSA et al., 2015). However, camera position alignment, calibration 

and apparatus demand large efforts to initialize models. Traditional blink detection methods 

using single and standard cameras (Salehian and Far 2015, John and Sharmila 2018) have also 

been proposed, but large distance from camera, illumination and high computational cost still 

seem to be a problem.  

A common metric used to evaluate eye opening and closeness is the percentage of eyelid 

closure (PERCLOS) (MCKINLEY et al., 2011). However, limitations in extracting pupil 

details, such as the problem of proper lighting, normally requires an infrared camera (MITTAL 

et al., 2016). Moreover, PERCLOS pre-defines a threshold to characterize user attention 

(KANG, 2013), which could be insufficient considering the inter-individual characteristics. 

To deal with these problems, the use of simple, yet efficient, aspect ratio metrics (such 

as EAR) could represent an interesting alternative. For instance, Batista (2007) used face aspect 

ratio to estimate human face orientation and EAR to detect blink, emphasizing the variability 

of face and eyes shapes as an important challenging task. (LEE; LEE; PARK, 2010) and 

(RAKSHITA, 2018) also adopted EAR as one metric to detect blinks achieving interesting 

results related with robustness. However, authors used a fixed EAR threshold to determine a 

blink, which is not realistic dealing with the distinct people (i.e. inter-subject variety) and 

characteristics (e.g. natural eye openness). In Zhao et al. (2015), EAR is used to detect blinks, 
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along with other eye-related variables. Even with satisfactory performance, authors complain 

about information processing velocity, which does not allow real-time usage.  

In this chapter, low computational demanding methods to provide facial landmark 

recognition (i.e. HOG-based descriptors) and blink detection (i.e. EAR) was used, which allows 

real-time performance in standard computers. Moreover, none of the previously mentioned 

works relates blink pattern to drowsiness detection. Therefore, the developed approach allows 

usage of blink patterns analysis to warning user alertness in a real-time drowsiness detection.  

3.3.1 Methodology 

Figure 2 represents the core reasoning of the proposed methodology, which is structured 

on three main parts: (1) eye detection, (2) EAR calculation and blink classification; and (3) real-

time drowsiness detection. Basically, EAR values are calculated and stored in each frame. To 

include the time dimension (i.e. not consider only a single image) and based on the duration of 

a standard blink (0.3-0.4 seconds, according to Bacivarov, Ionita, and Corcoran (2008)), a 

specific number of consecutive EARs were concatenated and used as input for an SVM model. 

Then, based on established blink pattern, it would be possible to determine whether the user is 

drowsy. If so, a sound and warning message should be emitted then. The first decision box in 

Figure 2 represents the real-time classification, i.e., the procedure of detection is repeated every 

pre-determined number of frames. The second decision box is related with the decision rule to 

detect and warn drowsiness. Further details for every main part are described next. 

 
Figure 2 - Drowsiness detection methodology proposed for real-time monitoring 

 
Source: The Author (2020) 



31 

 

 

3.3.1.1 Eye detection 

The first step in constructing the real-time model for drowsiness classification is to 

locate the user’s eye. To that end, dlib library (KING, 2003) was used for facial landmark 

estimation based on Kazemi and Sullivan (2014), which already adopts HOG and linear SVM. 

The library generates landmarks for the entire face, pictured as green dots in Figure 3. The 

landmarks are adaptable to different human faces and are not affected by considerable fast 

movements. 

Figure 3 - Landmarks generated along the face. 

 

Source: The Author (2020) 

3.3.1.2 EAR calculation and blink classification 

The previously described library provides landmark for the entire face, which are useful 

in other specific contexts. For example, information about head pose and gaze direction are 

used in literature to detect driver distraction (i.e. deviation from the road certainly represents a 

misbehavior (KAPLAN et al., 2015). In the developed case (i.e. working with a computer), this 

specific information could mislead analysis because communication and interaction inside a 

control room, which requires deviation from the screen, should not necessarily be interpreted 

as misbehavior. Moreover, considering other face features may provide redundant information 

and increasing computational cost, which could compromises real-time monitoring with no 

consistent gain in drowsiness detection (JIMENEZ-PINTO; TORRES-TORRITI, 2012). 

Hence, in the model, only the eye-related landmarks are used.  

Then, here, EAR, the proportion between width and height of the eye, was used based 

on its landmarks; see Equation (6). Figure 4 depicts all landmarks used in the EAR calculation. 

Unlikely to traditional CV methods for computing blinks, which normally implies in searching 

for the whites of the eyes and determine if they disappear for a period, it was possible here to 

easily (i.e. with low computational cost) extract an eye-based variable and make inference based 

on its value.  
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𝐸𝐴𝑅 =  
‖𝑝ଶ − 𝑝଺‖ +  ‖𝑝ଷ − 𝑝ହ‖

2‖𝑝ଵ − 𝑝ସ‖
 (6) 

Figure 4 - Eyes landmarks  

 

Source: Adapted from Soukupová and Cech (2016) 

EAR is estimated for each frame of the video streaming. Therefore, EAR decreases 

when user closes the eyes, increasing to a normal level when eyes are open again. This 

methodology is used to compute blinks as well as eye openness. For the construction of the 

drowsiness detection model, two different blink detection methods proposed by Soukupová and 

Cech (2016) were tested. However, modification and improvements were done for both 

methods to differentiate both short and long blinks.  

The first method is called threshold method because a fixed limit was established and if 

user’s EAR becomes lower than it for a particular number of frames (e.g. five consecutive 

frames for short blinks; 20 consecutive frames for long blinks), a blink is detected. 

Nevertheless, in practice, a single threshold does not suit every user since each person has a 

‘natural EAR’ due to his (her) own face characteristics. A possible, and tested solution, was to 

set a calibration procedure to weigh EAR from a neutral face (e.g. when someone is reading) 

and a smiling face (e.g. when someone takes a picture). The aim was to capture EAR patterns 

from the natural face and from a distinct facial expression with subtle changes. Nonetheless, 

even after calibration, this approach leads to many false positive warnings because trivial 

expressions (e.g. talking) tended to decrease the EAR. Hence, this method was not considered 

robust and suitable for drowsiness detection.  

Then, the second method has been considered: EARs from 15 consecutive frames were 

concatenated to create a user’s state feature. This range of frames covers blink duration 

considering distinctive tasks possibly performed by users (e.g. reading texts, driving, 

performing vigilance task) as stated by Bacivarov, Ionita, and Corcoran (2008), Divjak and 

Bischof (2009), Ingre et al. (2006) and Kaida et al. (2006). 
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This feature, composed by 15 consecutive EARs, is classified into three categories: open 

eye, short blink or long blink (0, 1 and 2 respectively). Similarly to Maior et al. (2018), it was 

only considered a blink if the touch of eyelids occurred in the five central frames of the state 

feature (i.e. from the 6th to the 10th frame of the 15 selected frames). With this procedure, the 

same blink is prevented from being computed twice or more when the detection model is 

running in real time given that the model selects inputs every 5 frames.  

Next, SVM is applied for classification purpose. SVM is a notable learning algorithm 

that creates an unknown mapping function of an input vector 𝒙 and an class 𝑦 based on the 

training data set 𝐷, not requiring any assumption or previous information about neither the 

function behavior nor the relation between input and output (WANG, 2005). Specifically, the 

model uses a 15-dimension input (15 consecutives EARs) and returns a category  𝑦 (i.e. open 

eye, short blink or long blink). 

Thus, an internal experiment was performed to generate the database used in the training 

process. Subjects were asked to read a text displayed on the screen during few seconds. Then, 

they were also demanded to stay with their eyes closed for a few seconds, representing the long 

blinks. The experiment aimed to identify both EAR behavior when subjects kept their eyes open 

and blinked (during the reading) as well as their closed eyes pattern related to long blinks. 

From the total of 282 collected samples, 109 presented open eyes, 95 short blinks, and 

78 were related to long blinks, comprising data of all possible state feature (i.e. 0, 1, 2). Yet, 

the database includes samples from distinct gender users with multiple physical characteristics 

(e.g. beard, mustache, glass wearing) also considering different head positions and facial 

expression. Information from each subject on age (avg. 34; median 30), gender (7 males; 6 

females), beard/mustache (5 yes, 8 no) and use of glasses (5 yes, 8 no) are presented in Table 

2. 

Table 2 - Training database information 

Subject Age Gender 
Beard or 
mustache 

Glasses 

1 25 M yes no 

2 27 F no no 

3 53 M no yes 

4 59 F no yes 

5 23 M yes yes 

6 22 F no no 
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Subject Age Gender 
Beard or 
mustache 

Glasses 

7 23 M yes no 

8 56 M yes no 

9 21 M no no 

10 37 F no no 

11 33 F no no 

12 33 F no yes 

13 30 M yes yes 

Source: The Author (2020) 

Thirteen distinct users were used to provide EAR data since it usually differs from one 

person to another and, in that way, the algorithm was able to learn from varied situations (i.e. 

inter-individual differences). Figure 5 depicts every single input containing 15 EARs used in 

the training set, where solid lines represent averages in the three possible classifications. It is 

clear to analyze the expected eye behavior: for open eyes (blue), EAR is large and has little 

variation during the 15 frames; for short blinks (green) EAR quickly decreases during the 

closing of the eyes (which happens in the 5 central frames) and increases during the opening of 

the eyes; and for long blinks (red), EAR is small and has little variation during the 15 frames. 

Figure 5 - EAR behavior for the three possible classifications. 

 

Source: The Author (2020) 

Next, SVM was trained with this dataset. Yet, SVM requires a set of parameters in its 

formulation and its adequate estimation also demands attention. Then, Optunity (CLAESEN; 

SIMM; JUMUTC, 2015), an optimization program, determined a suitable set of parameters that 
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best adjusts the mapping function. Performing a grid search algorithm, SVM’s parameters (C = 

10; γ = 0.4) were estimated considering radial-basis function kernel. All methodology and 

algorithms here presented were developed in Python language, supported by the Scikit-learn 

package (PEDREGOSA; VAROQUAUX, 2011).  

Then, a test dataset was created to evaluate the performance of the learned model when 

predicting unseen data. It is worth mentioning that all test data was generated in the same 

condition (i.e. same position of camera and small variations of proximity), although still 

considered different gender, glasses and beard/mustache, as well as illumination. The test 

dataset contains 98 samples, represented by 28 open eyes, 34 short blinks, and 36 long blinks.  

Even though SVM model demonstrated consistent values in training and test phase 

(Table 3), an approach to further improve its efficiency was developed. The idea focused on the 

inter-individual differences, which may reduce model’s performance due to variability of 

distinct users. Given that  

short and long blinks decrease EAR, the challenge remains in defining how severe is 

this decrease to correctly indicate a blink. Indeed, EARs differences among distinct users 

mainly occur in open eyes, and hence this information is used to create a more personal model. 

Specifically, during runtime, SVM pre-trained model automatically classifies user’s 

new data (i.e. EARs sequences) into a particular class (i.e. 0, 1, 2). Then, EARs sequences 

classified as open eyes (i.e. 0) are stored until a set of a specific size (e.g. 20%) of training data 

is collected. It is important to emphasize that each EARs sequence classified as 0 is not 

necessarily selected, but only those surrounded by other sequences of 0 (i.e., data in possible 

intermediary states between open eyes and blinks is not used). That strategy was adopted to 

avoid that wrong classifications provided by the initial model highly influence the adjusted 

approach. 

Then, this user-specific data is aggregated with existing training data to train a new SVM 

model. This process was called personal feedback because the initial SVM model is fed with 

individual information. Then, this updated model is used for state detection, now adapted for 

the current user. Considering the accuracy, the personal feedback model provides better 

predictions in all classes (i.e. 0, 1, 2), as presented in Table 3. 

Table 3 - Accuracy of the proposed models 

 Training (%) Test (%) 

 0 1 2 Avg 0 1 2 Avg. 
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SVM 98.1 90.6 94.8 94.0 96.4 91.2 91.7 92.9 

Feedback 

SVM 
99.1 95.8 97.4 97.5 100.0 97.1 100.0 99.0 

Source: The Author (2020) 

3.3.1.3 Real-time drowsiness detection and warnings 

It is important to mention that, even though classification uses an input of approximately 

0.7 seconds (15 EARs) to give temporal notion, the model processes new sequences every 0.21 

seconds (5 EARs) and one output of ‘long blink’ does not represent drowsiness. To infer about 

drowsiness state, more information is required.  

Hence, to deal with drowsiness detection, it was not considered the classification of each 

output individually, but the whole pattern provided by them. Thus, SVM outputs (i.e. sequence 

of 0, 1 and 2) are used to determine whether the user is drowsy or not. Based on the related 

literature (STERN et al., 1996), two different rules were considered as drowsiness: 

Rule 1: If within a period of 60 seconds, the proportion between the ‘2’ 

output (long blinks) and the sum of ‘1’ and ‘2’ outputs (total number of blinks) is 

higher than 25% (i.e. 
#ଶ

#ଵା#ଶ
 ≥ 0.25); 

Rule 2: If 5 or more consecutive outputs (i.e. predictions of SVM) are 2 

(long blink). This happens when the user stays with their eyes closed while face 

tracking is happening. 

 

Fundamentally, the first situation occurs when the user slowly blinks several times in a 

short period. According to Caffier, Erdmann, and Ullsperger (2003), consecutive long blinks 

are highly correlated with first stages of drowsiness. The second rule in turn deals with 

continuously closed eyes (i.e., the user keeps the eyes closed for a long period). In this context, 

a lapse is defined as a failure to react or any reaction exceeding 500 msec and is often used as 

primary outcome measures of psychomotor vigilance tests (PVTs) (Belenky et al. 2003, Lim 

and Dinges 2008). Hence, for the second rule, the duration of two minimum lapses (i.e. at least 

one second) was considered. 

If either situation is detected, a notification (visual and sound) pops up, warning the 

possible state of drowsiness, as presented in Figure 6. This message aims at warning users about 
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their own state and avoid inattention, being refreshed in a user-defined minimum interval if the 

drowsy state remains. 

Figure 6 - Drowsiness warning screen and notification. 

 

Source: The Author (2020) 

 

3.3.2 Model Validation 

In order to validate the drowsiness model, tests were proceeded with a separated and 

public database. The "ULg multimodality drowsiness data-base", also called DROZY 

(MASSOZ et al., 2016), is a database containing various types of drowsiness-related data 

(signals, videos, etc.) and intended to help researchers to carry out experiments, and to develop 

and evaluate systems (i.e. algorithms) in the area of drowsiness monitoring. 

3.3.2.1 DROZY database 

In DROZY, fourteen subjects independently performed three successive 10 minute long 

PVTs, during which a light was randomly turned on every few seconds and the subject should 

press a button as soon as the light appears, while their reaction time (RT) were registered 

(DINGES; POWELL, 1985). In safety-critical tasks, the PVT light may represent a situation 

when an alarm goes off in a control room showing a disturbance in the operation process (e.g. 

temperature and/or pressure rise).  

These PVTs occurred in two consecutive days under conditions of increased sleep 

deprivation induced by acute and prolonged waking (see Figure 7). In fact, the total sleep 
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deprivation time between the first and third PVTs was about 28 to 30 hours (MASSOZ et al., 

2016).  

Figure 7 - PVT procedure in DROZY. 

 

Source: The Author (2020) 

In DROZY, subjects were also asked to fulfill a Karolinska sleepiness scale (KSS) 

(ÅKERSTEDT; GILLBERG, 1990) form, which is a widely established method to measure the 

subjective level of sleepiness at a particular period of the day (KAIDA et al., 2006). Indeed, 

KSS is a validated assay of subjective sleepiness, highly sensitive and commonly used for 

assessing overall tiredness (Åkerstedt et al. 2014, Ding et al. 2019, Wilson et al. 2019). The 

KSS scale is presented in Table 4 (ÅKERSTEDT et al., 2014). Thus, subjects indicate which 

level best represents their psychophysical state at the beginning of PVT.  

Table 4 - KSS Scale for auto evaluation of drowsiness 

Karolinska Sleepiness Scale (KSS) 

1 Extremely Alert 

2 Very Alert 

3 Alert 

4 Rather Alert 

5 Neither Alert nor Sleepy 

6 Some Sights of Sleepiness 

7 Sleepy, But No Effort to Keep Awake 

8 Sleepy, Some Effort to Keep Awake 

9 Very Sleepy, Fighting Sleep 

Source: The Author (2020) 

 

The conventional mental fatigue measurement methods can be classified into two 

categories: subjective and objective. In the former, subjects rate their level of mental fatigue 

(e.g. KSS), while the latter assesses mental fatigue via quantifying subjects’ performance for a 
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specific task (e.g. RT in the PVTs) (Sandberg et al. 2011, Cole 1982, Lefkovits, Lefkovits, and 

Emerich 2017). There is a general agreement that these conventional measurement methods can 

have good validity and reliability (ZHANG et al., 2017). The usage of RT as well as the KSS 

as measurement of alertness performance is well-known in literature (FRANÇOIS et al., 2016), 

which allows the use of both information provided by DROZY.  

In the validation procedure, the model uses videos as real-time input to detect whether 

the subject is drowsy or not; Figure 8 exemplifies one of the videos used. Even though initially 

containing 14 subjects, each one performing three PVTs (PVT1, PVT2, PVT3), DROZY does 

not provide complete information (e.g. videos; PVTs performance) of all experiments, which 

reduces the amount of useful data in those cases. 

 

Figure 8 - Validation video from DROZY 

 

Source: The Author (2020) 

Yet, it is worth mentioning that in DROZY, the camera was located just below the 

screen, a different position from a standard computer cam (above the screen), in which the 

model was trained. This situation caused the eye tracking to be very sensitive. Moreover, videos 

were recorded in different frames per second (15 and 30 FPS), which is a few frames different 

from the one used (~ 23 FPS) to train the model, turning out to be an even more challenging 

validation set. Despite those remarkable differences, the model could still provide interesting 

results, as shown next. For further information about the experiment and DROZY dataset, see 

Massoz et al. (2016). 
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3.3.2.2 Inter-subject results 

According to Table 4, it is expected that lower KSS levels correspond to situations 

where the subjects do not have reduced performance due to drowsiness, while higher KSS levels 

represent possible states of sleepiness. Then, the model evaluates people in different stages of 

alertness (e.g. awake and drowsy) such as in Samiee et al. (2014). In this way, there were 8 

subjects who classified themselves as one of the first three stages of alertness (levels 1, 2 or 3 

in Table 4) when performing PVT1. DROZY also contained 10 videos in which subjects believe 

to employ some or huge effort to stay alert, representing one of the last three phases of KSS 

(levels 7, 8 and 9) related with videos during PVT3. The specific KSS classification for each 

object could be seen in Table 5.  

To tackle the FPS variability, adaptation of the model to process videos with its specific 

recorded rate (e.g. 15 and 30 FPS) were done, with all analysis lasting around 10 minutes. This 

approach represents the ‘real duration’ of the experiment, independently of the FPS rate of the 

camera.  

To evaluate the aggregated performance (i.e. considering inter-subject analysis), PVT1, 

performed at the beginning of the drowsiness experiment, and PVT3, carried out at the end of 

the same experiment, were investigated for each subject. The ground truth of no warning for 

subjects in PVT1 and at least one warning for subjects in PVT3 is defined for each subject. 

Given that, the model warned correctly in 94,44% of the videos, which demonstrates robustness 

despite the FPS change. The number of warnings for each PVT video in DROZY database are 

also shown in Table 5, which provides an important analysis to verify the model consistency.  

Table 5 - KSS classification and number of warnings emitted for all subjects and PVTs considered 

 PVT1 PVT3 

SUBJECT KSS 
warnings 
emitted 

KSS 
warnings 
emitted 

1 3 0 7 11 

2 3 0 - - 

3 2 0 - - 

4 - - 9 2 

5 3 0 8 0 

6 2 0 7 19 

7 - - 9 33 

8 2 0 8 1 
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9 - - 8 26 

10 3 0 7 7 

11 - - 7 28 

12 2 0 - - 

13 - - - - 

14 - - 8 34 

MEAN 2.5 0 7.7 16.1 

‘-’ denotes a video not analyzed (i.e. KSS was not 1, 2 or 3 for PVT1 or 7, 8 or 9 for PVT3). 

Source: The Author (2020) 

 

Despite tracking difficulty due to different camera position and image characteristics - 

color, brightness, presence of variety of electrodes (e.g. compare Figure 6 and Figure 8) - no 

warning was emitted for any subject performing PVT1, with zero false positive. Moreover, in 

none case PVT1 had more warnings than PVT3, which is compatible with the increase of 

drowsiness. Regarding sleepiness, in 90% of the PVTs, the model warns signs of drowsiness. 

Moreover, looking at the mean number of warnings for PVT1 and PVT3, the difference is 

considerably high, which is in accordance with the KSS and the experiment described in 

DROZY. 

3.3.2.3 Specific alert-drowsiness subject results  

Further analysis was done for specific subjects that went from alertness (levels 1, 2, 3) 

to drowsiness (levels 7, 8, 9) states through PVTs, which allows a direct comparison between 

their performance in both states. In other words, four subjects (i.e. subjects ‘1’, ‘6’, ‘8’, ‘10’) 

for which the drowsiness level increase from PVT1 to PVT3 were analyzed. Their performance 

on each PVT and the model’s warning are summarized in Table 6. 
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Table 6 - Subjective and objective drowsiness-related metrics for all specific subjects analyzed 

Subject PVT 

Subjective 
metric 

Objective metric 
# warnings emitted 

by the model 
KSS Level # Lapses 

RT mean 
(in s) 

RT variance 
(in 10ିଷ s) 

1 
PVT1 3 0 0.25 2.10 0 

PVT3 7 1 0.29 8.34 11 

6 
PVT1 2 2 0.34 1.94 0 

PVT3 7 40 0.50 12.63 19 

8 
PVT1 2 3 0.35 2.44 0 

PVT3 8 23 0.45 12.79 1 

10 
PVT1 3 3 0.35 2.25 0 

PVT3 7 7 0.39 6.92 7 

Source: The Author (2020) 

As previously mentioned, subjective and objective information to confirm the 

drowsiness state of a subject were gathered. As a subjective (or qualitative) metric, KSS 

evaluation was used, while for objective (or quantitative) metric, RT mean, RT variance and 

the number of lapses (i.e. when RT is greater than 0.5 seconds) were analyzed. Moreover, the 

Wilcoxon Signed-Rank test for paired samples (HOLLANDER; WOLFE; CHICKEN, 2014) 

verified whether the median of the differences between RTs in PVT3 and PVT1 was greater 

than 0 for each of the four subjects. Considering a significance level of 𝛼 = 0.05, the null 

hypothesis was rejected in all four cases (p-value < 0.05) confirming that RTs are greater when 

the subject is drowsy. Thus, these metrics were used as performance indicators as it is 

commonly seen in drowsiness experiments (Peiris et al. 2005, Kaida et al. 2006). 

For example, in PVT1 of subject ‘6’ (KSS = 2), the RT mean was 0.34 seconds, while 

this average increases more than 47% up to 0.5 seconds in PVT3 (KSS = 7). Further, in PVT1, 

only in 2 instances the user had RT higher than 0.5 seconds (i.e. lapse), while in PVT3, this 

value rises 20 times, up to 40, which confirms the decreasing performance when drowsy. For 

this subject, the model provided drowsiness warnings 19 times in PVT3, whereas no alert was 

emitted during PVT1, being very consistent with the subject state. 

The performance of the remaining three subjects could also be seen in Table 6. Here, 

comments on the intrinsic inter-subject variance, which normally provides individual results, 

can be done. For example, subject 1 presented just one lapse during PVT3, even though its KSS 

was 7. Also, its mean RT only increased 0.04 seconds between PVTs, which implies that even 
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feeling drowsy, performance remained quite effective. Despite that, the model presented 

warnings for PVT3 and none was emitted for PVT1, which is considerably robust. A similar 

analysis could be done for the other subjects in Table 6. 

Other interesting characteristics are observed looking at the variance of the RTs. For 

subject ‘6’, for example, an increase of more than 6 times is seen between PVT1 and PVT3 (i.e. 

from 1.94 to 12.63 - in 10ିଷ s), which is clearly depicted in Table 6. This behavior indicates 

that, during PVT3 (almost 10 minutes), subject ‘6’ greatly varies its performance, even though 

it is generally worse as compared with PVT1. Moreover, during PVT3, there are moments when 

subject ‘6’ is even more prone to drowsiness. Figure 9 helps to understand this pattern and how 

the model identified which are the critical moments of drowsiness.  

Figure 9 - Timeline of warnings emitted by the model (superior) and the RT (inferior) of subject ‘6’ 

(green line denotes PVT1; red line denotes PVT3). 

 

Source: The Author (2020) 

Firstly, difference in performance is easily observed when comparing green and red 

lines (i.e. RT in PVT1 and PVT3, respectively) in Figure 9. Moreover, looking only at the red 

line, one can identify a worse behavior happening in the last part of the test. For this particular 

PVT, during the interval of 06:46 to 09:26 (i.e. 3 minutes), subject ‘6’ presented 17 lapses (i.e. 

mean of 5.66 lapses/minute), which is more than 40% higher than the average number of lapses 
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per minute in the video (4 lapses/minute). This represents a specific and critical stage, where 

the subject had greatly lost performance. During the same interval, the model warned 

drowsiness 18 times due to Rule 1, which indicates a continuous stage of drowsiness. One alert 

was emitted once in the beginning of video due to Rule 2, which could possibly be seen as an 

early pattern of drowsiness. A similar analysis could be done for the other subjects, with the 

model remaining consistent with the KSS evaluation and performance provided by the RT. 

3.4 DISCUSSION 

An ML-based model to automatically identify drowsiness patterns of a user is here 

proposed. The method uses face landmarks to estimate EAR, and then applies SVM to classify 

the state feature in a low-cost processing real-time approach. This SVM model was upgraded 

with specific information from the user by means of personal feedback. Then, decision rules 

derived from studies of neuroscience were adopted to determine whether the user was drowsy 

or not. 

The model was externally validated using the database DROZY. In inter-subject 

analysis, the model provided 94,44% of accuracy, considering whether subject was awake or 

drowsy. Moreover, for specific subjects, the approach strongly alerts about crucial moments in 

drowsiness state, proving to be efficient and reliable using solely an ordinary web camera. Still, 

the application is physically non-intrusive and could be run alongside other programs in a 

personal computer without noticeable practical performance impact, allowing to enhance safety 

in monotonous activities that demand high levels of alertness. 

Despite the difference in FPS and position of camera, the model presented great results 

on DROZY. However, there is still room for improvement. Indeed, given that the model was 

developed to be used for a standard computer web camera (often located at the top of the 

screen), track missing (e.g. no alerts for subject ‘5’) was noticed in the validation test. 

Specifically, with this kind of view (bottom), tracking was not as robust as it is from the top 

view, which makes the model present poorer performance when compared with the internal 

validation done in the training conditions. It is expected to overcome problems by enhancing 

tracking algorithm of bottom parts of the face (e.g. chin, neck), without losing real-time 

performance. 

Furthermore, it is important to mention that even if subjects classify themselves with 

some sort of sleepiness (i.e. stages 7, 8 or 9 in KSS) and present high RT, this does not 

necessarily mean their eyes’ pattern presented image evidence to reveal their actual alertness 
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state. People often try to compensate effects of fatigue so that performance appears to be normal 

(RAMOS et al., 2017) (e.g. keeping the eyes widely open). This is a limitation of the model 

since it uses only images (videos) as drowsiness evidence. 

As a future work, comparison from monitoring of other facial landmarks (e.g. mouth 

tracking) in the drowsiness detection method (OMIDYEGANEH et al., 2016), still keeping 

real-time processing should be done. Yet, a possible consideration is to train the model with 

image/videos with camera in different positions (e.g. below as in DROZY) and different FPS. 

Moreover, another approach is to construct the model with longer state features of EARs (e.g. 

using 25 frames instead of 15) in order to provide even more robustness about the actual drowsy 

state, being careful to notice that it possibly would enhance the computational cost. 
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4 METHODOLOGIES FOR ESTIMATION OF REMAINING USEFUL LIFE FROM 

VIBRATION SIGNAL 

Some results discussed on this chapter have been published on the journal Eksploatacja 

i Niezawodność - Maintenance and Reliability and on the European Safety and Reliability 

Conference - Hannover in 2019. 

4.1 CONTEXT 

Nowadays, growth on the expected demand of distinct industrial sectors often requires 

uninterrupted production, keeping the operating system usage as higher as possible. In those 

complex systems, a fault in a specific component quickly produces chain reaction and induces 

damage on other components. Such unexpected faults lead to machine break down, resulting in 

economic loss and even person safety threat (GUO et al., 2017).  

Hence, technology had rapidly advanced to create a variety of cost-efficiently sensors 

and tools to provide real-time information (i.e. data) of specific systems (MAIOR; MOURA; 

LINS, 2019). Specifically, the massive amount of industrial data can be used for monitoring 

purposes, as well as to determine the health state of a system and thus support implementation 

of preventive actions before catastrophic failures, providing new possibilities for improvement 

of reliability and efficiency (Cofre-Martel et al. 2019, Ren et al. 2017). 

In this context, Prognostic and Health Management (PHM) aims to monitor degradation 

in engineering systems, understand when failure may occur and provide a cost-effective 

strategy for scheduled maintenance (MAIOR; MOURA; LINS, 2019). One of the main 

challenges faced by industries is early detection of faults in machinery (SAN MARTIN et al., 

2019).  

System prognosis is a key factor within the condition-based maintenance strategy and 

has been highlighted in different fields of science (Widodo and Yang 2011; Sutharssan et al. 

2012). In this context, Remaining Useful Life (RUL) is a rather common measure used to 

characterize equipment performance (SIKORSKA; HODKIEWICZ; MA, 2011). According to 

Si et al. (2013), RUL is the useful life left at a particular time of operation, and is typically 

random and unknown. In fact, RUL is related to several factors (e.g. current degradation state, 

operating environment, system function) and should be estimated from available sources of 

information such as condition and health monitoring sensors.  
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Different signals can be collected in order to track the degradation of a system, and then 

build an accurate relationship between the current health condition state and RUL. Many signals 

(e.g. vibration, acoustic emission, temperature) can represent the evolution of degradation, and 

their analyses are as necessary as arduous (Chang et al., 2018; El-Thalji and Jantunen, 2015; 

Ambhore et al., 2015).  

However, the enormous number of environmental, process and operating variables 

influencing the desired system (e.g. health status of a machinery) makes the determination of 

specific contribution of each one impracticable. Moreover, more complex, high-dimensional 

and noisy real-world time-series data cannot be described with analytical equations with 

parameters to solve since the dynamics are either too complex or unknown (TAYLOR et al., 

2010). Even though there is no universally accepted best model to estimate RUL (LIAO; 

KÖTTIG, 2014), current promising statistical methods have dealt with real-time big data 

(BOUSDEKIS et al., 2015).  

4.2 APPLICATION  

In this chapter, two approaches were considered: an ML-based methodology and a DL-

based methodology. Both approaches were applied to a real bigdata set provided by FEMTO-

ST Institute generated in the IEEE PHM 2012 Data Challenge focused on the estimation of the 

RUL for bearings based on vibration signals (NECTOUX et al., 2012). The data results from 

experiments carried out on a laboratory experimental platform (PRONOSTIA), that enables 

accelerated degradation of bearings under constant and/or variable operating conditions, while 

gathering online health monitoring data (e.g. vibration).  

The experiment main objective was to provide data that characterize the degradation of 

bearings along their complete operational life (until their total failure). Yet, considering the 

nature of a PHM challenge, data was complex and tricky, which certainly jeopardize the 

prediction capacity of the proposed models. The database have become popular during recent 

years in distinct types of applications (Ren et al. 2018; Mao et al. 2018, Fumeo,Oneto, and 

Anguita 2015; Boškoski et al. 2015). For further information about the dataset, see Nectoux et 

al. (2012). 

This application aims to replicate exactly the IEEE PHM 2012 Data Challenge, which 

presents unclear end-of-life signature and unbalanced dataset (HUANG et al., 2017), for two 

specific bearing. In this case, one bearing, here called ‘Train Bearing’, was used for training 

purpose and presented vibration data until its failure. It had 2,803 recordings, each one 
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containing 2,560 points for horizontal vibration and other 2,560 points for vertical vibration. 

Vibration data provided for other bearing, here called ‘Test Bearing’, consisted of 1,802 

records, also with 2,560 horizontal and vertical vibration points, each. In this case, only 

truncated data was provided and the challenge was to estimate the correct RUL based on its 

initial degradation behavior.  

For both ML and DL methodology, it is not expected the direct point prediction to be 

enough precise due to the high variability of the data. However, the trend of all predictions 

should express the realistic RUL estimation, as seen in Figure 10 (SUTRISNO et al., 2012). 

Comparison of ML and DL models are presented in section 4.2.3. 

Figure 10 - Expected estimated RUL behavior. 

 
Source: Adapted from Sutrisno et al. (2012) 

4.2.1 ML methodology 

As in this thesis, several SVM-based models (Soualhi, Medjaher and Zerhoun 2015; 

Saha, Goebel and Christophersen 2009; Patil et al.,2015) have been proposed to predict RUL. 

However, once SVM learning performance strongly depends on the quality of the input data 

and the direct use of the original series as input variables could consider irrelevant information 

(e.g. noise) and/or miss important features, pre-processing methods could be used to improve 

data input quality (MAIOR et al., 2016).  

A notable pre-processing technique is Empirical Mode Decomposition (EMD), which 

decomposes the original series into a sum of Intrinsic Mode Functions (IMFs) and a final 

residue. Each IMF represents a frequency-amplitude modulated narrow band, normally 

associated with a specific physical process, while the residue has intrinsic attributes related with 

flatness and physical meaning of the signal trend (YANG; YU; CHENG, 2007). According to 

Huang et al. (2014), EMD is adaptive, empirical, direct and intuitive. For further information 
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about EMD and others pre-processing techniques applied in PHM context, see Maior, Moura, 

and Lins (2019). 

The proposed methodology for the ML approach is presented in Figure 11. Here, EMD-

preprocessed models where analyzed when coupled with optimized-SVM. Here, Particle 

Swarm Optimization (PSO), a probabilistic optimization heuristic inspired in the social 

behavior of biological organisms, is used to provide the best set of parameters to be used in 

SVM. PSO-optimized SVM have been successfully applied in reliability problems (Droguett et 

al., 2014; Lins, Moura and Droguett, 2013; García Nieto et al., 2015). A model with no EMD 

preprocessing is also evaluated for comparison purposes.  

Figure 11 - Methodology for the ML approach 

 

Source: The Author (2020) 

Considering the large quantity of information and its inherent computational cost, this 

learning model cannot directly handle such an extensive data. Hence, to cover a massive data 

in ML methodology, two previous steps were performed for data dimension reduction: (i) 

feature extraction and (ii) data sampling. The former aims to reduce a series of points into a 

representative measure (e.g. mean, kurtosis, the highest absolute value), while the latter consists 

in sampling from original data. Indeed, for healthier states of bearing, lower sampling frequency 

is necessary, while for more degraded states, higher sampling frequency is required.  

After sampling, EMD is performed. Here, two distinct regression models were created: 

one model contained all IMFs and the residue, while the other model contained just the final 

residue.  

The next step was to input PSO+SVM model with the previous processed data. Then, 

evaluation of each model (1 – IMFs + Residue; 2 – Residue; 3 – No pre-processing) based on 
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the performance of RUL prediction was done.  

SVM supervised learning method requires both 𝑦 (i.e. the response variable) and 𝒙 (i.e. 

the regressor/input) variables. In all ML cases, the response variable was the RUL and the 

regression variables were the vibrations signal related with a specific bearing.  

Considering the 2083 recording (horizontal and vertical), more than 14 million points 

are provided only for training purposes. Also, in this methodology, a third signal composed by 

the vectorial sum of the horizontal vibration and vertical vibration was analyzed. For each of 

the three vibration signals (i.e. vertical, horizontal and vectorial sum), three metrics were 

calculated in the feature extraction step: absolute peak amplitude, kurtosis and entropy. Figure 

12 summarizes the data provided and the feature extraction process for the large amount of 

information.  

Figure 12 - Feature extraction process considering the dataset. 

 
Source: The Author (2020) 

Here, investigation about function variation over time as well as the expected behavior 

when bearing degrades indicated the absolute peak amplitude as the most suitable feature to be 

used in the next steps, similarly to previously published works (e.g. Rohlmann et al., 2014; 

Chen et al., 2017). Specifically, when considering just a small amount of data (i.e. 10% of total) 

the horizontal vibration signal presented better initial results and was the chosen one to be 

analyzed. Moreover, for the absolute amplitude, the average of the five highest absolute peak 

acceleration values in each recording was considered. Averaging was done in order to alleviate 

the effect of data noise (LEE; YUN, 2006).  

After feature extraction, the data were categorized in four different regions in similar 

procedure to ISO 10816 (STANDARDIZATION, 2009) that deals with condition monitoring 
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based on vibration. Therefore, each region represents a degradation phase of the bearing, in 

which a more degraded phase presents a higher vibration amplitude. A change of region takes 

place when the vibration trend line for the current region suffers a sudden increase of inclination 

(e.g. a new crack appears). The four regions are shown in Figure 13. 

Figure 13 - The four different regions of degradation. 

 
Source: The Author (2020) 

In order to reduce the amount of information, data sampling was performed in every 

region with distinct sampling frequency (i.e. the more unstable the bearing is, the more 

necessary is to monitoring). Table 7 depicts the sampling frequency, the total duration for each 

degradation region and the number of points actually used after sampling. To illustrate, the third 

region was sampled every 100 seconds during the 2500 seconds in which the bearing stayed in 

this region, providing a total of 25 points. Hence, a total of 137 points were used for training 

purpose. 

Table 7 - Sampling frequency and duration for each degradation region 

Degradation 

Region 

Sampling 

Frequency (in 

seconds) 

Total time 

(in seconds) 

Number of 

points 

considered 

1 400 12000 30 

2 200 13000 65 

3 100 2500 25 

4 30 510 17 

Source: The Author (2020) 
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‘Test Bearing’ presented 1803 recordings and it is expected the bearing to pass through 

all four degradations regions, even if the truncated data of does not present all of them. Indeed, 

‘Test Bearing’ available data does not present several abrupt changes in the signal, seemingly 

representing only first and second degradation regions. Therefore, inference had to be done to 

further degradation zones.  

As depicted in Figure 13, vibration from the healthier stage (i.e. first degradation region) 

is almost stationary, with negligible fluctuations, even though it represents a considerable 

amount of life data. For ‘Test Bearing’, which presented truncated, this region represents even 

a higher proportion of the total available data. Given that, using data from region 1 will not 

represent any gain about bearing degradation. Moreover, using data from region 1 will only 

deviate the overall trend. 

Therefore, in the test case, no data from the first region was used. Also, sampling rate 

of the second region was adapted to provide more information, i.e. frequency of the fourth 

region was used (every 30 seconds). Thus, test data was reduced to just over 100 (i.e.120) test 

points in which RUL would be predicted based on its vibration signal. As previously mentioned, 

the final RUL estimation is based on the overall trend of the predictions. Results of this ML 

methodology can be seen in Maior, Moura, and Lins (2019) and is presented in section 4.2.3, 

along with comparisons with DL models of section 4.2.2. 

4.2.2 DL methodology 

As an alternative approach, in this DL methodology, CNN models were created to 

predict RUL of the same bearings of section 4.2.1. As previously mentioned, CNN has a 

remarkable performance working on images. Once the raw data is provided in the form of a 

time series vibration signal, it is convenient to adequate the input by converting it in a 2-D 

representation. For that goal, two techniques based on time-frequency transformation were 

applied and compared: Short-Time Fourier Transform (STFT) and Wavelets Transform (WT). 

Figure 14 depicts an image input representation to be used, where the 𝑥- and 𝑦-axis are time 

and frequency, respectively, and the color scale indicates the frequency amplitude. 
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Figure 14 - Image input data provided by (a) STFT spectrogram and (b) WT scalogram. 

(a) (b) 

Source: The Author (2020) 

The basic idea of STFT is to divide the initial signal into small time windows and apply 

the Fourier transform to each time segment for representing the variation in signal frequency 

content over time that existed in that segment (GOYAL; PABLA, 2016). STFT has a fixed 

resolution independent of the width of window selected, which demands a trade-off between a 

poor time/good frequency resolution or a good time/poor frequency resolution. The basis for 

the STFT representation is a series of sinusoids and it is common and direct frequency domain 

analysis. For a review of STFT, and its variation, applied vibration signals, see Lin and Ye 

(2019). 

Wavelet Transforms (WT) was first proposed by Morlet et al. (1982), introducing the 

idea of fine grained time–frequency analysis approach to achieve an optimal balance between 

frequency resolution and time resolution (GOYAL; PABLA, 2016). WT converts a signal of 

time domain using a wavelet basis function into a different form (Mallat 2009; Yan, Gao, and 

Chen 2014), becoming a linear time-frequency representation with a wavelet basis instead of 

sinusoidal functions. As wavelet basis, this thesis applied the Morlet wave once it has frequently 

and efficiently been used for time-frequency analysis of non-stationary time series and transient 

signals (COHEN, 2019). For a review of WT, and its variation, see Chen et al. (2016). 

Adjusts on the ML methodology (Figure 11) were made for the DL methodology, 

consisting in a more straightforward form (Figure 15). In a similar way to preprocessing 

techniques in ML approach, STFT was used to transform the vibration data to a suitable form 

for DL approach. However, here, other pre-processing steps (i.e. feature extraction and data 

sampling) were not performed.  
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Figure 15 - Methodology for the DL approach 

 

Source: The Author (2020) 

Note that the elimination of human-performed feature extraction and data sampling 

phases requires a lot less effort to generate the models. Unlike the ML methodology, here the 

inputs are not vibration data but the time-frequency images generated by STFT and WT. The 

same bearings of section 4.2.1 was used for training and test phases. In this case, each 2083 

recording of ‘Train Bearing’ was applied to STFT and WT, generating 2083 images for each 

case. Similarly, ‘Test Bearing’ had 1803 recordings, which creates 1803 images for test 

predictions. Once again, the bearing RUL estimation is derived from the trend provided by the 

1803 test predictions. 

In this DL approach, the architecture of CNN highly impacts the performance. For both 

STFT and WT applications, an elementary architecture was applied composed of convolution, 

pooling and fully connected layers, as depicted in Figure 16. An initial batch normalization 

layer is also used to normalize the initial data and network weights, and to avoid overfitting. 

Figure 16 - CNN architecture for the DL methodology. 

 

Source: The Author (2020) 
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Specifically, in the first and second convolutional layers, 8 and 4 feature maps were 

used, respectively. For the fully connected layers, 8, 4 and 1 neurons were used, respectively. 

For all convolutional and fully connected layers, ‘relu’ activation function was used due to its 

improvements in DL models (FRED AGARAP, 2018). Both models were trained during 1,000 

epochs in a i9 9900 processor, 32 GB of RAM computer with a Nvidia GEFORCE GTX 2080 

Ti GPU. STFT training model took approximately 20 minutes, while WT took approximately 

90 minutes. 

4.2.3 RUL prediction results 

In order to compare models, Absolute Percentage Errors (APE) were calculated, 

quantifying the distance error from the real RUL to the estimated one. To define RUL 

estimation for the challenge, the trend line of the predictions (e.g. Figure 10) was extrapolated 

until it crosses the 𝑥-axis (i.e. trend estimates RUL equals to 0). Table 8 presents the models’ 

performance of ML and DL models for which the correct RUL was 5730 seconds.  

Table 8 - Errors for all tested models 

 Model Regressors APE 

ML 

Models 

1 IMFs + Residue 15.39% 

2 Residue 24.90% 

3 
Direct Vibration 

Data 
58.53% 

DL 

Models 

4 STFT+CNN 29.32% 

5 WT+CNN 14.92% 

Source: The Author (2020) 

 

For ML models, EMD preprocessed models (Models 1 and 2) predicted best results when 

compared with the model with no preprocessing one (Model 3). Here, it is important to 

emphasize the difficulty of this challenge, which is evident by considering the magnitude of 

errors in Table 8. Indeed, the winner of the IEEE Challenge, based on the same evaluation metric, 

presented prediction errors of 37% (SUTRISNO et al., 2012). The winner’s prediction is worse 

than estimations provided by two of the ML presented models. Moreover, the Model 1 reduced 

the error in more than 58%, which confirms the advantage in using the pre-processing method 
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proposed. These results are published in Maior, Moura, and Lins (2019). 

Table 8 also brings interesting results for DL models. STFT and WT-based model 

presented results comparable to pre-processed ML models without the necessity of manual and 

burdensome steps (i.e. feature extraction and sampling). Moreover, WT model presented the best 

performance overall, which is an achievement for this challenge. However, it is important to 

notice that DL calculations were only possible to be done in a reasonable time due to a powerful 

GPU usage and considerable RAM storage, which, today, could limit the similar applications.  

For future research, investigations about others preprocessing techniques should be 

analyzed to improve ML performance. Moreover, comparison with variants of EMD techniques 

(e.g. Ensemble Empirical Mode Decomposition (EEMD) (WU; HUANG, 2009), Complete 

Ensemble Empirical Mode Decomposition (CEEMD) (TORRES et al., 2011) could be done to 

verify if an even better prediction is achieved.  

For DL models, others techniques such as Hilbert Huang Transform (HHT) could be 

applied to generate others spectrum images. HHT is highly related with EMD, which, based on 

the ML results, could be a suitable choice. Other possibility is to work on more complex CNN 

architectures, adding deeper and different layers, without forgetting it would intensify the 

computational cost. 

4.3 DISCUSSION 

Some remarks could be made when comparing ML and DL methodologies to solve the 

same problem of prediction RUL from bearings based on a vibration dataset. As expected, the 

extraction of relevant features is necessary to be done and, in the ML approach, it was 

performed by the steps of feature selection, data sampling and the application of EMD 

algorithm. The use of those techniques improved the quality of data and provided a great 

prediction. However, it is necessary to highlight the difficulty in defining many parameters of 

each previous step (e.g. which representative measure for feature selection, the frequency rate 

in data sampling and the regressors used for EMD).  

Conversely, DL approach transfers all complex preprocessing steps to the learning 

model and, to understand the degradation behavior, huge quantity of data is often positive. The 

use of CNN requires only adaptation of the raw input (i.e. time series vibration data) into an 

appropriate form (i.e. spectrum images). Also, for this application, the easier-to-create DL 

models presented results comparable to the best ML models, which is a hint for its exploration. 
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A current ongoing research analyze these methodologies for other bearings provided by 

the IEEE challenge. As initial results, the DL methodologies are proven to be way more suitable 

than the ML methodologies. Moreover, even with the pre-processing procedure pointed in 

section 4.2.1, handling data for many bearings was impracticable to generate an ML model. 

These preliminary results make sense when more data become available, which is particularly 

important for DL, and it is possible to use several bearings to create a general model easier than 

in the ML case. On the other hand, the simplicity provided by the DL application could not be 

seen as a gold solution. Actually, there is a necessity to defining a suitable architecture of the 

network, which surely impacts the performance, and to assure that the data, normally provided 

by automatic sensor, is actually prepared to be utilized.  
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5 CONSTRUCTION OF PERSONAL PROTECTIVE EQUIPMENT DETECTOR 

USING VIDEO IMAGES  

Some results discussed on this chapter have been published on the European Safety and 

Reliability Conference (Trondheim) and presented on the Encontro de Pesquisa e Pós-

Graduação em Engenharia de Produção (Florianópolis) in 2018. 

5.1 CONTEXT 

Even with the scientific and technological progress, statistics provided by the 

International Labor Organization (ILO) demonstrate that working conditions in many countries 

(e.g. European Union) have not changed to such a degree as to significantly reduce the problem 

of occupational injuries (Cavazza & Serpe, 2009). Therefore, every effort to decrease the 

number of accidents or, at least, maintain its rate at an acceptable range is highly important, and 

can be employed either by organizational actions, collective training or individual safeguard. 

The traditional approach to avoid loss is the implementation of barriers, which plays a 

central role in the prevention of accidents. Sklet (2006) defines safety barriers as ‘physical 

and/or non-physical means planned to prevent, control, or mitigate undesired events or 

accidents.  

Indeed, there are many opportunities to interrupt or change an accident sequence of 

events before it evolves into a loss. First, an answer is to change the preconditions for an 

accident to occur by eliminating the energy source or modifying the energy characteristics from 

the hazard. Second, barriers may interrupt, dilute, or redirect the energy flow during the latter 

part of the accident process (e.g. separating the victim from the energy flow). As a last barrier, 

it is possible to improve the victim’s ability to endure the energy flow (e.g. wearing some 

protective equipment), which is the ultimate protection to avoid damage (KJELLÉN; 

ALBRECHTSEN, 2017). 

In this context, Personal Protective Equipment (PPE) is usually adopted to protect the 

individual against health or safety risks at work. It includes items related with protection of 

head, face, eye, hand, arms, and legs (Health and Safety Executive, 2013). There are 

consolidated regulations for the usage of PPE in industries (Occupational Safety and Health 

Administration - OSHA 2004; U.S. Homeland Security 2002) that aim to decrease the 

frequency of misuse or absence of PPE. Also, PPE’s positive impacts are very significant (e.g. 
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rate of eye injury and lost work time can be reduced by 50% or more when PPE is worn 

(Lipscomb, 2000)). 

Head, as a vital body part containing possibly the most important human organ, needs 

appropriate attention. Every year, approximately 1.7 million people are hospitalized or die as a 

result of a traumatic brain injury (TBI) only in the United States (McCrory et al., 2009). 

Protective headgear and helmets decrease the potential for severe TBI following a collision by 

reducing the acceleration of the head upon impact, thereby decreasing both the brain-skull 

collision, as well as the sudden deceleration induced axonal injury (Newman et al., 2005).  

There are several types for head protection such as industrial safety helmets, bump caps 

and firefighters’ helmets. The use of those equipment is necessary in activities like low-level 

fixed objects with risk of collision (e.g. pipework, machines, scaffolding) and transport 

activities involving the risk of falling material (e.g. hoists, lifting plant, conveyors) (Health and 

Safety Executive, 2015).  

The problem relies on the fact that, even with understanding about the safety 

improvement that the usage of PPE leads, its usage is often neglected in industry. The report of 

the ILO estimates that 2.34 million people die every year in the world due to occupational 

accidents, some of these deaths caused by non-use of PPE (INTERNATIONAL LABOUR 

OFFICE, 2011). A common approach is to impose fines and penalization to workers, who do 

not wear the required PPE when performing specific activities. However, supervision to 

guarantee its use is normally performed in person by a higher-level employee, which makes 

almost impossible to control all operators during the whole labor time.  

Indeed, there is an extensive discussion concerning ethical issues in workplace 

surveillance, referring to management’s ability to monitor, record and track employee 

performance, behaviors and personal characteristics in real time (BALL, 2010). Most of the 

discussion involves the so-called Electronic Performance Monitoring (EPM) about employee’s 

control in social and technological forms (e.g. Internet and email monitoring, location tracking, 

biometrics) and the understanding of privacy boundaries surrounding employee information 

(Allen et al. 2015, Alder 1998). However, the discussion is to assure that proper safety protocol 

is followed, preventing injury to employees, as well as avoiding damage to the assets through 

a consistent and trustworthy model.  

Thus, exploring similar tools and challenges to detect usage of PPE in order to avoid 

accidents in industries represents an interesting case and an automatic method for monitoring 

its usage is significantly worthy for industrial safety. Therefore, this chapter aims to develop a 
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model for automatic PPE detection from industrial video streams using CV and DL for object 

detection, as well as an ML for object interaction.  

5.2 REAL-TIME OBJECT DETECTION  

As previously mentioned in section 3.2, CV studies the automated extraction of 

information from images and videos. The development of high-powered computers, the 

availability of high quality and inexpensive video cameras, and the increasing need for 

automated video analysis has generated a great deal of interest in object tracking algorithms in 

the CV field (YILMAZ; JAVED; SHAH, 2006). In this context, visual object tracking has been 

constantly studied and presents three key steps for detection in video analysis: detection of 

movement of objects, tracking of such objects from frame to frame, and analysis of object tracks 

to recognize their behavior (YILMAZ; JAVED; SHAH, 2006). Essentially, the basis of visual 

object tracking is to robustly estimate the motion state (i.e., location, orientation, size, etc.) of 

a target object in each frame of an input image sequence (LI et al., 2013a).  

Specifically, intelligent visual surveillance systems deal with the real-time monitoring 

of persistent and transient objects within a specific environment (Valera & Velastin, 2005). The 

goal of these systems is not only to put cameras in the place of human eyes, but create an entire 

surveillance system as automatically as possible (Hu et al., 2004).  

There exist some well-known visual surveillance systems such as W4 (Haritaoglu et al., 

2000); Haar-wavelet Adaboost (Enzweiler & Gavrila, 2009) and ViBe (Barnich & Van 

Droogenbroeck, 2011), mainly developed to detect different vehicle types, groups of people, 

pedestrians, people access control. Every system is developed seeking to compensate the 

capability limitation of human operators in monitoring enormous number of cameras at the 

same time. 

Techniques from statistical pattern recognition have, since the revival of NNs, obtained 

a widespread use in digital image processing (Egmont-Petersen et al., 2002). As already 

characterized in section 2.4, CNN has been successfully studied in fields such as speech 

recognition (Hinton et al., 2012), vibration analysis (Guo et al., 2016), electronic nose data 

(Längkvist et al., 2013) and physiological data (Mirowski et al., 2008). However, surely, the 

most promising results are found in the field of CV, bringing impressive developing in tasks 

like automatic object and face recognition.  

One promising, open and free project that uses CNN for object detection is You only 

look once (YOLO). YOLO is a system for detecting objects and was first created on the Pascal 
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VOC 2012 dataset, detecting the 20 Pascal object classes, such as person, birds, dogs, car, 

bicycle, bottle, table and chair, as can be seen in Figure 17 (Redmon et al., 2015)  

Figure 17 - Example of object detection using YOLO.  

 

Source: Adapted from Redmon et al. (2015). 

The developers adopted a different approach than the standard object detection models 

that uses classifier based-systems applied at multiple locations and scales in an image, which 

typically considers as detections high scored regions of the image. In YOLO, a single CNN is 

executed to the full image in an architecture constituted of 24 convolutional layers followed by 

2 fully connected layers. This network divides the image into regions and predicts bounding 

boxes and probabilities for each region, with these bounding boxes being weighted by the 

predicted probabilities. It has considerable advantages over other object detection models, once 

it looks at the whole image, and then its predictions are informed by global context in the image 

(Redmon et al., 2015).  

Still, an improved model, YOLOv2, has already been developed. More robust, detecting 

more than 9000 objects without losing real-time performance, YOLOv2 is a state-of-art object 

detection system with comparable or with even better results than many other systems (Redmon 

& Farhadi, 2017). Moreover, YOLO project allows inclusion of objects that were not on its 

detection basis, supporting training of a new model, allowing adaptation for different purposes.  
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5.3 APPLICATION  

In this section, YOLOv2 is used as a key tool to develop a new model to automatically 

detect PPE usage. Specifically, the goal is to identify whether workers were properly wearing 

a safety helmet when performing some activities in which the protection was required and/or 

mandatory.  

5.3.1 Helmet detection using YOLO 

YOLO project easily provides a pre-trained model, which could be used as a basis for 

detecting new types of objects. As any AI algorithm, YOLO requires a training dataset that will 

‘teach’ the machine how an unknown object looks like. In this case, the desired PPE (i.e. hard 

helmets) is not a ‘known’ object for YOLO and, hence, it is necessary to create a database. For 

the specific goal, 731 images containing helmets were used to give sufficient information about 

its appearance. Distinct situations (Figure 18) were considered such as (a) isolated helmets, (b) 

multiple helmets, (c) isolated person with helmed, (d) backgrounded person with helmed, (e) 

covered person with helmet, (f) indoor multiple people wearing helmets, (g) outdoor multiple 

people wearing helmets and (h) low light exposure, for example. 

Figure 18 - Example of distinct helmet images used for training 

    
(a) (b) (c) (d) 

(e) (f) (g) (h) 

Source: The Author (2020) 

All images were collected from ImageNet (JIA DENG et al., 2009), an image database 

organized according to the WordNet (FELLBAUM, 1998) hierarchy, in which each node of the 
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hierarchy is depicted by hundreds and thousands of images. It presents useful resource for 

researchers that need image data, containing many classes of items.  

The location of helmets on images, which is the goal for the PPE detection, were 

annotated manually for each of the 731 pictures (i.e. bounding boxes for all imagens were 

constructed). The location problem is trickier than the classification problem: in the latter, the 

goal is to identify only whether an object appears in the image, while the former aims to define 

exactly where (i.e. which pixels) it appears. In other words, the location problem could be seen 

as a further step after the classification problem. Hence, to the training process, not only the 

image itself is stored, but also the coordinate of the bounding boxes (Figure 19). 

Figure 19 - Database generated for helmet detection in YOLO. Besides the image (above), bounding 
boxing coordination (red circles below) are also stored. 

 

Source: The Author (2020) 

After feed YOLO pre-trained network with the PPE images and its respective bounding 

boxes files, the detection model could be created. The network was trained for about 8 hours, 

running in a Nvidia GeForce GTX 960m GPU, with 4GB of video random access memory 

(VRAM). Once the algorithm finished its training, the helmet detection model could be applied 

to a specific image or to a video stream, such as a camera feed, processing every frame. The 

model runs in real-time, maintaining the frame rate of the camera (30 frames per second – FPS). 

Figure 20 depicts the model applied to a standard web camera video streaming.  
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Figure 20 - Helmet detection model applied for video streaming. 

 

Source: The Author (2020) 

5.3.2 Validation, warnings and support decisions 

Then, a script was created to alert surveillance operators whether an abnormal situation 

appears (i.e. helmets were not detected). As a first validation procedure, a simple experiment 

consisted in a room containing a specific number of employees that should be using helmets 

was performed. A video camera (i.e. simulating a surveillance camera), recorded the room 

during few minutes and, for each frame, the algorithm detects the use of helmet and counts how 

many are present in the scene. If the number of detected helmets is different from the number 

of previously defined people in the room for more than a brief period (e.g. 10 seconds, or 30 

seconds), then an alert was emitted.  

Moreover, if the number of detected helmets does not return to its desired value, alerts 

may continue to be emitted in a previously defined interval (e.g. 30 seconds, or two minutes). 

Properly adjusting this period avoids unnecessary alerts after recognition the anomaly situation. 

Figure 21 shows a computer screen when an alert was presented (i.e. one person is not using 

helmet in the image). 
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Figure 21 - Alert emitted when model detect anomaly situation. 

 

Source: The Author (2020) 

However, in this first validation procedure, even though location values (i.e. bounding 

boxing) are generated in a relatively correct position, this information was not used for warning 

emission. It means, for example, that if an operator was wrongly using the helmet (i.e. holding 

helmet in hand; not wearing) but it appears in the image, the script would not warn.  

Hence, a second methodology was proposed. In this case, multiple detections were 

carried out (i.e. detection of helmet and person), such as in Figure 22. In this case, the goal is 

to verify if the helmet is actually placed over the head of a person. The methodology consists 

in locating the bounding boxes of the person and the helmet, and calculate the distance between 

them. Specifically, the center of the upper bound of the person should be close to the upper 

bound of the helmet. Obviously, it is necessary to have at least the same number of helmets, 

when compared with the number of people on the picture. The computation of a simple 

threshold to evaluate the maximum distance between both bounding boxes (i.e. person and 

helmet) to detect the usage of PPE did not prove to be reliable, and, hence, a refined approach 

was used.  
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Figure 22 - Multiple detection (helmet and person) provided by the model 

 

Source: The Author (2020) 

To that end, a classification SVM is applied to evaluate which relation (i.e. distance) 

should be considered as a use/not use of helmet. 135 images (and the bounding boxing distance) 

were manually selected to train the algorithm while 54 images where used for test purposes. 

Once again, RBF was used as the kernel function, here with 𝐶 = 1 and γ = 0.2. The performance 

of this methodology to correctly identify the usage of PPE is provided in Table 9, in which ‘0’ 

is ‘no usage’,‘1’ denotes ‘usage’ and ‘Acc. (%)’ represents the accuracy in percentage.  

Table 9 - Accuracy of correct use of PPE 

  True Label 

  Training Test 

  0 1 Acc. (%) 0 1 Avg (%). 

Predicted 

Label 

0 80 8 
90.37 

34 1 
90.44 

1 5 42 2 17 

Source: The Author (2020) 

 

Note that the above performance is not related with the PPE detection, but rather with 

the correct usage of it. Hence, the model presented relatively robust ability, especially in 

detecting a ‘no use’ of PPE, which is the worst case on safety environments. Figure 23 also 

illustrates the proposed algorithm working and correctly predicting the usage (or not) of PPE. 
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In (a) and (b), the algorithm correctly warns a no usage of helmet, while in (c), (d) and (e), the 

desired usage is verified for one or more people.  

Figure 23 - PPE usage detection based on SVM. 

 

(a) 

 

  

(b) (c) 

  

(d) (e) 

Source: The Author (2020) 

In practice, the developed model could be explored as a tool in different contexts, 

supporting decisions for the safety manager. Other types of warnings (e.g. depending on how 

long operators remain without PPE; how many operators are not wearing the PPE) could be 

implemented and customable, providing information for the decision-maker to determine 

whether or not someone must be notified. Moreover, it is also possible to use information and 

statistics provided by the model (e.g. how many times alerts were displayed per day; how long 

operators had remained without PPE) as a safety indicator.  

5.4 DISCUSSION 

This chapter presented an approach for automatically detecting PPE usage in distinct 

environments, using object detection with YOLO. By using YOLO, this method achieves a 

reasonable balance between speed and confidence, running the PPE detection in real-time, 

which results in relatively low computational resource usage. Moreover, SVM were used to 
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relate two detections (i.e. helmet and person) in order to identify if the PPE is correctly placed. 

The developed model could lead to beneficial results to safety engineering since the detection 

is performed automatically and does not require constant human attention. With wider 

adaptations, this surveillance technology could be also implemented to monitor other barriers 

than PPE. For example, a similar image-based methodology could act as a redundancy to other 

sensors to improve detection of hazards (e.g. fire, toxic gases) in order to interrupt the energy 

flow in case of accidents.  

However, some comments on this PPE detection model should be done, which is an 

ongoing work. Despite working well on images, the SVM model (i.e. to determine the right 

position of PPE) is not implemented to process videos in real-time. Moreover, for a complete 

validation, the usage of a public dataset of PPE wearing (if available) would be extremely 

valuable. A further step is to use real surveillance videos as input, detecting the usage of PPE 

in realistic environment, preventing accidents and providing an improvement on the safety 

monitoring system of industries. 

As a future research, this model could be extended for application such as identification 

of other types of PPEs and simultaneously monitoring its usage. Still, implementation of a real 

time alert for the operators (e.g. a particular warning light is lit somewhere in the room) 

connected with the model would emphasize (or create) the sense of autoregulation among them, 

reducing (or sharing) the surveilling workload expected for the supervisor.  
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6 FINAL CONSIDERATIONS 

Over the years, several AI approaches have been proposed in a diversity of applications 

of real-world problems. Specifically, ML and DL algorithms have provided successful models 

in engineering systems and are the state-of-art methodologies for almost every environment. 

This work presented three specific applications in which AI models were developed to solve 

problems in risk and reliability context. 

In the first application, a real-time drowsiness detection model was proposed based on 

video streams of web cameras. The model used an ML approach not requiring GPU, which 

could be used in almost every standard computer. The model relied in neuroscience rules to 

warn about drowsiness and was validated in a public database with videos of subjects 

performing drowsiness experiments. In this case, the use of ML is justified considering low-

cost computers or the easier linkage that ML implementations have if one intends to attach the 

drowsiness model to other systems (e.g. other types of cameras). 

In the second application, ML and DL approaches were considered to estimate RUL 

from bearings based on its vibration signal. As expected, ML approach required a lot of human 

effort in analysing pre-processing steps when compared with DL approach. However, if those 

stages are performed adequately, the model provides great results. In contrast, if one has 

available computational force and numerous data, DL approach seems more suitable to derive 

general models.  

In the third application, a real-time PPE detection was created based on YOLO, an open 

and free DL project for object detection. Here, a new database had to be created to teach 

YOLO’s pre trained model how to recognize the shape of the specific object (i.e. hard hat). 

Moreover, alert systems were created to automatically warn if pre-defined conditions are met 

and, based on SVM, if PPE is properly worn. 

In all the three contexts, AI methods are used to support decision makers with relative 

success, however, on the system level, many other variables should be noticed. Hence, the 

presented approaches and the obtained models have to be preliminary investigated to be used 

in similar situations. The data-driven approaches rely only in the data and ignore all the 

engineering theory in the creation of models may bias fundamental aspects. Moreover, the 

availability and accessibility dataset narrow the use of these methodologies, and these methods 

cannot just be used in some situations. Hence, each problem has to be treated as a particular 

case to analyze the best approach to be used. 
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The revolution introduced by ML and extended by DL is still happening and more 

sophisticated methods and algorithms will surely appear. Although those models are used as 

support today, the level of autonomy will grow exponentially in the next few years and how to 

maximize the benefits brought to society by these tireless computational workers. 
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