
Leylane Graziele Ferreira da Silva

Utilizing Optimization Algorithms to Maximize the Availability of Composable
Data Center

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2020

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao


Leylane Graziele Ferreira da Silva

Utilizing Optimization Algorithms to Maximize the Availability of Composable
Data Center

A M.Sc. Dissertation presented to the Center for
Informatics of Federal University of Pernambuco
in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science.

Concentration Area: Computer Network
Advisor: Prof. Dr. Djamel Fawzi Hadj Sadok
Co-advisor: Prof. Dr. Patricia Takako Endo

Recife
2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217                  
  

   
 
S586u Silva, Leylane Graziele Ferreira da 

Utilizing optimization algorithms to maximize the availibility of composable 
data center / Leylane Graziele Ferreira da Silva. – 2020. 

  85 f.: il., fig., tab.  
 
  Orientador: Djamel Fawzi Hadj Sadok. 
  Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn, 

Ciência da Computação, Recife, 2020. 
                       Inclui referências. 
 

  1. Redes de computadores. 2. Algoritmos de otimização. I. Sadok, Djamel 
Fawzi Hadj (orientador). II. Título. 
 
      004.6                 CDD (23. ed.)                          UFPE - CCEN 2020 - 129 
                             
       

 
 



 
Leylane Graziele Ferreira da Silva 

 

 
“Utilizing Optimization Algorithms to Maximize the Availability of Composable 

Data Center” 
 

 Dissertação de Mestrado apresentada ao 

Programa de Pós-Graduação em Ciência da 

Computação da Universidade Federal de 

Pernambuco, como requisito parcial para a 

obtenção do título de Mestre em Ciência da 

Computação    

     

 

 

Aprovado em: 17/02/2020. 

 

 

 

 

 

 

BANCA EXAMINADORA 

 

 

 

______________________________________________ 

Prof. Dr. Aluizio Fausto Ribeiro Araújo 

Centro de Informática / UFPE 

 

 

_______________________________________________ 

Prof. Dr.  Carmelo José Albanez Bastos Filho 

                                                Escola Politécnica/UPE 

 

 

_______________________________________________ 

Prof. Dr. Djamel Fawzi Hadj Sadok 

Centro de Informática / UFPE 

(Orientador) 

 

 



I dedicate this work to parents, for all suport and love.



ACKNOWLEDGEMENTS

I want to thank God for the opportunity to do this work and for all overcome challenges.
To my parents, Graciete and Ligerson, and close relatives for the motivational support
and their love. I love you, guys.

I want to thank my boyfriend, Matheus, for his patience, support, and love. You are
an essential part of my life <3

In the same away, to my old and new friends to become these two years more fun.
Especially to Guto, Edoarda, Demis, Élisson, Pedro Henrique, Iago, Arthur Flôr, Daniel
Bezerra, Carolina Cani, and Diego.

To my advisor, Djamel Sadok, and Judith Kelner, for the opportunity to do this work
and to make part of GPRT. I am forever grateful.

To my co-adviser, Patricia Endo, for the opportunity to work with her one more time.
For all advice, motivation, friendship, and believing in me. You have a special place in
my heart.

Finally, I would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior Brasil (CAPES) - Finance Code 001 for funding this work.



“If it doesn’t challenge you, it won’t change you”.
Fred Devito (DAVIS; BAKER; SPAJIĆ, 2015).



ABSTRACT

The cloud computing paradigm has performed, for years, the fundamental role in
delivering IT resources, typically available in data centers, allowing cost reduction and
providing services such as high availability, scalability, and elasticity. Despite many ad-
vantages, the data center infrastructure suffers from inefficiency problems due to factors
such as excessive redundancy usage and infrastructure sub-utilization. The Composable
Data Center paradigm aims to mitigate such problems, proposing the disaggregation of
resources distributed in racks with different chassis configurations. In this context, dif-
ferent resource arrangements, allocated via software (called Composable Infrastructure)
may directly affect the system availability. Thus, this work presents an optimization prob-
lem to allocate Composable Infrastructures in Composable Data Center, taking into ac-
count budget constraints, obeying application requirements to maximizing availability in
those data centers. For such, some optimization algorithms utilized in two approaches:
mono-objective approach and multi-objective approach. From the results, it is possible to
identify the best configurations and understand how each component affects availability.
In the mono-objective approach, the Dynamic Programming algorithm obtained the best
results in balancing cost and availability. In the multi-objective approach, both GDE3
and NSGA-II algorithms were useful in finding attractive solutions, and GDE3 presented
the most solution number in most of the cases.

Keywords: Composable Data Center. Composable Infrastructure. Data Center Avail-
ability. Resource Allocation. Optimization Algorithms.



RESUMO

O paradigma de computação em nuvem tem desempenhado, durante anos, um pa-
pel fundamental na entrega de recursos de tecnologia da informação (TI), normalmente
disponíveis em data centers, permitindo redução de custos e provendo serviços como
alta disponibilidade, escalabilidade e elasticidade. Apesar das inúmeras vantagens, as in-
fraestruturas de data centers sofrem com alguns problemas de ineficiência devido a fatores
como o uso excessivo de redundância e a sub-utilização da infraestrutura. O paradigma
de Composable data center é uma solução idealizada de modo a mitigar tais problemas,
o qual propõe a desagregação de recursos computacionais, distribuídos em racks com
diferentes configurações de chassi. Neste contexto, as diferentes combinações de recursos,
alocadas via software (denominadas Composable Infrastructure), podem afetar direta-
mente na disponibilidade do sistema. Deste modo, este trabalho apresenta um problema
de otimização para realizar alocação de Composable Infrastrucutures em Composable Data
Centers levando em consideração restrições orçamentárias, de modo a atender requisitos
da aplicação para maximizar a disponibilidade nestes Data Centers. Para tal, foram uti-
lizados diferentes algoritmos de otimização em duas principais abordagens: mono-objetivo
e multi-objetivo. A partir dos resultados é possível identificar as melhores configurações e
como cada recurso pode impactar na disponibilidade. Na abordagem mono-objetivo, o al-
goritmos Dynamic Programming apresentou os melhores resultados ao equilibrar disponi-
bilidade e custo. Na abordagem multi-objetiva, os algoritmos GDE3 e NSGA-II foram
efetivos para encontrar boas soluções e o algoritmo GDE3 apresentou uma maior quanti-
dade de soluções na maioria dos casos.

Palavras-chaves: Composable Data Center. Composable Infrastructure. Disponibilidade
de Data Center. Alocação de Recursos. Algoritmos de Otimização.
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1 INTRODUCTION

Cloud computing has been accepted as a dominant computing paradigm in enterprise
Information Technology (IT). Over 73% of organizations have at least one application
or a portion of their computing infrastructure already hosted in the cloud (IDG, 2018).
By and large, these enterprises are attracted by the convergence of IT efficiencies and
business agility, enabled by scalability, rapid deployment, and high parallelization (KIM,
2009).

The fast adoption of cloud computing can be mostly attributed to its
ability to quickly deploy applications with no upfront capital investment
and to scale up or down the infrastructure capacity based on the real time
workload requirement (LIN et al., 2018).

But despite the promise of cloud computing, existing enterprise data center infras-
tructure often is subject to technology-driven inefficiencies. Recent research suggests that
a lack of automation, overprovisioning for redundancy and resiliency, and infrastructure
underutilization are resulting in significant people, process, and technology inefficiencies
(NADKAMI, 2017). IDC (NADKAMI, 2017) suggests that in most enterprise data centers,
infrastructure is 45% provisioned – which means infrastructure available, but not nec-
essarily utilized – 45% utilized, 30% agile and 40% compliant with stated service level
agreements (SLA) for infrastructure and its components, that should be established by
cloud providers and their costumers. Much of this inefficiency can be explained by en-
terprise use of resource redundancy to improve availability (DUMITRESCU et al., 2018).
However it is clear that this not only increases costs and management complexity but
may also introduce new potential points of failure and vulnerabilities (SHARMA et al.,
2016; WAGNER; SOOD, 2016).

As more and more enterprises embrace digital transformation, they are migrating their
workloads to the cloud, requiring high availability moving as close as possible to 24/7
uptime (GUNAWI et al., 2016). However, they are faced with a new challenge caused by
the increasing duality of legacy applications, on the one hand, and next generation cloud-
native applications, on the other. The former requires infrastructure resiliency and exploits
virtualization and clustering for portability and application state preservation, while the
latter is designed to be horizontally scalable, containerized, and continuously updated
(NADKAMI, 2017). Traditional enterprise data centers are not designed to accommodate
the differing infrastructure requirements of both legacy and next generation applications.

To achieve improved IT staff productivity, increased utilization of compute and stor-
age resources, faster provisioning, higher availability and greater business agility, enter-
prises are increasingly looking to a new data center paradigm called disaggregated or
composable data center infrastructure (IDC, 2016). Composable data center infras-
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tructure disaggregates and refactors compute, storage, network and other infrastructure
resources into shared resource pools that can be dynamically and automatically assembled
and re-assembled to meet changing workload requirements (NADKAMI, 2017; KUMBHARE

et al., 2016). The design principles for such composable infrastructure is fundamentally
different from that of traditional data centers as the hardware underlying the data center
must support full or partial dynamic disaggregation while some control software must be
available to logically assemble the hardware required by the application from the resource
pool (NADKAMI, 2017; KUMBHARE et al., 2016). In this way, not only are inefficiency is-
sues mitigated, but application duality is addressed by being able to deploy heterogeneous
resources that support specific application requirements. Composable data center infras-
tructure “offers the potential advantage of enabling continuous peak workload performance
while minimizing resource fragmentation for fast evolving heterogeneous workloads.” (LI

et al., 2017).

The vision of disaggregation is to depart from the traditional paradigm
of the mainboard-as-a-unit (server-centric model) and to enable the cre-
ation of function block-as-a-unit (resource-centric model) having a base-
line disaggregated pool of components including compute, memory, stor-
age, network, and accelerators (ZERVAS et al., 2018).

The forcast for composable infrastructure is expected to reach $4,7 billion in 2023
(NADKARNI; SHEPPARD; STOLARKSI, 2018). Given the economic opportunity and the po-
tential benefits, it is not surprising that a number of the major global IT vendors are
active in this area. Thus, to turn the composable data center a concrete and applicable
paradigm, several industry initiatives have emerged. For instance, Intel proposed an ar-
chitecture called Intel Rack Scale Design (Intel RSD), based on Redfish a Distributed
Management Task Force (DMTF) industry standard. Next other companies started to
offer their own compatible solutions. Ericsson proposed the Hyperscale Datacenter 8000
that provides configuration and control of a composable data center by using performance-
optimized resources (named Virtual Performance-Optimized Data Center - vPOD).

Furthermore, composable data center infrastructure brings new challenges for data
center vendors. Examples of the challenges present in this context are mentioned by
(ZERVAS et al., 2017): latency overhead minimization; network system-specific performance
and services according to communication type between components; high bandwidth and
bandwidth density associated to low cost and power consumption; maximum flexibility
provisioning; and maximization of resource utilization delivering workload performance
at minimum cost through orchestration of components. As a result, this area is seen as
very attractive for developing different studies on various aspects.
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1.1 MOTIVATION

In the data center planning context, there are three main limitations mentioned by (KA-

TRINIS et al., 2016): the first limitation is about resource proportionality of a system,
which follows the proportionality of the basic mainboard, considering only initial procure-
ment time and upgrade cycles and excluding the future need of doubling the component
capacity; the second limitation is related to the allocation of resources to processes
or virtual machines (VMs) due to resources being available within mainboard bound-
ary which consequently faces fragmentation and inefficiency; finally, the third limitation
is about the need of technology upgrades in all server boards, even if the upgrade is
directed into a specific component.

All these problems may be addressed utilizing composable infrastructure. As discussed
in the literature, VMs can be allocated utilizing computing resources that meet their
needs, reducing capital expenditure (CAPEX) and, in the same way, involving fewer
resources to achieve a demanding set. It explains that “disaggregation brings modularity
to systems, enabling easier hardware upgrades when desired.” (PAGÈS et al., 2017), the
authors concluding that these facts show that composable data centers infrastructure is
a brilliant technology for data center future.

Among the characteristics that may turn a composable infrastructure feasible, there is
the ability to aggregate the resources to form a temporal system (AJIBOLA; EL-GORASHI;

ELMIRGHANI, 2018). Starting with this flexibility provided by resource aggregation, it is
possible to build several different arrangements of a composable infrastructure in order to
delivery the best indicators to the costumers. An important fact to note is that the distri-
bution, configuration and arrangement of hardware resources may impact the availability
of a composable infrastructure at different levels (KUMBHARE et al., 2016).

As mentioned in (ROOZBEH et al., 2018), high availability can be provided on a compo-
nent level utilizing composable infrastructure. Redundancy may be introduced on logical
servers to take over from failed components, which means that a failure of a single compo-
nent on a logical server does not result in the failure of the whole system, and this logical
server can continue to operate normally. Authors also argue a logical server that oper-
ates on a composable infrastructure handles CPU, memory, storage, or network failures
without incurring an extended downtime, hence reducing application complexity.

The analysis of components applied to the availability context on composable data
center infrastructure is the focus of this work. Thus, we have the following research prob-
lem “how to maximize the availability for allocating a composable infrastructure within a
composable data center infrastructure while meeting the minimum requirements in terms
of compute, memory, network and storage under budget constraints?”. In the next section,
we define the general and specific objectives of this work to answer the research question.
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1.2 OBJECTIVES

Considering the motivation presented in the previous section, the main objective of this
work is to propose optimization models to achieve availability maximization in composable
a data center infrastructure, while meeting several cost constraints. The proposed models
should meet application requirements to achieve workload execution and satisfy budget
constraints. The specific goals of this dissertation are:

• Establish the availability estimate method, comprising the complexity of the system.

• Propose optimization problems modeleing using different approaches: mono-objective
and multi-objective.

• Analyse and compare algorithms results with each other in respective approaches.

• Discuss the results obtained with the experiments, comparing the performance of
both mono-objective and multi-objective solutions.

• Understand how hardware components may effect the availability of composable
Infrastructure.

1.3 ORGANIZATION OF THE DISSERTATION

The reminder of this document is organized as follow:
Chapter 2 presents basic concepts of composable data centers. This chapter also

presents concepts related to reliability block diagrams and optimization algorithms, ex-
ploring Dynamic Programming, Differential Evolution, Particle Swarm Optimization,
Non-dominated Sorting Genetic Algorithm, and Generalized Differential Evolution op-
eration. In chapter we also present in 2.4 the main related work found in literature and
we perform a comparison with this dissertation.

Chapter 3 presents the formulation of the problem with a mono-objective view, defin-
ing its parameters and constraints. This chapter also shows the automatic availability
model formulation based on the RBD approach and the implementation of optimization
algorithms fitness functions applied in this approach. Additionally, we present the algo-
rithms´ parametrization for a mono-objective approach, the scenarios definition used in
this work, and specifies the experiments. Furthermore, this chapter presents component
importance analysis considered in this work and shows the main results obtained though
experiments applied to mono-objective approach.

Chapter 4 presents the formulation of the problem with a multi-objective view, defining
its parameters and constraints. This chapter also shows the implementation of optimiza-
tion algorithms fitness functions applied in this approach. Additionally,we present the
algorithms parametrization for the multi-objective approach, and also presents the main
results obtained through experiments, as well as, algorithms convergence analysis.
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Finally, Chapter 5 presents an overview of this work and the main contributions,
presenting its limitation, future works, the contributions of this work and the main pub-
lication related with this dissertation.
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2 BACKGROUND

In this chapter, we will present the main concepts addressed in this work to clarify the
context used in this research. The sections of this chapter are divided in: The composable
data center (Section 2.1), Reliability Block Diagrams (Section 2.2) and Optimization
Algorithms (Section 2.3).

2.1 THE COMPOSABLE DATA CENTER

Historically, cloud data centers were characterised by hardware and system software plat-
form homogeneity, a common systems management layer, a greater degree of proprietary
software use, single organisation control, and a focus on cost efficiency (LYNN, 2018).
For multi-tenant hyperscale clouds, the clouds, per se, appear on top of the physical
data centre infrastructure and are abstracted from end-user applications, end users, and
software developers exploiting the cloud. In addition, they may operate across multiple
physical data centres typically organised by geographic region (LYNN, 2018). This provides
cloud service providers with cost efficiencies and deployment flexibility by allowing them
to maintain, enhance, and expand the underlying cloud infrastructure without requiring
changes to software (CRAGO; WALTERS, 2015). As such, infrastructure performance was
typically improved through a combination of scale-out and advances in microprocessor
capability, while service availability is assured through over-provisioning (LYNN, 2018).
Despite being effective, this resulted in massive high-density data centers comprising
hundreds if not thousands of servers, a significant amount of which may be under-utilised
relatively to their peak load capability, with frequent idle times resulting in dispropor-
tionate energy consumption (BARROSO; HÖLZLE, 2007; UCHECHUKWU; LI; SHEN, 2014).

While traditional cloud architectures was based on hardware and software homogene-
ity, in recent times the so-called heterogeneous cloud has emerged. Hardware heterogeneity
assumes the use of different or dissimilar hardware resources that may have specialized
processing capabilities to handle specific tasks (SHAN, 2006). This may include special-
ized co-processors or networking infrastructure that can support higher throughput and
lower latency (SHAN, 2006; YEO; LEE, 2011). At the same time, clouds need to be able to
support an ever-widening application domain with greater heterogeneity and specifically
the need to support both legacy and next generation software applications.

Establishing the right balance between efficiency, resilience and resource utilization
while hosting heterogeneous workloads represents a significant challenge for data center
managers. A way to reach this objective is to arrange the data center infrastructure in
modules called Performance Optimized Data Center (POD) (Figure 1.a). PODs can be
defined as a collection of racks, tightly connected through a fast local network, shar-



23

ing common resources, such as monitoring management, aisle containment, and a Power
Distribution Unit (PDU) (SPECIFYING. . . , 2018; ROSENDO et al., 2019). With this con-
figuration, data center operators can divide up their infrastructure to allocate different
workloads to PODs with specific configurations, decoupling the data center space into
different demands and facilitating monitoring and management (ROSENDO et al., 2019).

Figure 1 – Differences between POD (a) and (b) composable infrastructure (b) (ROSENDO
et al., 2019).

With a POD architecture, it is common to have more hardware resources allocated
than what is really required leading to sub-optimal resource utilization which ultimately
translates into energy costs (SCHWARTZ; PRIES; TRAN-GIA, 2012). A composable data
center infrastructure is based on the concept of a composable systems (Figure 1.b) where
compute, memory, storage and network resources are disaggregated, and are assembled
and re-assembled using a control software layer and through the deployment of fast optical
fiber links (CHUNG et al., 2018). As the hardware resources’ allocation is software-based,
configurations can be changed dynamically in order to meet the requirements of a given



24

application or workload. As soon as a hardware resource is no longer required, it can
be released for use by another application(s), hence reducing energy consumption and
maintenance time (LI et al., 2017). Thus, data centers using composable infrastructure
avoid the issue of having idle resources which often occurs in POD configurations (CHENG;

GRINNEMO, 2017).

2.2 RELIABILITY BLOCK DIAGRAM (RBD)

A Reliability Block Diagram (RBD) model is a graphical representation of a system
components arrangement, providing information on how components relate to each other
(ZHANG et al., 2013). The model illustrates the functioning state of the whole system (i.e.
success or failure) and captures the network relationships of the system components. By
analytically solving RBD models, it is possible to analyze the availability and reliability
of complex systems (FAZLOLLAHTABAR; NIAKI, 2017).

There are three main ways to arrange the block in a RBD model: in series, in parallel, or
in k-out-of-n configurations (GUIMARAES et al., 2011) (Figure 2). In the series configuration
(2.a), if any component fails, the whole system becomes unavailable. In other words, each
component must be working in order for the system to be operational.

In a parallel configuration (Figure 2.b), as long as at least one component is working,
the system is operational. This kind of configuration can be used to represent redundant
components of a system.

Finally, in k-out-of-n configurations, the system is operational if k components out of
the total n components are working (MACIEL et al., 2010). For example in Figure 2.c), two
components must be working for the whole system to be operational.

(a) (b) (c)

Figure 2 – Block configurations in RBD. (a) Series, (b) Parallel and (c) k-out-of-n
(ROSENDO et al., 2019).

It is possible to solve RBD models analytically and therefore estimate system avail-
ability by calculating the availability of each component i of the system as per Equation
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2.1.

𝐴𝑖 = 𝑀𝑇𝑇𝐹𝑖

𝑀𝑇𝑇𝐹𝑖 + 𝑀𝑇𝑇𝑅𝑖

(2.1)

The Mean Time To Failure (MTTF) represents the average time length in which the
system is available during the period of study while the Mean Time To Repair (MTTR)
represents the average time length in which the system was unavailable, and under repair.

The formulas presented in Equations 2.2 and 2.3 can then be used to calculate the
availability of series (𝐴𝑠) and parallel components (𝐴𝑝), respectively.

𝐴𝑠 =
𝑁∏︁

𝑖=0
𝐴𝑖 (2.2)

𝐴𝑝 = 1 −
𝑁∏︁

𝑖=0
(1 − 𝐴𝑖) (2.3)

In this work, we use a special type of k-out-of-n configuration, called nonidentical k-out-
of-n independent components, in order to represent heterogeneous components performing
the same function on the system (GURLER; BAIRAMOV, 2009). To calculate the availability
of this type of RBD model, it is necessary to consider all possible alternative values
of k. For instance, for a 2-out-of-3 system which has three components with different
configurations and the respective availability, 𝐴1, 𝐴2, and 𝐴3, the availability of the entire
system can be calculated as follows:

𝐴𝑘 = 𝐴1𝐴2𝐴3 + (1 − 𝐴1)𝐴2𝐴3 + 𝐴1(1 − 𝐴2)𝐴3 + 𝐴1𝐴2(1 − 𝐴3) (2.4)

2.3 OPTIMIZATION ALGORITHMS

In this section, we provide more details of the algorithms used in our optimization ex-
periments, divided into Mono-objective and Multi-objective problem. The optimization
problem, modeled in these two approaches, utilized in this work are presented in 3.1 and
4.1.

2.3.1 Mono-objective Optimization Methods

In the mono-objective problem, the problem is mathematically described through a unique
objective function composed of variables of the problem. The best solution represents the
minimum or maximum value obtained from the objective function (POIAN et al., 2008). In
this section, we present three mono-objective methods utilized in this work.
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2.3.1.1 Dynamic Programming

Dynamic Programming (DP) is a mathematical optimization method commonly used to
solve multi-stage allocation problems (BELLMAN, 2013), problems which decisions are
made at several stages. DP is often used to solve problems with a large number of de-
cision variables and may handle both probabilistic and deterministic variables (SHENOY;

SRIVASTAVA; SHARMA, 1986). It was the first exact method proposed to solve the knap-
sack problem (BOYER; BAZ; ELKIHEL, 2012), but its is also used in different classes of
problems.

The rationale of DP is to decompose a whole optimization problem into low-order sub-
problems, as a multi-stage decision process. In other words, for each stage of a problem,
there are states of the process which keep a solution of the sub-problem, helping in future
decision making (RONG; FIGUEIRA, 2014). Thus, these more straightforward sub-problems,
are sequentially solved and their stored solutions are recursively used to solve higher-order
sub-problems (RONG; FIGUEIRA; KLAMROTH, 2012); this way, DP can avoid re-computing.

To achieve the computational efficiency, especially in terms of the evaluation of all
possible sequences of decision, DP needs to provide common sub-problems such as sub-
problems of a problem that are also sub-problems to another. Thus, a specific solution
from a sub-problem requires to be found only one time, and can then be used as often as
necessary (LEW; MAUCH, 2006).

In this work, we have adapted the traditional DP algorithm to fit our optimization
problem. The resulting adapted approach is described in Section 3.3.1. The DP algorithm
was selected for this study because it is the ease of implementation algorithm, frequently
utilizing for Knapsack problem (FAWZY; SANGADJI; AS’AD, 2017); it presents efficiency
in NP-hard problems, and can significantly reduce the search space, efficiently find an
optimal solution (YANG et al., 2018).

2.3.1.2 Differential Evolution

An efficient and also simple technique is the Differential Evolution algorithm (DE), which
is one of the most relevant evolutionary algorithms (STORN; PRICE, 1996). Some character-
istics that made DE a simple algorithm include its use of a reduced number of parameters,
offering a good convergence, and working with inexpensive and straightforward arithmetic
operators (TANG; ZHAO; LIU, 2014).

DE adopts the strategy of greedy selection and is less of a stochastic approach in
comparison with other algorithms towards solving optimization problems. Among evolu-
tionary algorithms, DE stands out due to the use of mutation and recombination phases.
Furthermore, this algorithm implements the weighted differences approach between solu-
tion vectors to disturb a given population (DRAA; BOUZOUBIA; BOUKHALFA, 2015).

A DE procedure can be summarized in four steps described in (STORN; PRICE, 1997):
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the first step refers to the initialization of the population where the vector, which rep-
resents the population, is defined randomly. The second step comprises the mutation.
This step occurs when there is a preliminary solution available, and the initial population
generated through the addition of random deviations. These are generally distributed to
the nominal solution. The addition of the weighted difference between the two population
vectors in a third vector generates new parameter vectors. After that, the crossover (or
recombination) is performed. In this step, the mutated vector’s parameters are combined
with parameters of another predetermined vector, called the target vector, to provide the
trial vector. Finally, in the selection step, the trial vector replaces the target vector, in
case of the trial vector offers a lower cost function value.

In this algorithm, repetitions only take place in the subsequent DE iterations, in
the last three steps. These iterations proceed until a termination criterion is satisfied
(DAS; MULLICK; SUGANTHAN, 2016). DE was selected for this study due to its success
applied to solve a large number of real-world problems from different domains of science
and technology (DAS; MULLICK; SUGANTHAN, 2016); it is a robust and simple structure
algorithm; besides its parallel search ability and quick convergence (WU; CHE, 2019).

2.3.1.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm that takes advantage
of the swarm intelligence mechanisms and has been widely adopted for dealing with
population-based optimization problems.

This algorithm is biologically inspired by a flock of birds behavior, where a set of
solutions to a problem (swarm) is called population (GHAMISI; BENEDIKTSSON, 2015)
(GHAMISI et al., 2014). A population is a set of parameters and represents a point in
the solution space of the problem. As mentioned in the literature, “In nature, a bird
usually adjusts its movement to find a better position in the flocking according to its own
experience and the experience of birds nearby.” (LIU; DU; WANG, 2014).

Following this flocking birds’ behavior, a PSO algorithm starts with random particles
in a solution space, and each particle begins with its associated position and velocity.
Then, the particles move through a solution space with the purpose of finding the optimal
solution. The position and the velocity are updated based on a particle’s own experience
and that of its neighbors. Also, the positions distinguish between global and personal
best, based on the fitness function. Each movement performed by particles is entirely
influenced by its current position, its parameters, and group knowledge of the swarm
(GHAMISI; BENEDIKTSSON, 2015) (DU et al., 2015).

According to (DU; SWAMY, 2016), PSO became popular due to two main factors: the
first is related to its simple implementation and the second reason refers to its fast con-
vergence. When compared with other algorithms such as ant colony and evolutionary
algorithms (EAs), PSO is advantageous in terms of its requirement of primitive math-
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ematical operators only, smaller computational bookkeeping, and use of fewer lines of
code.

PSO was selected for this study due to its behavior to use a swarm method that simul-
taneously searches vast region in the solution space of the optimized objective function
(WANG; TAN; LIU, 2018), it is a robust algorithm, with fast convergence, besides may be
applied in different problems.

2.3.2 Multi-objective Optimization Methods

In multi-objective optimization, several conflicting objectives are optimized simultane-
ously, does not restrict to find a unique solution. Instead, a set of solutions, know as
Pareto Optimal or Pareto Front, are presented (LAURENT et al., 2014). In this section, we
present two multi-objective methods utilized in this work.

2.3.2.1 Non-dominated Sorting Genetic Algorithm

The Non-dominated Sorting Genetic Algorithm (NSGA-II) is considered one of the most
potent multi-objective evolutionary algorithms (MOEAs) (VO-DUY et al., 2017) and has
been developed by combining NSGA and the non-dominated sorting concept proposed by
Goldberg (GOLDBERG; HOLLAND, 1988).

A characteristic that makes NSGA-II an algorithm with good convergence towards
the Pareto-optimal front keeping the solution diversity is its procedure of maintaining
the elitism in the population, where the best individuals receive the opportunity to be
transferred to the next generation due to their condition (KAMJOO et al., 2016).

When implementing NSGA-II, the number of population (N) and the initial population
(Pt) are generated randomly. Objective functions are initially calculated for the initial
population. Then, when members are sorted, the rush criterion function is determined.
Parents are chosen using binary tournament selection based on a degree – which means
that between two solutions in the current population, the best solution is selected – and
crowding distance (CD) – a measure of the density in neighbors solutions; parents and
off-springs compete with each other to be included in the next generation. Next, mutation
and combination operators also are implemented. The new population is then combined
with the initial one, and the sorting operation continues. In this new population, N is
chosen for the next generation according to the top members of the population (ESFE et

al., 2017; BOUACHA; TERRAB, 2016).
NSGA-II was selected for this study due to present better speed, spread of the so-

lution and convergence in comparison to another algorithms (SINGH; SINGH, 2017) and
computational simplicity. Additionally, this algorithm is largely used in literature to solve
real-world and engineering problems.
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2.3.2.2 Generalized Differential Evolution

Generalized Differential Evolution (GDE3) is a multi-objective approach based on the
classic Differential Evolution (DE) algorithm. It is a successor of the GDE and GDE2
versions that use non-dominated sorting (JESUS; RIVERA, 2018). The main difference of
this version to the previous ones in in the extension of DE/rand/1 strategy that introduces
problems with M objectives and K constraints functions (KUKKONEN; LAMPINEN, 2005).

This algorithm shows better-distributed solutions when compared with its previous
versions. Furthermore, its performance demonstrated in a different set of tests problems
in the literature presented good results when dealing with multi-objective problems (SAFI;

UCAN; BAYAT, 2018; TSARMPOPOULOS et al., 2019).
In this algorithm, the DE selection operator introduces the Pareto dominance ap-

proach. In case the trial vector weakly dominates the decision vector, the decision vector
is replaced by the trial vector in the next generation. Both vectors may be preserved in
the population if there is no dominant vector. The size of the population may increase
at the end of a generation; therefore, the size of the current population is truncated to
the original size through the use of the CD-based selection method. In this method, it is
posssible to approximate the crowdiness of the vector in its non-dominated set (KUKKO-

NEN; LAMPINEN, 2005). Non-dominance and crowdiness approaches are used to sort the
vector; the worst solutions must be removed (CREMENE et al., 2016).

GDE3 was selected for this study due to characteristics to improve the ability to handle
multi-objective problems by providing a better-distributed set of solutions, besides be less
sensitive to the selection of control parameter values in comparison to the earlier GDE
versions (ADEKANMBI; GREEN, 2015).

2.4 RELATED WORK

While there is a significant body of literature on resource allocation in cloud computing
using evolutionary algorithms, resource allocation in composable data center infrastruc-
tures is a relatively nascent area. The use of evolutionary algorithms for this purpose is at
an even earlier stage. Notwithstanding that, there are several related work worth noting.
We divided this section into evolutionary algorithms and composable data infrastructures
works.

About evolutionary algorithm works, Rankothge et al. (RANKOTHGE et al., 2017)
present a proposal for a resource allocation algorithm for Virtualized Network Functions
(VNFs) based on Genetic Programming (GP). GP performance was compared against
traditional Integer Linear Programming (ILP). The comparison was performed under two
scenarios: (1) initial VNFs were instantiated, and (2) additional VNFs were instantiated
to satisfy changes in traffic with minimal impact on network performance (scaling). In
this context, the authors aim to minimize required resources, such as number of servers,
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number of links, and average link utilization adjusting the resources to satisfy traffic
changes and minimizing the number of configuration changes to reduce potential service
disruptions, and performance degradation. The results showed that GP took less time
to generate a VNF configuration, more specifically, GP spent a few milliseconds while
the ILP, took several hours. Authors also conducted evaluation of the performance of
the NFC Management System when using the proposed GP approach. They established
three network architectures to evaluate: k fat tree, VL2 and BCube. GP results showed a
reduced the average link utilization for the three architectures.

Gai et al. (GAI; QIU; ZHAO, 2016) solved the problem regarding the constraints faced by
heterogeneous cloud memories, as well as the costs of hardware distribution. A solution
was proposed to provide high performance cloud-based heterogeneous memory service
offerings. In addition, they addressed some sets of factors that impact cloud memory per-
formance, such as communication and operating cost, data and energy performance, and
time constraints. Experiments were performed using Cost-Aware Heterogeneous Cloud
Memory Model (CAHCM), and Dynamic Data Allocation Advanced (2DA) that uses ge-
netic programming to determine the data allocations on the cloud-based memories and to
find the optimal solutions and sub-optimal data allocation. The obtained results reached
the level desired by the authors. Using CAHCM, it was possible to allocate data within
5.1 ms using 5 cloud memories, which is much smaller compared to the traditional method
which required 22903.3 ms.

Ficco et al. (FICCO et al., 2018) proposed a metaheuristic approach for cloud resource
allocation based on the bio-inspired coral-reefs optimization paradigm to model cloud
elasticity in a cloud data center, and on the classic Game Theory to optimize the re-
source reallocation schema with respect to cloud provider’s optimization objectives. In
the model, authors considered a scenario with a cloud data center composed of several
computing nodes, such as CPU, memory and storage capacity and also considered net-
work bandwidth. In each step of the allocation process, a set of virtual machines could
be involved. The solution used evolutionary algorithms based on the observation of the
reefs structure and coral reproduction to simulate the continuous requests for new cloud
resources. Combined with game theory-based solutions, the algorithm used was able to
satisfy the conflicting interests between requests and servers to find a better solution in
terms of adaptability and elasticity and improve convergence time performance.

Relevant to the topic of composable data center infrastructure works, is the work by
Lin et al. (LIN et al., 2018) who developed queuing models based on network losses to
measure the performance of composable infrastructure in terms of utilization of each type
of resource pools and drop probabilities with a focus on each type of incoming workloads.
The models are extended to consider random workloads demands and the impact of net-
work latency of the composable infrastructure. The authors considered workload requests
received by orchestration. This orchestration verifies if there is enough hardware in the
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resource pool to satisfy the workload requirement and may accept or reject it. After a
workload is completed, the resources return to the workload orchestration, and the work-
load leaves the system. Three sets of the simulation are considered: (a) a simulation to
confirm the utilization and drop probability from the models; (b) a simulation to compare
the maximum throughput between the traditional system and the composable infrastruc-
ture and; (c) a simulation to measure performance penalty in composable infrastructure
when the delay is considering. Their simulations showed that a composable infrastruc-
ture could sustain nearly 1.6 times stronger workload intensity than conventional systems
while being sensitive to workload distribution demands; it can achieve high system uti-
lization, and; the composable infrastructure data transmission length is relatively smaller
compared to traditional data centers.

In (FARIAS et al., 2017), authors developed a simulator to evaluate the behavior of
scheduling algorithms applied in warehouse-scale clusters built using the composable in-
frastructure. The simulator receives as input a workload and its associated infrastructure
to be scheduled. The model responds to the job submissions that comprise tasks com-
posed of priority, submission time, placement constraints and resource demands in terms
of CPU and RAM. The authors evaluated two scheduling algorithms in equivalent server-
based and composable-based infrastructures. These approaches are compared in terms
of component size grains and the maximum size of the logical servers. Authors discuss
that the scheduler that considers composable infrastructure can allocate, on average, a
more significant fraction of workload, in terms of CPU and RAM demand, this number
is, respectively, 4.6% and 5.7% larger than in server-based infrastructure. Besides, the
scheduler running in composable infrastructure is also able to allocate all tasks of the
production system.

In work (AJIBOLA; EL-GORASHI; ELMIRGHANI, 2018), the authors used a mixed-integer
linear programming (MILP) model to evaluate and compare the performance of compos-
able rack-scale and pod-scale infrastructures to deduce the optimal scale in this system.
Authors considered a scenario with a rack in the data center as a pool of resources, where
each rack accommodates many CPU or Memory resources. A traditional data center
server is also considered as pool, where there are a single CPU and memory modules.
They also considered IO resources integrated into data center communication fabric. In
the MILP model, authors addressed workload placement regarding CPU and memory
resources demands, resource network traffic and north-south traffic, while minimizing the
total CPU, memory and network power consumption. Authors analyzed how composable
infrastructure impacted the throughput and energy efficiency of network infrastructure.
Among the benefits of disaggregation presented in results are better performance in terms
of total network power consumption values and the same CPU power consumption of all
data centers architectures. Authors also evaluated the feasible gains in energy efficiency
to apply silicon photonic technologies in this infrastructure.
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Finally, in (CHUNG et al., 2018) authors demonstrated the operational efficiencies of
a composable system through the simulation of the dynamic composition of servers in
the cloud, based on traces of GPU-full server clusters. In this work, authors considered a
simulation scenario where customers are utilizing GPUs, in increments of considered times
units, from a shared pool, which is logically attached to servers via PCIe switches. The
results showed that the clusters may support the same amount of workloads with 60%
fewer GPUs, which demonstrate the efficiency of composable infrastructure. The authors
also defined a composable system concept presenting a real prototype implementation, in
addition to describing composable compute and storage accelerator system.

The approaches utilized by works presented in this section search for understanding
how to allocate workloads taking into account hardware resources, but without consider-
ing their different characteristics or different arrangements. These characteristics become
the optimization problem presented in this work a combinatorial problem, and also an NP-
hard problem. Aiming to solve this problem, we choose to use metaheuristics approaches.
Furthermore, our use of mono-objective and multi-objective approaches, expressed by the
use of five different optimization algorithms, to optimize resource allocation in the com-
posable data center infrastructure differs significantly from the studies presented above.
This novelty emphasized through our heterogeneity and variability scenarios exploration
and the impact of these factors on availability within a constrained budget.
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3 OPTIMIZING THE INFRASTRUCTURE ALLOCATION IN COMPOSABLE
DATA CENTER: MONO-OBJECTIVE APPROACH

In this chapter, we will present the formulation of mono-objective problem definition, the
formulation details of our availability model and its implementation taking into account
the three algorithms used in this experiment: Dynamic Programmming, Particle Swarm
Optimization and Differential Evolution. We also will present the main results obtained
with mono-objective experiments. These results are divided into two scenarios that will
be present in this chapter. We will present the parametrization of the algorithms utilized
in this approach, and the component importance analysis.

3.1 PROBLEM DEFINITION

We modeled the composable infrastructure allocation problem as follows: we considered
four main computing resources to compose a composable infrastructure; they are: com-
pute, memory, network, and storage, that are modeled as types defined by the following
set 𝑇 = {𝑐𝑝𝑢, 𝑚𝑒𝑚, 𝑛𝑒𝑡, 𝑠𝑡𝑜}, all of them are considered in objective function and they do
not present any conflict. Each resource type has sub-types indexed; being 𝑖 ∈ {1, 2, ...𝐼},
𝑗 ∈ {1, 2, ...𝐽}, 𝑘 ∈ {1, 2, ...𝐾}, and 𝑙 ∈ {1, 2, ...𝐿}, where 𝐼, 𝐽 , 𝐾, and 𝐿 are the num-
ber of sub-types of 𝑐𝑝𝑢, 𝑚𝑒𝑚, 𝑛𝑒𝑡, and 𝑠𝑡𝑜 available at the data center, respectively.
Associated with those sub-types there is a range of parameters defined in Tables 1.

Table 1 – Parameters of the optimization model

PARAMETERS DESCRIPTION
𝑐𝑜𝑠𝑡_𝑐𝑝𝑢𝑖 cost of each item of the 𝑖𝑡ℎ sub-type of the 𝑐𝑝𝑢 resource type
𝑐𝑜𝑠𝑡_𝑚𝑒𝑚𝑗 cost of each item of the 𝑗𝑡ℎ sub-type of the 𝑚𝑒𝑚 resource type
𝑐𝑜𝑠𝑡_𝑛𝑒𝑡𝑘 cost of each item of the 𝑘𝑡ℎ sub-type of the 𝑛𝑒𝑡 resource type
𝑐𝑜𝑠𝑡_𝑠𝑡𝑜𝑙 cost of each item of the 𝑙𝑡ℎ sub-type of the 𝑠𝑡𝑜 resource type
𝑚𝑡𝑡𝑓_𝑐𝑝𝑢𝑖 MTTF of each item of the 𝑖𝑡ℎ sub-type of the 𝑐𝑝𝑢 resource type
𝑚𝑡𝑡𝑓_𝑚𝑒𝑚𝑗 MTTF of each item of the 𝑗𝑡ℎ sub-type of the 𝑚𝑒𝑚 resource type
𝑚𝑡𝑡𝑓_𝑛𝑒𝑡𝑘 MTTF of each item of the 𝑘𝑡ℎ sub-type of the 𝑛𝑒𝑡 resource type
𝑚𝑡𝑡𝑓_𝑠𝑡𝑜𝑙 MTTF of each item of the 𝑙𝑡ℎ sub-type of the 𝑠𝑡𝑜 resource type
𝑚𝑡𝑡𝑟_𝑐𝑝𝑢𝑖 MTTR of each item of the 𝑖𝑡ℎ sub-type of the 𝑐𝑝𝑢 resource type
𝑚𝑡𝑡𝑟_𝑚𝑒𝑚𝑗 MTTR of each item of the 𝑗𝑡ℎ sub-type of the 𝑚𝑒𝑚 resource type
𝑚𝑡𝑡𝑟_𝑛𝑒𝑡𝑘 MTTR of each item of the 𝑘𝑡ℎ sub-type of the 𝑛𝑒𝑡 resource type
𝑚𝑡𝑡𝑟_𝑠𝑡𝑜𝑙 MTTR of each item of the 𝑙𝑡ℎ sub-type of the 𝑠𝑡𝑜 resource type
𝑏_𝑚𝑒𝑚𝑖 ∈ 𝑁* number of items available of the 𝑗𝑡ℎ sub-type of the 𝑚𝑒𝑚 resource type
𝑏_𝑛𝑒𝑡𝑘 ∈ 𝑁* number of items available of the 𝑘𝑡ℎ sub-type of the 𝑛𝑒𝑡 resource type
𝑏_𝑠𝑡𝑜𝑙 ∈ 𝑁* number of items available of the 𝑙𝑡ℎ sub-type of the 𝑠𝑡𝑜 resource type
𝑏_𝑐𝑝𝑢𝑖 ∈ 𝑁* number of items available of the 𝑖𝑡ℎ sub-type of the 𝑐𝑝𝑢 resource type
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The range of these parameters is specified in 3.3.4. Considering those parameters,
we define a set of decision variables that describe the number of selected items of each
sub-type of a resource type, they are 𝑥𝑖, 𝑦𝑗, 𝑤𝑘, 𝑧𝑙, where 𝑥𝑖 ∈ {0, ..., 𝑏_𝑐𝑝𝑢𝑖} for each
sub-type 𝑖 of the 𝑐𝑝𝑢 type; 𝑦𝑗 ∈ {0, ..., 𝑏_𝑚𝑒𝑚𝑗} for each sub-type 𝑗 of the 𝑚𝑒𝑚 type;
𝑤𝑘 ∈ {0, ..., 𝑏_𝑛𝑒𝑡𝑘} for each sub-type 𝑘 of the 𝑛𝑒𝑡 type; and 𝑧𝑙 ∈ {0, ..., 𝑏_𝑠𝑡𝑜𝑙} for each
sub-type 𝑙 of the 𝑠𝑡𝑜 type.

This way, we define the following Integer Program in order to find an composable
infrastructure allocation obeying a given budget 𝐵. The application requirement is com-
posed of a set of computing resources.

maximize 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥1, ..., 𝑥𝐼 , 𝑦1, ..., 𝑦𝐽 ,

𝑤1, ..., 𝑤𝐾 , 𝑧1, ..., 𝑧𝐿,

𝑚𝑡𝑡𝑓_𝑐𝑝𝑢1, ..., 𝑚𝑡𝑡𝑓_𝑐𝑝𝑢𝐼 ,

𝑚𝑡𝑡𝑟_𝑐𝑝𝑢1, ..., 𝑚𝑡𝑡𝑟_𝑐𝑝𝑢𝐼 ,

𝑚𝑡𝑡𝑓_𝑚𝑒𝑚1, ..., 𝑚𝑡𝑡𝑓_𝑚𝑒𝑚𝐽 ,

𝑚𝑡𝑡𝑟_𝑚𝑒𝑚1, ..., 𝑚𝑡𝑡𝑟_𝑚𝑒𝑚𝐽 ,

𝑚𝑡𝑡𝑓_𝑛𝑒𝑡1, ..., 𝑚𝑡𝑡𝑓_𝑛𝑒𝑡𝐾 ,

𝑚𝑡𝑡𝑟_𝑛𝑒𝑡1, ..., 𝑚𝑡𝑡𝑟_𝑛𝑒𝑡𝐽 ,

𝑚𝑡𝑡𝑓_𝑠𝑡𝑜1, ..., 𝑚𝑡𝑡𝑓_𝑠𝑡𝑜𝐿,

𝑚𝑡𝑡𝑟_𝑠𝑡𝑜1, ..., 𝑚𝑡𝑡𝑟_𝑠𝑡𝑜𝐿,

𝑅𝑐𝑝𝑢, 𝑅𝑚𝑒𝑚, 𝑅𝑛𝑒𝑡, 𝑅𝑠𝑡𝑜)

subject to
𝐼∑︁

𝑖=1
𝑐𝑜𝑠𝑡_𝑐𝑝𝑢𝑖𝑥𝑖 +

𝐽∑︁
𝑗=1

𝑐𝑜𝑠𝑡_𝑚𝑒𝑚𝑗𝑦𝑗+,

𝐾∑︁
𝑘=1

𝑐𝑜𝑠𝑡_𝑛𝑒𝑡𝑘𝑤𝑘 +
𝐿∑︁

𝑙=1
𝑐𝑜𝑠𝑡_𝑠𝑡𝑜𝑙𝑧𝑙 < 𝐵,

𝐼∑︁
𝑖=1

𝑥𝑖 ≥ 𝑅𝑐𝑝𝑢,

𝐽∑︁
𝑗=1

𝑦𝑗 ≥ 𝑅𝑚𝑒𝑚,

𝐾∑︁
𝑘=1

𝑤𝑘 ≥ 𝑅𝑛𝑒𝑡,

𝐿∑︁
𝑙=1

𝑧𝑙 ≥ 𝑅𝑠𝑡𝑜

In the four last constraints, the terms 𝑅𝑐𝑝𝑢 ∈ 𝑁*, 𝑅𝑚𝑒𝑚 ∈ 𝑁*, 𝑅𝑛𝑒𝑡 ∈ 𝑁*, and
𝑅𝑐𝑝𝑢 ∈ 𝑁* are the application requirements defined by the user, which can be defined,
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respectively, as the minimum number of items of the 𝑐𝑝𝑢 resource type required by the
application; the minimum number of items of the 𝑚𝑒𝑚 resource type; the minimum
number of items of the 𝑛𝑒𝑡 resource type; and the minimum number of items of the 𝑠𝑡𝑜

resource type.
The function 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦() estimates the availability of a specific candidate solution

from an RBD model that is parameterized by the decision variables, the application
requirements(which are related to the selection of items), MTTF values, and MTTR values
(which are directly correlated with each other in the availability calculation) and are solved
through numerical algorithms. The arguments of availability function are parameters and
variables. Depending on the values assumed by the decision variables in the candidate
solution, a specific RBD model is composed, as final product of availability function, and
solved in order to estimate the corresponding availability.

The problem proposed in this approach is a bounded multidimensional knapsack prob-
lem (KELLERER; PFERSCHY; PISINGER, 2004), where a set of 𝑐𝑝𝑢, 𝑚𝑒𝑚, 𝑛𝑒𝑡 and 𝑠𝑡𝑜

represents the elements to be inserted in the knapsack. The problem can be considered
multidimensional because each resource type adds a different dimension and new con-
straints that define the minimum required resources (given by 𝑅𝑐𝑝𝑢, 𝑅𝑚𝑒𝑚, 𝑅𝑛𝑒𝑡, and
𝑅𝑠𝑡𝑜). Moreover, the problem is bounded because for each sub-type of a resource type, a
certain number of resources which are limited by the number of available resources (given
by 𝑏_𝑐𝑝𝑢𝑖, 𝑏_𝑚𝑒𝑚𝑗, 𝑏_𝑛𝑒𝑡𝑘, and 𝑏_𝑠𝑡𝑜𝑙) must be chosen.

The problem proposed here can be proven to be NP-hard, since the classical 0-1
knapsack problem is a particular case of this problem when there is only one dimension, the
objective is a linear function, there are no minimum requirements (i.e. 𝑅𝑐𝑝𝑢 = 𝑅𝑚𝑒𝑚 =
𝑅𝑛𝑒𝑡 = 𝑅𝑠𝑡𝑜 = 0), and that each sub-type has only one resource available (i.e., 𝑏_𝑐𝑝𝑢𝑖 =
𝑏_𝑚𝑒𝑚𝑗 = 𝑏_𝑛𝑒𝑡𝑘 = 𝑏_𝑠𝑡𝑜𝑙 = 1, ∀𝑖, 𝑗, 𝑘, 𝑙) (MARTELLO; TOTH, 1990).

3.2 AUTOMATIC GENERATION OF THE AVAILABILITY MODEL

As described previously, the 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦() function is implemented to estimate the avail-
ability of each candidate solution through the use of an RBD model. For each candidate
solution an RBD model is automatically generated, which changes at each iteration of the
optimization algorithm.

The RBD approach was adopted to calculate the availability of each possible solution
as this technique (a) provides a measure of the dependability of a logical system (VERMA;

AJIT; KARANKI, 2010), and (b) allows the derivation of closed-form equations to calculate
the dependability metrics and therefore provide faster results compared to other methods
(MACIEL et al., 2017).

To automatically generate RBD models, the independent components are modeled
using a nonidentical k-out-of-n approach, where k represents the hardware requirement
for a specific type of resource and n represents the number of components with the same
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type and different sub-type in a particular set of resources assembled in a composable
infrastructure.

Four hardware types found in a composable infrastructure were considered i.e. com-
pute, memory, network and storage. Each hardware type is modeled by an RBD block
arranged in series which means that the failure of all hardware components of the same
type implies a failure of the whole system. The redundancy of hardware components and
the redundancy of each sub-type of hardware are arranged in parallel as nonidentical
k-out-of-n independent components.

In the case of a given components’ redundancy, the failures considered are those that
do not adhere to the k-out-of-n restriction.

As discussed, we consider different hardware configurations. For instance, we could
have processor A (8 cores) and processor B (4 cores), each with different characteristics
in terms of manufacturer, cost, MTTF and MTTR values.

3.3 ALGORITHMS IMPLEMENTATION

In this section, we will present the different fitness function implementations applied
for Dynamic Programming and for evolutionary algorithms, respectively. All algorithms
represent the same problem formulation. For evolutionary algorithms, we consider the
implementations present in the NMOF1 package from R. The implementation present in
3.3.2 represents only the fitness function.

3.3.1 Dynamic Programming

In this work, we implemented the DP algorithm using a bottom-up approach, as shown in
Figure 3. A matrix 𝑀 of dimension 𝑀 [𝑤]x[𝐵], where 𝑤 = 𝑏_𝑐𝑝𝑢𝑖 + 𝑏_𝑚𝑒𝑚𝑖 + 𝑏_𝑛𝑒𝑡𝑖 +
𝑏_𝑠𝑡𝑜𝑖, is populated sequentially, accessing directly the calculated entries from the matrix
itself. This approach avoids the recursion overhead, improving the code performance. The
available budget and all costs have real values, but those values can be converted to an
integer value.

Each entry of the matrix 𝑀 consists in the availability result of adding a new element
(hardware resource) in the knapsack (in the RBD model). Moreover, our implementa-
tion only considers solutions that obey the budget constraint, as well as, the application
requirements (in terms of compute, memory, network, and storage).

Due to this constraint, before running the DP, we should organize the hardware re-
sources (the lines of matrix 𝑀) as follows: 𝑐𝑝𝑢1, 𝑚𝑒𝑚1, 𝑛𝑒𝑡1, 𝑠𝑡𝑜1, 𝑐𝑝𝑢2, 𝑚𝑒𝑚2, 𝑛𝑒𝑡2, 𝑠𝑡𝑜2, ...,

𝑐𝑝𝑢𝑛, 𝑚𝑒𝑚𝑛, 𝑛𝑒𝑡𝑛, 𝑠𝑡𝑜𝑛. In other words, the items of each type are sorted in the decreas-
ing order according to their cost. This way, 𝑐𝑝𝑢1, for example, is the most expensive 𝑐𝑝𝑢

item and 𝑐𝑝𝑢𝑛 the least expensive. Finally, these sorted items are interleaved combining
1 https://cran.r-project.org/web/packages/NMOF/index.html
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Figure 3 – An example of Bottom-Up DP approach

one item of each resource in a sequence. This item sequencing avoids the fact that the
algorithm does not meet the application requirement or finds bad availability results. It
is important to note that DP is an algorithm that does not include any random process
in its implementation. Due to this fact, this algorithm is executed only one time for each
experiment.

3.3.2 Evolutionary Algorithms

The evolutionary algorithms are specified through some components, procedures, or op-
erators, indicated by Eiben et al. (EIBEN; SMITH et al., 2003) and cited as follows:

• Representation: The link between the real-world and the evolutionary world. The
objects that compose possible solutions in a problem context are phenotypes, and
the individuals (phenotypes encoding) are genotypes.

• Fitness Function: A function that designates a quality measure to genotypes,
representing the requirements the population should adapt to meet, the basis for
selection.

• Population: It represents a multi-set (set where multiple copies of an element
possible) of genotypes, that forms the unit of evolution.

• Parent Selection Mechanism: To distinguish individuals based on defined quality
to allow the best of them to become parents in the next generation. An individual
becomes a parent when it is selected to undergo variation to create offspring.

• Variation Operators: Responsible for creating new individuals from the old ones;
They are mutation and recombination.
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1. Mutation: A unary variation operator. This variation is applied to one geno-
type and generates a slightly modified mutant, called child or offspring.

2. Recombination: A unary variation operator. This variation merges informa-
tion from two parents’ genotypes into one or two offspring genotypes.

• Survivor Selection Mechanism: To distinguish individuals based on their quality
where the survivor selection mechanism runs after the creation of the offspring from
selected parents. It may be based on the age-biased approach to choose the next
generation.

The fitness function implementation used for both DE and PSO algorithms is pre-
sented in this section: For each candidate solution given by the algorithm we calculate
infrastructure availability and cost. We determine infrastructure availability through the
RBD model utilizing K-out-of-N method, based on MTTF and MTTR values of com-
ponents. The cost is calculated based on individual cost of each component selected in
the candidate solution (as shown in 3.1). After that, we applied a penalty function (3.1)
about the availability value generated. The penalty function is described follow:

𝑝 = 𝐵 − 𝐶𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝐶𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

(3.1)

𝑚𝑖𝑛(0, 𝑝) (3.2)

where 𝐵 is the Budget, 𝐶𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 is the cost of the candidate solution and 𝐶𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

is the cost of all available components in the data center. However, this penalty function
only must be applied when the cost of the candidate solution is greater then 𝐵 value. To
guarantee this, we also use the minimum value between 0 and penalty function (Equation
3.2). Thus, the result of this must be added to the candidate solution availability.

3.3.3 Algorithms Parametrization

To solve the composable infrastructure allocation problem using DE, we defined a set
of parameters for this algorithm based on (PEDERSEN, 2010a) and presented in Table 2.
For PSO, we defined its parameters based on (PEDERSEN, 2010b) and presented in Table
3. In these two studies, the authors performed several experiments for determining the
best set of DE and PSO parameters, respectively, based on the number of variables of the
problem. Taking into account these studies, the set of parameters used in the present work
is based on the maximum number of variables that the problem achieves, corresponding
to 64 variables. We only adapted the number of generations for each algorithm to 5,000
through empirical tests.

We defined a fitness function, that it is applied for both algorithms. This function
receives as parameter an integer vector that contains the number of components for each
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sub-type. As the original DE and PSO implementations work with real vectors, we needed
to convert the representation vector to the integer vector.

Table 2 – DE parameters

Probability for crossover 95.65%

Step Size 58.24%

Population 46

Number of generations 5,000

Table 3 – PSO parameters

Inertia Weight -0.2089

Deviation of the initial
velocities

2

Population 161

Weight towards the
individuals best solution

-0.0787

Weight towards the
population best solution

3.7637

Number of generations 5,000

3.3.4 Scenarios

We explored two different scenarios for the optimization of composable infrastructure
allocation. In the first one, we maintained constant the number of items per sub-types
and varied only the number of sub-types as shown in (Table 4) in order to evaluate the
Heterogeneity. Figure 4 represents the Heterogeneity scenario. This scenario aims to
represent how less component sub-type variation affects the compose of a high availability
associated with a low cost in composable Infrastructure. The resource pool presented in
these scenarios is based on the number of sub-types of all available types of this scenario.
The budget is defined as follows: we take the price of the application requirements and
increase 10% of this value for each scenario, varying from 10% to 40%. Each experiment
was executed 10 times for each evolutionary algorithm.

The goal of the second scenario is to evaluate Variability. To achieve this, we set the
number of sub-types to 8, and we varied the number of items per sub-type (Table 5). The
budget follows the same setting of the Heterogeneity scenario. The resource pool is based
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Table 4 – Heterogeneity Scenario Settings

Experiment
Number of
Sub-Types

Items per
Sub-Type

Application
Requirement

Resource
Pool

Available
Budget ($)

1 2 1 1 8 629.00
2 4 1 1 16 686.00
3 8 1 1 32 743.00
4 16 1 1 64 800.00

Figure 4 – Resource pool from Heterogeneity Scenario

on the number of sub-types of all available types of this scenario. Figure 5 shows the
Variability scenario. This scenario aims to represents how a higher component sub-type
variation affects the compose of a high availability associated with low cost in composable
Infrastructure. Each experiment was executed 10 times for each evolutionary algorithm.

Table 5 – Variability Scenario Settings

Experiment
Number of
Sub-Types

Items per
Sub-Type

Application
requirement

Resource
Pool

Available
Budget ($)

1 8 1 1 32 629.00
2 8 2 1 64 686.00
3 8 3 1 96 743.00
4 8 4 1 128 800.00

The MTTF and MTTR base values used in this paper and the cost of each component
are presented in Table 6. There are variations in MTTF and cost of hardware resources
for each sub-type from these base values, that are expressed in equations 3.3 and 3.4.

𝑟𝑎𝑛𝑑𝑜𝑚(𝑚𝑡𝑡𝑓, 𝑚𝑡𝑡𝑓 + 𝑚𝑡𝑡𝑓 * 0.1) (3.3)
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Figure 5 – Resource pool from Variability Scenario

𝑟𝑎𝑛𝑑𝑜𝑚(𝑐𝑜𝑠𝑡, 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑠𝑡 * 0.1) (3.4)

Table 6 – MTTF, MTTR, and cost values of the hardware components (from (SMITH et
al., 2008; ARAUJO et al., 2014; BROSCH et al., 2010))

Component MTTF (in hours) MTTR (in hours)
Component

Cost ($)

Compute 292,000.00 6.0 370.00
Memory 480,000.00 2.5 130.00
Storage 200,000.00 2.5 45.00
Network 120,000.00 2.5 27.00

3.4 COMPONENT IMPORTANCE ANALYSIS

The importance of system components can be estimated based on two aspects: reliability
and availability. Component reliability is directly related to the MTTF parameter, while
the availability component is related to MTTF and MTTR parameters. It is desirable to
improve system availability and reliability by making a small investment. Thus, the cost
of the component must be taken into account to estimate its importance (FIGUEIRÊDO et

al., 2011).
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We use the RBD model presented in Figure 6 to calculate the availability and reliability
importance of each component present in our scenarios (GUIMARAES et al., 2011). We have
one block for each hardware resource (CPU, memory, network and storage), which receives
the MTTF and MTTR parameters and the respective hardware resource cost, as shown
in Table 6. We use the software Mercury2 to calculate these importance values, based on
Birnbaum Importance (𝐼𝐵

𝑖 ) equation. A reliability importance (RI) is shown in Equation
3.5 as example, where 𝑝𝑖 is the component reliability vector with 𝑖th component removed;
0𝑖 is the condition when component 𝑖 failed; and 1𝑖 is the condition when 𝑖 is working.
The availability importance equation follows the same structure.

𝐼𝐵
𝑖 = 𝑅𝑠(1𝑖, 𝑝𝑖) − 𝑅𝑠(0𝑖, 𝑝𝑖) (3.5)

Figure 6 – Composable Infrastructue RBD model

Table 7 illustrates reliability (considering one year) and availability importance values
of the hardware resource. The network is the component with the highest value of both
importance values, followed by the storage, while the memory and compute have the
lowest ones. Therefore, a little investment in the network results in a greater increase of
the composable infrastructure availability, while a greater investment in the compute is
needed to result in a similar improvement on availability.

Table 7 – Importance values

Component Availability Importance Reliability Importance

Network 0.95276 0.8690
Storage 0.92128 0.8161
Memory 0.77268 0.6672
Compute 0.35313 0.6672

3.5 MONO-OBJECTIVE OPTIMIZATION ANALYSIS

In this section, we will present the main results obtained in Heterogeneity and Variability
scenarios of mono-objective approach in terms of availability, cost and arrangement of
solutions, as well as, a discussion about them. Taking into account the fact that we
2 http://www.modcs.org/?page_id=2392
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performed several executions for each experiment of the evolutionary algorithms, in this
section, we discuss the results from an random independent execution. The summary from
all executions are present in section 3.5.1.

3.5.1 Evolutionary Algorithms Executions

In this section, we discuss the results obtained from 10 executions of each experiment,
from both scenarios of the evolutionary algorithms. We calculated the mean and standard
deviation obtained from availability and cost values. To analyze the different solutions ob-
tained in each experiment for DE and PSO algorithms, we applied the non-parametric
Kruskal-Wallis Test (VARGHA; DELANEY, 1998), to verify statistical equality in the mod-
els.

In Table 8, we present the summary of executions obtained from Heterogeneity Sce-
nario. In Experiment 1, we noted that PSO obtained a higher mean availability and a
lower mean cost, but applying the statistical test, we obtained a p-value of 0.4853, so
there was no statistical difference between the sets obtained by PSO, and DE.

Similar behavior was obtained for other experiments: in Experiment 2, DE obtained
a higher mean availability, and a lower mean cost, but a p-value of 0.7001 established the
statistical equality for both models; in Experiments 3 and 4, the means availability were
closer to each other, but the means cost were better for Experiment 3 for DE a better
for PSO in Experiment 4. In both cases, the models presented, respectively, a p-value of
0.2961 and 0.6954, which indicates the statistical equality.

Table 8 – Heterogeneity Summary from 10 execution of DE and PSO Algorithms

DE | Heterogeneity

Experiment
Mean

Availability
Standard
Deviation

Mean
Cost

Standard
Deviation

1 99.99567447779822 8.290920590492531e-06 618.5 10.229858259037611
2 99.99684108573146 1.0407618914247076e-05 672.7 8.307225770376053
3 99.99742441440498 2.7794627992550146e-15 733.2 9.421252570651102
4 99.99742442243051 6.552724635342446e-11 788.2 9.119210492142399

PSO | Heterogeneity

Experiment
Mean

Availability
Standard
Deviation

Mean
Cost

Standard
Deviation

1 99.99600778638271 3.333041259567793e-06 615.3 9.869650449737316
2 99.99671608442029 1.0382624210616162e-05 676.9 13.209466302617983
3 99.99742440697396 1.486197831654857e-10 737.8 3.6
4 99.99742442109303 6.687871373367664e-11 786.0 17.332051234634633

In Table 9, we present the summary of executions obtained from Variability Scenario.



44

In Experiment 1, DE obtained better results than PSO. These models had a statistical
difference demonstrated to a p-value of 0.0377. Other experiments demonstrated statis-
tical equality to each other. In Experiment 2, DE obtained a better mean availability
and a mean cost, but comparing with PSO model, a p-value of 0.6114 was obtained. In
Experiment 3, PSO obtained a better mean availability and the same mean cost obtained
to DE models. In this case, the models demonstrated a p-value of 0.59048. Finally, in Ex-
periment 4, PSO obtained better mean availability, and DE obtained better cost. These
models demonstrated a p-value of 0.4151.

Table 9 – Variability Summary from 10 execution of DE and PSO Algorithms

DE | Variability

Experiment
Mean

Availability
Standard
Deviation

Mean
Cost

Standard
Deviation

1 99.99575780382971 8.332692319545919e-06 620.2 6.954135460285484
2 99.99729939406633 3.749728223967141e-06 681.5 3.0740852297878796
3 99.99717443199442 4.999781971234736e-06 739.3 2.794637722496424
4 99.99752857977846 2.0830733880522285e-06 789.9 6.024118192731613

PSO | Variability

Experiment
Mean

Availability
Standard
Deviation

Mean
Cost

Standard
Deviation

1 99.84550572909624 0.0030720270547191634 633.9 24.50081631293129
2 99.98253733181036 0.00029055065906329465 684.5 7.074602462329597
3 99.99742441633689 1.9939956596359852e-10 739.6 3.0397368307141326
4 99.99773688377324 2.551274404057683e-06 794.9 3.726929030716845

3.5.2 Heterogeneity scenario results

In Experiment 1 corresponding to the heterogeneity scenario (see Figure 7.a), the DP and
the DE presented about the same availability (99.9961%, achieving an annual downtime of
about 33.51 hours), however DE found a more expensive solution ($624 from DE against
$603 from DP). PSO obtained an availability level of 99.9953% (pointing to an annual
downtime of about 41.17 hours) and a cost of $624.

In Experiment 2 (Figure 7.b), the three algorithms obtained roughly the same avail-
ability (99.9974%, equivalent to an annual downtime of about 22.56 hours), but with
different costs; DP found the best cost ($655), DE found the cost of $622 and the PSO
found the worst one ($680).

In the Experiments 3 (Figure 7.c) and 4 (Figure 7.d), we observed an interesting
behavior: the availability level stabilizes at around 99.9974% (only DP in Experiment 4
obtained a slightly higher availability of 99.9977%) but the costs of the solutions keep
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increasing. In experiment 3, DP found the solution with the best cost ($655) compared
to PSO and DE ($737 and $739, respectively). And in Experiment 4, again DP found the
best solution (with a higher cost compared to experiment 3 of $757), and DE found the
worst solution with the highest cost of $798 while PSO obtained a cost of $782.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 7 – Results of the heterogeneity scenarios using DP, DE and PSO algorithms of
the (a) experiment 1, (b) experiment 2, (c) experiment 3, and (d) experiment
4.

From the algorithms results in the heterogeneity scenario, one can note that the avail-
ability is improved from experiment 1 to experiment 2. After that, the availability levels
keep almost the same (there are changes only after the 7th decimal places), even when
we increase the budget.

In Table 10, we can observe the solutions found by each algorithm (and the cost of
each component) in the experiment 1. Regarding this Experiment, we can state that DP
found the best solution because it decided to have two redundant network interfaces (the
most critical component according to the importance analysis results; see Table 7) and
opted for having the cheapest memory. DE also selected two network components, but
selected a more expensive memory. Therefore, despite DP and DE achieving about the
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same availability (99.99617%, see Figure 7(a)), the DE solution was more expensive. PSO
presented the worst result, since it decided for having two redundant storage components
(the second critical component, see Table 7).

In Experiment 2 (see Table 11), in order to increase availability, taking in account the
increase in the budget value, the algorithms adopted some strategies for choosing their
solutions. For example, DP kept the same solution of Experiment 1 but added redun-
dancy in the storage resource which is the second largest critical component according
to importance analysis. This configuration allowed DP to establish the best cost-benefit
solution. DE chose the cheapest memory and also added redundancy in the storage re-
source, ensuring the same availability of DP. And PSO added redundancy in the network
resource, choosing the second and the fourth more expensive resources, besides, this algo-
rithm chose the more expensive and more available storage resource (was greedy), which
justified PSO has obtained the highest cost in this Experiment.

Regarding the availability behaviour across the experiments, we can see that after the
second experiment, even with a higher available budget, the algorithms, in general, did
not find a solution that increases substantially the composable infrastructure availability.
It is interesting to note that although the solutions are more expensive, availability stays
practically the same (from experiment 2 to 4) for all algorithms. It is due to the fact
that even with the addition of redundant components (which increases the cost of the
solution), the availability does not increase considerably since other components also
impact availability. In addition, it is not suitable to add redundant components that do
not have a major impact on the availability due to limited budget. Thus, it is important
to add redundant components that have the greatest impact on availability.

For example, In Experiment 3 (Table 12), DP kept the same solution and cost of
Experiment 2 despite the budget increase. Both DE and PSO chose a more expensive and
more available memory resource and increased the redundancy of network resources for 3
units in comparison of Experiment 2. These facts only increased the cost of each solution.

Finally, in Experiment 4 (Table 13), only DP achieved a slight increase in availability
due to choosing more expensive and more available network and storage resources. DE
and PSO tried to increase the availability by adding a 3 units redundancy to the storage
resource in comparison to Experiment 3, but availability remained practically the same.

Overall, the DP algorithm obtained the best results (lowest cost and highest avail-
ability) due to the redundancy priority in the network, storage, and memory components
respectively (most critical components according to the importance analysis results, see
Table 7). The DP algorithm solved our problem efficiently due to its nature of decom-
posing the problem into low-order sub-problems and discarding solutions that are not
suitable after verification (BELLMAN, 2013).
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Table 10 – Solutions found by DP, DE and PSO for the experiment 1 of the heterogene-
ity scenario. Considering that there are 2 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Heterogeneity | Experiment 1

Algorithm
Hardware

Resource Type
Solution

MTTF
(in hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0] 292.000 370.00

Memory [1 0] 480.000 130.00

Network [1 1]
120.000 27.00

140.168 31.00

Storage [1 0] 200.000 45.00

DE

Compute [1 0] 292.000 370.00

Memory [0 1] 560.652 151.00

Network [1 1]
120.000 27.00

140.168 31.00

Storage [1 0] 200.000 45.00

PSO

Compute [1 0] 292.000 370.00

Memory [1 0] 480.000 130.00

Network [1 0] 120.000 27.00

Storage [1 1]
200.000 45.00

233.613 52.00

3.5.3 Variability scenario results

In experiment 1 of the variability scenario (Figure 8.a), DP and DE obtained the best
availability level (both about 99.99617%, meaning an annual downtime of 33.51 hours)
while PSO achieved 99.99409% (annual downtime of 51.76 hours). In this case, DP pre-
sented the best result because its solution has the lowest cost of $603 against $620 from
PSO and $622 from DE.

In experiment 2 (Figure 8.b), the three algorithms achieved about 99.9974% of avail-
ability (annual downtime of 22.562), and again DP presented the best cost-benefit solution.
While DP obtained a cost of $655, DE and PSO reached $682 and $686 respectively.

In Experiments 3 (Figure 8.c) and 4 (Figure 8.d), we can state that the availability
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Table 11 – Solutions found by DP, DE and PSO for the experiment 2 of the heterogene-
ity scenario. Considering that there are 2 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Heterogeneity | Experiment 2

Algorithm Component Type Solution
MTTF

(In Hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0 0 0] 292.000 370.00

Memory [1 0 0 0] 480.000 130.00

Network [1 1 0 0] 120.000 27.00

140.168 31.00

Storage [1 1 0 0] 200.000 45.00

233.613 52.00

DE

Compute [1 0 0 0] 292.000 370.00

Memory [1 0 0 0] 480.000 130.00

Network [1 1 0 0] 120.000 27.00

140.168 31.00

Storage [0 1 0 1] 233.613 52.00

289.856 65.00

PSO

Compute [1 0 0 0] 292.000 370.00

Memory [1 0 0 0] 480.000 130.00

Network [0 1 0 1] 140.168 31.00

173.914 39.00

Storage [1 0 0 1] 200.000 45.00

289.856 65.00

stabilized around 99.9979% (annual downtime of 18 hours), and that DP obtained the
best cost ($655), followed by the PSO ($737) and DE ($739); And finally in Experiment
4, DP was the best again ($774) followed by PSO ($788) and DE ($793).

The solutions found by each algorithm (and the cost of each component) in Experiment
1 of the variability scenario are presented in Table 14. Again, DP outperformed the others
because it was able to select the components that balance better availability and cost. DP
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Table 12 – Solutions found by DP, DE and PSO for the experiment 3 of the heterogene-
ity scenario. Considering that there are 2 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Heterogeneity | Experiment 3

Algorithm Component Type Solution
MTTF

(In Hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0 0 0 0 0 0 0] 292.000 370.00

Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 0 0 0 0 0 0] 120.000 27.00

140.168 31.00

Storage [1 1 0 0 0 0 0 0] 200.000 45.00

233.613 52.00

DE

Compute [1 0 0 0 0 0 0 0] 292.000 370.00

Memory [0 0 1 0 0 0 0 0] 615.161 166.00

Network [1 0 1 0 0 1 0 0]
120.000 27.00

153.790 34.00

202.104 45.00

Storage [1 1 0 0 0 0 0 0] 200.000 45.00

233.613 52.00

PSO

Compute [1 0 0 0 0 0 0 0] 292.000 370.00

Memory [0 0 1 0 0 0 0 0] 615.161 166.00

Network [1 1 1 0 0 0 0 0]
120.000 27.00

140.168 31.00

153.790 34.00

Storage [0 1 1 0 0 0 0 0] 233.613 52.00

256.317 57.00

and DE gave priority to allocate redundant network (lower and higher cost respectively,
since it is the component that present the highest importance value (see Table 7). PSO
presented the worst availability result (Experiment 1), once its solution does not include
redundant components. We noted that the three algorithms did not choose any solution
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Table 13 – Solutions found by DP, DE and PSO for the experiment 4 of the heterogene-
ity scenario. Considering that there are 2 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Heterogeneity | Experiment 4

Algorithm Component Type Solution
MTTF

(In Hours)

Allocated
Hardware
Cost ($)

DP

Compute [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 341.075 432.00

Memory [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 560.672 151.00

Network [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 140.168 31.00

153.790 34.00

Storage [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0] 233.613 52.00

256.317 57.00

DE

Compute [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 292.000 370.00

Memory [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 480.000 130.00

Network [1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
120.000 27.00

153.790 34.00

173.914 39.00

Storage [0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0]
233.613 52.00

318.929 71.00

336.840 75.00

PSO

Compute [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 292.000 370.00

Memory [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
120.000 27.00

140.168 31.00

173.914 39.00

Storage [1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0]
200.000 45.00

289.856 65.00

336.840 75.00

with component redundancy of the same sub-type.
In Experiment 2 (Table 15), we noted that DP basically maintained the same solution

from Experiment 1 but added a redundancy in the storage resource. This redundancy
increases availability in comparison to Experiment 1. In this Experiment, DE and PSO



51

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 8 – Results of the variability scenarios using DP, DE and PSO algorithms in (a)
experiment 1, (b) experiment 2, (c) experiment 3, and (d) experiment 4.

achieved the same availability as that of DP but presented more expensive solutions. In the
case of DE, what makes the solution more expensive was the choice of 3 network hardware
resources rather than 2 (as in Experiment 1), and 2 storage resources of the same sub-type.
While in PSO case, this difference of cost is due selecting 3 network hardware resources
rather than one, as in Experiment 1. Besides, PSO also added 2 storage resources of the
same sub-type.

In Experiment 3 (Table 16), DP kept the same solution of Experiment 2. On the
other hand, DE and PSO found different solutions, but these solutions kept about the
same availability already found in Experiment 2, but increased in terms of cost. In the
DE solution, this fact may be justified due to selecting a network resource that is more
expensive and adding a storage resource in comparison to Experiment 2. Regarding the
PSO solution, the difference is justified by the use of three storage resources and a more
expensive memory resource.

In Experiment 4 (Table 17), the three algorithms showed redundancy for the same sub-
type of resources. With DP, the algorithm chose 2 units of memory, network and storage
resources, respectively. Only the compute resource did not present redundancy, due to its
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higher cost. Furthermore, the algorithm selected only the cheapest resources to apply the
redundancy, which guaranteed the best cost but delivered a slightly greater availability
in the scenario. DE and PSO presented similar solutions, which applied redundancy of 2
units of the same sub-type of memory whereas network and storage resources presented
redundancy in different sub-types.

Table 14 – Solutions found by DP, DE and PSO for the experiment 1 of the variabil-
ity scenario. Considering that there are 8 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Variability | Experiment 1

Algorithm
Hardware

Resource Type
Solution

MTTF
(in hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0 0 0 0 0 0 0] 292.000 370.00

Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 0 0 0 0 0 0] 120.000 27.00

140.168 31.00

Storage [1 0 0 0 0 0 0 0] 200.000 45.00

DE

Compute [1 0 0 0 0 0 0 0] 292.000 370.00

Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 0 0 0 1 0 0 0] 120.000 27.00

191.357 43.00

Storage [0 1 0 0 0 0 0 0] 233.613 52.00

PSO

Compute [1 0 0 0 0 0 0 0] 292.000 370.00

Memory [0 1 0 0 0 0 0 0] 560.652 151.00

Network [0 0 0 0 0 0 0 1] 240.091 54.00

Storage [1 0 0 0 0 0 0 0] 200.000 45.00
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Table 15 – Solutions found by DP, DE and PSO for the experiment 2 of the variabil-
ity scenario. Considering that there are 8 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Variability | Experiment 2

Algorithm Component Type Solution
MTTF

(In Hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 0 0 0 0 0 0] 120.000 27.00
140.168 31.00

Storage [1 1 0 0 0 0 0 0] 200.000 45.00
233.613 52.00

DE

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 1 0 0 0 0 0]
120.000 27.00
140.168 31.00
153.790 34.00

Storage [2 0 0 0 0 0 0 0] 200.000 45.00

PSO

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [0 2 1 0 0 0 0 0] 140.168 31.00
153.790 34.00

Storage [2 0 0 0 0 0 0 0] 200.000 45.00
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Table 16 – Solutions found by DP, DE and PSO for the experiment 3 of the variabil-
ity scenario. Considering that there are 8 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Variability | Experiment 3

Algorithm Component Type Solution
MTTF

(In Hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 0 0 0 0 0 0] 120.000 27.00
140.168 31.00

Storage [1 1 0 0 0 0 0 0] 200.000 45.00
233.613 52.00

DE

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [1 0 0 0 0 0 0 0] 480.000 130.00

Network [1 1 0 1 0 0 0 0]
120.000 27.00
140.168 31.00
173.914 39.00

Storage [2 1 0 0 0 0 0 0] 200.000 45.00
233.613 52.00

PSO

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [0 1 0 0 0 0 0 0] 480.000 130.00
Network [3 0 0 0 0 0 0 0] 120.000 27.00
Storage [3 0 0 0 0 0 0 0] 200.000 45.00
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Table 17 – Solutions found by DP, DE and PSO for the experiment 4 of the variabil-
ity scenario. Considering that there are 8 sub-types in this experiment, the
Solution column presents the solution vector with the respective amount of
components selected per sub-type.

Variability | Experiment 4

Algorithm Component Type Solution
MTTF

(In Hours)

Allocated
Hardware
Cost ($)

DP

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [2 0 0 0 0 0 0 0] 480.000 130.00
Network [2 0 0 0 0 0 0 0] 120.000 27.00
Storage [2 0 0 0 0 0 0 0] 200.000 45.00

DE

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [2 0 0 0 0 0 0 0] 480.000 130.00

Network [1 0 1 0 0 0 0 0] 120.000 27.00
153.790 34.00

Storage [1 0 1 0 0 0 0 0] 200.000 45.00
256.317 57.00

PSO

Compute [1 0 0 0 0 0 0 0] 292.000 370.00
Memory [2 0 0 0 0 0 0 0] 480.000 130.00

Network [1 0 1 0 0 0 0 0] 120.000 27.00
153.790 34.00

Storage [1 1 0 0 0 0 0 0] 200.000 45.00
233.613 52.00
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4 OPTIMIZING THE INFRASTRUCTURE ALLOCATION IN COMPOSABLE
DATA CENTER: MULTI-OBJECTIVE APPROACH

Since maximizing the availability and minimizing the cost are conflicting goals, a tradi-
tional mono-objective approach could not express the trade-off properly. Thus, we also
present our problem from a multi-objective view to analyze and understand the behavior
of different solutions expressed as Pareto front.

In this chapter, we present the formulation of the multi-objective problem definition
and its implementation taking in account the two algorithms used in this experiment:
Non-dominated Sorting Genetic Algorithm and Generalized Differential Evolution. Fur-
thermore, we present the main results obtained with multi-objective experiments. These
results are also divided into two scenarios, previously presented in 3.3.4. We also show the
parametrization of the algorithms utilized in this approach and the convergence analysis
of them.

4.1 PROBLEM DEFINITION

We define the following multi-objective problem in order to find a set of computing re-
sources from the shared pool of resources in a composable infrastructure that maximizes
availability (𝐴) of an application and minimizes budget (𝐵).

maximize 𝑌 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥1, ..., 𝑥𝐼 , 𝑦1, ..., 𝑦𝐽 ,

𝑤1, ..., 𝑤𝐾 , 𝑧1, ..., 𝑧𝐿,

𝑚𝑡𝑡𝑓_𝑐𝑝𝑢1, ..., 𝑚𝑡𝑡𝑓_𝑐𝑝𝑢𝐼 ,

𝑚𝑡𝑡𝑟_𝑐𝑝𝑢1, ..., 𝑚𝑡𝑡𝑟_𝑐𝑝𝑢𝐼 ,

𝑚𝑡𝑡𝑓_𝑚𝑒𝑚1, ..., 𝑚𝑡𝑡𝑓_𝑚𝑒𝑚𝐽 ,

𝑚𝑡𝑡𝑟_𝑚𝑒𝑚1, ..., 𝑚𝑡𝑡𝑟_𝑚𝑒𝑚𝐽 ,

𝑚𝑡𝑡𝑓_𝑛𝑒𝑡1, ..., 𝑚𝑡𝑡𝑓_𝑛𝑒𝑡𝐾 ,

𝑚𝑡𝑡𝑟_𝑛𝑒𝑡1, ..., 𝑚𝑡𝑡𝑟_𝑛𝑒𝑡𝐽 ,

𝑚𝑡𝑡𝑓_𝑠𝑡𝑜1, ..., 𝑚𝑡𝑡𝑓_𝑠𝑡𝑜𝐿,

𝑚𝑡𝑡𝑟_𝑠𝑡𝑜1, ..., 𝑚𝑡𝑡𝑟_𝑠𝑡𝑜𝐿,

𝑅𝑐𝑝𝑢, 𝑅𝑚𝑒𝑚, 𝑅𝑛𝑒𝑡, 𝑅𝑠𝑡𝑜),
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minimize 𝑊 = 𝑐𝑜𝑠𝑡(𝑥1, ..., 𝑥𝐼 , 𝑦1, ..., 𝑦𝐽 , 𝑤1, ..., 𝑤𝐾 , 𝑧1, ..., 𝑧𝐿,

𝑅𝑐𝑝𝑢, 𝑅𝑚𝑒𝑚, 𝑅𝑛𝑒𝑡, 𝑅𝑠𝑡𝑜,

𝐼∑︁
𝑖=1

𝑐𝑜𝑠𝑡_𝑐𝑝𝑢𝑖𝑥𝑖 +
𝐽∑︁

𝑗=1
𝑐𝑜𝑠𝑡_𝑚𝑒𝑚𝑗𝑦𝑗+

𝐾∑︁
𝑘=1

𝑐𝑜𝑠𝑡_𝑛𝑒𝑡𝑘𝑤𝑘 +
𝐿∑︁

𝑙=1
𝑐𝑜𝑠𝑡_𝑠𝑡𝑜𝑙𝑧𝑙)

subject to
𝐼∑︁

𝑖=1
𝑐𝑜𝑠𝑡_𝑐𝑝𝑢𝑖𝑥𝑖 +

𝐽∑︁
𝑗=1

𝑐𝑜𝑠𝑡_𝑚𝑒𝑚𝑗𝑦𝑗+,

𝐾∑︁
𝑘=1

𝑐𝑜𝑠𝑡_𝑛𝑒𝑡𝑘𝑤𝑘 +
𝐿∑︁

𝑙=1
𝑐𝑜𝑠𝑡_𝑠𝑡𝑜𝑙𝑧𝑙 < 𝐵,

𝐼∑︁
𝑖=1

𝑥𝑖 ≥ 𝑅𝑐𝑝𝑢,
𝐽∑︁

𝑗=1
𝑦𝑗 ≥ 𝑅𝑚𝑒𝑚,

𝐾∑︁
𝑘=1

𝑤𝑘 ≥ 𝑅𝑛𝑒𝑡,
𝐿∑︁

𝑙=1
𝑧𝑙 ≥ 𝑅𝑠𝑡𝑜

The function 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(), that corresponds to the same function presented in 3.1,
estimates the availability of a possible solution represented by an RBD model that is
parameterized by the decision variables, application requirements, MTTF values, and
MTTR values, and solved through numerical algorithms. Depending on the values as-
sumed by the decision variables for a possible solution, a specific RBD model is composed
and solved in order to estimate the corresponding availability.

The function 𝑐𝑜𝑠𝑡() calculates the cost associated with a given allocation that is pa-
rameterized by the components of a possible solution.

The first constraint ensures that the overall cost of the set of resources allocated by
the composable infrastructure does not breach the maximum budget (𝐵). The other four
constraints (i.e. the terms 𝑅𝑐𝑝𝑢 ∈ 𝑁*, 𝑅𝑚𝑒𝑚 ∈ 𝑁*, 𝑅𝑛𝑒𝑡 ∈ 𝑁*, and 𝑅𝑐𝑝𝑢 ∈ 𝑁*) are the
application requirements defined by the user i.e. the minimum number of 𝑐𝑝𝑢, 𝑚𝑒𝑚, 𝑛𝑒𝑡

and 𝑠𝑡𝑜 units required by the application.
In this problem formulation, we have considered the same set of parameters presented

in Table 1. Furthermore, we also considered the same automatic generation of the avail-
ability model presented in section 3.2 in this multi-objective approach.

4.2 ALGORITHMS IMPLEMENTATION

In order to develop the multi-objective approach, we divided the implementation in two
fitness functions and a constraint function. This implementation while based on this two
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fitness functions is applied for both NSGA-II and GDE3. The NSGA-II and GDE3 im-
plementations considered in this work are part of JMetalPy1 framework.

The first fitness function is responsible for calculating infrastructure availability for
each candidate solution provided by the algorithm through a K-out-of-N RBD model
taking into account the MTTF and MTTR values of respective components. This first
fitness function only considers solutions that adhere to the application requirements.

The second fitness function calculates the cost for each candidate solution based on
selected hardware resources, that means, the cost of each hardware resource is considered
to estimate the overall cost of the proposed solution. This fitness function retains solutions
that adhere to the application requirements.

Finally, the constraint function is responsible for verifying if the cost of the candidate
solution meets the available budget.

In the next chapter, we will present the main results obtained for experiments utilizing
these algorithms.

4.2.1 Algorithms Parametrization

For NSGA-II, we defined parameters as follows (Table 18). We also defined a fitness func-
tion to maximizing availability, a fitness function to minimizing cost and a constraint
function. All functions receive as a input a integer vector containing the number of hard-
ware resources for each sub-type. As the original NSGA-II implementation works with
real vectors (as well as GDE3 implementation), we needed to convert the representation
vector to the integer vector.

Table 18 – NSGA-II parameters

Mutation Polynomial

Crossover SBX

Mutation Rate 1/m

Mutation Distribution Index 20

Crossover Rate 1

Crossover Distribution Index 20

Population Size N = 100

Selection for Reproduction Binary Tournament

Fitness Evaluation 25,000

The parameters for GDE3 were defined as follows (Table 19). The fitness used and
the constraint functions follow the same settings as the ones for the NSGA-II algorithm.
1 https://github.com/jMetal/jMetalPy
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Table 19 – GDE3 parameters

Population Size N = 100

Crossover Rate 0.5

Step Size 0.5

Fitness evaluation 25,000

The most parameters used for NSGA-II and GDE3 are based on (DURILLO et al., 2010).
In this study, the authors performed a parameterization study to analyze the scalability
of sets of problems taking into account high numbers of problem variables. For NSGA-II,
we only adapted empirically the probability of crossover rate for the higher value. And
for GDE3, we adapted the crossover rate.

Each experiment of each scenarios, for both GDE3 and NSGA-II, was executed 10
times.

4.3 MULTI-OBJECTIVE OPTIMIZATION ANALYSIS

In this section, we will present the main results obtained in the Heterogeneity and Variabil-
ity scenarios by the multi-objective approach in terms of availability, cost and arrangement
of solutions, as well as, a provide a discussion about them. Additionally, we will present
the convergence analysis results. Taking into account the fact that we performed several
executions for each experiment of the evolutionary algorithms, in this section, we discuss
the results from an independent execution. The summary from the all executions are
present in section 4.3.3.

4.3.1 Heterogeneity scenario results

In Experiment 1 of the heterogeneity scenario (Figures 9 (a),(b)), NSGA-II and GDE3
found the same 5 solutions, with a maximum availability of 99.9963% (annual downtime
of 0.3193 hours) at an estimated cost of $610; and minimum availability of 99.9940%
(annual downtime of 0.5176 hours) at an estimated cost of $572.

In Experiment 2 (Figures 9 (c),(d)), NSGA-II and GDE3 obtained the same solution
for maximum and minimum, with maximum availability of 99.9974% at an estimated cost
of $683, and minimum availability of 99.9940% at an estimated cost of $572. Furthermore,
the number of solutions increased to 31 for both algorithms.

In Experiment 3 (Figures 9 (e),(f)), NSGA-II and GDE3 found closer solutions. How-
ever, GDE3 found more solutions (60) and reached NSGA-II (50). Maximum availability
for GDE3 was 99.9977% (annual downtime of 0.1931 hours) at an estimated cost of $738.
Maximum availability for NSGA-II was 99.9976% (annual downtime of 0.2086 hours) at an
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estimated cost of $739. Both algorithms show the same minimum availability (99.9940%)
at the same estimated cost ($572).

Finally, in Experiment 4 (Figures 9 (g),(h)), GDE3 shows a maximum availability of
99.9976% at an estimated cost of $800 while NSGA-II shows a maximum availability of
99.9974% at an estimated cost of $798. In terms of minimum availability, GDE3 reached
99.9940% at an estimated cost of $572; NSGA-II is at 99.9941% at an estimated cost of
$593. Overall, GDE3 found 63 solutions while NSGA-II found 62.

From these results, we can note an increase in the number of solutions in line with the
configuration of each experiment for NSGA-II and GDE3. In Experiment 1, for example,
these algorithms found only 5 solutions. When increasing the number of sub-types in the
resource pool (Experiment 2), both NSGA-II and GDE3 more than tripled the number
of solutions (31 solutions of each algorithm). However, Experiments 3 and 4 behave dif-
ferently. From Experiment 2 to Experiment 3, the number of solutions found by NSGA-II
increased by 61,29% , while from Experiment 3 to Experiment 4, the number of solutions
only increased by 24%. This is understandable as, despite the increase in the number of
sub-types, the budget and application requirement constraints limited the algorithms and
the search space.

In both Experiments 1 and 2, the algorithms found the same maximum and mini-
mum solutions (see Tables 23 and 24). For Experiment 3, as a minimum solution, GDE3
achieved better results due to selexting network resource cheaper comparing with NSGA-
II. While for its maximum solution, GDE3 chose a compute and a network resource that
were more expensive. Despite this, the difference between GDE3 and NSGA-II availability
and cost are a mere 0,0001% and $1, respectively.

Regarding availability and cost results, we noted that NSGA-II and GDE3 in Exper-
iment 2 resulted in similar availability to NSGA-II in Experiment 4, only differing at
the 8th place decimal. Due to budget constraints and the size of the resource pool for
the different experiments, the solution presented different number of hardware resources,
and consequently different costs. NSGA-II and GDE3 in experiment 2 found a cost of
$683, while NSGA-II in Experiment 4 found a cost of $798. While both NSGA-II and
GDE3 found a solution composed of 6 hardware resources in experiment 2, NSGA-II in
Experiment 4 (see Table 26) found a solution with 8 hardware resources. This suggests it
is possible to assemble a set of resources in a composable infrastructure that meets the
same requirement using less hardware resources, at a lower cost while delivering effectively
the same availability.

4.3.2 Variability scenario results

In Experiment 1 for the variability scenario (Figures 10 (a), (b)), the maximum avail-
ability of the two algorithms was close, with 99.9966% for GDE3 (annual downtime of
0,2942 hours) and 99.9964% (annual downtime of 0,3110 hours) for NSGA-II, while the
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correspondent cost was $629 for GDE3, and $627 for NSGA-II. The minimum availability
of NSGA-II and GDE3 was the same (99.9940% at a cost of $572). In this experiment,
NSGA-II and GDE3 found 18 and 23 solutions, respectively.

In Experiment 2 (Figures 10 (c), (d)), NSGA-II and GDE3 found 33 and 44 solu-
tions, respectively. The two algorithms found effectively the same maximum availability
of 99.9974% (with a difference at the 5th decimal place), with the same cost, $685, for
both algorithms. GDE3 obtained minimum availability of 99.9940% and a cost of $572,
while NSGA-II obtained availability of 99.9943% and a cost of $576.

In Experiment 3 (Figures 10 (e), (f)), even though GDE3 and NSGA-II found the
same maximum cost, $743, GDE3 achieved the best maximum availability of 99.9976%
while NSGA-II reached 99.9968%. Regarding the minimum availability and the respec-
tive cost, NSGA-II obtained 99.9947% and $682, while GDE3 kept the same result of
previous experiment. In this experiment, NSGA-II and GDE3 listed 21 and 66 solutions,
respectively.

Lastly, in Experiment 4 (Figures 10 (g), (h)), GDE3 and NSGA-II obtained the same
maximum availability of 99.9979% but GDE3 reached the best cost, $788 against $799
from NSGA-II. The minimum availability of NSGA-II was 99.9945% costing $579, whereas
GDE3 kept the result of previous experiment. In this experiment, NSGA-II and GDE3
visited 59 and 63 solutions, respectively.

From these results, we noted that in Experiment 1, NSGA-II and GDE3 found more
solutions in variability scenarios than in heterogeneity ones. This can be explained by the
size of the resource pool that presents redundant hardware resources. In this experiment,
there is some variation in the number of solutions found by the algorithms. For instance,
NSGA-II found 33 solutions in Experiment 2, and 21 in Experiment 3.

About solutions of In Experiment 1 (Table 27), we noted that both minimum and
maximum solutions of NSGA-II and GDE3 were similar and consequently presented sim-
ilar availability values. The only difference may be found in the maximum solution of
NSGA-II where a different storage hardware resource, $2 more expensive, were chose.

In Experiment 2 (Table 28), both the minimum and maximum solutions of NSGA-II
and GDE3 also were similar. The difference may be found in minimum solution of NSGA-
II where a different network hardware resource, more expensive, were chosen. However,
this change only increased in $4 the cost of solution, delivering similiar availability.

We noted in Experiment 3 (Table 29) that NSGA-II and GDE3 presented the same
costs but different levels of availability. Despite GDE3 selecting more resources than
NSGA-II, 6 vs 5, it selected a compute with better individual availability.

For Experiment 4 (Table 30), there is an interesting observation: GDE3 and NSGA-
II obtained the same maximum availability with different costs. The solutions for these
algorithms also impacted one of the results. While NSGA-II selected 7 hardware resources,
GDE selected 6. Furthermore, NSGA-II selected 2 distinct resources of the same sub-type
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in two cases (2 memory and 2 storage), while GDE3 only selected 2 resources of the same
sub-type (2 storage). We also noted that GDE3 selected 1 memory resource for redundancy
that was more expensive than the memory chosen by NSGA-II. This suggests that it is
possible to assemble a less expensive set of resources using composable infrastructure that
uses less redundant hardware resources while delivering the same availability of a set of
resources with more redundancy.

4.3.3 Convergence Analysis

In order to analyse the performance of the optimization algorithms, we use a widely-
used quality metric, the hypervolume (HV) measure. HV measures both convergence and
diversity (FIGUEIREDO; LUDERMIR; BASTOS-FILHO, 2016; LI et al., 2015; SINGH; ISAACS;

RAY, 2011). When calculating the HV, a reference point is required; in this work, each
experiment of each scenario has a different vector that represents the set of reference
points. We consider the worst values for availability and cost as reference points. For all
cases, we consider the availability of 0%, and cost to allocate the whole resource pool,
which varying according each experiment, as shown in Table 20.

Table 20 – Reference point variation

Heterogeneity

Experiment Cost ($)
1 1238.0
2 2797.0
3 6903.0
4 21670.0
Variability

Experiment Cost

1 6903.0
2 13806.0
3 20709.0
4 27612.0

We calculated the Hypervolume from 10 executions of each experiment, from both
scenarios of NSGA-II and GDE3 algorithms. Following, we calculated the mean and stan-
dard deviation obtained from these values. To analyze the different solutions obtained in
each experiment for GDE3 and NSGA-II algorithms, we also applied the non-parametric
Kruskal-Wallis Test, to verify statistical equality in the models.

In Table 21, we present the summary of executions obtained from Heterogeneity sce-
nario. In Experiment 1, we noted that mean and standard deviation values obtained for
both algorithms are the same. It indicates the low variation of the algorithms due to
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the limitations of this Experiment. In Experiment 2, despite algorithms obtained a close
Hypervolume mean values, the models presented statistical difference with a p-value of
2.760041810417523e-05, indicating a better GDE3 result due to lower standard deviation.
In Experiment 3, the models presented statistical difference with a p-value of 0.0001. In
this case, NSGA-II obtained a better result due to lower standard deviation value. In
Experiment 4, the algorithms obtained statistical equality with a p-value of 0.0796.

Table 21 – Heterogeneity Hypervolume Summary

GDE3 | Heterogeneity

Experiment
Hypervolume

Mean
Standard
Deviation

1 665.9751223166036 0.0
2 2224.942944985391 0.0
3 6330.858600486061 1.186222298097961e-06
4 21097.564225994243 0.019171919886313414

NSGA-II | Heterogeneity

Experiment
Hypervolume

Mean
Standard
Deviation

1 665.9751223166036 0.0
2 2224.9429403595213 9.765314754186369e-06
3 6330.848459293013 0.0009318107085997483
4 21090.95470461667 19.83241190715805

In Table 22, we present the summary of executions obtained from Variability scenario.
In this scenario, all models presented statistical difference to each other. In Experiment 1,
GDE3 obtained better result than NSGA-II, with lower standard deviation and slightly
better Hypervolume Mean. The models obtained a p-value of 4.6300028968098476e-05.
In Experiment 2, 3 and 4 GDE3 also presented better Hypervolume mean and standard
deviation values. The respective p-values obtained from these Experiments were 0.0207,
7.112318931215443e-05 and 0.0001.

4.3.4 Comparing the approaches

The comparison discussed in this section does not aim to establish which approach ob-
tained the best results but aim to present the similarities between approaches and expose
the behavior of the conflicting objectives.

Despite using different approaches, we noted that the solutions reached in both cases
for availability were very much close. This fact is justified by the budget constraint estab-
lished in both problem definitions. It is essential to confirm that the comparison performed
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Table 22 – Variability Hypervolume Summary

GDE3 | Variability

Experiment
Hypervolume

Mean
Standard
Deviation

1 6330.786654069427 0.0
2 13233.670947325094 0.0025387774806024505
3 20136.522549472644 3.867272607749328e-06
4 27039.454562612726 2.3493078700874407e-05

NSGA-II | Variability

Experiment
Hypervolume

Mean
Standard
Deviation

1 6330.777469081672 0.003472253838280767
2 13231.671057239777 2.001909688137509
3 20087.684765386974 33.9353652341439
4 26980.411055904493 49.97757984984292

in this section is based on decision criteria for maximizing availability and minimizing cost.
Additionally, we divided this section in Heterogeneity and Variability Scenarios.

4.3.4.1 Heterogeneity Scenario

Analyzing Experiment 1 of the Heterogeneity scenario, we noted that DP and DE also
reached one of the 5 results found in multi-objective approach. But the multi-objective
approach achieved slightly higher availability in its maximum solution with both GDE3
and NSGA-II algorithms, with availability of 99.9963% and cost of $610. While mono-
objective approach found (in DP and DE algorithms) availability of 99.9961% and cost of
$603. The main difference is specified by downtime: 0,3351 for multi-objective approach
and 0,3193 for mono-objective approach.

In Experiment 2 of Heterogeneity scenario, both approaches obtained the same max-
imum availability for all algorithms. However, in the multi-objective approach, it a total
of 31 solutions were identified by GDE3 and NSGA-II, respectively.

In Experiment 3, the multi-objective approach found the best solution selected by the
mono-objective approach (99.9974% and cost of $655). The same best availability reached
in the mono-objective was also found among the multi-objective approach solutions with
higher costs. Multi-objective approach found maximum availability solution with a slightly
higher availability value (availability of 99.9977% and cost of $738).

Finally, in Experiment 4, the mono-objective approach delivered an availability value
(availability of 99.9977% and cost of $757 found by DP) closer to that of the multi-
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objective approach (availability of 99.9976% and cost of $800). In this case, the mono-
objective obtained a lower cost.

In this scenario, it was expecting an increase in the availability across experiments due
to the rising number of items associated with the budget increase per experiment. How-
ever, in both approaches, this increase is not linear, mainly in multi-objective approach,
from experiment 3 to 4.

4.3.4.2 Variability Scenario

Analyzing Experiment 1 of Variability scenario, we see a similar behavior compared to
the Heterogeneity scenario for the same experiment. Also in this case, the best result ob-
tained by mono-objective approach was among the solutions given by the multi-objective
approach. In mono-objective approach, DP found the best solution among the mono-
objective algorithms: 99.9961% and cost of $603. This result is closer to results found in
multi-objective approach: GDE3 found availability of 99.9966 % and cost of $629; and
NSGA-II found availability of 99.9964% and cost of $627.

In Experiment 2 of Variability, the same maximum result found in Experiment 2 of
Heterogeneity, for both approaches, is reached by its respective algorithms. It means that
there is no variation in this experiment, even when scenarios are different. We believe
that budget constraint associated to this experiment did not allow a greater variety of
availability even when the variability of resource pool is better.

Multi-objective and mono-objective approaches presented a closer availability result
in Experiment 3. For example, GDE3 found availability of 99.9976% and cost of $743
against availability of 99.9974% and cost of $655 found by DP. In this case, DP presented
a lower cost due slightly lower availability. We also noted that the adopted algorithms
within the multi-objective approach identified the same maximum result as the one for
the mono-objective approach among their set of solutions and also gave results with the
same maximum availability, but with lower cost.

In Experiment 4, both approaches pointed to the same maximum availability value.
In this case, the mono-objective approach achieved a cost of $774 with DP and the multi-
objective achieve a cost of $799 for NSGA-II and $788 for GDE3. The cost suffered by
the multi-objective approach also was similar to the one for the mono-objective approach
when running PSO.

In this scenario, it was also expecting an increase in the availability across experi-
ments due to the rising number of items associated with budget increase per experiment;
and due to variability of the number sub-types utilized. However, in the multi-objective
approach, for example, the availability suffers more variations across experiments than
in the Heterogeneity scenario. In the Variability scenario, we also noted the availability
values it was higher than the Heterogeneity one.
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(a) NSGA-II - Experiment 1 (b) GDE3 - Experiment 1

(c) NSGA-II - Experiment 2 (d) GDE3 - Experiment 2

(e) NSGA-II - Experiment 3 (f) GDE3 - Experiment 3

(g) NSGA-II - Experiment 4 (h) GDE3 - Experiment 4

Figure 9 – Results of the heterogeneity scenarios using NSGA-II and GDE3 algorithms
of Experiment 1, Experiment 2, Experiment 3, and Experiment 4.



67

(a) NSGA-II - Experiment 1 (b) GDE3 - Experiment 1

(c) NSGA-II - Experiment 2 (d) GDE3 - Experiment 2

(e) NSGA-II - Experiment 3 (f) GDE3 - Experiment 3

(g) NSGA-II - Experiment 4 (h) GDE3 - Experiment 4

Figure 10 – Results of the variability scenarios using NSGA-II and GDE3 algorithms of
the experiment 1, experiment 2, experiment 3, and experiment 4.
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5 CONCLUSION

Over recent years, cloud computing consolidated itself as a powerful paradigm for de-
livering IT resources. Nevertheless, this paradigm faces technology-driven inefficiencies
introduced mainly by resources underutilization and overprovisioning for redundancy.
Consequently, cloud providers face new issues and challenges to continue offering highly
available services, requiring changes in the data center infrastructure, management, and
operation.

Composable data center addresses sources of inefficiencies in traditional cloud com-
puting and also provides a solution for managing the differing infrastructure requirements
of legacy applications and next generation cloud-native applications. Notwithstanding
this potential and increasing industry support, composable infrastructure and so-called
"infrastructure-as-code" is still at an early stage of adoption. As such, it presents a range
of challenges that require industry hardened solutions not least resource discovery, allo-
cation, provisioning, orchestration, optimization and remediation.

In this dissertation, we proposed an optimization problem to solve resource allocation
in composable data center infrastructure. We used two approaches to solve this problem:
mono-objective and multi-objective. In mono-objective approach, we used DP, DE and
PSO algorithms and we used NSGA-II and GDE3 in multi-objective approach. These
algorithms were utilized in their respective approaches to identify solutions that maxi-
mize application availability and minimize infrastructure cost while taking in to account
minimum application infrastructure requirements and budget constraints.

In mono-objective approach, DE and PSO models demonstrated statistical equality in
most of experiments. Analyzing an individual execution, the DP algorithm found better
results, providing highest availability level with lowest cost in all scenarios proposed and
within the parameters setting. In this approach, we also performed importance analysis
of the computational components taking into account the availability and the costs of the
components. The results showed that the network had a large impact on availability with
a relatively little cost, while the CPU had less availability impact with a relatively high
cost, with the difference of 20.18% in the impact each other.

In multi-objective approach, both NSGA-II and GDE3 were effective in finding solu-
tions for all scenarios proposed and within the parameters setting. While both algorithms
presented diversity of solutions, GDE3 presented the largest number of solutions in all
scenarios. In this approach, we also performed convergence analysis of the algorithms
for 10 executions of each experiment of each scenario. In this analysis, GDE3 presented
slightly advantage over NSGA-II in Variability scenario. In Heterogeneity scenario, the
models presented similarities.

Our results suggest that optimization algorithms are feasible solutions for identifying
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a range of solutions for assembling solutions shared resource pools in composable infras-
tructure and thereby meeting the technical and commercial requirements of data center
managers.

About some learn lessons obtained in this work, we can cite: (a) mono-objective and
multi-objective approaches may provide closer results, varying according to a different
selection of hardware resources, delivering satisfactory availability values with varying
options of cost; (b) additionally, multi-objective algorithms may found mono-objective
best solutions in Pareto-front; (c) cheaper resources may produce right resources arrange-
ments, delivering grate results; and (d) multi-objective algorithms may provide a some
good composable infrastructure options to the cloud’s stakeholders.

Among the main contributions presenting in this work, we can cited:

• Optimization problem models to solve resource allocation in composable data center
infrastructure and understand how different arrangements of components impact in
the whole system.

• Optimization problem models to estimate composable data center infrastructure
availability regarding budget constraints and requirements of application.

• Importance analysis of the computational components in order to understand the
impact of them in availability of composable data center.

• To deliver feasible solutions for both cloud data center vendors, which looking for
optimizing the utilization of their resources and cloud data center clients’ for ob-
taining availability for their services attached to minimum cost.

5.1 DIFFICULTIES AND LIMITATIONS

This work faced some difficulties during execution. In mono-objective approach, all ex-
periments were executed using R libraries. These experiments presented a long runtime,
increasing from a scenario to another. Some mono-objective algorithms presented runtime
even worst, such in PSO and Ant Lion Optimization cases. The latter could not be used
in our experiments.

In multi-objective approach, we used a Python library called JMetal. Despite present
a huge variability of algorithms, we performed experiments with several algorithms which
did not presented satisfied results. In this approach, we also faced a long runtime in larger
scenarios, as in Experiment 4 from Heterogeneity scenario. Thus, we could not to scale
out ours scenarios and experiments.

Finally, in this dissertation, we performed a theoretical work about composable data
center infrastructure. The MTTF and MTTR values related to composable data center
were obtained from literature because such technology is still at an early stage.
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5.2 PUBLICATIONS

In Table 31, we present the scientific papers related to this dissertation. The works 5 and
8 are directly connected to this dissertation. The other works are part of the research
project about composable data center.

Table 31 – Scientific papers produced

# Reference Type Status Qualis

1
Rosendo, D., Gomes, D., Santos, G. L., Goncalves, G., Moreira, A., da Silva, L. G. F.,
Endo, P. T., Kelner, J., Sadok, D., Mehta, A.& Wildeman, M. (2019). A methodology to
assess the availability of next-generation data centers. The Journal of Supercomputing, 1-25.

Journal Published B1

2

Santos, G. L., Rosendo, D., Gomes, D., da Silva, L. G. F., Moreira, A., Sadok, D.,
Kelner, J., Goncalves, G., Wildeman, M.& Endo, P. T. (2019, March). A Methodology for
Automating the Cloud Data Center Availability Assessment. In International Conference on
Advanced Information Networking and Applications (pp. 1011-1023). Springer, Cham.

Conference Published A2

3
Goncalves, G., Rosendo, D., da Silva, L. G. F., Santos, G. L., Gomes, D., Moreira, A,
Kelner, J., Sadok, D., Wildeman, M. & Endo, P. T. "A Standard to Rule Them All:
Redfish". IEEE Communications Standards Magazine, vol. 3, no. 2, pp. 36-43, June 2019.

Journal Published -

4

Moreira, A., Rosendo, D., Gomes, D., Leoni Santos, G., da Silva, L. G. F., Cani, C., Kelner, J.,
Sadok, D., Goncalves, G., Mehta, A., Wildeman, M. & Endo, P. T. DCAV: A software
system to evaluate next-generation cloud data center availability through a friendly graphical
interface. Software: Practice and Experience.

Journal Published A2

5

da Silva, L. G. F., Goncalves, G., Rosendo, D., Santos, G. L., Moreira, A., Kelner, J.,
Sadok, D., Wildeman, M., Mehta, A. & Endo, P. T. Maximizing the Availability of
Composable Systems of Next-Generation Data Centers. IEEE International Conference on
Systems, Man, and Cybernetics (IEEE SMC 2019).

Conference Published A2

6

Rosendo, D., Gomes, D., Santos, G. L., da Silva, L. G. F.., Moreira, A., Kelner, J., Sadok,
D., Goncalves, G., Mehta, A., Wildeman, M. & Endo, P. T. Availability Analysis of
Design Configurations to Compose vPOD Systems in Next-Generation Cloud Data Center.
Journal of Software: Practice and Experience (JSPE).

Journal Published A2

7
da Silva, L. G. F., Endo, P. T., Rosendo, D., Santos, G. L., Santos, D., Moreira, A.,
Gonçalves, G., Mehta, A. & Wildeman, M. Standardization Efforts for Traditional Data
Center Infrastructure Management: the Big Picture. IEEE Engineering Management Review.

Journal Published -

8

da Silva, L. G. F., Rocha, E. S., Monteiro, K. H. C., Santos, G. L., Silva, F. A., Kelner, J.,
Sadok, D., Bastos Filho, C. J. A., Rosati, P., Lynn, T. & Endo, P. T. Optimizing resource
availability in composable datacenter infrastructures. Wafers Latin America Symposium on
Dependable Computing (LADC)

Conference Published B4

5.3 FUTURE WORKS

As future works, we intend to perform a parameter analysis of the algorithms in order
to choose the best parameters to be utilized in experiments. We also plan to analyze the
composable infrastructure allocation under cloud provider perspective, considering the
cost to maintain the infrastructure to serve the clients.

As composable infrastructure supports hardware and software heterogeneity, we intent
to explore this in future studies by expanding the number of resource sub-types and the
granularity of resource characterization used in our models but also greater variation in
application requirements. Furthermore, we intend to compare the performance of different
algorithms for resource allocation problems in composable infrastructure.
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