
Igor de Araújo Meira

Validating, verifying and testing timed data-flow reactive systems in Coq from
controlled natural-language requirements

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2020

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Igor de Araújo Meira

Validating, verifying and testing timed data-flow reactive systems in Coq from
controlled natural-language requirements

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Per-
nambuco como requisito parcial para obtenção do
grau de Mestre em Ciência da Computação.

Área de Concentração: Engenharia de Soft-
ware
Orientador: Gustavo Henrique Porto de Car-
valho

Recife
2020

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

M514v Meira, Igor de Araújo

Validating, verifying and testing timed data-flow reactive systems in Coq from
controlled natural-language requirements / Igor de Araújo Meira. – 2020.

 64 f.: il., fig., tab.

 Orientador: Gustavo Henrique Porto de Carvalho.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2020.
 Inclui referências.

 1. Engenharia de software. 2. Linguagem natural controlada. I. Carvalho,
Gustavo Henrique Porto de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2020 - 68

Igor de Araújo Meira

Validating, Verifying and Testing Timed Data-Flow Reactive Systems in

Coq from Controlled Natural-Language Requirements

 Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 05/03/2020.

BANCA EXAMINADORA

Prof. Dr. Juliano Manabu Iyoda

Centro de Informática/UFPE

Prof. Dr. Marcel Vinicius Medeiros Oliveira

Departamento de Informática e Matemática Aplicada/UFRN

__
Prof. Dr. Gustavo Henrique Porto de Carvalho

Centro de Informática /UFPE
(Orientador)

ACKNOWLEDGEMENTS

The results presented in this work were obtained with the support of several people,
therefore, I would like to thank everyone who contributed so that this moment has become
reality. I begin my thanks to the Informatics Center, at Federal University of Pernambuco,
for the incredible structure, and for the knowledge I acquired during my time as a student.
I also thank professors Augusto Sampaio and Alexandre Mota, for the incredible classes
taught.

A special thanks to my advisor, Gustavo Carvalho, who helped me whenever I needed,
guided me during my trajectory, for believing in my potential and for the valuable lessons,
in the classroom, at meetings and even about aviation. I will be forever grateful for
everything.

I would like to thank my aunt Alexandra and my uncle César, for all the conversations,
for all the advice and unique moments. I also thank all my friends, who were always by
my side when I needed it. To my neighbours in Gravatá, who always lent their internet.

Finally, all the gratitude to my parents (Gibson Meira and Nelma Meira), for giving
me all the support and always ensuring that I had everything to complete this stage of
life. To André Meira (my lovely brother and best friend), for all the fun and advices, and
Bruna Lisboa (my girlfriend and life partner), for all her patience, support and love.

ABSTRACT

The NAT2TEST strategy provides means for generating test cases from controlled
natural-language requirements. It is tailored for testing timed data-flow reactive systems
(DFRSs), which are a class of embedded systems whose inputs and outputs are always
available as signals. Input signals can be seen as data provided by sensors, whereas the
output data are provided to system actuators. In previous works, verifying well-formedness
properties of DFRS models was accomplished in a programmatic way, with no formal guar-
antees, and test cases were generated by translating theses models into other notations.
Here, we use Coq as a single framework to specify, validate and verify DFRS models.
Moreover, the specification of DFRSs in Coq is automatically derived from controlled
natural-language requirements, and well-formedness properties are formally verified with
no user intervention. System validation is supported by bounded exploration of models,
and test generation is achieved with the aid of the QuickChick tool. Our Coq-based testing
strategy was integrated into the NAT2TEST tool, which is a multi-platform tool written
in Java, using the Eclipse RCP framework. Considering examples from the literature, but
also from the aerospace (Embraer) and the automotive (Mercedes) industries, our auto-
matic testing strategy was evaluated in terms of performance and the ability to detect
defects generated by mutation. Within seconds, test cases were generated automatically
from the requirements, achieving an average mutation score of about 75%. Discarding
equivalent mutants, in one of the industrial examples, the actual mutation score is 100%;
the generated test cases were capable of detecting all systematically introduced errors.

Keywords: NAT2TEST strategy. Controlled natural language. Timed data-flow reactive
system. Coq. Property-based testing. QuickChick.

RESUMO

A estratégia NAT2TEST permite gerar casos de testes a partir de requisitos em
linguagem natural controlada. Esta estratégia se destina ao teste de sistemas reativos
baseados em fluxos de dados (DFRSs), uma classe de sistemas embarcados cujas entradas
e saídas estão sempre disponíveis como sinais. Sinais de entrada podem ser vistos como
dados providos pelos sensores, enquanto que dados de saída são encaminhados a atuadores
do sistema. Em trabalhos anteriores, a verificação de propriedades de boa formação de
modelos DFRS era realizada de forma programática, sem garantias formais, e casos de
testes eram gerados traduzindo estes modelos em outras notações. Aqui, faz-se uso de
Coq como um ambiente único para especificar, validar e verificar modelos DFRS. Adi-
cionalmente, a especificação de DFRSs em Coq é gerada automaticamente a partir de
requisitos em linguagem natural controlada, e propriedades de boa formação são formal-
mente verificadas sem intervenção do usuário. A validação do sistema é suportada através
da exploração controlada de modelos, e testes são gerados com o apoio da ferramenta
QuickChick. A estratégia baseada em Coq desenvolvida neste trabalho foi integrada à
ferramenta NAT2TEST, que é uma ferramenta multiplataforma escrita em Java, usando
o ambiente Eclipse RCP. Considerando exemplos tanto da literatura, como também da
indústria aeroespacial (Embraer) e automotiva (Mercedes), a estratégia de testes pro-
posta aqui foi avaliada em termos de desempenho e de habilidade em detectar defeitos
gerados por mutação. Em poucos segundos, casos de testes foram gerados automatica-
mente a partir dos requisitos, alcançando uma taxa de detecção de mutantes de cerca
de 75%. Descartando mutantes equivalentes, em um dos exemplos industriais, a taxa de
detecção real é de 100%; os casos de testes gerados foram capazes de detectar todos os
erros introduzidos sistematicamente.

Palavras-chaves: Estratégia NAT2TEST. Linguagem natural controlada. Sistemas reativos
baseados em fluxos de dados. Coq. Testes baseados em propriedades. QuickChick.

LIST OF FIGURES

Figure 1 – NAT2TEST: a strategy for generating test cases 14
Figure 2 – Example of signals for the vending machine 19
Figure 3 – Some states of the e-DFRS representation for the VM 21
Figure 4 – Characterisation of DFRSs in Coq . 28
Figure 5 – Bounded exploration of the vending machine e-DFRS 43
Figure 6 – NAT2TEST tool: editing system requirements 48
Figure 7 – NAT2TEST tool: s-DFRS function for the VM 49
Figure 8 – NAT2TEST tool: generated Coq specification for the VM 49
Figure 9 – NAT2TEST tool: test cases generated for the VM 50
Figure 10 – Linearity between number of calls to Sample and test generation time . 54
Figure 11 – Mutant-based strength analysis (examples from the literature) 55
Figure 12 – Mutant-based strength analysis (examples from industry) 55

LIST OF TABLES

Table 1 – Example of requirement frame for REQ001 (VM) 16
Table 2 – Specialisations of the NAT2TEST strategy 17
Table 3 – Proof of theorem length app . 23
Table 4 – Example of test data generated via QuickChick (VM) 47
Table 5 – General empirical data . 52
Table 6 – Performance data . 53

CONTENTS

1 INTRODUCTION . 11
1.1 MODEL-BASED TESTING . 11
1.2 NATURAL-LANGUAGE PROCESSING 11
1.3 THE NAT2TESTCoq STRATEGY . 12
1.4 DISSERTATION STRUCTURE . 13

2 BACKGROUND . 14
2.1 THE NAT2TEST STRATEGY . 14
2.1.1 Syntactic analysis . 14
2.1.2 Semantic analysis . 15
2.1.3 DFRS generation . 15
2.1.4 Test generation . 16
2.1.5 Other extensions . 18
2.2 DATA-FLOW REACTIVE SYSTEMS . 19
2.3 THE COQ PROOF ASSISTANT . 21
2.3.1 The Gallina language . 21
2.3.2 Building proofs with tactics . 22
2.3.3 Proof automation . 23
2.3.4 Functional, logical, and inductive characterisations 25
2.4 PROPERTY-BASED TESTING . 25

3 VALIDATING, VERIFYING AND TESTING DFRSS IN COQ . . . 27
3.1 CHARACTERISATION OF DFRSS IN COQ 27
3.1.1 Coq characterisation of symbolic DFRSs 28
3.1.1.1 Variables . 28
3.1.1.2 Initial state . 32
3.1.1.3 Functions . 33
3.1.1.4 s DFRSs . 37
3.1.2 Coq characterisation of expanded DFRSs 38
3.1.2.1 Transition relation . 38
3.1.2.2 e DFRSs . 39
3.1.3 Functional characterisation of well-formedness properties 39
3.2 APPLICATIONS OF OUR COQ CHARACTERISATION OF DFRSS 41
3.2.1 Validating system requirements via bounded exploration of models . 41
3.2.2 Generating test cases with QuickChick 44

4 TOOL SUPPORT AND EMPIRICAL ANALYSES 48
4.1 INTEGRATION WITH THE NAT2TEST TOOL 48
4.2 EMPIRICAL ANALYSES . 51
4.3 PERFORMANCE ANALYSIS . 52
4.4 MUTANT-BASED STRENGTH ANALYSIS 54

5 CONCLUSIONS . 57
5.1 RELATED WORK . 57
5.2 FUTURE WORK . 59

REFERENCES . 61

11

1 INTRODUCTION

Today’s society, given its enormous dependence on computer programs, can be seen
as largely dependent on, or even defined by, software. Failures in programs that support
people’s daily lives can have significant impacts, causing financial losses or even endan-
gering people’s lives. Therefore, it is necessary to invest in strategies that seek to increase
the quality of the developed software.

One possibility is to promote error detection and subsequent correction through testing
policies. However, when tests are written and run manually, they are not error-free either,
which can compromise their ability to find real defects. In this scenario, it is important to
invest in strategies that can automatically generate and even perform tests, ideally error
free.

1.1 MODEL-BASED TESTING

In a Model-Based Testing (MBT) strategy, test cases are derived from models, making
the testing process more agile, less susceptible to errors, and less dependent on human
interaction. This goal is usually reached by means of automatic generation (and execution)
of test cases, besides automatic generation of test data, from specification models.

Here, we focus on models of timed Data-Flow Reactive Systems (DFRSs): a class of
embedded systems whose inputs and outputs are always available as signals. Additionally,
the system behaviour might be dependent on time. Models of DFRSs are fully explained
in (CARVALHO; CAVALCANTI; SAMPAIO, 2016). They have been used to model examples
both from the literature and the industry. This previous work shows that these models can
be seen as timed input-output transition systems, but, being more abstract, enable them
to be automatically extracted from system-level specifications described in a controlled
natural language, which is an important aspect as discussed in what follows.

Despite the benefits of MBT, those who are not familiar with the models syntax and
semantics may be reluctant to adopt theses formalisms. Moreover, most of these models
are not available in the very beginning of the project, when usually only natural-language
requirements are available. One possible alternative to overcome these limitations is to
employ Natural Language Processing (NLP) techniques to derive the required models
from natural-language specifications automatically.

1.2 NATURAL-LANGUAGE PROCESSING

The demand of stating the desired system behaviour using models may sometimes be
an obstacle for adopting MBT techniques, despite all its benefits. The model notations
may be not easy to interpret by, for instance, aerospace and automotive development

12

engineers. Hence, a specialist (usually mathematicians, logicians, computer engineers and
scientists) is required when such languages, and their corresponding techniques, are used
in business contexts. Furthermore, most of these models are not yet available in the very
beginning of the system development project.

As previously said, one possible alternative to overcome these limitations is to provide
means for deriving specification models automatically from the already existing documen-
tation, in particular, natural-language requirements. In this sense, NLP techniques can
be helpful. If models are derived from natural-language requirements, besides applying
MBT techniques, one can formally reason about properties of specifications that can be
difficult to analyse by means of manual inspection, such as determinism.

Typically, there is a trade-off concerning the application of NLP in MBT. Some strate-
gies are able to analyse a broad range of sentences, whereas others rely on Controlled
Natural Languages (CNLs). The works that adopt the former approach usually depend
on a higher level of user intervention to derive models and to generate test cases. Differ-
ently, the restrictions imposed by a CNL might allow a more automatic approach when
generating models and test cases. Ideally, a compromise between these two possibilities
should be sought to provide a useful degree of automation along with a natural-language
specification feasible to be used in practice.

1.3 THE NAT2TESTCoq STRATEGY

NAT2TEST (CARVALHO et al., 2015) is a fully automatic strategy for generating test
cases from natural language to timed data-flow reactive systems. Seeking for automation,
it adopts a CNL for describing the system requirements. In (CARVALHO; CAVALCANTI;

SAMPAIO, 2016), it is explained how models of DFRSs can be automatically derived from
natural-language requirements adhering to SysReq-CNL, a CNL specially designed for
editing requirements of timed data-flow reactive systems. Test generating is achieved by
reusing different notations and techniques.

In our previous works, verifying well-formedness properties of DFRS models is accom-
plished in a programmatic way, with no formal guarantees: DFRS models are encoded as
Java objects and the verification of well-formedness properties is accomplished by algo-
rithms implemented in Java. It is important to say that the well-formedness properties are
not necessarily true by construction. Since the DFRS models are extracted from controlled
natural-language requirements, we might have inconsistencies (e.g., for some variable, we
might have type inconsistency between different requirements). Additionally, to generate
test cases it is necessary to translate DFRS models into other less abstract notations.

In this work (CARVALHO; MEIRA, 2019), we extend the NAT2TEST strategy, using
the Coq proof assistant (BERTOT; CASTRAN, 2010) as a single framework to validate
and to verify DFRS models, besides generating test cases. As a consequence, all DFRS
well-formedness properties are formally verified, and with no user intervention. System

13

validation is supported by bounded exploration of models. Test generation is achieved
with the aid of the QuickChick tool (PARASKEVOPOULOU et al., 2015), with no need to
further translate our Coq characterisation of DFRSs into other notations. We refer to this
extension of the NAT2TEST strategy as NAT2TESTCoq.

Considering examples from the literature, but also from the aerospace (Embraer1)
and the automotive (Mercedes) industry, our automatic testing strategy was evaluated
in terms of performance and the ability to detect defects generated by mutation. Within
seconds, test cases were generated automatically from the requirements, achieving an
average mutation score of about 75%. Discarding equivalent mutants, in the example
provided by Embraer, the actual mutation score is 100%; the generated test cases were
capable of detecting all systematically introduced errors.

Therefore, the main contribution of this work is a single framework in Coq for vali-
dating, verifying, and testing timed data-flow reactive systems from controlled natural-
language requirements. In more details, we have:

• A Coq characterisation of symbolic and expanded data-flow reactive systems;

• An automatic mechanism for proving well-formedness properties;

• System validation via bounded exploration of models in Coq;

• Test generation from Coq models using the QuickChick tool;

• Tool support developed using the Eclipse RCP framework;

• Empirical analyses considering examples from the literature and industry.

1.4 DISSERTATION STRUCTURE

The remainder of this work is structured as follows.

• Chapter 2 discusses the main concepts related to this work: the NAT2TEST strategy,
data-flow reactive systems, the Coq proof assistant, and property-based testing.

• Chapter 3 presents our characterisation of data-flow reactive systems in Coq. More-
over, it shows how our Coq characterisation can be used to validate system specifi-
cations, besides generating test cases with the aid of the QuickChick tool.

• Chapter 4 explains how our work was integrated into the NAT2TEST tool. In this
chapter, we also detail our empirical analyses.

• Chapter 5 concludes by discussing related and future work.

1 Embraer website: <https://embraer.com/global/en>

https://embraer.com/global/en

14

2 BACKGROUND

Here, we present the foundational concepts related to this work: the NAT2TEST
strategy (Section 2.1), DFRS models (Section 2.2), Coq (Section 2.3), and property-based
testing (Section 2.4).

2.1 THE NAT2TEST STRATEGY

The NAT2TEST strategy is an automatic strategy for generating test cases for timed
data-flow reactive systems from controlled natural-language requirements, considering
different internal and hidden formalisms (see Figure 1). In Section 2.1.4, we discuss the
advantages and limitations related to each possible internal formalism, besides explaining
why it is worth proposing a a new possibility based on Coq.

This test-generation strategy comprises a number of phases. The three initial phases
are fixed: (1) syntactic analysis, (2) semantic analysis, and (3) DFRS generation. The
other phases of the process depend on internal formalisms adopted.

Figure 1 – NAT2TEST: a strategy for generating test cases

In what follows, we describe the first three phases of the NAT2TEST strategy, besides
explaining in general terms its current support for test generation, along with some ex-
tensions that have been previously developed. It is important to emphasise that the focus
of this work is the Coq-based extension (NAT2TESTCoq), highlighted in Figure 1.

2.1.1 Syntactic analysis

Requirements are written according to a CNL based on English: the SysReq-CNL,
specially designed for editing requirements of data-flow reactive systems. The first phase

15

of the NAT2TEST strategy is responsible for verifying whether the requirements are in
accordance with the SysReq-CNL grammar. For each valid requirement, its corresponding
syntax tree is identified.

As a running example, we consider a Vending Machine (VM) (adapted from the coffee
machine presented in (LARSEN; MIKUCIONIS; NIELSEN, 2005)). Initially, the VM is in an
idle state. When it receives a coin, it goes to the choice state. After inserting a coin, when
the coffee option is selected, the system goes to the weak or strong coffee state. If coffee
is selected within 30 seconds after inserting the coin, the system goes to the weak coffee
state. Otherwise, it goes to the strong coffee state. The time required to produce a weak
coffee is also different from that of a strong coffee; the former is produced within 10 to 30
seconds, whereas the latter within 30 to 50 seconds. After producing coffee, the system
returns to the idle state.

The following requirement (REQ001) adheres to the SysReq-CNL grammar: When the
system mode is idle, and the coin sensor changes to true, the coffee machine system shall:
reset the request timer, assign choice to the system mode.

2.1.2 Semantic analysis

In the second phase, the requirements are semantically analysed using the case gram-
mar theory (FILLMORE, 1968). In this theory, a sentence is not analysed in terms of the
syntactic categories or grammatical functions, but in terms of the semantic (thematic)
roles played by each word/group of words in the sentence. Therefore, for each syntax
tree the group of words that correspond to a thematic role is identified. The collection of
thematic roles for a requirement is called the requirement frame.

Table 1 shows the requirement frame for REQ001. We note that the thematic roles are
grouped into conditions and actions. The roles that appear in actions are the following:
Action – the action performed if the conditions are satisfied; Agent – entity who performs
the action; Patient – entity who is affected by the action; and To Value – the patient
value after action completion. Similar roles appear in conditions.

2.1.3 DFRS generation

Afterwards, the third phase derives DFRS models – an intermediate formal character-
isation of the system behaviour from which other formal notations can be derived. The
thematic roles are inspected to identify system variables (inputs, outputs and timers). For
instance, since the Patient denotes an entity who is affected by some action (its value is
changed), it will be considered when identifying output variables. Entities whose value are
only accessed will be considered when identifying input variables. Timers are identified
with the aid of the auxiliary keyword timer.

After identifying system variables, the system behaviour is encoded as assignments
(derived from actions) guarded by conditions (derived from conditions). For a compre-

16

Table 1 – Example of requirement frame for REQ001 (VM)

Condition #1 - Main Verb (Condition Action): is
Condition Patient: the system mode Condition From Value: –
Condition Modifier: – Condition To Value: idle
Condition #2 - Main Verb (Condition Action): changes
Condition Patient: the coin sensor Condition From Value: –
Condition Modifier: – Condition To Value: true
Action - Main Verb (Action): reset
Agent: the coffee machine system To Value: –
Patient: the request timer
Action – Main Verb (Action): assign
Agent: the coffee machine system To Value: choice
Patient: the system mode

hensive explanation of how DFRS models are derived from requirement frames, we refer
to (CARVALHO; CAVALCANTI; SAMPAIO, 2016).

The possibility of exploring different formal notations allows analyses from several
perspectives, using different languages, tools, and techniques. Besides that, it makes our
strategy extensible. Models of DFRSs are explained in Section 2.2.

2.1.4 Test generation

Test generation is achieved by translating DFRS models into internal and hidden for-
malisms. In what follows, we list the possibilities currently supported by the NAT2TEST
strategy.

• NAT2TESTSCR: based on Software Cost Reduction – SCR (HENINGER et al., 1978)
(more details in (CARVALHO et al., 2014));

• NAT2TESTIMR: based on Internal Model Representation – IMR (PELESKA et al.,
2011) (more details in (CARVALHO et al., 2014));

• NAT2TESTCSP : based on Communicating Sequential Processes – CSP (ROSCOE,
2010) (more details in (CARVALHO; SAMPAIO; MOTA, 2013));

• NAT2TESTCPN : based on Coloured Petri Nets – CPN (JENSEN; KRISTENSEN, 2009)
(more details in (SILVA; CARVALHO; SAMPAIO, 2019));

• NAT2TESTCoq: based on Coq (BERTOT; CASTRAN, 2010) – the main contribution
of this work.

17

Exploring different formal notations allows test generation from several perspectives,
using different languages, tools, and techniques. In NAT2TESTSCR and NAT2TESTIMR,
test cases are generated with the support of commercial testing tools: T-VEC1 and RT-
Tester2, respectively. Differently, the NAT2TESTCSP strategy reuses a general purpose re-
finement checker (FDR3 (GIBSON-ROBINSON et al., 2014)) and SMT solver (Z34 (MOURA;

BJØRNER, 2008)) to deliver a generation supported by a formal and sound testing theory.
Scalability is a known issue of this specialisation of the NAT2TEST strategy. Differently,
the NAT2TESTCPN strategy aims at efficiency by generating test cases via random simu-
lation of CPN models. Table 2 summarises the languages (internal formalism derived from
DFRS models), tools and techniques considered by the aforementioned specialisations in
order to generate test cases.

Table 2 – Specialisations of the NAT2TEST strategy

Language Technique Tool
NAT2TESTSCR SCR SMT solving T-VEC
NAT2TESTIMR IMR SMT solving RT-Tester
NAT2TESTCSP CSPM Model checking/SMT solving FDR/Z3
NAT2TESTCPN CPN Simulation CPN Tools
NAT2TESTCoq Coq Property-based testing Coq/QuickChick

Each specialisation has its own advantages, summarised as follows:

• NAT2TESTSCR: scalability, test coverage criteria;

• NAT2TESTIMR: scalability, test coverage criteria;

• NAT2TESTCSP : formal testing theory, symbolic time representation, free software5;

• NAT2TESTCPN : scalability, perspective of formal testing theory, free software6;

• NAT2TESTCoq: scalability, single framework for validation, verification and testing,
free software7.

The first two specialisations (NAT2TESTSCR and NAT2TESTIMR) are supported by
commercial testing tools, with algorithms designed and optimised for testing genera-
tion. Important coverage criteria are supported when generating test cases, for instance
1 T-VEC website: <https://www.t-vec.com/>
2 RT-Tester website: <https://www.verified.de/products/rt-tester/>
3 FDR website: <https://www.cs.ox.ac.uk/projects/fdr/>
4 Z3 website: <https://github.com/Z3Prover/z3>
5 Z3 is released under MIT license. FDR is freely available for academic teaching and research purposes.
6 CPN Tools is released under GNU General Public License (GPL) version 2.
7 Coq is released under GNU Lesser General Public License v2.1.

https://www.t-vec.com/
https://www.verified.de/products/rt-tester/
https://www.cs.ox.ac.uk/projects/fdr/
https://github.com/Z3Prover/z3

18

MC/DC, which is required by standards such as DO-178C (JACKLIN, 2012). However,
the testing theory is not formal (GAUDEL, 1995) and, thus, one cannot formally argue in
favour of its soundness.

In order to develop a formal testing theory, typically, it is necessary to consider the
following elements: (i) adopt a formal specification language, (ii) assume that it is possible
to represent the implementation behaviour using the same language (testability hypoth-
esis), (iii) define an implementation relation expressing correctness of implementations
with respect to specification models, (iv) define a test generation and a test execution
procedure, and (v) finally prove that these procedures are sound with respect to the im-
plementation relation (i.e., if the execution of a generated test case fails, it means that
the implementation under test is not related to the considered specification model by the
adopted implementation relation).

Differently, the specialisation based on CSP (NAT2TESTCSP) has a formal testing
theory. This theory differs from the one defined in (CAVALCANTI; GAUDEL, 2007), since it
considers a clear separation between input and output events, besides supporting partial
specifications and a symbolic time representation; it takes into account both discrete-
and continuous-time systems. However, scalability is an issue. The specialisation based
on CPNs (NAT2TESTCPN) is better with respect to scalability, and we already have in
the literature (not connected to our working context) implementation relations for CPNs.

Finally, the NAT2TESTCoq specialisation, proposed here, distinguishes itself by cre-
ating a scalable, unified and formal framework for validating, verifying and testing timed
data-flow reactive systems; with no need to further translate our Coq characterisation of
DFRSs into other notations. The development of a formal testing theory considering this
specialisation is beyond the scope of this work, but this is an interesting perspective to
explore in the future.

2.1.5 Other extensions

In (SANTOS; CARVALHO; SAMPAIO, 2018), the SysReq-CNL is extended to allow the
specification of environment restrictions and, thus, how the system interacts with its sur-
rounding environment. This extension has only been incorporated into the NAT2TESTCSP

specialisation. In this way, unrealistic interactions between the system and the environ-
ment are not considered when generating test cases via FDR + Z3.

In (BARZA et al., 2016), it is possible to specify in natural language system properties
(in the style of temporal logic). These properties, along with the system requirements,
are translated into CTL formulae and NuSMV models, respectively. With the aid of the
NuSMV model checker (CIMATTI et al., 2000), it is possible to assess whether the specified
properties are satisfied by the NuSMV models. Here, test generation is not the ultimate
goal, but model checking requirements.

19

Finally, in (OLIVEIRA et al., 2017), it is discussed a vertical adaptation of the NAT2TEST
strategy in order to simulate hybrid systems (featuring the integration of discrete and con-
tinuous behavioural aspects) also from requirements adhering to a CNL. Therefore, this
work revisits each phase of the NAT2TEST strategy, now considering h-SysReq-CNL (an
extension of the SysReq-CNL where it is possible to define differential equations) and a
hybrid version of DFRS models (h-DFRS). Simulation is enabled by translating h-DFRS
models into Acumen (TAHA et al., 2016), which is a language and tool for the specification
and simulation of hybrid systems.

2.2 DATA-FLOW REACTIVE SYSTEMS

A data-flow reactive system (DFRS) is an embedded system whose inputs and outputs
are always available, as signals. The input signals can be seen as data provided by sen-
sors, while outputs are data provided to actuators. DFRSs may also have internal timers,
which are used to trigger time-based behaviour. There are two models of DFRSs: sym-
bolic DFRS (s-DFRS) and expanded DFRS (e-DFRS). Basically, the former comprises
an initial state, along with functions that describe the system behaviour (how the system
evolves, depending on the input it receives). Differently, an e-DFRS represents the system
behaviour as a state-based machine. It can be seen as an expansion of the symbolic model,
applying the s-DFRS functions to its initial state, but also to the new reachable states.

As a running example, we consider the VM (presented previously). In this example,
we have two input signals related to the coin sensor (sensor) and the coffee request button
(button). A true value means that a coin was inserted or that the coffee request button
was pressed, respectively. There are two output signals: one related to the system mode
(mode) and another to the vending machine output (output). The communicated values
reflect the system’s possible modes (choice ↦→ 0, idle ↦→ 1, strong coffee ↦→ 2, and weak
coffee ↦→ 3) and the possible outputs (strong ↦→ 0, and weak ↦→ 1). The VM has just one
timer: the request timer, which is used to register the moments when a coin is inserted,
when the coffee request button is pressed, and when the coffee is produced.

Figure 2 illustrates a scenario assuming continuous observation of the input and output
signals. If we had chosen to observe the system discretely, we would have a similar scenario,
but with a discrete number of samples over time.

In this scenario, a coin is inserted 2s after starting the machine, and the coffee request
button is pressed 10s later. The first input drives the system to the choice mode, whereas
the second one to the weak coffee mode. A weak coffee is produced 14s after the request,
which is reflected by changing the machine output signal.

An s-DFRS is a 6-tuple: (I, O, T, gcvar, s0, F). Inputs (I) and outputs (O) are system
variables, whereas timers (T) are used to model temporal behaviour. The global clock is
gcvar, a variable whose values are non-negative numbers. The initial state is s0, and F is

20

false

true

2 5 30
time(s)se

ns
or

false

true

12 16 30
time(s)bu

tto
n

0

1

26 30
time(s)ou

tp
ut 0

1

2

3

2 12 26 30
time(s)

m
od

e

Figure 2 – Example of signals for the vending machine

a set of functions describing the system behaviour. For the VM, we have the following
s-DFRS:

• I = {sensor , button};

• O = {mode, output};

• T = {timer}; – an internal variable

• gcvar denotes the system global clock

• s0 = {sensor = false, button = false,mode = 1, output = 0, timer = 0, gcvar = 0};

• F = {...} – detailed later

An e-DFRS differs from the symbolic one as it encodes the system behaviour as a state-
based machine, whereas an s-DFRS does that symbolically via definitions of functions.
An e-DFRS represents a timed system with continuous or discrete behaviour modelled as
a state-based machine. States are obtained from an s-DFRS by applying its functions to
non-stable states (when a system reaction is expected), but also letting the time evolve.

Therefore, an e-DFRS is a 7-tuple: (I, O, T, gcvar, s0, S, TR), where TR is a transition
relation associating states in S by means of delay and function transitions. A delay transi-
tion represents the observation of the input signals’ values after a given delay, whereas the
function transition represents how the system reacts to the input signals: the observed
values of the output signals. The transitions are encoded as assignments to input and
output variables as well as timers.

Considering the example presented in Figure 2, Figure 3 shows some states of the
e-DFRS representation for the vending machine. The initial state considers the initial
value of all system variables. The delay transition (D) represents the change of the sensor
signal from false to true after elapsing 2 seconds. Note that the value of sensor and
the system global clock (gc) is updated in the state reached by the delay transition.
At this moment, a system reaction is expected, which is characterised by a function

21

transition (F), updating the system mode, besides resetting the request timer. Here, the
reset operation is represented as assigning to the timer the current system global clock.
This prevents us from updating all timers whenever time evolves. The function transition
happens instantaneously (time does not evolve).

sensor = false
button = false
mode = 1
output = 0
timer = 0
gcvar = 0

sensor = true
button = false
mode = 1
output = 0
timer = 0
gcvar = 2

sensor = true
button = false
mode = 0
output = 0
timer = 2
gcvar = 2

D (2s)

sensor := true
button := false

F
mode := 0
timer := 2

Figure 3 – Some states of the e-DFRS representation for the VM

As said before, we refer to (CARVALHO; CAVALCANTI; SAMPAIO, 2016) for a compre-
hensive explanation of DFRS models, besides showing how they can be derived from
natural-language requirements.

2.3 THE COQ PROOF ASSISTANT

Opposed to automatic theorem provers, which aim to develop proofs in a full automatic
manner, interactive theorem provers (also known as proof assistants) are tools that mix
human interaction and some degree of automation when building proofs. Here, we present
Coq (BERTOT; CASTRAN, 2010), which is used later in this work.

Coq8 employs a functional language (Gallina), which is similar to Haskell, to describe
algorithms. Computer-verified proofs are developed interactively using tactics9, which
have some support for automation via the tactics language (Ltac). As a logic system,
Coq considers a higher-order logic. In what follows, we briefly address these three topics
(Gallina, tactics, and automation). Moreover, we also explain the benefits and limitations
of functional, logic, and inductive definitions in Coq.

2.3.1 The Gallina language

Gallina is the specification language used by Coq. It is a typical functional language,
with support to define new types, besides polymorphic and higher-order functions. When
defining non-recursive functions, one should use the keyword Definition. See the follow-
ing example (is empty) of a polymorphic function (valid for any given type T) that yields
a logic value (True or False) indicating whether the given list is empty.
8 Coq website: <https://coq.inria.fr>
9 Index of built-in tactics: <https://coq.inria.fr/refman/coq-tacindex.html>

https://coq.inria.fr
https://coq.inria.fr/refman/coq-tacindex.html

22

Definition is empty {T : Type} (l : list T) : Prop :=
match l with
| [] ⇒ True
| ⇒ False
end.

Recursive functions shall use Fixpoint. The following example (length) yields the
number of elements of a given list l. By pattern matching, if l is empty, the function
yields 0. Otherwise, it yields the length of the list tail (tl) plus 1.

Fixpoint length {T : Type} (l : list T) : nat :=
match l with
| [] ⇒ 0
| h :: tl ⇒ 1 + length tl
end.

Differently from other functional languages, in Coq, all functions must terminate on all
inputs. To ensure that, each recursion must structurally decrease some (the same) argu-
ment. If the decreasing analysis performed by the tool cannot identify such an argument,
the corresponding recursive function is not defined. In the previous example (length), the
decreasing argument is the list itself; each recursive call is performed on a smaller list.

2.3.2 Building proofs with tactics

In Coq, proofs are developed with the aid of tactics. In the following example, we
prove that the length of a list obtained by an append is equal to the sum of the lengths of
the appended lists. Let app be the appending function, the theorem length app formalises
the previous statement.

Theorem length app :
∀ (T : Type) (l1 l2 : list T), length (app l1 l2) = length l1 + length l2.

Proof.
intros. induction l1.
- simpl. reflexivity.
- simpl. rewrite IHl1. reflexivity.

Qed.

The tactics employed modifies the proof goal in order to demonstrate its truth. Ta-
ble 3 shows how the proof goal evolves after processing each tactic. The command Proof.

23

starts the proof environment, loading the proof goal. After that, intros. performs uni-
versal instantiation, in order to prove the goal for arbitrary values of T, l1, and l2. The
command induction l1. performs induction on l1. This creates two subgoals: base case,
and inductive step. The symbol - (optional) tells Coq that we now focus on the next
subgoal (base case).

Table 3 – Proof of theorem length app

Command Proof state
Proof. forall (T : Type) (l1 l2 : list T),

length (app l1 l2) = length l1 + length l2

intros. length (app l1 l2) = length l1 + length l2

induction l1. (1/2)
length (app [] l2) = length [] + length l2

(2/2)
length (app (a :: l1) l2) = length (a :: l1) + length l2

- length (app [] l2) = length [] + length l2

simpl. length l2 = length l2

reflexivity. This subproof is complete

- IHl1 : length (app l1 l2) = length l1 + length l2

length (app (a :: l1) l2) = length (a :: l1) + length l2

simpl. IHl1 : length (app l1 l2) = length l1 + length l2

S (length (app l1 l2)) = S (length l1 + length l2)

rewrite IHl1. IHl1 : length (app l1 l2) = length l1 + length l2

S (length l1 + length l2) = S (length l1 + length l2)

reflexivity. No more subgoals.

Qed. length app is defined

After simplifying the proof goal of the base case (simpl.), we are left to prove that
length l2 = length l2, which is trivially true (proved by reflexivity.). In the inductive
step, assuming the hypothesis IHl1 : length (app l1 l2) = length l1 + length l2,
we need to prove that length (app (a :: l1) l2) = length (a :: l1) + length

l2 holds. After simplification (simpl.), the goal becomes: S (length (app l1 l2))

= S (length l1 + length l2), where S stands for the “successor” constructor. By
rewriting the goal considering IHl1 (rewrite IHl1.) we get S (length l1 + length

l2) = S (length l1 + length l2), provable by reflexivity.. The command Qed.

finishes the prove. Each command is verified by Coq, and it can only be applied if the
underlying premises for its application are satisfied. This ensures the construction of a
computer-verifiable proof.

24

2.3.3 Proof automation

Support for proof automation comes as tacticals (higher-order tactics – i.e., tactics
that take other tactics as arguments), user-defined tactics, and some decision procedures.
To illustrate some of these, consider the proof that a list is empty if, and only if, its length
is 0.

Theorem empty length 0 :
∀ (T : Type) (l : list T),

is empty l ↔ length l = 0.
Proof.
intros. destruct l.
- split.

+ simpl. intro H. reflexivity.
+ simpl. intro H. reflexivity.

- split.
+ simpl. intro H. inversion H.
+ simpl. intro H. inversion H.

Qed.

In our first try (empty length 0), we perform a case analysis on l (i.e., empty and
non-empty list). Since the goal involves an equivalence (↔), we use the tactic split. to
generate two subgoals considering both sides of the implication. The first two cases (when
the list is empty) can be trivially proved by reflexivity. The two others (when the list
is not empty) are proved by contradiction (inversion H), since we have a contradictory
hypothesis H in the proof context: a non-empty list is empty, or the length of a non-empty
list is 0. As one can see, there is some degree of repetition, and thus room for automation,
in this proof.

Ltac trivial hypo :=
try (simpl ; intro H ; reflexivity).

Ltac absurd hypo :=
try (simpl ; intro H ; inversion H).

Theorem empty length 0’ :
∀ (T : Type) (l : list T),

is empty l ↔ length l = 0.
Proof.
intros. destruct l ; split ;
repeat (trivial hypo ; absurd hypo).

25

Qed.

In our second try (empty length 0’), we define two tactics (trivial hypo, and ab-
surd hypo), which tries to prove the current goal by reflexivity or contradiction, respec-
tively. Then, the theorem is proved by trying to apply these two tactics many times
(repeat). The command ; applies the following commands to all subgoals, and not only
to the next one.

2.3.4 Functional, logical, and inductive characterisations

Another important aspect of Coq to this work is the possibility to define aspects
functionally, logically, or inductively. To give a concrete example, consider the following
definitions of whether a number is even. The first definition (evenb) is a function that
yields true (boolean value) if n is even, false otherwise. In this definition, S denotes the
successor of a natural number. If n is the successor of the successor of some number n’,
to assess whether n is even it suffices to assess whether n’ is even.

Fixpoint evenb (n : nat) : bool :=
match n with

| 0 ⇒ true
| 1 ⇒ false
| S (S n’) ⇒ evenb n’
end.

Definition is even (n : nat) : Prop :=
∃ k, n = k + k.

Inductive even : nat → Prop :=
| ev 0 : even 0
| ev SS : ∀ n, even n → even (S (S n)).

The second definition (is even) defines this concept in logical terms: a natural number
n is even if, and only if, there is a natural number k, such that n = k + k. The third,
and last, definition (even) characterises this concept inductively. The definitions ev 0 and
ev SS can be seen as inference rules, stating that 0 is even (ev 0), and that if n is even,
the successor of its successor is also even (ev SS).

Although these three definitions properly capture the concept of being even, proving
facts using these definitions might differ significantly. For the last two definitions (logical
and inductive ones), one will need to use specific tactics to deal with the existential quan-
tifier and the inference rules, respectively. Differently, concerning the functional definition,
one can use the tactic simpl. to simplify the proof goal by evaluating the function evenb
for the given arguments. However, in some situations, due to the termination requirement
of Coq for functions, one cannot rely on a purely functional definition.

In this work, when dealing with concrete examples of DFRSs, particularly when prov-
ing well-formedness properties, we favour their functional characterisation to enable au-
tomatic proof of model consistency.

26

2.4 PROPERTY-BASED TESTING

Testing is an extremely important task for software development, also complimentary
to proofs. Even in the presence of proved components, we typically need to integrate them
to unproved ones, and thus we need to rely on testing to analyse integration. Additionally,
testing can be used as a quick tool to evaluate properties, before trying to prove them. If
we submit a property to a large and relevant number of test cases, and it does not fail, we
get confidence on its correctness. If it fails, we save proof effort on trying to prove False.

Property-based testing, famous in the functional world due to the QuickCheck frame-
work for Haskell (CLAESSEN; HUGHES, 2000), consists of random generation of input data
in order to test a computable (executable) property. It comprises four ingredients: (i) an
executable property P, (ii) generators of random input values for P, (iii), printers for
reporting counterexamples, and (iv) shrinkers to minimise counterexamples.

A simple example shown in the QuickCheck manual10 describes how to test whether
the reverse of the reverse of a list is equal to the original list. First, one needs to define
this property in Haskell:

prop RevRev xs = reverse (reverse xs) == xs
where types = xs::[Int]

Then, QuickCheck is called to try to falsify the property. In this case, no counterex-
ample is found, which is expected, since the property is actually true. However, if testing
whether the reverse of a list is equal to the original list, a counterexample should be easily
found, and presented to the user.

The concept of property-based testing is supported in Coq via the QuickChick tool,
which is an adaptation of QuickCheck ideas for the Coq proof assistant. In this work,
we use the QuickChick tool for generating test cases for DFRSs. In Chapter 3, when
describing our test generation strategy, we give move details about QuickChick.

10 QuickCheck: <http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html>

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

27

3 VALIDATING, VERIFYING AND TESTING DFRSS IN COQ

In (CARVALHO; CAVALCANTI; SAMPAIO, 2016), models of data-flow reactive systems,
along with well-formedness properties, are formalised in Z. In this previous work, it is also
proposed algorithms for deriving such models from controlled natural-language require-
ments. The verification of the well-formedness conditions is performed in a programmatic
way using Java. This verification is neither sound nor complete; the algorithms are not
proved to reflect precisely all formal conditions in Z.

Here, we take one step further and formalise DFRS models using Coq. This chapter has
two main parts. First, we detail our Coq characterisation of symbolic and expanded DFRSs
(Section 3.1). Afterwards, we show how this characterisation can be used to validate
system requirements and generate test cases (Section 3.2).

3.1 CHARACTERISATION OF DFRSS IN COQ

The general architecture of our characterisation of DFRSs in Coq1 is presented in
Figure 4. The folders variables, states, and functions define the constituent elements of a
symbolic DFRS (s dfrs). The folder e dfrs contains the definitions of an expanded DFRS,
which is built upon the symbolic one and the definition of a transition relation (trans rel).
Each folder has a main *.v file (named after the folder’s name), which provides a logical
characterisation. There are two other files: * fun rules.v (a functional characterisation),
and * fun ind equiv.v (proving that both characterisations are equivalent). These equiv-
alence proofs allow us to create instances of DFRSs, proving automatically that they are
consistent.

In s2e dfrs, we have functions that allow for a dynamic expansion of an e DFRS from
a given s DFRS. Part of these functions are used by our test generation module (defined
in quickchick). Finally, the examples considered in this work are defined in examples. In
what follows, we detail our Coq characterisation of DFRSs. In terms of Lines of Code
(LOC), our Coq characterisation has about 2.3 KLOC of definitions and 1.5 KLOC of
proof scripts.

Sections 3.1.1 and 3.1.2 present our characterisation of symbolic and expanded DFRSs
in Coq, respectively. Now, when creating an instance of a DFRS (in Coq), we are obliged
to prove (in Coq) all of its well-formedness conditions (also defined in Coq). Therefore,
one can define an instance of a DFRS model if, and only if, all of its well-formedness
conditions are proved to hold. Moreover, as detailed in Section 3.1.3, this verification is
performed with no need for user interaction; it is completely automatic.
1 Available online in: <https://github.com/igormeira/DFRScoq>

https://github.com/igormeira/DFRScoq

28

variables

variables.v variables_
fun_ind_
equiv.v

variables_
fun_rules.v

states

states.v states_
fun_ind_
equiv.v

states_
fun_rules.v

functions

functions.v functions_
fun_ind_
equiv.v

functions_
fun_rules.v

s_dfrs

s_dfrs.v s_dfrs_
fun_ind_
equiv.v

s_dfrs_
fun_rules.v

util

util.v util_
fun_ind_
equiv.v

fun_util.v

e_dfrs

e_dfrs.v e_dfrs_
fun_ind_
equiv.v

e_dfrs_
fun_rules.v

trans_rel

trans_rel.v trans_rel_
fun_ind_
equiv.v

trans_rel_
fun_rules.v

quickchick

qc_instances.v

s2e_dfrs

s2e_dfrs_
fun_rules.v

examples

VM

vm.v

NPP

npp.v

PC

pc.v

TIS

tis.v

Figure 4 – Characterisation of DFRSs in Coq

3.1.1 Coq characterisation of symbolic DFRSs

An s DFRS is a 6-tuple: (I, O, T, gcvar, s0, F), comprising (input, output, and timer)
variables, a global clock, along with an initial state, and a set of functions describing the
system behaviour. In the following sections, we define each of these elements in Coq.

3.1.1.1 Variables

In our Z characterisation of variables, let 𝑁𝐴𝑀𝐸 be a given type and gc be the name
of the system global clock, a variable name (VNAME) is defined as any element of NAME
except by the value of gc (CARVALHO; CAVALCANTI; SAMPAIO, 2016).

[NAME]

gc : NAME
VNAME == NAME ∖ {gc}

29

In this work, we rewrite this definition in Coq as follows: NAME is defined as any
string, and gc is defined as the string “gc”. Then, we define ind rules vname as a proposi-
tional function (i.e., functions that build predicates from the given arguments) that, given
a vname : String, yields the proposition that is true if, and only if, the value of vname is
different from the value of the variable gc (string dec is an auxiliary propositional function
that compares strings). Finally, we define a variable name as any instance of the record
VNAME.

Definition NAME := string.
Definition gc : NAME := “gc”.
Definition ind rules vname (vname : NAME) : Prop := ¬ string dec vname gc.

Record VNAME : Set := mkVNAME {
vname : NAME ; rules vname : ind rules vname vname

}.

It is important to note the usage of Record. In Coq, differently from typical pro-
gramming languages, a record might comprise data values (vname – the value of the
variable name), but also properties (predicates) that need to hold (rules vname). For the
VNAME record, the property rules vname enforces that the variable name (vname) is
different from “gc”. Therefore, when creating an instance of VNAME (i.e., declaring the
name of a variable), it is necessary to prove that the instance is well-formed (the name
of the variable is not “gc”, since this name is reserved for the variable gc). This feature
brings cohesion between structural definition and well-formedness properties.

In our Z characterisation of variables, system variables (SVARS), which might repre-
sent input or output variables, are defined as any finite partial function f from VNAME
to TYPE (a mapping between variable names and their corresponding types), where f is
not empty and the range of f is a subset of {bool, int,float} (the allowed types for system
variables) (CARVALHO; CAVALCANTI; SAMPAIO, 2016). Here, these types2 are sufficient
since we are dealing with embedded systems, where variables denote signals.

TYPE ::= bool | int | nat | float | ufloat
SVARS == {f : VNAME ↦ ↦→ TYPE | f ̸= ∅ ∧ ran f ⊆ {bool, int,float}}

In Coq, system variables (SVARS) are defined as a list of pairs of names and types
(TYPE). All Coq functions are total and, thus, we represent partial functions as lists in
conjunction with the required properties that guarantee that the lists are indeed repre-
sentations of partial functions.
2 In Z, there is default support for boolean, integer and natural values.

30

Definition ind rules svars (svars :
list (VNAME × TYPE)) : Prop :=

is function (map (fun p ⇒ fst p)
svars) comp vname

∧ ¬ (length svars = 0)
∧ ind svars valid type svars.

Record SVARS : Set := mkSVARS {
svars : list (VNAME × TYPE)
; rules svars : ind rules svars svars

}.

Concerning the record SVARS, we have that svars needs to be a non-empty function
of variable names to types (no name repetition, and each name is mapped to a single
type). Besides that, we need to have type consistency. These properties are defined with
the aid of the propositional function ind rules svars. The yielded predicate is true if, and
only if, the list svars indeed represents a function (is function is an auxiliary proposi-
tional function that captures this requirement), this list is not empty and the types of the
variables are within the allowed ones (ind svars valid type is another auxiliary proposi-
tional function that captures this requirement). The name comp vname refers to a global
definition (function) that defines how variable names should be compared.

In this work, we restrict ourselves to boolean, integer and natural values. We con-
sider that supporting floating-point numbers remains as a future work. Nevertheless, this
restriction has not prevented us from considering interesting examples both from the
literature and the industry. As one can note, in this work we have carefully and system-
atically rewritten in Coq our previous Z characterisation of DFRS models. Hereafter, we
only show the Coq definitions.

Considering the previous Coq definitions, and the VM example, the following code il-
lustrates how to declare the name of a variable (create an instance of the record VNAME).

Definition the coin sensor : VNAME.
Proof.
apply (mkVNAME “the coin sensor”).
unfold ind rules vname, gc, not. intro H. inversion H.

Defined.

First, we give a name for the instance (the coin sensor), and then Coq enters on proof
mode. After providing the value for the instance (“the coin sensor”) via the command
apply (mkVNAME ...)., we need to prove that the defined well-formedness properties hold
for the given value; in this case, that “the coin sensor” is not equal to “gc”. By unfold-
ing the definitions of ind rules vname, gc and not we are left to prove that string dec

“the coin sensor” “gc” → False. In Coq, the logical negation (¬ P) is modelled as P →
False. Then, we move the antecedent of the implication to the proof context (intro H.),

31

and finish the proof since H is a contradiction (inversion H.). As said before, this fea-
ture (records with values and predicates) prevents us from creating inconsistent instances
(violating rules).

It is worth noting that the proof is finished with Defined. instead of Qed.. This makes
the definition transparent, and it can be unfolded later (we will be able to retrieve the
string associated with vname). When a proof is finished with Qed., it is marked as opaque
(proof irrelevance).

To model system timers, we define the record STIMERS, which also comprises a list
of variables and types, but with different well-formedness properties (ind rules stimers).
STIMERS also represents a function from variable names to types, but here the function
can be empty (the system has no timers), and neither bool nor int are allowed types
(boolean and integer values cannot be assigned to system timers).

Record STIMERS : Set := mkSTIMERS {
stimers : list (VNAME × TYPE)
; rules stimers : ind rules stimers stimers

}.

DFRS variables are defined as follows: a list of input (I) and output (O) variables,
besides timers (T) and the system global clock (gcvar). The element rules dfrs variables
captures the well-formedness properties of DFRS variables.

Record DFRS VARIABLES : Set := mkDFRS VARIABLES {
I : SVARS ; O : SVARS ; T : STIMERS ; gcvar : NAME × TYPE
; rules dfrs variables : ind rules dfrs variables I O T gcvar

}.

The definition of ind rules dfrs variables guarantees that: (i) the name of the gc
variable is the string “gc”, (ii) I, O, and T are disjoint (different names), and (iii) we have
type consistency between timers and the global clock (they share the same type). For the
vending machine, we have the following definitions.

Definition vm I : SVARS.
Proof.
apply (mkSVARS [(the coin sensor, Tbool) ; (the coffee request button, Tbool)]).
(* proof omitted *)

Defined.

Definition vm variables : DFRS VARIABLES.
Proof.

32

apply (mkDFRS VARIABLES vm I vm O vm T vm gcvar).
(* proof omitted *)

Defined.

The element vm I defines the input variables; vm O, vm T, and vm gcvar are anal-
ogous. Note that the element the coin sensor was defined in a previous example.

3.1.1.2 Initial state

A state is a list of names mapped to a pair of values. The pair of values are the
previous/current variable values. Keeping in the state of the previous value allows for
triggering system reactions in the exact moment a variable changes from one particular
value to another. The property ind rules state enforces that state is also a function.

Record STATE : Set := mkSTATE {
state : list (NAME × (VALUE × VALUE))
; rules state : ind rules state state

}.

Record DFRS INITIAL STATE : Set := mkDFRS INITIAL STATE {
s0 : STATE

}.

The initial state for the VM is the following: both input signals are false, the system
mode is idle (i 1), the machine output is strong coffee (i 0), and the request timer and the
global clock are equal to 0; i, n, and b are constructors for integer, natural, and boolean
values (within the VALUE definition), respectively. The initial state of the VM is defined
as follows.

Definition vm state : STATE.
Proof.
apply (mkSTATE

[(“the coin sensor”, (b false, b false));
(“the coffee request button”, (b false, b false));
(“the system mode”, (i 1, i 1));
(“the coffee machine output”, (i 0, i 0));
(“the request timer”, (n 0, n 0));
(“gc”, (n 0, n 0))]).

(* proof omitted *)
Defined.

33

Definition vm s0 : DFRS INITIAL STATE.
Proof.
apply (mkDFRS INITIAL STATE vm state).

Defined.

It is important to bear in mind that the definitions in Coq for a particular example,
such as the VM, are automatically generated from the corresponding systems require-
ments, written according to our controlled natural language.

3.1.1.3 Functions

A DFRS might comprise multiple concurrent components. The behaviour of each com-
ponent is described by a function. The behaviour of the entire s DFRS is then defined
as a list of functions (F), which cannot be empty (ensured by ind rules dfrs functions).
Each function (function) is a list of 4-tuples: a static guard (EXP), a timed guard (EXP),
a list of assignments (ASGMTS), and requirement traceability information (REQUIRE-
MENT). Although in our Z characterisation of functions the traceability information was
not present, it was considered by the tool implementation. Now, this information is also
part of the formal definition in Coq.

The first two elements define the static and timed conditions necessary to be met
to react by performing the respective assignments. One of these two conditions can be
empty, but not both (ensured by ind rules function).

Record FUNCTION : Set := mkFUNCTION {
function : list (EXP × EXP × ASGMTS × REQUIREMENT) ;
rules function : ind rules function function

}.

Record DFRS FUNCTIONS : Set := mkDFRS FUNCTIONS {
F : list FUNCTION
; rules dfrs functions : ind rules dfrs functions F

}.

In our work, the static and timed guards adhere to a Conjunctive Normal Form (CNF):
(c1 ∨ · · · ∨ cn) ∧ · · · ∧ (c1 ∨ · · · ∨ cm). The term DIS refers to a list of disjunctive clauses,
such as (c1 ∨ · · · ∨ cn). The term EXP refers to a list of conjunctive clauses and, thus,
represent a static or timed guard.

The aforementioned requirement of the VM (REQ001) says that “when the system
mode is idle, and the coin sensor changes to true, the coffee machine system shall: reset

34

the request timer, assign choice to the system mode”. In what follows, we show how this
requirement is formalised in Coq.

First, three conditions are defined to capture that the actions described in REQ001
are performed when the coin sensor changes to true (its previous value was false –
REQ001 sg disj1, and its current value is true – REQ001 sg disj2), and the system
mode is idle (i 1 – see REQ001 sg disj3). As said before, the term DIS refers to a list of
disjunctive clauses; in these conditions, we have a single element in each list of disjunctive
clauses.

Definition REQ001 sg disj1 : DISJ.
Proof.
apply (mkDISJ [mkBEXP (previous (the coin sensor)) eq (b false)]).
(* proof omitted *)

Defined.

Definition REQ001 sg disj2 : DISJ.
Proof.
apply (mkDISJ [mkBEXP (current (the coin sensor)) eq (b true)]).
(* proof omitted *)

Defined.

Definition REQ001 sg disj3 : DISJ.
Proof.
apply (mkDISJ [mkBEXP (current (the system mode)) eq (i 1)]).
(* proof omitted *)

Defined.

It is worth noting that the order of the formal definitions does not necessarily reflect
the order of the conditions in the requirement (text). The order of the definitions depends
on how the text is parsed and how the underlying abstract syntax tree is traversed.
Nevertheless, this has no impact on the semantics, since conjunction is a commutative
operator.

Then, the static guard (REQ001 sg) related to the requirement REQ001 is defined as
the conjunction of the three previously defined conditions. Therefore, we have a conjunc-
tion of three elements, each one with a single disjunction. Since this requirement is not
dependent on time information, its corresponding timed guard (REQ001 sg) comprises
an empty list of conditions.

Definition REQ001 sg : EXP.
Proof.
apply (mkCONJ [REQ001 sg disj1 ; REQ001 sg disj2 ; REQ001 sg disj3]).

35

Defined.

Definition REQ001 tg : EXP.
Proof.
apply (mkCONJ []).

Defined.

Now, we define the expected system reaction: when the aforementioned conditions are
met, the system reacts by resetting the request timer (REQ001 asgmt1), and assigning
choice (i 0) to the system mode (REQ001 asgmt2). These two assignments are considered
the expected system reaction (REQ001 asgmts). These definitions are grouped later to
define a possible system reaction; see definition the coffee machine system.

Definition REQ001 asgmt1 : ASGMT.
Proof.
apply (mkASGMT (the request timer, (n 0))).

Defined.

Definition REQ001 asgmt2 : ASGMT.
Proof.
apply (mkASGMT (the system mode, (i 0))).

Defined.

Definition REQ001 asgmts : ASGMTS.
Proof.
apply (mkASGMTS [REQ001 asgmt1 ; REQ001 asgmt2]).
(* proof omitted *)

Defined.

Finally, the system behaviour is defined as the collection of 4-tuples (static guard,
timed guard, assignments and requirement traceability information) for each system re-
quirement. This is captured by the definition of the coffee machine system. As the VM
comprises a single system component, its functions component (vm functions) has a single
function (the coffee machine system). Note again that the order of the 4-tuples (static
guard, timed guard, assignments, and traceability information) does not necessarily re-
flect the requirements order. The order in the formal definition depends upon how the
requirements are parsed, and not the order they are defined.

Definition the coffee machine system : FUNCTION.
Proof.
apply (mkFUNCTION [

(REQ001 sg, REQ001 tg, REQ001 asgmts, “REQ001”)

36

; (REQ003 sg, REQ003 tg, REQ003 asgmts, “REQ003”)
; (REQ005 sg, REQ005 tg, REQ005 asgmts, “REQ005”)
; (REQ004 sg, REQ004 tg, REQ004 asgmts, “REQ004”)
; (REQ002 sg, REQ002 tg, REQ002 asgmts, “REQ002”)

]).
(* proof omitted *)

Defined.

Definition vm functions : DFRS FUNCTIONS.
Proof.
apply (mkDFRS FUNCTIONS [the coffee machine system]).
(* proof omitted *)

Defined.

In what follows, to provide a complete perspective, one can see all system requirements
of the vending machine:

• REQ001: When the system mode is idle, and the coin sensor changes to true, the
coffee machine system shall: reset the request timer, assign choice to the system
mode.

• REQ002: When the system mode is choice, and the coin sensor is false, and the
coin sensor was false, and the coffee request button changes to pressed, and the
request timer is lower than or equal to 30.0, the coffee machine system shall: reset
the request timer, assign preparing weak coffee to the system mode.

• REQ003: When the system mode is choice, and the coin sensor is false, and the coin
sensor was false, and the coffee request button changes to pressed, and the request
timer is greater than 30.0, the coffee machine system shall: reset the request timer,
assign preparing strong coffee to the system mode.

• REQ004: When the system mode is preparing weak coffee, and the request timer is
greater than or equal to 10.0, and the request timer is lower than or equal to 30.0,
the coffee machine system shall: assign idle to the system mode, assign weak to the
coffee machine output.

• REQ005: When the system mode is preparing strong coffee, and the request timer
is greater than or equal to 30.0, and the request timer is lower than or equal to 50.0,
the coffee machine system shall: assign idle to the system mode, assign strong to
the coffee machine output.

The omitted proofs guarantee that all definitions meet the well-formedness conditions.
As explained in Section 3.1.3, all of them are discharged automatically; no need for the

37

user to write an example-specific proof script. Regardless of the system, the proof script
is always the same.

3.1.1.4 s DFRSs

An s DFRS is composed by the previously defined elements. Various consistency prop-
erties are enforce by ind rules s dfrs; for instance, the initial state must provide values
for all system variables, the static and timed guards, as well as the assignments, must also
be type consistent with the declaration of system variables. We refer to our git repository
for the definition in details of ind rules s dfrs.

Record s DFRS : Set := mkS DFRS {
s dfrs variables : DFRS VARIABLES ;
s dfrs initial state : DFRS INITIAL STATE ;
s dfrs functions : DFRS FUNCTIONS
; rules s dfrs : ind rules s dfrs s dfrs variables s dfrs initial state s dfrs functions

}.

It is important to say that the well-formedness properties are not necessarily true
by construction. Since the definitions are extracted from controlled natural-language re-
quirements, we might have inconsistencies. For example, one requirement might assign
a boolean value to a variable, whereas other requirement assigns an integer to the same
variable. If such well-formedness problems occur, the proof scripts will fail. The fail will
indicate which property does not hold, as we illustrate later.

Regarding the VM example, its symbolic DFRS is defined as follows (vm s dfrs).

Definition vm s dfrs : s DFRS.
Proof.
apply (mkS DFRS vm variables vm s0 vm functions).
(* proof omitted *)

Defined.

It comprises the system variables (vm variables), the system initial state (vm s0),
and the system functions (vm functions), defined before.

To illustrate a possible specification error, consider the following definition. Differently
from the one presented in the previous section, which is the correct one, here we try to
assign a boolean value (b false) to the system mode.

Definition REQ001 asgmt2 : ASGMT.
Proof.

38

apply (mkASGMT (the system mode, (b false))).
Defined.

When trying to create the VM instance (vm s dfrs), the proof fails, since we are trying
to assign a value that is not compatible with the variable type. The following error message
is displayed: Unable to unify “true” with “s dfrs fun rules.fun rules s dfrs vm variables
vm s0 vm functions”, which means that some s DFRS rule does not hold. It remains as
future work to provide the user with a more informative description, possibly tracing the
error to the system requirements.

3.1.2 Coq characterisation of expanded DFRSs

An e DFRS is a 7-tuple: (I, O, T, gcvar, s0, S, TR), comprising (input, output, and
timer) variables, besides a global clock, along with an initial state and a set of states.
Its definition also considers a transition relation, which relates states by means of delay
and function transitions. Therefore, the main difference with respect to an s DFRS is its
transition relation.

3.1.2.1 Transition relation

A transition relation (TRANSREL) comprises a list of transitions. Each transition
(TRANS) relates two states by means of a label (TRANS LABEL). A label denotes a
function (func) or a delay (del) transition. A function transition models system reaction; it
changes the value of output variables and timers. A delay transition models time evolving
(DELAY), besides modifying the value of system inputs.

Inductive TRANS LABEL : Type :=
| func : (ASGMTS × REQUIREMENT) → TRANS LABEL
| del : (DELAY × ASGMTS) → TRANS LABEL.

Record TRANS : Set := mkTRANS {
STS : STATE × TRANS LABEL × STATE

}.

Record TRANSREL : Set := mkTRANSREL {
transrel : list TRANS

}.

The transition relation of an e DFRS (DFRS TRANSITION RELATION) is defined
as a transition relation, along with its well-formedness properties. A number of consistency
rules are enforced by rules TR. For instance, the source state of a function transition must
not be stable (there should be at least one function entry in the symbolic DFRS whose

39

static and timed guards evaluate to true in the source state), and the target state of the
function transition should reflect the corresponding assignments applied to the source
state. Analogously, the source state of a delay transition must be stable, and the target
state of the delay transition should reflect the time elapsed and new values for system
inputs. See our previous example (Figure 3).

Record DFRS TRANSITION RELATION := mkDFRSTRANSITIONREL {
TR : TRANSREL ;
rules TR : ind rules TR TR

}.

3.1.2.2 e DFRSs

An e DFRS is defined as a combination of variables, states, and a transition relation.
As said before, an e DFRS is obtained by the expansion of the corresponding s DFRS,
by letting the time evolve (performing delay transitions), and observing how the system
reacts to input stimuli (performing function transitions).

Record e DFRS : Set := mkE DFRS {
e dfrs variables : DFRS VARIABLES ;
e dfrs states : DFRS STATES ;
e dfrs transition relation : DFRS TRANSITION RELATION ;

}.

Since time is always expected to be able to evolve, and the system global clock is part of
the state, an e DFRS typically comprises an infinite number of states. If considering real-
time delays, it would become even uncountably branching. Therefore, it is not possible to
create an instance of e DFRS by enumerating all of its states. A function that expands a
symbolic DFRS (by computing its function and delay transitions), yielding the obtained
e DFRS, would never terminate its execution and, thus, cannot be defined in Coq in
a straightforward way. Although it is not possible to perform a full computation of an
e DFRS from its corresponding s DFRS, it is possible to perform bounded exploration
of the former. This is formalised and described later (Section 3.2.1).

3.1.3 Functional characterisation of well-formedness properties

In Section 3.1.1.1, when defining the element the coin sensor, it was necessary to
prove that the variable name is not “gc”. When more complex well-formedness rules need
to be proved, the proof script becomes equally more complex, which inhibits automation.

40

A workaround consists in providing functionally-defined well-formedness rules, which are
logically equivalent to their logical/inductive counterparts.

In this work, we first defined all properties in logical terms, since it is closer to the
original Z formalisation. Afterwards, we defined computable procedures (functions) that
check whether the same properties hold. Finally, we proved that, for any valid DFRS
(regardless of the example), these functions are semantically equivalent to the logical
characterisation; the function yields true if, and only if, the corresponding predicate is
also true.

The equivalence proof for ind rules vname (a variable name shall be different from
“gc”) is shown below. Since it is an equivalence proof, we need to prove both sides of
the implication. We do that by reaching (via different ways) a contradiction in the proof
context (inversion H’).

Theorem theo rules vname :
∀ (vname : NAME), ind rules vname vname ↔ fun rules vname vname = true.

Proof.
intros. unfold fun rules vname, ind rules vname. split.
- intro H. unfold not in H. apply eq true not negb. unfold not. intro H’.
rewrite theo string dec in H. apply H in H’. inversion H’.

- intro H. unfold not. intro H’. rewrite negb true iff in H.
rewrite theo string dec in H’. rewrite H in H’. inversion H’.

Qed.

Now it is possible to define the coin sensor as follows. The theorem theo rules vname
allows rewriting the proof goal considering the functional characterisation of the well-
formedness property. Then, it suffices to execute the tactic reflexivity., which simplifies
the goal by performing the necessary computations, besides concluding the proof.

Definition the coin sensor : VNAME.
Proof.
apply (mkVNAME “the coin sensor”). apply theo rules vname. reflexivity.

Defined.

Actually, all proofs omitted in the previous examples of this chapter follow this pattern.
Therefore, all well-formedness proofs are discharged automatically, with no user interven-
tion, regardless of the example. Although proving theo rules vname is quite straightfor-
ward, other equivalence proofs are more complex. As said in the beginning of Section 3.1,
we have written about 1.5 KLOC of proof scripts. All proof scripts can be found in
<https://github.com/igormeira/DFRScoq>.

https://github.com/igormeira/DFRScoq

41

3.2 APPLICATIONS OF OUR COQ CHARACTERISATION OF DFRSS

As said before, our Coq characterisation of DFRS models supports requirement vali-
dation and generation of test cases, as detailed in Sections 3.2.1 and 3.2.2, respectively.
This achieves our goal of providing a single, unified and formal framework for validation,
verification and testing of timed data-flow reactive systems.

3.2.1 Validating system requirements via bounded exploration of models

An important development task is requirement validation: assessing whether the writ-
ten requirements (and created models) indeed reflect the desired system behaviour. Model
simulation is a relevant validation technique, since it enables the analysis of whether the
created models properly capture the expected system behaviour. In this work, by perform-
ing bounded exploration of an e-DFRS, one might observe an undesired system reaction
due to a miswritten requirement. In such a situation, the requirements should be rewritten,
the models regenerated, and the simulation/analysis should be performed once more.

To support such a task, we first define a function genTransitions. It assesses whether a
given state is stable (no system reaction is expected, which means that no static and timed
guards evaluate to true). If it is stable, the function generates delay transitions (with the
configured time step) considering all possible combinations of input values. Otherwise,
the function generates function transitions considering the assignments associated with
the static and timed guards that evaluate to true.

Definition genTransitions (s : STATE) (I O T : list (VNAME × TYPE))
(F : list (list FUNCTION)) (possibilities : list (VNAME × list VALUE))
: TRANSREL :=
let entries := union lists (map (fun f : FUNCTION ⇒ f.(function)) (union lists F))

in

let combinations := gen asgmts combination (possible asgmts possibilities) [[]] in
if is stable s (List.app I O) T F

then mkTRANSREL (make trans del s I T combinations)
else mkTRANSREL (make trans func s (I ++ O) T entries).

The variable combinations considers all possible value combinations for input. For
example, the VM has two boolean inputs (the coin sensor and the coffee request button)
and, thus, combinations will have 4 different assignment possibilities: (false, false), (false,
true), (true, false), and (true, true). The parameter possibilities lists all possible values for
input variables. This information is necessary, for instance, when dealing with integers,
since we do not want to consider all possible integer values. In the NAT2TEST tool (see
Section 4.1), the user can inform such lists for input variables.

42

Figure 5 shows an application of genTransitions considering the initial state of the
VM, a time step of 1s, and a bound num = 3. The initial state is the topmost one. Since
this state is stable, we have only delay transitions (abbreviated as D) departing from it.
We have one transition for each possible combination of input values; 4 in total, since the
system inputs are two boolean variables. After generating these four new states, genTran-
sitions recurses considering the first generated state (second row, leftmost state) and a
bound num = 2. Since this state is also stable, 4 new states are generated (bottommost
ones). Now, generateTransitions recurses again, considering the second generated state
(second row, second state from left to right) and a bound num = 1. This state is not
stable: when the system mode is idle (mode = 1), and the sensor changes to true, the
system reacts by resetting the request timer and moving to the choice mode (mode =
0). Therefore, a function transition is generated reaching the state presented in the third
row. Finally, genTransitions recurses again considering the third state (from left to right)
of the second row and a bound num = 0. Since the bound is equal to 0, the function
terminates.

Now, we define a function buildTR, which expands dynamically an s DFRS, bounded
by the value of num. More precisely, it yields part of the transition relation of an e-DFRS.
Recall that a transition relation (TRANSREL) is defined as a list of transitions (see
Section 3.1.2); each transition relates two states by means of a transition label (delay or
function transition).

Fixpoint buildTR (toVisit visited : list STATE) (I Out T : list (VNAME × TYPE))
(F : list (list FUNCTION)) (possibilities : list (VNAME × list VALUE))
(num : nat) : list TRANS :=
match toVisit, num with

| [] , ⇒ []
| :: , 0 ⇒ []
| h :: t, S n’ ⇒ let tr1 := genTransitions h I Out T F possibilities in

if in state list h.(variables) visited beq state
then buildTR t visited I Out T F possibilities n’
else tr1.(transrel) ++

buildTR (t ++ (get list states tr1.(transrel) (h :: visited)))
(h :: visited) I Out T F possibilities n’

end.

Initially, toVisit has a single element (the initial state of the s DFRS), and visited
is empty. With the aid of genTransitions, we generate all emanating transitions from
the initial state; if it is stable, we will have delay transitions, otherwise, only function
transitions – see Figure 5. Then, the current state is removed from toVisit, and the reached

43

sensor = false
button = false
mode = 1
output = 0
timer = 0
gcvar = 0

sensor = false
button = false
mode = 1
output = 0
timer = 0
gcvar = 1

sensor = true
button = false
mode = 1
output = 0
timer = 0
gcvar = 1

sensor = false
button = true
mode = 1
output = 0
timer = 0
gcvar = 1

sensor = true
button = true
mode = 1
output = 0
timer = 0
gcvar = 1

sensor = true
button = false
mode = 0
output = 0
timer = 1
gcvar = 1

sensor = true
button = true
mode = 1
output = 0
timer = 0
gcvar = 2

sensor = false
button = true
mode = 1
output = 0
timer = 0
gcvar = 2

sensor = true
button = false
mode = 1
output = 0
timer = 0
gcvar = 2

sensor = false
button = false
mode = 1
output = 0
timer = 0
gcvar = 2

D (1s)
sensor := false
button := false

D (1s)
sensor := true
button := false

D (1s)
sensor := false
button := true

D (1s)
sensor := true
button := true

D (1s)
sensor := false
button := false

D (1s)
sensor := true

button := false

D (1s)
sensor := false
button := true

D (1s)
sensor := true
button := true

Function transition
mode := 0

timer := 1

Figure 5 – Bounded exploration of the vending machine e-DFRS

states are added to toVisit. Afterwards, this function recurses considering the predecessor
of num. When it reaches 0, the function stops yielding an empty list of transitions to be
appended to the previously computed results. We note that we need to check whether the
current state (the head of toVisit) has already been visited in the past. This might occur
in the presence of time locks, when we have a loop of function transitions. Such a loop
would prevent the system from reaching a stable state and, thus, time elapsing. This is
obviously an undesired property due to a specification error and should be avoided.

Considering the functions previously defined, expandedDFRS yields an e DFRS from
a given s DFRS whose transition relation is bounded by the value of limiter. First, it
computes the transition relation considering the provided bound (call buildTR is just

44

a wrapper function to buildTR). Then, the e DFRS states are extracted from the states
reached by the transition relation, and also the initial state. Duplicates are removed, since
we are considering lists. The variables of the e DFRS are the same of the given s DFRS.
Finally, an e DFRS is built from the previously computed elements, namely: variables,
states and the transition relation.

Definition expandedDFRS (sdfrs : s DFRS) (limiter : nat)
(possibilities : list (VNAME × list VALUE)) : e DFRS :=
let TR := mkTRANSREL (call buildTR ...) in

let

states := removeDuplicateStates (
(get list states TR.(transrel) []) ++
[sdfrs.(s dfrs initial state).(s0)])

in

let dfrs variables := (mkDFRS VARIABLES ...) in

let dfrs states := (mkDFRSSTATES (mkSTATES states ...) ...) in

let dfrs tr := (mkDFRSTRANSITIONREL (mkTRANSREL TR ...) ...) in

mkE DFRS dfrs variables dfrs states dfrs tr

Although this is beyond the scope of this work, this bounded and functional exploration
can support the development of simulators for e DFRSs, since it is possible to extract
Haskell and OCaml code directly from functional definitions in Gallina. In this direction,
we would also need to prove that the functions presented in this section are correct; for any
given input, they always yield elements whose corresponding well-formedness properties
hold. Since this is not within the scope of this work, these proofs were not carried out
here.

3.2.2 Generating test cases with QuickChick

Besides validation via bounded simulation, our Coq characterisation of DFRSs also
supports generation of test data with the support of QuickChick. It is achieved by sampling
valid traces.

As discussed in Section 2.4, property-based testing (supported in Coq by QuickChick)
consists of random generation of input data in order to test a computable (executable)
property. It comprises four ingredients: (i) an executable property P, (ii) generators of
random input values for P, (iii), printers for reporting counterexamples, and (iv) shrinkers
to minimise counterexamples.

The test generation strategy presented in this section makes uses of (ii) random gen-
erators of valid traces, and (iii) printers for presenting the generated traces. A trace is
formally defined as a list of transition labels (delay or function transition).

45

Definition trace := list TRANS LABEL.

The definition of printers for traces and transition labels is straightforward. For in-
stance, for transition labels (a delay transition has two elements – a delay and a list of
assignments; a function transition has two elements – a list of assignments and traceabil-
ity information), we define the function string of trans label. Given a transition label, it
yields the corresponding string representation. Then, we create an instance of the Show

typeclass considering transition labels (TRANS LABEL). Therefore, whenever it is neces-
sary to show a string representation of a transition label, the function string of trans label
is called.

Definition string of trans label (tl : TRANS LABEL) : string :=
match tl with
| func tl’ ⇒ “func (” ++ show (fst tl’) ++ “, ” ++ (snd tl’) ++ “)”
| del tl’ ⇒ “del (” ++ show (fst tl’) ++ “, ” ++ show (snd tl’) ++ “)”
end.

Instance showTransLabel : Show TRANS LABEL :=
{

show := string of trans label
}.

To generate valid traces, we define a function (genValidTrace) that, given an s DFRS,
yields random valid traces. To generate valid sequences of transitions, this function relies
upon genTransitions, previously defined (see Section 3.2.1). From the initial state, it
generates all possible transitions emanating from this state. Then, it randomly chooses
one possible transition, and calls genValidTrace recursively, considering as the current
state the one reached by the selected transition. The generation of a trace stops when
size reaches 0 (similarly to num in buildTR – see Section 3.2.1), but also when num has
not reached 0 yet. However, this last situation happens with a lower probability. This is
achieved due to the combinator freq, which takes a list of generators, each one tagged
with a natural number that serves as the weight of that generator. For instance, if we had
freq [(1, G1), (3, G2)], the generator G2 would have three more chances to occur than
the generator G1.

Fixpoint genValidTrace (st : STATE) (dfrs : s DFRS)
(possibilities : list (VNAME × list VALUE)) (size : nat) : G trace :=
match size with

| 0 ⇒ ret []

46

| S size’ ⇒ let

tr := (genTransitions st dfrs.(s dfrs variables).(I).(svars)
dfrs.(s dfrs variables).(O).(svars) dfrs.(s dfrs variables).(T).(stimers)
[dfrs.(s dfrs functions).(F)] possibilities).(transrel)

in freq [(1, ret []) ;
(size, x ← next label st tr ;;

xs ← genValidTrace (nextState st x tr) dfrs possibilities size’ ;;
ret (x :: xs))]

To generate a number of random valid traces, we sample the function genValidTrace.
For the VM, we have the following command. When we sample genValidTrace with
QuickChick, by default, it performs 11 calls to the sampled function. For a comprehensive
explanation of typeclasses, generators, and combinators in the context of QuickChick, we
refer to the QuickChick volume of the Software Foundation series3.

Sample (genValidTrace vm initial state vm s dfrs vm possibilities 600).

The definition vm initial state refers to the initial state of the VM, vm s dfrs refers to
the s DFRS that describes the VM behaviour, vm possibilities details the possible values
for the system inputs, and the number 600 is the maximum allowed number of transitions
for each generated trace. This number was empirically chosen; greater values lead to no
enhancement in the performed empirical analyses.

Definition vm initial state := vm state.

Definition vm possibilities := [(the coin sensor, [b false; b true]);
(the coffee request button, [b false; b true])].

Table 4 shows, in a tabular form, a fragment of an output (test data) generated via
QuickChick. The labels time, sensor, button, mode, and output refer to the system global
clock, the coin sensor, the coffee request button, the system mode, and the coffee machine
output, respectively. For this example, the configured time step was 1 and, thus, we see
the system global clock evolving by 1 time unit per test step.

In this example, a coin is inserted and the coffee request button is pressed at the
same time (2 seconds after the test beginning). As expected, the system mode changes
to choice (represented as 0). When the system global clock is 4, 2 seconds later, the
coin sensor becomes false again, and the coffee request button is released. Although not
shown in this tabular representation, as we keep requirement traceability information,
3 QuickChick manual: <softwarefoundations.cis.upenn.edu/qc-current/>

softwarefoundations.cis.upenn.edu/qc-current/

47

Table 4 – Example of test data generated via QuickChick (VM)

time sensor button mode output
0 false false 1 0
1 false false 1 0
2 true true 0 0
3 true true 0 0
4 false false 0 0

when defining functions (see Section 3.1.1 – Functions), we can also extract requirement
coverage information from the generated test data.

The time step needs to be set carefully, since a low granularity (high value) might
prevent from seeing the exact moment the system reacts to some stimuli. However, a
granularity too high (low value) might be responsible for generating excessive long test
sequences, where we see the time advancing in small steps. In our empirical analyses
(Section 4.2, as we only have integer-valued time constraints, we opted for the smallest
possible (integer) time step, which is 1, to prevent us from not seeing some system reaction.

48

4 TOOL SUPPORT AND EMPIRICAL ANALYSES

The testing strategy presented in the previous chapter (Section 3.2.2) has been inte-
grated into the NAT2TEST tool (CARVALHO et al., 2015). In Section 4.1 we detail this
integration, and in Section 4.2 we discuss the empirical analyses performed.

4.1 INTEGRATION WITH THE NAT2TEST TOOL

The NAT2TEST tool is a multi-platform tool written in Java, using the Eclipse RCP
framework1. It supports writing system requirements adhering to the SysReq-CNL gram-
mar, presenting the corresponding syntax tree if the requirement is valid according to this
grammar (see Figure 6).

Figure 6 – NAT2TEST tool: editing system requirements

After processing all system requirements, and inferring the corresponding requirement
frames (see Section 2.1), a symbolic DFRS is generated and informally represented as a
Java object. In Figure 7, one can see a tabular representation of the s-DFRS function of
the VM. The first two columns show static and timed guards, the third column shows the
corresponding assignments, and the last one has traceability information. For instance,
the first line presents a textual representation of the function entry for the requirement
REQ001 (When the system mode is idle, and the coin sensor changes to true, the coffee
machine system shall: reset the request timer, assign choice to the system mode).
1 Eclipse RCP: <http://wiki.eclipse.org/index.php/Rich_Client_Platform>

http://wiki.eclipse.org/index.php/Rich_Client_Platform

49

Figure 7 – NAT2TEST tool: s-DFRS function for the VM

In this work, we first integrated into this tool a Coq code generator (about 1 KLOC).
The informal Java representation of a symbolic DFRS is translated to a Coq specification,
considering the definitions detailed in Section 3.1.1. This was implemented as a separate
library (CoqGenerator) and then integrated into the NAT2TEST code. In Figure 8, one
can see the beginning of the Coq specification for the VM example. For instance, it is
possible to see the definition of the variable the coin sensor.

Figure 8 – NAT2TEST tool: generated Coq specification for the VM

50

The translation from Java to Coq is straightforward (almost 1:1), since our Java classes
reflect the structure defined for s-DFRSs. Nevertheless, we emphasise that the generated
Coq code is then formally checked to assess whether all well-formedness properties (about
30 properties) hold. We emphasise that this verification is fully automatic. Therefore, if
an error related to these properties is introduced into the Coq definition (due to an
specification error or a translation error), some proof obligation would not be discharged;
indicating, thus, a property violation. The violation will be shown as a Coq proof script
error. It remains as future work to provide the user with a more informative description,
possibly tracing the error to the system requirements.

Afterwards, a second library (CoqTCGenerator) was developed (about 0.6 KLOC) to
perform the logical integration of the NAT2TEST tool with Coq and QuickChick in order
to generate test cases. This library receives from the tool all necessary information, such as
the Coq model generated for the considered example, besides test generation parameters:
number of Sample calls, the maximum allowed number of delay/function transitions (size),
and the possible values for input variables (possibilities) – see Section 3.2.2). Then, this
library copies all necessary files, including our Coq characterisation of DFRSs and some
Python integration scripts, to the project folder. After that, some changes are automati-
cally performed in some files to consider the test generation parameters aforementioned.
Finally, all Coq files are compiled and test cases are generated with the aid of QuickChick
(see Figure 9).

Figure 9 – NAT2TEST tool: test cases generated for the VM

Besides creating these two libraries, we also developed two new Graphical User Inter-
faces (GUIs) for the NAT2TEST tool. The first one is shown in Figure 8; it displays to

51

the user the Coq code generated for the considered example. The second one is shown in
Figure 9; it displays to the user the generated test data in a tabular form.

It is important to bear in mind that test data are generated in a fully automatic way
from the system requirement described in natural language. Default values are considered
for a number of parameters (e.g., the number of Sample calls, the maximum allowed num-
ber of delay/function transitions, among others), but the user can modify them according
to his needs. This test data can be further used to simulate and to verify other system
models (potentially more concrete, such as Simulink2 diagrams) or even as test input for
hardware-in-the-loop testing. The NAT2TEST strategy does not provide automatic sup-
port for the writing of the necessary test procedures, since they are dependent upon the
particular use of the generated test data.

Finally, in some critical domains, tool certification is mandatory prior to its integration
into the development process; unless the tool outputs are manually inspected, and evidence
is produced in favour of their correctness. In our work, we do not expect the integration
of the NAT2TEST tool into a development tool chain without manual inspection. Our
goal is to aid the verification team by producing test data, but it remains as the team
responsibility the analysis of whether the system has been properly tested, for instance,
checking that enough test data was generated in order to test the system in accordance
with the required coverage criteria.

4.2 EMPIRICAL ANALYSES

We evaluate our testing strategy based on Coq considering examples from the litera-
ture, but also from the aerospace and the automotive industry:

• VM: a vending machine (our running example),

• NPP: a simplified control system for safety injection in a nuclear power plant (pub-
licly available in (LEONARD; HEITMEYER, 2003)),

• PC: a priority command function that decides whether the pilot or copilot side stick
will have priority in controlling the airplane (provided by Embraer),

• TIS: part of the turn indicator system of Mercedes vehicles (publicly available3). In
this example, there are two parallel components responsible for controling the car
turn lights, taking into account information such as the position of the turn indicator
lever, if the emergency button has been pressed, and the car battery voltage.

2 Simulink: <https://www.mathworks.com/products/simulink.html>
3 Turn indicator model: <http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_

indicator/index_e.html>

https://www.mathworks.com/products/simulink.html
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/turn_indicator/index_e.html

52

As detailed in the following sections, our evaluation considers performance (Sec-
tion 4.3) and quality aspects (Section 4.4), the latter considering mutant-based strength
analysis.

4.3 PERFORMANCE ANALYSIS

All data presented in this section and in the following one, whenever relevant, consider
multiple executions. Table 5 presents general data about the considered examples. The
largest example is the TIS, with 17 system requirements, in a total of 580 words. The
smallest one is our running example (VM); 5 system requirements, in a total of 232 words.
The number of conditions, actions, and thematic roles automatically identified for each
example can also be seen in Table 5.

Table 5 – General empirical data

VM NPP PC TIS
requirements/words: 5/232 11/268 8/294 17/580
conditions/actions/TRs: 18/10/130 21/11/149 26/8/162 54/34/406
I/O/T: 2/2/1 3/3/0 4/1/0 3/2/1
LOC of Coq specification: 382 680 593 1,228
𝜇 # test cases (1x Sample): 9.80 (89.09%) 1.80 (16.36%) 6.60 (60.00%) 5.40 (49.09%)
𝜇 # test cases (5x Sample): 51.00 (92.73%) 10.20 (18.55%) 37.20 (67.64%) 26.60 (48.36%)
𝜇 # test cases (10x Sample): 101.20 (91.17%) 17.60 (15.86%) 67.60 (60.90%) 54.60 (49.19%)

The system requirements of NPP and PC are not time dependent and, thus, the
corresponding s-DFRSs do not have timers. The number of input and output variables
are also shown in Table 5. The largest Coq specification is the one derived for the TIS
example (near 1,300 LOC), whereas the smallest one is the one generated for our running
example (VM – almost 400 LOC). Besides these lines, we have the ones related to our
characterisation of DFRSs in Coq (see Section 3.1), with about 2.3 KLOC; however, these
are the same regardless of the example.

Regarding test generation, we generated (multiple times) three datasets: performing
1, 5, and 10 calls to the QuickChick sampling function, respectively. For instance, con-
sidering the VM, we would have 1, 5 and 10 calls of the following command: Sample

(genValidTrace vm initial state vm s dfrs vm possibilities 600). Each Sample

call performs 11 calls (the default value of QuickChick) to genValidTrace (see Section 3.2.2).
Therefore, each dataset contained 11, 55, and 110 test cases, respectively. The size of each
test is bounded to size = 600 (up to 600 delay/function transitions).

Some test cases are not valid and, thus, they are discarded: it does not end in a stable
state. This happens in two situations. The first one is when the generation stops after
performing a delay transition, but before the following function transitions. This test
case is not considered since we would have the system input (delay transition), but not

53

the expected system reaction (function transition). The second situation happens when
the generation stops after performing a function transition, but before other function
transitions. This test case is also not considered since we would have observed only part
of the system reaction. Table 5 shows the average number of valid test cases for each
dataset (1, 5 and 10 Sample calls). A lower percentage of valid test cases is achieved
for the NPP and TIS examples, since they have situations where we have a sequence of
function transitions, which make more common the occurence of invalid test cases.

Table 6 presents performance data, considering an i7 @ 2.40GHz x 4, with 8 GB of
RAM running Ubuntu 16.04 LTS. The time to generate the Coq specification from the
controlled natural-language requirements is marginal (less than 1s even for the most com-
plex example – TIS). The time to compile our Coq infra-structure (particularly, the Coq
characterisation of DFRSs, considering definitions or records, well-formedness properties
and equivalence proofs of logical and functional definitions) is more a less constant be-
tween examples (since this code is not dependent on the considered example) and about
10s. It is important to say that the compilation of this infra-structure is required just
once (or when updating the version of the Coq Proof Assistant).

Table 6 – Performance data

VM (𝜇) NPP (𝜇) PC (𝜇) TIS (𝜇)
Syntactic analysis: 0.069s 0.038s 0.080s 0.222s
Semantic analysis: 0.043s 0.239s 0.068s 0.201s
DFRS generation: 0.003s 0.004s 0.003s 0.006s
Coq generation: 0.004s 0.004s 0.007s 0.006s
Compile Coq infra (once): 10.561s 9.789s 9.890s 9.797s
Test generation (1xS): 1.610s 1.664s 1.914s 3.288s
Test generation (5xS): 4.820s 5.726s 6.562s 13.232s
Test generation (10xS): 8.706s 10.614s 13.038s 25.778s

The time to generate test cases is linearly proportional to the number of sampling
calls (see Figure 10) and also relatively small: ranging from 1.61s (1 Sample call for the
VM example) to 25.77s (10 Sample calls for the TIS example).

Therefore, the total time required for automatically generating test cases from con-
trolled natural-language requirements would be about 30s for the most complex considered
scenario (TIS with 10 Sample calls). This data provides a promising argument in favour
of the scalability of our approach.

54

Figure 10 – Linearity between number of calls to Sample and test generation time

4.4 MUTANT-BASED STRENGTH ANALYSIS

A mutant-based strength analysis was used to assess the quality of the generated
tests. Mutation operators yield a trustworthy comparison of test cases strength because
they create erroneous programs in a controlled and systematic way (ANDREWS; BRIAND;

LABICHE, 2005). A good test suite should be able to detect the introduced error (kill the
mutant). Sometimes, the alive mutant is equivalent to the correct program. In general,
this verification is undecidable and too error-prone to be made manually.

We follow a conservative approach: a priori, all alive mutants are not equivalent ones.
This assumption makes the results of the empirical analyses the worst case. We considered
C reference implementations, which were mutated with SRCIROR (HARIRI; SHI, 2018),
considering all of its default mutant operators; it comprises the typical mutant operators:
AOR (arithmetic operator replacement), LCR (logical connector replacement), ROR (re-
lational operator replacement), and ICR (integer constant replacement). We generated
287, 373, 213, and 861 mutants for each considered example (VM, NPP, PC, and TIS,
respectively). We wrote C test drivers to run all mutants against all generated datasets.
The driver also embeds the test oracle: it provides to the C implementation the input
values described by each step of the test case, and then it assesses whether the observed
output is precisely the same described by the test step. We are not considering here mar-
gin of errors and, thus, the test oracle is trivial (comparing integers, natural numbers and
boolean values). Figure 11 shows the mutation score (ratio of killed/generated mutants)
for the VM and PC. Figure 12 shows the same data for the NPP and the TIS.

Considering all examples and all datasets, we achieved an average mutation score of

55

(a) Mutation score for the VM example (b) Mutation score for the NPP example

Figure 11 – Mutant-based strength analysis (examples from the literature)

(a) Mutation score for the PC example (b) Mutation score for the TIS example

Figure 12 – Mutant-based strength analysis (examples from industry)

about 75%. For the VM, 1, 5 and 10 Sample calls lead to a mutation score of 75.80%,
76.99% and 77.13%, respectively. For the NPP, we had a mutation score of 74.78%, 75.54%
and 75.54%, respectively. For the PC, we had a mutation score of 83.49% for all datasets
(actually, the same value for each replication of each dataset – we comment on this result
later). For the TIS, we had a mutation score of 56.80%, 59.53% and 59.84%, respectively
(the lowest scores for all examples). As said before, these results are conservative, since we
consider by default that all non-killed mutants are not equivalent. By random inspection,
we have identified equivalent mutants in all examples. Therefore, we are sure that the
true mutation score is actually higher (better) than the ones presented before.

One interesting result shown by the data is the effect of the number of Sample calls
on the mutation score. Although some increase is always observed when we increase the
number of Sample calls, it is not as high as we first expected. By analysing the data,
we understood that this happens due to the size (number of test steps) of the generated
test cases. Recall that we invoke Sample with a bound of size = 600, which results in
reasonably long test cases (more than 50 steps in many cases). As a consequence, even
with a small number of test cases, we are capable of testing many different scenarios

56

and, thus, unveiling many different errors. However, in general, increasing the number of
Sample calls tends to increase the chances of finding new errors, since new test cases are
potentially generated.

Regarding the PC example, we also have test cases written (by hand) by domain
specialists. The mutation score achieved by these tests is 81.04% against the score of
83.49% achieved by our testing strategy, which is slightly higher. Concerning this example,
we further analysed our results by inspecting manually all non-killed mutants, since the
same mutation score (83.49%) was achieved in all runs of the three datasets.

We identified many mutations that lead to equivalent mutants. For instance, we had
in the reference code x != true, where x is a boolean variable. In the mutated code, we
had x < true (an example of an ROR mutation). Since, true is internally represented
as 1 and false as 0, and the code only assigns one of these two values to x, evaluating
weather x != true (i.e., x == false or x == 0) is equivalent to check whether x < true

(i.e., x < 1 or x == 0).
After a careful analysis, we conclude that the actual mutation score, achieved by our

testing strategy, for the PC example is of 100%. In other words, all non-equivalent mutants
were killed by our automatically generated test cases (even considering just one Sample

call).
The lowest mutation score was achieved concerning the TIS, which is the most complex

considered example. In this situation, the test suite with only randomly generated test
cases should be enhanced by other means; for instance, taking into account test purposes
written by domain specialists. This would increase the chances of testing non-covered
relevant scenarios, particularly, those associated with the non-killed and non-equivalent
mutants.

The main threat to the validity of our analyses is external. The conclusions reached
are intrinsically related to the four considered examples. Nevertheless, we believe that
the results presented in this section are promising, considering the observed performance,
besides being fully automatic4.

4 All empirical data and scripts for the VM, NPP and TIS are available online: see Footnote 1. The files
regarding the PC example cannot be made publicly available.

57

5 CONCLUSIONS

This work presents a scalable, unified and formal framework based on the Coq proof
assistant for validating and verifying models of timed data-flow reactive systems, which
are automatically derived from controlled natural-language requirements. Well-formedness
properties of the models are automatically verified with no user intervention.

The generation of test data is also supported with the aid of the QuickChick tool.
For now, we support test generation by sampling random valid traces. The contributions
discussed here are integrated into the NAT2TEST tool, which is developed using the
Eclipse RCP framework. Our random test generation strategy was evaluated in terms
of performance and mutant-based strength analysis, considering examples both from the
literature and the industry.

To carry out the empirical analyses, besides our Coq characterisation of DFRSs, the li-
braries developed and integrated into the NAT2TEST tool, we also created Python scripts
to fully automate these analyses. Within seconds, test cases were generated automatically
from the controlled natural-language requirements, achieving an average mutation score
of about 75%. Discarding equivalent mutants, in one of the industrial examples, the actual
mutation score is 100%; the generated test cases were capable of detecting all systemati-
cally introduced errors.

5.1 RELATED WORK

A report by the Federal Aviation Administration (FAA), which discusses practices
concerning requirements engineering, states that the overwhelming majority of survey
respondents indicated that requirements are being capture as English text (FAA, 2009).
This supports the thesis that, at the very beginning of system development, typically only
natural-language requirements are documented. Although this report is some years old,
our experience with industrial and academic partners shows that this is still a current
practice. Therefore, a central aspect of our research agenda is that we want to enable
formal verification from natural-language requirements. Moreover, since it is not realistic
(in general) to expect a good knowledge of formal modelling by domain specialists, we
also pursue automation whenever possible.

Previous works have already investigated and proposed formal models for describing
natural-language requirements and possibly generating test cases. As mentioned in Sec-
tion 1.2, there is a trade-off between the adoption of controlled natural languages and
the degree of user intervention. The NAT2TEST strategy distinguishes itself by provid-
ing a flexible writing structure to describe timed data-flow reactive systems in controlled
natural language, but also achieving automation. We refer to (CARVALHO; CAVALCANTI;

58

SAMPAIO, 2016) for a detailed comparison of the NAT2TEST strategy with others con-
cerning the adoption of controlled natural languages.

The adoption of s-DFRS and e-DFRS models, opposed to other modelling notations,
to formally represent the behaviour of timed data-flow reactive systems is a central aspect
of this work. There are other formal notations that can also be used to model data-flow
reactive systems, such as Simulink block diagrams and SCADE/Lustre1 code. Verification
could be supported by tools such as the Simulink Design Verifier2 or the SCADE Suite.
Moreover, as reported in (MILLER; WHALEN; COFER, 2010), these representations could
even be translated into other notations, enabling the use of other tools (model checkers
and theorem provers).

The challenge of this verification perspective is that our strategy is supposed to be used
in the very beginning of the project to validate and verify high-level system requirements.
Other models, such as Simulink diagrams and Lustre code, are more concrete; they are
developed also considering design decisions and other information that is typically not yet
available at this stage (project beginning). Actually, our strategy can be used to generate
test data, from the high-level system requirements, in order to simulate and to verify
other more concrete system models, such as the ones mentioned before.

Another candidate notation would be a timed automaton, which is a classical notation
for modelling timed reactive systems. In this context, one could, for instance, use Uppaal to
automate the generation of test cases (LARSEN; MIKUCIONIS; NIELSEN, 2005). Besides test
generation, Uppaal also supports checking invariants and reachability properties, which
is also desired by us to the future (system property verification), by means of exploring
the state-space of the system. However, in this scenario, one might face scalability issues,
when a huge state-space needs to be covered. In (WIMMER; LAMMICH, 2018), the authors
constructs a verified model checker for timed automata using Isabelle/HOL (NIPKOW;

WENZEL; PAULSON, 2002). Scalability should also be an issue here, since the underlying
verification technique is defined in terms of state-space exploration.

An extension of our current work could rely on induction principles to prove properties
(formalised in Coq) with no need to cover the system state-space. A drawback of this
approach is that the verification is not automatic; someone needs to develop the proof
script. However, if seeking automation, in the context of our work, it would be possible to
apply the idea described in Section 3.2.1 and, then, verify the desired system properties
via state-space exploration. However, scalability would be an issue again.

In (PAULIN-MOHRING, 2001), the authors develop a formalisation in Coq of a special
class of timed automata to support the specification, validation and test of critical algo-
rithms. In principle, one could use this formalisation to represent timed data-flow reactive
systems, to allow for test generation, besides being able to prove system properties via the
1 SCADE suite: <https://www.ansys.com/products/embedded-software/ansys-scade-suite>
2 Simulink Design Verifier: <https://www.mathworks.com/products/simulink-design-verifier.html>

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.mathworks.com/products/simulink-design-verifier.html

59

development of proof scripts instead of using state-space exploration. However, a possible
drawback is that DFRS models were particularly designed to facilitate their automatic
generation from controlled natural-language requirements.

DFRS models are tailored for embedded systems whose inputs and outputs are always
available, as signals. An advantage of a DFRS model is the fact that, as opposed to classical
timed reactive systems notations such as timed automata, it is a state-rich notation that
embeds and enforces a number of properties that are required in our context. For example,
DFRS models enforce the principle of delayable transitions; they use delay transitions
to represent environment stimuli and, thus, they cannot range over the output signals
and timers of the system; they include no self-transitions; they ensure that there are no
delay and function transitions emanating from the same state. If we were to use general
purpose notations such as timed automata to capture our controlled natural-language
requirements, the translation would be more complicated and costly. This argument also
applies to the work developed in (FELIACHI et al., 2013), where Circus is used to model
system-level requirements.

Differently from our work, which focuses on models of system-level requirements, mod-
elling and/or testing timed systems using (interactive) theorem provers is addressed,
for example, in (HONG et al., 2018; BRUCKER et al., 2016; WAN et al., 2009; AHRENDT;

GLADISCH; HERDA, 2016), considering timed connectors, real-time operating systems,
programmable logic controllers, and Java code, respectively. Finally, the integration of
(interactive) theorem provers and testing strategies is also a relevant research topic, and
thus has been developed by many researches. Similarly to Coq, other provers provide
integration between proofs and tests. For instance, considering the theorem prover Is-
abelle/HOL, we refer to (BRUCKER; WOLFF, 2009; BRUCKER; WOLFF, 2013; BERGHOFER;

NIPKOW, 2004). In general, similar functionalities are provided among these different op-
tions.

5.2 FUTURE WORK

As future work, we envisage the following tasks.

• Consider symbolic time representation. As explained in the end of Section 3.2.2,
when expanding an e-DFRS, as part of a requirement validation or of a test gener-
ation task, the time step considered by delays transitions needs to be set carefully.
In a previous work (CARVALHO; SAMPAIO; MOTA, 2013), when representing DFRSs
in the CSP process algebra, we proposed a symbolic representation of time. As a
consequence, symbolic test cases are generated, with no concrete time information,
and then the time delays are made concrete with the aid of an SMT solver. There-
fore, there is no need to define a concrete time step. As future work, we should
investigate how we could port this result to our Coq characterisation of DFRSs.

60

• Explore the proof of general and domain-specific system properties. Our Coq charac-
terisation of DFRSs can be used to formalise and prove general (such as determinism,
absence of time-lock) and domain-specific system properties (such as typical safety
and liveness properties). Moreover, it would be relevant to devise proof tactics to
(partially) automate the verification of such properties.

• Support test generation guided by test purposes. A test purpose can be seen as a
test scenario defined manually by a domain specialist. In the context of this work, a
test purpose would describe a scenario in terms of the observed values for the input
and output signals. For instance, a scenario where the coin sensor becomes true
and later (not necessarily just after the previous step) the system mode changes to
weak. Then, one could use QuickChick to find (by sampling random valid traces) a
test case where this behaviour is observed. This would ensure that the user-defined
scenario is covered by the generated test cases.

• Develop a formal testing theory for DFRSs in Coq. In Section 2.1, we comment
on the benefits of defining a formal testing strategy, in particular, proving that
the strategy is sound: if the execution of a generated test case fails, it means that
the implementation under test is not related to the considered specification model
by the adopted implementation relation. As a future work, we should pursue the
definition of the missing parts that would support a formal testing strategy for
our Coq characterisation of DFRSs, namely: an implementation relation, a test
execution procedure, besides taking into account the details on how QuickChick
performs property-based testing.

• Generate correct-by-construct simulators for e-DFRSs. As explained in the end of
Section 3.2.1, the definitions created for validating system requirements via bounded
exploration of models could be used to support the development of simulators for
e-DFRSs, since Haskell and OCaml code can be extract from functional definitions
in Gallina. Currently, the NAT2TEST tool has a simulator for e-DFRSs, which was
implemented in Java, with no formal guarantees that it reflect the formal charac-
terisation of DFRS models.

• Provide support in Coq for the common phases of the NAT2TEST strategy. The
first three phases of the NAT2TEST strategy (syntactic and semantic analyses,
besides generation of DFRSs from requirement frames) are implemented as Java
programs. As future work, we should try to specify in Coq these phases in order
to be able to prove properties about the underlying algorithms, achieving a formal
process (completely in Coq) to generate test cases from controlled natural-language
requirements.

61

REFERENCES

AHRENDT, W.; GLADISCH, C.; HERDA, M. Proof-based test case generation. In:
. Deductive Software Verification – The KeY Book: From Theory to Practice.

Cham: Springer International Publishing, 2016. p. 415–451. ISBN 978-3-319-49812-6.

ANDREWS, J. H.; BRIAND, L. C.; LABICHE, Y. Is Mutation an Appropriate Tool
for Testing Experiments? In: Proceedings of International Conference on Software
Engineering. New York: ACM, 2005. p. 402–411. ISBN 1-58113-963-2.

BARZA, S.; CARVALHO, G.; IYODA, J.; SAMPAIO, A.; MOTA, A.; BARROS,
F. Model Checking Requirements. In: RIBEIRO, L.; LECOMTE, T. (Ed.). Formal
Methods: Foundations and Applications. Cham: Springer International Publishing, 2016.
p. 217–234. ISBN 978-3-319-49815-7.

BERGHOFER, S.; NIPKOW, T. Random testing in Isabelle/HOL. In: Proceedings of
the Second International Conference on Software Engineering and Formal Methods,
2004. SEFM 2004. [S.l.: s.n.], 2004. p. 230–239.

BERTOT, Y.; CASTRAN, P. Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions. [S.l.: s.n.], 2010.

BRUCKER, A. D.; HAVLE, O.; NEMOUCHI, Y.; WOLFF, B. Testing the IPC Protocol
for a Real-Time Operating System. In: GURFINKEL, A.; SESHIA, S. A. (Ed.). Verified
Software: Theories, Tools, and Experiments. Cham: Springer, 2016. p. 40–60. ISBN
978-3-319-29613-5.

BRUCKER, A. D.; WOLFF, B. hol-TestGen. In: CHECHIK, M.; WIRSING, M. (Ed.).
Fundamental Approaches to Software Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. p. 417–420. ISBN 978-3-642-00593-0.

BRUCKER, A. D.; WOLFF, B. On theorem prover-based testing. Formal Aspects of
Computing, v. 25, n. 5, p. 683–721, Sep 2013. ISSN 1433-299X.

CARVALHO, G.; BARROS, F.; CARVALHO, A.; CAVALCANTI, A.; MOTA, A.;
SAMPAIO, A. NAT2TEST Tool: From Natural Language Requirements to Test Cases
Based on CSP. In: CALINESCU, R.; RUMPE, B. (Ed.). Software Engineering and
Formal Methods. Cham: Springer International Publishing, 2015. p. 283–290.

CARVALHO, G.; BARROS, F.; LAPSCHIES, F.; SCHULZE, U.; PELESKA, J.
Model-Based Testing from Controlled Natural Language Requirements. In: ARTHO,
C.; ÖLVECZKY, P. C. (Ed.). Formal Techniques for Safety-Critical Systems. Cham:
Springer International Publishing, 2014. p. 19–35. ISBN 978-3-319-05416-2.

CARVALHO, G.; CAVALCANTI, A.; SAMPAIO, A. Modelling timed reactive
systems from natural-language requirements. Formal Aspects of Computing,
v. 28, n. 5, p. 725–765, Sep 2016. ISSN 1433-299X. Disponível em: <https:
//doi.org/10.1007/s00165-016-0387-x>.

https://doi.org/10.1007/s00165-016-0387-x
https://doi.org/10.1007/s00165-016-0387-x

62

CARVALHO, G.; FALCÃO, D.; BARROS, F.; SAMPAIO, A.; MOTA, A.; MOTTA,
L.; BLACKBURN, M. NAT2TESTSCR: Test case generation from natural language
requirements based on SCR specifications. Science of Computer Programming, v. 95,
Part 3, n. 0, p. 275 – 297, 2014. ISSN 0167-6423.

CARVALHO, G.; MEIRA, I. Modelling and testing timed data-flow reactive systems
in coq from controlled natural-language requirements. In: Proceedings of Brazilian
Symposium on Formal Methods. [S.l.: s.n.], 2019.

CARVALHO, G.; SAMPAIO, A.; MOTA, A. A CSP Timed Input-Output Relation
and a Strategy for Mechanised Conformance Verification. In: GROVES, L.; SUN, J.
(Ed.). Formal Methods and Software Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. p. 148–164. ISBN 978-3-642-41202-8.

CAVALCANTI, A.; GAUDEL, M.-C. Testing for refinement in CSP. In: BUTLER, M.;
HINCHEY, M. G.; LARRONDO-PETRIE, M. M. (Ed.). Formal Methods and Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 151–170.

CIMATTI, A.; CLARKE, E.; GIUNCHIGLIA, F.; ROVERI, M. NUSMV: a new
symbolic model checker. International Journal on Software Tools for Technology
Transfer, v. 2, n. 4, p. 410–425, Mar 2000. ISSN 1433-2779. Disponível em:
<https://doi.org/10.1007/s100090050046>.

CLAESSEN, K.; HUGHES, J. Quickcheck: A lightweight tool for random testing
of haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming. USA: ACM, 2000. (ICFP ’00), p. 268–279.
ISBN 1-58113-202-6.

FAA. Requirements Engineering Management Findings Report. USA, 2009.

FELIACHI, A.; GAUDEL, M.-C.; WENZEL, M.; WOLFF, B. The Circus Testing
Theory Revisited in Isabelle/HOL. In: GROVES, L.; SUN, J. (Ed.). Formal Methods
and Software Engineering. Berlin, Heidelberg: Springer, 2013. p. 131–147. ISBN
978-3-642-41202-8.

FILLMORE, C. J. The Case for Case. In: BACH; HARMS (Ed.). Universals in Linguistic
Theory. [S.l.]: New York: Holt, Rinehart, and Winston, 1968. p. 1–88.

GAUDEL, M.-C. Testing can be formal, too. In: MOSSES, P. D.; NIELSEN, M.;
SCHWARTZBACH, M. I. (Ed.). TAPSOFT ’95: Theory and Practice of Software
Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. p. 82–96. ISBN
978-3-540-49233-7.

GIBSON-ROBINSON, T.; ARMSTRONG, P.; BOULGAKOV, A.; ROSCOE, A. W.
FDR3 — A Modern Refinement Checker for CSP. In: ÁBRAHÁM, E.; HAVELUND,
K. (Ed.). Tools and Algorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014. p. 187–201. ISBN 978-3-642-54862-8.

HARIRI, F.; SHI, A. SRCIROR: A Toolset for Mutation Testing of C Source Code
and LLVM Intermediate Representation. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. New York, NY, USA:
ACM, 2018. (ASE 2018), p. 860–863. ISBN 978-1-4503-5937-5.

https://doi.org/10.1007/s100090050046

63

HENINGER, K.; PARNAS, D.; SHORE, J.; KALLANDER, J. Software Requirements
for the A-7E Aircraft - TR 3876. [S.l.], 1978.

HONG, W.; NAWAZ, M. S.; ZHANG, X.; LI, Y.; SUN, M. Using Coq for Formal
Modeling and Verification of Timed Connectors. In: CERONE, A.; ROVERI, M. (Ed.).
Software Engineering and Formal Methods. Cham: Springer International Publishing,
2018. p. 558–573. ISBN 978-3-319-74781-1.

JACKLIN, S. Certification of safety-critical software under DO-178C and DO-278A.
[S.l.], 2012.

JENSEN, K.; KRISTENSEN, L. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. [S.l.: s.n.], 2009. ISBN 978-3-642-00283-0.

LARSEN, K. G.; MIKUCIONIS, M.; NIELSEN, B. Online testing of real-time systems
using uppaal. In: GRABOWSKI, J.; NIELSEN, B. (Ed.). Formal Approaches to Software
Testing: 4th International Workshop, FATES 2004, Linz, Austria, September 21, 2004,
Revised Selected Papers. [S.l.]: Springer Berlin Heidelberg, 2005. p. 79–94.

LEONARD, E.; HEITMEYER, C. Program Synthesis from Formal Requirements
Specifications Using APTS. Higher Order Symbol. Comput., Kluwer Academic Publishers,
Hingham, MA, USA, v. 16, p. 63–92, 2003. ISSN 1388-3690.

MILLER, S. P.; WHALEN, M. W.; COFER, D. D. Software model checking
takes off. Commun. ACM, Association for Computing Machinery, New York,
NY, USA, v. 53, n. 2, p. 58–64, fev. 2010. ISSN 0001-0782. Disponível em:
<https://doi.org/10.1145/1646353.1646372>.

MOURA, L. de; BJØRNER, N. Z3: An efficient smt solver. In: RAMAKRISHNAN,
C. R.; REHOF, J. (Ed.). Tools and Algorithms for the Construction and Analysis
of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. p. 337–340. ISBN
978-3-540-78800-3.

NIPKOW, T.; WENZEL, M.; PAULSON, L. C. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Berlin, Heidelberg: Springer-Verlag, 2002. ISBN 3540433767.

OLIVEIRA, B.; CARVALHO, G.; MOUSAVI, M.; SAMPAIO, A. Simulation of hybrid
systems from natural-language requirements. In: 2017 13th IEEE Conference on
Automation Science and Engineering (CASE). [S.l.: s.n.], 2017. p. 1320–1325. ISSN
2161-8089.

PARASKEVOPOULOU, Z.; HRIȚCU, C.; DÉNÈS, M.; LAMPROPOULOS, L.;
PIERCE, B. C. Foundational property-based testing. In: URBAN, C.; ZHANG, X.
(Ed.). Interactive Theorem Proving. Cham: Springer International Publishing, 2015. p.
325–343. ISBN 978-3-319-22102-1.

PAULIN-MOHRING, C. Modelisation of Timed Automata in Coq. In: KOBAYASHI,
N.; PIERCE, B. C. (Ed.). Theoretical Aspects of Computer Software. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001. p. 298–315. ISBN 978-3-540-45500-4.

PELESKA, J.; VOROBEV, E.; LAPSCHIES, F.; ZAHLTEN, C. Automated Model-Based
Testing with RT-Tester. [S.l.], 2011.

https://doi.org/10.1145/1646353.1646372

64

ROSCOE, A. W. Understanding Concurrent Systems. [S.l.]: Springer, 2010.

SANTOS, T.; CARVALHO, G.; SAMPAIO, A. Formal Modelling of Environment
Restrictions from Natural-Language Requirements. In: MASSONI, T.; MOUSAVI, M. R.
(Ed.). Formal Methods: Foundations and Applications. Cham: Springer International
Publishing, 2018. p. 252–270. ISBN 978-3-030-03044-5.

SILVA, B. C. F.; CARVALHO, G.; SAMPAIO, A. CPN simulation-based test case
generation from controlled natural-language requirements. Science of Computer
Programming, v. 181, p. 111 – 139, 2019. ISSN 0167-6423. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0167642319300516>.

TAHA, W.; DURACZ, A.; ZENG, Y.; ATKINSON, K.; BARTHA, F. A.; BRAUNER, P.;
DURACZ, J.; XU, F.; CARTWRIGHT, R.; KONEČNÝ, M.; MOGGI, E.; MASOOD, J.;
ANDREASSON, P.; INOUE, J.; SANT’ANNA, A.; PHILIPPSEN, R.; CHAPOUTOT,
A.; O’MALLEY, M.; AMES, A.; GASPES, V.; HVATUM, L.; MEHTA, S.; ERIKSSON,
H.; GRANTE, C. Acumen: An Open-Source Testbed for Cyber-Physical Systems
Research. In: MANDLER, B.; MARQUEZ-BARJA, J.; CAMPISTA, M. E. M.;
CAGÁŇOVÁ, D.; CHAOUCHI, H.; ZEADALLY, S.; BADRA, M.; GIORDANO, S.;
FAZIO, M.; SOMOV, A.; VIERIU, R.-L. (Ed.). Internet of Things. IoT Infrastructures.
Cham: Springer International Publishing, 2016. p. 118–130. ISBN 978-3-319-47063-4.

WAN, H.; CHEN, G.; SONG, X.; GU, M. Formalization and Verification of PLC Timers
in Coq. In: 2009 33rd Annual IEEE International Computer Software and Applications
Conference. [S.l.: s.n.], 2009. v. 1, p. 315–323. ISSN 0730-3157.

WIMMER, S.; LAMMICH, P. Verified model checking of timed automata. In:
BEYER, D.; HUISMAN, M. (Ed.). Tools and Algorithms for the Construction and
Analysis of Systems. Cham: Springer International Publishing, 2018. p. 61–78. ISBN
978-3-319-89960-2.

http://www.sciencedirect.com/science/article/pii/S0167642319300516

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Model-based testing
	Natural-language processing
	The NAT2TESTCoq strategy
	Dissertation structure

	Background
	The NAT2TEST strategy
	Syntactic analysis
	Semantic analysis
	DFRS generation
	Test generation
	Other extensions

	Data-flow reactive systems
	The Coq proof assistant
	The Gallina language
	Building proofs with tactics
	Proof automation
	Functional, logical, and inductive characterisations

	Property-based testing

	Validating, verifying and testing DFRSs in Coq
	Characterisation of DFRSs in Coq
	Coq characterisation of symbolic DFRSs
	Variables
	Initial state
	Functions
	s_DFRSs

	Coq characterisation of expanded DFRSs
	Transition relation
	e_DFRSs

	Functional characterisation of well-formedness properties

	Applications of our Coq characterisation of DFRSs
	Validating system requirements via bounded exploration of models
	Generating test cases with QuickChick

	Tool support and empirical analyses
	Integration with the NAT2TEST tool
	Empirical analyses
	Performance analysis
	Mutant-based strength analysis

	Conclusions
	Related work
	Future Work

	References

