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ABSTRACT

The Enhanced Entity-Relationship (EER) language is widely used in the creation of
conceptual database models. The validation of these models is critical as validity errors
can be passed to the next phases of the project and negatively influence the outcome.
In large and complex models, validation becomes a difficult task because the interaction
between the elements used can produce inconsistencies and unintended implicit conse-
quences. Hence, it is essential to offer automatic assistance. Description Logics (DLs) are
a set of languages used for knowledge representation. They admit decidable and auto-
mated reasoning tasks, such as the identification of implicit logical consequences. Because
of those characteristics, DLs have been considered a promising alternative to represent
and reason on conceptual models. This work aims to support the validation of conceptual
database models by identifying syntactic and semantic inconsistencies in EER models
using DL reasoners. To the best of our knowledge, few work use Description Logics to
represent and reason on EER models. Also, these work do not cover aspects such as the
interaction between model constraints and the related structural consequences. Our work
stands out for taking into account the consequences of constraints such as cardinality, par-
ticipation, relationship type degree, inheritance, cyclic paths, and valid attribute types, as
well as the consequences of the interactions between these constraints on the same model.
With the support of Protégé, we built a Knowledge Base(KB) in OWL DL by formalizing
the EER syntax. Next, we added the semantic validity rules related to the constraints
mentioned. Although we tried to represent most of the rules by using axioms, we also
made use of Semantic Web Rule Language (SWRL) rules in cases in which DL expressiv-
ity was not sufficient. Finally, we manually converted the KB to ALCROIQ language. As

proof of concept, we successfully validated case studies by using DL reasoners.

Keywords: Conceptual Model Validation. Database Modeling. Reasoning.



RESUMO

A linguagem Entidade-Relacionamento Estendido (EER) é amplamente utilizada na
criacdo de modelos conceituais de banco de dados. A validacao desses modelos é critica,
pois os erros de validagao podem ser passados para as préximas fases do projeto e in-
fluenciar negativamente o resultado final. Em modelos grandes e complexos, a validacao
torna-se uma tarefa dificil porque a interagao entre os elementos utilizados pode produzir
inconsisténcias e consequéncias implicitas nao intencionais. Por isso, é essencial oferecer
assisténcia automdtica. A Loégica de Descricao (DL) é um conjunto de linguagens uti-
lizadas para representacao de conhecimento. Ela admite tarefas de raciocinio decidiveis e
automatizadas, como a identificagdo de consequéncias logicas implicitas. Por causa dessas
caracteristicas, a DL tem sido considerada uma alternativa promissora para representar e
raciocinar em modelos conceituais. Este trabalho tem como objetivo apoiar a validacao de
modelos conceituais de banco de dados, identificando inconsisténcias de sintaxe e seman-
tica em modelos EER utilizando racionalizadores de DL. De acordo com as pesquisas
realizadas, poucos trabalhos usam Légica de Descricao para representar e raciocinar so-
bre modelos EER. Além disso, esses trabalhos nao abordam aspectos como a interagao
entre as restricoes da linguagem em um mesmo modelo e suas consequéncias estruturais.
Nosso trabalho se destaca por levar em consideragao as conseqiiéncias de restrigdes como
cardinalidade, participacao, grau do tipo de relacionamento, heranca, caminhos ciclicos
e tipos de atributos validos, bem como as conseqiiéncias das interacoes entre essas re-
stricoes. Com o apoio da ferramenta Protégé, construimos uma Base de Conhecimento
(BC) em OWL DL, formalizando a sintaxe da linguagem EER. Em seguida, adicionamos
as regras de validacao semantica relacionadas as restri¢goes mencionadas. Embora a maio-
ria das regras tenham sido representadas por meio de axiomas, também utilizamos regras
SWRL (Semantic Web Rule Language) em casos nos quais a expressividade de DL nao
era adequada. Ao final, convertemos manualmente a BC para a linguagem ALCROIQ.

Como prova de conceito, validamos com sucesso estudos de caso utilizando raciocinadores
DL.

Palavras-chaves: Validacao de Modelos Conceituais. Modelagem de Banco de Dados.

Raciocinio.
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1 INTRODUCTION

This chapter presents the context, motivation, goals, methodology, and contributions of

our work. It also describes the structure of the remaining chapters.

1.1 CONTEXT

A database design project usually consists of three phases: conceptual design, logical de-
sign, and physical design ((ELMASRI; NAVATHE, [2010), (SILBERSCHATZ; KORTH; SUDAR-
SHAN, 2006))). In the conceptual phase, the designers transform business requirements
into conceptual models, focusing on the representation of business-related concepts and
their relationships. In the logical phase, the designers map the conceptual model from the
previous phase to an implementation data model, which varies according to the approach
taken by the database technology (e.g., the relational data model). Finally, in the physical
phase, the designers convert the logical model into a physical one consisting of defining
how data will be stored and organized in files, which depends on the database technology
chosen.

In this work, we concentrate on the conceptual design phase. In order to create con-
ceptual models, designers make use of modeling languages. One of the most commonly
used languages for conceptual database modeling is the Enhanced Entity-Relationship
(EER) (ELMASRI; NAVATHE, 2010). It is an extension of the Entity-Relationship (ER)
model proposed by (Chen (1976)), adding the concepts of associative entity, inheritance,
and category, which are conceptual data modeling constructors also developed in other
areas such as Knowledge Representation and Software Engineering (ELMASRI; NAVATHE,
2010)). Due to its relevance and expressiveness, there are several research papers related to
the EER language ((ZHANG; MA; CHENG, 2016), (FIDALGO et al., 2013), (VAGNER, 2018),
(KOLP; ZIMANYT, [2000)) ), as well as many database textbooks that present a chapter about
it ((ELMASRI; NAVATHE, 2010), (CONNOLLY; BEGG, [2010)), (SINGH, [2009))).

1.2 MOTIVATION

As mentioned earlier, the conceptual model created in the first phase of a database project
is used as a basis for the other phases. Therefore, validating conceptual models is crucial
as validation errors can be passed to the next phases and negatively influence the project
outcome. Moreover, the sooner those errors are identified, the lower the costs to fix them.
According to Westland| (2002), “uncorrected errors become exponentially more costly with
each phase in which they are unresolved”.

As also stated before, designers use modeling languages to create conceptual models.

A modeling language comprises three elements: abstract syntax, concrete syntax, and
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semantics (BRAMBILLA; CABOT; WIMMER, [2012)). The abstract syntax (or metamodel)
describes the elements involved in the language, as well as their possible associations. The
EER abstract syntax, for example, comprises elements such as entity type, relationship
type, and attribute. The concrete syntax refers to the notation of the language, i.e.,
the ways that we represent the concepts and associations. In the EER, for example,
we use a rectangle to represent an entity type. Finally, the semantics is related to "the
meaning of the elements defined in the language and the meaning of the different ways of
combining them" (BRAMBILLA; CABOT; WIMMER), 2012)) The semantics of EER comprises,
for example, the meaning of the entity type concept, and the meaning of the cardinality
constraints in a relationship type, as we will discuss in chapter 2] Therefore, when checking
the model validity, we must take into account the syntactic and semantic aspects, as well
as the notation of the modeling language used.

In small projects, the designer can quickly identify and solve most of these syntactic
and semantic problems. However, in large and complex ones, automatic support becomes
necessary.

Description Logics (DLs) are a set of languages used for knowledge representation, al-
lowing to represent concepts, roles, and individuals by creating Knowledge Bases (KBs).
It admits decidable and automated reasoning tasks using specific tools called reasoners.
By using DL reasoners, it is possible to verify automatically whether a KB is consistent, to
establish hierarchies between concepts (subsumption), and to check concept equivalence.
It is also possible to identify implicit logical consequences that would be hard to identify
manually. Because of those characteristics, DLs have been considered a promising alterna-
tive to represent and reason on conceptual models ((GONZALEZ; CABOT), 2014), (ZHANG;
MA; CHENG, 2016)).

To the best our knowledge, few research studies use description logics to represent
and reason in EER models. Also, those studies do not cover aspects as the semantics
related to the combinations of constraints and model elements. Hence, our work stands
out for considering the consequences of constraints such as cardinality, participation,
relationship type degree, inheritance, cyclic paths, and valid attribute types, as well as

the consequences of the interactions between those restrictions in the same model.

1.3 GOALS

This work aims to support the automatic validation of conceptual database models by
identifying syntactic and semantic inconsistencies in EER models using DL reasoners. The
automatic validation intends to prevent problems in the conceptual design phase from
spreading to the other phases, avoiding increased project costs as well as unsatisfactory

results. Based on that, our specific objectives are:

« To create a Knowledge Base that describes the EER syntax and its semantic rules,



14

focusing on the valid ways of combining elements;

» To verify test cases using automatic reasoners.

1.4 METHODOLOGY

In order to achieve our goals, we first identified primary studies related to the validation of
conceptual models using DL, aiming to perceive their main approaches and the coverage
of their solutions. We found that few studies focus on the validation of EER models. Also,
we found that while some of them centered on the computational complexity aspects of
model validation ((ARTALE et al., |2007al), (ARTALE et al., 2007b))), others missed semantic
aspects such as the consequences of the interaction between cardinality, participation,
relationship type degree, inheritance, cyclic paths, and valid attribute types (ZHANG; MA;
CHENG, 2016)).
Based on that, we created an EER KB by performing the following steps:

o We formalized an EER language syntax by creating a KB in OWL DL using Protégé
(MUSEN| 2015)). Since the EER language does not have a standard abstract syntax,
we consider the EERMM one, which covers all EER constructs (FIDALGO et al.,
2013);

o Next, we added the semantic validity rules organized by Nascimento (2015 and
based on the work of Dullea, Song and Lamprou (2003) and |Calvanese and Lenzerini
(1994)). Those rules are related to cardinality, participation, relationship type degree,
inheritance, cyclic paths, valid attribute types, and these constraints interactions
within the same model. Although we tried to represent most of the rules by using
axioms, we also made use of Semantic Web Rule Language (SWRL) rules in the

cases involving cyclic paths, since DL expressivity was not sufficient;

o After that, we created individuals based on a test case set composed of invalid and
valid models (annex [A] and [B] respectively) and used DL reasoners to identify the

invalid constructs;

o Finally, we manually converted the KB to ALCROZQ.

1.5 CONTRIBUTION

The main contributions of our work are:

o The formalization of the EER language through DL, which allows validating the

structure of EER models with the use of automatic reasoners;

o The possibility of reusing the Knowledge Base if new validation rules need to be

added or in case of a language extension;
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o The formalization of the EERMM, which contributes to a possible standardization
of the EER abstract syntax.

1.6 STRUCTURE

We present the results of our work in the next chapters. In chapter [2| we briefly recall the
basic concepts related to the Enhanced Entity-Relationship (EER) model, the EERMM
metamodel, the Existence Dependency Graphs, Description Logics, OWL DL, and the
Semantic Web Rule Language. In chapter [3, we present the EER structural validity rules
mentioned. In chapter , we describe the EER Knowledge Base (KB) created in order to
validate EER models, and the procedures conducted to verify our KB. In chapter 5] we
present primary studies related to the validation of EER models using DL, as well as our

main contributions. Finally, in chapter [6] we present our final remarks and future work.
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2 BACKGROUND

2.1 INTRODUCTION

In the following subsections, we give an overview of the Enhanced Entity-Relationship
(EER) model, the Existence Dependency Graphs, the Description Logics, the OWL DL
Language, and the Semantic Web Rule Language.

2.2 ENHANCED ENTITY-RELATIONSHIP MODEL

The Enhanced Entity-Relationship Model (EER) is a modeling language for conceptual
database design. It is an extension of the Entity-Relationship (ER) model proposed by
Chen (1976), including concepts such as "Entity", "Relationship", and "Attribute", and
adding the ideas of superclass, subclass, and category, which are semantic data modeling
concepts also developed in other areas such as Knowledge Representation and Software
Engineering (ELMASRI; NAVATHE, 2010)). Due to its relevance and expressiveness, there
are several research papers related to the EER language ((ZHANG; MA; CHENG), 2016)),
DALGO et al, |2013), (VAGNER, 2018)), (KOLP; ZIMANYT, [2000))), as well as many database
textbooks that present a chapter about the language ((ELMASRI; NAVATHE] [2010), (CON-|
INOLLY; BEGG), 2010)), (SINGH, 2009)). Figure || shows a summary of the EER notation
proposed by [Elmasri and Navathe, (2010)).

Figure 1 - EERMM Notation

— — Rolel— -Role
RET Regular Entity Type (__SIA ) SimpleAttribute RET1 _RRT _ 4 RET2
—— " Partial Participation of 7RET1fRoIe1 in RRT and
( , |dentifier Attribute R h
WET H Weak Entity Type ¥ 7_|dA’ 7 (or Key Attribute) Total Participation of RET2/Role2 in RRT
o~ ¢ DIA ) Discriminator Attribute i W,
<__RRT _> Regular Relationship Type ~———""(or Partial-Key Attribute) RET1 T~ RRT o RET2
— ammm i, ‘ ) Many Cardinality of RET1 in RRT and
WRT > Weak Relationship Type _DeA ' Derived Attribute One Cardinality of RET2 in RRT
== L= . I .
= '=‘~\-J] r N
MVA > Multi-Valued Attribute RET1 " RRT > RET2
—. A 811D : Lo
~ D"i A ; A2: -~ C::;:izﬁ:e Associative entity in RRT
 Si J
SupE ‘ SupE I SupE ‘ SupE1 H SupE2 H SupE1 ‘ SupE2 |
[ ] Partial and ” Totaland A k. A
. | , Direct A S o~ .~ Partial .~/ Total
L . , ld)_  Disjoint (o)  Overlap Tu) (u ¥
inherkance, i 2="5) ihediance (2723) Inheritance , Category v, Category
SubE “ SubE1 H SubE2 SubE1 “ SubE2 | SubE SubE

From: [Fidalgo et al| (2013)

In the EER language, "entity" is a fundamental concept responsible for representing
distinctly identifiable objects (CHEN] [1976]). These objects can be physical (e.g., person,
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car) or conceptual (e.g., companies, services). "Entity types" correspond to schemas or
classes responsible for describing the structure of a set of entity objects (or instances). In
EER, they are represented as a rectangle, as shown in Figure |1 (Regular Entity Type).
Entity types have "attributes", which are specific properties used to describe entities.
In the EER language, they are represented as an ellipse. Figure [2| shows the entity type
"Employee" and its attributes: "id", 'name", "address", "telephone’, and "date of birth".

Attributes can be divided into types. They are:

o Composite attributes: Those that can be divided into sub-attributes. In the case
of the previous example, the attribute “address” may consist of the sub-attributes

%W

“street”, “number”, “neighborhood”, “city” and “state”;
o Simple attributes: that assume atomic values, that is, do not have sub-attributes;

o Derived attributes: Attributes that have values that depend on other attributes.
The entity "Employee", for example, could have the attribute "age', derived from
"date of birth".

e Multivalued attributes: which can assume more than one value for the same
entity. The attribute “telephone”, for example, can assume more than one value for

the same “Employee” instance;

Since an entity is a distinctly identified object, each entity type has one or more
attributes whose values do not repeat between their instances. These attributes are called
key attributes or identifier attributes. In the "Employee" example, the "id" is the identifier
attribute because two employees cannot have the same id value. As shown in Figure [2]

identifier attributes have a slightly different notation, with their underlined names.

Figure 2 — Employee entity type and its attributes

Employee date of hirth

From: The author

A 'relationship’ is an 'association among entities" (CHEN, [1976). Similar to what
happens with entity types, in the EER model, we have "Relationship types" to represent

a set of relationships. Hence, to represent the business rule '"an employee manages a
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department', we can create the model shown in Figure [3| composed of the entity types

"Employee" and "Department," and by the relationship type "Manages".

Figure 3 — Relationship example

Employee @ Department

From: The author

A relationship type can be classified by its degree, the value of which depends on
the number of the associated entity types (ELMASRI; NAVATHE, 2010]). When a particular
relationship type involves only one entity type, it has degree 1, and it is called unary (or
recursive). When it associates two entity types, it has degree 2, and it is called binary.
Although there may be relationship types with higher degrees, unary, binary, and ternary
are the most common ones. Relationship types also have roles that represent the purpose
of each entity type in the relationship. In the example shown in Figure [ the entity
type "Employee" has the role "manages" for the relationship type "Manages," while the
entity type "Department" has the role "is managed by" for the same relationship type.
As highlighted by Elmasri and Navathe (2002), roles are most commonly used in unary

relationships.

Figure 4 — Model example with roles

Employee @ Department
manages is managed by

From: The author

Relationship types also have structural constraints, which are used to represent certain
limits imposed by business rules. They are cardinality and participation. Cardinality con-
straint refers to the maximum number of instances of an entity type that can participate
in a relationship. Cardinality has two possible values: 1 and N (many). The participation
constraint determines whether an entity type depends existentially on its participation in
a relationship. Participation has two possible values: total (represented by a double line),
when the participation is mandatory; and partial (represented by a single line), when
the participation is optional. Figure [5[ shows an example of a model which represents the
business rule "one department must be managed by one employee" and "one employee

may manage many departments."
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Figure 5 — Model example with cardinality and participation constraints

Employee @: Department
1 N

From: The author

Such as entity types, relationship types can also have attributes. In this case, attributes
are used to describe properties of relationships. According to Elmasri and Navathe (2002),
in 1:1 and 1:N unary and binary relationships, the use of attributes in relationship types
is optional because the properties could be moved to one of the participating entities.
In unary and binary relationships with N: N cardinality, the use of these attributes is
mandatory when it is necessary to describe relationship properties. It is crucial to mention
that relationship types cannot have identifier attributes, as this concept is restricted to
entity types.

When an entity type does not have identifier attributes, i.e., any of its attribute values
can be used to identify its instances uniquely, it is classified as "Weak". Weak entity
types are uniquely identified through their relationship to another entity type. In these
cases, the relationship type is called "Weak" or "Identifier', and the other entity type
is called "Strong". Figure [6] shows a model that represents the rules "one company may
have multiple departments" and "one department must belong to one company". In the
example, the entity type "Department” is weak in the identifier relationship type "has",
while the entity type "Company" is strong. It is important to note that the relationship
between the weak entity type and the strong entity type always has total participation,
i.e., a weak entity instance depends on the prior existence of a strong entity instance
(ELMASRI; NAVATHE, 2010). In the example, there may not be a "Department’ instance
that is not related to a "Company" instance, since there may not exist a department that
is not part of a company. In practice, the weak entity type uses some of its attributes,

and the identifier attributes of the strong entity type to be uniquely identified.

Figure 6 — Weak entity type example

Company Department
1 M

From: The author

The attributes of the weak entity types that are used to compose their key attributes
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are called discriminator attributes. These attributes act as partial identifiers, and their
values do not repeat within the set of weak entity type instances bound to the same
instance of a strong entity type. Discriminator attributes have a notation in which a
dotted line underlines their names, as shown in Figure [7] It is important to note that
discriminator attributes can also be used to identify the unary and binary relationship

types partially when they have N: N cardinality (ELMASRI; NAVATHE, 2010)).

Figure 7 — Weak entity type example with discriminator attribute

Company 7 Department
1 N

From: The author

As mentioned before, the EER language added the concepts of inheritance, category,
and associative entity to the ER language. Inheritance (or IS-A relationships) comprises
the concepts of superclass and subclass. Thus, the subclass entity type inherits the at-
tributes and relationships of the superclass entity type. The set of subclasses of a given
superclass is called a superclass entity type "specialization'. On the other hand, we may
refer to the superclass as a "generalization" of the set of its subclasses. When a superclass
has only one subclass, we represent specialization as a direct inheritance, as can be seen in

Figure 8 (a). When a superclass has more than one subclass, the notation used is shown
in Figure [§] (b) and (c).

Figure 8 — Inheritance notations

SupE SupE SupE
i Partial and

< Total and
| ; Direct - e Ak
' Inheritance ¢ 4] Disjoint (o), Overap

2.7l Inheritance 2] Inheritance

SubE SubE1 SubE2 ‘ SubE1 SubE2

(a) (b) (c)

From: Fidalgo et al.| (2013)

There are two types of constraints to apply to the relationship between superclasses
and subclasses: disjunction and completeness. Disjoint and overlap are types of disjunc-
tion constraints. In Figure |8 (b) we have the representation of a disjoint specialization,
indicated by the letter "d" (disjoint), which features inheritances in which an entity may
be a member of at most one of the subclasses (ELMASRI; NAVATHE, 2010). Figure [§ (c)
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shows the representation of an overlapping specialization, represented by the letter "o'
(overlap), which characterizes inheritances in which the same entity can be a member
of more than one subclass of the specialization. The completeness constraints are "total"
and "partial'. A total constraint defines that every entity with the superclass type must
be a member of some subclass in the specialization (ELMASRI; NAVATHE, 2010). Partial
restriction, on the other hand, allows an entity not to belong to any of the subclasses
(ELMASRI; NAVATHE, [2010).

The category is a concept used when it is necessary to model scenarios in which a
subclass has multiple superclasses. In this case, the subclass is called a category, which
can be total or partial. In a total category, the entity set of the subclass corresponds to
the union of all superclasses entities (Figure [9] (b)). In a partial category (Figure[J] (a)),

the entity set of the subclass is a subset of the union of the superclass entities.

Figure 9 — Inheritance notations

SupE1 SupE2 ‘ SupE 1 H SupE2
Partial S Total

i E o el LUl Category

SubE SubE

(a) (b)

From: Fidalgo et al.| (2013)

Finally, the Associative Entity is an abstraction used when it is necessary to group a
set of entities and relationships to which other relationships and entities can be associated.

Figure 1| shows a representation of an associative entity (Associative Entity in RRT).

2.3 EXISTENCE DEPENDENCY GRAPHS

According to Snoeck| (2014), the concept of Existence Dependency can be defined based
on two levels of abstraction: the class level and the object level. When we consider two
classes A and B, we say that B is existentially dependent on A (B <« A), if each type
B object is necessarily associated with at least one, at most one, and the same type A
object. Class B is called "dependent" and class A is called "master".

In conceptual modeling, it is not uncommon to come across cases of existence de-
pendency. In the EER language, for example, the relationship between weak and strong
entity types is an existence dependency relationship, in which the weak one is existentially
dependent on the strong one.

Snoeck! (2014) also defined that existence dependency relationships must not be part of

cyclic paths within a model. A path refers to the connectivity of entities and relationships.
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They are responsible for defining "the structural association that each entity has simulta-
neously with all other entities or with itself within the path" (DULLEA; SONG; LAMPROU},
2003). Based on that, there are two types of paths: cyclic, i.e., a path that recurs back
to a previous entity, and acyclic, i.e., when there are no cycles. Existence dependency
relationships must not occur in a cyclic path because of the following restrictions: "an
object type is never existence dependent on itself" (SNOECK], [2014), and "the master of an
object type can never be a dependent (directly or indirectly) of that same object type"

(SNOECK, 2014).

2.4 DESCRIPTION LOGICS

Description Logic (DL) is a set of languages used for knowledge representation. Through
DL it is possible to describe three types of entities: concepts, which represent a set of in-
dividuals (object classes); roles, which represent binary relationships between individuals;
and individual names, which represent individuals who are part of a particular domain
(KROTZSCH; SIMANCIK; HORROCKS, |2012).

Description Logic allows the creation of Knowledge Bases (KBs) that consist of three
components: a Thox, an ABox, and a RBox (KROTZSCH; SIMANCIK; HORROCKS|, [2012).
The TBox describes the vocabulary of a particular domain through axioms (statements
that may be true according to the context), while the ABox contains statements about
individuals in the domain, for example by determining how they relate and to which
concepts they belong. The RBox, in turn, describes the properties of relations, such as
disjunction or equivalence between roles.

With Knowledge Bases, it is possible to perform reasoning tasks using specific tools
called reasoners. By means of these tools it is possible, for example, to determine if a KB
is satisfiable, i.e., it has no contradictions, and to establish hierarchies between concepts,
automatically identifying which are more general (BAADER, 2003).

The reasoning capability of the reasoners varies according to the expressiveness of the

chosen description logics language.

2.4.1 AL Language

As mentioned, Description Logics expressivity varies according to the available construc-
tors of its languages. The AL language is presented in the literature as a minimal language
for use in practical applications (BAADER, 2003). It is used as the basis for the exten-
sion of a language family. Table [1| shows the syntax and semantics of its constructors,
considering "R" as a generic binary relation.

With a DL language, it is possible to describe atomic concepts and atomic roles,
as well as complex descriptions (axioms). In Table , the atomic concept "Student" de-

scribes the set of individuals that belong to the "Student' class, while the atomic con-
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Table 1 — AL language constructors.

Constructor Syntax Semantics Examples
Atomic Concept A AT C AT Student
Atomic Negation -A AT\ AT ~Student

Top Concept T AT T
Bottom Concept 1 0 L

Intersection cnbD (CTn DY) Student M Woman
Value Restriction VR.C |{a € AT|Vb.(a,b) € RT — b € CT}|VisEnrolled.Subject
Limited Existencial Quant.| 3R.T {a € AT|3b.(a,b) € R} JisEnrolled. T

Adapted from: Baader| (2003)

cept "Woman" describes all individuals that belong to the "Woman" class. An exam-
ple of a complex description would be FemaleStudent T Student 1 Woman, which
represents the set of “all students who are also women” through the use of the con-
junction operator (). Another example would be the description PostGradStudent =
Student I FisEnrolled. PostGradCourse, which represents “all students enrolled in a
postgraduate course”.

In the descriptions presented, we used different symbols for the definition of axioms: C
and =. When we have A C B, the symbol C represents a primitive definition, determining
that B describes the conditions necessary for a group of individuals to be represented by
the concept A, i.e., B — A. When we have A = B, the symbol = represents the necessary
and sufficient conditions for a set of individuals to be represented by the concept A. In
other words, A = B can be read as "A equals B', i.e., AC B and B C A (HORRIDGE,
2011).

In AL language, it is also possible to describe the negation of an atomic concept.
Hence, considering the Student atomic concept defined above, the description —Student
includes all individuals who do not belong to the Student class. When we need to represent
all individuals in a given Knowledge Base, we can use the universal concept, represented
by the symbol T. On the other hand, when we need to represent a concept that does not
comprise any individual, we can use the empty concept, represented by the symbol 1.
Also, in the AL language, only the universal concept is allowed to determine the scope
of a limited existential quantification (3R.T, where R is an atomic relation), as shown in
Table [1] (BAADER), [2003).

As shown in Table[I] each constructor is associated with formal semantics, represented
by the .I (interpretation) function. Thus, for the atomic concept A, the interpretation
function A’ consists of its set of possible interpretations, while the set of all possible
interpretations of a domain is represented by the function A’. The formal semantics

associated with each AL language constructor is described in Table [I]
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2.4.2 ALCROIQ Language

As commented in the previous subsection, the AL language is used as the basis for a
language family whose members differ in their expressive power according to the allowed
constructors. The ALCROZQ language makes use of the additional constructors pre-
sented in Table [2| having the level of expressiveness required for the logical description of
the EER language, presented in the next chapter.

According to Table [2] it can be noted that the letter corresponding to disjunction (U)
is omitted from the language name. According to De Morgan’s laws, through conjunction

(M) and negation (—) constructors, it is possible to describe disjunctions (U).

Table 2 — ALCROZQ language constructors.

Constructor Letter| Syntax Semantics
Disjunction U cub ctuDp?
Concept Negation C -C AT\CT
Role Disjunction R |Disj(S1,S2) Stnsi=10
Role Inclusion R RCS RT C §T
Named Individuals O {mary} {mary?}
Inverse Roles z R~ {(a,b)|(b,a) € RT}
Qualified Value Restriction| Q (2 kR.C) |2 {al{(y-(r,y) € R)and(y € C*) > k}
(£ kR.C) |< {zl|t{(y-(z,y) € RF)and(y € CF) < k}

Adapted from: Baader| (2003))

2.5 OWL DL AND THE SEMANTIC WEB RULE LANGUAGE

According to Bechhofer et al.| (2004)), the Web Ontology Language (OWL) is "a semantic
markup language for publishing and sharing ontologies on the World Wide Web".
OWL consists of three sublanguages (BAADER; HORROCKS; SATTLER), |2004):

o OWL Full: which corresponds to the full expressivity and power of the language. It

is undecidable, i.e., does not provide complete reasoning support;

« OWL DL: a decidable subset of OWL Full. Its semantics is based on Description

Logics;
« OWL Lite: which corresponds to a restricted (less expressive) version of OWL DL.

In this work, we used Protégé, an ontology editor (MUSEN, [2015), to create an ontology
using the OWL DL language. Since OWL DL semantics is based on Description Logics,
we could translate the OWL DL ontology created into a DL Knowledge Base, as will be

presented in chapter 4.
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The Semantic Web Rule Language (SWRL) is a union of the OWL DL and OWL Lite
with sublanguages of the Rule Markup Language (HORROCKS et al, 2004). SWRL makes
it possible to reason about OWL individuals (ABox) by defining rules. Hence, in order to

express that "two people are cousins when their parents are siblings" we could use the rule
shown in Figure [I0] In this case, the OWL ontology must define the concept of "Person'

n "

and the roles "siblings", "parentOf", and "cousins".

Figure 10 - SWRL Rule Example

Person(?x1) » Person(?x2) " Person(?x3)
Person(?x4) » differentFrom(?x1,?x2)
differentFrom{?x1, ?x3) » differentFrom(?x1,?x4) ~
differentFrom(?x2, ?x3) » differentFrom (?x2, ?x4)
~ differentFrom(?x3, ?x4)"

parentof(?x1, ?x2) ~

parentof(?x3, ?x4) » siblings(?x1, ?x3)

-> cousins(?x2, 7x4)

From: The author
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3 EER SEMANTIC RULES

3.1 INTRODUCTION

In this chapter, we briefly present the Enhanced Entity-Relationship semantic rules con-

sidered in this work for the automatic validation of EER models.

3.1.1 Validity Rules Catalog

As mentioned in chapter [I], to create conceptual models, designers make use of model-
ing languages. Modeling languages comprises three elements: abstract syntax, concrete
syntax, and semantics. Therefore, when validating models, it is necessary to take into
account syntactic and semantic errors. It is also important to note that a model can be
syntactically valid but semantically invalid. The EER model presented in Figure for
example, although syntactically valid (uses the correct notation for each concept rep-
resented and connects the elements correctly), presents a semantic error. As stated by
Nascimento (2015), identifier relationship types must not be unary. In the case of a unary
identifier relationship type, the entity type would act as strong and weak in the same as-
sociation, i.e., it would be existentially dependent on itself. Since the concept of existence

dependency does not allow such circumstances, the model is semantically invalid.

Figure 11 — Semantically invalid model

Employee <I'u'la\n>

From: The author

To prevent semantically invalid conceptual models from being used as a basis for
database projects, Nascimento| (2015)) proposed to organize a catalog of validity rules for
EER models.

The catalog consists of rules defined by [Dullea, Song and Lamprou/ (2003) and |Cal-
vanese and Lenzerini (1994), as well as rules defined by |[Nascimento| (2015) using the

following methodology:

1. For each relationship type (Regular and Identifier) and degree (Unary, Binary, and

Ternary), he analyzed all possible links with the associative entity type and each
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entity type (regular, strong, weak, superclass, and subclass);

2. Next, he analyzed all possible combinations of generalization and specialization

relationships between entity types;

3. After that, he focused on attribute relationships, by verifying all possible links be-
tween the attribute types, each entity type, and each relationship type and degree.

4. Finally, the analysis consisted of identifying structurally invalid combinations, in-
volving the constructors of the EER model from (1), (2) and (3) and the constraints

of cardinality, participation in cyclic and acyclic paths.

As commented in chapter [I] the catalog presents limitations. The methodology used
to obtain the rules analyzed a set of constructors and their interactions in isolation and
did not evaluate the consequences of the interactions between multiple sets of construc-
tors in the same model. Also, the rules do not cover relationship type degrees above 4,
nor the category constructor, because of their restricted use. Despite these limitations,
Nascimento (2015) catalog provided excellent coverage of EER language constructors and
was considered in this work for the automatic validation of EER models.

Table |3 shows the catalog. The author named the rules according to the following
pattern: "R" (Rule) + a character representing the constructor for the rule (unary rela-
tionship type (U), binary relationship type (B), ternary relationship type (T), attribute
type (A) and inheritance (H)) + [01-99] (rule order number). To make explicit the total
amount of rules, we renamed them according to the following pattern: R + [00-99], in
which "R" corresponds to the word "rule’, and the numbering corresponds to the rule id
in the catalog.

It is essential to mention that, although the catalog consists of 28 rules, we only formal-
ized 27 of them since the rule RA01, that states that "regular entities must have identifier
attributes", could not be caught by DL reasoners because of the open-world assumption.
According to [Krotzsch, Simancik and Horrocks (2012)), the open-world assumption "keeps
unspecified information open', i.e., if a fact is not explicitly specified (e.g., the presence
or absence of an identifier attribute), it cannot be assumed to be true or false.

In the next sections, we will present all the rules, grouping them according to the
methodology used by Nascimento (2015) (unary relationship types, binary relationship

types, ternary relationship types, inheritance, and attribute types).

Table 3 — EER structural validity rules catalog

Our code | Nascimento (2015) code | Description
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RO1

RUO1

All 1:1 unary relationship types
with total-partial or partial-total
participation are structurally in-

valid.

RO2

RU02

All'1: M or M : 1 unary relation-
ship types with total-total partic-

ipation are structurally invalid.

RO3

RU03

All 1 : M or M : 1 unary rela-
tionship types with total partici-
pation on the ‘one’ side and par-
tial participation on the ‘many’

side are structurally invalid.

R0O4

RU04

Identifier relationship types must

not be unary.

RO5

RBO1

Cyclic paths containing no oppos-
ing and no self-adjusting binary
relationship types are structurally

invalid.

R0O6

RB02

Associative entities must not have
total participation in relation-

ships.

RO7

RB03

No strong entity type link in an
identifier relationship type can

have cardinality "N".

RO8

RB04

An identifier relationship type
can not be doubly identified.

R09

RBO05

Identifier relationship types are

not allowed to form a cyclic path.

R10

RBO06

The identifying links between a
weak entity type and an identifier
relationship type must have "to-

tal" participation.




29

R11

RTO1

Cyclic paths that contain ternary
relationship types constrained by
a binary relationship type are in-
valid if the cardinality constraints
of the binary relationship type
are less than the cardinality con-

straints of the ternary one.

R12

RTO02

Cyclic paths that contain ternary
relationship types constrained by
a binary relationship type are
invalid if the participation con-
straints of the binary relationship
type are less than the partici-
pation constraints of the ternary

one.

R13

RTO03

A relationship type must not be
ternary and identifier at the same

time.

R14

RHO1

A model must not have inheri-

tances forming a cyclic path.

R15

RHO02

An entity type must not be weak

and a subclass in the same model.

R16

RHO3

Superclass entity types must not

be weak entities of its subclasses.

R17

RHO04

Models that present relationship
types that result in restrictions on
the number of instances different
from those imposed by the inher-

itances are structurally invalid.

R18

RHO05

Associative entities must not par-

ticipate in inheritances.

RAO1

Regular entities must have iden-
tifier attributes.

R19

RA02

Regular entity types should not

have a discriminator attribute.
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Weak entity types must not have
R20 RAO03 . . :
identifier attributes.

Weak entity types must not have
discriminator attributes if the
R21 RA04 } . i ,
identifier relationship type has 1:1

cardinality.

If a weak entity type participates
in more than one identifier rela-
R22 RAO05 } ,
tionship, they all must have "1:N"

cardinality.

Associative entities can not con-
R23 RAO06 , )
tain attributes.

Subclass entity types can not
R24 RAOQ7 ) ] ,
have identifier attributes.

Subclass entity types can not
R25 RAO8 o ]
have discriminator attributes.

Relationships types can not have
R26 RA09 ] ] )
identifier attributes.

Only wunary and binary rela-

tionship types with cardinality
R27 RA10 o
"N:N" may have discriminator at-

tributes.

Adapted from: (NASCIMENTO, 2015))

3.1.2 Unary Relationship Type

RO1 to R04 refers to unary relationship types associations to entity types and associative
entity.

RO1 to RO3 are rules based on the results found in Dullea, Song and Lamprou] (2003).
After analyzing all the combinations between cardinality and participation constraints,

the authors presented the following corollaries:

e all 1:1 unary relationship types with total-partial or partial-total participation are
structurally invalid (RO1);

e all 1: M or M : 1 unary relationship types with total-total participation are struc-
turally invalid (R02); and
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e all 1: M or M : 1 unary relationship types with total participation on the ‘one’ side

and partial participation on the ‘many’ side are structurally invalid (R03).

The authors proved that all remaining combinations are valid. Figures [12] [13} and
shows examples of invalid models according to RO1, R02, and R03, respectively. Although
the examples only show regular entity types, the corollaries also apply to associative
entities and the remaining entity types, since they assume the same role of a regular

entity type in unary relationships.

Figure 12 — Invalid model according to RO1

—
Employee @

From: The author

Figure 13 — Invalid model according to R02

=
Employee <Ma@

From: The author

Figure 14 — Invalid model according to R0O3

—
Employee <M;.\n>

From: The author
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R04 states that identifier relationship types must not be unary. The rule was defined
by Nascimento| (2015) and is related to the existence dependency between the weak en-
tity type and the strong entity type, as discussed in chapter 2] In the case of a unary
identifier relationship type, the entity type would act as strong and weak in the same as-
sociation, i.e., it would be existentially dependent on itself. Since the concept of existence
dependency does not allow such circumstances, the model is structurally invalid. Figure

shows an invalid model, according to R04.

Figure 15 — Invalid model according to R04

——
Employee <Ma @

From: The author

3.1.3 Binary Relationship Type

RO5 to R10 refers to binary relationship types.

RO5 refers to the existence of binary relationship types, forming a cyclic path and is
based on a corollary defined by |Dullea, Song and Lamprou| (2003)).

In order to understand the rule, consider that |E| is the relative number of instances
an entity type "E" can have when participating in a relationship. Since, in binary relation-
ship types, two entity types are associated by one relationship, there are three possible
restrictions on the number of instances between them: |E)| = |Es|, |E1| > |E2| and
|Ey| < |Esl. Relationships that support all cases are called "self-adjusting’. When we have
a cyclic path that contains only binary relationship types and one relationship type states
that |F1| > |Es| and another one states that |Fsy| < |E;|, we say that those relationship
types complement each other and we call them "opposing relationship types'. Table
shows the restrictions on the number of instances between entity types for all the possible
combinations of cardinality and participation in binary relationship types. Based on this
analysis, Dullea, Song and Lamprou| (2003) stated that binary relationship types involved
in acyclic paths are always structurally valid, but cyclic paths containing no opposing and
no self-adjusting relationship types are structurally invalid (R05).

Figure [16|shows an example of a structurally invalid model according to R05. It states
that:

1. |Lecturer| < |Course|;
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2. |Course| < |Project|;

3. |Project| < |Lecturer]|.

By transitivity, we have that |Course| < |Lecturer|, |Project| < |Course|, and

|Lecturer| < |Project|, which contradicts (1), (2), and (3), respectively, and thus results

in an invalid model.

Table 4 — Structural restrictions of a binary rela-

tionship.

Case|Cardinality |Participation|Restrictions
1 1:1 Total-Total | |E;| = |Es|
2 1:1 Total-Partial | |Ey| < |Es|
3 1-1 Partial-Total | |Ey| > |Es|
4 1:1 Partial-Partial | Self-adjusting
5 N:1 Total-Total | |Ei| > |Es|
6 N:1 Total-Partial |Self-adjusting
7 N:1 Partial-Total | |E;| > |Es
8 N:1 Partial-Partial | Self-adjusting
9 1:N Total-Total | |Ey| < |Es|
10 I:N Total-Partial | |Ey| < |Es|
11 1:N Partial-Total |Self-adjusting
12 1:N Partial-Partial | Self-adjusting
13 N:N Total-Total |Self-adjusting
14 N:N Total-Partial |Self-adjusting
15 N:N Partial-Total |Self-adjusting
16 N:N Partial-Partial | Self-adjusting

Adapted from: Dullea, Song and Lamprou/ (2003)

RO6 states that associative entities must not have total participation in relationships.

Associative Entities are constructs used when we need to create a relationship between
two relationship types. According to Nascimento| (2015]), when we have an associative
entity with total participation in a relationship, we are representing a ternary relationship
between the entity types involved. Figure [17] shows an example of a structurally invalid
model, according to R06. It implies a ternary relationship between "Team', "Project’,
and "Budget', since the total participation forces entity types "Team" and "Project" to
participate in the "Has" relationship type, and therefore the use of the associate entity
notation makes the diagram structurally invalid.

RO7 determines that no strong entity type link in an identifier relationship type can
have cardinality "N". As mentioned before, an instance of a weak entity type depends on

the previous existence of a strong entity instance. When we have a cardinality "N", we
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Figure 16 — Invalid model according to R05

Leckurer

<> =X

1

Project + — Course
M 1

From: The author

Figure 17 — Invalid model according to R0O6

M M -
Projeck
Team Develop g

<

Budgekt

From: The author

state that one weak entity type instance depends on the previous existence of more than
one strong entity type instance which implies in a structurally invalid model. Figure
shows an example of a structurally invalid model, according to RO7.

RO8 states that an identifier relationship type can not be doubly identified. A doubly
identified relationship implies the existence of two weak entity types that depend on each
other. As previously mentioned, an instance of a weak entity type depends on the previous
existence of a strong entity instance. Since in a doubly identified relationship, we only
have weak entity types that depend on each other, we could never instantiate them, which
implies in an invalid model. Figure [19| shows an example of a structurally invalid model,

according to ROS.



Figure 18 — Invalid model according to RO7

Employee

:

Dependent

From: The author

Figure 19 — Invalid model according to RO8

Employee

—<

Dependent

R09 declares that identifier relationship types are not allowed to form a cyclic path.
As discussed in chapter [2] in an identifier relationship type, the weak entity type is exis-
tentially dependent on the strong entity type. Since existence dependency is not allowed
in cyclic paths, a model that contains identifier relationship types forming a cyclic path

is structurally invalid. Figure 20| shows an example of an invalid model, according to R09.

From: The author

Figure 20 — Invalid model according to R09

Manager

Deparktment

—<>

Company

R10 states that all identifying links between a weak entity type and an identifier
relationship type must have "total" participation. The existence of an identifier link with
"partial" participation implies that there may be instances of the weak entity type that do
not depend on the existence of a strong entity type instance, which contradicts the concept

of weak entity. Figure [21] shows an example of a structurally invalid model, according to

R10.

From: The author
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Figure 21 — Invalid model according to R10

From: The author

3.1.4 Ternary Relationship Type

R11 to R13 refer to structural validity rules related to ternary relationship types.

R11 and R12 were based on the corollaries found in |Dullea, Song and Lamprou (2003)).
After analyzing models containing ternary relationship types, as well as cardinality and
participation constraints imposed on the ternary relationship types, the authors stated
that:

« acyclic paths that contain ternary relationship types are always structurally valid;

o cyclic paths that contain ternary relationship types constrained by a binary rela-
tionship type are invalid if the cardinality constraints of the binary relationship type
are less than the cardinality constraints of the ternary one (R11) (Figure [22).

o cyclic paths that contain ternary relationship types constrained by a binary rela-
tionship type are invalid if the participation constraints of the binary relationship

type are less than the participation constraints of the ternary one (R12) (Figure

7).

Figure 22 — Invalid model according to R11

Inskrucker Course

Student

From: The author

A binary relationship type constrains a ternary relationship type when two of the
three entity types that participate in the ternary relationship also participate in the
binary one, and the binary one is directly related to the scenario covered by the ternary

one. According to [Dullea, Song and Lamproul (2003), there are real-world scenarios that
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Figure 23 — Invalid model according to R12

Job

Employee

From: The author

can not be modeled by using just a ternary relationship type, and that is why we might
need to add supplementary relationship types.

As discussed by Dullea, Song and Lamprou| (2003), all ternary relationships types
implicitly imply in "N:N" binary relationships between any two Entities that participate
in them (Figure 24)).

In the example shown in Figure [25| (a), we have the entity types "Budget", "Team",
and" Project', that participate in the ternary relationship type "Works". It also shows
the implicit binary relationship types. According to |Dullea, Song and Lamprou (2003),
in order to represent the fact that "Projects can only be funded from a single budget',
it would be necessary to add a binary relationship type between "Projects" and "Budget'
(Figure (b)). Hence, the binary relationship type is directly related to the scenario
covered by the ternary one, i.e., it constrains the ternary relationship type and must follow
R11 and R12 in order to be valid. Unfortunately, the EER language has no constructors to
indicate when a binary relationship type constrains a ternary relationship type. Therefore,

structural errors according to R11 and R12 must be checked against business rules.

Figure 24 — Implicit binary relationships in ternary relationships

From: Dullea, Song and Lamprou (2003])

R13 asserts that a relationship type must not be ternary and identifier at the same

time. As shown in Figures [26] and 27, when we convert an identifier ternary relation-
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Figure 25 — Ternary relationship example
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From: Dullea, Song and Lamprou (2003])

ship type to its binary equivalent, we find a structurally invalid relationship type (R3)
according to the ROS.

Figure 26 — Invalid model according to R13

Inskructor

<

Student

Course

From: The author

Figure 27 — Binary equivalent model

Instructor

Instructor_Course_Student —

Course

3.1.5 Inheritance

R14 to R18 refers to inheritances.

From: The author
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R14 defines that a model must not have inheritances forming a cyclic path. Figure
shows an example of an invalid model, according to R14. Inheritance implies that the
number of instances of a superclass entity type must be equal or greater than the number of
instances of its subclasses (CALVANESE; LENZERINT, |1994)). Performing an analysis similar

to the one made by |Dullea, Song and Lamprou (2003), the model shown in Figure
states that:

1. |Person| > | Employeel;
2. |Employee| > |Manager|;
3. |Manager| > |Person;

By transitivity, we have that |Person| > |Person|, |Employee| > |Employeel, and
| Person| > |Person|, which is invalid since the same entity set can not be greater than
itself.

Figure 28 — Invalid model according to R14

N
Ferson o

Employee

Manager

From: The author

R15 states that an entity type must not be weak and a subclass in the same model.
As previously mentioned, a weak entity type does not have identifier attributes and is
uniquely identified by its relationship with a strong entity type. On the other hand,
subclass entity types are uniquely identified by the values of their attributes. If an entity
type is a subclass, it could not be a weak entity type, since it would be identified by
its attribute values instead of by its relationship with a strong entity type. Also, a weak
entity type could not be a subclass, since it would be already uniquely identified by its
relationship with a strong entity type. Figure[29|shows an example of a structurally invalid
model, according to R15.

R16 defines that superclass entity types must not be weak entities of its subclasses.
In these cases, the model presents a cyclic path in which the superclass is existentially

dependent on its subclasses, and also the subclasses are existentially dependent on the
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Figure 29 — Invalid model according to R15

Persen
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From: The author

superclass. Since existence dependency is not allowed in cyclic paths, the construct is

structurally invalid. Figures [30] and [31] shows an example of a structurally invalid model,

according to R16.

Figure 30 — Invalid model according to R16

Studenkt

Undergraduate

Postgraduate

From: The author

Figure 31 — Invalid model according to R16

Person
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From: The author
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R17 states that models that present relationship types that result in restrictions on
the number of instances different from those imposed by the inheritances are structurally
invalid. Since inheritance implies that the number of instances of a superclass entity type
must be equal or greater than the number of instances of its subclasses
LENZERINI, [1994), we can not have a binary relationship type between those two entity
types that contradicts the condition. We could refer to the work of Dullea, Song and|
Lamprou| (2003)) to check all cardinality and participation constraints combination that

would make the model structurally invalid. Figure show examples of invalid models

according to R17.

Figure 32 — Invalid models according to R17

Person Person Person
1 1 1
Relates Relates Relates
Y - W - W -
1 M M
Employee Employee Employee

From: The author

R18 determines that associative entities must not participate in inheritances. Accord-

ing to [Nascimento| (2015]), the associative entity is a constructor created only for making

it possible to link two relationship types, and therefore should not participate in inheri-

tances. Figure [33] shows an example of a structurally invalid model, according to R18.

Figure 33 — Invalid model according to R18

AB

From: [Nascimento| (2015])
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3.1.6 Attribute

R19 to R27 refers to attribute validity rules.

R19 asserts that regular entity types should not have a discriminator attribute. Regular
entity types comprise entity types that are uniquely identified by its identifier attributes.
Thus the concept comprises entity types that do not participate in identifier relationships
and those that act as strong entity types in all the identifier relationships in which they
participate. As discussed in chapter [2] discriminator attributes act as partial identifiers.
Since regular entity types have identifier attributes, they do not need partial identifiers.
Figure |34] shows an invalid model, according to R19.

Figure 34 — Invalid model according to R19

Employee

From: The author

R20 states that weak entity types must not have identifier attributes. As discussed in
chapter [2 weak entity types are identified by their relationship with a strong entity type;
consequently, they do not have identifier attributes. Figure shows an invalid model,
according to R20.

Figure 35 — Invalid model according to R20

From: The author

R21 states that weak entity types must not have discriminator attributes if the identi-
fier relationship type has 1:1 cardinality. According to Nascimento (2015)), in the presence
of a discriminator attribute, the weak entity type is uniquely identified by the values of
the discriminator attribute and the strong entity type identifier attributes. Identifier rela-
tionships with 1:1 cardinality involving a weak entity type with a discriminator attribute,

makes it possible for a strong entity type instance to uniquely identify more than one
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weak entity type instance, which contradicts the cardinality constraint imposed on the

relationship. Figure [36| shows an example of an invalid model.

Figure 36 — Invalid model according to R21

Employee — Dependent
1 1

From: The author

R22 defines that if a weak entity type participates in more than one identifier rela-
tionship, they all must have "1:N" cardinality. According to |[Nascimento| (2015)), in such
cases, it is not possible to guarantee "1:1" cardinalities. Figure [37] shows an example of

valid model according to R22.

Figure 37 — Invalid model according to R22

M 1
Employee Dependent Pregram
1 M

From: The author

R23 states that associative entities can not contain attributes (Figure 38). As men-
tioned before, the associative entity is a construct created only for making it possible to
link two relationship types, and therefore should not have attributes.

R24 defines that subclass entity types can not have identifier attributes (Figure .
Since the inheritance relationship implies that the subclasses must inherit the superclasses
attributes, it can not have an identifier attribute itself.

R25 asserts that subclass entity types can not have discriminator attributes (Figure
. As mentioned before, discriminator attributes act as a partial identifier. Since suben-
tities are uniquely identified by its attribute values, a partial identifier is not necessary.

R26 states that relationships types can not have identifier attributes. As discussed in
chapter 2, only entity types can have identifier attributes. Figure 41| shows an example of
an invalid model, according to R26.

R27 states that only unary and binary relationship types with cardinality "N:N" may
have discriminator attributes. An attribute should be added to a relationship when the
business rule requires saving features that are directly related to the relationship between
entities and not to the entities themselves. In N:N relationship types, this attribute may

act as a partial identifier, i.e., as a discriminator attribute. On the remaining cardinalities,
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Figure 38 — Invalid model according to R23
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From: The author

Figure 39 — Invalid model according to R24
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From: The author

those attributes could be moved to the entity types with no damage to the model semantics
(ELMASRL; NAVATHE, [2010). Figure [12]shows examples of invalid models according to R27.




45

Figure 40 — Invalid model according to R25

A

From: The author

Figure 41 — Invalid model according to R26
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From: The author
Figure 42 — Invalid model according to R27
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From: The author
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3.2 FINAL REMARKS

In the first phase of a database project, the designer creates a conceptual model that is
used as the basis for the next phases. Thus, the validation of these models is a critical task,
as errors present in the model can be passed to the other phases, negatively affecting the
final result. The sooner errors are detected, the lower the costs to fix them (WESTLAND,
2002)). When validating conceptual models, it is necessary to take into account syntactic
and semantic errors according to the modeling language used. It is also important to
note that a model may be syntactically valid but semantically invalid. In this chapter,
we present the catalog of validity rules organized by Nascimento (2015)) and composed by
semantic validity rules defined by the author, as well as rules found in the work of |Dullea,
Song and Lamprou| (2003)) and (Calvanese and Lenzerini| (1994).

Although the catalog has limitations, e.g., it does not cover the category constructor
nor relationship types with degrees above 4, it has good coverage of the EER language
constructors. Hence, it was used as a basis for the semantic validation of EER models
proposed in this paper.

In the next chapter, we present the strategies used to represent both the syntactic
validity rules based on the EER language abstract syntax and the semantic validity rules

presented in this chapter.
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4 EER KNOWLEDGE BASE

4.1 INTRODUCTION

As previously discussed, when validating a database conceptual model, we need to consider
the syntax and semantics of the modeling language used. Hence, in this work, we proposed
the validation of database conceptual models by automatically identifying syntactic and
semantic inconsistencies in EER models using DL reasoners.

In order to achieve our goal, we first formalized the EER abstract syntax to a TBox.
After that, we formalized the semantic validity rules from the catalog organized by [Nasci-
mentol (2015) and presented in chapter [3} Although we tried to describe most of the rules
by using axioms, we used Semantic Web Rule Language (SWRL) rules in the cases in
which DL expressivity was not sufficient (e.g., cases involving cyclic paths).

We built our Knowledge Base with the support of Protégé (MUSEN, 2015), through
which it was possible to create concepts (classes in OWL DL), roles (object properties in
OWL DL), and some individuals. The use of the tool is justified by the intuitive graphical
user interface, which allows visualizing the hierarchy between concepts and simplifies the
creation of axioms. After creating the ontology in OWL DL, we manually converted it to
an ALCROZQ KB.

Based on the above, this chapter presents our EER language Knowledge Base, describ-
ing the formalization of the EER abstract syntax in ALCROZQ and the strategies used
to add the semantic validity rules. It also describes the procedures conducted to verify
our KB.

4.2 ABSTRACT SYNTAX FORMALIZATION

Since the EER language does not have a standard abstract syntax, in this work, we
considered the EERMM syntax (FIDALGO et al., [2013)), which covers all EER constructs.
Figure |43|shows a representation of the EERMM by using the Ecore language, a UML
dialect used to represent models in the Eclipse Modeling Framework (GRONBACK, 2017).
According to Figure[43], the EERMM includes the root concept "Schema', which repre-
sents the design area of the conceptual database diagram, and can be composed of several
instances of Node and Link classes. The cardinality 0..* allows empty diagrams.

The Node class is a generalization of the following classes: Inheritance (which relates
to the inheritance construct), Category (which corresponds to the category construct),
and Element. The Element class is a generalization of the classes EntityType, Relation-
ship (which refers to the relationship type concept), and Attribute (which corresponds to
the attribute concept). Finally, AssociativeEntity and Entity are specializations of Enti-
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tyType, that corresponds to the concepts of associative entity and entity type in the EER
language, respectively.

The Link class has five specializations. They are: GeneralizationLink (specialized in In-
heritanceGL and CategoryGL), SpecializationLink (specialized in InheritanceSL and Cat-
egorySL), DirectInheritancelink, RelationshipLink, and AttributeLink. Figure |44 shows
all EERMM classes and their corresponding EER notations. Figure shows an EER
model annotated with its corresponding EERMM classes.

During our formalization process, we first focused on the following EERMM classes:
"Inheritance", "DirectInheritanceLink", "GeneralizationLink" (and its subclasses) and "Spe-
cializationLink" (and its subclasses). Since they are all related to the generalization/spe-
cialization relationship between entity types, we summarized them as the role "isSpecial-
izationOf" and its inverse "isGeneralizationOf". Those roles proved to be adequate for
model validation since the semantic validity rules considered in this work refer to the gen-
eral concept of inheritance, as discussed in chapter 3] We omitted the "Category" class,
since there is no semantic validity rules related to the construct in the catalog.

After that, we centered on the RelationshipLink class. To represent the class, we
created a new role called "relationshipLink"'. We chose this approach based on the fact
that the EER constructor represented by the RelationshipLink class behaves as a bi-
nary relationship involving an entity type and a relationship type. Hence, we stated
the "relationshipLink" with the domain composed of instances of EntityType and the
range composed of instances of Relationship. We also added its inverse role, "iRelation-
shipLink", with the domain composed of instances of "Relationship" and the range com-
posed of instances of "EntityType". It is relevant to mention that we did not explicitly
set the domain and range in Protégé in order to avoid unexpected side effects (HOR-
RIDGE, [2011)); instead, we used closing axioms. An example of a closing axiom would be:
EntityType T VrelationshipLink.Relationship.

To represent the "AttributeLink' class, we created the relation "hasAttribute" and
its inverse "isAttributeOf", following the same approach taken to represent the Relation-
shipLink class. In the end, we omitted the representation of the "Link" class itself, in order
to avoid an unnecessary role hierarchy.

To represent the association between the "AssociativeEntity" class and the "Relation-
ship", we created the "hasPart"' role and its inverse "isPartOf".

Tables [5] and [6] show the RBox and the TBox, respectively, without the semantic

validity rules.

Table 5 — EERMM Partial RBox

Roles

1sSpecializationO f = isGeneralizationO f~
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relationshipLink = iRelationshipLink™

hasAttribute = isAttributeO f~

hasPart = isPartOf~

From: The author

Table 6 — EERMM Partial TBox

Concept

Description

Schema

C —disSpecializationOf. T
M—-disGeneralizationOf. T
M—=drelationshipLink. T
M—diRelationshipLink. T
M—3hasAttribute. T
M=JisAttributeO f. T
M—disPartOf. T
MvYhasPart.Node

Node

C disPartO f.Schema

Element

C Node
MYhasAttribute. Attribute

Attribute

C Element
M=3JisSpecializationO f. T
M—-disGeneralizationOf. T
M—=drelationshipLink. T
M—diRelationshipLink. T
MVisAttributeO f.Element
M—3hasPart. T

MYisPartO f.Schema

EntityType

C Element

MVrelationshipLink. Relationship
M—diRelationshipLink. T
M=JisAttributeO f. T

MYisPartO f.Schema
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AssociativeEntity

C EntityType
M=3JisSpecializationO f. T
M—-disGeneralizationOf. T
MYhasPart. Relationship

M = lhasPart. Relationship

Entity

C EntityType
MVisSpecializationO f. Entity
MVisGeneralizationO f. Entity
M—3dhasPart. T

Relationship

C Element

M=3JisSpecializationO f. T
M—-disGeneralizationOf. T
M—drelationshipLink. T
MViRelationshipLink.EntityType
M—disAttributeO f. T

MVisPartO f.(Associative Entity LI Schema)
M—-dhasPart. T

From: The author
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Figure 44 — EERMM concepts
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From: [Fidalgo et al. (2013)

Figure 45 - EERMM concepts
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4.3 SEMANTIC VALIDITY RULES FORMALIZATION

After creating the KB based on the EERMM, we started adding the semantic validity
rules described in chapter [3|

First, we focused on rules R0O1 to R04, related to cardinality and participation con-
straints in unary relationship types. As shown in Figure 43| the EERMM represents such
constraints as the "cardinality" and "participation" attributes, which are part of the "Re-
lationshipLink" class. In order to represent them in the KB, we created the following
roles as children of 'relationshipLink": "relationshipLinkTotal" (refers to total participa-
tion) and 'relationshipLinkPartial" (relates to partial participation). We also included
the subroles "relationshipLinkTotalOne" (refers to total participation and one cardinal-
ity), "relationshipLinkTotalMany" (relates to total participation and many cardinality),
relationshipLinkPartialOne" (regards partial participation and one cardinality), and "rela-
tionshipLinkPartialMany" (relates to partial participation and many cardinality). Finally,
we added their inverse roles as children of "iRelationshipLink", following the same naming
pattern and adding the prefix "i". Table [7] shows the hierarchy.

Table 7 — relation and iRelation hierarchies

Roles
relationshipLink Partial = relationshipLink

relationshipLink PartialOne C relationshipLink Partial

relationshipLink Partial M any C relationshipLink Partial

relationshipLinkTotal T relationshipLink
relationshipLinkT otalOne C relationshipLinkT otal
relationshipLinkT otal Many C relationshipLinkT otal
1RelationshipLink Partial C i RelationshipLink
iRelationshipLink PartialOne C iRelationshipLink Partial
1RelationshipLink Partial Many C 1 RelationshipLink Partial
1RelationshipLinkT otal C iRelationshipLink
1RelationshipLinkT otalOne C iRelationshipLinkT otal
tRelationshipLinkT otal Many C i RelationshipLinkT otal

From: The author

After adding cardinality and participation constraints to the KB, we started to for-
malize the rules RO1 to R04.

RO1 asserted that "all 1:1 unary relationship types with total-partial or partial-total
participation are structurally invalid." To formalize this rule, we stated "iRelationshipLink-
TotalOne" and "iRelationshipLinkPartialOne" as disjoint roles.

RO02 stated that "all 1 : M or M : 1 unary relationship types with total-total partic-
ipation are structurally invalid." To add this rule, we stated iRelationshipLinkTotalOne
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and iRelationshipLinkTotalMany as disjoint roles.

RO3 asserted that "all 1 : M or M : 1 unary relationship types with total participation
on the ‘one’ side and partial participation on the ‘many’ side are structurally invalid." To
add this rule, we stated iRelationshipLinkTotalOne and iRelationshipLinkPartialMany
as disjoint roles. At this point, by considering RO1, as well as the role hierarchy, we
simplified the rules by stating iRelationhipLinkTotalOne and iRelationshipLinkPartial as
disjoint roles.

R04 stated that identifier relationship types must not be unary. The rule depends on
the relationship degree, which can not be identified by merely considering the number of
entities explicitly related to a relationship, because of the DL open world assumption. To
solve this problem, we added the "RelationshipDegree", "UnaryRelationship", "BinaryRe-
lationship", and "TernaryRelationship" concepts to the KB. Regarding the relationship
type, we added the concepts "RegularRelationship" and 'IdentifierRelationship" as chil-
dren of "Relationship". We also stated that identifier relationships must not be unary, as
shown in Table [§l When creating the ABox we must assign the degree and the type of
each relationship.

Table [§| shows a summary of the formalization strategies. We have omitted the closing

axioms for simplicity.

Table 8 — Summary of strategies: unary relationship types

Roles Formalization Strategy
RO1, R0O3 Disjoint(iRelationhipLinkTotalOne, i RelationshipLink Partial)
RO2 Disjoint(iRelationhipLinkT otalOne, i Relationship LinkT otal M any)
RelationshipDegree

UnaryRelationship C RelationshipDegree

M—(BinaryRelationship L TernaryRelationship)
BinaryRelationship C RelationshipDegree

M=(UnaryRelationship U TernaryRelationship)
ROA TernaryRelationship C RelationshipDegree

M=(UnaryRelationship U BinaryRelationship)
RegularRelationship C Relationship

M—Identi fier Relationship
IdentifierRelationship C Relationship

M= Regular Relationship

M-UnaryRelationship

From: The author

After formalizing the rules related to unary relationships, we started working on the

rules R0O5 to R10, related to binary relationship types.
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RO5 asserts that "cyclic paths containing no opposing and no self-adjusting binary
relationship types are structurally invalid." To identify those inconsistencies, |Dullea, Song
and Lamprou (2003)) analyzed the restrictions on the number of instances between the
entity types involved in a binary relationship and provided a table (Table @ with the
results of the analysis. Since R05 regards the relationship between two instances of the
"Entity" class, and the interaction of cardinality, participation, and cyclic paths, we had

to apply a new strategy.

Table 9 — Structural restrictions of a binary relationship.

Case | Cardinality | Participation | Restrictions
1 1:1 Total-Total |Ey| = | Es
2 1:1 Total-Partial |Eq| < |Es
3 1-1 Partial-Total |Ey| > | Es|
4 1:1 Partial-Partial | Self-adjusting
5 N:1 Total-Total |Ey| > | Es|
6 N:1 Total-Partial | Self-adjusting
7 N:1 Partial-Total |Ey| > | Es
8 N:1 Partial-Partial | Self-adjusting
9 1:N Total-Total |Eq| < |Es
10 1:N Total-Partial |Eq| < |Es
11 1:N Partial-Total | Self-adjusting
12 1:N Partial-Partial | Self-adjusting
13 N:N Total-Total Self-adjusting
14 N:N Total-Partial | Self-adjusting
15 N:N Partial-Total | Self-adjusting
16 N:N Partial-Partial | Self-adjusting

Adapted from: Dullea, Song and Lamprou| (2003])

At this point, it is important to remember that the EERMM Entity class corresponds
to the concept of entity type in the EER language, i.e., to the schemas or classes re-
sponsible for describing the structure of a set of entity objects (or instances) (ELMASRI;
NAVATHE, 2010). Based on that, we added the role "isSmallerThan', to represent the cases
when the number of instances of an Entity F; is smaller than the number of instances of
an Entity Es, and the role "isGreaterThan", to represent the opposing cases. Since those
roles are inverse roles (see Table [J9), we decided to remove the "isGreaterThan' one in
order to keep the simplicity and to avoid redundancy. We also stated that the number of
instances of an Entity might not be smaller than its number of instances by adding the
axiom FEntity & —~JisSmallerThan.Sel f.

To identify the cases that imply in inequalities, we created the SWRL rules shown in
Figures [46] [47], and [4§ which are respectively related to the cases 2, 9, and 10 presented in
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Table 9] We also added the SWRL rule in Figure 49 in order to assure the isSmallerThan
role transitivity, which was necessary because, in OWL DL, transitive properties cannot

be asymmetric in order to ensure decidability.

Figure 46 — SWRL Rule: Case 2

SWRL Rule: Case 2 (1:1, partial-total)

Entity(?x) ~ Entity(?y) » differentFrom(?x, ?y) *
BinaryRelationship(?r)
iRelationshipLinkTotalOne(?r, ?x) »
iRelationshipLinkPartialOne(?r, ?y)

-> isSmallerThan(?x, ?y)

From: The author

Figure 47 — SWRL Rule: Case 9

SWRL Rule: Case 9 (1:N, total-total)

Entity(?x) »~ Entity(?y) » differentFrom(?x, ?y) #
BinaryRelationship(?r)
iRelationshipLinkTotalOne(?r, ?x) A
iRelationshipLinkTotalMany(?r, ?y)

-> isSmallerThan(?x, ?y)

From: The author

Figure 48 - SWRL Rule: Case 10

SWRL Rule: Case 10 (1:N, total-partial)

Entity(?x) »~ Entity(?y) » differentFrom(?x, ?y) #
BinaryRelationship(?r)
iRelationshipLinkTotalOne(?r, ?x) #
iRelationshipLinkPartialMany(?r, ?y)

-> isSmallerThan(?x, ?y)

From: The author

Figure 49 — SWRL Rule: isSmallerThan transitivity

SWRL Rule: isSmallerThan Transitivity

Entity(?x) ~ Entity(?y) »~ Entity(?z) ~
differentFrom(?x, ?y) ~ differentFrom(?y, ?z) *
isSmallerThan(?x, ?y) »~ isSmallerThan(?y, ?z)
-> isSmallerThan(?x, ?z)

From: The author
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After that, we included the isEqualTo role to represent the case when the number
of instances of an Entity E; is equal to the number of instances of an FEntity E,. The
isFqualTo role is necessary because, although the presence of an equal number of instances
has a neutral effect in a cyclic path, it closes the path making it possible to validate the
inequalities. Based on the case 1 in Table[9] we added the SWRL rule shown in Figure
We also added the axiom Entity C disEqualTo.Sel f in order to state that the number of
instances of an Entity is equal to itself. We assured the role transitivity with the SWRL
rule shown in Figure [51]

Figure 50 — SWRL Rule: Case 1

SWRL Rule: Case 1 (1:1, total-total)

Entity(?x) ~ Entity(?y) ~ differentFrom(?x, ?y) #
BinaryRelationship(?r) ~
iRelationshipLinkTotalOne(?r, ?x) ~
iRelationshipLinkTotalOne(?r, ?y)

-> i1sEqualTo(?x, ?y)

From: The author

Figure 51 — SWRL Rule: isEqualsTo transitivity

SWRL Rule: isEqualTo Transitivity

Entity(?x) » Entity(?y) ~ Entity(?z) »
differentFrom(?x, ?y) ~ differentFrom(?x, ?z) ~
differentFrom(?y, ?z) ~ isEqualTo(?x, ?y) ~
isEqualTo(?y, ?z) -> isEqualTo(?x, ?z)

From: The author

We did not include the self-adjusting cases because their presence automatically im-
plies in a valid model.

RO6 states that associative entities must not have total participation in relationships.
We added the following axiom in order to ensure this constraint: Associative Entity C
—drelationshipLinkTotal. Relationship.

RO7 defines that no strong entity type link in an identifier relationship type can have
cardinality "N". As discussed in chapter [3| we classify an entity type as weak when it
is uniquely identified through its relationship with another entity type, which we call a
strong entity type. Although the EER language has different notations for representing
strong and weak entity types, in an EER model, we can represent the same entity as weak
and strong, depending on the relationship that we are analyzing. In the example shown
in Figure [52] the entity type C' is weak in the relationship with R3 but might be strong in
the relationship with Ry, although its notation in the model always corresponds to that of

a weak entity type (double rectangle). In the example, we say that entity type C' "might
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be strong" because it is not explicit in the model which of the entities participating in the

relationship R, is, in fact, the weak entity, since they have the same notation.

Figure 52 — Weak and Strong Entities

. 7:

From: Moe (2004))

The EERMM handles this problem through the "isIdentifier" attribute present in the
"RelationshipLink" class. Then, the model creator must specify which entity type should
be considered weak by assigning the value "true' to the attribute of the corresponding
"RelationshipLink"'. Based on that, we added the roles "relationshipLinkIdentifier", repre-
senting the relationship between the weak entity type and the identifier relationship type,
and "relationshipLinkNonldentifier', representing the relationship between the strong en-
tity type and the identifier relationship type. We also added the inverse roles "iRelation-
shipLinkIdentifier" and "iRelationshipLinkNonldentifier, respectively. Finally, we marked
"iRelationshipLinkIdentifier" and "iRelationshipLinkNonldentifier" as disjoint, since the
relation between a "Relationship” and an "Entity" should not be identifier and non-
identifier at the same time. Then, to add R07, we marked "iRelationshipLinkNonIdentifier"
as disjoint with "iRelationshipLinkTotalMany" and "iRelationshipLinkPartialMany".

RO8 defines that an identifier relationship type can not be doubly identified. In order to
formalize this rule, we considered the existence dependency concept discussed in chapter
[B) by adding the role "dependsOn'. We also included the following axiom to state that an
entity type can not be existence dependent on itself: Entity C —ddependsOn.Sel f. Next,
we included the SWRL rule described in Figure [53] in order to identify when an "Entity"
is existentially dependent of another "Entity". Finally, we added the SWRL rule shown in
Figure [54] that makes "dependsOn" transitive.

RO9 states that identifier relationship types are not allowed to form a cyclic path. As
discussed in chapter [3], this rule considers the concept of existence dependency and is also
caught by the "dependsOn" role added for ROS.

R10 defines that the identifying links between a weak entity type and an identifier
relationship type must have "total" participation. In order to assure the constraint, we

marked the "iRelationshipLinkIdentifier" role as disjoint with "iRelationshipLinkPartial".
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Figure 53 — SWRL Rule: dependsOn

SWRL Rule: dependsOn

-> dependsOn(?x, ?y)

Entity(?x) ~ Entity(?y) ~ differentFrom(?x, ?y) #
IdentifierRelationship(?r) #
iRelationshipLinkIdentifier(?r, ?x) »
iRelationshipLink(?r, ?y)

From: The author

Figure 54 — SWRL Rule: dependsOn transitivity

-> dependsOn(?x, ?z)

SWRL Rule: dependsOn Transitivity

Entity(?x) ~ Entity(?y) ~ Entity(?z) ~
differentFrom(?x, ?y) ~ differentFrom(?y, ?z)
dependsOn(?x, ?y) ~ dependsOn(?y, ?z)

From: The author

Table [10] shows a summary of the formalization strategies.

Table 10 — Summary of strategies: binary relationship types

Roles

Formalization Strategy

RO5

Entity C —3isSmallerThan.Sel f
Entity C JisEqualsTo.Sel f

SWRL Rule:
SWRL Rule:
SWRL Rule:
SWRL Rule:
SWRL Rule:
SWRL Rule:

Case 1

Case 2

Case 9

Case 10

isSmallerThan transitivity

iskqualTo transitivity

RO6

Associative Entity © —3relationshipLinkT otal. Relationship

RO7

relationshipLinkIdenti fier = 1RelationshipLinkIdenti fier—
relationshipLink Nonldentifier = 1RelationshipLink Nonldentifier™
Disjoint(iRelationshipLinklIdentifier,iRelationshipLinkNonldentifier)
Disjoint(iRelationshipLinkNonldentifier,iRelationship LinkT otal M any)
Disjoint(iRelationshipLinkNonldentifier,iRelationshipLink Partial M any)

RO[8-9]

Entity C =3dependsOn.Sel f
SWRL Rule: dependsOn
SWRL Rule: dependsOn transitivity

R10

Disjoint(iRelationshipLinkIdentifier,iRelationshipLink Partial)

From: The author
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Next, we added the rules R11 to R13 related to ternary relationship types.

R11 states that cyclic paths that contain ternary relationship types constrained by a
binary relationship type are invalid if the cardinality constraints of the binary relationship
type are less than the cardinality constraints of the ternary one (Figure . As discussed
in chapter 3] since the EER language has no constructors to indicate when a binary
relationship type constrains a ternary relationship type, structural errors according to
R11 must be checked against business rules. Based on that, we decided to add R11 to our
KB as a warning to the database designer, considering that all binary relationship types
linked to ternary relationship types are related to the same business rules.

R11 is directly related to the relationship degree and the relationship between "Rela-
tionship" instances. Since, in the EER language, there are no explicit relations between
relationship types, we added the roles "linkedRelationships', to represent the link between
a binary and a ternary relationship, and "smallerCardinality", in order to identify when a
binary relationship type has cardinality constraints smaller than the ternary relationship
type. The SWRL rules presented in Figures [56|and [57]are responsible to identify the cases
mentioned. Finally, we also marked the roles as disjoint since they must not occur at the

same time between the same individuals.

Figure 55 — R11 Example

INSTRUCTOR COURSE

STUDENT

From: Dullea, Song and Lamprou| (2003])

Figure 56 — SWRL Rule: linkedRelationships

SWRL Rule: linkedRelationships

Entity(?x) ~ Entity(?y) » differentFrom(?x, ?y)
BinaryRelationship(?r1) »
TernaryRelationship(?r2) »

iRelationshipLink(?ri, ?x) #
iRelationshipLink(?r1, ?y) 4
iRelationshipLink(?r2, ?x) #
iRelationshipLink(?r2, ?y)

-> linkedRelationships(?ri, ?r2)

From: The author
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Figure 57 — SWRL Rule: smallerCardinality

SWRL Rules: smallerCardinality

Entity(?x) ~ BinaryRelationship(?r1) ~
TernaryRelationship(?r2) ~
iRelationshipLinkPartialOne(?r1, ?x)
iRelationshipLinkPartialMany(?r2, ?x)
-> smallerCardinality(?r1, ?r2)

Entity(?x) ~ BinaryRelationship(?r1) #
TernaryRelationship(?r2) A
iRelationshipLinkTotalOne(?r1, ?x)
iRelationshipLinkTotalMany(?r2, ?x)
-> smallerCardinality(?r1, ?r2)

From: The author

R12 defined that cyclic paths that contain ternary relationship types constrained by
a binary relationship type are invalid if the participation constraints of the binary rela-
tionship type are less than the participation constraints of the ternary one (Figure .
Following the same strategy as in R11, we also added R12 to our KB. Since this rule also
depends on the binary relationship between instances of Relationship, we considered the
previously created role "linkedRelationships", and created a new one, called "differentPar-
ticipation", and marked them as disjoint. We also added the SWRL rules presented in

Figure [59 in order to catch the cases mentioned.

Figure 58 — R12 Example

Joe

EMPLOYEE

From: Dullea, Song and Lamprou (2003])

R13 asserted that a relationship type must not be ternary and identifier at the same
time. Hence, we added the following axiom to ensure this constraint:

Identi fier Relationship C —TernaryRelationship.
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Figure 59 — SWRL Rule: differentParticipation

SWRL Rules: differentParticipation

Entity(?x) ~ BinaryRelationship(?r1) #
TernaryRelationship(?r2) ~
iRelationshipLinkPartial(?r1, ?x)
iRelationshipLinkTotal(?r2, ?x)

-> differentParticipation(?ri, ?r2)

Entity(?x) ~ BinaryRelationship(?ri)
TernaryRelationship(?r2)
iRelationshipLinkTotal(?r1, ?x) A
iRelationshipLinkPartial(?r2, ?x)

-> differentParticipation(?ri, ?r2)

From: The author

Table [11] shows a summary of the strategies.

Table 11 — Summary of strategies: ternary relationship types

Roles Formalization Strategy
R11 Disjoint(linkedRelationships, smallerCardinality)
SWRL Rules: linkedRelationships, smallerCardinality
R12 Disjoint(linked Relationships, di f ferent Participation)

SWRL Rules: differentParticipation
R13 Identi fier Relationship T —TernaryRelationship

From: The author

After, we added inheritance constraints corresponding to the rules R14 to R18.

R14 defines that a model must not have inheritances forming a cyclic path. In order
to catch this case, we added the following axiom to ensure that an "Entity"' can not be
a child of itself: Entity & —disSpecializationO f.Self. We also added the SWRL rule
shown in Figure [60| to assure the "isSpecializationOf" transitivity.

R15 states that an entity type must not be weak and a subclass in the same model.
To assure this constraint, we added the axiom shown in Table [T2]

R16 defines that superclass entity types must not be weak entities of its subclasses.
As discussed in chapter [3] the relationship between the weak entity type and the strong
entity type comprises the concept of existence dependency, which is caught by the "de-
pendsOn" role added for RO8 and R09. To add R16, we marked the roles "dependsOn"

and "isGeneralizationOf" as disjoint.
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Figure 60 — SWRL Rule: isSpecializationOf transitivity

SWRL Rules: isSpecializationOf Transitivity

Entity(?x) ~ Entity(?y) ~ Entity(?z)
differentFrom(?x, ?y) ~ differentFrom(?y, ?z) ~
isSpecializationOf(?x, ?y) ~
isSpecializationOf(?y, ?z)

-> isSpecializationOf(?x, ?z)

From: The author

R17 states that models that present relationship types that result in restrictions on
the number of instances different from those imposed by the inheritances are structurally
invalid. Since inheritance imposes that the number of instances of a superclass entity type
must not be less than the number of instances of its subclass entity types, we added this
restriction by making "isSmallerThan" and "isGeneralizationOf" disjoint.

Finally, R18 determines that associative entities must not participate in inheritances.
The EERMM metamodel restricts it with the axioms presented in Table[6]and highlighted
in Table 12

Table 12 — Summary of strategies: inheritance

Roles Formalization Strategy
R14 Entity C —disSpecializationO f.Sel f
SWRL Rule: isSpecializationOf transitivity
RIS Entity C —((JisSpecializationO f. Entity)
M(3relationshipLinkldentifier.Identifier Relationship))
R16 Disjoint(dependsOn, isGeneralizationO f)
R17 Disjoint(isSmallerThan, isGeneralizationO f
R1S Associative Entity C —~JisSpecializationO f. T
M—JdisGeneralizationO f. T

From: The author

Finally, we added the rules R19 to R27, related to attributes.

R19 states that regular entity types should not have a discriminator attribute. As dis-
cussed in chapter (3, a regular entity is an entity that is not identified by its relationship
to another entity. Thus, the concept of regular entity comprises entities that do not par-
ticipate in identifier relationships and those that act as strong entities in all the identifier
relationships in which they participate. In both cases, entities are represented by the reg-
ular entity notation (a rectangle). In EERMM, the regular entity notation is attributed
to an entity when we assign the value 'false" to the "isWeak" attribute of the "Entity"
class. Likewise, the weak entity notation is attributed when we assign the value "true'

to "isWeak". In order to identify those cases, we included the concepts "EntityNotation",
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"RegularEntity" and "WeakEntity", representing the possible notations. We also added
the concept "DiscriminatorAttribute' as a child of "Attribute'. After that, we declared
that instances of "RegularEntity" must not have a "DiscriminatorAttribute" as shown in
Table I3

R20 states that weak entity types must not have identifier attributes. Following the
same strategy used in R19, we added the concept "IdentifierAttribute" as a child of "At-
tribute" and declared that instances of "WeakEntity" must not have a "ldentifier Attribute".

R21 states that Weak entity types must not have discriminator attributes if the iden-
tifier relationship type has 1:1 cardinality. Based on R07 and R10, we added the axiom
presented in Table [I3] to add this constraint.

R22 defines that if a weak entity type participates in more than one identifier relation-
ship, they all must have "1:N" cardinality. Again based on rules R07 and R10, we added
this constraint by including the axiom shown in Table [I3]

The formalization strategies used for rules R23 to R27 are simple and straightforward,
as presented in Table and therefore, will not be discussed.

Table 13 — Summary of strategies: attribute type

Roles Formalization Strategy
EntityNotation
R19 RegularEntity T EntityNotation [ =W eak Entity

WeakEntity T EntityNotation M —~Regular Entity
DiscriminatorAttribute T Attribute

RegularEntity C —3JhasAttribute. Discriminator Attribute

R20 Identifier Attribute T At¢tribute
WeakEntity T —JhasAttribute.ldenti fier Attribute

Entity C —((3hasAttribute. Discriminator Attribute)

R21
M(3relationshipLinkIdentifier.Identifier Relationship)
M(3relationshipLinkT otalOne.Identi fier Relationship))
R29 Entity C —((3relationshipLinkTotalOne.Identi fier Relationship)
(> 2relationshipLinkIdentifier.Identifier Relationship)
R23 AssociativeEntity C —JdhasAttribute. T
R24 Entity C —((3hasAttribute.Identifier Attribute)
M(JisSpecializationO f. Entity))
R25 Entity C —((3hasAttribute. Discriminator Attribute)

M(JisSpecializationO f. Entity))
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R26 Relationship C —JhasAttribute.Identi fier Attribute
UnaryRelationship C —(((iRelationshipLink PartialOne. Entity)
R27 L(FiRelationhipLinkTotalOne.Entity))

MN(JhasAttribute. Discriminator Attribute))

BinaryRelationship C —(((iRelationshipLink PartialOne. Entity)
U(FiRelationhipLinkT otalOne. Entity))

MN(3hasAttribute. Discriminator Attribute))

From: The author

Tables [I4] and [I5] show the RBox and the TBox, respectively, including the structural

semantics constraints.

Table 14 - EERMM RBox

Roles

1sSpecializationO f = isGeneralizationO f~

relationshipLink = iRelationshipLink™

relationshipLink Partial = relationshipLink

relationshipLink PartialOne C relationshipLink Partial

relationshipLink Partial M any C relationshipLink Partial

relationshipLinkTotal C relationshipLink

relationshipLinkT otalOne C relationshipLinkT otal

relationshipLinkT otal Many C relationshipLinkT otal

relationshipLink Partial = 1RelationshipLink Partial™

relationshipLink PartialOne = iRelationshipLink PartialOne~

relationshipLink Partial M any = iRelationshipLink Partial M any~

relationshipLinkT otal = iRelationshipLinkT otal™

relationshipLinkT otalOne = iRelationhipLinkT otalOne~

relationshipLinkT otal M any = 1 RelationshipLinkT otal M any~

1RelationshipLink Partial C i RelationshipLink

tRelationshipLink PartialOne C iRelationshipLink Partial

1RelationshipLink Partial Many C 1 RelationshipLink Partial

tRelationshipLinkT otal T iRelationshipLink
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1RelationhipLinkT otalOne C iRelationshipLinkT otal

1RelationshipLinkTotal Many C 1 RelationshipLinkT otal

hasAttribute = isAttributeO f~

hasPart = isPartO f~

1sSmallerThan

1sEqualTo

linkedRelationships

smallerCardinality

dif ferent Participation

dependsOn

relationshipLinkIdenti fier = 1 RelationshipLinkIdenti fier™

relationshipLink Nonldentifier = iRelationshipLink Nonldentifier™

Disjoint(iRelationshipLinkNonldentifier,iRelationshipLinkT otal M any)

Disjoint(iRelationshipLink NonlIdentifier,iRelationship Link Partial M any)

Disjoint(iRelationshipLinkIdentifier,1RelationshipLinkNonldentifier)

Disjoint(iRelationshipLinklIdentifier,iRelationshipLink Partial)

Disjoint(iRelationhipLinkT otalOne, i RelationshipLink Partial)

Disjoint(iRelationhipLinkT otalOne, i RelationshipLinkT otal M any)

Disjoint(isSmallerThan, is EqualTo)

Disjoint(linked Relationships, smallerCardinality)

Disjoint(linked Relationships, di f ferent Participation)

Disjoint(dependsOn, isGeneralizationO f)

Disjoint(isSmallerThan,isGeneralizationO f)

From: The author

Table 15 - EERMM TBox

Concept Description
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Schema

C —disSpecializationO f. T
M—JdisGeneralizationO f. T
M—drelation. T

M—diRelation. T

M—=3hasAttribute. T
M—disAttributeO f. T

M—-disPartOf. T

M—3ddependsOn. T

M-FdisEqualTo. T
M—JdisSmallerThan. T
M—drelationshipLinkIdenti fier. T
M—drelationshipLink Nonldentifier. T
M—3iRelationshipLinkIdentifier. T
M—diRelationshipLink Nonldentifier. T
M—dlinkedRelationships. T

M—3di f ferent Participation. T
M—dsmallerCardinality. T
MvhasPart.Node

Node

C disPartO f.Schema

Element

C Node
MYhasAttribute. Attribute
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Attribute

C Element

M—3JisSpecializationO f. T
M—-disGeneralizationOf. T
M—drelation. T

M—-JdiRelation. T

M—-3hasPart. T

M—=disEqualTo. T
M=3isSmallerThan. T
M—drelationshipLinkIdenti fier. T
M—drelationshipLink Nonldentifier. T
M—-3iRelationshipLinkIdenti fier. T
M—diRelationshipLink Nonldentifier. T
M—3di f ferent Participation. T
M—dsmallerCardinality. T
M—dlinkedRelationships. T
MVisAttributeO f. Element

MYisPartO f.Schema

DiscriminatorAttribute

C Attribute
M—Identi fier Attribute

Identifier Attribute

C Attribute

M—Discriminator Attribute

Entity Type

C Element

M—(Attribute U Relationship)
rM—JdiRelation. T
M—-disAttributeO f. T

M—ddif ferenParticipation. T
M—dsmallerCardinality. T
M—dlinkedRelationships. T
Mvrelation. Relationship
MvisPartO f.Schema
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AssociativeEntity

C EntityType
M=3JisSpecializationO f. T
M—-disGeneralizationOf. T
M—drelationshipLinkT otal. Relationship
M—=3hasAttribute. T
M—drelationshipLinkIdenti fier. T
M—drelationshipLink Nonldentifier. T
M—3iRelationshipLinkIdenti fier. T
M—3diRelationshipLink Nonldentifier. T
M—disEqualTo. T

M=3isSmallerThan. T

M = lhasPart.Relationship

MYhasPart. Relationship
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Entity

C EntityType

M=3isSpecializationO f.Sel f

M—-3hasPart. T

M—JdisSmallerThan.Sel f

MdisEqualTo.Sel f

M—ddependsOn.Sel f

M=((JiRelationshipLinklIdentifier.T)

M—((FiRelationshipLinkNonldentifier.T)

M—((FisSpecializationO f. Entity)
MN(3relationshipLinklIdentifier.Identifier Relationship))

M=((3hasAttribute. Discriminator Attribute)
M(JrelationshipLinkIdentifier.Identifier Relationship)
M(3relationshipLinkT otalOne.ldentifier Relationship))

M—((3relationshipLinkTotalOne.Identi fier Relationship)
M(> 2relationshipLinkIdentifier.Identifier Relationship)

M—((3hasAttribute.Identi fier Attribute)
M(JisSpecializationO f. Entity))

M—((3hasAttribute. Discriminator Attribute)

M(JisSpecializationO f.Entity))

MVisSpecializationO f.Entity

MVisGeneralizationO f.Entity

MvisSmallerThan. Entity

MVisEqualTo. Entity
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Relationship

C Element

M=JisSpecializationO f. T
M-disGeneralizationOf. T
M—drelation. T
M—3JrelationshipLinkIdentifier. T
M—drelationshipLink Nonldenti fier. T
M=JisAttributeO f. T

M—3hasPart. T
M—3dhasAttribute.ldenti fier Attribute
MN—disEqualTo. T

M=3isSmallerThan. T

Vi Relation. EntityType

MVisPartO f.(Associative Entity L Schema)
MVlinkedRelationships. Relationship
MVsmallerCardinality. Relationship
MVdi f ferent Participation. Relationship

RegularRelationship

C Relationship
M—Identi fier Relationship
M—d.eRelationshipLinkIdenti fier. T
M—d.iRelationshipLink Nonldentifier. T

IdentifierRelationship

C Relationship
MViRelationshipLinkIdenti fier. Entity
MViRelationshipLink Nonldenti fier. Entity
M—(Regular Relationship
UUnaryRelationship
LT ernaryRelationship)

RelationshipDegree

UnaryRelationship

C RelationshipDegree
M=(((iRelationshipLink PartialOne. Entity)
L(FiRelationhipLinkT otalOne. Entity))
M(3hasAttribute. Discriminator Attribute))
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C RelationshipDegree
BinaryRelationship M=(((iRelationshipLink PartialOne. Entity)
U(JiRelationhipLinkT otalOne. Entity))
M(3hasAttribute. Discriminator Attribute))
TernaryRelationship C RelationshipDegree
EntityNotation
C EntityNotaTion
RegularEntity MN—=Weak Entity
M—3hasAttribute. Discriminator Attribute
C EntityNotaTion
WeakEntity M- Regular Entity
M—3hasAttribute.ldenti fier Attribute

From: The author

4.4 PROOF OF CONCEPT

To check our Knowledge Base, we considered the constructs present in annexes [A] and
Bl Annex [A] consists of 27 invalid element combinations taken from Nascimento| (2015).
Each combination has one of the validation errors discussed in chapter 3l Annex [B], on
the other hand, consists of a set of valid combinations resulting from corrections made by
us in each example in annex [A]

Based on the sets presented, we performed the following steps:

1. We created a set of individuals in Protégé, consisting of 27 valid element combi-
nations, according to annex [B] Thus, we considered those combinations as being
part of the same database conceptual model. Figure shows the Individuals tab

in Protégé,;

2. We then used "Pellet" (SIRIN et al) 2007)) (Pellet Reasoner Plug-in for Protégé, ver-
sion 2.2.0) and "Hermit" (GLIMM et al., 2014) (Hermit for Protégé, version 1.3.8.413)
reasoners to verify the results of the reasoning. Figures [62 and (63| present Hermit
and Pellet results, respectively, highlighting the inferences for the valid combina-
tion corresponding to rule RO1 (all 1:1 unary relationship types with full-partial or
partial-total participation are structurally invalid) (see Figure . Table |16 shows
the RO1 example description in ALCROZO;
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3. Soon after, we introduced a validation error for the construct regarding the rule
RO1, as per annex [A] Figure shows the invalid construct combination used to
check the RO1 rule, with each element annotated with its corresponding KB concept.
Table [17] shows the corresponding description in ALCROZQ;

4. We reran the reasoners. Figures [66] and [67] show the results from "Pellet" and "Her-
mit" related to the EER model in Figure respectively. Figure shows the

"Inconsistent ontology explanation" window presented by Protégé;

5. We then restored the previous state, and repeated steps 3 and 4, introducing the

errors for the rules R0O2 to R27, one at a time;

6. Finally, we added all the 27 validation errors and reran the reasoners to verify the
inferences in a conceptual model with more than one error. Figures [69) and [70] show

the results for Pellet and Hermit, respectively.

Figure 61 — Protégé individuals tab

| Active Ontology = | Entities = Indivicuals by class * DL Query x SWRLTab x|

‘Annotanon properties |Datalypes |Indiv|duals ‘ Rules: ME=E E
Classes Object properties Data properties Rules N
Individuals: ROT_Entity A LIECE]l  jRelationshipLinkTotalOne(ar, 2y), Entity(?y), DifferentFrom (2r, %), D
& B il i ipLinkTotalOne(?r, ?x), Binar i ip(?r), DifferentFrom (2r,
RO1_Entity A < ?x), Entity(?x), DifferentFrom (?x, ?y) isEqualsTo(?x, ?y)
ntity_
# RO1_Relationship_R Ternar i ip(?r2), il i ipLinkParti (2r2, ?2x),
* RUZ’Enti N - BinaryRelationship(?r1), Entity(?x), iRelationshipLinkPartialOne(?r1, 7x),
. RUZ’R . tty_’ hin R DifferentFrom (?r1, 2r2) -~ smallerCardinality(?r1, 2r2)
elationshi

P 03’&““, N P iRelationshipLinkPartialOne(?r, ?y), Entity(?y), DifferentFrom (r, 2y),
# RO3_Relationship_R iRelationshipLinkTotalOne(r, %), BinaryRelationship(2r), DifferentFrom (2r,

_Relationship_| AL e e mos meen - -~ s w e m o had
@ RO4 Entity A = @ ROT_Entity_A — http//www.semanticweb.org/estela/ontologies/2018/11/untitled-ontology-60#R01_En
@ RO4_Relationship_R Annotations | Usage
: 22:’:":':;’: Annotations: RO1_Entity_A

_Entity |
@ RO5 _Entity C Annotations
#® RO5_Relationship_R1 Description: RO1_Entity_A E/MEmE fproperty assertions: R01_Entity A ECE [
# RO5_Relationship_R2 Types “l | Object property assertions
# RO5_Relationship_R3 RegularEntity
: RO6_Assoc_Entity AB Data property assertions
. RO6_Entity A Same Induidual As
. RO6_Entity B Negative ok property assertions

RO6 Entity C Different Individuals

# R06_Relationship_R

k0% Retationctin A2 .::l_?r;o:hip_& Negative data property assettions
N _Entity

* RO7_Entity A RO2_Relationship_R,

L Ru7,£nt.t}.vj ] RO3_Entity A,

@ RO7_Relationship_R RO3_Relationship R,

® RO8_Entity A RO4_Entity A,

@ ROB _Entity B RO4_Relationship_R,

#® RO8_Relationship R RO5_Entity_A, RO5_Entity |

@ RO9_Entity A RO5_Entity C,

® RO9_Entity B RO5_Relationship R1,
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From: The author

It is essential to highlight that we created the individuals manually. In future work, we
plan to create a tool to automate the process of creating individuals from EER models.

The experiments showed that the reasoners could effectively detect errors in the se-
mantically invalid models, including models with more than one invalid structure. They

also showed that the reasoners could successfully reason on the valid samples.



Table 16 — R01 valid model (ABox fragment in ALCROZQ)

Regular Entity(R01__Entity _A)

Regular Relationship(R01__Relationship_R)

UnaryRelationship(R01__Relationship_ R)

iRelationshipLink PartialOne(R0O1__Relationship R, RO1__Entity_A)

iRelationshipLink Partial Many(R01__Relationship_ R, RO1__Entity _A)

From: The author

Figure 62 — Pellet reasoning result (Protégé)
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Figure 63 — Hermit reasoning result (Protégé)

Active Ontology x| Entities x |Individuals by class x| DL Query x| SWRLTab x|

|Annotation properties | Datatypes | Individuals | = 4 RO _R — http:/fwww ticweb.org g 8/11/untitled-ontology-60#R01_Relationship_R
[Classes | Object properties | Data properties | |Annotations |Usage
=5 W Annotation Iation: I DEE
Anncttions <]

& ro cnivyn -
elationshi

@ RO3_Entity_A
R03_Relationship_R
RO4_Entity A

Description: ROL Relationship R

RO5_Entity B Types =] Obiect proparty sszartons
ROS_Entity C © RegularRelationship muiRelationshipLinkPartialOne RO1_Entity A
nshi ® UnaryRelationship mmiRelationshipLinkPartialMany RO1_Entity A
= RelationshipLink RO1_Entity A
Same ndividuel A5 = RelationshipLinkPartial RO1_Entity A

Different Individuals Dsta property sszertions

Negative object property assertions.

, ROS. Entity C,
ROS Relationship R1, R05 Relationship | R2,

VB Nagative dsts proparty sssartons
RO7_Relationship_R RO5_Relationship_R3, R06 Assoc_En

RS Entity A A, RO6_Entity_B, RO6_Enti
v B ationship_f, ROG Relatianship 2,
e elationehis , RO7_Entity B,
RO8 Relationship_R RO7} Relalmnshlp "R, ROS_En
RO9_Entity A e ROS Entity B, ROS Rela ~|

Git: dissertacao_revisao Ressoner active (V] Show Inferences

The author




75

Figure 64 — Valid model according to R01
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Figure 65 — Invalid model according to RO1
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Table 17 — RO1 invalid model (ABox fragment in ALCROZQ)

Regular Entity(R01 _Entity A)

Regular Relationship(R01__Relationship_R)

UnaryRelationship(R01__Relationship_ R)

iRelationshipLink PartialOne(R01__Relationship_ R, R01__Entity_A)

iRelationshipLinkTotalOne(RO1__Relationship R, RO1 _Entity A)

From: The author
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Figure 66 — Pellet reasoning result (Protégé)
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Figure 67 — Hermit reasoning result (Protégé)
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Figure 68 — Inconsistent ontology explanation
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Figure 69 — Pellet reasoning result (27 validation errors)
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Figure 70 — Hermit reasoning result (27 validation errors)
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5 RELATED WORK

5.1 INTRODUCTION

This chapter presents primary studies related to the validation of static conceptual models,
briefly describing their methodologies, results, and limitations. First, we briefly present the
systematic literature review conducted by Gonzalez and Cabot| (2014]) and the resultant
primary studies related to static models validation using description logics. Next, we
present the study selected after a brief survey conducted by us to identify more recent work
related to the validation of Enhanced Entity-Relationship models. Finally, we highlight

the main contributions of our work.

5.2 STATIC MODELS VALIDATION IN THE LITERATURE

In their literature review, Gonzalez and Cabot| (2014)) analyzed studies related to the for-
mal validation of static models, i.e., models that represent structures that do not provide
time dependency. UML Class Diagrams and Enhanced Entity-Relationship (EER) models
are examples of static models. The authors selected 48 studies published between 2002 and
2012 and organized them into 18 groups according to their characteristics. It is necessary
to mention that, during the paper selection phase, the authors found a problem regarding
the absence of standard terminology when dealing with model verification. While terms
such as "consistency checking" and "satisfiability" referred to disjoint concepts in some
work, in other studies they related to the same property. In this work, we consider these
terms as Synonyms.

After analyzing the results, |Gonzalez and Cabot| (2014)) identified that the studies
focused on verifying two main types of correctness properties: properties related to model
satisfiability, i.e., checking whether it is possible to create an instance of a model; and
properties related to constraints, such as constraint subsumption.

They also found that there are usually two stages in model verification: formalization
and reasoning. The formalization stage usually occurs through the use of a logical rep-
resentation (first-order logic - FOL, description logic - DL or higher order logic - HOL)
or by using a specification language such as B or Object-Z. Some studies also encode the
problem as a Constraint Satisfaction Problem (CSP). The reasoning stage, on the other
hand, is conducted by solvers or by specialized tools, according to the formalism adopted
in the first stage.

From the formalisms presented, we can highlight Description Logics (DLs). As previ-
ously mentioned, DLs are a set of languages used for knowledge representation, allowing
to represent concepts, roles, and individuals by creating Knowledge Bases (KBs). It also

admits decidable and automated reasoning tasks, such as verifying whether a KB is sat-
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isfiable, establishing hierarchies between concepts (subsumption) and checking concept
equivalence. It also allows the identification of additional implicit logical consequences
that may be hard to identify manually.

From the 48 studies selected by (Gonzalez and Cabot| (2014)), 13 publications related to
the use of DLs for the formalization of conceptual models, of which 11 focused on UML
Class Diagrams and two on EER models.

Cali et al.[ (2002) proposed a mapping from UML Class Diagrams to TBoxes in DLR.
Berardi, Calvanese and Giacomo| (2005) compiled the results from Berardi (2002), that
proposed a mapping from UML Class Digrams to TBoxes in DLR;zqs , and |Berardi,
Calvanese and Giacomo| (2003), that investigated the computational complexity related
to reasoning over UML Class Diagrams. It also proposed an encoding from UML Class
Diagrams to TBoxes in ALCQZ, in order to make use of reasoning systems.

Cadoli et al| (2004), Cadoli, Calvanese and Giacomo| (2004) and (Cadoli et al.| (2007)
discussed a problem regarding the reasoning over database and software systems con-
ceptual models mapped to expressive DLs. They introduced the concepts of unrestricted
satisfiability and finite satisfiability. According to the authors, unrestricted satisfiability
concerns whether the KB admits non-empty models (finite or infinite), while finite sat-
isfiability relates to whether the KB admits non-empty and finite models. According to
Cadoli, Calvanese and Giacomol (2004)), for expressive DLs, it is only possible to ensure
unrestricted satisfiability. They claim that there is a lack of a finite model property in
expressive DLs, which occurs "due to the interaction between cardinality constraints, the
use of direct and inverse roles, and general (possibly cyclic) inclusion assertions in the
knowledge base.".

When dealing with databases and software systems, it is crucial to ensure a finite
model since they only admit a finite number of instances (e.g., we can not have infinite
tuples in a database). Consequently, when considering a mapping from databases and
software systems conceptual models to an expressive DL, it is essential to use additional
validation to ensure finite satisfiability. In order to achieve this goal, the authors used
a technique for finite model reasoning in DLs by encoding the problem as a Constraint
Satisfaction Problem (CSP).

Artale et al.|(2007a)) and |Artale et al.| (2007b)) investigated the computational complex-
ity of reasoning over various fragments of the EER language. Based on |Berardi, Calvanese
and Giacomo| (2005), they mapped EER models to TBoxes in different DL languages. The
language varied according to the chosen fragment of the EER model.

Artale, Calvanese and Ibanez-Garcia (2010a) and |Artale, Calvanese and Ibanez-Garcia
(2010b)) investigated the computational complexity of reasoning to check full satisfiability,
i.e., whether there are model instances where all classes and associations are non-empty,
over various fragments of the UML Class Diagram. They mapped the diagrams to TBoxes

in different DL languages, varying the expressiveness according to the chosen fragment.



81

Queralt et al|(2012a) and Queralt et al.| (2012b]) checked finite satisfiability of UML
Class Diagrams enriched with OCL constraints. Since checking OCL constraints is known
to be undecidable, they identified a decidable fragment of OCL, which they called OCL-
Lite. They also investigated the computational complexity of the reasoning task. To ensure
finite satisfiability, they encoded the models and constraints as TBoxes in ALCZ, a less
expressive DL that enjoys the finite model property.

Since our work focus on the formal verification of EER models, we conducted a brief
survey in order to select more recent studies related to the use of DL to formalize those
models. Our methodology and result will be presented in the next section, followed by

our final remarks.

5.3 SURVEY

In our survey for more recent work on the formal verification of EER models, we considered
only work published since 2013 and written in English, complementing the analysis made
by |Gonzalez and Cabot|(2014). By using the search string ("description logic" and "Entity-
Relationship"), we collected papers from the following repositories: ACM Digital Library,
Science Direct, Springer Link, and IEEE XPlore Digital Library. Although the repositories
returned 235 results, we only could access 120 of them by using the university’s network.

We established two phases for the analysis of the work. In the first phase, we analyzed
their title and abstract and separated them into three groups: "approved', "excluded'
and "for further analysis". In the second phase, we examined the introduction and the
conclusion of the studies from the "for further analysis" group. Table[18shows a summary
of the results of each phase. In the end, we only selected the research work by [Zhang,
Ma and Cheng (2016). A small number of studies was already expected, based on the

outcomes from |Gonzalez and Cabot| (2014]).

Table 18 — Survey results summary

Repositories Retrieved|Accessed|Phase 1|/Phase 2
ACM Digital Library 1 1 0 0
Science Direct 57 51 5 1
Springer Link 150 43 3 0
[EEE XPlore Digital Library 27 25 2 0
Total 235 120 10 1

From: The author

Zhang, Ma and Cheng| (2016) proposed a mapping from EER models to TBoxes in
ALCOTK. They also presented a prototype tool, the EER2DL, responsible for automating
the mapping process by taking models in *.xmi format from some CASE tools and creating

a KB. From the output of EER2DL, they could use automatic reasoners to perform syntax
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checking. It is important to note that, unlike the UML language family, the EER language
does not have a standard metamodel, so the structure of the *.xmi files varies according to
the metamodel used by each modeling tool. Based on that, although it was not explicitly
exposed, the approach taken by |Zhang, Ma and Cheng (2016)) depends on the metamodels
used by each tool to perform the transformation of models into KBs. As stated before,
our study considers the EERMM metamodel.

5.4 FINAL REMARKS

All related work presented in this chapter used Description Logics to formalize static
conceptual models. They mapped models to TBoxes in multiple DL languages aiming to
explore the results provided by automatic reasoners. The automatic verification provided
by those tools included the following tasks: schema satisfiability, entity/class consistency
(or satisfiability), entity/class equivalence, entity/class subsumption, and the identifica-
tion of implicit logical consequences. Some work focused on ensuring finite satisfiability
(which is not guaranteed by expressive DLs) either by using less expressive DLs or by
adopting additional tools.

Also, few work have focused on the Enhanced Entity-Relationship model. While |Artale
et al. (2007a) and Artale et al| (2007b) have centered on identifying the computational
complexity of reasoning on EER models represented as a TBox, Zhang, Ma and Cheng
(2016)) focused on limited syntactic and semantic aspects, not covering validations related
to the interaction between model constructors and constraints.

Therefore, to the best of our knowledge, our work stands out for considering the
formalization of the EER language to model validation, covering aspects not addressed
in other work, such as the consequences of constraints such as cardinality, participation,
relationship type degree, inheritance, cyclic paths, and valid attribute types, as well as

the interactions between these concepts in the same model.
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6 CONCLUSION

6.1 INTRODUCTION

In this chapter, we summarize the project steps, recalling the methodology used, and the

results obtained. We also present recommendations for future work.

6.2 FINAL REMARKS

The proper validation of conceptual models is crucial in a database project since uniden-
tified conceptual errors can be disseminated to the other phases of the project, negatively
affecting the results. Although on small projects, designers can quickly perform the vali-
dation manually, on large projects, the support of automated tools becomes necessary.

To create conceptual models, designers use modeling languages. The Enhanced Entity-
Relationship (EER) language is commonly used in academia for conceptual database mod-
eling, adding the concepts of superclass, subclass, and category to the Entity-Relationship
language (Chen, 1976). Since EER is a language, the validity of the models created from
it is directly influenced by the proper application of its syntactic and semantic rules.

Description Logics (DLs) are a set of languages used for knowledge representation,
which admit decidable and automated reasoning tasks such as the identification of im-
plicit logical consequences that may be hard to identify manually. Because of those fea-
tures, DLs have been recognized as a promising alternative to represent and reason on
conceptual models ((ZHANG; MA; CHENG, [2016]), (ARTALE; CALVANESE; IBANEZ-GARCIA|
2010a), (BERARDI; CALVANESE; GIACOMO), 2005))).

Based on that, the main goal of this work was to support the automatic validation of
conceptual database models by identifying syntactic and semantic errors in EER models
using DL reasoners.

To achieve our goals, we performed the following activities:

« Verification of the coverage of related work: we found that few studies focus
on the validation of EER models using DL. Also, they do not cover semantic as-
pects such as the consequences of the interaction between cardinality, participation,

relationship type degree, inheritance, cyclic paths, and valid attribute types;

o Formalization of EER syntax and semantics: since our model validation is
based on the language rules, we first formalized the EER syntax and semantics in
OWL DL, creating a TBox. As the EER language does not have a standard abstract
syntax, we considered the EERMM, which covers all EER constructs (Fidalgo et al.,
2013). The semantic rules formalized are part of a catalog organized by Nascimento
(2015)) and based on the work of Dullea, Song and Lamprou (2003) and |Calvanese
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and Lenzerini (1994). Although we tried to represent most of the rules by using
axioms, we also made use of Semantic Web Rule Language (SWRL) rules in the

cases involving cyclic paths, since DL expressivity was not adequate;

« Proof of concept: After that, we created individuals (ABox) based on a test case
set composed of valid and invalid models and used DL reasoners to identify the

invalid constructs;
o DL description: finally, we manually converted the KB to ALCROZQ.

The experiments showed that the reasoners could effectively detect errors related to
cardinality, participation, relationship type degree, inheritance, cyclic paths, valid at-
tribute types, and the interactions between these constraints. Hence, the main contribu-

tions of our work are:

o The automatic support for validating EER models, covering aspects not handled by

other projects;

o The formalization of the EER language through DL, which allows checking the ER

model structure with the use of DL reasoners;

o The possibility of reusing the Knowledge Base if new validity rules need to be added

or in case of a language extension;

o The formalization of the EERMM, which contributes to a possible standardization
of the EER abstract syntax.

As mentioned, this work considers the EER language semantic rules related to cardi-
nality and participation constraints, relationship types degrees, cyclic paths, and attribute
types. Although the rules provide good coverage concerning the elements and constraints
of the EER language, they do not cover all possible combinations. The methodology used
to obtain the rules analyzed a set of constructors and their interactions in isolation and
did not thoroughly evaluate the consequences of the interactions between multiple sets of
constructors in the same model. Additionally, the rules do not cover relationship types

degrees above 4, nor the category constructor, because of their restricted use.

6.3 FUTURE WORK
For future work, we propose the following projects:

o To develop a tool to transform EER models into an ABox, automatically;
» To evaluate models from industry applications;

» To integrate our KB into a modeling tool to help designers detect validity errors;
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o To add semantic validity rules related to the category concept, which was omitted

because of its restricted use.
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APPENDIX A - LIST OF INVALID EXAMPLES

Table 19 — Invalid examples

Rule Model

RO1 A @
RO2 A <>
RO3 A <>

RO5

N

90
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R0O6

Ros [ :
:

—<e > c

- A :

R11
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R12

R13
c
N
7
R14 \
c
C
R15

R16




93

R17
AB
B
N
R18 .
RN
C D
R19
A
R20 .
Rl :
R22 — e




94

R23
A
R24 Y
B
A
R25 Y
B
R26 A 5
R27

Adapted from: Nascimento| (2015])




APPENDIX B - LIST OF VALID EXAMPLES

Table 20 — Valid examples

Rule Model

RO[1-4] A <>

>

RO5 1
1
c = 1— B
R0O6
G
ROT i 1 | :

ROS <
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m

R09

R10

R11

R12

R13

R14
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R15
R16
R17
R18
Discriminator
R19 :
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98

Discriminator

R21 A B
R22 A : N - Z 1 i
R23
= >

.
R24 b

B

.
R25 Y

B
R26 i :
R27
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