
Leonardo Fernandes Mendonça de Oliveira

Tackling The Useless Mutants Problem

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2020

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Leonardo Fernandes Mendonça de Oliveira

Tackling The Useless Mutants Problem

Tese de Doutorado apresentada ao Programa de
Pós-graduação em Ciência da Computação do
Centro de Informática da Universidade Federal de
Pernambuco, como requisito parcial para obtenção
do título de Doutor em Ciência da Computação.

Área de Concentração: Engenharia de Soft-
ware
Orientador: Dr. André Luís de Medeiros Santos
Co-orientador: Dr. Márcio de Medeiros Ribeiro

Recife
2020

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

O48t Oliveira, Leonardo Fernandes Mendonça de

Tackling the useless mutants problem / Leonardo Fernandes Mendonça de
Oliveira. – 2020.

 115 f.: il., fig., tab.

 Orientador: André Luís de Medeiros Santos.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2020.
 Inclui referências.

 1. Engenharia de software. 2. Teste de software. I. Santos, André Luís de
Medeiros (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2020 -86

Leonardo Fernandes Mendonça de Oliveira

“Tackling The Useless Mutants Problem”

Tese de Doutorado apresentada ao Programa de
Pós-Graduação em Ciência da Computação da
Universidade Federal de Pernambuco, como requi-
sito parcial para a obtenção do título de Doutor
em Ciência da Computação.

Aprovado em: 02/03/2020.

Orientador: Dr. André Luís de Medeiros Santos

BANCA EXAMINADORA

Prof. Dr. Paulo Henrique Monteiro Borba
Centro de Informática/UFPE

Prof. Dr. Marcelo Bezerra d’Amorim
Centro de Informática/UFPE

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informática/UFPE

Prof. Dr. Rohit Gheyi
Departamento de Sistemas e Computação/UFCG

Prof. Dr. Fabiano Cutigi Ferrari
Departamento de Computação/UFSCAR

ACKNOWLEDGEMENTS

Este trabalho é uma construção coletiva. Primeiramente agradeço a Deus pela minha
vida e pela oportunidade de viver em uma família feliz e que me deu todo o apoio necessário
para chegar ao final de mais uma etapa em minha vida. Agradeço aos meus pais, Aderson
Augusto e Simone Fernandes, por sempre terem cuidado de mim e dado apoio em todos
os momentos que precisei. Em especial para minha mãe, por toda a dedicação em buscar
sempre o melhor para mim e para meus irmãos, por estar sempre ao meu lado em todas
as decisões. Agradeço também aos meus irmãos Carlos e Pedro. Eu amo todos vocês.
Agradeço a minha esposa Luiza Fernandes, a pessoa que Deus colocou na minha vida
para iluminar e compartilhar comigo todos os momentos, que soube compreender minhas
angustias, minhas dificuldades e também minhas conquistas. Você é uma pessoa muito
especial em minha vida e meu coração sempre esteve e sempre estará com você. A todos os
meus familiares: Klebel, Maria, meus amigos (que são a família que eu escolhi), tios, sogros
pelo companheirismo e amizade de sempre. Meus agradecimentos. No campo acadêmico
agradeço ao meu orientador, prof. André Santos, pela confiança e oportunidade. Ao meu
co-orientador, prof. Márcio Ribeiro, pela dedicação quase diária e por me mostrar o
caminho da pesquisa científica em engenharia de software. Ao todos que fazem Centro
de Informática da UFPE, um lugar que me dá muito orgulho de ter estudado. Aos meus
colegas de laboratório no EASY (UFAL) e no LabES (UFPE), saibam que eu aprendi um
pouco com cada um de vocês.

ABSTRACT

Mutation testing is a fault-based testing criterion to assess and improve the quality
of a test suite. Despite attracting much interest, the costs of using mutation testing
are usually high, hindering its use in industry. Useless mutants (e.g., equivalent and
duplicate) contribute to increase costs. The equivalent mutant problem has already been
proven undecidable, and manually detecting equivalent mutants is an error-prone and time-
consuming task. The duplicate mutant, although eventually killed by some test, requires an
unnecessary computational cost. This way, solutions, even partial, can help reducing these
costs. In this work, we tackle the useless mutants problem from two perspectives. First, we
propose improving the transformation rules embedded in the mutation operators to avoid
useless mutants. We present i-rule, a common language to avoid the generation of equivalent
(e-rule) and duplicate (d-rule) mutants. We also present a strategy to help mutation tool
developers find out occurrence patterns that lead to new i-rules. We instantiate the strategy
with 100 Java programs, which led us to find out 99 i-rules for three common mutation
testing tools (MuJava, Major, and Pit). To evaluate the effectiveness of the i-rules on
reducing costs, we implement 32 of them in the MuJava tool and execute with classes
of well-known projects. The results show we reduced the number of mutants by almost
20% on average and saved time to generate the mutants, thus demonstrating the potential
of our approach for reducing mutation costs. Second, we present an approach to suggest
equivalent mutants by using automated behavioral testing. We perform static analysis to
automatically generate tests directed for the entities impacted by the mutation. For each
analyzed mutant, our approach can suggest the mutant as equivalent or non-equivalent.
In the case of non-equivalent mutants, our approach provides the test cases capable of
killing them. For the equivalent mutants suggested, we also provide a ranking of mutants
with a strong or weak chance of the mutant being indeed equivalent. We implement our
approach in a tool called Nimrod. To evaluate Nimrod, we execute it against a set of
1,542 mutants from eight open-source projects. The results indicate that the Nimrod is
very effective in suggesting equivalent mutants. It reached more than 96% of accuracy
in five out of eight studied subjects. Compared with manual analysis of the surviving
mutants, Nimrod takes a third of the time to suggest equivalent and is 25 times faster to
indicate non-equivalent.

Keywords: Software Testing. Mutation Testing. Automatic Test Generation.

RESUMO

Teste de mutação é um critério, baseada em faltas, que serve para avaliar e melhorar
a qualidade da suíte de testes. Apesar de atrair muito interesse, os custos para usar teste
de mutação são geralmente altos, dificultando o sua adoção pela indústria. Mutantes
inúteis (por exemplo, equivalentes e duplicados) contribuem para o aumento destes custos.
Identificar todos os mutantes equivalentes de maneira automática não é possível, pois
este problema foi provado indecidível. Contudo, deixar a detecção destes mutantes pura-
mente manual é uma tarefa demorada e sujeita a erros. O mutante duplicado, embora
eventualmente morto por algum teste, demanda um custo computacional desnecessário.
Desta forma, soluções, mesmo que parciais, podem ajudar a reduzir estes custos. Neste
trabalho, enfrentamos o problema dos mutantes inúteis a partir de duas perspectivas.
Primeiro, propomos melhorar as regras de transformação embutidas nos operadores de
mutação para evitar a geração de alguns mutantes inúteis. Para isso, apresentamos i-
rule, uma definição para evitar a geração de mutantes equivalentes (e-rule) e duplicados
(d-rule). Além disso, nós apresentamos uma estratégia para ajudar os desenvolvedores
de ferramentas de mutação a descobrir padrões de ocorrência que levam a novas i-rules.
Nós instanciamos a estratégia com 100 programas, o que nos levou a descobrir 99 i-rules
em três ferramentas de teste de mutação (MuJava, Major, and Pit). Para avaliar a
efetividade das i-rules na redução dos custos, nós implementamos as 32 delas na ferra-
menta MuJava e executamos com classes de projetos open-source. Nossa abordagem
se mostrou promissora, pois conseguimos reduzir o número total de mutantes em quase
20%, em média, e economizamos tempo para gerar e compilar os mutantes. Na segunda
abordagem, nós apresentamos uma técnica para sugerir mutantes equivalentes, utilizando
testes gerados automaticamente. Nós primeiro realizamos análise estática para descobrir
entidades impactadas pela mutação, e depois direcionamos a geração automática dos
testes somente para estas entidades. Para cada mutante analisado, nossa abordagem pode
sugeri-lo como equivalente ou não-equivalente. No caso de mutante não-equivalente, nossa
abordagem fornece o caso de teste capaz de matá-lo. Para os mutantes sugeridos como
equivalente, nós apresentamos um ranking indicando qual tem maior ou menor chance
de ser realmente equivalente. Nós implementamos esta abordagem em uma ferramenta
chamada Nimrod. Nós avaliamos o Nimrod com um benchmark de 1.542 mutantes de
oito projetos open-source diferentes. Os resultados indicam que o Nimrod é muito eficaz
na sugestão de mutantes equivalentes. Atingiu mais de 96% de precisão em cinco dos oito
projetos estudados. Comparada à análise manual dos mutantes sobreviventes, o Nimrod
leva um terço do tempo para sugerir um mutante como equivalente e é 25 vezes mais
rápida para indicar um mutante não-equivalente.

Palavras-chaves: Teste de Software. Teste de Mutação. Geração Automática de Testes.

LIST OF FIGURES

Figure 1 – Mutation Testing Process . 20
Figure 2 – Original program and three mutants. 30
Figure 3 – Strategy to support the discovering of new i-rules. 38
Figure 4 – Example of program generated by JDolly. 43
Figure 5 – Code snippets extracted from programs used in the execution of the

strategy. 45
Figure 6 – Goal-Question-Metric Template . 54
Figure 7 – Code snippets extracted from subjects used in the study. 61
Figure 8 – Our approach to suggest equivalent mutants. 71
Figure 9 – Combining TCE and Nimrod to minimize the manual analysis to

identify equivalent mutants. 96

LIST OF TABLES

Table 1 – Meta-variables referred by the i-rules. 34
Table 2 – Base projects that served to extract Java files used in the second round. 40
Table 3 – Useless mutants candidates identified. 42
Table 4 – Open-source projects used in this experiment. 55
Table 5 – Results of executing MuJava-AUM. 57
Table 6 – Applied e-rules. 59
Table 7 – Applied d-rules. 60
Table 8 – Time to generate and compile the mutants with MuJava (original ver-

sion) and MuJava-AUM. The presented numbers represent an average
of three executions per project. 63

Table 9 – Manually analyzed Java subjects. 80
Table 10 – General Results. 83
Table 11 – Subject: sqrt (bisect) . 84
Table 12 – Subject: classify (triangle) . 84
Table 13 – Subject: decodeName (xstream) . 85
Table 14 – Subject: add (joda-time) . 85
Table 15 – Subject: capitalize (commons-lang) . 85
Table 16 – Subject: wrap (commons-lang) . 85
Table 17 – Subject: addNode (pamvotis) . 85
Table 18 – Subject: removeNode (pamvotis) . 85
Table 19 – The sqrt (bisect) mutants suggested as equivalent by Nimrod. The

AOIS_12 is the only false positive (in bold) and the double line marks
the division (threshold) based on the median. 87

Table 20 – Distribution of the false positive according to the median. 87
Table 21 – Average time, in seconds, the Nimrod took to analyze each mutant. . . 88
Table 22 – Common characteristics (false positives) in the Nimrod’s results. 90
Table 23 – Nimrod Results by Mutation Operator. 94
Table 24 – Summary of the effort’s reduction when combining TCE and Nimrod

for the class FieldUtils of project joda-Time. 98

CONTENTS

1 INTRODUCTION . 12
1.1 MUTATION TESTING BY EXAMPLE . 13
1.2 MOTIVATION . 15
1.3 SCOPE OF THE THESIS . 16
1.4 CONTRIBUTIONS OF THE THESIS . 17
1.5 ORGANIZATION OF THE THESIS . 18

2 MUTATION TESTING AND ITS LIMITATIONS 19
2.1 THE MUTATION TESTING PROCESS 19
2.2 MUTATION TESTING TOOLS . 22
2.3 MUTANT GENERATION . 23
2.4 MUTATION TESTING COSTS . 24
2.5 USELESS MUTANTS . 25

3 AVOIDING USELESS MUTANTS 27
3.1 INTRODUCTION . 27
3.2 MOTIVATING EXAMPLE . 29
3.3 IMPROVED TRANSFORMATION RULES 32
3.3.1 e-rule Example . 34
3.3.2 d-rule Example . 35
3.3.3 General information: i-rules . 36
3.4 STRATEGY . 36
3.4.1 Identifying Useless Mutants Candidates 37
3.4.2 Instantiating the Strategy . 39
3.4.2.1 Settings . 39
3.4.2.2 Results and Discussion . 42
3.4.2.3 Threats to validity . 44
3.5 DISCOVERED I-RULES . 45
3.5.1 e-rules . 46
3.5.1.1 ISD-01 (MuJava) . 46
3.5.1.2 AOIS-02 (MuJava) . 47
3.5.1.3 ROR-01 (Major) . 48
3.5.1.4 AOR-01 (Major) . 48
3.5.2 d-rules . 49
3.5.2.1 LOI|LOD-01 (MuJava) . 49
3.5.2.2 ROR|SDL-01 (MuJava) . 50

3.5.2.3 SDL|SDL-01 (MuJava) . 50
3.5.2.4 ReturnVals|NonVoidMethodCall-01 (Pit) 51
3.5.3 Implementing the i-rules . 51
3.6 EVALUATING THE IMPLEMENTED I-RULES 53
3.6.1 Goal and Research Questions . 53
3.6.1.1 Subjects . 54
3.6.2 Experimental Setup . 54
3.6.3 Procedure . 56
3.6.4 Results and Discussion . 57
3.6.4.1 How many useless mutants can be avoided, in industrial-scale systems, with

the implemented i-rules? . 57
3.6.4.2 Which i-rules are most applied to avoid equivalent and duplicate mutants? . 59
3.6.4.3 What is the overhead of executing our i-rules in industrial-scale systems? . 62
3.6.5 Threats to Validity . 63
3.7 SUMMARY . 64

4 SUGGESTING EQUIVALENT MUTANTS THROUGH AUTOMATED
BEHAVIORAL TESTING . 66

4.1 INTRODUCTION . 66
4.2 MOTIVATING EXAMPLE . 68
4.3 SUGGESTING EQUIVALENT MUTANTS 70
4.3.1 Identifying Impacted Entities . 71
4.3.2 Automated Generation of Test Cases 73
4.3.3 Test Execution . 75
4.3.4 Suggesting Equivalent Mutants . 76
4.3.5 Improvements . 77
4.4 EVALUATION . 78
4.4.1 Research Questions . 78
4.4.2 Subjects . 79
4.4.3 Experimental Setup . 80
4.4.4 Procedure . 81
4.5 ANALYSIS AND DISCUSSION OF THE RESULTS 82
4.5.1 How effective is Nimrod in suggesting equivalent mutants? 83
4.5.2 How long does it take for Nimrod to analyze a mutant? 87
4.5.3 What are the characteristics of the mutants that Nimrod failed to

classify? . 89
4.5.4 Which mutation operators commonly lead Nimrod to fail? 93
4.5.5 Threats to Validity . 94
4.6 IMPLICATIONS FOR PRACTICE: MINIMIZING THE MANUAL ANALYSIS 96
4.7 SUMMARY . 98

5 RELATED WORK . 100
5.1 STRATEGIES TO DETECT . 100
5.2 STRATEGIES TO AVOID . 101
5.3 STRATEGIES TO SUGGEST . 101
5.4 STRATEGIES FOR VERY SPECIFIC DOMAINS 102
5.5 ELIMINATING MUTATION OPERATORS 102
5.6 OTHER TYPES OF USELESS MUTANTS 103

6 CONCLUSIONS AND FUTURE WORKS 105
6.1 AVOIDING USELESS MUTANTS . 105
6.2 SUGGESTING EQUIVALENT MUTANTS 106
6.3 FUTURE WORK . 107

REFERENCES . 108

12

1 INTRODUCTION

It is estimated that 35% of the total cost and time to develop software is fully dedicated
to software testing (CAPGEMINI; MICROFOCUS, 2019). As a good part of this activity can
be automated through code, for some projects, the number of lines of test code exceeds
the number of lines of code in the system under test.1 This way, some important questions
arise: When should we stop generating tests? or How confident are we with our tests?

Traditionally, software testing utilizes coverage as a test adequacy criterion. For instance,
statement coverage requires all statements of the source code of the program under test to
be covered by at least one test case, and branch coverage necessitates covering all branches
of the program’s control flow graph. Indeed, a test suite with a low coverage rate is a sign
of low quality. However, a high coverage test suite does not necessarily mean high-quality
tests. That is because even a test case that reaches a 100% coverage (such as statement,
branch, and line) may not detect any fault if an appropriate oracle does not verify the
corresponding output. A high-quality test suite must be effective in revealing faults.

Mutation testing (DEMILLO; LIPTON; SAYWARD, 1978; JIA; HARMAN, 2011) appears as
an alternative to overcome this problem. It aims at guiding the design of strong (likely fault
revealing) test suites. Mutation testing is a fault-based testing criterion that automatically
seeds artificial faults into the code, generating modified versions of the system under test.
The underlying idea of mutation testing is to force developers to design tests that reveal
these planted faults. Hence, mutation testing leads developers to use the appropriate oracle
(test assertion), since such an oracle is necessary to detect a fault eventually.

Mutation testing is considered the most efficient coverage criterion for determining
the quality of a test suite (JIA; HARMAN, 2011; FRANKL; WEISS; HU, 1997). Furthermore,
there is strong empirical evidence that mutants are a valid proxy for real faults (JUST et al.,
2014; ANDREWS; BRIAND; LABICHE, 2005). However, the costs of using mutation testing
are usually high (PIZZOLETO et al., 2019). Two kinds of mutants contribute to increasing
such costs: equivalent and duplicate mutants. An equivalent mutant is a mutant that has
the same behavior as the original program (BUDD; ANGLUIN, 1982; MADEYSKI et al., 2014);
so, this mutant is useless. A duplicate mutant, on the other hand, has the same behavior
as another mutant (PAPADAKIS et al., 2015; KINTIS et al., 2018); this way, one of them is
useless.

Despite attracting much interest in academia, some researchers in the community
believe the high cost of mutation testing hinders its use in industry. Useless mutants (e.g.,
equivalent and duplicate) contribute to increasing costs(MADEYSKI et al., 2014; KINTIS

et al., 2018). In this dissertation, we focus on minimizing the problem of the high cost of
1 The RxJava-3.x project, a library for asynchronous programming for the JVM, (<https://github.com/

ReactiveX/RxJava>) has 95,918 lines of code and 201,533 lines of test code.

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava

13

mutation test by eliminating useless mutants of the analysis. For this purpose, we present
two approaches to deal with the useless mutants problem.

In what follows, we illustrate mutation testing through examples (Section 1.1), then we
motivate the research (Section 1.2), and we finish summarizing the approaches (Section 1.3)
and the contributions of this work (Section 1.4).

1.1 MUTATION TESTING BY EXAMPLE

Mutation testing is a criterion to better guide the testing process (DEMILLO; LIPTON;

SAYWARD, 1978; JIA; HARMAN, 2011). Suppose we have an all green test suite running
smoothly. A mutation testing tool automatically introduces faults into the code by creating
many copies of the program, each containing one fault. The faults are created systematically
by transformation rules embedded in mutation operators. These faulty programs are called
mutants since they are “mutations” of the original program. The test cases execute these
mutants intending to produce an incorrect (fail) output. During test execution, a mutant
is “killed” when at least one test fails. When this happens, that mutant no longer needs to
remain in the testing process because the faults represented by that mutant have been
detected. If, after completing the execution of the tests, the mutant remains “alive”, this
means that the test suite did not detect the fault, and a new test case is necessary to kill
that mutant. This way, the quality of the test suite can be assessed from the percentage of
the total mutants killed over the total mutants generated (DEMILLO; LIPTON; SAYWARD,
1978).

To better understand the mutation testing process, Listing 1.1 presents the method
safeMultiply, extracted from FieldUtils, a class file from project joda-time. joda-time is
a popular date and time Java library. Also extracted from joda-time, Listing 1.2 presents a
test code for safeMultiply. That is an all green test suite, which means all tests (or asserts)
are passing successfully in the original code. To check if testSafeMultiplyLongLong() is
a fault revealing test, a mutation testing tool takes as input the original program, the
test code, and a set of mutation operators. Then, the mutation testing, through their
mutation operators, creates the mutants, each one containing a specific transformation.
We illustrate five of these transformations in Listing 1.1.

• Mutant 𝑀1 is generated by the ROR (Relational Operator Replacement) mutation
operator with the following transformation: val2 == 1 ⇒ val2 <= 1.

• Mutant 𝑀2 is generated by the AOIU (Arithmetic Operator Insertion - unary)
mutation operator with the following transformation: val1 == 0 ⇒ -val1 == 0.

• Mutant 𝑀3 is generated by the ROR (Relational Operator Replacement) mutation
operator with the following transformation: if(...){...} ⇒ if(false){...}.

14

1 public long safeMultiply(long val1, long val2) {

if (val2 == 1) { 𝑀1 [val2 == 1 ⇒ val2 <= 1]

3 return val1;

}

5 if (val1 == 1) {

return val2;

7 }

if (val1 == 0 || val2 == 0) { 𝑀2 [val1 == 0 ⇒ -val1 == 0]

9 return 0;

}

11 long total = val1 * val2;

if (total / val2 != val1 𝑀3 [if(...){...} ⇒ if(false){...}]

13 || val1 == Long.MIN_VALUE && val2 == -1 𝑀4 [if(...){...} ⇒ /*if(...){...}*/]

|| val2 == Long.MIN_VALUE && val1 == -1) { 𝑀5 [val1 == -1 ⇒ val1 == 1]

15 throw new ArithmeticException("Overflows a "

+ "long. " + val1 + " * " + val2);

17 }

return total;

19 }

Listing 1.1 – A code snippet extracted from FieldUtils, a joda-time class.

• Mutant 𝑀4 is generated by the SDL (Statement Deletion) mutation operator with
the following transformation: if(...){...} ⇒ /*if(...){...}*/.

• Mutant 𝑀5 is generated by the AODU (Arithmetic Operator Deletion - unary)
mutation operator with the following transformation: val1 == -1 ⇒ val1 == 1.

The mutation testing tool then executes the test code against the mutants to check
which mutants are killed by the tests, and which ones stay alive. Of the five mutants in our
example, three are killed by the testSafeMultiplyLongLong() test code (𝑀1, 𝑀3 and 𝑀4)
and two mutants remained alive (𝑀2 and 𝑀5). At this moment, the developer analyzes
the surviving mutants to create a new test that can kill them. The mutant 𝑀5 can be
killed if we add a new assert code:
1 assertEquals(Long.MIN_VALUE, FieldUtils.safeMultiply(1L, Long.MIN_VALUE))

By analyzing the mutant 𝑀2, the developer realizes that there is no test capable of killing
this mutant, since any value of val1 in the expression val1 == 0 has exactly the same
behavior as the expression -val1 == 0. It is because it is an equivalent mutant. We explain
equivalent mutants later in this chapter. At the end of the process, the mutation testing
tool concludes with an adequacy score to indicate the quality of the test suite. The common
adequacy score is the mutation score. It is the ratio of the number of killed mutants over
the total number of mutants minus the total of equivalent. The mutation score gives a
number between zero and one, the closer to one the better the score.

For the introduction, this succinct description of mutation suffices. All the concepts
mentioned above and additional information to comprehend this thesis are detailed further

15

1 @Test

public void testSafeMultiplyLongLong() {

3 assertEquals(0L, FieldUtils.safeMultiply(0L, 0L));

assertEquals(1L, FieldUtils.safeMultiply(1L, 1L));

5 assertEquals(6L, FieldUtils.safeMultiply(2L, 3L));

assertEquals(-6L, FieldUtils.safeMultiply(2L, -3L));

7 assertEquals(-6L, FieldUtils.safeMultiply(-2L, 3L));

assertEquals(6L, FieldUtils.safeMultiply(-2L, -3L));

9

try {

11 FieldUtils.safeMultiply(Long.MIN_VALUE, Long.MAX_VALUE);

fail();

13 } catch (ArithmeticException e) {

}

15 }

Listing 1.2 – A code snippet extracted from TestFieldUtils, a joda-time test class.

in Chapter 2. Next, we discuss some of the problems of mutation testing and what
motivated our research.

1.2 MOTIVATION

The mutation testing process has gained considerable attention because empirical
studies have demonstrated its ability to improve test suites (ANDREWS; BRIAND; LABICHE,
2005; JUST et al., 2014; PAPADAKIS et al., 2018). However, despite being an effective test
adequacy assessment method, mutation testing suffers from two main issues.

First, there is a high computational cost in generating a broad set of mutants, and
mainly in executing the test suite against these generated mutants. To make matters worse,
a considerable part of the mutants generated may be useless. For instance, they can be
duplicate. As explained, two (or more) mutants are duplicate if they are equivalent to
each other. In this case, either one or the other of these two mutually equivalent mutants
can be discarded, saving some effort.

Second, there is a significant amount of manual effort involved in (i) distinguishing
among the surviving mutants, which are killable and which are equivalent, and (ii) creating
a new test to kill the non-equivalent mutants. Problem (ii) is inherent to all forms of
testing. It means the developer needs to know the program’s output to assert a testing
criterion. Problem (i) is not new in the mutation testing community and is called: the
Equivalent Mutant Problem (BUDD; ANGLUIN, 1982). An equivalent mutant is a mutant
that is syntactically different from the original program but is semantically equal, which
implies test cases can not kill this mutant.

To illustrate the problems above, we return to the example in Listing 1.1. This method
has 19 lines of code. When we use MuJava (MA; OFFUTT; KWON, 2005), a standard
mutation testing tool for Java, to generate the mutants, enabling all mutation operators,
it creates 224 mutants in this method. In this example, it took approximately 4.5 seconds

16

to the developers’ test suite to run in an Intel Core i7-6700 processor with 16 GB of
RAM. 2 Thus, in a worst-case scenario, almost 17 minutes would be necessary to execute
the test suite against all mutants. And safeMultiply is one out of 17 methods of the
FieldUtils class.

However, by inspecting the MuJava’s mutants at Listing 1.1, we found mutants
worthless for the mutation analysis. By analyzing the mutant 𝑀2, we can see that the
value of the variable val1 is only compared to zero. In this context, the mutant 𝑀2 does
not change the behavior of the program independent of the value of the val1. Therefore
this mutant is equivalent and useless to the mutation analysis intent.

By analyzing 𝑀3 and 𝑀4, we realize that the tests killed these mutants. However, this
occurred with a computational cost. Either changing the if conditional expression to
false, or deleting the entire if statement will have the same result. That is, 𝑀3 and 𝑀4

have the same behavior and thus are duplicate. Therefore, one of them is useless to the
mutation analysis.

Equivalent mutants are a well-known impediment to the practical adoption of mutation
testing (MADEYSKI et al., 2014; KINTIS et al., 2018). It is not a new problem for the
mutation testing community, and a long time ago proven an undecidable problem in its
general form (BUDD; ANGLUIN, 1982). Thus, no complete automated solution exists. In
addition, manually detecting equivalent mutants is an error-prone (ACREE, 1980) and
time-consuming task (SCHULER; ZELLER, 2013). This problem becomes quite relevant
when empirical studies report that up to 40% of all the generated mutants can be
equivalent (MADEYSKI et al., 2014). Therefore, research efforts to reduce these costs are
still needed. More recently, the mutation testing community has started tackling the
duplicate mutant problem (PAPADAKIS et al., 2015; KINTIS et al., 2018). These mutants are
less costly than equivalent mutants because they end up being killed by the tests, yet the
computational cost of generating and running the test suite against them remains.

This work focuses on the problems of equivalent and duplicate mutants, which Papadakis
et al. (PAPADAKIS et al., 2015) name as useless mutants. In what follows, we present our
proposals for dealing with the useless mutants problem.

1.3 SCOPE OF THE THESIS

Madeyiski et al. (MADEYSKI et al., 2014) listed three methods to overcome the Equivalent
Mutant Problem (which we can also extend to the duplicate mutant problem): Detecting
Equivalent Mutants, Suggesting Equivalent Mutants, and Avoiding Equivalent Mutants. The
best option should not even generate a useless mutant (avoiding). However, some equivalent
and duplicate mutants cannot be discovered before the generation. If not avoided, and
considering that a test case will eventually kill a duplicate mutant, we need to detect or
2 We executed the complete test suite of the project.

17

to suggest, among the surviving mutants, the equivalent ones. Detecting techniques have
the advantage of giving no false positives, as suggesting equivalent mutants do. On the
other hand, detecting techniques can never be complete. In summary, these methods have
different strengths and are complementary, and they do not compete with each other.

In this work, we tackle the useless mutants problem from two perspectives.
First, we propose to improve the transformation rules embedded in the mutation

operators in a sense to avoid useless mutants. Mutation operators generate mutants
indistinctly. That is, the transformation rules do not take into account whether the mutant
will be useful or not. The transformation rules need to consider the program context
information and the other mutation operators selected in the analysis to check the utility
of the mutant and avoid the useless ones. We call these new improved transformation rules
i-rules, but with distinctions in two separate classes: d-rule for avoiding duplicate mutants
and e-rule for avoiding equivalent ones. In order to support the discovery of new i-rules by
mutation tool developers, we also outline a strategy. This approach fits into the Madeyiski
et al. (MADEYSKI et al., 2014) Avoiding method.

Second, we present an approach to suggest equivalent mutants by using automated
behavioral testing. We implement our approach in a tool called Nimrod. Nimrod relies
on tools to automatically generate test cases. To better guide the test generation, our
approach uses a change impact analysis to identify methods impacted by the mutation.
Nimrod suggests the mutant as non-equivalent in case it finds at least one test case
that passes on the original program and fails on the mutant. If no test kills the mutant,
Nimrod suggests the mutant as equivalent. To better support the testers when analyzing
the mutants suggested as equivalent, we provide two metrics: the number of test cases that
reached the point where the mutation occurred; and a boolean value indicating whether
the test execution statement coverage of the mutant has changed when compared to
the original program. Lastly, we propose to combine Nimrod with a method to detect
equivalent mutants. This second approach fits into the Madeyiski et al. (MADEYSKI et al.,
2014) Suggesting method.

More detailed information on the approaches we propose, as well as the performed
empirical studies, the results obtained, and the threats to validity show up in chapters 3
and 4, respectively, for the first and second approach.

1.4 CONTRIBUTIONS OF THE THESIS

In summary, the main contributions of this work include two approaches to tackling
useless mutants problems. Regarding the first approach that avoids useless mutants, we
present:

• The definition of a notation (i-rule) to avoid the generation of equivalent and
duplicate mutants (Section 3.3);

18

• A strategy to help identifying new i-rules (Section 3.4);

• We introduce 30 i-rules for equivalent and 69 i-rules for duplicate mutants (Sec-
tion 3.5);

• We report on the results of an empirical study to evaluate some i-rules implemented
in the MuJava mutation tool (Section 3.6);

• We provide MuJava-AUM embedded with 9 and 23 i-rules for equivalent and
duplicate mutants, respectively (Section 3.6).

Regarding our second approach, which suggests equivalent mutants, we present:

• An approach to suggest equivalent mutants based on automated behavioral testing
(Section 4.3);

• A tool that implements and automates the entire approach (namely, Nimrod)
(Section 4.3);

• An evaluation to check the effectiveness and efficiency of our approach on suggesting
equivalent mutants (Sections 4.4 and 4.5);

• A discussion regarding implications for practice of combining the methods Suggesting
Equivalent Mutants and Detecting Equivalent Mutants in order to reduce costs when
dealing with the equivalent mutant problem (Section 4.6).

1.5 ORGANIZATION OF THE THESIS

• Chapter 2 provides a more detailed view of mutation testing and its limitations.

• Chapter 3 details our approach to avoid useless mutants using i-rules.

• Chapter 4 details our approach to suggest the equivalent and non-equivalent mutants
through automated behavioral testing.

• Chapter 5 presents the related works.

• Chapter 6 concludes this thesis by summarizing its contributions and providing
possible avenues for future research.

19

2 MUTATION TESTING AND ITS LIMITATIONS

This chapter exposes the concepts of mutation testing and its limitations. In particular,
the problem of useless mutants. In spite of being succinct, this summary suffices for the
purposes of this work. A more precise introduction of mutation testing can be found
elsewhere (JIA; HARMAN, 2011; OFFUTT; UNTCH, 2000; PIZZOLETO et al., 2019). The rest
of the chapter is organized as follows: we introduce mutation testing concepts (Section 2.1)
through the process analysis (Section 2.1), examples of mutation tools (Section 2.2), the
importance of designing good mutation operators (Section 2.3), and the associated cost of
the technique (Section 2.4). After that, we bring the problem of useless mutants up and
how we can overcome it (Section 2.5).

2.1 THE MUTATION TESTING PROCESS

Mutation testing (also referred to mutation analysis) is a fault-based criterion: it injects
artificial faults in the program under test by creating many copies of the original program,
each one containing one (or more) simple fault(s). Then it executes the test suite against
these copies to check the compliance of the output from that of the original program.

Mutation attempts to simulate real faults by inducing artificial faults to the program
under test. These faults are, in general, simple syntactic changes based on two hypotheses,
namely the competent programmer (ACREE et al., 1979) and the coupling effect (DEMILLO;

LIPTON; SAYWARD, 1978). The competent programmer hypothesis states that programs
written by competent programmers are close to being correct, then the programs require
a few syntactic changes to reach the correct version. And the coupling effect hypothesis
states that test data sets that detect many simple faults are sensitive enough to detect
more complex faults; this way, it is sufficient to inject small defects to simulate or represent
real faults.

Mutation testing has been increasingly studied since first proposed in the 1970s (LIPTON,
1971; DEMILLO; LIPTON; SAYWARD, 1978). Many research papers have appeared on
several points of the mutation process seeking to turn mutation testing into a practical
approach (JIA; HARMAN, 2011; PIZZOLETO et al., 2019; PAPADAKIS et al., 2019). We detail
this process in what follows, indicating the automatic and manual parts.

The main aim of mutation testing is assessing the quality of a given test set or testing
strategy. For this, some steps need to be taken. Offutt and Untch (OFFUTT; UNTCH, 2000)
establish a generic mutation testing process. We illustrate this process in Figure 1.

Based on an original program input 𝑃 provided by the developer (Step 1), the mutation
testing tool generates a set of faulty programs 𝑃𝑛, referred to as mutants, by making
simple syntactic changes from the original program 𝑃 (Step 2). These syntactic changes

20

Figure 1 – Mutation Testing Process

Program Input
P

Generate
Mutants

Pn

Input
Test Cases

T

Run T on P

P (T)
Corrrect?

Yes
Run T on
each Pn

NoFix P

Program

Test Cases

All
mutants
dead?

Quit Yes No
Analyze live

Pn(s)
Is Pn Equivalent?

 No

Step 1 Step 2 Step 3

Step 4

Step 5 Step 6

Step 7

Discard
Pn

Yes

are predefined transformation rules defined by mutation operators. In the next step, a test
set 𝑇 is supplied to the system (Step 3), and we run 𝑇 on 𝑃 (Step 4). In case 𝑇 detects an
error in 𝑃 , it is necessary to fix 𝑃 and start over (Step 5). But if there is no error detected
in 𝑃 , the mutation testing tool executes the test set 𝑇 against each mutant 𝑃𝑛 and check
its correctness (Step 6). If the result of running 𝑃𝑛 is different from the result of running
𝑃 for at least one test case in 𝑇 , then the mutant 𝑃𝑛 is said to be killed. Consequently,
an undetected mutant is referred to as live mutant. In case all mutants have been killed,
the process ends, but if there are live mutants, the developer analyzes each live mutant to
determine their equivalence or to produce a new test case to kill it (Step 7). We talk more
about equivalent mutants in Section 2.5.

Mutation testing tools easily automate steps 2, 4, and 6. Steps 1, 3, 5, and 7, traditionally,
need manual intervention.

The mutation testing tool concludes with an adequacy score to indicate the quality of
the test set 𝑇 . The common adequacy score is the mutation score, which is represented by
the following formula:

𝑀𝑆 = 𝑀𝑘

𝑀𝑡 − 𝑀𝑒

It is the ratio of the number of killed mutants over the total number of mutants minus the

21

total number of equivalent mutants. Where 𝑀𝑡 is the total number of produced mutants,
𝑀𝑘 is the number of killed mutants, and 𝑀𝑒 is the number of equivalent mutants. The
final value of the mutation score ranges between zero and one: the closer the value is to
one, the better the result is.

Regarding the concept of killing a mutant, the necessary conditions for a test 𝑡 to kill a
mutant 𝑚 ∈ 𝑀𝑡 can be described using the reachability, infection, and propagation (RIP)
model (DEMILLO; OFFUTT, 1991).

1. (Reachability): 𝑡 must execute 𝑚’s mutation at least once.

2. (Infection): at least one execution of 𝑚’s mutation must cause 𝑚’s execution state
to differ from that of 𝑝.

3. (Propagation): the infected execution state of 𝑚 must propagate to some observable
output.

This way, three common variants of mutation testing are defined: weak, strong, or firm
mutation. In weak mutation (HOWDEN, 1982), a test kills a mutant if the test execution
leads to a difference between the program state of the mutant and the program state
of the original version immediately after the execution of the mutated point. In other
words, a test 𝑡 kills a mutant 𝑚 if 𝑡 satisfies the Infection condition. In contrast, strong
mutation (DEMILLO; LIPTON; SAYWARD, 1978), often referred to as traditional mutation
testing, requires that this difference propagates to an observable output, i.e., an assertion
failure or an exception. That is, a test 𝑡 kills a mutant 𝑚 if 𝑡 satisfies the Propagation
condition. The weak mutation is less computationally expensive than strong mutation
since we just need to execute the test until the mutated point. However, given that it is
easier to kill weak mutants, then we sacrifice test effectiveness for improvements in test
effort. It raises the question as to what kind of trade-off can be achieved. The idea of firm
mutation (WOODWARD; HALEWOOD, 1988) is to overcome the disadvantages of both weak
and strong mutations by providing a continuum of intermediate possibilities. That is, the
“compare state” of firm mutation lies between the intermediate states after execution (weak
mutation) and the final output (strong mutation). To the best of our knowledge, there is
no publicly available firm mutation tool. Throughout this work, we use the traditional
idea of killing a mutant using strong mutation.

If the test suite does not kill the mutant, we need a new test case to kill the mutant,
or this mutant can be equivalent. At this point, it is worth adding an addendum to the
notion of equivalence used in this work. Despite a mutant representing a valid syntactic
change of the original program, the notion of equivalence applies to the semantics. As
explained, in strong mutation, a mutant and an original program are equivalent if they
present the same externally observable behavior for all possible inputs. However, we can
divide this assumption into two different scenarios; open world and closed world (SOARES;

22

GHEYI; MASSONI, 2013). In an open world assumption (OWA), any kind of test case
can be generated to find out a behavioral change, without regarding the project or code
requirements. In a closed world assumption (CWA), the test cases must satisfy some
domain constraints. For example: “all the tested methods must be invoked through a Facade”
or “there is a strict call sequence of methods to be followed.” In CWA, an equivalent mutant
may, for example, indicate that the test is violating a system requirement, or the system
has a security flaw. In this thesis, we adopt an open-world equivalence notion, which means
there are no constraints in the test generation.

Next, we take a look at some mutation testing tools responsible for the automated
steps previously mentioned.

2.2 MUTATION TESTING TOOLS

To make the mutation testing possible, we need tools. Mutation testing tools tradition-
ally have three primary responsibilities: to generate the mutants, to execute the test suite
against the mutants, and to calculate the adequacy score (mostly the mutation score). In
this work we have selected the following tools to execute these steps: MuJava (MA; OFFUTT;

KWON, 2005; OFFUTT; MA; KWON, 2006), Major (JUST; SCHWEIGGERT; KAPFHAMMER,
2011), and Pit (PITEST, 2017).

MuJava (Mutation System for Java) (MA; OFFUTT; KWON, 2005; OFFUTT; MA; KWON,
2006) is one of the first Java mutation testing tools and has been used in many mutation
testing studies. The tool manipulates the source code of the program under test and
supports two types of mutation operators: class-level and method-level. The class-level
mutation operators were designed for Java classes and handle object-oriented specific
features such as inheritance, polymorphism, and dynamic binding (MA; KWON; OFFUTT,
2002; OFFUTT; MA; KWON, 2006). Method-level (traditional) mutants follow the selective
operator set by Offutt et al. (OFFUTT; PAN, 1996) and handle primitive features of the
languages, such as arithmetic expressions, predicates, and iterative structures. There is no
equivalent mutants detection. In April 2015, MuJava has been released as open-source
under the Apache license.1

Pit (PITEST, 2017) is a mutation testing framework primarily targeted at the industry
but has also served in many research studies. Pit mutates the bytecode, i.e., it does not
compile the code; instead, it modifies the bytecode in memory. Pit only requires the
location of the source code to generate a human-readable report. It employs mutation
operators that affect primitive programming language features. For this work, we extended
Pit to write all generated mutants in the disk. It is important to the manual analysis in
Step 5. Pit has been released as open-source under the Apache license.2

1 <https://github.com/jeffoffutt/MUJAVA> - accessed in October, 2019
2 <https://github.com/hcoles/pitest> - accessed in October, 2019

https://github.com/jeffoffutt/MUJAVA
https://github.com/hcoles/pitest

23

Major (JUST; SCHWEIGGERT; KAPFHAMMER, 2011) integrates into the Java compiler,
in a non-invasive way, and does not require a specific mutation analysis framework. The
tool manipulates the AST of the program under test. The implemented mutation operators
follow a reduced set of operators defined by Offutt et al. (OFFUTT; PAN, 1996), similarly
to MuJava. Major uses mutant schemata (UNTCH; OFFUTT; HARROLD, 1993); i.e., to
reduce the number of generated mutant programs, it produces a metaprogram derived
from the program under study, and each metaprogram contains multiple mutations. Each
mutation is guarded by a conditional statement that can be switched on and off at runtime.
To use the mutant for further equivalence analysis, the tool exports each generated mutant
to an individual source-code file. Major has been released as open-source (Major website
does not specify the license).3

We now discuss the primary responsibility of a mutation testing tool: to generate the
mutants.

2.3 MUTANT GENERATION

Mutation testing tools have a set of mutation operators responsible for creating
the mutants. The first objective of a mutation operator is to mimic typical errors that
programmers can make, such as using the wrong operator or omitting a statement. And
the second objective is to force tests that are usually considered valuable, such as forcing
expressions to have the value zero or forcing the execution of all paths in a conditional
statement.

If a mutant is created by changing one single code location, we say it is a first order
mutant. In case the mutant is generated by changing more than one place, we say it
is a higher order mutant (JIA; HARMAN, 2008). According to the number of changes,
higher-order mutants are termed second-order mutants (if they introduce two changes),
third-order mutants (in the case of three changes), and so on. Tools that implement higher
order mutants are still scarce (MADEYSKI et al., 2014). In this work, we use tools that
create first-order mutants.

Each tool developer designs and implements the set of mutation operators in its way.
To generate the mutants, the mutation operators rely on transformation rules. In general,
one mutation operator can perform one or more transformations in the original program,
where each transformation generates a mutant. For instance, the mutation operator AOR
(Arithmetic Operator Replacement) is present in many mutation testing tools (MA; OFFUTT;

KWON, 2005; JUST; SCHWEIGGERT; KAPFHAMMER, 2011; PITEST, 2017).4 In case this
mutation operator visits the expression x+y, it will generate up to four mutants: x-y, x*y,
x/y, and x%y. It means four different transformations.
3 <https://bitbucket.org/rjust/major-java7> - accessed in October, 2019
4 Some tools might use different names for the same mutation operator.

https://bitbucket.org/rjust/major-java7

24

The design of mutation operators is crucial to the success of the mutation tool. The
tool must generate as few mutants as possible without losing effectiveness, which means
to simulate the maximum number of bugs, but, preferably without incurring in useless
mutants (Section 2.5). Generating hard-to-kill useful mutants, also known as stubborn
mutants (YAO; HARMAN; JIA, 2014), helps developers improve their test suite. Trivial-to-kill
mutants offer no benefits. The task of generating useful mutants, however, is not trivial.
That is because these useful mutants are very dependent on the context (JUST; KURTZ;

AMMANN, 2017). Besides that, the operators are very dependent on the programming
language of choice. For example, the set of operators for Java must be different from the
set of operators for Haskell, since the errors that programmers of these languages make
tend to be different.

Mutation testing tools usually have many transformation rules, generating a broad set
of mutants and consequently increasing the cost of the mutation analysis. Next, we discuss
the main costs associated with mutation testing.

2.4 MUTATION TESTING COSTS

The barriers that prevent the practical use of mutation testing can be classified into
two groups: computational cost and manual labor cost.

The major computational cost of mutation testing arises from the high number of
generated mutants and the high computing time to execute each mutant. Offut and
Untch (OFFUTT; UNTCH, 2000) classify three strategies to solve this problem: do fewer,
do faster, and do smarter. The “do fewer” approaches try to decrease the number of
mutants generated without losing effectiveness. The “do faster” approaches focus on ways
of generating and running the mutants as quickly as possible. The “do smarter” approaches
look for clever solutions to generate and run mutants, such as running only the test cases
that are necessary for each mutant, or distributing the computational cost over several
machines. For a more detailed list of advances in this field, please refer to Pizzoleto et
al. (PIZZOLETO et al., 2019). To make matters worse, in recent work, Papadakis et al.
(PAPADAKIS et al., 2015) highlight the problem of duplicate mutants. That is, two mutants
that are not equivalent to the original program from which they are constructed, but are
equivalent to each other. Thus either one or the other of these two mutually equivalent
mutants can be discarded. Besides generating a high number of mutants, part of these
mutants are duplicate and unnecessary to the analysis.

The other side of the cost problem comes from the manual labor cost, i.e., the amount
of human effort involved to do some tasks. The first one is also known as the Human
Oracle Problem and claims that the developer needs to know the program’s output to
assert a testing criterion. This problem is inherent to all forms of testing. Advances in
automatic test case generation can support this laborious task. The second one is the
Equivalent Mutant Problem (BUDD; ANGLUIN, 1982; MADEYSKI et al., 2014; KINTIS et al.,

25

2018). Although syntactically different from the original program, the mutant can be
semantically equal, which implies that its behavior does not change, when compared to
the original program, for any input data. Thus the developer needs to check whether a
surviving mutant is merely hard to kill (one more test case is necessary) or equivalent (no
test can kill it so that any attempt is futile).

This work focuses on the problems of equivalent and duplicate mutants, which Papadakis
et al. (PAPADAKIS et al., 2015) names useless mutants. The next section depicts in more
detail the problem of useless mutants.

2.5 USELESS MUTANTS

As explained, mutation testing is known to be very costly. Each mutant contributes to
the cost since each mutant must be created, executed, and if it remains alive, be analyzed.
Unfortunately, many mutants are useless. In this work, we use the term useless to represent
equivalent and duplicate mutants.5 These mutants do not incorporate anything to the
mutation testing process (PAPADAKIS et al., 2015).

Equivalent mutants, as explained, occur when the mutant maintains the same behavior
as the original program. This way, there is no test able to kill it. That is, besides the
computational cost of generating and executing the complete test suite, the equivalent
mutant is analyzed to check if it is indeed equivalent and, in turn, discarded from the
analysis.

Budd and Angluin (BUDD; ANGLUIN, 1982) have already proven that the equivalent
mutant problem is an undecidable problem in its general form. Thus, no complete auto-
mated solution exists. To worsen the situation, manually detecting equivalent mutants is
an error-prone and time-consuming task. Acree (ACREE, 1980) showed that 20% of the
studied mutants were erroneously classified, i.e., a killable mutant classified by mistake as
equivalent or vice versa. Shuler et al. (SCHULER; ZELLER, 2013) showed that developers
take, on average, 15 minutes to manually classify a mutant as equivalent or nonequivalent.
This problem becomes quite relevant when empirical studies report that between 4%
and 39% of all the generated mutants are equivalent (MADEYSKI et al., 2014). Therefore
solutions, even partial, can significantly help to reduce this cost.

Duplicated mutants are a more recent problem (PAPADAKIS et al., 2015; KINTIS et al.,
2018). That is if the mutant 𝑃1 is duplicate to the mutant 𝑃2, all the tests that kill 𝑃1 are
precisely the same ones that kill 𝑃2. In other words, a duplicate mutant is non-equivalent
to the original program, but it has the same observable behavior as other mutant(s). In
this case, only one of the duplicate mutants is necessary for mutation analysis. Although
it does not involve a manual effort as equivalent mutants do, duplicate mutants have a
unnecessary computational cost, given that the test set needs to execute against two or
5 In Chapter 6, we discuss other kinds of useless mutants.

26

more mutants that have the same behavior. Papadakis et al. (PAPADAKIS et al., 2015) was
able to detect 21% of the mutants as duplicate. However, this number may be even higher
since the technique proposed by Papadakis et al. does not detect all cases. Besides the
cost, duplicate mutants make the mutation score imprecise, as reported by Kutz et al.
(KURTZ et al., 2016). For example: Consider a set of 10 nonequivalent mutants 𝑀 and a
set of 10 tests 𝑇 . If we execute 𝑇 against 𝑀 and it kills 7 mutants, the mutation score
is 0.7. Now suppose we add ten more mutants to 𝑀 , but all of them are duplicate when
compared to a previously killed mutant in the original set. There are now 20 nonequivalent
mutants, and 17 are killed. Thus the mutation score is 0.85. It shows that without any
real improvement in the test suite, the value of the mutation score has improved. This
example and the high number of possible duplicate mutants highlight the importance of
having solutions to reduce this problem.

Madeyiski et al. (MADEYSKI et al., 2014) listed three methods to overcome the Equivalent
Mutant Problem (which we can also extend to the duplicate mutant problem): Detecting
Equivalent Mutants, Suggesting Equivalent Mutants, and Avoiding Equivalent Mutants. All
three methods have strengths, so they are complementary and do not compete with each
other. In this work, we present two approaches to tackle the useless mutants problem. The
first one focuses on avoiding useless mutants before the generation (do fewer, according to
Offutt and Untch (OFFUTT; UNTCH, 2000)); since we cannot eliminate all useless mutants
before the generation, the second approach suggests the equivalent and non-equivalent
among the live mutants. In the next two chapters, we present these two approaches. The
related works on this topic are presented in Chapter 5.

27

3 AVOIDING USELESS MUTANTS

First things first. To tackle the problem of useless mutants, as a first step, the mutation
testing tools should prevent the generation of certain useless mutants. In what follows, we
depict our first approach to tackle the problem of useless mutants.

3.1 INTRODUCTION

The presence of equivalent and duplicate mutants masks the mutation testing re-
sults (KURTZ et al., 2016; JUST; KAPFHAMMER; SCHWEIGGERT, 2012), and raises human
and computational costs. Previous work (MADEYSKI et al., 2014) reported that the ratio of
equivalent mutants might lie between 4% and 39% of the total of mutants. Only recently,
the duplicate mutants problem has been discussed and tackled. Researchers reported
21% of duplicate mutants in their empirical study (KINTIS et al., 2018). According to
Madeyiski et al. (MADEYSKI et al., 2014), concerning equivalent mutants, most of the
solutions try to detect these mutants after they are generated (detecting or suggesting).
The few solutions (HARMAN; HIERONS; DANICIC, 2000; FERRARI; RASHID; MALDONADO,
2013; WRIGHT; KAPFHAMMER; MCMINN, 2014; KINTIS; MALEVRIS, 2015; PAPADAKIS;

MALEVRIS, 2010) that try to prevent the mutant from being generated either do not
provide practical effectiveness in their outcome, are specialized to domain-specific mutants,
depend on valuable resources, or work with second-order mutants. Regarding the duplicate
mutants, as far as we know, there is no practical solution that tries to avoid the generation
of this kind of useless mutant systematically.

Mutation testing tools create mutations by modifying code using syntax-changing
transformation rules. These transformation rules come embedded in mutation operators.
The design and implementation of the mutation operators are a crucial point in the mutation
testing process. Ideally, the mutation operators should generate few, non-equivalent, non-
duplicate, and hard to kill useful mutants. However, these useful mutants are very dependent
on the context where they are inserted. We believe that the useless mutants problem
starts with the design of the mutation operators. Most of the mutation operators create
useful mutants; however, on certain occasions, they should not generate some mutants.
For instance, in many situations, the mutation operators responsible for the mutants 𝑀2,
𝑀3, and 𝑀4 from Listing 1.1 yield useful mutants but, in that context, those mutants
were equivalent or duplicate.

To avoid the generation of useless mutants, we propose to improve the transformation
rules embedded in the mutation operators. The transformation rules need to consider the
program context information and the other mutation operators selected to be applied. We
call these new improved transformation rules i-rules, but we classify them in two separate

28

classes: d-rule for duplicate mutants and e-rule for equivalent mutants.
To help developers of mutation tools discover these i-rules, we have outlined a strategy.

To use the strategy, we need the following input parameters: a set of programs, a mutation
testing tool, and oracles to automatically identifying equivalent and duplicate mutant
candidates. The strategy indicates occurrence patterns that facilitate us to derive e-rules
and d-rules to avoid the generation of useless mutants in subsequent executions of the
mutation tool.

In this work, we introduce and evaluate the strategy with 100 Java programs1, mutants
generated by three common mutation testing tools (namely, MuJava (MA; OFFUTT; KWON,
2005; OFFUTT; MA; KWON, 2006), Major (JUST; SCHWEIGGERT; KAPFHAMMER, 2011),
and Pit (PITEST, 2017)), and we decided to use a massive set of automatically generated
tests as oracle. The tools Randoop (PACHECO et al., 2007) and EvoSuite (FRASER;

ARCURI, 2011) were responsible to generate the tests. From the 100 programs analyzed,
50 were automatically generated by the JDolly program generator (SOARES; GHEYI;

MASSONI, 2013) and 50 were manually written Java files extracted from open-source
repositories. The three mutation testing tools generate 24,826 mutants. In the end, our
strategy marked 4,957 mutants as equivalent and 2,620 as duplicate. We then analyzed
these mutants and identified 30 e-rules to avoid equivalent mutants and 69 d-rules to
avoid duplicate mutants in the three different mutation tools.

To evaluate the effectiveness of the i-rules on reducing costs, we implement 32 of
them (9 e-rules and 23 d-rules) in the MuJava tool. All the implemented i-rules use
the parser available in the MuJava tool. That is, we did not implement improvements
that require more diligent static analysis (e.g., def-use analysis). To better differentiate
from the original version, we call this tool MuJava-AUM (AUM stands for Avoiding
Useless Mutants). We then executed the MuJava and MuJava-AUM with classes of
well-known projects such as ant, bcel, and commons-lang. As a result, we reduced the
number of mutants by almost 20% on average and saved time to generate the mutants,
thus demonstrating the potential of our approach for reducing mutation costs. These
results are promising because: (i) differently from previous work (PAPADAKIS et al., 2015;
KINTIS et al., 2018; BALDWIN; SAYWARD, 1979; OFFUTT; PAN, 1996; OFFUTT; PAN, 1997;
VOAS; MCGRAW, 1997; HIERONS; HARMAN; DANICIC, 1999; GRÜN; SCHULER; ZELLER,
2009; SCHULER; ZELLER, 2013; SCHULER; DALLMEIER; ZELLER, 2009), we do not generate,
compile, and analyze whether the mutants are useless or not, instead, we avoid such
mutants from being generated; (ii) we can derive more i-rules in case we set our strategy
with different Java constructs; and (iii) we have implemented only a subset of the i-rules
identified. We also evaluate which e-rules and d-rules are most useful and those that may
be excluded, since they are rarely applied. One e-rule (out of 9) is responsible for 90% of
1 We will use the term ‘program’ to represent the input of the strategy, even if, for some cases, this

program represents a single Java file.

29

all equivalent mutants avoided and six d-rules (out of 23) are responsible for approximately
86% of the duplicate mutants avoided. Regarding the execution time, despite the overhead
introduced by the e-rules and d-rules, the payoff amount is 15% on average.

In summary, the main contributions of our first approach include:

• The definition of a common notation (i-rule) to avoid the generation of equivalent
(e-rule) and duplicate (d-rule) mutants (Section 3.3);

• A strategy to help identifying new i-rules (Section 3.4);

• We introduce 30 e-rules and 69 d-rules (Section 3.5);

• We report on the results of an empirical study to evaluate some e-rules and d-rules
implemented in the MuJava mutation tool. In particular, we avoid almost 20%
(on average) of useless mutants in classes from well-known projects, saving time to
generate and compile the mutants (Section 3.6);

• We provide MuJava-AUM embedded with 9 e-rules and 23 d-rules (Section 3.6).

3.2 MOTIVATING EXAMPLE

As mentioned, mutation effectiveness depends largely on the the design of its mutation
operators. Ideally, the mutants generated must be non-equivalent, non-duplicate, and hard
to kill. Previous work (MADEYSKI et al., 2014) reported that the presence of equivalent
mutants could reach 40% of the total mutants generated. The only study that evaluated
the presence of duplicate mutants empirically states that the number of duplicate mutants
can reach 21% (KINTIS et al., 2018).

Some previous work advocate for selective mutation (MATHUR, 1991; OFFUTT; ROTHER-

MEL; ZAPF, 1993), to generate as few mutants as possible without losing effectiveness. In
summary, the idea is to carefully choose a small set of mutation operators that generates
fewer mutants without a significant loss of test effectiveness. Several works have carried
out empirical studies to define the “ideal” set of mutation operators (ADAMOPOULOS;

HARMAN; HIERONS, 2004; DEREZIŃSKA; RUDNIK, 2012; GLIGORIC et al., 2013; BLUEMKE;

KULESZA, 2014; DELGADO-PÉREZ; SEGURA; MEDINA-BULO, 2017). However, recent re-
search (GOPINATH et al., 2016) has shown that existing approaches of selective mutation do
not significantly outperform random selection. The problem is that existing approaches to
selective mutation do not take into account the program context (JUST; KURTZ; AMMANN,
2017). For instance, the ROR (Relational Operator Replacement) mutation operator treats
a relational operator in a for loop the same way as a relational operator in an if statement.
As another example, the existing AOR (Arithmetic Operator Replacement) mutation
operator mutates an arithmetic operator without considering the operands of a binary
expression.

30

publ i c c l ass A {
 pr i vat e i nt f oo;
 publ i c i nt m(i nt bar) {

i f (f oo < bar) {
f oo = f oo + 1;
r et ur n f oo;

}
r et ur n bar ;

 }
}

Original

O

publ i c c l ass A {
 pr i vat e i nt f oo;
 publ i c i nt m(i nt bar) {

i f (f oo < bar) {
f oo = f oo + 1;
r et ur n f oo;

}
r et ur n bar ++;

 }
}

Equivalent

M1

publ i c c l ass A {
 pr i vat e i nt f oo;
 publ i c i nt m(i nt bar) {

i f (f oo < bar) {
f oo = f oo;
r et ur n f oo;

}
r et ur n bar ;

 }
}

Duplicated with M3

M2

publ i c c l ass A {
 pr i vat e i nt f oo;
 publ i c i nt m(i nt bar) {

i f (f oo < bar) {
f oo = f oo * 1;
r et ur n f oo;

}
r et ur n bar ;

 }
}

Duplicated with M2

M3

Figure 2 – Original program and three mutants.

To better illustrate this problem, Figure 2 presents one original program (O) and three
mutants (M1, M2, and M3). Mutant M1 was generated from a mutation operator that
introduces a post increment to a local variable (bar++). Notice that this introduction does
not change the behavior when compared to the original program since the increment would
happen after the function returns and bar is a local variable. In this sense, M1 is equivalent
to O and, as such, useless.2 Mutant M2 was generated from a mutation operator that
removes the right-hand side of the arithmetic expression, yielding foo = foo. In mutant
M3, the mutation operator replaces the + operator by *, yielding foo = foo * 1. M2 and
M3 have the same behavior and thus are duplicate. Therefore, either M2 or M3 is useless.

Mutant M1 was generated from AOIS (Arithmetic Operator Insertion) mutation opera-
tor. AOIS, in the return bar statement, can generate up to four mutants (return ++bar,
return −−bar, return bar++, return bar−−). Note that two mutants are useless and
two mutants are useful. This AOIS operator is known by the community to generate many
mutants and also generates many equivalent ones (KINTIS; MALEVRIS, 2015). However,
this mutation operator also generates many hard-to-kill mutants, which in turn is suitable
for mutation analysis (YAO; HARMAN; JIA, 2014).

Based on this scenario, by eliminating the mutation operator, we also eliminate useful
mutants. More importantly, some of these mutants are avoidable before the generation.

King and Offutt (KING; OFFUTT, 1991) were the first to come up with “restrictions” in
2 A previous work (PETROVIĆ et al., 2018) argues that an equivalent mutant can be productive if its

analysis advances knowledge and code quality.

31

conjunction with the proposed transformations of the mutation operators of the Mothra
mutation tool. The restrictions included conditions, in textual notation, to not generate
mutants when they would be equivalent (in some cases they avoid duplicate mutants,
but they refer to “equivalent to another mutant”). The restrictions presented were very
language-dependent (Fortran), and the textual notation brings some difficulty to establish
a common understanding. Since then, few works have presented preconditions to apply
certain transformations in conjunction with the mutation operators (MADEYSKI et al., 2014;
KINTIS et al., 2018).

Mresa and Bottaci (MRESA; BOTTACI, 1999) analyzed all the mutation operators used
in the Mothra Tool through selective mutation. They sought to determine which operators
had fewer equivalent mutants and, through heuristics, tried to identify the best subset
of mutation operators. By eliminating the mutation operator, we also eliminate useful
mutants for the analysis. For instance, Offutt et al. (OFFUTT; MA; KWON, 2006) observed
that the AMC (Access Modifier Change) mutation operator creates a high number of
useless mutants.3

If the access is strengthened (for example, public to private), the mutated
program usually does not compile — the mutant tries to use a variable that is
out of scope. If the access is weakened, the mutated program is often equivalent

— the mutant can still use the same variables. [...] Thus, the AMC operator
generates uncompilable, equivalent, or redundant mutants, and is not needed in
MuJava. (OFFUTT; MA; KWON, 2006)

However, the same authors recognize that changing the access modifier is a source of
mistakes among developers.

In our experience in teaching OO software development and consulting with
companies that rely on OO software, we have observed that access control is
one of the most common sources of mistakes among OO programmers. The
semantics of the various access levels are often poorly understood, and access
for variables and methods is often not considered during design. It can lead to
hasty decisions during implementation. It is important to note that inadequate
access definitions do not always cause faults initially but can lead to faulty
behavior when the class is integrated with other classes, modified, or inherited
from. (MA; KWON; OFFUTT, 2002)

Indeed, selecting the correct access modifiers in Java can become quite tricky. Nevertheless,
Steimann and Thies (STEIMANN; THIES, 2010a) demonstrated that by negating the
semantics-preserving rules of existing formalized refactoring tools, the AMC operator could
produce useful mutants.
3 The authors also use the therm useless to refer mutants that do not compile.

32

Harman et al. (HARMAN; HIERONS; DANICIC, 2000) proposed the use of program
dependence analysis (a kind of static analysis) to detect the equivalent mutants in a probe
point (weak killing). They did not present experiments nor obtained results. Afterward,
Kintis and Malevris (KINTIS; MALEVRIS, 2015) introduced a static analysis tool that
identifies data-flow patterns and avoids a large portion of equivalent mutants by just
analyzing the original program under test. These techniques are promising but require an
approach based on more in-depth static analysis, which increases the cost of the mutant
generation phase.

Next, we discuss a proposal to avoid equivalent and duplicate mutants by improving
the transformation rules embedded in the mutation operators.

3.3 IMPROVED TRANSFORMATION RULES

The mutation operator observes a program structure looking for a particular syntactic
element where it can be applied. Once found, the mutation operator performs the program
transformations generating the mutants. In general, the transformation rules embedded
in the mutation operators occur purely at the syntactic level. However, when applied in
specific contexts, some transformations end up generating useless mutants, as presented in
Figure 2. The transformation rules need to get a step further to avoid the generation of
these useless mutants, which means considering the program context and also the other
mutation operators selected to be applied.

In this work, we propose to improve the transformation rules embedded in the muta-
tion operators to avoid equivalent and duplicate mutants. We formulate and check the
constraints of a mutation transformation to ensure that performing it has the desired
effect. We divide these improvements into two classes: e-rule and d-rule. An e-rule is an
improvement in the transformation rule regarding avoiding equivalent mutants and states
that no transformation should be applied whatsoever. On the other hand, a d-rule is an
improvement in the transformation rule regarding avoiding duplicate mutants and states
that only one of the transformations should be applied.

An e-rule and a d-rule are similar in several aspects. Because of that we use the term
i-rule to refer to both. We define an i-rule to avoid useless mutants as a triple (𝑡𝑒𝑟𝑚,
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠). We use the following notation to represent an i-rule.

33

i-rule name

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛1

𝑡𝑒𝑟𝑚

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛2

𝑂𝑝1

𝑂𝑝2

constraints
(¬) (𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡1) ∧ (𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡2)

where:

• term is any language construct;

• transformations is a set of mutation operators (𝑂𝑝𝑛) applied to the term or a part
of the term; and

• constraints is a set of conditions on 𝑡𝑒𝑟𝑚 or on the arguments of the mutation
operators in 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 that guarantee that the i-rule indeed avoids useless
mutants.

We interpret an i-rule as follows: If the original program matches the 𝑡𝑒𝑟𝑚 (shown on
the LHS – left-hand side) and the selected mutation operators 𝑂𝑝𝑛 are going to perform
the 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 (shown on the RHS– right-hand side), then the mutation tool checks
the 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠. In case all 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 are met, it means the mutant will be useless and
the mutation tool must: (i) not perform the transformation (e-rule), or (ii) perform only
one of the transformations (d-rule).

As the i-rules presented are valid for the Java programming language, then the
𝑡𝑒𝑟𝑚𝑠 and 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 are expressed using a similar Java notation. However, when
necessary, we replace language constructs with meta-variables. For instance, we use 𝑜𝑝 to
represent any Java binary or unary operator or 𝑣 to represent any identifier of a variable
for a primitive integral type (byte, short, int, long). To omit parts of code that are not
relevant, we use ellipsis (...). Table 1 depicts all meta-variables referred by the i-rules. In
the case where no constraint is necessary, we use ∅.

For all i-rules, we assume the following:

• Before applying an i-rule, all conditions required to perform the transformation by
the mutation testing tool have been met, and the transformation occurs if the i-rule
is not enabled.

34

Table 1 – Meta-variables referred by the i-rules.

Meta-variables Description
𝑜𝑝 any binary or unary operator
𝑒𝑥𝑝 any expression

𝑠𝑚𝑡𝑠 any block of statements
𝑠 any statement
; an empty statement

𝐴, 𝐵 class references
𝑚 method references

𝑣
any identifier of a local variable for a primitive integral type
(byte, short, int, long)

𝑠𝑣 any identifier of a String or Array variable
𝑓 any identifier of a field

𝑑𝑣
the default value of any specified type (i.e., int=0, boolean=false,
char=‘u0000’, double=0.0d, float=0.0f, long=0L, Object=null, etc.)

• All i-rules presented consider only the normal flow of the program execution. In
other words, we are not considering anomalous or exceptional conditions that require
special processing (e.g., exception handling).

Once explained the definition and all the elements involved in an i-rule, we illustrate
an example of e-rule and another example of a d-rule extracted from the Figure 2.

3.3.1 e-rule Example

In Figure 2, the M1 mutant is equivalent to the original program. As explained, the
AOIS (Arithmetic Operator Insertion - shortcut) mutation operator generates up to four
mutations. Once AOIS detects a variable of a numeric type, say 𝑣, in the original program,
it generates: 𝑣 + +, 𝑣 − −, + + 𝑣, and − − 𝑣. However, applying a post-increment or
post-decrement (𝑣 + +, 𝑣 − −) to the last use of a local variable does not change the
behavior of the original program since the increment/decrement would happen after the
method returns. To express this, we define the following e-rule:

35

e-rule:AOIS-01 (MuJava)

𝑚(...){

...

𝑣 + +

𝑠𝑚𝑡𝑠

}

𝑚(...){

...

𝑣

𝑠𝑚𝑡𝑠

}

𝑚(...){

...

𝑣 − −

𝑠𝑚𝑡𝑠

}

𝐴𝑂𝐼𝑆

𝐴𝑂𝐼𝑆

constraints
(¬) (v is declared in m) ∧ (v is not used in smts) ∧ (v is not inside a
loop)

3.3.2 d-rule Example

In Figure 2, the M2 and M3 mutants are duplicate. The reason is: the AORB (Arith-
metic Operator Replacement) mutation operator replaces basic binary arithmetic operators
with other binary arithmetic operators. Once AORB detects an arithmetic operator, say
+, in the term, it replaces the operator with: −, *, /, and %. The CDL (Constant Deletion)
mutation operator removes all occurrences of constant references from every expression.
Once CDL detects a constant literal, say 𝑣 + 1, in the term, it generates: 𝑣. If AORB and
CDL apply to a binary expression with an arithmetic operator (e.g., PLUS (+), or MINUS
(-)), and the right-hand side of the binary expression is the constant ONE (1), and the
AORB transformation replaces the original operator by TIMES (*) or DIVIDE (/), and
the CDL transformation removes the constant ONE, then the mutants are duplicate. To
express this, we use the following d-rule:

36

d-rule|CDL-01

𝑒𝑥𝑝 𝑜𝑝2 1

𝑒𝑥𝑝 𝑜𝑝1 1

𝑒𝑥𝑝

𝐴𝑂𝑅𝐵

𝐶𝐷𝐿

constraints
(¬) (𝑜𝑝1 ∈ {+, −}) ∧ (𝑜𝑝2 ∈ {*, /})

3.3.3 General information: i-rules

We name an e-rule with the mutation operator, followed by a number, because the
same operator can have several e-rules. And in brackets we inform the mutation tool, since
the tools implement a different set of mutation operators and even the same mutation
operator has different transformations in each mutation tool. The name of a d-rule differs
from an e-rule only because it involves more than one mutation operator or more than
one transformation in the same mutation operator.

In a d-rule, only one transformation is required, unlike in an e-rule, where no transfor-
mation is required. By applying a d-rule right before the mutant’s generation, we can avoid
duplicate mutants and save the computational cost of generating the mutant and executing
the test set against it. By applying an e-rule right before the mutant’s generation, we can
avoid equivalent mutants, and besides saving computational cost, we also save human
resource time necessary to check if the surviving mutant is indeed equivalent.

The i-rules can be seen as a common notation to avoid the generation of equivalent
(e-rule) and duplicate (d-rule) mutants by the mutation operators. Besides, it is a low-cost
solution that is easy to incorporate into mutation testing tools when compared to previous
works. However, we realize it is a challenge to reason about the possible useless mutants
before the generation. In particular, when we need to consider the various combinations of
mutation operators and all possible transformations. For that reason, we present a strategy
in the next section to facilitate the discovery of these transformation rule improvements.

3.4 STRATEGY

In this section, we propose a strategy that facilitates the discovery of e-rules and d-rules
in mutation testing tools. In what follows, we first depict the strategy (Section 3.4.1), then
we instantiate the strategy with three different mutation testing tools (Section 3.4.2).

37

3.4.1 Identifying Useless Mutants Candidates

To use the strategy, we need the following input parameters: a set of programs, a
mutation testing tool, and oracles to indicate equivalent and duplicate mutant candidates.

Figure 3 summarizes the strategy.

• Step 1. We begin by providing a set of programs. Any program(s) is supported;
however, we recommend these programs are preferably small because we further
need to analyze them manually to extract the i-rules.

• Step2. For each program, a mutation testing tool generates mutants. We recommend
enabling all mutation operators, thus allowing the generation of the full set of mutants.

• Step 3. Oracles must examine the original program and its mutants to identify
potential equivalent and duplicate candidates. Any solution that automatically
detects or suggests the equivalent and duplicate mutants may be employed.

• Step 4. A program gathers the results from Step 3 and clusters the candidates
according to the mutation operators and transformations applied, and sort these
groups according to the number of candidates. For instance, if the strategy detects
many candidates of duplicate mutants with transformations of the ROR (Relational
Operator Replacement) and COI (Conditional Operator Insertion) operators, the
program clusters these mutants candidates and hints this group as a priority for
manual analysis.

• Step 5. We manually analyze the clusters with more candidates to extract the i-rules.
We reason that clusters with more candidates may indicate an occurrence pattern
that leads to the identification of an e-rule or d-rule. To perform the manual analysis,
we perceive all candidates in a cluster, and if identified a pattern, we perform a
manual slicing. It means we create a simple program that isolates the components
of the program involved with the mutation. We then execute tests (manually or
automatically generated) against this program to bring up behavioral changes. If
no behavioral changes are detected, we work to extract the i-rule that prevents this
useless mutant from occurring again.

Computing tools easily automate steps 2, 3, and 4. Steps 1 and 5, currently, need
manual support. Notice that our strategy is flexible in the sense we can collect programs,
mutants, and oracles from different tools, with different configurations (e.g., restrict to
a subset of mutation operators, or use compiler optimization as an oracle (KINTIS et al.,
2018)). As a result, variations on any of the above steps can help discover different new
i-rules.

38

Figure 3 – Strategy to support the discovering of new i-rules.

Our goal with strategy is to propose a systematic way to look for occurrence patterns
and consequently discover new i-rules that can avoid useless mutants in mutation testing
tools. Despite being a costly process, once discovered an i-rule, the results attained pay off.

This is certainly not the only way to discover new i-rules. A very experienced developer
may be able to extract many i-rules without executing our strategy. This approach
requires a thorough understanding of the programming language semantics and the various
aspects of a language. However, proving transformation correctness for the entire language
constitutes a challenge (as well as refactoring (SCHäFER; EKMAN; MOOR, 2009)). Besides,
transformations made by mutation operators usually have incomplete specifications, which
makes it difficult to think about all possible mutants. Also, leaving the entire process of
reasoning about transformation rules in the hands of the developer is error-prone. For
instance, previous research found bugs in very sophisticated refactoring tools (SOARES;

GHEYI; MASSONI, 2013; MONGIOVI et al., 2017).
Another option would be to formally verify the transformations. For instance, using the

Z3 theorem prover.4 The expressiveness of languages like Java, as well as the complexity of
the modeled systems, makes full formalization an expensive and challenging task. A possible
way in this direction can use a reduced version of the language like Featherweight
Java (IGARASHI; PIERCE; WADLER, 1999) and work on weak mutation. Nevertheless, in
addition to not focusing on the complete semantics of the language, the mutation tool
developers would need a very specific knowledge to formalize the transformations.

Our strategy uses real programs as input parameters and considers the complete
semantics of the language. Besides, by identifying occurrence patterns, the strategy reduces
the task of reasoning about the transformation rules, which can be very difficult when it
involves more than one mutation operator.

Next we instantiate our strategy with a set of Java programs, three mutation testing
4 <https://github.com/Z3Prover/z3>

https://github.com/Z3Prover/z3

39

tools for Java (MuJava, Major, an Pit), and a proposed solution to suggesting useless
mutants.

3.4.2 Instantiating the Strategy

The goal of our experiment consists of analyzing our strategy for the purpose of
discovering new i-rules with respect to MuJava, Major, and Pit mutation testing tools
from the point of view of mutation tool developers in the context of Java programs
automatically generated (first round) and developer written (second round).

We address the following research question:

RQ. How many i-rules can be discovered with the support of our strategy?

We compute the number of e-rules and d-rules found for the three mutation testing
tools. The answer to this question enables us to reason about the practical feasibility of
the strategy.

In what follows, we describe the settings of the conducted experiment and then we
discuss the results.

3.4.2.1 Settings

To answer the question raised above, we executed our strategy in two different rounds.
The main difference between each round occurred in the input program set.

For the first round, we parameterized our strategy with a set of input programs
automatically generated by JDolly (SOARES; GHEYI; MASSONI, 2013); JDolly is an
automated and bounded-exhaustive Java program generator based on Alloy, a formal
specification language (JACKSON, 2012). JDolly receives as input an Alloy specification
with the scope, which is the maximum number of elements (classes, methods, fields, and
packages) that the generated programs may declare, and additional constraints for guiding
the program generation. JDolly uses the Alloy Analyzer tool (JACKSON; SCHECHTER;

SHLYAHTER, 2000), which takes an Alloy specification and finds a finite set of all possible
instances that satisfy the constraints within a given scope. JDolly then translates each
instance found by the Alloy Analyzer to a Java program. It reuses the syntax tree available
in Eclipse JDT for generating programs from those instances. We set JDolly to generate
programs with at most three fields (with or without overwriting), three methods (with or
without overwriting and overloading), and two classes. One class always extends the other
one. We also set JDolly to use only the int and long primitive types.

For the second round, we decided to use developer-written Java files extracted from
open-source repositories. First, we searched for popular Java projects in the GitHub
repository. Through the Github search API, nine projects were extracted. We selected
projects tagged as Java language, and we sorted the projects with more stars. We filtered
out projects related to tutorials, code samples, job interview tips, and so forth. From

40

Table 2 – Base projects that served to extract Java files used in the second round.

Programs Description
Leakcanary Leakcanary is a memory leak detection library for Android.
ElasticSearch Elasticsearch is a distributed RESTful search engine built for the cloud.

Guava Guava is a set of core Java libraries that includes new collection types, graph
library, functional types, an in-memory cache, etc.

Incubator-Dubbo Apache Dubbo (incubating) is a high-performance, Java based open source RPC
framework.

Okhttp Okhttp is an HTTP & HTTP/2 client for Android and Java applications.

RxJava RxJava is a library for composing asynchronous and event-based programs using
observable sequences for the Java VM.

SpringBoot Spring Boot facilitates the creation of stand-alone, production-grade applications
and services with absolute minimum fuss.

Spring Framework Spring Framework provides a comprehensive programming and configuration
model for modern Java-based enterprise applications.

Retrofit Retrofit is a type-safe HTTP client for Android and Java.

The Benchmarks Game The benchmarks game is a project for comparing toy benchmark programs
implemented in different programming languages.

each project selected, we randomly selected five Java files; this resulted in a total of
45 files to analyze.5 Five additional files for this second round were extracted from the
TheBenchMarkGame website6. This site benchmarks programs in different programming
languages. Table 2 presents the projects with a description of the project domain.

In Step 2 of the strategy, we needed a mutation testing tool. In both rounds we used
the same set of tools to generate the mutants, namely, MuJava (MA; OFFUTT; KWON,
2005; OFFUTT; MA; KWON, 2006), Major (JUST; SCHWEIGGERT; KAPFHAMMER, 2011),
and Pit (PITEST, 2017). These tools are popular in the mutation testing community. Each
one adopts a different set of mutation operators and mutant generation techniques. In the
Section 2.2, we depict the main features of these mutation testing tools. Although these
are very mature tools, they do not have embedded solutions to solve some of the inherent
cost problems of useless mutants. Some tools have code to avoid a few equivalent mutants,
such as MuJava that avoids the transformation that excludes the reserved word this, if
the code does not have a local variable with the same name. However, no tool does this
continuously, especially not by focusing on duplicate mutants.

In Step 3 of the strategy, we needed oracles to classify the mutant as equivalent
or duplicate candidate. To perform this task, we decided to use a set of automatically
generated tests. Automated generation of tests is a broad field of research (LAKHOTIA;

MCMINN; HARMAN, 2009; SHAMSHIRI et al., 2015; FRASER et al., 2015). Researchers have
explored different approaches to automatically generate unit tests, such as random test
generation, constraint solver, symbolic execution, and genetic algorithms. Tools such as
5 We sought for files that had little or no dependence on external classes. Classes with many external

dependencies would make manual parsing difficult.
6 <https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/java.html> - accessed on

October, 2019.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/java.html

41

EvoSuite (FRASER; ARCURI, 2011), Randoop (PACHECO et al., 2007), and IntelliTest (LI et

al., 2016) implement such approaches. Although not yet widely adopted by the industry,
these automated unit test generation tools have become very useful in generating input
data that achieve high code coverage (FRASER et al., 2015) and find real faults (SHAMSHIRI

et al., 2015). Our idea was to generate a massive set of tests based on the original program
and execute against the mutants, in an attempt to bring up the behavior change caused
by the transformation. To classify the mutants as equivalent or duplicate candidates, we
proceeded as follows: given a program P, when its test suite T executes against a mutant
M (generated from P), and T does not have any failing test case, M seems not to change
the behavior of the original program P. This way, the solution sets M as an equivalent
mutant candidate. If two mutants generated from P (M𝑖 and M𝑗) have the same non-empty
set of failing test cases in T, the strategy sets M𝑖 and M𝑗 as duplicate mutant candidates.
We are classifying mutants as useless or useful according to strong kill, i.e., for a given
program P, a mutant M of program P is said to be killed only if mutant M gives a different
observable behavior from the original program P.

In order to generate a set of massive tests for the programs, we used Randoop
(PACHECO et al., 2007) and EvoSuite (FRASER; ARCURI, 2011).

• Randoop generates unit tests for Java using a feedback-directed random test
generation. It randomly generates sequences of method/constructor invocations for
the classes under test and creates assertions that capture the actual behavior of the
program within a time limit specified by the user. Randoop is typically used to
create regression tests to warn when the program’s behavior changes.

• EvoSuite is a search-based tool that uses a genetic algorithm to automatically
generate test suites for Java classes. It takes a hybrid approach that generates and
optimizes whole test suites towards satisfying a coverage criterion. It also allows a
combination of different coverage criteria at the same time (e.g., branch coverage and
an exception coverage). EvoSuite can be used on the command line, or through
plugins for popular development tools such as IntelliJ, Eclipse, or Maven.

In both tools, we used the default configuration. However, both require a time limit for
generating the tests. In the first round, with the programs generated by JDolly, we made
small executions and observed that three seconds was enough to Randoop generates a set
of 400-500 unit tests. For the second round, the size and complexity of the programs varied
more, so we limited to 30 seconds the time to generate the tests with both Randoop and
EvoSuite. It allowed Randoop to generate around 3,000 tests for each program, and
EvoSuite, due to its search-based nature, generated more varied sets depending on the
number of methods, conditionals, etc. of the original program.

Although the set of programs used in our experiment are small or made up of just a
single Java file, these programs have a variety of language constructs and make use of

42

Table 3 – Useless mutants candidates identified.

Mutation Tool First Round Second Round
Mutants Equivalents Duplicated Mutants Equivalents Duplicated

MuJava 3,170 592 (18.6%) 1,089 (34.3%) 5,846 875 (14.9%) 509 (8.7%)
Major 816 166 (20.3%) 83 (10.1%) 7,212 1,170 (16.2%) 428 (5.9%)
Pit 1,013 205 (20.2%) 160 (15.7%) 6,769 1,949 (28.7%) 351 (5.1%)
TOTAL 4,999 963 (19.2%) 1,332 (26.6%) 19,827 3,994 (20.1%) 1,288 (6.5%)

different Java language APIs. One might wonder this is a reduced scope when compared to
industrial-scale systems. Nevertheless, this choice makes our entire evaluation feasible, since
we wanted to explore all mutation operators from all mutation tools (47 from MuJava,
9 from Major, and 13 from Pit). Besides, simple programs facilitate manual parsing
and minimize noise when reading and understanding the original and mutated programs.
At this stage of the study, we were interested in verifying the capacity of the strategy to
identify useless mutants candidates and support the developers to extract the i-rules.

3.4.2.2 Results and Discussion

As mentioned, we evaluated 100 Java programs in two different rounds. Table 3
presents the general results.

In the first round, we submitted 50 JDolly programs to the strategy. The three
mutation testing tools generate 4,999 mutants. Our strategy classified 963 (19.2%) mutants
as equivalent candidates and 1,332 (26.6%) mutants as duplicate candidates. In the second
round, we took 50 developer-written Java files extracted from open-source repositories.
The mutation testing tools yielded 19,827 mutants. Our strategy classified 3,994 (20.1%)
mutants as equivalent candidates and 1,288 (6.5%) mutants as duplicate candidates.

Results varied greatly from round to round. The MuJava mutants accounted for
more than 50 percent of the total generated in the first round. As well as the number of
equivalent and doubled candidates. It was an expected result, because in its version four,
MuJava has 47 mutation operators, against 9 from Major and 13 from Pit. Besides,
MuJava is the only one that offers class-level mutation operators. On the other hand,
when we observe the results of the developer-written programs (second round), MuJava
failed to generate mutants in some class files because the parser used is outdated. The
MuJava parser does not recognize language constructs like generics and annotations; thus,
mutations didn’t occur for some of the files analyzed. The Major tool generated only
816 mutants in the first round, which represents a few more than 16% of the total, while
in the second round Major generated 7,212 (36.4%) out of 19,827 mutants. It is because
Major had no problem parsing all files and generating the mutants.

We used automatic test generation tools to suggest useless mutant candidates. This
approach can lead to false positives. In other words, the automatically generated tests were
not enough to cover the code and expose a behavior change. Thus, a mutant is marked as

43

publ i c c l ass Cl assI d_1 {
pr ot ect ed l ong f i el dI d_0;
pr ot ect ed i nt f i el dI d_1;
publ i c l ong met hodI d_1(l ong a) {

i f (f i el dI d_0 > a)
r et ur n f i el dI d_0 = f i el dI d_1 + 1;

r et ur n a;
}

}

Figure 4 – Example of program generated by JDolly.

equivalent or duplicate, but indeed it is not. These cases occurred mostly in the second
round because the complexity of the programs made it difficult to generate an excellent
test suite. Nonetheless, as we order the most common cases to be manually analyzed first,
these false positives became more common near the end when we analyzed clusters with
a lower frequency of candidate mutants, which, in general, do not reveal any occurrence
pattern.

After clustering and sorting the most frequent cases of equivalent and duplicate
candidates, we started the manual analysis. In total, we manually analyzed 4,957 mutants
marked as equivalent and 2,620 mutants marked as duplicate. Two researchers separately
analyzed each case, trying to find the occurrence patterns that lead to extract an i-rule.
Once identified, the researchers removed all Java constructs from input programs that are
not related to the mutations. With a simple program in hand, the researchers create the
mutant and execute tests against the original program and the mutant. If no behavioral
change is detected, then they work to extract the i-rule. The manual analysis is the hardest
part of the strategy. Extracting i-rules is not a trivial task, especially when considering
developer-written programs (second round). The input programs in the first round were
generated by JDolly, where we had partial control over the language constructs. This
enables us to identify patterns and extract i-rules more easily. In this round, the researchers
took an average of 10 to 20 minutes from analyzing a cluster to extracting an i-rule. We
found 48 i-rules. 10 out of the 48 were e-rules and 38 out of the 48 were d-rules. The
i-rules identified were extracted from more common language constructs and manipulating
primitive data types (eg., x = x + 1, or x = y, or return x, or x = m_1()). Figure 4
presents an example of a program generated by JDolly and used in the first round.

On the other hand, only in the second round, with developer-written programs, we
were able to identify patterns and extract i-rules related to more specific API. For instance,
in the second round we found i-rules related to Java collections API, StringBuffer, and
bit shift operations. In this round, the researchers took an average to 30-40 minutes to
extract an i-rule. We found 51 i-rules, 20 out of 51 were e-rules and 31 out of 51 were
d-rules.

44

Answer to RQ: At the end of the two rounds, we identified 30 e-rules and 69 d-rules in
all three mutation testing tools, with the following distribution:

• MuJava: 16 e-rules and 36 d-rules

• Major: 9 e-rules and 14 d-rules

• Pit: 5 e-rules and 19 d-rules

Our results point out that there are possibilities to improve transformations to avoid
useless mutants in all tools.

In the second round, the oracles based on automatic test generation tools against
methods with complex external dependencies led to false positives. Dependency objects
might be challenging to instantiate. Such methods require extra work from the test
generation tools since they need to create mocks (ARCURI; FRASER; JUST, 2017) of these
objects or to discover valid constructors (which in turn may have other dependencies). In
these cases, a sound solution like TCE (Trivial Compiler Equivalence) (KINTIS et al., 2018),
which is a solution based on compiler optimization, can be a better option. Another point
worth noticing is the use of automatic program slicing. We reduced more sophisticated
programs to simpler ones manually. Program slicing can help in this task of identifying
patterns.

Next, we present some of the i-rules found from this experiment. Before that, we
discuss possible threats to the validity of the findings of the present study.

3.4.2.3 Threats to validity

Although the study’s objective was to verify the feasibility of the strategy, like any
empirical study, threats can affect the validity of the results achieved.

The set of Java programs we used is a threat to external validity. To alleviate this
problem, we performed two rounds with automatically generated programs and programs
written by developers. This setup helped us to derive 99 new i-rules. Besides, the small
programs allowed us to enable all available mutation operators from the three mutation
tools we used in this paper.

Despite instantiating and executing the strategy only in Java programs, there is
nothing particular to Java in our strategy. It means that it does not depend on the
programming language. To use our strategy in a programming language 𝑝, all we need to
do is to have a set 𝑝 of input programs, a mutation testing tool that works with 𝑝, and
oracles to detect or to suggest useless mutants.

Faults in embedded software can also be a threat. For instance, automatic test generators
or mutation testing tools may have faults. In turn, such faults would push down the results.

45

publ i c c l ass Cl assI d_0 ext ends Cl assI d_1 {
 publ i c l ong m_0() {
 r et ur n super . f _0;
 }
}

Original ISD

(a)

publ i c i nt m_0(i nt p_0) {
 p_0 = p_0 * f _1;
 . . .
}

Original

publ i c c l ass Cl assI d_0 ext ends Cl assI d_1 {
 publ i c l ong m_0() {
 r et ur n f _0;
 }
}

(b)

AOIS

publ i c i nt m_1(St r i ng ar gs) {
 i f (ar gs. l engt h > 0) { . . . }
 . . .
}

Original ROR

(c)
publ i c i nt m_1(St r i ng ar gs) {
 i f (ar gs. l engt h ! = 0) { . . . }
 . . .
}

publ i c i nt m_1(i nt p_0) {
 p_0 = ~f _1;
 . . .
}

Original LOI

(e)

LOD

publ i c i nt m_1() {
 i f (f _0 > 10) { . . . }
 . . .
}

Original ROR

(f)

SDL

publ i c voi d m_2(St r i ng ar gs) {
 i f (ar gs. l engt h > 0) {
 f _0 = 1;
 }
}

Original SDL

(g)

SDL

publ i c i nt m_1(i nt p_0) {
 p_0 = ~~f _1;
 . . .
}

publ i c i nt m_1(i nt p_0) {
 p_0 = f _1;
 . . .
}

publ i c i nt m_1() {
 i f (f al se) { . . . }
 . . .
}

publ i c i nt m_1() {
 / * i f (f _0 > 10) { . . . } * /
 . . .
}

publ i c voi d m_2(St r i ng ar gs) {
 / * i f (ar gs. l engt h > 0) {
 f _0 = 1;
 } * /
}

publ i c voi d m_2(St r i ng ar gs) {
 i f (ar gs. l engt h > 0) {
 / * f _0 = 1; * /
 }
}

publ i c st at i c St r i ng j oi n(i nt . . . val ues) {
 . . .
 St r i ngBui l der sb =
 new St r i ngBui l der (val ues. l engt h * 4) ;
}

Original AOR

(d)
publ i c st at i c St r i ng j oi n(i nt . . . val ues) {
 . . .
 St r i ngBui l der sb =
 new St r i ngBui l der (val ues. l engt h + 4) ;
}

pr i vat e Ci t y c i t y ;
i nt f () {
 . . .
 r et ur n c i t y. popul at i on() ;
}

Original ReturnVals

(h)

NonVoidMethodCall

pr i vat e Ci t y c i t y ;
i nt f () {
 . . .
 r et ur n 0;
}

pr i vat e Ci t y c i t y ;
i nt f () {
 . . .
 r et ur n 0;
}

publ i c c l ass Cl assI d_0 ext ends Cl assI d_1 {
 pr i vat e i nt f _0 = 1;
 publ i c voi d m_0() {
 f _0 = m_1() ;
 }
 publ i c i nt m_1() {
 r et ur n super . m3() ;
 }
}

Original MemberVariable

(i)

ReturnVals

publ i c i nt m_0(i nt p_0) {
 p_0 = p_0++ * f _1;
 . . .
}

publ i c c l ass Cl assI d_0 ext ends Cl assI d_1 {
 pr i vat e i nt f _0 = 1;
 publ i c voi d m_0() {
 f _0 = 0;
 }
 publ i c i nt m_1() {
 r et ur n super . m3() ;
 }
}

publ i c c l ass Cl assI d_0 ext ends Cl assI d_1 {
 pr i vat e i nt f _0 = 1;
 publ i c voi d m_0() {
 f _0 = m_1() ;
 }
 publ i c i nt m_1() {
 r et ur n 0;
 }
}

Figure 5 – Code snippets extracted from programs used in the execution of the strategy.

Thus, it is unlikely that these faults would influence our results to a great extent.
Our solution to suggest useless mutants candidates can lead to false positives. This

threat may lead to the construction of a wrong i-rule. To minimize this threat, we relied
on manual inspection by two different researchers. Besides, all our subjects, tools, and
data are available on the companion website of the present paper (FERNANDES et al., 2020).
It helps to reduce all the threats mentioned above since independent researchers can check,
replicate, and analyze our findings.

3.5 DISCOVERED I-RULES

In the previous section, we proposed a strategy that helps developers of mutation tools
discover the so-called i-rules. We experimented the strategy with a set of 100 programs

46

and discovered 30 e-rules and 69 d-rules in three different Java mutation tools; MuJava,
Major, and Pit. In this section, we depict several examples of i-rules derived from the
results of executing the strategy. Due to space constraints, we detail just a few of the
identified i-rules. The complete list is at the article’s companion website (FERNANDES et

al., 2020).

3.5.1 e-rules

In what follows, we present three e-rules found during the execution of the strategy.
To better explain the e-rules identified, we refer to four code snippets in Figure 5 (a–d).
The left box represents a code snippet from the original program. The subsequent boxes
present examples of equivalent mutants. The mutation operator applied is at the top of
the boxes, and the transformations are highlighted.

3.5.1.1 ISD-01 (MuJava)

Figure 5(a) illustrates an example of an equivalent mutant derived from ISD (super
keyword deletion), a MuJava mutation operator. The ISD deletes the super keyword from
the 𝑠𝑢𝑝𝑒𝑟.𝑓0 term. In case 𝑓0 exists only in the superclass, the e-rule would prevent the
mutation testing tool from applying some transformations, avoiding equivalent mutants.
To express this, we defined the following e-rule:

47

ISD-01 (MuJava)

𝑐𝑙𝑎𝑠𝑠 𝐴{

...

𝑓

...

}

𝑐𝑙𝑎𝑠𝑠 𝐵 𝑒𝑥𝑡𝑒𝑛𝑑𝑠 𝐴{

...

𝑚(...){

...

𝑠𝑢𝑝𝑒𝑟.𝑓

...

}

...

}

𝑐𝑙𝑎𝑠𝑠 𝐴{

...

𝑓

...

}

𝑐𝑙𝑎𝑠𝑠 𝐵 𝑒𝑥𝑡𝑒𝑛𝑑𝑠 𝐴{

...

𝑚(...){

...

𝑓

...

}

...

}

𝐼𝑆𝐷

constraints
(¬) (𝑓 is declared in A) ∧ (there is no declaration of 𝑓 in 𝐵)

3.5.1.2 AOIS-02 (MuJava)

Next, Figure 5(b) presents a second example of an equivalent mutant from the MuJava
tool. As explained in Section 3.3.1, the AOIS operator inserts post-increment, post-
decrement, pre-increment, and pre-decrement operators into a numeric variable. However,
applying a post-increment or post-decrement (𝑝0 ++, 𝑝0 −−) generates equivalent mutants
if the transformation occurs in the last use of a variable in a right-hand side (RHS) of
an assignment statement, and the same variable is on the left-hand side (LHS) of the
assignment. To express this, we defined the e-rule:

48

AOIS-02 (MuJava)

𝑣 = 𝑒𝑥𝑝 𝑜𝑝 𝑣 + +

𝑣 = 𝑒𝑥𝑝 𝑜𝑝 𝑣

𝑣 = 𝑒𝑥𝑝 𝑜𝑝 𝑣 − −

𝐴𝑂𝐼𝑆

𝐴𝑂𝐼𝑆

constraints
(¬) (𝑣 appears in the LHS and RHS of an assignment statement) ∧ (𝑣 on
the RHS is the last use of 𝑣 in the statement)

3.5.1.3 ROR-01 (Major)

We now present an e-rule extracted from the Major mutation tool (but it is also present
in MuJava). Figure 5(c) shows a code example to better explain this e-rule. The ROR
(Relational Operator Replacement) mutation operator replaces relational operators with
other relational operators and replaces the entire predicate with true and false. However,
in case one side of the relational expression is a String.length or an Array.length and
the other side is the literal constant 0, then some transformations are useless, as the size
of a string or array cannot be negative. To express this, we defined the following e-rule:

ROR-01 (Major)

𝑖𝑓(𝑠𝑣.𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑝1 0){...} 𝑖𝑓(𝑠𝑣.𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑝2 0){...}𝑅𝑂𝑅

constraints
(¬) (𝑜𝑝1 ∈ {<} ∧ 𝑜𝑝2 ∈ {! =}) ∨
(𝑜𝑝1 ∈ {! =} ∧ 𝑜𝑝2 ∈ {<}) ∨
(𝑜𝑝1 ∈ {>} ∧ 𝑜𝑝2 ∈ {! =}) ∨
(𝑜𝑝1 ∈ {! =} ∧ 𝑜𝑝2 ∈ {>}) ∨
(𝑜𝑝1 ∈ {==} ∧ 𝑜𝑝2 ∈ {<=})

3.5.1.4 AOR-01 (Major)

Figure 5(d) presents another example of an equivalent mutant derived from the Ma-
jor mutation tool (but it is also present at MuJava). The AOR (Arithmetic Operator
Replacement) mutation operator replaces one arithmetic operator by others. However,
applying the AOR transformation inside a StringBuilder constructor can generate equiv-
alent mutants. The int parameter inside the StringBuilder constructor allocate the
internal buffer. If the internal buffer overflows, it is automatically extended. Then, the
resulted value inside the constructor does not change the behavior of the program, as long

49

as constraints hold: the resulted value cannot be less than zero (the constructor raises
NegativeArraySizeException).

To express this, we defined the following e-rule:

AOR-01 (Major)

𝑛𝑒𝑤 𝑆𝑡𝑟𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑒𝑟(𝑒𝑥𝑝1 𝑜𝑝1 𝑒𝑥𝑝2) 𝑛𝑒𝑤 𝑆𝑡𝑟𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑒𝑟(𝑒𝑥𝑝1 𝑜𝑝2 𝑒𝑥𝑝2)𝐴𝑂𝑅

constraints
(¬) (𝑜𝑝2 does not turn the resulted value to negative)

3.5.2 d-rules

In what follows, we present three d-rules found during the execution of the strategy. To
better explain the d-rules we identified, we refer to four code snippets in Figure 5 (namely,
5(e) to 5(h)). The left-hand side represents a code snippet from the original program. The
two right-hand side boxes present examples of duplicate mutants. Different from an e-rule,
that states that no transformation should be applied, a d-rule states that only one of the
transformations should be applied.

3.5.2.1 LOI|LOD-01 (MuJava)

Figure 5(e) presents an example of a duplicate mutant derived from MuJava. The
code snippet contains a bitwise complement operator (∼), which flips bits (e.g., 00000010
becomes 11111101). The LOI (Logical Operator Insertion) mutation operator inserts
a bitwise complement operator before the expression, and the LOD (Logical Operator
Deletion) mutation operator removes the bitwise complement operator. This way, if the
original expression already contains this operator (∼f_0), then, by applying LOI (∼∼f_0)
and LOD (f_0) the mutants will be duplicates. We define a d-rule to identify this case as
follows.

LOI|LOD-01 (MuJava)

∼∼ 𝑒𝑥𝑝

∼ 𝑒𝑥𝑝

𝑒𝑥𝑝

𝐿𝑂𝐼

𝐿𝑂𝐷

constraints
(¬) ∅

50

3.5.2.2 ROR|SDL-01 (MuJava)

Figure 5(f) illustrates an example of a duplicate mutant generated from a transformation
of ROR and SDL mutation operators. In case the original code snippet contains an
if statement, the ROR operator (Relational Operator Replacement) sets the boolean
expression to false (i.e., the if body will not be executed), whereas the SDL operator
(Statement Deletion) deletes the entire if statement. In this context, these mutants are
duplicate. We do not define constraints beyond those already required by the definition of
𝑡𝑒𝑟𝑚 and 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠. To express this, we define the following d-rule:

ROR|SDL-01 (MuJava)

𝑖𝑓(𝑓𝑎𝑙𝑠𝑒) {...}

𝑖𝑓 (𝑒𝑥𝑝1 𝑜𝑝 𝑒𝑥𝑝2) {...}

/ * 𝑖𝑓 (𝑒𝑥𝑝1 𝑜𝑝 𝑒𝑥𝑝2) {...} * /

𝑅𝑂𝑅

𝑆𝐷𝐿

constraints
(¬) ∅

3.5.2.3 SDL|SDL-01 (MuJava)

For the next d-rule, we avoid duplicate mutants that are generated by the same
mutation operator. This is illustrated in Figure 5(g). In the first mutant, the SDL operator
(Statement Deletion) deletes the entire if statement; in the second one, it deletes the
only statement within the if body. Notice that both mutants are duplicate, as long as
constraints hold: the if expression has no side effect7. In this rule, term matches an if

statement containing only one statement without else.
7 A side effect expression, besides calculating a value, modifies the state (i.e., the memory), such as by

an assignment (simple or combined) or an increment/decrement.

51

SDL|SDL-01 (MuJava)

/ * 𝑖𝑓 (𝑒𝑥𝑝) { 𝑠 } * /

𝑖𝑓 (𝑒𝑥𝑝) { 𝑠 }

𝑖𝑓 (𝑒𝑥𝑝) {/ * 𝑠 * /}

𝑅𝑂𝑅

𝑆𝐷𝐿

constraints
(¬) (𝑒𝑥𝑝 has no side effect)

3.5.2.4 ReturnVals|NonVoidMethodCall-01 (Pit)

Figure 5(h) presents an example of duplicate mutants derived from Pit tool. The
ReturnVals operator (Return Values Mutator) mutates the return values of method calls.
The NonVoidMethodCall operator (Non-Void Method Call Mutator) removes calls to
non-void methods. In case the expression contained in the return statement is a method
call, then the value is replaced by the Java default value for that specific type in both
mutation operators (it works for: boolean, int, byte, short, or object). To express this,
we define the following d-rule.

ReturnVals|NonVoidMethodCall-01 (Pit)

𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑒𝑓 ;

𝑟𝑒𝑡𝑢𝑟𝑛 𝑚(...)

𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑒𝑓 ;

𝑅𝑒𝑡𝑢𝑟𝑛𝑉 𝑎𝑙𝑠

𝑁𝑜𝑛𝑉 𝑜𝑖𝑑𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑙

constraints
(¬) (the type of 𝑚 is boolean, int, byte, short, or object)

3.5.3 Implementing the i-rules

To be effective, the i-rule needs to be implemented in a mutation testing tool so
that we can see a reduction in useless mutant numbers, and consequently, a reduction
in computational and human resource costs. Our findings show that much of the i-rules
we discovered can be easily implemented using the resources already available in the
mutation tools. However, some i-rules identified need more than just navigating through
the Abstract Syntax Tree (AST) to be implemented. They require advanced static analyses,

52

like def-use analysis (NIELSON; NIELSON; HANKIN, 1999).
To illustrate this scenario, consider the code snippet presented in Figure 5(i). The

MemberVariable (Member Variable Mutator) mutation operator replaces member variable
assignments with default values. The ReturnVals (Return Values Mutator) mutation
operator, on the other hand, mutates the return value of methods. If there is an assignment
to a member variable and on the RHS of the assignment there is a method call; the
mutants can be duplicate as long as constraints hold: there is no other call to the method,
the called method has no side effect, and there is only one flow to return in the called
method. The constraints imposed to ensure these mutants are duplicates require advanced
code analysis. However, mutation testing tools usually do not have this type of static
analysis. To express the case mentioned above, we define the following d-rule:

MemberVariable|ReturnVals-01 (Pit)

𝑚1(...){
...
𝑡ℎ𝑖𝑠.𝑓 = 𝑑𝑣;
...

}
𝑚2(...){

...
𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑥𝑝;

}

𝑚1(...){
...
𝑡ℎ𝑖𝑠.𝑓 = 𝑚2(...);
...

}
𝑚2(...){

...
𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑥𝑝;

}

𝑚1(...){
...
𝑡ℎ𝑖𝑠.𝑓 = 𝑚2(...);
...

}
𝑚2(...){

...
𝑟𝑒𝑡𝑢𝑟𝑛 𝑑𝑣;

}

𝑀𝑒𝑚𝑏𝑒𝑟𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑅𝑒𝑡𝑢𝑟𝑛𝑉 𝑎𝑙𝑠

constraints
(¬) (the type of 𝑚2 is boolean, int, byte, short, or object) ∧ (there is no other
call to 𝑚2) ∧ (𝑚2 has no side effect) ∧ (there is only one return statement in
𝑚2)

53

We identified the majority of the i-rules by using the MuJava mutation testing tool.
In addition, when compared to Major and Pit, MuJava achieves one of the best results
on simulating real faults (KINTIS et al., 2016; KINTIS et al., 2018). This way, we selected
MuJava version 4 to implement our i-rules8. We have decided to implement only the
i-rules that are possible using the same resources available in MuJava. That is, we used
the same libraries to navigate throughout the Abstract Syntax Tree (AST) of a given
program. i-rules that need more advanced static analysis to be implemented, like def-use
analysis, are out of the scope of this work. For this work, we have implemented 32 i-rules
(9 e-rules and 23 d-rules). We name this tool MuJava-AUM (AUM stands for Avoiding
Useless Mutants). Therefore, MuJava-AUM is a new version of MuJava with 32 i-rules
implemented to prevent useless mutants. In the next section, we present an empirical
study to evaluate the e-rules and d-rules implemented in MuJava-AUM.

3.6 EVALUATING THE IMPLEMENTED I-RULES

In this section, we present our experiment to evaluate the cost reduction of mutation
testing with the implemented i-rules. First, we introduce the goal, the research questions,
and metrics used in our study (Section 3.6.1). Thus, Sections 3.6.2 and 3.6.3 detail the
experimental setup and the procedure to reproduce the study. Lastly, Sections 3.6.4 and
3.6.5 discuss the results and the threats to validity.

3.6.1 Goal and Research Questions

We have structured the experiment definition using the Goal-Question-Metric (GQM)
(Basili; Rombach, 1988). The GQM template of the experiment is summarized in Figure 6.

The purpose of this study is to evaluate the cost reduction of mutation testing in
industrial-scale systems by avoiding the generation of useless mutants with the implemented
i-rules in MuJava. In particular, our experiment addresses the research questions RQ1,
RQ2, and RQ3 in Figure 6.

To answer RQ1, we execute MuJava and MuJava-AUM and log all the generated
mutants. Then, we get all useless mutants generated by MuJava but identified and avoided
by MuJava-AUM. This step is essential to validate our i-rules implementation and to
confirm whether the avoided mutants are indeed useless or not. We then compute the
reduction in the number of equivalent and duplicate mutants avoided by MuJava-AUM.

To answer RQ2, we verify the proportion of useless mutants avoided by each e-rule
and d-rule in comparison to the total of avoided mutants. This way, we identify the most
useful i-rules and those unnecessary, since they are rarely applied.
8 <https://github.com/jeffoffutt/muJava>

https://github.com/jeffoffutt/muJava

54

G
O

A
L

Q
U

E
S

T
IO

N
M

E
T

R
IC

Evaluating the cost reduction of mutation
testing in industrial-scale systems by

avoiding the generation of useless mutants
with the implemented i-rules in MuJava.

RQ1. How many useless mutants
can be avoided, in industrial-scale

systems, with the implemented
i-rules?

RQ2. Which i-rules apply most to
avoid equivalent (e-rule) and
duplicated mutants (d-rule)?

RQ3. What is the overhead of
executing the implemented i-rules

in industrial-scale systems?

Number of mutants
generated with

MuJava.

Number of mutants
generated with
MuJava-AUM.

Time to generate and
compile the mutants

with MuJava .

Time to generate and
compile the mutants
with MuJava-AUM.

The equivalent and
duplicated mutants

avoided by the i-rules.

Proportion of useless
mutant avoided by each

e-rule and d-rule.

Figure 6 – Goal-Question-Metric Template

Lastly, to answer RQ3, we re-execute MuJava and MuJava-AUM, and then we
compare the time taken by MuJava and MuJava-AUM to generate and compile the
mutants.

3.6.1.1 Subjects

As we derived our i-rules from automatically generated or small-sized Java programs,
it is important to verify if the i-rules implemented can reduce the mutation testing
costs in industrial-scale systems. Then, we selected six open-source projects that vary
in size and application domain. These projects are commonly used in mutation testing
research (KINTIS et al., 2018; PAPADAKIS et al., 2015; JUST et al., 2014; KINTIS; MALEVRIS,
2015). We list the projects in Table 4. To make our analysis feasible, we follow the same
procedure applied by Kintis et al. (KINTIS et al., 2018). For each project, we rank all
packages according to their size. Then, we select the three largest classes that could be
handled without a problem by MuJava9 among the four largest packages. This way, we
selected classes of different sizes. In this particular setup, we focus on 72 classes, 12 per
project.

3.6.2 Experimental Setup

As explained, we identified the majority of the i-rules by using the MuJava mutation
testing tool, and we developed MuJava-AUM, a new version of MuJava with 32 i-rules
9 MuJava 4 uses the OJ 1.1 (<https://www.csg.ci.i.u-tokyo.ac.jp/openjava/>) parser. This parser does

not support some Java constructs, such as generics and for-each loops.

https://www.csg.ci.i.u-tokyo.ac.jp/openjava/

55

Table 4 – Open-source projects used in this experiment.

System Domain Classes (LoC)

ant-1.8.4 Build
system

DirectoryScanner (855) , AntClassLoader (783),
Main (773), taskdefs.Jar (716), taskdefs.Javac (667),
taskdefs.Copy (665), util.LayoutPreservingProperties (497),
util.FileUtils(711), util.JavaEnvUtils(282), types.Path (427) ,
types.RedirectorElement (377), types.XMLCatalog (555)

bcel-5.2 Bytecode
manipulation

classfile.ConstantPool(201), classfile.DescendingVisitor (277),
classfile.JavaClass (537), generic.ConstantPoolGen (501),
generic.InstructionFactory (563), generic.MethodGen (721),
util.BCELFactory (263),~ util.InstructionFinder (225),
util.CodeHTML (430),~ structurals.InstConstraintVisitor (1777),
structurals.ExecutionVisitor (942), structurals.OperandStack (154)

commons-lang-2.4 Java core
classes

ArrayUtils (1824), Entities (380), StringUtils (2001),
builder.CompareToBuilder (450), builder.HashCodeBuilder (323),
builder.ToStringBuilder (328), math.DoubleRange (189),
math.Fraction (461), math.NumberUtils (715), text.StrBuilder (1363),
text.StrSubstitutor (328), text.StrTokenizer (481)

commons-math-1.2 Math
library

analysis.MullerSolver (190), ode.GraggBulirschStoerIntegrator (509),
analysis.BrentSolver (130), distribution.BinomialDistributionImpl (83),
linear.MatrixUtils (111), ode.GraggBulirschStoerStepInterpolator (193),
linear.RealMatrixImpl (583), distribution.NormalDistributionImpl (102),
linear.BigMatrixImpl (724), DormandPrince853StepInterpolator (186),
analysis.LaguerreSolver (179), distribution.CauchyDistributionImpl (93)

h2-1.0.79 Database
application

tools.Shell (557), tools.SimpleResultSet (1337),
jdbc.JdbcConnection (1432), jdbc.JdbcResultSet (2433),
jdbc.JdbcDatabaseMetaData (1300), expression.Aggregate (508),
expression.CompareLike (448), expression.Comparison (447),
command.CommandRemote (255), tools.Recover (1552),
command.CommandContainer (120), command.Parser (6518)

joda-time-2.4 Date and time
utility

LocalDate (749), LocalDateTime (829), Period (560)
chrono.BasicMonthOfYearDateTimeField (205),
chrono.BasicWeekyearDateTimeField (129), ZoneInfoProvider (170),
chrono.GJLocaleSymbols (204), format.DateTimeFormat (513),
format.DateTimeFormatter (406), format.FormatUtils (291),
tz.CachedDateTimeZone (157), tz.FixedDateTimeZone (67)

implemented to prevent useless mutants. This tool is available online.10 The i-rules can
be easily enabled or disabled. If the rules are enabled, MuJava-AUM does not generate
the useless mutants identified by the i-rules. Otherwise, MuJava-AUM generates all
mutants, the same way as the original MuJava version does. However, it always labels
the useless mutants that would be avoided. For this study, we call these labeled mutants
as useless mutants candidates. This decision is necessary to validate if the i-rules were
implemented correctly. To support us in the process of validating the i-rules, we submit
the original classes and the useless mutants candidates to a sound tool, TCE (Trivial
Compiler Equivalence) (KINTIS et al., 2018). Given two Java files (original versus mutant
or mutant versus mutant), TCE applies compiler optimizations and check their bytecode.
In case they are the same, TCE guarantees that the files have the same behavior (which
10 <https://github.com/easy-software-ufal/muJava-AUM>

https://github.com/easy-software-ufal/muJava-AUM

56

means they are equivalent or duplicate).
All necessary information to collect the metrics are logged into the file system during

MuJava and MuJava-AUM execution. We performed the evaluation on a 2.70 GHz
four-core PC with 16 GB of RAM equipped with a Ubuntu 17.10 operating system. In
what follows, we detail the procedure to reproduce the experiment.

3.6.3 Procedure

To carry out our evaluation, we execute the GUI version of MuJava and MuJava-
AUM. In particular, we execute MuJava-AUM with the i-rules disabled. In this configu-
ration, the mutants are generated the same way as the original MuJava, but all equivalent
and duplicate mutants are labeled. We proceed in this way to access the mutants that would
be avoided, and these mutants are later submitted to the TCE tool and, subsequently, to
manual analysis to confirm that they are indeed useless. For each subject, we select the 12
classes to be evaluated (in total 72 classes), then check all method-level and class-level
mutation operators available and trigger the mutation tool to generate the mutants. In
total, 47 mutation operators are available in version 4 of MuJava.

At the end of each subject’s mutant generation, we gather the results. To confirm
that the i-rules are defined and implemented correctly, we validate through two steps. In
the first step, we submit the useless mutants candidates to TCE. In the case of mutants
labeled as equivalent, TCE compares the bytecode of the mutant with the original program.
Otherwise, in the case of duplicate, TCE compares the bytecode of the mutant with
the other mutants. If TCE guarantees that the files are equivalent, we consider that the
i-rule is correct. For cases TCE cannot confirm that mutants are equivalent or duplicate,
we proceed to the second step. In the second step, we manually analyze a subset of
those mutants. For each class (out of 72), we randomly select 10% of the useless mutants
identified by each i-rule. To better explain this selection, suppose we have 100 useless
mutants identified by four of our i-rules and not confirmed by TCE (50 by e-rule A, 30 by
d-rule B, 10 by e-rule C, and 10 by d-rule D). In this situation, we randomly select 10% of
mutants identified per i-rule, i.e., 5 from e-rule A, 3 from d-rule B, 1 from e-rule C, and 1
from d-rule D. In this way, our manual analysis comprised all i-rules we implemented in
MuJava-AUM. This procedure is enough to collect the metrics to answer the RQ1 and
RQ2.

To verify the overhead introduced by the i-rules and answer RQ3, we follow a slightly
different approach. We generate and compile the mutants with MuJava and MuJava-
AUM, selecting the same six open-source projects to compute the time. But, at this time,
we enable the i-rules, such that useless mutants do not generate. And we also execute the
original MuJava version. In both cases, we execute each subject three times and consider
the average time.

57

Table 5 – Results of executing MuJava-AUM.

Project Mutants #(%) Confirmed by TCE

ant 12,894 Eq. 241(1.87%) 89(36.93%)
Dup. 2,856(22.15%) 2,344(82.07%)

bcel 17,558 Eq. 352(2.00%) 239(67.90%)
Dup. 3,053(17.39%) 2,462(80.64%)

commons-lang 34,194 Eq. 1,374(4.02%) 973(70.82%)
Dup. 6,774(19.81%) 5,783(85.37%)

commons-math 21,970 Eq. 336(1.53%) 258(76.79%)
Dup. 3,028(13.78%) 2,530(83.55%)

h2 35,698 Eq. 973(2.73%) 812(83.45%)
Dup. 5,160(14.45%) 4,291(83.16%)

joda-time 12,703 Eq. 754(5.94%) 608(80.64%)
Dup. 1,822(14.34%) 1,449(79.53%)

TOTAL 135,017 Eq. 4,030(2.98%) 2,979(73.92%)
Dup. 22,693(16.81%) 18,859(83.10%)

The list of tools, programs, and result data are available on our companion web-
site (FERNANDES et al., 2020).

3.6.4 Results and Discussion

This section presents the results and answers for the research questions.

3.6.4.1 How many useless mutants can be avoided, in industrial-scale systems, with the
implemented i-rules?

Table 5 presents the general results of executing MuJava and MuJava-AUM. For each
subject, we present the name of the project (“Project” column), the number of mutants
generated by MuJava (“Mutants” column), the number of equivalent and duplicate
mutants that our i-rules avoided (“#(%)” column), and the number of useless mutants
confirmed by TCE (“Confirmed by TCE” column). These results support us in discussing
RQ1. In total, the 12 subjects were responsible for 135,017 mutants. MuJava-AUM
avoided the generation of 4,030 equivalent and 22,693 duplicate mutants. It represents,
respectively, 2.98% and 16.81% of the total generated mutants. TCE confirmed 2,979 (out
of 4,030) equivalent mutants and 18,859 (out of 22,693) duplicate mutants. This means
that, from 4,030 mutants avoided by 9 implemented e-rules, TCE confirmed 73.92%. And
from 22,692 mutants avoided by 23 implemented d-rules, TCE confirmed 83.10%. This way,
we had 4,885 mutants avoided by our strategy but not confirmed by the TCE. We grouped
the unconfirmed mutants into sets according to the i-rule that was applied. So we randomly
selected and analyzed 10% of each set. Two distinct researchers manually analyzed each

58

mutant. In this manual task, we faced a few bugs in our i-rules implementation (e.g.,
one constraint missing). After fixing these bugs, we re-executed the entire analysis until
we confirmed all useless mutants found by the i-rules. In the last execution, we did not
identify false positives in the random subset we manually analyzed.

Regarding the equivalent mutants, as demonstrated by Table 5, our strategy was able to
recognize and avoid 4,030 mutants, which represents 2.98% of the total mutants generated
by MuJava. By analyzing each subject separately, we identified characteristics in the
original programs that led to the prevalence of some i-rules over others. For instance,
the subject joda-time had the best result in avoiding 5.94% of the equivalent mutants.
This subject has an average of 6.66 lines of code per method. It is the lowest among
the analyzed subjects. It resulted in an average of 26.40 mutants per method. Besides,
joda-time date and time manipulation methods use a lot of local variables (parameter
variables or method-declared variables) of primitive numeric types. Thus, e-rules such as
AOIS-01 (MuJava) were applied to a wide variety of program locations. On the other
hand, the commons-math subject had the worst result; for it, only 1.5% of mutants were
avoided after being identified as equivalent. This subject has an average of 13.31 lines of
code per method, which caused MuJava to generate an average of 110.95 mutants per
method. Thus, even though this subject contains extensive use of numeric primitive type
variables, such as joda-time, the total number of generated mutants was very high, which
decreased the proportion of equivalent mutants avoided by the e-rules.

Regarding the duplicate mutants, Table 5 shows that our d-rules avoided 22,693
mutants, which represents 16.81% of the total mutants generated. The ant subject had
the best result in avoiding 22.15% of the duplicate mutants. This subject has an average
of 10.87 lines of code per method, which caused MuJava to generate an average of 65.12
mutants per method. By analyzing the ant code, we observed many binary expressions
with a variable or a constant on the right- or left-hand side. In these cases, respectively,
the VDL|ODL-01 (MuJava) and CDL|ODL-01 (MuJava) d-rules are usually applied. On
the other hand, the commons-math subject had the worst result in avoiding 13.78% of the
duplicate mutants. By analyzing the commons-math code, we identified many locations
where the d-rule VDL|ODL-01 (MuJava) was applied. However, as explained, this subject
has a high number of mutants per method, and in many code locations, we do not have
applicable d-rules. For this reason, results for this subject were inferior when compared to
results for the other subjects.

In summary, despite being derived from artificial or small Java programs, the i-
rules implemented in MuJava-AUM avoided useless mutants in industrial-scale projects.
The results are quite encouraging. In the work of Kintis et al. (KINTIS et al., 2018),
researchers summarized several pieces of related work on useless mutants. Only a few
provided techniques to avoid their generation (ADAMOPOULOS; HARMAN; HIERONS, 2004;
MADEYSKI et al., 2014). However, they focused only on equivalent mutants. In this work,

59

Table 6 – Applied e-rules.

e-rule Avoided
Mutants

Confirmed
by TCE

AOIS-01 (MuJava) 3,632 2,974(81.88%)
AOIU-01 (MuJava) 205 0(0.00%)
JID-01 (MuJava) 120 0(0.00%)
ROR-01 (MuJava) 64 5(7.69%)
ISD-01 (MuJava) 8 0(0.00%)
TOTAL 4,030 2,979(73.92%)

besides avoiding equivalent mutants, we also provide d-rules to avoid duplicate mutants.
Finally, we answer RQ1.

Answer to RQ1: Considering a whole set of mutants generated by the original MuJava
implementation, our i-rules avoided the generation of 19.79% of them, all identified as
useless mutants. Out of these, 16.81% are duplicate mutants, and 2.98% are equivalent to
the original program. This way, we avoid the cost of generation, compilation, and execution
of the tests on these mutants. In addition, by eliminating equivalent ones, we also avoid
the cost of manually analyzing these mutants.

3.6.4.2 Which i-rules are most applied to avoid equivalent and duplicate mutants?

To answer RQ2, we analyzed the frequency of each e-rule and d-rule successfully
applied across all projects. Consequently, we can identify which i-rules are most prevalent
and which could be discarded by the developers of mutation testing tools. In total, we
implemented 32 i-rules in MuJava, from which 9 are e-rules and 23 are d-rules. Some
i-rules are known to be applied in different domains and contexts, such as the AOIS-01
(MuJava) and AOIU-01 (MuJava) e-rules. Other i-rules depend on a more specific
context, such as the AORB-01 (MuJava) d-rule, where the analyzed software needs to
make use of more specific APIs (StringBuilder, in this case).

Tables 6 and 7 presents the results for e-rules and d-rules subsequently. For each i-rule
we present its name (first column), the number of mutants avoided (second column), and
the number of avoided mutants confirmed by TCE (third column).

Table 6 outlines the e-rules that were applied to the subjects studied, sorted in
descending order by the number of mutants avoided. By examining the table, we see that
only five out of 9 e-rules were triggered at least once. Note that the AOIS-01 (MuJava)
e-rule (explained in Section 3.3.1) avoided most of the equivalent mutants. More precisely,
this e-rule prevented the generation of 3,632 equivalent mutants, which represents, alone,
90.12% of all equivalent mutants avoided. The AOIS mutation operator is known by

60

Table 7 – Applied d-rules.

d-rule Avoided
Mutants

Confirmed
by TCE

ODL|VDL-01 (MuJava) 6,796 6,796(100.00%)
CDL|ODL-01 (MuJava) 5,926 5,926(100.00%)
ROR|SDL-01 (MuJava) 2,487 1,952(78.49%)
COI|ROR-01 (MuJava) 2,214 2,023(91.37%)
SDL|SDL-01 (MuJava) 1,782 178(9.99%)
ODL|AODS-01 (MuJava) 933 933(100.00%)
COD|ODL-01 (MuJava) 484 484(100.00%)
ODL|AODU-01 (MuJava) 388 388(100.00%)
AORB|ODL-01 (MuJava) 381 2(0.52%)
AORB|AORB-01 (MuJava) 372 2(0.54%)
LOI|LOI-01 (MuJava) 273 1(0.37%)
AOIU|AOIU-01 (MuJava) 164 1(0.61%)
AOIU|ASRS-01 (MuJava) 125 0(0.00%)
SDL|VDL-01 (MuJava) 114 114(100.00%)
ROR|ROR-01 (MuJava) 112 50(44.64%)
LOI|ROR-01 (MuJava) 79 0(0.00%)
SOR|SOR-01 (MuJava) 56 2(3.57%)
LOD|ODL-01 (MuJava) 5 5(100.00%)
COD|ROR-01 (MuJava) 2 2(100.00%)
TOTAL 22,693 18,859(83.10%)

the community to generate many mutants, as well as many equivalent mutants (KINTIS;

MALEVRIS, 2015). As an example, from the 21,970 mutants generated for the commons-
math project, the AOIS mutation operator was responsible for 6,880 of them; that is,
one mutation operator generates almost one-third of the mutants. Although the AOIS
operator produces many equivalent mutants, it also generates many stubborn mutants.
Such mutants tend to require very specific tests, which in turn is suitable for mutation
analysis (YAO; HARMAN; JIA, 2014). Therefore, we believe this mutation operator adds
value to the mutation operator tool, and should not be ruled out.

Observing the d-rules at Table 7, we see that 19 of them (out of 23) were responsible for
avoiding at least one mutant. By closely examining the table, we observed that six d-rules
accounted for 88.74% of the avoided duplicate mutants (namely, ODL|VDL-01 (MuJava),
CDL|ODL-01 (MuJava), ROR|SDL-01 (MuJava), COI|ROR-01 (MuJava), SDL|SDL-01
(MuJava), ODL|AODS-01 (MuJava)), all particularly related to the following mutation
operators: ODL (Operator Deletion), SDL (Statement Deletion), and ROR (Relational
Operator Replacement).

61

return new INVOKEINTERFACE(index, nargs + 1);

return new INVOKEINTERFACE(index, 1);

return new INVOKEINTERFACE(index, 1);

Original

ODL

VDL

createCount++;

//createCount++;

createCount=createCount;

Original

ODL

AODS

i f (cs. l engt h > s i ze) { . . . }

i f (! (cs. l engt h > s i ze)) { . . . }

i f (cs. l engt h <= s i ze) { . . . }

Original

COI

ROR

return new INVOKEINTERFACE(index, nargs + 1);

return new INVOKEINTERFACE(index, nargs);

return new INVOKEINTERFACE(index, nargs);

Original

ODL

CDL

(a) (b)

(c) (d)

i f (l en == 0) { . . . }

Original

(f) i f (- l en == 0) { . . . }

AOIU

i f (newFi l es. l engt h > 0) { . . . }

Original

(e)

ROR

i f (newFi l es. l engt h ! = 0) { . . . }

Figure 7 – Code snippets extracted from subjects used in the study.

The ODL|VDL-01 (MuJava) avoided 6,796 mutants. In regard to it, note that the
VDL and ODL mutation operators occur, frequently, in binary Java expressions involving
mathematical or logical operators. The second most applied d-rule was CDL|ODL-01
(MuJava). It is similar to VDL|ODL-01 (MuJava), with the difference that CDL is
applied to code constants, while VDL applies to code variables. For instance, Figure 7(a)
and (b) show examples of mutants avoided by the aforementioned d-rules. The original
code and mutants were extracted from the InstructionFactory class of the bcel project.
Next, we have the ROR|SDL-01 d-rule. It occurs in if statements that have relational
operators in their conditional expression (explained in Section 3.5.2.2). The COI|ROR-
01 (MuJava) d-rule was the fourth most applied. This d-rule occurs in conditional
expressions involving == or !=. Figure 7(c) shows an example of the original code and
two mutants avoided by COI|ROR-01 (MuJava). This example was extracted from the
ConstantPoolGen class of the bcel project. The SDL|SDL-01 (MuJava) d-rule is also
present in the list of most applied d-rules (explained in Section 3.5.1). The sixth most
applied d-rule was ODL|AODS-01 (MuJava). This i-rule happens mainly when we use
pre-increment/decrement or post-increment/decrement Java operators. Figure 7(d) shows
an original code and two duplicate mutants avoided by ODL|AODS-01 (MuJava). This
example was extracted from the theCopy class of the ant project.

It is essential to note the number of mutants confirmed by TCE. By examining Table 6,
we see that TCE confirmed a high rate of mutants for AOIS-01 (MuJava), but indeed
failed to detect more than 18% of the mutants avoided by this e-rule. In other cases,
TCE numbers were deficient, not confirming any mutants in three e-rules. For example,
equivalent mutants like the ones shown in Figure 7(e) and (f) have not been confirmed by
the TCE.

62

In Table 7, we can observe that many d-rules were confirmed by TCE in 100% of
avoided mutants. It is because the duplicate mutants generated have the same source
codes. However, TCE failed to detect others. In eight d-rules, TCE had a confirmation
rate below 10%. This is the case of the SDL|SDL-01 (MuJava) d-rule (explained in
Section 3.5.2.3) which avoided 1,782 mutants, but only 9.99% were confirmed by TCE.

Designing a new mutation operator for a mutation testing tool needs to be done
considering the program context and all the other mutation operators already available in
the tool. We observed that the set of mutants generated by a mutation operator could
be found spread among the mutations of other mutation operators. For instance, the
ODL (Operator Deletion) mutation operator deletes each arithmetic, relational, logical,
bitwise, and shift operator from expressions and assignment operators. In case of a binary
expressions, e.g., 𝑋 = 𝑋 + 1, ODL yields 𝑋 = 𝑋 and 𝑋 = 1. These transformations are
valid and useful in many contexts, but these same mutations spread on other mutation
operators like VDL, CDL, and SDL. In some cases, a mutation operator acts as a superset
of another operator; for instance, ODL is a superset of VDL and CDL. In this context, the
subset operators should be disabled if the superset operator is enabled. On the other hand,
some mutation operators, such as ODL with SDL, have only one mutation in common.
Since it is up to the tester—that is, the mutation testing tool user—to perform a finer
(many operators enabled) or grosser (only specific operators enabled) analysis of the system
under test, then the developer of the mutation tool generally makes all operators available
for analysis. As a result, we believe the i-rules represent a viable way to avoid useless
mutants. Next, we present the answer to RQ2.

Answer to RQ2: Regarding the e-rules related to equivalent mutants, we managed
to avoid 4,030 mutants. The AOIS-01 (MuJava) e-rule, itself, was responsible for the
vast majority of avoided equivalent mutants. From the 9 implemented e-rules, five were
triggered successfully at least once, what means that 4 e-rules have not been applied.
Regarding the applied d-rules, they avoided 22,693 mutants. Six d-rules were responsible
for approximately 89% of the avoided duplicate mutants. From the 23 d-rules implemented,
19 were triggered successfully at least once, whereas and 4 d-rules have not been applied.
We also found that some i-rules are challenging to be detected by TCE, which shows
that we can use both solutions in conjunction to reduce even more the number of useless
mutants. Note that these results link to the set of programs evaluated, as well as to the
implementation of the mutation operators in the MuJava-AUM mutation tool.

3.6.4.3 What is the overhead of executing our i-rules in industrial-scale systems?

Now we discuss the research question related to the overhead of executing our i-rules
concerning time. Table 8 presents the execution time (in seconds) of the original MuJava

63

version (without the i-rules) and MuJava-AUM version (embedded with some i-rules).
For all systems, our version saved time. The best result came from the ant and bcel projects.
In the ant project, on average, it took 36 minutes (2,143 seconds) for the original version
of MuJava to generate the mutants, while it took 29 minutes (1,775 seconds, i.e., a
reduction of 17.29%) for the MuJava-AUM. In the bcel project, it took 38 minutes (2,287
seconds) for the MuJava and 31 minutes (1,891 seconds, (i.e, a reduction of 17.32%) for
the MuJava-AUM. The h2 project had the slightest difference between executions. It
took about 75 minutes (4,544 seconds) for the MuJava to generate the mutants and it
took 66 minutes (3,973 seconds i.e., a reduction of 12.57%) for the MuJava-AUM.

Note that we are computing the time to generate and compile the mutants. In a real
mutation analysis scenario, there is also time to execute the test suite against the mutants,
and the time to analyze the surviving mutants (equivalent and non-equivalent). Obviously,
with fewer mutants to execute on the test suite and with fewer equivalent mutants to
analyze, MuJava-AUM performs much better than MuJava. However, our goal was to
check if the additional overhead brought with i-rules could cover up the time gained by
not generating the useless mutants. With this, we respond to RQ3 below.

Answer to RQ3: Although our i-rules introduce an additional overhead, the payoff
amount is 15% on average. Because we generate and compile fewer mutants, we have fewer
I/O operations. These operations are more expensive than executing our i-rules.

3.6.5 Threats to Validity

The projects we used represent a threat to the external validity. To alleviate this threat,
we selected projects of different sizes and domains. Also, these projects have been used
by the mutation testing community (KINTIS et al., 2018; MADEYSKI et al., 2014; KINTIS;

MALEVRIS, 2015).

Table 8 – Time to generate and compile the mutants with MuJava (original version)
and MuJava-AUM. The presented numbers represent an average of three
executions per project.

Project MuJava MuJava-AUM Difference
ant 2,143s 1,775s 17.29%
bcel 2,287s 1,891s 17.32%
commons-lang 4,463s 3,781s 15.28%
commons-math 2,789s 2,354s 15,60%
h2 4,544s 3,973s 12.57%
joda-time 1,541s 1,314s 14.73%
Average Reduction 15.08%

64

Our i-rules implementation is a threat to the internal validity. We minimize this threat
because the majority of the useless mutants have been confirmed as useless by the TCE
tool. For the remaining ones, we manually analyzed a sample of 10% of the useless mutants
identified by each i-rule. We found a few bugs in our implementation, fixed them, and
re-executed the entire analysis. In this context, the manual analysis also represents a
threat. We alleviate such a threat by double-checking the controversial cases with a second
researcher. Additionally, the sample represents a threat as well. Nevertheless, we tried
to minimize this threat by sampling useless mutants identified by all i-rules we have
implemented.

Our i-rules can avoid the generation of useless mutants. In this way, we can reduce
costs not only regarding the generation itself; in fact, we also reduce costs regarding the
following two tasks: executing the test suite, and analyzing the surviving mutants. As we
considerably reduced the number of generated mutants (see Table 5) and we observed
that the additional overhead brought on by the i-rules does not lead to a performance loss
during mutant generation (see Table 8), so as a result, this would lead to a reduction of the
time to execute the test suite and also the time to analyze the surviving mutants. However,
calculating mutant generation time also poses an internal threat since the number of
I/O tasks is usually high for this type of system, and other system processes may block
execution. So we tried to minimize this threat by running each project three times in each
version of MuJava and getting the average time.

It is easy to reason about the execution time results, given that we implemented our
i-rules by using a set of conditionals. So, the cost of executing an i-rule should not be
higher than generating a mutant and compiling it. However, it is essential to remember
that we have not implemented some costly i-rules, e.g., the ones that need advanced static
analyses. This is a threat to the conclusion validity, given that the differences presented in
Table 8 can change if we consider such i-rules.

3.7 SUMMARY

In this chapter, we proposed an approach to avoid useless mutants by improving the
transformation rules embedded in the mutation operators. We call these improvements
i-rules. We divide the i-rules in two classes; e-rule for avoiding equivalent mutants and
d-rule for avoiding duplicate mutants. To help mutation tool developers discover new
i-rules to its tools, we also presented a strategy. We instantiated the strategy with 100
Java programs as input, three mutation testing tools to generate the mutants, (MuJava,
Major, and Pit), and automatic test generation tools (Randoop and EvoSuite) to
work as an oracle to automatically classify the mutant as equivalent or duplicate candidate.
As a result, we identified 30 e-rules and 69 d-rules in all three mutation tools. We chose
MuJava to implement a subset of the i-rules discovered, and we name this new version
MuJava-AUM. By executing MuJava-AUM with well-known open-source projects, we

65

could avoid the generation of almost 20% of useless mutants, on average. We also identified
that one e-rule, alone, was responsible for approximately 90% of all equivalent mutants
avoided and six d-rules were responsible for approximately 89% of the duplicate mutants
avoided. Last but not least, MuJava-AUM saved time to generate and compile the
mutants in all systems evaluated.

For more information of how to reproduce the experiment, the detailed results, and
download MuJava-AUM, visit our companion website (FERNANDES et al., 2020)

66

4 SUGGESTING EQUIVALENT MUTANTS THROUGH AUTOMATED BEHAV-
IORAL TESTING

Previously, we presented an approach to avoid useless mutants. Unfortunately, we
cannot discover all equivalent and duplicate mutants before the generation. By following
the mutation testing process (Figure 1), after running the tests on the mutants and finding
out there are surviving mutants, we need to analyze each mutant to mark it as equivalent,
which means no test case can kill it, or to identify as non-equivalent and create a new
test case capable of killing it. To support developers in this scenario, in what follows, we
present our second approach to deal with useless mutants.

4.1 INTRODUCTION

Equivalent mutants are a well-known impediment to the practical adoption of mutation
testing. A previous work (BUDD; ANGLUIN, 1982) has already proven that this is an
undecidable problem in its general form. Thus, no complete automated solution exists.
In addition, manually detecting equivalent mutants is an error-prone (ACREE, 1980) and
time-consuming task (SCHULER; ZELLER, 2013). This problem becomes quite relevant
when empirical studies report that up to 40% of all the generated mutants can be
equivalent (MADEYSKI et al., 2014).

Remembering Madeyiski et al. (MADEYSKI et al., 2014) work, there are three methods
to deal with equivalent mutants: Avoiding, Detecting, and Suggesting. Previous works
proposed using compiler optimization to detect equivalent mutants (BALDWIN; SAYWARD,
1979; OFFUTT; CRAFT, 1994; PAPADAKIS et al., 2015; KINTIS et al., 2018). The intuition is
that code optimization can transform the original program and the mutant in a way in
which their compiled object codes get identical. The most recent work (KINTIS et al., 2018)
presented the TCE (Trivial Compiler Equivalence). Using a set of knowingly equivalent
mutants, TCE identified 56% of the equivalent mutants in the benchmark. And it took
approximately three seconds to analyze each mutant. Despite an efficient solution, some
equivalent mutants would require costly compiler optimization techniques to be detected,
which could increase the general cost of the mutation analysis. Other work demonstrated
that changes in coverage would suggest non-equivalent mutants (SCHULER; ZELLER, 2013).
According to the authors, if a mutation impacts coverage, it has a 75% chance to be
non-equivalent. However, this information alone is not enough. Mutations that impact
coverage have higher detection rates, which means naive tests could easily detect them.
Besides, there are equivalent mutants that impact coverage and non-equivalent mutants
that keep the coverage information equal to the original program.

In this work, we propose an approach to suggest equivalent mutants by using automated
behavioral testing. We perform static analysis to automatically generate a massive set

67

of tests directed for the entities impacted by the mutation. For each analyzed mutant,
our approach can suggest the mutant as equivalent or non-equivalent. In this sense, our
approach relies on tools to generate the test cases automatically. These test cases capture
the current behavior of the program under test. To avoid the generation of tests that focus
on methods that have not been impacted by the mutation, we adapt a change impact
analysis proposed in previous work (MONGIOVI et al., 2014). After generating the tests, we
execute them against the original program and the mutant. If at least one test case fails,
there is a behavioral change, which means that the mutant is non-equivalent. Notice that
testers might use such a test to improve their test suite, minimizing costs. If no test kills
the mutant, the approach suggests the mutant as equivalent. To better support the testers
when analyzing the mutants suggested as equivalent, we provide two metrics: the number
of test cases that reached the point where the mutation occurred; and a boolean value
indicating whether the test execution coverage of the mutant has changed when compared
to the original program. We implement our approach in a tool called Nimrod. The tool is
available online (EASY, 2019).

To evaluate our approach, we execute Nimrod against a benchmark with 1,542
mutants generated from eight methods of six different open-source systems, such as Apache
commons-lang and the joda-time library. A previous work manually classified these mutants
as equivalent and non-equivalent (KINTIS et al., 2018). This classification represents the
baseline (ground truth) of our evaluation. To generate the tests, we instantiate Nimrod to
use well known tools by the software testing community: Randoop (PACHECO et al., 2007)
and EvoSuite (FRASER; ARCURI, 2011; FRASER; ARCURI, 2013). They follow different
strategies. The former generates unit tests for Java using a feedback-directed random test
generation. The latter is a search-based tool that uses a genetic algorithm to generate test
suites for Java classes automatically. Testing generation tools, in general, need a stopping
criterion. In our evaluation, we set the time limit to 60 seconds for both tools in each of
the eight methods we studied.

After submitting all these mutants to Nimrod, we compute precision, recall, and
F-measure (BONNIN, 2017) to check the effectiveness of our approach. Precision identifies
the fraction of all elements that are actually correct. Recall is the fraction of the selected
elements that are successfully classified. F-Measure provides a single score that balances
both the concerns of precision and recall in one number.

The results indicate that the approach is effective in suggesting equivalent mutants.
The F-measure has reached more than 92% in five out of the eight methods. On the other
hand, the F-measure was very low in one of the methods, i.e., 21%. We noticed that the
results might strongly depend on the code design characteristics. Such characteristics
may prevent the test generation tools from generating effective test cases. This happens,
for instance, when there are tight coupling classes that a statement in class A changes
a package-private field from class B. To better analyze our approach, we also compute

68

the time taken by Nimrod to suggest equivalent mutants. On average, Nimrod took
approximately five minutes to classify a mutant as potentially equivalent (three times faster
when compared to the manual estimations (SCHULER; ZELLER, 2013)) and 24 seconds to
classify a mutant as non-equivalent.

In summary, the main contributions of our second approach include:

• An approach to suggest equivalent mutants based on automated behavioral testing
(Section 4.3);

• A tool that implements and automates the entire approach (Section 4.3);

• An evaluation to check the effectiveness and efficiency of our approach on suggesting
equivalent mutants (Sections 4.4 and 4.5);

• A discussion regarding implications for practice to combine the methods Suggesting
Equivalent Mutants and Detecting Equivalent Mutants in order to reduce costs when
dealing with the equivalent mutation problem (Section 4.6).

4.2 MOTIVATING EXAMPLE

After generating the mutants and executing the test suite against them, a tester should
analyze the surviving mutants to discard the equivalent ones and create mutation-guided
tests to kill the non-equivalent ones (see Figure 1). Detecting equivalent mutants is a
well-known undecidable problem, which means that the detection of equivalent mutants
alternatively may have to be carried out by humans. However, this manual task is error-
prone (people judged equivalence correctly in about 80% of the cases (ACREE, 1980)) and
time-consuming (approximately 15 minutes per equivalent mutant (SCHULER; ZELLER,
2013)). This way, heuristics to identify at least a subset of the equivalent mutants are
essential to minimize the costs.

In previous works, first Papadakis et al. (PAPADAKIS et al., 2015) and then Kintis et
al. (KINTIS et al., 2018) presented and evaluated the Trivial Compiler Equivalence (TCE).
An effective heuristic based on compiler optimizations for popular compiled languages (C

and Java) and mutation tools (Milu and MuJava). Notice that this approach is sound
in the sense that two equal binaries mean that the programs have the same behavior. This
way, TCE does not raise false positives. However, despite having the same behavior, the
original program and the equivalent mutant may have different object codes after applying
code optimizations. In this sense, TCE is not able to detect such an equivalent mutant.
Therefore, TCE may raise false negatives.

To better illustrate this scenario, we present a code snippet of a triangle class
(Listing 4.1). This class contains a method (classify) to determine the type of a triangle
given sizes of the three sides. We present four different equivalent mutants. We generate
these mutants using the MuJava mutation tool.

69

1 public static int classify(int a, int b, int c) {

int trian;

3 if (a <= 0 || b <= 0 || c <= 0) { return INVALID; }

trian = 0;

5 if (a == b) { trian = trian + 1; } 𝑀1 [trian + 1 ⇒ -trian + 1]

if (a == c) { trian = trian + 2; }

7 if (b == c) { trian = trian + 3; }

if (trian == 0) {

9 if (a + b < c || a + c < b || b + c < a) {

return INVALID;

11 } else {

return SCALENE;

13 }

}

15 if (trian > 3) {

return EQUILATERAL;

17 }

if (trian == 1 && a + b > c) { 𝑀2 [trian == 1 ⇒ trian <= 1]

19 return ISOSCELES;

} else {

21 if (trian == 2 && a + c > b) { 𝑀3 [a + c > b ⇒ a + c > b++]

return ISOSCELES;

23 } else {

if (trian == 3 && b + c > a) { 𝑀4 [trian == 3 ⇒ trian++ == 3]

25 return ISOSCELES;

}

27 }

}

29 return INVALID;

}

Listing 4.1 – A code snippet extracted from the Triangle class.

• 𝑀1 represents the mutant generated by the AOIU (Arithmetic Operator Insertion
- unary) with the following transformation: trian + 1 ⇒ -trian + 1. However, at
that point in program, trian can only be zero;

• 𝑀2 represents the mutant generated by the ROR (Relational Operator Replacement)
with the following transformation: trian == 1 ⇒ trian <= 1. However, at that point
in program, trian can only have the value of one or more;

• 𝑀3 represents the mutant generated by the AOIS (Arithmetic Operator Insertion -
short-cut) with the following transformation: a + c > b ⇒ a + c > b++. However,
this is the last access to the local variable b.

• 𝑀4 is like the previous case. This mutant is generated by the AOIS operator and
inserts a post-increment to the last access of the local variable trian.

We apply TCE to verify its ability to detect the listed mutants. According to Kintis
et al. (KINTIS et al., 2018), TCE uses two types of optimization for the Java version, one

70

with the standard Java compiler1 and another one with the SOOT2 analysis framework.
By running the TCE against the mutants, it detects two out of the four mutants: 𝑀1 and
𝑀4.

By analyzing mutant 𝑀2, one can see that the trian value starts with zero (line 4).
However, when reaching the mutated line (line 18), the trian value can only be one or
greater than one, which prevents the behavior change for any possible entry of the program.
The compiler would need to check the conditional expression at line 8 to identify this
equivalent mutant. In case the condition is true, trian is zero, and the method returns.

By considering the mutant 𝑀3, applying a post-increment to the last access of a
local variable within a method does not change the behavior of the program, as reported
before (KINTIS; MALEVRIS, 2015; FERNANDES et al., 2017). However, we can see that this is
not the last access to the variable b since, at line 24, this variable can be reaccessed. The
secret, in this case, is in the specification of the && operator (GOSLING et al., 2015). The
conditional-and operator && is like &, but it evaluates its right-hand operand only if the
value of its left-hand operand is true. It turns out that the left-hand side of the conditional
expression to which mutant 𝑀3 belongs is mutually exclusive with the left-hand side of the
conditional expression at line 24. This scenario would also be quite complicated (perhaps
impossible) of detection with compiler optimization.

Next, we present an alternative approach to suggest equivalent mutants by using
automated behavioral testing. By suggesting, we mean we cannot guarantee that the
mutant is indeed equivalent, but we can increase the developer’s confidence by ranking the
surviving mutants who have strong or weak chances of being equivalent. In the motivating
example scenario presented above, our approach was able to suggest all equivalent mutants
correctly. We detail it in the next section.

4.3 SUGGESTING EQUIVALENT MUTANTS

Our approach is based on previous work in the area of refactoring (SOARES; GHEYI;

MASSONI, 2013). While refactoring is a transformation that preserves the external behavior
of a program, a mutant must transform a program so that the program’s external behavior
changes (STEIMANN; THIES, 2010b). We adapt the refactoring solution to the mutation
testing context and add improvements in the impact analysis phase, the automated test
generation, and post-testing execution to improve the accuracy of mutant classification.

Before detailing our approach, it is important to remember the notion of equivalence
we adopt (see Section 2.1). As explained, a mutant and an original program are equivalent
if they present the same externally observable behavior for all possible inputs. However,
there are two different scenarios to consider; open world and closed world (SOARES;

GHEYI; MASSONI, 2013). In an open world assumption (OWA), any kind of test case
1 <http://www.oracle.com/technetwork/java/index.html>
2 <http://sable.github.io/soot/>

http://www.oracle.com/technetwork/java/index.html
http://sable.github.io/soot/

71

Figure 8 – Our approach to suggest equivalent mutants.

can be generated to find out a behavioral change, without regarding the project or code
requirements. In a closed world assumption (CWA), the test cases must satisfy some
domain constraints. Our approach adopts an open-world equivalence notion, which means
there are no constraints in the test generation.

Figure 8 depicts an overall view of the approach. It consists of four major steps. First,
it carries out a change impact analysis of the mutation. Second, it uses the change impact
analysis output to guide the generation of automated behavioral tests. In the third step, it
executes each generated test case against the original program and the mutant. In the
final step, our approach suggests whether the mutant is equivalent or not and supports
the tester in case a test to kill the mutant is found. We now detail each of the steps.

4.3.1 Identifying Impacted Entities

In Step 1 (Figure 8), our approach receives two versions of the program as input: the
original and the mutant source codes. We diff the two programs to find out where the
mutation occurred. We handle this information to carry out a change impact analysis and
generate tests only for the entities impacted by the transformation. Our approach is based
on the change impact analysis proposed by Mongiovi et al. (MONGIOVI et al., 2014). It
checks both the original and mutant programs, beginning by decomposing a coarse-grained
transformation into smaller transformations. For each small-grained transformation, we

72

identify the set of impacted entities. Finally, we sort a set of public methods in common
that exercises, directly or indirectly, the impacted entities. A method in common must
have the same signature in the original and mutant programs. Besides the public methods,
we also analyze the parameters of such methods to identify methods dependency.

To better explain the idea of identifying the entities, we present an example using the
FieldUtils class, a file from the joda-time project. Joda-time is a popular date and time
Java library. The FieldUtils class has 158 lines of code, 17 methods, and no fields. For
demonstration purposes, we extract a code snippet from the FieldUtils file and present
in Listing 4.2. We introduce three different mutants. Mutant 𝑀1 replaces the logical AND
(&&) signal to the logical OR (||) (line 9). Mutant 𝑀2 inserts a post-increment (++) to
the total variable (line 20). Mutant 𝑀3 inserts a pre-decrement () to the val2 variable
(line 28)3.

𝑀1 occurred in the safeToInt method and safeMultiplyToInt invokes safeToInt.
This way, the output of Step 1 is the following.

#List of Target Methods and Constructors
m:FieldUtils.safeToInt(long)
m:FieldUtils.safeMultiplyToInt(long, long)

Regarding mutant 𝑀2, the mutation occurred in the safeMultiply method. This
method is invoked by the safeMultiplyToInt method. In this case, the output of the
change impact analysis is:

#List of Target Methods and Constructors
m:FieldUtils.safeMultiply(long, long)
m:FieldUtils.safeMultiplyToInt(long, long)

Regarding mutant 𝑀3, the mutation occurred in the safeSubtract method. No other
method invokes safeSubtract. This way, the output of Step 1 is the following:

#List of Target Methods and Constructors
m:FieldUtils.safeSubtract(long, long)

Since all impacted methods have no dependency on external objects, we do not search
for valid constructors. Now, we pass the change impact analysis results to the test case
generation step (Step 2).
3 Some members of the community (eg., (PETROVIĆ; IVANKOVIĆ, 2018)) argue that generating mutants

that change exception messages is useless. However, many mutation tools continue to generate mutants
in these statements.This work does not discuss this.

73

public class FieldUtils {

2

public static int safeMultiplyToInt(long val1, long val2) {

4 long val = FieldUtils.safeMultiply(val1, val2);

return FieldUtils.safeToInt(val);

6 }

8 public static int safeToInt(long value) {

if (Integer.MIN_VALUE <= value && 𝑀1 [&& ⇒ ||]

10 value <= Integer.MAX_VALUE) {

return (int) value;

12 }

throw new ArithmeticException(...);

14 }

16 public static long safeMultiply(long val1, long val2) {

...

18 long total = val1 * val2;

...

20 return total; 𝑀2 [total ⇒ total++]

}

22

public static long safeSubtract(long val1, long val2) {

24 long diff = val1 - val2;

if ((val1 ^ diff) < 0 && (val1 ^ val2) < 0) {

26 throw new ArithmeticException

("The calculation caused an overflow: " +

28 val1 + " - " + val2); 𝑀3 [val2 ⇒ --val2]

}

30 return diff;

}

32 ...

}

Listing 4.2 – An excerpt extracted from the FieldUtils class.

4.3.2 Automated Generation of Test Cases

Automated generation of tests is a broad field of research (LAKHOTIA; MCMINN; HAR-

MAN, 2009; SHAMSHIRI et al., 2015; FRASER et al., 2015). Researchers have explored different
approaches to automatically generate unit tests, such as random test generation, constraint
solver, symbolic execution, and genetic algorithms. Tools such as EvoSuite (FRASER;

ARCURI, 2011), Randoop (PACHECO et al., 2007), and IntelliTest (LI et al., 2016) implement
such approaches. Each tool has a specific purpose. Thus different tools generate a different
sequence of method calls and assertions. These sequences and assertions of the generated
test capture the current behavior of the original program under test. Although not yet
widely adopted by the industry, these automated unit test generation tools have become
very effective in generating input data that achieves high code coverage (FRASER et al.,
2015) and finds real faults (SHAMSHIRI et al., 2015).

74

After collecting the information of the change impact analysis (Step 1), we use well-
known tools to generate tests automatically. The idea is to generate a massive set of
tests to only exercise the entities affected by the mutation, in an attempt to bring up the
behavior change caused by the transformation. We can instantiate our approach using
different test generation tools or even instantiate the same tool more than once using
different input parameters.

To exemplify Step 2, we return to the FieldUtils class (Listing 4.2). In the pre-
vious step, only two methods have been impacted by the mutant 𝑀1 (safeToInt and
safeMultiplyToInt) and the mutant 𝑀2 (safeMultiply and safeMultiplyToInt). For
mutant 𝑀3, only one method was impacted (safeSubtract). Listing 4.3 shows test cases
generated for 𝑀1, 𝑀2, and 𝑀3 mutants. Tests from the FieldUtilsTest_M1 class will
execute against the original program and the mutant 𝑀1. The same happens to the tests
of class FieldUtilsTest_M2 with the mutant 𝑀2 and of class FieldUtilsTest_M3 with the
mutant 𝑀3.
1 public class FieldUtilsTest_M1{

@Test

3 public void test001(){

int val = FieldUtils.safeMultiplyToInt(10L, 20L);

5 assertEquals(200, val);

}

7 @Test

public void test002(){

9 int val = FieldUtils.safeToInt(10L);

assertEquals(10, val);

11 }

@Test

13 public void test003(){

try {

15 int val = FieldUtils.safeToInt(2147483648L);

fail("Failed: Should get an Arithmetic Exception");

17 }

catch (ArithmeticException e) {

19 }

}

21 ...

}

23

public class FieldUtilsTest_M2{

25 @Test

public void test001(){

27 int val = FieldUtils.safeMultiplyToInt(10L, 20L);

assertEquals(200, val);

29 }

@Test

31 public void test002(){

long val = FieldUtils.safeMultiply(5L, 5L);

33 assertEquals(25L, val);

}

35 @Test

public void test003(){

75

37 long val = FieldUtils.safeMultiply(100L, 2L);

assertEquals(200L, val);

39 }

...

41 }

43 public class FieldUtilsTest_M3{

@Test

45 public void test001(){

long val = FieldUtils.safeSubtract(0L, 1L);

47 assertEquals(-1, val);

}

49 @Test

public void test002(){

51 try {

int val = FieldUtils.safeSubtract(Long.MIN_VALUE, 100L);

53 fail("Failed: Should get an Arithmetic Exception");

}

55 catch (ArithmeticException e) {

}

57 }

@Test

59 public void test003(){

long val = FieldUtils.safeSubtract(-10L, -20L);

61 assertEquals(10, val);

}

63 ...

}

Listing 4.3 – Examples of test cases generated to the FieldUtils class.

4.3.3 Test Execution

After generating tests (Step 2), we execute them against the original program and one
mutant at a time (Step 3). In case a test fails in the original program, we discard it. It
is not a common situation for unit test generation tools since they capture the current
behavior of the original program. But, the presence of non-deterministic outcomes (like
flaky tests (LUO et al., 2014)) could hinder the execution. This way, we end up with a green
test suite for the original program. Once we identify a test able to expose a behavioral
change in the mutant program, we do not execute the subsequent tests. It is because our
goal is to suggest equivalent mutants and once identified a non-equivalent, we do not need
to execute the subsequent tests.

During the test execution step, we also record the test execution coverage of the original
program and the mutants. In other words, we record the frequency in which all generated
tests have executed each line. Besides, we also track the number of test cases that cover
the statement where the mutation occurred. We use these data to create a ranking of
mutants suggested as equivalent by the approach, as we explain next.

76

4.3.4 Suggesting Equivalent Mutants

In the last step (Step 4), we analyze the test suite execution results to suggest equivalent
mutants. As explained, if at least one test case fails, our approach reports a behavioral
change, which means the mutant is non-equivalent. Besides, we provide the test case
capable of killing the mutant, so the tester might use such a test to improve the test suite.

In case no test kills the mutant, our approach suggests the mutant as equivalent. Since
we cannot guarantee that the suggestion is correct, we provide a ranking of mutants to
better support the testers. At the bottom of the ranking, we place mutants that we have
strong confidence they are indeed equivalent. At the top, we place mutants in which we
have weak confidence that our suggestion is correct. Our ranking of mutants relies on
two information recorded during the test execution: a boolean value indicating whether
the test execution coverage of the mutant has changed when compared to the original
program (also called coverage impact); and the number of test cases that reached the
mutated point. In our ranking, we prioritize the coverage impact over the number of
tests that exercised the mutation. Shuler and Zeller (SCHULER; ZELLER, 2013) identified
that coverage impact provides effective means to separate equivalent from non-equivalent
mutations. They reported that if a mutation changes the coverage, the mutant has 75% of
chances to be non-equivalent.

For example, if our approach suggests a mutant as equivalent and the test execution
reveals no coverage difference between the mutant and the original program and, among
the suggested equivalent mutants, this one had the highest number of test cases executing
the mutated statement, we place this mutant at the bottom of the ranking. On the other
hand, if we identify differences in the coverage, we place the mutant at the top of the
ranking, indicating that our confidence regarding the equivalence suggestion is weak.

To summarize, we place at the top the mutants that our strategy has “weak” confidence
of being equivalent, and at the bottom, the mutants which our strategy has “strong”
confidence of being equivalent. However, due to the features of each program and the
undecidability of the equivalent mutant problem, we cannot define a general threshold
that guarantees the accuracy of the ranking. This way, it is up to the tester to decide
which mutants will be manually reviewed.

To better explain the last step of our approach, we rely on the code snippets presented
in Listings 4.2 and 4.3. As mentioned, Step 4 analyzes the test suite execution and
classifies the mutant as equivalent or non-equivalent. To produce a different behavior
in the 𝑀1 mutant it is required, for instance, an input parameter that denies the if

expression (lines 9-10). The test FieldUtilsTest_M1.test003 can expose this behavior
change. The approach then marks this mutant as non-equivalent and informs the tester
that FieldUtilsTest_M1.test003 is enough to kill the mutant 𝑀1. By considering 𝑀2
mutant, we soon realize that it is an equivalent mutant since it applies a post-increment
at the last access of a local variable (FERNANDES et al., 2017; KINTIS; MALEVRIS, 2015). In

77

this case, every generated test suite executes, and the mutant is suggested as equivalent.
In the case of mutant 𝑀3, although this mutant is not equivalent, no generated test

identified the behavior change. This way, the approach suggests 𝑀3 as equivalent. At
this point, we have two mutants suggested as equivalent. Now we check the information
collected at the test execution step to create the ranking. Both suggested mutants did not
yield any impact on the coverage. Regarding the exercised statement, the mutant 𝑀2 had
three test cases exercising the mutated statement, while the mutant 𝑀3 had only one test
case exercising the mutated statement. This way, the mutant 𝑀3 goes to the top of the
rank and the mutant 𝑀2 stays at the bottom of the ranking. The output of our approach
would be:

#Testing Execution Results
𝑀3 | Possibly Equivalent | Coverage Impact: NO | Num. Test Cases Exercise: 1
𝑀2 | Possibly Equivalent | Coverage Impact: NO | Num. Test Cases Exercise: 3

————————————————
𝑀1 | Non-Equivalent | Killed by: FieldUtilsTest_M1.test003

4.3.5 Improvements

As explained, our approach is based on previous ideas from the refactoring field (SOARES;

GHEYI; MASSONI, 2013; SOARES et al., 2010; MONGIOVI et al., 2014). In addition to bringing
this idea to the context of mutation testing, we provide several improvements regarding
prior work.

Mongiovi et al. (MONGIOVI et al., 2014) presented a change impact analysis to help
with identifying the entities impacted by a code transformation. They provide only the
interclass analysis option. However, for large projects with complex dependencies, it is
difficult to identify what we need to test after a transformation. Mainly when we search the
set of indirectly impacted methods that exercise an impacted entity, the list of methods
to test can get large, hindering the testing generation tools’ efficacy. Then, we add the
option of the analysis to be intraclass, that is, the impact analysis identifies only the public
methods in the class where the mutation occurred. We also add analysis to the parameters
of the methods. If any of the parameters are not from a primitive type, wrapper class, or
String type, we search in the classpath for constructors needed to initialize the objects and
to perform the method call. The output of the change impact analysis is a set of public
methods and, if necessary, a set of constructors to build up object dependencies.

We made other improvements in Steps 3 and 4. During the test execution step, we
record coverage information to support the phase of suggesting equivalent mutants and we
apply it in two ways. First, we follow the idea proposed by Shuler and Zeller (SCHULER;

ZELLER, 2013) to calculate the impact on the coverage when we execute the tests in the

78

original program and the mutant. Second, we use the coverage information to count the
number of test cases able to exercise the statement where the mutation occurred. These
pieces of information can help assess the behavior of the mutation during computation.
As we cannot guarantee that the suggestion of equivalence is correct, these improvements
were fundamental in supporting the results of the approach.

The nature of our approach allows a critical cost reduction. The cost of the tester to
design and implement a new test case to kill a surviving mutant identified as non-equivalent.
The output of our approach indicates which test case can kill the mutant. This way, the
mutation tester might use the automated generated test to improve their mutation-based
test suite.

4.4 EVALUATION

To better understand the advantages and disadvantages of our approach, we evaluate
its effectiveness and efficiency in suggesting equivalent mutants against real programs. To
perform the evaluation, we automate all the steps of our approach and pack in a tool
named Nimrod4. The link to download the tool is available at the companion website of
the thesis (EASY, 2019). To facilitate the explanation of our study, we refer to the approach
using the name of the tool. In what follows, we detail the research questions, the subjects
used, the experimental setup, and the procedure to reproduce the study.

4.4.1 Research Questions

The purpose of this study is to evaluate automated behavioral testing to suggest
equivalent mutants from the mutation tester point of view in the context of mutation
analysis.

Automated solutions can help to reduce the manual effort of analyzing the surviving
mutants. These solutions need to be effective, which naturally brings out our first research
question.

• RQ1. How effective is Nimrod in suggesting equivalent mutants?

We answer RQ1 by reporting the precision, recall, and f-measure of Nimrod in
suggesting equivalent mutants. Our baseline is a set of manually identified equivalent
mutants provided in a previous work (KINTIS et al., 2018). This way, our numbers regarding
true positives, false positives, true negatives, and false negatives are based on such a
manual analysis. To better understand the strengths and weaknesses of Nimrod in our
evaluation, we also present the result of executing TCE 5 against the same set of mutants.
4 Nimrod is a fictional character appearing in Uncanny X-Men (March 1985). Nimrod is a powerful,

virtually indestructible descendant of the robotic mutant-hunting Sentinels.
5 <https://bitbucket.org/marinosk/ted>

https://bitbucket.org/marinosk/ted

79

Notice, however, that Nimrod and TCE are complementary tools. The former suggests
equivalent mutants, and the latter detects. Observe that answering RQ1 is crucial because
it allows us to estimate the amount of effort that can be saved by Nimrod in comparison
to a manual analysis for each surviving mutant.

As important as effectiveness, a solution must be efficient in the sense that it can scale
to many mutants. This way, we formulate the following research question:

• RQ2. How long does it take for Nimrod to analyze a mutant?

To answer RQ2, we calculate the average time that Nimrod takes to suggest the
mutants as equivalent or non-equivalent. Because we rely on OWA (see Section 4.3), once
a test kills the mutant, we confirm that such a mutant is non-equivalent. It means that
Nimrod has no false negatives since all mutants classified as non-equivalent are killed by
at least one test case. On the other hand, Nimrod can erroneously classify mutants as
equivalent (false positives). These mutants may be a stubborn mutant (YAO; HARMAN;

JIA, 2014), where only a particular test case can kill it. To better understand the types
of mutants that our approach classifies erroneously, we formalize the following research
question:

• RQ3. What are the characteristics of the mutants that Nimrod incorrectly identifies
as equivalent (false positives)?

We answer this question by manually analyzing the false positives. In particular, we
analyze the context of the program where the mutation occurs. Mutation testers usually
employ a subset of the mutation operators to perform the analysis. Therefore, having
information about the relationship between the mutation operators and the equivalent
mutants is useful This way, we ask the following research question.

• RQ4. Which mutation operators commonly lead Nimrod to fail?

We answer this question by computing the contribution of each operator to the
proportion of equivalent mutants, as the ratio of each operator to Nimrod false positives.
We enable all 15 method-level mutation operators available in MuJava (Version 3).

4.4.2 Subjects

To perform our evaluation, we rely on programs and mutants of a previous work (KINTIS

et al., 2018). We select this set because manually identified equivalent mutants accompany
it. The availability of known equivalent mutants provides a “ground truth” about the
problem of the undecidability of equivalent mutants. Besides, this manual analysis also
followed the idea of OWA.

80

Table 9 – Manually analyzed Java subjects.

Program Class Method LoC
Total

Mutants
bisect Bisect sqrt 23 135

commons-lang WordUtils capitalize 25 69
wrap 45 198

joda-time BasicMonthOfYearDateTimeField add 33 257

pamvotis Simulator addNode 53 318
removeNode 18 55

triangle Triangle classify 44 354
xstream XmlFriendlyNameCoder decodeName 40 156
Total 281 1,542

Table 9 details the Java programs used in the evaluation. The first three columns of
the table present the examined programs, the selected classes, and the considered methods.
The last two columns of the table present the lines of code and the number of generated
mutants.

The list of evaluated subjects covers: bisect - a simple program that calculates square
roots, commons-lang - an enhancements to Java core library, joda-time - a time manipula-
tion library, pamvotis - a wireless LAN simulator, triangle - a classic triangle classification
program, and xstream - a XML object serialization framework.

4.4.3 Experimental Setup

We performed the evaluation on a 2.70 GHz four-core PC with 16 GB of RAM equipped
with the Ubuntu 17.10 operating system.

We implement Nimrod in a way that it is flexible in accepting different test-generation
tools. For this experiment, we decide to use two of the most popular solutions in the
research community: EvoSuite (FRASER; ARCURI, 2011; FRASER; ARCURI, 2013) and
Randoop (PACHECO et al., 2007; SOARES; GHEYI; MASSONI, 2013).

In Section 3.4.2.1, we depicted the main features of these tools. Below we complement
the information needed for this study;

EvoSuite is a search-based tool that uses a genetic algorithm to generate test suites
for Java classes automatically. EvoSuite has a wide variety of configuration parameters.
For this experiment, we decided to instantiate EvoSuite twice for each mutant analyzed.
For the first instance, we use EvoSuite’s Regression test suite generation (EvoSuiteR),
where it tries to generate a test suite revealing differences between two versions of a Java
class. For the second instance, we set EvoSuite to comply with four coverage criteria:
Statement, Line, Branch, and Weak Mutation coverage. We also specified the impacted

81

methods that returned from the impact analysis. In both configurations, we set up 60
seconds as the time limit to generate tests.

Randoop generates unit tests for Java using a feedback-directed random test genera-
tion. Randoop is typically used to create regression tests to warn when the program’s
behavior changes. We also set up 60 seconds as the time limit to generate tests.

For the generated tests, we set a timeout of 80 seconds to execute the entire test suite.
Then, in case the suite reaches the timeout execution for a mutant, and the same does
not occur in the original program, we terminate the execution and classify the mutant
as non-equivalent. We also limit the maximum number of test cases to 3,000. This was
necessary mainly due to the features of Randoop, which tries to generate the widest
variety of tests in the established time.

The limits we define in this work (60 seconds to generate tests, 80 seconds to execute the
test suite, and a maximum of 3,000 tests) aim at making our analysis feasible. Concerning
EvoSuite, we did not observe a real increment in the test suite after 60 seconds of the
time limit. Concerning Randoop, we observed it usually reaches 3,000 tests in less than
60 seconds. Besides, for our scope, the worst test suite takes 20 seconds to execute against
the original program. Thus, we set a guaranteed time of 80 seconds (4 x 20) to execute
against each mutant.

4.4.4 Procedure

To carry out our evaluation, we first generated the mutants. Kintis et al. (KINTIS et

al., 2018) did not provide the mutants, but they explain the experimental procedure to
generate them and make available the list of equivalent. We manually check that some
generated mutants match the mutants in the equivalent list. The mutants were created by
the MuJava tool6 with all method-level mutation operators selected. Table 23 lists all
mutation operators available in the version 3 of MuJava. MuJava allows the generation
of mutants for a given class in the project but does not let the user generate mutants for a
single method of the class. This way, we generate the mutants for a class and filter out the
mutants that do not belong to the target methods we focus on this work (see Table 9).

Nimrod’s equivalence analysis is done individually between the original program and
the mutant. It is because the change impact analysis (Section 4.3) reports the entities
that need to be exercised by the tests and the undecidable nature of the automatic test
generation tools used. Thus, the set of tests generated to analyze a given mutant is not
necessarily equal to the set of tests generated to analyze another mutant. This way, all
generated test cases are also available for future analysis.

In the execution step, we first execute the tests generated by EvoSuite Regression
(EvoSuiteR). Then, we execute the tests generated by the EvoSuite with the four
coverage criteria, and finally, the tests generated by Randoop. We perform the execution
6 <https://cs.gmu.edu/~offutt/mujava/>

https://cs.gmu.edu/~offutt/mujava/

82

in this order because EvoSuite can, with fewer tests, expose behavior changes faster
than Randoop.

In case all the test suite is passing in the original program, we execute the test suite
against the mutant. If a test case failing or the test suite execution reaches the timeout,
Nimrod suspends the test execution, informs that the mutant is not equivalent, and writes
out the test case that exposes the behavior change. If all the test suite executes against
the mutant without any test case fails, nor does it reach the timeout, Nimrod terminates
the analysis of the mutant, informs the mutant is possibly equivalent, and writes out the
coverage impact and the number of test cases that reached the mutated statement. After
executing the last mutant of each subject, we create the ranking of mutants suggested as
equivalent.

To better understand the strengths and weaknesses of Nimrod, we also execute and
gather data from the TCE tool on the same mutants. To use TCE, we followed the
same steps outlined by Kintis et al. (KINTIS et al., 2018) and gathered the equivalence
information provided by the solution based on compiler optimization.

The procedure to reproduce the steps of our study, the list of equivalent mutants
manually classified, as well as the mutants labeled as equivalent by TCE and Nimrod
are available at our companion website (EASY, 2019).

In the next section, we provide experimental results and discuss the main findings.

4.5 ANALYSIS AND DISCUSSION OF THE RESULTS

This section presents the results and answers the research questions. Our basis for
analysis is 193 mutants7 classified manually as equivalent in the work of Kintis et al. (KINTIS

et al., 2018). These 193 mutants represent 12.5% of the total of 1,542 mutants analyzed.
Notice that Nimrod’s equivalence notion is based on the behavior exposed by the

mutant program through the execution of automatically generated tests. Therefore, our
approach can erroneously classify a mutant as equivalent, but the mutant is indeed a
stubborn, i.e., a mutant that remains undetected by a high-quality test suite and thus is
non-equivalent (YAO; HARMAN; JIA, 2014). So, this is a false positive. On the other hand,
if Nimrod finds a test that kills the mutant, but the manual analysis reports that this
mutant is equivalent, two situations may occur: (i) the manual analysis is wrong; or (ii)
the tests, although executing correctly, were written in the wrong way. For instance, it
violates a project code standard, which represents a kind of CWA. As we are adopting the
idea of OWA, and we did not identify any mistake in the manual analysis, Nimrod did
not face false negatives in this experiment.

We now answer and discuss each of the research questions.
7 Initially, the paper reported 196 equivalent mutants, but after reanalysis, the authors updated the

companion website, and this number dropped to 193.

83

Table 10 – General Results.

Program Class Method Total
Mutants

Equivalent Mutants
Manual TCE Nimrod

bisect Bisect sqrt 135 17 11 18

commons-Lang WordUtils capitalize 69 14 2 15
wrap 198 19 12 26

joda-time BasicMonthOfYearDateTimeField add 257 35 24 35

pamvotis Simulator addNode 318 33 33 277
removeNode 55 7 6 10

triangle Triangle classify 354 40 21 40
xstream XmlFriendlyNameCoder decodeName 156 28 0 28
Total 1,542 193 109 449

4.5.1 How effective is Nimrod in suggesting equivalent mutants?

Table 10 presents the general results of executing Nimrod on the subjects. Columns
1 to 3 show the Program, Class, and Method’s name respectively. Column 4 indicates
the number of mutants generated for each method. In total, the MuJava mutation tool
generated 1,542 mutants. Columns 5 to 7 show the equivalent mutants according to the
manual analysis, TCE detection, and Nimrod suggestion. For a better understanding,
we will refer to the subjects by the unique name of the methods (Column 3) and the
name of the program (Column 1) in parenthesis. In other words, the subjects studied were:
sqrt (bisect), capitalize (commons-lang), wrap (commons-lang), add (joda-time), addNode
(pamvotis), removeNode (pamvotis), classify (triangle), and decodeName (xstream).

The manual analysis identified 193 equivalent mutants. We use these mutants as the
baseline for the comparison to our results. The TCE tool detected 109 out of 193 equivalent
mutants. It represents 56% of the total of equivalent. Because it is a solution for detecting
equivalent mutants (MADEYSKI et al., 2014), there are no false positives in the results.
However, the TCE can have false negatives, i.e., it may not identify all the equivalent
mutants. All the 84 false negatives occurred because the optimization applied by TCE
produced a bytecode that is different from the corresponding original program. Notice
that this situation may happen even when the mutant exhibits the same behavior as the
original program. We use the TCE data as a reference to better understand the Nimrod
results. It is not the purpose of this work to suggest a better solution, since our solution,
together with TCE, may be complementary from the mutation analysis point of view.

Different from the TCE accuracy in detecting equivalent mutants, our approach
attempts to suggest whether a mutant is equivalent through automated behavioral testing.
From the 1,542 total mutants analyzed, Nimrod classified 449 as equivalent. It is more
than twice the 193 manually identified. We expected our solution to suggest more equivalent
mutants than the total number of mutants that are indeed equivalent. The mutants that
Nimrod wrongly classified as equivalent mutants are the false positives.

84

Tables 11 - 18 present in more detail the results of Nimrod and TCE execution on
the analyzed subjects. Each table represents a subject and shows the number of equivalent
mutants: manually identified, suggested by Nimrod, and detected by TCE. For each
table, we also calculate the Precision, Recall, and F-Measure for TCE and Nimrod. With
this information, we can have a more accurate base on which subjects Nimrod performed
better or worse.

Based on the F-measure, in three out of eight subjects evaluated, decodeName (xstream),
add (joda-time) and classify (triangle), the approach had an accuracy of 100%. In two
subjects, sqrt (bisect) and capitalize (commons-lang), the accuracy was above to 96%. In
other two subjects, wrap (commons-lang) and removeNode (pamvotis), the approach had
an accuracy above to 82%.

On the other hand, Nimrod had a very low accuracy in the addNode (pamvotis).
Nimrod suggested 277 out of 318 mutants as equivalent. It is eight times more mutants
than the 33 manually marked as equivalent. By analyzing the false positives of this subject,
we found some characteristics in the target program and in the mutants that might explain
this result. The addNode method has the following signature: void addNode (int, int,

int, int, int, int). It does not return a value, which requires the test to use an assert
that checks the state of the program by using another method or a field (or an exception
for exceptional cases). Besides, most mutants mistakenly marked as equivalent change
fields that do not have public methods or stay in classes other than the target class where
the mutation occurred (we discuss these cases in the next section). In contrast, this was
the only subject in which TCE had 100% of accuracy.

Table 11 – Subject: sqrt (bisect)

MANUAL NIMROD TCE

EQUIVALENTS 17 18 11

PRECISION 94.44% 100.00%

RECALL 100.00% 64.71%

F-MEASURE 97.14% 78.57%

Table 12 – Subject: classify (triangle)

MANUAL NIMROD TCE

EQUIVALENTS 40 40 21

PRECISION 100.00% 100.00%

RECALL 100.00% 52.50%

F-MEASURE 100.00% 68.85%

85

Table 13 – Subject: decodeName (xstream)

MANUAL NIMROD TCE

EQUIVALENTS 28 28 0

PRECISION 100.00% 0.00%
RECALL 100.00% 0.00%
F-MEASURE 100.00% -

Table 14 – Subject: add (joda-time)

MANUAL NIMROD TCE

EQUIVALENTS 35 35 24

PRECISION 100.00% 100.00%
RECALL 100.00% 64.86%
F-MEASURE 100.00% 78.69%

Table 15 – Subject: capitalize (commons-lang)

MANUAL NIMROD TCE

EQUIVALENTS 14 15 2

PRECISION 93.33% 100.00%
RECALL 100.00% 14.29%
F-MEASURE 96.55% 25.00%

Table 16 – Subject: wrap (commons-lang)

MANUAL NIMROD TCE

EQUIVALENTS 19 26 12

PRECISION 73.08% 100.00%
RECALL 100.00% 63.16%
F-MEASURE 84.44% 77.42%

Table 17 – Subject: addNode (pamvotis)

MANUAL NIMROD TCE

EQUIVALENTS 33 277 33

PRECISION 11.91% 100.00%
RECALL 100.00% 100.00%
F-MEASURE 21.29% 100.00%

Table 18 – Subject: removeNode (pamvotis)

MANUAL NIMROD TCE

EQUIVALENTS 7 10 6

PRECISION 70.00% 100.00%
RECALL 100.00% 85.71%
F-MEASURE 82.35% 92.31%

The main problem with suggesting equivalent mutants regards the uncertainty of the
suggestions. That is, the tester is not sure whether the mutant is indeed equivalent or not.
This way, to minimize this problem and provide the mutants that deserve more attention
from the tester, we provide a ranking of mutants. As explained, Nimrod computes two
metrics to create the ranking and thus support the tester: the number of test cases that
reached the mutated point and a boolean value indicating whether the test execution had
a coverage impact. We rank the mutants as follows: The first sort criterion was the impact
on coverage, and then the number of test cases that exercised the mutated point. That
is, if the mutation resulted in a coverage impact, then the mutant has a higher chance of
being a false positive, and the tool places it at the bottom of the ranking. If there was no
change in coverage, then we use the number of test cases that touched the mutated point.
The lower the number of test cases, the lower the Nimrod’s confidence in the suggestion,
so these mutants get closer to the top of the ranking. In this way, the tester can analyze
the mutants of the ranking from top to bottom.

86

Nevertheless, despite the use of the metrics, we cannot define a general threshold
number that determines how many mutants must be manually analyzed in all projects.
It is up to the tester to decide which mutants are manually reviewed. In this study, we
defined the median number of test cases that touched the mutated point as the threshold
to verify the accuracy of the ranking. After that, we then check how many false positives
keep before or after the median.

To better explain our evaluation, Table 19 presents the 18 mutants of sqrt (bisect)
suggested as equivalent by Nimrod. According to manual analysis, 17 mutants are
equivalent, which means Nimrod classification had one false positive. The AOIS_12 (in
bold) is the mutant wrongly classified. No mutant had an impact on coverage. Using the
number of test cases that touched the mutated point as data set, the median value for
the 18 mutants was 204 test cases. As the mutation point of the AOIS_12 mutant was
exercised by 191 test cases, this mutant was before our threshold. By our evaluation, the
mutants before the threshold had a weak chance of being equivalent, and these mutants
would be manually analyzed.

Table 20 presents the false positives per subject. Only subjects that had at least one
false positive are listed. In the sqrt (bisect) and capitalize (commons-Lang) subjects only
one mutant was wrongly classified. In both, the false positives were before the median.
In the addNode (pamvotis) subject, despite many false positives, 214 (88%) out of 244
were before the threshold. We checked the details of the result and identified that no
test case exercised 106 (38%) mutants. Most of these mutants were inside a switch-case
structure, which was nested with a conditional if. The worst-case happened with the wrap
(commons-lang) method. This subject has a structure with three conditional nested ifs.
All false positives were at some point in this structure, and the number of test cases
that touched these mutants ranged from two to seven. It is relatively low since the tool
generated three thousand tests, on average, for these mutants.

Answer to RQ1: By using the F-measure values, our approach accuracy has reached
100% in three subjects, more than 96% in two subjects and more than 82% in the other
two subjects studied. In only one subject, the performance was below 22%. The ranking
also presented an interesting result. For this experiment, we defined the median of test
cases that touched the mutated point as the threshold to define the mutants with a strong
or weak chance of being equivalent. In two cases, the results reached 100% accuracy, and
in the worst case, it reached an accuracy of 57%. We believe that Nimrod is effective in
what it proposes to be, that is, an approach to suggest equivalent among the surviving
mutants of the mutation analysis.

87

Table 19 – The sqrt (bisect) mutants suggested as equivalent by Nimrod. The AOIS_12
is the only false positive (in bold) and the double line marks the division
(threshold) based on the median.

Mutant Coverage
Impact

Num. Test
Cases Exercise

AOIS_43 NO 61
AOIS_48 NO 137
AOIS_60 NO 142
AOIS_31 NO 143
ROR_13 NO 146
AOIS_45 NO 156
AOIU_12 NO 191
AOIS_74 NO 199
ROR_12 NO 200
AOIS_59 NO 208
AOIU_4 NO 213
ROR_8 NO 221
AOIS_44 NO 235
AOIS_47 NO 245
AOIS_79 NO 311
AOIU_3 NO 329
AOIS_73 NO 386
AOIS_80 NO 465
MEDIAN 204

Table 20 – Distribution of the false positive according to the median.

Program Method False
Positives

Median
⇐= | =⇒

bisect sqrt 1 100% 0%

commons-Lang capitalize 1 100% 0%
wrap 7 57% 43%

pamvotis addNode 244 88% 11%
removeNode 3 66% 33%

4.5.2 How long does it take for Nimrod to analyze a mutant?

To evaluate the efficiency of the approach and answer RQ2, we calculate the average
time that Nimrod took to suggest each mutant as equivalent or non-equivalent. Table 21

88

presents the average time in seconds for each subject. For example, the classify (triangle)
subject took an average of 197.10 seconds to suggest a mutant as equivalent and 11.46
seconds to detect one non-equivalent mutant.

Our approach has a fast average response time for the cases where it suggests the
mutant as non-equivalent. That happens because once a test kills the mutant, we finish the
analysis. We chose to perform this phase sequentially and defined EvoSuite Regression
Testing (EvoSuiteR) as the first option. This decision allowed Nimrod to quickly discover
easy-to-kill mutants.

The sqrt (bisect) subject had the worst results when we calculated the time to detect
a non-equivalent mutant. In this subject, some non-equivalent mutants led Nimrod to
generate tests that reached the execution timeout. That is, the mutant transforms the
original program causing a loop with no terminating condition. This way, although this
situation raises a behavioral change, Nimrod spends much time until the timeout.

The classify (triangle) subject had the best response time to detect a non-equivalent
mutant. This subject has relatively simple code structures when compared to the other
subjects of the study. For instance, there are no dependencies with external classes and no
complex conditional expressions. This condition leads to the generation of many easy-to-kill
mutants.

To suggest a mutant as equivalent, Nimrod needs to generate and execute all tests
from all test-generation tools. The subjects classify (triangle) and sqrt (bisect) had the
best results with an average of 197.10 seconds and 198.37 seconds to analyze a single
equivalent mutant. Both classes of the two subjects do not have dependencies with external
classes, which allows the test generation tools, especially EvoSuite, not to take so long
to generate the tests.

On the other hand, the subject addNode (pamvotis) took an average of 404.47 seconds

Table 21 – Average time, in seconds, the Nimrod took to analyze each mutant.

Program Method Average Time (seconds)
Equivalent Non-equivalent

bisect sqrt 198.37 130.43

commons-Lang capitalize 358.36 22.50
wrap 378.29 15.99

joda-Time add 212.61 24.04

pamvotis addNode 404.76 38.72
removeNode 391.89 25.79

triangle classify 197.10 11.46
xstream decodeName 311.01 23.72
Average 306.55 36.57

89

to suggest a mutant as equivalent. As explained, this subject has some features that make
difficult the generation of tests. For instance, the return of the method is void, and there
are many dependencies with entities of external classes that do not have public access.
One may question whether the time taken by Nimrod is acceptable. The time results
we report are dependent on the settings we use in the test generation tools. For instance,
we set up 60 seconds of time limit for each instance (Randoop once, EvoSuite twice)
to generate the tests. These settings led Nimrod to take approximately five minutes to
suggest a mutant as equivalent. It is worth mentioning that identifying equivalent mutants
is a manual task in the last case.

This way, Nimrod can help reduce this work as it takes a third of the manual time.
Besides, Nimrod ranks the mutants indicating which ones are more or less likely to be
equivalent. Besides, for a non-equivalent mutant, the average time reduces to 36.57 seconds,
which is 25 times less than the manual time.

As reported by Kintis el al. (KINTIS et al., 2018), TCE can analyze the equivalence
of a mutant in less than two seconds. In Section 4.6, we present a practical application
combining TCE and Nimrod as an alternative for the equivalent mutant problem.

Answer to RQ2: Our approach took an average time of 306.55 seconds per equivalent
analyzed mutant and 36.57 seconds per non-equivalent mutant. Once Nimrod kills the
mutant, we have the test case. This way, we save time the developer would spend to create
a test case to kill the mutant. If compared to manual classification reported in previous
work, Nimrod performs better, while manually analyzing a mutant to indicate whether it
is equivalent or not can take 15 minutes, Nimrod takes a third of this time to suggest
equivalent and is 25 times faster to indicate non-equivalent.

4.5.3 What are the characteristics of the mutants that Nimrod failed to classify?

In this section, we answer RQ3 by analyzing all the false positives of each subject
manually. Table 22 presents common source code characteristics that led Nimrod to
raise false positives, i.e., it suggested the mutants as equivalent but, in fact, they are
not. We focus on three characteristics: Access Level Modifier, External Entities, and Very
Restricted Value. In total, 256 (16.60%) mutants out of 1,542 were misclassified. The
addNode (pamvotis) subjects was responsible for 244 (95%) misclassified mutants. Here
we intend to evaluate the false positives qualitatively. In what follows, we discuss each
characteristic.
Access Level Modifier occurs when the test case and the source code need to be in the
same package structure so that the test can kill the mutant. Listing 4.4 presents a code
snippet of the sqrt (bisect) subject. In the 𝑀1 mutant, the operator AOIU (Arithmetic
Operator Insertion - Unary) inserts a minus operator at the right-hand side of an assignment

90

Table 22 – Common characteristics (false positives) in the Nimrod’s results.

Problem Description Subjects

Access Level Modifier To kill the mutant, the test needs to be in same
package structure as the program source code.

sqrt (bisect), addNode (pamvotis), removeNode (pamvotis)

Very Restricted Value To kill the mutant, the test needs to generate
a very specific value.

capitalize (commons-lang), wrap (commons-lang),
addNode (pamvotis), removeNode (pamvotis)

External Entities To kill the mutant, the test needs to execute and assert
entities in classes different from the mutated location.

addNode (pamvotis), removeNode (pamvotis)

to a field variable. This transformation changes the value assigned to the field mResult.
This field has no other use or definition in the sqrt method. Likewise, it has no other
access to any method of this class to set out a change in the behavior.

This context led us to believe that this mutant could be equivalent, however, as it can
be seen in Listing 4.4, this field was declared as package-private (no explicit modifier).
So, to kill this mutant, it is necessary to use a Java language artifice to bypass the field
visibility constraint. The test should be created in the same package as the original class
under test, and the assertion should observe the state of the field. It has direct access to
the field without the need to go through an access method (e.g., getMResult()) for this
purpose. We were able to configure EvoSuite to follow the same package structure as the
original program. However, we did not get the tests to perform assertions in package-private
fields.

public class Bisect {

2 double mEpsilon, mResult;

...

4 public double sqrt(double N){

...

6 while (Math.abs(diff) > mEpsilon) {

...

8 }

r = x;

10 mResult = r; 𝑀1 [mResult = r; ⇒ mResult = -r;]

return r;

12 }

}

Listing 4.4 – A code snippet extracted from the sqrt subject.

In the Bisect class example, if the developers of the project had defined that the unit
tests and the original source code should be at different packages, the AOIU mutant would
be equivalent (CWA). As we are considering all projects based on the notion of OWA, the
mutant AOIU is considered non-equivalent. So, here Nimrod failed.

The Nimrod tests must follow the same package structure of the class under test to
solve this problem and, also, the test assertion must use the available class fields.
Very Restricted Value occurs when the automatic testing tool does not generate a test
with an input that exercises the behavior change made by the mutation. To better explain

91

this characteristic, we use an example extracted from the wrap (commons-lang) subject.
In Listing 4.5, the 𝑀2 mutant (line 20) was generated by the mutation AORB (Arith-

metic Operator Replacement) operator. Here, it replaces the arithmetic operator + by %.
To change the behavior of this mutant, the test must reach the mutated line, which is
inside several nested if statements. Also, the offset variable cannot be redefined in the
subsequent repetitions of the while. During our study, the tests exercised this mutated
point only twice, even though automatic generation tools generated more than 3,000 tests.

The software testing community knows it is challenging to create tests to achieve high
branch coverage automatically. A possible solution for Nimrod to solve this problem is
to increase the time limit of the tools to generate the tests and allows the generation of
a larger number of tests (we limit these settings in 60 seconds of the time limit and a
maximum of 3,000 tests). However, these decisions impact directly in the total time to
suggest a mutant as equivalent or non-equivalent. New approaches to solve this problem
have been presented in recent years (BRAIONE et al., 2017). So, the next versions of the
automatic test generation tools are likely to show improvements in this regard.

1 public class WorldUtils {

public static String wrap(String str, int wrapLength, String newLineStr, boolean wrapLongWords){

3 ...

while (...) {

5 if (...) {

offset++;

7 continue;

}

9 if (...) {

...

11 offset = ...

} else {

13 if (...) {

...

15 offset = ...

} else {

17 spaceToWrapAt = str.indexOf(' ', wrapLength + offset);

if (spaceToWrapAt >= 0) {

19 ...

offset = spaceToWrapAt + 1; 𝑀2 [+ ⇒ %]

21 } else {

...

23 offset = ...

}

25 }

}

27 }

wrappedLine.append(str.substring(offset));

29 return wrappedLine.toString();

}

31 }

Listing 4.5 – A code snippet extracted from the wrap (WordUtils) subject.

92

External Entities happens when the test needs to execute or assert entities not directly
located in the target class where the mutation occurred. Listing 4.6 presents a code snippet
extracted from the addNode (pamvotis) subject. The method (lines 4-24) has no return
statement, and its primary goal is to construct a MobileNode object and put this object
into a Vector (line 21). In the 𝑀3 mutant, the AOIS operator inserts a post-decrement in
the SpecParams.CW_MAX variable (Line 13). This global variable is static, public, and has
only one definition point in the SpecParams class.

1 public class Simulator {

private java.util.Vector nodesList = new java.util.Vector();

3 ...

public void addNode(int id, int rate, int coverage, int xPosition, int yPosition, int ac) {

5 ...

if (...) {...}

7 else {

pamvotis.core.MobileNode nd = new pamvotis.core.MobileNode();

9 ...

switch (ac) {

11 case 1 : {

nCwMin = cwMin / cwMinFact1;

13 nCwMax = SpecParams.CW_MAX / cwMaxFact1; 𝑀3 [SpecParams.CW_MAX ⇒ SpecParams.CW_MAX

→˓ --]

nAifsd = sifs + aifs1 * slot;

15 break;

}

17 ...

}

19 nd.params.InitParams(id, rate, xPosition, yPosition, coverage, ac, nAifsd, nCwMin, nCwMax);

nd.contWind = nd.params.cwMin;

21 nodesList.addElement(nd);

nmbrOfNodes++;

23 }

}

25 }

Listing 4.6 – A code snippet extracted from the addNode subject.

To identify the behavior change of this mutant, the test needs to assert the state of
the SpecParams.CW_MAX variable after executing the method addNode. However, our impact
analysis (presented in Section 4.3) is intraclass and does not consider impacted entities in
external classes/files.

As explained, the Nimrod notion of equivalence is based on the behavior exposed by
the program through the execution of automatically generated tests. Therefore, to have a
satisfactory result, the class under test must be designed so that unit tests can perform
properly (BINDER, 1994). However, this is not always the case, so writing a good test
in this sense is difficult. When this occurs, Nimrod fails to generate a test that could
change the mutant’s behavior in comparison to the original program. This situation can
lead Nimrod to produce false positives. We noticed that the high false-positive number of
subject addNode (pamvotis) occurred because the system design does not facilitate the

93

use of unit tests (the project does not have developer written unit tests). In the future,
we intend to do refactoring actions to make the code more testable and then repeat the
experiment.

Answer to RQ3: We found three classes of characteristics that lead Nimrod to fail
in suggesting equivalent mutants: Access Level Modifier, External Entities, and Very
Restricted Value. We have seen that there are solutions to decrease the number of false
positives by improving the static analysis and, consequently, the configuration to generate
automatic tests. The most common characteristic and the most difficult to solve was the
Very Restricted Value. These mutants are called stubborn because they need precise tests
to kill them.

4.5.4 Which mutation operators commonly lead Nimrod to fail?

We also analyzed the mutation operators to determine the influence of them on the
effectiveness of Nimrod. We counted the number of suggested equivalent mutants per
operator that most induced Nimrod to fail. Table 23 reports the total number of mutants
analyzed per operator.

For this research question, we are mainly interested in the false positive column. By
analyzing the numbers, the AOIS operator stands out in absolute numbers. It generated 650
(42%) mutants. Therefore, this operator was the one that generated the most equivalent
and non-equivalent mutants. Nimrod classified 251 AOIS mutants as equivalent. Of these,
125 (50%) were misclassified. This mutation operator is known by the community to
generate many mutants and generate many equivalent. Most of these equivalent mutants
can be avoided even before their generation (KINTIS; MALEVRIS, 2015; FERNANDES et al.,
2017; FERNANDES; RIBEIRO; SANTOS, 2018). Although the AOIS operator produces many
equivalent, it also generates many stubborn mutants. Such mutants tend to require precise
tests, which in turn is good for mutation analysis (YAO; HARMAN; JIA, 2014).

If we analyze from the relative numbers’ perspective, the worst performance of Nimrod
occurred with the AOIU and AORB operators, where the false-positive rates were close to
30%. However, in both AOIU and AORB, more than 93% of the false positives came from
the addNode (pamvotis) subject and the failure occurred because this operator changed
a field that either belonged to an external entity, or the access level of the field was
package-private.

In the other two cases (LOI and ASRS) where Nimrod misclassification occurred, the
hit rate on detecting non-equivalent mutants (True Negative column) was above 80%. This
way, we did not identify a specific mutation operator that was leading Nimrod to fail.

94

Table 23 – Nimrod Results by Mutation Operator.

Nimrod

Mutation Operator Description Mutants
True

Positive
True

Negative
False

Positive
AORB Arithmetic Operator Replacement (binary) 232 14 (6%) 151(65%) 67 (29%)
AORS Arithmetic Operator Replacement (short-cut) 8 0 8 (100%) 0
AOIU Arithmetic Operator Insertion (unary) 108 9 (8%) 67 (62%) 32 (30%)
AOIS Arithmetic Operator Insertion~(short-cut) 650 126 (20%) 399 (61%) 125 (19%)
AODU Arithmetic Operator Deletion~(unary) 2 1 (50%) 1 (50%) 0
AODS Arithmetic Operator Deletion~(short-cut) 0 0 0 0
ROR Relational Operator Replacement 254 34 (13%) 220 (87%) 0
COR Conditional Operator Replacement 24 3 21 0
COD Conditional Operator Deletion 0 0 0 0
COI Conditional Operator Insertion 67 0 67 (100%) 0
SOR Shift Operator Replacement 0 0 0 0
LOR Logical Operator Replacement 0 0 0 0
LOI Logical Operator Insertion 181 6 (3%) 146 (81%) 29 (16%)
LOD Logical Operator Deletion 0 0 0 0
ASRS Assignment Operator Replacement~(short-cut) 16 0 13 (81%) 3 (19%)
Total 1,542 193 1,093 256

Answer to RQ4: We identify that 10 MuJava mutation operators were responsible for
generating 1,542 mutants. Six out of the 10 operators had at least one false-positive mutant.
That is, Nimrod classified as equivalent, but this was not. The two mutation operators
with the highest false-positive rate were AOIU and AORB. However, the Nimrod hit rate
for these operators was higher than the error rate. This way, we did not identify a set of
operators that indeed lead to misclassifications. The problem happened due to the three
program characteristics we presented.

4.5.5 Threats to Validity

The projects we used represents a threat to external validity, mainly because we
focused only on a few methods. To ameliorate this issue, the subjects selected come from
different systems and different domains. We selected these subjects due to the previous
analysis of equivalence. Nevertheless, we did not test our solution against methods with
complex external dependencies, such as: ObjectC func(ObjectA , ObjectB);. Dependency
objects might be challenging to instantiate. Such methods require more work from the test
generation tools since they need to create mocks (ARCURI; FRASER; JUST, 2017) of these
objects or to discover valid constructors (which in turn may have other dependencies).
Besides, dependencies to some external elements like the graphical user interface or
manipulating files could limit test generation tools to generate a test case exposing
behavioral change (SOARES et al., 2013).

The previous manual analysis we used to classify the mutants represents a threat to
internal validity. However, two previous studies manually analyzed the set of mutants

95

independently of the present one (KINTIS et al., 2018; KINTIS; MALEVRIS, 2015). Also,
TCE confirmed part of the equivalent mutants. For the remaining ones, we also manually
analyzed all the equivalent and confirmed the previous manual analysis. It is essential
to say that this threat is a consequence of the undecidability of the equivalent mutant
problem and covers all the relevant mutation testing studies about this theme.

The selected set of mutation operators also introduces threats to the internal validity
of this work. However, this set of mutants is composed of all 15 operators available in
MuJava (version 3). We did not pre-exclude any mutant from our investigation. We did
not evaluate object-oriented related mutation operators. Previous research (OFFUTT; MA;

KWON, 2006) has shown that object-oriented mutation operators yield a small number of
mutants and a rather low number of equivalent ones.

In the ranking, we count the number of test cases that reach the mutated point. The
code line coverage information computes this metric. This information alone may be
narrow. For example, given the expression if (a > 0 && b < 10), if the mutation occurs
at the right-hand side of the && operator (e.g., b >= 10), all tests that reach this line, even
analyzing only the left-hand side of the expression, are computed as reaching the mutated
point. To alleviate this threat, our ranking relies on another metric, i.e., the impact on
coverage.

The presence of flaky tests (LUO et al., 2014) could also represent a threat. For instance,
Nimrod suggests a mutant as non-equivalent because there is a test exposing a behavioral
change in the mutant program. However, the mutant is equivalent, and the difference in
behavior occurred due to a flaky test. This scenario would represent a false negative for
Nimrod. To minimize this threat, we execute the generated tests against the original
program to confirm that the tests capture the current behavior of the original program.
Besides, both EvoSuite and Randoop have settings to avoid flaky tests. Last but not
least, we did not identify any false negative presence among the mutants analyzed manually
and subsequently evaluated by TCE.

Other threats are due to the defects in the embedded software. For instance, the static
analysis, or the automatic test generators may have defects. In turn, such defects would
push down the results. Thus, it is unlikely that the remaining defects would influence our
results to a great extent.

It is important to note that all our results form empirical observations that might
not hold in the general case. Finally, all our subjects, tools, and data are available on
the companion website of the present work (EASY, 2019). It can help to reduce all the
threats mentioned above since independent researchers can check, replicate, and analyze
our findings.

96

Figure 9 – Combining TCE and Nimrod to minimize the manual analysis to identify
equivalent mutants.

4.6 IMPLICATIONS FOR PRACTICE: MINIMIZING THE MANUAL ANALYSIS

Offutt and Untch (OFFUTT; UNTCH, 2000) presented a traditional mutation process.
As an implication for the practice of our approach, we extend the mutation process by
using TCE and Nimrod to minimize the high cost of manual analysis in the detection of
equivalent.

To present the extension, we rely on Figure 9. At the left-hand side (Step 1), there is a
reproduction of the Offutt’s and Untch’s proposition of the typical mutation process. The
solid boxes represent steps that are automated by traditional tools such as MuJava, and
the dashed boxes represent steps done manually. A costly step in the mutation analysis is
the manual process on the surviving mutants with the aim of analyzing and marking the
equivalent mutants. Besides that, the tester needs to identify the non-equivalent to create a
test case to kill them. It is precisely in this manual process of analyzing surviving mutants
that Nimrod, in combination with TCE, can reduce the cost of mutation testing.

In Step 2, TCE receives as input a set of mutants that were not killed by the application
test suite. As demonstrated before (KINTIS et al., 2018), TCE can analyze a broad set of
mutants in a few minutes (less than two seconds per mutant). TCE then uses its ability
to detect equivalent mutants to automatically and safely discard a significant number of
useless mutants in only a small fraction of time.

Because TCE cannot guarantee that the undetected mutants are indeed non-equivalent,
we use Nimrod to help with this task. In Step 3, Nimrod receives as input the mutants
that TCE could not confirm as equivalent. The time spent by Nimrod to examine each

97

mutant can vary greatly (refer to Section 4.5.2). In case Nimrod finds a test that exposes
a behavioral change, it indicates to the tester that the mutant is not equivalent and informs
which test can kill it. If, after exhaustively testing the program and after the timeout, no
test is capable of exposing a behavioral change, Nimrod suggests that the mutant may
be equivalent, and indicates how many test cases have been able to exercise the mutated
point and if occurred any impact on coverage.

Step 4 represents the manual process to identify the equivalent mutants. Instead of
analyzing all the surviving mutants from the traditional mutation process, or the mutants
that TCE could not confirm, the tester now should consider a smaller number of mutants.
Notice that Nimrod also identifies some killable mutants, providing the tests to kill then.

To better illustrate a potential cost reduction, we refer to the FieldUtils class (joda-
time project) presented in Section 4.3. By executing the MuJava, selecting all the available
mutation operators, the tool generates 1,339 mutants. After executing the joda-time test
suite, 543 mutants got killed, and 796 stayed alive. This result represents a mutation
score of 40% (without any analysis of equivalence). By using the traditional process, 796
mutants should be analyzed to identify the killable mutants and mark the equivalent to
be ignored in the mutation score.

Our first step in reducing this effort is to provide the live mutants as input for TCE.
TCE took 17.33 minutes to analyze 796 mutants. An average of 1.3 seconds per mutant.
TCE detected 117 mutants with the bytecode equivalent to the original class. This outcome
reduces to 679 the number of mutants for analysis. Our next step is to execute our approach
against these 679 mutants. Nimrod was able to identify 608 mutants as non-equivalent.
This outcome represents 76% of all the mutants analyzed by Nimrod. The total time to
analyze these 679 mutants was 24,659 seconds (6.8 hours).

At the end, Nimrod suggested 71 mutants as potential equivalent. We ranked the
suggested mutants according to the metrics used by our approach. If we consider the same
limit used by our study (Section 4.5), that is, the median is the threshold point, 35 mutants
have strong confidence of being indeed equivalent. These mutants had a coverage impact,
or a higher number of test cases exercised the mutated point. On the other hand, the 36
out of 71 mutants suggested as equivalent had no impact on coverage, and fewer tests
exercised them. Then, Nimrod had weak confidence that these 36 mutants are indeed
equivalent.

Table 24 presents a summary of the effort reduction when applying TCE and Nimrod
to the traditional mutation process (OFFUTT; UNTCH, 2000).

The question raised here is whether the time required by TCE and Nimrod is
acceptable in practice. Previous research estimated the time of the manual identification
of a single equivalent mutant to be approximately 15 minutes (SCHULER; ZELLER, 2013).
According to Table 24, mutation testers would need to analyze 796 mutants manually. If
we apply the suggested average time, a developer would take 199 hours (15 minutes x

98

Table 24 – Summary of the effort’s reduction when combining TCE and Nimrod for the
class FieldUtils of project joda-Time.

Mutants Description
1,339 Total FieldUtils mutants
-543 Killed by joda-time test suite

796 Surviving mutants 100.00%
-117 TCE equivalent 17.33 minutes
679 Surviving mutants ⇓ 14.69%

-608 Nimrod non-equivalent 410.99 minutes
71 Surviving Mutants ⇓ 91.08%

796 mutants) to investigate all the first set of surviving mutants. Notice, however, we are
not considering the time to create new test cases for the non-equivalent mutants. For the
FieldUtils class, combining TCE and Nimrod took about 7 hours.

Regarding the 71 mutants suggested as equivalent, it is up to the tester to define how
many mutants are manually analyzed. In our study, we defined the threshold based on
the median number of test cases that touched the mutated point. In this way, 36 mutants
should be manually analyzed.

Notice that we do not intend to generalize the cost reductions we presented in this
section. Instead, we intend to show that our approach might reduce costs when analyzing
and marking equivalent mutants and consequently might also improve the traditional
mutation process (OFFUTT; UNTCH, 2000). The reductions depend on several factors, such
as the source code itself. For instance, the FieldUtils class public methods are invoked
in more than 180 places in program source code and more than 120 places in test code.
This way, we understand that this class is designed for testing, which makes the task of
automatically generating tests more straightforward. Therefore, the numbers presented in
Table 24 might bias in our favor.

4.7 SUMMARY

In this chapter, we defined an approach, implemented in a tool named Nimrod, and
empirically investigated its use as a way to reduce the cost of equivalent mutants in
mutation testing. The Nimrod approach reduces the manual labor cost on two fronts.
First, it suggests equivalent mutants by reducing the number of mutants needed to be
analyzed manually. Second, it outputs a test to kill the non-equivalent mutants. Our first
findings show that Nimrod can suggest 100% of the mutants correctly in 3 out of 8 studied
subjects and achieved above 90% in 2 subjects. In only one case, the performance was
below 50%. We also showed that the average time to identify a non-equivalent mutant was
36.57 seconds, and 306.55 seconds (5.1 minutes) to suggest as equivalent, which is much

99

less than executing this task manually. Also, we found three classes of characteristics that
take Nimrod to erroneously classify mutants as equivalent (false positives) and indicated
possible improvements. Finally, we identified AOIU and AORB as the mutation operators
with the highest false-positive rate and AOIS as the mutation operator with the most
significant absolute number of equivalent.

The idea of automatically generating a test suite that is suited for detecting behavioral
changes appeared first in the context of refactoring by Soares et al. (SOARES et al.,
2010). In this work, they presented SafeRefacor, a tool for improving safety during
refactoring activities. It checks the observable behavior of the program before and after the
transformation to report whether or not the refactoring should be applied. SafeRefactor
was able to identify bugs in common refactoring engines like Eclipse JDT, NetBeans, and
the JastAdd Refactoring Tool (SOARES; GHEYI; MASSONI, 2013). Nimrod is based on
SafeRefactor. However, we extend the initial idea to adapt to the mutation testing context.
While in refactoring, there is a transformation that must preserve the behavior, in the
mutation, we want to carry out a transformation that changes the observable behavior of
the program. In this way, we have added more tools to generate the tests automatically,
we also give back to the user the test that can identify the behavior change (kills the
mutant) and calculate the confidence of the equivalence by counting the number of tests
that touch the mutated point.

For more information on how to reproduce the experiment, the detailed results, and to
download Nimrod, visit our companion website (EASY, 2019). Madeyiski et al. (MADEYSKI

et al., 2014) listed three methods to overcome the Equivalent Mutant Problem (which
we can also extend to the duplicate mutant problem): Detecting Equivalent Mutants,
Suggesting Equivalent Mutants, and Avoiding Equivalent Mutants.

100

5 RELATED WORK

Addressing the equivalent mutant is not a recent issue. Previous works have been
addressing this problem and surveys covering this topic have been published (JIA; HARMAN,
2011; MADEYSKI et al., 2014; PIZZOLETO et al., 2019; PAPADAKIS et al., 2019). The duplicate
mutant problem is more recent but has also been faced (PAPADAKIS et al., 2015; KINTIS et

al., 2018).
In this chapter, we describe some of the previous studies that proposed solutions to deal

with useless mutants and we compare these solutions with our approaches. To better guide
reading, we divide this chapter by different topics: strategies to detect useless mutants
(Section 5.1), to avoid useless mutants (Section 5.2), and to suggest useless mutants
(Section 5.3). We also discuss techniques to deal with useless mutants for specific domains
(Section 5.4), and techniques based on selective mutation (Section 5.5) Lastly, we discuss
other kinds of useless mutants(Section 5.6).

5.1 STRATEGIES TO DETECT

Offutt and Pan (OFFUTT; PAN, 1996; OFFUTT; PAN, 1997) developed a technique
to detect equivalent mutants based on mathematical constraints that introduce a set
of strategies to formulate the killing conditions of the mutants. Those conditions are
generated from a control-flow analysis (some manually) and heuristics to recognize infeasible
constraints are applied. If these conditions are not feasible, the mutant is equivalent. In
their experiment, they make use of 11 small Fortran programs that generated 7,636 mutants,
where 695 were equivalent. The constraint-based technique was able to detect roughly half
of the equivalent mutants on average. Voas and McGraw (VOAS; MCGRAW, 1997) first, and
Hierons et al. (HIERONS; HARMAN; DANICIC, 1999) afterward, suggested to use program
slicing to create simple mutants for C programs and to help with equivalence identification.
These approaches suffer from inherent limitations in the scalability of constraint handling
and slicing technology. We could have the same scalability problems in case we implement
the i-rules that need def-use analyses. Also, they target detecting equivalent mutants, thus
these approaches are orthogonal to our approach.

A long time ago, Baldwin and Sayward (BALDWIN; SAYWARD, 1979) investigated some
heuristics for determining the equivalence of mutants using compiler optimizations. The
intuition is that code optimization can transform the original program and the mutant in
a way in which their compiled object codes are going to be identical. After that, Offutt
and Craft (OFFUTT; CRAFT, 1994) performed data-flow analysis in mutants of Fortran
programs and employed six techniques for compiler optimization. In their experiment, they
make use of 15 small Fortran programs along with 14 mutation operators. The results

101

show that, on average of 19,80% of equivalent mutants are detected automatically. More
recently, Kintis et al. (KINTIS et al., 2018) developed the Trivial Compiler Equivalence
(TCE) and implemented compiler optimizations for Java (with Javac and Soot) and C
(with GCC). To check the equivalence, TCE used a simple diff program. They reduced 7.4%
and 5.7% of all C and Java mutants classified as equivalent. Kintis and Malevris (KINTIS;

MALEVRIS, 2013) introduced the concept of mirrored mutants, which are mutants that
exhibit similar behavior, such that identifying one mirrored mutant as being equivalent
could help recognize other equivalent mutants. Experiments with 6 small Java programs
reached the identification 56% equivalent mutants. These strategies have proved to be
quite efficient as a solution to detect equivalent mutants. We even present a combined
solution with TCE + Nimrod (Section 4.6). However, we demonstrated that Nimrod
identified equivalent mutants that TCE did not detect. Besides, our i-rules can avoid
useless mutants saving the mutation generation time.

5.2 STRATEGIES TO AVOID

Previous studies also tackled the problem of equivalent mutants from the avoiding
perspective. Some of them were discussed in Section 3.2 (KING; OFFUTT, 1991; MRESA;

BOTTACI, 1999; HARMAN; HIERONS; DANICIC, 2000). In addition, the work of Offutt et
al. (OFFUTT; MA; KWON, 2006) specified heuristics that avoid equivalent mutants for class-
level mutation operators. The approach is based on equivalence conditions, which in turn
is based on the condition a mutant is killed. They implemented heuristics based on a data-
flow analysis for 16 mutation operators and evaluated in 866 classes from six applications.
The technique discovered that 74.60% of the class-level mutants could be equivalent
and so were avoided. Kintis and Malevris (KINTIS; MALEVRIS, 2015) developed a tool to
automate the identification of equivalent and partially equivalent mutants (mutants that
are equivalent to the original program for a specific subset of paths) through problematic
data-flow patterns. They introduced data-flow patterns and showed that a large portion of
equivalent mutants could be avoided by just analyzing the original program under test.
They evaluated 165 equivalent mutants from real-world Java programs. The tool detected
56% of the equivalent mutants in just 125 seconds. Most of them from the AOIS operator.
These ideas require a data-flow or control-flow analysis execution. On the other hand,
many of our i-rules depend only on AST traversal. Our i-rules also work to avoid duplicate
mutants. Besides, we also propose a strategy to help with the task of deriving new i-rules
for mutation tool developers.

5.3 STRATEGIES TO SUGGEST

Other studies check the impact of mutant execution and suggest non-equivalent mutants.
Shuler et al. (SCHULER; DALLMEIER; ZELLER, 2009) assessed the impact of mutations using

102

dynamic invariants, and they demonstrated that mutations that violate invariants are
much less likely to be equivalent. The authors evaluated the approach in seven open-source
projects and, on average, the top 5% of invariant-violating mutants yield less than 3% of
equivalent mutants, which in turn increases the number of killable mutants automatically
detected. Shuler and Zeller (SCHULER; ZELLER, 2013) examined whether changes in
coverage can be used to detect non-equivalent mutants. On a sample of 140 mutations
on seven Java programs, the live mutant that alters the control flow of execution, or
the data passed between methods has a 75% chance to be likely killable. To deal with
fewer equivalent mutants, developers must focus on the mutations with the most impact.
Other approaches leverage software clones to identify killable mutants (KINTIS; MALEVRIS,
2013). Since software clones behave similarly, their (non-)equivalent mutants tend to be
the same. Therefore, likely killable mutants can be identified by projecting the mutants of
one clone to the other. In (KINTIS; PAPADAKIS; MALEVRIS, 2015), Kintis et al. introduced
Isolating Equivalent Mutants (I-EQM), a new classification technique to isolate first-order
equivalent mutants based on a dynamic execution scheme to detect equivalent mutants.
They observed that killable mutants are likely to compose a higher-order mutant that
behaves differently than the first-order ones that it is composed of. The results indicate that
I-EQM achieves the correct classification in 81% of the killable mutants with a precision
of 71%. Comparing with Nimrod, these works trust only on developer written test suites.
In our work, besides indicating killable mutants, we also give the test to kill it.

5.4 STRATEGIES FOR VERY SPECIFIC DOMAINS

Other techniques try to solve the equivalent mutant problem for particular domains.
Devroey et al. (DEVROEY et al., 2017) used language equivalence of non-deterministic finite
automata to detect equivalent in finite behavioral models. Ferrari et al. (FERRARI; RASHID;

MALDONADO, 2013) proposed the analysis of join point static shadows to avoid AspectJ
equivalent mutants. Wright et al. (WRIGHT; KAPFHAMMER; MCMINN, 2014) used static
control-flow and data-flow analysis through a DBMS-independent representation of the
relational schema to identify and remove equivalent mutants in database schemas.

All these approaches cannot be extended to general purpose source code mutants.

5.5 ELIMINATING MUTATION OPERATORS

Previous works claimed to reduce the number of useless mutants selecting a small
set of mutation operators, known as Selective Mutation (OFFUTT; ROTHERMEL; ZAPF,
1993; ADAMOPOULOS; HARMAN; HIERONS, 2004; DEREZIŃSKA; RUDNIK, 2012; GLIGORIC

et al., 2013; BLUEMKE; KULESZA, 2014; DELGADO-PÉREZ; SEGURA; MEDINA-BULO, 2017;
CARVALHO et al., 2018). Just et al. (JUST; KURTZ; AMMANN, 2017) criticize the strategies
based on reducing the number of applied mutation operators because they might work in a

103

set of programs but might not in another set. This way, depending on the program, these
strategies continue to generate a high number of useless mutants. The authors conclude
that to discard some of the mutation operators, we need to first understand the program
constructs to which the operators will be applied. In our work, we follow this rationale.
We do not remove the mutation operators entirely to reduce costs. Rather, we can use all
operators, but we avoid specific transformations defined in each i-rule.

5.6 OTHER TYPES OF USELESS MUTANTS

In this thesis we focus on two types of useless mutants; equivalent and duplicate.
However, the mutation testing community has been arguing that other types of useless
mutants also increase the cost of the analysis.

Petrovic et al. (PETROVIĆ et al., 2018) identified mutants which they call Unproductive
Killable Mutants. These mutants lead developers to write tests they rarely, if ever, write.
For instance, a mutant that change the string message associated with an exception or
logging output, even though mutating string messages provide potentially killable mutant.
Yet, adding a test that detects such a mutant arguably does not improve the test suite
effectiveness. Instead, it bloats the test suite with a meaningless and hard-to-maintain
test. Notice that the notion of unproductive mutants is inherently qualitative: different
developers may sometimes reach different conclusions. Petrovic et al. conducted a large-
scale experiment with 30,000 software developers in six different programming languages,
and through a feedback system they classified various unproductive mutants. Unfortunately,
results regarding cost reduction were not explicitly shown in the study.

Several other works have been focusing on a different type of mutant called Redundant
Mutant (KINTIS; PAPADAKIS; MALEVRIS, 2010; PAPADAKIS; MALEVRIS, 2010; PAPADAKIS

et al., 2016; AMMANN; DELAMARO; OFFUTT, 2014). Given the mutant set 𝑀 for program
𝑃 and the mutants 𝑚1 and 𝑚2 ∈ 𝑀 , we say that 𝑚1 subsumes 𝑚2 if every test 𝑡 that kills
𝑚1 also kills 𝑚2, but the reciprocal is not true. This way, redundant mutants are always
subsumed by other mutants. The generation of these mutants increases the total cost and
does not help to improve the test suite. Ammann et al. (AMMANN; DELAMARO; OFFUTT,
2014) empirically identified that almost 99% of the generated mutants are redundant. The
other 1% useful mutants are called the minimal set. Also, Papadakis et al.(PAPADAKIS;

MALEVRIS, 2010) identified that such redundant mutants inflate the mutation score and
that 68% of recent research papers are vulnerable to threats to validity due to the effect
of these mutants. The problem is that computing minimal mutant sets for all possible
test sets is clearly undecidable (AMMANN; DELAMARO; OFFUTT, 2014), thus we can just
propose approximations.

Kaminski et al. (KAMINSKI; AMMANN; OFFUTT, 2013) first and Just et al. (JUST;

KAPFHAMMER; SCHWEIGGERT, 2012) afterwards analyzed and evolved redundancy among
mutants for relational mutation operators which eliminate redundant mutants. The analysis

104

proved that only 3 out of 7 mutants of ROR operator should be generated. They used
truth table to infer logical relationships across the operations. However, this only works
for logical and relational operators. Although the idea is promising, we cannot apply it for
non-logical operators. For instance, a binary expression with two numeric variables a +

b has a very large set of input possibilities, which turn the manual and logical approach
much more difficult.

Guimaraes et al. (GUIMARAES et al., 2020) mapped all possible targets that MuJava’s
mutation operators can apply transformations. Then, they grouped these targets and
empirically defined a set of non-redundant mutants (also called dominants) for each target.
Guimaraes et al. achieved a 64.43% reduction in the number of mutants. Eliminating
redundant mutants can greatly assist mutation analysis, however, the work to identify
equivalent continues. Our i-rules inspired Guimaraes’ work to avoid redundant mutants.

105

6 CONCLUSIONS AND FUTURE WORKS

As we previously described in Chapter 1, this thesis tackles the useless mutants problem.
Useless mutants contribute to increasing the general costs of mutation testing. In particular,
we focus on two kinds of mutants: equivalent and duplicate mutants. Although techniques
to eliminate useless mutants have been applied, their practical use is an open question.
This thesis explores and investigates the useless mutants from two perspectives. First, we
proposed to improve the transformation rules embedded in the mutation operators. Second,
we proposed an approach to suggest equivalent mutants by using automated behavioral
testing. Next, we conclude this thesis by discussing the proposals, results, and possibilities
for future paths.

6.1 AVOIDING USELESS MUTANTS

The automatic identification of equivalent mutants is an undecidable problem (BUDD;

ANGLUIN, 1982). That is, no approach can be defined to detect all equivalent mutants
automatically. The same can be said to detect all duplicate mutants. Fortunately, heuristics
for detecting some cases exist (JIA; HARMAN, 2011; MADEYSKI et al., 2014; PAPADAKIS et

al., 2019; PIZZOLETO et al., 2019).
In Chapter 3, we proposed to improve the transformation rules embedded in the

mutation operators to avoid useless mutants. We called these improvements i-rules. We
divided the i-rules in two classes; e-rule for avoiding equivalent mutants and d-rule for
avoiding duplicate mutants.

We realized that it is a challenge to reason about the several possible useless mutants,
in particular, if we evaluate the various combinations of mutation operators and possible
transformations. Thus, we also presented a strategy to help with identifying new i-rules.
We evaluated the strategy with 100 Java programs as input. To generate the mutants, we
used three of the most popular Java mutation testing tools; MuJava, Major, and Pit.
To automatically classify the mutant as equivalent or duplicate candidate, we decided to
use automatic test generation tools (Randoop and EvoSuite). As a result, we identified
30 e-rules and 69 d-rules in all three mutation tools.

We decided to implement a subset of our i-rules in the MuJava mutation tool to
check whether the e-rules and d-rules can identify useless mutants in industrial-scale
projects. We named this tool MuJava-AUM. By using well-known open-source projects,
we avoided the generation of almost 20% of all considered useless mutants, on average. We
also identified that one e-rule, alone, was responsible for 90% of all equivalent mutants
avoided on average, and six d-rules were responsible for approximately 86% of the duplicate
mutants avoided. Last but not least, MuJava-AUM saved time to generate and compile

106

the mutants in all systems evaluated.
The high cost of mutation testing is well known. Our i-rules can contribute to the

development of better tools and decrease costs in mutation testing analysis. In the end,
the final users can benefit from mutation tools that generate less useless mutants. Besides,
as the programming languages evolve, new constructs are added (e.g., mutation operators
for code annotation (PINHEIRO et al., 2018; PINHEIRO et al., 2020)). In this way, developers
of mutation testing tools tend (i) to create new mutation operators to cover these new
language constructs and (ii) to evolve the existing operators. Therefore, they could use
our strategy to derive and implement i-rules to deal with both aforementioned situations.
Thus, before releasing the tool, developers can improve confidence that the new version
can avoid useless mutants when considering the new operators and the evolved ones.
However, differently from our evaluation, developers would focus on specific operators (not
all available in the tool), reducing costs on carrying out our strategy.

6.2 SUGGESTING EQUIVALENT MUTANTS

In Chapter 4, we defined an approach and empirically investigated the use of automated
behavioral testing as a way to reduce the cost regarding equivalent mutants in mutation
testing. The Nimrod approach reduces the manual labor cost on two fronts. First, it
suggests equivalent mutants by reducing the number of mutants needed to be manually
analyzed. Second, it outputs a test to kill the non-equivalent mutants.

Our first findings indicate that Nimrod can be used as a complement to solutions
that detect equivalent mutants, such as TCE. We have been able to suggest 100% of the
mutants correctly in 3 out of 8 studied subjects and achieved above 90% in 2 subjects. In
only one case, the performance was below 50%.

Besides being effective, any practical solution needs to be efficient. We showed that
the average time to identify a non-equivalent mutant was 36.57 seconds for all subjects
considered. For the mutants suggested as equivalent, where it is necessary to execute all
generated tests, the Nimrod took an average of 306.55 seconds (5.1 minutes). This is much
less than the 15 minutes previously reported to do this task manually (SCHULER; ZELLER,
2013). In addition, the approach saves the testers time from thinking and implementing
the test case to kill the non-equivalent mutant.

We also evaluated the characteristics of the mutants that Nimrod incorrectly iden-
tifies as equivalent (false-positive). We found three classes of characteristics, which we
call: Access Level Modifier, External Entities, and Very Restricted Value. We observed
that improvements in the static analysis and automatic test generation tools could help
decrease the number of false-positive. Besides, we pointed out that classes designed to be
testable (BINDER, 1994) make Nimrod equivalence analysis easier.

Finally, we investigated the mutation operators. We identified that the two mutation
operators with the highest false-positive rate were AOIU and AORB. However, the Nimrod

107

hit rate for these operators was higher than the error rate. Besides, we also identified that
the operator responsible for the most significant absolute number of equivalent mutants
was AOIS, and even so, the Nimrod hit rate at this operator was well above the error
rate. Thus, we did not identify a set of operators that indeed lead to misclassifications.

6.3 FUTURE WORK

Regarding avoiding useless mutants, we intend to set our strategy to use different
Java programs and a different solution to detect useless mutants (e.g., TCE). This setup
could help to discover new i-rules. Besides, we intend to implement the i-rules in different
mutation testing tools (e.g., Pit). Also, we intend to implement i-rules that depend on
deeper static analysis.

Regarding suggesting equivalent mutants, we intend to execute Nimrod with different
mutation tools such as Major and Pit, as well as different operators like class-level
mutation operators (OFFUTT; MA; KWON, 2006). Besides, it is important to add subjects
that have complex external dependencies. As an improvement in the approach, we intend
to increment Nimrod to reduce the number of false positives for the cases we identified.
This decision should include improving the impact analysis. In the current version, we only
have two options of impact analysis: intraclass and interclass. In the case of intraclass, we
direct the tests only to the entities impacted in the mutated class itself, which may be
insufficient. In the case of interclass, we direct the tests to the entities impacted throughout
the project, which can be very large. Perhaps, a middle ground can bring more benefits
to our context. Also, we want to increase the confidence in the suggestion of equivalence
by assessing the impact of mutant execution with different metrics (SCHULER; ZELLER,
2013). Lastly, we can also evolve in the generation of automatic tests. By understanding
the different cases of stubborn mutants, we can better guide automatic testing, or even
change these tools for something like mutant-based test generation.

108

REFERENCES

ACREE, A. T.; BUDD, T. A.; DEMILLO, R. A.; LIPTON, R. J.; SAYWARD, F. G.
Mutation Analysis. Atlanta, GA, USA, 1979.

ACREE, J. A. T. On Mutation. Tese (Doutorado) — Georgia Institute of Technology,
1980.

ADAMOPOULOS, K.; HARMAN, M.; HIERONS, R. M. How to Overcome the
Equivalent Mutant Problem and Achieve Tailored Selective Mutation Using Co-evolution.
In: Proceedings of the 3rd Genetic and Evolutionary Computation Conference. Seattle,
USA: Springer, 2004. p. 1338–1349.

AMMANN, P.; DELAMARO, M. E.; OFFUTT, A. J. Establishing Theoretical Minimal
Sets of Mutants. In: Proceedings of the 7th Conference on Software Testing, Verification
and Validation. Cleveland, USA: IEEE, 2014. p. 21–30.

ANDREWS, J.; BRIAND, L.; LABICHE, Y. Is mutation an appropriate tool for testing
experiments? In: Proceedings. 27th International Conference on Software Engineering. St.
Louis, USA: ACM, 2005. p. 402–411.

ARCURI, A.; FRASER, G.; JUST, R. Private api access and functional mocking in
automated unit test generation. In: Proceedings of the 10th International Conference on
Software Testing, Verification and Validation. [S.l.]: IEEE, 2017. p. 126–137.

BALDWIN, D.; SAYWARD, F. Heuristics for Determining Equivalence of Program
Mutations. [S.l.], 1979.

Basili, V. R.; Rombach, H. D. The tame project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineering, v. 14, n. 6, p. 758–773, June
1988.

BINDER, R. Design for testability in object-oriented systems. Communications of the
ACM, v. 37, p. 87–101, 1994.

BLUEMKE, I.; KULESZA, K. Reduction in Mutation Testing of Java Classes. In:
Proceedings of the 9th International Conference on Software Engineering and Applications.
Vienna, Austria: IEEE, 2014. p. 297–304.

BONNIN, R. Machine Learning for Developers. [S.l.]: Packt Publishing, 2017.

BRAIONE, P.; DENARO, G.; MATTAVELLI, A.; PEZZè, M. Combining symbolic
execution and search-based testing for programs with complex heap inputs. In: Proceedings
of the 26th International Symposium on Software Testing and Analysis. Santa Barbara,
USA: ACM, 2017. p. 90–101.

BUDD, T.; ANGLUIN, D. Two notions of correctness and their relation to testing. Acta
Informatica, v. 18, n. 1, p. 31–45, 1982.

CAPGEMINI; MICROFOCUS. World Quality Report 2019-20 Top software testing trends
for CIOs. [S.l.], 2019. Disponível em: <www.worldqualityreport.com>.

www.worldqualityreport.com

109

CARVALHO, L.; GUIMARAES, M.; RIBEIRO, M.; FERNANDES, L.; AL-HAJJAJI,
M.; GHEYI, R.; THUM, T. Equivalent mutants in configurable systems: An empirical
study. In: Proceedings of the 12th International Workshop on Variability Modelling of
Software-Intensive Systems. Madrid, Spain: ACM, 2018. p. 11–18.

DELGADO-PÉREZ, P.; SEGURA, S.; MEDINA-BULO, I. Assessment of C++
Object-Oriented Mutation Operators: A Selective Mutation Approach. Software Testing,
Verification and Reliability, John Wiley & Sons, v. 27, n. 4-5, p. 1630–1649, 2017.

DEMILLO, R.; LIPTON, R.; SAYWARD, F. Hints on test data selection: Help for the
practicing programmer. Computer, v. 11, n. 4, p. 34–41, 1978.

DEMILLO, R. A.; OFFUTT, A. J. Constraint-based Automatic Test Data Generation.
Transactions on Software Engineering, IEEE, v. 17, n. 9, p. 900–910, 1991.

DEREZIŃSKA, A.; RUDNIK, M. Quality Evaluation of Object-Oriented and Standard
Mutation Operators Applied to C# Programs. In: Proceedings of the 50th International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation.
Prague, Czech Republic: Springer, 2012. p. 42–57.

DEVROEY, X.; PERROUIN, G.; PAPADAKIS, M.; LEGAY, A.; SCHOBBENS, P.-Y.;
HEYMANS, P. Automata Language Equivalence vs. Simulations for Model-Based
Mutant Equivalence: An Empirical Evaluation. In: Proceedings of the 10th International
Conference on Software Testing, Verification and Validation. Tokyo, Japan: IEEE, 2017. p.
424–429.

EASY. Nimrod - A tool to suggest equivalent mutants. 2019. <https://github.com/
easy-software-ufal/nimrod-hunor/wiki/Nimrod> - Accessed: 2019-08-30.

FERNANDES, L.; RIBEIRO, M.; CARVALHO, L.; GHEYI, R.; MONGIOVI, M.;
SANTOS, A.; CAVALCANTI, A.; FERRARI, F. C.; MALDONADO, J. C. Avoiding
Useless Mutants. In: Proceedings of the 16th International Conference on Generative
Programming: Concepts and Experiences. Vancouver, Canada: ACM, 2017. p. 187–198.

FERNANDES, L.; RIBEIRO, M.; PINHEIRO, P.; GHEY, R.; SANTOS, A. Improving
Transformation Rules to Avoid Useless Mutants – Companion Website. 2020. Online – last
accessed on January 2020. <https://easy-software-ufal.github.io/i-rules/>.

FERNANDES, L.; RIBEIRO, M.; SANTOS, A. Rules to avoid useless mutants. In: 8th
Workshop on Theses and Dissertations of CBSoft. São Carlos, Brazil: ACM, 2018.

FERRARI, F. C.; RASHID, A.; MALDONADO, J. C. Towards the Practical Mutation
Testing of AspectJ Programs. Science of Computer Programming, Elsevier, v. 78, n. 9, p.
1639–1662, 2013.

FRANKL, P. G.; WEISS, S. N.; HU, C. All-uses vs mutation testing: An experimental
comparison of effectiveness. Journal of Systems and Software, v. 38, n. 3, p. 235 – 253,
1997. ISSN 0164-1212.

FRASER, G.; ARCURI, A. Evosuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th Symposium and the 13th European Conference on
Foundations of Software Engineering. Szeged, Hungary: ACM, 2011. p. 416–419.

https://github.com/easy-software-ufal/nimrod-hunor/wiki/Nimrod
https://github.com/easy-software-ufal/nimrod-hunor/wiki/Nimrod
https://easy-software-ufal.github.io/i-rules/

110

FRASER, G.; ARCURI, A. Whole test suite generation. IEEE Transactions on Software
Engineering, v. 39, n. 2, p. 276 –291, 2013.

FRASER, G.; STAATS, M.; MCMINN, P.; ARCURI, A.; PADBERG, F. Does automated
unit test generation really help software testers? a controlled empirical study. ACM
Transactions on Software Engineering and Methodology, ACM, v. 24, n. 4, p. 23, 2015.

GLIGORIC, M.; ZHANG, L.; PEREIRA, C.; POKAM, G. Selective Mutation Testing
for Concurrent Code. In: Proceedings of the 22nd International Symposium on Software
Testing and Analysis. Lugano, Switzerland: ACM, 2013. p. 224–234.

GOPINATH, R.; ALIPOUR, M. A.; AHMED, I.; JENSEN, C.; GROCE, A. On the Limits
of Mutation Reduction Strategies. In: Proceedings of the 38th International Conference on
Software Engineering. Austin, TX, USA: ACM, 2016. p. 511–522. ISBN 978-1-4503-3900-1.

GOSLING, J.; JOY, B.; STEELE, G.; BRACHA, G.; BUCKLEY, A. The Java® Language
Specification - Java SE 8 Edition. 2015. <https://docs.oracle.com/javase/specs/> -
Accessed: 2019-01-30.

GRÜN, B. J.; SCHULER, D.; ZELLER, A. The impact of equivalent mutants. In: The
5th International Workshop on Mutation analysis. Paris, France: IEEE, 2009. p. 192–199.

GUIMARAES, M. A.; FERNANDES, L.; RIBEIRO, M.; D’AMORIM, M.; GHEYI, R.
Optimizing mutation testing by discovering dynamic mutant subsumption relations.
In: International Conference on Software Testing, Verification and Validation. Porto,
Portugal: IEEE, 2020. To Appear.

HARMAN, M.; HIERONS, R. M.; DANICIC, S. The Relationship Between Program
Dependence and Mutation Analysis. In: Proceedings of the Mutation 2000 Symposium.
San Jose, USA: Kluwer Academic Publishers, 2000. p. 5–13.

HIERONS, R.; HARMAN, M.; DANICIC, S. Using program slicing to assist in the
detection of equivalent mutants. Software Testing, Verification and Reliability, v. 9, n. 4,
p. 233–262, 1999.

HOWDEN, W. Weak mutation testing and completeness of test sets. Transactions on
Software Engineering, IEEE, n. 4, p. 371–379, 1982.

IGARASHI, A.; PIERCE, B.; WADLER, P. Featherweight java: A minimal core calculus
for java and gj. ACM SIGPLAN Notices, ACM, v. 34, n. 10, p. 132–146, 1999.

JACKSON, D. Software Abstractions: logic, language, and analysis. Boston, USA: MIT
press, 2012.

JACKSON, D.; SCHECHTER, I.; SHLYAHTER, H. Alcoa: the alloy constraint analyzer.
In: Proceedings of the 22nd International Conference on Software Engineering. Limerick,
Ireland: ACM, 2000. p. 730–733.

JIA, Y.; HARMAN, M. Constructing subtle faults using higher order mutation testing. In:
International Working Conference on Source Code Analysis and Manipulation. Beijing,
China: IEEE, 2008. p. 249–258.

JIA, Y.; HARMAN, M. An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, v. 37, n. 5, p. 649–678, 2011.

https://docs.oracle.com/javase/specs/

111

JUST, R.; JALALI, D.; INOZEMTSEVA, L.; ERNST, M. D.; HOLMES, R.; FRASER, G.
Are Mutants a Valid Substitute for Real Faults in Software Testing? In: Proceedings of
the 22nd International Symposium on Foundations of Software Engineering. Hong Kong,
China: ACM, 2014. p. 654–665.

JUST, R.; KAPFHAMMER, G. M.; SCHWEIGGERT, F. Do Redundant Mutants
Affect the Effectiveness and Efficiency of Mutation Analysis? In: Proceedings of the 5th
International Conference on Software Testing, Verification and Validation. Montreal,
Canada: IEEE, 2012. p. 720–725.

JUST, R.; KURTZ, B.; AMMANN, P. Inferring mutant utility from program context. In:
Proceedings of the International Symposium on Software Testing and Analysis. Santa
Barbara, USA: ACM, 2017. p. 284–294.

JUST, R.; SCHWEIGGERT, F.; KAPFHAMMER, G. Major: An efficient and extensible
tool for mutation analysis in a Java compiler. In: Proceedings of the 26th International
Conference on Automated Software Engineering. Lawrence, USA: IEEE/ACM, 2011. p.
612–615.

KAMINSKI, G.; AMMANN, P.; OFFUTT, A. J. Improving logic-based testing. Journal
of Systems and Software, Elsevier, v. 86, n. 8, p. 2002 – 2012, 2013.

KING, K. N.; OFFUTT, A. J. A fortran language system for mutation-based software
testing. Software: Practice and Experience, v. 21, n. 7, p. 685–718, 1991.

KINTIS, M.; MALEVRIS, N. Identifying More Equivalent Mutants via Code Similarity.
In: Proceedings of the 20th Asia-Pacific Software Engineering Conference. Bangkok,
Thailand: IEEE, 2013. p. 180–188.

KINTIS, M.; MALEVRIS, N. Medic: A static analysis framework for equivalent mutant
identification. Information and Software Technology, Elsevier, v. 68, p. 1 – 17, 2015.

KINTIS, M.; PAPADAKIS, M.; JIA, Y.; MALEVRIS, N.; TRAON, Y. L.; HARMAN,
M. Detecting trivial mutant equivalences via compiler optimisations. Transactions on
Software Engineering, IEEE, v. 44, n. 4, p. 308–333, 2018.

KINTIS, M.; PAPADAKIS, M.; MALEVRIS, N. Evaluating Mutation Testing Alternatives:
A Collateral Experiment. In: Proceedings of the 17th Asia-Pacific Software Engineering
Conference. Sydney, Australia: ieee, 2010. p. 300–309.

KINTIS, M.; PAPADAKIS, M.; MALEVRIS, N. Employing second-order mutation for
isolating first-order equivalent mutants. Software Testing, Verification and Reliability,
wiley, Malden, MA, USA, v. 25, n. 5-7, p. 508–535, 2015.

KINTIS, M.; PAPADAKIS, M.; PAPADOPOULOS, A.; VALVIS, E.; MALEVRIS, N.
Analysing and comparing the effectiveness of mutation testing tools: A manual study.
In: 16th International Working Conference on Source Code Analysis and Manipulation.
Raleigh, USA: IEEE, 2016. p. 147–156.

KINTIS, M.; PAPADAKIS, M.; PAPADOPOULOS, A.; VALVIS, E.; MALEVRIS,
N.; TRAON, Y. L. How effective are mutation testing tools? an empirical analysis of
java mutation testing tools with manual analysis and real faults. Empirical Software
Engineering, p. 2426–2463, 2018.

112

KURTZ, B.; AMMANN, P.; OFFUTT, J.; KURTZ, M. Are we there yet? how redundant
and equivalent mutants affect determination of test completeness. In: Proceedings of
the 11th International Workshop on Mutation Analysis. Chicago, USA: IEEE, 2016. p.
142–151.

LAKHOTIA, K.; MCMINN, P.; HARMAN, M. Automated test data generation for
coverage: Haven’t we solved this problem yet? Journal of Systems and Software, ACM, p.
95–104, 2009.

LI, S.; XIAO, X.; BASSETT, B.; XIE, T.; TILLMANN, N. Measuring code behavioral
similarity for programming and software engineering education. In: Proceedings of the 38th
International Conference on Software Engineering. Austin, USA: ACM, 2016. p. 501–510.

LIPTON, R. Fault diagnosis of computer programs. Student Report, Carnegie Mellon
University, 1971.

LUO, Q.; HARIRI, F.; ELOUSSI, L.; MARINOV, D. An empirical analysis of flaky
tests. In: Proceedings of the 22Nd International Symposium on Foundations of Software
Engineering. Hong Kong, China: ACM, 2014. p. 643–653.

MA, Y.-S.; KWON, Y.-R.; OFFUTT, J. Inter-class mutation operators for java.
In: Proceedings of the International Symposium on Software Reliability Engineering.
Annapolis, USA: IEEE, 2002. p. 352–.

MA, Y.-S.; OFFUTT, J.; KWON, Y. R. Mujava: An automated class mutation system.
Software Testing, Verification and Reliability, v. 15, n. 2, p. 97–133, 2005.

MADEYSKI, L.; ORZESZYNA, W.; TORKAR, R.; JOZALA, M. Overcoming the
equivalent mutant problem: A systematic literature review and a comparative experiment
of second order mutation. Transactions on Software Engineering, IEEE, v. 40, n. 1, p.
23–42, 2014.

MATHUR, A. P. Performance, Effectiveness, and Reliability Issues in Software Testing. In:
Proceedings of the 15th Annual Computer Software and Applications Conference. Tokyo,
Japan: IEEE, 1991. p. 604–605.

MONGIOVI, M.; GHEYI, R.; SOARES, G.; TEIXEIRA, L.; BORBA, P. Making
refactoring safer through impact analysis. Science of Computer Programming, Elsevier,
v. 93, p. 39–64, 2014.

MONGIOVI, M.; GHEYI, R.; SOARES, G.; RIBEIRO, M.; BORBA, P.; TEIXEIRA, L.
Detecting overly strong preconditions in refactoring engines. Transactions on Software
Engineering, IEEE, PP, n. 99, p. 1–1, 2017.

MRESA, E. S.; BOTTACI, L. Efficiency of Mutation Operators and Selective Mutation
Strategies: an Empirical Study. Software Testing Verification and Reliability, wiley,
Malden, USA, v. 9, n. 4, p. 205–232, 1999.

NIELSON, F.; NIELSON, H.; HANKIN, C. Principles of Program Analysis. New York,
USA: Springer, 1999.

OFFUTT, A. J.; MA, Y.-S.; KWON, Y.-R. The Class-Level Mutants of MuJava. In:
Proceedings of the International Workshop on Automation of Software Test. Shanghai,
China: ACM, 2006. p. 78–84.

113

OFFUTT, A. J.; PAN, J. Detecting Equivalent Mutants and the Feasible Path Problem.
In: Proceedings of the 11th Annual Conference on Computer Assurance. Gaithersburg,
USA: ACM, 1996. p. 224–236.

OFFUTT, A. J.; ROTHERMEL, G.; ZAPF, C. An Experimental Evaluation of Selective
Mutation. In: Proceedings of the 15th International Conference on Software Engineering.
Baltimore, USA: ACM/IEEE, 1993. p. 100–107.

OFFUTT, A. J.; UNTCH, R. H. Mutation 2000: Uniting the Orthogonal. In: Proceedings
of the Mutation 2000 Symposium. San Jose, CA, USA: Kluwer Academic Publishers, 2000.
p. 34–44. ISSN 1386-2944.

OFFUTT, J.; CRAFT, M. Using compiler optimization techniques to detect equivalent
mutants. Software Testing, Verification and Reliability, Wiley, Malden, USA, v. 4, n. 3, p.
131–154, 1994.

OFFUTT, J.; PAN, J. Automatically detecting equivalent mutants and infeasible paths.
Software Testing, Verification and Reliability, v. 7, n. 3, p. 165–192, 1997.

PACHECO, C.; LAHIRI, S.; ERNST, M.; BALL, T. Feedback-directed random test
generation. In: Proceedings of the 29th International Conference on Software Engineering.
Minneapolis, USA: ACM/IEEE, 2007. p. 75–84.

PAPADAKIS, M.; HENARD, C.; HARMAN, M.; JIA, Y.; TRAON, Y. L. Threats to the
validity of mutation-based test assessment. In: ACM. Proceedings of the 25th International
Symposium on Software Testing and Analysis. Saarbrucken, Germany, 2016. p. 354–365.

PAPADAKIS, M.; JIA, Y.; HARMAN, M.; Le Traon, Y. Trivial Compiler Equivalence: A
Large Scale Empirical Study of a Simple, Fast and Effective Equivalent Mutant Detection
Technique. In: Proceedings of the 37th International Conference on Software Engineering.
Florence, Italy: ACM, 2015. p. 936–946.

PAPADAKIS, M.; KINTIS, M.; ZHANG, J.; JIA, Y.; TRAON, Y. L.; HARMAN, M.
Mutation testing advances: an analysis and survey. Advances in Computers, Elsevier,
v. 112, p. 275–378, 2019.

PAPADAKIS, M.; MALEVRIS, N. An Empirical Evaluation of the First and Second
Order Mutation Testing Strategies. In: Proceedings of the 5th International Workshop on
Mutation Analysis. Paris, France: IEEE, 2010. p. 90–99.

PAPADAKIS, M.; SHIN, D.; YOO, S.; BAE, D.-H. Are mutation scores correlated
with real fault detection?: A large scale empirical study on the relationship between
mutants and real faults. In: Proceedings of the 40th International Conference on Software
Engineering. Gothenburg, Sweden: ACM/IEEE, 2018. p. 537–548.

PETROVIĆ, G.; IVANKOVIĆ, M. State of Mutation Testing at Google. In: Proceedings
of the 40th International Conference on Software Engineering - Software Engineering in
Practice Track. Gothenburg, Sweden: IEEE, 2018. p. 163–171. ISBN 978-1-4503-5659-6.

PETROVIĆ, G.; IVANKOVIĆ, M.; KURTZ, B.; AMMANN, P.; JUST, R. An Industrial
Application of Mutation Testing: Lessons, Challenges, and Research Directions. In:
Proceedings of the 13th International Workshop on Mutation Analysis. Vasteras, Sweden:
IEEE, 2018. p. 47–53.

114

PINHEIRO, P.; VIANA, J.; FERNANDES, L.; RIBEIRO, M.; FERRARI, F.; FONSECA,
B.; GHEYI, R. Mutation operators for code annotations. In: . São Carlos, Brazil: ACM,
2018. p. 77–86.

PINHEIRO, P.; VIANA, J. C.; RIBEIRO, M.; FERNANDES, L.; FERRARI, R. G. F.;
FONSECA, B. Mutating code annotations: An empirical evaluation on java and c#
programs. Science of Computer Programming, February 2020. Accepted for publication.

PITEST. PITest - Mutation Testing Tool for Java. 2017. <http://pitest.org/> - Accessed:
2017-05-20.

PIZZOLETO, A. V.; FERRARI, F. C.; OFFUTT, A. J.; FERNANDES, L.; RIBEIRO,
M. A Systematic Literature Review of Techniques and Metrics to Reduce the Cost of
Mutation Testing. Journal of Systems and Software, v. 157, 2019. (in press).

SCHäFER, M.; EKMAN, T.; MOOR, O. de. Challenge proposal: Verification of
refactorings. In: Proceedings of the 3rd Workshop on Programming Languages Meets
Program Verification. Savannah, GA, USA: ACM, 2009. p. 67–72.

SCHULER, D.; DALLMEIER, V.; ZELLER, A. Efficient Mutation Testing by Checking
Invariant Violations. In: Proceedings of the 18th International Symposium on Software
Testing and Analysis. Chicago, USA: ACM, 2009. p. 69–80.

SCHULER, D.; ZELLER, A. Covering and uncovering equivalent mutants. Software
Testing, Verification and Reliability, v. 23, n. 5, p. 353–374, 2013.

SHAMSHIRI, S.; JUST, R.; ROJAS, J. M.; FRASER, G.; MCMINN, P.; ARCURI, A. Do
automatically generated unit tests find real faults? an empirical study of effectiveness
and challenges. In: 30th International Conference on Automated Software Engineering.
Lincoln, USA: ACM/IEEE, 2015. p. 201–211.

SOARES, G.; GHEYI, R.; MASSONI, T. Automated behavioral testing of refactoring
engines. IEEE Transactions on Software Engineering, v. 39, n. 2, p. 147–162, 2013.

SOARES, G.; GHEYI, R.; MURPHY-HILL, E.; JOHNSON, B. Comparing approaches to
analyze refactoring activity on software repositories. Journal of Systems and Software,
v. 86, n. 4, p. 1006–1022, 2013.

SOARES, G.; GHEYI, R.; SEREY, D.; MASSONI, T. Making program refactoring safer.
IEEE software, v. 27, n. 4, p. 52–57, 2010.

STEIMANN, F.; THIES, A. From Behaviour Preservation to Behaviour Modification:
Constraint-Based Mutant Generation. In: Proceedings of the 32th International Conference
on Software Engineering. Cape Town, South Africa: ACM, 2010. p. 425–434.

STEIMANN, F.; THIES, A. From Behaviour Preservation to Behaviour Modification:
Constraint-Based Mutant Generation. In: Proceedings of the 32th International Conference
on Software Engineering. Cape Town, South Africa: ACM, 2010. p. 425–434.

UNTCH, R. H.; OFFUTT, A. J.; HARROLD, M. J. Mutation Analysis Using Mutant
Schemata. In: Proceedings of the International Symposium on Software Testing and
Analysis. Cambridge, MA, USA: ACM, 1993. p. 139–148.

http://pitest.org/

115

VOAS, J.; MCGRAW, G. Software fault injection: inoculating programs against errors.
New York, USA: John Wiley & Sons, 1997.

WOODWARD, M.; HALEWOOD, K. From weak to strong, dead or alive? an analysis of
some mutation testing issues. In: Proceedings of the Second Workshop on Software Testing,
Verification, and Analysis. Banff, Canada: IEEE, 1988. p. 152–158.

WRIGHT, C.; KAPFHAMMER, G.; MCMINN, P. The Impact of Equivalent, Redundant
and Quasi Mutants on Database Schema Mutation Analysis. In: Proceedings of the 14th
International Conference on Quality Software. Dallas, TX, USA: IEEE, 2014. p. 57–66.

YAO, X.; HARMAN, M.; JIA, Y. A study of equivalent and stubborn mutation operators
using human analysis of equivalence. In: Proceedings of the 36th International Conference
on Software Engineering. Hyderabad, India: ACM, 2014. p. 919–930.

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Mutation Testing By Example
	Motivation
	Scope of the Thesis
	Contributions of the Thesis
	Organization of the Thesis

	Mutation Testing and Its Limitations
	The Mutation Testing Process
	Mutation Testing Tools
	Mutant Generation
	Mutation Testing Costs
	Useless Mutants

	Avoiding Useless Mutants
	Introduction
	Motivating Example
	Improved Transformation Rules
	e-rule Example
	d-rule Example
	General information: i-rules

	Strategy
	Identifying Useless Mutants Candidates
	Instantiating the Strategy
	Settings
	Results and Discussion
	Threats to validity

	Discovered i-rules
	e-rules
	ISD-01 (MuJava)
	AOIS-02 (MuJava)
	ROR-01 (Major)
	AOR-01 (Major)

	d-rules
	LOI|LOD-01 (MuJava)
	ROR|SDL-01 (MuJava)
	SDL|SDL-01 (MuJava)
	ReturnVals|NonVoidMethodCall-01 (Pit)

	Implementing the i-rules

	Evaluating the implemented i-rules
	Goal and Research Questions
	Subjects

	Experimental Setup
	Procedure
	Results and Discussion
	How many useless mutants can be avoided, in industrial-scale systems, with the implemented i-rules?
	Which i-rules are most applied to avoid equivalent and duplicate mutants?
	What is the overhead of executing our i-rules in industrial-scale systems?

	Threats to Validity

	Summary

	Suggesting Equivalent Mutants Through Automated Behavioral Testing
	Introduction
	Motivating Example
	Suggesting Equivalent Mutants
	Identifying Impacted Entities
	Automated Generation of Test Cases
	Test Execution
	Suggesting Equivalent Mutants
	Improvements

	Evaluation
	Research Questions
	Subjects
	Experimental Setup
	Procedure

	Analysis and Discussion of the Results
	How effective is Nimrod in suggesting equivalent mutants?
	How long does it take for Nimrod to analyze a mutant?
	What are the characteristics of the mutants that Nimrod failed to classify?
	Which mutation operators commonly lead Nimrod to fail?
	Threats to Validity

	Implications for Practice: Minimizing the Manual Analysis
	Summary

	Related Work
	Strategies to Detect
	Strategies to Avoid
	Strategies to Suggest
	Strategies for Very Specific Domains
	Eliminating Mutation Operators
	Other types of useless mutants

	Conclusions and Future Works
	Avoiding Useless Mutants
	Suggesting Equivalent Mutants
	Future Work

	References

