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ABSTRACT 

 

Systems subjected to continuous operation in harsh conditions are exposed to different failure 

mechanisms (e.g., corrosion, fatigue, and temperature-related defects). In this context, 

inspection and health monitoring have become crucial to prevent system, environment, and 

users from severe damage. However, visual inspection strongly depends on human’ experience, 

having its accuracy influenced by the physical and cognitive state of the inspector (i.e., human 

factors). Particularly, infrastructures need to be periodically inspected, which is costly, time-

consuming, hazardous and biased. Nowadays, the increase in computer power allows for 

analyzing a considerable number of images in a shorter time and use more robust algorithms. 

Advances in Computer Vision (CV) and Machine Learning (ML) provide the means to the 

development of automated, accurate, non-contact and non-destructive inspection methods. 

Therefore, this dissertation proposes and compares the adoption of different CV approaches to 

extract features for crack detection. In fact, we applied texture-based and region-based methods 

to a real concrete crack image database, and then the results fed four ML models to identify 

crack existence, namely Support Vector Machine (SVM),  Multilayer Perceptron (MLP), 

Adaboost (AB), and Random Forest (RF). Results show the potential of data preprocessing to 

improve methods’ performance in reaching a balanced accuracy above 97%. 

 

Keywords: Crack detection. Image processing. Segmentation. Texture analysis. Machine 

learning. 



 
 

 

RESUMO 

 

Sistemas sujeitos à operação contínua em condições adversas são expostos a diferentes 

mecanismos de falha (por exemplo, corrosão, fadiga e problemas relacionados à temperatura). 

Nesse contexto, a inspeção e o monitoramento da saúde desses sistemas tornaram-se cruciais 

para evitar danos graves ao sistema, ao ambiente e aos usuários. No entanto, a inspeção visual 

depende fortemente da experiência humana, tendo sua precisão influenciada pelo estado físico 

e cognitivo do inspetor (ou seja, fatores humanos). Particularmente, edificações precisam ser 

inspecionadas periodicamente, o que é caro, demorado, perigoso e tendencioso. Atualmente, 

com o aumento da capacidade computacional, é possível analisar um número considerável de 

imagens em menos tempo e usar algoritmos mais robustos para tal. Os avanços em Visão 

Computacional (CV) e Aprendizagem de Máquina (ML) fornecem os meios para o 

desenvolvimento de métodos de inspeção automatizados, precisos, sem contato e não 

destrutivos. Portanto, esta Dissertação propõe e compara a adoção de diferentes abordagens 

envolvendo CV para extrair características de imagens, com o objetivo de detecção de trincas. 

De fato, foram aplicados métodos baseados em textura e região em um banco de dados real de 

imagens de trincas em concreto e, em seguida, os resultados alimentaram quatro modelos de 

ML para identificar a existência de trincas, a saber: Support Vector Machine (SVM), Multilayer 

Perceptron (MLP), Adaboost (AB) e Random Forest (RF). Os resultados mostram o potencial 

do pré-processamento de dados para melhorar o desempenho dos métodos ao atingir uma 

balanced accuracy acima de 97%. 

 

Palavras-chave: Detecção de trincas. Processamento de imagens. Segmentação. Análise de 

textura. Aprendizagem de máquina. 
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1 INTRODUCTION 

 

Engineering structures, such as bridges, buildings, dams, and pipelines, are essential for the 

economy and the routine of society (FENG; FENG, 2018). They age and deteriorate as they are 

often exposed to fatigue stress and cyclic loading (MOHAN; POOBAL, 2018), affecting their 

reliability (ASTORGA; DROGUETT; MERUANE, 2018). Therefore, regulation in many 

countries (QINGGUO et al., 2019b) enforces they are periodically inspected to ensure their 

safety and serviceability (KOCH et al., 2015; SANKARASRINIVASAN et al., 2015) and to 

prevent long-term damage accumulation (DAVOUDI; MILLER; KUTZ, 2018b; 

DORAFSHAN et al., 2018), which could lead to the structure’s collapse. 

In this context, inspection and Structural Health Monitoring (SHM) have become crucial to 

prevent system, environment, and users from severe damage. As civil infrastructures suffer 

from aging and deterioration (SULEIMAN; NELSON; NEHDI, 2019), SHM aims at 

identifying changes in the geometry of structures at early stages (CHOUDHURY et al., 2018), 

and, thus, reduce maintenance costs. Recent researches have focused on crack detection, as they 

are the most frequent defect in civil infrastructures, to support the implementation of preventive 

measures, such as reinforcement, and reconstruction, which have a high potential to prevent its 

expansion (BAYAR; BILIR, 2019; ZOU et al., 2019).  

1.1 CONTEXT 

Various materials are subjected to the occurrence of cracks. In particular, due to the influence 

of self-weight, fatigue stress, structural loading, environmental exposure, and 

physical/chemical reactions (BAYAR; BILIR, 2019; QINGGUO et al., 2019b; SULEIMAN; 

NELSON; NEHDI, 2019), concrete structures are exposed to various types of damages (LUO; 

GE; TIAN, 2019), such as concrete cracks, steel delamination, steel corrosion, and bolt 

corrosion. The earliest stage of degradation is expressed in the form of surface cracks, and, as 

its continuous exposure may lead to severe damages, the presence of cracks trigger maintenance 

actions and even evacuation (MOHAN; POOBAL, 2018; RUIZ et al., 2018) to avoid 

continuous exposure that may lead to more critical damage and even the collapse of the 

structure. This is of special interest in aging structures, such as buildings and bridges, especially 

because of the risk it imposes to the public. For instance, about 40% of Canada’s bridges are 

older than 50 years (ADHIKARI; MOSELHI; BAGCHI, 2014a). In fact, a bridge in Latchford 
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(Ontario, Canada), which was built in 1960, partially failed in 2003 due to fatigue fractures 

(PIPINATO, 2016). More recently, in 2018, the cause of the collapse of a Miami (Florida, US) 

university pedestrian bridge is also accredited to inattentive inspections and poor maintenance 

(NTSB BLAMES FATAL MIAMI BRIDGE FALL ON DESIGN, LACK OF OVERSIGHT, 

2019). Moreover, in 2019, a building in Ceará (Fortaleza, Brazil) collapsed causing at least 

three deaths and injuring seven people (ALMEIDA, 2019). 

In the same way, although pavements are exposed to different kinds of distresses triggered 

mainly by traffic loads, temperature oscillation, and aging (HOANG; NGUYEN, 2019), 

pavement cracks are especially critical since they affect both vehicles (speed limit and wear 

out) and safety (VARONA; MONTESERIN; TEYSEYRE, 2019; ZHANG, Dejin et al., 2017a). 

Moreover, it only takes a rainy night to transform a crack into a hole, imposing risks to high-

speed vehicles (ZOU et al., 2019). For instance, state transportation agencies are responsible 

for the periodic inspection of road conditions and its conservation (ZHANG, Yuming et al., 

2018), which entails the inspection of more than a hundred thousand kilometers in a country 

like China or the US (ZOU et al., 2019). Reducing costs and ensuring roads’ condition is of 

particular interest for those agencies, especially in times of economic recession. In fact, 

improving roads’ inspection effectiveness must be the foremost concern before talking about 

smart cities, as roads need to support the operation of autonomous vehicles (MEI; GÜL, 2019). 

Since the identification of early stages of cracks in infrastructures can avoid significant future 

problems, the development of reliable and robust techniques to recognize them has great 

applicability. In fact, researches are exploiting the potential of Information and Communication 

Technologies (ICT) to provide innovative methodologies to improve the identification of civil 

infrastructures’ defects (TEDESCHI; BENEDETTO, 2017). 

1.2 JUSTIFICATION 

SHM is primarily assessed in terms of visual changes, such as cracks and corrosion (CHA; 

CHOI; SUH; MAHMOUDKHANI, 2018), to monitor assets and plan maintenance policies. 

This inspection is generally conducted by skilled personnel, and, generally, it is costly, time-

consuming, hazardous, and biased, aside from being even more challenging when conducted 

under poor lighting conditions and on rusted or irregular surfaces (DORAFSHAN et al., 2017). 

Hence, results of inspections may exhibit some fluctuation (PAYAB; ABBASINA; 
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KHANZADI, 2019) and “may give only comparative results rather than standardized ones” 

(BAYAR; BILIR, 2019). 

Then, it is essential to balance the system’s safety and the cost of an expert when scheduling 

inspections (ASTORGA; DROGUETT; MERUANE, 2018). Sometimes, this analysis is 

impracticable since inspections can be imposed by federal law, which is the case of the US, 

where bridges must be physically inspected every two years (DORAFSHAN et al., 2018). In 

Brazil, although inspections are not regulated by federal law, the Associação Brasileira de 

Normas Técnicas (ABNT) determines (but does not enforce) the standards for inspection 

methods and maintenance performance. Aside from mobilizing resources, impacting the traffic, 

and involving accessibility issues (LIANG, Dong et al., 2019), these inspections also pose 

safety risks, both to the inspectors and the public. 

Therefore, there has been an increasing demand for non-destructive and non-contact 

inspections, which provided a stage for the use of Unmanned Aerial Vehicle (UAV) 

implementations, such as inspection, maintenance, and structures monitoring using image 

analysis (DORAFSHAN et al., 2018). Indeed, the use of images to identify automatically cracks 

has been applied to different structures, such as buildings, transmission lines, refineries towers, 

and wind turbines (LIANG, Dong et al., 2019; MOHAN; POOBAL, 2018). 

The automation of the inspection process is expected to improve efficiency, reduce cost, and 

lead to more frequent inspection cycles (ZOU et al., 2019). Moreover, it is also expected an 

improvement in accuracy compared to conventional manual methods (MOHAN; POOBAL, 

2018). However, the application of this kind of technology requires acquiring and dealing with 

a significant number of images. Other existing concerns are the demand for expensive 

equipment, like UAVs and high-resolution cameras (BAYAR; BILIR, 2019), and the time 

restriction, imposed by UAVs’ batteries, for example. 

Nevertheless, emerging technologies bring opportunities to support decision-makers on 

structure inspection, by improving the capacity, time, and accuracy of these activities. 

Specifically, advances in Computer Vision (CV) and Machine Learning (ML) techniques have 

been providing the means to address these issues by the development of automated, accurate, 

non-contact, and non-destructive inspection methods (DAVOUDI; MILLER; KUTZ, 2018b; 

DORAFSHAN et al., 2017), which enables performing inspection remotely [21]. CV studies 

the automated extraction of information from images and videos (TEDESCHI; BENEDETTO, 
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2017), gathering knowledge from fields such as image processing, pattern recognition, 

mathematics, and artificial intelligence. On the other hand, ML techniques focus on learning 

patterns and making a prediction based on data. In this sense, it can improve both the efficiency 

and robustness of CV methods (CHA; CHOI; SUH; MAHMOUDKHANI; et al., 2018). 

The development of CV provides new opportunities for non-intrusive real-time monitoring in 

the context of reliability engineering for fault detection and diagnosis purposes based on image 

characteristics (i.e., color, structure, texture, and morphology). Nevertheless, noisy images lead 

to poor continuity of the crack and low contrast between the crack and the background, posing 

a challenge for automatic crack detection (MEI; GÜL, 2019). 

According to (MOHAN; POOBAL, 2018), difficulties in concrete image crack detection are 

mostly based on the irregular shape and size of cracks, noisy background, quality of the image 

(i.e., resolution, illumination, shading, low contrast, reflection) and presence of irrelevant 

objects (e.g. oil spots, road signs) (LIANG, Sun; JIANCHUN; XUN, 2018; ZHANG, Dejin et 

al., 2017a). Hence, a suitable alternative to deal with these issues is the usage of image pre-

processing and segmentation techniques (MOHAN; POOBAL, 2018). 

The possibility of addressing the detection, localization, and quantification of damage with 

appropriately captured inspection images can add substantial improvement to qualitative 

inspection systems. An automated structural inspection system should retrieve damage’s 

information to a level likely to be impossible for a human inspector and remove much of the 

uncertainty associated with an inspector's judgment of the severity of structural damage. With 

this technology, the health status of infrastructures could be systematically monitored and 

tracked, and, thus, effective inspection policies developed and implemented. Therefore, there 

is a need to diagnose damages preventively through advanced monitoring technologies tailored 

for implementing systematic, permanent, and real-time monitoring of the infrastructures’ state, 

generating the information necessary to develop and implement a more efficient and effective 

inspection and maintenance plan. 

1.3 OBJECTIVES 

This dissertation aims at developing an accurate and reliable inspection method for concrete 

infrastructures. The focus of this work is on proposing a method for the automatic identification 

of cracks from images of the structure under inspection, using CV do extract information from 
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the images and ML techniques to learn patterns from this information and make predictions. 

The proposed approach aims at overcoming the problem caused by the variety of both crack 

and background characteristics by determining appropriated and discriminative features for the 

images. 

1.3.1 Specific Objectives 

In order to achieve the general objective, some specific targets are defined: 

• Literature review and background study about infrastructure inspection (purpose, 

existing methodologies, and opportunities) and techniques applied in the context of inspection 

(image processing, CV, and ML); 

• Development and validation of a model to identify cracks on images; 

• Analysis of real concrete crack image dataset; 

• Test the model on a different image dataset and evaluate results. 

1.4 DISSERTATION STRUCTURE 

The content of the following chapters of this dissertation are briefly described below:  

Chapter 2 presents the theoretical background and literature review of essential concepts related 

to crack detection; 

Chapter 3 gives a detailed description of the proposed methodology for crack detection; 

Chapter  4 shows the results of the application of the proposed method on a concrete crack 

dataset, as well as a test on a different concrete crack dataset; 

Chapter 5 concludes the dissertation and provides some perspectives towards limitations and 

future works. 
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

Applications of crack detection algorithms can be found in the literature with a focus either on 

the material or in the structure itself. Examples of the materials studied are: pavement (AMHAZ 

et al., 2016; FAN, Z. et al., 2018; HOANG; NGUYEN, 2019, 2018; HU; ZHAO; WANG, 

2010; INZERILLO; DI MINO; ROBERTS, 2018; LIU, Wenjun et al., 2019; NHAT-DUC; 

NGUYEN; TRAN, 2018; SALMAN et al., 2013; TEDESCHI; BENEDETTO, 2017; WENG; 

HUANG; WANG, 2019; YANG, Fan et al., 2019; ZHANG, Dejin et al., 2017a; ZHANG, 

Yuming et al., 2018; ZOU et al., 2012), concrete (ALAM et al., 2015; BAYAR; BILIR, 2019; 

CHO et al., 2018a; DAVOUDI; MILLER; KUTZ, 2018a; DORAFSHAN; THOMAS; 

MAGUIRE, 2018a; DUNG; ANH, 2019; FUJITA, Y.; HAMAMOTO, 2011; KIM; CHO, 2018; 

LEE et al., 2019; LIU, Zhenqing et al., 2019; NGUYEN; KAM; CHENG, 2014; OLIVEIRA 

SANTOS; VALENÇA; JÚLIO, 2019; PAGLINAWAN et al., 2018; PAYAB; ABBASINA; 

KHANZADI, 2019; QINGGUO et al., 2019a; QU et al., 2019; SHAN; ZHENG; OU, 2016; 

WANG, P.; HUANG, 2010; YAMAGUCHI; HASHIMOTO, 2010; YANG, Y. et al., 2018), 

glass (GLUD et al., 2016; YIYANG, 2014), composite materials (ABUOBAID; HEIDER; 

YARLAGADDA, 2019; HWANG et al., 2019), and steel (KONG; LI, 2018). Some of the 

structures are: solar cells (CHAWLA; SINGAL; GARG, 2018; CHEN et al., 2018), tunnels 

(ATTARD et al., 2018; PANELLA et al., 2018; PROTOPAPADAKIS et al., 2019), roads 

(FAN, Rui et al., 2019; MAEDA et al., 2018; SHI et al., 2016; ZHANG, L. et al., 2016), bridges 

(ADHIKARI; MOSELHI; BAGCHI, 2014b; DUNG et al., 2019; LEI et al., 2018; LI, Yundong 

et al., 2018; PRASANNA et al., 2016; REAGAN; SABATO; NIEZRECKI, 2018; YANG, 

Yuan-Sen; YANG; HUANG, 2015), dams (VALENÇA; JÚLIO, 2018), buildings (WANG, 

Niannian et al., 2019), wind turbines (WU et al., 2019; ZHANG, Huiyi; JACKMAN, 2014), 

underground pipeline (HEO; JEON; SON, 2019; IYER; SINHA, 2005; SINHA; FIEGUTH, 

2006), magnetic tile (LI, Xueqin; JIANG; YIN, 2014), welding joint (WANG, Xin; WU, 2019), 

and rail (CHOTZOGLOU et al., 2019; ZHUANG et al., 2018). 

The assumptions related to the development of automatic crack detection methods using digital 

images indicate that cracks: (i) are darker than the background, (ii) are continuous regions, (iii) 

consist of connected pixels, and (iv) have various widths (PAYAB; ABBASINA; KHANZADI, 

2019). According to (LIANG, Dong et al., 2019; LIANG, Sun; JIANCHUN; XUN, 2018; 

MOHAN; POOBAL, 2018; ZHANG, Dejin et al., 2017b), difficulties in image crack detection 

are mostly based on the irregular shape and size of cracks, noisy background (e.g. shadows, 
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water stains, graffiti, spider web), quality of the image (e.g. resolution, illumination, shading, 

low contrast, reflection) and presence of irrelevant objects (e.g. oil spots, road signs).  

A suitable alternative to deal with these issues is the usage of image processing and CV 

techniques, which have been evolving since the 1960s when the first powerful computers 

appeared (GONZALEZ; WOODS, 2006). Concepts of line detection, which is a classical CV 

problem, can be applied in the context of crack detection (ZOU et al., 2019). Roughly speaking, 

early works have focused on methods based on intensity-thresholding, saliency detection, 

texture analysis, wavelet transform, minimal path, and ML (SHI et al., 2016). 

2.1 IMAGE PROCESSING 

The general architecture of crack detection methods based on image processing and CV, shown 

in Figure 1, is composed of the following steps: image acquisition, pre-processing, 

segmentation, feature extraction, object recognition, and structural analysis (TEDESCHI; 

BENEDETTO, 2017). The image acquisition step is the process of collecting images from the 

structure under inspection, which can be classified into active or passive. In the former, the 

acquisition is triggered by an exciting source, while in the latter, the acquisition period is pre-

determined, which is more common for the inspection of structures (QINGGUO et al., 2019b). 

Also, various types of images can be acquired, such as digital, ultrasonic, or laser (MOHAN; 

POOBAL, 2018). Given that images have been acquired, the pre-processing step consists of 

filtering the image to enhance its quality and, hence, the efficiency of the detection process. 

Figure 1 – General architecture of the crack detection methods based on CV investigated in this Dissertation. 

 

Source: adapted from (TEDESCHI; BENEDETTO, 2017) 

The segmentation step aims to create a new image containing only the regions of interest, i.e., 

the parts that resemble a crack. Segmentation methods can be roughly divided into edge 

detection and threshold segmentation (LIANG, Dong et al., 2019; ZOU et al., 2019), but some 

papers also propose hybrid methodologies. Among threshold segmentation methods, the ones 

based on mathematical morphology and set theory, are the most used ones across the literature 

(PAYAB; ABBASINA; KHANZADI, 2019). 
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The idea of this type of segmentation is to enhance specific elements from the image that 

represent the shape of the region of interest by using structuring elements (SE), which specify 

the nature of the operation (PARKER, 2011). It is essential to understand that SE is determined 

by two parameters: format and size. For instance, the format can be of a disk, a line, or a 

rectangle. The combination of these parameters enables various applications. Basic operations 

are erosion and dilatation, and, from them, some algorithms are derived, such as hole filling, 

extraction of connected components, thinning, thickening, and skeletons (GONZALEZ; 

WOODS, 2006). For more details about these algorithms, see (GONZALEZ; WOODS, 2006). 

Image segmentation can be appropriate for crack extraction; however, depending on the chosen 

algorithm and on the images under consideration, limitations of the standalone approach 

typically require combination with other techniques to improve performance (ZHANG, Dejin 

et al., 2017a). For instance, the feature extraction step consists of a particular form of extracting 

information from the image for comparison and analysis purposes (DAVOUDI; MILLER; 

KUTZ, 2018b). Features are quantitative attributes or properties that, aside from describing 

characteristics of the image (or image regions), also help to distinguish different patterns 

(JAHANSHAHI et al., 2013). In this context, features must be invariant to changes in condition, 

such as illumination and rotation, for example (NIXON; AGUADO, 2008). 

The object recognition is the foremost step of this process as it entails the actual detection of 

the crack, which according to Ref. (MEI; GÜL, 2019) can be conducted by Rule Based (RL) or 

ML-based techniques. At the same time, RL-based methods are simpler to implement because 

they do not require annotation and training, these methods are not flexible enough to adapt to 

different situations (MEI; GÜL, 2019).  

The structural analysis provides a deep understanding of the crack characteristics, and the most 

common objectives are the computation of crack’s length, width, depth, position, surface, or 

direction of propagation (MOHAN; POOBAL, 2018). Among these properties, width is the 

most important and widely used one for concrete health assessment. In fact, the American 

Concrete Institute (ACI) prescribes width minimum allowable values for infrastructure 

condition assessment (QINGGUO et al., 2019b). 

The significant advantages of the crack detection method presented in Figure 1 are two-fold: (i) 

it provides automatic, fast, and accurate results, and (ii) through establishing database from 

these results, it is possible to evaluate and compare crack expansion (QINGGUO et al., 2019b). 
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Various papers among the literature follow this methodology, proving its worth. They are 

described in Appendix A and further analyzed below.  

The architecture of the crack detection method presented in Figure 1 entails that the goal is 

necessarily to localize the crack within a given image as it segments crack-like regions. 

Nevertheless, aside from classifying each segmented region as a crack or not, other 

classification tasks can be combined with this methodology in two ways: (i) as a step previous 

to segmentation, in the sense that only positively classified images follow to the next step, or 

(ii) as a way of differentiating segmented cracks. 

An example of (i) is found in (FAN, Rui et al., 2019), where a Convolutional Neural Network 

(CNN) is used to classify images as having cracks or not, and if so, the image is segmented 

through histogram thresholding, which is optimized via a quantization problem. As for (ii), the 

classification of different crack patterns is mostly considered for pavement applications, where 

cracks can be distinguished between an alligator, diagonal, longitudinal, or transverse. 

Examples of this classification can be found in (HOANG, 2018a; HOANG; NGUYEN, 2019, 

2018; OLIVEIRA; CORREIA, 2014; QINGGUO et al., 2019b). The disadvantage of this 

approach is that it generally achieves low accuracy due to the lack of large and more 

comprehensive annotated datasets, but an alternative is to apply data augmentation. 

A wide literature review considering papers published in the past ten years, with a focus on new 

pavement and concrete applications, is summarized in Appendix A, where the techniques 

adopted in each step are highlighted. From these applications, 55% are tailored for concrete, 

34% for pavement and 11% for other materials. 

In Appendix A, the “Goal” column specifies if the paper addresses a problem of localization 

(L), classification (C), or both. In the latter, the problems are specified in the sequence they are 

performed. Moreover, the classification problem is followed by the number that indicates how 

many classes are taken into consideration, including the “no crack” class. 

Although most applications use images acquired from digital cameras without details about the 

image acquisition process, some papers use vehicles mounted cameras (AMHAZ et al., 2016; 

PRASANNA et al., 2016; SUTTER et al., 2018) or UAVs (DORAFSHAN; THOMAS; 

MAGUIRE, 2019; PAGLINAWAN et al., 2018; ZHU, Q et al., 2018). In fact, the use of this 

kind of technology makes the process of crack detection even more autonomous and efficient. 
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There are even some papers in which the image is acquired in a test environment, and they are 

marked with “*”.  

Slightly more than half of the papers rely on pre-processing methods either to denoise and blur 

background characteristics, with the most common method being the median filter, or to 

enhance abrupt color change, as one of the assumptions of crack detection methods presented 

earlier is that cracks are darker than the background. Only a few papers focus on eliminating 

extraneous objects from the images, for instance, white lanes (OLIVEIRA; CORREIA, 2014).  

As mentioned above, segmentation is one of the most used methods across the literature, and 

this can be verified in Appendix A, specifically operations such as hole filling and closing. For 

edge detection based segmentation, Canny and Sobel operators are generally adopted, and some 

papers propose improvements taking into consideration the specificities of the application such 

as (SHAN; ZHENG; OU, 2016; WANG, Gaochao; TSE; YUAN, 2018). Another method for 

segmentation found in the literature is based on clustering, more explicitly using K-means, 

which is an unsupervised method. The idea is to distinguish crack-like regions from background 

and noise by grouping them based on similarity. The criterion for grouping varies though. For 

example, it can be based on the color similarity (CHO et al., 2018b), the extracted features 

(WANG, Gaochao; TSE; YUAN, 2018), or the Euclidean distance between regions (SANTOS; 

VALENÇA; JÚLIO, 2019). 

The feature extraction step is typically performed in combination with ML methods. For crack 

detection, the most common features are related to gray level distribution, texture, crack 

characteristics (shape or orientation), and projective integrals. It is worth noting that, at the best 

of author’s knowledge, Ref. (OLIVEIRA; CORREIA, 2014) was the only paper studied that 

adopts feature normalization, what is a type of data pre-processing that corresponds to scaling 

each observation to have unit norm across all features (PEDREGOSA et al., 2011). Another 

type of data preprocessing is standardization, which scales each feature, as opposed to each 

observation. Then, the use of data preprocessing needs to be further investigated during the 

development of the methodology that will be proposed in this dissertation. 

Although RL techniques were widely adopted in old works due to its simplicity (SHI et al., 

2016), Appendix A shows that it is still well accepted in the literature. In fact, many papers rely 

solely on features such as the area or length of segmented regions to determine whether a region 

is a crack or not. The drawback of this approach is the need for fine-tuning parameters and, 
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hence, the loss of generality since it is deterministic. Other issues that need to be addressed are: 

detecting fine cracks (HOANG, 2018b), robustness to various positions (HEO; JEON; SON, 

2019; LEI et al., 2018) and the number of cracks (LEI et al., 2018; LIANG, Sun; JIANCHUN; 

XUN, 2018), and considering ramifications (LIANG, Sun; JIANCHUN; XUN, 2018). 

Conversely to the papers mentioned above, which deal with the classification of individual 

segmented objects from the original image, Ref. (DORAFSHAN; THOMAS; MAGUIRE, 

2018b) used CNN for inspection of concrete constructions by detecting whether the image 

contains or not crack(s). They verified that image quality is an essential factor in detection 

accuracy and emphasized the need to diversify defects in the training dataset. Ref. (CHA; 

CHOI; SUH; MAHMOUDKHANI; et al., 2018) proposed an approach for quasi-real-time 

simultaneous detection of multiple types of concrete damage, using a Faster Region-based CNN 

(Faster R-CNN). In fact, Ref. (ZHANG, L. et al., 2016) compares the use of CNN against a 

methodology based on Figure 1 that uses Support Vector Machine (SVM) and Boosting for 

classification of individual pixels, showing that CNN is superior. 

Although Deep Learning (DL) techniques, such as CNN, have increasingly been applied in a 

wide range of areas (WANG, Huai-zhi et al., 2017), its performance heavily depends on the 

architecture applied and on the size and variety of the training dataset (DORAFSHAN et al., 

2018). Because of that, training a DL model computationally intensive (ZHAO et al., 2016), 

requiring the use of GPUs and limiting its application in standard computers. Moreover, aside 

from the fact that a large dataset can be proven difficult to obtain in some cases, it requires 

much manual effort for labeling (MNEYMNEH; ABBAS; KHOURY, 2018). 

On the other hand, with approaches based on image pre-processing, segmentation, and 

classification, it is possible to achieve desirable performance results even for small data sets, 

especially given that the publicly available crack datasets are limited (MEI; GÜL, 2019). Then, 

this work aims at developing a robust methodology for crack detection that addresses the 

drawbacks of previous works based on the methodology shown in Figure 1 as well as the 

limitations of (i) not having big datasets, (ii) standard computational resources, and (iii) poor 

crack image quality, i.e., noise on the image and from the background. 
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2.2 TEXTURE ANALYSIS 

Another classical technique used in CV is texture analysis. According to (LIU, Li et al., 2012a), 

texture analysis has been an area of intense research, applied in fields such as medical image 

analysis, remote sensing, object recognition, document analysis, and environmental modeling. 

Nowadays, texture analysis is also commonly found in areas such as system reliability and fault 

detection. For instance, Refs. (FARDO; DONATO; RODRIGUES, 2018; RUIZ et al., 2018) 

proposed a method to retrieve the crack contour through texture analysis. Ref. (QUINTANA; 

TORRES; MENÉNDEZ, 2016) combined the use of Hough transform features and Local 

Binary Pattern (LBP) to extract edge orientation and texture features, building crack seeds, 

which are further processed to obtain a clearer image of the crack. Although texture analysis is 

widely applied in different contexts, there is still a need to enhance its effectiveness for crack 

detection in images with high levels of surface texture (MOHAN; POOBAL, 2018), such as in 

concrete surfaces compared to a plastic one. 

In this context, (TEDESCHI; BENEDETTO, 2017) designed cascade classifiers based on LBP 

features to detect three types of pavement distress, i.e. fatigue cracks, longitudinal-transversal 

cracks, and potholes, reaching an accuracy of 70% approximately. Ref. (HU; ZHAO; WANG, 

2010) used texture analysis and shape descriptors to extract features from surface images, 

treating cracks as inhomogeneous to the pavement texture. In this case, the texture analysis 

included six commonly used Haralick features from the Gray-Level Co-occurrence Matrix 

(GLCM). As for shape descriptors, principal axes and compactness were implemented because 

they are translation invariant, and this is important in the context of uneven illumination. 

Following the approach presented in (POREBSKI; VANDENBROUCKE; MACAIRE, 2008; 

WANG, Guo-De et al., 2012), this dissertation explores the application of the LBP operator to 

images and the calculation of its GLCM. Hence, we extract Haralick features (HARALICK 

RM, SHANMUGAM K, 1973) to use as texture descriptors. Moreover, other shape descriptors 

will be explored as well. 

LBP is a classical and widely used method to describe textures, which was initially proposed 

in (OJALA; PIETIKÄINEN; HARWOOD, 1996), and is formally denoted by Equation (1), 

where s(x) is a “local pattern” operator, p is the number of points, 𝑥0,0 denotes the central pixel, 

and 𝑥𝑟,𝑛 is the gray values of pairs of 𝑛 equally spaced pixels on a circular radius 𝑟. In this case, 
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the operator determines the relationship between 𝑥0,0 and its neighborhood (𝑥𝑟,𝑛), in terms of 

its pixel differences. Although LBP is immune to changes in lighting conditions (TEDESCHI; 

BENEDETTO, 2017), some limitations can be listed, such as sensibility to image rotation, 

small spatial support, loss of local textural information; and high sensitivity to noise (LIU, Li 

et al., 2012a). 

𝐿𝐵𝑃𝑝,𝑟 = ∑ 𝑠(𝑥𝑟,𝑛 − 𝑥0,0)2𝑛

𝑝−1

𝑛=0

 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

(1) 

 

To enhance the conventional LBP power of classifying textures, Ref. (LIU, Li et al., 2012a) 

proposed an improvement considering two different types of features in a local patch: the pixel 

intensities and the pixel differences. The use of LBP, conventional or not, implies in a 

descriptor, which is a histogram of textural information. The advantage of these descriptors is 

the extraction/selection of useful features to classify textures. Ref. (LIU, Li et al., 2012a) tested 

each one of the proposed LBP separately and also together, which was called by the authors as 

a joint histogram and had a better performance. 

The pixel intensities are divided into two components: the intensity of the central pixel and the 

intensities of its neighboring pixels. For the pixel difference, the radial difference is analyzed. 

Then, the three descriptors proposed by (LIU, Li et al., 2012a) are described below: central 

intensity (CI) – Equation (2), neighboring intensity (NI) – Equation (3), and radial difference 

(RD) – Equation (4). 

𝐶𝐼 − 𝐿𝐵𝑃 = 𝑠(𝑥0,0 − 𝜇𝑟) 
(2) 

𝑁𝐼 − 𝐿𝐵𝑃𝑝,𝑟 = ∑ 𝑠(𝑥𝑟,𝑛 − 𝜇)2𝑛

𝑝−1

𝑛=0

 (3) 

𝑅𝐷 − 𝐿𝐵𝑃𝑝,𝑟,𝛿 = ∑ 𝑠(∆𝛿,𝑛
𝑅𝑎𝑑)

𝑝−1

𝑛=0

2𝑛 (4) 

where  
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• 𝜇𝑟 is the mean of the whole image, i.e., 𝜇𝑟 =
1

𝑝
∑ 𝑥𝑟,𝑛

𝑝−1
𝑛=0 ; 

• 𝛿 is an integer radial displacement; 

• ∆𝛿,𝑛
𝑅𝑎𝑑= 𝑥𝑟,𝑛 − 𝑥𝑟−𝛿,𝑛 is the radial difference computed with a given integer radial 

displacement 𝛿, where 1 ≤ 𝛿 ≤ 𝑝 2⁄ , and 𝑥𝑟−𝛿,𝑛 corresponds to the gray values of pairs 

of 𝛿 equally spaced pixels of the same radial direction; 

• 𝜀 is a threshold value. (LIU, Li et al., 2012a) sets 𝜀 = 0.01; 

• ∆𝛿,𝑛
𝐴𝑛𝑔= 𝑥𝑟,𝑛 − 𝑥𝑟,𝑚𝑜𝑑(𝑛+𝛿,𝑝) is the angular difference computed with a given angular 

displacement 𝛿(2𝜋 𝑝⁄ ), and 𝑥𝑟,𝑚𝑜𝑑(𝑛+𝛿,𝑝) corresponds to the gray values of pairs of 𝛿 

equally spaced pixels on a circular radius 𝑟, and function 𝑚𝑜𝑑(𝑥, 𝑦) is the modulus 𝑥 

of 𝑦. 

This dissertation compares different approaches to extract features and identify cracks in 

concrete images. The first approach, here called texture-based, uses all the LBPs proposed in 

(LIU, Li et al., 2012a) and calculate its GLCM to extract four Haralick features, i.e., contrast, 

correlation, energy, and homogeneity. Moreover, some shape descriptors will also be used, and 

they are described in Section 3. The second approach is the region-based, which relies on image 

segmentation, following the methodology shown in Figure 1. The features extracted from the 

images in each approach will feed ML models to detect crack existence. The features 

implemented for each approach are based on the existing literature, though some are new to the 

context of crack detection. Hence, the idea is to determine which features are relevant for crack 

detection to improve computational speed. 

Furthermore, the proposed methodology aims at overcoming the problem caused by the variety 

of both crack and background characteristics by determining proper and discriminative features. 

Therefore, the proposed methodology will be tested in a recently available concrete crack 

database with diverse image characteristics. The idea is that this methodology can be coupled 

in autonomous vehicles such as UAVs or solutions like the one presented in (SUTTER et al., 

2018), which is a vehicle specifically designed for bridge inspection, for example. 

2.3 MACHINE LEARNING (ML) 

ML algorithms’ goal is to learn patterns as closely as possible, which can be a regression or a 

classification problem, making use of labeled training data (supervised learning) or not 
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(unsupervised learning) (HAMEL, 2009). In the former case, the algorithm learns a function 

that maps the inputs into the outputs, minimizing the difference between the predicted and the 

real (ground truth) output (BAYAR; BILIR, 2019; MODARRES et al., 2018). Because it is a 

vast field, there is not a universal best model (or model configuration) for all classification tasks 

(PRASANNA et al., 2016). Hence, it is essential to investigate different models and 

configurations (based on the definition of hyper-parameters) to determine the one that best fits 

each problem.  

The hyper-parameters need to be set before training the model, and because they determine the 

configuration of the learning algorithm, they affect its performance (CLAESEN; DE MOOR, 

2015). This dissertation aims at classifying images as crack or non-crack, based on the features 

extracted from those images, which will feed ML models. To that end, four different models 

were compared: SVM, Multilayer Perceptron (MLP), AdaBoost (AB) and Random Forest (RF). 

These models were chosen because they have been successfully applied in crack detection (LIU, 

Wenjun et al., 2019). The following subsections will provide a brief overview of these models 

and their hyper-parameters. 

2.3.1 Support Vector Machines (SVM) 

SVM is a supervised ML technique, based on statistical learning theory (VAPNIK, 2000) that 

can be applied both to regression and classification problems. The standard version of the latter 

relies on the concept of a margin by the development of a decision boundary (hyperplane) that 

maximizes the separation between two classes (margin) while minimizing the classification 

error and improving generalization (HOANG; NGUYEN, 2019; KOTSIANTIS, 2007). The 

hyperplane is mapped by a kernel function, which can be of different types, such as linear, 

polynomial, sigmoid, or Radial Basis Function (RBF) (VAPNIK, 2000), making the model 

versatile to both linearly and non-linearly separable problems (PIRI; DELEN; LIU, 2018).  

Equations (5) to (7) defines the margin optimization problem, where 𝜙 is the dual Lagrangian, 

𝛼 is the dual variable, 𝑘(𝑥𝑖 , 𝑥𝑗) is the kernel function, 𝑙 is the number of training instances, and 

𝐶 is the soft margin parameter. SVM involves the optimization of a convex quadratic 

programming problem (KOTSIANTIS; ZAHARAKIS; PINTELAS, 2006), which ensures a 

single global solution as opposed to other methods (LINS et al., 2013). 
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max 𝜙(𝛼̅) = ∑ 𝛼𝑖

𝑙

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖

𝑙

𝑗=1

𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

𝑙

𝑖=1

, (5) 

subject to 

∑ 𝛼𝑖𝑦𝑖

𝑙

𝑖=1

= 0, (6) 

0 ≤ 𝛼𝑖 ≤ 𝐶, (7) 

2.3.2 Multilayer perceptron (MLP) 

MLP is a popular feedforward Artificial Neural Network (ANN) architecture, which is arranged 

in layers, and it can deal with both regression and classification problems (LIU, Ruonan et al., 

2018). A perceptron is an operator that computes the weighted sum of the input features and 

adjust the result to 1 if it is above a threshold, or to 0 otherwise (KOTSIANTIS; ZAHARAKIS; 

PINTELAS, 2006). The problem is that a perceptron can only classify linearly separable data, 

then MLP was created to solve this problem (KOTSIANTIS, 2007).  

In MLP, the first layer is called the input layer, comprising a set of features that will be used to 

map the response variable, represented by the output layer. Between these two layers, there are 

hidden layers composed of a set of neurons that receives information from the preceding layer, 

transforms this information with a weighted linear summation, and, if activated, passes it to the 

next layer (PANDEY; BARAI, 1995).  

The activation function, which is one hyper-parameter, introduces non-linearity to the model 

and can be of various types, such as the hyperbolic tangent (tanh) and the Rectified Linear Unit 

(RELU). An example of a generic one-hidden layer MLP with n neurons and activation function 

tanh is shown in Figure 2. Consequently, the learning process is based on a feature hierarchy, 

where high-level features are learned from lower level features (GLOROT; BENGIO, 2010). 

Here, the weights will be learned and updated by the backpropagation method, in which the 

prediction error (loss function) is propagated through the network. Also, it is possible to add a 

regularization term (α) to the loss function, to prevent overfitting (EISENBACH et al., 2017). 

The way the weights of the network are updated given the error depends on the solver for weight 

optimization, which is another hyper-parameter.  
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Figure 2 - Generic one hidden layer MLP 

 

Source: adapted from (KALYANI; SWARUP, 2013) 

2.3.3 AdaBoost (AB) 

AB is an iterative procedure, proposed by (FREUND; SCHAPIRE, 1997), which addresses 

classification problems. It is iterative because it starts by fitting a classifier (usually decision 

trees) on the original data and, if a misclassification occurs, the weight of that datapoint is 

increased (boosted), while the weights of correctly classified data are decreased. Initially, the 

weights are set to 1 𝑁⁄ , where 𝑁 is the number of training samples, and they are updated over 

the iterations.  

Finally, a new classifier is applied to the modified data at each iteration (SAGI; ROKACH, 

2018), and the final score is given as a linear combination of the predictions at each stage (ZHU, 

J. et al., 2009). Hence, the method adaptively adjusts to the errors, as samples that are difficult 

to predict receive ever-increasing weights, forcing the learning algorithm to focus on them 

(FREUND; SCHAPIRE, 1997). In this model, the main hyper-parameter that needs tuning is 

the number of estimators, i.e. the number of boosting iterations. 

2.3.4 Random forests (RF) 

RF is a classifier consisting of an ensemble of decision trees (HOANG; NGUYEN, 2019), 

which are generated by independent random vectors, but identically distributed (BREIMAN, 
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2001). Each tree classifies sub-samples of the input data, and the results are averaged to cast 

the vote of the tree, i.e., which class does the data belong. Hence, the final prediction is based 

on the class with the highest number of votes, considering the whole forest. Compared to other 

methods, aside from being easier to tune its parameters, RF produces good results and the 

possibility of analyzing features’ importance (SAGI; ROKACH, 2018). Also, classification 

error tends to converge to a limit as the number of trees, i.e. the hyper-parameter called the 

number of estimators, becomes larger (BREIMAN, 2001). 
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3 METHODOLOGY 

The proposed methodology relies on the general architecture of crack detection methods based 

on image processing presented in Figure 1, but here another approach based on texture analysis 

will also be assessed. Hence, it entails the extraction of features from images to be used as input 

to ML techniques for crack detection. In our case, the image is the grayscale or the segmented 

version of the original one. Particularly, the segmentation aims to create a new image containing 

only white parts that resemble a crack (the procedure will be described in detail in Section 3.1). 

To improve segmentation precision, both pre- and post-processing techniques were 

implemented, and their effectiveness will be discussed. 

According to (MEI; GÜL, 2019), crack detection methods can be categorized into two types: 

one focused on the classification of an entire region of the image and the other focused on 

retrieving pixel-level information and localizing the crack within the image. In this work, we 

separately analyzed these two approaches for automated crack detection, extracting different 

features in each case, and comparing their performance in labeling an image as cracked or non-

cracked. The features are based on the literature and will be presented in Section 3.2. The 

difference between them relies on the focus of analysis, as one can only provide information 

about the existence of cracks, and the other analyzes each region of the segmented image (i.e., 

connected white pixels). The former is herein called texture-based analysis and the latter as 

region-based analysis, which can also localize cracks in the image.  

Note the problem complexity increases from the texture-based to the region-based analysis, as 

the result gets more detailed by changing from one to another. For example, in Figure 3, the 

texture-based approach would indicate that this image contains crack(s), i.e., label this image 

as cracked. With this result, it is not possible to know how many cracks there are (in this case, 

two). On the other hand, the region-based approach attempts to indicate the exact pixels that 

define each crack, and hence label this image as cracked. So, the region-based approach heavily 

depends on the effectiveness of the segmentation step, but its result is more informative than 

the one provided by the texture-based approach. 
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Figure 3 - Example of a concrete crack image containing two cracks. 

 

Source: (ÖZGENEL, 2018). 

As the feature extraction step comprises the concatenation of several features with different 

magnitudes, each providing a weak classification cue (PRASANNA et al., 2016), the 

application of standardization will also be considered. This step aims at centering the features, 

by removing the mean value of each feature, and then rescaling them, by dividing by their 

standard deviation. The learning process could benefit from data standardization; otherwise, the 

objective function could be more influenced by higher values. Then, the proposed methodology 

is summarized in Figure 4 and detailed in the next subsections. 

Figure 4 – The crack detection methodology. 

 

Source: The Author (2020). 

3.1 SEGMENTATION 

Segmentation comprises the identification of objects that can potentially be classified as cracks 

in the image, removing irrelevant or unrelated information that belongs to concrete pattern 

characteristics (i.e., noise, background). Before the segmentation itself, bilateral filtering, which 



30 
 

 

consists of a nonlinear combination between image values (TOMASI; MANDUCHI, [s. d.]), 

was applied to smooth the input images as both concrete and asphalt images are characterized 

by a noisy background. Not only did this specific pre-processing technique outperforms others, 

such as the median filter, but was also chosen because of its potential for edge preservation and 

Ref (FAN, Rui et al., 2019) obtained good results in the same context of crack detection. The 

segmentation technique was implemented in MATLAB and is based on the morphological 

operation proposed in (JAHANSHAHI et al., 2013), shown in Equation (8), where I is the 

grayscale image, ○ is the opening morphological operation, ● is the closing morphological 

operation, and SE is the linear structuring element, defined for orientations of 0⁰, 45⁰, 90⁰ and 

135⁰.  

𝑇 =  𝑚𝑎𝑥[(𝐼 ∘ 𝑆𝐸[0°,45°,90°,135°]) ⦁ 𝑆𝐸[0°,45°,90°,135°], 𝐼] − 𝐼 (8) 

It is essential to understand that the SE is determined by two parameters: format and size. The 

linear format chosen for SE enables the segmentation of objects perpendicular to each 

orientation, while the size narrows the segmentation by imposing a constraint for object length. 

Therefore, the morphological operation described in Equation (8) is repeated for each image 

and several SE of different sizes to map the most information about objects. The resulting image 

of each iteration is binarized by the Otsu method (OTSU, 1979), which is an algorithm that 

searches for the threshold for segmentation that minimizes the between-class variance (TALAB 

et al., 2016),  and joined together to compose one single image, finally separating the cracks 

from the complex background and keeping as many characteristics of the original crack as 

possible (XING et al., 2018). The reason for choosing the Otsu method relies on its high 

applicability in the context of crack detection, as can be seen in Appendix A. 

Figure 5 presents the application of the proposed segmentation methodology, including 

examples of the segmentation result yet containing noise inside the crack and related to the 

background (i.e., black dots and discontinuity). In order to address this issue, post-processing 

techniques were deployed. The following steps, based on the method proposed by (LIANG, 

Sun; JIANCHUN; XUN, 2018), were used to fill internal discontinuity and eliminate broken 

parts of the crack. 

(i) Fill holes in the segmented crack image; 

(ii) Perform morphological closing (dilation followed by erosion); 

(iii) Obtain the skeleton line of the crack to identify crack direction; 
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(iv) Search for breaking points of the crack and connect points that are at a given distance 

away from each other in the direction of the skeleton line; 

(v) Remove objects, whose area falls below a threshold. 

Steps (iii) and (iv) were implemented using methods of “Edge Linking and Line Segment 

Fitting” developed in (KOVESI, 2000). In step (v), an irrelevant object can be removed by 

comparing its area with the whole image (NGUYEN; KAM; CHENG, 2014). Results of the 

application of the whole segmentation methodology in a concrete crack dataset (ÖZGENEL, 

2018), including both pre- and post-processing techniques, are shown in Figure 5. 

Figure 5 - Results of the segmentation methodology applied to the concrete crack dataset. 
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Source: The Author (2020). 

3.2 FEATURE EXTRACTION 

Features are quantitative attributes or properties that, aside from describing characteristics of 

the image (or image regions), also help to distinguish different patterns (JAHANSHAHI et al., 

2013). However, to determine features that are discriminative and have the potential to be 

generalized is a challenging task (HAN et al., 2019). In this context, features must be invariant 

to changes in condition, such as illumination, for example (NIXON; AGUADO, 2008). Then, 

a feature extraction process is a particular form of extracting information from the image for 

comparison and analysis purposes (DAVOUDI; MILLER; KUTZ, 2018b), to determine the 

class of the objects in the image (RUCK; ROGERS; KABRISKY, 1990). 

Texture- and region-based approaches for feature extraction were analyzed and implemented 

in MATLAB and are described in the following subsections. Each approach comprises the 

extraction of multiple features. The idea is that each feature provides a weak classification cue, 

but their combination enables a more accurate classification (PRASANNA et al., 2016). Thus, 

the feature vector in each case, whose classification is already known, will feed ML models to 

classify images as crack or non-crack. 

3.2.1 Texture-based analysis 

The first approach considered extracting features from the entire image (i.e., textural 

properties). According to (NIXON; AGUADO, 2008), there is not a precise definition for 

texture, as it is usually attributed to human perception, and then the concepts for its analysis are 

flexible enough to handle different definitions. We are here interested in distinct textures 

presented in an image with a crack, once it is considerably different from the concrete image 

without any crack.  
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A classical and widely used method to describe textures is the LBP, which was initially 

proposed in (OJALA; PIETIKÄINEN; HARWOOD, 1996), and consists of creating a 

histogram of textural information by determining the relationship between each pixel and its 

neighborhood. LBP presents advantages such as a notable computational efficiency and a good 

texture discriminative property. However, limitations such as sensibility to noise and image 

rotation, small spatial support, and loss of local textural information motivate improvements in 

the method. 

The LBP and its three above presented variants proposed in (LIU, Li et al., 2012b) were applied 

in the grayscale image, generating four different histograms for each image. For each histogram 

and the grayscale image, the GLCM was computed, and four Haralick features (i.e., contrast, 

correlation, energy, and homogeneity in Table 1) were extracted, generating 20 features. 

Moreover, the other four features were extracted from the segmented image. The outcome of 

this step is a feature vector composed of twenty-four features, which are described in Table 1, 

and these features will be used to train the ML models that will be discussed in the next section. 

Table 1 - Description of textural properties. 

Feature Description Examples 

Contrast 
Intensity contrast between a pixel and its neighbor over the whole 

image. 

∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑖,𝑗

 

Correlation Correlation between a pixel and its neighbor over the whole image. ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

 

Energy 
Sum of squared elements in the Gray Level Co-occurrence Matrix 

(GLCM) 

∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 

Homogeneity 
The closeness between the distribution of elements in GLCM and its 

diagonal. 
∑

𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 

Thresh Out The relative proportion of the cracks to non-crack objects. 
The threshold value for the Sobel edge 

detection method 

Entropy A statistical measure of randomness. − ∑ 𝑝 log2 𝑝

𝑝

 

Local variance 
The average local standard deviation of 3 × 3 neighborhood around 

each pixel in the image. 

𝑠𝑡𝑑𝑓𝑖𝑙𝑡 function in MATLAB divided 

by the number of pixels in the image 

Standard 

Deviation 
The standard deviation of all values. 𝑠𝑡𝑑2 function in MATLAB 

Source: The Author (2020). 
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3.2.2 Region-based analysis 

Unlike the texture-based approach, the region-based analysis is concerned with parts of the 

image. In this way, it focuses on the extraction of features for each segmented region of the 

image. Here, a region is defined in white pixels as an 8-connected component that represents a 

crack. 

We considered that the feature vector for each region includes features provided in 

(JAHANSHAHI et al., 2013; LIANG, Sun; JIANCHUN; XUN, 2018) as well as some 

implemented in MATLAB. All thirteen features are described in Table 2, and, together, they 

should be able to capture the characteristics of the crack that distinguishes it from the 

background and other objects. To make descriptions clearer, Table 2 provides examples, where 

components of interest are identified in green. 

These features will be used to train the ML models that will be discussed in the next section. 

By classifying segmented regions, it is possible to determine the number of cracks in the image 

and the precise location of each crack. Note that one feature vector is generated for each region 

of the image. As the same image may contain more than one crack and other misleading objects, 

it may generate more than one feature vector. 

Table 2 - Description of region properties. 

Feature Description Example 

Filled Area (A) The number of pixels in the region with filled holes 

 

Perimeter (P) Distance around the boundary of the region. 

 

Proportion of crack 

pixels 

The ratio of the area of the region (A) and the area of the smallest 

circumscribed rectangle of the crack. 

𝐴

𝑊𝐿
 

Length-width ratio 
The length-width ratio of the smallest circumscribed rectangle of the 

crack. 

𝐿

𝑊
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Feature Description Example 

Image 

Concentration (K) 
The ratio between the area of the region (A) and its perimeter (P).  𝐾 =

2 × √𝜋 × A

P
 

Compactness 
The ratio between the square root area of the region (A) and its 

perimeter (P). 

𝐴

𝑃
 

Eccentricity 
The ratio between the distance of the ellipse foci (c) that has the same 

second-moments as the region and its major axis length (a). 𝑐

𝑎
 

Area ratio 
The ratio between the area of the region (A) and the area of the ellipse 

(𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑎𝑟𝑒𝑎 = 𝜋𝑎𝑏) that has the same second-moments as the region. 

𝐴

𝜋𝑎𝑏
 

Major Axis Length 
Length of the major axis of the ellipse that has the same normalized 

second central moments as the region. 
2𝑎 

Equivalent 

Diameter 
The diameter of a circle with the same area as the region. 

2√
𝐴

𝜋
 

Convex Area 
The number of pixels in the image that specifies the convex hull, which 

is the smallest convex polygon that can contain the region. 

   𝑊𝐿 

Solidity The proportion of the pixels in the convex hull that is also in the region. 
𝐴

𝐶𝐴
 

Euler Number 
The number of objects in the region minus the number of holes in those 

objects. 

  = 0, in this case 

Source: The Author (2020). 

3.3 MODEL SELECTION 

Although the segmentation method proposed is time effective, misleading objects could be 

segmented in the process, raising the need for an image classifier (PANELLA et al., 2018). 

Hence, the next step is the classification (see Figure 4). To that end, we chose some popular 

classification models: SVM, MLP, AB, and RF, comparing results provided by them. Given 

that data is annotated, these models will be trained using the feature vector of each approach. 

All models rely on hyper-parameters, which are inputs of the models instead of being learned. 

Because there are several combinations between their values, an exhaustive search of all hyper-

parameter combinations (grid search) was conducted to select the ones with the best cross-

validation score. In k-fold cross-validation, the data is (approximately) equally split into k 
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subsets, and the model is trained k times, each time leaving one of the subsets for validation 

(KOHAVI, 1995). The final score of the model is the average over k training sets, providing a 

pessimistic estimate (since the training data is smaller) of the generalization performance of the 

model (CAWLEY; TALBOT, 2010).  

For each model, the hyper-parameter space is shown in Table 3, along with a brief description 

(PEDREGOSA et al., 2011). Note that, in SVM, as gamma is a hyper-parameter related to the 

kernel RBF, it will only be set if the kernel selected is the RBF. As for MLP, the parameter “nº 

of neurons per layer” indicates both the number of hidden layers and the number of neurons in 

each layer. Hence, the number of hidden layers is determined by the number of elements 

between parentheses, where each element represents the number of neurons in each layer. For 

the grid search, 4 different combinations of the number of hidden layers and the number of 

neurons in each layer were determined, as shown in Table 3. 

Table 3 - Hyper-parameter space 

Model Hyper-parameters Description Values 

SVM 

kernel Decision function linear and RBF 

C Soft margin parameter [1, 10, 100, 1000] 

𝛾 RBF parameter [1, 0.1, 0.001, 0.0001] 

MLP 

nº of layers Number of layers [1, 2, 3] 

nº of neurons per layer Number of neurons in each hidden layer [(100), (100,100), (100,50), (100,100,100)] 

solver Weight optimization SGD and adam 

α Parameters of the regularization term [0.1, 0.01, 0.001, 0.0001, 0.00001] 

Activation Neurons’ activation function ReLu 

AB Number of estimators 
Maximum number of decision trees at 

which boosting is terminated 
[50, 100, 200] 

RF Number of estimators Number of trees in the forest [50, 100, 200] 

Source: The Author (2020). 

The selection of hyper-parameters will be based on Balanced Accuracy (BA) score using 4-fold 

cross-validation. BA is a useful metric when the classes in the training set are imbalanced, and 

is defined in Equation (9) as the average of recall obtained on each class, where P is the number 

of positive predictions, TP is the number of true positive predictions, N is the number of 

negative predictions, and TN is the number of true negative predictions. 
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𝐵𝐴 =
(

𝑇𝑃
𝑃 +

𝑇𝑁
𝑁 )

2
 (9) 

Once the hyper-parameters are selected, all classification models were trained for the texture-

based and region-based features along with the ground truth, resulting in eight different models. 

Results are presented in the next chapter, comparing the performance of the models. For this 

step, the Python computational language and the Google Collaboratory, which is a free cloud 

platform for Python, were used. 

The performance is evaluated in terms of three metrics: BA, Specificity (S) and Recall (R), 

which are described in Equations (9) to (11) respectively (SENSITIVITY AND SPECIFICITY, 

[s. d.]). Accuracy is the proportion of the correctly classified samples to the total number of 

samples. Specificity is the ability of the classifier not to label as positive a sample that is 

negative, representing a useful metric, when the cost of false positive is high. Recall (or 

sensitivity) is the ability of the classifier to find all the positive samples and, hence, is an 

informative measure when there is a high cost associated with false negatives. In reliability 

analysis, in general, recall is the most critical metric once the cost of a false negative can be 

catastrophic if, for instance, human safety is involved. 

𝑆 =
𝑇𝑁

𝑁
 (10) 

𝑅 =
𝑇𝑃

𝑃
 (11) 
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4 RESULTS AND DISCUSSION 

According to (MEI; GÜL, 2019), there is a need for the development of challenging and pixel-

level annotated crack datasets, as it enables the deployment of novel algorithms and the 

comparison of results. In fact, this is especially true for specific materials, such as concrete and 

wind turbines. One of the largest concrete crack datasets available (ÖZGENEL, 2018) contains 

images with 96 dpi and dimension 227 x 227, taken from the Technical University of the Middle 

East (METU) buildings, representing concrete parts of these buildings containing or not cracks. 

Because we are dealing with supervised learning, the training of the ML models is based on 

positive and negative samples (TEDESCHI; BENEDETTO, 2017), which are crack and no 

crack images respectively. Moreover, the latter consists of background texture, which could be 

incorrectly identified as the object of interest. However, the dataset does not contain pixel-level 

annotation, and, according to (CHAMBON; MOLIARD, 2011), accurate segmentation must be 

provided as a reference. In order to overcome these aspects, a semi-automatic annotation was 

deployed, where the images were segmented with the aid of the methodology presented in 

Section 3.1, combined with manual interference to establish the ground-truth. 

As mentioned in Section 3.1, the segmentation step involves the specification of some 

parameters. For example, as the idea is to make the model flexible enough to segment both thin 

and thick cracks with different lengths, the size of SE varied from 10 to 20 (by a step of 2) and 

from 20 to 104 (by a step of 6). These values were empirically determined by the observation 

that smaller SEs produce noisy results and that the information retrieved by each SE at smaller 

sizes is more distinctive and essential to catch fine details than at larger sizes (above 20, in this 

case). At the post-processing step, it was established that breaking points would be connected 

if they were at most 8 pixels away from each other. This value was sufficient to reduce 

discontinuities on the segmentation due to the effect of shadows or changes in illumination. 

Moreover, objects with areas smaller than 100 pixels were removed. The definition of this 

threshold was based on the results obtained in (CHO et al., 2018b) and empirical observation. 

Then, to evaluate the overall performance of the proposed crack detection algorithm, a total of 

1,768 crack images and 1,166 non-crack images were selected and annotated. Examples of the 

dataset are shown in Figure 6, demonstrating the variety in both the crack and the concrete 

characteristics. With these images, a comparison between texture- and region-based analysis 

was performed using SVM, MLP, AB, and RF. 
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Figure 6 - Examples of (a) cracked and (b) non-cracked images. 

  

(a) (b) 

Source: (ÖZGENEL, 2018). 

As mentioned before, in Section 3.2.2, the same image may generate more than one feature 

vector for the region-based approach because images may contain more than one region. 

Indeed, from the ground truth, the region-based approach extracted 2,082 positive and 1,206 

negative feature vectors. On the other hand, the number of feature vectors generated by the 

texture-based approach was the exact number of images.  

For each case, 10 random splits of the feature vector were generated, considering 80% of the 

data for training purposes and the remaining 20% for testing. Hence, for each ML model, grid 

search, train and test were conducted 10 times, one for each of the different training and testing 

sets randomly generated. The performance of each model was averaged across the 10 runs and 

the results are presented in Table 4, in terms of the mean and the standard deviation. Table 4 

also presents the hyper-parameters selected in each case, based on the best grid search score 

across the 10 runs. 

The proposed methodology will be also compared to existing methodologies in the literature. 

For the texture-based, the benchmark model is composed only by the features of the traditional 

LBP (instead of all the other features proposed in the texture-based approach), whereas for the 

region-based, the benchmark model is the one proposed by Ref. (JAHANSHAHI et al., 2013). 

For the benchmark models, the results are obtained following the same steps as the proposed 

methodology, i.e. average results are obtained with grid search, train, and test performed in 10 

random splits of the dataset. However, for convenience, the hyper-parameters selected for the 

benchmark models will not be shown. 
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From Table 4 it is possible to note that the proposed methodology outweighs the benchmark 

methodologies, especially when dealing with SVM for the texture-based approach, since no 

results were obtained in a timely manner for the benchmark case. Also, note that for MLP the 

regularization term α was higher for the region-based approach, compared to the texture-based. 

This indicates that the value of the weights in the former is smaller than the latter (RASCHKA; 

JULIAN; HEARTY, 2016). Moreover, not only did MLP presented the highest standard 

deviations in the performance metrics, but also the worst performance, especially for the 

texture-based approach.  

Table 4 - Classification performance of the ML models, in terms of mean and standard deviation. 

Method Classification Hyper-parameters 
BA 

benchmark 
BA R S 

Texture-

based 

 

SVM C: 10 or 1000, kernel: linear - 
0.9735 ± 

0.0060 

0.9755 ± 

0.0295 

0.9714 ± 

0.0550 

MLP 

α: 0.0001, nº of layers: 1, nº of 

neurons per layer: (100), solver: 

adam 

0.5004 ± 

0.0008 

0.7786 ± 

0.1624 

0.7673 ± 

0.2960 

0.7832 ± 

0.3202 

AB Number of estimators: 100 or 200 
0.7149 ± 

0.0177 

0.9904 ± 

0.0031 

0.9915 ± 

0.0332 

0.9893 ± 

0.0026 

RF Number of estimators: 100 
0.7356 ± 

0.0203 

0.9902 ± 

0.0047 

0.9918 ± 

0.0305 

0.9888 ± 

0.0526 

Region-

based 

SVM C: 1, kernel: linear 
0.9575 ± 

0.0095 

0.9751 ± 

0.0046 

0.9710 ± 

0.0156 

0.9792 ± 

0.0189 

MLP 

α: 0.001, nº of layers: 1, nº of 

neurons per layer: (100), solver: 

adam 

0.9566 ± 

0.0079 

0.9684 ± 

0.0089 

0.9531 ± 

0.0265 

0.9841 ± 

0.0408 

AB Number of estimators: 100 
0.9545 ± 

0.0087 

0.9687 ± 

0.0038 

0.9758 ± 

0.0136 

0.9615 ± 

0.0218 

RF Number of estimators: 50 
0.9616 ± 

0.0083 

0.9753 ± 

0.0073 

0.9763 ± 

0.0307 

0.9742 ± 

0.0528 

Source: The Author (2020). 

The result of the texture-based analysis is the classification of the image as cracked or non-

cracked, while the outcome of the region-based approach is the classification of each segmented 

region as a crack or not. Three direct conclusions are immediately derived from the results in 

Table 4. Firstly, the performance of all ML models was excellent, especially the SVM, AB and 

RF. Figure 7 presents a visual representation of the information in Table 4, in terms of the mean 

value, showing that both AB and RF outperformed the other methods in terms of correctly 

classifying cracks for the texture-based approach, both presenting the best performances. 
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Figure 7 - Confusion matrix for the texture-based approach for (a) SVM, (b) MLP, (c) AB, and (d) RF. 

  

(a) (b) 

  

(c) (d) 

Source: The Author (2020). 

Generally, the results of the region-based approach were slightly worse than the texture-based, 

except for the MLP, in which case not only did the region-based performed better but was also 

more consistent across the different data splits, i.e. small standard deviation. Figure 8 shows 

that SVM and RF results were better in terms of correctly classifying cracks. In terms of 

correctly classifying “no crack” objects, MLP achieved the best result by compromising the 

recall rate. As mentioned before, in the context of reliability, recall is the most critical metric 

since the cost of false negative classifications can be catastrophic. 

 

 



42 
 

 

Figure 8 - Confusion matrix for the region-based approach for (a) SVM, (b) MLP, (c) AB, and (d) RF . 

  

(a) (b) 

  

(c) (d) 

Source: The Author (2020). 

Secondly, the texture-based approach presents a slightly better accuracy performance than the 

region-based one, i.e., the best result for the texture-based in terms of averaged BA was 99% 

compared to 97% for the region-based. In fact, as mentioned before, the problem complexity 

increases from the former to the latter, since the former is concerned with labeling the whole 

image as cracked or not, while the latter aims at locating the crack on the image. The best 

performance was obtained with AB and RF for the texture-based approach, reaching 99% BA 

and R, and this result surpassed all the others, while the best performance for the region-based 

approach was obtained with SVM and RF, reaching 97% BA, R and S. 
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Lastly, note that MLP presented the worst performance for both approaches. The reason for that 

was the difficulty of convergence. In order to overcome this problem, data standardization was 

applied as it has the potential to prevent the domination of any feature on the objective function 

(KALYANI; SWARUP, 2013). So, with the application of data standardization, the 

performance of MLP considerably improved, as well as the performance of the other ML 

models (see Table 5). This improvement is more considerable for the texture-based approach 

since the chance of correctly classifying the observation jumped from 77% to 99% with data 

standardization. 

Table 5 – Classification performance of the ML models with data standardization, in terms of mean and standard 

deviation. 

Method Classification Hyper-parameters 
BA 

benchmark 
BA R S 

Texture-

based 

 

SVM C: 1 or 10, kernel: linear 
0.7649 ± 

0.0140 

0.9975 ± 

0.0013 

0.9972 ± 

0.0284 

0.9979 ± 

0.0424 

MLP 

α: 0.1, nº of layers: 3, nº of neurons 

per layer: (100, 100, 100), solver: 

adam 

0.7563 ± 

0.0177 

0.9956 ± 

0.0025 

0.9980 ± 

0.0304 

0.9931 ± 

0.0449 

AB Number of estimators: 200 
0.7152 ± 

0.0155 

0.9907 ± 

0.0039 

0.9924 ± 

0.0229 

0.9891 ± 

0.0396 

RF Number of estimators: 200 
0.7414 ± 

0.0123 

0.9863 ± 

0.0035 

0.9901 ± 

0.0173 

0.9824 ± 

0.0293 

Region-

based 

SVM C: 10, kernel: linear 
0.9589 ± 

0.0095 

0.9774 ± 

0.0048 

0.9704 ± 

0.0267 

0.9845 ± 

0.0405 

MLP 

α: 0.01, nº of layers: 1, nº of 

neurons per layer: (100), solver: 

adam 

0.9652 ± 

0.0056 

0.9763 ± 

0.0036 

0.9745 ± 

0.0242 

0.9779 ± 

0.0369 

AB Number of estimators: 50 or 200 
0.9519 ± 

0.0073 

0.9719 ± 

0.0048 

0.9750 ± 

0.0266 

0.9689 ± 

0.0546 

RF Number of estimators: 100 
0.9598 ± 

0.0073 

0.9722 ± 

0.0055 

0.9735 ± 

0.0264 

0.9708 ± 

0.0360 

Source: The Author (2020). 

Still, the performance of the proposed methodologies surpassed the benchmark models with the 

application of data standardization. Generally speaking, in terms of recall rate, which, as 

mentioned before, is very important in the context of infrastructure inspection, results were 

outstanding as the minimum was 96%. The same happened with the correct classification of 

negative observations. Because one of the aims of the proposed methodology is to reduce the 

workload during inspections, although false negatives classifications have the potential to 
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impose risks not only to the system, but also to its users, false positives must be avoided as 

well. 

4.1 FLEXIBILITY TEST 

Although Section 4.1 presented results on a concrete crack dataset, it is essential to highlight 

that the proposed methodology can be applied to different materials, such as pavement, for 

instance, with varied crack sizes and characteristics. Note that if the image characteristics are 

too different from the ones in (ÖZGENEL, 2018), it will be necessary to retrain the ML model. 

Here, the models trained with the images from Ref. (ÖZGENEL, 2018) will be tested in another 

dataset, the SDNET (MAGUIRE; DORAFSHAN; THOMAS, 2018). The SDNET dataset 

contains about 56,000 images of concrete bridge decks, walls, and pavements from the Utah 

State University with cracks (from 0.06mm to 25mm) or without. Only a small portion of this 

dataset was used because it does not contain pixel-level annotation and generating the ground-

truth is extremely time-consuming. 

Here, both the texture-based and the region-based approaches were applied to 39 crack images 

and 19 without crack from the SDNET dataset. Conversely to what was presented before, the 

test results on the SDNET dataset were superior without data standardization and they are 

shown in Table 6. In general, the performance of all ML models in the texture-based approach 

did not meet expectations. In fact, it is possible to conclude from Table 6 that the SVM and 

MLP are biased to the “no crack” class in this case, whereas the AB and RF are biased to the 

“crack” class. 
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Table 6 – Classification performance of ML models on SDNET dataset 

Method Classification BA R S 

Texture-based 

SVM 0.6403 ± 0.0106 0.4384 ± 0.0213 0.8421 ± 0.0000 

MLP 0.5528 ± 0.1176 0.3897 ± 0.2148 0.7158 ± 0.2504 

AB 0.5128 ± 0.0389 0.7307 ± 0.3344 0.2947 ± 0.3363 

RF 0.4845 ± 0.0490 0.8743 ± 0.2545 0.0947 ± 0.2022 

Region-based 

SVM 0.8956 ± 0.0068 0.9000 ± 0.0170 0.8912 ± 0.0155 

MLP 0.8444 ± 0.0404 0.8604 ± 0.0722 0.8284 ± 0.0517 

AB 0.7819 ± 0.0197 0.7736 ± 0.0462 0.7902 ± 0.0626 

RF 0.8650 ± 0.0111 0.8830 ± 0.0164 0.8471 ± 0.0220 

Source: The Author (2020). 

On the other hand, the results for the region-based approach were valid, with the SVM 

presenting the best performance. As mentioned before, the same image may generate more than 

one feature vector for the region-based approach because images may contain more than one 

region. Indeed, from the images gathered, the region-based approach extracted 53 positive and 

102 negative feature vectors. A comparison between the performance of all the models is shown 

in Figure 9, proving SVM superiority in terms of R and S. This result also implies that the fact 

that the dataset selected for training presents a variety of crack characteristics made it possible 

to obtain good results in another dataset. 
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Figure 9 - Confusion matrix of SDNET classification with (a) SVM, (b) MLP, (c) AB, and (d) RF, for the 

region-based approach. 

  

(a) (b) 

  

(c) (d) 

Source: The Author (2020). 

Although the texture-based approach generally presented better results, this behavior was not 

repeated with the test in a different dataset. In this Section, the idea is to evaluate the flexibility 

of the model for localizing cracks, especially in this dataset that mostly contains thin cracks. 

Figure 10 shows the result of the proposed methodology correctly classifying images from 

SDNET, where the lighter parts correspond to the overlay of the real crack and the segmented 

one. 
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Figure 10 - Test on the SDNET dataset. 

   

   

Source: The Author (2020). 

Examples of misclassification are displayed in red for a positive and a negative case in Figure 

11(a) and Figure 11(b), respectively. Note that in the first case, the segmentation generated a 

discontinuity in the crack, and then one part of the crack was not correctly classified (false 

negative). The second case exemplifies the same problem with the illumination and shadows 

discussed in Section 3.1, where a region was segmented because it resembles a crack, and it 

was indeed classified as a crack by the model, but in fact, it is not (false positive). 

Figure 11 – Examples of misclassification (in red) from SDNET (a) positive sample and (b) negative sample. 

  

  

(a) (b) 

Source: The Author (2020). 
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4.2 LIMITATIONS 

As mentioned in Section 2, one of the drawbacks of the general crack detection model based 

on image processing is the need for fine-tuning parameters according to the dataset 

characteristics and, hence, the loss of generality. In the proposed methodology, three parameters 

need some attention: they are the size of the SE, the minimum area (for removal of irrelevant 

objects), and the maximum distance between the regions for making a connection. While the 

first is related to the segmentation itself, both second and third ones are related to the post-

processing stage, which means that they aim to improve the performance of the segmentation 

(as shown in Figure 5) and, as a consequence, the speed of classification. 

Note that the selection of SE’s size is based on the size of the cracks of interest. As the dataset 

comprises a variety of cracks, we addressed this issue by selecting a range of SE and combining 

their results. In this way, it is possible not only to detect various crack sizes but also joining 

information from different scales. The significant difficulty of the proposed methodology was 

related to the quality of the image, i.e., shadows, especially for cracks too thin (Figure 12.a) or 

too large (Figure 12.b), and changes in illumination (Figure 12.c), as reported by other authors 

(LIANG, Dong et al., 2019; LIANG, Sun; JIANCHUN; XUN, 2018; MOHAN; POOBAL, 

2018; ZHANG, Dejin et al., 2017b). Other drawbacks highlighted by some papers were 

successfully addressed by the region-based approach, such as detecting fine cracks (HOANG, 

2018b), robustness to various positions (HEO; JEON; SON, 2019; LEI et al., 2018) and the 

number of cracks (LEI et al., 2018; LIANG, Sun; JIANCHUN; XUN, 2018), since the 

segmentation step considers different orientations, locations, and crack ramifications (LIANG, 

Sun; JIANCHUN; XUN, 2018). The reason behind it is that the segmentation step provides 

flexibility by using several SE sizes and orientations. 
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Figure 12 - Original images and the results of the segmentation methodology on challenging contexts, such as (a) 

shadow within thin cracks, (b) shadow caused by the crack depth, and (c) changes in illumination. 

   

   

(a) (b) (c) 

Source: The Author (2020). 
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5 CONCLUDING REMARKS 

In order to create an automatic crack detection methodology, two different approaches were 

analyzed in this dissertation. The first one was based on segmentation techniques (region-

based), while the second one relies on texture analysis (texture-based) for the extraction of 

features from images. Given that images are annotated, ML models (i.e., SVM, MLP, AB, and 

RF) were trained using the feature vector of each approach to assess the existence of cracks and 

provide an automatic classification method. The hyper-parameters of the models were tuned, 

and a real concrete crack image dataset was used to evaluate performances. 

As a result, although all models reached a good performance in terms of balanced accuracy, 

recall, and specificity, models with data standardization and the texture-based feature extraction 

approach presented better results, reaching a balanced accuracy of 99%. In fact, the 

implementation of data standardization was essential to improve MLP results, as its accuracy 

went from 77% to 99% in the texture-based approach and from 96% to 97% in the region-based. 

Furthermore, a test was also conducted on a small set of images from another dataset (SDNET), 

which was different from the one used to train the models. In this case, the best result was 

obtained with SVM in the region-based approach with a balanced accuracy of 89%, showing 

the ability of generalization of the model. However, it is important to mention the limitation of 

the segmentation step concerning changes in lighting conditions and to the presence of shadows 

in the images, which may lead to misclassifications by the ML models. 

Note that, although we are analyzing the approaches mentioned above separately, for 

comparison purposes, our ongoing research focuses on combining them. Combining both 

approaches could be interesting when dealing with a large area to be covered by the inspection, 

in which case the area could be divided into several parts. For each part, one could use the 

texture-based approach to detect whether there is a crack or not and, then, for each positive 

result, use the region-based analysis to narrow down the precise location of the crack(s).  

As future work, it is expected we improve the image detection methodology to classify not only 

cracks but also other types of fault (e.g., corrosion, deformation, wear). Some works have been 

dealing with this problem, such as (HOANG; NGUYEN, 2019; OLIVEIRA; CORREIA, 2014; 

QINGGUO et al., 2019b), but the biggest issue is the lack of a comprehensive and fully 

annotated dataset, which can be overcome with data augmentation. Also, it is important to 
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address the issues with shadows and changes in illumination within images. Recently, 

researchers have been focusing on DL methods to deal with these problems, especially CNN 

such as (DUNG; ANH, 2019; LIANG, Dong et al., 2019; MAEDA et al., 2018; PANELLA et 

al., 2018; STANIEK; CZECH, 2018), and they are obtaining good results, which proves its 

worth. In fact, Ref. (DORAFSHAN; THOMAS; MAGUIRE, 2018b) compares the adoption of 

CNN methods against an approach based on edge detection, showing that not only did the 

former outperformed the latter, but also the combination of both approaches showed significant 

promise. Hence, in possession of a considerable number of images, DL approaches, such as 

CNN, can be applied to this context and compared with the results presented here in terms of 

performance metrics and required computational power. 
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APPENDIX A – LITERATURE REVIEW OF CRACK DETECTION METHODS BASED ON IMAGE PROCESSING 

Paper Year Goal Image 
acquisition 

Pre-processing Segmentation Feature extraction Classification Structural 
analysis 

(HU; ZHAO; 
WANG, 2010) 

2010 C2/L Camera x Binarization: threshold 
Post-processing: area filtering 

Texture (Haralick 
features) and crack 

shape 

ML Area, length, 
orientation, 
and width 

(YAMAGUCHI; 
HASHIMOTO, 

2010) 

2010 L Camera x Method: percolation model x RL x 

(CHAMBON; 
MOLIARD, 

2011) 

2011 L Camera Denoising: erosion in gray levels and median filtering,  
Enhancement: histogram equalization and mean 
filtering 

Binarization: local threshold 
Post-processing: morphological closing and shape 
filtering 

x RL Height and 
width 

(FUJITA, 
Yusuke; 

HAMAMOTO, 
2011) 

2011 L Camera Denoising: median filter 
Enhancement: a multi-scale line filter with the Hessian 
matrix 

Method: probabilistic relaxation 
Binarization: locally adaptive thresholding 

x RL x 

(JAHANSHAHI 
et al., 2013) 

2013 L Camera x Method: morphological operation 
Binarization: Otsu method 
Post-processing: length filtering 

Crack shape ML Width 

(OLIVEIRA; 
CORREIA, 

2014) 

2014 L/C4 Camera Denoising: anisotropic diffusion, morphological 
smoothing, erosion, and dilation, wavelet transform, an 
adaptive filter 
Enhancement: pixel intensity normalization and 
saturation 
Object removal: lane 

Binarization: the dual intensity threshold 
Post-processing: connect regions, width and shape 
filtering 

Intensity-based 
Normalization 

ML/RL Severity 
level 

(AMHAZ et al., 
2016) 

2016 L Vehicle-
mounted 
camera 

x Method: minimal path with Dijkstra algorithm 
Post-processing: length filtering 

x RL Width 

(PRASANNA et 
al., 2016) 

 

2016 L Vehicle-
mounted 
camera 

x Method: line detector based on curve fitting 
Post-processing: morphological closing and hole 
filling 

Intensity-based, 
gradient-based and 

scale-space 

ML x 

(SHAN; 
ZHENG; OU, 

2016) 

2016 L Camera Denoising: median filter 
Enhancement: self-adaptive histogram  

Binarization: Otsu method 
Edge detection: Canny operator 

x RL Width 
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Paper Year Goal Image 
acquisition 

Pre-processing Segmentation Feature extraction Classification Structural 
analysis 

(TALAB et al., 
2016) 

2016 L Camera* x Edge detection: Sobel filter 
Binarization: Otsu method 
Post-processing: area filtering 

x RL x 

(ZHANG, Dejin 
et al., 2017a) 

2017 L Camera Enhancement: intensity correction and Grid Cell 
Analysis 
Object removal: lane and sign 

Method: propose Maximally Stable Extremal 
Regions 
Binarization: adaptive thresholding 
Post-processing: connect regions and region 
growing  

x RL x 

(CHO et al., 
2018b) 

2018 L Camera Denoising: median filter 
Object removal: background 

Method: K-means 
Binarization: Otsu method 
Post-processing: morphological closing and area 
filtering 

x RL x 

(DAVOUDI; 
MILLER; KUTZ, 

2018b) 

2018 L Camera* x Edge detection: Canny operator Overall image and 
crack shape 

averaged 

ML x 

(HOANG; 
NGUYEN, 

2018) 

2018 L/C5 Camera Denoising: median filter 
Enhancement: Fast Local Laplacian Filter 

Edge detection: steerable Gaussian filters and Sobel 
filter 

Projective Integrals ML x 

(HOANG, 
2018b) 

2018 L Camera Enhancement: Min-Max Gray Level Discrimination Binarization: Otsu method 
Post-processing: area and shape filtering 

x RL Area, length, 
orientation, 
perimeter, 
and width 

(HOANG, 
2018a) 

2018 L/C5 Camera Denoising: Median filter (window size 5x5) Method: Laplacian pyramid 
 

Projective integrals ML x 

(LEI et al., 
2018) 

2018 L Camera Denoising: Gaussian filter 
Enhancement: histogram equalization 

Method: find crack center points based on the gray 
level distribution 

x RL x 

(LIANG, Sun; 
JIANCHUN; 
XUN, 2018) 

2018 L Camera Enhancement: Linear Grayscale Transformation Binarization: Otsu method 
Post-processing: length and area filtering, 
morphology fill, expand and corrode, and connect 
regions 

Crack shape ML x 

(WANG, 
Gaochao; TSE; 
YUAN, 2018) 

2018 L Infrared* Denoising: Gaussian filter Edge detection: Canny operator 
Post-processing: K-means 

Frequency domain  RL x 
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Paper Year Goal Image 
acquisition 

Pre-processing Segmentation Feature extraction Classification Structural 
analysis 

(XING et al., 
2018) 

2018 L Camera Denoising: black hat algorithm Binarization: adaptive width template method 
Post-processing: Tensor voting algorithm, and 
length, area and shape filtering 

x RL x 

(ZHU, Q et al., 
2018) 

2018 L UAV 
mounted 
camera 

x Method: recursively search for the darker region 
until a stop condition is met, using the Otsu method 

x RL x 

(ZHUANG et 
al., 2018) 

2018 L Camera x Method: proposed feature-based linear iterative 
crack aggregation method 

Haar-like features ML x 

(DORAFSHAN; 
THOMAS; 
MAGUIRE, 

2019) 

2019 L UAV 
mounted 
camera 

x Edge detection: filtering in both spatial and 
frequency domain 
Binarization: local threshold and area threshold 
Post-processing: area filtering 

x RL x 

(FAN, Rui et 
al., 2019) 

2019 C2/L Camera Denoising: bilateral filter Binarization: only for positively classified images, 
with threshold optimization via quantization 
problem 

x ML/RL x 

(HEO; JEON; 
SON, 2019) 

2019 L Video Enhancement: top-hat filtering and histogram contrast 
stretch 

Binarization: proposed histogram optimum 
thresholding 
Post-processing: hole filling, morphological erode 
and close, and length and width filtering 

x RL x 

(HOANG; 
NGUYEN, 

2019) 

2019 L/C4 Camera Enhancement: Gaussian steerable filters Binarization: Otsu method 
 

Projective integrals 
and crack 

characteristics 

ML x 

(PAGLINAWAN 
et al., 2018) 

2019 L UAV 
mounted 
camera 

x Binarization: adaptive threshold 
Post-processing: image inversion, median filter and 
area filtering 

x RL Condition, 
distance, 

length, and 
width 

(QINGGUO et 
al., 2019b) 

2019 L/C4 Camera x Edge detection: Canny operator 
Post-processing: region growing algorithm, hole 
filling, and shape filtering 

x RL Length, 
intersection 
properties, 
and width 

(SANTOS; 
VALENÇA; 

JÚLIO, 2019) 

2019 L Hyper-
spectral* 

Enhancement: spectral alignment and brightness 
normalization 

Method: K-means 
Post-processing: connect regions 

x RL x 

 


