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ABSTRACT

Spherical data are output in various research lines. These data may be categorized
as directional (when such line is directed) and axial (otherwise). Directional data can
be understood as points on a sphere; while, axial data are pairs of antipodal points
(i.e., opposite points) on a sphere. The Watson (W) model is often used for describing
axial data. The W distribution has two parameters: the mean axis and the concentration
parameter. It is known making inference under lower concentration is a hard task. First, to
outperform this gap, for the W parameters, we provide an improved maximum likelihood-
based estimation procedure for the W concentration parameter. In particular, we present
a closed-form expression for the second-order bias according to the Cox-Snell methodology.
Further, an approximated expression for the Fisher information matrix is derived as well.
To quantify the performance of the our proposal, a Monte Carlo study is made. Results
indicate that our estimation procedure is suitable to obtain more accurate estimates for the
W concentration parameter. Second, aims to study a natural extension of the minimum
distance estimators discussed by Cao et al. (1994).More precisely, under the assumption
of Watson directional distribution, to produce hypotheses and point statistical inference
procedures, as well as goodness, and to propose mathematical antecedents for the statistical
method based on the minimum distance of L2 for the Watson model. Third, based on
Renyi divergence, we propose two hypothesis tests to verify whether two samples come
from populations with the same concentration parameter. The results of synthetic and
real data indicate that the proposed tests can produce good performance on Watson data.
The small sample behavior of the proposed estimators is using Monte Carlo simulations.
An application is illustrated with real data sets.

Keywords: Bias correction. Watson distribution. Axial data. Minimum L2 distance.
Bootstrap and permutation tests.



RESUMO

Dados esféricos são produzidos em várias linhas de pesquisa. Esses dados podem ser
categorizado como direcional (quando essa linha é direcionada) e axial (caso contrário).
Dados direcionais podem ser entendidos como pontos em uma esfera; enquanto, dados
axiais são pares de pontos antipodais (isto é, pontos opostos) em uma esfera. O modelo
Watson (W) é frequentemente usado para descrever dados axiais. O W distribuição tem
dois parâmetros: o eixo médio e a concentração parâmetro. Sabe-se que fazer inferência
sob menor concentração é uma tarefa difícil. Primeiro, para superar essa lacuna, para os
parâmetros W, fornecemos um procedimento melhorado de estimativa baseada em máxima
verossimilhança para o W parâmetro de concentração. Em particular, apresentamos uma
expressão de forma fechada para o viés de segunda ordem, de acordo com a metodologia de
Cox-Snell. Além disso, uma expressão aproximada para a matriz de informações de Fisher é
derivado também. Para quantificar o desempenho de nossa proposta, um estudo de Monte
Carlo é feito. Os resultados indicam que nosso procedimento de estimativa é adequado para
obter estimativas mais precisas para o parâmetro de concentração W. Second, realizamos
o estudo sobre uma extensão natural dos estimadores de mínima distância discutidos
por Cao et al. (1994). Mais precisamente, sob o pressuposto de distribuição direcional
Watson, para produzir hipóteses e apontar procedimentos de inferência estatísticas, bem
como bondade, e propor antecedentes matemáticos para o método estatístico com base
na distância mínima de L2 para o modelo de Watson. Terceiro, com base na divergência
de Rényi, propomos dois testes de hipótese para verificar se duas amostras provêm de
populações com a mesma concentração parâmetro. Os resultados de dados sintéticos e
reais indicam que a proposta de testes podem produzir um bom desempenho nos dados da
Watson. O comportamento em pequenas amostras dos estimadores propostos está usando
simulações de Monte Carlo. Uma aplicação é ilustrada com conjuntos de dados reais.

Palavras-chave: Correção de viés. Distribuição Watson. Dados axiais. Distância mínima
L2. Bootstrap e teste de permutação.
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1 INTRODUCTION

Statistical analysis in the unitary sphere is not easy task, the beauty of the probabilistic
models make it seem simpler than it is pratice. This difficulty usually results from the
complicated normalization of the constants associated with directional distributions.
However, due to their powerful modeling ability, hypersphere distributions continue to
encounter numerous applications, see for example, Mardia and Jupp (2000).

The most well-known directional distribution is the Von-Mises-Fisher distribution
(VMF ), which models data concentrated around a mean (direction). But for the data
that has an additional structure it is necessary to define what additional structure is, and
this distribution may not be adequate: in particular for axially symmetric data it is more
convenient to approach the Watson distribution, Watson (1965), which is the focus this
thesis. Three main reasons motivate our study of the multivariate distribution. First it
is fundamental for the direction statistics, second it has not received much attention for
the analysis of modern data involving large data, and it is a procedure for analysis of the
genetic expression Dhillon (2003).

One reason may be that the traditional domains of directional statistics are three-
dimensional and two-dimensional axes, for example, circles or spheres. The Watson
distribution is formed by two parameters: µ and κ, where κ is known as normalization
constant and its density will be defined in (2.1).

A basic set of summary statistics in exploratory data analysis consists of the median of
the sample and the extremes (also known as "hinges"), which are the approximate sample
quantiles. In a two-dimensional plane, the geodesic is the shortest distance that joins two
points such that, for small variations in the shape of the curve. The representation of the
geodesic in a plane represents the projection of a maximum circle on a sphere. Thus, either
on the surface of a sphere or deformed in a plane, the line is a curve, since the shortest
possible distance between two points can only be curved, since a line would necessarily
need to remain always in a plane, to be the shortest distance between points. From the
practical point of view, in most cases, the geodesic is the shortest curve that joins two
points.

In a "flat geometry" (Euclidean space), this curve is a straight segment, but in "curved
geometries" (riemaniana geometry), much used for example in General Relativity Theory,
the shortest distance curve between two points it may not be a straight line. To understand
this, let us take as an example the curvature of the globe and its continents. If we draw
a line connecting two capitals of different continents, we will notice that the line is not
straight, but an arc of the maximum circle, however, if the distance between the two cities



Chapter 1. INTRODUCTION 11

is small, the line covering the segment of the maximum circle will be really a straight. In
general relativity, geodesics describe the motion of point particles under the influence of
gravity. In particular, the path taken by a falling rock, a satellite orbit, or in the form of a
planetary orbit are all geodetic in curve-time-space.

Thesis Objective
The aim of the thesis is to propose a closed-form expression for the second-order

bias according to the Cox-Snell methodology for the real Watson. Then perform study
a natural extension of the minimum distance estimators discussed by Cao et al.(1994).
More precisely, under the assumption of Watson directional distribution, to produce
hypotheses and point statistical inference procedures, as well as goodness, and to propose
mathematical antecedents for the statistical method based on the minimum distance of L2

for this distribution. Finally, based on Rényi divergence, propose two hypothesis tests to
verify whether two samples come from populations with the same concentration parameter.

Thesis Organization
In addition to the introductory chapter, this thesis consists of four more chapters. In

Chapter 2 we focused on data analysis on the sphere and Watson distribution. We present
a general review on the data in the sphere, on the Watson distribution discussing its main
characteristics and estimation of its parameters, then propose a closed-form expression for
the second-order bias according to the Cox-Snell methodology for the real Watson.

In Chapter 3, aims to study a natural extension of the minimum distance estimators
discussed by Cao et al. (1994), to produce hypotheses and point statistical inference
procedures, as well as goodness, and to propose mathematical properties for the statistical
method based on the minimum distance of L2 for this distribution. In this same chapter
we present new properties about the Watson distribution.

In Chapter 4, we propose two-samples divergence-based hypothesis tests involving
concentration parameter of the Watson distribution; i.e., two statistical procedures to
identify if two axial samples are similarly concentrated used permutation and bootstrap
tests for two sample problems of axial data analysis. Finally in Chapter 5, we summarize
the main contributions of this thesis.

The following figures 1, 2 and 3 are examples of axial data sets. They quantified
simple are represented by latitude θ and longitude φ on three populations, based on
these angles presented vectors on the unit sphere can be obtained by the transformation:
x = sin(θ) cos(φ), y = sin(θ) sin(φ) and z = cos(θ). Figure 1 presents the graph of pole
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positions from the study of paleomagnetic soils of New Caledonia by Fisher, Lewis and
Embleton (1987).

Figure 1 – Positions of poles from the study of paleomagnetic soils of New Caledonia.
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The second and third samples, both refer to orientations of axial plane cleavage
surfaces of turbidite ordovician folds, composed by the variables: diving and diving
direction, denoted latitude θ and longitude φ , respectively. Figure 2 shows the projection
plot of 72 poles for axial plane cleavage surfaces. Figure 3 shows the projection plot of 75
for axial plane cleavage surfaces.

Figure 2 – Projection of 72 poles for axial plane cleavage surfaces.

Figure 3 – Projection of 75 poles for axial plane cleavage surfaces.
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Computational support
As for the computational part, was used R software, which is a language and an

environment for computing statistics and for the preparation of high quality grades. R
offers a wide range of statistical techniques and graphics. The fact that it is a free software
is allowed contributions of new features through the creation of packages. Documentation
and tutorials are available at http://www.r-project.org.
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2 BIAS-CORRECTED ESTIMATION FOR
THE REAL WATSON

2.1 Introduction

Spherical data are commonly represented by a straight line within normed space
Fisher, Embleton and Lewis (1993). They are output in various research lines: theory of
shape Small (1996), equatorial distributions on a sphere Watson (1965) and discordancy
tests for samples on the sphere Best and Fisher (1986). These data may be categorized
as directional (when such line is directed) or axial (otherwise). Directional data can be
understood as points on a sphere; while, axial data are pairs of antipodal points (i.e.,
opposite points) on a sphere. The Watson (W) model is often used for describing axial
data Fisher, Embleton and Lewis (1993).

The W model can be seen as an extension of the well-known Von-Mises-Fisher dis-
tribution Fisher, Embleton and Lewis (1993). While the last supposed that axial data
are concentrated around a mean (direction), the W distribution may also describe axes
dispersed over mean and its variability depend a concentration parameter. The W dis-
tribution has two parameters: the mean axis and the concentration parameter (say κ).
The W flexibility lies in κ regard to both degree and kind of axial data dispersion. The
concentration is directly proportional to the values of |κ|. If κ is positive, the distribution
is bipolar. If κ is negative, the distribution is girdle.

The maximum likelihood (ML) estimation has been widely used mainly due to its good
asymptotic properties, such as consistency and convergence in distribution to the Gaussian
law. In contrast, the ML estimator is often biased with respect to the true parameter
value. The former has bias of order O(N−1), where N is the sample size and O(·) is the
Landau notation to represent order. The fact of the bias value be negligible comparatively
to the standard error (which has order O(N−1/2)) becomes the previous phenomenon
unimportant. However, such biases can be expressive before small or moderate sample
sizes. As a solution, analytic expressions for the ML-estimator bias are required to derive a
more accurate corrected estimator for finite sample sizes see Cordeiro and Cribari (2014).

Several bias-corrected methods for models in directional data have been proposed
in the literature. Some of them are improved ML estimators for the von Mises-Fisher
concentration parameters Best and Fisher (1981) and the parameters of the complex
Bingham distribution Dore et. al. (2016).

In this paper, we propose an improved estimator for κ in order to correct the ML bias,
mainly under lower concentration axial data, which impose often a more expressive bias.
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To that end, we follow the methodology proposed by Cox and Snell (1968) in terms of the
second-order bias expression of (ML) estimator. Closed-form approximated expressions for
the Fisher Information Matrix (FIM) and associated bias are derived for the parameters
and a new estimator for κ is proposed. Subsequently, a simulation study is made to
quantify the performance of our proposal. Results evidence in favor of the our proposal
like an efficient tool to measure concentration over axial data.

This chapter is organized as follows. In Section 2.2, the Watson distribution is
introduced. Section 2.3 presents an outline on the Cox-Snell correction and the proposal
of an estimator for κ. In Section 2.4, a performance study is carried out. Finally, Section
2.5 summarizes the main conclusions of this chapter.

2.2 The Watson Distribution
The Watson distribution has support on the unit sphere, say Sp−1 = {x ∈ Rp : x>x =

1}, and probability density function (pdf) given by

f(x;µ, κ) = Γ(p/2)
2 πp/2 M

(1
2 ,
p

2 , κ
)−1

exp{κ (µ> x)2}

= Γ(p/2)
2πp/2 M

(1
2 ,
p

2 , κ
)−1

exp{κ cos(θ(x,µ))2}, (2.1)

for ±x,µ ∈ Sp−1 and κ ∈ R, where θ(x,µ) = arccos[µ> x] represents the angle between
the dominant axis and a possible outcome belonging to Sp−1 and

M(a, b, z) = Γ(b)
Γ(a)Γ(b− a)

∫ 1

0
ez u ua−1 (1− u)b−a−1 du =

∞∑
n=0

a(n) zn

b(n) n!

is the Kummer function Abramowitz and Stegun (1994), where a(0) = 1 and a(n) =
a (a+1) (a+2) · · · (a+n−1). This case is denoted as x ∼Wp(µ, κ), where ±µ indicates
the dominant axis and κ is the concentration parameter. Moreover, the Watson model
is rotationally symmetric about ±µ. If κ < 0, this distribution has a mode around the
equator at 90o to the axis ±µ (this situation is classified as girdle form). On the other
hand, for κ > 0, the distribution is bipolar with modes at ±µ (denoted as bipolar form).
When κ = 0 the uniform distribution is obtained. Further, this distribution also satisfies
the following properties:

• The Watson density is rotationally symmetric around ±µ;

• If x ∼Wp(µ, κ) and A an orthogonal matrix, then y = Ax ∼Wp(Aµ, κ) Mardia
and Jupp (2000),

• The following high concentration approximations Mardia and Jupp (2000) hold for
the W model:
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2κ{1− (µ>x)2} ∼ χ2
p−1, κ→∞,

in the bipolar case, and similarly

2|κ|{1− (µ>x)2} ∼ χ2
1, κ→ −∞,

in girdle case.

2.2.1 Maximum likelihood estimation

Let X = (x1, · · · ,xn) ∈ Sp−1 be a random sample from x ∼ Wp(µ, κ). The log-
likelihood function at θ> = (µ>, κ) is given by

`(θ;X) = n
[
κµ> Sµ− log M

(1
2 ,
p

2 , κ
)

+ γ
]
, (2.2)

where X = [xi, . . . ,xn]> is the observed sample and S = n−1∑n
i=1 xix

>
i is the scattering

matrix of the sample or of sampling orientation matrix and γ = log
[

Γ(p/2)
2πp/2

]
is a constant

term, often suppressed in the inferential process.
The maximum likelihood estimate (MLE) for θ = (κ,µ>) is given by

θ̂ = arg max
θ∈Θ

`(θ; Ẋ),

where Θ represents the associated parametric space.
Specifically, Sra and Karp (2013) showed the MLE for µ, µ̂, is given by

µ̂ =

 s1, if κ̂ > 0 (bipolar form),
sp, if κ̂ < 0 (girdle form),

where s1 and sp represent the normalized eigenvectors associated with the eigenvalues of
S. On the other hand, the MLE for the concentration parameter κ is obtained by solving
the following non-linear equation:

g
(1

2 ,
p

2; k̂
)
≡
M ′

(
1
2 ,

p
2 , κ̂

)
M
(

1
2 ,

p
2 , κ̂

) = µ̂> S µ̂ ≡ r (0 ≤ r ≤ 1),

where M ′(·, ·, ·) is the derivative of M(·, ·, ·) with respect to κ given by

M ′(a, b, κ) = a

b
M(a+ 1, b+ 1, κ).

Thus, two conditions need to be satisfied to obtain the MLE for κ: (i) λ1 > λ2 for κ > 0
and (ii) λp−1 > λp for κ < 0, where λ1, · · · , λp are eigenvalues of S. As discussed by Sra
and Karp (2013), the Equation can rewritten as

g
(1

2 ,
p

2; κ̂
)

= λ1 or g
(1

2 ,
p

2; κ̂
)

= λp.



Chapter 2. BIAS-CORRECTED ESTIMATION FOR THE REAL WATSON 18

From now on, we assume that MLEs for κ are defined as solutions of

g(a, c; k) ≡ M ′(a, c, k)
M(a, c, k) = r, c > a > 0, 0 ≤ r ≤ 1,

where r is the smallest or largest eigenvalue from the sampling orientation matrix. The
MLE for µ is the eigenvector corresponding to the rth eigenvalue.

Even though µ̂ is easily obtained, it is hard to compute. So, Sra and Karp (2013) have
derived asymptotic approximations for κ̂ given by
κ(r) = −a

c
+ (c− a− 1) + (c−a−1)(1+a)

a
r + O(r2), r → 0,

κ(r) =
(
r − a

c

) {
c2(1+c)
a(c−a) + c3(1+c)2(2a−c)

a2(c−a)2(c+2)

(
r − a

c

)
+ O

((
r − a

c

))}
, r → a

c
, and

κ(r) = c−a
1−r + 1 − a + (a−1)(a−c−1)

c−a (1− r) + O((1− r)2), r → 1. In this case, the observed
information matrix, say J(θ), is defined as

J(θ) =



∂2`
∂2µ1

· · · ∂2`
∂µ1∂µp

∂2`
∂µ1∂κ

∂2`
∂µ2∂µ1

· · · ∂2`
∂µ2∂µp

∂2`
∂µ2∂κ... ... . . . ...

∂2`
∂κ∂µ1

· · · ∂2`
∂κ∂µp

∂2`
∂2k

 . (2.3)

Based on (2.3), under certain regularity conditions, one can define the FIM, say K(θ),
as K(θ) = E[−J(θ)]. To define K(θ), it is necessary two results: (i) obtaining the 2nd
derivative of ` with respect to µ and κ (Barros et. al. 2016) and (ii) determining the
components of E(xx>) in K(θ). For x following the real Bingham distribution having
parameter Σ, it holds that we use an approximation proposed by (Kume and Walker
2014):

E(xx>) ≈ Ip
p+ 1 + 2Σ

(p+ 1)(p+ 3) + 2 Ip tr(Σ)
(p+ 1)2(p+ 3) , (2.4)

where tr(·) is the trace operator and Ip is the identity matrix at the order p. Since the
W model may be rewritten from the Bingham making Σ = (Ip − 2κµµ>)−1, Mardia and
Jupp (2000), we use this result to obtain (ii), see appendix A.

2.3 Corrected estimation for the concentration
The methodology proposed by Cox and Snell (1968) is shortly reviewed in this

section. The notation is defined as follows:

Ui = ∂

∂θi
`(θ), Uij = ∂2

∂θi∂θj
`(θ), Uijk = ∂3

∂θi∂θj∂θk
`(θ),

for i, j, k = 1, 2, . . . , p. Moreover, the cumulants for the log-likelihood derivatives are given
by

κij = E(Uij), κi,j = E(UiUj), κijk = E(Uijk), κi,jk = E(UiUjk).
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Consequently, the elements of the FIM at θ are κij. It is known, under the regularity
conditions that κi,j = −κij. The entries of the inverse of FIM as κij.

Furthermore, the first derivatives of the cumulants κij with respect to the W parameters
are denoted by:

κ
(k)
ij = ∂

∂θk
κθiθj ,

for i, j, k = 1, 2, . . . , p, in case for p = 3.

2.3.1 Cox-Snell Methodology

Cox and Snell (1968) derived a formula for the second-order bias of the ML estimator
for θ = (θ1, · · · , θp)>. According to these authors, if θ̂a is the ML estimator for θa in θ,
the following expression for the bias of θ is:

B(θ̂a) = E(θ̂a)− θa =
∑
r,s,t

κarκst
(
κ(t)
rs −

1
2κrst

)
+

∞∑
r=2

O(n−r), (2.5)

where r, s, t = 1, · · · , p. A corrected ML estimator, say θ̃a, may be given by θ̃a = θ̂a−B̂(θ̂a),
where B̂(θ̂a) indicates the bias B(θ̂a) evaluated at θ̂a. It is know E(θ̂a) = θa +O(n−1),
while E(θ̃a) = θa +O(n−2). Thus, θ̃a has better asymptotic properties than θ̂a.

It what follows, the expression (2.5) is applied to correct the ML estimator for the W
concentration parameter. It is known E(x) = 0 and the random number generator for W
variables depends only of κ according to Kim-Hung and Carl (1993). From the last note,
we focus only on the improved estimation of κ.

2.3.2 Expression for the second-order bias

As first contribution of this chapter, we derive a closed-form expression for W FIM,
given in Corollary 2.1.

Corollary 2.1. The components of the unit (for sample size n=1) FIM are given by

κ11 ≈
13κ− 28κ2µ2

3 − 28κ2µ2
2 − 20κ2µ2

1
24(1− 2κµ32 − 2κµ22 − 2κµ12) , κ12 ≈ κ21 ≈

κ2µ1µ2

3(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ13 ≈ κ31 ≈
κ2µ1µ3

3(1− 2κµ32 − 2κµ22 − 2κµ12) , κ14 ≈ κ41 = 13µ1 − 20κµ1µ
2
3 − 20κµ1µ

2
2 − 20κµ3

1
24(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ22 ≈
13κ− 28κ2µ2

3 − 20κ2µ2
2 − 28κ2µ2

1
24(1− 2κµ32 − 2κµ22 − 2κµ12) , κ23 ≈ κ32 ≈

κ2µ2µ3

3(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ24 ≈ κ42 ≈
13µ2 − 20κµ2

1µ2 − 20κµ2µ
2
3 − 20κµ3

2
24(1− 2κµ32 − 2κµ22 − 2κµ12) , κ33 ≈

13κ− 20κ2µ2
3 − 28κ2µ2

2 − 28κ2µ2
1

24(1− 2κµ32 − 2κµ22 − 2κµ12) ,
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κ34 ≈ κ43 ≈
13µ3 − 20κµ3

3 − 20κµ2
1µ3 − 20κµ2

2µ3

24(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ44 ≈
0.52(2.5)M(1.5, 2.5, κ)2 − 0.5(1.5)2M(0.5, 1.5, κ)M(2.5, 3.5, κ)

1.52(2.5)M(0.5, 1.5, κ)2 .

and κii ≈
13κ−20κ2−28κ2

(∑
j 6=i µ

2
j

)
24[1−2κ(∑3

h=1 µ
2
h)]

,

κij ≈ κ2µiµj

3[1−2κ(∑3
h=1 µ

2
h)]

, i,j= 1, 2, 3,

κi4 ≈
13µi−20κµ3

i−20κµi
(∑

j 6=i µ
2
j

)
3[1−2κ(∑3

h=1 µ
2
h)]

, i,j= 1, 2, 3.

An outline of the proof these results is given in appendix A.
Based in Corollary 2.1, the term κijj of (2.5) for the W model is derived. The expected

value of the third derivatives obtained from the FIM with respect to the W parameters
are expressed by

κ11• ≈ κ12• ≈ κ13• ≈ κ•44 ≈ κ21• ≈ κ22• ≈ κ23• ≈ κ31• ≈ κ32• ≈ κ33• ≈ κ4•4 ≈ κ44• ≈ 0,

κ114 ≈ κ141 ≈ κ411 ≈ n
13− 28κµ2

3 − 28κµ2
2 − 20κµ2

1
24(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ124 ≈ κ142 ≈ κ214 ≈ κ241 ≈ κ412 ≈ κ421 ≈ n
κµ1µ2

3(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ134 ≈ κ143 ≈ κ314 ≈ κ341 ≈ κ413 ≈ κ431 ≈ n
κµ1µ3

3(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ224 ≈ κ242 ≈ κ422 ≈ n
13− 28κµ2

3 − 20κµ2
2 − 28κµ2

1
24(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ234 ≈ κ243 ≈ κ324 ≈ κ342 ≈ κ423 ≈ κ432 ≈ n
κµ2µ3

3(1− 2κµ32 − 2κµ22 − 2κµ12) ,

κ334 ≈ κ343 ≈ κ433 ≈ n
13− 20κµ2

3 − 28κµ2
2 − 28κµ2

1
24(1− 2κµ32 − 2κµ22 − 2κµ12)

and

κ444 ≈ n
(1.5)M(0.5, 1.5, κ)M(1.5, 2.5, κ)M(2.5, 3.5, κ)− (2.5)M(2.5, 3.5, κ)M(1.5, 2.5, κ)

1.52(2.5)M(0.5, 1.5, κ)3 .
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Let x ∼Wp(µ, κ) and κ̂ be the ML estimator for κ based on a random sample of n
points from x. Then second-order bias of κ̃ is given by

Corollary 2.2. Consider X following the Watson distribution having the concentration
κ̃. An expression for the bias is given

Bias(κ̃) = 1
n

{
4
D1

[κ41κ11N1 + κ41κ12N2 + κ41κ13N3 + κ42κ21N19 + κ42κ12N20

+ κ42κ23N21 + κ43κ31N31 + κ43κ32N32κ
43κ33N33] + (κ41κ21 + κ42

×κ11) 8N6
D1

+ (κ41κ22 + κ42κ12)8N7
D1

+ (κ41κ23 + κ41κ32 + κ42κ13

+κ42κ31 + κ43κ12 + κ43κ21) 8N8
D1

+ (κ41κ31 + κ43κ11)8N11
D1

+ (κ41

×κ33 + κ43κ13) 8N12
D1

+ 2[κ41κ14+(κ41κ41+κ44κ11)N15]
2D1

+2[κ42κ24N22+(κ42κ42+κ44κ22)N28+κ43κ34N34+κ43κ43N37]
2D1

+κ44κ33N37
2D1D2

− [κ41κ14+(κ41κ41+κ44κ11)N5+(κ42κ24+κ42κ22)]
2D1D2

− [κ44κ22N23+(κ43κ34+κ43κ43+κ44κ33)N35]
2D1D2

+ 8κ41κ24N9
D1

+{8[κ42κ14N9+(κ41κ34+κ43κ14)N13+(κ42κ34+κ43κ24)N26]}
D1

+{12[(κ44κ12+κ44κ21)N16+(κ41κ43+κ44κ13+κ44κ31)N17]}
D1

+

{
12
[

(κ42κ43+κ43κ42+κ44κ23+κ44κ32 )N29+κ43κ41N36

]}
D1

−4[(κ41κ24+κ42κ14+κ41κ42+κ42κ41+κ44κ22+κ44κ21)N10]
D2

−4[(κ41κ34+κ43κ14+κ41κ43+κ44κ13+κ44κ31+κ43κ41)N14]
D2

−4[(κ42κ34+κ43κ24+κ42κ43+κ42κ42+κ44κ23+κ44κ32)N27]
D2

+(κ42κ32 + κ43κ22)8N24
D1

+ (κ42κ33 + κ43κ23)8N25
D1

+ κ42κ44 6N30
D1

+κ43κ44
(

6N38
D1

)
+ κ44κ14

(
6N39
D1

)
+ κ44κ24

(
6N40
D1

)
+ κ44κ34

×
(

6N41
D1

)
+ κ44κ44

(
2N42−N43

2D3

)}
,

where Ni, Nij and Di are given in appendix B.

2.4 Numeric Results
The purpose of this section is to quantify the performance of MLE for κ comparatively

to its corrected version. A simulation experiment is performed as follows. The number
of Monte Carlo samples is 5000. For each Monte Carlo sample are computed the bias
and the mean square error (MSE). We considered both bipolar (κ = 1, 3, 5, 6) and girdle
(κ = −6,−5,−3,−1) cases and sample sizes n = 20, 30, 50. These cases are illustrated in
Figure 4.

Table 1 shows values for bias and MSE at the bipolar case. The bias and the MSE are
reduced when the sample size increases. It is expected according to the MLE asymptotic
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Figure 4 – Synthetic data from the W distribution over the unit sphere for positive and
negative values of κ.

theory. Additionally, the best results were related to the most concentrated (κ = 6) events,
concordantly with the Figure 4.

In all cases the bias-corrected estimator outperformed the standard MLE, mainly for
the small values of κ. For instance, for n = 20 and κ = 1, the pair (bias, MSE) of MLE
reduced from (−1.084, 5.5753) to (−0.6044, 2.7702), using the proposed bias expression.
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Table 1 – Values for bias and MSE of standard and corrected ML estimates under the
bipolar cases.

κ n
κ̂ κ̃

Bias MSE Bias MSE
1 20 1.083767 5.575265 −0.604372 2.770207

30 0.839706 3.633523 −0.538646 2.220319
50 0.589435 2.208639 −0.491987 1.544695

3 20 0.279182 4.582195 −0.092837 2.012087
30 0.185040 2.689280 −0.057160 0.798357
50 0.090915 0.462824 −0.036790 0.329417

5 20 0.225652 1.240230 −0.047078 0.701402
30 0.145837 0.761402 −0.024675 0.442688
50 0.054362 0.366539 −0.012063 0.273039

6 20 0.202915 1.184747 −0.025526 0.652320
30 0.121577 0.678365 −0.011676 0.371082
50 0.043542 0.306849 −0.001939 0.187414

The values of MSE and bias are shown in Table 2. For this case, we expect that as we
reduce the value of κ the values of the pairs (bias, MSE) decrease, which in fact occurs.
For example, for κ = −1 and sample size n = 20, we have that the pair (bias, MSE)
decreases of (0.482635, 5.270421) to (0.269154, 3.739063), which corresponds to a reduction
of almost 50%. The proposed bias expressions deliver good results when the sample are
small and the values of the concentration parameter κ are larger.

Table 2 – Values for bias and MSE of standard and corrected ML estimates under the
girdle cases.

κ n
κ̂ κ̃

Bias MSE Bias MSE
−1 20 −0.482635 5.270421 0.269154 3.739063

30 −0.461038 3.029898 0.186358 2.852630
50 −0.408045 1.954804 0.138775 1.447265

−3 20 −0.261471 4.650727 0.101254 2.115039
30 −0.205408 2.927740 0.056094 0.824375
50 −0.102762 0.498553 0.035949 0.341519

−5 20 −0.226860 1.267251 0.061973 0.820411
30 −0.160697 0.791517 0.045966 0.481658
50 −0.065887 0.402002 0.017992 0.290492

−6 20 −0.199696 1.164198 0.030743 0.686374
30 −0.101212 0.647820 0.026262 0.385643
50 −0.059538 0.281609 0.002294 0.196863
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2.5 Conclusion
This chapter has presented a bias correction estimation method for the concentration

parameter at the W model. It was made according to the Cox-Snell methodology. We have
proposed closed-form expressions the Fisher information matrix and the second-order bias
of ML estimator of concentration parameter. Results from a Monte Carlo study have indi-
cated our proposal outperforms the classical ML estimator for both bipolar and girdle cases.
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3 MATHEMATICAL METHODS BASED
ON THE MINIMUM L2 DISTANCE

3.1 Introduction
As already discussed, in terms of observations nature, Directional Statistics refers to the

collection of methodologies to deal with points on the unit circle, sphere, or hypersphere.
These types of data arise naturally in various science problems, such like Neuroscience
Leong et al., (1998), Biology Ferguson, (1967), and Geology Embleton et al., (1998), among
others.

Nonparametric kernel methods for estimating densities of spherical data have been
studied in Hall et al. (1987) and Bai et al. (1988). Kernel density estimation or, in
general, kernel smoothing methods is a classical topic in Nonparametric Statistics. First
papers to tackle this issue (in Euclidean or linear perspective) have been proposed by
Akaike (1954), Rosemblatt (1956), and Parzen (1962). Subsequently, extensions of the
kernel density methodology have been brought for different contexts, as smoothers for
more complex data (censorship, truncation, and dependence) or dynamical models Muller,
(2006). Some comprehensive mathematical treatments have been addressed in books by
Silverman (1986), He (1992), and Ko et al. (1993), among others. Beyond the linear
case (or Euclidean), the kernel density estimation has been also adapted to directional
data. Hall et al. (1987) have defined two types of kernel estimators and given asymptotic
formula for bias, variance, and square loss.

Other paramount concept in Statistics is the robustness. This notion is pretty wide,
but a common motivation for all robustness branches seems to be minor sensibility to the
presence of outliers. The development of robust procedures for directional data has gained
a lot of attention over the last years. The fact that the variables belong to a compact set
requires tailored proposals in ways that are different of those due to the Euclidean space.
A survey about robust methods for circular data can be found in He (1992). Ko et al.
(1993) have extended the classic M-estimators for location and concentration parameters
in distributed von Mises data.

A manner of combining both nonparametric (kernel) estimators and robust methods is
by means of the statistics based on minimum distances, what is called statistical distances
(SDs). There are at least two possible implications for the use of SDs in statistical analysis.
Firstly, SDs have been employed as minimum distance estimation. This class of estimators
has highlighted itself by presenting as robust properties as asymptotic efficiency, see
Beran (1977), Simpson (1989), and Lindsay (1994). Beran (1977) pioneered a robust
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estimation technique, named minimum Hellinger distance estimation. The latter is a
result of minimizing a discrepancy between a parametric density and one of its suitable
nonparametric estimators. Secondly, SDs have also been used as Goodness-of-Fit (GoF)
tests. In this case, the closeness between the empirical distribution and assumed model is
quantified through SDs.

This chapter aims to study a natural extension of the minimum distance estimators
discussed by Cao et al. (1994). More precisely, under the assumption of distributed
Watson directional nature, we derive a mathematical background to produce hypothesis
and point statistical inference procedures as well as GoF techniques.

This chapter is organized as follows. In Section 3.2, a kernel density estimation for
directional data is discussed and illustrated. Section 3.3 approaches the minimum distance
estimation. Section 3.4 exhibits the main results of this chapter. In Section 3.5, some
numerical results about SDs are presented. The main conclusions listed in Section 3.6
ends this chapter.

3.2 Kernel estimator for directional data
According to previous discussion, kernel density estimators has been adapted to different

non-Euclidean spaces, such like directional data or a q-dimensional sphere, having as special
spaces, the circle (q = 1) and the sphere (q = 2). Let x be a directional random vector
having density f(x). The support of x is denoted by

Ωq =
{
x ∈ Rq+1 : x2

1 + · · · + x2
q+1 = 1

}
=
{
x ∈ Rq+1 : ||x||2 = 1

}
,

where ‖.‖ represents the Euclidean norm. The Lebesgue measure over Ωq should then
satisfy ∫

Ωq
f(x)ωq(dx) = 1.

Remark 1. When there is no possible misunderstanding, ωq will also denote the surface
area of Ωq:

ωq = ωq(Ωq) = 2π q+1
2

Γ( q+1
2 )

, for q ≥ 1,

where Γ(p) =
∫∞

0 xp−1e−xdx represents the Gamma function.
According to Hall et al. (1987) and Bai et al. (1988), a directional kernel density

estimator can be formulated as follows. Let x1, · · · ,xn be a n-points random sample over
the unity sphere, a directional kernel density estimator for f(x) is given by

f̂n(x) = Ch,q(L)
n

n∑
i=1

L

(
1− x>xi

h2

)
, for x ∈ Ωq, (3.1)
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where > is the transpose operator, L(·) is the directional kernel, h ≥ 0 is the bandwidth
parameter, and Ch,q(L) is a normalizing constant depending on the form of kernel L(·),
the bandwidth h, and the dimension q. The inverse of the normalizing constant at x ∈ Ωq

is given by (Bai et al., 1988)

ch,q(L)−1 =
∫

Ω
L

(
1− x>y

h2

)
wq(dy) = hq λh,q(L),

where λh,q(L) = wq−1
∫ 2h−2

0 L(r) r q2−1(2− r h2) q2−1dr. Figure 5 illustrates the used kernel
function for a set of generated directional data.

Figure 5 – Contour plot of the mixture of von Mises densities.

Various properties of the directional kernel density estimator (3.1) have been proposed
by Bai et al. (1988), e.g., its L1-norm consistency. Additionally, a central limit theorem
for the integrated squared error of the estimator as well as the expression for the bias have
been derived by Zhao et al. (2001), under the following regularity conditions:

1. Extend f(·) from Ωq to Rq+1\{0} by defining f(x) ≡ f(x\ ‖x‖) for all x 6= 0.
Assume (i) the gradient vector ∇ [f(x)] =

(
∂f(x)
∂x1

, · · · , ∂f(x)
∂xq+1

)>
and the associated

Hessian matrix H [f(x)] =
(
∂2f(x)
∂xi xj

)
1≤i,j≤q+1

exist and (ii) they are also continuous
on Rq+1\{0} and integrable square.

2. Assume that the kernel function L : [0,∞) → [0,∞) is a bounded and Riemann
integrable function such that

0 <
∫ ∞

0
Lk(r)r

q
2−1dr <∞, for all q ≥ 1, for k = 1, 2.

3. Further, consider that {hn ; n = 1, 2, . . .} is a sequence of positive numbers such that
hn → 0 and nhqn →∞ as n→∞.

About the kernel function, have worked with

L(t) = 1.5
(
1 − t2

)
I(0 < t < 1).
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The choice of the smoothing parameter is one of major problems in density estimation. In
the linear case, several authors dealt with the problem of providing an automatic procedure
to select the bandwidth. For directional data, a bandwidth was considered in Hall et al.
(1987), while a bandwidth selector was considered in Taylor(2008). In this research, we
choose the bandwidth h ∈ [0.2, 1.4].

3.3 Minimum distance estimators
Let Ωq ⊂ Rq+1 be the q-dimensional unit sphere of radius one centered at 0. Let

x1, · · · ,xn be observed sample drawn from a random vector x with density f(·) over
the support Ωq. Let fθ(x) be a family of density functions parametrized with vector of
parameters θ ∈ Θ ⊂ Rq. Consider then the problem of estimating θ.

Given a distance function in the space of density functions, we define a minimum
distance-based estimator θn as any value satisfying

D(f̂n, fθn) ≤ inf
θ
D(f̂n, fθ) + δn, (3.2)

where δn → 0 as n→∞ and f̂n is a nonparametric density estimator. Notice that if the
infimum of D(f̂n, fθ) is achieved, then the estimator can be defined as follows:

θ̂ = arg max
θ

D(f̂n, fθ). (3.3)

Some standard choices for D are the distances induced from the Lp norm or from the
L∞ norm, i.e.,

Dp(f̂hn, fθ) =
∫ ∥∥∥f̂hn(x)− fθ(x)

∥∥∥pωd(dx) and D∞(f̂hn, fθ) = supx
∥∥∥f̂hn(x)− fθ(x)

∥∥∥pωd(dx),

respectively. The Hellinger distance

DH(f̂hn, fθ) =
∫

(
√
f̂hn(x)−

√
fθ(x))2ωd(dx)

could be another choice. This distance was studied by Beran (1977), who showed that
robustness and efficiency properties could be obtained using this distance. Another
alternative could be to consider D as discrepancy measures or divergences. This approach
was considered by Agostinelli (2007) for circular data and by Basu et al. (1994) for
Euclidean data.

Garcia et al. (2013) introduced alternatives. One of them assumes that the underlying
distribution is von Mises and the other considers a mixture of von Mises densities. In this
Chapter we give a mathematical background for extension of that problem. We assume the
real Watson distribution. However, as Cao et al. (1995) remarked, it seems reasonable to
take into account the particular features of the problem and consider another alternative.



Chapter 3. MATHEMATICAL METHODS BASED ON THE MINIMUM L2 DISTANCE 29

We consider an automatic bandwidth as in Cao et al. (1995). The idea is to incorporate
the smoothing parameter hn as an additional component in the vector θ. Therefore, we
can obtain simultaneously an automatic bandwidth and the estimator of θ as follows:

(θ̃, h̃n) = arg min
θ,h

D(f̂n, fθ). (3.4)

The proposed estimators, defined (3.4), are strongly consistent and asymptotically
normally distributed. These properties follow easily using analogous arguments to those
considered by Cao et al. (1995). The following assumptions are needed in order to obtain
the desired results.

Assumptions:

A The nonparametric estimator should satisfy limn→∞ D(f̂hn , fθ) = 0 as fθ.

B For all θ0 ∈ Θ and a sequence θm ⊂ Θ such that limm→∞D(fθ, fθm) = D(fθ, fθ0);
we have that limm→∞ θm = θ0.

C The Kernel L : [0,∞)→ [0,∞) is a bounded and integrable function with compact
support. For the following hypotheses, we are considering the extension of f in
Rd+1\{0} given by f(x\ ‖x‖) for all x 6= 0, where ‖x‖ denotes the Euclidean norm
of x.

D The density function fθ is such that (for each θ ∈ Θ)

D1 ∇[f(x)] and the Hessian matrix H[f(x)] exist and are continuous in Rd+1\{0}.

D2 ∂fθ(x)
∂θ

=
(
∂fθ(x)
∂θ1

, · · · , ∂fθ(x)
∂θq

)>
is integrable with respect to the measure generated

from L(·) and fθ.

E Ψ(x,θ) = ∂fθ(x)
∂θ
− Eθ(∂fθ(x)

∂θ
) is differentiable function with respect to θ.

F If we denote by θ0 the true value of the parameter, the matrix A = Eθ0(∂Ψ(x,θ)
∂θ

)|θ=θ0

is non singular.

G The sequences nh4
n → 0 as n→∞ and h4

nc(hn)→ λ as n→∞ with

λ−1 = 2(d/2)−1 τd−1

∫ ∞
0

L(r) r(d/2)−1 dr,

where τd is the area of Sd and τd−1 = 2πd/2Γ(d/2) for d ≥ 1.

The asymptotic behavior of estimators (3.4) is determined by the follow result.

Theorem 3.1. Under assumptions C to G, the estimator defined in (3.3) satisfies
√
n(θ̂ − θ0) D−→ N(0,A−1ΣA−1)

where Ψ andA were defined in conditions E and F , respectively and Σ = Eθ0(Ψ(x, θ0)Ψ(x, θ0)>).
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3.4 The proposed distance for the Watson distribution
Now we are in position to derive the theoretical contributions of this chapter. Consider

x1, . . . ,xn denote a observed sample which is obtained from the random vector following
the real Watson model, x ∼ W (κ,µ) with pdf

fW (x) = c−1
1 (κ) exp

{
κ (x>x)2

}
,

where c−1
1 (κ) is the normalizing constant defined previously, κ is the concentration pa-

rameter and µ is the mean axis. We opt by studying the expression of the squared
distance

D2(f̂hn , fW ) =
∫

Ωq

||f̂hn(x) − fW (x)||2wq(dx),

where, taking c(hn) = ch,q(L), after some algebra,

f̂hn(x) = 1.5 c(hn)
nh4

n

{
n (h4

n − 1) +
n∑
i=1

[
2x> xi − (x> xi)2

]}
.

The following theorem furnishes the distance expression we use.

Theorem 3.2. Let x1, . . . ,xn be an observed sample from x ∼ W (κ,µ) with density fW (x)
and f̂hn a (according to Epanechnikov) kernel estimator for its density, then the expression

holds: D2(f̂hn , fW ) = 4π
3 c2(hn)

(
h4
n−1
h4
n

)
− 2

n
c2(hn)

(
h4
n−1
h8
n

) ∑n
i=1 x

>
i


4π
15 0 0
0 4π

15 0
0 0 2

15

xi

+
(

9 c2(hn)
h8
n

) x̄
>


4π
15 0 0
0 4π

15 0
0 0 2

15

 x̄ −
∫

Ω3

(
x̄>x

) (
x>Sx

)
w3(dx)︸ ︷︷ ︸

A


+
(

9 c2(hn)
4h8

n

) ∫
Ω3

(
x>Sx

)2
w3(dx)︸ ︷︷ ︸

B

− 3 c(hn)
(
h4
n−1
h4
n

)
+ c1(2κ)

c2
1(κ)

+
(

3 c(hn)
nh4

n

) ∑n
i=1 xi E(xx>)xi, where x̄ = n−1 ∑n

i=1 xi, S = n−1∑n
i=1 xix

>
i , from Kurz

et. al. (2016)

E(xx>) = M diag
(
Dd(κ), 1−Dd(κ)

d− 1 , · · · , 1−Dd(κ)
d− 1

)
M>,

M is an arbitrary rotation matrix whose first column is µ,
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Dq(κ) = M(3/2, (d+ 1)/2, κ)[qM(3/2, d/2, κ)]−1, A =
∫ 1
0
∫ 2π
0

∫ π
0 [x̄1 r sin(θ) cos(φ) +

x̄2 r sin(θ) sin(φ) + x̄3 r cos(θ)]
× [ s11 r

2 sin2(θ) cos2(φ) + s22 r
2 sin2(θ) sin2(φ) + s33 r

2 cos2(θ)
+ 2 s12 r

2 sin2(θ) cos(φ) sin(φ) + 2 s13 r
2 sin(θ) cos(θ) cos(φ)

+ 2 s23 r
2 sin(θ) cos(θ) sin(φ)] × r2 sin(θ) dθ dφ dr

and B =
∫ 1

0
∫ 2π

0
∫ π

0 [ s11 r
2 sin2(θ) cos2(φ) + s22 r

2 sin2(θ) sin2(φ) + s33 r
2 cos2(θ)

+ 2 s12 r
2 sin2(θ) cos(φ) sin(φ) + 2 s13 r

2 sin(θ) cos(θ) cos(φ)
+ 2 s23 r

2 sin(θ) cos(θ) sin(φ)]2 × r2 sin(θ) dθ dφ dr.

Moreover, the distance D2(f̂hn , fW ) should satisfy the condition

0 = ∂ D2(f̂hn , fW )
∂ θ

∣∣∣∣
θ=θ̂=(κ̂,µ̂)

=
[ ∫

Ωq

f̂hn(x) ∂fW (x)
∂θ

wq(dx) − Eθ
(
∂fW (x)
∂θ

)] ∣∣∣∣
θ=θ̂

= 1
n

n∑
i=1

Ψh(xi; θ̂),

where expressions for Ψh(xi; θ̂) are given by the following theorem.

Corollary 3.1. The expression for Ψh(xi;θ) (3.5) if

(i) in terms of κ, Ψh(xi;θ) =
(

1.5 c(hn) c3(κ)
h4
n

)
x>i E(κ,µ)

(
xx>

)
xi

−
(

1.5 c(hn)
h4
n

)
x>i

[∑3
j=1

∑3
k=1 µj µk E(κ,µ)

(
Xj Xkxx

>
)]
xi

− n c2(κ)
c(2κ)

[
µ> E(2κ,µ)

(
xx>

)
µ − c3(κ)

]
,

where c3(κ) = M(3/2, (q + 2)/2, κ) [qM(1/2, q/2, κ)]−1, and

(ii) in terms of µk for k−1, 2, 3, Ψh(xi;θ) = −
(

3 c(hn)κ
h4
n

)
x>i

[∑3
j=1 µj E(κ,µ)

(
Xj Xkxx

>
)]
xi

−
(

2n c2(κ)κ
c(2κ)

)
µ> E(2κ,µ)

(
xx>

)
ek,

where ek is a null vector with exception of the kth element, which is 1. The terms
derived from this corollary are in Appendix C.

3.5 Descriptive experiments for the validation of D2(f̂hn, fW )

This section is an initial discussion about the potentiality of the use of D2(f̂hn , fW ) in
statistical analysis. Note that there are several factors we need to control in order to apply
this tool, e.g., length of bandwidth, estimators to be used and their asymptotic behavior,
sample size, concavity of estimation or GoF criteria, and geometrical properties of data
(for data obtained from statistical manifolds), among others. Here, beyond its canonical
conditions (consequent of definition, Nonegativity, Symmetry, and Idempotent), we want
to verify (for θi = (κi,µi))

D2(f̂hn(x), fW (x,θ1)) ≤ D2(f̂hn(x), fW (x,θ2)) (3.5)
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when the n-points observed sample is obtained from x ∼ W (κ1,µ1). As discussed, the
parameter κ indicates concentration and, therefore, if one changes the value of κ kipping
µ fixed is intuitive that distance does not change once this phenomenon is represented
by two overlapped axes centralized two points clouds with different dispersion. Thus, we
admit that κ1 = κ2 = κ and µ1 6= µ2 in (3.5).

We developed a Monte Carlo simulation framework with one thousand replicas in order
to quantify the performance of the developed SD. To this end, we adopt:

(i) κ = 1, 5, and 15, represent scenarios from high to low degree of dispersion.

(ii) µi = [sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)] for θi = φi = i = 0.1, 0.5, 1, 1.5, 2, where
µ3 is considered the real data reference and the minimum arc lengths over sphere
between µ3 and µi, dg(µ3,µi) = arccos(|µ>3 µi|), are

Index, i 1 2 3 4 5
dg(µ3,µi) 0.940 0.595 0.000 0.684 1.381

.

Figure 6 illustrates the cases we adopt for κ = 25 (which is known as almost bipolar
phenomena). It seems intuitive the smallest arc length for (µ2,µ3) and the highest
for (µ3,µ5).

(iii) As, from pilot study, there was not great changes under variation of sample sizes, we
use n = 200.

Figure 7 presents numerical results of values of the median, minimum, maximum
of SDs. With respect to the influence of κ, one has that the increasing at value of
κ implies more accurate performances, i.e., (i) the descriptive measures at the thruth
scenarios, D2(f̂hn , fW (x, κ,µ3)), are more disjoint of the remainder ones, (ii) the variability
measures (such like amplitude) at the thruth scenarios tend to be smaller, and (iii) the
values of the SD are closer of zero. On the other hand, in terms of µi, it is noticeable
D2(f̂hn , fW (x, κ,µ3)) < D2(f̂hn , fW (x, κ,µ1)) < D2(f̂hn , fW (x, κ,µ5)) in concordance
with the values of arc lengths, but the effect of κ can affect distinctions of scenarios whose
rotation deference is low, as happened with spherical samples indexed by µ2 and µ4.
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Figure 6 – Illustration of simulation cases for µ>1 =
[0.099334665, 0.009966711, 0.995004165], µ>2 =
[0.4207355, 0.2298488, 0.8775826], µ>3 = [0.4546487, 0.7080734, 0.5403023],
µ>4 = [0.0705600, 0.9949962, 0.0707372], and µ>5 =
[−0.3784012, 0.8268218,−0.4161468]
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Figure 7 – Performance of statistical distances, under the lexicographic relation: 1 - data
∼ W (κ, µ3) vs. model ∼ W (κ, µ1), 2 - data ∼ W (κ, µ3) vs. model ∼ W (κ, µ2),
3 - data ∼ W (κ, µ3) vs. model ∼ W (κ, µ3), 4 - data ∼ W (κ, µ3) vs. model
∼ W (κ, µ4), and 5 - data ∼ W (κ, µ3) vs. model ∼ W (κ, µ5).

3.6 Conclusion
This chapter has addressed the derivation of the quadratic statistical distance for

directional data; in particular, following the real Watson distribution. In parallel, various
theoretical properties for this model have been derived and they can be used in other
contexts, such like Asymptotic Theory and Multivariate Analysis. Even though the
numerical part of this chapter is an initial discussion, results pointed out the use of
statistical distances as inference or GoF criteria can be a good alternative in directional
data analysis.
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4 BOOTSTRAP AND PERMUTATION
TESTS FOR AXIAL DATA

4.1 Introduction
The statistical analysis of directional data, represented by points on the surface of the

unit sphere in Rq, denoted by Sq−1 = x ∈ Rq : x>x = 1 was widely developed by Watson
(1983), Fisher et al. (1987), Fisher (1993), Mardia and Jupp (2000), among other authors.
With recent technological advances, the statistical analysis on the sphere has bee requested
in many fields see Kent (1994), Bingham (1974), Watson (1965) and Fisher, Lewis, and
Embleton (1987).

The sophistication of data mining resources has allowed to study phenomena previously
not explored; however, many of them require specialized probabilistic models and statistical
methods for analyzing resulting data. In particular, this is the case when one wishes to
analyze spherical data, as discussed subsequently.

Spherical data can be easily represented as a straight line on normed space, see Fisher,
Lewis, and Embleton (1987). In this case resulting data are classified as directional, if
such line is directed, and axial in otherwise. Directional data can be represented as points
on a sphere; while, axial data represent pairs of antipodal points (i.e., opposite points)
on a sphere. The Watson model is often used for describing axial data, especially those
defined on the circumference and sphere supports see Watson (1965) and Fisher, Lewis,
and Embleton (1987).

Directional data arise in many scientific areas, such as biology, geology, machine
learning, text mining, bioinformatics, among others. An important problem in directional
statistics and shape analysis, as well in other areas of statistics, is to test the null hypothesis
of a common mean vector or polar axis across several populations. This problem was
already treated for circular data and spherical data by several authors, such as Stephens
(1969), Underwood and Chapman (1985), Anderson and Wu (1995), Harrison et al. (1986),
Jammalamadaka and SenGupta (2001), among others. However, there has been relatively
little discussion of nonparametric bootstrap approaches to this problem.

In this chapter, we assume that such data are well described by the Watson distribu-
tion.This model is equipped by two parameters: dominant axis and concentration. The
last parameter is easily interpretable because it is related to both position and dispersion
of axes over unit sphere or circle for three and bi-dimensional data, respectively. Many
articles employed the Watson distribution as probabilistic assumption. Li and Wong
(1993) proposed a random number generator for the Watson distribution based on the
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acceptance-rejection method.
To detect outlier observations in Watson distributed samples, Figueiredo (2007) pro-

vided some important hypothesis tests in terms of the likelihood ratio. Recently, Sra
and Karp (2013) presented some theoretical aspects of the Watson model. In particular,
asymptotic behavior for the maximum likelihood estimators were investigated.

In this chapter, we propose two-samples divergence-based hypothesis tests involving
the concentration parameter of the Watson distribution; i.e., two statistical procedures to
identify if two axial samples are similarly concentrated. Subsequently, these expressions
are redefined as hypothesis tests within the h-φ divergence class proposed by Salicru et
al. (1994). By means of a Monte Carlo simulation study, we quantify the performance
of the proposed methods. To that end, their empirical test sizes and powers are used as
assessment criteria.

The remainder of this chapter is organized as follows. Hypothesis test based on
stochastic distances is given Sec. 4.2. A short background about hypothesis tests based on
statistical information theory measures using permutation tests and bootstrap is given in
Sec. 4.3 In Sec. 4.4, numerical results involving the proposed methods are presented and
a application to real data. Finally, main contributions are listed and briefly rediscussed in
Sec. 4.5.

4.2 Hypothesis test based on stochastic distances
This section presents the background for providing new hypothesis tests for the

concentration parameter κ. In what follows it is adopted that divergence measure, say
d, means any non-negative function between two Watson probability densities which
satisfies the definiteness property (for two densities f(x) and g(x), f(x) = g(x) implies
d(f, g) = 0). Moreover, a symmetrized divergence is understood as a distance measure
Frery, Nascimento, and Cintra (2014).

Assume that x and y are two vectors equipped with densities f(z, θ1) and f(z, θ2),
respectively, where θ1 = (κ1, µ1)> and θ2 = (κ2, µ2)> are parameter vectors. The densities
are assumed to share a common support Sp−1. The (h, φ)-divergence dhφ is defined by
Pardo (2005)

dhφ = h

(∫
Sp−1

φ

(
f(z; θ1)
f(z; θ2)

)
f(z; θ2)dz

)
, (4.1)

where h : (0,∞)→ [0,∞) is a strictly increasing (or decreasing) function with h(0) = 0
and φ : (0,∞)→ [0,∞) is a convex (or concave) function such that φ(1) = 0, φ(0/0) = 0
and φ(x/0) = limx→∞ φ(x)/x (Salicru et al. 1994, 374). Well-known divergences can be
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obtained from (4.1) through choices of h and φ; such as (i) Renyi, (ii) Bhattacharyya and
(iii) Hellinger. In this chapter we work with divergence measures which applied to the
Watson distribution specifically divergence distance Renyi given by

dhφ = β

β − 1 log
∫
fβx f

1−β
y

Nascimento et al. (2018) proposed new hypothesis tests in order to verify if two
Watson distributed samples are distinct. In particular, they emphasize the situation in
which samples have different degrees of concentration around the same dominant axis. In
addition, the following theorem and corollary were used for this discussion.

Theorem 4.1 (General support for calculating the new divergence). Let x ∼ Wp(µ1, κ1)
and Wp(µ2, κ2) having densities f(z;µ1, κ1) and f(z;µ2, κ2), respectively, then the following
identify holds (for β ∈ R+ − 1)

Kβ(κ1, µ1, κ2, µ2) ≡
∫
Sp−1

fβ(z;µ1, κ1)f 1−β(z;µ2, κ2)dz

=
(2πp/2)−1Γ

(
p
2

)
C(βκ1µ1µ1

> + (1− β)κ2µ2µ2
>)

Mβ(1
2 ,

p
2 , κ1)M1−β(1

2 ,
p
2 , κ2) ,

where

C(βκ1µ1µ1
> + (1− β)κ2µ2µ2

>) ≡
∫
Sp−1

exp
{ p∑
i=1

λi(κ1, µ1, κ2, µ2)
}
dz

and λi(κ1, µ1, κ2, µ2) is the ith eigenvalue of the matrix (1− β)κ2µ2µ2
> − βκ1µ1µ1

>. This
theorem is derived in Appendix D. With respect the computation of C(.), Kume and
Wood (2005) have derived saddlepoint approximations to an expression of this kind. In
future studies, other divergence-based hypothesis tests can be deduced from Theorem 4.1.
The next corollary is obtained from the Theorem 4.1 by assuming µ1 = µ2 = µ.

Corollary 4.1. Let x ∼ Wp(µ, κ1) and y ∼ Wp(µ, κ2) having densities f(z;µ, κ1) and
f(z;µ, κ2), respectively, then Kβ(κ1, µ, κ2, µ) collapses in the identify

Kβ(κ1, κ2) =
M(1

2 ,
p
2 , βκ1 + (1− β)κ2)

Mβ(1
2 ,

p
2 , κ1)M1−β(1

2 ,
p
2 , κ2) →

M(1
2 ,

p
2 ,

κ1+κ2
2 )√

M(1
2 ,

p
2 , κ1)M(1

2 ,
p
2 , κ2)

.

An outline of the proof of this result is given in Appendix E. Now, consider the study
of some properties of Kβ(., .). As discussed before, κ > 0 tackles the bipolar case; while
κ < 0 the girdle. Combined with the result M(a, b;x) = expxM(b− a, b;x), we have: Let
κ1, κ2 ≤ 0,
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Figure 8 – Illustration of function Kβ(1, κ) for several values of β.

Kβ(κ1, κ2) =
M(p−1

2 , p2 , β|κ1|+ (1− β)|κ2|)
Mβ(p−1

2 , p2 , |κ1|)M1−β(p−1
2 , p2 , |κ2|)

.

Similarly, to the bipolar case, we can note Kβ in the girdle case is also a sort of
dissimilarity measure between absolute values of concentration degrees. It is noticeable that
Kβ(., .) ∈ (0, 1] such that Kβ(κ1, κ2) = 1 if only if κ1 = κ2 and Kβ(., .) ∈ [1,∞) for β > 1.
This last result is formalized in subsequent corollary. The measure Kβ(., .) is illustrated
in Figure 8. Moreover, it follows from the definition that Kβ1(κ1, κ2) = K1−β1(κ2, κ1) for
β1 ∈ (0, 1/2).

Our objective was to propose a hypothesis test via permutation test and bootstrap
test being the test statistic used based on Renyi distance denoted by SR:β whose formula
is given by

SR,β ≡
2N1N2

N1 +N2

1
β(β − 1) log[Kβ(κ̂1, κ̂2)]. (4.2)

4.3 Permutation Tests and Bootstrap
Bootstrap methods and permutation tests based on pivotal statistics were proposed

by Amaral et al. (2007) in directional statistics and shape analysis. The bootstrap
methodology was proposed by Efron (1979) and was used by Fisher and Hall (1989) and
Fisher et al. (1996) for constructing bootstrap confidence regions based on pivotal statistics
with directional data. The permutation tests, widely used in multi-sample problems were
proposed by Wellner (1979) for directional data.

We considered two Watson populations Wq(µ1, κ1) and Wq(µ2, κ2), where the concen-
tration parameters κ1 and κ2 are known. An extensive simulation study was undertaken
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and we present the results for the dimension of the sphere to test H0 : ±µ1 = ±µ2 = ±µ.
This study was carried out for investigating the performance of the test for the statistic
given by (4.2), the bootstrap test and the permutation test. First estimated levels of
significance obtained for a nominal significance level of 5% of the two tests and second, we
determined the empirical power of the tests.

The algorithm for implementing the permutation test can be described in the following
four steps:

1. Compute the observed test statistic θ̂(X,Y ) = θ̂(Z, ν).

2. For each replicate, indexed b = 1, · · · , B :
(a) Generate a random permutation πb = πν .
(b) Compute the statistic θ̂(b) = θ̂∗(Z, πb).

3. If large values of θ̂ support the alternative, compute the ASL (the empirical p-value)
by

p̂ = 1 + #{θ̂(b) ≥ θ̂}
B + 1 = 1 +∑B

b=1 I(θ̂(b) ≥ θ̂)
B + 1 .

For a lower-tail or two-tail test p̂ is computed in a similar way.

4. Reject H0 at significance level α if p̂ ≤ α.

The algorithm for the bootstrap test can be implemented in the following steps:

1. Compute the observed test statistic θ̂(X,Y ) = θ̂(Z, ν).

2. For each replicate, indexed b = 1, · · · , B :
(a) Generate a bootstrap sample πb = πν .
(b) Compute the statistic θ̂(b) = θ̂∗(Z, πb).

3. If large values of θ̂ support the alternative, compute the ASL (the empirical p-value)
by

p̂ = 1 + #{θ̂(b) ≥ θ̂}
B + 1 = 1 +∑B

b=1 I(θ̂(b) ≥ θ̂)
B + 1 .

For a lower-tail or two-tail test p̂ is computed in a similar way.

4. Reject H0 at significance level α if p̂ ≤ α.
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4.4 Results

4.4.1 Simulation study

We present a simulation study in order to assess the three proposed hypothesis tests for
the Watson distribution concentration parameter κ. The parameter κ is very important in
axial data analysis and its interpretation is directly linked to the dispersion degree of these
data, such as illustrated in Figure 9. It is noticeable that when the value of κ increases,
the data becomes more concentrated in poles κ > 0 or the equator κ < 0.

Figure 9 – Illustration of the concentration parameter dynamics of the Watson distribution.
(a) Bipolar case and (b) Girdle case.

We considered without loss of generality, that under H0 : ±µ1 = ±µ2 = ±µ, where
µ = (0, 0, 1)>. We generated two samples of sizes n1 and n2 of the populations Wq(µ, κ1)
and Wq(µ, κ2), assuming the sample sizes n = 20, 30 and 50. The estimated levels of
significance obtained for a nominal significance level of 5% are indicated in Tables 3 and 4
for known and equal concentration parameters (κ1 = κ2 = κ) in bipolar case and girdle
case, respectively.

In these tables the levels of significance between 4.5% and 5.5%, that may be considered
close to the nominal level 5%. Each estimated significance level, i.e., the proportion of
times that H0 is incorrectly rejected, was obtained through a simulation study with 1000
Monte Carlo simulations in the bootstrap and permutation tests. The number of bootstrap
re-samples, B, in each Monte Carlo simulation was B = 500 and the number of permutation
samples was C = 500. The significance level for the permutation and bootstrap test is
0.05.

The significance levels obtained in the permutation test in the case of equal con-
centration parameters are very close to the nominal significance level 5% in almost all
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cases. Consequently, the permutation test is generally very reliable in what concerns the
type I error. From the estimated significance levels obtained in the bootstrap test, we
conclude that the bootstrap statistic is very reliable in most part of the considered cases.
Additionally, in general, the bootstrap test has similar accuracy to the permutation test,
essentially in the case of equal concentration parameters.

Table 3 – Estimated significance levels (in %) of permutation and bootstrap tests, for
concentration parameter κ and several sample sizes n1, n2.

κx κy n SR0.3 SR0.5 SR0.8
Perm. Boot. Perm. Boot. Perm. Boot.

2 2 20 4.6 5.7 3.1 5.3 5.3 5.8
30 4.4 4.4 5.6 5.1 5.3 5.3
50 4.6 4.0 4.7 4.7 5.1 4.8

4 4 20 3.4 5.5 5.3 5.2 6.0 5.4
30 3.7 5.5 5.1 5.3 6.4 5.2
50 3.9 5.8 5.8 5.8 5.8 5.6

7 7 20 5.7 5.2 4.7 4.6 5.2 5.2
30 5.0 5.1 4.6 4.8 5.5 5.3
50 4.8 4.9 4.9 5.2 5.6 5.3

10 10 20 5.6 6.3 2.8 5.5 5.1 5.1
30 4.3 5.6 5.1 4.0 5.3 5.2
50 4.8 5.4 5.2 5.3 5.3 5.2

Table 4 – Estimated significance levels (in %) of permutation and bootstrap tests , for
concentration parameter κ and several sample sizes n1, n2.

κx κy n SR0.3 SR0.5 SR0.8
Perm. Boot. Perm. Boot. Perm. Boot.

-2 -2 20 5.3 5.3 3.7 5.8 5.6 4.3
30 5.3 5.3 3.7 5.2 5.3 4.6
50 5.1 4.8 4.0 5.2 4.9 3.8

-4 -4 20 3.9 5.8 5.8 5.8 5.8 5.6
30 3.7 6.4 5.2 5.8 6.3 5.2
50 4.7 5.1 4.8 4.3 5.3 4.8

-7 -7 20 5.3 5.1 5.7 5.6 5.2 5.8
30 5.2 5.1 5.3 5.3 5.3 5.3
50 4.4 5.3 5.2 3.9 5.4 5.2

-10 -10 20 4.0 5.3 5.2 3.2 5.3 5.3
30 3.7 5.5 5.2 3.5 7.1 5.2
50 3.6 6.3 5.3 2.9 5.2 5.3
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We determined the empirical power of the tabular, bootstrap and permutation tests for
a nominal significance level of 5%. We supposed the same null hypothesis as before and
in the alternative hypothesis H1, two directional parameters ±µ1 and ±µ2 and without
loss of generality, we generated one sample from Wq(µ, κ1) and the other sample from
Wq(µ, κ2).

In the bootstrap or permutation test, the empirical power was obtained from 1000
Monte Carlo simulations, where in each simulation, two samples were generated under H1

and 500 bootstrap or permutation re-samples were considered.
We indicate the empirical power of the tests for different and known concentration

parameters in Table 5 and Table 6. In these tables the values of the power, in which the
bootstrap test is more powerful than the permutation tests.

The empirical power of this test not remains close to the significance level for low
values of the concentration parameters. For large values of the concentration parameters,
the permutation test has better performance for equal-sized samples. we also observed
that for samples of equal size, the empirical power of the permutation test increases as the
concentration parameters increase.

Table 5 – Empirical power (in %) permutation and bootstrap tests for distinct values of
the concentration parameter.

κx κy n SR0.3 SR0.5 SR0.8
Perm. Boot. Perm. Boot. Perm. Boot.

2 4 20 15.8 21.9 6.5 35.8 12.9 36.5
30 18.3 54.0 10.1 56.0 16.4 56.5
50 22.7 63.7 11.7 66.1 18.6 70

2 6 20 14 19.8 17.2 45.7 18.4 36.2
30 15.4 52.8 18.3 54.8 17.1 56.7
50 21.8 80.5 24.2 82.2 28.7 82.9

2 7 20 16.2 26.9 19.6 37.7 18.3 21.1
30 18.3 28.1 20 44.2 19.2 55.8
50 21.1 63.3 27.2 65.4 28.1 80.0

2 10 20 17.3 26.2 16.9 27.9 19.7 26.0
30 19.8 33.6 21.1 46.6 21.1 75.7
50 22.6 90.2 28.5 86.6 29.2 96.7
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Table 6 – Empirical power (in %) permutation and bootstrap tests for distinct values of
the concentration parameter.

κx κy n SR0.3 SR0.5 SR0.8
Perm. Boot. Perm. Boot. Perm. Boot.

-2 -4 20 18.6 21.6 23.4 42.2 26.5 32.8
30 12.6 24.1 26.0 46.8 29.1 45.4
50 22.4 63.5 27 66.1 28.6 72

-2 -6 20 18.4 28.3 16.3 48.2 28.7 32.2
30 15.4 32.8 18.3 54.8 28.1 56.7
50 27.5 61.0 27.1 70.8 28.8 73.1

-2 -7 20 18.4 35.5 21.0 46.2 23.3 59.7
30 23.7 56.7 24.2 55.7 26.2 67.9
50 21.1 63.8 29.2 65.4 28.1 81.9

-2 -10 20 19.9 63.7 24.8 57.6 25.7 77.1
30 24.5 70.8 25.8 68.0 26.9 87.1
50 28.2 90.9 28.4 96.5 28.6 97.0

Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16 and Figure
17 shows the empirical power of the tests for different and known concentration parameters.
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Figure 10 – Empirical power of the tests for estimated different concentrations=2,4 with
beta=0.3.
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Figure 11 – Empirical power of the tests for estimated different concentrations=2,6 with
beta=0.3.
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Figure 12 – Empirical power of the tests for estimated different concentrations=-2,-4 with
beta=0.5.
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Figure 13 – Empirical power of the tests for estimated different concentrations=-2,-10
with beta=0.5.
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Figure 14 – Empirical power of the tests for estimated different concentrations=2,7 with
beta=0.8.
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Figure 15 – Empirical power of the tests for estimated different concentrations=-2,-7 with
beta=0.5.
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Figure 16 – Empirical power of the tests for estimated different concentrations=-2,-7 with
beta=0.8.
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Figure 17 – Empirical power of the tests for estimated different concentrations=-2,-10
with beta=0.3.

4.4.2 Application to real axial data

We perform an application to axes obtained from a sociological study of the attitudes
of 48 individuaus to 16 different occupations , judgments were made according 4 different
criteria (Earnings, Social Sttatus, Reward, Social Usefulness), given rise to 4 samples
(each of 48 multivariate measurements), by Fisher, Lewis, and Embleton (1987). From
so-called external analysis of the occupational judgments, each multivariate measurement
was reduced to a (spherical) unit vector, yielding the 4 samples of unit vectors.

They quantified simple are represented by latitude θ and longitude φ on two populations,
based on these angles presented vectors on the unit sphere can be obtained by the
transformation: x = sin(θ) cos(φ), y = sin(θ) sin(φ) and z = cos(θ). For the study of
real data analysis we use only 2 criteria, in this case earnings and social status both criteria
can be seen in figures 18 and 19.
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Figure 18 – Equal-area projections of occupational judgments according earnings criteria.

Figure 19 – Equal-area projections of occupational judgments according social standing
criteria

Table 7 – Empirical power (in %) of permutation tests and bootstrap, for different concen-
tration and several sample sizes n1, n2.

Criteria Concentration Statistic p-value(%)
Perm. Boot.

Earnings Equal 1.297 20.7 51.3
Social Status Equal 2.673 10.8 39.5

Table 7 as well as the p-values obtained for the tabular method, the bootstrap and
permutation versions of Renyi distance statistic. The p-values of the bootstrap and
permutation tests were obtained with B = 1000 bootstrap re-samples and C = 1000
permutation samples. First, the difference between the p-values of the tests for both
statistics is very small. Second, on one hand, the three tests led to the same conclusion for
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tow criteria. More precisely, we can conclude that two is no significant difference between
the systems for earnings criteria. On the other hand, for social status there is no evidence
to conclude that the systems differ using the Renyi distance statistic and bootstrap tests.
Based on the permutation test, we conclude that there is difference between the systems
at a level of 5%.

4.5 Conclusion
We have concluded that the bootstrap and permutation versions of the Renyi distance

statistic for testing a common mean polar axis across several Watson populations defined
on the hypersphere gave reliable estimates of the significance level, in most part of the
simulated cases, and in particular, for small concentrations and small samples. Additionally,
from the two tests, the bootstrap test is in general the most powerful test in the case of
small samples for small concentrations between the Watson populations. So, in these cases,
the bootstrap and permutation tests based on Renyi distance statistic may constitute
useful alternatives to this statistic, that has an asymptotic distribution, valid only for
large concentrations.
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5 CONCLUSION

We summarize the main contributions of this thesis in the following items:

• The chapter 2 has presented a bias correction estimation method for the concentra-
tion parameter at the W model. It was made according to the Cox-Snell methodology.
We have proposed closed-form expressions the Fisher information matrix and the
second-order bias of ML estimator of concentration parameter. We concluded that
in both cases the performance of our estimate for bias correction showed satisfactory
performance and a significant reduction of MSE for the different sample sizes.

• In Chapter 3 we proposed the derivation of the quadratic statistical distance for
directional data; in particular, following the real Watson distribution and various
theoretical properties for this model.

• In Chapter 4, we performed hypothesis testing using permutation and bootstrap
testing for two real Watson distribution samples, based of the Rényi distance statistic.
We conclude that the bootstrap and the permutation test showed estimates very
close to the confidence level considered, but as for the power of the test in all cases
considered the bootstrap presents better performance compared to the permutation
test.

Several lines of research can still be addressed, such as:

• To present a bias correction estimation method for the concentration parameter in
the W model, using the Bartlett methodology.

• Propose a new hypothesis test to verify if two samples from Watson populations
distributed with different dominant axes are equally concentrated, using divergence
function class.

In closing this work, we hope to have made a relevant contribution to the research
that addresses Bias-corrected estimation for the real Watson model, the derivation of the
quadratic statistical distance for directional data with theoretical properties and Bootstrap
and Permutation Tests for two sample problems of axial data analysis.
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APPENDIX A – COMPONENTS OF THE
FISHER INFORMATION MATRIX

Consider to derive the expression (2.4). According to Mardia and Jupp (2000) if
Σ is the parameter of the real Bingham model, the W distribution may be obtained the
former from the identity

Σp = (Ip − 2κµµ>)−1.

Thus

Σ3=(I3−2κµµ>)−1= 1
1−2κµ2

3−2κµ2
2−2κµ2

1


1− 2κµ2

3 − 2κµ2
2 2κµ1µ2 2κµ1µ3

2κµ1µ2 1− 2κµ2
3 − 2κµ2

1 2κµ2µ3

2κµ1µ3 2κµ2µ3 1− 2κµ2
2 − 2κµ2

1

.(A.1)
and, as consequence,

tr(Σ3) = 3− 4κµ2
3 − 4κµ2

2 − 4κµ2
1

1− 2κµ2
3 − 2κµ2

2 − 2κµ2
1
. (A.2)

Replacing the equations (8) and (9) into (6), we have

E(xx>) ≈ 1
p+ 1 + 2Σ

(p+ 1)(p+ 3) + 2 Ip tr(Σ)
(p+ 1)2(p+ 3) ≈

≈


13−28κµ2

3−28κµ2
2−20κµ2

1
48(1−2κµ32−2κµ22−2κµ12)

κµ1µ2
6(1−2κµ32−2κµ22−2κµ12)

κµ1µ3
6(1−2κµ32−2κµ22−2κµ12)

κµ1µ2
6(1−2κµ32−2κµ22−2κµ12)

13−28κµ2
3−20κµ2

2−28κµ2
1

48(1−2κµ32−2κµ22−2κµ12)
κµ2µ3

6(1−2κµ32−2κµ22−2κµ12)
κµ1µ3

6(1−2κµ32−2κµ22−2κµ12)
κµ2µ3

6(1−2κµ32−2κµ22−2κµ12)
13−20κµ2

3−28κµ2
2−28κµ2

1
48(1−2κµ32−2κµ22−2κµ12)

 .
Finally, after some algebraic manipulations the FIM components are given by

• E
(
−∂2`
∂µ1∂µ1

)
= E(2κS11) ≈ 13κ−28κ2µ2

3−28κ2µ2
2−20κ2µ2

1
24(1−2κµ32−2κµ22−2κµ12) ,

• E
(
−∂2`
∂µ1∂µ2

)
= E

(
−∂2`
∂µ2∂µ1

)
= E[κ(S12 + S21)] ≈ κ2µ1µ2

3(1−2κµ32−2κµ22−2κµ12) ,

• E
(
−∂2`
∂µ1∂µ3

)
= E

(
−∂2`
∂µ3∂µ1

)
= E[κ(S13 + S31)] ≈ κ2µ1µ3

3(1−2κµ32−2κµ22−2κµ12) ,

• E
(
−∂2`
∂µ1∂κ

)
= E

(
−∂2`
∂κ∂µ1

)
= E(2S11µ1+S21µ2+S31µ3+S12µ2+S13µ3) ≈ 13µ1−20κµ1µ2

3−20κµ1µ2
2−20κµ3

1
24(1−2κµ32−2κµ22−2κµ12) ,

• E
(
−∂2`
∂µ2∂µ2

)
= E(2κS22) ≈ 13κ−28κ2µ2

3−20κ2µ2
2−28κ2µ2

1
24(1−2κµ32−2κµ22−2κµ12) ,

• E
(
−∂2`
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= E
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∂µ3∂µ2
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= E

(
−∂2`
∂µ3∂µ2
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= E[κ(S32 + S23)] ≈ κ2µ2µ3

3(1−2κµ32−2κµ22−2κµ12) ,
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• E
(
−∂2`
∂µ2∂κ

)
= E

(
−∂2`
∂κ∂µ2

)
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and

• E
(
−∂2`
∂κ∂κ

)
= 0.52(2.5)M(1.5,2.5,κ)2−0.5(1.5)2M(0.5,1.5,κ)M(2.5,3.5,κ)

1.52(2.5)M(0.5,1.5,κ)2 .
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APPENDIX B – TERMS USED IN THE
ESTIMATION OF THE BIAS CORRECTION

OF PARAMETER κ

• κ(1)
11 = 3κ2µ1−8κ3µ1µ32−8κ3µ1µ22
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D1

= κ
(3)
31

• κ(4)
13 = 2κµ1µ3−2κ2µ1µ33−2κ2µ1µ22µ3−2κ2µ3

1µ3
3(1−2κµ32−2κµ22−2κµ12)2 = N13

D1/8 = 8N13
D1

= κ
(4)
31

• κ134 = κµ1µ3
3(1−2κµ32−2κµ22−2κµ12) = N14

D2/8 = 8N14
D2

= κ143 = κ314 = κ341 = κ413 = κ431

• κ(1)
14 = 13−46κµ32−46κµ22−34κµ12+40κ2µ34+80κ2µ22µ32+80κ2µ12µ32+80κ2µ12µ22+40κ2µ24+40κ2µ14

24(1−2κµ32−2κµ22−2κµ12)2 =
N15
D1

= κ
(1)
41

• κ(2)
14 = κµ1µ2

2(1−2κµ32−2κµ22−2κµ12)2 = N16
D1/12 = 12N16

D1
= κ

(2)
41 = κ

(1)
42 = κ

(1)
24

• κ(3)
14 = κµ1µ3

2(1−2κµ32−2κµ22−2κµ12)2 = N17
D1/12 = 12N17

D1
= κ

(3)
41 = κ

(1)
34 = κ

(1)
43

• κ(4)
14 = µ1µ2

3+µ1µ2
2+µ3

3
4(1−2κµ32−2κµ22−2κµ12)2 = N18

D1/6 = 6N18
D1
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• κ(1)
22 = 8κ3µ1µ2

2−κ
2µ1

6(1−2κµ32−2κµ22−2κµ12)2 = N19
D1/4 = 4N19

D1

κ
(2)
22 = 3κ2µ2−8κ3µ2µ32−8κ3µ2

1µ2
6(1−2κµ32−2κµ22−2κµ12)2 = N20

D1/4 = 4N20
D1

• κ(3)
22 = 8κ3µ2

2µ3−κ2µ3
6(1−2κµ32−2κµ22−2κµ12)2 = N21

D/4 = 4N21
D1

• κ(4)
22 = 13−56κµ32−40κµ22−56κµ12+96κ2µ22µ2

3+112κ2µ12µ32+96κ2µ12µ22+56κ2µ34+56κ2µ14+40κ2µ24

24(1−2κµ32−2κµ22−2κµ12)2 =
N22
D1

• κ224 = 13−28κµ2
3−20κµ2

2−28κµ2
1

24(1−2κµ32−2κµ22−2κµ12) = N23
D2

= κ242 = κ422

• κ(2)
23 = κ2µ3−2κ3µ33−2κ3µ12µ3+2κ3µ2

2µ3
3(1−2κµ32−2κµ22−2κµ12)2 = N24

D1/8 = 8N24
D1

= κ
(2)
32

• κ(3)
23 = κ2µ2−2κ3µ23−2κ3µ12µ2+2κ3µ2µ2

3
3(1−2κµ32−2κµ22−2κµ12)2 = N25

D1/8 = 8N25
D1

= κ
(3)
32

• κ(4)
23 = 2κµ2µ3−2κ2µ2µ3

3−2κ2µ3
2µ3−2κ2µ2

1µ2µ3
3(1−2κµ32−2κµ22−2κµ12)2 = N26

D1/8 = N26
D1

= κ
(4)
32

• κ234 = κµ2µ3
3(1−2κµ32−2κµ22−2κµ12) = N27

D2/8 = 8N27
D2

= κ243 = κ324 = κ342 = κ423 = κ432

• κ(2)
24 = 13−46κµ12−46κµ32−34κµ22+80κ2µ12µ2

3+40κ2µ4
3+80κ2µ22µ32+80κ2µ12µ2

2+40κ2µ14+40κ2µ24

24(1−2κµ32−2κµ22−2κµ12)2 = N28
D1

=
κ

(2)
42

• κ(3)
24 = κµ2µ3

2(1−2κµ32−2κµ22−2κµ12)2 = N29
D1/12 = 12N29

D1
= κ

(3)
42 = κ

(2)
34 = κ

(2)
43

• κ(4)
24 = µ2

1µ2+µ2µ2
3+µ3

2
4(1−2κµ32−2κµ22−2κµ12)2 = N30

D1/6 = 6N30
D1

• κ(1)
33 = 8κ3µ1µ2

3−κ
2µ1

6(1−2κµ32−2κµ22−2κµ12)2 = N31
D1/4 = 4N31

D1

• κ(2)
33 = 8κ3µ2µ2

3−κ
2µ2

6(1−2κµ32−2κµ22−2κµ12)2 = N32
D1/4 = 4N32

D1

• κ(3)
33 = 3κ2µ3−8κ3µ2

2µ3−8κ2µ12µ3
6(1−2κµ32−2κµ22−2κµ12)2 = N33

D1/4 = 4N33
D1

• κ(4)
33 = 13−40κµ32−56κµ22−56κµ12+96κ2µ22µ2

3+40κ2µ4
3+96κ2µ12µ32+112κ2µ12µ2

2+56κ2µ14+56κ2µ24

24(1−2κµ32−2κµ22−2κµ12)2 =
N34
D1

• κ334 = 13−20κµ2
3−28κµ2

2−28κµ2
1

24(1−2κµ32−2κµ22−2κµ12) = N35
D2

= κ343 = κ433

• κ(1)
34 = κµ1µ3

2(1−2κµ32−2κµ22−2κµ12)2 = N36
D1/12 = 12N36

D1
= κ

(1)
43

• κ(3)
34 = 13−34κµ32−46κµ22−46κµ12+80κ2µ22µ2

3+40κ2µ4
3+80κ2µ12µ32+80κ2µ12µ2

2+40κ2µ14+40κ2µ24

24(1−2κµ32−2κµ22−2κµ12)2 = N37
D1

=
κ

(3)
43

• κ(4)
34 = µ2

3+µ2
2+µ3

1
4(1−2κµ32−2κµ22−2κµ12)2 = N38

D1/6 = 6N38
D1

• κ(4)
41 = µ1µ2

3+µ1µ2
2+µ3

1
4(1−2κµ32−2κµ22−2κµ12)2 = N39

D1/6 = 6N39
D1

• κ(4)
42 = µ2µ2

3+µ3
2+µ2

1µ2
4(1−2κµ32−2κµ22−2κµ12)2 = N40

D1/6 = 6N40
D1
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• κ(4)
43 = µ3

3+µ2
1µ3+µ2

2µ3
4(1−2κµ32−2κµ22−2κµ12)2 = N41

D1/6 = 6N41
D1

• κ(4)
44 = 2a2(a+1)(M(a,b,k))(M(a+1,b+1,k))(M(a+2,b+2,k))−2a2(a+1)(M(a+2,b+2,k))(M(a+1,b+1,k))

b2(b+1)(M(a,b,k))3 = N42
D3

• κ444 = 2a2(a+1)(M(a,b,k))(M(a+1,b+1,k))(M(a+2,b+2,k))−2a2(b+1)(M(a+2,b+2,k))(M(a+1,b+1,k))
b2(b+1)(M(a,b,k))3 = N43

D3
.
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• c(hn) = 5h4
n

10πh4
n−10π−2πa2

1−2πa2
2−2a2

3
,

•
∫
S2 dxi = 4π

3 ,

•
∫
S2 xx>dxi =

∫ 1
0
∫ 2π
0
∫ π

0 [a1r sin θ cos θ + a2r sin θ sinφ+ a3r cos θ]r2 sin θdθdφdr = 0,

•
∫
S2 xix

>
i dxi =

∫ 1
0
∫ 2π

0
∫ π

0


r sin θ cosφ
r sin θ sinφ
r cos θ

 [ r sin θ cosφ r sin θ sinφ r cos θ
]
r2 sin θdθdφdr

=
∫ 1

0
∫ 2π

0
∫ π
0


r2 sin2 θ cos2 φ r2 sin2 θ cosφ sinφ r2 sin θ cosφ cos θ

r2 sin2 θ sinφ cosφ r2 sin2 θ sin2 φ r2 sin θ sinφ cos θ
r2 cos θ sin θ cosφ r2 cos θ sin θ sinφ r2 cos2 θ

 r2 sin θdθdφdr

=


4π
15 0 0
0 4π

15 0
0 0 2

15

 ,
• c1(κ) = Γ(p/2)

(2π)p/2M(1/2, p/2, κ)−1,

• c1(2κ) = Γ(p/2)
(2π)p/2M(1/2, p/2, 2κ)−1.

• ∂
∂µ1

E(x) =
∫
xi(2µ1x1

2 + 2µ2x1x2 + 2µ3x1x3)Cweκ(µ>x)2
dx = 0

⇒ 2µ1
∫
xix1

2Cwe
κ(µ>x)2

dx+ 2µ2
∫
xix1x2Cwe

κ(µ>x)2
dx

+ 2µ3
∫
xix1x3Cwe

κ(µ>x)2
dx = 0,

• ∂
∂µ2

E(x) =
∫
xi(2µ2x2

2 + 2µ1x1x2 + 2µ3x2x3)Cweκ(µ>x)2
dx = 0

⇒ 2µ2
∫
xix2

2Cwe
κ(µ>x)2

dx+ 2µ1
∫
xix1x2Cwe

κ(µ>x)2
dx

+ 2µ3
∫
xix2x3Cwe

κ(µ>x)2
dx = 0,

• ∂
∂µ3

E(x) =
∫
xi(2µ3x3

2 + 2µ1x1x3 + 2µ2x2x3)Cweκ(µ>x)2
dx = 0

⇒ 2µ3
∫
xix3

2Cwe
κ(µ>x)2

dx+ 2µ1
∫
xix1x3Cwe

κ(µ>x)2
dx

+ 2µ2
∫
xix2x3Cwe

κ(µ>x)2
dx = 0.

To simplify the above terms we use the following notation

• ai11 = 2µ1
∫
xix1

2Cwe
κ(µ>x)2

dx,

• ai12 = 2µ2
∫
xix1x2Cwe

κ(µ>x)2
dx,
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• ai13 = 2µ3
∫
xix1x3Cwe

κ(µ>x)2
dx,

• ai21 = 2µ1
∫
xix1x2Cwe

κ(µ>x)2
dx,

• ai22 = 2µ2
∫
xix2

2Cwe
κ(µ>x)2

dx,

• ai23 = 2µ3
∫
xix2x3Cwe

κ(µ>x)2
dx,

• ai31 = 2µ1
∫
xix1x2Cwe

κ(µ>x)2
dx,

• ai32 = 2µ2
∫
xix2x3Cwe

κ(µ>x)2
dx,

• ai33 = 2µ3
∫
xix3

2Cwe
κ(µ>x)2

dx.

To find the third moment of the Watson distribution we must solve this system which
is equivalent to solving each of these integrals in the sphere given by

2


ai11 ai12 ai13
ai21 ai22 ai23
ai31 ai32 ai33



µ1

µ2

µ3

 =


0
0
0


.

Note that ai11 + ai22 + ai33 = 0 and besides that ai11 = 0, because if µ =
(1, 0, · · · , 0)> ⇒ E(xix1

2) = 0 for all i = 1, 2, 3. It follows, therefore, that ai22 = −ai33,

ai12 = −µ3
µ2
ai13 and ai23 =

−
[
µ1µ

2
2

µ3
−µ1µ3

]
ai12

µ2
3µ22 . Then after some algorithms we find ai12 = 0,

as ai12 = ai21 = 0. Therefore it follows that ai23 = ai32 = 0. Finally ai33 = 0 and
ai22 = 0 as we wanted to demonstrate.

Assume thatX ∼ W (µ, κ),M(µ, κ) := E(xx>), matrix p×p. Like this
∫
S2 xx>C(κ)eκ(µ>x)2

dx =
M(µ, κ). Admit simplification (µ1, µ2, µ3)>. So

∂

∂µi

∫
S2
xx>C(κ)eκ(µ>x)2

dx = ∂

∂µi
M(µ, κ) := Di (C.1)

to i = 1, 2, 3. As (µ>x)2 = ∑3
i=1 µixi + 2∑1≤i<j≤3 µiµjxixj, from (14), the following

system is valid


2µ1E(x2

1xx>) + 2µ2E(x1x2xx>) + 2µ3E(x1x3xx>) = D1

2µ2E(x2
2xx>) + 2µ1E(x1x2xx>) + 2µ3E(x2x3xx>) = D2

2µ3E(x2
3xx>) + 2µ1E(x1x3xx>) + 2µ2E(x2x3xx>) = D3

In addition to this system, the following assumption is valid: As ∑3
i=1 x

2
i = 1 once∥∥∥∥∥∥∥∥∥


x1

x2

x3


∥∥∥∥∥∥∥∥∥

2

=
3∑
i=1

xi
2 = 1
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then M(µκ) = E(xx>) = E
[
(∑3

i=1 x
2
i )xx>

]
= E(x2

1xx>) + E(x2
2xx>) + E(x2

3xx>).
Defined the arrays 3× 3, Aii = E(x2

ixx>) and Aij = E(xixjxx>).
Note that

A12 = a1A33 + b1,

A13 = a2A22 + b2,

A23 = a3A11 + b3,

on what a1 = µ32

µ1µ2
, a2 = µ22

µ1µ3
and a3 = µ12

µ2µ3
. We used the notation b1 = µ1D1+µ2D2−µ3D3−M(µ,κ)

4µ1µ2
,

b2 = µ1D1+µ3D3−µ2D2−M(µ,κ)
4µ1µ3

, b3 = µ2D2+µ3D3−µ1D1−M(µ,κ)
4µ2µ3

.
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APPENDIX D – DERIVATION OF THE
THEOREM 4.1

Let x ∼ Wp(µ1, κ1) and x ∼ Wp(µ2, κ2) having densities f(z;µ1, κ1) and f(z;µ2, κ2),
respectively.

Kβ(κ1, µ1, κ2, µ2) ≡
∫
Sp−1

fβ(z;µ1, κ1)f 1−β(z;µ2, κ2)dz

=
(2πp/2)−1Γ

(
p
2

)
Mβ(1

2 ,
p
2 , κ1)M1−β(1

2 ,
p
2 , κ2)

∫
Sp−1

exp{βκ1(µ1
>z)2 + (1− β)κ2(µ2

>z)2}dz.

Note that the following quadratic form representation holds: For β ∈ (0, 1),

βκ1(µ1
>z)2 + (1− β)κ2(µ2

>z)2 = z>[βκ1µ1µ1
> + (1− β)κ2µ2µ2

>︸ ︷︷ ︸
A

]z,

which is either positive-definite or negative-definite one for κ1, κ2 > 0 (bipolar forms)
or κ1, κ2 < 0 (girdle forms), respectively. According to Dryden (2005, 1655), the Watson
model is a special case of the Bingham distribution pioneered by Christopher Bingham
(1974) given by

f(z; Σ) = C−1(Σ) exp(−zΣz) (D.1)

for z ∈ Sp−1. The following result is valid for the normalizing constant C(Σ) (see Kume
and Wood 2005, Eq. (3)): Setting λ1, · · · , λp as eigenvalues of Σ,

C(Σ) =
∫
Sp−1

exp
(
−

p∑
i=1

λiz
2
i

)
dz.

Thus, defining λi(κ1, µ1, κ2, µ2, β) as ith eigenvalue of −A,

Kβ(κ1, µ1, κ2, µ2) =
(2πp/2)−1Γ

(
p
2

) ∫
Sp−1 exp [−∑p

i=1 λi(κ1, µ1, κ2, µ2, β)z2
i ] dz

Mβ(1
2 ,

p
2 , κ1)M1−β(1

2 ,
p
2 , κ2) .
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APPENDIX E – DERIVATION OF THE
COROLLARY 4.1

According to Dryden (2005, 1655), assuming Σ−1 = Ip − 2κµµ>, the Bingham model
collapses in Wp(µ, κ) and, therefore,

C(Σ) =
∫
Sp−1

exp
[
κ(µ>z)2

]
dz = 2πp/2Γ−1

(
p

2

)
M
(1

2 ,
p

2 , κ
)
.

Thus Kβ(κ1, κ2) ≡ Kβ(κ1, µ, κ2, µ) is given by

Kβ(κ1, κ2) =
M(1

2 ,
p
2 , βκ1 + (1− β)κ2)

Mβ(1
2 ,

p
2 , κ1)M1−β(1

2 ,
p
2 , κ2) .
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