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ABSTRACT

Signal detection is a fundamental task in the field of signal and image processing, being

pivotal for decision whether a signal is present or identify the different land cover type in synthetic

aperture radar (SAR) images. Over the years, detection schemes have been developed assuming

the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the

Gaussianity assumption may not be enough to model several practical contexts. In particular,

quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear

examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals,

such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators

for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving

average model based on the Rayleigh distribution; (iv) a new time series model assuming the

beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene

prediction (GSP) image. The proposed Rayleigh regression model was applied in detection

schemes of land cover type in SAR images and the obtained results were compared to the

measurements from Gaussian-,Gamma-, and Weibull-based regression models. The Rayleigh

regression model was the only model that could detect the difference among the three tested

regions. The two-dimensional Rayleigh autoregressive moving average model were applied to

detect changes in SAR images. For comparison purposes, we also obtained the detection results

based on the two-dimensional Gaussian model. The proposed method detected 24 in a total

of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles.

The derived beta binomial autoregressive moving average model was employed in nonrandom

signals detection showing a higher probability of detection and a lower probability of false alarm

in comparison to the traditional Gaussian based methods. The obtained GPS image based on

the median method was considered in a change detection algorithm displaying a probability

of detection of 97% and a false alarm rate of 0.11/km2, when considering military vehicles

concealed in a forest.

Keywords: Change detection. Improved point estimators. Regression models. SAR images.

Two-dimensional models.



RESUMO

Em processamento de sinais e de imagens, detecção é um problema amplamente discutido

na literatura, seja para detectar a presença de um sinal ou para identificar o tipo de solo em

uma imagem de radar de abertura sintética (SAR). Ao longo dos anos, os métodos de detecção

foram desenvolvidos assumindo distribuição gaussiana. Entretanto, em situações reais, os

sinais são não gaussianos. Dois típicos exemplos de sinais tipicamente não gaussianos são

os sinais digitais e os valores de amplitude em uma imagem SAR. Desta forma, na presente

tese, são derivadas ferramentas para sinais não gaussianos, tais como: (i) um novo modelo

de regressão baseado na distribuição Rayleigh; (ii) estimadores corrigidos para os parâmetros

do modelo de regressão Rayleigh proposto; (iii) um novo modelo autorregressivo de médias

moveis bidimensional baseado na distribuição Rayleigh; (iv) um novo modelo de séries temporais

assumindo a distribuição beta binomial e (v) o uso de um pacote de images SAR para obter uma

previsão sobre o verdadeiro terreno das imagens. O modelo de regressão proposto foi considerado

em detecção do tipo de solo em images SAR e os resultados obtidos foram comparados com

os modelos baseados nas distribuições gaussiana, gama e Weibull. O modelo de regressão

Rayleigh foi o único modelo capaz de detectar diferença no tipo de solo das três áreas testadas.

O modelo bidimensional proposto foi empregado na detecção de mudança em images SAR, e

os resultados de detecção baseados no modelo bidimensional Gaussiano foram utilizados como

critério de comparação. O modelo proposto detectou 24 dos 25 veículos militares presentes na

imagem SAR, enquanto que o modelo Gaussiano detectou apenas 16 alvos. Ainda, o modelo

beta binomial autorregressivo de média móveis derivado foi empregado em detecção de sinais

não aleatórios apresentando maiores valores de probabilidade de detecção e menos taxas de

falso alarme em comparação aos tradicionais métodos de detecção baseados na distribuição

Gaussiana. Finalmente, a imagem predita baseada no método da mediana obtida considerando

um pacote de imagens SAR foi utilizada em um algoritmo de detecção de mudanças apresentando

probabilidade de detecção de veículos militares de 97% e taxa de falso alarme de 0.11/km2.

Palavras-chave: Detecção de mudanças. Estimadores pontuais corrigidos. Modelos de

regressão. Imagens SAR. Modelos bidimensionais.
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1 INTRODUCTION

In this chapter, we provide motivation and framework for the research topics investigated

in this thesis. Additionally, we detail the thesis main goals and the document structure.

1.1 MOTIVATION

Signal detection is a major area of research in signal and image processing [3, 4]. In

particular, the problem of detection whether a signal is present or not is a fundamental task

in the field, being important for decision making and information extraction [4]. Over the

years, detection schemes have been developed assuming that the additive noise is a Gaussian

process [5, 6]. However, in the real world, signals are often non-Gaussian [7]. Therefore, the use

of signal processing algorithms developed for Gaussian noise environments in situations where

non-Gaussian data is present, typically result in significantly worse performance [8–12]. An

example of a typical non-Gaussian signal is the quantized signal—here referred to as ‘digital

signals’, since its signal amplitude is a discrete value [13]. Another scenario in which assuming

Gaussianity may not be suitable is in the synthetic aperture radar (SAR) image processing [14].

In the context of SAR images processing, a usual problem is the identification and clas-

sification of land cover type in images or distinct targets [3, 15]. Frequently, the SAR image

modeling is performed assuming constant parameters [16–18], i.e., considering homogeneity in

the images. In cases where this assumption is not suitable, an alternative is to use a regression

model, where each observation has one specific estimated mean. For this purpose, the Gaussian

regression model is widely used [19–21]. However, regression models adopting suitable distri-

butions, such as the Rayleigh distribution, can be used without assuming homogeneity in the

images, generating accurate results in the detection of different land cover types from an image.

The Rayleigh distribution is commonly used in signal and image processing, as demonstrated

in [16, 17, 22–28]. Thus, a regression model assuming the Rayleigh distribution can be applied

in the detection scheme of SAR images, yielding accurate results.

The Rayleigh distribution is widely considered in signal and image processing [17,24–28],

being important in the context of synthetic aperture radar (SAR) image modeling, due to its good

characterization of image pixel amplitude values [16–18, 29]. In the signal processing context,

this distribution captures power variations on a wavelength scale and it is capable of modeling

the measured amplitude of the received signal for systems with relatively large cells, called
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macrocellular systems, and small-scale multipath fading [30]. Thus, the Rayleigh distribution is

an important model in the context of image and signal processing, and consequently, an important

topic of research.

The inferences of the Rayleigh regression model parameters are based on maximum

likelihood estimation. The maximum likelihood estimators (MLEs) have good asymptotic

properties in large signal lengths. However, in small signal lengths, the biases of the MLEs are

on the order of N−1 [31], where N is the signal length. Thus, in small signal lengths, bias can

become problematic [32]. Therefore, inferential corrections for small signal lengths become an

important topic of study.

In SAR images, the content of information between pixels takes different levels of depen-

dence, such as resolution spatial and temporal [18, 33]. Thus, a two-dimensional autoregressive

moving average (2D ARMA) model can be used as a venue for dealing with such a problem.

Indeed, the parametric representation of two-dimensional homogeneous random fields consider-

ing 2D ARMA models is frequently used in the literature for image processing [34, 34–48]. In

special, the two dimensional autoregressive first-order model is commonly employed to represent

image real scenarios [49, 50], being capable of representing different types of textures [34]. This

model is an extension of the traditional autoregressive moving average (ARMA) model, widely

used in time series analysis [43]. A two-dimensional autoregressive moving average model

assuming the Rayleigh distribution can be used in the detection scheme of SAR images, yielding

accurate results.

Additionally, digital signals can be defined as a discontinuous waveform with a finite

range of levels [51]. The beta binomial distribution has been employed over the years to model

bounded discrete values, as shown in [52–55]. Thus, the beta binomial distribution can be

considered as a good candidate to fit digital signals. In addition, as signals can be defined as

a function of time [56] and the signal amplitude of the digital signals is a discrete value [13],

a time series model assuming the beta binomial distribution can be employed as a venue for

developing detection methods tailored for such type of data. Besides quantized signal processing

applications, the derived model can be used to fit any bounded count data observed over the time,

such as the number of rainy days per time interval [57], number of defective products in one

lot [58], or number of hospital admissions [59].

Change detection algorithm (CDA) has been widely considered over the years in the

detection of distinct targets in SAR images [60–62]. In particular, the CDA is used to detect

changes in a ground scene between distinct measurements in time, such as natural disasters like
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flood and wildfire or man-made interference [63–65]. Generally, CDA can be simply obtained by

the subtraction of two images (reference and surveillance), followed by a thresholding operation.

However, an image stack can be considered instead of just two images in a CDA; such collection

of images leads to improved detection performance, as discussed in [1]. An image stack is

composed by images with similar heading and incidence angle of the illuminating platform [1].

Thus, the backscattering of SAR images in the stack is stable in time, i.e., the ground scene

should be very similar, excepted by the changes. This way, a ground scene prediction (GSP) can

be obtained based on the image stack. This new image can be used as a reference image in CDA

yielding in high probability of detection and low false alarm rate.

1.2 MAIN GOALS

The main goal of this thesis is to address the open gaps in the literature in terms of

(i) detection of different land cover types from a SAR image; (ii) improvement of point estimation;

(iii) SAR image modeling; (iv) detection problem of signals embedded in noise from a quantized

measured signal; and (v) improvement of CDA performance in a CDA framework.

Specifically, we aim at:

• proposing a regression model for non-Gaussian signals, assuming the Rayleigh distribution;

• introducing a change detector for the amplitude values of non-Gaussian SAR images;

• using corrections schemes to obtain bias-adjusted estimators for the Rayleigh regression

model;

• deriving a two-dimensional Rayleigh autoregressive moving average (2D RARMA) model;

• introducing a ground type change detector for non-Gaussian SAR images based on the

residual-based control charts of the two-dimensional model;

• proposing a modeling tool for non-Gaussian SAR images;

• deriving the beta binomial autoregressive moving average model (BBARMA) for non-

Gaussian signals;

• introducing a signal detector based on the asymptotic properties of the BBARMA model

parameter estimators;

• proposing a ground scene prediction SAR image based on an image stack;

• applying GSP imagery as input data in CDA.
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1.3 ORGANIZATION OF THE THESIS

This thesis contains seven self-contained chapters, each with its own notation and termi-

nology. Each chapter corresponds to the research progress obtained by the candidate as of the

writing of this thesis.

In Chapter 2, we introduce a regression model for nonnegative signals. The discussed re-

gression estimates the mean of Rayleigh distributed signals. For the derived model, we introduce

parameter estimation, large data record results, and goodness-of-fit measures. Additionally, a

change detector for the amplitude values of SAR images based on the asymptotic properties of

the proposed Rayleigh regression model parameter estimators is discussed. The performance

of maximum likelihood estimators of the derived model were evaluated using Monte Carlo

simulations. Also, we present an application of the proposed detector in SAR image.

In Chapter 3, we present accurate point estimation strategies for the parameters of the

Rayleigh regression model. In particular, the Cox and Snell’s [66], Firth’s [67], and parametric

bootstrap [68] methods were considered to obtain bias-adjusted estimators. The performance of

maximum likelihood estimators proposed were evaluated using Monte Carlo simulations.

In Chapter 4, we propose a two-dimensional ARMA model based on the Rayleigh

distribution for non-Gaussian situations, where the observed output signal is asymmetric and

measured continuously on the real positives values. For the derived model, we present conditional

parameter estimation, large data record inference, a modeling tool, and residuals. Additionally,

we introduce a ground type change detector for non-Gaussian SAR images based on control

charts of the proposed spatial model residuals.

In Chapter 5, we discuss a new time series model for bounded discrete time values. This

model can be applied for detection and inference in digital signals, estimating the mean of a

beta binomial distributed variable observed over the time. For the introduced model, parameter

estimation, large data record results, forecasting tools and diagnostic measures are discussed. In

addition, we present a signal detector based on the asymptotic properties of the proposed model

parameter estimators. The performance of the derived detector and of the model parameter

estimators were evaluated using Monte Carlo simulations.

In Chapter 6, we consider traditional statistical techniques, such as autoregressive models,

robust mean, median, intensity mean, and mean in a stack of SAR images to obtain a ground

scene prediction. We evaluate the ground scene prediction images based on the presence of the

true ground scene without change and checking if the predicted image preserves the ground
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backscattering statistics of the images in the stack. The GSP image is considered as a reference

image in a CDA, presenting competitive performance when compared with other recent results.

Finally, in Chapter 7, some conclusions and ideas for further works are presented.

1.4 COMPUTATIONAL SUPPORT

All simulations results we present in this thesis were obtained using the Matlab soft-

ware [69]. The plots from Chapter 2, 3, and 5 were produced using the R language [70]. In

Chapters 4 and 6, the Matlab software [69] was considered to generate the images.
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2 RAYLEIGH REGRESSION MODEL FOR GROUND TYPE DETECTION IN SAR

IMAGERY

Abstract

This chapter proposes a regression model for nonnegative signals. The derived regression

estimates the mean of Rayleigh distributed signals by a structure which includes a set of

regressors and a link function. For the proposed model, we present: (i) parameter estimation;

(ii) large data record results; and (iii) a detection technique. In this chapter, we present closed-

form expressions for the score vector and Fisher information matrix. The introduced model

is submitted to extensive Monte Carlo simulations and to measured data. The Monte Carlo

simulations are used to evaluate the performance of maximum likelihood estimators. Also, an

application is performed comparing the detection results of the proposed model with Gaussian-,

Gamma-, and Weibull-based regression models in SAR images.

Keywords: Detection, Rayleigh distribution, regression model, reparameterized Rayleigh distri-

bution, SAR images.

2.1 INTRODUCTION

The classical linear regression model is commonly employed to estimate an unknown

and deterministic parameter vector βββ in the linear equation y = Hβββ + e. The quantity y is

defined as the observed output signal, H is a linear transformation, and e is a Gaussian noise

vector [71]. However, in situations where the observed output signal is asymmetric, continuous,

and nonnegative, as in Rayleigh distributed signals, inference methods based on the Gaussian

assumption can lead to misleading results. Indeed, the Rayleigh distribution is widely used in

signal and image processing, as in [17, 24–28].

One important application for the Rayleigh distribution is in the context of synthetic

aperture radar (SAR) image modeling, where this distribution can be employed for characterizing

amplitude values of single-look image pixels [16–18]. A common problem in SAR image

processing is the identification and classification of distinct targets or land uses in images [3,

15]. Usually, these problems are treated assuming constant parameters—here referred to as

‘homogeneity’— of the regions. However, the use of regression models adopting suitable
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distributions without assuming homogeneity in the images can generate accurate results for the

above SAR-related challenges, as presented by [72].

In this chapter, our goal is two-fold. First, we propose a regression model for non-

Gaussian situations, where the observed output signal is asymmetric and measured continuously

on the real positives values. For the proposed model, we introduce parameter estimation, large

data record results, and goodness-of-fit measures. Second, we introduce a change detector for

the amplitude values of non-Gaussian SAR images. Detection problems are commonly treated

assuming Gaussian distribution to the signals. However, SAR images are usually non-Gaussian,

prompting the use of the Rayleigh distribution to yield more accurate results for detection

problems. Thus, the present chapter introduce a detector based on the asymptotic properties of

the proposed Rayleigh regression model parameter estimators.

The chapter is organized as follows. In Section 2.2, we introduce the proposed model

and present the score vector, and the goodness-of-fit measures. Section 2.3 shows the Fisher

information matrix and the proposed detector. Section 2.4 presents Monte Carlo simulations and

an application for SAR images. Finally, the conclusion of this work can be found in Section 2.5.

2.2 PROPOSED RAYLEIGH REGRESSION MODEL

Let Y be a random variable with Rayleigh distribution. Its probability density function

(pdf) is given by [4], [18]:

pY (y;σ) =
y

σ2 exp
(
− y2

2σ2

)
, y > 0,

where σ > 0 is the parameter. The mean and the variance of Y are given by

E(Y ) = σ
√

π
2
,

Var(Y ) = σ2
(

4−π
2

)
.

Although the Rayleigh density is commonly indexed by the parameter σ , regression models

usually characterize the mean of the response signal [73], which has a more direct interpretation

than σ . Thus, we consider a reparametrization of the Rayleigh distribution in terms of the mean

of the response signal and its regression structure.
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2.2.1 Reparametrization of the Rayleigh Distribution

Considering the parameterization µ = σ
√

π
2 , we have the following pdf of the mean-

based Rayleigh distribution:

fY (y; µ) =
πy

2µ2 exp
(
−πy2

4µ2

)
, y > 0, (2.1)

where µ > 0 is the mean parameter. The cumulative distribution function is given by

FY (y; µ) = 1− exp
(
−πy2

4µ2

)
.

The quantile function, useful for generating pseudo-random occurrences in inversion method, is

given by

QY (u; µ) = 2µ
√
− log(1−u)

π
.

The mean and variance of Y are given, respectively, by

E(Y ) = µ,

Var(Y ) = µ2
(

4
π
−1
)
.

2.2.2 Regression Model

Let Y [1],Y [2], . . . ,Y [N] be independent random variables, where each Y [n] assumes

values y[n] and follows the Rayleigh density in (2.1) with mean µ[n], n = 1,2, . . . ,N. The

proposed Rayleigh regression model is obtained by considering a linear predictor η [n] for the

mean of Y [n] furnished by

η [n] = g(µ[n]) =
r

∑
i=1

βixi[n], n = 1,2, . . . ,N, (2.2)

where r < N is the number of covariates considered in the model, βββ = (β1,β2, . . . ,βr)
> is a

vector of unknown linear parameters, x[n] = (x1[n],x2[n], . . . ,xr[n])> is a vector of deterministic

independent variables, and g(·) is a strictly monotonic and twice differentiable link function

where g : R+→R. If an intercept is considered, then x1[n] = 1. The link function g(·) relates the

linear predictors η [n] to the expected value µ[n] of data y[n]. When µ[n]> 0, a common choice of

link function is the log link log(µ[n]) =η [n] with its inverse µ[n] = exp(η [n]), since exp(η [n])>

0. For instance, to fit the Rayleigh regression model in a SAR image, the pixel values should be

vectorized based on a window of the interest pixels.
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The proposed model is similar to the generalized linear models (GLM) [73], except for the

fact that the Rayleigh density cannot be written in the canonical form of the exponential family of

distributions. A regression model considering the Rayleigh distribution is also presented in [74].

However, the proposed model is based on the standard Rayleigh distribution parametrization. In

addition, in this chapter, the maximum likelihood (ML) method [75] based on the reparametrized

Rayleigh distribution is considered to obtain the regression parameters estimates, as presented in

the next section.

2.2.3 Likelihood Inference

Parameter estimation of the Rayleigh regression model can be performed by the maximum

likelihood method [75]. The ML estimates are given by

β̂ββ = argmax
βββ

`(βββ ),

where `(βββ ) is the log-likelihood function of the parameters for the observed signal, defined as

`(βββ ) =
N

∑
n=1

`[n](µ[n]).

The quantity `[n](µ[n]) is the logarithm of fY (y[n]; µ[n]) given by

`[n](µ[n]) = log[ fY (y[n]; µ[n])] = log
(π

2

)
+ log(y[n])− log(µ[n]2)− πy[n]2

4µ[n]2
,

where µ[n] = g−1 (∑r
i=1 xi[n]βi).

The score vector, obtained by differentiating the log-likelihood function with respect to

each unknown parameters βi, is given by

U(βββ ) =
(

∂`(βββ )
∂β1

,
∂`(βββ )
∂β2

, . . . ,
∂`(βββ )

∂βr

)>
.

Then, invoking the chain rule, we have

∂`(βββ )
∂βi

=
N

∑
n=1

d`[n](µ[n])
d µ[n]

d µ[n]
dη [n]

∂η [n]
∂βi

,

where

d`[n](µ[n])
d µ[n]

=
πy[n]2

2µ[n]3
− 2

µ[n]
, (2.3)

d µ[n]
dη [n]

=
1

g′(µ[n])
,

∂η [n]
∂βi

= xi[n],
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and g′(·) is the first derivative of the link function g(·). In particular, for the log link function,

g(µ[n]) = log(µ[n]), we have d µ[n]
dη [n] = µ[n].

In matrix form, the score vector can be written as

U(βββ ) = X> ·T ·v,

where X is an N × r matrix whose nth row is x[n]>, T = diag
{

1
g′(µ[1]) ,

1
g′(µ[2]) , . . . ,

1
g′(µ[N])

}
and v =

(
πy[1]2

2µ[1]3 −
2

µ[1] ,
πy[2]2

2µ[2]3 −
2

µ[2] , . . . ,
πy[N]2

2µ[N]3
− 2

µ[N]

)>
.

The maximum likelihood estimators (MLEs) for the Rayleigh regression parameters are

obtained by solving the following nonlinear system:

U(βββ )|βββ=β̂ββ = 0, (2.4)

where 0 is the r-dimensional vector of zeros.

Solving (2.4) requires the use of nonlinear optimization algorithms. We adopted the quasi-

Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [76] for the numerical computations

since the BFGS method requires just the first derivatives [76] and it is generally considered as

the best-performing non-linear optimization method [77]. We suggest to use as initial point

estimate for βββ the ordinary least squares estimate of βββ , obtained from a linear regression of the

transformed responses g(y[1]),g(y[2]), . . . ,g([N]) on X.

Based on the MLE of βββ , it is possible to obtain a MLE for µ , considering the invariance

principle of the MLE [75], as µ̂ = g−1(Xβ̂ββ ).

2.2.4 Goodness-of-fit Measures

In this section, diagnostic measures, such as the residual and the coefficient of determi-

nation, are presented to evaluate the correct adjustment of the proposed model. We considered

the quantile residual as r[n] = Φ−1 (F(y[n]; µ̂[n])), where Φ−1(·) denotes the standard normal

quantile function. The quantile residuals not only can detect poor fitting in regression models,

but its distribution is also approximately standard normal [78].

The generalized coefficient of determination [79], which is a global measure of the

goodness-of-fit, is given by

R2 = 1− exp
(
− 2

N

[
`(β̂ββ )− `(0)

])
,

where `(0) is the maximized log-likelihood of the null model (without regressors) and `(β̂ββ )

is the maximized log-likelihood of the fitted model. Note that 0 ≤ R2 ≤ 1 and it measure the
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proportion of the variability of the observed output signal that can be explained by the fitted

model [79]. Higher values of R2 indicate better model fits.

2.3 DETECTION THEORY

It is possible to interpret a SAR image as a set of regions composed of possibly different

types of probability laws [15]. The problem of correctly distinguishing between different regions

in one image has been studied considering different statistical approaches. One approach to

achieve this goal is the use of the hypothesis test, which allows for the computation of differences

in the mean of the amplitude between two separate regions in a given image [3, 15]. In SAR

image processing, this technique can also be considered for identification of land cover type,

land cover change detection or classification, as shown in [80, 81].

2.3.1 Large Data Record Results

Under some mild regularity conditions [82], the MLEs are consistent and asymptoti-

cally (N→ ∞) normally distributed. Thus, for large data record,

β̂ββ a∼Nr
(
βββ ,I−1(βββ )

)
, (2.5)

where a∼ denotes approximately distributed, I(βββ ) is the Fisher information matrix and Nr is the r-

dimensional Gaussian distribution with mean βββ and covariance matrix I−1(β ). Their asymptotic

distribution can be used to construct confidence intervals [75] and hypothesis tests [75].

To obtain the Fisher information matrix we need to calculate the expectation of the

negative value of the second-order partial derivatives of the log-likelihood function [75]. By

applying the chain rule, the second-order derivatives of the `(βββ ) with respect to the βi, i =

1,2, . . . ,r, are given by

∂ 2`(βββ )
∂βi∂βp

=
N

∑
n=1

d
dµ[n]

(
d`[n](µ[n])

d µ[n]
d µ[n]
dη [n]

)
d µ[n]
dη [n]

∂η [n]
∂βp

∂η [n]
∂βi

=
N

∑
n=1

(
∂ 2`[n](µ[n])

∂ µ[n]2
d µ[n]
dη [n]

+
d`[n](µ[n])

d µ[n]
∂

∂ µ[n]

×d µ[n]
dη [n]

)
d µ[n]
dη [n]

∂η [n]
∂βp

∂η [n]
∂βi

, i, p = 1,2, . . . ,r.

Note that taking expectation of (2.3), we have that

E
(

d`[n](µ[n])
d µ[n]

)
= 0.
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In addition,

∂η [n]
∂βp

= xp[n]

and

∂η [n]
∂βi

=xi[n].

Thus,

E
[

∂ 2`(βββ )
∂βi∂βp

]
=

N

∑
n=1

[
E
(

d2 `[n](µ[n])
d µ[n]2

)(
d µ[n]
dη [n]

)2

xp[n]xi[n]

]
.

Now, differentiating (2.3), we obtain

∂ 2`[n](µ[n])
∂ µ[n]2

=
2

µ[n]2
− 3πy[n]2

2µ[n]4
.

Taking the expected value, we have

E
[

d2 `[n](µ[n])
d µ[n]2

]
=− 4

µ[n]2
.

Finally, we have

E
[

∂ 2`(βββ )
∂βi∂βp

]
=

N

∑
n=1

[
− 4

µ[n]2

(
d µ[n]
dη [n]

)2

xp[n]xi[n]

]
.

In matrix form, the Fisher information matrix is given by

I(βββ ) = X> ·W ·X,

where W = diag

{
4

µ[1]2

(
d µ[1]
dη [1]

)2

, 4
µ[2]2

(
d µ[2]
dη [2]

)2

, . . . , 4
µ[N]2

(
d µ[N]

dη [N]

)2
}

. Similar to the

GLM models [73], if X is rank-deficient,
(
X> ·W ·X

)−1 should be replaced by any gener-

alized inverse.

2.3.2 Hypothesis Test

To test hypotheses over the regression parameters, we partition the parameter vector βββ

as (βββ>I ,βββ
>
J )
>, where βββ I is the vector of parameters of interest with dimension ν and βββ J is the

nuisance parameter vector with dimension r−ν . The hypothesis of interest is H0 : βββ I = βββ I0

versus H1 : βββ I 6= βββ I0. Here, βββ I0 is a fixed column vector of dimension ν . The likelihood ratio
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test (TL), the Wald test (TW ), the and Rao test (TR) statistics can be written, respectively, as [4]

TL = 2
[
`(β̂ββ )− `(β̃ββ )

]
,

TW = (β̂ββ I1−βββ I0)
>
([

I−1(β̂ββ 1)
]

βIβI

)−1

(β̂ββ I1−βββ I0),

TR =

(
∂`

∂βββ I

∣∣∣
βββ=β̃ββ

)>([
I−1(β̃ββ )

]
βIβI

)−1( ∂`
∂βββ I

∣∣∣
βββ=β̃ββ

)
,

where β̂ββ I1 and β̂ββ 1 = (β̂ββ
>
I1, β̂ββ

>
J1)
> are the MLEs under H1 (unrestricted MLEs); βββ J0 is a fixed

column vector of dimension r−ν;
[
I−1(β̂ββ )

]
βIβI

is a partition of I(β̂ββ ) limited to the estimates

of interest; β̃ββ = (β̂ββ
>
I0, β̂ββ

>
J0)
> is the MLE under H0; `(β̃ββ ) is the maximized log-likelihood of

the model under H0; and
[
I−1(β̃ββ )

]
βIβI

is a partition of I(β̃ββ ) limited to the estimates of interest.

As suggested in [83] and due to the convenience of the Wald test, since it requires only one

estimation under alternative hypothesis, we selected the Wald test to perform the hypothesis test

on the parameters.

From (2.5) and based on the consistency of the MLE, the TW statistic has an asymptot-

ically chi-squared distribution with ν degrees of freedom, χ2
ν . The detection is performed by

comparing the computed value of TW with a threshold value γ obtained from the χ2
ν distribution

and the desired probability of false alarm [4].

We assume that the mean of the Rayleigh distributed signal presents different values

depending on the ground type. To illustrate, consider a region of forest in an image. The detection

of this type of ground can be obtained by fitting the following Rayleigh regression model

g(µ[n]) = β1 +β2x2[n]+
r

∑
i=3

βixi[n],

where (i) β1 is the intercept; (ii) x2[n] is a binary covariate equal to one if the region consists of

forest and zero otherwise; and (iii) xi[n], i = 3,4, . . . ,r, are any other covariates that can influence

the mean of y. The detection problem is to distinguish between the hypotheses:H0 : µ[n] = g−1(β1 +∑
r
i=3 βixi[n]), (β2 = 0),

H1 : µ[n] = g−1(β1 +β2x2[n]+∑
r
i=3 βixi[n]).

(2.6)

To derive the detector, we can use the Wald test described above. We reject H0 when TW > γ [4].

In this situation, β2 6= 0 and the forest land use is detected. This technique can be considered to

detect any type of ground in SAR images.
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2.4 NUMERICAL RESULTS

This section presents Monte Carlo simulations and an empirical investigation in ground

type detection in SAR images. Monte Carlo simulations were used to evaluate the MLE of

the Rayleigh regression parameters. An application with real SAR data was considered to

demonstrate the proposed detector.

2.4.1 Analysis with Simulated Data

The numerical results are based on the Rayleigh regression model with the structure of

the mean given by (2.2) considering the log link function. The parameters were set as follows:

β1 = 2, β2 = −1, and β3 = 1 for Scenario 1, and β1 = 0.5 and β2 = 0.15 for Scenario 2. The

covariates values were generated from the uniform distribution (0,1) and kept constant in all

Monte Carlo replications. The choice of parameters aims at capturing asymmetric distributions,

i.e., values of skewness higher than zero. In each replication the inversion method was considered

to generate y[n] assuming the Rayleigh distribution with mean µ[n]. The number of Monte

Carlo replications, R, was set equal to 10,000 and the signal lengths considered were N ∈
{25;250;1,000}. The structure of the Monte Carlo simulations is summarized in Algorithm 1.

Algorithm 1: Monte Carlo simulations for evaluation of the Rayleigh regression model
parameter estimators.

Input: Vector of parameter βββ and signal length N.
Output: Results of the desirable figures of merit.

1: Suppose that the observed output signal y[n] follows a distribution fY with parametric
vector βββ ;
2: Generate y[n] from fY (βββ );
3: For each Monte Carlo replication, compute β̂ββ ;
4: Repeat steps 2 and 3 a very large number R of times, obtaining: β̂ββ [1], β̂ββ [2], . . . , β̂ββ [R];
5: Use the estimates β̂ββ [1], β̂ββ [2], . . . , β̂ββ [R], to calculate the desired figures of metric (mean,
relative bias, and mean square error).

We adopted the percentage relative bias (RB%) and the means square error (MSE) as

figures of merit to numerically evaluate the proposed point estimators. Table 1 presents the

simulation results for Scenarios 1 and 2. In general, we notice that the MLE of the Rayleigh

regression model presented small values of percentage relative bias and mean square error. As

expected, increasing N, the percentage relative bias and mean square error present lower values,

which matches the consistence of the MLE.
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Table 1 – Results of the Monte Carlo simulation of the point estimation for Scenarios 1
and 2. In particular, we considered the percentage relative bias (RB%) and the

means square error (MSE) as figures of merit to numerically evaluate the
proposed point estimators
Scenario 1 Scenario 2

Measures β̂1 β̂2 β̂3 β̂1 β̂2

N = 25

Mean 1.9681 −1.0030 1.0040 0.4810 0.1472
RB(%) 1.5972 −0.3004 −0.4045 3.7913 1.8467
MSE 0.0909 0.1564 0.1533 0.0470 0.1421

N = 250

Mean 1.9971 −1.0016 1.0009 0.4984 0.1489
RB(%) 0.1450 −0.1600 −0.0900 0.3200 0.7333
MSE 0.0073 0.0121 0.0126 0.0041 0.0125

N = 1,000

Mean 1.9993 −1.0001 1.0002 0.4995 0.1502
RB(%) 0.0350 −0.0100 −0.0200 0.1000 −0.1333
MSE 0.0017 0.0030 0.0029 0.0010 0.0030

Source: Author (2020)

In Appendix A, we present simulation results for point parameter estimation of the

Rayleigh regression model, in which the parameters were set as: (i) β1 = 0.5, β2 = −0.5,

and β3 = 0.3 for Scenario 3; and (ii) β1 = 0.5, β2 = 0.15, and β3 = 1, for Scenarios 4 and 5.

Additionally, we also present the simulation numerical results of Scenarios 1 and 2 for N ∈
{16;25;49;250;500;1,000}.

2.4.2 Analysis with Real Data

The SAR image considered in this application was produced by CARABAS II [84],

a Swedish ultrawideband (UWB) very-high frequency (VHF) SAR system. The system uses

horizontal (HH) polarization. All information related to the data can be found in [2, 84] and the

images are available in [85]. The ground scene of the selected image is dominated by pine forest,

fences, power lines, military vehicles, and roads; a lake is also present [84].

Figure 1 shows the three different regions representing forest, lake, and military vehicle

imagery; referred to as Regions A1, A2, and A3, respectively. These regions were submitted

to the proposed modeling and detector. The model is specified for the mean of the response

signal using an intercept (x1[n] = 1) and two dummy variables (x2[n] and x3[n]) representing
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each tested region, as

g(µ[n]) = β1 +β2x2[n]+β3x3[n].

The response signal is composed of the amplitude values of the pixels of the Regions A1, A2,

and A3. The variable x2[n] is defined as one for Region A2 and zero for the rest. The variable x3[n]

is defined as one for Region A3 and zero for the others. Region A1 is represented when x2[n] = 0

and x3[n] = 0. In summary, the Rayleigh regression model is fitted in a SAR image following

Algorithm 2.

Algorithm 2: Fitting a Rayleigh regression model in a SAR image.
Input: Amplitude pixel window of a SAR image.
Output: Estimated parameters, fitted values, and residual of the Rayleigh regression

model.
1: Select a window of pixels of each tested region;
2: Create the response signal with the pixels amplitude values of each tested region;
3: Fit the Rayleigh regression model.

For comparison purposes, we also fitted the standard Gaussian regression model, the

GLM with Gamma distribution, and the Weibull regression model [86] to the Regions A1, A2,

and A3. Detection with Gaussian distribution is widely discussed in literature and the Gamma

and Weibull distribution are also used in SAR images, as in [62,87]. The estimated parameters for

the considered models are given in Table 2. In the Rayleigh regression model, the mean response

presents a negative relationship with x2[n] and positive relationship with x3[n]. Additionally, we

notice that the lake and the target regions led to mean responses which are 12.05% lower and

194.00% higher than the mean response from the forest region, respectively.

The R2 values of the fitted models show that the Rayleigh regression model can ex-

plain 70.96% of the variation in y[n], while the Gamma GLM, Gaussian, and Weibull regression

models can explain just 30.09%, 15.28%, and 32.51%, respectively. The Rayleigh regression

model can explain better the variations in y[n] in comparative to Gamma GLM, Weibull, and

Gaussian regression model. Figure 2 presents the residuals of the Rayleigh regression model. As

expected, the residuals present values close to zero for 98.81% of the observations and approx-

imately standard normal distribution (p-value = 0.113 in the Kolmogorov-Smirnov test [88]).

The blue circles in Figure 2a are related to the pixels where the targets were deployed.

It is possible to define a detector for this specific regression model, based on (2.6). The

detection problem in this image is based on computing the difference in the behavior among the
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Figure 1 – CARABAS II single-look image used in the regression models showing the
tested regions. Regions A1, A2, and A3 represent a forest, a lake, and an area

containing military vehicles, respectively.

Source: Author (2020)
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Figure 2 – Residual plots for the Rayleigh regression model. Blue circles are related to
the pixels where targets were deployed.
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tested regions. With the p-values of the Wald test presented in Table 2, we can verify that all

variables in the Rayleigh regression model are significant for a probability of false alarm equal

to 0.05. Hence, the null hypothesis in (2.6) can be rejected, indicating a correct detection of the

land type. In contrast, the variable x2[n] is not significant for the Gamma GLM, Gaussian, and

Weibull regression models, i.e., the Gaussian-, Gamma-, and Weibull-based detections can not

distinguish the lake region from the other regions.

The Rayleigh distribution is a particular case of the Weibull distribution. However, the

definitions of the Rayleigh regression model and the Weibull regression model considered in this

study are different. Our model estimates the observed signal mean, while the employed Weibull

regression model estimates the time to an event of interest, considering survival data. This fact

may explain the results superiority of the Rayleigh regression model in terms of detection. The

sample means of the lake and forest regions are more similar to each other (X forest = 0.1267

and X lake = 0.1148) when compared to the region with the vehicles (Xvehicles = 0.2863). Thus,

distinguishing the mean of the vehicle region is easier, even if the model is not the most suitable
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Table 2 – Fitted regression models for Regions A1, A2, and A3. All variables in the
Rayleigh regression model are significant for a probability of false alarm equal

to 0.05, indicating a correct detection of the land type.
Estimate Standard Error Detection (p-value)

Rayleigh regression model

β̂1 −2.0623 0.0445 < 0.001
β̂2 −0.1280 0.0599 0.0325
β̂3 1.0784 0.0616 < 0.001

R2 = 0.7096

Gaussian regression model

β̂1 0.12683 0.01646 < 0.001
β̂2 −0.01201 0.02213 0.588
β̂3 0.15948 0.02277 < 0.001

R2 = 0.1528

Gamma GLM

β̂1 7.8844 0.5209 < 0.001
β̂2 0.8248 0.7341 0.262
β̂3 −4.3917 0.5657 < 0.001

R2 = 0.3009

Weibull regression model

β̂1 −1.9939 0.0583 < 0.001
β̂2 −0.1157 0.0778 0.1373
β̂3 0.9583 0.0815 < 0.001

R2 = 0.3251

Source: Author (2020)

to the data. Thus, the proposed Rayleigh regression model can be used for detecting differences

in SAR image regions yielding more accurate results when compared to the competing regression

models.

2.5 CONCLUSION

This chapter introduced a new regression model for nonnegative signals. The proposed

Rayleigh regression model assumes that the mean of the Rayleigh distributed signal follows a

regression structure involving covariates, unknown parameters, and a link function. An inference

approach for the model parameters is introduced and diagnostic tools are discussed. We also

presented Fisher information matrix, asymptotic properties of the MLE, and a detector useful
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to detect differences in SAR image regions. In the Monte Carlo simulations, the MLE of the

Rayleigh regression model showed small values of percentage relative bias and mean square

error. An application of the Rayleigh regression model to distinguish between different regions

in a SAR image was presented and discussed, showing more accurate detection results when

compared with the measurements from Gaussian-, Gamma-, and Weibull-based regression

models.
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3 IMPROVED POINT ESTIMATION FOR THE RAYLEIGH REGRESSION

MODEL

Abstract

The Rayleigh regression model was recently proposed for modeling amplitude values of synthetic

aperture radar (SAR) image pixels. However, inferences from such model are based on the

maximum likelihood estimators, which can be biased for small signal lengths. The Rayleigh

regression model for SAR images often take into account small pixel windows, which may

lead to inaccurate results. In this letter, we introduce bias-adjusted estimators tailored for the

Rayleigh regression model and based on: (i) the Cox and Snell’s method; (ii) the Firth’s scheme;

and (iii) the parametric bootstrap method. We present Monte Carlo simulations to evaluate the

performance of the proposed estimators. Numerical results show that the bias-adjusted estimators

yield nearly unbiased estimates.

Keywords: Bias correction, Rayleigh regression model, SAR images, small signal lengths

inferences

3.1 INTRODUCTION

The classical linear regression model is widely employed to estimate an unknown and

deterministic parameter vector assuming the Gaussian distribution [71]. However, practical con-

texts often exhibit non-Gaussian behavior [7]. An alternative to the Gaussian model is provided

by the Rayleigh distribution [89] which is capable of characterizing asymmetric, continuous,

and nonnegative signals, such as the amplitude values of synthetic aperture radar (SAR) image

pixels [14, 16–18, 27, 90–93]. A usual problem in SAR image processing is the classification

and identification of distinct land uses or target regions [3, 15]. Generally, these problems are

treated assuming constant parameters, i.e., assuming homogeneity of the regions. However,

when such assumption is not suitable [72], regression modeling can be considered where each

observation has one specific estimated mean [73]. The Rayleigh regression model was proposed

and discussed in [94], where a methodology for point estimation, large data record results, and

goodness-of-fit measures were presented and discussed in the context of SAR image detection.

Parameter inference based on the Rayleigh regression model can be achieved by means

of the maximum likelihood estimation (MLE), inheriting its good asymptotic properties for large
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signal lengths. However, if the signal length N is small, then the maximum likelihood estimators

present a bias in the order of N−1, which can be regarded as problematic [31, 32]. For instance,

in [94], the detection of different land cover types in SAR images was performed based on pixel

windows of more than 126 pixels. However, if smaller windows, such as 3× 3, are selected

for Rayleigh regression model parameter estimation, then the obtained results can be severely

biased [32].

An approach to address this issue is by means of inferential correction [32]. Three widely

bias-adjusted methods are the Cox and Snell’s [66], Firth’s [67], and parametric bootstrap [68]

schemes. The Cox and Snell’s method is an analytical approach used to obtain second order

corrected estimators for a variety of models, such as the generalized linear models [95], the beta

regression model [96, 97], the overdispersed generalized linear models [98], and the extreme-

value regression model [99]. The Firth’s method is a preventive method [67] of bias reduction

which modify the score function before obtaining parameter estimates based on the analytical

second order biases of the maximum likelihood estimators [67]. The Firth’s method was

considered to obtain bias-adjusted estimators for several models, such as (i) the binomial

regression model [100]; (ii) the multinomial logistic regression model [101]; and (iii) the

Kumaraswamy distribution [102]. Finally, the bootstrap method is a computationally intensive

method based on resampling, being suitable for inferential corrections when N is small [68]. The

bootstrap-based bias-adjusted estimators are considered in the beta regression models [96], in

the Birnbaum-Saunders distribution [103], and in the autoregressive time series [104].

To the best of our knowledge, the literature lacks bias-adjusted estimators for the parame-

ters of the Rayleigh regression model. In this chapter, our chief goal is to obtain accurate point

estimation approaches to address this literature gap.

This chapter is organized as follows. In Section 3.2, we describe the Rayleigh regression

model. Section 3.3 shows the bias correction estimators using both numerical and analytical

correction schemes. Section 3.4 presents Monte Carlo simulations results. Finally, we conclude

this work in Section 3.5.

3.2 THE RAYLEIGH REGRESSION MODEL

The Rayleigh regression model was proposed in [94] and can be defined as follows. Let Y

be a Rayleigh distributed random variable with mean parameter µ . The probability density
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Figure 3 – Rayleigh probability densities functions for µ ∈ {0.5,1,2.5,3.5,5}.
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function of the mean-based Rayleigh distribution is given by [94]

fY (y; µ) =
πy

2µ2 exp
(
−πy2

4µ2

)
, (3.1)

where µ > 0 and y > 0 is the observed signal value. The mean and variance of Y are given,

respectively, by E(Y ) = µ and Var(Y ) = µ2 ( 4
π −1

)
.

The Rayleigh probability density function is very flexible for nonnegative signals, as can

be verified in Figure 3. Additionally, we note that higher mean values imply in lower asymmetry

and kurtosis values.

Let Y [1],Y [2], . . . ,Y [N] be independent random variables, where each Y [n] assumes

values y[n] and follows the Rayleigh density in (3.1) with mean µ[n], n = 1,2, . . . ,N. The

Rayleigh regression model is defined assuming that the mean of the observed output signal Y [n]

can be written as [94]

η [n] = g(µ[n]) =
k

∑
i=1

βixi[n], n = 1,2, . . . ,N,

where k < N is the number of covariates considered in the model, βββ = (β1,β2, . . . ,βk)
> is a

vector of unknown linear parameters, x[n] = (x1[n],x2[n], . . . ,xk[n])> is a vector of independent

input variables, η [n] is the linear predictor, and g : R+→ R is a strictly monotonic and twice

differentiable link function.
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Parameter estimation can be performed using the maximum likelihood method, as dis-

cussed in [94]. The estimated vector β̂ββ is obtained by maximizing the logarithm of the likelihood

function. The log-likelihood function of the parameter vector βββ for the observed signal is

`(βββ ) = ∑
N
n=1 `[n](µ[n]), where

`[n](µ[n]) = log
(π

2

)
+ log(y[n])− log(µ[n]2)− πy[n]2

4µ[n]2
.

The score vector can be written as

U(βββ ) = X> ·T ·v,

where X is an N × r matrix whose nth row is x[n]>, T = diag
{

1
g′(µ[1]) ,

1
g′(µ[2]) , . . . ,

1
g′(µ[N])

}
and v =

(
πy[1]2

2µ[1]3 −
2

µ[1] ,
πy[2]2

2µ[2]3 −
2

µ[2] , . . . ,
πy[N]2

2µ[N]3
− 2

µ[N]

)>
. Finally, the Fisher information matrix

is given by

I(βββ ) = X> ·W ·X,

where W = diag

{
4

µ[1]2

(
dµ[1]
dη [1]

)2

, . . . , 4
µ[N]2

(
dµ[N]

dη [N]

)2
}

. Further mathematical properties,

including large data record results, are detailed in [94].

3.3 BIAS CORRECTION OF MAXIMUM LIKELIHOOD ESTIMATORS

Generally, for small N, maximum likelihood estimators may be biased to their true

parametric values [32]. The bias of the estimator β̂ββ can be expressed as [75]

B(β̂ββ ) = E[β̂ββ ]−βββ .

Cox and Snell’s bias correction formula [66] can be used to obtain the second order bias of

the maximum likelihood estimators, considering the inverse of the Fisher information matrix

and cumulants of log-likelihood derivatives up to third order with respect to the unknown

parameters [31]. The Cox and Snell’s bias correction formula for the ath component of β̂ββ is

given by [66]

B(β̂a) = ∑
r,s,u

κarκsu
{

κ(u)
rs −

1
2

κrsu

}
,

where κrs =E
(

∂ 2`
∂βr∂βs

)
, κ(u)

rs = ∂κrs
∂βu

, κrsu =E
(

∂ 3`
∂βr∂βs∂βu

)
,−κar and−κsu are the (a,r) and (s,u)

elements of the inverse of the Fisher information matrix, respectively. The cumulants obtained
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for the Rayleigh regression model can be found in the Appendix B. The second order bias of β̂ββ

is given by

B(β̂ββ ) = I−1(β̂ββ ) ·X> ·W ·δ ,

where δ is the main diagonal of X · I−1(βββ ) ·X> and

W = diag

[
− 2

µ[n]3

(
d µ[n]
dη [n]

)3

− 2
µ[n]2

(
d µ[n]
dη [n]

)2 ∂
∂ µ[n]

(
d µ[n]
dη [n]

)]
.

Replacing the unknown parameters by their maximum likelihood estimators, we have the

MLE B̂(β̂ββ ) of B(β̂ββ ). Thus, and bias-adjusted estimators can be derived removing B̂(β̂ββ ) of β̂ββ [32].

Hence, corrected estimators based on the Cox and Snell’s method, β̃ββ , are obtained as follows [66]

β̃ββ = β̂ββ − B̂(β̂ββ ). (3.2)

The Firth’s method removes the second-order bias by modifying the original score

function U(βββ ) according to [67]

U∗(βββ ) =U(βββ )− I(βββ ) ·B(β̂ββ ). (3.3)

The roots of the modified score function U∗(βββ ) constitute the corrected estimator β̂ββ
?

according

to the Firth’s method.

In the bootstrap bias correction method, the bias estimation B̂(β̂ββ ) is numerically obtained

through Monte Carlo simulations. A bootstrap estimate of the bias can be obtained by

B̂boot(β̂ββ ) = β̄ββ ∗− β̂ββ , (3.4)

where β̄ββ ∗ = 1
R

R
∑

b=1
β̂ββ b, R is the number of bootstrap replications, and β̂ββ b is the estimated values

of βββ in each bootstrap replication. Thus, the corrected estimator based on the bootstrap method

is given by [68, 105]

β̂ββ
∗
= β̂ββ − B̂boot(β̂ββ ) = β̂ββ − (β̄ββ ∗− β̂ββ ) = 2β̂ββ − β̄ββ ∗.

The above described bias-adjusted estimators share the same asymptotic properties with the

usual maximum likelihood estimators but are less biased for small N [106].
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3.4 NUMERICAL RESULTS

Monte Carlo simulations were employed to evaluate the original maximum likelihood

estimators performance of the Rayleigh regression model parameters and their bias-adjusted

versions. The parameter estimates were obtained by maximizing the log-likelihood function

considering the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method [76] with

analytic first derivatives.

Simulations were performed under two scenarios. Each scenario aimed at captur-

ing asymmetric distributions. For Scenario 1, we selected the following parameters values:

β1 = 0.5, β2 = 0.5, β3 = 1, and covariates generated from the binomial distribution; whereas,

for Scenario 2, we adopted β1 = 2.5, β2 = 1.5, and covariates generated from the Rayleigh dis-

tribution. Considering the adopted parameters, we have for Scenarios 1 and 2, skewness about 4

and 3, respectively. The covariates values were kept constant for all Monte Carlo replications

and the log link function was employed.

The inversion method was used in each replication to generate y[n] assuming the Rayleigh

distribution with mean µ[n]. The number of Monte Carlo and bootstrap replications were set

equal to 5,000 and 1,000, respectively, and the signal lengths considered were N ∈ {9;25;49}.
Such blocklengths are popular choices of window sizes in SAR image processing [93, 107, 108].

The Monte Carlo simulations are summarized in Algorithm 3.

Algorithm 3: Monte Carlo simulations for the bias-adjusted estimators of the Rayleigh
regression model parameters.

Input: Vector of parameter βββ and signal length N.
Output: Results of the desirable figures of merit.

1: Suppose that the observed output signal y[n] follows a distribution fY with parametric
vector βββ ;
2: Generate y[n] from fY (βββ );
3: For each Monte Carlo replication, compute β̂ββ and B̂(β̂ββ );
4: Based on B̂(β̂ββ ), obtain the Cox and Snell’s and Firth’s bias-adjusted estimates;
5: Generate bootstrap samples from fY (β̂ββ ) and compute β̂ββ b;
6: For each bootstrap replication, compute β̂ββ b;
7: Repeat steps 5 and 6 a very large number R of times, obtaining: (β̂ββ b[1], β̂ββ b[2], . . . , β̂ββ b[R]);
8: Obtain the bias-adjusted estimates based on β̄ββ ∗;
9: Repeat steps 2–8 a very large number B of times, obtaining: (β̂ββ [1], β̂ββ [2], . . . , β̂ββ [B]),
(β̃ββ [1], β̃ββ [2], . . . , β̃ββ [B]), (β̂ββ

?
[1], β̂ββ

?
[2], . . . , β̂ββ

?
[B]), and (β̂ββ

∗
[1], β̂ββ

∗
[2], . . . , β̂ββ

∗
[B]);

10: Use the computed estimates to calculate the desired figures of metric (mean, relative
bias, and mean square error).
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The percentage relative bias (RB%) and the root mean squared error (
√

MSE) were

adopted as figures of merit to numerically evaluate the point estimators. Table 3 presents

the simulation results for point estimation of the Rayleigh regression model parameters for

Scenarios 1 and 2. In general, we notice that the maximum likelihood estimators can be strongly

biased for small N. For instance, for Scenario 1 and N = 9, the relative biases of the maximum

likelihood estimators are approximately (in absolute values) 10%, 24%, and 1% for β̂1, β̂2,

and β̂3, respectively. For this same signal length, the relative bias of β̃2, β̂ ?
2 , and β̂ ∗2 are (in

absolute values) 9%, 9%, and 7%, respectively.

The bias-corrected estimators present values closer to the true parameters when compared

to the maximum likelihood estimates and have similar performance in terms of relative bias and

mean square error. Additionally, the root mean square errors of the corrected estimators are

usually smaller than the uncorrected estimators and they decrease when N increase, as expected.

To evaluate the overall performances of the four estimators for each value of N, we

employed the integrated relative bias squared norm (IRBSN) figure of merit [109], which is

defined as

IRBSN =

√√√√1
k

k

∑
i=1

RB(β̂i)2,

where RB(β̂i), i = 1,2, . . . ,k, correspond to the values of RB% of each estimator. The values

of IRBSN for Scenarios 1 and 2 are given in Table 4. The corrected estimators excel in terms of

IRBSN. Additionally, among the evaluated estimators, the ones obtained by the Firth’s method

present the smallest values of IRBSN in five of the six evaluated scenarios.

3.5 CONCLUSIONS

This chapter introduced bias-adjusted estimators for the Rayleigh regression model

parameters. In particular, we employed the Cox and Snell’s, Firth’s, and parametric bootstrap

methods to obtain the corrected estimators. The numerical evaluation of the maximum likelihood

estimators and bias-adjusted estimators was performed considering Monte Carlo simulations. In

general, the discussed bias-adjusted estimators outperformed maximum likelihood estimators

in terms of relative bias and root mean square error; being the estimators based on the Firth’s

method the best performing approach. In conclusion, we recommend the use of corrected

estimators based on the Firth’s method to fit the Rayleigh regression model for small signal

lengths.
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Table 4 – Integrated relative bias squared norm results. Best results are highlighted
MLE Cox and Snell Firth Bootstrap

Scenario 1

N = 9 15.2190 5.2490 5.3378 2.8764

N = 25 8.1747 2.5005 1.3235 2.7960

N = 49 4.1369 0.7834 0.4531 1.0368

Scenario 2

N = 9 2.0670 0.3905 0.2372 0.2910

N = 25 0.9725 0.2473 0.1374 0.2910

N = 49 0.5169 0.0985 0.0666 0.1209

Source: Author (2020)
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4 2D RAYLEIGH AUTOREGRESSIVE MOVING AVERAGE MODEL FOR

CHANGE DETECTION IN SAR IMAGERY

Abstract

Two-dimensional (2D) autoregressive moving average (ARMA) models are commonly applied

to describe real-world image data, usually assuming Gaussian or symmetric noise. However,

real-world data often present signals that are non-Gaussian, presenting asymmetrical distributions

and strictly positive values. In particular, SAR images are known to be well characterized by

the Rayleigh distribution. In this context, this chapter introduces an ARMA model tailored for

2D Rayleigh-distributed data—the 2D RARMA model. The 2D RARMA model is derived and

conditional likelihood inferences are discussed. The proposed model was submitted to extensive

Monte Carlo simulations in order to evaluate the performance of the conditional maximum

likelihood estimators and the proposed change detector in non-Gaussian images. Moreover, in

the context of SAR image processing, two comprehensive numerical experiments were performed

comparing the detection and image modeling results of the proposed model with traditional

2D ARMA models and competing methods in the literature.

Keywords: ARMA modeling, change detection, Rayleigh distribution, SAR images, two-

dimensional models.

4.1 INTRODUCTION

The parametric representation of two-dimensional homogeneous random fields consider-

ing two-dimensional (2D) autoregressive moving average (ARMA) models is frequently adopted

for image processing [34–48, 110], including (i) modeling [110, 111]; (ii) compression [112];

(iii) encoding [113]; and (iv) restoration [114–118]. The 2D ARMA model is an spatial ex-

tension of the classical one-dimensional ARMA model [119], and is often employed in edge

detection [120] and stochastic texture analysis [121].

In particular, the two-dimensional autoregressive first-order model is commonly applied to

describe real-world image data [49, 50], representing different types of textures [34]. Theoretical

details of the two-dimensional autoregressive first-order model, such as properties, correlation

structure, and maximum likelihood estimators of the parameters can be found in [43]. The
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ARMA model is preferable over the autoregressive (AR) and moving average (MA) model, since

it provides more effective models for homogeneous random fields [39, 122]. In fact, ARMA

models can better characterize the power in the spectral domain representation when compared

to AR or MA models [35].

ARMA modeling usually assumes Gaussian or symmetric noise [35, 123]. Indeed, the

Gaussianity hypothesis has been widely considered in statistical signal processing [123], remote

sensing analysis [124, 125], and detection theory [4, 126, 127]. However, actual measured

signals often present non-Gaussian properties [7, 128–130], such as asymmetrical distributions

and strictly positive values. An alternative approach for modeling such type of data is the

use of the Rayleigh distribution [131]. This distribution is considered in signal and image

processing [17, 24–28], being important in the context of synthetic aperture radar (SAR) image

modeling, due to its good characterization of image pixel amplitude values [16–18, 29].

To the best of our knowledge, a two-dimensional ARMA model assuming the Rayleigh

distribution is not present in the literature and this chapter aims at proposing a first treatment

on the topic. Our goal is two-fold. First, we derive a two-dimensional ARMA model for non-

Gaussian data, where the observed signal is asymmetric and strictly positive. For the proposed

model, we introduce parameter estimation, large data record inference, an image modeling tool

based on the derived spatial model estimated parameters, and the quantile residuals. Second,

the proposed detector is based on the control charts of the derived spatial model residuals.

Control charts have been used before in signal processing for wavelet-based shrinkage [132] and

ground type change detection for SAR imagery [133]. The introduced detector was applied to

non-Gaussian SAR image ground type change detection.

This chapter is organized as follows. In Section 4.2, we describe the proposed spatial

model, provide maximum likelihood estimators, and present a hypothesis testing methodology.

Section 4.3 details the introduced image modeling and proposed a ground type change detection

algorithm. Section 4.4 presents Monte Carlo simulations and two empirical analyses of the

derived change detector applied to SAR images. Section 4.5 brings final remarks and concludes

the chapter.
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Figure 4 – The strongly causal region at [n,m]. The evaluated pixel is represented by ⊗
and is the considered neighborhood.

...

   # #

   # #

. . .   ⊗ # # . . .

# # # # #

# # # # #

...

Source: Author (2020)

4.2 THE PROPOSED MODEL

4.2.1 Mathematical Setup

Recently, a regression model [94] and an one-dimensional ARMA model [131] based

on the Rayleigh distribution have been proposed. The Rayleigh ARMA (RARMA) model

introduced in [131] relates the mean of one-dimensional signal to a linear predictor through a

strictly monotonic, twice differentiable link function g(·), where g : R+→ R. The goal of this

section is to extend the one-dimensional model presented in [131] and introduce to the 2D case.

Let Y [n,m], n = 1,2, . . . ,N, m = 1,2, . . . ,M, be a Rayleigh distributed random variable

representing the pixels of an N×M image; and let y[n,m] be the realization of the observed

signal Y [n,m]. Additionally, let S[n,m] = {[k, l] ∈ Z2 : 1≤ k ≤ n,1≤ l ≤ m}−{[n,m]} be the

strongly causal region at [n,m] [34], as illustrated in Figure 4.

Considering the mean-based parametrization of Y [n,m] proposed in [94], we have that

the conditional density of Y [n,m], given S[n,m], is furnished by

fY (y[n,m] | S[n,m]) =
πy[n,m]

2µ[n,m]2
exp
(
−πy[n,m]2

4µ[n,m]2

)
.

The cumulative distribution function is given by

FY (y[n,m] | S[n,m]) = 1− exp
(
−πy[n,m]2

4µ[n,m]2

)
.
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The conditional mean and conditional variance of Y [n,m], given S[n,m], are, respectively, fur-

nished by

E(Y [n,m] | S[n,m]) = µ[n,m],

Var(Y [n,m] | S[n,m]) = µ[n,m]2
(

4
π
−1
)
.

4.2.2 The Model

The proposed 2D Rayleigh autoregressive and moving average model, hereafter referred

to as 2D RARMA, is defined according to

Φ(z1,z2)g(y[n,m]) = β +Θ(z1,z2)e[n,m], (4.1)

where

Φ(z1,z2) =1−
p

∑
i=0

p

∑
j=0

φ(i, j)z−i
1 z− j

2 ,

Θ(z1,z2) =1+
q

∑
k=0

q

∑
l=0

θ(k,l)z−k
1 z−l

2 ,

and β ∈ R is an intercept; the quantities z−i
1 , z− j

2 , z−k
1 , and z−l

2 are the spatial delays; p and q

are the orders of the model; the quantities φ(i, j), i, j = 0,1, . . . , p, and θ(k,l), k, l = 0,1, . . . ,q, are,

respectively, the autoregressive and moving average parameters estimated based on the image

pixels; e[n,m] = g(y[n,m])− g(µ[n,m]) is the moving average error term; and g(µ[n,m]) =

η [n,m] the linear predictor. As suggested in [43], we assume φ(0,0) = θ(0,0) = 0. Replacing the

quantities described above in (4.1), the 2D RARMA (p,q) model can be rewritten as

g(µ[n,m]) =β +
p

∑
i=0

p

∑
j=0

φ(i, j)g(y[n− i,m− j])+
q

∑
k=0

q

∑
l=0

θ(k,l)e[n− k,m− l].

Figure 5 depicts the considered neighbors pixels in a 2D RARMA(1,1) model [34]. As

usual [134], we require that the AR terms be such that the related characteristic polynomial does

not have unit roots and the AR and MA characteristic polynomials possess no common roots.

4.2.3 Conditional Maximum Likelihood Estimation

The estimation of the 2D RARMA(p,q) model parameters can be realized by maxi-

mizing the logarithm of the conditional likelihood function [135]. Let γγγ = (β ,φφφ>,θθθ>)> be

the parameter vector where φφφ = (φ(0,1),φ(0,2), . . . ,φ(p,p))
> and θθθ = (θ(0,1),θ(0,2), . . . ,θ(q,q))>,
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Figure 5 – Example of the neighborhood used in a 2D RARMA(1,1) model. The
evaluated pixel is represented by ⊗ and is the considered neighborhood.

...

# # # # #

#   # #

. . . #  ⊗ # # . . .

# # # # #

# # # # #

...

Source: Author (2020)

with dimensions (p+1)2−1 and (q+1)2−1, respectively. The log-likelihood function for γγγ ,

conditional on the w = max(p,q) preliminary observations, is given by

`(γγγ) =
N

∑
n=w+1

M

∑
m=w+1

log fY (y[n,m] | S[n,m]) =
N

∑
n=w+1

M

∑
m=w+1

`[n,m](µ[n,m]),

where

`[n,m](µ[n,m]) = log
(π

2

)
+ log(y[n,m])− log(µ[n,m]2)− πy[n,m]2

4µ[n,m]2
.

The conditional maximum likelihood estimators (CMLE), γ̂γγ , can be obtained by solving

U(γγγ) =
∂`

∂γγγ>
=

(
∂`
∂β

,
∂`

∂φφφ>
,

∂`
∂θθθ>

,

)>
= 000, (4.2)

where U(γγγ) is the score vector and 000 is the vector of zeros of dimension (p+1)2 +(q+1)2−1.

Computing the derivatives in (4.2), we obtain

∂`
∂γγγ

=
N

∑
n=w+1

M

∑
m=w+1

∂`[n,m](µ[n,m])

∂ µ[n,m]

d µ[n,m]

dη [n,m]

∂η [n,m]

∂γγγ
.

Note that

d`[n,m](µ[n,m])

d µ[n,m]
=

πy[n,m]2

2µ[n,m]3
− 2

µ[n,m]
,

and

d µ[n,m]

dη [n,m]
=

1
g′(µ[n,m])

,
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where g′(·) is the first derivative of the selected link function g(·). Thus, we can write

∂`
∂γγγ

=
N

∑
n=w+1

M

∑
m=w+1

(
πy[n,m]2

2µ[n,m]3
− 2

µ[n,m]

)
1

g′(µ[n,m])

∂η [n,m]

∂γγγ
,

where

∂η [n,m]

∂β
=1−

q

∑
s=0

q

∑
t=0

θ(s,t)
∂η [n− s,m− t]

∂β
,

∂η [n,m]

∂φ(i, j)
=g(y[n− i,m− j])−

q

∑
s=0

q

∑
t=0

θ(s,t)
∂η [n− s,m− t]

∂φ(i, j)
,

∂η [n,m]

∂θ(k,l)
=g(y[n− k,m− l])−g(µ[n− k,m− l])−

q

∑
s=0

q

∑
t=0

θ(s,t)
∂η [n− s,m− t]

∂θ(k,l)
,

for (i, j) ∈ {0,1, . . . , p}2−{(0,0)} and (l,k) ∈ {0,1, . . . ,q}2−{(0,0)} .

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [76] with analytic first deriva-

tives was adopted as the nonlinear optimization algorithm [136] to solve (4.2). The BFGS

method was selected due to its superior performance for non-linear optimization [77]. The

initial values for the constant (β ) and the autoregressive (φφφ ) parameters were derived from the

ordinary least squares estimate associated to the linear regression model. The response vector is

(g(y[w+1,w+1]),g(y[w+1,w+2]), . . . ,g(y[N,M]))> and the covariate matrix is given by
1 g(y[w,w−1]) g(y[w−1,w]) · · · g(y[w− p,w− p])

1 g(y[w,w]) g(y[w,w]) · · · g(y[w− p+1,w− p+1])
...

...
... . . . ...

1 g(y[N,M−1]) g(y[N−1,M]) · · · g(y[N− p,M− p])

 .

As suggested in [131], we set θθθ = 0.

4.2.4 Large Data Record Inference

Based on the consistency of the CMLE and on the asymptotic distribution of γ̂γγ , for large

data record (N→ ∞ and M→ ∞), we have that [75, 82]

γ̂γγ a∼Nu
(
γγγ,I−1(γγγ)

)
,

where a∼ denotes approximately distributed, u = (p + 1)2 + (q + 1)2− 1, and Nu is the u-

dimensional Gaussian distribution with mean γγγ and covariance matrix I−1(γ). The conditional

Fisher information matrix, I(γ), is discussed in detail in the Appendix C.

To derive a hypothesis testing methodology tailored for the 2D RARMA model param-

eters, the likelihood-based detection theory [4, 75] can be considered. Let γγγ be partitioned in
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a parameter vector of interest γγγ I of dimension ν , and a vector of nuisance parameters γγγJ of

dimension [(p+1)2+(q+1)2−1]−ν [4]. In addition, H0 : γγγ I = γγγ I0
is the hypothesis of interest

and H1 : γγγ I 6= γγγ I0
the alternative hypothesis, where γγγ I0

is a fixed column vector of dimension ν .

The likelihood ratio test (TL), Wald test (TW ), the and the Rao test (TR) statistics can be written

as [4]

TL = 2
[
`(γ̂γγ)− `(γ̃γγ)

]
,

TW = (γ̂γγ I1− γγγ I0)
>
([

I−1(γ̂γγ1)
]

γIγI

)−1
(γ̂γγ I1− γγγ I0),

TR =

(
∂`
∂γγγ I

∣∣∣
γγγ=γ̃γγ

)>([
I−1(γ̃γγ)

]
γIγI

)−1
(

∂`
∂γγγ I

∣∣∣
γγγ=γ̃γγ

)
,

where γ̂γγ I1 and γ̂γγ1 = (γ̂γγ>I1, γ̂γγ
>
J1)
> are the CMLEs under H1 (unrestricted MLEs); γγγJ0 is a fixed

column vector of dimension r− ν;
[
I−1(γ̂γγ)

]
γIγI

is a partition of I(γ̂γγ) limited to the estimates

of interest; γ̃γγ = (γ̂γγ>I0, γ̂γγ
>
J0)
> is the MLE under H0; `(γ̂γγ) is the maximized log-likelihood of the

fitted model; `(γ̃γγ) is the maximized log-likelihood of the model under H0; and
[
I−1(γ̃γγ)

]
γIγI

is a partition of I(γ̃γγ) limited to the estimates of interest. As suggested in [83] and due to the

convenience of the Wald test, since it requires only one estimation under alternative hypothesis,

we selected the Wald test to perform the hypothesis test on the parameters. Under H0, the test

statistic, TW , asymptotically follows the chi-square distribution with ν degrees of freedom, χ2
ν [4].

The hypothesis test consists of comparing the computed value of TW with a threshold value, ε ,

which is obtained based on the χ2
ν distribution and the desired probability of false alarm [4].

To test the overall significance of a fitted model, we considered the following hypothesesH0 : γγγ? = 0,

H1 : γγγ? 6= 0,
(4.3)

where γγγ? = (φφφ>,θθθ>)>. Using the Wald test described above, we reject H0 when TW > ε [4].

In this situation, γγγ? 6= 0, indicating that at least some of the autoregressive and moving average

parameters are nonzero and the spatial correlation among the pixels is significant.

4.3 IMAGE MODELING AND CHANGE DETECTION

In this section, we propose an image modeling and change detection tool based on the

proposed 2D RARMA model. For such, we introduce the estimated values of µ[n,m] and present

the residuals of the 2D RARMA model.
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4.3.1 Image Modeling

The modeled image is obtained by applying the estimated values of µ[n,m], µ̂[n,m], in

the 2D RARMA(p,q) model structure, given by (4.1), and evaluating it at γ̂γγ . Therefore, the

fitted signal is given by

µ̂[n,m] =g−1(β̂ +
p

∑
i=0

p

∑
j=0

φ̂(i, j)g(y[n− i,m− j])+
q

∑
k=0

q

∑
l=0

θ̂(k,l)e[n− k,m− l]
)
, (4.4)

where n=w+1,w+2, . . . ,N and m=w+1,w+2, . . . ,M. Hence, similar to the one-dimensional

model, the image border is not included in the modeling process, since the resulting fitted image

has (N−w)× (M−w) pixels.

4.3.2 Change Detector

Residuals can be useful for performing a diagnostic analysis of the fitted model and can

be defined as a function of the observed and predicted values [137, 138]. We employed the

quantile residuals [78], defined as

r[n,m] = Φ
−1 (F(y[n,m] | S[n,m])) ,

where Φ−1 denotes the standard normal quantile function. When the model is correctly fitted,

the residuals are approximately Gaussian distributed with zero mean and unit variance [78, 137].

Large values of r[n,m] can be interpreted as changes in the image behavior. To capture

such variations of the residual values, we adopted the use of control charts. Since the residuals

have approximately unitary variance, the control chart detects an image change if the residual

value is outside the control limit ±L. We adopted L = 3, since it is expected that residuals are

randomly distributed around zero and inside the interval [−3,3], about 99.7% of the observations,

since 2Φ(L)−1|L=3 ≈ 99.7% [132,133]. If the residual value is outside this range, the analyzed

pixel is understood to differ from the expected behavior according to the 2D RARMA model

fitted in the region of interest and, consequently, some change might have occurred.

Notice that the proposed model relies on neighboring pixels from the northwest direction,

as shown in Figure 5. Thus, to take into account the other directions in an omnidirectional

manner, thus ensuring that all surrounding pixels are considered, the 2D RARMA fitting is also

applied to the 90◦, 180◦, and 270◦ rotated region of interest to capture information from the

versions of the southwest, southeast, and northeast directions. Results are combined according

to the morphological union of the resulting binary images.
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To further increase the performance of the proposed change detector, a post-processing

step using mathematical morphological operations, such as erosion, dilation, opening, and

closing operations, can be considered [139]. Such operations aim at (i) removing small spurious

pixel groups which are regarded as noise and (ii) preventing the splitting of the interest targets

into multiple substructures [139]. The resulting data is the detected image. The proposed change

detection method is summarized in Algorithm 4.

Algorithm 4: Change detection method based on the 2D RARMA(p,q) model
Input: Rayleigh distributed image Xinput
Output: Change detection image Xdetected

1) Select region of interest Xselected ⊂ Xinput which change detection is to be tested against.
2) Fit the 2D RARMA(p,q) model for the following images:

X0 = Xselected
Xk = rot90(Xk−1),

for k = 1,2,3, where rot90(·) rotates its argument counterclockwise by 90 degrees.
3) For each resulting fitted image, compute residuals rk[n,m] relative to Xinput.
4) Obtain four binary images as follows
if (rk[n,m]≤−3) or (rk[n,m]≥ 3) then

X̃k[n,m]← 1
else

X̃k[n,m]← 0
end if
for k = 0,1,2,3.

5) Compute binary image from the following pixel-wise Boolean union: X̃←
3⋃

k=0
X̃k.

6) Apply morphological operators as a final post-processing step:
Xdetected← post-processing(X̃).

4.4 NUMERICAL RESULTS

In this section, we aim at evaluating the CMLE of the 2D RARMA model parameters

and assessing the performance of the proposed image modeling and change detector. For such,

the proposed analyses were performed in the context of SAR image processing. We performed

three numerical experiments: (i) a simulated data analysis to assess the proposed estimators and

(ii) two computations aiming at ground type detection based on actual SAR images.

4.4.1 Analysis with Simulated Data

Rayleigh distributed data y[n,m] were generated by the inversion method [140] with

mean given by (4.1) and logarithm link function. We considered simulations under three sce-
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narios: (i) 2D RARMA(1,0) model, (ii) 2D RARMA(2,0) model, and (iii) 2D RARMA(1,1)

model. The parameter values were selected based on estimated values of the 2D RARMA

model parameters from a SAR image forest region acquired by the airbone CARABAS II

system [84], a Swedish ultrawideband (UWB) very-high frequency (VHF) SAR device oper-

ating at horizontal (HH) polarization. Details related to the data can be found in [84]. The

obtained numerical values of the parameters were β = −0.2031, φ(0,1) = 0.4562, φ(1,0) =

0.4523, and φ(1,1) =−0.1054, for the 2D RARMA(1,0) model; β =−0.7528, φ(0,1) = 0.4025,

φ(0,2) =−0.0861, φ(1,0) = 0.3331, φ(1,1) = 0.0390, φ(1,2) =−0.0764, φ(2,0) =−0.0249, φ(2,1) =

−0.0424, and φ(2,2)= 0.0717, for the 2D RARMA(2,0) model; and β = 0.3569, φ(0,1)= 0.2155,

φ(1,0) = 0.2032, φ(1,1) = 0.1500, θ(0,1) = 0.1529, θ(1,0) = 0.1744, and θ(1,1) = 0.1998, for the

2D RARMA(1,1) model. The number of Monte Carlo replications was set to 1,000 and the

sizes of the synthetic images were {10×10;20×20;40×40;80×80}.
In order to numerically evaluate the point estimators, we computed the mean, percentage

relative bias (RB%), and mean square error (MSE) of the CMLE. Tables 5, 6, and 7 present

the simulation results for 2D RARMA(1,0), 2D RARMA(2,0), and 2D RARMA(1,1) models,

respectively. As expected, both bias and MSE figures improve when larger images are consid-

ered. This behavior is in agreement with the asymptotic property (consistency) of the CMLE.

Convergence failures were absent for all considered scenarios. In contrast to the traditional

2D ARMA model, the proposed model avoids the estimation problem of the MA parameters, as

discussed in [35,141]. The proposed model estimates the AR and MA terms simultaneously; and

φ̂φφ and θ̂θθ present closer values of RB(%) for all considered synthetic images. The image size of

40×40 was sufficiently large for accurate inference in 2D RARMA(1,0) model, i.e., MSE and

RB(%) values close to zero. On the other hand, the 2D RARMA(1,1) model shows accurate

inference results for an image size of 80×80 pixels. The evaluated 2D RARMA(1,1) scenario

presents positive percentage relative bias for the AR estimated parameters. On the other hand,

the MA estimated parameters have negative values of relative bias. The Monte Carlo simulations

are summarized in Algorithm 5.

To evaluate the performance of the ground type change detection proposed Algorithm 4

in a synthetic image, we generated an image according to the 2D RARMA(1,0) model described

above; the synthetic image is shown in 6a. We added three white rectangles that are the changes

to be detected in the synthetic image. Hence, rectangle regions are expected to trigger a detection,

suggesting a ground type change. In the post-processing step in Algorithm 4, we considered

two mathematical morphology steps, namely, closing and opening operations. The dilation
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Algorithm 5: Monte Carlo simulations for evaluation of the 2D RARMA(p,q) model
parameter estimators.

Input: Vector of parameter γγγ and signal length N.
Output: Results of the desirable figures of merit.

1: Suppose that the observed image y[n] follows a distribution fY with parametric vector γγγ;
2: Generate y[n] from fY (γγγ);
3: For each Monte Carlo replication, compute γ̂γγ;
4: Repeat steps 2 and 3 a very large number R of times, obtaining: γ̂γγ[1], γ̂γγ[2], . . . , γ̂γγ[R];
5: Use the estimates γ̂γγ[1], γ̂γγ[2], . . . , γ̂γγ[R], to calculate the desired measures (mean, bias,
confidence intervals, and mean square error).

Table 5 – Simulation results on point estimation of the 2D RARMA(1,0) model
Measures Mean RB(%) MSE

N = M = 10

β̂ −0.2629 29.4370 0.0244
φ̂(0,1) 0.4385 −3.8767 0.0071
φ̂(1,0) 0.4339 −4.0692 0.0073
φ̂(1,1) −0.0998 −5.2979 0.0081

N = M = 20

β̂ −0.2160 6.3468 0.0051
φ̂(0,1) 0.4523 −0.8514 0.0014
φ̂(1,0) 0.4492 −0.6841 0.0014
φ̂(1,1) −0.1053 −0.0223 0.0016

N = M = 40

β̂ −0.2063 1.5865 0.0012
φ̂(0,1) 0.4551 −0.2409 0.0003
φ̂(1,0) 0.4514 −0.2021 0.0003
φ̂(1,1) −0.1049 −0.4706 0.0004

N = M = 80

β̂ −0.2043 0.6020 0.0003
φ̂(0,1) 0.4560 −0.0464 0.0001
φ̂(1,0) 0.45164 −0.1504 0.0001
φ̂(1,1) −0.1052 −0.1450 0.0001

Source: Author (2020)
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Table 6 – Simulation results on point estimation of the 2D RARMA(2,0) model
Measures Mean RB(%) MSE

N = M = 10

β̂ −0.9386 24.6750 0.2104
φ̂(0,1) 0.3903 −3.0300 0.0123
φ̂(0,2) −0.1002 16.3707 0.0114
φ̂(1,0) 0.3197 −4.0359 0.0130
φ̂(1,1) 0.0335 −14.1328 0.0155
φ̂(1,2) −0.0694 −9.2135 0.0126
φ̂(2,0) −0.0469 88.5405 0.0118
φ̂(2,1) −0.0362 −14.6376 0.0135
φ̂(2,2) 0.0590 −17.6877 0.0123

N = M = 20

β̂ −0.7879 4.6637 0.0287
φ̂(0,1) 0.4011 −0.3541 0.0020
φ̂(0,2) −0.0872 1.2690 0.0018
φ̂(1,0) 0.3307 −0.7331 0.0019
φ̂(1,1) 0.0363 −6.9410 0.0025
φ̂(1,2) −0.0754 −1.2448 0.0021
φ̂(2,0) −0.0279 12.0074 0.0019
φ̂(2,1) −0.0408 −3.7711 0.0022
φ̂(2,2) 0.0674 −6.0087 0.0019

N = M = 40

β̂ −0.7586 0.7675 0.0057
φ̂(0,1) 0.4023 −0.0443 0.0004
φ̂(0,2) −0.0858 −0.3960 0.0004
φ̂(1,0) 0.3321 −0.2947 0.0004
φ̂(1,1) 0.0388 −0.4656 0.0006
φ̂(1,2) −0.0762 −0.2910 0.0005
φ̂(2,0) −0.0248 −0.2843 0.0004
φ̂(2,1) −0.0422 −0.4756 0.0005
φ̂(2,2) 0.0705 −1.6577 0.0004

N = M = 80

β̂ −0.7540 0.1607 0.0015
φ̂(0,1) 0.4026 0.0281 0.0001
φ̂(0,2) −0.0862 0.1668 0.0001
φ̂(1,0) 0.3333 0.0707 0.0001
φ̂(1,1) 0.0384 −1.5823 0.0001
φ̂(1,2) −0.0763 −0.1536 0.0001
φ̂(2,0) −0.0251 0.8129 0.0001
φ̂(2,1) −0.0421 −0.7604 0.0001
φ̂(2,2) 0.0715 −0.2946 0.0001

Source: Author (2020)
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Table 7 – Simulation results on point estimation of the 2D RARMA(1,1) model
Measures Mean RB(%) MSE

N = M = 10

β̂ 0.2834 −20.5927 0.0223
φ̂(0,1) 0.2278 5.7302 0.0405
φ̂(1,0) 0.2266 11.5074 0.0388
φ̂(1,1) 0.1758 17.1830 0.0483
θ̂(0,1) 0.1371 −10.3477 0.0583
θ̂(1,0) 0.1413 −18.9945 0.0604
θ̂(1,1) 0.1582 −20.8355 0.0493

N = M = 20

β̂ 0.3312 −7.2026 0.0036
φ̂(0,1) 0.2246 4.2177 0.0078
φ̂(1,0) 0.2124 4.5210 0.0081
φ̂(1,1) 0.1689 12.6150 0.0095
θ̂(0,1) 0.1428 −6.5797 0.0090
θ̂(1,0) 0.1673 −4.0788 0.0089
θ̂(1,1) 0.1753 −12.2650 0.0061

N = M = 40

β̂ 0.3456 −3.1658 0.0009
φ̂(0,1) 0.2195 1.8514 0.0018
φ̂(1,0) 0.2077 2.2177 0.0019
φ̂(1,1) 0.1610 7.3560 0.0023
θ̂(0,1) 0.1499 −1.9723 0.0020
θ̂(1,0) 0.1711 −1.9205 0.0020
θ̂(1,1) 0.1878 −5.9962 0.0013

N = M = 80

β̂ 0.3514 −1.5381 0.0002
φ̂(0,1) 0.2184 1.3555 0.0005
φ̂(1,0) 0.2059 1.3082 0.0005
φ̂(1,1) 0.1549 3.2791 0.0006
θ̂(0,1) 0.1503 −1.7221 0.0005
θ̂(1,0) 0.1717 −1.5643 0.0005
θ̂(1,1) 0.1932 −3.3146 0.0003

Source: Author (2020)
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Figure 6 – Synthetic and detected image based on the 2D RARMA(1,0) model. The white
rectangles are related to the changes.

(a) Synthetic image

(b) Detected image

Source: Author (2020)

considered in both steps used a 10× 10 pixel square structuring element, since the evaluated

areas are bigger than 10× 10 pixels. Figure 6b presents the change detection results. Our

proposed model detected the three targets and no one false alarm, validating the proposed change

detector in a synthetic image.



61

4.4.2 Analysis with Real Data

4.4.2.1 CARABAS II

The SAR image considered in this experiment was collected by the CARABAS II system

described in the previous subsection. The ground scene of the selected image is dominated by

pine forest, a lake, and 25 military vehicles [84]. The forest and lake regions characterize most

of the image area and they follow a homogeneous pattern. The military vehicles deployed in

the SAR scene [84] introduce more representative behavior changing when compared to the

forest and lake regions. For instance, the sample mean value of forest, lake and military vehicles

areas are about 0.1267, 0.1148, and 0.2863, respectively, i.e., the sample mean value of military

vehicles region is roughly three times the forest and lake regions. Thus, only changes related to

the target areas are expected. The considered SAR image in this experiment is shown in Figure 7.

The model selection was based on an exhaustive search aiming at the maximization of

detection results. The search space was restricted to models with (p,q) ∈ {0,1,2} and the size

of the considered region of interest was N = M ∈ {10,20,40,80}. As a result, we obtained the

following optimal parameters: (i) p = q = 1 and (ii) N = M = 80. The selected region of interest

in this section was forest, as presented in Figure 8. For the post-processing step, we followed

the methodology defined in [84], where we considered two morphology operations, namely, an

opening operation followed by a dilation. The opening uses a 3× 3 pixel square structuring

element, whose size is determined by the system resolution; the dilation considers a 7×7 pixel

structuring element which is linked to the approximate size of the military vehicles. Table 8

shows the estimated parameters for each rotated image, as described in the second step of the

Algorithm 4. The neighborhood considered for each rotated image is shown in Figure 9. The

Wald test p-value can be found in Table 8, showing that the spatial autocorrelation is significant

for a probability of false alarm equal to 0.05.

Figures 10 and 11 show the residual and detected images for the four rotated images,

respectively; the binary image from the pixel-wise Boolean union is presented in Figure 12.

For comparison purposes, we also obtained the detection results based on the 2D ARMA(1,1)

model. Detection results for both 2D RARMA(1,1) and 2D ARMA(1,1) models can be found

in Figures 13a and 13b, respectively. The proposed method detected 24 military vehicles and

five false alarms. In contrast, the 2D ARMA(1,1) model can only detect 16 military vehicles

and two false alarms.
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Figure 7 – Original CARABAS II SAR image.

Source: Author (2020)

We also compared the proposed methodology with three different competing approaches:

(i) constant false alarm rate filtering combined with likelihood ratio test assuming the Gaussian

distribution [84], (ii) a statistical hypothesis test for wavelength-resolution incoherent SAR

change detection based on the bivariate gamma distribution [62]; and (iii) a statistical hypothesis

test considering the bivariate Gaussian distribution [1]. Differently from the above methods, our

detection scheme requires only one input image for analysis; whereas two images are demanded

in [84], [62], respectively, and three, in [1]. Despite requiring much less assumptions and

data information (only one image scene look vs several image scene looks) when compared

to [1,62,84], the proposed 2D RARMA(1,1) model performance was very close to the competing
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Figure 8 – Original CARABAS II SAR image, region of interest, and the neighborhood
considered to fit the 2D RARMA model.

Source: Author (2020)

Table 8 – Estimated parameters and p-values of the 2D RARMA(1,1) model for the SAR
image of HH associated polarization channel

Rotated Image

Northwest Southwest Southeast Northeast

β̂ −1.2274 −1.1146 −1.1986 −1.2076
φ̂(0,1) 0.1723 0.1659 0.2218 0.1912
φ̂(1,0) 0.1526 0.2206 0.1572 0.1616
φ̂(1,1) 0.0675 0.0512 0.0294 0.0387
θ̂(0,1) 0.1773 0.1263 0.1305 0.1127
θ̂(1,0) 0.1646 0.1208 0.1808 0.1685
θ̂(1,1) 0.1935 −0.0691 0.2064 −0.0461

p-value < 0.001 0.0012 < 0.001 0.001

Source: Author (2020)
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Figure 9 – The neighborhood considered for each rotated image.
...
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...

(c) Northeast

Source: Author (2020)

methods: only one less detection hit; and 3 to 5 more false alarms.

To further compare the image modeling performance of the evaluated models, we em-

ployed two traditional figures of merit: the mean square error (MSE) [142] and the mean absolute

percentage error (MAPE) [142], which can be defined as follows

MSE =
1

N ·M
N

∑
n=1

M

∑
m=1

(y[n,m]− µ̂[n,m])2,

MAPE =
1

N ·M
N

∑
n=1

M

∑
m=1

|y[n,m]− µ̂[n,m]|
|y[n,m]| .

The quality adjustment measures are expected to be as close to zero as possible. Table 9 summa-

rizes the results of the quality adjustment measures for 2D RARMA(1,1) and 2D ARMA(1,1)

models. The 2D RARMA(1,1) model excels in terms of MSE and MAPE measures.
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Figure 10 – Residual images of the four considered neighborhoods.

(a) Northwest (b) Southwest

(c) Southeast (d) Northeast

Source: Author (2020)

Table 9 – Measures of quality of the fitted CARABAS II SAR image based on
2D RARMA(1,1) and 2D ARMA(1,1) models

Model

2D RARMA(1,1) 2D ARMA(1,1)

MSE 0.0562 0.1241
MAPE 0.4277 0.7499

Source: Author (2020)
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Figure 11 – Detected images of the four considered neighborhoods.

(a) Northwest (b) Southwest

(c) Southeast (d) Northeast

Source: Author (2020)
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Figure 12 – Detected image based on the four considered neighborhoods.

Source: Author (2020)

4.4.2.2 San Francisco Bay

The considered SAR image considered in this section is the San Francisco Bay, obtained

by the AIRSAR sensor with four looks [15]. Figure 14 shows the amplitude data of the 200×350

San Francisco Bay image associated to the HH polarization channel. The ground scene of the

evaluated image is dominated by ocean (dark ground–top and left part of the image), forest (gray

ground), and urban area (light ground–bottom) [143].

To perform the ground type change detection in the San Francisco SAR image, we set the

following parameters in Algorithm 4 adopting the same methodology described in the previous

subsection. We have that (i) p = 1 and q = 0; (ii) N = M = 40. The region of interest in this

section is linked to the ocean area. Hence, non-ocean regions (forest and urban areas) are

expected to trigger a detection, suggesting a ground type change. In the post-processing step,

we considered two mathematical morphology steps, namely, closing and opening operations.

The dilation considered in both steps used a 10×10 pixel square structuring element, since the

evaluated areas are bigger than 10×10 pixels. Figures 15 and 16 show the residual and detected

images for the four rotated images, respectively.

Because q= 0, we have that θθθ = 0, and therefore, γγγ? = (φφφ>,0>)> in (4.3). The estimated

parameters for each rotated image, as described in the second step of the Algorithm 4, are shown

in Table 10. The p-values of the Wald test are also reported in Table 10, indicating that the



68

Figure 13 – Detected image based on 2D RARMA(1,0) and 2D ARMA(1,0) models. The
white dots are the detected pixels. The proposed method detected 24 military
vehicles while the 2D ARMA(1,1) model can only detect 16 military vehicles.

(a) 2D RARMA(1,0) model

(b) 2D ARMA(1,0) model

Source: Author (2020)
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Figure 14 – Original San Francisco SAR image HH associated polarization channel.

Source: Author (2020)

Table 10 – Estimated parameters and p-values of the 2D RARMA(1,0) model for the
SAR image of HH associated polarization channel

Fit

Northwest Southwest Southeast Northeast

β̂ −1.2078 −1.1879 −1.2109 −1.1095
φ̂(0,1) 0.1408 0.4388 0.1516 0.4350
φ̂(1,0) 0.4412 0.1236 0.4389 0.1608
φ̂(1,1) −0.0023 0.0247 −0.0071 0.0238

p-value < 0.001 < 0.001 < 0.001 < 0.001

Source: Author (2020)

spatial autocorrelation is significant for a probability of false alarm equal to 0.05.

The ground type detection results can be found in Figure 17. Detection results were

compared to the ones based on the 2D ARMA(1,0). The results for the detectors base on the

2D RARMA and 2D ARMA can be found in Figures 17a and 17b, respectively. Both evaluated

detectors identified the difference among the ocean ground type from the urban and forest areas

in the tested SAR image, excepted for the area highlighted by the blue circle in Figure 17b. The

original San Francisco and detected images related to horizontal and vertical (HV) and vertical

(VV) polarization channels can be found in Appendix D. Both evaluated detectors identified

the difference among the ocean ground type from the urban and forest areas in the tested SAR

image HV associated polarization channel. On the other hand, in the image associated to the

VV channel, the proposed detection method can not distinguish the ocean ground type from
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Figure 15 – Residual images of the four considered neighborhoods.

(a) Northwest

(b) Southwest

(c) Southeast

(d) Northeast

Source: Author (2020)
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Figure 16 – Detected images of the four considered neighborhoods.

(a) Northwest

(b) Southwest

(c) Southeast

(d) Northeast

Source: Author (2020)
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Table 11 – Measures of quality of the fitted San Francisco SAR image based on
2D RARMA(1,0) and 2D ARMA(1,0) models

Model

2D RARMA(1,0) 2D ARMA(1,0)

MSE 0.2255 0.3191
MAPE 0.3405 0.9711

Source: Author (2020)

the forest area, while the Gaussian-based detector can not distinguish the ocean ground type

from the forest and urban areas. These results may be related to the fact that the SAR image

VV associated polarization channel has more noise in the ocean area when compared to the

HH and HV polarization channels. Finally, we computed the MSE and MAPE figures of merit

to evaluate the fitted image. The 2D RARMA(1,0) model outperforms the alternative model

in term of MSE and MAPE measures, as can be verified in Table 11. This experiment shows

the resilience of the proposed change detection algorithm, since it presented reliable results of

ground type change detection and modeling in an multi-look image.

4.5 CONCLUSIONS

In this chapter, we proposed the 2D RARMA model and derived an image change

detector considering residual-based control charts. We introduced an inference approach for

the model parameters, the conditional Fisher information matrix, and the asymptotic properties

of the CMLE. Monte Carlo simulations were used to evaluate the performance of the CMLE.

The proposed model was applied for ground type change detection in SAR images, showing

competitive results when compared to 2D ARMA models. Moreover, although the proposed

approach requires much less information when compared to [1,62,84], it offered detection results

very close to the figures reported in [1, 62, 84] for the CARABAS II SAR image. The proposed

model is presented as a suitable tool for image modeling and change detection in the context of

Rayleigh distributed data, in general, and SAR image processing, in particular.
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Figure 17 – Detected image associated to the HH polarization channel based on the
2D RARMA(1,0) and 2D ARMA(1,0) models. The white area is related to

the detected changes and the blue circle is linked to the difference in the
detection results.

(a) 2D RARMA(1,0) model]

(b) 2D ARMA(1,0) model

Source: Author (2020)
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5 SIGNAL DETECTION BASED ON THE BETA BINOMIAL AUTOREGRESSIVE

MOVING AVERAGE MODEL

Abstract

This chapter proposes the beta binomial autoregressive moving average model (BBARMA)

for detection in digital signals. The BBARMA model estimates the mean of a beta binomial

distributed variable observed over the time by a dynamic structure including: (i) autoregressive

and moving average terms; (ii) a set of regressors; and (iii) a link function. Besides introducing

the new model, we develop parameter estimation and detection tools. In particular, we provide

closed-form expressions for the conditional information matrix. The proposed model was

submitted to extensive Monte Carlo simulations in order to evaluate the performance of the

conditional maximum likelihood estimators and of the proposed detector. The proposed detector

outperforms the usual ARMA- and Gaussian-based detectors for sinusoidal signal detection.

Keywords: ARMA filter, beta binomial distribution, detection, digital signal, time series.

5.1 INTRODUCTION

Signal detection is a fundamental task in the field of signal processing, being pivotal for

decision making and information extraction [4]. Over the years, several detection methods have

been developed assuming additive Gaussian noise [4–6,126,127,144–156], with decision criteria

based on continuous-time waveforms [4]. In contrast, real-world data often present non-Gaussian

signals [7, 128–130] and the Gaussianity assumption may not be enough to model several

practical contexts, as illustrated in [155–163]. Furthermore, signal processing systems operate

under quantized discrete-time sampled data. Quantized discrete-time signals—here referred

to as ‘digital signals’—constitute a clear example of non-Gaussian data and their estimation

and detection have been attracting attention over the past years [86, 126, 156, 164–179]. For

instance, in [180], the authors examine signal detection and scale estimation from unlabeled

quantized samples. Quantizer design for weak-signal detection under arbitrary binary channel

in generalized Gaussian noise is studied in [156]. In [169], the detection problem of sparse

stochastic signals with quantized measurements is addressed. A maximum likelihood detector

for quantized pulse-amplitude modulation signal is proposed in [171]. An investigation on the
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effects of data quantization in constant false alarm rate signal detection is discussed in [172].

The performance degradation from one-bit quantized detection is discussed in [126].

Quantized signals represent data according to a finite number of discrete values observed

over time (e.g., 256 amplitude levels in 8-bit quantization) [13, 51, 56, 181]. Thus, the applica-

tion of Gaussian-based detectors and hypothesis tests to non-Gaussian processes may lead to

suboptimal or erroneous detectors [148, 182]. Although unsatisfactory, a better approach is to

consider a data transformation that maps the measured signal from its original distribution into

the Gaussian distribution [83]. This method might offer limited results because the transformed

data should be interpreted in terms of the transformed signal mean, not in terms of the measured

data mean [83, 183, 184].

In this context, the beta binomial distribution offers another way to model the mean of

quantized discrete-time signals. The beta binomial distribution has been used over the years

to model bounded discrete values [52–55], arising as a natural candidate for digital signals

modeling. Nevertheless, to the best of our knowledge, a time series model based on the beta

binomial distribution capable of addressing the detection problem for digital signal is absent in

the literature. In other words, we are pursuing models and detection methods under the following

hypothesis: (i) the measured data is quantized, (ii) the data follow a beta binomial distribution,

and (iii) outliers are not present.

Our goal is twofold. First, we introduce a time series model for quantized amplitude

data, which estimates the mean of beta binomial distributed signals. The sought model consists

of autoregressive and moving average terms, a set of regressors, and a link function. For

the proposed beta binomial autoregressive moving average (BBARMA) model, we introduce

parameter estimation and the conditional observed information matrix. Second, we present a

signal detector based on the asymptotic properties of the sought model parameter estimators.

The proposed detector is suitable for identifying the presence of particular signals from beta

binomial distributed quantized measured data.

The chapter is organized as follows. In Section 5.2, we provide the mathematical

formalism of the derived model. Section 5.3 shows the proposed detection theory, presenting

the conditional observed information matrix, a hypothesis test, and the implied signal detector.

Section 5.4 presents Monte Carlo simulations for evaluating the derived conditional maximum

likelihood and assessing the performance of the proposed detector for simulated digital signals.

Finally, Section 5.5 concludes the work.
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5.2 THE PROPOSED MODEL

The beta binomial model was proposed in [185], but the idea of this distribution goes

back to E. Pearson [186]. The beta binomial distribution is a composition of the beta and the

binomial distribution, where the variable of interest, Y , is a random variable with binomial

distribution, where the probability of success follows a beta distribution [187]. The beta binomial

probability function (pf) is given by [188]

pY (y;K,a,b) =
Γ(a+b)Γ(K +1)

Γ(a)Γ(b)Γ(y+1)Γ(K− y+1)
Γ(a+ y)Γ(K− y+b)

Γ(K +a+b)
,

where a,b are strictly positive numbers, Γ(·) is the gamma function [189], and K is a positive

integer. The quantity y = 0,1,2, . . . ,K can be interpreted as an observed signal value and K, as

its maximum value. The mean and the variance of Y are, respectively,

E(Y ) =
a

a+b
K,

Var(Y ) =
ab

(a+b)2(a+b+1)
(
K2 +(a+b)K

)
,

where µ = a/(a+ b) which can be understood as the mean of Y/K. In the next section, we

introduce a dynamic model to fit the mean parameter.

5.2.1 Time Series Model

In order to define the BBARMA model, we consider a new parameterization in the beta

binomial distribution based on (i) a precision parameter, ϕ , and (ii) the quantity µ . The proposed

parameters satisfy the following relations: a = µϕ and b = (1−µ)ϕ .

Let {Y [n]}n∈Z be a stochastic process, where each Y [n] assumes values y[n] between zero

and K. Let F [n] be the sigma-field generated by past observations {. . . ,y[n−2],y[n−1],y[n]}.
Assume that, conditionally to the previous information set F [n− 1], each Y [n] is distributed

according to the beta binomial distribution with parameters µ[n] and ϕ , where µ[n] is the

conditional mean of Y [n]/K. The conditional probability function of Y [n] given F [n− 1] is

defined as

fY (y[n] |F [n−1]) =
Γ(K +1)

Γ(y[n]+1)Γ(K− y[n]+1)

· Γ(ϕ)Γ(y[n]+µ[n]ϕ)Γ(K− y[n]+ (1−µ[n])ϕ)
Γ(K +ϕ)Γ(µ[n]ϕ)Γ((1−µ[n])ϕ)

.
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The conditional mean and conditional variance of Y [n], given F [n−1], are respectively given by

E(Y [n] |F [n−1]) = µ[n]K,

Var(Y [n] |F [n−1]) = (µ[n]−µ[n]2)K
K +ϕ
1+ϕ

.

The beta binomial probability function is very flexible, as shown in Figure 18. For

small values of ϕ , the beta binomial distribution can present decreasing, increasing-decreasing,

and upside-down bathtub shapes. On the other hand, for large values of ϕ , the beta binomial

distribution accommodates more symmetric distributions, i.e., data around the mean.

Similar to generalized linear models (GLM) [73], the generalized autoregressive mov-

ing average (GARMA) models [190], and the beta autoregressive moving average (βARMA)

model [191, 192], the BBARMA model relates the mean µ[n] to one linear predictor, η [n] [73].

This relation is based on a strictly monotonic and twice differentiable function, g(·), called link

function [73]. Popular choices for the link functions are the logit [193], the probit [73], and the

complementary log-log [190, 191, 193], defined, respectively, as [32]

Logit: g(µ[n]) = log
(

µ[n]
1−µ[n]

)
,

Probit: g(µ[n]) =Φ
−1 (µ[n]) ,

Complementary log-log: g(µ[n]) = log{− log(1−µ[n])},

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Following the GLM mathematical formalism [73], we have that

g(µ[n]) = η [n] = x>[n]βββ ,

where βββ = (β1,β2, . . . ,βl)
> is the set of unknown parameters and x[n] = (x1[n],x2[n], . . . ,xl[n])>,

n = 1,2, . . . ,N, is the vector of the covariates with l < N. Therefore, similar to the GARMA and

βARMA model, a dynamical general model for µ[n] is given by [190]

g(µ[n]) = η [n] = x>[n]βββ + τττ[n],

where

τττ[n] =
p

∑
i=1

φiA (y[n− i])+
q

∑
j=1

θ jM (y[n− j],µ[n− j]), (5.1)

where p and q are the orders of the model; and the autoregressive and moving average terms

are represented by the functions A (·) and M (·), respectively. The quantities φi, i = 1,2, . . . , p,



78

Figure 18 – Beta binomial probability functions for different values of µ and (a) ϕ = 4,
(b) ϕ = 100.
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and θ j, j = 1,2, . . . ,q, are the autoregressive and moving average parameters, respectively. By

including an intercept ζ ∈ R, we extend the model described in (5.1), yielding

g(µ[n]) = η [n] = ζ +x>[n]βββ +
p

∑
i=1

φiy?[n− i]+
q

∑
j=1

θ j{y?[n− j]−µ[n− j]}, (5.2)

where y?[n] = y[n]/K is the scaled observed signal to ensure its values at the same range of µ[n].

5.2.2 Conditional Likelihood Estimation

The estimation of BBARMA(p,q) model parameters can be realized by maximiz-

ing the logarithm of the conditional likelihood function [135, 190]. Let the vector parame-

ters be γγγ = (ζ ,βββ>,φφφ>,θθθ>,ϕ)>, with βββ = (β1,β2, . . . ,βl)
>, φφφ = (φ1,φ2, . . . ,φp)

>, and θθθ =

(θ1,θ2, . . . ,θq)
>. The log-likelihood function for the parameter vector γγγ conditional to the m =

max(p,q) preliminary observations is given by

`=
N

∑
n=m+1

log fY (y[n] |F [n−1]) =
N

∑
n=m+1

`[n](µ[n],ϕ), (5.3)

where

`[n](µ[n],ϕ) = logΓ(K +1)− logΓ(y[n]+1)+ logΓ(ϕ)− logΓ(K− y[n]+1)− logΓ(µ[n]ϕ)

+ logΓ(y[n]+µ[n]ϕ)− logΓ(K +ϕ)

+ logΓ(K− y[n]+ (1−µ[n])ϕ)− logΓ((1−µ[n])ϕ)+ logΓ(ϕ).

The conditional maximum likelihood estimators (CMLE), γ̂γγ , can be obtained from the score

vector U(γγγ) by solving

U(γγγ) =
∂`

∂γγγ>
=

(
∂`
∂ζ

,
∂`

∂βββ>
,

∂`
∂φφφ>

,
∂`

∂θθθ>
,

∂`
∂ϕ

)>
= 000, (5.4)

where 000 is a vector of zeros with dimension p+ q+ l + 2. By the chain rule, for γ j 6= ϕ ,

j = 1,2, . . . , p+q+ l +1, we have

∂`
∂γ j

=
N

∑
n=m+1

∂`[n](µ[n],ϕ)
∂ µ[n]

d µ[n]
dη [n]

∂η [n]
∂γ j

.

Note that

∂`[n](µ[n],ϕ)
∂ µ[n]

=ϕϒ[n],

where

ϒ[n] = ϕ [ψ (y[n]+µ[n]ϕ)−ψ (K− y[n]+ (1−µ[n])ϕ) −ψ (µ[n]ϕ)+ψ ((1−µ[n])ϕ)] ,
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and

d µ[n]
dη [n]

=
1

g′(µ[n])
,

where ψ(·) is the digamma function, i.e., ψ(z) = dlogΓ(z)
dz , for z> 0, and g′(·) is the first derivative

of the link function g(·). In particular, for the logit link function, g(µ[n]) = log
(

µ[n]
1−µ[n]

)
, we

have g′(µ[n]) = (µ[n](1−µ[n]))−1.

Additionally, similar to the βARMA model [192], we have

∂η [n]
∂ζ

= 1−
q

∑
s=1

θs
1

g′(µ[n− s])
∂η [n− s]

∂ζ
,

∂η [n]
∂βk

= x>[n]−
q

∑
s=1

θs
1

g′(µ[n− s])
∂η [n− s]

∂βk
,

∂η [n]
∂φi

= y?[n− i]−
q

∑
s=1

θs
1

g′(µ[n− s])
∂η [n− s]

∂φi
,

∂η [n]
∂θ j

= y?[n− j]−µ[n− j]−
q

∑
s=1

θs
1

g′(µ[n− s])
∂η [n− s]

∂θ j
,

for k = 1,2, . . . , l, i = 1,2, . . . , p, and j = 1,2, . . . ,q.

The score function with respect to ϕ is given by

∂`
∂ϕ

=
N

∑
n=m+1

µ[n] [ψ (y[n]+µ[n]ϕ)−ψ (µ[n]ϕ)]+(1−µ[n]) [ψ (K− y[n]+ (1−µ[n])ϕ)

−ψ ((1−µ[n])ϕ)]+ψ (ϕ)−ψ (K +ϕ) .

The solution of (5.4) has no closed-form, thus, nonlinear optimization algorithms, such

as Newton or quasi-Newton [136], are necessary. We selected the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method [76] with analytic first derivatives, due to its superior performance for

non-linear optimization method [77], requiring only the first derivatives [76]. The initial values

for the constant (ζ ), the autoregressive (φφφ ) parameters, and the regressors (βββ ) were derived from

the ordinary least squares estimate associated to the linear regression. The response vector is

(y?[m+1],y?[m+2], . . . ,y?[N])> and the covariate matrix is given by
1 x1[m] x2[m] . . . xl[m] y∗[m] y∗[m−1] · · · y∗[m− p+1]

1 x1[m+1] x2[m+1] . . . xl[m+1] y∗[m+1] y∗[m] · · · y∗[m− p+2]
...

...
... . . . ...

...
... . . . ...

1 x1[N] x2[N] . . . xl[N] y∗[N−1] y∗[N−2] · · · y∗[N− p]

 .

For the initial values, we adopted θθθ = 000, as suggested in [134, 194] and ϕ = 1, following [195].

Diagnostic measures and forecasting tools are introduced in Appendix E.
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5.3 DIGITAL SIGNAL DETECTION THEORY

The goal of this section is to introduce a detector based on a binary hypothesis test

tailored for the BBARMA model. For such, we derive the conditional observed information

matrix and the asymptotic properties of the conditional parameter estimators of the BBARMA

model.

5.3.1 Conditional Observed Information Matrix

In a full exponential family model, the expected and observed information matrices

are asymptotically identical [75]. However, because the beta binomial distribution is not in

the exponential family, the expected and observed information matrix differ, the latter being

preferable for hypothesis testing when N→ ∞ [75, 196].

The conditional observed information matrix is given by the negative of the second order

derivatives of the conditional log-likelihood, which is given by

∂ 2`

∂λλλ∂δδδ
=

N

∑
n=m+1

∂
∂λλλ

(
∂`[n](µ[n],ϕ)

∂ µ[n]
d µ[n]
dη [n]

∂η [n]
∂δδδ

)

=
N

∑
n=m+1

[
∂ 2`[n](µ[n],ϕ)

∂ µ[n]2

(
d µ[n]
dη [n]

)2 ∂η [n]
∂δδδ

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
d2 µ[n]
dη [n]2

∂η [n]
∂δδδ

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
d µ[n]
dη [n]

∂ 2η [n]
∂δδδ∂λλλ

]
,

(5.5)

where λλλ = (ζ ,βββ>,φφφ>,θθθ>)> and δδδ = (ζ ,βββ>,φφφ>,θθθ>)>. The derivatives ∂`[n](µ[n],ϕ)
∂ µ[n] , d µ[n]

dη [n] ,
∂η [n]

∂δδδ , and ∂η [n]
∂λλλ are given in Section 5.2.2. The second order derivative of `[n](µ[n],ϕ) with

respect to µ[n] is given by

∂ 2`[n](µ[n],ϕ)
∂ µ[n]2

=ϕ2{ψ ′ (y[n]+µ[n]ϕ)+ψ ′ (K− y[n]+ (1−µ[n])ϕ)−ψ ′ ((1−µ[n])ϕ)

−ψ ′ (µ[n]ϕ)
}
,

where ψ ′(·) is the first derivative of the digamma function, i.e., the trigamma function [189].

Note that

d2 µ[n]
dη [n]2

=− g′′(µ[n])
(g′(µ[n]))2 .
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Additionally, the second order derivative of ∂η [n]
∂δδδ with respect to ζ , φ , and β , for δi 6= θ j,

where i = 1,2, . . . ,(p+ l +1) and j = 1,2, . . . ,q, is equal to zero. On the other hand,

∂ 2η [n]
∂δδδ∂θ j

=− dµ[n− j]
dη [n− j]

∂η [n− j]
∂δδδ

−
q

∑
s=1

θs
∂η [n− s]

∂δδδ
d2µ[n− s]
dη [n− s]2

∂η [n− s]
∂θ j

−
q

∑
s=1

θs
dµ[n− s]
dη [n− s]

∂ 2η [n− s]
∂δδδ∂θ j

,

∂ 2η [n]
∂θk∂θ j

=− dµ[n− j]
dη [n− j]

∂η [n− j]
∂θk

− dµ[n− k]
dη [n− k]

∂η [n− k]
∂θ j

−
q

∑
s=1

θs
∂η [n− s]

∂θ j

d2µ[n− s]
dη [n− s]2

∂η [n− s]
∂θk

−
q

∑
s=1

θs
dµ[n− s]
dη [n− s]

∂ 2η [n− s]
∂θk∂θ j

,

(5.6)

for j,k = 1,2, . . . ,q. Appendix F provides mathematical details on the score vector, (5.5),

and (5.6).

The derivative of ∂`
∂δδδ with respect to ϕ is given by

∂ 2`

∂δδδ∂ϕ
=

N

∑
n=m+1

∂η [n]
∂δδδ

1
g′(µ[n])

∂`[n](µ[n],ϕ)
∂ µ[n]∂ϕ

,

where

∂`[n](µ[n],ϕ)
∂ µ[n]∂ϕ

=ϕ
{
(1−µ[n])

[
ψ ′ ((1−µ[n])ϕ)−ψ ′ (K− y[n]+ (1−µ[n])ϕ)

]
+µ[n]

[
ψ ′ (y[n]+µ[n]ϕ)−ψ ′ (µ[n]ϕ)

]}
+ϒ[n].

The second order derivative of `[n](µ[n],ϕ) with respect to ϕ is given by

∂ 2`[n](µ[n],ϕ)
∂ϕ2 = ψ ′(ϕ)+µ[n]2

[
ψ ′(y[n]+µ[n]ϕ)−ψ ′(µ[n]ϕ)

]
+(1−µ[n])2 [ψ ′(K− y[n]+ (1−µ[n])ϕ)−ψ ′((1−µ[n])ϕ)

]
.

To facilitate the presentation of the conditional observed information matrix, we intro-

duce the following auxiliary vectors and matrices. Let 1 be the (N−m)× 1 vector of ones,

T= diag{1/g′(µ[m+1]),1/g′(µ[m+2]), . . . ,1/g′(µ[N])}, a=
(

∂η [m+1]
∂ζ , ∂η [m+2]

∂ζ , . . . , ∂η [N]
∂ζ

)>
,

and ϒϒϒ = (ϒ[m+1],ϒ[m+2], . . . ,ϒ[N])>, ϒ∗[n] = ∂ 2`[n](µ[n],ϕ)
∂ µ[n]2 , ϒϕ [n] =

∂ 2`[n](µ[n],ϕ)
∂ µ[n]∂ϕ , Φ∗[n] =

∂ 2`[n](µ[n],ϕ)
∂ϕ2 , κ[n] = g′′(µ[n])

(g′(µ[n]))2 , ξ [n] = ϕκ[n]ϒ[n]−ϒ∗[n]T2,

A =

(
∂ 2η [m+1]

∂ζ ∂θθθ
,
∂ 2η [m+2]

∂ζ ∂θθθ
, . . . ,

∂ 2η [N]

∂ζ ∂θθθ

)>
,

W =(ϕϒ[m+1]T,ϕϒ[m+2]T, . . . ,ϕϒ[N]T) ,

L =diag{Φ∗[m+1],Φ∗[m+2], . . . ,Φ∗[N]} ,

D =diag
{

ϒϕ [m+1],ϒϕ [m+2], . . . ,ϒϕ [N]
}
,

W =diag{ξ [m+1],ξ [m+2], . . . ,ξ [N]} .
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Additionally, M[i, j] = ∂η [i+m]
∂β j

, P[i, j] = ∂η [i+m]
∂φ j

, R[i, j] = ∂η [i+m]
∂θ j

, M [i, j] = ∂ 2η [i+m]
∂βi∂θ j

, P[i, j] =
∂ 2η [i+m]

∂φi∂θ j
, and R[i, j] = ∂ 2η [i+m]

∂θi∂θ j
. The matrices M[·, ·], P[·, ·], R[·, ·], M [·, ·], P[·, ·], and R[·, ·] are

of dimensions (N−m)× l, (N−m)× p, (N−m)×q, (N−m)× l, (N−m)× p, and (N−m)×q,

respectively. Based on (5.5) and on the above expressions, the conditional observed information

matrix is given by

I(γγγ) =



I(ζ ,ζ ) I(ζ ,β ) I(ζ ,φ) I(ζ ,θ) I(ζ ,ϕ)
I(β ,ζ ) I(β ,β ) I(β ,φ) I(β ,θ) I(β ,ϕ)
I(φ ,ζ ) I(φ ,β ) I(φ ,φ) I(φ ,θ) I(φ ,ϕ)
I(θ ,ζ ) I(θ ,β ) I(θ ,φ) I(θ ,θ) I(θ ,ϕ)
I(ϕ,ζ ) I(ϕ,β ) I(ϕ,φ) I(ϕ,θ) I(ϕ,ϕ)


,

where I(ζ ,ζ ) = a>Wa, I(ζ ,β ) = I>(β ,ζ ) = M>Wa, I(ζ ,φ) = I>(φ ,ζ ) = P>Wa, I(ζ ,θ) = I>(θ ,ζ ) =

R>Wa−W A, I(ζ ,ϕ) = I>(ϕ,ζ ) =−a>TD1, I(β ,β ) = M>WM, I(β ,φ) = I>(φ ,β ) = P>WM, I(β ,θ) =

I>(θ ,β )=R>WM−W M , I(β ,ϕ)= I>(ϕ,β )=−M>TD1, I(φ ,φ)=P>WP, I(φ ,θ)= I>(θ ,φ)=R>WP−
W P , I(φ ,ϕ) = I>(ϕ,φ) = −P>TD1, I(θ ,θ) = R>WR−W R, I(θ ,ϕ) = I>(ϕ,θ) = −R>TD1, and

I(ϕ,ϕ) =− tr(L), where tr(·) is the trace function.

Based on the consistency of the CMLE and on the asymptotic distribution of γ̂γγ (N→ ∞),

we have that [75, 82]

γ̂γγ a∼Nu
(
γγγ,I−1(γγγ)

)
,

where a∼ denotes approximately distributed, u = p+q+ l+2, I(γγγ) is the Fisher information ma-

trix and Nu is the u-dimensional Gaussian distribution with mean γγγ and covariance matrix I−1(γ).

5.3.2 Hypothesis Test

Let the parameter vector γγγ be partitioned in a parameter vector of interest γγγ I , of dimen-

sion ν , and a vector of nuisance parameters, γγγJ , of dimension r−ν , r = 1,2, . . . , p+q+ l+2 [4].

In addition, H0 : γγγ I = γγγ I0
is the hypothesis of interest and H1 : γγγ I 6= γγγ I0

the alternative hypothesis,

where γγγ I0
is a fixed column vector of dimension ν . The likelihood ratio (TL), the Wald (TW ), and
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the Rao (TR) test statistics can be written as [4]

TL = 2
[
`(γ̂γγ)− `(γ̃γγ)

]
,

TW = (γ̂γγ I1− γγγ I0)
>
([

I−1(γ̂γγ1)
]

γIγI

)−1
(γ̂γγ I1− γγγ I0),

TR =

(
∂`
∂γγγ I

∣∣∣
γγγ=γ̃γγ

)>([
I−1(γ̃γγ)

]
γIγI

)−1
(

∂`
∂γγγ I

∣∣∣
γγγ=γ̃γγ

)
,

where γ̂γγ I1 and γ̂γγ1 = (γ̂γγ>I1, γ̂γγ
>
J1)
> are the MLEs under H1 (unrestricted MLEs); γγγJ0 is a fixed

column vector of dimension r− ν;
[
I−1(γ̂γγ)

]
γIγI

is a partition of I(γ̂γγ) limited to the estimates

of interest; γ̃γγ = (γ̂γγ>I0, γ̂γγ
>
J0)
> is the MLE under H0; `(γ̂γγ) is the maximized log-likelihood of the

fitted model; `(γ̃γγ) is the maximized log-likelihood of the model under H0; and
[
I−1(γ̃γγ)

]
γIγI

is a partition of I(γ̃γγ) limited to the estimates of interest. As suggested in [83] and due to the

convenience of the Wald test, since it requires only one estimation under alternative hypothesis,

we selected the Wald test to perform the hypothesis test on the parameters.

Under H0, the test statistic, TW , has asymptotically chi-squared distribution with ν

degrees of freedom, χ2
ν . Thus, the proposed detector consists of comparing the computed value

of TW with a threshold value ε . The threshold value is obtained from the χ2
ν distribution and the

desired probability of false alarm [4].

To illustrate the above approach, we consider the problem of detecting a signal s[n]

embedded in noise from a measured signal y[n]. For such, we have the following BBARMA

model:

g(µ[n]) = ζ + s[n]β1 +
p

∑
i=1

φiy?[n− i]+
q

∑
j=1

θ j{y?[n− j]−µ[n− j]}, (5.7)

where β1 is the unknown amplitude of the signal [4]. To detect whether s[n] is present, we have

the following hypotheses: H0 : β1 = 0,

H1 : β1 6= 0.
(5.8)

The detector is derived using the Wald test described above. We reject H0 when TW > ε [4]. In

this situation, β1 6= 0, indicating the presence of the signal.

5.4 NUMERICAL RESULTS

In this section, we aim at evaluating the CMLE of the parameters of the BBARMA model

and assessing the performance of the proposed detector. For such, computational experiments

based on Monte Carlo simulations were considered.
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5.4.1 Evaluation of the CMLE

Signals y[n] were generated from the beta binomial distribution by the acceptance-

rejection method [197] with mean given by (5.2), logit link function, K = 255 (8-bit signals),

without covariates in the simulations. We considered simulations under two scenarios. Scenario 1

employs µ ≈ 0.9 (asymmetric distribution) and Scenario 2 adopts µ ≈ 0.5 (almost symmetric

distribution). For such, the selected parameters were ζ = 1, φ1 = 1, θ = 0, and ϕ = 20, for

Scenario 1, and ζ = 0.2, φ1 = 0.5, θ1 = 0.3, and ϕ = 15, for Scenario 2. The number of Monte

Carlo replications was set to 10,000 and the signal lengths considered were N ∈ {150;300;500}.
In order to numerically evaluate the point estimators, we computed the mean, bias, and mean

square error (MSE) of the CMLE.

For the evaluation of interval estimation, we calculated the coverage rates (CR) of the

confidence interval (CI) with confidence 100(1−α)%. The CR is derived based on the CMLE

asymptotic distribution and it is defined as[
γ̂i− z1−α/2

√
I−1

ii (γ̂γγ); γ̂i + z1−α/2

√
I−1

ii (γ̂γγ)
]
,

where γi, i = 1,2, . . . , l + p+ q+ 2, denotes the ith component of γγγ , I−1
ii (γ̂γγ) is the ith element

of the diagonal of I−1(γ̂γγ), α is the significance level, and zρ is the ρth quantile of the standard

normal distribution. For each Monte Carlo replication, we computed the CI and interrogated

whether the CI contains the true parameter or not. The CR is given by the percentage of

replications for which the parameter is in the CI. The Monte Carlo simulations are summarized

in Algorithm 6.

Algorithm 6: Monte Carlo simulations for evaluation of the BBARMA(p,q) model pa-
rameter estimators.

Input: Vector of parameter γγγ and signal length N.
Output: Results of the desirable measures.

1: Suppose that the observed output signal y[n] follows a distribution fY with parametric
vector γγγ;
2: Generate y[n] from fY (γγγ);
3: For each Monte Carlo replication, compute γ̂γγ;
4: Repeat steps 2 and 3 a large number R of times, obtaining: γ̂γγ[1], γ̂γγ[2], . . . , γ̂γγ[R];
5: Use the estimates γ̂γγ[1], γ̂γγ[2], . . . , γ̂γγ[R], to calculate the desired measures (mean, bias,
confidence intervals, and mean square error).

Tables 12 and 13 present the simulation results for Scenarios 1 and 2, respectively. As

expected, both bias and MSE figures decrease to zero as N grows. This behavior agrees with
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Table 12 – Simulation results on point and interval estimation of the BBARMA(1,0)
model, considering a significance level for α = 10%

Measures ζ̂ φ̂1 ϕ̂

N = 150

Mean 1.0852 0.9036 20.6377
Bias 0.0852 −0.0964 0.6377
MSE 0.3091 0.4104 7.8154
CR 0.9045 0.9045 0.9015

N = 300

Mean 1.0451 0.9493 20.3392
Bias 0.0451 −0.0507 0.3392
MSE 0.1538 0.2046 3.5039
CR 0.9011 0.9013 0.9039

N = 500

Mean 1.0344 0.9611 20.2202
Bias 0.0344 −0.0389 0.2202
MSE 0.0929 0.1235 2.0854
CR 0.8980 0.8964 0.8996

Source: Author (2020)

the asymptotic property (consistency) of the CMLE. The CR values of the BBARMA(1,0)

model are close to the nominal value of 0.90, for all considered N. In accordance with the

literature [194,198], the BBARMA(1,1) model presents CR values close to 0.90 for larger signal

lengths. Convergence failures were absent for all the tested scenarios.

5.4.2 Evaluation of the Proposed Detector

Considering the same simulations parameters as detailed in the previous subsection, we

aim at assessing the performance of the introduced detector showed in (5.8). For such, in (5.7),

we adopted p = q = 1. The interest signal, s[n], was selected as s[n] = cos(2π f0n), where f0 is

the signal frequency. This is the classical sinusoidal detection problem which is present in many

fields, such as radar, sonar, and communication systems [4].

For each Monte Carlo replication, we fitted the BBARMA model in a simulated digital

signal y[n] as follows

g(µ[n]) = ζ + s[n]β1 +φ1y?[n−1]+θ1{y?[n−1]−µ[n−1]}.

We considered two scenarios to obtain y[n]: (i) Scenario I employed ζ = 0.2, β1 = 0.5, φ1 =

0.5, θ1 = 0.3, ϕ = 15, and f0 = 0.5; and (ii) Scenario II set ζ = 1, β1 = 0.1, φ1 = 2, θ1 = 1, ϕ =
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Table 13 – Simulation results on point and interval estimation of the BBARMA(1,1)
model, considering a significance level for α = 10%

Measures ζ̂ φ̂1 θ̂1 ϕ̂

N = 150

Mean 0.2987 0.3428 0.4614 15.5923
Bias 0.0987 −0.1572 0.1614 0.5923
MSE 0.9607 2.4550 2.5562 4.1275
CR 0.7601 0.7593 0.7523 0.8949

N = 300

Mean 0.2629 0.4007 0.3971 15.2820
Bias 0.0629 −0.0993 0.0971 0.2820
MSE 0.6209 1.5866 1.6179 1.7988
CR 0.8105 0.8085 0.8064 0.8998

N = 500

Mean 0.2393 0.4375 0.3602 15.1728
Bias 0.0393 −0.0625 0.0602 0.1728
MSE 0.4106 1.0514 1.0704 1.0238
CR 0.8405 0.8405 0.8367 0.9031

Source: Author (2020)

50, and f0 = 0.7. Scenarios I and II employed µ ≈ 0.5 and µ ≈ 0.9, respectively. Additionally,

we considered β1 < 1, since β1 values higher than one resulted in similar performance of the

evaluated detection methods. The levels of significance were

α ∈ {0;0.05;0.1;0.15;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9;1},

the number of Monte Carlo replications equals 5,000, and N = 100. Figure 19 shows a typical

realization of the simulated signals, considering Scenarios I and II.

Based on (5.8), a signal is detected when the amplitude β1 6= 0 and the null hypothesis

in (5.8) is rejected. To estimate the probability of detection, we computed the proportion of

Monte Carlo replications in which the null hypothesis was rejected. We used the empirical

size of the hypothesis test, which is computed according to the following steps: (i) for each

Monte Carlo replication, generate a signal, y∗[n], without covariates; (ii) fit the BBARMA model

for y∗[n], including the parameter β1; and (iii) compute the percentage of replications that the

null hypothesis is rejected.

We compared the proposed detector with the widely popular ARMA- and Gaussian-based

detectors [4]. Figures 20 and 21 present the receiver operating characteristic (ROC) curves [199]

of the detection results, showing the probability of detection versus the estimated probability of

false alarm. In summary, the BBARMA ROC curve was computed following the Algorithm 7.
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Figure 19 – Simulated digital signals tested in the proposed detector, considering
Scenarios I and II.
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Algorithm 7: Monte Carlo simulations for evaluation of the proposed detector.
Input: Vector of parameter γγγ and the signal length N.
Output: Estimated probability of detection.

1: Suppose that the observed output signal y[n] follows a distribution fY with parametric
vector γγγ = (ζ ,β1,φ1,θ1,ϕ)>;
2: Suppose that the observed output signal y∗[n] follows a distribution fY with parametric
vector γγγ∗ = (ζ ,φ1,θ1,ϕ)>;
3: Generate y[n] from fY (γγγ) and y∗[n] from fY (γγγ∗);
4: For each Monte Carlo replication, compute γ̂γγ considering y[n] and y∗[n], obtaining β̂1

and β̂ ∗1 , respectively;
6: Compute the p-values of β̂1 and β̂ ∗1 ;
7: Repeat steps 3 to 6 a very large number R of times;
8: Count the percentage of replications that β̂ ∗1 6= 0, and call this α̂ (empirical size of the
hypothesis test);
9: Count the percentage of replications that β̂1 6= 0, obtaining the probability of detection.

The proposed BBARMA detector outperformed the competing methods in terms of

probability of detection and estimated probability of false alarm in both considered scenarios.

The area under the ROC curves for the ARMA detector was 2.10% and 9.72% lower when

compared with ROC curve of the proposed detector under Scenarios I and II, respectively; for

the Gaussian detector, the ROC area values were also smaller, being 1.06% and 36.11% lower,

for Scenario I and II, respectively. Additionally, in Scenario I, for a probability of detection

equal 0.90, the estimated probabilities of false alarm is about to 0.10 for the BBARMA- and

ARMA-based detectors and about 0.30 for the Gaussian detection method; in Scenario II, for

a detection probability of 0.90, the estimated probabilities of false alarms are about 0.73, 0.85,

and 0.90 for the BBARMA-, ARMA-, and Gaussian-based detectors, respectively.

5.5 CONCLUSION

In this chapter, we derived the BBARMA model and a signal detector based on the

asymptotic properties of the discussed model parameter estimators. We introduced an infer-

ence approach for the model parameters, the conditional observed information matrix, and the

asymptotic properties of the CMLE. Monte Carlo simulations were used as a tool to evaluate the

performance of the CMLE and of the proposed signal detector, indicating the consistency of the

CMLE. The proposed BBARMA detector could outperform the ARMA- and Gaussian-based

detectors in the evaluated scenarios. The proposed model is presented as a suitable tool for

quantized signal detection.



90

Figure 20 – ROCs of the detection results for Scenario I, comparing the BBARMA-,
ARMA-, and Gaussian-based detectors.
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Figure 21 – ROCs of the detection results for Scenario II, comparing the BBARMA-,
ARMA-, and Gaussian-based detectors.
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6 WAVELENGTH-RESOLUTION SAR GROUND SCENE PREDICTION BASED

ON IMAGE STACK

Abstract

This chapter presents five different statistical methods for ground scene prediction (GSP) in

wavelength-resolution synthetic aperture radar (SAR) images. The predictions are based on

image stacks, which are composed of images from the same scene acquired at different instants

with the same flight geometry. The considered methods for obtaining the ground scene prediction

include (i) autoregressive models; (ii) trimmed mean; (iii) median; (iv) intensity mean; and

(v) mean. It is expected that the predicted image presents the true ground scene without change

and preserves the ground backscattering pattern. The median method provided the most accurate

representation of the true ground. To show the applicability of the GSP, a change detection

algorithm was considered using the median ground scene as a reference image. As a result, the

median method displayed the probability of detection of 97% and a false alarm rate of 0.11/km2,

when considering military vehicles concealed in a forest.

Keywords: CARABAS II, ground scene prediction, image stack, multi-pass, SAR images.

6.1 INTRODUCTION

Common tasks in synthetic aperture radar (SAR) statistical image processing include the

identification and classification of distinct ground type [3,15,81,94,200], modeling [90,201–203],

and change detection [2, 80, 204, 205]. In special, wavelength-resolution low-frequency SAR

systems are useful for natural disasters monitoring, foliage-penetrating applications, and detection

of concealed targets [63]

The wavelength-resolution SAR system is usually associated with ultrawideband (UWB)

radar signal and ultrawidebeam antenna [206]. With such, the maximum resolution is achieved

and it is in the order of radar signal wavelength. Additionally, available UWB SAR systems

only work at low frequencies. One essential feature of wavelength-resolution SAR systems

is that the speckle noise does not influence the acquired images since it is likely that only a

single scatter is present in the resolution cell. Additionally, small scatterers present in the ground

area of interest do not contribute to the backscattering for low-frequency radar systems. Thus,
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small structures, such as tree branches and leaves, are not shown in SAR images [207]. Because

large scatterers are associated to low frequency components, they tend to be less influenced by

environmental effects and are stable in time. Hence, by using multi-passes with identical heading

and incidence angle of the illuminating platform at a given ground area, an image package with

similar statistics can be obtained [1]. In [93], it is discussed clutter statistical models for stacks

of very-high-frequency (VHF) wavelength-resolution SAR images. The SAR image stacks

are a frequent topic of study for SAR systems with high resolution [208–210]. However, the

literature lacks the use of large image stacks for wavelength-resolution SAR for change detection

applications.

Recently, a study using a small stack of multi-pass wavelength-resolution SAR images

for change detection was introduced in [1]. Usually, SAR change detection algorithms (CDA)

are designed for two images (reference and surveillance) and used to detect changes in a ground

scene between distinct measurements in time. The changes on the ground scene can be the result

of man-made interference, such as facilities and building, or natural disasters, such as floods,

wildfire, and deforestation [63–65]. However, an image stack can be considered instead of just

two images in a CDA; such a collection of images leads to obtain a ground scene prediction (GSP)

and improved detection performance, since more knowledge about the ground clutter can be

obtained [1]. This information is used to eliminate clutter and noise in the surveillance image [1],

and consequently, enhancing CDA results.

In [211], the autoregressive (AR) model was employed as a preliminary study to obtain

a GSP based on a single wavelength-resolution SAR image stack. The resulting predicted

image was submitted as input data to a change detection algorithm, based only on subtraction,

thresholding, and morphological operations. The CDA in [211] corresponds to the detection

analysis step of the CDA used in [84]. Despite its simplicity, the change detection results in [211]

were competitive when compared with the ones recently presented in [1, 212].

Multi-pass SAR images cannot be equidistantly observed over time, the noise across the

image stack is not related to the time order. As a consequence, the use of a time series model,

commonly employed in statistical signal processing [213–216], may not be the most suitable

approach to obtain a GSP. Additionally, the backscattering of the images in the stack is stable

in time, i.e., a sequence of pixels for each position follows a similar pattern, and changes in

such behavior are understood as outliers. Thus, an image filtering considering robust statistical

methods, such as trimmed mean and median [217, 218], might be better candidates to obtain a

ground scene prediction. These approaches can provide an accurate prediction of the ground
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scene, avoid the time order problem, and exclude the pixels that do not follow the sequence

pattern. Indeed, the median and the trimmed mean filters are traditionally used to remove impulse

noise from an image [34, 219–225].

To the best of our knowledge, the study in [211] is the only work related to the ground

scene prediction for wavelength-resolution SAR image stacks. This chapter extends the re-

sults presented in [211] with four other statistical methods to predict a ground scene for three

SAR image stacks, since statistical methods are commonly employed in SAR image process-

ing [80, 81, 90, 94, 200–205]. The selected statistical methods to obtain the prediction image are

(i) autoregressive models; (ii) trimmed mean; (iii) median; (iv) intensity mean; and (v) mean.

The predicted ground scene methods are sought to preserve the ground backscattering statistical

characteristics of the images in the stack and presents predicted pixel values closer to the original

images. It is expected that the predicted images represent the true ground scenes, allowing

applications, such as monitoring of forested areas and natural disasters.

To illustrate a possible application of the sought GSP, the median ground scene was used

as a reference image in a change detection algorithm based on the detection analysis step of the

CDA presented in [84], which was evaluated in terms of target detection probability and false

alarm rate. The results reported in [1, 2] were adopted as the reference model for comparison.

The chapter is organized as follows. In Section 6.2, we describe a suite of selected

statistical methods for ground scene prediction. Section 6.3 presents experimental results,

including a description of the considered data set and the ground scene prediction results. Then,

a change detection method based on the discussed GSP approaches is introduced. Finally,

Section 6.4 concludes the chapter.

6.2 GROUND SCENE PREDICTION

As discussed in [93], an image stack is composed of images with similar heading and

incidence angle of the same illuminating platform. As a consequence of this similarity, the SAR

images in the stack are very similar and stable in time. Thus, a sequence of each pixel position

can be extracted from the stack, as illustrated in Figure 22.

The data set considered in this chapter is composed of wavelength-resolution SAR

images, i.e., the resolution of the SAR image is in the order of the radar signal wavelength [207].

Therefore, there may only be a single scatter in the resolution cell. As a consequence, the

considered images are not affected by speckle noise, which is typically a strong source of noise
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Figure 22 – Stack of images to be considered in GSP. The methods should be applied for
each pixel position, as evidenced by the vertical line.

Source: Author (2020)

in SAR images in higher frequency bands. Thus, the backscattering from the image stack is

stable in time, allowing an accurate GSP.

We consider five statistical methods to obtain the ground scene predictions. The tech-

niques are applied to a sequence of pixels as described in the following.

6.2.1 AR Model

The AR model was adopted to compute the GSP, which can be defined as [82]

y[n] =−
p

∑
k=1

a[k]y[n− k]+u[n], n = 1,2, . . . ,N,

where y[n] is the value of each pixel in one image, N is the number of images in the stack, a[k] are

the autoregressive terms, u[n] is white noise, and p is the order of the model [4].

The autoregressive terms a[k] can be estimated by the Yule-Walker method [138]. Hence,

the estimated autoregressive terms â[k] are the solutions of the equation system, given by [4]
ryy[0] ryy[1] . . . ryy[p−1]

ryy[1] ryy[0] . . . ryy[p−2]
...

... . . . ...

ryy[p−1] ryy[p−2] . . . ryy[0]




a[1]

a[2]
...

a[p]

=−


ryy[1]

ryy[2]
...

ryy[p]

 , (6.1)

where ryy[·] is the sample autocorrelation function. Information about large sample distributions

of the Yule-Walker estimator, order selection, and confidence regions for the coefficients can be
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found in [138].

Considering the estimated autoregressive terms obtained by (6.1), it is possible to fore-

cast h steps ahead with the AR model as [135]

ŷ[N +h] =−
p

∑
k=1

â[k]y[N +h− k].

The ground scene prediction image is obtained by forecasting the one-step ahead (h = 1) pixel

value for each pixel in the image.

6.2.2 Trimmed Mean, Median, and Mean

For SAR images whose backscattering is stable in time, robust methods can be applied to

obtain a GSP. We consider the trimmed mean to obtain a GSP, which is given by

ȳtm =
2

N−2m

N−m

∑
n=m+1

y?[n],

where y?[n] is the ordered sequence of y[n], m = (N−1)α , and α ∈ [0,1/2) [217,218]. If α = 0

or α → 0.5, then the trimmed mean corresponds to the sample mean and median, respec-

tively [217], which are considered as methods for GSP derivation.

6.2.3 Intensity Mean

We also use the intensity mean for obtaining ground scene predictions, given by

ȳim =

√
1
N

N

∑
n=1

y[n]2.

Compared to other statistical methods, the intensity mean has the advantage of providing physical

interpretation about the image reflection. However, the intensities values contribute evenly to the

prediction results, which can be strongly affected by the changes in the ground scene [217].

6.3 EXPERIMENTAL RESULTS

In this section, we present the results obtained from the discussed ground scene prediction

methods and describe an approach for change detection based on such methods.

6.3.1 Data Description

In this study, we considered a data set obtained from CARABAS II, a Swedish UWB

VHF SAR system system whose images are available in [85]. The data set was divided into
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Figure 23 – Missions 1, 2, 3, and 4 and passes 1, 2, 3, 4, 5, and 6 considered in
CARABAS II images.
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Source: Author (2020)

three stacks with eight images each, i.e., two out of six passes have identical flight headings.

Two passes have a flight heading of 255◦, two of 135◦, and two of 230◦, and the heading is

defined as 0◦ pointing towards the north with clock-wise increasing heading. The images in the

stacks have the same flight geometry but are associated with four different targets deployments

(missions 1 to 4) in the ground scene, as specified in Figure 23. Hence, with four missions and

six passes for each mission, there is 24 magnitude single-look SAR images. The images cover a

scene of size 2km×3km and are georeferenced to the Swedish reference system RR92 [2, 84].

The first stack is composed of images corresponding to flight passes 1 and 3; the second

stack, with passes 2 and 4; and the last stack is composed of images associated with passes 5

and 6. In all images, the backscattering was stable in time, and only target changes are expected

within the image stacks.

Each image is represented as a matrix of 3000×2000 pixels, corresponding to an area

of 6 km2. As reported in [2], the spatial resolution of CARABAS II is 2.5 m in azimuth and

2.5 m in range. The ground scene is dominated by boreal forest with pine trees. Fences, power

lines, and roads were also present in the scene. Military vehicles were deployed in the SAR

scene and placed uniformly, in a manner to facilitate their identifications in the tests [84]. Each

image has 25 targets with three different sizes and the spacing between the vehicles was about

50 meters. For illustration, one image of Stack 1 is shown in Figure 24. In this image the

vehicles were obscured by foliage and deployed in the top left of the scene and were oriented in a

south-western heading. This deployment corresponds to mission 1. In missions 2, 3, and 4, these

vehicles were deployed in other locations and were oriented in a north-western, south-western,

and western heading, respectively [2, 84].
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Figure 24 – CARABAS II mission one and pass one associated SAR image.

Source: Author (2020)

6.3.2 Ground Scene Prediction Evaluation

The AR model parameter estimation requires (i) fitting 6,000,000 models (one fit for each

pixel) in each stack and (ii) evaluating the best model for each pixel sequence. Such demands

lead to a significant computational burden. For simplicity, we considered p = 1 in the AR model.

Within the image stack, the two images related to the targets have the highest pixel values in

the areas where the targets were deployed. Thus, to compute the trimmed mean, we considered

m = 2 (α ≈ 0.3), expecting to remove the pixels related to targets.

Figures 25-29 show the ground scene prediction for Stack 1, considering the discussed

methods. Deployed targets are visually present in the ground scene images predicted with the
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Figure 25 – Ground scene prediction image for Stack 1 based on the AR model. The
areas highlighted by rectangles in the images indicate the regions where the

targets were deployed during the measurement campaign.

Source: Author (2020)

AR model, mean, and intensity mean methods. However, the targets images are absent in the

images predicted with trimmed mean and median. The areas highlighted by rectangles in the

images indicate the regions where the targets were deployed during the measurement campaign.

With such visual analysis, the trimmed mean and median methods show better performance, i.e.,

better prediction of the ground scene. For brevity, we limited our presentation in this chapter

to the GSP images from the Stack 1, which is representative of all considered stacks. The GSP

images from Stack 2 and 3 can be found in Appendix G.

Table 14 displays descriptive statistics of the employed images, such as average, standard
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Figure 26 – Ground scene prediction image for Stack 1 based on the trimmed mean
method.

Source: Author (2020)
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Figure 27 – Ground scene prediction image for Stack 1 based on the median method.

Source: Author (2020)

deviation, skewness, and kurtosis. It is desirable that a GSP presents not only a good visual

representation of the true ground but also preserves the statistical characteristics of the image of

interest. In Table 14, we highlighted the two best methods according to each considered measure.

In the majority of the scenarios, the AR model and median methods outperformed the remaining

methods.

To evaluate the difference between the ground scene prediction methods, we computed

some standard quality adjustment measures. The criteria are the mean square error (MSE), mean

absolute percentage error (MAPE), and median absolute error (MdAE), which can be defined as
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Figure 28 – Ground scene prediction image for Stack 1 based on the mean method. The
areas highlighted by rectangles in the images indicate the regions where the

targets were deployed during the measurement campaign.

Source: Author (2020)
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Figure 29 – Ground scene prediction image for Stack 1 based on the intensity mean
method. The areas highlighted by rectangles in the images indicate the

regions where the targets were deployed during the measurement campaign.

Source: Author (2020)
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Table 14 – Average, standard deviation, skewness, and kurtosis of one interest image and
the ground scene prediction. The interest image in Stack 1, 2, and 3, is the

image of mission 1 and pass 1, 2, and 5, respectively. The two values of each
measure that yielded the closest values with the interest image are highlighted

Average Standard Skewness Kurtosis
deviation

Stack 1

Interest image 0.1442 0.0894 1.8597 14.1740
AR model 0.1101 0.0725 2.1120 13.5190

Trimmed mean 0.1430 0.0680 2.9051 21.2919
Median 0.1424 0.0688 2.8231 20.4990
Mean 0.1467 0.0663 3.0516 22.8448

Intensity mean 0.1592 0.0667 3.0090 22.8725

Stack 2

Interest image 0.1373 0.0968 2.9345 30.5666
AR model 0.0997 0.0784 3.6398 40.9991

Trimmed mean 0.1344 0.0806 4.4488 55.4260
Median 0.1339 0.0812 4.3664 53.9367
Mean 0.1376 0.0792 4.6022 58.3558

Intensity mean 0.1485 0.0792 4.5487 57.8894

Stack 3

Interest image 0.1451 0.0905 1.8583 14.0932
AR model 0.0997 0.0683 2.2034 14.6539

Trimmed mean 0.1372 0.0665 2.8811 22.0954
Median 0.1366 0.0674 2.8090 21.3242
Mean 0.1410 0.0646 2.9582 22.9540

Intensity mean 0.1534 0.0655 2.9170 22.9794

Source: Author (2020)

follows [142]

MSE =
1
Q

Q

∑
q=1

(x[q]− x̂[q])2,

MAPE =
1
Q

Q

∑
q=1

|x[q]− x̂[q]|
|x[q]| ,

MdAE = Median(|x[q]− x̂[q]|) , q = 1,2, . . . ,Q,

where x[q] and x̂[q] are the pixel values of the interest and predicted images respectively, Q is the

number of pixels, and Median(·) is the median value of |x[q]− x̂[q]|, for q = 1,2, . . . ,Q. These

goodness-of-fit measures are usually considered to compare different methods applied to the

same data set [142]. They are expected to be as close to zero as possible.

For the quality adjustment measures, the target regions in the image were excluded since
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Table 15 – Measures of quality of the ground scene prediction image. The interest image
in Stack 1, 2, and 3 is the image of mission 1 and pass 1, 2, and 5, respectively.

We highlighted the values of each quality adjustment measure that yielded the
smallest values

MSE MAPE MdAE

Stack 1

AR model 0.0077 0.6756 0.0548
Trimmed mean 0.0036 0.6187 0.0364

Median 0.0037 0.6125 0.0351
Mean 0.0036 0.6489 0.0401

Intensity mean 0.0039 0.7505 0.0426

Stack 2

AR model 0.0068 0.6450 0.0502
Trimmed mean 0.0030 0.5971 0.0326

Median 0.0031 0.5912 0.0315
Mean 0.0030 0.6254 0.0359

Intensity mean 0.0032 0.7204 0.0378

Stack 3

AR model 0.0083 0.6337 0.0557
Trimmed mean 0.0037 0.5809 0.0357

Median 0.0038 0.5751 0.0346
Mean 0.0036 0.6104 0.0392

Intensity mean 0.0037 0.7011 0.0410

Source: Author (2020)

we expect to obtain an accurate ground scene prediction, and no target deployment should

influence the measurements. Table 15 summarizes the results of the quality adjustment measures

for the five considered statistical methods, and the best measurements are highlighted. The

mean method presents the best performance according to MSE measurements, while the median

method excels in terms of MAPE and MdAE measures in all the stacks. However, the MSE

values obtained with the mean and median methods are similar. The results provided in Tables 14

and 15 consider the same reference image of each stack. Regardless of the selected image,

the median method presented good performance according to MAPE, MdAE, and statistics

measures.

Based on visual inspection, statistical characteristics, and quality adjustment measures,

the median method yields the most reliable prediction among the considered methods. Therefore,

we separate the predicted images from the median method as reference images in the change

detection algorithm detailed in the next section.
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Figure 30 – Processing scheme for change detection. The CDA is performed applying
thresholding and morphological operations in the difference image.
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Source: Author (2020)

6.3.3 Application in Change Detection

The change detection method used in this chapter applied the processing scheme given in

Figure 30. Firstly, an image stack is processed by a desirable GSP method furnishing the GSP

image. The changes are simply obtained with the subtraction of the image of interest (surveillance

image) from the GSP image (reference image). For change detection, we applied thresholding to

the difference image and then used morphological operations for false alarm minimization.

Two examples of subtraction images are shown in Figures 31 and 32. Figure 31 highlights

the deployed targets while Figure 32 focuses on the targets and the back-lobe structures. A

comparison between the difference image shown in Figure 32 to the related GSP image suggests

that the back-lobe structures are related to issues in the SAR system and image formation

algorithm.

The employed CDA [84] consists of two mathematical morphology steps. First, an

opening operation [139, 226] aimed at removing small pixels, which are regarded as noise. The

second step is a dilation that prevents the splitting of the interest targets in multiple substructures.

The first step uses a 3× 3 pixel square structuring element, whose size is determined by the

system resolution; the second step considers a 7×7 pixel structuring element, which is linked to

the approximate size of the targets (about 10×10 pixels).

Figure 33 shows the pixels values of the image given in Figure 31 in vectorized form. In

general, the subtracted image pixels values are randomly distributed in (−0.4,0.4). The extreme

values in Figure 33 are the pixels where the targets are deployed. As discussed in [207], the

distribution of the values of the subtraction image of CARABAS II approximately follows the

Gaussian distribution and the regions where no change occurs are stable. Thus, the threshold (λ )

can be simply chosen as [207],

C =
λ − µ̂

σ̂
,

where C is a constant, µ̂ is the estimated mean, and σ̂ is the estimated standard deviation of the



107

Figure 31 – Subtraction of an interest image from the median ground scene prediction
for pass one and mission one associated image.

Source: Author (2020)
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Figure 32 – Subtraction of an interest image from the median ground scene prediction
for pass one and mission two associated image.

Source: Author (2020)
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Figure 33 – Result of the subtraction of the ground scene prediction image from the
image obtained from mission one and pass one.

Source: Author (2020)

considered amplitude pixels in the image. For the evaluation, we set C ∈ {2;3;4;5;6}, resulting

in different values false alarm rates (FAR), which range from full detection to almost null false

alarm rate.

The performance of change detection was evaluated by the probability of detection (Pd)

and FAR. The quantity Pd was obtained from the ratio between the number of detected targets

and the total numbers of known targets, while FAR is defined by the number of false alarms

detected per square kilometer [84].

Table 16 presents the change detection results for C = 5. Among 600 deployed vehicles in

the missions, 579 were correctly detected. There is 22 detected objects that can not be related to

any vehicle and were considered to be false alarms. Thus, the detection probability is about 97%,

while the false alarm rate is 0.15/km2 (total of 144/km2). Ten of the 22 false alarms are related

to the back-lobe structures, i.e., they are not actually false alarms and may stem from system and

image formation issues. Additionally, in general, the undetected targets are related to missions
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Table 16 – Change detection results obtained with C = 5

Case of Interest Number of Detected Pd Number of
Mission Pass known targets Targets false alarms

1 1 25 25 1.00 0
2 1 25 25 1.00 3
3 1 25 25 1.00 0
4 1 25 23 0.92 2
1 2 25 25 1.00 0
2 2 25 25 1.00 1
3 2 25 25 1.00 2
4 2 25 23 0.92 1
1 3 25 25 1.00 2
2 3 25 23 0.92 0
3 3 25 25 1.00 3
4 3 25 23 0.92 0
1 4 25 25 1.00 0
2 4 25 25 1.00 0
3 4 25 25 1.00 1
4 4 25 23 0.92 0
1 5 25 25 1.00 0
2 5 25 15 0.60 6
3 5 25 25 1.00 0
4 5 25 24 0.96 0
1 6 25 25 1.00 0
2 6 25 25 1.00 1
3 6 25 25 1.00 0
4 6 25 25 1.00 0

Total 600 579 0.97 22

Source: Author (2020)

2 and 4. These undetected military vehicles are more difficult to detect since they have the

smaller sizes and magnitude values, and consequently, pixel values closer to the forest ones. In

accordance with [1, 2], the image associated to mission two and pass five has the highest number

of false alarms and smallest number of detected targets.

Figure 34 presents the receiver operating characteristic (ROC) curves [199] of the change

detection results, showing the probability of detection versus the false alarm rates for the different

evaluated values of C. We compared the change detection results obtained from the proposed

method with the results described in [2] and [1]. The proposed method excels in terms of

probability of detection and false alarm rate in comparison to [1, 2].

For example, for a detection probability of 98%, our proposed change detection method

presents log10(FAR) about −0.5, while [1,2] have log10(FAR) about 1.4 and −0.3, respectively.

For log10(FAR) =−0.9, i.e., a very low FAR, the probability detection given by [2] drops to 60%,
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Figure 34 – ROC curves obtained with the CDA with the background predicted scene as
the reference image compared with the best ROC curves extracted

from [1, 2].
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while our proposal still maintains the probability of detection more than 90%. The detection

probability of our proposed method and [1] reach 100% with log10(FAR) ≈ 1, while [2] has

full detection for log10(FAR)≈ 1.5. Additionally, detection probability improvements of our

method compared to [1] are found in the range of (0.93,0.98). For example, for a probability

of detection of 0.97%, our proposed change detection method presents log10(FAR) about −0.8,

while [1] has log10(FAR)≈−0.2.

6.4 CONCLUSION

In this chapter, we presented five methods to obtain ground scene prediction of SAR

images based on image stack. The experimental results revealed that among the considered

techniques, the median method yielded the most accurate ground prediction. The statistical

characteristics of the obtained GSP image were similar to the image of interest. Moreover, the
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median method excels in terms of quality adjustment measures, and the changes in the image

stack were not visually presented in the predicted image. We demonstrated the suitability of the

proposed GSP method by presenting competitive performance when compared with recently

published results.
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7 CONCLUDING REMARKS AND FUTURE WORKS

In this chapter, some concluding remarks, contributions, and directions for future works

are presented.

7.1 CONCLUDING REMARKS

In Chapter 2, we introduced a new regression model for nonnegative signals. The derived

regression model assumes that the mean of the Rayleigh distributed signal follows a regression

structure involving covariates, unknown parameters, and a link function. For the proposed

model, we introduced an inference approach for the model parameters and discussed diagnostic

tools, such as coefficient of determination and residual. Additionally, Fisher information matrix,

asymptotic proprieties of the MLE, and a detector useful to detect differences in SAR image

regions were presented. The parameter estimators of the proposed model was evaluated by

Monte Carlo simulations, showing small values of percentage relative bias and mean square

error. An application of the derived Rayleigh regression model was considered in SAR images to

distinguish different regions. The Rayleigh regression model presented more accurate detection

results when compared with the Gaussian-, Gamma-, and Weibull-based regression models.

In Chapter 3, we derived bias-adjusted estimators for the parameters of the Rayleigh

regression model. In particular, we considered the Cox and Snell’s, Firth’s, and parametric

bootstrap method to obtain the corrected estimators. In the Monte Carlo simulations, the MLEs

of the parameters of the Rayleigh regression model displayed bigger values of relative bias and

root mean square error when compared to the proposed corrected estimators. The estimators

derived by the Firth’s method outperformed the others bias-adjusted evaluated estimators.

In Chapter 4, we derived the 2D RARMA model and a SAR image ground type change

detector considering residual-based control charts. Additionally, we introduced an inference

approach for model parameters, the conditional Fisher information matrix, and the asymptotic

properties of the CMLE. Monte Carlo simulations were used as a tool to evaluate the performance

of the CMLE. Two investigations of the proposed model to distinguish between ground type

changes in SAR images were presented and discussed, showing competitive detection results

when compared with traditional 2D ARMA models.

In Chapter 5, we proposed that the mean of a beta binomial distributed signal in time

follows a dynamic model involving covariates, unknown parameters, and a link function. We
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developed parameter estimation and detection tools. For the introduced model, we discussed the

conditional observed information matrix and asymptotic proprieties of the CMLE. The CLMEs

of the BBARMA model parameters were evaluated by Monte Carlo simulations, showing small

values of percentage relative bias and mean square error. Finally, we discussed an application of

the BBARMA model to detect digital signals, presenting more accurate detection results than

the Gaussian-, ARMA-, and beta binomial-based detection.

Finally, in Chapter 6, we considered five different statistical methods to obtain a ground

scene prediction of SAR image based on image stack. We evaluated the descriptive statistics of

the GSP images. Also, a visual inspection trying to verify the presence of changes in the ground

scene and some quality adjustment measures were considered. The median method was elected

as the most accurate method to obtain the ground scene prediction for SAR images. The ground

scene prediction obtained by the median method was applied in a CDA, presenting competitive

performance when compared with other recent results.

7.2 CONTRIBUTIONS

The contributions of this thesis are:

1. Palm, B.G., Bayer, F.M., Cintra, R.J., Pettersson, M.I. and Machado, R., 2019. Rayleigh

Regression Model for Ground Type Detection in SAR Imagery. IEEE Geoscience and

Remote Sensing Letters, 16(10), pp.1660-1664.

2. Palm, B.G., Alves, D.I., Vu, V.T., Pettersson, M.I., Bayer, F.M., Cintra, R.J., Machado,

R., Dammert, P. and Hellsten, H., 2020. Wavelength-Resolution SAR Ground Scene

Prediction Based on Image Stack. Sensors, 20(7), 2008.

3. Palm, B.G., Alves, D.I., Vu, V.T., Pettersson, M.I., Bayer, F.M., Cintra, R.J., Machado,

R., Dammert, P. and Hellsten, H., 2018, October. Autoregressive model for multi-pass

SAR change detection based on image stacks. In Image and Signal Processing for Remote

Sensing XXIV. International Society for Optics and Photonics.

The manuscripts are:

1. Palm, B.G., Bayer, F.M., Cintra, R.J. Improved Point Estimation for the Rayleigh Regres-

sion Model.

2. Palm, B.G., Bayer, F.M., Cintra, R.J. 2D Rayleigh Autoregressive Moving Average Model

for Change Detection in SAR Imagery.
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3. Palm, B.G., Bayer, F.M., Cintra, R.J. Beta Binomial Autoregressive Moving Average

Model for Digital Signals Detection and Inference.

7.3 FUTURE WORKS

As next steps of research, we have the following immediate goals:

1. developing bias-corrected estimators, using bootstrap and Cox-Snell correction, for the

2D Rayleigh autoregressive moving average model;

2. using robust methods for the estimation of 2D Rayleigh autoregressive moving average

model parameters in presence of outliers;

3. studying spectral analysis of the proposed models;

4. extending the beta binomial autoregressive moving average model to a two-dimensional

model;

5. deriving two-dimensional models for other distribution classes;

6. studying model selection criteria for the derived models;

7. applying the developed methods in the most different real applications in signal and image

processing;

8. studying the stability and stationary regions of the proposed models.
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APPENDIX A – Numerical Results for Point Estimation of the Parameters of the Rayleigh

Regression Model

In this appendix, we show numerical results for the estimators of the Rayleigh regression

model parameters presented in Chapter 2. Table 17 presents the simulation results for point

estimation of the parameters of the Rayleigh regression model for the Scenarios 1 and 2 presented

in Chapter 2, for N ∈ {16;25;49;250;500;1,000}. In Table 18, we present the numerical results

for the Scenarios 3, 4 and 5. In these scenarios, parameters were adopted as follows: β1 =

0.5, β2 = −0.5, and β3 = 0.3, for Scenario 3, and β1 = 0.5, β2 = 0.15, and β3 = 1, for

Scenarios 4 and 5. The covariates were generated from uniform (0,1), binomial, and Rayleigh

distribution, respectively, for N ∈ {25;250;1,000}.
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Table 17 – Results of the Monte Carlo simulation of the point estimation for Scenarios 1
and 2

Scenario 1 Scenario 2

Measures β̂1 β̂2 β̂3 β̂1 β̂2

N = 16

Mean 1.9562 −1.0065 0.9976 0.4634 0.1553
RB(%) 2.1891 −0.6541 0.2417 7.3184 −3.5448
MSE 0.1579 0.2708 0.2737 0.0808 0.2462

N = 25

Mean 1.9681 −1.0030 1.0040 0.4810 0.1472
RB(%) 1.5972 −0.3004 −0.4045 3.7913 1.8467
MSE 0.0909 0.1564 0.1533 0.0470 0.1421

N = 49

Mean 1.9829 −0.9974 1.0010 0.4914 0.1472
RB(%) 0.8563 0.2635 −0.1006 1.7234 1.8394
MSE 0.0403 0.0690 0.0687 0.0222 0.0669

N = 250

Mean 1.9971 −1.0016 1.0009 0.4984 0.1489
RB(%) 0.1450 −0.1600 −0.0900 0.3200 0.7333
MSE 0.0073 0.0121 0.0126 0.0041 0.0125

N = 500

Mean 1.9992 −1.0008 0.9995 0.4988 0.1507
RB(%) 0.0400 −0.0800 0.0500 0.2400 −0.4667
MSE 0.0036 0.0062 0.0061 0.0020 0.0060

N = 1,000

Mean 1.9993 −1.0001 1.0002 0.4995 0.1502
RB(%) 0.0350 −0.0100 −0.0200 0.1000 −0.1333
MSE 0.0017 0.0030 0.0029 0.0010 0.0030

Source: Author (2020)
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APPENDIX B – Cumulants of Second and Third Order of the Parameters of the Rayleigh

Regression Model

In this appendix, we present the cumulants of second and third order used to derive the

Cox and Snell’s and Firth’s corrected estimators. The cumulants are obtained using the chain

rule, as

∂`(βββ )
∂βi

=
N

∑
n=1

d`[n](µ[n])
d µ[n]

d µ[n]
dη [n]

∂η [n]
∂βi

,

for i = 1,2, . . . ,k. From [94], we have

d`[n](µ[n])
d µ[n]

=
πy[n]2

2µ[n]3
− 2

µ[n]
,

d µ[n]
dη [n]

=
1

g′(µ[n])
,

∂η [n]
∂βi

= xi[n],

∂ 2`[n](µ[n])
∂ µ[n]2

=
2

µ[n]2
− 3πy[n]2

2µ[n]4
,

E
[

d2 `[n](µ[n])
d µ[n]2

]
=− 4

µ[n]2
.

Note that

∂ 3`[n](µ[n])
∂ µ[n]3

=
d

d µ[n]

(
∂ 2`[n](µ[n])

∂ µ[n]2

)
=

d
d µ[n]

(
2

µ[n]2
− 3πy[n]2

2µ[n]4

)
=

6πy[n]2

µ[n]5
− 4

µ[n]3
.

Taking the expected value of the derivative above, we have

E
(

∂ 3`[n](µ[n])
∂ µ[n]3

)
=

24
µ[n]3

− 4
µ[n]3

=
20

µ[n]3
.

From [94], the second order cumulant is given by

κrs = E
[

∂ 2`(βββ )
∂βr∂βs

]
=

N

∑
n=1

[
− 4

µ[n]2

(
d µ[n]
dη [n]

)2

xs[n]xr[n]

]
.
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Differentiating the second order cumulant with respect βu, we can obtain κ(u)
rs as

∂κrs

∂βu
=

d
d µ[n]

[
N

∑
n=1
− 4

µ[n]2

(
d µ[n]
dη [n]

)2
]

d µ[n]
dη [n]

∂η [n]
∂βu

xs[n]xr[n]

=
N

∑
n=1

[
8

µ[n]3

(
d µ[n]
dη [n]

)2

− 4
µ[n]2

∂
∂ µ[n]

(
d µ[n]
dη [n]

)2
]

d µ[n]
dη [n]

xu[n]xs[n]xr[n]

=
N

∑
n=1

[
8

µ[n]3

(
d µ[n]
dη [n]

)2

− 4
µ[n]2

(
2× ∂

∂ µ[n]

(
d µ[n]
dη [n]

)
×d µ[n]

dη [n]

)]
d µ[n]
dη [n]

xu[n]xs[n]xr[n]

=
N

∑
n=1

[
8

µ[n]3

(
d µ[n]
dη [n]

)3

− 8
µ[n]2

(
d µ[n]
dη [n]

)2 ∂
∂ µ[n]

×
(

d µ[n]
dη [n]

)]
xu[n]xs[n]xr[n].

The third order derivatives of the log-likelihood function is

∂ 3`(βββ )
∂βr∂βs∂βu

=
∂

∂ µ[n]

[
N

∑
n=1

∂ 2`[n](µ[n])
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d µ[n]
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∂
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(
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∂
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Taking the expected value, we obtain the third order cumulant
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From the above expressions, we have that
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Now, it is possible to compute the second order biases of the MLEs in the Rayleigh

regression model as

∑
r,s,u

κarκsu
{

κ(u)
rs −

1
2

κrsu

}
=

N

∑
n=1

w[n]∑
r

κarxr[n]∑
s,u

xs[n]κsuxu[n],

where

w[n] =− 2
µ[n]3

(
d µ[n]
dη [n]

)3

− 2
µ[n]2

(
d µ[n]
dη [n]

)2 ∂
∂ µ[n]

(
d µ[n]
dη [n]

)
.

In particular, for g(µ[n]) = log(µ[n]), we have w[n] =−4. Note that

N

∑
n=1

w[n]∑
r

κarxr[n]∑
s,u

xs[n]κsuxu[n] = e>a I−1(βββ )
N

∑
n=1

w[n]x[n]
(

x>[n]I−1(βββ )x[n]
)
,

where ea is defined as the ath column vector of the k× k identity matrix. Then,

∑
r,s,u

κarκsu
{

κ(u)
rs −

1
2

κrsu

}
= e>a I−1(βββ )X>Wδ .
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APPENDIX C – Conditional Fisher Information Matrix for the 2D RARMA Model

In this appendix, we provide the conditional Fisher information matrix of the 2D RARMA

model described in Chapter 4, which is given by the expectation of the negative value of the

second-order partial derivatives of the log-likelihood function, which is defined as follows

∂ 2`(γγγ)
∂γi∂γ j

=
N

∑
n=1

M

∑
m=1

d
d µ[n,m]

(
d`[n,m](µ[n,m])

d µ[n,m]

d µ[n,m]

dη [n,m]

)
d µ[n,m]

dη [n,m]

∂η [n,m]

∂γ j

∂η [n,m]

∂γi

=
N

∑
n=1

M

∑
m=1

(
∂ 2`[n,m](µ[n,m])

∂ µ[n,m]2
d µ[n,m]

dη [n,m]
+

d`[n,m](µ[n])
d µ[n,m]

∂
∂ µ[n,m]

d µ[n,m]

dη [n,m]

)
· d µ[n,m]

dη [n,m]

∂η [n,m]

∂γ j

∂η [n,m]

∂γi
.

As shown in [94], we have that

E(d`[n,m](µ[n,m])/d µ[n,m] | S[n,m])) = 0.

Thus,

E
(

∂ 2`(γγγ)
∂γi∂γ j
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M
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E
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·
(
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∂γ j

∂η [n,m]

∂γi
.

The derivatives of d`[n,m](µ[n,m])/d µ[n,m], d µ[n,m]/dη [n,m], and ∂η [n,m]/∂γγγ have been

defined in Section 4.2.3. Now, the second derivative of d`[n,m](µ[n,m])/d µ[n,m] is given by

∂ 2`[n,m](µ[n,m])

∂ µ[n,m]2
=

2
µ[n,m]2

− 3πy[n,m]2

2µ[n,m]4
.

Taking the expected value, we have

E
[

d2 `[n,m](µ[n,m])

d µ[n,m]2

]
=− 4

µ[n,m]2
.

Thus,

E
[

∂ 2`(γγγ)
∂γi∂γ j

]
=

N

∑
n=1

M

∑
m=1
− 4

µ[n,m]2

(
1

g′(µ[n,m]

)2 ∂η [n,m]

∂γ j

∂η [n,m]

∂γi
.

The conditional Fisher information matrix is given by

I(γγγ) =−


I(β ,β ) I(β ,φ) I(β ,θ)
I(φ ,β ) I(φ ,φ) I(φ ,θ)
I(θ ,β ) I(θ ,φ) I(θ ,θ)

 ,
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where I(β ,β )= a>Wa, I(β ,φ)=P>Wa, I(β ,θ)=R>Wa, I(φ ,β )= a>WP, I(φ ,φ)=P>WP, I(φ ,θ)=

R>WP, I(θ ,α) = a>WR, I(θ ,φ) = P>WR, I(θ ,θ) = R>WR. The matrices P and R are of di-

mensions (N ·M−w)× (p+1)2−1, and (N ·M−w)× (q+1)2−1, respectively, with (i, j)th

elements given by

P[i, j] =
∂η [i+w, j+w]

∂φ(i, j)
,

R[i, j] =
∂η [i+w, j+w]

∂θ(i, j)
.

Finally, we have W= diag

{
4

µ[1,1]2

(
d µ[1,1]
dη [1,1]

)2

, 4
µ[1,2]2

(
d µ[1,2]
dη [1,2]

)2

, . . . , 4
µ[N,M]2

(
d µ[N,M]

dη [N,M]

)2
}

and a =
(

∂η [n+1,m+1]
∂β , ∂η [n+2,m+2]

∂β , . . . , ∂η [N,M]
∂β

)>
.
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APPENDIX D – Detection Results Considering the San Francisco SAR Image HV and VV

Associated Polarization Channels Based on the 2D ARMA(1,0) Model and the

2D RARMA(1,0) Model

In this appendix, we show the detection results considering the San Francisco SAR image

HV and VV associated polarization channels based on 2D ARMA(1,0) and 2D RARMA(1,0)

models. Figure 35 presents the San Francisco SAR images HV and VV associated polarization

channel. Additionally, Figures 36 and 37 show detection results for HV and VV polarization

channels, considering the 2D ARMA(1,0) and 2D RARMA(1,0) models, respectively.
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Figure 35 – Original San Francisco SAR image HV and VV associated polarization
channels.

(a) HV polarization channel

(b) VV polarization channel

Source: Author (2020)
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Figure 36 – Negative detected image HV associated polarization channel based on
2D RARMA(1,0) and 2D ARMA(1,0) models.

(a) 2D RARMA(1,0) model

(b) 2D ARMA(1,0) model

Source: Author (2020)
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Figure 37 – Detected image VV associated polarization channel based on
2D RARMA(1,0) and 2D ARMA(1,0) models.

(a) 2D RARMA(1,0) model

(b) 2D ARMA(1,0) model

Source: Author (2020)
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APPENDIX E – Tools and Diagnostic Analysis for the BBARMA Model

In this appendix, diagnostic measures and forecasting tools are introduced for the

BBARMA model. The data forecasting for the BBARMA(p,q) model can be produced using

the CMLE of γγγ , γ̂γγ , to obtain estimates µ̂[n], for µ[n]. The mean response estimate at N + h,

with h = 1,2, . . . ,H, where H is the forecast horizon, is given by

µ̂[N +h] = g−1

(
ζ̂ +x>[n]β̂ββ +

p

∑
i=1

φ̂i{y∗[N +h− i]}+
q

∑
j=1

θ̂ j{r∗[N +h− j]}
)
,

where

y∗[N +h− i] =

 µ̂[N +h− i], if i < h,

y?[N +h− i], if i≥ h,

r∗[N +h− j] =

 0, if j < h,

r̂[N +h− j], if j ≥ h,

and r̂[n] = y?[n]− µ̂[n]. The quantity µ̂[n]∈ (0,1) can be mapped to the discrete set {0,1,2, . . . ,K}
by means of round(µ̂[n] ·K), where round(·) is a round function. Note that no parameter restric-

tions are required for fitting or forecasting based on BBARMA model.

The diagnostic measures are useful to evaluate the performance of the adjusted model.

The correct adjustment of the proposed model is important to obtain accurate out-of-signal

forecasting. For the BBARMA model selections, we adopted the following information criteria:

Akaike’s (AIC) [227], Schwartz’s (SIC) [228], and Hannan and Quinn’s (HQ) [229]. Residuals

are useful for performing the diagnostic analysis of the fitted model and can be defined as a

function of the observed and predicted values of the model [137].

Different types of residuals are considered in literature for several classes of models,

such as ordinary residuals, standardized residuals and some residuals in the predictor scale. We

employed the standardized ordinary residuals

ε[n] =
y?[n]− µ̂[n]√

V̂ar(y[n])
,

where V̂ar(y[n]) = Kµ̂[n](1− µ̂[n])
[

K+ϕ̂
1+ϕ̂

]
.

A good model adjustment is indicate by zero mean and constant variance of the stan-

dardized residual [137]. Also, it is expected that the autocorrelation and partial autocorrelation
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and conditional heteroscedasticity in the series of residuals are absent [119]. The residual

autocorrelation function (ACF) is given by

ρ̂k =

N−k
∑

n=m+1
(ε[n]− ε̄)(ε[n+ k]− ε̄)

N−k
∑

n=m+1
(ε[n]− ε̄)2

, k = 0,1, . . . ,

where ε̄ = (N−m)−1
∑

N
n=m+1 ε[n]. The distribution of ρ̂k is approximately normal with zero

mean and variance 1/(N−m), for i > 1 and N→ ∞ [119, 137, 230]. Box-Pierce [231], Ljung-

Box [232], and the ACF plot are useful to verify if autocorrelation and conditional heteroscedas-

ticity in the series of residuals are absent.
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APPENDIX F – Conditional Observed Information Matrix for the BBARMA Model

In this appendix, we provide mathematical details for the score vector, (5.5), and (5.6)

presented in Chapter 5. The derivative of ` with respect to ζ is given by

∂`
∂ζ

= ϕ
N

∑
n=m+1

ϒ[n]
1

g′(µ[n])
∂η [n]

∂ζ
.

For the derivative of ` with respect to βk, considering k = 1,2, . . . , l, we have that

∂`
∂βk

=ϕ
N

∑
n=m+1

ϒ[n]
1

g′(µ[n])
∂η [n]
∂βk

.

The score function for the parameter φφφ , given by the derivative of ` with respect to φi, for

i = 1,2, . . . , p, is given by

∂`
∂φi

=ϕ
N

∑
n=m+1

ϒ[n]
1

g′(µ[n])
∂η [n]
∂φi

.

The derivative of ` with respect to θ j, for j = 1,2, . . . ,q, is given by

∂`
∂θ j

=ϕ
N

∑
n=m+1

ϒ[n]
1

g′(µ[n])
∂η [n]
∂θ j

.

In matrix form, the score vector can be written as U(γγγ) = (Uζ ,Uβββ ,Uφφφ ,Uθθθ ,Uϕ)
>, where

Uζ =ϕa>Tϒϒϒ,

Uβββ =ϕM>Tϒϒϒ,

Uφφφ =ϕP>Tϒϒϒ,

Uθθθ =ϕR>Tϒϒϒ,

Uϕ =
∂`
∂ϕ

.
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From (5.5), we have that

∂ 2`

∂λλλ∂δδδ
=

N

∑
n=m+1

∂
∂λλλ

(
∂`[n](µ[n],ϕ)

∂ µ[n]
d µ[n]
dη [n]

∂η [n]
∂δδδ

)
=

N

∑
n=m+1

[
∂ 2`[n](µ[n],ϕ)

∂ µ[n]2
d µ[n]
dη [n]

∂η [n]
∂δδδ

d µ[n]
dη [n]

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
∂

∂λλλ

(
dµ[n]
dη [n]

∂η [n]
∂δδδ

)]
=

N

∑
n=m+1

[
∂ 2`[n](µ[n],ϕ)

∂ µ[n]2
d µ[n]
dη [n]

∂η [n]
∂δδδ

d µ[n]
dη [n]

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
∂η [n]

∂δδδ
d2 µ[n]
dη [n]2

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
d µ[n]
dη [n]

∂ 2η [n]
∂δδδ∂λλλ

]
=

N

∑
n=m+1

[
∂ 2`[n](µ[n],ϕ)

∂ µ[n]2

(
d µ[n]
dη [n]

)2 ∂η [n]
∂δδδ

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
d2 µ[n]
dη [n]2

∂η [n]
∂δδδ

∂η [n]
∂λλλ

+
∂`[n](µ[n],ϕ)

∂ µ[n]
d µ[n]
dη [n]

∂ 2η [n]
∂δδδ∂λλλ

]
.

Additionally, from (5.6), note that

∂ 2η [n]
∂δδδ∂θ j

=
∂

∂θ j

(
∂η [n]

∂δδδ

)
=−d µ[n− j]

dη [n− j]
∂η [n− j]

∂δδδ
−

q

∑
s=1

θs
∂

∂θ j

(
d µ[n− s]
dη [n− s]

∂η [n− s]
∂δδδ

)
=− d µ[n− j]

dη [n− j]
∂η [n− j]

∂δδδ
−

q

∑
s=1

θs
∂η [n− s]

∂δδδ
d2 µ[n− s]
dη [n− s]2

∂η [n− s]
∂θ j

−
q

∑
s=1

θs
d µ[n− s]
dη [n− s]

∂ 2η [n− s]
∂δδδ∂θ j

,

∂ 2η [n]
∂θk∂θ j

=
∂

∂θ j

(
∂η [n]
∂θk

)
=−d µ[n− j]

dη [n− j]
∂η [n− j]

∂θk
− d µ[n− k]

dη [n− k]
∂η [n− k]

∂θ j

−
q

∑
s=1

θs
∂

∂θ j

(
d µ[n− s]
dη [n− s]

× ∂η [n− s]
∂θk

)
=− d µ[n− j]

dη [n− j]
∂η [n− j]

∂θk
− d µ[n− k]

dη [n− k]
∂η [n− k]

∂θ j
−

q

∑
s=1

θs
∂η [n− s]

∂θ j

d2 µ[n− s]
dη [n− s]2

∂η [n− s]
∂θk

−
q

∑
s=1

θs
d µ[n− s]
dη [n− s]

∂ 2η [n− s]
∂θk∂θ j

,

for j = k = 1,2, . . . ,q.
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APPENDIX G – Ground Scene Prediction Images from Stack 2 and 3

In this appendix, we present the ground scene prediction images from Stack 2 and 3,

considering the methods discussed in Chapter 6. Figures 38-42 and 43-47 show the ground scene

prediction images from Stack 2 and 3, respectively.
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Figure 38 – Ground scene prediction image for Stack 2 based on the AR model.

Source: Author (2020)
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Figure 39 – Ground scene prediction image for Stack 2 based on the trimmed mean
method.

Source: Author (2020)
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Figure 40 – Ground scene prediction image for Stack 2 based on the median method.

Source: Author (2020)
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Figure 41 – Ground scene prediction image for Stack 2 based on the mean method.

Source: Author (2020)
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Figure 42 – Ground scene prediction image for Stack 2 based on the intensity mean
method.

Source: Author (2020)
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Figure 43 – Ground scene prediction image for Stack 3 based on the AR model.

Source: Author (2020)



154

Figure 44 – Ground scene prediction image for Stack 3 based on the trimmed mean
method.

Source: Author (2020)
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Figure 45 – Ground scene prediction image for Stack 3 based on the median method.

Source: Author (2020)
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Figure 46 – Ground scene prediction image for Stack 3 based on the mean method.

Source: Author (2020)
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Figure 47 – Ground scene prediction image for Stack 3 based on the intensity mean
method.

Source: Author (2020)
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