
Thaís Alves Burity Rocha

Avoiding Merge Conflicts by Test-Based Task Prioritization

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2020

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Thaís Alves Burity Rocha

Avoiding Merge Conflicts by Test-Based Task Prioritization

Tese de Doutorado apresentada ao Programa de
Pós-graduação em Ciência da Computação do
Centro de Informática da Universidade Federal de
Pernambuco, como requisito parcial para obtenção
do título de Doutor em Ciência da Computação.

Área de Concentração: Engenharia de Soft-
ware
Orientador: Paulo Henrique Monteiro Borba

Recife
2020

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

R672a Rocha, Thaís Alves Burity

Avoiding merge conflicts by test-based task prioritization / Thaís Alves Burity
Rocha. – 2020.

 103 f.: il., fig., tab.

 Orientador: Paulo Henrique Monteiro Borba.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2020.
 Inclui referências.

 1. Engenharia de software. 2. Desenvolvimento colaborativo. I. Borba, Paulo
Henrique Monteiro (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2020 - 70

Thaís Alves Burity Rocha

“Avoiding Merge Conflicts by Test-Based Task Prioritization”

Tese de Doutorado apresentada ao Programa de
Pós-Graduação em Ciência da Computação da
Universidade Federal de Pernambuco, como requi-
sito parcial para a obtenção do título de Doutor
em Ciência da Computação.

Aprovado em: 17/02/2020.

Orientador: Paulo Henrique Monteiro Borba

BANCA EXAMINADORA

Prof. Dr. Hermano Perrelli de Moura
Centro de Informática / UFPE

Prof. Dr. Fernando José Castor de Lima Filho
Centro de Informática / UFPE

Prof. Dr. Breno Alexandro Ferreira de Miranda
Centro de Informática / UFPE

Prof. Dr. Alessandro Fabricio Garcia
Departamento de Informática / PUC/RJ

Prof. Dr. Alfredo Goldman Vel Lejbman
Instituto de Matemática e Estatística / USP

I dedicate this work to my family.

ACKNOWLEDGEMENTS

Eu agradeço à Deus pelas inúmeras oportunidades que me foram concedidas até hoje e
pelas pessoas fantásticas que Ele colocou/coloca na minha vida. Sem elas, esse trabalho
não seria possível. Uma família que sempre me incentivou a ter curiosidade, a ter sede
de conhecimento e, principalmente, a não desistir diante das dificuldades. Em especial,
meu pai Fernando pelo seu exemplo de disciplina, minha mãe Silvana pelo entusiasmo em
viver e pela grande capacidade expressiva, minha irmã Beta pelo bom humor e coragem
de recomeçar. Meu esposo Betinho, que me aturou durante toda essa jornada, nos altos e
baixos, com tanto amor e paciência, acreditando em mim quando nem eu mesma acreditava.
Não foram poucas as vezes que abrimos mão de momentos de lazer, descanso, diálogo,
para que eu me dedicasse a esse trabalho. Sem contar toda a ajuda prestada, resolvendo
coisas do dia-a-dia por mim, para o tempo render. Um orientador zeloso, o professor Paulo
Borba, que pacientemente soube me mostrar um mundo de possibilidades quando eu me
via sem saída, lidando com todo o meu pessimismo com leveza e sabedoria. O grupo de
pesquisa Labes/SPG que tive a felicidade de conviver por um bom período, compartilhando
momentos de discussão técnica e construção de conhecimento, mas também momentos de
descontração e desabafos pertinentes ao mundo acadêmico. Em especial, minhas irmãs de
pesquisa Klissio, Paola e Gabi. A amiga Renata, que fez parte do início da minha vida de
pesquisadora ainda na graduação, e prestou consultorias estatísticas com toda boa vontade.
As amigas de infância Gisa e Tatá, por dividirem tantos momentos de alegria e desabafos,
apesar de toda a distância que nos separa, tornando as preocupações e obrigações mais
leves. As amigas da UFRPE/UAG Kádna, Priscilla e Maria Aparecida, por compartilharem
suas experiências de professoras e doutorandas, me motivando nos momentos de desânimo.
A minha Lulu, minha filha Luísa Helena, que com seu sorriso semi-banguela, seus passinhos
apressados, e sua fala insistente por "mamam", me ensina tanto e me motiva a superar
meus limites. As pessoas que me ajudam a cuidar da rotina com Lulu e assim ter condições
de me dedicar à pesquisa, em especial Kelly, Elisângela e vovó Ieda.

ABSTRACT

In a collaborative development context, merge conflicts might compromise software
quality and developers’ productivity. To reduce conflicts, one could avoid the parallel
execution of programming tasks that are likely to change the same files. Although hopeful,
this strategy is challenging because it relies on the prediction of the required file changes
to complete a task. As predicting file changes is hard, we investigate its feasibility for
BDD (Behaviour-Driven Development) projects, which write automated acceptance tests
before implementing features. We develop a tool that, for a given task, statically analyzes
Cucumber tests and conservatively infers test-based interfaces or TestI (files that could
be executed by the tests), approximating files that would be changed by the task. To
assess the accuracy of this approximation, we measure precision and recall of test-based
interfaces of 513 tasks from 18 Rails projects on GitHub. We also compare such interfaces
with randomly defined interfaces, interfaces obtained by the textual similarity of test
specifications with past tasks, and interfaces computed by executing tests. Our results
give evidence that, in the specific context of BDD, Cucumber tests might help to predict
files changed by tasks. We find that the better the test coverage, the better the predictive
power. Next, we evaluate whether it is possible to predict the risk of a merge conflict
when integrating the code produced by two programming tasks based on the intersection
among their TestI. To assess the predictions of conflict risk, we measure precision and
recall of 6,360 task pairs from 19 Rails projects on GitHub. Our results confirm that
Cucumber tests might help to predict the risk of merge conflicts, given the intersection
among interfaces denotes a higher probability that the tasks change some file in common.
A minimal intersection predicts conflict risk with 0.59 of precision and 0.98 of recall. Also,
the higher the intersection size, the higher the number of files changed by both tasks. This
way, developers might use the intersection size between TestI as a degree of conflict risk
between tasks, prioritizing the selection of a task to work on whose TestI has the lowest
intersection with others. Finally, a predictor of conflict risk based on TestI outperforms a
predictor based on similar past tasks.

Keywords: Collaborative development. Task prioritization. Behaviour-driven development.
File change prediction. Prediction of conflict risk.

RESUMO

No contexto de desenvolvimento colaborativo, conflitos de integração podem com-
prometer a qualidade do software e a produtividade dos desenvolvedores. Para reduzir
conflitos, uma possibilidade seria evitar a execução paralela de tarefas de programação que
irão alterar os mesmos arquivos. Embora esperançosa, essa estratégia é desafiadora porque
depende da predição dos arquivos que precisam ser alterados para concluir uma tarefa.
Como é difícil prever os arquivos alterados, investigamos sua viabilidade para projetos BDD
(Behavior-Driven Development), que escrevem testes de aceitação automatizados antes de
implementar funcionalidades. Desenvolvemos uma ferramenta que, para uma determinada
tarefa, analisa estaticamente os testes do Cucumber e, de maneira conservativa, infere as
interfaces baseadas em testes ou TestI (arquivos que podem ser executados pelos testes),
aproximando os arquivos que seriam alterados pela tarefa. Para avaliar a confiabilidade
dessa aproximação, medimos a precisão e a revocação de interfaces baseadas em teste de
513 tarefas de 18 projetos Rails no GitHub. Também comparamos interfaces baseadas em
testes com interfaces definidas aleatoriamente, interfaces obtidas pela similaridade textual
das especificações de teste com tarefas anteriores e interfaces calculadas pela execução
de testes. Nossos resultados evidenciam que, no contexto específico de BDD, os testes do
Cucumber podem ajudar a prever arquivos alterados pelas tarefas. Em seguida, avaliamos
se é possível prever o risco de conflitos de integração com base na interseção entre interfaces
de tarefas baseadas em teste. Para avaliar as previsões de risco de conflito, medimos a
precisão e a revocação de 6.360 pares de tarefa de 19 projetos Rails no GitHub. Dentre
outras descobertas, nossos resultados confirmam que os testes do Cucumber podem ajudar
a prever o risco de conflitos de integração, uma vez que a interseção entre interfaces de
tarefas indica uma maior probabilidade das tarefas alterem algum arquivo em comum.
Uma interseção mínima prediz risco de conflito com 0,59 de precisão e 0,98 de revocação.
Além disso, quanto maior o tamanho da interseção, maior o número de arquivos alterados
por ambas as tarefas. Dessa forma, os desenvolvedores podem usar o tamanho da interseção
entre TestI como grau de risco de conflito entre tarefas, priorizando a seleção de uma
tarefa para executar cujo TestI possui a menor interseção com as demais. Finalmente, um
preditor de risco de conflito baseado em interfaces de tarefa tem melhor performance que
um preditor baseado em tarefas passadas similares.

Palavras-chaves: Desenvolvimento colaborativo. Priorização de tarefas. Desenvolvimento
Dirigido a Comportamento. Predição de mudança de arquivo. Predição de risco de conflito.

LIST OF FIGURES

Figure 1 – User story example. 17
Figure 2 – Example of merge conflict. 19
Figure 3 – Key elements in BDD. 21
Figure 4 – Feature example from project alphagov/whitehall. 22
Figure 5 – Scenario example from project alphagov/whitehall. 22
Figure 6 – Example of step definition from project alphagov/whitehall. 23
Figure 7 – Example of an automated acceptance test related to task 𝑇2. 26
Figure 8 – Test-based task interfaces of tasks 𝑇1, 𝑇2, and 𝑇3. The files in bold are

the ones actually changed by developers. 27
Figure 9 – TAITI architecture. 29
Figure 10 – Distribution of textual similarity related to the larger sample. 46
Figure 11 – Beanplots describing the recall value of TestI-NF and TestI-CF per

task from the larger sample. 48
Figure 12 – Beanplots describing the precision value of TestI-NF and TestI-CF per

task from the larger sample. 49
Figure 13 – Beanplots describing the results of TestI-NF and TestI-CF per project

from the larger sample. 51
Figure 14 – Beanplots describing the recall value of DTestI per task from the smaller

sample. 54
Figure 15 – Beanplots describing the recall value of RandomI per task from the

larger sample. 55
Figure 16 – Beanplots describing the precision value of RandomI per task from the

larger sample. 56
Figure 17 – Beanplots describing the recall value of TestI and RandomI per project

from the larger sample. 57
Figure 18 – Beanplots describing the precision value of TestI and RandomI per

project from the larger sample. 58
Figure 19 – Beanplots describing the recall value of TextI per task from the larger

sample. 59
Figure 20 – Beanplots describing the precision value of TextI per task from the

larger sample. 60
Figure 21 – Merge conflicts caused by the integration of tasks 𝑇175 and 𝑇176. 65
Figure 22 – Test-based task interfaces of conflicting tasks from project allourideas/al-

lourideas.org. The files in red are the intersection between the interfaces,
and the underlined files are the conflicting ones. 66

Figure 23 – Prioritizing tasks based on TestI. 81

LIST OF TABLES

Table 1 – Filters for task interfaces content. 34
Table 2 – Construction of the smaller sample. 41
Table 3 – Construction of the larger sample. 42
Table 4 – Tasks distribution per sample and project. 43
Table 5 – Diversity of projects in our task samples. 44
Table 6 – Size of interfaces from the larger sample. 45
Table 7 – Noise caused by TAITI. Noise means the mistakes or limitations that

might affect TestI. The percentages refer to the proportion of affected
tasks per sample. 46

Table 8 – Average precision per project of the larger sample. 61
Table 9 – Average recall per project of the larger sample. 61
Table 10 – Average precision per project of the smaller sample. 61
Table 11 – Average recall per project of the smaller sample. 62
Table 12 – Construction of the task pair sample. 73
Table 13 – Diversity of projects in our task pair sample. 73
Table 14 – Precison and recall measures of the TestI intersection predictor. “All

files” is the result when considering all files changed by tasks, and “Files
reachable from TestI ” is the result when restricting a task’s changed files
set by excluding files not reachable by TestI. 75

Table 15 – Precison and recall measures of TextI intersection predictor. “All files”
is the result when considering all files changed by tasks, and “Files
reachable from TestI ” is the result when restricting a task’s changed files
set by excluding files not reachable by TestI. 78

CONTENTS

1 INTRODUCTION . 13

2 BACKGROUND . 17
2.1 TASKS IN AGILE SOFTWARE DEVELOPMENT 17
2.2 MERGE CONFLICTS . 18
2.2.1 Merge conflicts in practice . 19
2.3 BEHAVIOUR-DRIVEN DEVELOPMENT 20
2.3.1 Cucumber . 21
2.4 RUBY ON RAILS APPLICATIONS . 24

3 PREDICTING FILE CHANGES . 25
3.1 MOTIVATING EXAMPLE . 25
3.2 TEST-BASED TASK INTERFACES . 28
3.2.1 Finding step definitions . 29
3.2.2 Finding references to application code 30
3.2.3 Finding references to views . 31
3.2.4 Finding application code referenced by views 32
3.2.5 Design alternatives for test-based task interfaces 32
3.2.5.1 Filtering by step type . 33
3.2.5.2 Filtering by file type . 33
3.2.5.3 Applying multiple filters . 34
3.3 EMPIRICAL STUDY . 34
3.4 STUDY SETUP . 37
3.4.1 Project selection . 37
3.4.2 Task extraction . 38
3.4.3 Collecting task data . 39
3.4.4 General exclusion criteria . 39
3.4.5 Samples . 40
3.5 RESULTS AND DISCUSSION . 47
3.5.1 RQ1: How often does TestI predict file changes associated with a

task? . 47
3.5.2 RQ2: Is static code analysis suitable to compute TestI? 54
3.5.3 RQ3: Is TestI a better code change predictor than RandomI? . . . 55
3.5.4 RQ4: Is TestI a better code change predictor than TextI? 58
3.6 THREATS TO VALIDITY . 62
3.6.1 Construct validity . 62

3.6.2 Internal validity . 62
3.6.3 External validity . 63

4 PREDICTING RISK OF MERGE CONFLICTS 64
4.1 MOTIVATING EXAMPLE . 64
4.2 RESEARCH QUESTIONS . 67
4.3 STUDY SETUP . 70
4.3.1 Initial project selection . 70
4.3.2 Task extraction and further project selection 70
4.3.3 Collecting task data . 71
4.3.4 Task pair sample . 72
4.4 RESULTS . 74
4.4.1 RQ1: Are tasks with non-disjoint TestI interfaces associated with

higher merge conflict risk? . 74
4.4.2 RQ2: How often does TestI predict conflict risk between two tasks? 74
4.4.3 RQ3: Is the size of the intersection between two TestI interfaces

proportional to the number of files changed in common by the
corresponding tasks? . 77

4.4.4 RQ4: Is TestI a better predictor of conflict risk than TextI? 78
4.4.5 Other results . 79
4.5 IMPLICATIONS . 80
4.6 THREATS TO VALIDITY . 83
4.6.1 Construct validity . 83
4.6.2 Internal validity . 84
4.6.3 External validity . 85

5 CONCLUSIONS . 86
5.1 CONTRIBUTIONS . 88
5.2 FUTURE WORK . 88
5.3 RELATED WORK . 90
5.3.1 Avoiding conflicts by task scheduling 90
5.3.2 Predicting task interfaces . 91
5.3.2.1 Assisted manual definition of task interfaces 92
5.3.2.2 Partial automated prediction of task interfaces 92
5.3.2.3 Predicting task interfaces by retrospective analysis 93
5.3.3 Other related work . 94
5.3.3.1 Predicting merge conflicts . 94
5.3.3.2 Merge tools . 94
5.3.3.3 Awareness tools . 95
5.3.3.4 Task context . 96

5.3.3.5 Development practices . 96
5.3.3.6 Project scheduling . 97
5.3.3.7 Next release planning . 97

REFERENCES . 98

13

1 INTRODUCTION

When collaborating, developers create and change software artifacts often without full
awareness of changes being made by other team members. While such independence is
essential for medium and large teams and promotes development productivity, it might
also result in conflicts when integrating developers changes. In fact, high degrees of parallel
changes and integration conflicts have been observed in a number of industrial and open-
source projects that use different kinds of version control systems (PERRY; SIY; VOTTA,
2001; ZIMMERMANN, 2007; BRUN et al., 2013; KASI; SARMA, 2013). This has been observed
even when using advanced merge tools (APEL et al., 2011; APEL; LESSENICH; LENGAUER,
2012; CAVALCANTI; BORBA; ACCIOLY, 2017; ACCIOLY; BORBA; CAVALCANTI, 2017) that
avoid common spurious conflicts identified by state of the practice tools.

Resolving such integration conflicts might be time consuming and is an error-prone
activity (SARMA; REDMILES; HOEK, 2012; BIRD; ZIMMERMANN, 2012; MCKEE et al., 2017),
negatively impacting development productivity. Quality might be impacted too, since
developers maybe miss semantic conflicts, leading to defects that escape to end users.
So, to avoid dealing with conflicts, developers have been adopting risky practices such
as rushing to finish changes first (SARMA; REDMILES; HOEK, 2012; GRINTER, 1996), and
partial check-ins (SOUZA; REDMILES; DOURISH, 2003). Similarly, partially motivated by
the need to reduce conflicts, or at least avoid large conflicts, development teams have
been adopting techniques such as trunk-based development (ADAMS; MCINTOSH, 2016;
HENDERSON, 2017; POTVIN; LEVENBERG, 2016) and feature toggles (BASS; WEBER; ZHU,
2015; ADAMS; MCINTOSH, 2016; FOWLER, 2016; HODGSON, 2017a), which are important
to support actual Continuous Integration (FOWLER, 2009), but might lead to extra code
complexity (HODGSON, 2017b).

By wisely choosing which tasks to work on in parallel, a development team could likely
reduce conflict occurrence. In particular, we should expect lower integration conflict risk
from parallel tasks that focus on unrelated features and affect disjoint and independent
file sets. However, developers might not be able to accurately predict which files will
be changed by a given task. Automatically predicting such code changes, in general, is
also hard. It is worth, though, to investigate whether this kind of automatic prediction
is feasible for specific contexts (BRIAND et al., 2017). In this thesis, by conducting two
empirical studies, we investigate the usage of acceptance tests in BDD (SMART, 2014)
projects to predict the files the developers will change when working in parallel and,
consequently, the risk of integration conflicts between their programming tasks.

In particular, in a BDD context, automated acceptance tests are written before
implementing features. Moreover, each feature implementation task can be often associated
to a number of usage scenarios that are directly linked to the tests. So, by statically

14

analyzing the code that automates the tests associated to a task, following references we
could conservatively infer parts of the application code that might be exercised by the
tests, and these could perhaps approximate the files that would be changed by the task.

To assess the accuracy of this approximation, we first build the TAITI tool to compute,
for a given task, its test-based task interface (TestI): the set of application files that might
be exercised by the tests associated to the given task. We then compare a TestI with the
corresponding task interface: the set of files actually changed by the task.1 We compute
precision and recall measures for TestI considering 513 tasks2 from 18 Ruby on Rails3

projects that use Cucumber4 for specifying acceptance tests. We compare the predictive
capacity of different variations of TestI. We also compare TestI with randomly defined
task interfaces (RandomI), task interfaces obtained by observing textual similarity of test
specifications with past tasks (TextI), and task interfaces computed by executing tests
(DTestI)5.

Our results bring evidence that, in the specific context of BDD, Cucumber tests
associated to a task might help to predict application files changed by developers responsible
for the task. We find that the better the test coverage of a task, the better the TestI
predictive power. On average, TestI presents similar recall but better precision than
RandomI. Contrasting, TestI presents better recall but inferior precision than TextI. As the
adverse impact of false positives in this context is basically to discourage parallel execution
of tasks that would not conflict, or encourage slightly more unneeded coordination, the
false negatives are more important because they could lead to conflict occurrence and extra
effort for resolving it. This favours the recall measure and, as a consequence, supports
TestI instead of TextI. As maybe expected DTestI presents better recall than TestI, but
the first can only be computed by executing the tests, which assumes that tasks have been
finished and application code is ready. As such, DTestI results are only useful to help us
understand the limits of TestI and how our algorithms and tool could be improved. Also,
when dealing with an MVC-like application (e.g., web applications developed in Rails),
TestI performs better when predicting changes in controller files. As controllers uniquely
identify an MVC segment (related model, view, controller, and auxiliary files), one could
also use TestI to predict changes in segments.

In particular, our results suggest that a hybrid approach for computing test-based
interfaces is promising. For example, failing tests would trigger our static analysis for
computing the interface, but ready tests for features that are being maintained could be
1 Although this is a coarse and limited notion of task interface (BALDWIN, 2000) that considers only the

“provides” dimension, for simplicity we take the liberty of adopting this terminology.
2 In this thesis, a task is a commit set between a merge commit and the common ancestor with the other

contribution the merge integrates.
3 <https://rubyonrails.org/>
4 <https://cucumber.io/>
5 We design both TextI and DTestI. The inspiration for designing TextI came from studies related to

code change prediction that investigate the past to predict the future.

https://rubyonrails.org/
https://cucumber.io/

15

executed to complement the interface and improve recall. Concerning conflict avoidance,
our results suggest that files inferred by analyzing certain parts of the test, such as the
test setup, should have less importance than files inferred from other parts.

Even so, our results about the ability of TestI for predicting file changes do not bring
evidence that TestI might actually support developers to avoid conflicts. For this reason,
we go further and assess whether it is possible to predict the risk of merge conflicts between
two tasks based on the intersection between their TestI. If the intersection is empty, we
assume there is no risk of a merge conflict. Otherwise, we consider there is a risk. This
way, we conduct a second empirical study by collecting a sample of 990 tasks from 19
Rails projects that use Cucumber for specifying acceptance tests. Then we simulate the
integration of possible concurrent tasks per project by verifying the intersection between
the set of files changed by the tasks. We adopt such an artifice rather than merging tasks
to see if conflicts occur to increase our sample, given we can reproduce few merges (i.e.,
task pairs extracted from the same base and merge commit). As a result, we have a set of
6,360 task pairs, for which we evaluate precision and recall measures of conflict predictions
based on TestI.

Our new results reveal that, in our sample, a minimal intersection between TestI (1
file) predicts conflict risk with 0.59 of precision and 0.98 of recall. That is, the intersection
between test-based task interfaces is associated with higher chances of tasks changing
files in common. The predictions favor the recall measure, which is more critical for our
context, as previously explained. We also find evidence that the larger the intersection size
between two interfaces, the higher the number of files actually changed in common by the
tasks associated with these interfaces. This way, developers might use the intersection size
between TestI as a degree of conflict risk between tasks, prioritizing parallel execution of
tasks that are likely to change fewer files in common, when possible. Task prioritization
depends on other factors, like project restrictions concerned with time and resources,
stakeholders priority, task complexity, and developer skills. So, even when it is not possible
to avoid the concurrent execution of some tasks, based on our results, the upfront knowledge
about conflict likelihood might support task coordination.

Although the intersection between TestI might predict potentially conflicting task
pairs, we also observe that it cannot predict the potentially conflicting files in many cases.
In such cases, we conclude that the intersection between TestI might reflect a degree
of proximity between the parts of the code changed by both tasks, eventually leading
to conflicts, even in files not directly reached by the interfaces. Finally, we compare the
performance of TestI and TextI when predicting conflict risk. Similarly to when dealing
with file changes prediction, we find TextI is more precise than TestI, but its low recall
rate discourages its usage. So we conclude that, for our context, TestI has overall better
performance. In the end, the results of both empirical studies corroborate that test-based
task interfaces might help developers to avoid merge conflicts.

16

We organize the remainder of this document as follows:

• In Chapter 2, we review the essential concepts used throughout this work.

• In Chapter 3, we describe our first empirical study, investigating the accuracy of
test-based task interfaces for predicting the files changed by programming tasks.
This chapter is published in Rocha, Borba e Santos (2019), with the co-authoring
of Paulo Borba and João Pedro Santos. Paulo Borba carefully guided and reviewed
this work, and João Pedro Santos computed DTestI and implemented a module of
TAITI that is responsible for parsing view files.

• In Chapter 4, we describe our second empirical study, assessing the ability of test-
based task interfaces for predicting the risk of merge conflicts between programming
tasks. This chapter will be published soon.

• In Chapter 5, we present our concluding remarks, and future and related work.

17

2 BACKGROUND

In this chapter, we review the essential concepts explored in this work. First, we explain
the concept of programming tasks for our context in Section 2.1. Then, we review merge
conflicts in collaborative software development in Section 2.2. Subsequently, in Section 2.3,
we present BDD and acceptance tests. In particular, we illustrate the Cucumber tool, given
TAITI (our tool) requires Cucumber tests as input to infer test-based task interfaces.
Finally, we briefly present the architecture of a Ruby on Rails application in Section 2.4,
given TAITI is specific for Rails projects.

2.1 TASKS IN AGILE SOFTWARE DEVELOPMENT

In this work, a programming task means a work item assigned to a developer that
results in code creation or code edition in the context of agile projects. For example,
developing new functionalities, maintaining functionalities (e.g., updating, correcting, or
enhancing existing features), bug fixing, and code refactoring.

Agile teams perform tasks according to an iterative and incremental development
process. They work in small system increments to get rapid feedback from stakeholders and
continuously improve software quality. In turn, teams organize increments into iterations
with a short and fixed duration, considering subsequent iterations improve the work of
the previous one. So, developers frequently perform several tasks per release or even per
iteration.

Regarding task management, agile teams often plan system increments as user stories
(COHN, 2004) that they prioritize, build, test, and release. Accurately, a user story describes
a piece of functionality (feature) from the perspective of a user or customer, in varying
levels of detail. For example, Figure 1 illustrates a user story for a travel reservation
system, specifying a user role, an action, and a goal. The development of such a story
encompasses other details, such as the usage of a credit card to ensure the reservation,
detailed view of available hotels, and a mechanism to search hotels based on criteria like
city and price, for instance. In this sense, a task might cover only a slice of this user story.
On the other hand, we might split this user story based on each detail, derivating multiple
tasks, each one covering a full user story.

Figure 1 – User story example.

For management purpose, teams often document tasks as tickets (or requests) in a

18

task management system, such as JIRA1 or PivoltalTracker,2 or an issue tracker system
like Bugzilla3 or Mantis.4 Finally, in such a collaborative development context, developers
share code through a repository managed by a version control system (VCS). Therefore,
a task results in at least a commit that adds, edits, or removes files. Also, some teams
explicitly link the tasks to the code that supports it by including the task ID into the
commit message. However, this is not a universal pattern.

2.2 MERGE CONFLICTS

Supported by a VCS, developers implement tasks using their copy of project files. In
such a process, they work independently from others and only integrate their contributions
as they complete a task. Even so, developers often make code changes that are inconsistent
with other changes, leading to conflicts during code integration (BRUN et al., 2013; KASI;

SARMA, 2013), despite the usage of advanced merge tools (APEL et al., 2011; APEL;

LESSENICH; LENGAUER, 2012; CAVALCANTI; BORBA; ACCIOLY, 2017; ACCIOLY; BORBA;

CAVALCANTI, 2017) that avoid false conflicts alerted by the state of practice tools.
Conflicts might occur when developers change the same file (direct conflict, the focus of

this work) or different files that contain obvious or subtle relationships (indirect conflict).
During code integration, for example, a merge conflict emerges when it is not possible to
automatically integrate development contributions affecting the same file. A typical merge
conflict happens when a developer tries to update the repository by publishing changes he
has made in a file, and someone already edited the same area of the same file (the same
text line or textually close lines).

Figure 2 illustrates a merge conflict. The example shows a snippet of the utility file
calculator.rb written in Ruby and considers the usage of Git5 as VCS. A developer adds
a parameter to the signature of method sum (change 1), whereas another developer
attributes a default value for the original parameter (change 2). The first developer
successfully merges his version file to the master branch. However, when the second
developer tries to merge his version, the illustrated conflict emerges (Merge result).
Despite its compatibility, Git (and most VCS) requires manual intervention to integrate
these code changes, because Unix diff3— the default diff tool— does not consider language
syntax. Instead, it checks concurrent changes on the same text line or the same hunk of a
file (a notion of proximity between text lines).
1 <https://www.atlassian.com/software/jira>
2 <https://www.pivotaltracker.com/>
3 <https://www.bugzilla.org/>
4 <https://www.mantisbt.org/>
5 <https://git-scm.com/>

https://www.atlassian.com/software/jira
https://www.pivotaltracker.com/
https://www.bugzilla.org/
https://www.mantisbt.org/
https://git-scm.com/

19

Figure 2 – Example of merge conflict.

2.2.1 Merge conflicts in practice

Some empirical studies bring quantitative evidence that conflicts occur frequently. For
example, Zimmermann (2007) analyzed four large open-source systems in CVS6 repositories
and reported that between 23% and 47% of all merges had conflicts. Brun et al. (2013)
analyzed 9 of the most active open-source systems in Git repositories and reported that
16% of all merges had conflicts. Kasi e Sarma (2013) analyzed four open-source projects
hosted in Github7 and reported that each project exhibited a different distribution of
merge conflicts, ranging from 4.2% to 19.3%. Furthermore, conflicts occurred irrespective
of the size of the project (KLOC) or the number of developers. Cavalcanti, Borba e Accioly
(2017) analyzed 34,030 merge scenarios from 50 Java projects and reported that 8.8% of
them had conflicts. When using an advanced merge tool (a semistructured merge tool
that exploits part of the language syntax and semantics), 7.1% of the merge scenarios
had conflicts. Accioly, Borba e Cavalcanti (2017) analyzed 70,047 merge scenarios from
123 GitHub Java projects and reported that 9.38% had conflicts (8.39% when using a
language-specific merge tool).

Also, these and other studies present evidence that conflicts are costly to solve, as
developers dedicate time and effort to understand, effectively trace the cause, and seek
a solution. As an illustration, Bird e Zimmermann (2012) investigated how developers
used branches in a large industrial project and reported that integrating changes from
6 <http://www.nongnu.org/cvs/>
7 <https://github.com/>

http://www.nongnu.org/cvs/
https://github.com/

20

multiple branches can be difficult and error-prone. As a consequence, branches incur
overhead in both development effort and time. By inspecting diverse projects, Brun et al.
(2013) reported conflicts persist 3.2 days average (0.7 days median). In turn, Kasi e Sarma
(2013) reported that developers needed between 6 days average (2 days median) and 22.93
days average (10 days median) to solve merge conflicts. These numbers are a proxy for
the effort of conflict resolution. Given version control history only provides information
about the time that the conflict emerges and the time after which it no longer exists, the
study assumes that if a developer faced a conflict, then she worked exclusively to resolve
that conflict in subsequent merges, which is unrealistic. Even so, the results corroborate
with evidence reported by other studies that resolving merge conflicts is not trivial and
negatively impact software development. For example, the fear of conflicts might affect
developers’ behavior (BRUN et al., 2012). Some developers avoid working in parallel to
ensure not running into conflicts. So, they share their code hurriedly in an attempt to
avoid responsibility for conflicts (SARMA; REDMILES; HOEK, 2012; GRINTER, 1996), many
times making partial check-ins (SOUZA; REDMILES; DOURISH, 2003) (the developer checks
in a file back in the repository but did not finish the intended changes). Other developers
postpone the incorporation of teammates’ work because they fear tricky conflicts.

Intending to reduce conflicts, or at least avoid large conflicts, some teams adopted trunk-
based development (ADAMS; MCINTOSH, 2016; POTVIN; LEVENBERG, 2016; HENDERSON,
2017), according to which developers directly commit to the master branch, eliminating
the need of other branches. In such a context, to avoid compilation or testing failure
caused by incomplete features, teams adopt feature toggles (BASS; WEBER; ZHU, 2015;
ADAMS; MCINTOSH, 2016; FOWLER, 2016; HODGSON, 2017a) as an alternative solution for
branches. In sum, feature toggles enable developers to share incomplete code by isolating
them into conditional blocks that can be activated or deactivated when necessary. In
contrast, such modern practices might introduce extra complexity to code development
(HODGSON, 2017b). Finally, software quality might be impacted by merge conflicts too,
since developers maybe miss semantic conflicts, leading to defects that escape to end users.

2.3 BEHAVIOUR-DRIVEN DEVELOPMENT

For supporting developers to avoid merge conflicts, we propose a strategy to predict
the set of files a task will change and estimate the risk of merge conflicts between a task
pair. Such a strategy targets a Behaviour-Driven Development (BDD) context, which we
present as follows.

The term Behaviour-Driven Development designates several agile and lean practices
concerned with the identification, understanding, and delivery of well-designed and well-
implemented features that matter for business (SMART, 2014). Figure 3 illustrates the
development dynamics in BDD by identifying its key concepts and how they relate to
each other. Initially, an agile team (accurately, business analysts, developers, and testers)

21

describes a new feature (i.e., a system functionality). Next, the team designs at least one
acceptance test to evaluate (part of the) acceptance criteria that describes the behavioral
intent of the feature. At first, acceptance tests fail, as the system does not support the
feature yet. Then, developers write just enough code to make tests pass.

Figure 3 – Key elements in BDD.

It is possible to define manual or automatic acceptance tests. BDD requires automatic
acceptance tests to improve productivity. As Figure 3 illustrates, an automatic acceptance
test has two distinct parts: example and executable specifications (SMART, 2014). The
example illustrates the usage of a feature written in a readable language, similar to plain
text. The executable specifications refer to code that automates the execution of an example.
This dynamic also applies to maintenance tasks, bug fixing, or refactoring. The difference
is that developers might have to deal with previous existing acceptance tests.

Although many times there is a one-to-one mapping between a user story and a BDD
feature, it is not mandatory. For supporting task management, a BDD feature might
represent a whole user story or just a piece of it, depending on the diversity of acceptance
criteria. For instance, we can split the user story illustrated by Figure 1 into three BDD
features: usage of a credit card to ensure a reservation, detailed view of available hotels,
and hotel search by city and price. The whole user story is complete when all of its
BDD features are complete, .i.e., passing the acceptance tests. However, developers might
independently release and validate each BDD feature.

2.3.1 Cucumber

To illustrate an automatic acceptance test used in BDD, we introduce Cucumber. As
said before, BDD requires the adoption of automated test tools to work effectively, the
so-called BDD tools. There is a variety of such tools. In this work, we use Cucumber,
which is a popular open-source tool initially written for Ruby that provides support for
several languages.

Figure 4 illustrates a feature8 from project alphagov/whitehall,9 which is a Rails content
management application for the UK Government. The feature relates to the management
8 The feature is declared in file features/edition-attachments.feature (version of commit

9deb239c100f2f13d7f82dfe70095b4208460f5a).
9 <https://github.com/alphagov/whitehall>

https://github.com/alphagov/whitehall

22

of attachments when publishing some content. As can be seen, it adopts the role-action-
objective template, clearly expressing the value of an action to a type of user, like a user
story. Developers might write features by using any format, given they are plain text, but
such a template is a good practice. The only keyword is Feature.

Figure 4 – Feature example from project alphagov/whitehall.

Next, Figure 5 illustrates a BDD example10 related to the previous feature. As can be
seen, Cucumber calls BDD examples as scenarios. Every scenario has a title as an identifier,
which is the content after the colon that succeeds keyword Scenario. In addition, a scenario
contains a set of steps identified by the illustrated keywords Given, When, Then, and
And, which have different meanings. A Given step identifies a test pre-condition, which is
responsible for the system setup. A When step identifies the central action or functionality
that the test verifies, which often transforms the system state. A Then step identifies
the expected result like a system state or a perceived condition by the user. Finally, And
makes the scenario read more fluidly by avoiding a repetitive sequence of steps (e.g.,
consecutive When steps). The values used to specify the publication title, and other
information (usually) in quotes,11 such as the ISBN, are parameters for the test.

Figure 5 – Scenario example from project alphagov/whitehall.

10 The scenario is declared in file features/edition-attachments.feature (version of commit
9deb239c100f2f13d7f82dfe70095b4208460f5a).

11 The usage of quotation marks is not mandatory.

23

Cucumber requires developers to write features and scenarios in Gherkin,12 a domain-
specific language that is similar to plain text, as illustrated. Gherkin provides other
mechanisms to write tests, aiming readability and maintenance; we illustrate the more
relevant ones.

To run a scenario, it is necessary to implement a step definition for each step. Note
that Cucumber calls BDD executable specifications as step definitions and, for simplicity,
this is the terminology we use throughout the text. Figure 6 illustrates the step definition13

related to the last step depicted by Figure 5 in Ruby. Basically, a step definition is a
method identified by a regular expression14 that Cucumber uses to match steps and step
definitions when running tests. Also, in Ruby, values in quotes in a regular expression are
arguments to the method. The body of each step definition contains code that effectively
implements the test by invoking Rails and test frameworks methods that refer to files or
programming elements of the features that are supposed to be implemented. For instance,
the call to visit, a method of Capybara,15 accesses a view, and the call to assert, a
method of RSpec,16 compares the expected results to actual results (in Figure 6, whether
the view contains some information). Cucumber supports integration with a variety of UI
technologies, according to the system programming language. For instance, Capybara and
RSpec are compatible with Rails applications.

Figure 6 – Example of step definition from project alphagov/whitehall.

We illustrate a Cucumber test that considers user interaction by accessing a web page
and checking its content. However, developers might write Cucumber tests that verify the
system state and abstracts its user interface. Given these details relate to the test code,
they should be perceived only in the body of the step definitions. However, developers
usually write Gherkin scenarios describing user interaction, as a click on a button, making
12 <https://github.com/cucumber/gherkin>
13 The step definition is declared in file features/step_definitions/attachment_steps.rb (version of commit

9deb239c100f2f13d7f82dfe70095b4208460f5a).
14 The latest Cucumber version also supports Cucumber expressions, a kind of regular expression with a

syntax that is more friendly for humans to read and write.
15 <http://teamcapybara.github.io/capybara/>
16 <https://rspec.info/>

https://github.com/cucumber/gherkin
http://teamcapybara.github.io/capybara/
https://rspec.info/

24

the whole Cucumber test dependent on the user interface. Note that throughout the
text, we use the term “Cucumber test” referring to the whole automated acceptance test,
whereas “Gherkin scenarios” mean the high-level usage scenario only.

By default, features and its scenarios are declared in Gherkin files (extension .feature)
into the “features” folder, and step definitions are placed in files written in the application
programming language (Ruby files in our example) placed on subfolder “step_definitions”.

2.4 RUBY ON RAILS APPLICATIONS

TAITI, our tool for inferring test-based task interfaces, supports Ruby on Rails
applications. To better clarify its implementation details and limitations, we provide a
brief overview of Rails. Rails is an MVC (Model-View-Controller) framework for web
applications, meaning every Rails application organizes code into three distinct layers. The
model layer is responsible for business logic and manages the interaction with elements
in a database, including data validation. The view layer represents the user interface as
HTML files (and variants) with embedded Ruby code and can provide content in different
formats, such as HTML, PDF, XML, and so on. The controller layer interacts with models
and views, receiving requests from views, processing data from models, and transferring
data back to views.

By default, Rails define an extense directory structure for a project. Models, views, and
controllers are in the “app” folder, into subfolders “models”, “views”, and “controllers”,
respectively. Extended modules are put into the “lib” folder. There are other folders, but
these are the relevant ones to this work. Rails (and Ruby projects in general) have the
gemfile in the root folder that lists all project dependencies, that is, Ruby libraries named
gems.

Also, Rails provides a router mechanism to assist controllers in dispatching incoming
requests. That is, a router receives each incoming request, parses it, and sends it to a
controller class as a method call (action). To illustrate, suppose a user clicks on the
update profile button on her profile page. Then, the application receives a URL request
http://my.app/profile/update/1. The routing component translates the received request
to a method call for update in the controller class ProfileController using 1 as an
argument that identifies the profile ID. The method update finds the profile, organizes
the view to show the current contents of the profile for edition, and invokes the view code.
Developers configure the Rails router mechanism by the file config/routes.rb.

Rails became a popular framework, especially in the agile software development com-
munity, because it improves developers’ productivity. Relying on naming conventions, Rails
automatically configures code elements, enabling teams to fast release Web applications.

25

3 PREDICTING FILE CHANGES

To assess the ability of test-based task interfaces for supporting developers to avoid
merge conflicts, we need to verify whether such interfaces can predict file changes. Otherwise,
conflict risk predictions based on TestI might not help. So, in this chapter, we present the
first empirical study we conducted to evaluate the potential of TestI for predicting file
changes. In this sense, we detail TestI and how we compute it.

3.1 MOTIVATING EXAMPLE

To illustrate how test-based task interfaces might be useful to predict changes and
avoid conflicts, let us consider that Adam and Betty are members of an agile team that is
developing a Rails school management system that keeps student grades and lets teachers
visualize them. In a given iteration, suppose Adam was assigned a task for developing
class evaluation functionality (task 𝑇1). He is then creating a method to compute the
mean of student grades and writing code that shows this extra information in the class
visualization page. Meanwhile, Betty had to choose a new task and opted for supporting
teachers to quickly identify low-performance students (task 𝑇2). She is then creating a
method to return students with grades over a given limit, and writing code that highlights
these students in the class visualization page. The iteration backlog includes tasks such as
fixing the news feed to exhibit only recent messages (task 𝑇3).

By independently working on 𝑇1 and 𝑇2 in their private repositories, Adam and Betty
add different methods (compute_grade_average and low_perf_students) at the end of
copies of the same file (app/controllers/classes_controller.rb), and change the same area
of the class visualization page (app/views/classes/grades.html.erb), which later leads to
merge conflicts when the tasks are finished and they integrate their contributions. The
conflicts would have been avoided if Betty had opted for 𝑇3 instead of 𝑇2, since 𝑇1 and 𝑇3

are associated to unrelated features and affect disjoint and independent file sets. Whereas
𝑇1 and 𝑇2 require changes in the same Rails controller and views, related to the class
evaluation feature, 𝑇3 requires changes in the controller related to the notification feature.

More experienced developers could have chosen parallel tasks more wisely, but it is
not always easy to infer which files will be changed by a given task. Moreover, a task
not always involves changes to a single MVC segment (set of related model, view, and
controller files) as in our example, further complicating matters even for experienced
developers. Automatically predicting code changes associated to a development task is,
in general, hard. But such prediction might be feasible for a specific context (BRIAND

et al., 2017). In particular, in a BDD context, automated acceptance tests are written
before implementing features. Moreover, each feature implementation task can be often

26

associated to a number of usage scenarios that are directly linked to the tests. So, by
inspecting the code that automates the tests associated to tasks 𝑇2 and 𝑇3, Betty could
have inferred parts of the application code that would be exercised by the tests, and these
could perhaps approximate the files that would be changed by the tasks. Such inspection
could then have helped Betty to safely opt for task 𝑇3 and avoid the conflicts.

To better explore this possibility, consider in Figure 7 the Cucumber automated test
related to task 𝑇2. The test has two parts: (i) a high-level concrete usage scenario written
in Gherkin, with test setup steps (Given), test actions (When), and expected results
(Then), among other keywords, such as And, which makes the scenario read more fluidly
by avoiding a repetitive sequence of steps (e.g., consecutive Given steps); and (ii) Ruby
code that automates the scenario steps (so called step definitions). Note that in this
chapter we use the term “Cucumber test” refering to the whole automated test, whereas
“Gherkin scenarios” means the high-level usage scenario only.

Figure 7 – Example of an automated acceptance test related to task 𝑇2.

Developers implement these step definitions by invoking Rails and test frameworks
methods that refer to files or programming elements of the features that are supposed to be

27

implemented. For example, the first line of the Given step refers directly to the Teacher

class. The body of the When step accesses a view by calling the test framework method
visit. In this case, the accessed view is the class visualization page that both Adam
and Betty changed; by default Rails routes “/classes/grades/#{current_class.id}” to the
method grades from ClassesController by using current_class.id as parameter, and
this method renders the mentioned page. So, with further analysis, one can conclude that
the app/models/teacher.r and app/views/classes/grades.html.erb files, among others, will
likely be exercised by the illustrated test.

Although full details about tasks and tests are omitted here for brevity, by systematically
analyzing the step definitions in our complete example, we would obtain the file sets (test-
based task interfaces) in Figure 8.

Figure 8 – Test-based task interfaces of tasks 𝑇1, 𝑇2, and 𝑇3. The files in bold are the ones
actually changed by developers.

By noting that 𝑇𝑒𝑠𝑡𝐼(𝑇1) and 𝑇𝑒𝑠𝑡𝐼(𝑇2) have the same content, and assuming that
this safely approximates files to be changed by tasks, Betty would have avoided choosing
to work on 𝑇𝑒𝑠𝑡𝐼(𝑇2) knowing that Adam is still working on 𝑇𝑒𝑠𝑡𝐼(𝑇1). As 𝑇𝑒𝑠𝑡𝐼(𝑇3) has
no intersection with 𝑇𝑒𝑠𝑡𝐼(𝑇1), Betty would have concluded that the parallel execution of
𝑇1 and 𝑇3 has a lower conflict risk. This is indeed the case, as 𝑇3 ends up changing only a
single file (in bold in Figure 8), which is not changed by the other tasks.

Although, for simplicity, this is an idealised example, it reflects the main aspects of a
number of real integration scenarios we later analyze and discuss. In particular, it shows
that not all files exercised by the tests associated to a task are actually changed by the task;
among other reasons, part of the feature might have been implemented before. Contrasting,
there might be files that are changed by a task but not captured by its test-based task
interface; among other reasons, tests might not sufficiently cover feature functionality. This
situation then demands evaluation of the ideas we discuss in this section.

Finally, someone might wonder whether a developer might manually compute the task
interface by reading the step definitions. Actually she can, but these often involve chains of
method calls and references to a number of web pages that can be complicated to manually
follow, being error-prone and demanding extra effort. The presented example is quite simple
and does not match such a statement, but let us see a task example1 of a project on GitHub.
1 <https://github.com/AgileVentures/WebsiteOne/commit/ab1723df7878152b4a814fa5fbfe86c7076aecab>

https://github.com/AgileVentures/WebsiteOne/commit/ab1723df7878152b4a814fa5fbfe86c7076aecab

28

The task was concluded by one commit that changed 15 application files (considering
the files of our interest) and has 9 Cucumber tests. For computing TestI it is necessary
to analyze 43 methods into eight step definition files as well as 15 web pages. Similarly,
others might wonder whether some agile practices such as daily stand-up meetings might
prevent conflicts like our motivating example. It is also true, but communication might be
more imprecise (STRAY; SJøBERG; DYBå, 2016). That’s why we prioritize an automatic
solution aiming to promote developers productivity and effectiveness. So, although BDD
principles could help code change prediction, we expect more benefits when BDD is used
together with a tool that computes test-based task interfaces.

3.2 TEST-BASED TASK INTERFACES

To better explore the code prediction idea illustrated in the previous section, and assess
its predictive power, we implemented TAITI, a tool that, for a given task, computes its
test-based task interface (TestI): set of application files that might be exercised by the tests
associated to the task. The tool works for tasks associated with Cucumber acceptance
test scenarios, and approximates the set of files having code that could be executed by
running the scenarios. To compute such set, we first parse scenarios and link them to the
corresponding step definitions2. We then statically analyze the associated step definitions,
collecting references to programming elements (such as fields and methods) and Rails views.
From these references, we conservatively infer files that declare the programming elements,
files associated with the views, and, recursively, further elements and files referenced by
the views.

In this manner, any project can use our tool as long as the team develops acceptance
tests before the application code. In our vision, such a requirement fits better into BDD
teams but considering that BDD encompasses different activities beyond writing and
executing acceptance tests, we do not impose the adoption of BDD, neither we suggest
how to conduct any development activity; the teams are free to perform as they want.
Furthermore, we adopted Cucumber tests as a reference to acceptance test tool given
the impossibility to deal with the specificities of the various existent tools. In practice,
another tool instead of Cucumber might be used. Cucumber is also a BDD tool, but
the difference between a standard or a BDD tool for automating acceptance tests is not
important in our context. In this sense, throughout the text, we refer to “acceptance tests”
when possible to decouple the conceptual idea of test-based task interfaces and TAITI,
the tool that computes it. We adopt the Cucumber terminology when we need to reference
implementation details.

In the following subsections, we better explain the logical stages of our tool, which
is structured as in Figure 9, and we provide information about its implementation. In
2 “Step definition” is the Cucumber terminology for referencing the code that automates the tests. This

way, throughout the text we always mention it.

29

brief, the test extractor module parses scenarios and finds the step definitions related to
a task, and the code analyzer module analyzes the step definitions collecting references
to invocation of application code, generating a initial version of TestI. Then, the content
filter module refines TestI by filtering files according to different strategies. TAITI is a
public and opensource prototype tool that has 13,178 LOC.

Figure 9 – TAITI architecture.

3.2.1 Finding step definitions

Our tool receives as input a Rails project and a set of Cucumber automated acceptance
tests, with scenarios written in Gherkin and step definitions in Ruby. The tests are
supposedly associated with an existing development task, but the tool doesn’t actually
rely on that. First, the test extractor module parses the scenarios and step definitions, and,
by traversing ASTs (Abstract Syntax Tree), tries to match each scenario step to a regular
expression that identifies one of the step definitions, as Cucumber does. If no step definition
matches a scenario step, we simply ignore the step. If more than one step definition matches
a scenario step, we consider only the first match we found. Although Cucumber raises an
error in case of such ambiguity error, we tolerate it as a “repairing strategy”, given the error
might be caused by TAITI, that is, developers might declared unique steps definitions but
our tool might wrongly extract the regex expression that identifies it. For example, suppose
the given regex identifies a step definition: ^the code of (#{m}) is "([^\"]+)"$. Our
tool represents the value involved by “#{}” as “(.+)” because it is defined during runtime,
and we do not run tests when computing TestI. Thus, such a regex might match a step
and multiple step definitions, causing an error that Cucumber would alert.

As a result, the test extractor module yields a set of matched step definitions, excluding
duplicate entries (different scenarios might refer to the same step) with the aim of improving
code analysis performance in the next stage.

30

3.2.2 Finding references to application code

Having obtained the matched step definitions, we analyze them. Given that the task
functionality is not yet available in a BDD context, dynamic analysis through test execution
is not promising— tests would prematurely break. So we opt for statically analyzing the
step definitions according to a straightforward strategy, first collecting references to
programming elements, as they are likely executed by the tests and can help us to identify
the set of files that constitute a test-based interface. The code analyzer module considers
references through method calls, constructor calls, and access to constants; field access
is represented as a method call in Ruby. Since our aim is to identify application specific
files that might be exercised by the tests and potentially might cause conflicts, we ignore
the usage of operators (which are Ruby methods) and other library elements (methods,
constructors, and constants).

After collecting references, code analyzer tries to identify the files that declare the
referred elements. Due to Ruby’s dynamic nature, statically matching, for example, a
method call to a method declaration, and consequently the file in which it appears, is hard.
So we adopt a lightweight and mostly conservative solution, as detailed in Subsection 3.2.3.
If a method call targets a class, we look for files matching the class name. For example, the
call Teacher.find_by(e-mail:"john@example.com")3 leads to the search for a file with
suffix teacher.rb. For calls that target expressions with no type information about the
target object, we search for a matching method declaration with the same method name
and number of arguments. When possible, we check whether naming conventions apply.
For example, the call @contract.sign(@user) leads to the search for a Contract class. If
such a class exists, we check whether it contains the method sign, otherwise we search
other files for a method sign that accepts one argument.

In case multiple method declarations match a call, we conservatively consider all
declarations with parameters compatible4 with the arguments in the call. Moreover, we do
not take into account arguments types, similarly leading to imprecision in the matching
process. For example, the call @contract.sign(@current_user) receives an User object as
argument, but we do not consider that because we do not know the type of current_user,
neither there is a class named CurrentUser. At this point, someone might question the
reason we do not use an approach for type inference for Ruby or even Ruby on Rails. We
do not find a mature solution supported by a tool for practical usage, although the research
initiatives (FURR et al., 2009; AN; CHAUDHURI; FOSTER, 2009; MIRANDA; VALENTE; TERRA,
2016).

Note that we do not specially deal with polymorphic method calls, which might cause
a wrong match between a method call and a method declaration. For example, suppose
3 find_by is a query method provided by Rails according to the Active Record pattern.
4 Due to var-args and parameters with a default value, arguments lists for a given method might have

varying sizes in Ruby.

31

there is an overridden library method. TAITI considers that the overriding version is
always used, which might not be the case.

Contrasting, our matching process might miss relevant code elements too. This might
be the case when methods called by the step definitions have not been declared in the
application files, and the calls are not easily associated to a class. So, they do not contribute
to TestI content. Probably much of the called method with no matching declaration is a
library method or a Rails auto-generated method, that is, they represent code that might
not lead to conflicts. But they also might be code to be implemented. We assume, though,
that test developers create empty declarations of the elements they refer to in the step
definitions, as this is an important way of establishing a contract with feature developers.

In the process of matching references to files, we ignore files that correspond to
auxiliary code used by step definitions. To distinguish auxiliary code used by the tests
from actual application code, we rely on the project’s directory structure and file exten-
sion. By default, test files are Gherkin files into features folders, and Ruby files into
features/step_definitions folders. Application files are Ruby and HTML files (and
variants, including ERB and HAML files) into app or lib folders.

3.2.3 Finding references to views

Besides collecting references to classes and their files as just explained, the code analyzer
module also collects references to Rails views, as these are widely exercised by acceptance
tests. To find references to views, we basically inspect calls to the visit method that is
provided by Capybara,5 a library that is often used by Cucumber tests to simulate user
interaction with a GUI. This method receives as argument a path that Rails maps to a
route to dispatch a controller’s action, avoiding the need for hard-coding URL strings in
tests, although it is also accepted too. The When step in Figure 7 illustrates a call to
visit.

By analyzing the path (or URL) and the route information, we can then identify the
view and controller files that will likely be executed by the visit call, and that should be
included in the test-based task interface. However, there are alternative ways to call such
method. Rather than explicitly defining the path in the step definition code as our example
shows, tests often indirectly refer to the path as the value yielded by an expression (such
as an argument or the result of another method call). Moreover, Rails can be configured
so that routes are personalized and auxiliary auto-generated methods can be associated
with routes (that we call as “Rails path methods”). Therefore, when we find a call to
visit, we first have to identify the accessed route by extracting the arguments used in
Gherkin scenarios, propagating them to the step definition code, and finally translating
the route to controller and view files. Due to Ruby’s dynamic nature and the limitations of
our propagation and route mapping algorithms, we might miss view accesses, or we might
5 <http://teamcapybara.github.io/capybara/>

http://teamcapybara.github.io/capybara/

32

consider view access that did not happen. For example, we cannot find a route related to
a path whether there are multiples alternatives in the configuration file and the decision
requires the evaluation of a condition. Similarly, we might incorrectly translate a route to
files if the route value depends on a variable. Thus, we might wrongly include or exclude
files into TestI.

Directly using Rails route interpreter would require running the system being developed,
but this is not always applicable, especially in early development phases. So we implemented
a simplified route interpreter, which has limitations in comparison to Rails interpreter,
but is not significantly less accurate, as explained later in this chapter.

3.2.4 Finding application code referenced by views

Having identified view files referenced by the tests, the code analyzer parses these files
and, recursively, tries to identify further programming elements and files referenced by
the views. We basically search for usage of instance variables and method calls related
to forms, buttons, links, and file rendering commands, as these are associated with user
actions and might be exercised by the tests too. By naming convention, Rails establishes
implicit relationships among views. As these are partially reachable by analyzing the step
definitions, we do not capture all possible references and connections among views. We
only conservatively capture all explicit connections. During early development of a feature,
the referenced views might not yet exist due to the BDD practice we are assuming in our
context. In that case, our code analysis reaches only the surface of the code that could be
exercised by the tests.

In the ideal situation, we would apply a static reference analysis for Rails applications
similar to the one proposed by Rountev e Yan (2014) for Android apps, that provide
support for translating GUI interactions to method calls, improving the whole process of
code analysis.

3.2.5 Design alternatives for test-based task interfaces

By analyzing step definitions as explained so far, the resulting set of files that can be
exercised by the tests might contain files that won’t be changed by the task associated
with the tests. Moreover, some of these files might not even be related to the task. For
instance, many tests begin with user authentication setup steps, but it does not mean that
the task validated by these tests will require changes on code related to user authentication.
By considering these steps, we add to TestI files that are not related to the task in the
sense that they will not be changed or accessed during task execution. So, envisioning
to consider the subset of more relevant files to complete a task, we explore three design
alternatives for TestI. Basically, they adopt different policies to restrict the TestI content,
varying both the parts (e.g., setup, expected results, etc.) of the test and the kinds of files
(e.g., models, controllers, etc.) we consider when computing the interfaces.

33

3.2.5.1 Filtering by step type

Given different tests require similar Given (setup) steps, as we note by manually
analyzing tasks, they could not be relevant to most tasks, as just illustrated. In contrast,
When steps often focus on the core functionality being tested, and so one could expect that
they exercise the most important files for the underlying task. So, instead of considering
files possibly exercised by any of the steps in a test, a design alternative is to just consider
files exercised by When steps, discarding Given and Then steps. However, because calls to
the visit method are crucial for understanding the context of When actions, in addition to
When steps, we partially analyze Given steps searching only for visit calls, and analyzing
the associated views. For example, applying this TestI When Filter (WF) to Task 𝑇1,
instead of yielding the interface in Figure 8, our tool would yield the interface with just
the two files in bold at the left side of the figure.

To support the WF filter, our tool tries to infer step types, given that steps can also
call other steps, and be declared with generic keywords such as And and But, or even the
* wildcard, which all apply to the three kinds of step types. In brief, the step type is
determined by its correspondent step in Gherkin, except when it is qualified by a wildcard
(in this specific case, we can only consider the keyword used in the step definition). The
tool also has to keep information about step type for each found reference to application
code.

Alternatively, we would consider as part of TestI only the application files that might
be exercised by all tests associated to a task. However, we intuitively expected that When

steps would exercise more files in common than other step types, as the tests would be
related to the same core functionality. Thus, the resultant TestI would approximate to
TestI filtered by step type.

3.2.5.2 Filtering by file type

As many tasks in the context we consider focus on changing a single MVC segment
(that is, related model, view and controller files), in principle one could avoid conflicts by
avoiding the parallel execution of tasks that focus on common segments. So, considering
that controller files uniquely identify segments, interfaces could perhaps focus on these
files. Besides that, the current version of our tool does not reach the full method chain
underlying a system functionality, but only the initial calls. We then consider a design
alternative that only includes controller files in the interface. For example, applying this
TestI Controller Filter (CF) to Task 𝑇1, instead of yielding the interface in Figure 8, our
tool would yield the interface with just the first file in bold at the left side of the figure.

34

3.2.5.3 Applying multiple filters

We also combine the previous filtering strategies, as Table 1 briefly presents. Our
motivation is to improve the selection of the TestI content by combining the underlying
policy from the other filters; i.e., we intend to investigate whether we can sum the potential
individual benefit of each filter.

Table 1 – Filters for task interfaces content.

Filter Meaning

NF We do not apply any filter
CF We filter out non controller files
WF We filter out files not exercised by When steps

WCF We apply both CF and WF filters

3.3 EMPIRICAL STUDY

To investigate whether TestI helps to predict file changes (additions or deletions)
associated to a task, we try to answer a number of research questions. First we want
to compare the predictive capacity of the variations of TestI (described in the previous
section) with the corresponding task interface (TaskI): the set of files actually changed by
the task, i.e., our oracle. So we consider the following question.

Research Question 1 (RQ1): How often does TestI predict file changes associated
with a task?

To answer RQ1, we compute precision and recall measures for TestI. Precision is the
percentage of files in TestI that are also in TaskI, whereas recall is the percentage of
files in TaskI that are also in TestI. As the adverse impact of false positives (files in
TestI that are not actually changed by the task) in this context is basically to discourage
parallel execution of tasks that would not conflict, or encourage slightly more unneeded
coordination, the false negatives (files changed by the task but not included in TestI)
are more important because they could lead to conflict occurrence and extra effort for
resolving it. So, in our analysis, we favor recall over precision.

To consider TestI design alternatives, we derive the following questions from RQ1 :

• RQ1.1: Does filtering out non controller files improve predictive ability?

• RQ1.2: Does filtering out files not exercised by When steps improve predictive ability?

• RQ1.3: Does filtering out non controller files, and files not exercised by When steps,
improve predictive ability?

35

• RQ1.4: Does restricting entry tests to created tests improve predictive ability?

To answer the first three questions, we compare precision and recall by computing both
TaskI and TestI under two conditions: under the presence and the absence of the in-
vestigated filter. If the filter presence improves both precision and recall, we conclude
the evaluated filter refines TestI. Otherwise, we favor recall over precision, as previously
discussed. To answer the last question, we proceed with a similar comparison approach,
but varying the entry test set. This way, we consider the tests created or changed with the
aim of validating the task results and only the created tests.

To understand the limits of static code analysis for computing such interfaces, we
assess our algorithms and compare TestI with task interfaces computed by executing tests
(DTestI) and parsing the test coverage report. In this sense, DTestI is a kind of oracle:
We apply static analysis to predict the files exercised by tests, and we assess whether
the tests truly exercise them. Note that this kind of dynamic analysis based interface is
not as applicable as TestI, since it requires running the tests; in practice, given the BDD
context we consider, the tests associated with a task often fail early because they exercise
possibly inexistent, outdated, or premature functionality implementation that is only fixed
after performing the task. Nevertheless, given we conducted a retrospective study with
completed tasks whose tests we certified that succeed, the comparison sheds light on TestI
strengths and drawbacks. So we ask the following question.

Research Question 2 (RQ2): Is static code analysis suitable to compute TestI?

To answer RQ2, we first investigate whether our simplified routing mechanism (see
Section 3.2.3) significantly impacts predictive capacity, either by mapping a path to a
wrong route (increasing the number of false positives) or by losing a route (affecting the
number of false negatives and false positives). To this end, we compare TestI content
(using both Jaccard index and cosine similarity), precision, and recall by computing task
interfaces under two different conditions: using our routing mechanism and using the Rails
routing mechanism. Besides that, we check whether TestI has better precision and recall
measures (with respect to TaskI as in RQ1) than DTestI. We compute DTestI by running
the tests and extracting, from test coverage reports, the file set each test exercises. The
resulting interface for a given task is then the union of the obtained file sets for each test
associated to the task.

To consider a baseline that would be as applicable as TestI, we compare TestI with
randomly defined task interfaces (RandomI), answering the following question. RandomI
is an analogy to an inexperienced developer that is responsible for manually determining
the task interface; in the absence of knowledge about the task and the system, such an
interface might approximate to a guess.

36

Research Question 3 (RQ3): Is TestI a better code change predictor than RandomI?

To answer RQ3, we check whether TestI has better precision and recall measures
(with respect to TaskI) than RandomI. To compute RandomI, for each project file that
has the potential to be in a task interface— that is, ruby files and supported view files—
we randomly decide whether it should be in the task interface. To compute RandomI
measures for a given task, we generate 10 RandomI for the task, compute precision and
recall measures for each interface, and consider as final measure the mean of the 10
intermediate measures. Intermediate measures vary little per task.

Finally, to understand how more informative is the code that automates the tests
in comparison to the test descriptions, we compare TestI with task interfaces obtained
by observing textual similarity of test specifications, considering past tasks and the files
they changed (TextI). Given the dependence on project history, this is not as applicable
as TestI but the comparison sheds further light on TestI strengths and drawbacks. The
inspiration for designing TextI came from studies related to code change prediction that
investigate the past to predict the future, relying on the idea that similar tasks are likely
to change or use the same code elements (see Hipikat (CUBRANIC et al., 2005) in Sec. 5).
As we cannot adequately compare TestI and Hipikat because of the differences of the
required inputs of each, we conceived an alternative solution that reuses the main idea of
Hipikat.

Research Question 4 (RQ4): Is TestI a better code change predictor than TextI?

As before, we answer this question by checking whether TestI has better precision and
recall measures (with respect to TaskI) than TextI. For computing TextI for a task t, we
take the intersection of the sets of files changed by the three past tasks with most similar
specifications to t. Our vision is the intersection means the most relevant files whereas the
union represents the maximum set of changes. As code changes usually are not cohesive,
the union might increase the number of false positives, substantially reducing precision.
Concerning the limited number of similar past tasks (three), we define it based on the
restricted number of tasks per project in our sample (there is a project with only two
entry tasks for computing TextI, for instance), avoiding bias. In Section 3.4.5 we provide
detailed information about our task samples.

For simplicity, we assess specification similarity by using cosine similarity between
vectors of TF-IDF values (SALTON; MCGILL, 1986). In our context, the task specification is
the Cucumber usage scenario written in Gherkin (as in the first part of Figure 7), including
feature descriptions. Therefore, we compute the vectors of TF-IDF values by preprocessing
specifications based on the standard information retrieval approach, which tokenizes the
text using spaces and punctuation, stems it and eliminates English stopwords as well
as Gherkin keywords (in our specific context). Our implementation uses the standard

37

analyzer of the Apache Lucene library6.

3.4 STUDY SETUP

Before answering the just introduced questions, we describe our study setup, including
how we collect data and the infrastructure supporting it.

3.4.1 Project selection

Given the nature of our tasks, and anecdotal knowledge about the popularity of BDD
communities and tools, we first searched for GitHub Rails projects that use Cucumber7 for
implementing acceptance tests. As RQ2 relies on collecting test coverage information, we
also searched for a subset of projects that additionally use SimpleCov8 or Coveralls9, which
are widely used test coverage tools in the Rails community. We could have considered
projects with other coverage tools but, as computing DTestI requires parsing tool specific
test coverage information, we focused on these two for simplicity.

We performed our searches with a script10 we implemented to query GitHub’s database
using GitHub Java API.11 As GitHub does not provide a mechanism to query projects
according to the tools they use, we first queried and then downloaded the latest version of
each resulting project to check, in the main branch, whether the project uses the tools
of interest. Such investigation was performed in September 2017. Given Ruby projects
have a so called gemfile that lists all project dependencies (so called gems, that is, Ruby
libraries), we could easily check the use of Rails, Cucumber, and the test coverage tools
we mentioned before.

For optimizing the search and improving the chances of finding projects that satisfy
our requirements, we only considered projects created after 2010. Before that, Cucumber
and BDD were less popular. Moreover, dealing with older versions of Ruby and Rails
could be a problem for the parsers we use, and would likely be a problem for RQ2, which
requires running tests and executing the system.

In brief, we performed three main search rounds. In the first round, we restricted the
project’s maximum number of stars, sorting results by descending order of stars number,
hoping to select more meaningful and popular projects. In the second round, we just sorted
results by the date of the last update, to analyze first active projects. Finally, we verified
6 <https://lucene.apache.org/core/>
7 It is possible that a project using Cucumber does not adopt BDD. In the context of our retrospective

study, it is not a problem whereas we have a sample of completed programming tasks with two
information: the set of files that implement the task and the set of Cucumber tests that validate the
task.

8 <https://github.com/colszowka/simplecov>
9 <https://coveralls.io/>
10 Available in our online Appendix (ROCHA; BORBA; SANTOS, 2018).
11 <https://github.com/eclipse/egit-github/tree/master/org.eclipse.egit.github.core>

https://lucene.apache.org/core/
https://github.com/colszowka/simplecov
https://coveralls.io/
https://github.com/eclipse/egit-github/tree/master/org.eclipse.egit.github.core

38

the Ruby projects referenced by Cucumber’s site12. As a result of this mining phase, we
find 950 Rails projects (531 in the first round, 414 in the second round, and 11 in the
third round). Among these projects, we have a set of 61 Rails projects that use Cucumber,
and a subset of 18 projects that additionally use the mentioned coverage tools.

3.4.2 Task extraction

After obtaining relevant projects that use the tools of interest for our study, we further
filter out projects without tasks that contribute with both application code and Cucumber
tests. We opt to work with this kind of task because we can, presumably, more easily
identify the acceptance tests (which are used to compute TestI, DTestI, and TextI) and
the application code that implements the task requirements (which is the basis to compute
TaskI).

Given that not all projects use patterns (identifiers or others) in commit messages, as a
strategy to prevent a substantial reduction of our sample size, we assume the following for
relating commits to tasks: (i) task contributions are integrated through merge commits;
(ii) the contribution of a task consists of the commits in between the merge commit and
the common ancestor with the other contribution the merge integrates; (iii) code changes
in a task contribution are needed to conclude the task; (iv) tests added or changed in a
task contribution are needed to validate the task. Thus, for extracting tasks from a given
project, we clone the project repository and search for merge commits (excluding fast-
forwarding merges) by using JGit API,13 sorting them by descending chronological order.
We admit merge commits performed until September 30th, 2017. Then we extract two
tasks from each merge commit, each one corresponding to one of the merged contributions.
Therefore, a task consists of a set of commits. As preliminary filtering, we select tasks
that change both application and Gherkin test files. Moreover, as a matter of performance
while computing interfaces, we discard tasks that exceed 500 commits.

The result of this mining phase refines the set of 61 projects we had from the previous
phase, discarding 30 projects that do not satisfy the extra requirement explained here (14
projects do not contain merge commits, and 16 projects do not contain tasks that both
change application and Gherkin files). We end up with a set of 31 Rails projects that use
Cucumber, and a subset of 15 projects that additionally use the mentioned coverage tools.
From the larger set, we extract tasks for which we can compute the interfaces we study
here except DTestI. From the smaller set, we extract tasks for which we can compute all
interfaces.
12 <https://cucumber.io/docs/community/projects-using-cucumber/>
13 <https://www.eclipse.org/jgit/>

https://cucumber.io/docs/community/projects-using-cucumber/
https://www.eclipse.org/jgit/

39

3.4.3 Collecting task data

To precisely identify the acceptance tests associated with each task selected in the
previous phase, we further analyze the task commits. First, we search for added or
modified usage scenarios in these commits. To support such process, we developed a
syntactic differencing tool14 for Gherkin files. So, by comparing each commit and its
parent with this tool, we identify which scenarios changed, and then infer an initial set of
the acceptance tests associated with the task. Next we consolidate this set by analyzing
the versions of the changed scenario files that were merged when integrating the task
contribution. This way we avoid inconsistencies by, for example, removing from the set
tests that appeared in earlier commits of the contribution but are not in the merged
version.

With the acceptance tests of each task, we can finally compute TestI (as described
in Section 3.2) and the other interfaces we study here, and later compute precision and
recall measures as explained in the previous section. We compute eight different variations
of TestI per task, by applying the four filters (see Table 1) in two different situations:
when considering the set of changed tests by a task, and when considering the subset of
tests created by the task, as further explained in Section 3.5.1. Hereafter, we use TestI
configuration to refer to one of the eight filter–situation combinations.

Regarding TaskI, our oracle, we identify the set of files changed by the task commits
according to Git. Therefore, in our retrospective study a task is a set of commits, from
which we can identify the acceptance tests and the application files related to the task, and
then we can compute TestI and TaskI. In our context, we can say the oracle is reliable in
the sense that each TaskI corresponds to actual changes that developers carried on when
working on a task whose results were eventually integrated to the main project repository.
However, developers often make non cohesive code changes, by mixing changes related to a
task with unrelated changes like (some, not all) refactorings and minor improvements. We
make no effort to filter out the non related changes. So, although this might bring some
noise, this kind of noise is nevertheless what one should expect in a non retrospective BDD
context: we assume tasks scheduled with the help of our tool will often mix related and
unrelated changes as well. In this way, our predictions likely share important properties
with predictions expected in practical uses of our tool.

3.4.4 General exclusion criteria

Aiming to fairly evaluate task interfaces, we need to select a sample of completed
programming tasks with two pieces of information: the set of files that implement the
task and the set of Cucumber tests that validate the task. For such reason, we apply the
following exclusion criteria before answering the research questions. First, we discard tasks
14 Please see our Appendix (ROCHA; BORBA; SANTOS, 2018).

40

that lead to empty TestI or TaskI in at least one configuration we consider. Such empty
interfaces might reflect limitations of our tools (e.g., in case TestI is empty even when
a task has implemented tests that fulfill filter requirements) or our sample (e.g., in case
TaskI is empty because a task only changes unsupported content like JavaScript files). For
example, when using the CF filter (TestI filter by controller files), we discard tasks that
do not change controllers (i.e., TaskI does not contain any controller).

Likewise, we discard tasks with no implemented acceptance tests, or partially im-
plemented ones, that is, tasks that add or change scenario steps that do not have a
corresponding step definition. We also discard tasks with step definitions that cannot be
parsed. Furthermore, we discard tasks associated with project versions that do not satisfy
the tool requirements explained in the first step (see Section 3.4.1). Note that when we
first selected projects, we just checked tool usage in the most recent project version. But
project contributors might have started to use the tools only later in project history. So
not all tasks necessarily use the required tools.

3.4.5 Samples

To answer RQ2, we needed to generate Rails routes, meaning we have to start up the
application, and run tests for each task, demanding extra restrictions. Considering that
each task corresponds to a different time in the project history, we needed to reproduce
the environment configuration required by each of them, that is, we needed to install all
gems and, sometimes, also edit some configuration files, and change the installed version
of Ruby or Rails. For this reason, we end up with a smaller sample consisting of 74 tasks
from 9 Rails projects (of the 15 from the previous step) that use Cucumber and coverage
tools. By analyzing tasks by descending chronological order, we selected at most 10 tasks
per project to reduce project bias and minimize configuration effort, but some projects
have less than 10 tasks satisfying our criteria. Thus, we did not compute TestI for all
tasks per project but just the necessary to reach our goal. For fairness, we had to apply
specific exclusion criteria in addition to the ones in the previous section. So, to obtain
this smaller sample, we discard tasks whose tests we could not run, generate test coverage
report, or verify Rails routes. Moreover, for independence and diversity, we discard tasks
with identical test sets.

Table 2 summarizes the steps for constructing the smaller sample. The column “Cu-
cumber & coverage tasks” means the number of tasks that have the gem ’cucumber-rails’
installed as well as a gem for test coverage. Note that this does not mean such tasks have
implemented Cucumber tests. When the column “Problem to compute TestI ” shows “YES”
means it is not possible to compute TestI for any task and then, we did not proceed on
the next stages (tests execution and routes generation). Such a situation happens for two
projects. In the first case, there is no valid task for all variations of TestI. In the second
one, there is a parse error that affects all tasks. As observed, the selected 74 tasks represent

41

0.69% from the entry tasks (10,765 tasks), but we did not investigate all of them, but only
the needed to reach at least 10 tasks per project. In sum, we discarded 337 tasks with
failing tests (332 tasks from the 3 projects for which we cannot select any task and 9 tasks
from other 2 projects).

Table 2 – Construction of the smaller sample.

Repository Tasks Cucumber and
coverage tasks

Problem to
compute TestI

Tests
execution

Rails
routes

Selected
tasks

MetPlus_PETS 231 13 YES - - 0
WebsiteOne 1,122 970 NO PASSED PASSED 10
whitehall 1,620 1202 NO PASSED PASSED 10
bsmi 193 193 NO FAILED - 0
diaspora 1,428 583 NO PASSED PASSED 10
CBA 297 138 NO FAILED - 0
wpcc 47 46 NO PASSED FAILED 0
one-click-orgs 123 61 NO PASSED PASSED 10
openproject 2,567 2,529 YES - - 0
otwarchive 2,602 1,374 NO PASSED PASSED 10
RapidFTR 372 63 NO PASSED PASSED 10
theodinproject 44 44 NO PASSED PASSED 5
tip4commit 29 29 NO PASSED PASSED 7
tracks 89 67 NO PASSED PASSED 2
re-education 1 1 NO FAILED - 0
Total 10,765 7,313 - - - 74

To answer the other research questions, we consider a larger sample. This time, we
compute TestI for all tasks per project, initially resulting in a sample of 568 tasks from
18 (of the 31 from the previous step) Rails projects. This way, we discarded 13 projects
because they had less than two valid tasks for all variations of TestI, disabling us of
answer the research questions. Next, we compute TextI, discarding tasks with empty TextI,
which happens when a project does not have a rich history or no similar past tasks. As
a result, we have a final set of 463 tasks from 18 projects. Table 3 summarizes the steps
for constructing the larger sample. In such table, “Entry tasks” is the number of tasks
that changed both application and test files, have no more than 500 commits, and have
the gem ’cucumber-rails’ installed. In turn, “Candidate tasks” is the number of tasks for
which we compute TestI (all its variations). Differently from the entry tasks, we know
the candidate tasks did change some Cucumber test (rather than a Gherkin file merely)
and their commits set is not a subset of the commit set of other tasks (avoiding a kind of
dependence among tasks that might compromise the study). Finally, “Valid tasks” means
tasks that are valid for all variations of TestI. The final set of selected tasks represents
3.06% of the tasks of the 31 original projects (15,129 tasks).

42

Table 3 – Construction of the larger sample.

Repository TestI
Entry tasks Candidate tasks Valid tasks Non-empty TextI

hackful 7 4 4 3
MetPlus_PETS 231 62 2 1
WebsiteOne 1,122 332 77 66
whitehall 1,620 370 215 175
bsmi 193 59 0 -
rigse 399 49 0 -
blacklight-cornell 464 102 32 27
rabel 4 1 0 -
enroll 2,903 399 0 -
diaspora 1,428 339 55 49
action-center-platform 92 27 18 13
hr-til 6 2 0 -
CBA 297 41 21 11
raidit 2 2 0 -
folioapp 22 10 6 5
makrio 434 148 0 -
wpcc 47 22 0 -
one-click-orgs 123 31 30 28
opengovernment 6 3 3 2
openproject 2,567 237 0 -
otwarchive 2,602 779 33 26
moumentei 2 2 2 1
ticketee 3 3 2 0
rails3-devise-rspec-cucumber 1 0 0 -
RapidFTR 372 67 48 43
time_stack 17 6 6 5
theodinproject 44 31 4 3
tip4commit 29 3 3 1
tracks 89 38 5 4
re-education 1 1 1 -
spectre 2 1 1 -
TOTAL 15,129 3,171 568 463

43

In sum, the samples constitute a set of 513 tasks from 18 Rails projects. Table 4
summarizes our task samples. Although we have not systematically targeted represen-
tativeness or even diversity (NAGAPPAN; ZIMMERMANN; BIRD, 2013), by inspecting our
samples we observe some degree of diversity with respect to the dimensions in Table 5.15

Although two projects have no stars, they are not toy systems. But the project that
has just two collaborators is an educational project related to a Rails book. Also, note
there are two projects with no tests. The reason is these projects do not use Cucumber
anymore (considering the time of the text writing), but our results concern to historical
data. Further information about our sample appears in the Appendix (ROCHA; BORBA;

SANTOS, 2018), including the complete name of git repositories.

Table 4 – Tasks distribution per sample and project.

Repository Smaller
sample

Larger
sample

hackful 0 3
MetPlus_PETS 0 1
WebsiteOne 10 66
whitehall 10 175
blacklight-cornell 0 27
diaspora 10 49
action-center-platform 0 13
CBA 0 11
folioapp 0 5
one-click-orgs 10 28
opengovernment 0 2
otwarchive 10 26
moumentei 0 1
RapidFTR 10 43
time_stack 0 5
theodinproject 5 3
tip4commit 7 1
tracks 2 4
Total 74 463

For better characterizing our samples, in the following we present some complementary
data. On average the tasks from the smaller sample contain 42.09 ± 93.48(9)16 commits,
whereas the tasks from the larger sample contain 55.49 ± 74.62(31) commits. Concerning
task interfaces, Table 6 summarizes the average size of all interfaces from the larger sample.
15 Information collected on January 2019.
16 We use this notation to represent mean ± standard deviation (median).

44

Table 5 – Diversity of projects in our task samples.

Git Repository Name Description Stars LOC Tests Forks Commits Authors

hackful A platform for entrepreneurs to
share demos, stories or ask ques-
tions.

71 4,168 9 18 155 10

MetPlus_PETS A platform for searching and an-
nouncing job opportunities.

19 54,306 127 65 1,935 46

WebsiteOne A platform for promoting the agile
methodology by the development
of solutions to IT charities and
nonprofits.

115 552,582 391 222 5,556 128

whitehall A content management applica-
tion for the UK government.

503 208,763 281 170 22,535 309

blacklight-cornell Cornell University library catalog. 4 681,072 209 3 5,918 38
diaspora A privacy-aware, distributed,

open source social network.
12,126 190,259 265 2,912 19,727 580

action-center-platform A tool for creating targeted cam-
paigns where users sign petitions,
contact legislators, and engage on
social media.

138 29,547 51 41 1,172 22

CBA A template for developing appli-
cations with preconfigured utility
services.

76 44,184 122 16 842 10

folioapp A site for artists and writers to
share work and submit to oppor-
tunities.

0 56,676 15 3 218 5

one-click-orgs A website where groups can create
a legal structure and get a system
for group decisions.

42 46,689 206 12 2,496 25

opengovernment An application for aggregating
and presenting US open govern-
ment data.

200 134,31 11 117 2,231 20

otwarchive An application for hosting
archives of fanworks, including
fanfic, fanart, and fan vids.

368 289,490 1,193 211 14,215 158

moumentei A chinese project with no docu-
mentation.

375 21,294 4 136 200 8

RapidFTR An application for collecting and
sharing information about chil-
dren in emergency situations.

286 98,820 274 334 4,939 252

time_stack A timesheet system. 0 29,256 33 1 763 18
theodinproject A community and curriculum for

learning web development.
708 39,316 0 570 2,843 133

tip4commit A platform to donate bitcoins to
open source projects or receive
tips for code contributions.

159 15,443 68 116 550 70

tracks A management tool based on Get-
ting Things Done (GTD) meth-
ods.

891 96,940 0 519 4,056 115

45

Table 6 – Size of interfaces from the larger sample.

Interface Size (average)

TestI-NF 57.15 ± 46.78(51)
TestI-CF 10.79 ± 12.82(7)
TestI-WF 42.08 ± 38.46(34)
TestI-WCF 8.06 ± 9.40(6)
TestI-CT-NF 46.65 ± 42.51(41)
TestI-CT-CF 8.92 ± 11.22(6)
TestI-CT-WF 34.89 ± 34.53(28)
TestI-CT-WCF 6.60 ± 6.82(4)
RandomI-NF 238.46 ± 184.47(185.30)
RandomI-CF 28.11 ± 22.73(18.90)
TextI-NF 38.63 ± 53.14(16)
TextI-CF 6.96 ± 8.82(3)
TaskI 62.31 ± 64.10(41)
TaskI-CF 9.62 ± 11.19(6)

Specifically related to TextI, the histogram of Figure 10 illustrates the similarity
distribution of the three past tasks with the most similar test specifications in our larger
sample, which we used for answering RQ4.

Finally, Table 7 sums up how the noise caused by TAITI affects our samples, according
to the logical stages described in Sec. 3.2. “Ambiguous steps” is the number of steps
that match with more than one step definition, which possibly inflates TestI content, as
explained in Sec. 3.2.1. “Undeclared called methods” is the number of called methods by
tests for which we did not find a compatible method declaration in the project, as explained
in Sec. 3.2.2. They are auto-generated methods by Rails and library methods. Given we
are interested in preventing conflicts occurrence in code produced by the development
team, these methods are not relevant for computing TestI.

The next four problems might prevent the inclusion of relevant files into TestI. “Error
to generate route” is the number of routes that we did not correctly generate for the project
while computing TestI for a given task. In practice, an incorrect route only affects TestI if
it is (direct or indirectly) used by the tests. Then, to better quantify its consequence, we
evaluated RQ2. “Unknown called Rails path methods” is the number of Rails auxiliary
auto-generated methods used by tests that we did not translate to a route. Sec. 3.2.3
explains the referenced routing mechanism and the relation with TestI. Complementarily,
“Inexistent accessed views” is the number of views directly accessed by tests that did not
exist in the project. This kind of error might represent two situations: the test is out
of date, or we did not correctly extract the view path, which might happen when such
information depends on dynamic data. “Error to analyze views” is the number of views we

46

Figure 10 – Distribution of textual similarity related to the larger sample.

could not parse, as described in Sec. 3.2.4. The tests of our sample did not use a wildcard
as step type, causing no noise related to WF filter (Sec. 3.2.5.1).

Table 7 – Noise caused by TAITI. Noise means the mistakes or limitations that might
affect TestI. The percentages refer to the proportion of affected tasks per sample.

Noise Smaller sample Larger sample

Ambiguous steps 18 tasks (24.32%), 2 projects 177 tasks (38.23%), 3 projects
6.56 ± 4.59(6.00) steps 11.01 ± 25.88(5.00) steps

Undeclared called methods 74 tasks (100%) 463 tasks (100%)
31.16 ± 17.65(29.50) methods 26.15 ± 16.61(22.00) methods

Error to generate route 61 tasks (82.43%) 375 tasks (81%)
10.80 ± 9.68(6.00) routes 12.80 ± 10.66(10.00) routes

Unknown called Rails path methods 55 tasks (74.32%) 295 tasks (63.71%)
5.04 ± 3.07(4.00) methods 5.18 ± 4.58(4.00) methods

Inexistent accessed views 29 tasks (39.19%) 216 tasks (46.65%)
6.41 ± 6.11(4.00) views 14.46 ± 36.49(3.00) views

Error to analyze views 20 tasks (27%) 50 tasks (10.80%)
3.60 ± 2.30(3.00) views 2.90 ± 1.52(3.00) views

47

3.5 RESULTS AND DISCUSSION

In this section, we present and discuss the results of our empirical study and answer
the research questions. Given that our data is paired and deviates from normality, we
analyze differences in precision and recall measures with the paired Wilcoxon Signed-Rank
test (WILCOXON; WILCOX, 1964) adopting 𝛼 = 0.05, and the Cohen’s assignment of effect
size’s relative strength (small = 0.10, medium = 0.30, and large = 0.50). Specifically, we
report the p-value obtained after run the paired Wilcoxon test as 𝑝 and the size effect
based on the Cohen test as 𝑟.

We answer most questions using both samples, but, for brevity, we focus here on the
results of the larger sample. We exclusively use the smaller sample to answer RQ2 and
investigate secondary issues related to RQ1. Finally, we exclusively use the larger sample
to answer RQ4.

As previously explained, the recall and precision measures evaluate whether TestI
might be used to predict file changes. The reasoning is the higher the predictive power
of TestI, the higher its potential for supporting developers to avoid conflicts. That is, if
the developers have upfront knowledge about the file changes they will do to perform
a programming task, they might decide to work on disjoint and independent tasks in
parallel, reducing the integration effort and minimizing conflict risk. To better understand
the results, we also looked for outliers, manually analyzing code changes and interfaces
from some tasks.

3.5.1 RQ1: How often does TestI predict file changes associated with a task?

TestI helps to predict changes in controllers and MVC segments, but not for all
tasks

Considering the larger sample of 463 tasks, TestI-CF recall is 0.48 ± 0.32(0.45) (see
Figure 11),17 contrasting with 0.62 ± 0.35(0.76) in the smaller sample. The results for the
other analyzed TestI configurations are inferior. The median results show that TestI-CF
performs well for at least half of the tasks in the analyzed samples, with better performance
for the tasks in the smaller sample. But, given the large variation of the recall measures
among the analyzed tasks, the results also show that TestI-CF performs poorly for a
number of tasks. On average, TestI-CF can predict nearly half of the changes in controllers
from the larger sample, with better prediction rate for the tasks in the smaller sample.

To better understand these results, and how they are influenced by differences in the
tasks and samples, we manually inspected more than 60 tasks. We chose tasks based
on their precision and recall measures, prioritizing extreme cases and tasks from the
smaller sample, for which we had complementary information such as test coverage report.
We consistently observed low recall measures for tasks with tests that little exercise the
17 Beanplots appear in the online appendix (ROCHA; BORBA; SANTOS, 2018) for this and other results.

48

Figure 11 – Beanplots describing the recall value of TestI-NF and TestI-CF per task from
the larger sample.

implemented functionality. This might have happened for a number of reasons: developers
have not strictly adopted a BDD process and tests were not jointly integrated to the
repository with the functionality they test; developers have weak testing expertise and
superficially tested the task functionality; the task functionality has low correctness priority,
not demanding much testing; the task is not cohesive in the sense that, besides adding
functionality and the associated tests, it involves changes— such as refactorings and the
introduction of gems auto-generated code at installation time— without associated tests.
Besides that, we observed tasks with reduced recall measures due to current limitations of
our tool, not of the test-based task interface idea. For example, TAITI does not explore
structural relationships among classes, nor method call dependencies, decreasing recall.
Similarly, Rails defines implicit relationships among files (especially views) that are not
explored by our tool and explains some code changes that are not predicted by TestI.

Provided BDD and testing practices are seriously adopted by a team, these results
suggest that TestI-CF might help to predict changes in controllers. As controllers uniquely
identify an MVC segment (related model, view, controller, and auxiliary files), one could
also use TestI-CF to predict changes in segments. This is reinforced by the observation
that, for 97% of the tasks in our sample, controllers predict changes in corresponding
segment files; that is, when a controller appears in TestI-CF, TaskI quite often contains
at least one file from the associated segment. So, in principle, TestI-CF could be used to
reduce conflicts by avoiding the parallel execution of tasks that focus on common segments.
Nevertheless, one should anyway expect TestI-CF to have reduced predictive power for
tasks that are either non cohesive or are superficially tested, as discussed before.

49

These conclusions are confirmed by the precision measures we obtain, as Figure 12
illustrates. Considering the larger sample, TestI-CF precision is 0.47 ± 0.34(0.44). Sim-
ilarly to what was observed for recall, most of the results for the other analyzed TestI
configurations are inferior or very close to it.

Figure 12 – Beanplots describing the precision value of TestI-NF and TestI-CF per task
from the larger sample.

Under the segment perspective, we observe that, on average, 68% (0.68 ± 0.32(0.75)) of
the segments inferred from the controllers in TestI-CF are actually changed by developers
responsible for the corresponding task. These are promising results, especially considering
the conservative nature of the static analysis we apply, and that the adverse impact of
false positives in this context is often low: they simply discourage parallel execution of
tasks that would not conflict, or encourage slightly more unneeded coordination. Besides
that, we have observed that some of the files in TestI-CF that were not changed by the
task were actually relevant to the task, and related to changed files, but have nevertheless
helped to decrease the precision rates.

Under the project perspective, as Figure 13 illustrates, most projects have low recall
for TestI-NF. So, we further investigate the project with the better result for such a TestI
variation (tip4commit/tip4commit). We observed that, differently from others, it has only
one task with 203 commits, 40 changed files, and 68 tests; i.e., an expressive test amount,
given the average number of tests per task of the larger sample is 19.81 ± 30.83(9.00). The
static analysis of these tests reached 29 files, and the developers responsible for the task
changed 28 of them.

Although TestI-CF recall is better than TestI-NF, we also try to understand the reason
some projects still have low recall values for such interface variation. Thus, we investigate in

50

more depth the project (with more than one task) with the lower recall value for TestI-CF
(TracksApp/tracks). We observe that the project has 4 tasks, 35.5 commits and 3.5 tests
per task on average. Besides the limited test number, we observed that the tasks changed
17 files on average, and about 28% of them are controllers. The CF filter reduces TestI and
TaskI content by 78% and 67%, respectively. Also, 23% of the TestI content corresponds
to controllers. Even so, the CF filter slightly reduced the precision and recall values of
the project, because the developers most changed view files and the files reached by our
test analysis do not explicitly reference such views. A poor view analysis also affects the
CF result, given the implicit relationship among views and controllers. All these findings
reinforce the conclusions previously reported according to the task perspective.

Concerning precision, two projects consistently have lower values for both TestI-NF
and TestI-CF : otwcode/otwarchive (26 tasks) and alphagov/whitehall (175 tasks). We
verified that although the high number of tests per task (24 on average), some tests from
the project otwcode/otwarchive seem to be out of date, as they directly referenced invalid
views. Furthermore, there is some coincidence of identifiers among the project methods and
library methods. For instance, the test calls a method index, and all controllers declare
a compatible method (it is a Rails convention). In the context of our most conservative
analysis strategy, both facts contribute for increasing the inclusion of unnecessary files in
TestI. Similar problems to the previous reported affect the project alphagov/whitehall as
well. For instance, some tests call the Rails method to_s, which is overridden by many
classes, leading to multiple matches among method calls and declarations. Like the project
tip4commit/tip4commit, the less cohesive tasks (i.e., with more than 100 commits) present
better precision values in case of much noise in TestI, because they change a significant
amount of files, improving the chances of intersection with the TestI content.

Contrasting, the project jpatel531/folioapp (6 tasks) consistently has higher precision
value for both TestI configurations. A possible explanation is its coding style that restricts
the TestI content. For example, our code analysis precisely identified the referenced views
because the tests did not rely on runtime data to specify them. Also, we did not find
occurrences of the causes of noise that affect the other projects, such as method overriding
and method declarations that are confusing with common library methods.

Our routing mechanism does not strongly compromise the predictive ability of TestI

As 32.8% of the tasks in the larger sample have at least one call to method visit that
we cannot correctly analyze due to the static nature of our tool, considering TestI-NF (to
avoid misinterpretation of results caused by filters influence), we decided to investigate
whether our simplified, static, routing mechanism (see Section 3.2.3) could be causing
that. This would indicate that the results from our retrospective study, in which we do
not build and execute the analyzed project versions, should actually be improved when
using TAITI in practice, when dynamically running the system and accessing the actual

51

Figure 13 – Beanplots describing the results of TestI-NF and TestI-CF per project from
the larger sample.

routes is possible.
We observed highly similar TestI contents when using our routing mechanism and

the Rails mechanism: 0.95 ± 0.10(1) according to the Jaccard index, and 0.99 ± 0.03(1)
according to cosine similarity. This suggests the simplified routing mechanism has a small
impact in the overall results. To confirm that, we compare mean values of precision
and recall for both mechanisms. We observe a significant difference in recall values. For
the smaller sample, our routing mechanism slightly decreases the average recall: with
Rails routes, TestI-CF recall is 0.66 ± 0.33(0.77), contrasting with 0.62 ± 0.35(0.76), with
𝑝 = 0.014 and 𝑟 = 0.28, when using our simplified routing mechanism. For precision, we do
not observe statistically significant differences between mean values: 𝑝 = 0.60 for TestI-CF,
and 𝑝 = 0.34 for TestI-NF.

Although recall is more relevant than precision in our context, when balancing the
observed high similarity and the low rates related to recall reduction, we conclude our
routing mechanism does not strongly compromise the predictive ability of TestI.

TestI has higher predictive power for tasks with higher test coverage

As discussed at the beginning of the section, tasks with superficially tested functionality
might have reduced predictive power. This follows from the assumption that a task with a
weak test suite likely does not throughly exercise the code contributed by the task. As a
consequence, for such a task, we have poor alignment between TestI and TaskI, decreasing
precision and recall.

52

To study that, we first measure the test coverage of a given task 𝑡 as the percentage of
the files touched (changed or created) by 𝑡 that is exercised by running the tests of 𝑡:

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑡) = |DTestI(𝑡) ∩ TaskI(𝑡)|
|TaskI(𝑡)| (3.1)

On average, the tasks from the smaller sample— the one for which we can compute DTestI—
have 20.86±30.42(9.5) tests, with the following test coverage: 0.46±0.28(0.48). By applying
the controller filter in Definition 3.1, the test coverage results are 0.71 ± 0.38(0.95).

Supporting the initial hypothesis, we find that the observed test coverages are positively
correlated with the change predictions according to the Spearman’s rank correlation
coefficient with 𝛼 = 0.05 and 𝑝 < 0.001. We observe a strong correlation for precision
(𝜌 = 0.82 for all files, and 𝜌 = 0.78 for controllers) and a moderate correlation for recall
(𝜌 = 0.47 for all files, and 𝜌 = 0.50 for controllers). This suggests that TestI is more
effective to predict changes and, as a consequence, to support developers for avoiding
conflicts, whenever the tests satisfactorily cover the files associated with the task.

Discarding test precondition and postcondition compromises TestI recall with slight
improvement in precision

By focusing on When steps, and excluding from the interface files exercised only by
test precondition (Given steps) and postcondition (Then steps), significantly reduces recall.
TestI-NF recall is 27.90% higher than TestI-WF recall: the first is 0.32±0.21(0.27) whereas
the second is 0.25 ± 0.19(0.20) (𝑝 < 0.001, 𝑟 = 0.75). Contrasting, the average precision
increases by 7.02%, with 0.36±0.26(0.31) for TestI-WF and 0.34±0.24(0.26) for TestI-NF
(𝑝 < 0.001, 𝑟 = 0.20). Similar results apply for the smaller sample, but with no significant
difference in precision and a slightly smaller decrease rate in recall.

By analysing concrete scenarios, we observe that the focus on When steps increases the
chances of reducing false positives because code in Given and Then is not always related
to the task functionality. For example, many tests we analyzed have authentication related
Given steps that have no direct relation with the functionality of interest to the test. Files
inferred from these steps could be safely removed from interfaces. On the other hand, we
have also observed Given and Then steps exercising functionality closely related to the
task under study. In these cases, considering only When steps in the analysis might makes
us miss true positives. We have no guarantees, though. For instance, in our motivating
example (see Section 3.1), we have a Given step that configures crucial information to the
feature under testing, but none of the related classes were changed by the task.

Given the involved uncertainty, and the greater importance of recall in our context,
one should opt for interfaces that consider all test steps. Nevertheless, our observations
suggest that an alternative strategy to refine TestI could weight differently files inferred
from different kinds of steps. For example, files inferred from When steps should weight
more than files inferred from Then steps, which should weight more than files inferred from

53

Given steps. Interfaces would then be sets of weighted files, with alternative comparison
criteria. This is, however, left as future work.

Discarding changed tests compromises TestI recall with slight improvement in pre-
cision

As explained before, to compute test interfaces for a task 𝑡 we analyze the tests
associated with 𝑡. In principle, and in our study so far, this corresponds to the tests created
or changed with the aim of validating the task results. However we could simply feed
TAITI with the tests created for the task, as this could be more strongly related to the
task. So we explored this possibility to assess the effect it might have. Considering only
the created tests, we improve average precision in 9% in relation to TestI-NF precision,
obtaining 0.37 ± 0.26(0.32) (𝑝 < 0.001, 𝑟 = 0.36). However, the average recall is reduced
by 13.13%, obtaining 0.29 ± 0.21(0.22) (𝑝 < 0.001, 𝑟 = 0.54). Similar results apply for
the smaller sample, but with slightly smaller increase rate for precision and decrease rate
for recall. Considering these results and our analysis, and given that our context favours
recall, one should opt for test interfaces that consider both created and changed tests
associated with a task.

TestI performs better as a predictor of changes in controllers and MVC segments

As briefly mentioned at the beginning of the section, TestI-CF presents the best recall
results among all analyzed TestI configurations, in both samples. To conclude that, we
consider eight valid configurations for TestI, derived from the usage of the four filters
presented in Sec. 3.2 under two different conditions— when considering all tests related to
the tasks, and when considering only created tests. Differently from the previous results,
where we compare just the absence and the presence of a filter (i.e., two measures), this time
we examine a number of precision and recall measures. Considering the eight configurations,
we evaluate a final set of 28 configuration pairs. We use the paired Wilcoxon Signed-Rank
test combined with the Bonferroni correction method. In the following, consider that CTCF
(created-tests-controller-filter) represents an analysis that considers only created tests,
filtering TestI content by controllers, and CTWCF (created-tests-when-controller-filter) is
an extension of CTCF that also filters TestI content by step type.

In the larger sample, we observe that TestI-CF has the best overall result. It has the
best average recall with a significant difference from the other filters (𝑝 < 0.05). Regarding
precision, CTCF, WCF, and CTWCF have the highest mean values, with no significant
difference among them. The detailed result appears in the Appendix (ROCHA; BORBA;

SANTOS, 2018), including effect size measure. Similar results apply for the smaller sample,
but CTCF and CF (𝑝 = 0.11) have the highest mean precision. Given we prioritize recall
over precision, one should opt for the CF configuration. Furthermore, both filters with the
best precision are just CF combined with other filters that favour precision.

54

3.5.2 RQ2: Is static code analysis suitable to compute TestI?

When passing tests are available, DTestI is a better predictor of changes in con-
trollers than TestI

Test-based task interfaces computed by using test coverage reports (DTestI), not
step definitions, increase the average recall in 14.55% when dealing with controllers. As
Figure 14 illustrates, for the smaller sample, DTestI-CF recall is 0.71 ± 0.38(0.95) with
a significant difference from TestI-CF (0.62 ± 0.35(0.76)), with 𝑝 < 0.01 and 𝑟 = 0.32.
Contrasting, we observe no significant difference in recall when comparing DTestI-NF
with TestI-NF. Similarly, we observe no significant difference in precision values when
comparing DTestI with TestI.

Figure 14 – Beanplots describing the recall value of DTestI per task from the smaller
sample.

At first thought, the precision findings might be surprising. Our static analysis tries to
infer the files a test might execute, while test coverage information (and DTestI) accurately
detects the executed files. So one could initially expect a reduction of false positives by
considering test execution. However, although all files detected by DTestI are executed
by the tests, not all of them are related to the task (as explained before) or changed by
developers, affecting precision measures. So, while DTestI might increase precision by
avoiding typically conservative choices of a static analysis, it might also decrease precision
by going deeper (beyond controller code) and capturing a larger number of files that are
not changed by the tasks. Given that, and the recall results, in our small sample, DTestI
has more chances to provide better predictions than the static analysis based interfaces
we discuss here.

55

Static analysis is suitable to compute TestI

In spite of DTestI advantage, due to the small observed recall improvement, and the
fact that DTestI cannot often be computed in the BDD context we assume (one cannot
generate test coverage report for failing or empty tests), we consider static code analysis
as a suitable option to compute TestI.

Our observations also suggest that one could maybe adopt a hybrid (static and dynamic)
approach for dealing with tasks that already have tests and the corresponding implemented
functionality. For instance, suppose a bug fix task that is associated with 6 tests, but only
2 of them are failing because the associated functionality has not been fixed yet. In such
situation, we could compute TestI for the 2 failing tests and DTestI for the other 4 tests.
Moreover, the evidence that our routing mechanism based on static code analysis does not
compromise TestI improves its prognostics.

3.5.3 RQ3: Is TestI a better code change predictor than RandomI?

TestI outperforms RandomI for predicting changes in controllers and MVC segments

We found no statistically significant difference between TestI-CF and RandomI-CF
mean recalls for the larger sample (𝑝 = 0.10) (see Figure 15). TestI-CF mean precision,
however, is 69.7% higher than RandomI-CF precision (see Figure 16): the first is 0.47 ±
0.34(0.44), whereas the second is 0.28 ± 0.27(0.17) (𝑝 < 0.001, 𝑟 = 0.72).

Figure 15 – Beanplots describing the recall value of RandomI per task from the larger
sample.

56

Figure 16 – Beanplots describing the precision value of RandomI per task from the larger
sample.

For the smaller sample, we observe similar precision results (increase of 41.1% in favour
of TestI-CF), but we also observe a statistically significant mean recall difference in favour
of TestI-CF (27.8% higher than RandomI-CF recall).

These results reinforce our previous conclusion that TestI might help to predict changes
in controllers and MVC segments. Given the superiority in precision in the two samples,
and no evidence of a loss in recall (including superiority in one of the samples), we consider
that TestI-CF outperforms RandomI-CF.

Considering all kinds of files, we have contrasting recall results. They favour RandomI-
NF (54.1% higher than TestI-NF, with 𝑝 < 0.001 and 𝑟 = 0.64) in the larger sample, but
report no statistically significant difference in the smaller sample (𝑝 = 0.33). The precision
results are similar to when considering only controllers. TestI-NF mean precision is 70.9%
higher than RandomI-NF precision (𝑝 < 0.001, 𝑟 = 0.84). A similar result applies for the
smaller sample, but with a smaller increase rate (45.6%).

Contrasting from the other interfaces discussed so far, we computed RandomI as
a mean of multiple results per task. So, to better understand the results, we further
investigate them from a project perspective. As discussed in the literature, random data
usually leads to intermediate results. In the context of task interfaces, it means that half
of the candidate files of a project are part of RandomI, which explains the high size of
such interface: on average, RandomI-NF has 238.46 ± 184.47(185.30) files. The size of
RandomI varies per project according to the overall project size, but the proportion of
selected files does not. As a consequence, the recall measure is intermediate (around 0.50)
for all projects, as Figure 17 illustrates.

57

Figure 17 – Beanplots describing the recall value of TestI and RandomI per project from
the larger sample.

As expected, we can observe a similar effect over RandomI-CF, given the relationship
between RandomI-NF and RandomI-CF : RandomI-CF receives as input the files set of
RandomI-NF and applies the CF filter. This way, around half of the controllers of a project
is part of RandomI-CF, resulting in smaller interfaces: On average, RandomI-CF has
28.11 ± 22.73(18.90) files.

In turn, TestI depends on a set of variables, as previously discussed: the coding style
of a project, the nature of the tasks (e.g., some tasks require changes on controllers,
but others do not), the test coverage, the limitations of our tool and the static analysis,
and the cohesion of code changes related to tasks. Therefore, by indiscriminately makes
suggestions, RandomI-NF expands its chance of make a right guess. Even so, when
considering RandomI-CF such a chance is reduced.

Concerning the precision result, summarized by Figure 18 from a project perspective,
we observed a negative relationship among the task cohesion and the performance of
RandomI : It seems that less cohesive tasks have higher RandomI precision values. For
example, the project tip4commit/tip4commit has the higher precision value related to
RandomI-NF : 0.66. This project has only 1 task that has 203 commits and 40 changed files,
whereas the size of its RandomI-NF is around 32 files. Luckily almost half of the changed
files were included into RandomI-NF. Similarly, the project oneclickorgs/one-click-orgs,
which has the third better result of RandomI-NF precision (the second is another project
with only 1 task), has 28 tasks and 4 of them has 109, 111, 392 e 469 commits, respectively,
and 105, 103, 143, and 314 changed files. Considering that the lack of cohesion is an
exception instead of a rule, the RandomI precision is not a surprise.

58

Figure 18 – Beanplots describing the precision value of TestI and RandomI per project
from the larger sample.

3.5.4 RQ4: Is TestI a better code change predictor than TextI?

TestI has better recall but inferior precision than TextI

As Figure 19 illustrates, TestI-CF has 20.1% higher mean recall than TextI-CF : the
first is 0.48 ± 0.32(0.45), whereas the second is 0.40 ± 0.34(0.33) (𝑝 < 0.001, 𝑟 = 0.23).
Contrasting, TextI-CF precision is 32.7% higher than TestI-CF precision (see Figure 20):
the first is 0.63 ± 0.42(1.00) and the second is 0.47 ± 0.34(0.43) (𝑝 < 0.001 and 𝑟 = 0.36).
Similar results apply if we consider all files (TestI-NF versus TextI-NF).

A more in-depth investigation of the results reveals that it is not surprising that TextI
precision outperforms TestI. The reason is TextI reduces the number of false positives by
50.5% for NF and 50.4% for CF, whereas it slightly decreases the number of false negatives
by 9.2% for NF and increases the number of false negatives by 8% for CF. In practice, it
means that the overall idea of investigating the past for predicting the future makes sense
when dealing with known code changes: If task A changed file X, we can guess task B will
change file X too because tasks A and B are similar. However, subtle differences among
tasks, such as performance requirements, for instance, might motivate new code changes
that a past-based analysis like the one we implemented cannot deduce. As a consequence,
it increases false negatives and reduces recall. For anticipating more code changes, e.g., to
guess that file Y changes when file X changes (the notion of change propagation), maybe
a past-based analysis should also verify the similarity and dependencies among past code
changes besides the similarity among their underlying tasks. Even so, someone would apply
the current version of TextI for assisting developers to define task interfaces manually,

59

Figure 19 – Beanplots describing the recall value of TextI per task from the larger sample.

according to a “learning by example” dynamics. That is, by analyzing the artifacts of a
similar past task, the developer might gain insight into the code of her new task. However,
our vision is that an automatic solution for computing task interfaces is preferable.

We also speculate that the test coverage affects TextI recall as well, given that if the
tests cover only a subset of the task code, the similarity among tasks might be compromised,
increasing the rate of false negatives in TextI. Unfortunately, as we do not have data about
the test coverage for our larger sample, we cannot evaluate the correlation among tests
coverage and TextI recall.

Finally, as Figure 10 illustrates, the similarity among the most similar past tasks is
predominantly high, so we cannot deduce anything when confronting such property with
the results, even when we analyze it from a project perspective; the average values per
project vary in [0.71, 1.0]. To understand the cause of such a phenomenon, we manually
inspect some tasks. At the first moment, we imagine that there are many intersections
between the test set, leading us to question why different tasks would be validated by
the same tests. We observed that sometimes a task creates a new functionality and other
task fixes it; in this cases the values of precision and recall reached by TextI are high.
However, given that the teams intuitively avoid such an obvious dependency among tasks,
the potential of conflict avoidance is minimized.

Other times a task integrates code from other tasks, i.e., the task did not project all
tests from its test set; a limitation of our strategy for delimiting tasks based on merge
commits that we mentioned in Section 3.6.2. But we also observed that sometimes there
is no intersection between the test set and the similarity is still very high. This time, it
is not trivial to evaluate whether the tests have similar meanings (i.e., they are clones)

60

Figure 20 – Beanplots describing the precision value of TextI per task from the larger
sample.

or our strategy for evaluating similarity among tests is fragile. As known, most projects
adopt a pattern to write Cucumber tests that rely on access to views and the verification
of its content. Although we preprocessed the Gherkin files, such a pattern might induce a
“false similarity”. Furthermore, steps are widely reused accross scenarios, so it is expected
that well written test suites will exhibit high degrees of textual similarity (BINAMUNGU;

EMBURY; KONSTANTINOU, 2018). As a consequence, the predictions provided by TextI do
not apply.

Based on the exposed, we conclude that given our context values more recall than pre-
cision, one should opt for TestI. However, the results suggest an hybrid solution involving
TestI and TextI might be a promising predictor. For each file in TestI, if TextI includes it
too, it has less chances of being a false positive. Such perception is confirmed by the low
intersection rate between both interfaces. On average, 21% of the files in TestI intersects
with the files in TextI (0.21 ± 0.21(0.13)). Considering only controllers, the rate increases
to 32% (0.32 ± 0.31(0.25)).

In order to complement the overall discussion of our results and to provide a comparative
overview, Table 8 and Table 9 summarize the values of precision and recall of the larger
sample for TestI, RandomI, and TextI, considering the main variations (NF and CF),
under a project perspective. Similarly, Table 10 and Table 11 summarize the results of the
smaller sample, this time also including DTestI. The highlights are the best results for
each project.

61

Table 8 – Average precision per project of the larger sample.

Repository TestI-NF TestI-CF RandomI-NF RandomI-CF TextI-NF TextI-CF

hackful 0.29 ± 0.27(0.33) 0.50 ± 0.50(0.50) 0.29 ± 0.23(0.32) 0.55 ± 0.33(0.42) 0.70 ± 0.51(1.00) 0.89 ± 0.19(1.00)
MetPlus_PETS 0.29 ± 0.00(0.29) 0.50 ± 0.00(0.50) 0.26 ± 0.00(0.26) 0.43 ± 0.00(0.43) 1.00 ± 0.00(1.00) 1.00 ± 0.00(1.00)
WebsiteOne 0.33 ± 0.28(0.21) 0.45 ± 0.29(0.43) 0.20 ± 0.24(0.09) 0.34 ± 0.27(0.25) 0.61 ± 0.37(0.67) 0.71 ± 0.39(1.00)
whitehall 0.26 ± 0.16(0.23) 0.37 ± 0.28(0.33) 0.11 ± 0.10(0.09) 0.12 ± 0.13(0.08) 0.48 ± 0.38(0.42) 0.51 ± 0.43(0.50)
blacklight-cornell 0.41 ± 0.25(0.33) 0.93 ± 0.23(1.00) 0.21 ± 0.17(0.14) 0.41 ± 0.23(0.39) 0.71 ± 0.28(0.75) 0.82 ± 0.28(1.00)
diaspora 0.33 ± 0.22(0.36) 0.41 ± 0.30(0.38) 0.24 ± 0.19(0.19) 0.33 ± 0.28(0.24) 0.58 ± 0.41(0.75) 0.62 ± 0.43(1.00)
action-center-platform 0.44 ± 0.21(0.55) 0.73 ± 0.37(1.00) 0.17 ± 0.12(0.14) 0.26 ± 0.16(0.22) 0.61 ± 0.45(0.88) 0.69 ± 0.43(1.00)
CBA 0.37 ± 0.33(0.20) 0.41 ± 0.41(0.50) 0.19 ± 0.22(0.06) 0.25 ± 0.20(0.16) 0.27 ± 0.29(0.20) 0.39 ± 0.44(0.20)
folioapp 0.80 ± 0.05(0.81) 1.00 ± 0.00(1.00) 0.46 ± 0.10(0.51) 0.51 ± 0.18(0.56) 0.67 ± 0.30(0.52) 0.60 ± 0.37(0.40)
one-click-orgs 0.70 ± 0.17(0.75) 0.89 ± 0.23(1.00) 0.57 ± 0.23(0.66) 0.77 ± 0.30(0.91) 0.89 ± 0.24(1.00) 0.94 ± 0.18(1.00)
opengovernment 0.04 ± 0.06(0.04) 0.22 ± 0.31(0.22) 0.08 ± 0.04(0.08) 0.23 ± 0.03(0.23) 0.50 ± 0.71(0.50) 0.50 ± 0.71(0.50)
otwarchive 0.14 ± 0.15(0.07) 0.19 ± 0.25(0.06) 0.08 ± 0.11(0.02) 0.16 ± 0.25(0.04) 0.41 ± 0.45(0.14) 0.44 ± 0.44(0.30)
moumentei 0.88 ± 0.00(0.88) 1.00 ± 0.00(1.00) 0.63 ± 0.00(0.63) 1.00 ± 0.00(1.00) 0.99 ± 0.00(0.99) 1.00 ± 0.00(1.00)
RapidFTR 0.35 ± 0.19(0.38) 0.38 ± 0.23(0.44) 0.28 ± 0.17(0.29) 0.33 ± 0.22(0.31) 0.71 ± 0.34(0.90) 0.70 ± 0.40(1.00)
time_stack 0.69 ± 0.30(0.76) 0.80 ± 0.27(1.00) 0.26 ± 0.13(0.30) 0.47 ± 0.29(0.43) 0.85 ± 0.34(1.00) 1.00 ± 0.00(1.00)
theodinproject 0.43 ± 0.13(0.35) 1.00 ± 0.00(1.00) 0.25 ± 0.02(0.25) 0.59 ± 0.15(0.67) 0.75 ± 0.43(1.00) 1.00 ± 0.00(1.00)
tip4commit 0.97 ± 0.00(0.97) 0.83 ± 0.00(0.83) 0.66 ± 0.00(0.66) 0.93 ± 0.00(0.93) 0.81 ± 0.00(0.81) 1.00 ± 0.00(1.00)
tracks 0.48 ± 0.23(0.42) 0.46 ± 0.42(0.42) 0.12 ± 0.06(0.10) 0.32 ± 0.13(0.30) 0.52 ± 0.34(0.41) 0.66 ± 0.23(0.58)

Table 9 – Average recall per project of the larger sample.

Repository TestI-NF TestI-CF RandomI-NF RandomI-CF TextI-NF TextI-CF

hackful 0.14 ± 0.13(0.17) 0.25 ± 0.22(0.33) 0.57 ± 0.07(0.56) 0.59 ± 0.05(0.57) 0.59 ± 0.54(1.00) 0.72 ± 0.48(1.00)
MetPlus_PETS 0.18 ± 0.00(0.18) 0.50 ± 0.00(0.50) 0.51 ± 0.00(0.51) 0.50 ± 0.00(0.50) 1.00 ± 0.00(1.00) 1.00 ± 0.00(1.00)
WebsiteOne 0.55 ± 0.20(0.55) 0.80 ± 0.27(1.00) 0.50 ± 0.05(0.50) 0.51 ± 0.12(0.50) 0.36 ± 0.24(0.33) 0.50 ± 0.33(0.50)
whitehall 0.22 ± 0.13(0.22) 0.31 ± 0.22(0.33) 0.50 ± 0.02(0.50) 0.50 ± 0.07(0.50) 0.19 ± 0.17(0.15) 0.26 ± 0.26(0.19)
blacklight-cornell 0.13 ± 0.07(0.11) 0.42 ± 0.24(0.40) 0.50 ± 0.03(0.50) 0.50 ± 0.08(0.50) 0.31 ± 0.16(0.25) 0.51 ± 0.33(0.50)
diaspora 0.21 ± 0.10(0.20) 0.32 ± 0.26(0.22) 0.50 ± 0.04(0.50) 0.49 ± 0.07(0.50) 0.22 ± 0.27(0.11) 0.32 ± 0.30(0.23)
action-center-platform 0.26 ± 0.14(0.22) 0.30 ± 0.13(0.33) 0.49 ± 0.05(0.50) 0.48 ± 0.09(0.50) 0.26 ± 0.20(0.28) 0.39 ± 0.26(0.50)
CBA 0.32 ± 0.29(0.30) 0.37 ± 0.40(0.43) 0.53 ± 0.05(0.52) 0.52 ± 0.12(0.50) 0.24 ± 0.25(0.14) 0.46 ± 0.46(0.67)
folioapp 0.51 ± 0.14(0.55) 0.74 ± 0.13(0.80) 0.51 ± 0.02(0.51) 0.47 ± 0.05(0.50) 0.62 ± 0.29(0.68) 0.66 ± 0.31(0.50)
one-click-orgs 0.42 ± 0.07(0.45) 0.69 ± 0.17(0.77) 0.50 ± 0.02(0.50) 0.49 ± 0.06(0.50) 0.70 ± 0.37(0.89) 0.80 ± 0.33(1.00)
opengovernment 0.11 ± 0.15(0.11) 0.40 ± 0.57(0.40) 0.49 ± 0.01(0.49) 0.53 ± 0.01(0.53) 0.09 ± 0.13(0.09) 0.25 ± 0.35(0.25)
otwarchive 0.38 ± 0.22(0.39) 0.71 ± 0.33(0.81) 0.48 ± 0.05(0.50) 0.48 ± 0.09(0.49) 0.22 ± 0.18(0.23) 0.39 ± 0.31(0.37)
moumentei 0.05 ± 0.00(0.05) 0.20 ± 0.00(0.20) 0.49 ± 0.00(0.49) 0.48 ± 0.00(0.48) 0.99 ± 0.00(0.99) 1.00 ± 0.00(1.00)
RapidFTR 0.57 ± 0.17(0.59) 0.74 ± 0.19(0.71) 0.50 ± 0.03(0.50) 0.52 ± 0.10(0.50) 0.36 ± 0.21(0.39) 0.47 ± 0.33(0.50)
time_stack 0.30 ± 0.17(0.38) 0.50 ± 0.29(0.40) 0.52 ± 0.03(0.51) 0.49 ± 0.10(0.51) 0.09 ± 0.10(0.04) 0.34 ± 0.37(0.20)
theodinproject 0.24 ± 0.07(0.29) 0.27 ± 0.02(0.29) 0.53 ± 0.04(0.54) 0.55 ± 0.04(0.55) 0.09 ± 0.06(0.05) 0.18 ± 0.06(0.14)
tip4commit 0.70 ± 0.00(0.70) 0.71 ± 0.00(0.71) 0.53 ± 0.00(0.53) 0.50 ± 0.00(0.50) 0.33 ± 0.00(0.33) 0.29 ± 0.00(0.29)
tracks 0.25 ± 0.04(0.25) 0.22 ± 0.18(0.24) 0.47 ± 0.05(0.47) 0.48 ± 0.03(0.48) 0.49 ± 0.44(0.43) 0.77 ± 0.29(0.83)

Table 10 – Average precision per project of the smaller sample.

Repository TestI-NF TestI-CF RandomI-NF RandomI-CF TextI-NF TextI-CF DTestI-NF DTestI-CF

WebsiteOne 0.13 ± 0.13(0.11) 0.25 ± 0.29(0.16) 0.05 ± 0.03(0.04) 0.11 ± 0.07(0.10) 0.45 ± 0.50(0.25) 0.30 ± 0.48(0.00) 0.14 ± 0.16(0.09) 0.17 ± 0.18(0.17)
whitehall 0.19 ± 0.15(0.13) 0.42 ± 0.40(0.35) 0.09 ± 0.10(0.03) 0.21 ± 0.29(0.03) 0.27 ± 0.39(0.09) 0.30 ± 0.44(0.00) 0.13 ± 0.15(0.06) 0.31 ± 0.26(0.29)
diaspora 0.19 ± 0.21(0.11) 0.23 ± 0.23(0.12) 0.12 ± 0.14(0.06) 0.14 ± 0.11(0.15) 0.29 ± 0.42(0.03) 0.35 ± 0.42(0.11) 0.11 ± 0.10(0.09) 0.24 ± 0.18(0.31)
one-click-orgs 0.76 ± 0.16(0.78) 0.88 ± 0.23(1.00) 0.67 ± 0.19(0.72) 0.81 ± 0.27(0.89) 0.88 ± 0.29(1.00) 0.89 ± 0.30(1.00) 0.75 ± 0.25(0.79) 0.83 ± 0.29(0.95)
otwarchive 0.01 ± 0.00(0.01) 0.04 ± 0.02(0.04) 0.00 ± 0.00(0.00) 0.02 ± 0.01(0.01) 0.50 ± 0.53(0.50) 0.50 ± 0.53(0.50) 0.01 ± 0.00(0.01) 0.02 ± 0.01(0.01)
RapidFTR 0.12 ± 0.07(0.11) 0.10 ± 0.06(0.11) 0.10 ± 0.06(0.09) 0.09 ± 0.05(0.09) 0.77 ± 0.36(1.00) 0.15 ± 0.34(0.00) 0.13 ± 0.06(0.14) 0.11 ± 0.05(0.11)
theodinproject 0.26 ± 0.25(0.35) 0.60 ± 0.55(1.00) 0.14 ± 0.12(0.21) 0.40 ± 0.33(0.42) 0.04 ± 0.09(0.00) 0.07 ± 0.15(0.00) 0.44 ± 0.31(0.64) 0.67 ± 0.47(1.00)
tip4commit 0.53 ± 0.29(0.57) 0.54 ± 0.24(0.67) 0.31 ± 0.19(0.33) 0.52 ± 0.28(0.62) 0.88 ± 0.21(1.00) 0.90 ± 0.25(1.00) 0.53 ± 0.27(0.59) 0.61 ± 0.24(0.71)
tracks 0.32 ± 0.31(0.32) 1.00 ± 0.00(1.00) 0.11 ± 0.15(0.11) 0.27 ± 0.29(0.27) 0.51 ± 0.69(0.51) 0.56 ± 0.63(0.56) 0.28 ± 0.33(0.28) 0.75 ± 0.35(0.75)

62

Table 11 – Average recall per project of the smaller sample.

Repository TestI-NF TestI-CF RandomI-NF RandomI-CF TextI-NF TextI-CF DTestI-NF DTestI-CF

WebsiteOne 0.60 ± 0.26(0.59) 0.82 ± 0.34(1.00) 0.52 ± 0.06(0.52) 0.51 ± 0.13(0.53) 0.07 ± 0.11(0.04) 0.25 ± 0.42(0.00) 0.18 ± 0.18(0.18) 0.35 ± 0.42(0.17)
whitehall 0.13 ± 0.11(0.10) 0.24 ± 0.21(0.17) 0.49 ± 0.03(0.49) 0.49 ± 0.10(0.51) 0.06 ± 0.04(0.04) 0.04 ± 0.08(0.00) 0.23 ± 0.11(0.27) 0.36 ± 0.40(0.15)
diaspora 0.26 ± 0.28(0.22) 0.32 ± 0.30(0.28) 0.48 ± 0.04(0.48) 0.41 ± 0.13(0.42) 0.18 ± 0.16(0.14) 0.31 ± 0.34(0.28) 0.28 ± 0.18(0.25) 0.51 ± 0.39(0.58)
one-click-orgs 0.43 ± 0.04(0.44) 0.73 ± 0.15(0.77) 0.49 ± 0.02(0.50) 0.50 ± 0.02(0.50) 0.68 ± 0.36(0.83) 0.77 ± 0.37(1.00) 0.57 ± 0.09(0.54) 0.96 ± 0.05(0.95)
otwarchive 0.67 ± 0.25(0.55) 0.91 ± 0.22(1.00) 0.49 ± 0.13(0.50) 0.49 ± 0.12(0.50) 0.38 ± 0.46(0.13) 0.45 ± 0.50(0.25) 0.81 ± 0.23(0.90) 1.00 ± 0.00(1.00)
RapidFTR 0.63 ± 0.16(0.61) 0.80 ± 0.18(0.80) 0.49 ± 0.07(0.51) 0.50 ± 0.13(0.50) 0.20 ± 0.15(0.16) 0.07 ± 0.16(0.00) 0.60 ± 0.19(0.56) 0.94 ± 0.10(1.00)
theodinproject 0.15 ± 0.14(0.16) 0.16 ± 0.15(0.25) 0.46 ± 0.09(0.50) 0.48 ± 0.11(0.50) 0.10 ± 0.22(0.00) 0.20 ± 0.45(0.00) 0.46 ± 0.36(0.48) 0.58 ± 0.37(0.57)
tip4commit 0.80 ± 0.15(0.76) 0.80 ± 0.17(0.80) 0.49 ± 0.07(0.51) 0.49 ± 0.11(0.50) 0.57 ± 0.36(0.50) 0.68 ± 0.34(0.71) 0.52 ± 0.12(0.48) 0.98 ± 0.05(1.00)
tracks 0.59 ± 0.59(0.59) 0.61 ± 0.55(0.61) 0.53 ± 0.09(0.53) 0.55 ± 0.07(0.55) 0.51 ± 0.69(0.51) 0.56 ± 0.63(0.56) 0.66 ± 0.48(0.66) 0.78 ± 0.31(0.78)

3.6 THREATS TO VALIDITY

In this section, we summarize potential threats to the validity of our study.

3.6.1 Construct validity

Section 3.4.2 describes the assumptions we make about the code contributions we
analyze. They might actually not correspond to formal programming tasks defined by
a manager or team, and performed accordingly to BDD. Nevertheless, considering the
nature of our retrospective analysis, this does not compromise our code change prediction
conclusions. They do, however, impair us to better understand the limitations of our
tool. Since we do not also have task descriptions, we use Gherkin scenario descriptions as
proxies, but these often do not correspond to task descriptions in practice.

3.6.2 Internal validity

As our tool does not consider tests that use Cucumber’s alternative (non regex based)
syntax to identify step definitions, we might have discarded consistent tasks from our
sample because we wrongly consider they have undefined step definitions (that is, partially
implemented tests). We might also miss task related tests because we only consider tests
created or changed by a code contribution that is interpreted as a task. A previously
created and contributed test could well be related to a task, especially in case BDD was
not fully adopted by the analyzed project. Similarly, we miss tests having scenarios that
were not changed by a contribution that changes these scenarios steps.

Besides missing relevant tests as just described, and consequently deflating test inter-
faces, we might also inflate task interfaces (TaskI) because we consider all changes in a
contribution, no matter if some of them are reverted. Again, this leads to results that
might artificially downgrade the test interfaces conclusions we achieve here. Similarly, task
interfaces, and test interfaces to a lesser extent, might be inflated by tangled (HERZIG;

ZELLER, 2013; DIAS et al., 2015) contributions that include non task related changes.
However, since tangled commits and contributions are not rare, this does not make our
results less realistic.

63

Due to the previously discussed (see Section 3.2) design decisions and limitations of
our tool, interfaces might include files that should not be included, and miss files that
should be included. This is reflected in our analysis of false positives and false negatives.
So our assessment actually focuses on the current version of our tool, not on the overall
idea of test interfaces. As previous explained in Section 3.4.4, we also discard tasks with
empty test interfaces, as this is often caused by limitations in our tool.

Finally, the selected GitHub projects from which we extract tasks might use Git
mechanisms such as rebase, squash, stash apply, and cherry-pick. This way, we might have
missed integration scenarios, causing the reduction of tasks we analyze. Given that the
good practice is to rebase locally only and we extracted tasks from the master branch, we
expect an insignificant effect over the construction of our task samples, as the number of
possible lost tasks is small. Furthermore, while extracting tasks from merges, we consider
all merges in a project; we are aware that some merges might be related to others, which
disrupts the criteria of delimiting an independent data sample. We tried to mitigate such
problem by excluding tasks of the larger sample whose commits set is a subset of the
commit set of other tasks. However, 23 tasks of our smaller sample are dependent on
others. As this might impact TextI, given it depends on the evaluation of similarity among
tasks, we only compute TextI for the larger sample.

3.6.3 External validity

We analyzed a reduced number of tasks (513 in total), and only considered GitHub
Rails projects that use Cucumber. Maybe TestI might be successfully applied in other
contexts instead of BDD and Cucumber tests, but we did not evaluate it, and BDD itself
may have eased the process of predicting code change. Also, as previously explained,
our tool for inferring test interfaces is language-specific for both test and application
code. So it would be hard to consider projects in other languages. Even so, we design
TAITI by providing facilities to adapt it to other technologies. First, it is compatible
with Gherkin-based acceptance test tools, supporting other test tools besides Cucumber.
Second, it supports other programming languages and frameworks besides Rails. Given
we implemented the code analyzer module (see Figure 9) by using the Template Method
design pattern, there is a basic algorithm to guide the overall analysis process and specific
configuration steps that require a language-specific parser. Although we cannot generalize
our results, we expect that it would be easier to more accurately compute interfaces
from code written in statically typed languages, and frameworks with less sophisticated
web routing mechanisms. In this sense, the Rails results we obtain might be close to the
minimum potential one can achieve with the TestI idea.

64

4 PREDICTING RISK OF MERGE CONFLICTS

We found evidence that test-based task interfaces are a promising predictor of file
changes in Chapter 3. Even so, we have no evidence that this might actually avoid conflicts.
In this chapter, we go further and assess whether it is possible to predict the risk of merge
conflicts between two tasks based on the intersection between their TestI. Following, we
present the second empirical study we conducted.

4.1 MOTIVATING EXAMPLE

As a demonstration of how test-based task interfaces might support developers for
avoiding conflicts, let us see a simplified example of a merge conflict from project al-
lourideas/allourideas.org.1 The project is a web system for collecting and prioritizing ideas
by a kind of collaborative survey that evolves by contributions from respondents. Andrew
concludes task 𝑇175, which consists of a set of refactorings to improve code quality. One day
later, Becca concludes task 𝑇176, which fixes a set of bugs and enhances the GUI layout.
When Andrew integrates Becca’s contributions, the conflicts illustrated in Figure 21 are
reported. The first conflict (21a) occurs because task 𝑇175 excludes a set of comments
whereas task 𝑇176 adds a method just above the comments, both affecting the same area
of the file. The second conflict (21b) happens because both tasks change, in the same area
of another file, the body of the results method.

If Andrew and Becca would predict the files they will change, they could prevent
these conflicts by avoiding to perform these tasks in parallel. In the case of refactorings,
as Andrew’s task, predictions might be more straightforward, given there is a revision
planning, and an expectation to review a file subset. However, predictions related to the
development of new system functionalities or bug fixes, like Becca’s task, might be more
complicated. In the particular context of BDD, developers write automated acceptance
tests before implementing features, and each feature is associated with test scenarios. So,
we can use the TAITI tool to systematically analyze the tests, and infer the application
files that would be executed by them, approximating the files that would be changed by
the tasks.

For instance, by inspecting the tests related to each task (3 Cucumber tests2 and other
5 step definitions related to task 𝑇175, and 7 Cucumber tests and another step definition
relate to task 𝑇176), TAITI would search for references to programming elements, such as
fields, methods, references to web pages and, recursively, elements, and additional files
referenced by web pages, obtaining the file sets (test-based task interfaces) in Figure 22.
1 The project is part of our sample, but task 𝑇175 is not because it does not satisfy all selection criteria

explained in Section 4.3. Also, we present the merge conflict example by using fictitious developers.
2 By “cucumber test”, we mean a scenario and its step definitions.

65

Figure 21 – Merge conflicts caused by the integration of tasks 𝑇175 and 𝑇176.

(a) Conflicting model file.

(b) Conflicting controller file.

We can then observe that TestI (𝑇176) is a subset of TestI (𝑇175). The seven files marked
in red are at the intersection of the two interfaces and are more vulnerable to conflicts
when developers integrate their contributions. Indeed, the two conflicting files previously
presented in Figure 21 are part of the intersection.

Thus, assuming that Andrew and Becca have developed the Cucumber tests before the
application code, according to the BDD dynamics, they could avoid the conflicts by using
TAITI. By observing the warning of conflict risk revealed by the non-empty intersection
between TestI (𝑇175) and TestI (𝑇176), Becca could choose another task, one with a TestI
that does not intersect with TestI (𝑇175), or at least one having a smaller intersection size,
suggesting an inferior conflict risk. Intuitively, if TestI predicts the files a task will change,
the larger the intersection between two TestI, the higher the conflict risk between the
tasks related to these TestI, as developers will change more files in common, increasing

66

Figure 22 – Test-based task interfaces of conflicting tasks from project allourideas/al-
lourideas.org. The files in red are the intersection between the interfaces, and
the underlined files are the conflicting ones.

(a) TestI (𝑇175)

(b) TestI (𝑇176)

the chance that parallel changes affect the same file hunk.
TAITI works for Ruby on Rails projects using Cucumber as an acceptance test tool.

As Figure 93 illustrates, given the set of Cucumber scenarios that verify the expected
behavior of a task, TAITI links them to the Ruby code that automates the tests (called
step definitions by Cucumber). The mapping process relies on regular expressions used as
the identifier of the step definitions, as defined by Cucumber syntax (the most popular
one). Next, TAITI parses each step definition and statically analyzes its body searching
for references to programming elements, references to web pages, and its additional files.
This way, TAITI analyzes web pages as well (module Views parser in Figure 9). In this
process, it collects the set of application files that declare the programming elements
3 Chapter 3 presented TAITI in detail. In the current chapter, we briefly review TAITI, and we do not

filter its content, meaning the content filter module does not apply in our second empirical study.

67

referred by the Cucumber tests, generating TestI. Thus, TAITI excludes from TestI any
auxiliary code used by step definitions, based on the project’s directory structure and file
extension. Also, TAITI does not analyze application files other than views, acting like
almost there is no code to support tasks.

By relying on static analysis, TAITI cannot accurately identify the files executed by
the tests. For example, due to Ruby’s dynamic nature, it is hard to match a method call
to a method declaration, and consequently, the file in which it appears. In this process,
when necessary, TAITI might search for matching methods declaration with the same
method name and number of arguments, or it might apply naming conventions (module
Method searcher in Figure 9). Similarly, it is hard to identify the web pages rendered by
the tests, which depends on a controller file and a set of view files. The tests usually refer
to them as a path or URL that the Rails routing mechanism translates to application
files based on a set of configuration properties. Given that the Rails routing mechanism
requires running the system being developed, TAITI implements a simplified version of it
(module Route translator in Figure 9), which have limitations related to static analysis
and the absence of dynamic information, as the value of arguments. Also, TAITI only
can reach files that are explicitly executed by the tests. These kinds of limitations might
cause the inclusion of files into TestI that the tests cannot reach when executing, as well
as prevent the inclusion of relevant files into TestI.

Even if TAITI does not have these limitations and the TestI interfaces have all relevant
files for the tasks, the intersection between two interfaces does not guarantee conflict
occurrence; we are dealing with predictions. First of all, the files in TestI might not require
changes because part of the functionality might have been implemented before, as expected
for tasks as refactoring and bug fix. For instance, TestI (𝑇175) has 21 files, and only 4 of
them changed, whereas TestI (𝑇176) has 7 files, and 3 of them changed. As a consequence,
the tasks might not change all files in the intersection between TestI. In the presented
case, the intersection between TestI has 7 files, only 2 of them changed, and both have a
conflict, meaning TestI predicts the conflicting files. But conflicts may occur in a file that
is not in the intersection between TestI and the prediction of conflict risk might applies
as well. Finally, the tests might not sufficiently cover the tasks. As a consequence, TestI
might not contain all relevant files for a given task. For instance, both tasks changed the
file app/controllers/choices_controller.rb without conflict, and such a file is not part of
the intersection between TestI. All these possibilities motivate our evaluation study about
the viability to use TestI as a predictor of conflict risk between programming tasks.

4.2 RESEARCH QUESTIONS

To evaluate whether TestI helps to predict the risk of a merge conflict when integrating
the code produced by two programming tasks, we conduct an empirical study, answering
some research questions.

68

First, given that TestI approximates the tasks’ changed files set, we investigate whether
the intersection between TestI interfaces points out that the tasks related to them might
cause a merge conflict. So, we ask the following question.

Research Question 1 (RQ1): Are tasks with non-disjoint TestI interfaces associated
with higher merge conflict risk?

To answer this question, we collect pairs of tasks that could be possibly integrated
(merged). For each pair, we use TAITI to compute TestI for both tasks and check whether
the interfaces are disjoint. We assume there is conflict risk whenever the tasks in a pair
change files in common, that is, their set of changed files are not disjoint. Knowing, for a
number of task pairs, if the interfaces are disjoint and if there is conflict risk, we use a
logistic regression model for assessing the association between the two variables: conflict
risk (the dependent and binary variable) and non-disjoint TestI (the independent and
binary variable).

We know a conflict only occurs when the tasks change the same hunk of a file, indeed.
Even so, the prediction of conflict risk between tasks might help developers to coordinate
the tasks better, avoiding the risk when possible, or at least mitigating potential adverse
effects.

Although the answer to RQ1 allows us to verify whether the intersection between TestI
relates to the potential occurrence of merge conflicts, it does not allow us to assess the
frequency in which the predictions of conflict risk apply. So, we ask the following question
to evaluate the effectiveness of TestI as a predictor of conflict risk between programming
tasks.

Research Question 2 (RQ2): How often does TestI predict conflict risk between two
tasks?

For answering this question, we evaluate precision and recall measures for predictions
based on TestI. In this context, the precision is the proportion of predictions that truly
applies: the ratio between the number of results that both the tasks’ changed files set and
TestI of two tasks intersect (true positives), and the number of results that TestI of two
tasks intersect (true positives and false positives). The recall is the proportion of conflict
risk that TestI predicts. That is, the ratio between the number of results that both the
tasks’ changed files set and TestI of two tasks intersect (true positives) and the number of
results whose tasks’ changed files set intersect (true positives and false negatives).

In the context of conflict risk, recall is more relevant than precision. A lower recall means
unexpected conflicts might happen, and the development team might not be prepared to
deal with it. In contrast, a lower precision discourages (but not prevents) parallel execution
of tasks that would not conflict. Complementarily, we evaluate 𝐹2, a variation of F-measure
that weights recall higher than precision.

69

Next, if there is conflict risk between all new tasks and the ones under development,
we desire to provide criteria for developers to compare the conflict risk between task pairs
and choose a new task to work on that has the smallest chance of conflict occurrence with
others. So, we ask the following question.

Research Question 3 (RQ3): Is the size of the intersection between two TestI inter-
faces proportional to the number of files changed in common by the corresponding
tasks?

To answer RQ3, we investigate whether there is a correlation between the number of
files simultaneously changed by both tasks and the size of the intersection between TestI.
An affirmative answer suggests that it is possible to reduce the conflict likelihood if a task
coordination solution prioritizes a task choice that minimizes the intersection between
TestI.

The questions so far assess the potential of TestI for predicting conflict risk between
tasks. But to better assess its performance, we compare it with a predictor based on task
interfaces obtained by observing textual similarity of test specifications with past tasks,
which we call as TextI. We design TextI based on Hipikat (CUBRANIC et al., 2005), a tool
that predicts artifacts related to tasks by investigating the past. Ideally, we would compare
TAITI and Hipikat, but they require different inputs. Indeed, a previous evaluation
study (ROCHA; BORBA; SANTOS, 2019) shows that TextI is more precise than TestI when
predicting the changed files by a given task. Thus, we compare the ability of these interfaces
to predict the risk of merge conflicts, according to the following question.

Research Question 4 (RQ4): Is TestI a better predictor of conflict risk than TextI?

We answer that by checking whether TestI has better precision, recall, and 𝐹2 measures
than TextI. As a prerequisite, we verify the intersection between TextI relates to the
potential occurrence of merge conflicts by using a logistic regression model, like RQ1. This
time, the two binary variables are conflict risk (the dependent variable) and non-disjoint
TextI (the independent variable).

The TextI of a task t is the intersection between the set of files changed4 by the
three past tasks with the most similar test specifications to t. The similarity between test
specifications is the cosine similarity between vectors of TF-IDF values (SALTON; MCGILL,
1986). As part of the process of computing similarity, we preprocess the test specifications
by tokenizing the text using spaces and punctuation, stemming it, and eliminating English
and Gherkin keywords, such as Given, When and Then.
4 The previous evaluation study limited such a set to application files reachable by TestI. Here we

investigate the original set of changed files as well as the limited set, as discussed in Section 4.4.4.

70

4.3 STUDY SETUP

For answering the presented research questions, we analyze several task pairs. In this
section, we describe how we construct a task sample and collect data.

4.3.1 Initial project selection

Given that TAITI is specific for Rails projects that use Cucumber for specifying
acceptance tests, we use a script5 to mine GitHub repositories looking for projects that
satisfy these requirements. Basically, the script queries Ruby projects, downloads the
latest version of each project, and based on the gemfile content (a file that lists all project
dependencies), verifies whether the project uses libraries related to Rails and Cucumber.
We restrict the search by avoiding projects created earlier than 2010, as Cucumber and
BDD were less popular before that, and TAITI might not be compatible with older
versions of Ruby and Rails.

Hoping to find a significant number of projects, we perform the search in three steps,
changing other parameters. First, aiming to find the most active projects, we sort results
by the date of the last update. Second, aiming to find projects with a significant test
dataset, we select the Ruby projects referenced by Cucumber’s site6. Third, aiming to find
popular projects, we limited the project’s maximum number of stars, starting with 15,000
and going up to 50, and sorted results by descending order of stars number. In the end, we
find 1,164 Rails projects (461 projects in the first step, 26 projects in the second step, and
898 projects in the third step), but only 80 projects use Cucumber. Finally, we discard
one project because it is a fork of another project in the sample, resulting in 79 projects.

4.3.2 Task extraction and further project selection

From the 79 selected projects, we try to extract tasks with associated Cucumber tests7.
We consider a task consists of the commit set between a merge commit and the common
ancestor with the other contribution the merge integrates. This way, we clone each project
and search for merge commits performed until June 2019, excluding fast-forwarding merges.
From each merge commit, we try to extract two tasks (which we call as “merge tasks”).
During such a process, we discard tasks that contain intermediate merges as a strategy to
construct an independent sample. Also, sometimes there are successive merge commits,
which disables task extraction. As a consequence, we do not always extract two tasks from
a merge commit.

Next, we discard tasks that do not contribute with both application code and Cucumber
tests, as we would have no evidence that they could have been developed accordingly
5 Available in our online Appendix (ROCHA; BORBA, 2020).
6 <https://cucumber.io/docs/community/projects-using-cucumber/>
7 By “cucumber test”, we mean a scenario and its step definitions.

https://cucumber.io/docs/community/projects-using-cucumber/

71

to BDD practices. We call the resultant task set as “candidate tasks”. Then, we discard
redundant tasks that accumulate the contributions of previously concluded tasks; specifi-
cally, tasks whose commit set is a subset of other tasks. Now we get a task set we call
“independent tasks”.

Finally, given we deal with task pairs to answer the research questions, we filter out
projects with less than two tasks. After task extraction, we remain with 40 projects that
have at least two tasks that satisfy our requirements, and a set of 4,222 tasks. Among
the 39 discarded projects, 11 projects do not have tasks extracted from merge commits: 4
projects only have fast-forwarding merges, and 7 projects have no merge commits because
they have only one active contributor per time. Also, 24 projects do not have tasks that
contribute with both application code and Cucumber tests (there are no tests related to
the task, or they were added to the project by different merge commits). And four projects
have less than two eligible tasks.

4.3.3 Collecting task data

Finally, we collect the set of changed files, the TestI, and the TextI of each task. The
set of changed files by a task is the union of the files modified by its commits. We use
TAITI for computing TestI (as described in Section 4.1). As part of this process, TAITI
collects the tests of each task by further analyzing the task commits using a syntactic
differencing strategy for Cucumber tests. TAITI compares each commit with its parent,
identifying changed Cucumber scenarios and step definitions. For avoiding inconsistencies,
such as the case a commit deletes a Cucumber test created by a previous commit, TAITI
consolidates the result by selecting the ultimate version of the Cucumber test (i.e., the
version from the last commit).

We need tasks for which we can compute TestI. Thus, while collecting task data, we
discard tasks with no implemented Cucumber tests, or partially implemented ones (not
all step definitions related to a scenario are implemented), as well as tasks with step
definitions that TAITI can not parse. We also discard tasks whose TestI is empty, as this
is often associated with TAITI limitations or limited test coverage, delimiting a set of
“relevant tasks”. Given we deal with task pairs to answer the research questions, we filter
out projects with less than two relevant tasks. As a result, we get a sample of 1,762 tasks
from 27 projects, which represents 41.7% of the tasks extracted from the initial set of 4,222
tasks. Among the exclusion criteria we adopted, the last one, the ability to successfully
compute a non-empty TestI, is the most restrictive.

Next, for answering RQ4, we try to compute a non-empty TextI for the 1,762 relevant
tasks. Given TextI depends on the project history, we cannot find three similar past tasks
(as explained in Section 4.2) for 36 tasks8. Also, there is no intersection between the
changed files set of the three most similar past tasks for 665 tasks. Given that we also
8 Note that every project has at least one oldest task, for which there are no similar past tasks.

72

filter out projects with less than two tasks with non-empty TextI, we get a preliminary
sample of 1,057 tasks from 22 projects after computing TextI.

At last, we simulate the integration of likely concurrent tasks. Thus, we compute all
task pairs per project by grouping tasks that were concluded with no more than one month
of difference. This way, we might group tasks extracted from different merge commits. We
filter out projects with no task pair (3 projects). In the end, we get a final sample of 990
tasks from 19 Rails projects and a set of 6,360 task pairs.

4.3.4 Task pair sample

Table 12 summarizes the steps for constructing our task sample, but just for the final
project set. As previously explained, “Merge tasks” is the number of tasks extracted
from merge commits that do not contain intermediate merges. “Candidate tasks” is the
number of merge tasks that contribute with both application code and Cucumber tests.
“Independent tasks” is the number of candidate tasks that are not a subtask of other
tasks, i.e., tasks whose commit set is not a subset of other tasks. We compute TestI for all
independent tasks. “Relevant tasks” is the number of independent tasks for which we can
successfully compute a non-empty TestI. “TextI ” is the number of relevant tasks that have
a non-empty TextI. At last, “Concurrent tasks” is the number of non-empty TextI tasks
that have at least one other task that is less than one month apart, which we classify as
possible concurrent tasks, and “Pairs” is the number of integrations per project. This way,
the number of pairs varies among projects. For example, project diaspora/diaspora has 92
concurrent tasks and 296 pairs, whereas project rapidftr/RapidFTR has 112 concurrent
tasks and 592 pairs. Such a difference relates to the time interval between tasks. The
second project has more likely concurrent tasks than the first.

Note that although the overall process for constructing the task sample is similar to
the one from our first empirical study, their selection and exclusion criteria are different,
resulting in the selection of distinct task sets that have only one task in common.

While constructing our task sample, we do not systematically target representativeness
and diversity (NAGAPPAN; ZIMMERMANN; BIRD, 2013). Even so, we observe some variety
concerning the attributes in Table 13,9 which presents six projects from our sample. Note
that we collected these attributes from the project perspective in October 2019, but these
might not apply during the time the developers concluded the tasks of our sample. Two
projects have no stars, and one project has three collaborators, but they are not toy
systems (a system with no practical usage that someone creates for study purpose). Also,
two projects do no have Cucumber tests, which means they gave up using Cucumber. This
phenomenon does not compromise our results because the projects used Cucumber during
the time the extracted tasks were concluded. All data related to our sample is available in
the online Appendix (ROCHA; BORBA, 2020).
9 Our online Appendix presents the complete table, characterizing the 19 projects of our sample.

73

Table 12 – Construction of the task pair sample.

GitHub Repository Name #Tasks
Merge Candidate Independent Relevant TextI Concurrent Pairs

allourideas.org 188 30 30 26 21 13 41
e-petitions 446 136 136 99 71 64 1,140
whitehall 4,525 368 365 291 161 157 781
bsmi 254 52 51 9 3 3 3
enroll 6,079 202 188 29 20 20 82
diaspora 4,347 284 274 161 100 92 296
action-center-platform 247 32 32 25 18 17 38
gitlabhq 29,147 504 500 6 5 5 10
wontomedia 63 10 8 7 2 2 1
jekyll 2,403 135 134 88 64 55 88
Claim-for-Crown-Court-Defence 2,164 301 298 214 161 160 2,294
one-click-orgs 336 39 32 31 28 20 46
opengovernment 632 3 3 3 2 2 1
openproject 9,565 418 409 25 10 9 12
otwarchive 2,625 496 483 365 141 138 495
RapidFTR 1,280 203 198 149 112 112 592
quantified 233 19 18 9 5 4 2
sequencescape 2,221 436 411 13 6 6 7
sharetribe 3,034 330 322 183 121 111 431
TOTAL 69,789 3,998 3,892 1,733 1,051 990 6,360

Table 13 – Diversity of projects in our task pair sample.

Repository Name Description #Stars #LOC #Tests #Commits #Authors

allourideas.org A tool for groups to collect
and priorize information.

134 56,884 126 2,372 20

whitehall A content management app
for the UK Government.

549 217,235 263 23,435 336

diaspora A privacy-aware, dis-
tributed, open source social
network.

12,296 195,654 277 19,915 585

gitlabhq A DevOps platform. 22,020 2,346,933 0 149,603 3,282
jekyll A simple, blog-aware, static

site generator.
38,807 59,733 259 11,093 1,063

RapidFTR An app for sharing info
about children in emergen-
cies.

287 98,820 274 4,939 252

74

4.4 RESULTS

In this section, we present the results of our retrospective study based on the develop-
ment history of a set of completed tasks, following the structure defined by our research
questions. Our Appendix (ROCHA; BORBA, 2020) provides detailed information.

4.4.1 RQ1: Are tasks with non-disjoint TestI interfaces associated with higher
merge conflict risk?

Tasks with non-disjoint TestI interfaces are more likely to have modified files in
common

Tasks with non-disjoint TestI interfaces are 2.07 times (the odds ratio of the logistic
regression, as explained in Section 4.2) more likely to change at least one file in common.
This finding corroborates the idea of using TestI to assess conflict risk between programming
tasks in the context of BDD projects, as detailed explained in Section 4.1.

Because TestI only contains some specific types of application files (i.e., Ruby files,
.html files, and its variants, such as .haml and .erb files), we wonder if TestI performs
better when predicting merge conflict risk exclusively in files reachable from TestI. So, we
repeat the same kind of analysis as before, but we filter the task’s changed files set by
excluding configuration files, test files, and any other programming files such as JavaScript
files10. This time, we find that when the TestI interface of two tasks intersects, the tasks
are 2.95 times more likely to change a common file reachable by TestI. As expected, we
obtain a higher odds ratio by reducing false negatives in this case, because the restricted
set of changed files by a task probably relates more to the task purpose, which is better
predicted by TestI. For example, we have disjoint TestI pairs when two tasks only make
parallel changes in a configuration file, which has a general purpose in the project, given
configuration files are not part of TestI. Thus, by restricting the tasks’ changed files set,
we eliminate such a fail.

4.4.2 RQ2: How often does TestI predict conflict risk between two tasks?

A minimal intersection between TestI is the best predictor of conflict risk between
tasks

For answering RQ2, we evaluate precision, recall, and 𝐹2 measures for predictions based
on TestI intersection for 6,360 task pairs. To explore how TestI intersection size affects
prediction performance, we consider five predictors, varying the minimum intersection
size from 1 to 5. That is, we predict conflict risk between a given task pair when the
size of the intersection between their TestI is at least n, ranging from 1 to 5. Table 14
10 In other words, we restrict the set of changed files by a task to Ruby and .html files (and common

variations) into app or lib folders.

75

summarizes the results. We experimentally delimit this small value range according to
the size of the intersection between TestI when there is a conflict risk and to the quality
of prediction results. First, we observe that 3,712 integrations are potentially conflicting
(58.4%). Such a number seems incompatible with other results about the frequency of
conflict occurrence presented in Section 2.2.1, which is near to 10% of all merges per
project, but it is important to note that it just refers to potential conflicts. Also, almost
half of the potential conflicting integrations (49%) have up to 10 files in the intersection
between TestI. So, we compute precision and recall by using an intersection limit ranging
from 1 to 10, but we observe a substantial reduction in results quality (mainly in the recall
measure) when such a limit is bigger than 5. As in Section 4.4.1, we also investigate the
alternative result that restricts a task’s changed files set by excluding files not reachable
by TestI.

Table 14 – Precison and recall measures of the TestI intersection predictor. “All files” is
the result when considering all files changed by tasks, and “Files reachable
from TestI ” is the result when restricting a task’s changed files set by excluding
files not reachable by TestI.

min
intersection

size

Risky pairs
(%)

All files Files reachable
from TestI

Precision Recall 𝐹2 Precision Recall 𝐹2

1 96.70 0.59 0.98 0.86 0.37 0.98 0.74
2 92.41 0.60 0.95 0.85 0.38 0.95 0.73
3 88.07 0.60 0.91 0.83 0.38 0.92 0.71
4 78.90 0.62 0.84 0.78 0.39 0.85 0.69
5 71.07 0.63 0.77 0.74 0.40 0.78 0.66

According to Table 14, we find that a minimal intersection between TestI (1 file) is the
best predictor of conflict risk, and especially when we do not restrict the task’s changed
files set, contrasting our expectation that such a strategy might benefit the results by
reducing false negatives (FN). We can also observe that there is a subtle variation11 in
precision when we change the value of the minimal intersection size. The reason is when
we increase the value of the minimal intersection, the false negatives also increase, whereas
both the true positives (TP) and the false positives (FP) might decrease. The final balance
impacts more in recall than precision because the first depends on TP and FN (which
inversely vary according to different rates), whereas the second depends on TP and FP
(which decrease). For example, when the minimum intersection size is 4, there is 3,106 TP,
1,912 FP, and 606 FN. When the minimum intersection size is 5, there is 2,855 TP, 1,665
FP, and 857 FN.
11 For simplicity, we round the values, but they are not identical.

76

Next, we find that recall outperforms precision in the overall result with a significant
advantage. By considering a reduced minimal intersection size as one file, for example,
we find the intersection between TestI points out conflict risk for 96.7% task pairs of
our sample (the percentage of the predicted positive condition rate presented by column
“Risky pairs” in Table 14). However, only 58.4% of them are risky in practice (the tasks
did change at least one file in common). In this sense, there is much FP and few FN,
which benefits recall and prejudice precision. This way, by also comparing the predicted
positive condition rate, someone might consider the predictor with minimum intersection
size of 4 files a better option, as it points out conflict risk for 79% task pairs and presents
acceptable values of precision, recall, and 𝐹2.

We wonder much of the intersection between TestI might be from files exercised by the
test precondition (Given steps of Cucumber scenarios). Given different tests require similar
setup, such as user authentication, they might not be relevant to most tasks, motivating
the design of an alternative TestI that discards application files accessed by Given steps, as
suggested by the previous study. On the other hand, the coding style varies among projects,
and maybe it is necessary to verify the particularity of each project to design a refined
solution to prioritize files to be included in TestI. Also, as already exposed, by adopting a
mostly conservative solution based on static code analysis and naming conventions, TAITI
might inflate TestI. For example, Cucumber tests usually use a method to decide the view
to access by using a decision structure based on some argument. When TAITI cannot
identify the specific accessed view, it captures all possible ones.

Finally, Table 14 also shows that precision severely reduces, and recall slightly improves
when we restrict predictions to consider only files reachable from TestI, whether we compare
results to those applied to all files. This time, we observed that 1,396 potential conflicting
integrations (37.6% of all risky integrations) only affect files that are not reachable by
TestI, decreasing TP, and increasing FP. Such a phenomenon affects precision. On the
other hand, proportionally, we observed a reduction of FN, which promotes recall.

The intersection between TestI is a viable predictor of conflict risk between tasks,
even when it does not predict the potential conflicting files

So far we discuss the prediction of conflict risk among tasks by abstracting the location
of such a risk. To better evaluate our predictions, we investigate the frequency that we
guess the conflicting files, that is, the files more vulnerable to conflicts because tasks
concurrently changed them. So, we observe that 58.4% of the integrations in our sample
have the risk of a merge conflict, i.e., the tasks change at least one file in common. For
35.8% of the risky integrations (which represents 20.9% of all integrations), the intersection
between TestI predicts some potential conflicting file. Whether we consider files genuinely
reachable by TestI, 36.4% of the integrations are risky. And as expected (the number of
right predictions does not change), the accuracy is higher in such a case: the intersection

77

between TestI predicts some potential conflicting file in 57.4% of the risky integrations.
Given that TAITI does not analyze other application files than views, TestI reaches

only the surface of the code that could be exercised by the tests, and, as a consequence,
potential conflicting files are not covered. By manually inspecting some task pairs, we
also find that in some cases, TestI cannot guess the potential conflicting files because
there is no clear relationship between them and the tasks, which suggests the tasks are
not cohesive. In other cases, the potential conflicting file has an implicit relationship with
other files in TestI that is defined by Rails, which is not reachable by the tests. Also,
other limitations of TAITI might prevent the inclusion of the potential conflicting file
in TestI. For example, its routing mechanism wrongly translates a URL into application
files, impairing the identification of some files, or the tests adopt a deprecated syntax that
TAITI does not support, limiting the analysis of the full test code.

By relating all observations so far, we conclude that even when developers do not
change the files included in TestI, the intersection between TestI might reflect a degree
of proximity between the parts of the code modified by both tasks, eventually leading to
conflicts, even in files not directly reached by the interfaces. Therefore, even when TestI
does not predict the potential conflicting files, it might predict the risk of conflicts.

4.4.3 RQ3: Is the size of the intersection between two TestI interfaces proportional
to the number of files changed in common by the corresponding tasks?

The larger the intersection between TestI, the higher the risk of merge conflict
between tasks

Given that our data deviates from normality, we answer RQ3 by computing the
Spearman’s rank correlation coefficient with 𝛼 = 0.05 and the Cohen’s assignment of effect
size’s relative strength (small = 0.10, medium = 0.30, and large = 0.50).

We find the larger the size of the intersection between TestI, the larger the number of
files that are changed by both tasks, but the correlation is small (𝑝 < 0.001 and 𝜌 = 0.21).
The same applies when dealing only with files reachable by TestI too, with 𝜌 = 0.15. Given
that developers might not change all files into TestI, we cannot expect a large correlation.

In practice, this result suggests that developers can decrease the probability of merge
conflicts by prioritizing tasks based on the size of the intersection among test-based task
interfaces. It is preferable to concurrently develop tasks whose TestI interfaces have smaller
intersection sizes, as they likely change fewer files in common. In such a context, we
consider a dynamic schedule dependent on the selection of the next task to perform by
each developer. As illustrated in Section 4.1, Andrew and Becca could prevent conflicts by
selecting a task whose TestI has a smaller intersection with the TestI of tasks 𝑇175 or 𝑇176.

78

4.4.4 RQ4: Is TestI a better predictor of conflict risk than TextI?

Tasks with non-disjoint TextI interfaces more likely change a common file

When the TextI interfaces of two tasks intersect, the tasks are 3.20 times (the odds
ratio of the logistic regression, as explained in Section 4.2) more likely to change a file in
common. Such a result seems better than the TestI result (odds ratio of 2.07) because the
odds ratio is higher and the deviance12 is lower, but logistic regression focus on TP and a
complete comparison depends on precision, recall, and 𝐹2. In the case of files reachable
by TestI, the likelihood is 2.25, a smaller value, contrasting the TestI result. Such a
phenomenon means many potential conflicting files according to TextI cannot be part of
TestI. The overall favorable result aligns with the fact that TextI is more precise than
TestI, and also motivates further investigation about its predictive ability.

TextI is a more precise and less complete predictor of conflict risk than TestI

Table 15 summarizes the evaluation results of TextI. We show only minimum intersection
sizes 1 and 2 because the recall is insignificant for larger values. Although we expect a
better precision, we can observe that the improvement in precision is expressive, but the
recall is severely affected, worsen 𝐹2 as well. In practice, if a file relates to the most similar
past tasks, given the file was modified by all of them, such a file has more chance to indeed
relates to the new task as well. Then, whether most files in TestI truly relates to the
tasks, disjoint TextI interfaces have more chance to be a TP of conflict risk. This way,
the number of FP decreases. However, given that recall is more relevant than precision
in the context of conflict prevention, such a result discourages the usage of TextI as a
predictor of conflict risk between programming tasks. Besides, the cost for computing
TextI is superior to the cost for computing TestI, given it relies on text processing.

Table 15 – Precison and recall measures of TextI intersection predictor. “All files” is the
result when considering all files changed by tasks, and “Files reachable from
TestI ” is the result when restricting a task’s changed files set by excluding files
not reachable by TestI.

min
intersection

size

Risky pairs
(%)

All files Files reachable
from TestI

Precision Recall 𝐹2 Precision Recall 𝐹2

1 35.82 0.75 0.46 0.50 0.49 0.48 0.48
2 14.72 0.81 0.20 0.24 0.56 0.23 0.26

Finally, a previous study (ROCHA; BORBA; SANTOS, 2019) suggests that the files in the
intersection between TestI and TextI are more vulnerable to change and, as a consequence,
to lead to conflicts. Thus, we also evaluate a hybrid task interface based on the intersection
12 As a matter of brevity, we present detailed results in our online Appendix.

79

between TestI and TextI. The hybrid task interface further improves precision (0.86)
and worsen recall (0.14) and 𝐹2 (0.17). The explanation is similar to the TextI results.
The intersection between TestI and TextI is less probable and probably filters out files
wrongly included in TestI by some noise from TAITI. So, FP further decreases, benefiting
precision. However, most potential conflicting files are not covered, increasing FN, and
compromising recall.

4.4.5 Other results

TestI cannot predict conflict risk in MVC segments

According to Rocha, Borba e Santos (2019), when dealing with an MVC-like application
(e.g., web applications developed in Rails), TestI performs better when predicting changes
in controller files. As controllers uniquely identify an MVC segment (related model, view,
controller, and auxiliary files), one could also use TestI to predict changes in segments.
When a controller appears in TestI, the task quite often changes at least one file from the
associated segment (ROCHA; BORBA; SANTOS, 2019). Therefore, it would be interesting
to investigate whether tasks with common controllers in their TestI are associated with
higher chances of merge conflict risk in these controllers segments.

This way, for each task pair in our sample, we use TAITI to compute TestI for both
tasks and check whether the interfaces have some controller file in common. In case it
contains, we check if the tasks’ changed files set intersect with any file from the MVC
segment identified by the common controller. Like answering RQ1, we use a logistic
regression model for assessing the association between two binary variables. This time, the
dependent variable tells whether there is any controller file in the intersection between TestI
and the independent variable informs whether both tasks change the segment identified
by the intersected controllers in TestI.

By investigating our sample, we observe that 73% of the task pairs have some controller
file in the intersection between the TestI of the integrated tasks. From this subset, the
tasks from 26% integrations (19% of all integrations) change at least one file in common
from some segment identified by the intersected controllers in TestI. But we do not find a
statistical correlation providing evidence that controllers in TestI are predictors of conflict
risk in their associated MVC segments. Thus, recommending developers to avoid the
concurrent execution of tasks that focus on the controller of the same segments might be
much restrictive.

TestI similarity is not often associated with higher conflict risk

Besides studying the relation of TestI intersection with conflict risk, we explored
whether TestI similarity relates to higher conflict risk, wondering it might be an alternative
predictor. So we computed TestI similarity by using the cosine similarity between vectors

80

of TF-IDF values (SALTON; MCGILL, 1986), in which the similarity is in the scale [0,1],
zero meaning no similarity and one, maximum similarity. Then, we confirm there is a
relation between TestI similarity and conflict risk by using a logistic regression model,
similarly to RQ1. The results of precision and recall measures are very similar to the ones
from the predictor based on TestI intersection, but the second is slightly better.

By further investigating the results, we realize that the proportion between equalities
and differences, which impacts on the similarity measure, is not significant for our context.
It does not matter how different are two TestI interfaces; if they have common files, there
is a risk of conflict risk. For example, the similarity between TestI of two task pairs from
project alphagov/whitehall is 0.86 and 0.95, respectively. The task pair with lower similarity
changed 34 files in common, and the other task pair, 2 files, meaning the conflict risk is
higher for the first task pair, contradicting the conclusion of the similarity rate. However,
confirming the conflict risk, the intersection between TestI of the task pair with lower
similarity has 58 files, whereas the other task pair has 27 files.

4.5 IMPLICATIONS

Prioritizing tasks based on TestI

Based on test-based task interfaces, we propose that, whenever possible, developers
might dynamically schedule programming tasks to prevent conflicts, as Figure 23 illustrates.
First, the development team plans the next iteration by selecting user stories of the
product backlog, deriving programming tasks. The planning depends on factors like project
restrictions concerned with time and resources, stakeholders’ priority, task complexity, and
developer skills. In such a process, the team projects the Cucumber tests that validate each
task by writing features, scenarios, and step definitions. As expected, the tests initially
fail because the application code is not complete. When dealing with new functionality
that requires code creation, the developers must create empty declarations of the referred
elements by the tests as well. It is necessary to enable the prediction of application files
related to the task. For example, in our motivating example, both tasks 𝑇175 and 𝑇176 change
the body of the results method in the file app/controllers/questions_controller.rb (Figure
21b). Because the file and the results method already exists, there is no need to create
empty declarations. But let us imagine that the file app/controllers/questions_controller.rb
does not exist when developers begin the execution of tasks 𝑇175 and 𝑇176. How can the
test code reach such a file? In this case, developers should create the file in their workspace
and declare the results method with an empty body. In the future, to conclude the task,
developers should update the body of such a method. In the end of the iteration planning,
the team must update the central repository to publish the projected tests, given the
analysis of conflict risk depends on them.

Next, in his workspace, when selecting a task to perform, each developer should require

81

Figure 23 – Prioritizing tasks based on TestI.

the conflict risk analysis based on TestI by using TAITI. TAITI receives as input the
tests of the task a developer intends to work on and the tests of the ongoing tasks being
executed by other developers. Tasks with overlapping interfaces, whose TestI intersects, are
likely to change some file in common, increasing the conflict risk. This way, we hypothesize
that tasks with less overlapping interfaces, when executed concurrently with the ongoing
tasks, would be less likely to lead to conflicting code changes. The conflict risk of a new
task is the sum of the size of its intersection values related to each ongoing tasks.

Finally, the developer decides about the task he will perform next based on the conflict
risk with other tasks. In case it is not possible to avoid the concurrent development of
the potential conflicting tasks, the knowledge about the conflict risk might support the
developers to better deal with the situation by coordinating the test coverage planning or
improving communication among team members.

To our proposal effectively works, the team must use a task management system,
such as Pivotal Tracker13, which integrates with a development platform such as GitHub,
facilitating the verification of tasks’ status and the connection among tests and tasks. Also,
we should integrate TAITI with the development environment and the task management
system.

Prioritizing tasks in a centralized management context

The whole idea of prioritizing tasks based on test-based task interfaces fits better on a
BDD context, which presupposes agile teams that are self-managed by definition. However,
a team that projects acceptance tests before application code can use our strategy as
13 https://www.pivotaltracker.com/

82

well, even in the case that a project manager designates tasks to developers. The critical
question now is that the project manager will be responsible for the iteration execution (see
Figure 23), dynamically deciding the next task of each developer. Considering the decision
process is supported by a tool, there is no overhead. The issue is that task allocation
would not happen during the iteration planning, which is the standard practice in the
context of centralized management. On the other hand, the project manager will control
parallelism during software development, increasing or decreasing it when possible for
avoiding conflicts, by indicating the next task a developer will perform and when he can
do it.

Integrating tools that support software development

Continuous integration is a software development practice where developers integrate
their work frequently, supported by automatic merge, build and test tools to detect
integration errors as quickly as possible. Given its popularity in agile teams nowadays, when
proposing the adoption of a new practice and tool for supporting software development, it
is necessary to provide directions about how to fit the continuous integration dynamic.

As Figure 23 indicates, the development team should publish the tests (features,
scenarios, and step definitions) related to the tasks planned for the next iteration, by
open pull requests, which embraces one or more local commits. Then, the continuous
integration dynamic proceeds by automatically evaluating the open pull requests. Initially,
they will not pass because the tests fail, even if there is no syntactic or build error, as
the application code is not complete. Nevertheless, the team should approve these pull
requests, because it is necessary to provide visibility of the tests. From this point, the
continuous integration dynamics should proceed as usual, and the team should only accept
correct pull requests. The developers should locally use TAITI for selecting the next task
to perform, considering the conflict risk among tasks. Alternatively, the project manager
might designate tasks to developers as well.

Influencing factors

In our first empirical study, we collect evidence that the better the test coverage of a
task, the better the TestI predictive power. Thus, whenever the whole project has adequate
test coverage, developers can have more confidence in the conflict risk results: If TestI
approximates the changed files, the intersection between TestI better approximates the
concurrently changed files, which are more vulnerable to merge conflicts. Besides, our
strategy applies for projects with many collaborators, for which we can expect much
parallel work. Projects with geographically distributed collaborators might benefit as
well, given the communication among team members is more complicated, impairing task
management. In other scenarios, the teams might expect the occurrence of a few conflicts,
leading someone to ponder about the overhead to implant a strategy for avoiding conflicts.

83

Precision versus recall

Previously we stated that when dealing with the prediction of conflict risk, recall is
more relevant than precision. A lower recall rate implies a higher number of unexpected
conflicts, and we wonder that such a surprise might compromise developers’ productivity.
The absence of risk alerts might lead to a false security sensation, making developers
neglect communication needs and testing practices as strategies to mitigate integration
problems. In turn, a lower precision discourages parallel execution of tasks that would not
conflict. Given that an erroneous risk alert does not prevent task execution, we understand
that developers might prioritize tasks according to the conflict risk rate concerning the
other current tasks, favoring lower rates. This way, the risk rate of a task has a meaning
only when compared with others.

On the other hand, a higher precision rate might motivate development teams to adopt
a strategy for avoiding conflicts. In general, developers desire minimal intervention as
possible during task execution. In this sense, they might perceive excessive alert of conflict
risk (false positives) as unuseful. Also, knowing that some conflicts are inevitable because
of stakeholders’ priority and other factors, developers might prefer to adopt strategies only
to avoid the most probable conflicts (true positives).

This way, we conclude that a promising solution is to provide a configurable predictor
of conflict risk based on test-based task interfaces. Thus, each team might define a minimal
intersection limit between TestI (see Table 14), enabling an optimistic (emphasis on
precision) or pessimist strategy (emphasis on recall).

4.6 THREATS TO VALIDITY

In this section, we explain potential threats to the validity of our empirical study.

4.6.1 Construct validity

We assume that merged contributions correspond to programming tasks as defined by
a BDD team, which might not always apply. An alternative solution would be to delimit
a programming task as a set of commits whose messages refer to the same task id or
consider each pull request as a task. Still, most projects do not systematically refer to
task ids in commit messages or use pull requests to integrate contributions. Also, many
projects use Cucumber as a test tool and do not adopt BDD. Even so, in the context of
retrospective analysis, dealing with completed tasks, the fact that the developers write
tests after concluding the application code does not compromise our conclusions.

Finally, we did not verify the occurrence of merge conflicts but only the risk of conflict
based on the intersection between tasks’ changed files set, given that a merge conflict might
only happen whether the developers change the same file. As previously explained, we
did not find a substantial number of merge conflicts to reproduce, given the requirements

84

to construct our task sample (Section 4.3). Thus, we simulate the integration of possible
concurrent tasks, i.e., tasks that were concluded with no more than one month of difference.
However, as TestI does not inform the methods or lines that will be changed in its files, in
practice, it only can alert developers about potential conflicts. In this sense, our evaluation
study aligns with the real usage context of TestI. Complementary, we would better restrict
our sample of possible concurrent tasks based on the tasks’ init date and its duration.
Alternatively, we would verify if possible concurrent tasks change or add files in a common
date, reinforcing the construction of a realistic sample of parallel tasks. For simplicity, we
adopted a more straightforward solution. Even so, we can expect that most task pairs
satisfy the condition of making parallel changes.

In the ideal situation, we would have a task database that informs the task objective,
the source files that contain the task implementation, the set of Cucumber tests that
validate the task behavior, and if the task caused a merge conflict when integrated into
the project. In the absence of such a database, we make approximations to evaluate the
potential of test-based task interfaces for supporting developers to avoid conflicts.

4.6.2 Internal validity

On the one hand, by adopting a lightweight and mostly conservative solution that
relies on static code analysis and naming conventions, TAITI might inflate TestI. Also,
by considering all changes in a contribution, although some of them might be reverted,
we might further inflate TestI and the set of changed files by a task. Tangled contribu-
tions (DIAS et al., 2015) that include non-task-related changes might inflate TestI as well.
Given that tangled contributions are frequent in practice, such a limitation might turn
our definition of programming task more realistic.

On the other hand, given that TAITI does not analyze other application files than
views, among other design limitations, it might omit important files from TestI. This
way, TAITI performs like we are dealing with a new project, and almost there is no
code to support tasks, which might not be true. Also, TAITI does not deal with all
possible Cucumber’s syntax for identifying or reusing a step definition. Thus, we might
have discarded consistent tasks from our sample because we wrongly consider they have
undefined step definitions (i.e., partially implemented tests), or we might miss part of
the tests related to a given task. Besides, we assume the Cucumber tests that are part
of a contribution validate the expected behavior of the supposed task. However, in the
case of bug fix or refactorings, for instance, it is possible that tests previously developed
also validate the contribution, which means that we might ignore relevant tests when
computing TestI.

When dealing with conflict risk, we check whether the tasks changed any file in common
by ignoring file renaming. As a consequence, we might miss some intersections between
the tasks’ changed files set, which impacts on the quality of our predictions. Given that we

85

do not integrate tasks by Git, we cannot reuse its mechanism for detecting file renames.
Also, we do not adequately deal with file remotion. In practice, a merge conflict happens
whether a task removes a file that is changed by another task. Thus, in such a situation,
we registry there is a conflict risk. However, TestI does not predict file remotion, which
might inflate the false negatives, reducing the quality of our predictions. In turn, hoping
to conduct a fair evaluation, we discarded tasks with empty TestI, given an empty TestI
does not intersect with others, which might artificially improve predictions.

Finally, we might have missed integration scenarios during the construction of our task
sample, as the projects might use Git mechanisms such as rebase, squash, stash apply, and
cherry-pick, which rewrites project history. As a consequence, we might further restrict
our sample. The impact of an increased sample over our results is unpredictable. Even so,
we expect that we have lost a small number of tasks, given that the good practice is to
rebase locally only, and we extracted tasks from the master branch.

4.6.3 External validity

Our sample contains only GitHub Rails projects that use Cucumber because TAITI
requires it. Such a limitation prevents us from generalizing the results. Even so, we imagine
that it is possible to get more accurate test-based interfaces when dealing with statically
typed languages and more straightforward frameworks. As a consequence, predictions
related to the risk of merge conflicts might be more accurate as well. This way, we can see
our results as the worst reference of the true potential of TestI.

86

5 CONCLUSIONS

In this work, we investigate a strategy for inferring task interfaces based on acceptance
tests (TestI) and its usage for evaluating the risk of merge conflicts among programming
tasks, assuming the specific BDD context. By knowing such a risk, a developer might
wisely choose a task to work on in parallel with other ongoing tasks, reducing conflicts
occurrence. Ideally, there is always a no risky task choice, which means developers might
find a development path free of conflicts. However, in case all alternatives are risky,
developers might compare them and choose for the less risky, for which we believe the
integration effort is less too. Also, even when developers decide to execute a more risky
task due to a project restriction, the upfront knowledge about conflict likelihood might be
useful to coordinate test coverage planning to better check the risky code and to detect
communication needs among team members.

By providing a tool for computing TestI, TAITI, first we conducted a retrospective
analysis of Rails projects that confirmed TestI is a promising code change predictor and,
as a consequence, it has the potential for avoiding conflicts. In sum, TestI can predict as
many changes as random interfaces (RandomI). Nevertheless, TestI is always more precise
than RandomI. Compared to a kind of task interface based on past similar tasks (TextI),
TestI covers more code changes, although it is less precise.

Our results also confirm that, in order to be truly helpful, TestI requires a broad test
coverage per task. Besides, although the intrinsic limitations of a static code analysis do
not compromise TestI, they cause a little impact over recall, by affecting false positives
and false negatives. This finding means the potential of TestI is underestimated and a
more refined tool might benefit it. For example, by adopting a smarter static analysis with
type inference and by analyzing step definitions according to its execution sequence, as
well as by propagating data from one step to another, we might simulate test execution
faithfully.

The study also brought us insight into improving TestI and its usage, besides the
improvements in static analysis strategy. Concerning our tool, we might improve it to
analyze application files other than views (when possible). For now, TAITI acts like we
are dealing with a new project, and almost there is no code to support tasks, which is
the worst context for its usage. As a consequence, TestI reaches only the surface of the
code that could be exercised by the tests, impairing the prediction of changed methods
instead of changed files, which might derive more refined predictions of conflict risk. For
instance, let us suppose some tests explicitly calls the application methods 𝑚1 and 𝑚2,
which are declared into different files and internally call the application method 𝑚3. TAITI
ignores such internal calls when analyzing the tests. Then, when evaluating the conflict
risk between tasks 𝑡1 and 𝑡2, supposing that 𝑡1’tests calls 𝑚1 and 𝑡2’tests call 𝑚2, there is

87

no intersection among their TestI, alerting there is no conflict risk between these tasks.
However, there is a conflict risk if both tasks change 𝑚3, which TestI can not predict. On
the other hand, let us now suppose that 𝑚1 and 𝑚2 are declared into the same file. The
intersection among TestI would alert a conflict risk, but considering that 𝑚1 and 𝑚2 are
in different areas of the same file, if task 𝑡1 only changes 𝑚1 and task 𝑡2 only changes 𝑚2,
there is no conflict risk at all. We plan to fix such a limitation in the future, envisioning
to improve TestI predictions and conflict risk predictions as well. Besides, we might adopt
a hybrid approach for inferring TestI that uses static analysis when dealing with failing
tests and a dynamic strategy when dealing with running tests.

Regarding conflict avoidance, we conducted a second retrospective analysis of Rails
projects to evaluate predictions of merge conflict risk. Our results bring evidence that tasks
with non disjoint TestI interfaces more likely change a common file, which means they are
more likely to cause a merge conflict. Also, the larger the intersection between TestI, the
higher the risk of a merge conflict between tasks. Thus, when choosing the next task to
perform, a developer should prioritize the one that has the smaller intersection with the
TestI of other tasks. Although TestI does not always predict the potential conflicting files,
TestI might suggest a degree of proximity between the parts of the code changed by both
tasks, eventually leading to conflicts. Besides, although TextI is a more precise predictor
of changed files and conflict risk, it cannot cover most potential conflicts (i.e., it has a low
recall rate). Given that in the context of conflicts, recall is more important than precision,
we conclude that TestI outperforms TextI.

By further investigating our results, we believe that it is possible to improve predictions
whether we can refine TestI by discarding application files accessed by test preconditions,
reducing false positives. Even so, note that more important than point out the existence of
conflict risk, is the intensity of such a risk, the information that actually guides developers
when prioritizing tasks. This way, developers might just ignore low risk rates. Also,
predictions depend on task cohesion. If the tests do not relate to the system functionality
underlying the task, predictions based on TestI do not apply.

Concerning the prediction of merge conflict occurrence, we conclude that our predictor
based on the intersection between TestI interfaces has potential. It detects conflict risk
when tasks are likely to change files in common, which is a precondition of conflict
occurrence. The conflict only occurs when the tasks change the same hunk of a file, indeed.
Thus, we expect conflicts occur in a subset of risk predictions, whether the tests truly
relate to the tasks.

Finally, although we bring some evidence that task interfaces might help developers to
avoid conflicts and this benefits the whole project, we also know that the effort to solve
conflicts is more significant than the absolute conflicts number. In this sense, someone
might consider TestI as a starting point to a robust solution for estimating resolution
effort of potential conflicts. Moreover, the need for code changes depends on the features

88

already supported when a developer starts working on a new task. Thus, TestI represents
the file set relevant for completing a task, but we cannot expect that all these files
require changes. The low precision rates we found when evaluating the ability of TestI for
predicting file changes reinforce such understanding. As a consequence, we cannot expect
that the intersection between TestI interfaces predicts the location of conflicts. At last,
code changes are not usually cohesive, meaning there is always a conflict risk among tasks,
i.e., developers might change codes that do not align with their tasks and cause conflicts.

5.1 CONTRIBUTIONS

This work makes the following contributions:

• Propose a new strategy to predict task interfaces that relies on automated acceptance
tests, which we call test-based task interfaces or TestI.

• Develop a prototype tool to compute test-based task interfaces by statically analyzing
acceptance tests, TAITI.

• Gather evidence that test-based task interfaces are a promising predictor of changed
files.

• Propose alternative strategies for test-based task interfaces, such as task interfaces
computed by executing tests (DTestI) and task interfaces obtained by observing
textual similarity of test specifications with past tasks (TextI), which enable us to
evaluate better TestI and identify improvement opportunities.

• Propose the usage of test-based task interfaces to assess the risk of merge conflicts
between programming tasks, supporting developers to dynamically schedule tasks,
prioritizing them according to conflict likelihood.

• Gather evidence that test-based task interfaces might help to avoid conflicts by
predicting when tasks are likely to change some file in common.

• Develop reusable scripts for mining GitHub repositories that other empirical studies
can use.

5.2 FUTURE WORK

As the proposed studies described here are part of a broader context, a set of related
aspects were left out of scope, as following described. Thus, we suggest them as future
work.

• We plan to refine our second empirical study by discussing the results under the
project perspective.

89

• We plan to evaluate conflict predictions using a filtered notion of TestI that excludes
application files exercised by the test precondition (Given steps of Cucumber scenar-
ios). We expect to reduce false positives derived from the fact that different tests
might require a similar setup code, such as user authentication, that might not align
to the task purpose.

• Alternatively, we also plan to evaluate conflict predictions using an extended notion
of TestI that includes syntactic and logical dependencies (co-changes) of each file
in TestI, as adopted by tools such as Cassandra (KASI; SARMA, 2013) and Hipikat
(CUBRANIC et al., 2005). As proposed by related works and confirmed by manual task
analysis, the dependencies might capture implicit relationships among files that tests
are unable to detect. We performed a preliminary study (SANTOS; ROCHA; BORBA,
2019) assessing the predictive ability of such a task interface concerning changed files,
considering syntactic dependencies. The study shows it is a promising strategy to
improve TestI, and possibly the most promising among the related work. Also, such
an extended notion of TestI enables the investigation of the prediction of build and
test failures, besides merge conflicts. As known, concurrent changes on different (but
related) files might cause indirect conflicts that also reduce developers’ productivity.

• We intend to improve TAITI to simulate test execution faithfully, hoping to improve
the predictive ability of TestI, and predictions about conflict risk as well. Possible
resolutions include: adopting a smarter static analysis with type inference, analyzing
step definitions according to its execution sequence, full propagating data from one
step to another (we partially do it), and analyzing application files other than views.

• Once we have a new version of TAITI, we plan to refine TestI to predict method
changes instead of file changes and investigate if this resolution improves predictions
of conflict risk among programming tasks.

• We plan to conduct a case study to evaluate the potential of TestI for avoiding
conflicts in the field, considering its influence on the dynamics of development teams
and other human and social effects that might compromise its performance and
acceptance. Such a study requires the development of a task planning tool for
supporting developers to choose a task to perform based on the conflict risk with
other tasks, integrating both TAITI and the development environment. Also, it
requires a BDD project with adequate test coverage.

• We intend to evaluate a hybrid approach for inferring TestI that uses static analysis
when dealing with failing tests, and a dynamic strategy when dealing with running
tests. Similarly to the performed studies, we plan to assess the predictive ability of
such a strategy concerning changed files and conflict risk.

90

• We believe that it is relevant to evaluate the ability of TestI for predicting merge
conflicts as well. We informally investigated a reduced number of merge scenarios
because we could not construct a larger sample. Hoping to find a larger sample of
conflicting merge scenarios, we plan to extend TAITI to support other programming
languages than Ruby.

• It is also interesting to evaluate the relationship between TestI and code quality
metrics. For example, a low code coupling positively impacts TestI in terms of
precision and recall measures? And what about the prediction of conflict risk among
tasks: Do high coupled tasks are more vulnerable to cause a merge conflict than
other tasks?

• Finally, concerning the practical usage of our approach, we plan to provide a
confidence index of conflict risk prediction per project based on its test coverage.
According to our results, we can expect better predictions when the project has
adequate test coverage.

5.3 RELATED WORK

In this section, we present the related work. In Section 5.3.1, we discuss an alternative
strategy to avoid conflicts by task scheduling. Subsequently, in Section 5.3.2, we discuss
existing strategies related to the purpose of inferring task interfaces. Then, in Section 5.3.3,
we review other tools and practices that might also avoid conflicts in collaborative software
development.

5.3.1 Avoiding conflicts by task scheduling

Aiming to avoid conflicts as well, Cassandra (KASI; SARMA, 2013) is an Eclipse plugin
that extends Mylyn (KERSTEN; MURPHY, 2006) to recommend an optimum order of
task execution per developer. Cassandra works as follows. First, in their own workspace,
developers create the tasks they intend to work on and identify the files they suppose
each task will change. Then, developers sort their tasks according to their preferences.
Next, when developers require conflict analysis, Cassandra tool models and evaluates a
set of constraints, which represent the conflict risk between tasks. As a result, Cassandra
suggests, for each developer, a task execution sequence that satisfies the constraints. The
constraints consider the files each task is supposed to edit (𝐹𝑒), their dependent files (𝐹𝑑),
and the developer’s preferred execution sequence. The logic is to avoid the concurrent
development of tasks that are supposed to edit the same file, assuming they are more
vulnerable to cause merge conflicts. In the same way, to avoid the concurrent development
of tasks that are supposed to edit a dependent file of other tasks, assuming they are likely
to cause a build or test failure. Throughout this process, Cassandra also tries to satisfy the

91

developer’s preference when possible. In such context, developers provide both 𝐹𝑒 and the
preferred execution sequence, whereas Cassandra automatically identifies 𝐹𝑑 by executing
a call-graph analysis using Dependency Finder.1 Finally, during task execution, Cassandra
reevaluates the constraints when a developer completes a task.

Although promising, regarding task interfaces, Cassandra relies on the developer’s
expertise. Although we believe developers are indispensable for predicting task interfaces,
merely asking them to guess the file set they intend to modify might be quite challenging
and error-prone. Such limitation is critical for the purpose of avoiding conflicts, given that
if the tasks actually do not change or use the planned files, task scheduling would not help
the team.

In addition, Cassandra assumes all tasks have the same fixed duration (KASI, 2014),
which is unrealistic. As a consequence, the continuous reevaluation of the entire constraints
might cause overhead. Furthermore, Cassandra tries to automatically deal with the
impossibility of satisfying all constraints by defining a prioritizing policy to favor merge
conflicts or build and semantic conflicts.

Contrasting, instead of asking for developers to guess the files a task will change, we
propose a strategy to automatically infer task interfaces. Our strategy also requires the
developers upfront knowledge about task behavior, since they have to write automated
acceptance tests. On the other hand, it seems that guessing the files related to a task is a
more risky activity than writing acceptance tests. The reason is test design is a systematic
activity that leads developers to analyse system requirements, imagine alternative situations,
question decisions and so on. However, there is no protocol to guess the files related to
a task, the activity is subjective and depends on the developer expertise. Thus, TAITI
could maybe complement Cassandra by predicting task interfaces that developers can
further refine, provided tests are associated with tasks.

In the same way, we dynamically compute the risk of conflicts and we delegate for
developers the responsibility to define the execution sequence to tasks, as they select a
new task to perform. Thus, the duration of tasks is not relevant for us. Also, the cost to
evaluate conflict risk according to our strategy seems reduced, given we evaluate the risk
between the planned tasks of a developer and the current tasks of other developers, whereas
Cassandra considers all planned tasks of all developers. At last, we do not speculate the
relevance of conflicts, we just provide support for developers to select the next task to
perform, assuming all potential conflicts are relevant.

5.3.2 Predicting task interfaces

As previously discussed, we rely on task interfaces to identify potentially conflicting
tasks. In this sense, we propose a strategy to predict task interfaces based on acceptance
tests. The following subsections present alternative strategies for test-based task interfaces.
1 <http://depfind.sourceforge.net/>

http://depfind.sourceforge.net/

92

5.3.2.1 Assisted manual definition of task interfaces

The most straightforward strategy to define task interfaces is to ask developers to guess
the file set she intends to use or modify to perform a task. However, the identification of task
interfaces without any support is challenging, as previously argued. For alleviating such
activity, some tools provide search mechanisms, primarily based on textual information.
For example, TopicXP (SAVAGE et al., 2010) receives as input a query using keywords
and outputs relevant files for a task based on their vocabulary and static dependencies
from code. Nevertheless, the search effectiveness depends on the quality of the task
descriptions, which must clarify the task purpose. Also, the search requires the extra effort
of formulating a query. Contrasting, we propose the automatic inference of task interfaces
based on acceptance tests that developers are supposed to use to validate features.

5.3.2.2 Partial automated prediction of task interfaces

As said before, Cassandra verifies dependencies among tasks by a call-graph analysis
to evaluate conflict risk. In fact, according to Cataldo et al. (2009), violated dependencies
often lead to software faults. In such a context, the call-graph analysis is a strategy
to capture syntactic dependencies, but there are alternatives. For example, a dataflow
relationship to identify different methods that modify and use the same data structure.
Another alternative is the concern scattering, which means the dispersion of a system
requirement implementation. Furthermore, according to Cataldo et al. (2009), the logical
dependencies (also called co-changes) between source files, which express the semantic
relationship between files that the developers change together, is even more relevant for
faults occurrence than the syntactic dependencies.

As can be seen, although code dependencies might explain conflict occurrence, assuming
that faults are a kind of conflict, they cannot infer task interfaces alone. The developers
still need to identify the source files they intend to edit, that is, the start point of a task.
That is the case of several studies (ZIMMERMANN et al., 2004; YING et al., 2004; DENNINGER,
2012; GIGER; PINZGER; GALL, 2012; BAILEY; LIN; SHERRELL, 2012) that try to predict code
changes or bugs to support developers during the execution of maintenance tasks. As an
illustration, the ROSE tool (ZIMMERMANN et al., 2004) tries to guide the development of
an ongoing task by analyzing the project’s version history to identify co-changed elements.
However, the developer first inputs the code element he intends to change. For this reason,
we realize that dependencies complement TestI, motivating us to conduct a preliminary
study (SANTOS; ROCHA; BORBA, 2019) that extend the interfaces computed by TAITI by
including the syntactic dependences of the application files reached by the tests. The results
bring evidence that, for a reduced sample of 60 tasks, the extended interface improves
recall by slightly compromising precision. Even so, note that the challenge for defining task
interfaces remains, as the developers still need to identify a start point for the prediction.

93

5.3.2.3 Predicting task interfaces by retrospective analysis

Another possibility is to predict task interfaces based on the project’s version history,
assuming that similar tasks are likely to change or use the same code elements. For instance,
if task 𝑇𝐴 is most similar to a past task 𝑇𝐵, 𝑇𝐴 will change or use the same code elements
that 𝑇𝐵 altered or used. Accordingly, developers must provide a task description.

For example, Hipikat (CUBRANIC et al., 2005) recommends artifacts for supporting
developers to start a new task. As an illustration, if the developer inputs a request ticket
as search criteria, Hipikat searches for textually similar tickets. Then, the developer can
search for the commits related to the most similar ticket and use their changeset as the
task interface.

Hipikat constructs a project memory by using different artifacts, such as bug reports
and feature requests (ticket) recorded in an issue tracking system, source file versions
checked into a version control system, messages posted on newsgroups and mailing lists,
and documents posted on the project’s web site. The ticket is the primary artifact, given
it represents the task and connects all others. The relationship between artifacts relies on
the artifact’s author, the ticket ID (used in commit messages and forum messages), the
creation time or edition time of an artifact, as well the similarity between task descriptions
or between documents, and the historic of message responses. As a consequence, the
developer can use any of these artifacts as search criteria, not only a ticket, as we illustrate.

Although past-based predictions have other successful applications, like the logical
dependency between code elements we mentioned, the use of textual similarity to identify
similar past tasks seems inappropriate, whether using natural language, due to its intrinsic
imprecision. Therefore, according to the text volume and the vocabulary, developers might
describe tasks related to the same feature as different tasks, and vice versa. In such a
context, a structured description like high-level tests in Gherkin might be promising,
as our results suggest. Also, the overall idea seems more useful for assisting developers
in developing new code and tests according to a “learning by example” dynamics. By
analyzing the artifacts of a similar past task, the developer might gain insight into the
code of her new task.

Thompson & Murphy (THOMPSON; MURPHY, 2014) extended Hipikat idea to recom-
mend artifacts that a set of similar past tasks changed or used during their execution,
assuming the project’ repository provide data about modified and used resources per
task. In any case, the evaluation results of both ideas discourage us from trying them.
Hipikat reports precision of 11%, and Thompson & Murphy, 21%. Another example is
the DebugAdvisor tool (ASHOK et al., 2009), which helps developers to identify prior issues
potentially relevant to a given bug, reducing the effort for bug fixing. DebugAdvisor applies
the reasoning of Hipikat, but it also uses structured text like code and stack traces. Anyway,
such tools require projects’ historical data. Even though it might benefit our strategy as
well, the requirement limits the usage of this solution to predict task interfaces.

94

5.3.3 Other related work

Regarding conflicts, some studies bring evidence that conflicts occur frequently and
damage developers’ productivity as well as software quality (ZIMMERMANN, 2007; BIRD;

ZIMMERMANN, 2012; BRUN et al., 2013; KASI; SARMA, 2013). Others investigate the cause of
conflict occurrence (CATALDO; HERBSLEB, 2011), whereas others assist in conflict detection
and resolution. However, few of them focus on avoiding conflicts. Similarly, work on
software development planning proposes solutions to improve software quality and the
usage of project (material and human) resources, aiming at on-time software delivery and
customer satisfaction. However, they do not discuss conflicting code changes and how they
affect software development. The following subsections briefly present these other works.

5.3.3.1 Predicting merge conflicts

Some studies investigate merge conflicts to understand their cause, and support devel-
opment teams to avoid them. For instance, Leßenich et al. (2018) analyze the predictive
power of several indicators over the number of merge conflicts, such as the number, size,
or scattering degree of commits in each branch. Surprisingly, they do not found evidence
that the indicators apply for the whole sample, but only on a per-project basis.

Dias, Borba e Barreto (2020) reproduce and analyze several merge scenarios of Rails
and Django projects to understand how technical and organizational factors affect the
occurrence of conflicts. They found evidence that the likelihood of merge conflict occurrence
significantly increases when contributions to be merged involve files from the same MVC
segment. Also, bigger contributions involving more developers, commits, and changed files
are more likely associated with merge conflicts, as well as contributions developed over
more extended periods. Ahmed et al. (2017) investigate the effect of code smells on merge
conflicts and found that entities that are smelly are three times more likely to be involved
in merge conflicts.

From a complementary perspective, our study aims to prevent merge conflicts by
predicting the files a programming task will change based on the code of the automated
acceptance tests that validate its behavior. This way, development teams might combine
our strategy and other practices, such as frequently commit and integrate contributions,
avoiding some indicators discussed by these other studies during task execution.

5.3.3.2 Merge tools

Conventional version control systems provide facilities during artifacts integration by
automatically detecting conflicts and sometimes solving them by diff and merge mechanisms.
Generally, merge tools identify text lines that the developers insert, extract, or change
independently. Still, they do not deal with changes at the same line, neither identify
syntactic or semantic conflicts caused by changes in related lines. Besides, they might

95

identify false conflicts that disturb developers, such as changes in statement order of Java
code and alterations related to indent style. As a consequence, developers often need to solve
conflicts manually. Tools like FSTMerge (APEL et al., 2011) and JDime (APEL; LESSENICH;

LENGAUER, 2012) evolve the state of the practice tools to automate the resolution of
some spurious conflicts and improve conflict detection by using language-specific strategies.
As developers might change files not aligned with their programming tasks, as well as
predictions of conflict risk might fail, there is no solution to extinguish merge conflicts.
Thus, we understand our solution and specific-language merge tools complement each
other, and a development team might benefit from adopting both.

5.3.3.3 Awareness tools

Other tools assist developers in detecting conflicts during task execution. Their assump-
tion is the early detection facilitates conflict resolution, as the conflict did not propagate
into the code, and the relevant changes did not fade away in the developers’ memory yet.
The so-called workspace awareness tools (or change awareness) monitor the developers’
workspace and notify them about ongoing changes that are potentially conflicting. Thus,
these tools still rely on conflicts occurrence, even if it only happens on the developer’s
workspace.

For example, FastDash (BIEHL et al., 2007) provides visibility of current file editions
by a dashboard. Adopting a fine-grained solution, CollabVS (DEWAN; HEGDE, 2007) and
Palantír (SARMA; REDMILES; HOEK, 2012) notify developers when they are editing not
only the same file but also when they are editing program elements that are syntactic
dependent on each other. Nevertheless, unnecessary notification due to false conflicts might
disturb developers. Crystal (BRUN et al., 2013) tries to overcome such a limitation by
performing version control and test operations in background to check conflict occurrence
before notifying developers, as the developers update their local repositories. The problem
is the notification is not accurate. The developer knows his code has some conflict (merge,
build, or test) with the code of another developer. Still, the developer does not know which
conflicts are exactly occurring, meaning he has to interrupt his work and try to localize
conflicts by himself. WeCode (aES; SILVA, 2012) extends Crystal by doing a single merge of
all developments of a team working on the same branch in the background and reporting
precise details of the conflicts affecting the team as a whole. Even so, WeCode considers
uncommitted and committed changes, which can lead to numerous false positives.

Considering predictions are imprecise by definition as well as detection of conflicts
when dealing with ongoing tasks, we understand our strategy and workspace awareness
tools complement each other. By assisting developers in selecting a new task to perform,
we might avoid conflicts. As a consequence, we expect to reduce alerts from workspace
awareness tools. On the other hand, by notifying developers about conflicting ongoing
changes, workspace awareness tool might reduce integration effort, promoting productivity

96

and software quality (assuming the risk of defects during integration is also reduced).

5.3.3.4 Task context

Mylyn (KERSTEN; MURPHY, 2006) is an Eclipse plugin that monitors developers’
workspace to track relevant resources (e.g., selected or edited files) and updates the IDE
accordingly. Its main objective is to improve developer productivity, focusing their attention
on what matters to complete a task. Mylyn calls the set of relevant resources for a task
as task context. Using a prioritizing policy for resources based on user interaction, Mylyn
delineates a task context during task execution. Instead, we intend to predict the task
context before task execution. Therefore, someone can use Mylyn to identify ongoing tasks
that might cause conflicts and adopt a coordination strategy to alleviate or even prevent
conflicts, as explored by the tool ProxiScientia (BORICI et al., 2012). Nevertheless, Mylyn is
not able to predict task interfaces neither predict that planned tasks might cause conflicts.

5.3.3.5 Development practices

Similarly to awareness tools, development practices such as Continuous Integra-
tion (FOWLER; FOEMMEL, 2006) and Continuous Delivery (ADAMS; MCINTOSH, 2016) also
support early conflict detection. In the first case, developers integrate their contributions
frequently to verify them by automatically running build and test scripts. In turn, contin-
uous delivery extends continuous integration to enable developers to release software to
production at any time. For such purpose, developers frequently deploy the application into
production-like environments to ensure the software will work in production. In both cases,
the main objective is to detect conflicts and defects as quickly as possible. Although the
early detection of conflicts might avoid the increasing of conflict complexity, as previously
argued, developers still will have to spend time to solve conflicts.

Besides, the practice of code review (BACCHELLI; BIRD, 2013), which recommends
reviewers to search for issues before integrating code into the central repository, might also
help to prevent conflicts. However, its emphasis is on code quality rather than conflicts,
and it is an expensive activity, even with tool support. Finally, some agile practices,
such as daily stand-up meetings, might prevent conflicts by promoting communication
and clarifying ongoing tasks. Even so, communication might be more imprecise (STRAY;

SJøBERG; DYBå, 2016). That’s why we prioritize an automatic solution aiming to promote
developers productivity and effectiveness. So, although BDD principles could help code
change prediction, we expect more benefits when BDD is used together with a tool that
computes test-based task interfaces. Given these points, we conclude development practices
complement our strategy.

97

5.3.3.6 Project scheduling

Despite being possible to reduce conflicts by prioritizing task execution according
to conflict likelihood, other factors besides the parallel execution of tasks influences on
conflicting code changes, such as the alignment among developer skill, task requirements,
and projects’ restrictions like duration and cost. Several studies discuss this problem,
the so-called Project Scheduling Problem (PSP) (SHEN et al., 2016), aiming to deliver
high-quality systems that satisfy customer needs and fit on the project budget. Specifically,
the investigation concerns to find a solution that satisfies a set of constraints, such as the
estimated effort required per task and the dependence value between tasks. In this sense,
in the future, a promising strategy might be to extend TAITI to evaluate such factors to
recommend tasks.

5.3.3.7 Next release planning

Similarly to the PSP problem, other studies investigate the selection of system require-
ments that the developers will implement for the next release according to logical and
business constraints (the Next Release Problem (ALMEIDA et al., 2018; CARLSHAMRE et al.,
2001)). In such a context, requirements’ priority, interdependencies between requirements,
costs, and customer satisfaction are relevant.

As an illustration, let us consider a bug fixing task. The number of comments on the bug
report defines the requirement’s priority, whereas the bug severity relates to the estimated
cost for the requirement. Regarding interdependence, frequently, there is no precedence
relationship between bugs. Then, an optimization algorithm tries to find the best solution
(or the nearest one) that satisfies a mathematical expression that combines these measures
and others related to the project, aiming to favor higher priority requirements without
violating requirements’ interdependencies, while balancing the other criteria. Requirements’
interdependence means that the absence of a condition impairs the development of another
requirement.

Although the interdependence between system requirements might lead to conflicts (CARL-

SHAMRE et al., 2001), this research field concerns to solve the optimization problem for
balancing multiple factors that affect release planning. As a result, reducing conflicts is
only a possible side effect. Nonetheless, the combined usage of a tool for assisting teams
in planning tasks and TAITI to support decision making during task execution seems a
promising idea to reduce conflicts.

98

REFERENCES

ACCIOLY, P.; BORBA, P.; CAVALCANTI, G. Understanding semi-structured merge
conflict characteristics in open-source java projects. Empirical Software Engineering, 2017.
ISSN 1573-7616. Disponível em: <https://doi.org/10.1007/s10664-017-9586-1>.

ADAMS, B.; MCINTOSH, S. Modern release engineering in a nutshell – why researchers
should care. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). [S.l.: s.n.], 2016. v. 5, p. 78–90.

aES, M. L. G.; SILVA, A. R. Improving early detection of software merge conflicts. In:
Proceedings of the 34th International Conference on Software Engineering. Piscataway,
NJ, USA: IEEE Press, 2012. (ICSE ’12), p. 342–352. ISBN 978-1-4673-1067-3. Disponível
em: <http://dl.acm.org/citation.cfm?id=2337223.2337264>.

AHMED, I.; BRINDESCU, C.; MANNAN, U. A.; JENSEN, C.; SARMA, A. An
empirical examination of the relationship between code smells and merge conflicts. In:
2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). [S.l.: s.n.], 2017. p. 58–67.

ALMEIDA, J. C.; PEREIRA, F. d. C.; REIS, M. V.; PIVA, B. The next release
problem: Complexity, exact algorithms and computations. In: SPRINGER. International
Symposium on Combinatorial Optimization. [S.l.], 2018. p. 26–38. ISBN 978-3-319-96151-4.

AN, J.-h.; CHAUDHURI, A.; FOSTER, J. Static typing for ruby on rails. In: . [S.l.: s.n.],
2009. p. 590–594.

APEL, S.; LESSENICH, O.; LENGAUER, C. Structured merge with auto-tuning:
Balancing precision and performance. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. New York, NY, USA:
ACM, 2012. (ASE 2012), p. 120–129. ISBN 978-1-4503-1204-2. Disponível em:
<http://doi.acm.org/10.1145/2351676.2351694>.

APEL, S.; LIEBIG, J.; BRANDL, B.; LENGAUER, C.; KÄSTNER, C. Semistructured
merge: Rethinking merge in revision control systems. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering. New York, NY, USA: ACM, 2011. (ESEC/FSE ’11), p. 190–200. ISBN
978-1-4503-0443-6. Disponível em: <http://doi.acm.org/10.1145/2025113.2025141>.

ASHOK, B.; JOY, J.; LIANG, H.; RAJAMANI, S. K.; SRINIVASA, G.; VANGALA, V.
Debugadvisor: a recommender system for debugging. In: ACM. Proceedings of the the 7th
joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering. [S.l.], 2009. p. 373–382.

BACCHELLI, A.; BIRD, C. Expectations, outcomes, and challenges of modern code
review. In: IEEE PRESS. Proceedings of the 2013 international conference on software
engineering. [S.l.], 2013. p. 712–721.

BAILEY, M.; LIN, K.-I.; SHERRELL, L. Clustering source code files to predict change
propagation during software maintenance. In: Proceedings of the 50th Annual Southeast

https://doi.org/10.1007/s10664-017-9586-1
http://dl.acm.org/citation.cfm?id=2337223.2337264
http://doi.acm.org/10.1145/2351676.2351694
http://doi.acm.org/10.1145/2025113.2025141

99

Regional Conference. New York, NY, USA: ACM, 2012. (ACM-SE ’12), p. 106–111. ISBN
978-1-4503-1203-5. Disponível em: <http://doi.acm.org/10.1145/2184512.2184538>.

BALDWIN, C. Y. Design Rules: The Power of Modularity. [S.l.]: The MIT Press, 2000.
ISBN 9780262267649.

BASS, L.; WEBER, I.; ZHU, L. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015. ISBN 0134049845, 9780134049847. Disponível em:
<http://cds.cern.ch/record/2034028>.

BIEHL, J. T.; CZERWINSKI, M.; SMITH, G.; ROBERTSON, G. G. Fastdash:
A visual dashboard for fostering awareness in software teams. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. New York, NY,
USA: ACM, 2007. (CHI ’07), p. 1313–1322. ISBN 978-1-59593-593-9. Disponível em:
<http://doi.acm.org/10.1145/1240624.1240823>.

BINAMUNGU, L. P.; EMBURY, S. M.; KONSTANTINOU, N. Detecting duplicate
examples in behaviour driven development specifications. In: 2018 IEEE Workshop on
Validation, Analysis and Evolution of Software Tests (VST). [S.l.: s.n.], 2018. p. 6–10.

BIRD, C.; ZIMMERMANN, T. Assessing the value of branches with what-if analysis.
In: ACM. Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. [S.l.], 2012. p. 45.

BORICI, A.; BLINCOE, K.; SCHRÖTER, A.; VALETTO, G.; DAMIAN, D. Proxiscientia:
Toward real-time visualization of task and developer dependencies in collaborating
software development teams. In: Proceedings of the 5th International Workshop on
Co-operative and Human Aspects of Software Engineering. Piscataway, NJ, USA:
IEEE Press, 2012. (CHASE ’12), p. 5–11. ISBN 978-1-4673-1824-2. Disponível em:
<http://dl.acm.org/citation.cfm?id=2663638.2663641>.

BRIAND, L.; BIANCULLI, D.; NEJATI, S.; PASTORE, F.; SABETZADEH, M. The
case for context-driven software engineering research: Generalizability is overrated. IEEE
Software, v. 34, n. 5, p. 72–75, 2017. ISSN 0740-7459.

BRUN, Y.; HOLMES, R.; ERNST, M. D.; NOTKIN, D. Early detection of
collaboration conflicts and risks. IEEE Trans. Softw. Eng., IEEE Press, Piscataway,
NJ, USA, v. 39, n. 10, p. 1358–1375, out. 2013. ISSN 0098-5589. Disponível em:
<http://dx.doi.org/10.1109/TSE.2013.28>.

BRUN, Y.; MUŞLU, K.; HOLMES, R.; ERNST, M. D.; NOTKIN, D. Predicting
development trajectories to prevent collaboration conflicts. In: The Future of Collaborative
Software Development. Bellevue, WA, USA: [s.n.], 2012.

CARLSHAMRE, P.; SANDAHL, K.; LINDVALL, M.; REGNELL, B.; DAG, J. N. och. An
industrial survey of requirements interdependencies in software product release planning.
In: IEEE. Requirements Engineering, 2001. Proceedings. Fifth IEEE International
Symposium on. [S.l.], 2001. p. 84–91.

CATALDO, M.; HERBSLEB, J. D. Factors leading to integration failures in
global feature-oriented development: An empirical analysis. In: Proceedings of the
33rd International Conference on Software Engineering. New York, NY, USA:

http://doi.acm.org/10.1145/2184512.2184538
http://cds.cern.ch/record/2034028
http://doi.acm.org/10.1145/1240624.1240823
http://dl.acm.org/citation.cfm?id=2663638.2663641
http://dx.doi.org/10.1109/TSE.2013.28

100

ACM, 2011. (ICSE ’11), p. 161–170. ISBN 978-1-4503-0445-0. Disponível em:
<http://doi.acm.org/10.1145/1985793.1985816>.

CATALDO, M.; MOCKUS, A.; ROBERTS, J. A.; HERBSLEB, J. D. Software
dependencies, work dependencies, and their impact on failures. IEEE Transactions on
Software Engineering, v. 35, n. 6, p. 864–878, 2009. ISSN 0098-5589.

CAVALCANTI, G.; BORBA, P.; ACCIOLY, P. Evaluating and improving semistructured
merge. Proc. ACM Program. Lang., ACM, New York, NY, USA, v. 1, n. OOPSLA, p. 59:1–
59:27, out. 2017. ISSN 2475-1421. Disponível em: <http://doi.acm.org/10.1145/3133883>.

COHN, M. User stories applied: For agile software development. [S.l.]: Addison-Wesley
Professional, 2004.

CUBRANIC, D.; MURPHY, G. C.; SINGER, J.; BOOTH, K. S. Hipikat: A project
memory for software development. IEEE Trans. Softw. Eng., IEEE Press, Piscataway,
NJ, USA, v. 31, n. 6, p. 446–465, jun. 2005. ISSN 0098-5589. Disponível em:
<http://dx.doi.org/10.1109/TSE.2005.71>.

DENNINGER, O. Recommending relevant code artifacts for change requests
using multiple predictors. In: Proceedings of the Third International Workshop
on Recommendation Systems for Software Engineering. Piscataway, NJ, USA:
IEEE Press, 2012. (RSSE ’12), p. 78–79. ISBN 978-1-4673-1759-7. Disponível em:
<http://dl.acm.org/citation.cfm?id=2666719.2666737>.

DEWAN, P.; HEGDE, R. Semi-synchronous conflict detection and resolution in
asynchronous software development. In: ECSCW 2007. [S.l.]: Springer, 2007. p. 159–178.

DIAS, K.; BORBA, P.; BARRETO, M. Understanding predictive factors for merge
conflicts. Information and Software Technology, Elsevier, 2020.

DIAS, M.; BACCHELLI, A.; GOUSIOS, G.; CASSOU, D.; DUCASSE, S. Untangling
fine-grained code changes. In: IEEE. 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). [S.l.], 2015. p. 341–350.

FOWLER, M. Feature Branch. 2009. <https://martinfowler.com/bliki/FeatureBranch.
html>. Accessed: April 2018.

FOWLER, M. Feature Toggle. [S.l.], 2016. Disponível em: <https://martinfowler.com/
bliki/FeatureToggle.html>.

FOWLER, M.; FOEMMEL, M. Continuous integration. [S.l.], 2006. 122 p.

FURR, M.; AN, J.-h. D.; FOSTER, J. S.; HICKS, M. Static type inference for ruby.
In: Proceedings of the 2009 ACM Symposium on Applied Computing. New York, NY,
USA: Association for Computing Machinery, 2009. (SAC ’09), p. 1859–1866. ISBN
9781605581668. Disponível em: <https://doi.org/10.1145/1529282.1529700>.

GIGER, E.; PINZGER, M.; GALL, H. C. Can we predict types of code changes? an
empirical analysis. In: Mining Software Repositories (MSR), 2012 9th IEEE Working
Conference on. [S.l.: s.n.], 2012. p. 217–226. ISSN 2160-1852.

GRINTER, R. E. Supporting articulation work using software configuration management
systems. Computer Supported Cooperative Work, Kluwer Academic Publishers, 1996.

http://doi.acm.org/10.1145/1985793.1985816
http://doi.acm.org/10.1145/3133883
http://dx.doi.org/10.1109/TSE.2005.71
http://dl.acm.org/citation.cfm?id=2666719.2666737
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://doi.org/10.1145/1529282.1529700

101

HENDERSON, F. Software Engineering at Google. [S.l.], 2017. Disponível em:
<arXiv:1702.01715>.

HERZIG, K.; ZELLER, A. The impact of tangled code changes. In: Proceedings of
the 10th Working Conference on Mining Software Repositories. Piscataway, NJ, USA:
IEEE Press, 2013. (MSR ’13), p. 121–130. ISBN 978-1-4673-2936-1. Disponível em:
<http://dl.acm.org/citation.cfm?id=2487085.2487113>.

HODGSON, P. Feature Branching vs. Feature Flags: What’s the Right
Tool for the Job? [S.l.], 2017. Disponível em: <https://devops.com/
feature-branching-vs-feature-flags-whats-right-tool-job/>.

HODGSON, P. Feature Toggles (aka Feature Flags). 2017. <https://martinfowler.com/
articles/feature-toggles.html>. Accessed: April 2018.

KASI, B. K. Minimizing software conflicts through proactive detection of conflicts
and task scheduling. In: ACM. Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. [S.l.], 2014. p. 807–810.

KASI, B. K.; SARMA, A. Cassandra: Proactive conflict minimization through optimized
task scheduling. In: Proceedings of the 2013 International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2013. (ICSE ’13), p. 732–741. ISBN 978-
1-4673-3076-3. Disponível em: <http://dl.acm.org/citation.cfm?id=2486788.2486884>.

KERSTEN, M.; MURPHY, G. C. Using task context to improve programmer productivity.
In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. New York, NY, USA: ACM, 2006. (SIGSOFT ’06/FSE-14), p. 1–11.
ISBN 1-59593-468-5. Disponível em: <http://doi.acm.org/10.1145/1181775.1181777>.

LESSENICH, O.; SIEGMUND, J.; APEL, S.; KÄSTNER, C.; HUNSEN, C. Indicators for
merge conflicts in the wild: survey and empirical study. Automated Software Engineering,
v. 25, n. 2, p. 279–313, 2018.

MCKEE, S.; NELSON, N.; SARMA, A.; DIG, D. Software practitioner perspectives on
merge conflicts and resolutions. In: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). [S.l.: s.n.], 2017. p. 467–478.

MIRANDA, S.; VALENTE, M. T.; TERRA, R. Inferência de tipos em ruby: Uma
comparação entre técnicas de análise estática e dinâmica. In: IV Workshop de Visualização,
Evolução e Manutenção de Software (VEM). [S.l.: s.n.], 2016. p. 105–112.

NAGAPPAN, M.; ZIMMERMANN, T.; BIRD, C. Diversity in software engineering
research. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013. (ESEC/FSE 2013), p. 466–476. ISBN 978-1-4503-2237-9.
Disponível em: <http://doi.acm.org/10.1145/2491411.2491415>.

PERRY, D. E.; SIY, H. P.; VOTTA, L. G. Parallel changes in large-scale software
development: an observational case study. ACM Transactions on Software Engineering
and Methodology (TOSEM), ACM, v. 10, n. 3, p. 308–337, 2001.

POTVIN, R.; LEVENBERG, J. Why google stores billions of lines of code in a
single repository. Communications of the ACM, v. 59, p. 78–87, 2016. Disponível em:
<http://dl.acm.org/citation.cfm?id=2854146>.

arXiv:1702.01715
http://dl.acm.org/citation.cfm?id=2487085.2487113
https://devops.com/feature-branching-vs-feature-flags-whats-right-tool-job/
https://devops.com/feature-branching-vs-feature-flags-whats-right-tool-job/
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
http://dl.acm.org/citation.cfm?id=2486788.2486884
http://doi.acm.org/10.1145/1181775.1181777
http://doi.acm.org/10.1145/2491411.2491415
http://dl.acm.org/citation.cfm?id=2854146

102

ROCHA, T.; BORBA, P. Online Appendix related to prediction of merge conflict risk. 2020.
<https://thaisabr.github.io/conflict-risk-prediction-study-site/>. Accessed: February
2020.

ROCHA, T.; BORBA, P.; SANTOS, J. Online Appendix related to file change prediction.
2018. <https://thaisabr.github.io/task-interface-study-site/>. Accessed: April 2018.

ROCHA, T.; BORBA, P.; SANTOS, J. P. Using acceptance tests to predict files changed
by programming tasks. Journal of Systems and Software, v. 154, p. 176–195, 2019.

ROUNTEV, A.; YAN, D. Static reference analysis for gui objects in android
software. In: Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization. New York, NY, USA: Association for Computing
Machinery, 2014. (CGO ’14), p. 143–153. ISBN 9781450326704. Disponível em:
<https://doi.org/10.1145/2581122.2544159>.

SALTON, G.; MCGILL, M. J. Introduction to Modern Information Retrieval. New York,
NY, USA: McGraw-Hill, Inc., 1986. ISBN 0070544840.

SANTOS, J. a. P.; ROCHA, T.; BORBA, P. Improving the prediction of files
changed by programming tasks. In: Proceedings of the XIII Brazilian Symposium
on Software Components, Architectures, and Reuse. New York, NY, USA:
ACM, 2019. (SBCARS ’19), p. 53–62. ISBN 978-1-4503-7637-2. Disponível em:
<http://doi.acm.org/10.1145/3357141.3357145>.

SARMA, A.; REDMILES, D.; HOEK, A. van der. Palantír: Early detection of development
conflicts arising from parallel code changes. IEEE Trans. Softw. Eng., IEEE Press,
Piscataway, NJ, USA, v. 38, n. 4, p. 889–908, jul. 2012. ISSN 0098-5589. Disponível em:
<http://dx.doi.org/10.1109/TSE.2011.64>.

SAVAGE, T.; DIT, B.; GETHERS, M.; POSHYVANYK, D. Topicxp: Exploring topics
in source code using latent dirichlet allocation. In: Proceedings of the 2010 IEEE
International Conference on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 2010. (ICSM ’10), p. 1–6. ISBN 978-1-4244-8630-4. Disponível em:
<http://dx.doi.org/10.1109/ICSM.2010.5609654>.

SHEN, X.; MINKU, L. L.; BAHSOON, R.; YAO, X. Dynamic software project scheduling
through a proactive-rescheduling method. IEEE Transactions on Software Engineering,
v. 42, n. 7, p. 658–686, 2016. ISSN 0098-5589.

SMART, J. BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning Publications Company, 2014. ISBN 9781617291654. Disponível em:
<https://books.google.com.br/books?id=2BGxngEACAAJ>.

SOUZA, C. R. B. de; REDMILES, D.; DOURISH, P. "breaking the code", moving between
private and public work in collaborative software development. In: Proceedings of the 2003
International ACM SIGGROUP Conference on Supporting Group Work. [S.l.]: ACM, 2003.
(GROUP ’03), p. 105–114.

STRAY, V.; SJøBERG, D. I.; DYBå, T. The daily stand-up meeting: A grounded theory
study. Journal of Systems and Software, v. 114, p. 101 – 124, 2016. ISSN 0164-1212.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0164121216000066>.

https://thaisabr.github.io/conflict-risk-prediction-study-site/
https://thaisabr.github.io/task-interface-study-site/
https://doi.org/10.1145/2581122.2544159
http://doi.acm.org/10.1145/3357141.3357145
http://dx.doi.org/10.1109/TSE.2011.64
http://dx.doi.org/10.1109/ICSM.2010.5609654
https://books.google.com.br/books?id=2BGxngEACAAJ
http://www.sciencedirect.com/science/article/pii/S0164121216000066

103

THOMPSON, C. A.; MURPHY, G. C. Recommending a starting point for a
programming task: An initial investigation. In: Proceedings of the 4th International
Workshop on Recommendation Systems for Software Engineering. New York, NY,
USA: ACM, 2014. (RSSE 2014), p. 6–8. ISBN 978-1-4503-2845-6. Disponível em:
<http://doi.acm.org/10.1145/2593822.2593824>.

WILCOXON, F.; WILCOX, R. A. Some rapid approximate statistical procedures.
Lederle Laboratories, 1964. Disponível em: <https://books.google.com.br/books?id=
aBU8AAAAIAAJ>.

YING, A. T. T.; MURPHY, G. C.; NG, R.; CHU-CARROLL, M. C. Predicting source
code changes by mining change history. IEEE Transactions on Software Engineering,
v. 30, n. 9, p. 574–586, Sept 2004. ISSN 0098-5589.

ZIMMERMANN, T. Mining workspace updates in cvs. In: Proceedings of the Fourth
International Workshop on Mining Software Repositories. Washington, DC, USA: IEEE
Computer Society, 2007. (MSR ’07), p. 11–. ISBN 0-7695-2950-X. Disponível em:
<http://dx.doi.org/10.1109/MSR.2007.22>.

ZIMMERMANN, T.; WEISGERBER, P.; DIEHL, S.; ZELLER, A. Mining version histories
to guide software changes. In: Proceedings of the 26th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2004. (ICSE ’04), p. 563–572.
ISBN 0-7695-2163-0. Disponível em: <http://dl.acm.org/citation.cfm?id=998675.999460>.

http://doi.acm.org/10.1145/2593822.2593824
https://books.google.com.br/books?id=aBU8AAAAIAAJ
https://books.google.com.br/books?id=aBU8AAAAIAAJ
http://dx.doi.org/10.1109/MSR.2007.22
http://dl.acm.org/citation.cfm?id=998675.999460

