
Felipe Nunes Walmsley

An Investigation into the Effects of Label Noise on Dynamic Selection Algorithms

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2020

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Felipe Nunes Walmsley

An Investigation into the Effects of Label Noise on
Dynamic Selection Algorithms

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Ciên-
cia da Computação do Centro de Infor-
mática da Universidade Federal de Per-
nambuco, como requisito parcial para
obtenção do título de Mestre em Ciên-
cia da Computação.

Área de Concentração: inteligência
computacional

Orientador: George Darmiton da Cunha Cavalcanti
Coorientador: Robert Sabourin

Recife
2020

Catalogação na fonte
Bibliotecária Arabelly Ascoli CRB4-2068

W216i Walmsley, Felipe Nunes
 An investigation into the effects of label noise on dynamic

selection algorithms / Felipe Nunes Walmsley. – 2020.
 117 f.: il. fig., tab.

Orientador: George Darmiton da Cunha Cavalcanti
Dissertação (Mestrado) – Universidade Federal de

Pernambuco. CIn. Ciência da Computação. Recife, 2020.
Inclui referências e apêndices.

1. Métodos de Ensemble. 2. Sistemas de múltiplos
classificadores. 3. Seleção dinâmica. 4. Ruído de classe. I.
Cavalcanti, George Darmiton da Cunha. (orientador). II. Título.

 006.31 CDD (22. ed.) UFPE-CCEN 2020-79

Felipe Nunes Walmsley

“An Investigation into the Effects of Label Noise on Dynamic Selection
Algorithms”

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Ciência da Com-
putação da Universidade Federal de Pernambuco,
como requisito parcial para a obtenção do título
de Mestre em Ciência da Computação.

Aprovado em: 22/01/2020.

Orientador: George Darmiton da Cunha Cavalcanti

BANCA EXAMINADORA

Prof. Dr. Tsang Ing Ren
Centro de Informática / UFPE

Prof. Dr. Rafael Ferreira Leite de Mello
Departamento de Computação, Universidade Federal Rural de Pernambuco / UFRPE

To my mother, whose example I am merely following, and from whom I still have much
to learn.

ACKNOWLEDGEMENTS

I’d like to thank my advisors, Prof. George Cavalcanti and Prof. Robert Sabourin, not
only for their guidance in academic matters, but also for their patience and understanding
when dealing with the more human matters involved in the creation of this work.

I’d also like to thank Dr. Rafael Cruz for his assistance in executing the experiments
related to the Fire-DES++ algorithm, and also for just generally helping with issues
related to our experimental methodology.

My constant and unending gratitude goes to my family, and particularly, to my mother,
for the support and encouragement I have been given during these past twenty years or
so of formal education, of which this document is merely the culmination.

I’d like to thank my coworkers and bosses at the Projeto Samsung/CIn-UFPE, for
their support and encouragement during the final stretch of this endeavor.

Finally, I’d like to acknowledge the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES) for the financial support received.

“A good traveler has no fixed plans and is not intent upon arriving. A good artist lets his
intuition lead him wherever it wants. A good scientist has freed himself of concepts and

keeps his mind open to what is.” (LAOZI, 2006)

ABSTRACT

In the literature on classification problems, it is widely discussed how the presence of
label noise can bring about severe degradation in performance. Several works have applied
Prototype Selection techniques, Ensemble Methods, or both, in an attempt to alleviate
this issue. Nevertheless, these methods are not always able to sufficiently counteract the
effects of noise. In this work, we investigate the effects of noise on a particular class of
Ensemble Methods, that of Dynamic Selection algorithms, and we are especially inter-
ested in the behavior of the Fire-DES++ algorithm, a state of the art algorithm which
applies the ENN to algorithm to deal with the effects of noise and imbalance. We propose
a method which employs multiple Dynamic Selection sets, based on the Bagging-IH algo-
rithm, which we dub Multiple-Set Dynamic Selection (MSDS), in an attempt to supplant
the ENN algorithm on the filtering step. We find that almost all methods based on Dy-
namic Selection are severely affected by the presence of label noise, with the exception of
the KNORAU algorithm. We also find that our proposed method can alleviate the issues
caused by noise in some specific scenarios.

Keywords: Ensemble Methods. Multiple Classifier Systems. Dynamic Selection. Label
Noise. Bagging.

RESUMO

Na literatura de problemas de classificação, é amplamente discutido como a presença
de ruído nos rótulos de classe pode acarretar grave degradação na performance. Vários
trabalhos aplicam técnicas de Seleção de Protótipos, Métodos de Ensemble, ou ambos,
em uma tentativa de aliviar esse problema. Não obstante, esses métodos nem sempre são
capazes de contrabalançar os efeitos do ruído. Neste trabalho, nós investigamos o efeito
do ruído em uma classe em particular de Métodos de Ensemble, a classe dos métodos
de Seleção Dinâmica, e estamos particularmente interessados no comportamento do al-
goritmo Fire-DES++, um algoritmo estado da arte que aplica o método Edited Nearest
Neighbors (ENN) para lidar com os efeitos de ruído e desbalanceamento. Nós propomos
um método que emprega múltiplos conjuntos de Seleção Dinâmica, baseado no algoritmo
Bagging-IH, que nós nomeamos Multiple-Set Dynamic Selection (MSDS), em uma ten-
tativa de suplantar o algoritmo ENN no passo de filtragem. Nós observamos que quase
todos os métodos baseados em Seleção Dinâmica são fortemente afetados pela presença
de ruído, exceto o algoritmo KNORAU. Nós também observamos que, em alguns cenários
específicos, o nosso método proposto pode amenizar os problemas causados pelo ruído.

Palavras-chaves: Métodos de Ensemble. Sistemas de Múltiplos Classificadores. Seleção
Dinâmica. Ruído de Classe. Bagging.

LIST OF FIGURES

Figure 1 – A block diagram depiction of the bootstrapping procedure. 38
Figure 2 – A block diagram depiction of the test stage of the proposed system. . . 40
Figure 3 – A simple example of the effect of noise. Two classes are present, the

triangle and square classes. The arrow on the tip of the classifiers indi-
cates that all instances in that direction will be attributed to the square
class, and instances in the opposition direction will receive the triangle
label. 55

LIST OF TABLES

Table 1 – Average Ranks for each method, for noise level 0. 45
Table 2 – p-values for the Wilcoxon signed-rank test for noise level 0. 46
Table 3 – Average Ranks for each method, for noise level 0.1. 46
Table 4 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 48
Table 5 – Average Ranks for each method, for noise level 0.2. 48
Table 6 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 49
Table 7 – Average Ranks for each method, for noise level 0.3. 50
Table 8 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 51
Table 9 – Average Ranks for each method, for noise level 0.4. 51
Table 10 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 53
Table 11 – p-values for the combination of Fire-DES++ and MSDS for all noise

levels. The base DS algorithm used was the KNORAU algorithm. 56
Table 12 – p-values for MSDS alone for all noise levels. The base DS algorithm used

was the KNORAU algorithm. 57
Table 13 – Average Ranks for each method, for noise level 0. 67
Table 14 – Wins, ties and losses for noise level 0. 67
Table 15 – p-values for the Wilcoxon signed-rank test for noise level 0. 68
Table 16 – Wins, ties and losses for noise level 0. 68
Table 17 – p-values for the Wilcoxon signed-rank test for noise level 0. 69
Table 18 – Wins, ties and losses for noise level 0. 69
Table 19 – p-values for the Wilcoxon signed-rank test for noise level 0. 70
Table 20 – Wins, ties and losses for noise level 0. 70
Table 21 – p-values for the Wilcoxon signed-rank test for noise level 0. 71
Table 22 – Average Ranks for each method, for noise level 0.1. 72
Table 23 – Wins, ties and losses for noise level 0.1. 72
Table 24 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 73
Table 25 – Wins, ties and losses for noise level 0.1. 73
Table 26 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 74
Table 27 – Wins, ties and losses for noise level 0.1. 74
Table 28 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 75
Table 29 – Wins, ties and losses for noise level 0.1. 75
Table 30 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 76
Table 31 – Average Ranks for each method, for noise level 0.2. 77
Table 32 – Wins, ties and losses for noise level 0.2. 77
Table 33 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 78
Table 34 – Wins, ties and losses for noise level 0.2. 78

Table 35 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 79
Table 36 – Wins, ties and losses for noise level 0.2. 79
Table 37 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 80
Table 38 – Wins, ties and losses for noise level 0.2. 80
Table 39 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 81
Table 40 – Average Ranks for each method, for noise level 0.3. 82
Table 41 – Wins, ties and losses for noise level 0.3. 82
Table 42 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 83
Table 43 – Wins, ties and losses for noise level 0.3. 83
Table 44 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 84
Table 45 – Wins, ties and losses for noise level 0.3. 84
Table 46 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 85
Table 47 – Wins, ties and losses for noise level 0.3. 85
Table 48 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 86
Table 49 – Average Ranks for each method, for noise level 0.4. 87
Table 50 – Wins, ties and losses for noise level 0.4. 87
Table 51 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 88
Table 52 – Wins, ties and losses for noise level 0.4. 88
Table 53 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 89
Table 54 – Wins, ties and losses for noise level 0.4. 89
Table 55 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 90
Table 56 – Wins, ties and losses for noise level 0.4. 90
Table 57 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 91
Table 58 – Average Ranks for each method, for noise level 0. 93
Table 59 – Wins, ties and losses for noise level 0. 94
Table 60 – p-values for the Wilcoxon signed-rank test for noise level 0. 94
Table 61 – Wins, ties and losses for noise level 0. 95
Table 62 – p-values for the Wilcoxon signed-rank test for noise level 0. 95
Table 63 – Wins, ties and losses for noise level 0. 96
Table 64 – p-values for the Wilcoxon signed-rank test for noise level 0. 96
Table 65 – Wins, ties and losses for noise level 0. 97
Table 66 – p-values for the Wilcoxon signed-rank test for noise level 0. 97
Table 67 – Average Ranks for each method, for noise level 0.1. 98
Table 68 – Wins, ties and losses for noise level 0.1. 99
Table 69 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 99
Table 70 – Wins, ties and losses for noise level 0.1. 100
Table 71 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 100
Table 72 – Wins, ties and losses for noise level 0.1. 101
Table 73 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 101

Table 74 – Wins, ties and losses for noise level 0.1. 102
Table 75 – p-values for the Wilcoxon signed-rank test for noise level 0.1. 102
Table 76 – Average Ranks for each method, for noise level 0.2. 103
Table 77 – Wins, ties and losses for noise level 0.2. 104
Table 78 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 104
Table 79 – Wins, ties and losses for noise level 0.2. 105
Table 80 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 105
Table 81 – Wins, ties and losses for noise level 0.2. 106
Table 82 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 106
Table 83 – Wins, ties and losses for noise level 0.2. 107
Table 84 – p-values for the Wilcoxon signed-rank test for noise level 0.2. 107
Table 85 – Average Ranks for each method, for noise level 0.3. 108
Table 86 – Wins, ties and losses for noise level 0.3. 109
Table 87 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 109
Table 88 – Wins, ties and losses for noise level 0.3. 109
Table 89 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 110
Table 90 – Wins, ties and losses for noise level 0.3. 110
Table 91 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 111
Table 92 – Wins, ties and losses for noise level 0.3. 111
Table 93 – p-values for the Wilcoxon signed-rank test for noise level 0.3. 112
Table 94 – Average Ranks for each method, for noise level 0.4. 113
Table 95 – Wins, ties and losses for noise level 0.4. 113
Table 96 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 114
Table 97 – Wins, ties and losses for noise level 0.4. 114
Table 98 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 115
Table 99 – Wins, ties and losses for noise level 0.4. 115
Table 100 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 116
Table 101 – Wins, ties and losses for noise level 0.4. 116
Table 102 – p-values for the Wilcoxon signed-rank test for noise level 0.4. 117

LIST OF ABBREVIATIONS AND ACRONYMS

AUC Area Under the (Receiver Operating Characteristic) Curve

DCS Dynamic Classifier Selection

DES Dynamic Ensemble Selection

DS Dynamic Selection

DSEL Dynamic Selection data set

ENN Edited Nearest Neighbors

GGA Generational Genetic Algorithm

KDN K-Disagreeing Neighbors

KNORAE K-Nearest Oracles Eliminate

KNORAU K-Nearest Oracles Union

LCA Local Class Accuracy

MCB Multiple Classifier Behavior

MCS Multiple Classifier Systems

MSDS Multiple-Set Dynamic Selection

OLA Overall Local Accuracy

PS Prototype Selection

PSO Particle Swarm Optimization

RNG Relative Neighborhood Graph

RMHC Random Mutation Hill Climbing

RoC Region of Competence

RRC Randomized Reference Classifier

SSMA Steady-State Memetic Algorithm

LIST OF SYMBOLS

∅ The empty set

∪ Set union

| · | Set cardinality

← Variable Assignment

∖ Set difference

∧ Logical and

∈ Set membership

CONTENTS

1 INTRODUCTION . 17
1.1 STRUCTURE OF THE DOCUMENT . 19

2 BACKGROUND AND RELATED WORKS 20
2.1 ENSEMBLE METHODS . 20
2.1.1 Pool Generation . 21
2.1.2 Selection . 22
2.1.3 Integration . 23
2.2 DYNAMIC SELECTION . 23
2.2.1 Determination of the Region of Competence 24
2.2.2 The Oracle Model . 25
2.2.3 Determination of Selection Criteria 26
2.2.4 Determination of Selection Mechanism 29
2.3 NOISE AND CLASSIFICATION PROBLEMS 29
2.3.1 Ensemble Learning and Noise . 30
2.4 PROTOTYPE SELECTION . 31
2.4.1 Prototype Selection and Ensemble Methods 33
2.5 THE BAGGING-IH ALGORITHM . 33
2.5.1 Instance Hardness . 34
2.6 DYNAMIC FRIENEMY PRUNING AND FIRE-DES++ 35
2.6.1 Dynamic Frienemy Pruning (DFP) . 35
2.6.2 Fire-DES++ . 35

3 PROPOSED METHOD . 37

4 EXPERIMENTS AND ANALYSES 42
4.1 METHODOLOGY . 42
4.1.1 Experimental Parameters . 42
4.1.2 Data sets . 44
4.2 RESULTS AND ANALYSIS . 44
4.2.1 The Effect of Noise on Dynamic Selection 44
4.2.2 Conclusions on the issue of noise vs. DS 53
4.2.3 The performance of MSDS . 56
4.2.4 The effect of the number of bags on MSDS 58

5 CONCLUSIONS AND FUTURE WORK 59
5.1 FUTURE WORK . 60

REFERENCES . 61

APPENDIX A – TABLES - 10 BAGS 66

APPENDIX B – TABLES - 50 BAGS 92

17

1 INTRODUCTION

In Machine Learning, Ensemble Methods (ZHOU, 2012), (KUNCHEVA, 2014) are a class of
methods which combine multiple, independently trained predictors into one. More specifically,
we are interested in the subclass of methods based on Dynamic Selection (BRITTO; SABOURIN;

OLIVEIRA, 2014), (CRUZ; SABOURIN; CAVALCANTI, 2018), which are methods that attempt to
select the best set of classifiers to predict the label of each test instance. These methods have
been shown to outperform not only techniques that use a single classifier , but also those which
combine all classifiers in an ensemble (BRITTO; SABOURIN; OLIVEIRA, 2014), (CRUZ; SABOURIN;

CAVALCANTI, 2018).
Despite the successes achieved by Ensemble Methods, they are still susceptible to prob-

lems when faced with noisy scenarios, as are most Machine Learning algorithms dealing with
classification problems (FRÉNAY; VERLEYSEN, 2014). Noise, and specifically label noise, as un-
derstood in this work, is any process that changes the true value of a instance’s class label
from its true value. The presence of noise may lead classifiers to overfit on the training data in
an attempt to adjust itself to the noise, which may lead to severe degradation in performance.

In (FRÉNAY; VERLEYSEN, 2014), the authors list four approaches to dealing with noisy data:

1. Adopting probabilistic models, which inherently account for possible variations within
data when making predictions.

2. Modifying the loss function during training, in order to make the classifiers less likely to
overfit on noisy instances.

3. Using Prototype Selection (GARCÍA et al., 2012) techniques to clean up the data set.

4. Using Ensemble Methods.

Prototype Selection techniques (GARCÍA et al., 2012) can be considered an important set of
tools for dealing with noisy scenarios. Methods such as the Edited Nearest Neighbors (ENN)
rule (WILSON, 1972) attempt to remove instances which appear to be inconsistent with the
rest of the data, and therefore can be used in order to attempt a “clean-up” of noisy data.

However, of particular interest to us, are the results in the classification literature which
describe Ensemble Methods as being particularly resilient to these noisy scenarios (FRÉNAY;

VERLEYSEN, 2014), (MELVILLE et al., 2004), making them an interesting tool for dealing with
noise.

We can see then how Ensemble Methods can be used not only to achieve good performance
on classification problems, but also to ensure a degree of resistance to noise in these types of
problems. Nevertheless, Dynamic Selection techniques, which have been on the vanguard of
Ensemble Methods, can be sensitive to the presence of noise. For these techniques, the quality

18

of the Dynamic Selection data set (DSEL), which is used during the process of selecting the
classifiers, is of paramount importance for achieving good performance (CRUZ; CAVALCANTI;

TSANG, 2011), (CRUZ; SABOURIN; CAVALCANTI, 2017a), (CRUZ; SABOURIN; CAVALCANTI, 2018).
Considering the aforementioned issue, in (CRUZ et al., 2018), Cruz et al. propose using

the ENN rule, in combination with the KNN-Equality algorithm to increase the performance
of the Dynamic Frienemy Pruning technique (OLIVEIRA; CAVALCANTI; SABOURIN, 2017), a
proposal which they name the Fire-DES++ framework. The ENN rule is used as a means
to perform a cleaning of the data set, in order to avoid the case in which classifiers are
not pruned from the ensemble due to the presence of noisy instances or outliers. However,
in (FRÉNAY; VERLEYSEN, 2014), the authors argue that noise removal techniques can cause
excessive removal of instances, removing instances that are not noise or distorting the border
of classes, since the instances near the border of classes tend to be inherently hard and prone
to being removed.

Taking these matters into account, in this work, we attempt to answer the following
questions:

1. Just how deleterious is the presence of noise to Dynamic Selection algorithms?

2. How do the effects of noise on Dynamic Selection algorithms manifest themselves? Are
all algorithms equally affected?

3. Is there an alternative filtering approach to that of the Fire-DES++ algorithm, which
does not incur the risk of excessive removal?

In order to answer the first two questions, we perform experiments on 64 public data sets,
with varying noise levels and a noise-free scenario as a baseline. We observe how different
Dynamic Selection algorithms perform under these conditions, and compare their behavior
both against each other and on different noise levels.

Considering the third question, we propose replacing the ENN filtering step in (CRUZ et al.,
2018) with a similar bootstrapping procedure as that proposed by Walmsley et al. in (WALM-

SLEY et al., 2018). Instead of a single DSEL set, filtered by ENN, we propose combining the
output of several classifier ensembles, each using a bootstrapped Dynamic Selection set based
on the original DSEL, using Instance Hardness as a means to determine the selection proba-
bility of each instance in the DSEL. As in (WALMSLEY et al., 2018), we chose this probabilistic
filtering approach for its ability to filter out the noisy data, while still allowing for the retention
of hard instances in the class borders, with non-zero probability. The results for our proposal
are compared not only against the method of Cruz et al., but also against the traditional Over-
all Local Accuracy, Local Class Accuracy (WOODS; KEGELMEYER; BOWYER, 1997), K-Nearest
Oracles-Eliminate and K-Nearest Oracles-Union (KO; SABOURIN; BRITTO, 2008) algorithms.

Our results show that the performance of most Dynamic Selections algorithms is heavily
degraded by the presence of noise, to the point of losing to a simple combination of all

19

classifiers in the ensemble. We present an analysis pointing to likely failure modes of these
algorithms, and also discuss how the K-Nearest Oracles-Union manages to distinguish itself
from the other methods, and maintain some degree of resistance to noise.

Furthermore, we find that our proposed method can, under certain circumstances, help
Dynamic Selections algorithm maintain their superiority, even under noise scenarios.

1.1 STRUCTURE OF THE DOCUMENT

This work is organized as follows. In Chapter 2, we present the reader with the fundamental
concepts of Ensemble Methods, Dynamic Selection and Prototype Selection, as well as discuss
the interplay between these concepts. We also discuss the works which served as the basis
for this investigation. In Chapter 3, we detail our proposed method, presenting a step-by-step
breakdown of its working. In Chapter 4, we discuss our experimental methodology and the
rationale behind each of our choices in developing the experiment. We then present our results
and discuss our findings. Finally, in Chapter 5 we present a summary of our findings and
suggest possible future lines of investigation.

20

2 BACKGROUND AND RELATED WORKS

In this chapter, we present fundamental concepts related to Ensemble Methods, Dynamic Se-
lection, Noise, Prototype Selection, the Bagging-IH algorithm and the Fire-DES++ algorithm.
These concepts are presented in order from the more basic to the more specific, allowing the
reader to build an understanding of the area and where this work fits into it.

2.1 ENSEMBLE METHODS

In Machine Learning, Ensemble Learning techniques (KUNCHEVA, 2014), (ZHOU, 2012) are
a family of techniques that combine multiple predictors, trained independently and on the
same data set, into a single predictor . These techniques combine the outputs of the multiple
classifiers into a single output, used as the output of the system. The field is also referred to
as Ensemble Methods and Multiple Classifier Systems (in the case of classification problems),
and these terms are used interchangeably in this work.

Although it is common in Machine Learning to utilize a single model trained on the whole
of the training data set, the central assumption of Ensemble Methods is that by applying
ensemble techniques one can obtain a pool (a set of models) with complementary competences,
or equivalently, a diverse ensemble. By complementary competences, we mean that we expect
to models to not all fail in the same manner, or, equivalently, to fail differently in different
instances.

There are multiple approaches to Ensemble Learning, and while some of them are focused
on regression problems, this work only concerns itself with classification problems. Thus, it is
accurate to say that the present work is situated in the field of Multiple Classifier Systems
(hereafter, MCS).

In (BRITTO; SABOURIN; OLIVEIRA, 2014) the authors propose a taxonomy of MCS, and in
doing so, delineate three main phases of the use of MCS. The phases are:

1. Pool Generation: The process of creating the pool of classifiers which will be used
for classification. The authors distinguish between homogeneous and heterogeneous sys-
tems, depending on whether all classifiers in the pool are of the same type or not.

2. Selection: The selection of which classifiers will be used in generating the output of
the system. These techniques used in these steps can be broadly subdivided into Static
Selection and Dynamic Selection schemes. In Dynamic Selection schemes, the system
selects a subset of the pool of classifiers when classifying each test instance. On the
other hand, in Static Selection schemes, once the choice of classifiers is made, it remains
unchanged. Furthermore, it is possible to say that some methods do not perform classifier
selection, since all classifiers are included in the final pool.

21

3. Integration: The combining of the output of the individual classifiers in order to gener-
ate the final prediction of the system. This process can be performed based on the class
label predicted by each classifier, or on the estimated class probabilities, when available.

We shall now discuss each of the phases above in more detail.

2.1.1 Pool Generation

The pool generation process is the first step in any Multiple Classifier System. It is in this
phase that we must take care to generate diverse classifiers. With this in mind, we must now
make a small aside to discuss the topic of diversity in ensembles.

In (BRITTO; SABOURIN; OLIVEIRA, 2014), the authors note that diversity is paramount
to ensembles, and also that we can naturally expect diversity from heterogeneous ensemble,
but can nevertheless achieve diversity in homogeneous ensembles. This can be done by either
varying the initialization of the model (such as in the case of the weights of a Neural Network),
by varying the training examples to which the model has access (such as in the case of the
Bagging algorithm (BREIMAN, 1996)) or by varying the features of the data that the model
can see (such as in the Random Subspace algorithm (HO, 1998)).

For a comparative study between different measures of diversity, their correlation with
ensemble accuracy, and the correlations between measures, we recommend the work in (SHIPP;

KUNCHEVA, 2002), which also highlights the difficulty in precisely defining and quantifying
diversity.

Coming back to the question of how classifier pools can be generated, we can turn to
the work in (WOŹNIAK; GRAÑA; CORCHADO, 2014), which identifies two main topologies for
Multiple Classifier Systems: parallel and serial. In parallel topologies, all classifiers will receive
the same data and produce outputs, while in serial topologies not all classifiers will be called
upon to produce outputs, the assumption being that classifiers further down the line are only
used when the more “basic” classifiers fail to produce an output with enough confidence.

We have already mentioned two examples of parallel topologies, the Bagging and the
Random Subspace algorithms. Since ideas from Bagging will be present in several moments
during our discussion, and given that they inform decisions on the design of our proposed
method, we would like to now describe the Bagging algorithm in more detail. Algorithm 1
describes the functioning of the Bagging algorithm.

Note that this algorithm describes the classifier pool generation step. At test time, the
outputs of the pool can be combined using a suitable integration scheme, though this is usually
done through a simple majority voting. Integration schemes are presented further ahead in this
document.

Now, in order to finalize our discussion on parallel topologies, we would like to highlight
the Random Forest algorithm (BREIMAN, 2001), which combines elements of both the Bagging
and Random Subspace algorithms. The authors generate a pool of decision trees using the

22

Algorithm 1: The Bagging algorithm
Input : The training data set 𝑇

The number of bootstrapped sets 𝑚
The bootstrapped set size 𝑛𝑏

A base classifier 𝐶
Output: A pool of classifiers 𝑃

1 begin
2 𝑃 ← ∅
3 for i from 1 to 𝑚 do
4 𝐵𝑖 ← ∅ ; /* 𝐵𝑖 are the bootstrapped training sets */
5 for j from 1 to 𝑛𝑏 do
6 Add an instance 𝑥𝑗 ∈ 𝑇 to 𝐵𝑖, sampled with replacement.
7 end
8 Train a classifier 𝐶𝑖 using 𝐵𝑖

9 𝑃 ← 𝑃 ∪ {𝐶𝑖}
10 end
11 end

Bagging algorithm, but, at each tree node split, use only a random subset of the features to
perform the split decision. The random forest algorithm has been applied successfully to many
different domains.

Lastly, considering the serial topologies, we would like to discuss the AdaBoost algorithm
(FREUND; SCHAPIRE, 1997), (SCHAPIRE, 1999), which enjoys wide adoption in the literature.
The central idea behind the AdaBoost algorithm lies on training over several steps a set of
classifiers, in which each classifier is specialized in classifying the examples misclassified during
the previous step. This can be achieved by setting different weights to the term corresponding
to each training example in the loss function, according to the error associated to that example.

2.1.2 Selection

In this stage, the classifiers which will be used to produce the final output of the system
are selected. In Static Selection, these classifiers are selected only once, and then used for
classifying all instances in the test set. In (CRUZ; SABOURIN; CAVALCANTI, 2018), the authors
point out that the most common measures for selecting classifiers are diversity and accuracy,
while also noting that techniques such as greedy search and evolutionary algorithms have also
been used to this end.

Opposite to Static Selection, we have Dynamic Selection (DS) approaches, which are the
focus of this work. The core idea behind DS is that, in a pool of diverse classifiers, different
classifiers will be specialized in different types of instances, which lie in different regions in the
data set. We will dedicate a more complete exposition to DS approaches, and shall come to
it shortly.

23

2.1.3 Integration

The final step in Multiple Classifier Systems is the integration of the outputs of the classifiers
to form the final answer of the system. In (CRUZ; SABOURIN; CAVALCANTI, 2018), the authors
delineate three different strategies for integration of the outputs:

1. Non-trainable approaches: Which always combine the classifiers according to a fixed
rule.

2. Trainable approaches: Which learn to combine the classifiers in an optimal manner.

3. Dynamic weighting rules: Which attribute instance-specific weights to each classifiers.

Non-trainable approaches are frequently used in the literature. Common examples are the
Majority Vote Rule, the Sum Rule, the Product Rule, the Max Rule and the Min Rule. For a
discussion of these rules and their derivation under a Bayesian approach, see (KITTLER, 1998).
We emphasize here the Majority Vote rule, which is widely used and also used in the present
work. The Majority Vote rule simply attributes to a instance the most commonly predicted
class amongst the selected classifiers.

The authors in (CRUZ; SABOURIN; CAVALCANTI, 2018) note that trainable approaches have
been found to often outperform non-trainable approaches, in spite of the latter’s wide presence
in the literature. For example, in (Cruz; Cavalcanti; Ren, 2010), the authors apply a Multi-layer
Perceptron in the Integration step, and find that it achieves superior performance to that of
all non-trainable rules.

Finally, the authors of the aforementioned survey also note that dynamic weighting rules
are, after a manner, similar to Dynamic Selection approaches, though the former consider the
output of all (previously selected) classifiers in producing the output of the system.

2.2 DYNAMIC SELECTION

We elaborate now on the topic of Dynamic Selection methods. We can say that the objective
of Dynamic Selection algorithms is: Given a test pattern 𝑥𝑞, a pool of classifiers 𝑃 , and a
Dynamic Selection set 𝐷𝑆𝐸𝐿 with which to evaluate the performance of the classifiers in the
pool, to select the subset of classifiers 𝑃

′ ⊆ 𝑃 we believe to be the most fit to classify 𝑥𝑞.
In (BRITTO; SABOURIN; OLIVEIRA, 2014), the authors perform a review of the literature and

compare the performance of Dynamic Selection against the single best classifier in the pool,
a Static Selection approach and a combination of all classifiers in the pool, and find Dynamic
Selection to be superior to the alternatives.

We should note here that Dynamic Selection methods can be further divided into two
types: Dynamic Classifier Selection algorithms, and Dynamic Ensemble Selection algorithms.
The former selects only the single most competent classifier to classify an instance, while the
latter forms an ensemble which may contain multiple classifiers.

24

In (CRUZ; SABOURIN; CAVALCANTI, 2018), the authors identify three main phases to the
selection process, namely, definition of the Region of Competence, determination of selection
criteria, and determination of selection mechanism. We will treat each step separately here.

2.2.1 Determination of the Region of Competence

For each test pattern 𝑥𝑞, we must determine which portions of the feature space will be used
to evaluate the classifiers in 𝑃 . More precisely, we must choose which instances in 𝐷𝑆𝐸𝐿

will be considered when evaluating which classifiers will be selected. This set of instances is
commonly referred to as the Region of Competence (RoC).

In (CRUZ; SABOURIN; CAVALCANTI, 2018), the authors divide the methods for defining the
RoC into four types. The first type is the group of methods that use clustering techniques
to partition the DSEL. During the classification of a test instance 𝑥𝑞, the instance is first
attributed to a cluster, and the elements belonging to that cluster define the RoC. A simple
implementation of such a method is given in (KUNCHEVA, 2000), in which the data set is
partitioned into clusters, and the most competent classifier is selected for each cluster. Then,
at test time, each instance 𝑥𝑞 is attributed to its closest cluster centroid, and classified by the
classifier associated to that cluster. The major drawback of these clustering approaches is that
they rely on the quality of the produced clusters, and the clusters may either fail to capture the
structure of the local area, or end up grouping multiple regions with different characteristics,
into a single cluster.

The second type of algorithm consists of those methods which use the k-Nearest Neighbors
algorithm to define the RoC. For each pattern 𝑥𝑞, its k-Nearest Neighbors on the 𝐷𝑆𝐸𝐿 set
are determined, and only those patterns are used in the selection of classifiers. This is a very
common approach, used for example in the Overall Local Accuracy (OLA) and Local Class
Accuracy (LCA) algorithms (WOODS; KEGELMEYER; BOWYER, 1997), the K-Nearest Oracles-
Union (KNORAU) and K-Nearest Oracles-Eliminate (KNORAE) algorithms (KO; SABOURIN;

BRITTO, 2008), the Multiple Classifier Behavior (MCB) algorithm (HUANG; SUEN, 1995), Apri-
ori and Aposteriori (GIACINTO; ROLI, 1999) algorithms.

The third type of algorithm are those that use a potential function model to define the RoC.
In those algorithms, all instances of 𝐷𝑆𝐸𝐿 are considered to belong to the RoC, but their
influence on the estimation of competence is weighted by their distance to 𝑥𝑞, according to a
potential function, such that the farther the instances, the lower their influences. Commonly
adopted potential functions are those based on a Gaussian distribution, in which the weight
of an instances 𝑥𝑖 ∈ 𝐷𝑆𝐸𝐿 is of the form 𝑤𝑖 ∝ −𝑒𝑥𝑝(𝑑(𝑥𝑖, 𝑥𝑞)).

An important exponent of the class of algorithms which use potential functions is the Ran-
domized Reference Classifier (RRC) algorithm (Woloszynski; Kurzynski, 2010), (WOLOSZYNSKI;

KURZYNSKI, 2011), which has achieved some of the best results reported in the literature. The
RRC algorithm is based on the homonymous concept of the Randomized Reference Classifier.
Consider a classification problem with 𝑀 classes. Given an instance of the 𝐷𝑆𝐸𝐿 set, 𝑥𝑁𝑁 ,

25

and a classifier 𝐶𝑗 which produces an 𝑀 -dimensional vector of predicted class probabilities.
The corresponding RRC is a classifier modeled by 𝑀 random variables Δ𝑖, such that the ex-
pected value of Δ𝑖 is equal to the class probability for class 𝑖 predicted by 𝐶𝑗. The probability
that the RRC would have correctly classified 𝑥𝑁𝑁 is calculated and denoted by 𝑃 (𝐶𝑗, 𝑥𝑁𝑁).
This probability is computed for all instances belonging to 𝐷𝑆𝐸𝐿, and the competence of a
classifier is computed as the sum of the terms 𝑃 (𝐶𝑗, 𝑥𝑘), 1 ≤ 𝑘 ≤ |𝐷𝑆𝐸𝐿|, with each term
being scaled by a factor of −𝑒𝑥𝑝(𝑑(𝑥𝑘, 𝑥𝑞))

The final type of algorithm for determining the RoC are those that change the view of
the data set to the decision space. These algorithms, instead of working on the space of the
features of the instances, actually considers the space of their output profiles. The output
profile of an instance is simply the vector of the class labels attributed by each classifier in
the pool to that instance. These algorithms then use the output profile of the instances in
𝐷𝑆𝐸𝐿 and of 𝑥𝑞 to find the instances in 𝐷𝑆𝐸𝐿 most similar to 𝑥𝑞. A well-known example
of algorithms which work in the decision space is the MCB algorithm (HUANG; SUEN, 1995),
which computes the local accuracy of each classifier considering the k-Nearest Neighbors of
the test pattern 𝑥𝑞 in the decision space.

2.2.2 The Oracle Model

Before we proceed with our discussion, we must first introduce an important theoretical tool
in the MCS toolbox, the Oracle model. Introduced in (KUNCHEVA, 2002), this model defines
an ideal selection scheme as follows: if any classifier in the pool 𝑃 correctly classifies the test
pattern 𝑥𝑞, then the ensemble is said to correctly classify 𝑥𝑞.

Clearly, this scheme can not be realized without access to the actual class label of 𝑥𝑞, and
therefore only actually exists as an idealized model. Nevertheless, it can be used as a means to
establish a theoretical upper bound on the performance of selection schemes on a given data
set. One should exercise caution, however, when using to Oracle model, since it can be a far
too optimistic upper bound.

Souza et al. investigate this exact issue in (SOUZA et al., 2017). The authors note that
a gap between the Oracle performance and actual observed performance of DCS techniques
has been reported (DIDACI et al., 2005), (CRUZ et al., 2015), and set out to further investigate
the issue. A method for generating classifier pools which ensures 100% Oracle accuracy on
the training set is proposed, named the Self-Generating Hyperplanes model, that works by
creating linear classifiers until each pair of examples in the set is correctly separated by at
least one classifier. Nevertheless, the accuracy of the tested DS algorithms falls way short of
the theoretical 100%. The authors argue that this indicates that the Oracle, with its ability to
chose from any classifier in the pool, is a poor guide for generating classifiers to be used in a
DS scheme, since these schemes often rely only on local information, and therefore can only
evaluate the classifiers according to this view of the data.

These results not withstanding, the Oracle model still informs many algorithms in the

26

literature, and is therefore an important concept to keep in mind. We shall shortly come to
the discussion of these algorithms.

2.2.3 Determination of Selection Criteria

Returning from our brief detour, we now tackle the issue of the second step in the Dynamic
Selection process - the determination of the selection criteria. These are the criteria used to
estimate the competence of each classifier, i.e. to estimate how likely it is to be a good fit
for classifying 𝑥𝑞. In (CRUZ; SABOURIN; CAVALCANTI, 2018), the authors divide the selection
criteria into two groups: group-based measures and individual-based measures.

Group-based measures consider the overall composition of the final ensemble when selecting
the classifiers which will compose it. While the methods vary, their central idea is to ensure
that each classifier will contribute to the overall performance and robustness of the pool. These
methods can be further subdivided into methods that consider Diversity, Data Handling and
Ambiguity.

On the other hand, individual-based measures, as the name implies, evaluate each classi-
fier separately during the selection of the most competent classifiers. The authors in (CRUZ;

SABOURIN; CAVALCANTI, 2018) further subdivide them into the following categories: Ranking,
Accuracy, Probabilistic, Behavior, Oracle, Data complexity and Meta-learning.

In this work, we focus on algorithms based on accuracy and the Oracle model. Methods
based on accuracy consider the accuracy of the classifiers in the local region. From this class,
we chose to use the OLA and LCA algorithms. From the class of selection algorithms which
use the concept of Oracle, we chose the KNORAE and KNORAU algorithms. We will now
take advantage of this opportunity to discuss these algorithms.

The OLA algorithm works by simply selecting the most accurate classifier in the local
region. Algorithm 2 details the process of selecting the most competent classifier.

Algorithm 2: The Overall Local Accuracy Algorithm
Input : The query pattern 𝑥𝑞

The classifier pool 𝑃
The 𝐷𝑆𝐸𝐿 set
The value of 𝑘 for the 𝑘-nearest neighbors classifier

Output: The most accurate classifier 𝑐*

1 begin
2 𝜃 ← 𝑘𝑁𝑁(𝑥𝑞) ; /* The k-Nearest Neighbors compose the region of

competence. */
3 foreach 𝑐𝑗 ∈ 𝑃 do
4 𝛿𝑗,𝑞 ← 1

𝑘
|{𝜃𝑘 : 𝑙𝑎𝑏𝑒𝑙(𝜃𝑘) = 𝑐𝑗(𝜃𝑘)}|

5 end
6 𝑐* ← 𝑐𝑀𝐴𝑋 , 𝑀𝐴𝑋 = argmax

𝑗
𝛿𝑗,𝑞

7 end

27

Line 4 of Algorithm 2 indicates how the competence of each classifier is estimated: it is
based on the fraction of correctly classified instances in the Region of Competence. Line 6
defines how the most competent classifier is selected - it is simply the classifier with the highest
competence as estimated in Line 4.

The LCA algorithm operates in a similar manner, to the OLA algorithm. However, it only
takes into account those instances in the Region of Competence to which classifier 𝑐𝑗 attributed
the same label as it attributed to 𝑥𝑞. Algorithm 3 details the working of the LCA algorithm.

Algorithm 3: The Local Class Accuracy algorithm
Input : The query pattern 𝑥𝑞

The classifier pool 𝑃
The 𝐷𝑆𝐸𝐿 set
The value of 𝑘 for the 𝑘-nearest neighbors classifier

Output: The most accurate classifier 𝑐*

1 begin
2 𝜃 ← 𝑘𝑁𝑁(𝑥𝑞) ; /* The k-Nearest Neighbors compose the region of

competence. */
3 foreach 𝑐𝑗 ∈ 𝑃 do
4 𝑐𝑞 ← 𝑐𝑗(𝑥𝑞)
5 𝛿𝑗,𝑞 ← 1

𝑘
|{𝜃𝑘 : 𝑙𝑎𝑏𝑒𝑙(𝜃𝑘) = 𝑐𝑗(𝜃𝑘) ∧ 𝑐𝑗(𝜃𝑘) = 𝑐𝑞}|

6 end
7 𝑐* ← 𝑐𝑀𝐴𝑋 , 𝑀𝐴𝑋 = argmax

𝑗
𝛿𝑗,𝑞

8 end

Considering now the algorithms which use the concept of Oracle, we consider the KNORAU
algorithm. This algorithm selects a pool of competent classifiers, instead of a single classifier.
Any classifier that correctly classifies at least one instance in the Region of Competence is
considered competent, and added to the final pool.

It is important to note here that, during the integration step, each classifier will be assigned
a number of votes proportional to the number of instances it correctly classified, that is,
proportional to 𝛿𝑗,𝑞.

The KNORAE algorithm on the other hand will only consider competent those classifiers
which correctly classify all instances in the RoC. It starts with a neighborhood size of 𝑘, and
if no classifier can correctly predict the label of all 𝑘 instances in the RoC, the algorithm
decrements 𝑘 by 1 and attempts again to find competent classifiers.

Note that Line 3 of Algorithm 5 means that the algorithm will continue to run unless the
size of the RoC reaches zero, or at least one competent classifier has been found (meaning
that 𝑃 is non-empty, see Lines 12-16).

Finally, we would like to briefly discuss some algorithms in the Meta-learning family, due
to their excellent results, and due to the fact that they present a different paradigm. The
methods we want to discuss are those based on the META-DES algorithm (CRUZ et al., 2015).
The META-DES technique treats the problem of estimating the competence of classifiers as

28

Algorithm 4: The KNORAU algorithm
Input : The query pattern 𝑥𝑞

The classifier pool 𝑃
The 𝐷𝑆𝐸𝐿 set
The value of 𝑘 for the 𝑘-nearest neighbors classifier

Output: The selected pool 𝑃
′

1 begin
2 𝜃 ← 𝑘𝑁𝑁(𝑥𝑞) ; /* The k-Nearest Neighbors compose the region of

competence. */

3 𝑃
′ ← ∅

4 foreach 𝑐𝑗 ∈ 𝑃 do
5 𝛿𝑗,𝑞 ← 1

𝑘
|{𝜃𝑘 : 𝑙𝑎𝑏𝑒𝑙(𝜃𝑘) = 𝑐𝑗(𝜃𝑘)}|

6 if 𝛿𝑗,𝑞 > 0 then
7 𝑃

′ ← 𝑃
′ ∪ {𝑐𝑗}

8 end
9 end

10 end

Algorithm 5: The KNORAE algorithm
Input : The query pattern 𝑥𝑞

The classifier pool 𝑃
The 𝐷𝑆𝐸𝐿 set
The value of 𝑘 for the 𝑘-nearest neighbors classifier

Output: The selected pool 𝑃
′

1 begin
2 𝑆 ← 𝑓𝑎𝑙𝑠𝑒
3 while 𝑘 > 0 and !𝑆 do
4 𝜃 ← 𝑘𝑁𝑁(𝑥𝑞) ; /* The k-Nearest Neighbors compose the region of

competence. */

5 𝑃
′ ← ∅

6 foreach 𝑐𝑗 ∈ 𝑃 do
7 𝛿𝑗,𝑞 ← 1

𝑘
|{𝜃𝑘 : 𝑙𝑎𝑏𝑒𝑙(𝜃𝑘) = 𝑐𝑗(𝜃𝑘)}|

8 if 𝛿𝑗,𝑞 = 1 then
9 𝑃

′ ← 𝑃
′ ∪ {𝑐𝑗}

10 end
11 end
12 if 𝑃

′ = ∅ then
13 𝑘 ← 𝑘 − 1
14 else
15 𝑆 ← 𝑡𝑟𝑢𝑒
16 end
17 end
18 end

a meta-learning problem, in which a meta-classifier is trained to estimate the competence of
classifier 𝑐𝑗 ∈ 𝑃 in relation to the problem of predicting the class label of 𝑥𝑞.

29

In (CRUZ; SABOURIN; CAVALCANTI, 2015), the authors perform an evaluation concerning
the choice of model for the meta-classifier, and find that the Naive Bayes algorithm offers the
best results, and thus it is adopted as the meta-classifier. Furthermore, the authors investigate
whether using Dynamic Selection, Dynamic Weighting or a combination (a hybrid) of both is
better for accuracy, and conclude that the hybrid approach is the best approach.

Finally, in (CRUZ; SABOURIN; CAVALCANTI, 2017b), the authors evolve the META-DES
framework further, by performing meta-feature selection using Particle Swarm Optimization
(PSO) techniques. Each solution in the PSO optimization process consists of a set of meta-
features, which are used to train a meta-classifier. The optimization objective (i.e. the value
to be minimized) of the PSO algorithm is based on the distance of the competence estimated
by the meta-classifier and the competence estimated by the Oracle for each instance. The
competence estimated by the Oracle for a classifier 𝑐𝑗 is simply 1 if the classifier 𝑐𝑗 correctly
classifies the instance, and 0 otherwise. The authors evaluate this new scheme and find that
it significantly outperforms all other 10 state-of-the-art algorithms it was compared against.

2.2.4 Determination of Selection Mechanism

The final step defined in (CRUZ; SABOURIN; CAVALCANTI, 2018) is choosing whether only
the most competent classifier will be used in classifying 𝑥𝑞 (Dynamic Classifier Selection)
or all classifiers that achieve a certain level of competence will be used (Dynamic Ensemble
Selection). The authors point out that choosing multiple classifiers has the effects of avoiding
the risk involved in trusting one single classifier, and also of doing away with the need to break
ties in the event that multiple classifiers achieve the same level of competence.

2.3 NOISE AND CLASSIFICATION PROBLEMS

Having exposed the reader to the central concepts of Ensemble Methods and Dynamic Se-
lection, we now approach the issue of the effect of the presence of noise on classification
problems, since this work is focused on the effects of noise on Dynamic Selection algorithms.
Nevertheless, we must first define what we mean by noise. Here, we adopt the definition used
in (WALMSLEY et al., 2018), in which noise is considered as any process that changes the true
value of a variable from its original value.

Noise could be introduced into data for several reasons, such as:

• Measurement errors (systematic or otherwise).

• On a physical channel, effects such as thermal noise or electromagnetic interference.

• Human mislabeling of data.

In the context of classification problems, we differentiate between two types of noise:
feature noise, and label noise. The former acts on the features that describe an instance

30

in a data set, while the latter acts on its class label. The present work deals with the issues
caused by the presence of label noise.

In (FRÉNAY; VERLEYSEN, 2014), the authors discuss at length the negative effects of noise
on classification problems, and we draw heavily from their framework and findings. In their
work, the authors classify the possible variations of label noise into three broad categories:

• Noisy completely at random: The introduced noise is not correlated to either the
label or the features of the instance.

• Noisy at random: The introduced noise depends on the label of the instance.

• Noisy not at random: The introduced noise depends on both the features and the
label of the instance.

The authors of (FRÉNAY; VERLEYSEN, 2014) also enumerate different approaches to dealing
with noise. The first of these approaches is by making the models themselves robust to noise,
by means of adopting a loss function during training that is less sensitive to the presence of
noise. Furthermore, the authors echo results in the literature which describe how Ensemble
Methods can, under certain circumstances, lead to greater robustness to noise. We will soon
discuss these results with more care.

The second approach is by applying filtering to the data in an attempt to clean the data.
To this end, one may employ Prototype Selection (PS) techniques, which attempt to select
only the most relevant examples in a data set. We shall discuss PS techniques in more detail
in the next section, and in particular their application to data cleaning.

Moreover, the authors also consider the case of algorithms that achieve robustness to
noise by taking a probabilistic approach. Finally, the authors discuss modifications to classic
algorithms such as the SVM, Decision Trees, and Neural Networks in order to make them
more robust to noise.

We are mainly interested in the data filtering and ensemble approaches, as these form the
bases of the approaches which motivate our work, and will now discuss them. As a compre-
hensive treatment of noise in the general case is beyond the scope of this work, we refer the
reader to aforementioned work of Frénay and Verleysen for further details.

2.3.1 Ensemble Learning and Noise

As discussed previously, the authors in (FRÉNAY; VERLEYSEN, 2014) discuss the use of Ensemble
Methods as a possible approach to dealing with noise. In fact, a number of authors have
discussed how Ensemble Learning can be helpful in dealing with noise. In (DIETTERICH, 2000),
the authors conduct experiments to assess how the C4.5 algorithm (QUINLAN, 1993) performs
under conditions of noise. While the AdaBoost algorithm seems to be the best alternative for
constructing ensembles on noise-free scenarios, as the noise level rises, the Bagging algorithm
proves to be much more robust.

31

These results are also echoed by (MELVILLE et al., 2004), who perform experiments involv-
ing missing features, label noise, and feature noise. Again employing the C4.5 algorithm, the
authors find that Bagging is more robust to noise than both AdaBoost and the base classi-
fier used to generate the pool. Furthermore, this work too reports that the performance of
AdaBoost degrades as the noise level rises, to the point of being inferior to that of the base
classifier. Finally, the authors in (KHOSHGOFTAAR; HULSE; NAPOLITANO, 2011) compare four
different learners, four variations of Bagging and four variations of Boosting and also find
that Bagging is the most suitable alternative, this time not only on noisy scenarios but also
scenarios involving imbalanced data.

These two works illustrate an important point: while the use of Ensemble Algorithms can
help in alleviating issues involving noise, the choice of algorithm is crucial. In fact, Long and
Servedio show in (LONG; SERVEDIO, 2009) that a large class of Boosting algorithms based on
convex potential functions are highly susceptible to the effects of random classification noise.

The results concerning Boosting not withstanding, the Bagging algorithm has found success
in applications related to classification under noisy scenarios. In (ABELLÁN; MASEGOSA, 2012),
the authors employ credal decision trees (ABELLÁN; MORAL, 2003) to construct ensembles
using Bagging. Credal decision trees are based on the concept of imprecise information gain,
which creates estimated intervals for the prior probabilities of classes, and for the conditional
probabilities of the classes given the features, based on the observed frequency of class labels.
This estimates are used inside the class probability terms on the equation for evaluating
Information Gain, which is the criterion used to determine when there should be a node
split in the tree. The authors conduct experiments comparing the credal tree ensemble with
an ensemble based on C4.5, and show that on noise levels of 20% and 30%, their proposed
ensemble of credal trees is superior.

While the Bagging-IH algorithm of Walmsley et al. (WALMSLEY et al., 2018) also falls into
the category of methods based on Bagging and designed to deal with noise, we will discuss it
in the section after the next. This is due to the fact that we would like to first introduce other
concepts related to Prototype Selection, and also because it necessitates a more complete
treatment, since we make heavy use of it in this work.

2.4 PROTOTYPE SELECTION

As explained previously, one possible option for dealing with the issue of noise is applying
Prototype Selection. In (GARCÍA et al., 2012), the authors define the problem of Prototype
Selection as that of finding a subset of the original instances in a data set which can be
used for classification. However, the criteria which are used to select the instances which will
compose the reduced set may vary. The objective of the selection can be just reducing the
storage needs, trying to improve classification accuracy, or both. With these possible objectives
in minds, García et al. divide PS techniques into three broad categories:

32

• Condensation techniques: which seek to remove instances from the “interior” of class,
i.e. instances that are far from the borders between classes, while preserving those in-
stances that make-up the border. The motivation for this approach is the idea that one
does not need the innermost instances to define the classification surfaces, and there-
fore these instances can be removed, thus saving space, without harming classification
accuracy.

• Edition techniques: which try to remove borderline instances, or instances that seem
to be noisy. These techniques mostly aim to improve classification accuracy.

• Hybrid techniques: which try to reduce the set of instances as much as possible,
without sacrificing accuracy.

We are mostly interested in Edition and Hybrid techniques, for their use in removing noise
from data and reducing the computational requirements of the classification procedure. In
particular, we will repeatedly discuss the use of the Edited Nearest Neighbors (ENN) algorithm
(WILSON, 1972), and draw comparisons between it and other solutions for noise removal. For
this reason, we now use this opportunity to explain the functioning of the ENN algorithm.

Algorithm 6: The ENN algorithm
Input : The input data set 𝑇

The value of 𝑘 for the 𝑘-nearest neighbors classifier
Output: The filtered data set 𝑇

′

1 begin
2 𝑇

′ ← 𝑇
3 foreach 𝑥 ∈ 𝑇 do
4 𝑝𝑟𝑒𝑑(𝑥) = 𝑘𝑁𝑁(𝑥) ; /* The class of 𝑥 according to the kNN

classifier */
5 if 𝑝𝑟𝑒𝑑(𝑥) ̸= 𝑙𝑎𝑏𝑒𝑙(𝑥) then
6 𝑇

′ ← 𝑇 ∖ {𝑥}
7 end
8 end
9 end

As Line 3 and 4 of Algorithm 6 indicate, we iterate over all instances in the set computing
the class predicted by a kNN classifier. If the predicted class does not match the actual class,
the instance is removed from the final set, as show in Lines 5-7.

In their experimental comparisons, the authors of (FRÉNAY; VERLEYSEN, 2014) highlight
the Random Mutation Hill Climbing (RMHC) (SKALAK, 1994), Steady-State Memetic Algo-
rithm (SSMA) (GARCÍA; CANO; HERRERA, 2008) and Relative Neighborhood Graph (RNG)
(SÁNCHEZ; PLA; FERRI, 1997) algorithms as some of the best performing methods. Further
discussions about PS methods can be found both in the aforementioned article, as well as in
(WILSON; MARTINEZ, 2000), which considers a different, but not completely separate, set of
PS techniques.

33

2.4.1 Prototype Selection and Ensemble Methods

Turning our attention to the use of Prototype Selection to increase the performance of Dynamic
Selection methods, we can find multiple works using PS techniques to improve the quality of
the 𝐷𝑆𝐸𝐿 set. In (CRUZ; CAVALCANTI; TSANG, 2011), the authors utilize the ENN algorithm
to filter the 𝐷𝑆𝐸𝐿 data set before employing the KNORAE algorithm for ensemble selection.
The authors also employ an adaptive KNN algorithm (WANG; NESKOVIC; COOPER, 2007) to
define the Region of Competence for Dynamic Selection. The adaptive KNN algorithm works
by weighting the distance of a instance 𝑥𝑖 to a query instance 𝑥𝑞 according to how close 𝑥𝑖

is to instances of a different class. Thus, instances closer to other classes are considered more
distant to 𝑥𝑞, and less favored than those which are far from another class.

The work in (CRUZ; SABOURIN; CAVALCANTI, 2018) expanded on the work in (CRUZ; CAV-

ALCANTI; TSANG, 2011) by considering 10 Dynamic Selection techniques and 30 data sets,
and found that 7 of the 10 evaluated Dynamic Selection algorithms had their classification
accuracy significantly increased by using both the ENN algorithm and the adaptive KNN al-
gorithm. Furthermore, the authors found that while using only the adaptive KNN or only the
ENN algorithm lead to statistically equivalent results, using both in combination is significantly
superior to using either technique alone.

In (CRUZ; SABOURIN; CAVALCANTI, 2017a), the authors consider the same 30 data sets as
in the previously mentioned work, and 6 Dynamic Selection techniques, but this time consider
6 PS techniques - 3 edition and 3 hybrid techniques. Representing the edition techniques,
RHMC, RNG and the ENN algorithm were chosen. Meanwhile, the three hybrid techniques
chosen were the SSMA algorithm, CHC Evolutionary Algorithm (CHC) (ESHELMAN, 1991) and,
Generational Genetic Algorithm (GGA) (KUNCHEVA, 1995) (KUNCHEVA; JAIN, 1999). RHMC,
SSMA, CHC and GGA are all Evolutionary Algorithms (DEB, 2001). The authors found that
all edition techniques were significantly better than both the baseline (no filtering applied to
the DSEL) and than the hybrid techniques. Moreover, of the hybrid techniques only SSMA
obtained a significantly superior number of wins over the baseline, and even then, only achieved
an equivalent rank to the baseline.

A small aside is necessary here to explain that the work in (CRUZ; SABOURIN; CAVALCANTI,
2018) predates the work in (CRUZ; SABOURIN; CAVALCANTI, 2017a) both in inception and date
of acceptance for publication, but the latter appeared in print form before the former, which
explains the apparent discrepancy in publication dates.

Finally, it is worth noting that the Fire-DES++ algorithm also applies the ENN algorithm
to filter the 𝐷𝑆𝐸𝐿 data set. This algorithm will be discussed in detail in the next section.

2.5 THE BAGGING-IH ALGORITHM

We have already discussed how the use of Bagging and its variants can alleviate the issues faced
when performing classification tasks under noisy scenarios, and also how Prototype Selection

34

techniques can be used to remove noise from data sets. Nevertheless, PS techniques can
incur the risk of removing too many instances (FRÉNAY; VERLEYSEN, 2014). In this context,
Walmsley et al. propose in (WALMSLEY et al., 2018) an Ensemble Method based on Bagging
also focused on dealing with noisy data, the Bagging-IH algorithm. This algorithm utilizes the
concept of Instance Hardness to modify the bootstrapping process of the Bagging algorithm,
by attributing non-uniform selection probabilities to instances, in an attempt to filter out noisy
instances and outliers, while avoiding the excessive removal of examples which lie near complex
class borders.

2.5.1 Instance Hardness

We adopt here the rather pragmatic definition of (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014)
of Instance Hardness: Instance Hardness is simply a measure (or a proxy for) the likelihood
that a given instance will be misclassified, regardless of the classification algorithm.

Unlike in (BRIGHTON; MELLISH, 2002) and (MANSILLA; HO, 2004), which take more global
approaches (over the whole data set) to estimate the hardness of the instances in the data set,
the authors in (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014) focus on each individual instance
to estimate its hardness. Of particular interest to us is the k-Disagreeing Neighbors (kDN)
measure defined by them according to Equation 2.1:

𝑘𝐷𝑁(𝑥) = |𝑥
′ | 𝑥′ ∈ 𝑘𝑁𝑁(𝑥) ∧ 𝑙𝑎𝑏𝑒𝑙(𝑥′) ̸= 𝑙𝑎𝑏𝑒𝑙(𝑥)|

𝑘
, (2.1)

where 𝑘𝑁𝑁(𝑥) are the 𝑘 nearest neighbors of an instance 𝑥, 𝑘 is the number of instances
in the neighborhood considered and 𝑙𝑎𝑏𝑒𝑙(𝑥) is the class label of instance 𝑥. The kDN measure
can be simply interpreted as the fraction of the nearest neighbors of an instance that do not
share its class label. Since this value will always take on a value between 0 and 1, it is a natural
fit for an estimate of the probability that an instance will be misclassified.

The rationale of Walmsley et al. for adopting this measure is that instances with a high
kDN value are likely to be either noisy instances or outliers, and can most likely be safely
discarded. Nevertheless, the authors caution that instance on complex borders between classes
are likely to have high kDN values. Therefore, a probabilistic approach is adopted, in which
each instance is attributed a selection likelihood during the bootstrapping procedure which
is greater the lower its hardness, but all instances are given a minimum selection likelihood
greater than 0, to avoid discarding hard instances in the border of classes.

The authors of Bagging-IH find that it offers performance gains over the original Bagging
algorithm and over the Random Subspace algorithm under noisy scenarios. The authors also
observed that the performance of Bagging-IH degrades more slowly than that of Bagging as
the level of noise increases. Finally, Bagging-IH was shown as an effective method of removing
noisy instances, as the bootstraps generated by this method consistently had lower percentages
of noisy instances than that expected of the original Bagging algorithm.

35

2.6 DYNAMIC FRIENEMY PRUNING AND FIRE-DES++

We would like to now discuss the Fire-DES (OLIVEIRA; CAVALCANTI; SABOURIN, 2017) and
Fire-DES++ (CRUZ et al., 2018) algorithms. Both algorithms are based around the concept of
Dynamic Frienemy Pruning, and their ideas are central to the investigations developed in the
present work.

2.6.1 Dynamic Frienemy Pruning (DFP)

In (OLIVEIRA; CAVALCANTI; SABOURIN, 2017), the authors consider what happens when, in the
Dynamic Selection process, the Region of Competence used during the classification of a test
instance 𝑥𝑞 consists of an indecision region, which for the purposes of Dynamic Selection is
defined as a region which contains samples from more than one class. The authors present
examples of how the OLA, LCA, KNORAE and KNORAU algorithm can select incompetent
classifiers when the selection is performed considering an indecision region as the RoC.

In order to remedy this issue, the authors propose the use of Dynamic Frienemy Pruning,
which is based on the concept of frienemy. The authors define a pair of instances (𝑥𝑎, 𝑥𝑏),
𝑥𝑎, 𝑥𝑏 ∈ 𝑅𝑜𝐶(𝑥𝑞) as being frienemies if 𝑙𝑎𝑏𝑒𝑙(𝑥𝑎) ̸= 𝑙𝑎𝑏𝑒𝑙(𝑥𝑏). If the RoC of 𝑥𝑞 is an indecision
region, which can be detected by the presence of frienemies, then the Dynamic Frienemy
Pruning step is applied. This step removes from the classifier pool all classifiers that are
unable to correctly classify at least one pair of frienemies in the RoC.

The authors found in (OLIVEIRA; CAVALCANTI; SABOURIN, 2017) that applying the Frienemy
Pruning step significantly improved performance for several DS algorithms.

2.6.2 Fire-DES++

The work in (CRUZ et al., 2018) improves upon the Fire-DES method, by integrating measures
to improve the quality of the Region of Competence, and therefore to facilitate the selection
of competent classifiers.

The first adaptation consists of applying filtering to the 𝐷𝑆𝐸𝐿 data set, in order to remove
noisy instances. This is done to ensure that no classifiers will be pruned due to noise, or that
a classifier will be considered more or less competent that it actually is, due to the label they
attributed to a noisy instance. The authors investigate the use of both the ENN and the RNG
algorithms in the filtering step.

The second adaptation consists of applying the K-Nearest Neighbors Equality algorithm
(SIERRA et al., 2011) in the definition of the Region of Competence, which selects an equal
number of instances from each class in the data set to form a neighborhood. This ensures that
instances from all classes present in the data set will be represented in the RoC.

The authors performed experiments in 64 public data sets, and found that the proposed
changes resulted in performance gains for 7 out of the 8 DS algorithms tested, the exception

36

being the LCA algorithm. Furthermore, the authors found that the use of the ENN algorithm
during the filtering phase resulted in better performance than the use of the RNG algorithm.

37

3 PROPOSED METHOD

As discussed previously, the issues caused by the presence of noise can be alleviated, but
not fully resolved by the use of ensemble methods. We have also discussed how the authors
in (CRUZ et al., 2018) proposed to use Prototype Selection to deal with the issue of noise,
and achieve good results by using the ENN algorithm. Nevertheless, we are still interested in
performing a more detailed investigation into the performance of DS algorithms under noisy
conditions. We are further motivated to investigate possible alternative methods of filtering
noise from the 𝐷𝑆𝐸𝐿 data set by the following three factors:

• The discussion in (FRÉNAY; VERLEYSEN, 2014) concerning the possible excessive removal
of examples by PS techniques.

• The fact that the authors in (CRUZ et al., 2018) also demonstrate concern over this issue,
in particular over the problem of preserving class borders.

• The results in (WALMSLEY et al., 2018), which indicate that noise filtering can be per-
formed by using Instance Hardness information.

In this vein, we have proposed an algorithm similar in functioning to Bagging-IH, but applied
to the Dynamic Selection process. We utilize the bootstrapping procedure from Bagging-IH
to generate 𝑚 bootstrapped DSEL sets. The selection probabilities are calculated according
to the hardness of each example, in the same manner as in Bagging-IH. Then, we use each
of the 𝑚 bootstrapped sets as a dynamic selection set to predict the class of a test pattern
𝑥𝑞, and combine the outputs using some combination rule, yielding a final prediction for each
example. We name this method Multiple-Set Dynamic Selection (MSDS) method.

Figure 1 illustrates the bootstrapping procedure used in our algorithm.

38

Figure 1 – A block diagram depiction of the bootstrapping procedure.

Source: The author (2019)

The procedure is the same as that described in (WALMSLEY et al., 2018), but we apply it
to the DSEL data set. A more precise description of our method is given by Algorithm 7.

Algorithm 7: The algorithm for generating the new validation data sets
Input : The validation data set 𝐷𝑆𝐸𝐿

The number of bootstrapped sets 𝑚
The bootstrapped set size 𝑛𝑏

The value of k for the kDN measure
Output: The new validation data sets 𝐷𝑆𝐸𝐿𝑖

1 begin
2 foreach 𝑥 ∈ 𝐷𝑆𝐸𝐿 do
3 𝑓(𝑥) = 𝑘𝐷𝑁(𝑥)
4 end
5 foreach 𝑥 ∈ 𝐷𝑆𝐸𝐿 do
6 𝑝(𝑥) = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥, 𝑓(𝑥), 𝐷𝑆𝐸𝐿) ; /* The selection probability of

the instance */

7 end
8 for i from 1 to 𝑚 do
9 Initialize the validation data set 𝐷𝑆𝐸𝐿𝑖 as the empty set

10 for j from 1 to 𝑛𝑏 do
11 Add an instance 𝑥𝑗 ∈ 𝑇 to 𝐷𝑆𝐸𝐿𝑖, sampled with replacement

according to 𝑝(𝑥𝑖)
12 end
13 end
14 end

Lines 2-4 of Algorithm 7 describe the process of calculating the Instance Hardness of
each element in the DSEL set, according to Equation 2.1, a step that corresponds to the
“hardness calculation" module in Figure 1. With the hardness of each instance calculated,
lines 5-7 describe the process of calculating the selection probability of each instance, and also

39

correspond to the “normalization” module describe in Figure 1. The first step of calculating
the selection probability is described Equation 3.1. As explained in (WALMSLEY et al., 2018),
the first term attributes an uniform selection likelihood to all instances in the data set, while
the second term attributes higher selection likelihood to those instances that have a lower
Instance Hardness, and that we therefore consider less likely to be noise.

𝑓(𝑥) = 1
𝑛

+ (1− 𝑘𝐷𝑁(𝑥)) (3.1)

Note that the value computed by the function 𝑓 does not correspond to a proper probability
distribution. In order to actually be able to perform the bootstrapping procedure, we need
to normalize the likelihoods into a probability distribution. This normalization is computed
according to Equation 3.2

𝑝(𝑥𝑖) = 𝑓(𝑥𝑖)
𝑛∑︀

𝑖=1
𝑓(𝑥𝑖)

(3.2)

Lines 8-13 describe how we generate the bootstrapped sets. For each of the 𝑚 sets, we are
going to generate, we select with replacement 𝑛𝑏 instances from 𝐷𝑆𝐸𝐿. Notice that unlike
in the traditional Bagging algorithm, the selection probabilities are not uniform, but given by
the distribution computed in the previous steps. This step corresponds to the “bootstrapping"
module shown in Figure 1.

We now turn our attention to the procedure we follow in order to perform the classification
of a test instance. Figure 2 illustrates the procedure, while Algorithm 8 outlines it in detail.

40

Figure 2 – A block diagram depiction of the test stage of the proposed system.

Source: The author (2019)

Algorithm 8: Prediction on a test instance
Input : The trained pool 𝑃

The number of validation data sets 𝑚
The 𝑚 validation data sets 𝐷𝑆𝐸𝐿𝑖

The Dynamic Selection algorithm 𝐴
A test instance 𝑥𝑞

A voting scheme 𝑉 for combining the predictions
Output: The predicted class label of 𝑥𝑞, 𝑦𝑝𝑟𝑒𝑑(𝑥𝑞)

1 begin
2 Initialize the set of predictions 𝑌 to the empty set
3 for i from 1 to 𝑚 do
4 Initialize the set of predictions 𝑌𝑖 to the empty set
5 Use 𝐴 to select the subset of most competent classifiers 𝑃

′ from 𝑃 , using
𝐷𝑆𝐸𝐿𝑖 as the Dynamic Selection Set

6 for j from 1 to
⃒⃒⃒
𝑃

′
⃒⃒⃒

do
7 Calculate the class label 𝑦𝑗 of 𝑥𝑞, as predicted by 𝑃

′
𝑗

8 Add 𝑦𝑗 to 𝑌𝑖

9 end
10 Aggregate the predictions in 𝑌𝑖 according to the rules of 𝐴, returning a

single prediction 𝑦𝑖

11 Add 𝑦𝑖 to 𝑌

12 end
13 Calculate 𝑦𝑝𝑟𝑒𝑑(𝑥𝑞) as the result of 𝑉 (𝑌)
14 end

41

As indicated by line 2 of Algorithm 7, we will be working with a set of predictions. Line
4 tells us to create a set which will store the predictions of each classifier selected using
𝐷𝑆𝐸𝐿𝑖. Line 5 tells us to use the DS algorithm 𝐴 to select the most competent classifiers,
and corresponds to the “dynamic selection” block in Figure 2. This means that we will select
a pool 𝑃 using 𝐷𝑆𝐸𝐿𝑖 to define the Region of Competence, and to estimate the competence
of each classifier in 𝑃 . Lines 6 to 9 correspond to the computation of the predictions of
each selected classifier. In Line 10 we aggregate the predictions of each selected classifier to
produce a single label 𝑦𝑖. Finally, Line 13 tells us to aggregate all the labels predicted using
each 𝐷𝑆𝐸𝐿𝑖 to produce the final output of the system, and represents the “majority voting”
block depicted in Figure 2.

Note that although we describe the process of predicting class labels, Algorithm 8 can also
work with predicted class probabilities, as long as each classifier is capable of outputting such
probabilities, and a suitable voting scheme is provided.

It is important to note that MSDS does not depend on the algorithm used for pool gen-
eration, nor on the DS algorithm, since it acts as a “wrapper" around the DS procedure.
Nevertheless, in this work, we chose to investigate the use of MSDS both on its own and in
conjunction with the Fire-DES++ algorithm, as a further evolution of this algorithm.

42

4 EXPERIMENTS AND ANALYSES

In this chapter, we describe the experiments which have been performed, and the relevant
parameters pertaining to them. We then present the results of our experiments, and perform
analysis on them. We present these analysis in several pieces, each one of them aiming to
answer a particular question or to test a particular hypothesis.

4.1 METHODOLOGY

Here we enumerate all algorithms used and all comparisons performed, and detail the relevant
parameters for the execution of the experiments. We also explain the rationale behind each
choice, both in terms of how the literature supports these choices, and also how these choices
are guided by our hypotheses and the needs of our investigation. Note that since our work
stems from our desire to investigate possible shortcomings of the algorithm proposed in (CRUZ

et al., 2018), we attempt to follow their methodology as closely as possible, in order to perform
a precise and fair comparison.

4.1.1 Experimental Parameters

In the experiments described here we evaluated the OLA, LCA, KNORAU and KNORAE
algorithms. These algorithms were chosen due to being classic methods, with a wide presence
in the literature. Their behavior is well understood and characterized. Furthermore, since their
working is somewhat simpler than more recent algorithms, such as META-DES, we can more
easily extract insight from the results, and also better illustrate any interesting behavior. This
allows us to perform a deep analysis of the behavior of these algorithms under noisy scenarios.

All algorithms are applied to the same classifier pool, which was generated using the
Bagging algorithm, with a pool size of 100, and using the Perceptron algorithm as the base
classifier. Each generated bootstrap had the same size as the original training set. This follows
the procedure of (CRUZ et al., 2018). The implementation of the Bagging algorithm used was
that provided by the scikit-learn library (PEDREGOSA et al., 2011), and the implementations of
the DS algorithms used were those provided by the DESlib library (CRUZ et al., 2018). For all
the DS algorithms, the size of the Region of Competence was set to 𝑘 = 7, as used by (CRUZ;

SABOURIN; CAVALCANTI, 2017a).
As in (WALMSLEY et al., 2018), we investigate the performance of all methods under all

noise levels in the set {0, 0.1, 0.2, 0.3, 0.4}. A noise level of 𝑝𝑟𝑐ℎ𝑎𝑛𝑔𝑒 corresponds to a probability
of 𝑝𝑟𝑐ℎ𝑎𝑛𝑔𝑒 of the label of a given instance being changed to another label in the set of labels
present in the data. The new label is chosen completely at random, with the restriction that
it cannot be equal to the original label.

43

We conduct experiments considering a noise level of 0 in order to obtain a baseline under
a noise-free scenario. The results under all other scenarios are always be compared to the
noise-free case. Furthermore, when noise was added, it was added directly to the training set,
before the validation data set was created. The training data set was used as the validation
data set for all algorithms, following the procedure used in (CRUZ et al., 2018).

The following scenarios for Dynamic Selection are considered:

1. Each DS algorithm used alone.

2. Each DS algorithm used in conjunction with Fire-DES++.

3. Each DS algorithm used in conjunction with MSDS.

4. Each DS algorithm used in conjunction with both Fire-DES++ and MSDS.

Since MSDS is based on Bagging-IH, which itself is based on Bagging, we also investigate as
a baseline utilizing the original bootstrapping procedure of Bagging, with uniform probabilities,
as a means to generate multiple validation sets. The prediction at test time is performed in
the manner described in Algorithm 8. We dub this strategy BagDS. This means we add the
following two scenarios to our experiments:

1. Each DS algorithm used in conjunction with BagDS.

2. Each DS algorithm used in conjunction with both Fire-DES++ and BagDS.

The first comparison we perform is between each DS-based method listed above and the
result of combining the predictions of the base pool using Majority Voting. This was mainly
devised as a sanity check to ensure our algorithms were working correctly, and to confirm we
could replicate the results present in the literature for the noise-free scenario. Nevertheless,
as the results will show, this analysis ended up revealing interesting behaviors when in the
presence of noise.

We also compare the results of each DS-based method with the base DS algorithm used
alone. This is to elucidate when modifications to the base DS are advantageous.

Finally, we compare the results of MSDS against all other DS-based methods. This is done
both for MSDS alone, as well as used in conjunction with Fire-DES++. These two scenarios are
also compared between them. Note that when MSDS (or BagDS) is used with Fire-DES++,
the ENN algorithm is not employed to clean the data set, since this a role intended for MSDS in
this case. We also compare MSDS with its “naive” counterpart in BagDS, in order to ascertain
whether the use of Instance Hardness in the bootstrapping process is actually useful for the
generation of multiple Dynamic Selection sets.

For the number of DSEL sets generated by both BagDS and MSDS, we consider values
of 𝑚 in the set {10, 50}, in order to investigate the effect of the number of DSEL sets on

44

performance. Once again, each generated set had the same size as the the original 𝐷𝑆𝐸𝐿

set.
While it may seem unintuitive to compare an algorithm using multiple DSEL against other

algorithms which use a single DSEL set, we remind the reader that the MSDS algorithm is
inspired by Bagging-IH, which was originally designed as a classifier pool generation algorithm,
explicitly reliant on bootstrapping. Therefore, it doesn’t make sense to consider a single set
generated by MSDS in isolation, particularly considering the probabilistic nature of the the
bootstrapping procedure, which naturally requires the generation of multiple sets.

As in (CRUZ et al., 2018), we use the Area Under the Receiver Operating Characteristic
Curve (AUC) as our measure of performance, due to the fact that it better reflects performance
under a scenario of imbalanced classes. For each classifier, the AUC for that classifier on a
data set is computed. This value is then used to rank the classifiers from best to worst, with
the best classifier receiving a rank of 1, the second best a rank of 2 and so on. When there is
a tie between one or more classifiers, each classifier receives a rank equal to the average rank
of all tied classifiers. We then report the average rank of each classifier over the data sets.
As in (WALMSLEY et al., 2018), we use the Wilcoxon Signed-Rank test (WILCOXON, 1945) to
compare pairs of techniques by their ranks, with each data set being considered a separate
trial, for a total of 64 trials.

4.1.2 Data sets

We utilize the same 64 data sets from the KEEL (ALCALÁ-FDEZ et al., 2011) data set repository’s
collection of “imbalanced data sets” as those used in (CRUZ et al., 2018), in order to provide for
a fair comparison. These data sets all represent binary classifications problems, which simplifies
the analysis of noisy scenarios. As in the aforementioned work, we utilize the partition into
folds provided by the KEEL team, in order to aid in comparing the results with other works.
The data provided by the KEEL repository is already divided into five folds, with training
and testing data being provided separately for each fold. We do not alter this division in any
manner.

4.2 RESULTS AND ANALYSIS

4.2.1 The Effect of Noise on Dynamic Selection

The first question we aim to answer is: how deleterious is the effect of noise to algorithms based
on Dynamic Selection? We have already argued that the literature seems to point us to the
conclusion that any degradation of the Dynamic Selection set is harmful to the performance
of DS algorithms, and also that noise is prejudicial in general to performance in classification
problems. We now intend to ascertain just how harmful it is, whether all algorithms are equally
affected, and also if DS algorithms are particularly susceptible to the effects of noise.

45

Firstly, let us observe how the methods behave under the noise-free scenario, in order to
establish a baseline, and check our results against what has been reported in the literature.

Table 1 – Average Ranks for each method, for noise level 0.

Method Avg. Rank

KNORAE - Fire 7.007812
KNORAU - Fire 8.328125
KNORAU - Fire + BagDS 9.789062
KNORAE - Fire + MSDS 10.531250
KNORAU - Fire + MSDS 10.632812
KNORAE - BagDS 10.679688
OLA - Fire 10.734375
KNORAE - Fire + BagDS 11.140625
KNORAU - BagDS 11.218750
KNORAE - DS 11.218750
KNORAE - MSDS 11.414062
KNORAU - DS 11.476562
OLA - DS 11.976562
OLA - BagDS 12.304688
KNORAU - MSDS 12.398438
OLA - Fire + BagDS 13.140625
Static 13.281250
OLA - Fire + MSDS 14.148438
OLA - MSDS 15.250000
LCA - BagDS 17.007812
LCA - Fire + BagDS 17.968750
LCA - DS 18.164062
LCA - Fire + MSDS 18.226562
LCA - MSDS 18.375000
LCA - Fire 18.585938

Source: The author (2019)

+

46

Table 2 – p-values for the Wilcoxon signed-rank test for noise level 0.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.0211 0.0244 0.7509 0.0141 0.0856 0.2767
LCA 0.9997 0.9985 1.0000 0.9941 0.9892 0.9964
KNORAE 0.0177 0.0055 0.1731 0.0000 0.0068 0.0030
KNORAU 0.0036 0.0005 0.0950 0.0000 0.0000 0.0002

Source: The author (2019)

Before discussing our results, we should explain how to interpret the tables. Looking at the
first row and first column of Table 2, the result should be interpreted in this manner: The two
contexts being compared are the use of Dynamic Selection vs. the use of Static Selection, and
the Dynamic Selection algorithm being evaluated is the OLA algorithm. The p-value is 0.0211,
which indicates that at a significance level of 𝛼 = 0.05, OLA is significantly better than Static
Selection. We should also note that for space saving reasons we refer to the FireDES++
algorithm as either “FireDS” (when used alone) or simply “Fire” (when used with BagDS or
MSDS).

Returning to our discussion, the first thing we observe is that methods using Fire-DES++
achieve the two highest rankings in this scenario. Beyond that, all DS methods, except for
LCA, are significantly better than Static Selection, considering 𝛼 = 0.05. These results are
consistent with what other researchers have reported, mainly the authors of (CRUZ et al., 2018).

It is also interesting to note that, under the noise-free scenario, the use of MSDS seems
ill-advised. We observe that the combinations of KNORAE and MSDS, OLA and MSDS, and
OLA/Fire-DES++/MSDS are unable to outperform even Static Selection. This is somewhat
similar to the results of (WALMSLEY et al., 2018), though one should take care when drawing
parallels, given that the aforementioned work deals with Static Selection of classifiers. However,
it is possible to argue that a method designed to remove noise should indeed underperfom in
a noise-free scenario, and even incur the risk of removing non-noisy instances, which could
degrade performance.

Having performed this analysis on the noise-free scenario, we remind the reader that we
are mostly interested in the results under noisy scenarios. The results considering noise are as
follow:

Table 3 – Average Ranks for each method, for noise level 0.1.

Method Avg. Rank

KNORAU - Fire + MSDS 6.320312

47

KNORAE - Fire + MSDS 7.968750
KNORAE - MSDS 8.554688
KNORAU - BagDS 8.851562
KNORAU - DS 9.070312
OLA - MSDS 9.734375
OLA - Fire + MSDS 9.812500
KNORAU - Fire 9.960938
KNORAU - MSDS 10.257812
OLA - BagDS 10.460938
KNORAU - Fire + BagDS 10.468750
OLA - DS 11.828125
Static 12.531250
KNORAE - Fire 14.171875
KNORAE - BagDS 14.179688
KNORAE - Fire + BagDS 15.289062
OLA - Fire + BagDS 15.734375
LCA - MSDS 15.867188
KNORAE - DS 16.164062
LCA - Fire + MSDS 17.148438
OLA - Fire 17.195312
LCA - Fire 17.765625
LCA - Fire + BagDS 18.023438
LCA - BagDS 18.054688
LCA - DS 19.585938

Source: The author (2019)

48

Table 4 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.2111 0.0743 0.0111 0.9859 0.9116 0.0453
LCA 1.0000 1.0000 0.9994 0.9992 0.9998 1.0000
KNORAE 0.9329 0.7308 0.0006 0.6944 0.9091 0.0000
KNORAU 0.0000 0.0000 0.0018 0.0254 0.0507 0.0000

Source: The author (2019)

At a noise level of 10%, we already observe that the addition of just a bit of noise seems
to heavily affect the performance of DS methods, to the point that only KNORAU remains
statistically superior to Static Selection. Nevertheless, the KNORAU algorithm occupies 3 of
the 5 first positions in the rankings, further indicating that the KNORAU algorithm seems to
be highly resilient to noise.

We are also able to observe that the Fire-DES++ seems to be heavily affected by the
addition of noise. We posit that one of the main factors resulting in this performance is that
this type of synthetic noise heavily affects the ENN algorithm, making it ill-suited to dealing
with these types of noisy scenarios, as discussed by (WALMSLEY et al., 2018).

We should also point out that the proposed method of combining Fire-DES++ and MSDS,
in conjunction with KNORAU, achieves the highest rank. We will soon compare the results
of the proposed method with Dynamic Selection alone and Fire-DES++ usend with Dynamic
Selection, but for now we can already point to the ranks as an indicator of the performance
of our approach.

Table 5 – Average Ranks for each method, for noise level 0.2.

Method Avg. Rank

KNORAU - Fire + MSDS 6.140625
OLA - MSDS 7.359375
KNORAU - BagDS 7.585938
KNORAU - DS 7.656250
KNORAU - MSDS 8.203125
KNORAE - MSDS 8.445312
KNORAE - Fire + MSDS 8.945312
OLA - BagDS 9.523438

49

OLA - Fire + MSDS 10.125000
Static 10.351562
KNORAU - Fire + BagDS 10.718750
KNORAU - Fire 11.500000
OLA - DS 11.843750
LCA - Fire + MSDS 14.210938
LCA - MSDS 14.234375
KNORAE - BagDS 15.132812
KNORAE - Fire + BagDS 15.992188
OLA - Fire + BagDS 17.093750
KNORAE - Fire 17.484375
LCA - Fire + BagDS 17.703125
KNORAE - DS 17.781250
LCA - Fire 18.390625
LCA - BagDS 18.562500
OLA - Fire 19.328125
LCA - DS 20.687500

Source: The author (2019)

Table 6 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.9572 0.5821 0.0514 1.0000 1.0000 0.8167
LCA 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997
KNORAE 1.0000 0.9996 0.2561 1.0000 0.9999 0.5453
KNORAU 0.0000 0.0000 0.0016 0.9507 0.7352 0.0004

Source: The author (2019)

50

The results at the noise level of 20% are similar to the one observed previously. The
trio KNORAU/Fire-DES++/MSDS achieves the highest rank, and only KNORAU maintains
an advantage over Static Selection. We will, at the end of this section, elaborate on what
we believe differentiates KNORAU from the other DS algorithms, and what explains this
performance under noisy scenarios.

At a noise level of 30%, the use of Fire-DES++ is no longer advantageous, as evidenced
by Tables 7 and 8. The phenomenon where Fire-DES++ is no longer the best performer can
be attributed to the fact that there is a sizable presence of noisy instances in the data set,
distributed approximately evenly, or at least as evenly as the original distribution itself. The
fact that noisy instances are present everywhere in the data set means that many classifiers
will be pruned by the Frienemy pruning process in Fire-DES++, for failing to correct separate
instances of different classes. Nevertheless, in any give pair of instances going through the
pruning phase, there is a chance that both of them originally belonged to the same class,
but one of them had its label flipped by the addition of noise. This will result in an incorrect
pruning of classifiers that were actually competent in that region.

Furthermore, since Fire-DES++ relies on the KNN-Equality algorithm, which selects the
same number of instances for each class, it could end up selecting noisy instances to make up
the region of competence. Instances which have had their label flipped, and which otherwise
would not have been selected, could be mistakenly identified as being one of the nearest
neighbors. As mentioned previously, this could heavily skew the measurement of classifier
competence.

Table 7 – Average Ranks for each method, for noise level 0.3.

Method Avg. Rank

KNORAU - MSDS 5.632812
KNORAU - DS 5.914062
KNORAU - BagDS 5.945312
KNORAU - Fire + MSDS 6.328125
OLA - MSDS 7.445312
Static 8.398438
KNORAE - MSDS 8.859375
KNORAE - Fire + MSDS 10.218750
OLA - BagDS 10.710938
KNORAU - Fire + BagDS 11.414062
OLA - Fire + MSDS 11.500000
OLA - DS 12.640625

51

LCA - Fire + MSDS 12.898438
LCA - MSDS 14.132812
KNORAU - Fire 14.867188
KNORAE - BagDS 15.007812
KNORAE - Fire + BagDS 16.382812
KNORAE - DS 16.976562
LCA - Fire + BagDS 17.242188
LCA - BagDS 17.578125
OLA - Fire + BagDS 17.914062
OLA - Fire 18.585938
KNORAE - Fire 19.296875
LCA - DS 19.375000
LCA - Fire 19.734375

Source: The author (2019)

Table 8 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 1.0000 0.9999 0.8869 1.0000 1.0000 0.9999
LCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNORAE 1.0000 1.0000 0.9818 1.0000 1.0000 0.9991
KNORAU 0.0006 0.0005 0.0007 1.0000 0.9998 0.5080

Source: The author (2019)

Table 9 – Average Ranks for each method, for noise level 0.4.

Method Avg. Rank

KNORAU - MSDS 5.289062
KNORAU - BagDS 5.390625
KNORAU - DS 5.781250
Static 6.351562

52

KNORAU - Fire + MSDS 7.703125
OLA - MSDS 8.882812
KNORAE - MSDS 9.281250
OLA - BagDS 10.343750
KNORAU - Fire + BagDS 10.593750
KNORAE - Fire + MSDS 11.468750
LCA - Fire + MSDS 12.132812
OLA - DS 12.937500
OLA - Fire + MSDS 13.515625
KNORAU - Fire 15.046875
LCA - MSDS 15.187500
KNORAE - BagDS 15.257812
KNORAE - Fire + BagDS 15.953125
OLA - Fire + BagDS 17.007812
LCA - Fire + BagDS 17.179688
KNORAE - DS 17.460938
OLA - Fire 17.710938
LCA - BagDS 17.945312
KNORAE - Fire 18.421875
LCA - DS 19.070312
LCA - Fire 19.085938

Source: The author (2019)

53

Table 10 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000
LCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNORAE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
KNORAU 0.4023 0.1230 0.1531 1.0000 1.0000 0.9947

Source: The author (2019)

Any analysis at a 40% noise level has to be prefaced by the warning that this is an extreme
scenario. In fact, it is basically as extreme of a noisy scenario as possible, while still maintaining
enough information that it makes sense to attempt binary classification. We say this due to
the fact that at 50% noise level, for binary classification (and supposing balanced classes),
any instance with a given class label has a 50% chance of actually belonging to the other
class. From an Information Theory standpoint, this means that there is no information to be
gained about the real label of an instance by observing its possibly corrupted label, and that
the entropy of the random variable which describes the class of the instance remains maximal.

That being said, we continue to observe the trend of Static Selection outperforming every
variation of the DS methods. In fact, at this noise level, not even the KNORAU algorithm
outperforms Static Selection consistently, even though it still offers the highest average rank.
This last fact, however, suggest that when Static Selection fails, it does so quite dramatically,
while KNORAU has more consistent performance.

4.2.2 Conclusions on the issue of noise vs. DS

The first conclusion we can extract from our results is that noisy scenarios seem to heavily affect
the performance of methods based on Dynamic Selection of classifiers. As we have pointed out,
this can be explained by the fact that the competence estimation step of Dynamic Selection
will be heavily affected by the presence of noise in the region of competence.

This effect can be better visualized by considering the following example. Suppose we are
performing Dynamic Selection using the KNORAE algorithm, and denote the query pattern as
𝑥𝑞. Now denote its nearest neighbor in the DSEL set as 𝑥𝑁𝑁 . Furthermore, imagine that 𝑥𝑞

and 𝑥𝑁𝑁 have the same class label 𝑐𝑖. Now, imagine the class label of 𝑥𝑁𝑁 is flipped by the
addition of noise. Any classifier that would correctly classify it as belonging to 𝑐𝑖 would now
be considered incompetent. Furthermore, these classifiers would be considered incompetent
for any value of the neighborhood size 𝑘, since KNORAE only considers competent those
classifiers which correctly classify all samples in the region of competence.

54

This is of course an extreme example, that depends on the specific combination of neigh-
borhood structure, DS algorithm and the specific instances which had noise added to them.
Nevertheless, it still illustrates how small changes to the region of competence can have catas-
trophic effects in the estimation of competence. It also highlights a paradox: while Dynamic
Selection’s use of local information is its greatest strength, it also makes it susceptible to fail-
ure when a particular local region has degraded or incorrect information somehow, particularly
considering the fact that we often adopt relatively small sizes for the Region of Competence,
such as the value of 𝑘 = 7 used in this work. Static Selection, on the other hand, relies on
information that is obtained from a more global perspective. While this global approach pre-
cludes the proper identification of classifiers that are experts on a given local region, it also
means that we can combine the outputs of the entire pool, instead of risking using only the
information present in an improperly pruned pool.

We should also highlight that, in the taxonomy of (FRÉNAY; VERLEYSEN, 2014), the noise
model we have adopted would fall under the “noisy completely at random” classification. This
model of noise may not be an accurate representation of the type of noise we would expect to
encounter in a physical channel, or the type of noise introduced by a human manually labeling
examples in a data set. Nevertheless, this model is still useful to our research, and the reasons
are twofold.

The first reason is that, for binary classification problems, any kind of label noise will mean
that the class label was flipped (0 to 1, or 1 to 0). This means that the noise is actually
perfectly determined by the class label, unlike in the scenario of multiple class labels. This still
leaves the question of the relationship between the label and the features, but nevertheless,
the model becomes more realistic in this case.

The second reason is that this model actually allows us to observe pathological cases for
several algorithms. One of these cases is the aforementioned case involving KNORAE, but we
can also consider cases involving for example Dynamic Frienemy Pruning. A very homogeneous
region containing only examples of a given class could suddenly contain an instance of the
opposite class, due to a label being flipped. This would lead to several classifiers that (correctly)
classify all the examples in that region as belonging to the same class being pruned. This would
lead to a severe removal of competent classifiers from the pool. Furthermore, a classifier that is
not competent in that region could escape pruning simply by classifying correctly one spurious
pair. In this manner, our selection of noise model actually allowed us to tease out the different
weakness of the algorithms considered.

In spite of the fact that we have talked about a specific failure mode for the KNORAE
algorithm, it is not hard to construct equivalent pathological cases for the other algorithms.
In fact, for the OLA algorithm, we can envision the case described by Figure 3.

Figure 3 allows us to observe what happens when the label of a single instance is flipped.
Originally, 𝑐1 correctly classifies 7 out of 7 instances, while 𝑐2 only correctly classifies 5. But
when a single instance has its label flipped, both 𝑐1 and 𝑐2 correctly classify 6 instances. A

55

c1

c2

(a) Noise-free scenario.

c1

c2

(b) Noisy scenario. The triangle in-
stance to the left of 𝑐1 had its label
flipped.

Figure 3 – A simple example of the effect of noise. Two classes are present, the triangle
and square classes. The arrow on the tip of the classifiers indicates that all
instances in that direction will be attributed to the square class, and instances
in the opposition direction will receive the triangle label.

random tie-breaking strategy could result in 𝑐2 being selected as the most competent classifier,
when it clearly is not so.

And, considering now the LCA algorithm, it is even easier to devise a scenario where it
would fail due to the addition of noise. Suppose a test instance 𝑥𝑞 is classified by classifier 𝐶𝑗

as belonging to class 𝑐𝑖. The LCA algorithm considers only the instances which 𝐶𝑗 attributed
to 𝑐𝑖 when calculating competence. Let us label the set of those instances as 𝑆𝑗,𝑖. If any of
these instances in 𝑆𝑗,𝑖 had its class label flipped by the addition noise, LCA would deem that
𝐶𝑗 has misclassified this instance, and therefore its competence would be less than it would
otherwise have been. Given that 𝑆𝑗,𝑖 can be much smaller than the number of instances in
the Region of Competence, the effect would be even more pronounced than that observed
with other algorithms that consider the entire Region of Competence when calculating the
competence of classifiers.

Having talked about these pathological cases, we can now discuss how the chosen model
of noise allowed us to select a likely winner amongst DS algorithms in this scenario: The
KNORAU algorithm. The KNORAU algorithm seems to have robust performance, regardless
of noise level (at least considering reasonable noise levels). As we have seen so far, pruning
of classifiers due to an incorrect estimation of competence is a grave issue in DS under noisy
scenarios. However, the KNORAU algorithm retains any classifier that correctly classifies at
least one sample in the region of competence. This means that a classifier that was considered
competent in the noise-free scenario is likely to still be considered competent under the noisy
scenario, unless the addition of noise means that the classifier no longer correctly classifies any

56

Table 11 – p-values for the combination of Fire-DES++ and MSDS for all noise levels.
The base DS algorithm used was the KNORAU algorithm.

Noise level MSDS +
Fire vs
Static

MSDS +
Fire vs DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

0 0.0002 0.0427 0.0215 0.0006 1.0000 0.9580
0.1 0.0000 0.0000 0.0001 0.0000 0.0580 0.0036
0.2 0.0004 0.1279 0.1522 0.0973 0.0000 0.0000
0.3 0.5080 0.9951 0.9971 0.9985 0.0000 0.0000
0.4 0.9947 1.0000 1.0000 1.0000 0.0000 0.0000

Source: The author (2019)

samples, which should be a very extreme case.
Turning our attention to the observed behavior of the Fire-DES++ algorithm, and taking

into account the fact that the authors in (WALMSLEY et al., 2018) criticize the use of ENN
in these types of noisy scenarios, and also accounting for the proposed pathological cases for
Dynamic Frienemy Pruning, we can conclude that the Fire-DES++ algorithm is not suitable for
these types of scenarios (noisy completely at random). Nevertheless, we were able to observe
that by combining KNORAU, Fire-DES++ and MSDS we usually obtained the best results.
Therefore, we should not discard Fire-DES++ entirely, but rather recognize how it should
be adapted to different scenarios. This allows us to extract the best performance out of an
already strong algorithm.

To conclude, we can say that it is hard to prescribe any one single approach for all types of
noise and for all noise levels. The only constant seems to be the performance of the KNORAU
algorithm under noisy scenarios. Nevertheless, we could recommend with some certainty the
use of Fire-DES++ in combination with MSDS to increase the performance of the KNORAU
algorithm further.

4.2.3 The performance of MSDS

Having established how the presence of noise affects algorithms based on Dynamic Selection in
general, we now turn our attention to the proposed method. In particular, we seek to ascertain
in which scenarios is the use of MSDS (or BagDS) advantageous, and also which algorithms
are suitable to be combined with our proposed approach. All of our analyses concerning this
investigation is focused on the KNORAU algorithm, given that we have already established
that it is the most noise-resistant DS algorithm. Table 11 presents these results.

What we can observe is that the best scenario for the combination of Fire-DES++ with

57

Table 12 – p-values for MSDS alone for all noise levels. The base DS algorithm used was
the KNORAU algorithm.

Noise level MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

0 0.0950 0.9637 0.9925 1.0000 0.9990 0.9994
0.1 0.0018 0.9824 0.9726 0.7545 0.5847 1.0000
0.2 0.0016 0.9091 0.8144 0.0040 0.0146 0.9027
0.3 0.0007 0.0288 0.0813 0.0000 0.0000 0.0015
0.4 0.1531 0.0528 0.0961 0.0000 0.0000 0.0000

Source: The author (2019)

KNORAU is the 0.1 noise level. At the 0.2 noise level, we do not manage to significantly
outperform KNORAU by itself, in spite of the fact that the combination KNORAU/Fire-
DES++/MSDS obtained the highest rank at this noise level.

We should however consider the fact that the Fire-DES++ itself is highly affected by
the presence of noise, as we have already discussed. While we can “clean” the data set to
some extent, our method is not sufficient to bypass this shortcoming. However, we should
try as much as possible to separate the effect of MSDS on performance, from the effect of
Fire-DES++. In that vein, we present the results of MSDS by itself, as shown in Table 12.

Here, what we can observe is that MSDS performs the best at a noise level of 0.3. At this
point that the performance of Fire-DES++ has degraded beyond any reasonable level, which
makes for an easy win. Nevertheless, we also surpass the performance of KNORAU alone. This
last fact seems to suggest that MSDS is useful by itself under this scenario, and considering
that it works well with Fire-DES++ at lower noise levels, we posit that if we could make
MSDS work in better harmony with Fire-DES++, we could possibly achieve a combination
that is a winner in a broader range of scenarios.

Considering now the effect of the use of Instance Hardness, we should point out that MSDS
seems to be superior to BagDS, at least when used together with Fire-DES++. This is in line
with our expectations, and the results of (WALMSLEY et al., 2018), since the use of Instance
Hardness in conjunction with Bagging allows for better preserving the structure of the data
set, while still managing to remove noise from it.

Finally, we should consider the fact that we based MSDS on Bagging-IH as proposed by
(WALMSLEY et al., 2018), a method focused on Static Selection of classifiers, and on classifier
pool generation. This means that it is strongest in producing “cleaned-up” versions of the
data to be used by algorithms which consider this data in a global manner. In the context of
Dynamic Selection, the information will be extracted from each generated bootstrap in a much
more local manner, which means that unless we can clean-up local regions very competently,

58

there will be no such things as “strength in numbers”. It is likely necessary to consider further
modifications and extensions to Bagging-IH in order to adapt it to Dynamic Selection, and
to considering information on a local level. On this note, we can overall consider MSDS a
reasonable, if not stellar, approach, with perhaps room for improvement and evolution.

4.2.4 The effect of the number of bags on MSDS

While we have so far discussed the results we obtained by using 𝑚 = 50 for the experiments
involving MSDS, we also considered important to discriminate the effect of the number of
bags in the performance of MSDS and its combinations. While the full tables for wins, ties
and losses are present in our appendices, we can summarize our results by stating that the
number of bags mostly does not affect the performance of MSDS.

We do indeed observe some cases in which the result of the Wilcoxon test is statistically
significant for one value of 𝑚 and not for the other, but these mostly concern either the
LCA algorithm, which had overall bad performance, or combinations which are not directly
comparable, and therefore not really interesting to us, such as KNORAE/MSDS/Fire-DES++
vs KNORAE/BagDS.

A few notable exceptions happen at the noise level of 0.3, where the KNORAE algorithm
is defeated by Static Selection at 𝛼 = 0.01 when 𝑚 = 10, but not when 𝑚 = 50, and
also KNORAE + MSDS defeats Static Selection at 𝛼 = 0.05 when 𝑚 = 50, but not when
𝑚 = 10. However, KNORAE is not a good algorithm under noisy scenarios, so these changes
don’t actually affect the main points of our previous analyses.

59

5 CONCLUSIONS AND FUTURE WORK

In this work, we set out to investigate the effects of label noise on the performance of Dynamic
Selection algorithms, and in particular that of the Fire-DES++ algorithm. We discussed the
fundamental ideas of Multiple Classifier Systems in general, and more specifically those of
Dynamic Selection. We discussed how issues such as imbalance and noise can affect the
performance of classification algorithms, with a particular focus on Ensemble Systems and
Dynamic Selection, and what has so far been proposed to deal with this issue.

Building on the Bagging-IH algorithm, we proposed a new algorithm, which we named
Multiple-Set Dynamic Selection, which attempts to alleviate the issues caused by the presence
of noise in the Dynamic Selection Data Set. Instead of trying to remove noise by performing
a hard filtering of the data only once, the algorithm relies on generating multiple Dynamic
Selection sets, each filtered in a probabilistic manner, and incorporating Instance Hardness
information in the process.

We performed experiments on 64 publicly available data sets. Our results confirm the results
present in the literature for the noise-free case, showing not only that DS is a solid choice,
but also that Fire-DES++ obtains the highest AUC values. But the results also revealed that
the performance of DS algorithms quickly degrades as we add noise to the data, to the point
that Static Selection outperforms DS in noisy scenarios. We also managed to identify one
exception to this trend, namely the KNORAU algorithm, which seems to derive its robustness
for its ability to not incorrectly discard competent classifiers.

Our analysis into the issue of the effect of noise on Dynamic Selection algorithms uncovered
a multitude of issues that these algorithms faced under noisy conditions. We have managed to
identify failure modes not only of the classic algorithms, but also of the methods that build upon
them, such as Fire-DES++. These pathological cases are interesting not only because they
allow us to better understand the behavior of classic algorithms, but also because they provide
foundations for constructing similar cases for other algorithms. We now have the opportunity
not only to analyze how more recent algorithms behave under noisy circumstances, we can
also keep theses failure modes in mind when designing new Dynamic Selection algorithms,
allowing us to build algorithms that are resilient to these scenarios.

Finally, we were able to identify some scenarios in which the proposed MSDS algorithm
offered gains to Dynamic Selection algorithms under noisy scenarios, but it was not possible to
tease out a clear trend as to when MSDS would be most useful. We do, however, believe, that
we have established that utilizing Instance Hardness and probabilistic filtering is an interesting
approach, worthy of further investigation.

60

5.1 FUTURE WORK

It would be interesting to investigate the behavior of more recent algorithms. We are particularly
interested in the META-DES algorithm (CRUZ et al., 2015) and its variants (CRUZ; SABOURIN;

CAVALCANTI, 2015), (CRUZ; SABOURIN; CAVALCANTI, 2017b), for its use of meta-learning to
estimate the competence of classifiers, and also in the Online Local Pool Generation method
of Souza et al. (SOUZA et al., 2018), for its objective of producing locally accurate pools. We
would have liked to have also included these algorithms in our analysis, but did not do so due
to two main reasons: the first is that their complexity precludes us from performing the failure
analysis that we have performed as easily as we would have for the classic algorithms. They
require more subtle observations, which are significantly more difficult. The second is simply a
matter of combinatorial explosion on the number of comparisons. As the number of algorithms
grows, so does the number of comparisons. This creates a problem in extracting insight from
the data, and requires much more effort to neatly group and categorize the behavior of the
algorithms as we have done. Nevertheless, armed with the findings of this work, we can now
attack the problem of understanding how these algorithms function under noisy scenarios much
more precisely and productively.

Another inviting line of inquiry is the utilization of Bagging-IH itself to generate the pools
used in Dynamic Selection. In this work, we have repeatedly touched on the fact that the
degradation of local neighborhoods is a grave issue for Dynamic Selection. Therefore, it is
natural to question whether using Bagging-IH as the pool generation algorithm would have
affected the results. Nevertheless, one should apply caution when considering this issue. Un-
like the original Bagging algorithm, the bootstraps in Bagging-IH will be skewed towards a
particular type of instance, namely those considered not noisy. This may result in the loss
of information about local neighborhoods that exhibit complex distributions and significant
class overlap. The degree to which this may happen is still an open matter, and an important
investigation in and of itself. Nevertheless, the issue of the preservation of local neighborhoods
is not really a concern in the design of the original Bagging-IH algorithm, since it adapts a
more global approach, and adopts a trade-off which risks sacrificing local neighborhoods for an
overall cleaner data set. However, DS algorithms rely heavily on local information, so a careful
experimental design is necessary to separate the effects of noise during training, and the ef-
fects of noise during classifier selection, when using Bagging-IH and MSDS. This is yet another
example of how the presence of noise shifts the priorities, and challenges the assumptions of
ensemble methods.

61

REFERENCES

ABELLÁN, J.; MASEGOSA, A. R. Bagging schemes on the presence of class noise in
classification. Expert Systems with Applications, v. 39, n. 8, p. 6827–6837, 2012. ISSN
09574174.

ABELLÁN, J.; MORAL, S. Building classification trees using the total uncertainty criterion.
International Journal of Intelligent Systems, v. 18, n. 12, p. 1215–1225, 2003.

ALCALÁ-FDEZ, J.; FERNÁNDEZ, A.; LUENGO, J.; DERRAC, J.; GARCÍA, S.; SÁNCHEZ,
L.; HERRERA, F. Keel data-mining software tool: data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued Logic & Soft
Computing, Citeseer, v. 17, 2011.

BREIMAN, L. Bagging predictors. Machine Learning, Springer, v. 24, n. 2, p. 123–140, 1996.

BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001. ISSN
1573-0565.

BRIGHTON, H.; MELLISH, C. Advances in instance selection for instance-based learning
algorithms. Data Mining and Knowledge Discovery, v. 6, n. 2, p. 153–172, 2002.

BRITTO, A. S.; SABOURIN, R.; OLIVEIRA, L. E. S. Dynamic selection of classifiers - A
comprehensive review. Pattern Recognition, v. 47, n. 11, p. 3665–3680, 2014.

CRUZ, R. M.; CAVALCANTI, G. D.; TSANG, I. R. A method for dynamic ensemble
selection based on a filter and an adaptive distance to improve the quality of the regions of
competence. In: Proceedings of the International Joint Conference on Neural Networks. [S.l.:
s.n.], 2011. p. 1126–1133. ISBN 9781457710865. ISSN 2161-4393.

CRUZ, R. M.; OLIVEIRA, D. V.; CAVALCANTI, G. D.; SABOURIN, R. FIRE-DES++:
Enhanced Online Pruning of Base Classifiers for Dynamic Ensemble Selection. Pattern
Recognition, Elsevier Ltd, 2018. ISSN 00313203.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. META-DES.H: A Dynamic Ensemble
Selection technique using meta-learning and a dynamic weighting approach. Proceedings of
the International Joint Conference on Neural Networks, v. 2015-September, 2015.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Analyzing different prototype selection
techniques for dynamic classifier and ensemble selection. Proceedings of the International
Joint Conference on Neural Networks, v. 2017-May, p. 3959–3966, 2017. ISSN 09410643.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. META-DES.Oracle: Meta-learning and
feature selection for dynamic ensemble selection. Information Fusion, Elsevier B.V., v. 38, p.
84–103, 2017. ISSN 15662535.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Dynamic classifier selection: Recent
advances and perspectives. Information Fusion, Elsevier B.V., v. 41, p. 195–216, 2018. ISSN
15662535.

62

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D.; Ing Ren, T. META-DES: A dynamic
ensemble selection framework using meta-learning. Pattern Recognition, Elsevier, v. 48, n. 5,
p. 1925–1935, 2015. ISSN 00313203.

Cruz, R. M. O.; Cavalcanti, G. D. C.; Ren, T. I. An ensemble classifier for offline cursive
character recognition using multiple feature extraction techniques. In: The 2010 International
Joint Conference on Neural Networks (IJCNN). [S.l.: s.n.], 2010. p. 1–8. ISSN 1098-7576.

CRUZ, R. M. O.; HAFEMANN, L. G.; SABOURIN, R.; CAVALCANTI, G. D. C. DESlib: A
Dynamic ensemble selection library in Python. arXiv preprint arXiv:1802.04967, 2018.

CRUZ, R. M. O.; SABOURIN, R.; CAVALCANTI, G. D. C. Prototype selection for dynamic
classifier and ensemble selection. Neural Computing and Applications, v. 29, n. 2, p. 447–457,
Jan 2018. ISSN 1433-3058.

DEB, K. Multi-objective optimization using evolutionary algorithms. [S.l.]: John Wiley &
Sons, 2001.

DIDACI, L.; GIACINTO, G.; ROLI, F.; MARCIALIS, G. L. A study on the performances of
dynamic classifier selection based on local accuracy estimation. Pattern Recognition, v. 38,
n. 11, p. 2188 – 2191, 2005. ISSN 0031-3203.

DIETTERICH, T. G. An experimental comparison of three methods for constructing
ensembles of decision trees: bagging, boosting and ranomization. Machine Learning, v. 40,
n. 2, p. 139–157, 2000.

ESHELMAN, L. J. The chc adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination. In: RAWLINS, G. J. (Ed.). [S.l.]: Elsevier,
1991, (Foundations of Genetic Algorithms, v. 1). p. 265 – 283.

FRÉNAY, B.; VERLEYSEN, M. Classification in the presence of label noise: A survey. IEEE
Transactions on Neural Networks and Learning Systems, v. 25, n. 5, p. 845–869, 2014. ISSN
21622388.

FREUND, Y.; SCHAPIRE, R. E. A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting. Journal of Computer and System Sciences, v. 55, n. 1, p.
119–139, 1997. ISSN 0022-0000.

GARCÍA, S.; CANO, J. R.; HERRERA, F. A memetic algorithm for evolutionary prototype
selection: A scaling up approach. Pattern Recognition, v. 41, n. 8, p. 2693–2709, 2008. ISSN
00313203.

GARCÍA, S.; DERRAC, J.; CANO, J. R.; HERRERA, F. Prototype selection for nearest
neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis
and Machine Intelligence, v. 34, n. 3, p. 417–435, 2012. ISSN 01628828.

GIACINTO, G.; ROLI, F. Methods for dynamic classifier selection. In: Proceedings 10th
International Conference on Image Analysis and Processing. [S.l.: s.n.], 1999. p. 659–664.

HO, T. K. The random subspace method for constructing decision forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence, v. 20, n. 8, p. 832–844, 1998. ISSN 01628828.

63

HUANG, Y.; SUEN, C. A method of combining multiple experts for the recognition of
unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. 17, n. 1, p. 90–94, Jan 1995. ISSN 1939-3539.

KHOSHGOFTAAR, T. M.; HULSE, J. V.; NAPOLITANO, A. Comparing boosting and
bagging techniques with noisy and imbalanced data. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, IEEE, v. 41, n. 3, p. 552–568, 2011.

KITTLER, J. Combining classifiers: A theoretical framework. Pattern Analysis and
Applications, v. 1, n. 1, p. 18–27, 1998. ISSN 14337541.

KO, A. H.; SABOURIN, R.; BRITTO, A. S. From dynamic classifier selection to dynamic
ensemble selection. Pattern Recognition, v. 41, n. 5, p. 1735–1748, 2008. ISSN 00313203.

KUNCHEVA, L. Clustering-and-selection model for classifier combination. In: KES’2000.
Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and
Allied Technologies. Proceedings (Cat. No.00TH8516). [S.l.: s.n.], 2000. v. 1, p. 185–188
vol.1. ISSN null.

KUNCHEVA, L. A theoretical study on six classifier fusion strategies. IEEE Transactions
on Pattern Analysis and Machine Intelligence, v. 24, n. 2, p. 281–286, Feb 2002. ISSN
1939-3539.

KUNCHEVA, L. I. Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern
Recognition Letters, v. 16, n. 8, p. 809–814, 1995. ISSN 0167-8655.

KUNCHEVA, L. I. Combining Pattern Classifiers: Methods and Algorithms. 2nd. ed. [S.l.]:
Wiley Publishing, 2014. ISBN 1118315235, 9781118315231.

KUNCHEVA, L. I.; JAIN, L. C. Nearest neighbor classifier: Simultaneous editing and feature
selection. Pattern recognition letters, Elsevier, v. 20, n. 11-13, p. 1149–1156, 1999.

LAOZI. The Tao The Ching. Tradução de Stephen Mitchell. [S.l.]: Harper Perennial Modern
Classics, 2006. Paginação irregular.

LONG, P. M.; SERVEDIO, R. A. Random classification noise defeats all convex potential
boosters. Machine Learning, v. 78, n. 3, p. 287–304, 2009. ISSN 15730565.

MANSILLA, E. B.; HO, T. K. On classifier domains of competence. Proceedings -
International Conference on Pattern Recognition, v. 1, p. 136–139, 2004.

MELVILLE, P.; SHAH, N.; MIHALKOVA, L.; MOONEY, R. J. Experiments on ensembles
with missing and noisy data. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 3077, p. 293–302,
2004. ISSN 03029743.

OLIVEIRA, D. V.; CAVALCANTI, G. D.; SABOURIN, R. Online pruning of base classifiers for
Dynamic Ensemble Selection. Pattern Recognition, Elsevier Ltd, v. 72, p. 44–58, dec 2017.
ISSN 00313203.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL,
O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS,
J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p.
2825–2830, 2011.

64

QUINLAN, J. R. C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993. ISBN 1-55860-238-0.

SÁNCHEZ, J.; PLA, F.; FERRI, F. Prototype selection for the nearest neighbour rule
through proximity graphs. Pattern Recognition Letters, v. 18, n. 6, p. 507 – 513, 1997. ISSN
0167-8655.

SCHAPIRE, R. E. A brief introduction to boosting. In: IJCAI International Joint Conference
on Artificial Intelligence. [S.l.: s.n.], 1999. v. 2, p. 1401–1406.

SHIPP, C. A.; KUNCHEVA, L. I. Relationships between combination methods and measures
of diversity in combining classifiers. Information Fusion, v. 3, n. 2, p. 135–148, 2002. ISSN
15662535.

SIERRA, B.; LAZKANO, E.; IRIGOIEN, I.; JAUREGI, E.; MENDIALDUA, I. K nearest
neighbor equality: Giving equal chance to all existing classes. Inf. Sci., Elsevier Science Inc.,
New York, NY, USA, v. 181, n. 23, p. 5158–5168, dez. 2011. ISSN 0020-0255.

SKALAK, D. B. Prototype and feature selection by sampling and random mutation hill
climbing algorithms. In: Machine Learning: Proceedings of the Eleventh International
Conference. [S.l.]: Morgan Kaufmann, 1994. p. 293–301.

SMITH, M. R.; MARTINEZ, T.; GIRAUD-CARRIER, C. An instance level analysis of data
complexity. Machine Learning, Springer, v. 95, n. 2, p. 225–256, 2014.

SOUZA, M. A.; CAVALCANTI, G. D.; CRUZ, R. M.; SABOURIN, R. On the characterization
of the Oracle for dynamic classifier selection. Proceedings of the International Joint
Conference on Neural Networks, v. 2017-May, p. 332–339, 2017.

SOUZA, M. A.; CAVALCANTI, G. D.; CRUZ, R. M.; SABOURIN, R. Online Local Pool
Generation for Dynamic Classifier Selection. Pattern Recognition, Elsevier Ltd, 2018. ISSN
00313203.

WALMSLEY, F. N.; CAVALCANTI, G. D.; OLIVEIRA, D. V.; CRUZ, R. M.; SABOURIN,
R. An Ensemble Generation Method Based on Instance Hardness. In: Proceedings of the
International Joint Conference on Neural Networks. [S.l.: s.n.], 2018. v. 2018-July. ISBN
9781509060146.

WANG, J.; NESKOVIC, P.; COOPER, L. N. Improving nearest neighbor rule with a simple
adaptive distance measure. Pattern Recognition Letters, v. 28, n. 2, p. 207–213, 2007. ISSN
0167-8655.

WILCOXON, F. Individual comparisons by ranking methods. Biometrics Bulletin,
[International Biometric Society, Wiley], v. 1, n. 6, p. 80–83, 1945. ISSN 00994987.

WILSON, D. L. Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-2, n. 3, p. 408–421, July 1972. ISSN
2168-2909.

WILSON, D. R.; MARTINEZ, T. R. Reduction Techniques for Instance-Based Learning
Algorithms. Machine Learning, v. 38, n. 3, p. 257–286, mar 2000. ISSN 1573-0565.

65

Woloszynski, T.; Kurzynski, M. A measure of competence based on randomized reference
classifier for dynamic ensemble selection. In: 2010 20th International Conference on Pattern
Recognition. [S.l.: s.n.], 2010. p. 4194–4197. ISSN 1051-4651.

WOLOSZYNSKI, T.; KURZYNSKI, M. A probabilistic model of classifier competence for
dynamic ensemble selection. Pattern Recognition, v. 44, n. 10, p. 2656 – 2668, 2011. ISSN
0031-3203. Semi-Supervised Learning for Visual Content Analysis and Understanding.

WOODS, K.; KEGELMEYER, W. P.; BOWYER, K. Combination of multiple classifiers using
local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence,
v. 19, n. 4, p. 405–410, 1997. ISSN 01628828.

WOŹNIAK, M.; GRAÑA, M.; CORCHADO, E. A survey of multiple classifier systems as
hybrid systems. Information Fusion, v. 16, p. 3–17, 2014. ISSN 1566-2535.

ZHOU, Z.-H. Ensemble Methods: Foundations and Algorithms. [S.l.]: CRC Press, 2012. ISSN
1098-6596. ISBN 978-1-4398-3003-1.

66

APPENDIX A – TABLES - 10 BAGS

A.1 NOISE LEVEL: 0

A.1.1 Average Ranks

Method Avg. Rank

KNORAE - Fire 7.070312
KNORAU - Fire 8.343750
KNORAU - Fire + BagDS 10.171875
KNORAE - Fire + MSDS 10.453125
KNORAE - BagDS 10.546875
OLA - Fire 10.710938
KNORAU - Fire + MSDS 10.875000
KNORAU - BagDS 11.109375
KNORAE - DS 11.218750
KNORAE - MSDS 11.476562
KNORAE - Fire + BagDS 11.546875
KNORAU - DS 11.578125
OLA - BagDS 11.632812
OLA - DS 11.734375
KNORAU - MSDS 12.265625
Static 13.265625
OLA - Fire + BagDS 13.445312
OLA - Fire + MSDS 14.179688
OLA - MSDS 14.851562
LCA - BagDS 16.835938
LCA - Fire + BagDS 18.070312
LCA - DS 18.078125
LCA - MSDS 18.296875
LCA - Fire 18.578125
LCA - Fire + MSDS 18.664062

67

Table 13 – Average Ranks for each method, for noise level 0.

A.1.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 32 / 4 /
28

33 / 5 /
26

26 / 4 /
34

34 / 3 /
27

26 / 3 /
35

25 / 3 /
36

LCA 18 / 4 /
42

21 / 4 /
39

17 / 5 /
42

21 / 4 /
39

20 / 5 /
39

19 / 3 /
42

KNORAE 32 / 9 /
23

32 / 10 /
22

27 / 16 /
21

40 / 8 /
16

32 / 9 /
23

32 / 14 /
18

KNORAU 26 / 29 /
9

27 / 30 /
7

22 / 30 /
12

34 / 17 /
13

29 / 22 /
13

25 / 29 /
10

Table 14 – Wins, ties and losses for noise level 0.

68

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.0211 0.0212 0.5147 0.0141 0.1290 0.2889

LCA 0.9997 0.9988 0.9999 0.9941 0.9932 0.9987

KNORAE 0.0177 0.0032 0.1477 0.0000 0.0097 0.0046

KNORAU 0.0036 0.0003 0.0844 0.0000 0.0001 0.0002

Table 15 – p-values for the Wilcoxon signed-rank test for noise level 0.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 28 / 4 /
32

25 / 14 /
25

17 / 10 /
37

30 / 3 /
31

21 / 6 /
37

22 / 7 /
35

LCA 42 / 4 /
18

36 / 18 /
10

25 / 8 /
31

31 / 6 /
27

34 / 6 /
24

35 / 4 /
25

KNORAE 23 / 9 /
32

23 / 26 /
15

28 / 11 /
25

40 / 7 /
17

22 / 8 /
34

30 / 10 /
24

KNORAU 9 / 29 /
26

15 / 40 /
9

10 / 34 /
20

28 / 16 /
20

23 / 20 /
21

21 / 25 /
18

Table 16 – Wins, ties and losses for noise level 0.

69

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.9789 0.8115 0.9998 0.0389 0.8123 0.9871

LCA 0.0003 0.0026 0.8733 0.2454 0.0450 0.2007

KNORAE 0.9823 0.0333 0.7898 0.0000 0.2868 0.5052

KNORAU 0.9964 0.2375 0.9891 0.0002 0.0076 0.0338

Table 17 – p-values for the Wilcoxon signed-rank test for noise level 0.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 26 / 4 /
34

17 / 10 /
37

16 / 10 /
38

20 / 5 /
39

23 / 7 /
34

23 / 13 /
28

LCA 17 / 5 /
42

25 / 8 /
31

20 / 10 /
34

31 / 3 /
30

27 / 4 /
33

31 / 2 /
31

KNORAE 27 / 16 /
21

28 / 11 /
25

26 / 13 /
25

18 / 6 /
40

31 / 6 /
27

22 / 17 /
25

KNORAU 22 / 30 /
12

10 / 34 /
20

6 / 35 /
23

15 / 17 /
32

18 / 23 /
23

15 / 26 /
23

Table 18 – Wins, ties and losses for noise level 0.

70

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.5147 0.9998 0.9999 1.0000 0.9947 0.9689

LCA 0.9999 0.8733 0.9955 0.7946 0.9398 0.8394

KNORAE 0.1477 0.7898 0.9236 1.0000 0.7840 0.9506

KNORAU 0.0844 0.9891 0.9995 1.0000 0.9979 0.9988

Table 19 – p-values for the Wilcoxon signed-rank test for noise level 0.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 25 / 3 /
36

22 / 7 /
35

23 / 8 /
33

28 / 13 /
23

16 / 4 /
44

21 / 10 /
33

LCA 19 / 3 /
42

35 / 4 /
25

25 / 5 /
34

31 / 2 /
31

27 / 9 /
28

22 / 14 /
28

KNORAE 32 / 14 /
18

30 / 10 /
24

25 / 13 /
26

25 / 17 /
22

15 / 6 /
43

29 / 11 /
24

KNORAU 25 / 29 /
10

21 / 25 /
18

21 / 25 /
18

23 / 26 /
15

13 / 20 /
31

16 / 25 /
23

Table 20 – Wins, ties and losses for noise level 0.

71

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.2889 0.9871 0.9649 0.0311 1.0000 0.9688

LCA 0.9987 0.2007 0.6358 0.1606 0.5100 0.8727

KNORAE 0.0046 0.5052 0.7396 0.0494 1.0000 0.6013

KNORAU 0.0002 0.0338 0.0457 0.0012 1.0000 0.9652

Table 21 – p-values for the Wilcoxon signed-rank test for noise level 0.

A.2 NOISE LEVEL: 0.1

A.2.1 Average Ranks

Method Avg. Rank

KNORAU - Fire + MSDS 6.765625
KNORAE - Fire + MSDS 7.281250
KNORAE - MSDS 8.617188
KNORAU - BagDS 8.875000
KNORAU - DS 9.046875
OLA - MSDS 9.421875
KNORAU - Fire 9.929688
OLA - Fire + MSDS 10.078125
KNORAU - Fire + BagDS 10.156250
OLA - BagDS 10.250000
KNORAU - MSDS 10.523438
OLA - DS 11.546875
Static 12.593750
KNORAE - BagDS 13.773438
KNORAE - Fire 14.000000
KNORAE - Fire + BagDS 15.914062
LCA - MSDS 15.953125
KNORAE - DS 15.992188
OLA - Fire + BagDS 16.109375

72

OLA - Fire 17.101562
LCA - Fire 17.328125
LCA - Fire + MSDS 17.500000
LCA - BagDS 18.140625
LCA - Fire + BagDS 18.468750
LCA - DS 19.632812

Table 22 – Average Ranks for each method, for noise level 0.1.

A.2.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 36 / 0 /
28

33 / 0 /
31

38 / 0 /
26

22 / 0 /
42

24 / 0 /
40

38 / 0 /
26

LCA 12 / 0 /
52

12 / 0 /
52

19 / 1 /
44

18 / 0 /
46

17 / 0 /
47

18 / 0 /
46

KNORAE 22 / 0 /
42

26 / 0 /
38

42 / 2 /
20

28 / 0 /
36

22 / 1 /
41

44 / 2 /
18

KNORAU 48 / 5 /
11

49 / 5 /
10

42 / 5 /
17

33 / 0 /
31

36 / 1 /
27

52 / 0 /
12

Table 23 – Wins, ties and losses for noise level 0.1.

73

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.2111 0.0466 0.0154 0.9859 0.9209 0.0466

LCA 1.0000 1.0000 0.9994 0.9992 1.0000 1.0000

KNORAE 0.9329 0.7219 0.0006 0.6944 0.9415 0.0000

KNORAU 0.0000 0.0000 0.0039 0.0254 0.0585 0.0000

Table 24 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 28 / 0 /
36

44 / 0 /
20

45 / 0 /
19

18 / 0 /
46

15 / 0 /
49

40 / 0 /
24

LCA 52 / 0 /
12

49 / 0 /
15

51 / 0 /
13

38 / 0 /
26

38 / 0 /
26

40 / 0 /
24

KNORAE 42 / 0 /
22

52 / 0 /
12

50 / 0 /
14

39 / 0 /
25

30 / 1 /
33

55 / 0 / 9

KNORAU 11 / 5 /
48

20 / 25 /
19

21 / 16 /
27

29 / 0 /
35

28 / 1 /
35

39 / 1 /
24

Table 25 – Wins, ties and losses for noise level 0.1.

74

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.7889 0.0031 0.0116 1.0000 1.0000 0.0155

LCA 0.0000 0.0000 0.0000 0.0063 0.0173 0.0156

KNORAE 0.0671 0.0000 0.0000 0.0715 0.3533 0.0000

KNORAU 1.0000 0.8141 0.9953 0.3868 0.7080 0.0001

Table 26 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 38 / 0 /
26

45 / 0 /
19

38 / 0 /
26

48 / 0 /
16

46 / 0 /
18

38 / 0 /
26

LCA 19 / 1 /
44

51 / 0 /
13

48 / 2 /
14

35 / 0 /
29

41 / 0 /
23

41 / 2 /
21

KNORAE 42 / 2 /
20

50 / 0 /
14

46 / 0 /
18

47 / 0 /
17

50 / 0 /
14

30 / 1 /
33

KNORAU 42 / 5 /
17

21 / 16 /
27

22 / 14 /
28

34 / 0 /
30

34 / 0 /
30

22 / 1 /
41

Table 27 – Wins, ties and losses for noise level 0.1.

75

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.0154 0.0116 0.2035 0.0000 0.0003 0.1469

LCA 0.9994 0.0000 0.0000 0.2189 0.0550 0.0130

KNORAE 0.0006 0.0000 0.0001 0.0025 0.0000 0.9439

KNORAU 0.0039 0.9953 0.9966 0.8185 0.6608 1.0000

Table 28 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 38 / 0 /
26

40 / 0 /
24

34 / 0 /
30

26 / 0 /
38

51 / 0 /
13

53 / 0 /
11

LCA 18 / 0 /
46

40 / 0 /
24

37 / 2 /
25

21 / 2 /
41

37 / 0 /
27

42 / 0 /
22

KNORAE 44 / 2 /
18

55 / 0 / 9 53 / 0 /
11

33 / 1 /
30

50 / 0 /
14

53 / 0 /
11

KNORAU 52 / 0 /
12

39 / 1 /
24

38 / 1 /
25

41 / 1 /
22

41 / 1 /
22

46 / 0 /
18

Table 29 – Wins, ties and losses for noise level 0.1.

76

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.0466 0.0155 0.3792 0.8531 0.0000 0.0000

LCA 1.0000 0.0156 0.1876 0.9870 0.4310 0.1143

KNORAE 0.0000 0.0000 0.0000 0.0561 0.0000 0.0000

KNORAU 0.0000 0.0001 0.0004 0.0000 0.0678 0.0023

Table 30 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

A.3 NOISE LEVEL: 0.2

A.3.1 Average Ranks

Method Avg. Rank

KNORAU - Fire + MSDS 6.179688
KNORAU - BagDS 7.218750
KNORAU - DS 7.710938
KNORAU - MSDS 7.812500
OLA - MSDS 7.953125
KNORAE - MSDS 9.039062
KNORAE - Fire + MSDS 9.140625
OLA - Fire + MSDS 9.820312
OLA - BagDS 9.843750
Static 10.226562
KNORAU - Fire + BagDS 10.585938
KNORAU - Fire 11.562500
OLA - DS 11.765625
LCA - Fire + MSDS 14.265625
LCA - MSDS 14.453125
KNORAE - BagDS 14.960938
OLA - Fire + BagDS 15.796875
KNORAE - Fire + BagDS 16.679688
LCA - Fire + BagDS 17.460938

77

KNORAE - DS 17.640625
KNORAE - Fire 17.750000
LCA - Fire 18.437500
LCA - BagDS 18.789062
OLA - Fire 19.296875
LCA - DS 20.609375

Table 31 – Average Ranks for each method, for noise level 0.2.

A.3.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 23 / 0 /
41

24 / 1 /
39

31 / 0 /
33

13 / 0 /
51

18 / 0 /
46

24 / 0 /
40

LCA 7 / 0 / 57 11 / 0 /
53

17 / 0 /
47

16 / 0 /
48

15 / 0 /
49

18 / 0 /
46

KNORAE 18 / 0 /
46

19 / 0 /
45

30 / 0 /
34

16 / 0 /
48

17 / 0 /
47

28 / 0 /
36

KNORAU 48 / 1 /
15

49 / 2 /
13

44 / 1 /
19

28 / 0 /
36

29 / 0 /
35

45 / 0 /
19

Table 32 – Wins, ties and losses for noise level 0.2.

78

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.9572 0.7639 0.1500 1.0000 0.9999 0.8058

LCA 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

KNORAE 1.0000 0.9998 0.3343 1.0000 1.0000 0.4231

KNORAU 0.0000 0.0000 0.0004 0.9507 0.7151 0.0003

Table 33 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 41 / 0 /
23

45 / 0 /
19

51 / 0 /
13

10 / 0 /
54

16 / 0 /
48

32 / 0 /
32

LCA 57 / 0 / 7 53 / 0 /
11

55 / 0 / 9 39 / 0 /
25

43 / 0 /
21

48 / 0 /
16

KNORAE 46 / 0 /
18

55 / 1 / 8 54 / 0 /
10

30 / 0 /
34

34 / 0 /
30

60 / 0 / 4

KNORAU 15 / 1 /
48

30 / 12 /
22

33 / 3 /
28

23 / 0 /
41

24 / 0 /
40

36 / 1 /
27

Table 34 – Wins, ties and losses for noise level 0.2.

79

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.0428 0.0007 0.0000 1.0000 1.0000 0.0781

LCA 0.0000 0.0000 0.0000 0.0173 0.0002 0.0000

KNORAE 0.0000 0.0000 0.0000 0.7396 0.0345 0.0000

KNORAU 1.0000 0.1582 0.5867 0.9994 0.9939 0.1115

Table 35 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 31 / 0 /
33

51 / 0 /
13

46 / 0 /
18

55 / 0 / 9 49 / 0 /
15

42 / 0 /
22

LCA 17 / 0 /
47

55 / 0 / 9 54 / 0 /
10

42 / 0 /
22

38 / 0 /
26

35 / 0 /
29

KNORAE 30 / 0 /
34

54 / 0 /
10

53 / 0 /
11

50 / 0 /
14

50 / 0 /
14

39 / 1 /
24

KNORAU 44 / 1 /
19

33 / 3 /
28

33 / 4 /
27

40 / 0 /
24

39 / 0 /
25

34 / 0 /
30

Table 36 – Wins, ties and losses for noise level 0.2.

80

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.1500 0.0000 0.0001 0.0000 0.0000 0.0013

LCA 1.0000 0.0000 0.0000 0.0002 0.0164 0.5977

KNORAE 0.3343 0.0000 0.0000 0.0000 0.0000 0.1236

KNORAU 0.0004 0.5867 0.7578 0.0010 0.0083 0.7587

Table 37 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 24 / 0 /
40

32 / 0 /
32

29 / 0 /
35

22 / 0 /
42

62 / 0 / 2 52 / 0 /
12

LCA 18 / 0 /
46

48 / 0 /
16

45 / 0 /
19

29 / 0 /
35

48 / 0 /
16

49 / 0 /
15

KNORAE 28 / 0 /
36

60 / 0 / 4 56 / 0 / 8 24 / 1 /
39

56 / 0 / 8 56 / 0 / 8

KNORAU 45 / 0 /
19

36 / 1 /
27

30 / 0 /
34

30 / 0 /
34

50 / 0 /
14

49 / 0 /
15

Table 38 – Wins, ties and losses for noise level 0.2.

81

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.8058 0.0781 0.6003 0.9987 0.0000 0.0000

LCA 0.9999 0.0000 0.0000 0.4023 0.0000 0.0000

KNORAE 0.4231 0.0000 0.0000 0.8764 0.0000 0.0000

KNORAU 0.0003 0.1115 0.4231 0.2413 0.0000 0.0000

Table 39 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

A.4 NOISE LEVEL: 0.3

A.4.1 Average Ranks

Method Avg. Rank

KNORAU - BagDS 5.335938
KNORAU - MSDS 5.828125
KNORAU - DS 5.914062
KNORAU - Fire + MSDS 6.718750
OLA - MSDS 7.507812
Static 8.507812
KNORAE - MSDS 8.875000
OLA - BagDS 10.203125
KNORAE - Fire + MSDS 10.804688
KNORAU - Fire + BagDS 11.125000
LCA - Fire + MSDS 12.195312
OLA - DS 12.625000
OLA - Fire + MSDS 12.703125
LCA - MSDS 14.437500
KNORAE - BagDS 14.718750
KNORAU - Fire 14.890625
KNORAE - Fire + BagDS 16.140625
KNORAE - DS 16.867188
LCA - Fire + BagDS 17.054688

82

OLA - Fire + BagDS 17.273438
LCA - BagDS 17.867188
OLA - Fire 18.812500
KNORAE - Fire 19.390625
LCA - DS 19.531250
LCA - Fire 19.671875

Table 40 – Average Ranks for each method, for noise level 0.3.

A.4.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 18 / 0 /
46

22 / 0 /
42

27 / 0 /
37

10 / 0 /
54

13 / 0 /
51

22 / 0 /
42

LCA 7 / 0 / 57 9 / 0 / 55 14 / 0 /
50

8 / 0 / 56 13 / 0 /
51

19 / 0 /
45

KNORAE 13 / 0 /
51

14 / 0 /
50

23 / 0 /
41

7 / 0 / 57 15 / 0 /
49

20 / 0 /
44

KNORAU 44 / 1 /
19

47 / 0 /
17

46 / 0 /
18

15 / 0 /
49

25 / 0 /
39

29 / 0 /
35

Table 41 – Wins, ties and losses for noise level 0.3.

83

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 1.0000 0.9998 0.9095 1.0000 1.0000 1.0000

LCA 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

KNORAE 1.0000 1.0000 0.9776 1.0000 1.0000 0.9994

KNORAU 0.0006 0.0000 0.0005 1.0000 0.9994 0.6944

Table 42 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 46 / 0 /
18

40 / 0 /
24

54 / 0 /
10

11 / 0 /
53

14 / 0 /
50

29 / 0 /
35

LCA 57 / 0 / 7 50 / 2 /
12

55 / 0 / 9 34 / 0 /
30

45 / 0 /
19

53 / 0 /
11

KNORAE 51 / 0 /
13

49 / 0 /
15

56 / 0 / 8 20 / 0 /
44

39 / 0 /
25

54 / 0 /
10

KNORAU 19 / 1 /
44

44 / 1 /
19

38 / 0 /
26

11 / 0 /
53

11 / 0 /
53

20 / 0 /
44

Table 43 – Wins, ties and losses for noise level 0.3.

84

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.0000 0.0039 0.0000 1.0000 1.0000 0.6029

LCA 0.0000 0.0000 0.0000 0.2963 0.0004 0.0000

KNORAE 0.0000 0.0001 0.0000 0.9993 0.0210 0.0000

KNORAU 0.9994 0.0007 0.0653 1.0000 1.0000 0.9990

Table 44 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 27 / 0 /
37

54 / 0 /
10

49 / 0 /
15

60 / 0 / 4 57 / 0 / 7 52 / 0 /
12

LCA 14 / 0 /
50

55 / 0 / 9 54 / 0 /
10

43 / 0 /
21

38 / 0 /
26

25 / 0 /
39

KNORAE 23 / 0 /
41

56 / 0 / 8 56 / 0 / 8 57 / 0 / 7 55 / 0 / 9 48 / 0 /
16

KNORAU 46 / 0 /
18

38 / 0 /
26

34 / 0 /
30

52 / 0 /
12

48 / 0 /
16

42 / 0 /
22

Table 45 – Wins, ties and losses for noise level 0.3.

85

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.9095 0.0000 0.0000 0.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.0000 0.0387 0.9725

KNORAE 0.9776 0.0000 0.0000 0.0000 0.0000 0.0000

KNORAU 0.0005 0.0653 0.5373 0.0000 0.0000 0.0010

Table 46 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 22 / 0 /
42

29 / 0 /
35

18 / 0 /
46

12 / 0 /
52

52 / 0 /
12

51 / 0 /
13

LCA 19 / 0 /
45

53 / 0 /
11

48 / 0 /
16

39 / 0 /
25

55 / 0 / 9 50 / 0 /
14

KNORAE 20 / 0 /
44

54 / 0 /
10

51 / 1 /
12

16 / 0 /
48

60 / 0 / 4 55 / 0 / 9

KNORAU 29 / 0 /
35

20 / 0 /
44

20 / 0 /
44

22 / 0 /
42

54 / 0 /
10

53 / 0 /
11

Table 47 – Wins, ties and losses for noise level 0.3.

86

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 1.0000 0.6029 0.9969 1.0000 0.0000 0.0000

LCA 0.9999 0.0000 0.0000 0.0275 0.0000 0.0000

KNORAE 0.9994 0.0000 0.0000 1.0000 0.0000 0.0000

KNORAU 0.6944 0.9990 0.9999 0.9990 0.0000 0.0000

Table 48 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

A.5 NOISE LEVEL: 0.4

A.5.1 Average Ranks

Method Avg. Rank

KNORAU - MSDS 5.179688
KNORAU - BagDS 5.609375
KNORAU - DS 5.710938
Static 6.445312
KNORAU - Fire + MSDS 7.281250
KNORAE - MSDS 8.703125
OLA - MSDS 8.992188
KNORAE - Fire + MSDS 11.226562
KNORAU - Fire + BagDS 11.335938
OLA - BagDS 11.500000
LCA - Fire + MSDS 12.046875
OLA - DS 12.945312
OLA - Fire + MSDS 13.382812
KNORAE - BagDS 14.937500
LCA - MSDS 14.968750
KNORAU - Fire 15.125000
LCA - Fire + BagDS 16.328125
KNORAE - Fire + BagDS 16.484375
OLA - Fire + BagDS 17.109375

87

KNORAE - DS 17.445312
OLA - Fire 17.679688
LCA - BagDS 17.867188
KNORAE - Fire 18.468750
LCA - Fire 19.070312
LCA - DS 19.156250

Table 49 – Average Ranks for each method, for noise level 0.4.

A.5.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 13 / 0 /
51

17 / 0 /
47

23 / 0 /
41

7 / 0 / 57 10 / 0 /
54

14 / 0 /
50

LCA 5 / 0 / 59 6 / 0 / 58 11 / 0 /
53

5 / 0 / 59 12 / 0 /
52

15 / 0 /
49

KNORAE 7 / 0 / 57 8 / 0 / 56 20 / 0 /
44

7 / 0 / 57 8 / 0 / 56 13 / 0 /
51

KNORAU 30 / 0 /
34

30 / 1 /
33

32 / 0 /
32

9 / 0 / 55 18 / 0 /
46

28 / 0 /
36

Table 50 – Wins, ties and losses for noise level 0.4.

88

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000

LCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KNORAE 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

KNORAU 0.4023 0.1604 0.1531 1.0000 1.0000 0.9786

Table 51 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 51 / 0 /
13

43 / 0 /
21

47 / 0 /
17

12 / 0 /
52

15 / 0 /
49

29 / 0 /
35

LCA 59 / 0 / 5 53 / 1 /
10

58 / 0 / 6 36 / 0 /
28

45 / 0 /
19

50 / 0 /
14

KNORAE 57 / 0 / 7 49 / 1 /
14

57 / 0 / 7 27 / 0 /
37

36 / 1 /
27

53 / 0 /
11

KNORAU 34 / 0 /
30

38 / 0 /
26

35 / 0 /
29

7 / 0 / 57 10 / 1 /
53

18 / 0 /
46

Table 52 – Wins, ties and losses for noise level 0.4.

89

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.0000 0.0204 0.0000 1.0000 1.0000 0.7791

LCA 0.0000 0.0000 0.0000 0.1131 0.0003 0.0000

KNORAE 0.0000 0.0000 0.0000 0.9248 0.0281 0.0000

KNORAU 0.5977 0.1547 0.0715 1.0000 1.0000 0.9999

Table 53 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 23 / 0 /
41

47 / 0 /
17

47 / 0 /
17

53 / 0 /
11

56 / 0 / 8 50 / 0 /
14

LCA 11 / 0 /
53

58 / 0 / 6 57 / 0 / 7 40 / 0 /
24

30 / 0 /
34

24 / 0 /
40

KNORAE 20 / 0 /
44

57 / 0 / 7 53 / 0 /
11

54 / 0 /
10

54 / 0 /
10

46 / 1 /
17

KNORAU 32 / 0 /
32

35 / 0 /
29

34 / 1 /
29

58 / 0 / 6 54 / 0 /
10

48 / 0 /
16

Table 54 – Wins, ties and losses for noise level 0.4.

90

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.9999 0.0000 0.0001 0.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.0137 0.6335 0.9984

KNORAE 0.9998 0.0000 0.0000 0.0000 0.0000 0.0000

KNORAU 0.1531 0.0715 0.2644 0.0000 0.0000 0.0000

Table 55 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 14 / 0 /
50

29 / 0 /
35

28 / 0 /
36

14 / 0 /
50

45 / 0 /
19

51 / 0 /
13

LCA 15 / 0 /
49

50 / 0 /
14

50 / 0 /
14

40 / 0 /
24

54 / 0 /
10

48 / 0 /
16

KNORAE 13 / 0 /
51

53 / 0 /
11

51 / 0 /
13

17 / 1 /
46

55 / 0 / 9 51 / 0 /
13

KNORAU 28 / 0 /
36

18 / 0 /
46

21 / 0 /
43

16 / 0 /
48

53 / 0 /
11

54 / 0 /
10

Table 56 – Wins, ties and losses for noise level 0.4.

91

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 1.0000 0.7791 0.9895 1.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.0016 0.0000 0.0000

KNORAE 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

KNORAU 0.9786 0.9999 1.0000 1.0000 0.0000 0.0000

Table 57 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

92

APPENDIX B – TABLES - 50 BAGS

B.1 NOISE LEVEL: 0

B.1.1 Average Ranks

Method Avg. Rank

KNORAE - Fire 7.007812

KNORAU - Fire 8.328125

KNORAU - Fire + BagDS 9.789062

KNORAE - Fire + MSDS 10.531250

KNORAU - Fire + MSDS 10.632812

KNORAE - BagDS 10.679688

OLA - Fire 10.734375

KNORAE - Fire + BagDS 11.140625

KNORAU - BagDS 11.218750

KNORAE - DS 11.218750

KNORAE - MSDS 11.414062

KNORAU - DS 11.476562

OLA - DS 11.976562

OLA - BagDS 12.304688

KNORAU - MSDS 12.398438

93

OLA - Fire + BagDS 13.140625

Static 13.281250

OLA - Fire + MSDS 14.148438

OLA - MSDS 15.250000

LCA - BagDS 17.007812

LCA - Fire + BagDS 17.968750

LCA - DS 18.164062

LCA - Fire + MSDS 18.226562

LCA - MSDS 18.375000

LCA - Fire 18.585938

Table 58 – Average Ranks for each method, for noise level 0.

B.1.2 Win/Tie/Loss comparisons

94

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 32 / 4 /
28

32 / 5 /
27

26 / 4 /
34

34 / 3 /
27

27 / 3 /
34

26 / 3 /
35

LCA 18 / 4 /
42

20 / 4 /
40

17 / 5 /
42

21 / 4 /
39

18 / 4 /
42

21 / 3 /
40

KNORAE 32 / 9 /
23

33 / 9 /
22

26 / 17 /
21

40 / 8 /
16

32 / 11 /
21

32 / 15 /
17

KNORAU 26 / 29 /
9

27 / 29 /
8

23 / 29 /
12

34 / 17 /
13

28 / 25 /
11

26 / 26 /
12

Table 59 – Wins, ties and losses for noise level 0.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.0211 0.0244 0.7509 0.0141 0.0856 0.2767

LCA 0.9997 0.9985 1.0000 0.9941 0.9892 0.9964

KNORAE 0.0177 0.0055 0.1731 0.0000 0.0068 0.0030

KNORAU 0.0036 0.0005 0.0950 0.0000 0.0000 0.0002

Table 60 – p-values for the Wilcoxon signed-rank test for noise level 0.

95

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 28 / 4 /
32

27 / 17 /
20

19 / 9 /
36

30 / 3 /
31

24 / 6 /
34

22 / 9 /
33

LCA 42 / 4 /
18

36 / 21 /
7

26 / 8 /
30

31 / 6 /
27

37 / 5 /
22

35 / 4 /
25

KNORAE 23 / 9 /
32

24 / 25 /
15

26 / 13 /
25

40 / 7 /
17

23 / 12 /
29

27 / 10 /
27

KNORAU 9 / 29 /
26

14 / 42 /
8

13 / 31 /
20

28 / 16 /
20

23 / 22 /
19

21 / 24 /
19

Table 61 – Wins, ties and losses for noise level 0.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.9789 0.7954 0.9999 0.0389 0.6775 0.9819

LCA 0.0003 0.0002 0.7521 0.2454 0.0178 0.1165

KNORAE 0.9823 0.1785 0.8432 0.0000 0.1095 0.6928

KNORAU 0.9964 0.3189 0.9637 0.0002 0.0030 0.0427

Table 62 – p-values for the Wilcoxon signed-rank test for noise level 0.

96

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 26 / 4 /
34

19 / 9 /
36

16 / 11 /
37

20 / 4 /
40

23 / 7 /
34

25 / 14 /
25

LCA 17 / 5 /
42

26 / 8 /
30

24 / 11 /
29

31 / 3 /
30

30 / 3 /
31

29 / 3 /
32

KNORAE 26 / 17 /
21

26 / 13 /
25

24 / 14 /
26

19 / 6 /
39

28 / 9 /
27

21 / 18 /
25

KNORAU 23 / 29 /
12

13 / 31 /
20

9 / 35 /
20

16 / 17 /
31

16 / 23 /
25

14 / 26 /
24

Table 63 – Wins, ties and losses for noise level 0.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.7509 0.9999 1.0000 1.0000 0.9968 0.9558

LCA 1.0000 0.7521 0.9502 0.6549 0.9230 0.8680

KNORAE 0.1731 0.8432 0.9553 1.0000 0.9072 0.9376

KNORAU 0.0950 0.9637 0.9925 1.0000 0.9990 0.9994

Table 64 – p-values for the Wilcoxon signed-rank test for noise level 0.

97

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 26 / 3 /
35

22 / 9 /
33

20 / 12 /
32

25 / 14 /
25

16 / 4 /
44

27 / 7 /
30

LCA 21 / 3 /
40

35 / 4 /
25

29 / 4 /
31

32 / 3 /
29

29 / 10 /
25

24 / 13 /
27

KNORAE 32 / 15 /
17

27 / 10 /
27

26 / 12 /
26

25 / 18 /
21

17 / 7 /
40

29 / 9 /
26

KNORAU 26 / 26 /
12

21 / 24 /
19

22 / 25 /
17

24 / 26 /
14

13 / 21 /
30

18 / 27 /
19

Table 65 – Wins, ties and losses for noise level 0.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.2767 0.9819 0.9494 0.0442 1.0000 0.9653

LCA 0.9964 0.1165 0.3870 0.1320 0.2414 0.7273

KNORAE 0.0030 0.6928 0.8270 0.0624 1.0000 0.7833

KNORAU 0.0002 0.0427 0.0215 0.0006 1.0000 0.9580

Table 66 – p-values for the Wilcoxon signed-rank test for noise level 0.

98

B.2 NOISE LEVEL: 0.1

B.2.1 Average Ranks

Method Avg. Rank

KNORAU - Fire + MSDS 6.320312
KNORAE - Fire + MSDS 7.968750
KNORAE - MSDS 8.554688
KNORAU - BagDS 8.851562
KNORAU - DS 9.070312
OLA - MSDS 9.734375
OLA - Fire + MSDS 9.812500
KNORAU - Fire 9.960938
KNORAU - MSDS 10.257812
OLA - BagDS 10.460938
KNORAU - Fire + BagDS 10.468750
OLA - DS 11.828125
Static 12.531250
KNORAE - Fire 14.171875
KNORAE - BagDS 14.179688
KNORAE - Fire + BagDS 15.289062
OLA - Fire + BagDS 15.734375
LCA - MSDS 15.867188
KNORAE - DS 16.164062
LCA - Fire + MSDS 17.148438
OLA - Fire 17.195312
LCA - Fire 17.765625
LCA - Fire + BagDS 18.023438
LCA - BagDS 18.054688
LCA - DS 19.585938

Table 67 – Average Ranks for each method, for noise level 0.1.

B.2.2 Win/Tie/Loss comparisons

99

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 36 / 0 /
28

33 / 0 /
31

40 / 0 /
24

22 / 0 /
42

25 / 0 /
39

33 / 0 /
31

LCA 12 / 0 /
52

13 / 0 /
51

20 / 1 /
43

18 / 0 /
46

18 / 0 /
46

18 / 0 /
46

KNORAE 22 / 0 /
42

25 / 0 /
39

42 / 2 /
20

28 / 0 /
36

22 / 1 /
41

41 / 4 /
19

KNORAU 48 / 5 /
11

47 / 5 /
12

42 / 4 /
18

33 / 0 /
31

33 / 0 /
31

54 / 4 / 6

Table 68 – Wins, ties and losses for noise level 0.1.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.2111 0.0743 0.0111 0.9859 0.9116 0.0453

LCA 1.0000 1.0000 0.9994 0.9992 0.9998 1.0000

KNORAE 0.9329 0.7308 0.0006 0.6944 0.9091 0.0000

KNORAU 0.0000 0.0000 0.0018 0.0254 0.0507 0.0000

Table 69 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

100

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 28 / 0 /
36

43 / 0 /
21

42 / 0 /
22

18 / 0 /
46

18 / 0 /
46

43 / 0 /
21

LCA 52 / 0 /
12

51 / 1 /
12

53 / 0 /
11

38 / 0 /
26

35 / 1 /
28

42 / 0 /
22

KNORAE 42 / 0 /
22

49 / 1 /
14

51 / 0 /
13

39 / 0 /
25

35 / 0 /
29

54 / 0 /
10

KNORAU 11 / 5 /
48

19 / 27 /
18

21 / 17 /
26

29 / 0 /
35

27 / 1 /
36

37 / 4 /
23

Table 70 – Wins, ties and losses for noise level 0.1.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.7889 0.0107 0.0330 1.0000 0.9998 0.0037

LCA 0.0000 0.0000 0.0000 0.0063 0.0121 0.0055

KNORAE 0.0671 0.0002 0.0000 0.0715 0.1484 0.0000

KNORAU 1.0000 0.5271 0.9824 0.3868 0.6743 0.0000

Table 71 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

101

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 40 / 0 /
24

42 / 0 /
22

36 / 0 /
28

46 / 0 /
18

46 / 0 /
18

32 / 0 /
32

LCA 20 / 1 /
43

53 / 0 /
11

47 / 1 /
16

36 / 0 /
28

36 / 0 /
28

36 / 1 /
27

KNORAE 42 / 2 /
20

51 / 0 /
13

46 / 0 /
18

45 / 0 /
19

48 / 0 /
16

35 / 0 /
29

KNORAU 42 / 4 /
18

21 / 17 /
26

22 / 14 /
28

34 / 0 /
30

36 / 0 /
28

18 / 4 /
42

Table 72 – Wins, ties and losses for noise level 0.1.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.0111 0.0330 0.2940 0.0001 0.0010 0.4494

LCA 0.9994 0.0000 0.0001 0.2518 0.1364 0.0844

KNORAE 0.0006 0.0000 0.0001 0.0021 0.0001 0.7428

KNORAU 0.0018 0.9824 0.9726 0.7545 0.5847 1.0000

Table 73 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

102

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 33 / 0 /
31

43 / 0 /
21

34 / 1 /
29

32 / 0 /
32

51 / 0 /
13

48 / 0 /
16

LCA 18 / 0 /
46

42 / 0 /
22

37 / 0 /
27

27 / 1 /
36

38 / 1 /
25

40 / 0 /
24

KNORAE 41 / 4 /
19

54 / 0 /
10

53 / 0 /
11

29 / 0 /
35

49 / 0 /
15

52 / 0 /
12

KNORAU 54 / 4 / 6 37 / 4 /
23

38 / 4 /
22

42 / 4 /
18

42 / 0 /
22

47 / 0 /
17

Table 74 – Wins, ties and losses for noise level 0.1.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.0453 0.0037 0.2404 0.5506 0.0000 0.0000

LCA 1.0000 0.0055 0.1515 0.9156 0.3895 0.1043

KNORAE 0.0000 0.0000 0.0000 0.2572 0.0000 0.0000

KNORAU 0.0000 0.0000 0.0001 0.0000 0.0580 0.0036

Table 75 – p-values for the Wilcoxon signed-rank test for noise level 0.1.

103

B.3 NOISE LEVEL: 0.2

B.3.1 Average Ranks

Method Avg. Rank

KNORAU - Fire + MSDS 6.140625
OLA - MSDS 7.359375
KNORAU - BagDS 7.585938
KNORAU - DS 7.656250
KNORAU - MSDS 8.203125
KNORAE - MSDS 8.445312
KNORAE - Fire + MSDS 8.945312
OLA - BagDS 9.523438
OLA - Fire + MSDS 10.125000
Static 10.351562
KNORAU - Fire + BagDS 10.718750
KNORAU - Fire 11.500000
OLA - DS 11.843750
LCA - Fire + MSDS 14.210938
LCA - MSDS 14.234375
KNORAE - BagDS 15.132812
KNORAE - Fire + BagDS 15.992188
OLA - Fire + BagDS 17.093750
KNORAE - Fire 17.484375
LCA - Fire + BagDS 17.703125
KNORAE - DS 17.781250
LCA - Fire 18.390625
LCA - BagDS 18.562500
OLA - Fire 19.328125
LCA - DS 20.687500

Table 76 – Average Ranks for each method, for noise level 0.2.

B.3.2 Win/Tie/Loss comparisons

104

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 23 / 0 /
41

31 / 0 /
33

34 / 0 /
30

13 / 0 /
51

16 / 0 /
48

24 / 0 /
40

LCA 7 / 0 / 57 10 / 0 /
54

18 / 0 /
46

16 / 0 /
48

17 / 0 /
47

18 / 0 /
46

KNORAE 18 / 0 /
46

18 / 0 /
46

33 / 0 /
31

16 / 0 /
48

18 / 0 /
46

27 / 0 /
37

KNORAU 48 / 1 /
15

48 / 1 /
15

43 / 1 /
20

28 / 0 /
36

29 / 0 /
35

44 / 0 /
20

Table 77 – Wins, ties and losses for noise level 0.2.

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 0.9572 0.5821 0.0514 1.0000 1.0000 0.8167

LCA 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997

KNORAE 1.0000 0.9996 0.2561 1.0000 0.9999 0.5453

KNORAU 0.0000 0.0000 0.0016 0.9507 0.7352 0.0004

Table 78 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

105

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 41 / 0 /
23

43 / 1 /
20

52 / 0 /
12

10 / 0 /
54

11 / 0 /
53

38 / 0 /
26

LCA 57 / 0 / 7 56 / 0 / 8 57 / 0 / 7 39 / 0 /
25

42 / 0 /
22

47 / 0 /
17

KNORAE 46 / 0 /
18

54 / 0 /
10

57 / 0 / 7 30 / 0 /
34

40 / 1 /
23

60 / 0 / 4

KNORAU 15 / 1 /
48

28 / 13 /
23

32 / 1 /
31

23 / 0 /
41

24 / 0 /
40

34 / 1 /
29

Table 79 – Wins, ties and losses for noise level 0.2.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.0428 0.0032 0.0000 1.0000 1.0000 0.0612

LCA 0.0000 0.0000 0.0000 0.0173 0.0007 0.0000

KNORAE 0.0000 0.0000 0.0000 0.7396 0.0006 0.0000

KNORAU 1.0000 0.8793 0.9091 0.9994 0.9966 0.1279

Table 80 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

106

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 34 / 0 /
30

52 / 0 /
12

46 / 0 /
18

57 / 0 / 7 55 / 0 / 9 42 / 0 /
22

LCA 18 / 0 /
46

57 / 0 / 7 54 / 0 /
10

42 / 0 /
22

42 / 0 /
22

33 / 1 /
30

KNORAE 33 / 0 /
31

57 / 0 / 7 54 / 0 /
10

53 / 0 /
11

49 / 0 /
15

44 / 1 /
19

KNORAU 43 / 1 /
20

32 / 1 /
31

28 / 6 /
30

41 / 0 /
23

39 / 0 /
25

30 / 0 /
34

Table 81 – Wins, ties and losses for noise level 0.2.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.0514 0.0000 0.0000 0.0000 0.0000 0.0002

LCA 1.0000 0.0000 0.0000 0.0002 0.0075 0.6429

KNORAE 0.2561 0.0000 0.0000 0.0000 0.0000 0.0137

KNORAU 0.0016 0.9091 0.8144 0.0040 0.0146 0.9027

Table 82 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

107

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 24 / 0 /
40

38 / 0 /
26

28 / 0 /
36

22 / 0 /
42

59 / 0 / 5 55 / 0 / 9

LCA 18 / 0 /
46

47 / 0 /
17

44 / 0 /
20

30 / 1 /
33

49 / 0 /
15

50 / 0 /
14

KNORAE 27 / 0 /
37

60 / 0 / 4 60 / 0 / 4 19 / 1 /
44

55 / 0 / 9 56 / 0 / 8

KNORAU 44 / 0 /
20

34 / 1 /
29

31 / 1 /
32

34 / 0 /
30

49 / 0 /
15

53 / 0 /
11

Table 83 – Wins, ties and losses for noise level 0.2.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.8167 0.0612 0.7460 0.9998 0.0000 0.0000

LCA 0.9997 0.0000 0.0000 0.3571 0.0000 0.0000

KNORAE 0.5453 0.0000 0.0000 0.9863 0.0000 0.0000

KNORAU 0.0004 0.1279 0.1522 0.0973 0.0000 0.0000

Table 84 – p-values for the Wilcoxon signed-rank test for noise level 0.2.

108

B.4 NOISE LEVEL: 0.3

B.4.1 Average Ranks

Method Avg. Rank

KNORAU - MSDS 5.632812
KNORAU - DS 5.914062
KNORAU - BagDS 5.945312
KNORAU - Fire + MSDS 6.328125
OLA - MSDS 7.445312
Static 8.398438
KNORAE - MSDS 8.859375
KNORAE - Fire + MSDS 10.218750
OLA - BagDS 10.710938
KNORAU - Fire + BagDS 11.414062
OLA - Fire + MSDS 11.500000
OLA - DS 12.640625
LCA - Fire + MSDS 12.898438
LCA - MSDS 14.132812
KNORAU - Fire 14.867188
KNORAE - BagDS 15.007812
KNORAE - Fire + BagDS 16.382812
KNORAE - DS 16.976562
LCA - Fire + BagDS 17.242188
LCA - BagDS 17.578125
OLA - Fire + BagDS 17.914062
OLA - Fire 18.585938
KNORAE - Fire 19.296875
LCA - DS 19.375000
LCA - Fire 19.734375

Table 85 – Average Ranks for each method, for noise level 0.3.

109

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 18 / 0 /
46

21 / 0 /
43

27 / 0 /
37

10 / 0 /
54

8 / 0 / 56 24 / 0 /
40

LCA 7 / 0 / 57 8 / 0 / 56 14 / 0 /
50

8 / 0 / 56 13 / 0 /
51

21 / 0 /
43

KNORAE 13 / 0 /
51

14 / 0 /
50

23 / 0 /
41

7 / 0 / 57 12 / 0 /
52

22 / 0 /
42

KNORAU 44 / 1 /
19

45 / 0 /
19

46 / 0 /
18

15 / 0 /
49

22 / 0 /
42

31 / 0 /
33

Table 86 – Wins, ties and losses for noise level 0.3.

B.4.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 1.0000 0.9999 0.8869 1.0000 1.0000 0.9999

LCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KNORAE 1.0000 1.0000 0.9818 1.0000 1.0000 0.9991

KNORAU 0.0006 0.0005 0.0007 1.0000 0.9998 0.5080

Table 87 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 46 / 0 /
18

43 / 0 /
21

54 / 0 /
10

11 / 0 /
53

13 / 0 /
51

32 / 0 /
32

LCA 57 / 0 / 7 54 / 1 / 9 56 / 0 / 8 34 / 0 /
30

44 / 0 /
20

50 / 0 /
14

KNORAE 51 / 0 /
13

46 / 1 /
17

57 / 0 / 7 20 / 0 /
44

36 / 0 /
28

54 / 0 /
10

KNORAU 19 / 1 /
44

40 / 2 /
22

39 / 0 /
25

11 / 0 /
53

12 / 0 /
52

21 / 0 /
43

Table 88 – Wins, ties and losses for noise level 0.3.

110

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.0000 0.0011 0.0000 1.0000 1.0000 0.3056

LCA 0.0000 0.0000 0.0000 0.2963 0.0004 0.0000

KNORAE 0.0000 0.0004 0.0000 0.9993 0.0339 0.0000

KNORAU 0.9994 0.1711 0.0288 1.0000 1.0000 0.9951

Table 89 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 27 / 0 /
37

54 / 0 /
10

49 / 0 /
15

59 / 0 / 5 56 / 0 / 8 52 / 0 /
12

LCA 14 / 0 /
50

56 / 0 / 8 52 / 0 /
12

44 / 0 /
20

41 / 0 /
23

27 / 0 /
37

KNORAE 23 / 0 /
41

57 / 0 / 7 55 / 0 / 9 58 / 0 / 6 54 / 0 /
10

46 / 0 /
18

KNORAU 46 / 0 /
18

39 / 0 /
25

40 / 1 /
23

52 / 0 /
12

47 / 0 /
17

42 / 0 /
22

Table 90 – Wins, ties and losses for noise level 0.3.

111

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.8869 0.0000 0.0000 0.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.0000 0.0144 0.8750

KNORAE 0.9818 0.0000 0.0000 0.0000 0.0000 0.0003

KNORAU 0.0007 0.0288 0.0813 0.0000 0.0000 0.0015

Table 91 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 24 / 0 /
40

32 / 0 /
32

23 / 0 /
41

12 / 0 /
52

55 / 0 / 9 55 / 0 / 9

LCA 21 / 0 /
43

50 / 0 /
14

48 / 0 /
16

37 / 0 /
27

54 / 0 /
10

53 / 1 /
10

KNORAE 22 / 0 /
42

54 / 0 /
10

51 / 0 /
13

18 / 0 /
46

58 / 0 / 6 55 / 0 / 9

KNORAU 31 / 0 /
33

21 / 0 /
43

20 / 0 /
44

22 / 0 /
42

56 / 0 / 8 55 / 0 / 9

Table 92 – Wins, ties and losses for noise level 0.3.

112

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 0.9999 0.3056 0.9500 1.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.1250 0.0000 0.0000

KNORAE 0.9991 0.0000 0.0000 0.9997 0.0000 0.0000

KNORAU 0.5080 0.9951 0.9971 0.9985 0.0000 0.0000

Table 93 – p-values for the Wilcoxon signed-rank test for noise level 0.3.

B.5 NOISE LEVEL: 0.4

B.5.1 Average Ranks

Method Avg. Rank

KNORAU - MSDS 5.289062
KNORAU - BagDS 5.390625
KNORAU - DS 5.781250
Static 6.351562
KNORAU - Fire + MSDS 7.703125
OLA - MSDS 8.882812
KNORAE - MSDS 9.281250
OLA - BagDS 10.343750
KNORAU - Fire + BagDS 10.593750
KNORAE - Fire + MSDS 11.468750
LCA - Fire + MSDS 12.132812
OLA - DS 12.937500
OLA - Fire + MSDS 13.515625
KNORAU - Fire 15.046875
LCA - MSDS 15.187500
KNORAE - BagDS 15.257812
KNORAE - Fire + BagDS 15.953125
OLA - Fire + BagDS 17.007812
LCA - Fire + BagDS 17.179688

113

KNORAE - DS 17.460938
OLA - Fire 17.710938
LCA - BagDS 17.945312
KNORAE - Fire 18.421875
LCA - DS 19.070312
LCA - Fire 19.085938

Table 94 – Average Ranks for each method, for noise level 0.4.

B.5.2 Win/Tie/Loss comparisons

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 13 / 0 /
51

17 / 0 /
47

24 / 0 /
40

7 / 0 / 57 13 / 0 /
51

13 / 0 /
51

LCA 5 / 0 / 59 5 / 0 / 59 9 / 0 / 55 5 / 0 / 59 8 / 0 / 56 13 / 0 /
51

KNORAE 7 / 0 / 57 7 / 0 / 57 19 / 0 /
45

7 / 0 / 57 8 / 0 / 56 15 / 0 /
49

KNORAU 30 / 0 /
34

33 / 0 /
31

32 / 0 /
32

9 / 0 / 55 18 / 1 /
45

25 / 0 /
39

Table 95 – Wins, ties and losses for noise level 0.4.

114

DS Algorithm DS vs
Static

BagDS vs
Static

MSDS vs
Static

FireDS vs
Static

BagDS +
Fire vs
Static

MSDS +
Fire vs
Static

OLA 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000

LCA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KNORAE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KNORAU 0.4023 0.1230 0.1531 1.0000 1.0000 0.9947

Table 96 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 51 / 0 /
13

49 / 0 /
15

45 / 0 /
19

12 / 0 /
52

15 / 0 /
49

30 / 0 /
34

LCA 59 / 0 / 5 52 / 0 /
12

56 / 0 / 8 36 / 0 /
28

41 / 0 /
23

51 / 0 /
13

KNORAE 57 / 0 / 7 49 / 0 /
15

56 / 0 / 8 27 / 0 /
37

41 / 2 /
21

52 / 0 /
12

KNORAU 34 / 0 /
30

39 / 2 /
23

37 / 0 /
27

7 / 0 / 57 12 / 0 /
52

18 / 0 /
46

Table 97 – Wins, ties and losses for noise level 0.4.

115

DS Algorithm Static vs
DS

BagDS vs
DS

MSDS vs
DS

FireDS vs
DS

BagDS +
Fire vs
DS

MSDS +
Fire vs
DS

OLA 0.0000 0.0001 0.0000 1.0000 1.0000 0.9276

LCA 0.0000 0.0000 0.0000 0.1131 0.0012 0.0000

KNORAE 0.0000 0.0000 0.0000 0.9248 0.0030 0.0000

KNORAU 0.5977 0.0799 0.0528 1.0000 1.0000 1.0000

Table 98 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 24 / 0 /
40

45 / 0 /
19

41 / 0 /
23

54 / 0 /
10

57 / 0 / 7 51 / 0 /
13

LCA 9 / 0 / 55 56 / 0 / 8 55 / 0 / 9 37 / 0 /
27

33 / 0 /
31

24 / 0 /
40

KNORAE 19 / 0 /
45

56 / 0 / 8 53 / 0 /
11

55 / 0 / 9 52 / 0 /
12

47 / 0 /
17

KNORAU 32 / 0 /
32

37 / 0 /
27

37 / 0 /
27

57 / 0 / 7 51 / 0 /
13

51 / 0 /
13

Table 99 – Wins, ties and losses for noise level 0.4.

116

DS Algorithm MSDS vs
Static

MSDS vs
DS

MSDS vs
BagDS

MSDS vs
FireDS

MSDS vs
BagDS +
Fire

MSDS vs
MSDS +
Fire

OLA 0.9996 0.0000 0.0020 0.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.0167 0.3222 0.9985

KNORAE 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

KNORAU 0.1531 0.0528 0.0961 0.0000 0.0000 0.0000

Table 100 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 13 / 0 /
51

30 / 0 /
34

19 / 0 /
45

13 / 0 /
51

48 / 0 /
16

48 / 1 /
15

LCA 13 / 0 /
51

51 / 0 /
13

49 / 0 /
15

40 / 0 /
24

55 / 0 / 9 56 / 1 / 7

KNORAE 15 / 0 /
49

52 / 0 /
12

46 / 0 /
18

17 / 0 /
47

52 / 0 /
12

50 / 0 /
14

KNORAU 25 / 0 /
39

18 / 0 /
46

17 / 0 /
47

13 / 0 /
51

53 / 0 /
11

48 / 0 /
16

Table 101 – Wins, ties and losses for noise level 0.4.

117

DS Algorithm MSDS +
Fire vs
Static

MSDS +
Fire vs
DS

MSDS +
Fire vs
BagDS

MSDS +
Fire vs
MSDS

MSDS +
Fire vs
FireDS

MSDS +
Fire vs
BagDS +
Fire

OLA 1.0000 0.9276 0.9998 1.0000 0.0000 0.0000

LCA 1.0000 0.0000 0.0000 0.0015 0.0000 0.0000

KNORAE 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000

KNORAU 0.9947 1.0000 1.0000 1.0000 0.0000 0.0000

Table 102 – p-values for the Wilcoxon signed-rank test for noise level 0.4.

	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Structure of the document

	Background and Related Works
	Ensemble Methods
	Pool Generation
	Selection
	Integration

	Dynamic Selection
	Determination of the Region of Competence
	The Oracle Model
	Determination of Selection Criteria
	Determination of Selection Mechanism

	Noise and Classification Problems
	Ensemble Learning and Noise

	Prototype Selection
	Prototype Selection and Ensemble Methods

	The Bagging-IH algorithm
	Instance Hardness

	Dynamic Frienemy Pruning and Fire-DES++
	Dynamic Frienemy Pruning (DFP)
	Fire-DES++

	Proposed Method
	Experiments and Analyses
	Methodology
	Experimental Parameters
	Data sets

	Results and Analysis
	The Effect of Noise on Dynamic Selection
	Conclusions on the issue of noise vs. DS
	The performance of MSDS
	The effect of the number of bags on MSDS

	Conclusions and Future Work
	Future Work

	References
	Tables - 10 bags
	Noise Level: 0
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.1
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.2
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.3
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.4
	Average Ranks
	Win/Tie/Loss comparisons

	Tables - 50 bags
	Noise Level: 0
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.1
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.2
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.3
	Average Ranks
	Win/Tie/Loss comparisons

	Noise Level: 0.4
	Average Ranks
	Win/Tie/Loss comparisons

