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ABSTRACT

The success of server virtualization and cloud computing led to a subsequent net-
work virtualization requirement, because the flexibility achieved by virtualized hardware
resources could be impaired by static network interconnections. Network virtualization
refers to the ability to execute virtual instances of routers, switches, and links on top of
a physical network substrate. So, multiple virtualized networks can co-exist in a shared
network infrastructure. Technologies such as Software-Defined Networks, Network Func-
tion Virtualization and Service Function Chaining have been launched to enable the re-
placement of traditional network hardware appliances by softwarized Virtualized Network
Function (VNF)s chains. As a consequence, virtualized networks represent additional ob-
stacles to the provision of high availability services, because it results in more layers of
software: the increasing number of software components required to run virtualized sys-
tems also increases the number of possible failures. This thesis designed and evaluated
a set of stochastic models to improve virtual network functions provision considering
metrics of availability and capacity. The models can represent high availability mecha-
nisms, such as redundancy and software rejuvenation, allowing to estimate the behavior
of the studied metrics facing these mechanisms. The adopted methodology encompasses
the assembling and configuration of high available cloud computing infrastructure. The
implemented cloud supports the provision of redundant virtual network functions and
service function chains, enabling the measurement of parameter values that were injected
in the designed models. In order to show the applicability of proposed solutions, a set of
case studies are also presented. The results demonstrate the feasibility in providing high
available Virtual Network Functions and Service Function Chains in a cloud infrastruc-
ture for the studied scenarios. Such results can be useful for telecommunication providers
and operators and their heterogeneous infrastructures.

Keywords: Virtual network functions. Network function virtualization. Service function
chaining. High availability. Stochastic modeling. Software aging and rejuvenation.



RESUMO

O sucesso da virtualização de servidores e da computação em nuvem levou a um sub-
sequente requisito de virtualização de rede, porque a flexibilidade alcançada pelos recursos
de hardware virtualizados poderia ser prejudicada por interconexões de rede estáticas. A
virtualização de rede refere-se à capacidade de executar instâncias virtuais de roteadores,
switches e links sobre um substrato de rede físico. Assim, várias redes virtualizadas podem
coexistir em uma infraestrutura de rede comum. Tecnologias como Redes Definidas por
Software, Virtualização de Funções de Rede e Encadeamento de Funções de Serviços foram
lançadas para permitir a substituição de dispositivos de hardware de rede tradicionais por
cadeias lógicas de Funções de Redes Virtuais (VNFs - Virtual Network Functions). Como
uma conseqüência, as redes virtualizadas representam obstáculos adicionais ao forneci-
mento de serviços de alta disponibilidade, porque resultam em mais camadas de software:
o número crescente de componentes de software necessários para executar sistemas vir-
tualizados também aumenta o número de possíveis falhas. Esta tese projetou e avaliou
um conjunto de modelos estocásticos para melhorar o fornecimento de funções de rede
virtual, considerando métricas de disponibilidade e capacidade. Os modelos são capazes
de representar mecanismos de alta disponibilidade, como redundância e rejuvenescimento
de software, permitindo estimar o comportamento das métricas estudadas diante desses
mecanismos. A metodologia adotada abrange a montagem e configuração de uma in-
fraestrutura de alta disponibilidade de computação em nuvem. A nuvem implementada
suporta o fornecimento de VNFs e cadeias de serviços virtuais redundantes, permitindo a
medição de valores dos parâmetros a serem injetados nos modelos. Para mostrar a aplica-
bilidade das soluções propostas, também é apresentado um conjunto de estudos de caso.
Os resultados demonstram a viabilidade em fornecer cadeias de VNFs em uma infraestru-
tura de nuvem para os cenários estudados, e podem ser úteis para provedores e operadoras
de telecomunicações nas suas infraestruturas heterogêneas.

Palavras-chaves: Funções de rede virtuais. Virtualização de funções de rede. Cadeias
de funções de serviços. Alta disponibilidade. Modelagem estocástica. Envelhecimento e
rejuvenescimento de software.
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1 INTRODUCTION

Virtualization is a technique to abstract the resources of computer hardware, decoupling
the application and operating system from the hardware, and dividing resources into
multiple execution environments. Previously to virtualization, it was not uncommon to
accommodate only one application per Operating System (OS), i.e., per server. This
approach was known as server proliferation. It increases the availability of services, mainly
in scenarios where reboot the OS was overused as main troubleshooting action. However,
server proliferation promotes machine’s resources wastage.

Goldberg (GOLDBERG, 1973), in 1976, stated the concept of Virtual Computer System
(VCS), also called as Virtual Machine (VM). VMs were conceived to be very efficient
simulated copies of the bare metal host machine. One new layer of software, called Virtual
Machine Monitor (VMM), was adopted to mediate the communication between the VMs
and the hardware resources.

The main motivation for the adoption of virtualization was to increase the efficiency
of hardware resources, with a direct effect on the contraction of infrastructure costs,
dropping power requirements at a green data center effort.

With the adoption of VMs, server virtualization enables the consolidation of services.
Previously isolated into individual machines, the services started to be provided in VMs
that share virtualized server resources.

In 2006, Amazon Web Services (AWS) began offering IT infrastructure services to
businesses in the form of web services, which is now known as cloud computing (SER-

VICES, 2017a). In 2011, the five essential characteristics that define cloud computing were
standardized by National Institute of Standards and Technology (NIST) (MELL; GRANCE,
2011), namely: on-demand self-service, broad network access, resource pooling, rapid elas-
ticity, and measured service. Such a set of features results in an increased rate of changes
in networks.

The success of virtualization and cloud computing led to subsequent network virtual-
ization requirement, because static network interconnections could impair the flexibility
achieved by virtualized hardware resources. Cloud providers need a way to allow multiple
tenants to share the same network infrastructure. It was needed to virtualize the network.

Similarly to decoupling between OS and bare-metal hardware occurred in server vir-
tualization, Software-Defined Networking (SDN) (Kim; Feamster, 2013) implements the
decoupling between the control plane (which decides how to handle the traffic) from the
data plane (which forwards traffic according to decisions that the control plane makes)
in network interconnection devices, such as switches. Such a decoupling also enables the
consolidation of control planes to a single control program managing all data plane de-
vices (FEAMSTER; REXFORD; ZEGURA, 2014). So, SDN relates to network virtualization
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as an enabling technology.
The SDN control plane performs direct control over the state in the network’s data-

plane elements via a well-defined Application Programming Interface (API). From 2007 to
around 2010, the OpenFlow (FOUNDATION, 2017) API development represented the first
instance of widespread adoption of an open interface, providing ways to make a practical
control-data plane separation. The most adopted implementation of OpenFlow is Open
vSwitch (FOUNDATION, 2017), functioning as a virtual switch in VM environments.

In 2012, an European Telecommunications Standards Institute (ETSI) white paper
proposed Network Function Virtualization (NFV) (ETSI, 2012) an alternative to reduce Cap-
ital Expenditure (CAPEX) and Operational Expenditure (OPEX) through the virtual-
ization of network specialized (and expensive) hardware, known as appliances. These
expensive appliances run a set of services (such as firewalling, load balancing, and Deep
Packet Inspection (DPI)) throughout traffic aggregation points in the network, intending
to apply traffic policies. They are added in an over-provisioned fashion, wasting resources.
Several other issues contribute to the deprecation of adding appliances model:

• additional cost of acquisition, installing, managing, and operation. Each appliance re-
quires power, space, cabling, and an all lifecycle that must be managed;

• network virtualization. As a virtual network topology can be moved to diverse servers
in the network, it is problematic to move the appliances to accomplish the dynamism
of virtualized networks.

As can be noted, virtualized cloud infrastructures claim for connectivity for migration
of VMs, in several use cases, a live migration. Virtualized network appliances should
become mobile. Its service continuity could be improved by mobile network infrastructure.
The ossification of traditional data center networks denied the agile and required mobility
of VMs because it requires manual tunning in the physical infrastructure.

VNF replaces vendor’s appliances by systems performing the same functions, yet run-
ning on generic hardware through the adoption of server virtualization. Chains of VNFs
quickly emerged and can be mobile. The term Service Function Chaining (SFC) (QUINN;

NADEAU, 2015; HALPERN; PIGNATARO, 2015) was used to describe an ordered list of VNFs,
and the subsequent steering of traffic flows through those VNFs. SDN can handle the clas-
sification and forwarding tasks required by SFCs.

As a consequence of the massive adoption of server virtualization, cloud computing,
and network virtualization was the emergence of new network architectures designed to
be fault tolerant (CHAYAPATHI; HASSAN; SHAH, 2016). Regarding resilience, NFV moves
the focus from physical network nodes, that are highly available, to highly available end-
to-end services comprised of VNFs chains (ETSI, 2015).
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1.1 MOTIVATION AND JUSTIFICATION

As we have seen, several technologies were launched to enable the replacement of tra-
ditional network hardware appliances by softwarized VNFs chains. As a consequence,
virtualized networks demands greater efforts over availability, because it represents more
layers of software: the increasing number of software components required to run a cloud
also increases the number of possible failures (WEI; LIN; KONG, 2011).

According to Han et al. (HAN et al., 2015), the virtualization of network services ”may
reduce capital investment and energy consumption by consolidating networking appliances,
decrease the time to market of a new service [..], and rapidly introduce targeted and tai-
lored services based on customer needs". However, along with the benefits, there are many
technical challenges to be covered by the network operators. For instance, ensuring that
the network resilience will remain at least as good as that of commodity hardware im-
plementations, even if relying on virtualization, is a great challenge. The VNF chains
need to ensure the availability of its part in the end-to-end service, just as in the case of
non-virtualized appliances (HERKER et al., 2015).

Furthermore, the network operators should also be able to dynamically create and
migrate their SFCs in order to consolidate VNFs or to provide service elasticity based on
user demand or traffic load. When migrating SFCs, the network operator should keep in
mind that service availability and service level agreements cannot be affected. Replication
mechanisms have already been proposed to target the required service reliability based
on VNF redundancy (CARPIO; JUKAN, 2017).

Service downtime not only negatively effects in user experience but directly translates
into revenue loss (ENDO et al., 2016). Along last decade, several cloud service outages
were reported (GAGNAIRE et al., 2013). In February 28, 2017, Amazon reported a outage
from 9:37AM to 1:54PM in Simple Storage Service (S3) (SERVICES, 2017b), with clients’
estimated losses around US$150 millions. Due to a typo, a large scale services restart
was required. A number that can explain such impressive losses: big companies, such as
Google, Microsoft, and Amazon, have millions of servers on their data centers (BALLMER,
2013). Regarding virtualized values: eBay has 167,000 of VMs (NANDWANI, 2017). Such
huge numbers are persuasive regarding availability. Amazon S3 has three 9’s (99.9%) of
availability in its Service Level Agreement (SLA), meaning a maximum downtime of 9
hours per year. They spent 4 hours and 17 minutes already with the 2017 February typo
issue.

Another downtime source may be generated by continuously execution software, such
as those offered by cloud and network providers. The continuous software execution
is susceptible to slowly degradation regarding the effective usage of their system re-
sources (HUANG et al., 1995). Such a phenomenon is called software aging, and it impacts
the availability and performance of computer systems. The occurrence of software aging in
systems where multiple software components are joined, such as those at cloud computing
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environments, can be catastrophic. The more software components there are, the greater
the risk of failure caused by aging. However, some proactive action can be triggered to
minimize the effects of aging software, known as software rejuvenation. This action is
commonly triggered by a time-based, threshold, or prediction-based strategies (Araujo et

al., 2011).
Moreover, than software rejuvenation, successful approaches adopted to setup High

Availability (HA) include elimination of Single Point Of Failure (SPOF) through redun-
dancy, as well as the interconnection of redundant components in clusters. However, those
methods are only suitable for existing infrastructures.

Models can be designed to aid network specialists in the assembling of high available
software-centric virtualized networks. Dependability modeling (ARLAT; KANOUN; LAPRIE,
1990; HEIMANN; MITTAL; TRIVEDI, 1991; MACIEL et al., 2012; MALHOTRA; TRIVEDI, 1995)
is a largely accepted technique that is concerned about measuring the ability of a system
to deliver its intended level of service to users, especially related to failures or others
incidents which affect performance. The quantitative fault forecasting (UCLA et al., 2001)
adopts models such as Markov Chains and Stochastic Petri Nets to evaluate, in terms of
probability, the extent to which some attributes of dependability are satisfied.

This work deals with modeling of VNF chains aiming at aid network specialists to fit
availability and capacity requirements, not only in their existent virtualized network but
also to estimate these metrics in future virtual infrastructures.

1.2 OBJECTIVES

Increase the availability of virtualized infrastructures, such as virtualized data centers
and cloud computing environments, and subsequent savings in COPEX and OPEX costs
while maintaining user’s agreements, are goals of network operators. The main objective
of this research is to propose and analyze a set of stochastic models to evaluate and
improve virtual network functions considering metrics of availability and capacity. The
following list presents the specific objectives that should be accomplished to realize the
main objective:

• Create stochastic models to estimate the behavior of availability and capacity metrics
of virtual network functions provided in cloud computing infrastructure;

• Assembly and configure a highly available cloud computing infrastructure with sup-
port for redundant virtual network functions in order to generate parameter values
that will be used as input into stochastic models;

• Adopt the models in case studies aiming at identifying the behavior of the metrics of
interest.



21

One of the main challenges of this research is to propose scalable models considering
the high complexity of cloud computing infrastructures and virtual network functions
configurations. To cover this problem, we developed hierarchical stochastic models that
are not so detailed at a point that forbids its analysis as well as are not so simple that
fail in representing the real systems.

We restrict our proposal to private clouds due to configuration complexity of high
available cloud computing infrastructures. The assembling of a private cloud offers com-
plete flexibility of configuration and has a low cost.

1.3 THESIS ORGANIZATION

The remainder of this thesis is organized as follow: Chapter 2 presents the background that
is required for understanding the remaining chapters. Chapter 3 shows a series of related
works with points in common with this thesis. The support methodology is described in
Chapter 4. It explains the methodology for evaluation of VNF chains adopting stochastic
modeling. Chapter 5 presents the measurement experiments that were executed in the
assembled testbeds during this research. Chapter 6 presents the models that represent the
components aimed at providing VNF chains. Chapter 7 presents case studies that were
adopted to evaluate the scenarios of interest, as well as to present the models’ analysis
results. Chapter 8 summarizes the results achieved during this research and also presents
suggestions for future works.
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2 BACKGROUND

This chapter discusses the basic concepts of primary areas that set up the focus for
this work: network virtualization - including Network Function Virtualization, Software-
Defined Networks, and Service Function Chaining - cloud computing, dependability mod-
eling, and software aging and rejuvenation. The background presented here shall provide
the necessary knowledge for a clear comprehension of the subsequent chapters.

2.1 SERVER VIRTUALIZATION

Server virtualization is the abstraction of applications and operating systems from physical
servers. It is required to select a virtualization approach to apply server virtualization.
Actually, there are four main accepted approaches that can be applied to implement server
virtualization:

i. Full Virtualization: it is the particular kind of virtualization that allows an unmodified
guest operating system, with all of its installed softwares, to run in a special environ-
ment, on top of existing host operating system. Virtual machines are created by the
virtualization software by intercepting access to certain hardware components and cer-
tain features. Most of the guest code runs unmodified, directly on the host computer,
and in a transparent way: the guest is unaware that it is being virtualized. Virtual
Box (ORACLE, 2017), VMWare Virtualization softwares (VMWARE, 2017) and (QEMU,
2017) are examples of full virtualization products. KVM (KVM, 2017) kernel-level vir-
tualization is a specialized version of full virtualization. The Linux kernel serves as
the hypervisor. It is implemented as a loadable kernel module that converts the Linux
kernel into a bare-metal hypervisor. As it was designed after the advent of hardware-
assisted virtualization, it did not have to implement features that were provided by
hardware. So, it requires Intel VT-X or AMD-V (see Hardware Virtualization below)
enabled CPUs.

ii. Paravirtualization: this approach requires to modify the guest operating system running
in the virtual machine and replace all the privileged instructions with direct calls into
the hypervisor. So, the modified guest operating system is aware that is running on
a hypervisor and can cooperate with it for improved scheduling and I/O: it includes
code to make guest-to-hypervisor transitions more efficient. Paravirtualization does not
require virtualization extensions from the host CPU. Xen hypervisor (XEN, 2017) was
the precursor of paravirtualization products.

iii. Operating System virtualization, also known as container-based virtualization, is a
lightweight alternative. It presents an operating system environment that is fully or
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partially isolated from the host operating system, allowing for safe application execution
at native speeds. While hypervisor-based virtualization provides an abstraction for
full guest OS’s (one per virtual machine), container-based virtualization works at the
operating system level, providing abstractions directly for the guest processes. OpenVZ
(OPENVZ, 2017), LXC(LXC, 2017), and Docker (INC., 2019) are examples of container-
based virtualization solutions.

iv. Hardware Virtualization: it is the hardware support for virtualization. VMs in a hard-
ware virtualization environment can run unmodified operating systems because the
hypervisor can use the native hardware support for virtualization to handle privileged
and protected operations and hardware access requests; to communicate with and man-
age the virtual machines (HAGEN, 2008). Both Intel and AMD implement hardware
virtualization, calling their products as Intel VT-X and AMD-V, respectively.

There are some server virtualization platforms that aid to achieve application avail-
ability and fault tolerance. Proxmox VE (SOLUTIONS, 2017), VMWare vSphere (INC.,
2017), and Windows Hyper-V (MICROSOFT, 2017) are well-known server virtualization
platforms. Some of their features are compared in Table 1.

Table 1 – Server Virtualization Platforms

Proxmox VE VMware vSphere Windows Hyper-V
Guest OS
support

Linux and
Windows

Linux,
Windows,UNIX

Windows and
Linux(limited)

Open
Source Yes No No

License
GNU AGPL

v3 Proprietary Free
High

Availability Yes Yes
Requires MS

Failover clustering

Centralized
control Yes

Yes, but requires
dedicated

management
server or VM

Yes, but requires
dedicated

management
server or VM

Virtualization
Full and

OS Full
Full and

Paravirtualization
Source: The author (2019)

In this research, we adopted Proxmox VE due to its full operation in Linux systems, its
native support for high availability and its compatibility with full and OS virtualization.

2.1.1 Proxmox VE

Proxmox VE is a virtualization environment for servers. It is an open source tool, based
on the Debian GNU/Linux distribution, that can manage containers, virtual machines,
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storage, virtualized networks, and high-availability clustering through both web-based
interface or command-line interfaces (SOLUTIONS, 2017).

Proxmox VE supports OpenVZ container-based virtualization kernel. OpenVZ adds
virtualization and isolation, enabling: various containers within a single kernel; resource
management, that limits sub-system resources, such as CPU, RAM, and disk access, on a
per-container basis; checkpointing, that saves container’s state, making container migra-
tion possible. OpenVZ guest OSs are instantiated based on templates. These templates
are pre-existing images that can create a chrooted environment - the container - on a few
seconds, enabling small overhead during creation, execution, and finalization of contain-
ers, providing fast deployment scenarios. Programs in a guest container run as rehular
applications that directly use the host OS’s system call interface and do not need to run
on top of an intermediate hypervisor (OPENVZ, 2017).

OpenVZ offers three major networking modes of operation:

• Route-based (venet);
• Bridge-based (veth);
• Real network device (eth) in a container.

The main differences between them are the layer of operation. While route-based mode
works in Layer 3, bridge-based works in Layer 2 and real network in Layer 1. In the real
network mode, the server system administrator will assign a real network device (such as
eth0) into the container. This latter approach will provide the best network performance,
but the Network Interface Card (NIC) will not be virtualized.

2.2 NETWORK VIRTUALIZATION

Network virtualization is a technique that enables multiple isolated logical networks, each
with potentially different addressing and forwarding mechanisms, to share the same phys-
ical infrastructure (SHERWOOD et al., 2009). Historically, the term virtual network refers
to legacy overlay technologies, such as Virtual Local Area Network (VLAN), a physical
method for network virtualization provided in traditional switches. Through a VLAN ID,
hosts connected to a switch could be separated in distinct broadcast domains. This ap-
proach has several well-known limitations, such as the available number of VLAN IDs
(4094). It is not enough to divide multi-tenants VMs.

Jain and Paul (JAIN; PAUL, 2013) performed a detailed explanation about network
virtualization required by server virtualization and clouds, exposing the components that
must be abstracted to virtualize a network. These components are:

• a NIC, where a computer network starts;
• a Layer 2 (L2) network segments, like Ethernet or WiFi, in which hosts’ NICs are

connected;



25

• a set of switches (also called bridges) interconnecting L2 network segments to form an
L2 network;

• a Layer 3 (L3) network (IPv4 or IPv6), in which L2 is accommodated as sub-nets;
• routers, in which multiple L3 networks are connected to form the Internet.

Each physical system has at least one L2 physical NIC. If multiple VMs are running on
a system, each VM needs its own Virtual Network Interface Card (vNIC). One solution to
implement vNICs is through hypervisor software. The hypervisor will not only abstract
the computing, memory, and storage, but also implement as many vNICs as there are
VMs.

L2 segments virtualization is deployed through overlay. Server virtualization and cloud
solutions have been using Virtual eXtensible Local Area Network (VXLAN) (MAHALINGAM

et al., 2014) to address the need for overlay networks within virtualized data centers.
VXLAN overcome several restrictions of VLANs: it enables to accommodate multiple ten-
ants; it runs over the existing networking infrastructure; it provides a means to expand
an L2 network, and; it enables location-independent addressing. An alternative protocol
is Generic Routing Encapsulation (GRE) (FARINACCI et al., 2000).

A virtual switch (vSwitch) is the software component that connects virtual machines
to virtual networks of L2. L2 switching is typically implemented by means of kernel-level
virtual bridges/switches interconnecting a VM’s vNIC to a host’s physical interface (CAL-

LEGATI; CERRONI; CONTOLI, 2016). Many hypervisors running on Linux systems imple-
ment the virtual LANs inside the servers using Linux Bridge, the native kernel bridging
module. The Linux Bridge basically works as a transparent bridge with MAC learning,
providing the same functionality as a standard Ethernet switch in terms of packet forward-
ing. But such standard behavior is not compatible with SDN and is not flexible enough
when aspects such as multitenant traffic isolation, transparent VM mobility, and fine-
grained forwarding programmability are critical. The Linux-based bridging alternative
is Open vSwitch (OVS), a software switching facility specifically designed for virtualized
environments and capable of reaching kernel-level performance.

L3 network virtualization provides addressing (IPv4 or IPv6) for the VMs. Blocks of
addresses can be configured and provided for each virtual L3 network. These virtual net-
works are connected through virtual routers. They replicate in software the functionality
of a hardware-based Layer 3 routers.

VM networking had initially been implemented using Linux bridging. Besides its suit-
able operation and simplicity of configuration and management, it was not originally
designed for virtual networking and therefore posed integration and management chal-
lenges (CHIRAMMAL; MUKHEDKAR; VETTATHU, 2016).
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2.2.1 Network Function Virtualization

With the exponential increase in bandwidth demand, heavily driven by video, mobile,
and Internet of Things (IoT) applications, service providers are constantly looking for
ways to expand and scale their network services, preferably without a significant increase
in costs (CHAYAPATHI; HASSAN; SHAH, 2016). The features of traditional devices are bot-
tlenecks to the expansion of services, because they present several limitations such as:
coupling between software system (such as Internetworking Operating Systems (IOS) and
management systems) and hardware, loosing flexibility (the ability to adapt to changes);
and scalability constraints, because the design of each hardware device is limited to a
certain maximum performance requirement.

NFV is a network architecture concept that uses virtualization to implement classes
of network functions into building blocks that may connect or create communication
services (MASUTANI et al., 2014).

NFV involves the implementation of network functions (NF) in software that can be
moved to, or instantiated in, various locations in the network as required, without the
need for installation of new equipment (ETSI, 2012).

As specified by European Telecommunications Standards Institute (ETSI) (ETSI, 2014),
the NFV architecture is composed by three working domains, as depicted in Figure 1:

Figure 1 – High-level NFV Framework

Source: The author (2019)

• Virtualized Network Function (VNF): it is the software implementation of the network
function which is able to run over NFVI;

• NFV Infrastructure (NFVI): it includes physical resources and how they can be virtu-
alized. It supports the execution of the VNF;
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• NFV Management and Orchestration (MANO): it covers the orchestration and life-
cycle management of physical or software or both resources that support virtualized
infrastructure, as well as the lifecycle management of VNFs.

The NFV framework enables a dynamic construction and management of VNF in-
stances, as well as a relationship between these VNFs, considering several attributes, such
as data, control, management, and dependencies. We highlight two relationships among
VNFs: (i) VNF chains, in which the connectivity between VNFs is ordered, following rout-
ing decision based on policies; (ii) a collection of VNFs, in which the forward decisions
follows traditional routing (based on destination IP).

VNFs chains are the analog of connecting existing physical appliances via cables. Ca-
bles are bidirectional and so are most data networking technologies that will be used in
virtualized deployments. So, NFV describes a software architecture with VNFs as build-
ing blocks to construct VNF Forwarding Graphs (FG) (ETSI, 2014) to represent Chains
of VNFs. A VNF FG provides the logical connectivity between virtual appliances (i.e.,
VNFs). An example is depicted in Figure 2.

Figure 2 – VNF Forward Graph representing Chains of VNFs.

Source: (ETSI, 2014)

A network service provider designed an end-to-end network service between two phys-
ical network functions that involve several VNFs (VNF-A, VNF-B, VNF-C, VNF-D1,
VNF-D2, VNF-E). This set of VNFs will be combined, forming an ordered chain according
to the tenant’s requirements. The physical network logical interface at left, represented by
a dashed circle, is responsible for performing the classification of distinct tenant’s packet
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flows. Four distinct packet flows, representing different tenant’s requirements, are exhib-
ited. According to traffic classification, the tenant’s packet flow will be forward through
the designed VNF chain. For example, packet flow 1 will be forwarded through VNF-A,
VNF-B, VNF-C, and VNF-D1. Observe that service VNF-D is replicated. Some motiva-
tions are load balancing and failover. All these functionalities involving VNF chains, flow
classification, and traffic steering motivated the creation of Internet Engineering Task
Force (IETF) Service Function Chaining Working Group.

2.2.2 Service Function Chaining

The term Service Function Chaining (SFC) is used to describe the definition and in-
stantiation of an ordered list of instances of virtual network service functions, and the
subsequent steering of traffic flows through those service functions (QUINN; NADEAU,
2015). Fundamentally, SFC routes packets through one or more service functions instead
of conventional routing that routes packets using the destination IP address.

The emergence of SFC is aimed to address three main functionalities:

• service overlay: SFCs adopts the decoupling of services to the physical topology. It
allows operators to use whatever overlay or underlay they prefer to create a path
between service functions and to locate service functions in the network as needed;

• service classification: it is used to identify which traffic will be steered through an SFC
overlay;

• SFC encapsulation: it enables the creation of a service chain in the data plane and
also carries data-plane metadata to enable the exchange of information between logical
classification points and service functions.

The combination of VNF chains and a flow classifier creates a service function chain.
A flow classifier is a component that matches traffic flows against policies for subsequent
application of the required set of network service functions, whereas a service function
chain defines an ordered set of abstract service functions and ordering constraints that
must be applied to packets and/or frames and/or flows selected as a result of classification.

As presented by Luis et al. (LUIS; JONATAS; MARQUES, 2017), flow classification, as well
as its monitoring, can make networking more dependable, motivating the investigation of
dependability metrics.

2.2.3 Software-Defined Networking

Software-Defined Networking (SDN) is a network architecture in which network con-
trol (called control-plane) is decoupled from forwarding control (called data-plane) and is
directly programmable (ONF, 2012). It emerged as an approach to network management
conducted in Stanford University(MCKEOWN et al., 2008).
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Its well-known dissociation between control plane (where routing decisions are built)
and data plane (responsible for reception and transmission of packets) enables to cen-
tralize the management of several network devices. The network intelligence is logically
centralized inside controllers. The software-based SDN controllers perform the adminis-
tration of the network using high-level policies. The controllers build flow tables with the
aim of forwarding packages to connected VMs.

The separation of the control plane and the data plane can be realized employing a
well-defined programming interface between the switches and the SDN controller. The
controller exercises direct control over the state in the data plane elements via this well-
defined API. The most notable example of such an API is OpenFlow (FOUNDATION, 2017)
whereas the most adopted implementation of OpenFlow is Open vSwitch (FOUNDATION,
2017), functioning as a vSwitch in VM environments. The Open vSwitch enables Linux
to become part of a SDN architecture. In this research, we adopted Open vSwitch as the
underlying connection technology of VNF chains.

Regarding NFV, SDN enables to separate the network functions from expensive ap-
pliances. It also enables to implement the separation between VNFs and the underlying
physical network. So, it has a central role in the network virtualization and all its pre-
viously discussed benefits. SDN, as an enabler of network virtualization, can expand the
services provided by cloud infrastructures and offer an even higher level of innovation. It
can allocate networking resources dynamically and proficiently as dictated by the demands
of VM clients.

Among the benefits of SDN, we highlight increasing in network availability as a re-
sult of centralized and automated management of network devices, decreasing manual
configuration errors.

2.3 CLOUD COMPUTING

Cloud computing is the on-demand delivery of computing power, database storage, ap-
plications, and other IT resources through a cloud services platform via the Internet with
pay-as-you-go pricing (SERVICES, 2017c).

A set of 5 attributes, depicted in Figure 3, was defined by NIST to define cloud
computing in a more instructive way.

1. On-demand self-service: a client can provision computing resources from the cloud
without having to interact with IT or service provider personnel. It is possible to rent
virtualized resources online.

2. Ubiquitous access: it is possible to use standard platforms that provide simple connec-
tivity without having to put down dedicated cables or systems and without having to
buy custom hardware for access.
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Figure 3 – Cloud Computing Features

Source: The author (2019)

3. Measured service: resource usage can be monitored, controlled, and reported, providing
transparency for both the provider and consumer of the utilized service. It enables a
pay-per-use model.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand.

5. Resource pooling: the cloud provider has different types of grouped resources, including
storage, memory, computer processing, and bandwidth (to name a few), which instead
of being dedicated to anyone client are allocated to clients as they need them.

There are different ways that providers can offer resources as services within a cloud
to their clients.

1. Infrastructure as a Service (IaaS): it refers to on-demand provisioning of infrastructural
hardware resources.

2. Platform as a Service (PaaS): it refers to providing platform layer resources, including
operating system support and software development frameworks.

3. Software as a Service (SaaS): it refers to providing on-demand applications over the
Internet.

With clear attributes that define what cloud services are and the types of services that
the cloud could provide, it makes sense to look at how cloud services are deployed. Clouds
have four basic deployment models:

1. Public cloud: The cloud infrastructure is provisioned for open use by the general public.
2. Private cloud: it is created when an enterprise data center is reconfigured in such a way

as to provide the five cloud attributes. The enterprise owns the cloud. It is both the
provider and the client.
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3. Community cloud: the cloud infrastructure is provisioned for exclusive use by a specific
community of consumers from organizations that may own, manage, and operate the
cloud resources.

4. Hybrid cloud: it is a composition of two or more distinct cloud infrastructures (private,
community, or public) through a single management interface.

There are several opensource cloud platforms that allow to provide private IaaS ap-
proach. Openstack (OPENSTACK, 2017), CloudStack (CLOUDSTACK, 2017), and OpenNeb-
ula (OPENNEBULA, 2017) are the most adopted. In this research, we have been using the
openstack IaaS cloud platform due to its natural relationship with NFV (FOUNDATION,
2016).

2.3.1 Openstack

Openstack is a cloud management system that controls pools of computing, storage, and
networking resources. It is exposed to the cloud end users as HTTP(s) APIs that provide
its independent parts called openstack services. Openstack cloud logical architecture is
depicted in Figure 4:

Figure 4 – Openstack Architecture

Source: (OPENSTACK, 2017)

Openstack Dashboard, Image Service, Compute, Block Storage, Networking, and Iden-
tity Service are core projects of openstack cloud. In Figure 4, they are represented by the
external rectangles. Each openstack project releases components, represented by internal
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rounded rectangles. These are the daemons (background processes) that are executed to
provide the associate functionality of each component. Internal solid arrows represent the
relationship among daemons that form a component, whereas dashed arrows represent
the relationship between the daemons of distinct projects. Openstack components are
explained below.

• Compute: known as nova, it provides a way to provision Compute instances. It sup-
ports the creation of the virtual machines through the execution of a set of daemons
in Linux or UNIX servers. Compute services manage and automate pools of CPU and
RAM resources. It is split into five daemons:

– nova-api: it accepts and responds to end user compute API calls;

– nova-scheduler: it picks a compute node to run a VM instance;

– nova-conductor: it provides coordination and database query support for nova;

– nova-consoleauth: it provides authentication for nova consoles;

– nova-novncproxy: it provides a proxy for accessing running instances through
a VNC connection;

– nova-compute: is responsible for building a disk image, launching it via the
underlying virtualization driver, responding to calls to check its state, attaching
persistent storage, and terminating it.

• Networking: known as neutron, the standalone openstack Networking provides cloud
operators and users with an API to create and manage networks in the cloud. In-
deed, openstack Neutron is a SDN project focused on delivering Network as a Service
(NaaS) in virtual computing environments. It does so by deploying several network
processes across many nodes. Such processes provide resources used by the VM net-
work interface, including IP addressing and routing. Its main daemon is:

– neutron-server: it relays user requests to the configured layer 2 plug-in (respon-
sible for interacting with the underlying infrastructure so that the traffic can be
routed). Linux Bridge and Open vSwitch are two examples of L2 plug-ins.

Besides neutron-server, openstack Networking, also includes two agents:

– neutron-dhcp-agent: it provides DHCP services to tenant networks;

– neutron-l3-agent: it does L3/Network Address Translation (NAT) forwarding
to enable external network access for VMs on tenant networks.

• Block Storage: provides the traditional disk block-level storage for VMs. It is com-
posed of the following daemons:
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– cinder-api: it authenticates and routes requests throughout the Block Storage
service;

– cinder-volume: manages Block Storage devices, specifically the backend devices
themselves;

– cinder-schedule: schedules and routes requests to the appropriate volume. By
default, it uses round-robin, but can use more sophisticated policies based capac-
ity or volume type, deciding which cinder-volume node will be used.

• Dashboard: it provides a web-based user interface to the various openstack compo-
nents. It includes both end user area for tenants to manage their virtual infrastructure
and administration area for cloud operators to manage the openstack environment.
Horizon service runs as a Web Server Gateway Interface (WSGI) application, hosted
by Apache Web Server.

• Identity Service: it provides identity and access management for all the openstack
components. It dells with all authentication and authorization transactions aimed at
using cloud resources. Users have credentials they can use to authenticate, and they
can be a member of one or more groups. Any API call results in an authentication
interaction with this service. Similar to the horizon, identity service, called keystone,
runs as a WSGI application and is also hosted by apache. Each project contains a
component that establishes communication with Identity Service, as can be evinced
by the green dashed lines, labeled as Opentack Identity API in Figure 4.

• Image Service: known as glance, it includes registering, discovering, and retrieving
of virtual machine images. It allows querying of VM image metadata as well as re-
trieval of the actual image. VM images made available through glance can be stored
in a variety of locations from simple filesystems to disk-block storage systems like
openstack cinder. Glance is split into two daemons:

– glance-api: interacts with users requesting VM images;

– glance-registry: connects to the database backend aiming to store, process, and
retrieves images metadata, such as size and type.

Figure 4 also depicts openstack shared services, adopted by openstack components to
support the provision of their functionalities:

• relational database: each of the previously mentioned components has its own database,
represented by traditional cylinder symbol. Each service requires the creation of tables
to store its data. Most traditional used databases in openstack are MySQL, MariaDB,
and PostgreSQL. For HA, Galera Cluster has been used;
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• a message queue is used for communication among all openstack daemons through Ad-
vanced Message Queuing Protocol (AMQP). It coordinates operations and status
information among services. Most traditional message queue services supported by
openstack include RabbitMQ, Qpid, and ZeroMQ. Message queues are represented by
circles in Figure 4. One example of AMQP is exhibited by black dashed lines, labeled
as AMQP, between cinder daemons and openstack Compute;

• a cache system, used to speed up dynamic database-driven openstack services by
caching data in RAM. It reduces the number of times that an external data source
must be read. Keystone and Identity are examples of openstack components that use
a cache system. Memcached is the default cache system adopted by openstack.

The openstack platform defines a nomenclature formality that associate services to
servers. They are called deployment modes and are described below:

• Controller node: it is the control plane for the openstack environment, running
Identity service for access control, Image service for virtual machines image provision,
the management portions of nova and neutron services, and the Dashboard. Moreover,
it also includes support for the shared services: SQL database, message queue, and
cache system. Finally, it also executes Network Time Protocol (NTP) daemon for
clock synchronization. All the components and shared services with a blue background
in Figure 4 are executed in Controller nodes;

• Compute node: it runs the hypervisor portion of nova that operates tenant virtual
machine instances. Besides hypervisor, the compute node also runs the networking
plug-in and an agent that connect tenant networks to instances and provide firewalling
(security groups) services;

• Neutron node it runs networking services for L3, metadata, DHCP, and Open
vSwitch. The network node handles all networking between other nodes as well as
tenant networking and routing. It also provides floating IPs that allow instances to
connect to public networks.

Figure 5 depicts one instance for each deployment mode. At the bottom, the names
of each role are exhibited in bold. We also insert the hardware (HW), the storage(S),
and operating system (OS) at Figure 5 to enable a complete view of each openstack
deployment mode.

Besides the provision of deployment modes in isolated physical servers, it is also pos-
sible to group deployment modes in one physical server:

• Controller/Neutron: the controller and neutron services are grouped in one single
server;
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Figure 5 – Openstack Deployment Modes
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• All-In-One: as suggested by its name, in this configuration, all the openstack services
are provided in the same physical server.

Figure 6 depicts one instance of All-In-One openstack node. The deployment modes
are highlighted in this work because the adopted assembling is relevant for the studied
metrics of interest.

Designing an openstack cloud requires an understanding of its user’s requirements to
state the best fit configuration. A specific objective of this research is to assembly and
configure a High Available cloud infrastructure. Knowing the openstack architecture is a
requirement to provide all its services over a hardware infrastructure without SPOFs. The
openstack modular architecture enables to replicate its components and execute them on
several physical servers. For HA openstack cloud, each service must be clustered to ensure
its high availability.

2.3.2 The Openstack SFC API

The Openstack SFC API (ZHANG et al., 2017) is formed by two parts: the flow classifier
and the port chain, as depicted in Figure 7. The flow classifier specifies the classification
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Figure 6 – Openstack All-In-One Deployment Mode
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rules that are used to state which flows will go through the specific chains. The port chain
consists of an ordered sequence of service functions that a particular flow will go through.
A neutron port (a logical connection of a virtual network interface to a virtual network)
receives the ingress flow and another neutron port forwards the egress flow. The SFC API
calls these two neutron ports as port pair. Each port pair is attached to a particular VM
providing the associated virtualized service. Port chains may be provided in a redundant
configuration, in which combined port pairs compose a port pair groups.

Our implemented studied scenario, that is used to exemplify the adoption of SFC API,
depicted in Figure 7, is composed by a port chain with three port pair groups: Firewall,
Load Balancer, and Cache. For 3N redundancy, each port pair group contains 3 VNF
instances. We opt for these services due to our previous experience with firewalls, load
balancer, and cache implementations.

Figure 7 represents a classification process that directs the traffic through FW2, LB1,
and Cache3 neutron ports. To provide redundancy and high availability, VNFs are exe-
cuted as VMs in Pacemaker clusters, and the traffic flows can be classified and steering
in a load-balanced way by port pair groups containing these NFV VMs.
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Figure 7 – SFC Graph

Source: (ZHANG et al., 2017)

2.4 CLUSTERS AND HIGH AVAILABILITY

A cluster is any ensemble of independently operational elements integrated by some
medium for coordinated and cooperative behavior (GROPP EWING LUSK, 2003). Con-
sistent with this broad interpretation, computer clusters are ensembles of independently
operational computers integrated through an interconnection network. They support user-
accessible software for organizing and controlling concurrent computing tasks that may
cooperate on processing a typical application program or workload.

Motivations for the adoption of server clusters include: high availability, load balancing,
parallel processing, systems management and scalability. Following the motivations for
clusters adoption, we can classify clusters in three types (PERKOV; PAVKOVIC; PETROVIC,
2011; VUGT, 2014): high performance, load balancing, and high availability.

High-performance clusters are used in environments with intensive and heavy comput-
ing requirements. Large rendering tasks, as well as scientific computing, are examples of
high-performance clusters adoption. In these kinds of processing, all nodes of the cluster
should be active, providing as much processing capacity as possible.

Heavy demand environments typically adopt load balancing clustering. As depicted in
Figure 8, users’ requests are distributed to multiple machines in a server farm to optimize
the response time of performed requests.

High availability (HA) clusters are adopted to make sure that critical resources reach
the maximum possible availability (VUGT, 2014). In HA clusters, the elimination of SPOFs
is a strong (or even a mandatory) requirement. Figure 9 exhibits a HA cluster. An HA
cluster software must be installed to monitors both cluster nodes availability as well as
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Figure 8 – Load Balancing Cluster

Source: The author (2019)

the availability of services provided by the cluster’s nodes.

Figure 9 – High Available Load Balanced Cluster

Source: The author (2019)

As can be observed in Figure 9, the load balancer was also replicated with the purpose
of eliminate SPOFs. Two-way arrows lines represent the monitoring operation of HA
cluster software, usually called as heartbeat mechanism.

High availability is established by the usage of failover softwares combination (BENZ;

BOHNERT, 2014), such as Pacemaker (LABS, 2017), Corosync (NITTO; FRIESSE; DAKE,
2017), and HAProxy (TARREAU, 2017), to cite a few. By their joint action, they deploy
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load balanced HA clusters enabling automatic recovery of services.
Pacemaker is a cluster resource manager. A resource is a service made highly available

by a cluster. So, Pacemaker is responsible for the lifecycle of deployed resources. It achieves
HA for cluster services by detecting and recovering failures from resource-level. Pacemaker
adopts Corosync for detection and recovering of failures from node-level. Corosync pro-
vides messaging and membership services for cluster’s nodes.

Figure 10 exhibits Pacemaker and Corosync roles in a layer-based view: Pacemaker
probes the resources whilst Corosync monitors physical nodes.

Figure 10 – Pacemaker and Corosync

Source: The author (2019)

Every resource has a Resource Agent (RA). They are external programs that abstract
the service in the provision, presenting a consistent view of the cluster. The cluster does
not need to understand how the resource works because it relies on the RA to perform a
start, stop, or monitor commands over the resource.

2.4.1 Redundancy Strategies

Failover softwares protect computer systems from failure adopting standby equipment(s)
that automatically takes over when the main system fails. During a failover, the cluster
software will move the required set of resources, such as filesystems, databases, and IP
addresses to the standby node(s).

Without a redundancy strategy, the system works in a simplex scheme, i.e., there is
at least one SPOF component. Any failure in such components will inevitably result in
longer system downtimes. With redundancy strategies, system components are arranged
in a pool, resulting in higher availability. The following redundancy strategies are usually
adopted:
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• Active-Active: two units are deployed in a fully operational capacity, sharing workload
during normal operation.

• Active-Standby: two units are deployed, however one active unit will provide service
for all the traffic intended for the system. A standby unit, also known as secondary
unit, can be maintained at varying degrees of readiness to restore service, which may
be classified as:

– Hot Standby: the secondary unit is on, and its data are maintained in sync with
an active unit;

– Warm Standby: the secondary unit is powered on, but is not receiving the work-
load;

– Cold Standby: the secondary unit is powered off, and the activation time is larger
than the warm approach.

Pacemaker can create any of the previous redundancy strategies.

2.5 DEPENDABILITY

Due to ubiquitous provision and access to services on the Internet, dependability has
become an attribute of prime concern in computer systems development, deployment, and
operation (MACIEL et al., 2012). The main concern of dependability is to deliver services
that can be justifiably trusted. Laprie (LAPRIE, 1996) provides a conceptual framework
for expressing the attributes of what constitutes dependable and reliable computing. Such
a framework has been widely adopted by academy and industry to guide research and
practical works regarding systems’ trustability. Because cloud computing is a large-scale
distributed computing paradigm, and its applications are accessible anywhere, anytime,
cloud dependability is becoming more important and more difficult to achieve (Sun et al.,
2010).

In Laprie’s work, a set of basic definitions and associated terminology regarding de-
pendability concepts were presented. They are presented in Figure 11 and mentioned
below.

• The impairments encompass faults, errors, and failures. A system fault represents the
event that occurs when service delivery does not happen as planned. A failure is a
deviation of system behavior from its specification. The cause of a failure is an error.
An error is the portion of the state of the system responsible for driving it to failure.
Each error thus is caused by the activation of a failure.

• The means are the methods, tools, and solutions enabling to provide the ability to
deliver a service with the desired specification. A system is fault tolerant when it does
not fail even when there are faulty components;
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Figure 11 – Dependability Taxonomy
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• The attributes make it possible to obtain quantitative measures, which are often crucial
for the analysis of the provided services.

Computer systems analysts have been adopting dependability with the aim of compute
and evaluate systems’ dependability metrics, such as reliability and availability. Reliability
can be defined as the continuity of correct service, whereas availability is the readiness for
correct service. Each of the methods to compute these two metrics are discussed below.

2.5.1 Reliability

The reliability metric measures the probability that a system will deliver its function
correctly during a specified time interval, without the occurrence of failures in this interval.
So, the reliability does not consider the system repair and consider the working of analyzed
system uninterruptedly.

The Equation

𝑅(𝑡) = 𝑃{𝑇 > 𝑡} = 𝑒−
∫︀ 𝑡

0 𝜆(𝑡)𝑑𝑡, 𝑡 ≥ 0 (2.1)
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provides the reliability of a system, where T is a random variable that represents the time
to failure of the system and 𝜆(𝑡) is known as the Hazard function. So, 𝑇 represents the
required time interval to reach the state 𝑋(𝑡) = 0, starting from state 𝑋(𝑡) = 1, i.e., the
time to failure (TTF) of a system.

2.5.2 Availability

The availability is the probability of a system being in operation at a desired time, or
during an expected period of time, considering failures and/or repairs within that interval.

A system failure occurs when the system does not provide its specified functionality. A
system failure can be defined as the failure of a system component, a system sub-system,
or another system that interacts with the considered one. With the aim to model the
time to failure of a system, consider an indicator random variable 𝑋(𝑡) that represents
the system state at time t. 𝑋(𝑡) = 1 represents the operational state and 𝑋(𝑡) = 0
represents the faulty state. A random variable T represents the time to reach the state
𝑋(𝑡) = 0, given that the system started in state 𝑋(𝑡) = 1 represents the time to failure of
the system, and its cumulative distribution function 𝐹𝑇 (𝑡) and the respective probability
density function 𝑓𝑇 (𝑡) are defined as:

𝐹𝑇 (0) = 0 𝑎𝑛𝑑 lim
𝑡→∞

𝐹𝑇 (𝑡) = 1, (2.2)

𝑓𝑇 (𝑡) ≥ 0 𝑎𝑛𝑑
∫︁ ∞

0
𝑓𝑇 (𝑡)𝑑𝑡 = 1. (2.3)

So, the time to failure is a non-negative continuous random variable.
The simplest definition of Availability is expressed as the ratio of the expected system

uptime to the expected system up and downtimes:

𝐴 = 𝐸[𝑈𝑝𝑡𝑖𝑚𝑒]
𝐸[𝑈𝑝𝑡𝑖𝑚𝑒] + 𝐸[𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒] . (2.4)

The availability metric can be defined as

𝐴 = 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
, (2.5)

where,
𝑀𝑇𝑇𝐹 =

∫︁ ∞

0
𝑅(𝑡)𝑑𝑡, (2.6)

and
𝑀𝑇𝑇𝑅 = 𝑀𝑇𝑇𝐹 × 𝑈𝐴

𝐴
. (2.7)

The UA represents the system unavailability (Equation (2.8))

𝑈𝐴 = 1 − 𝐴. (2.8)
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The instantaneous availability is the probability that the system is operational at a
specific time instant t, that is,

𝐴(𝑡) = 𝑃{𝑋(𝑡) = 1} = 𝐸{𝑋(𝑡)}, 𝑡 ≥ 0. (2.9)

If the system approaches stationary states as the time increases, it is possible to
quantify the steady-state availability and estimate the long-term fraction of time the
system is available.

𝐴 = lim
𝑡→∞

𝐴(𝑡), 𝑡 ≥ 0. (2.10)

Availability can be expressed using the number of nines that represents the probability
of service readiness, as shown in Table 2 (TELCORDIA, 1994). For instance, a system with
five 9’s of availability is classified as high availability, meaning an annual downtime of
nearly 5 minutes.

Table 2 – Service availability and downtime ratings

Number
of 9’s

Service Availability
(%) System Type Practical Meaning

1 90 Unmanaged Down 5 weeks per year
2 99 Managed Down 4 days per year
3 99.9 Well managed Down 9 hours per year
4 99.99 Fault tolerant Down 1 hour per year
5 99.999 High availability Down 5 minutes per year
6 99.9999 Very high availability Down 30 seconds per year
7 99.99999 Ultra availability Down 3 seconds per year

Source: The author (2019)

2.5.3 Maintainability

The maintainability is the probability that a failed system will be restored to opera-
tional effectiveness within a given period of time when the repair action is performed in
accordance with prescribed procedures.

Consider a a continuous time random variable 𝑌𝑆(𝑡) that represents the system state.
𝑌𝑆(𝑡) = 0 when 𝑆 is failed, and 𝑌𝑆(𝑡) = 1 when 𝑆 has been repaired. Consider yet the
random variable 𝐷 that represents the time to reach the state 𝑌𝑆(𝑡) = 1, given that the
system started in state 𝑌𝑆(𝑡) = 0 at time 𝑡 = 0. The random variable 𝐷 represents the
system time to repair, 𝐹𝐷(𝑡) its cumulative distribution function, and 𝑓𝐷(𝑡) the respective
density function, where:

𝐹𝐷(0) = 0 𝑎𝑛𝑑 lim
𝑡→∞

𝐹𝐷(𝑡) = 1, (2.11)
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and
𝑓𝐷(𝑡) ≥ 0 𝑎𝑛𝑑

∫︁ ∞

0
𝑓𝐷(𝑡)𝑑𝑡 = 1, (2.12)

Quantitatively, the maintainability M(t) can be computed as the probability that the
system S will be repaired by t considering a specified resource.

𝑃{𝐷 ≤ 𝑡} = 𝐹𝐷(𝑡) =
∫︁ 𝑡

0
𝑓𝐷(𝑡)𝑑𝑡

𝑀(𝑡) = 1 − 𝐹𝐷(𝑡)
(2.13)

Then, the MTTR can be defined as:

𝑀𝑇𝑇𝑅 =
∫︁ ∞

0
𝑡 × 𝑀(𝑡)𝑑𝑡 =

∫︁ ∞

0
(1 − 𝐹𝐷(𝑡))𝑑𝑡 (2.14)

2.6 DEPENDABILITY MODELING

Dependability models can be broadly classified into combinatorial models and state-space
models. In combinatorial models, it is assumed that the failure or recovery (or any other
behaviors) of a system component is not affected by the behavior of any other component.
i.e., system components are independents. Reliability Block Diagram (RBD) and Fault
Trees are examples of combinatorial models.

Analysts may adopt state-space models to represent more complex interactions be-
tween system components, such as active-standby redundancy. Markov chains and Stochas-
tic Petri Net (SPN) are examples of state-space models.

2.6.1 Reliability Block Diagrams

RBDs are models represented by a source and a target vertex, a set of blocks, each
representing a system component, and arcs connecting the components and the vertices,
as depicted in Figure 12.

Figure 12 – Reliability Block Diagram

Source: The author (2019)

Besides its graphical representation, RBDs are used to analyze systems and assess
their availability and/or reliability through equations. The blocks represent the groups
of components or the smallest entities of the system, which are not further divided. The
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blocks are usually arranged using composition mechanisms: series, parallel, bridge, k-
out-of-n blocks, or a combination of previous compositions (CARDELLINI et al., 2011).
The RBDs adopted in this research are series-parallel structures only. If the individual
components of a system are connected in series, the failure of any component causes the
system to fail. If the individual components of a system are connected in parallel, the
failures of all components cause the system to fail. For series and parallel structures, the
steady-state availability is given respectively by:

𝐴𝑆 =
𝑛∏︁

𝑖=1
𝐴𝑖 (2.15)

and
𝐴𝑃 = 1 −

𝑛∏︁
𝑖=1

(1 − 𝐴𝑖), (2.16)

2.6.2 Continuous Time Markov Chains

First introduced by Andrei Andreevich Markov in 1907, Markov chains have been in use
intensively in dependability modeling and analysis since around the fifties (MACIEL et al.,
2012). Aiming to understand Markov chains, we should start by the comprehension of a
stochastic process.

A stochastic process is a family of random variables X(t) defined on a sample space.
The values assumed by X(t) are called states, and the set of all the possible states is the
state space, I. The state space of a stochastic process is either discrete or continuous. If
it is discrete, the stochastic process is called a chain.

A stochastic process can be classified by the dependence of its state at a particular
time on the states at previous times. If the state of a stochastic process depends only
on the immediately preceding state, we have a Markov process. So, a Markov process is
a stochastic process whose dynamic behavior is such that probability distributions for
its future development depend only on the present state and not on how the process
arrived in that state. It means that at the time of a transition, the entire past history is
summarized by the current state.

If we assume that the state space, I, is discrete (finite or countably infinite), then the
Markov process is known as a Markov chain (or discrete-state Markov process). If we
further assume that the parameter space t, is also discrete, then we have a discrete-time
Markov chain (DTMC). If the parameter space is continuous, then we have a continuous-
time Markov chain (CTMC).

Markov chains can be represented as a directed graph, with the nodes representing
the system’s states and the edges representing changes in the system’s state. There are
labels in transitions, indicating the probability or rate at which such transitions occur.

When dealing with Continuous Time Markov Chain (CTMC), such as the availability
model of Figure 13, transitions occur with a rate, instead of a probability, due to the
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continuous nature of this kind of model. The CTMC is represented through its transition
matrix, often referenced as the infinitesimal generator matrix.

Figure 13 – CTMC: availability model

Source: The author (2019)

Considering the CTMC availability model of Figure 13, the rates are measured in
failures per second, repairs per second, and detections per second. The generator matrix
Q is composed by components 𝑞𝑖𝑖 and 𝑞𝑖𝑗, where 𝑖 ̸= 𝑗 and ∑︀

𝑞𝑖𝑗 = −𝑞𝑖𝑖. Considering a
state-space S = Up, Down, Repair = 0, 1, 2 the Q matrix is:

𝑄 =

⎛⎜⎜⎜⎜⎝
𝑞00 𝑞01 𝑞02

𝑞10 𝑞11 𝑞12

𝑞20 𝑞21 𝑞22

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−0.05 0.05 0

0 −0.7 0.7

0.1 0 −0.1

⎞⎟⎟⎟⎟⎠ (2.17)

Equation (2.18) and the system of Equations (2.19 describe the computation of the
state probability vector, respectively for transient (i.e., time-dependent) analysis, and
steady-state (i.e., stationary) analysis. From the state probability vector, nearly all other
metrics can be derived, depending on the system that is represented.

𝜋′(𝑡) = 𝜋(𝑡)𝑄, 𝑔𝑖𝑣𝑒𝑛 𝜋(0) (2.18)

𝜋𝑄 = 0,
∑︁
𝑖∈𝑆

𝜋𝑖 = 1 (2.19)

Detailed explanations about how to obtain these Equations may be found in (BOLCH

et al., 1998).
For all kinds of analysis using Markov chains, an important aspect must be kept in

mind: the exponential distribution of transition rates. The behavior of events in many
computer systems may be fit better by other probability distributions, but in some of
these situations, the exponential distribution is considered an acceptable approximation,
enabling the use of Markov models. It is also possible to adapt transition in Markov chains
to represent other distributions by means of phase approximation, as shown in (TRIVEDI,
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2002). The use of such technique allows the modeling of events described by distributions
such as Weibull, Erlang, Cox, hypoexponential, and hyperexponential.

2.6.3 Stochastic Petri Nets

Petri Nets (MURATA, 1989) are a family of formalisms very well suited for modeling dis-
crete event systems due to their capability for representing concurrency, synchronization,
and communication mechanisms, as well as deterministic and probabilistic delays. Time
(stochastic delays) and probabilistic choices are often used in dependability evaluation
models (MACHIDA; KIM; TRIVEDI, 2011; MACIEL et al., 2012; TRIVEDI, 2002; TRIVEDI;

MALHOTRA, 1993). The original Petri Net does not have the notion of time for analysis of
performance and dependability. The introduction of a duration of events results in a timed
Petri Net. A special case of timed Petri Nets is the SPN, where the delays of activities
(represented as transitions) are considered random variables with exponential distribu-
tion. An SPN can be translated to a CTMC, which may then be solved to get the desired
dependability or performance results. This is especially useful because building a Markov
model manually may be tedious and error-prone, especially when the number of states
becomes very large. Marsal et al. (MARSAN; CONTE; BALBO, 1984) proposed extensions
to SPN that considers two types of transitions: timed and immediate. The transition firing
times in SPNs correspond to the exponential distribution. The exponentially distributed
firing times are associated only with timed transitions, since immediate transitions, by
definition, fire in zero time.

We adopted the formal SPN definition (according to German (GERMAN, 2000)), pre-
sented below, composed by the 9-tuple SPN = (P,T,I,O,H, Π,G, M0, Atts), in which:

• 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} is the place set, where n is the places number;
• 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑚} is the immediate and timed transitions set, 𝑃 ∩ 𝑇 = ∅, where m is

the transitions number;
• 𝐼 ∈ (N𝑛 → N)𝑛×𝑚 is the matrix representing the input arcs (may be marking depen-

dent);
• 𝑂 ∈ (N𝑛 → N)𝑛×𝑚 is the matrix representing the output arcs (may be marking depen-

dent);
• 𝐻 ∈ (N𝑛 → N)𝑛×𝑚 is the matrix representing the inhibitor arcs (may be marking

dependent)
• Π ∈ N𝑛 is the vector that associates the priority level to each transition;
• 𝐺 ∈ (N𝑛 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒})𝑛 is the vector that associates a guard condition related to

the place marking with each transition;
• 𝑀0 ∈ N𝑛 is the vector that associates an initial marking of each place (initial state);
• 𝐴𝑡𝑡𝑠 = (𝐷𝑖𝑠𝑡, 𝑃𝑜𝑙𝑖𝑐𝑦, 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦, 𝑊 )𝑚 defines the transitions attributes set:
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– 𝐷𝑖𝑠𝑡 ∈ N𝑚 → 𝐹 is a probability distribution function associated to each transi-
tion, with 𝐹 ≤ ∞. This distribution may be depedendent of the marking;

– 𝑃𝑜𝑙𝑖𝑐𝑦 ∈ {𝑝𝑟𝑑, 𝑝𝑟𝑠}) defines the memory policy adopted by a transition (prd-
preemptive repeat different, the default value, identical to enabling memory policy;prs-
preemptive resume, equivalent to age memory policy);

– 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑟𝑒𝑛𝑐𝑦 ∈ {𝑠𝑠, 𝑖𝑠} defines the transition concurrency policy, in which ss
represents single server semantics and is represents infinity server semantics;

– 𝑊 ∈ N+ is the weight function, associating a weight(𝑤𝑡) to immediate transitions
and a rate(𝜆𝑡) to timed transitions.

The addition of timed transitions introduces the concept of multiple enabling, which
should be considered in timed transitions with enabling degree greater than one. In this
case, the firing semantics should consider the number of tokens that can be fired in parallel.
The possibilities of semantics are:

• Single Server (SS): The firing time is computed when the transition is enabled. After
the transition firing, a new time will be computed if the transition remains enabled.
Therefore, the firings will occur in series, regardless of the enabling degree of the tran-
sition;

• Infinite Server (IS): the entire set tokens from the enabled transition is processed si-
multaneously. Then, all the tokens will be processed in parallel.

Figure 14 depicts an example of a SPN model. Places are represented by circles, SPNs
transitions are depicted as hollow rectangles (timed transitions) or as filled rectangles
(immediate transitions). Arcs (directed edges) connect places to transitions and vice versa.
Tokens (small filled circles) may reside in places. A vector containing the current number
of tokens in each place denotes the global state (i.e., marking) of a Petri Net. An inhibitor
arc is a special arc type that depicts a small white circle at one edge, instead of an
arrow, and they are used to disable transitions if there are tokens present in a given
place. The behavior of Petri Nets, in general, is defined in terms of a token flow, in the
sense that tokens are created and destroyed according to the transition firings. Immediate
transitions represent instantaneous activities, and they have higher firing priority than
timed transitions. Besides, such transitions may contain a guard condition, and a user
may specify a different firing priority among other immediate transitions.

Figure 14 represents the availability of a system comprising three servers. Each token
in the place Servers Up denote one server that is properly running. All three servers
might fail independently, by the firing of (exponential) timed transition Failure. A token
in Servers Down might be consumed either by immediate transition Repairable or by
immediate transition Non-repairable. Weights are assigned to each of those transitions
to represent the probability of firing one or another. When the failed server can be repaired,
the transition Repairable puts a token in Servers to repair. When the repair is not
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possible, the transition Non-repairable puts the token in Servers to replace. The
transitions Repair and Replace fire after exponential delays corresponding to those
activities. The probability of having at least one server available, the average number of
servers waiting for repair or replacement and other similar metrics can be computed from
the underlying CTMC generated from that SPN.

Figure 14 – Example SPN

Source: The author (2019)

SPNs also allow the adoption of simulation techniques for obtaining dependability and
performance metrics as an alternative to the generation of a CTMC, which is sometimes
prohibitive due to the state-space explosion.

2.6.4 Capacity Oriented Availability

Users and analysts may also be interested in how much service the system is delivering,
including situations of partial failure. An important measure associated with available
capacity is Capacity Oriented Availability (COA) (ANDRIOLE et al., 1990). This metric
allows estimating how much service the system is capable of delivering considering failure
states. According to Liu and Trivedi (LIU; TRIVEDI, 2004), COA is computed as:

𝐶𝑂𝐴 =
𝑛∑︁

𝑖=1

𝑖

𝑛
𝜋𝑖, (2.20)

where 𝑖 is the number of available service units and 𝜋𝑖 is the probability that these units
are working. The contrary measure is called Capacity Oriented Unavailability (COUA),
and can be calculated as: 𝐶𝑂𝑈𝐴 = (1 − 𝐶𝑂𝐴).
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2.6.5 Hierarchical Modeling

Complex systems modeling may take advantage of multiple levels of models, forming
hierarchies, where the lower-level models capture the detailed behavior of sub-systems
and the topmost is the system-level model (TRIVEDI, 2002). Hierarchical modeling makes
sense when the whole system can be analyzed by the sub-systems that compose it.

Hierarchical models scale better when the number of system sub-systems and sub-
system components than non-hierarchical regular models. It is possible to isolate the
number of system components in each level of the hierarchy, decreasing the analysis time
of the whole model.

Hierarchical models also support heterogeneous modeling, in which the models pre-
sented in distinct hierarchical levels are also distinct. For example, an analyst may use
combinatorial RBD model at the bottom level and a SPN at the top level of a hierarchical
model.

As the number of sub-systems and sub-system components in cloud computing and
virtual networks are not a small one, the adoption of hierarchical modeling may improve
the dependability analysis of these systems.

2.7 SOFTWARE AGING AND REJUVENATION

The ordinary usage of computational systems results in the fatigue of its components. Such
a phenomenon is called aging and can result in premature failure of a computer system.
The procedure that aims to reverse the aging of computer systems is called rejuvenation.
It is the technique which refreshes system components in order to avoid failures caused
by its aging (Naksinehaboon et al., 2010). It can be categorized into two primary levels:
hardware and software rejuvenation.

From the hardware aging perspective, besides the replacement of failed components to
rejuvenate the system as a whole, a re-initialization, and a possible power-off period, can
reduce the electric effects over microelectronic components (TAI; ALKALAI; CHAU, 1999)
and is commonly adopted as the hardware rejuvenation technique. We perform preventive
maintenance through nodes re-initialization with the aim of mitigating physical aging.

The phenomenon of software aging refers to the accumulation of errors during the
execution of the software, which eventually results in its crash/hang failure. Software
often exhibits an increasing failure rate over time, typically because of increasing and
unbounded resource consumption, data corruption, and numerical error accumulation.

Some techniques to tackle software aging considers to classify the system into layers
and propose rejuvenation approaches following layers’ classes (ALONSO; TRIVEDI, 2015).
The considered layers into virtualized software systems is presented in Figure 15.

Some of the techniques regarding layered classification are:
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Figure 15 – System Layers considered in the software rejuvenation classification

APPLICATION

VIRTUAL MACHINE

VIRTUAL MACHINE MONITOR/HYPERVISOR

OPERATING SYSTEM

HARDWARE

Source: (ALONSO; TRIVEDI, 2015)

• Application re-initialization: it is the restart of the application. In production envi-
ronments, it is performed automatically. In cloud computing environments, the cloud
framework has a set of services that also degrades due to aging phenomena. Aiming
at eliminating the aging of the framework components, their re-initialization is also
required;

• Virtual machine re-initialization: due to its hardware isolation feature, virtual machines
can be replicated, including the usage of alternative physical machines, to rejuvenate
the primary VMs through its re-initialization. This approach mitigates and even elim-
inates in several cases the downtime overhead perceived by the end users;

• VMM/hypervisor re-initialization: with the broad adoption of cloud computing in data
centers, the Virtual Machine Monitor gained growing attention. VMMs are complex
enough to suffer software aging phenomena (ALONSO; TRIVEDI, 2015). VMMs are usu-
ally implemented as operating modules, such as kvm.ko, for KVM hypervisor, in Linux
systems. Their re-initialization comprises unload and reload of such modules;

• Operating system re-initialization: this technique re-initializes the entire operating sys-
tem, which usually involves rebooting the firmware, re-executing Power On Self Test
(POST) routines, rebooting the kernel, the essential operating system services, and
finally rebooting the services being provided;

• Fast Operating system re-initialization: the default operating system reboot leads to a
large delay due to the sequence of stages that need to be executed before the application
can run. The operating system fast reboot maintains the current state of the machine
concerning the firmware, so it is not necessary to perform the POST routines. It is
only required to reboot the operating system kernel, the necessary routines and finally
the application;

• Physical machine re-initialization: the hardware restart results in cleaning up the in-
ternal state of all provided software. Indeed, the hardware re-initialization also implies
software rejuvenation whose origin if due to degradation phenomena over time.
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2.8 SENSITIVITY ANALYSIS

Sensitivity analysis is a technique used to determine the factors that are most relevant
to the parameters or outputs of a model. In computer system dependability analysis, one
can apply sensitivity analysis to help identify the components that most influence system
availability, reliability, or performance (HAMBY, 1994).

A sensitivity analysis can be performed through distinct methods, including: differ-
ential analysis, correlation analysis, regression analysis, or perturbation analysis. The
simplest method is to repeatedly vary one parameter at a time while keeping the others
constant. By applying this method, a sensitivity ranking is obtained by observing changes
in the model output.

Parametric sensitivity analysis aims at identifying the factors for which the smallest
variation implies the highest impact in the model’s output measure. System parameters,
such as failure and repair rates, are used to identify the most relevant factors that impact
on system’s operation.

Differential sensitivity analysis is performed through the partial derivatives of the
measure of interest with respect to each input parameter. Through partial derivatives of
closed-form equations, one is able to find the most important system factors and improve
its behavior in an optimized fashion.

The sensitivity of a given measure Y, which depends on a specific parameter 𝜆, is
computed as shown in Equation (2.21), or Equation (2.22) for a scaled sensitivity:

𝑆𝜆(𝑌 ) = 𝜕𝑌

𝜕𝜆
(2.21)

𝑆𝑆𝜆(𝑌 ) = 𝜃

𝑌

𝜕𝑌

𝜕𝜆
(2.22)

𝑆𝜆(𝑌 ) is the sensitivity index (or coefficient) of Y with respect to 𝜆 , and 𝑆𝑆𝜆(𝑌 ) is the
scaled sensitivity index, commonly used to counterbalance the effects of largely different
units between distinct parameters values.
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3 RELATED WORKS

This chapter presents a list of related works in the main topics covered in this thesis. The
researches are divided into two categories: Hierarchical Modeling of Virtual Envi-
ronments and Software Aging and Rejuvenation of Server Virtualized Systems.
The following sections are not intended to provide an exhaustive view of the works pub-
lished on those topics, but rather to point out significant advances which go towards a
similar direction as this research do, or give a basis for future extensions.

3.1 HIERARCHICAL MODELING OF VIRTUAL ENVIRONMENTS

Kim et al. (KIM; MACHIDA; TRIVEDI, 2009) construct a two-level hierarchical model of
non-virtualized and virtualized systems representing two hosts systems in an active/active
redundancy configuration. Fault trees are used to represent the overall system in the top-
level, and CTMCs are used to capture the behavior of sub-components in the low-level.
They incorporate hardware failures (e.g., CPU, memory, power), and software failures,
including VMM, VMs, and application failures. The aim is to estimate steady-state avail-
ability, downtime, and COA. A strong point of this work is the scope analysis, considering
failure and repair rates from the hardware to the application. Besides scope analysis, this
work also resembles this thesis by the comparison between a baseline environment and a
proof-of-concept environment. This paper is one that most closely resembles this thesis.
However, in this thesis, a complete study of the application was carried, with a focus on
VNF chains. Furthermore, we were also able to measure VM live migration time intervals
for the considered service, whereas Kim et al. adopted previous measurements for VM
live migration that do not consider the application.

Melo et al. (MELO et al., 2017b) propose models to evaluate the capacity of nodes
in cloud computing environments. They combine RBD and SPN models to state the real
amount of available hardware resources at predetermined time intervals. A strong point of
this paper is to consider a generic cloud computing platform, composed by Platform Man-
ager, Cluster Manager, Block-based Storage, File-based Storage, and Instance Manager.
As expected, all of these generic components are presented in the openstack platform.
Through a sensitivity analysis, the authors were able to state that the Node component is
higher impactful for COA in comparison with the VM. This paper resembles this thesis,
as availability and COA analyses were performed in a cloud computing environment. The
main differences are our concern regarding high availability, as well as our analysis of SFC
applications.

Dantas et al. (DANTAS et al., 2015) present availability models for private cloud ar-
chitectures based on the Eucalyptus platform, as well as a comparison of costs between
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evaluated architectures and similar infrastructure rented from a public cloud provider.
The COA and steady-state availability were used to compare architectures with distinct
numbers of clusters. A heterogeneous hierarchical modeling approach, using RBD and
CTMC, was employed to represent the systems considering both hardware and software
failures. They concluded that it takes 18 months, on average, for the private cloud archi-
tectures to be paid off the cost equivalent to the computational capacity rented from a
public cloud. This work resembles the presented thesis mainly for the adoption of hierar-
chical modeling of availability and COA, whereas the main distinction is our analysis of
network function virtualization applications.

Mauro et al. (Di Mauro et al., 2017) address an availability evaluation of a chain of
network nodes implementing an SFC managed by a Virtualized Infrastructure Manager
(VIM). A double-layer model is adopted, where Reliability Block Diagram describes the
high-level dependencies among the architecture components, and Stochastic Reward Net-
works (SRN) model the probabilistic behavior of each component. In particular, a steady-
state availability analysis is carried out to characterize the minimal configuration of the
overall system guaranteeing the so-called five 9’s requirement, along with a sensitivity
analysis to evaluate the system robustness concerning variations of some key parameters.
This paper closest resembles this thesis regarding the analysis of service function chains
availability. A strong point of this paper is the adoption of elasticity in the SRN to model
the variation of the workload during 24 hours. However, they do not present a testbed to
capture time parameters with the aim to be used as input in their model.

Fernandes et al. (FERNANDES et al., 2012) proposed and evaluated a method to estimate
dependability attributes in virtualized network environments. The proposed approach
provides a basis for estimating metrics, such as reliability and availability, through the
adoption of hierarchical and heterogeneous modeling based on RBDs and SPNs. The
hierarchical modeling was adopted with the aim to mitigate the complexity of representing
large virtual networks. Experimental results demonstrated the feasibility of the proposed
modeling approach, in which dependability metrics have been estimated from results
generated by the resource allocation algorithm for virtual networks. A strong point of
this paper is to reach the goal in demonstrating the feasibility in adoption proposed
modeling approach to study dependability metrics. This work resembles the presented
thesis by the study of virtualized network infrastructures adopting hierarchical modeling,
whereas no concern about high availability was presented, which is a noticeable difference
between the works.

Costa et al. (COSTA et al., 2016) proposed a hierarchical model, adopting RBD and
CTMC, to assess the availability of a mobile cloud platform. A strong point of this work
was the validation of designed models through testbed measurements by automatically
fault injecting and repairing of the infrastructure, taking into account the three evaluated
layers: hardware, operating system, and the Mobile cloud Platform. This work resembles
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this thesis by the experiments of fault injection in the experimental infrastructure.
Cotroneo et al. (COTRONEO et al., 2015) proposed a methodology for the dependability

evaluation and benchmarking of NFV Infrastructures (NFVIs), based on fault injection.
Authors applied experimental availability, defined as the percentage of traffic units, such as
packets, that are successfully processed during a fault injection experiment. They aimed to
analyze the effects over requests, due to VNF unavailability, that will not be processed by
an IP Multimedia Sub-system (IMS) deployed as VNF. During fault injection experiments,
they found experimental availability varying from 8.01% to 82.40% for all tested scenarios,
with an average value of 51.37%. They showed the important factors that can impact the
experimental availability, concluding that while it is important to have redundant and
reliable devices to prevent I/O faults, it is even more important to introduce additional
resources to mitigate CPU and memory faults, including more VM instances and physical
CPUs to compensate for faulty ones.

Gonzalez et al. (GONZALEZ et al., 2015) focused their work in the system availability
of virtualized Evolved Packet Core (vEPC), specifically in how to assess the availability
of a vEPC and which are the main availability concerns to be considered. As the all-IP
framework for providing converged voice and data on a 4G Long-Term Evolution (LTE)
network, the study of potential failures sources in a vEPC environment, that is provided
through VNFs under NFVI, is quite relevant. Authors provided a Stochastic Activity
Network (SAN), an extension of SPNs, claiming that it is applicable to study how sensitive
the availability is to the main parameters. The presented numerical results show that a
cluster of twelve Commercial Off-The-Shelf (COTS) servers are required to obtain five 9’s
of availability in the studied vEPC system. Furthermore, the steady-state availability of
each individual hardware (H), software (S), and hypervisor (Y) must be equal to 99.99%.
Authors adopted equal values for failure and repair rates of H, S, and Y, i.e.: 𝜆𝐻 = 𝜆𝑆 = 𝜆𝑌

and 𝜇𝐻 = 𝜇𝑆 = 𝜇𝑌 , and based their recommendations to improve availability in general
design criteria, such as: design VNF functions with adequate operational redundancy to
cover individual failures; and provide high robustness software, hardware and hypervisor
entities. This paper resembles thesis by the study of VNF and NFVI availability.

Endo et al. (ENDO et al., 2016) made a systematic review to present and discuss High
Available (HA) solutions for Cloud Computing, where they argued that delivering a higher
level of availability has been one of the biggest challenges for Cloud providers (similar to
telecommunication service providers serving VNF). As a result of the systematic review,
HA cloud solutions were organized into three layers. Redundancy was classified in the
services middle layer. Four redundancy models were presented, according to Availability
Management Framework (AMF) of the Service Availability Forum (SAF): 2N, N+M,
Nway, and Nway active. The systematic review revealed a preference for 2N model, due
to its simplicity.

Herker et al. (HERKER et al., 2015) modeled different backup strategies for VNF service
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chains and provided algorithms for the resilient embedding of such VNF service chains in
diverse Data Center (DC) topologies. Author’s purpose was to deploy VNF service chains
with predefined levels of availability in DC networks.

Yoon et al.(YOON et al., 2017) implemented a virtualized network computing testbed
on openstack cloud. Such a testbed allows users to configure various types of virtualized
networks using their VNFs. They classified virtualized networks in 4 categories, according
to how VNF: host VM/nested VM; host VM/nested container; VM based; and container-
based. No concerns about high availability were looked on. Just one neutron node and
one controller node were deployed, whereas ten compute nodes are available.

Table 3 summarizes the most relevant presented related works regarding hierarchical
modeling, establishing a comparison between each of them in this thesis. The compared
aspects were:

• type of performed dependability evaluation;
• if some HA Testbed was assembled, analyzed, or both;
• concerns regarding high availability;
• adoption of cloud computing in the studies;
• study of virtual network functions or service functions chains;

Table 3 – Comparison with most relevant related works regarding virtual environments

Evaluation
HA

Testbed
Parameters

source
five
9’s

VNF
SFC

(KIM et al, 2009) FT, CTMC No

previous
literature,
estimatedguesses Yes No

(MELO et al., 2017b) RBD, SPN No
previous
literature No No

(DANTAS et al., 2015) RBD, CTMC No
previous
literature No No

(Di Mauro et al., 2017) RBD, SPN No
previous
literature Yes Yes

(FERNANDES et al., 2012) RBD, SPN No
previous
literature No Yes

(COSTA et al., 2016) RBD, CTMC No
previous
literature No No

(COTRONEO et al., 2015) Measurement Yes - No Yes

(GONZALEZ et al., 2015) SPN No estimatedguesses Yes Yes

This thesis
Measurement,
RBD, CTMC

and SPN
Yes

previous
literature,
estimatedguesses,

experiment
Yes Yes

Source: The author (2019)
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Our aims to define such aspects were justify the adoption of the used formalisms in
the research area and capture the aspects of high availability. One remarkable confir-
mation obtained from related works is the adoption of small testbeds for measurements
experiments, without HA features such as clustering and 3N redundancy.

3.2 SOFTWARE AGING AND REJUVENATION OF SERVER VIRTUALIZED SYSTEMS

Machida et al. (MACHIDA; KIM; TRIVEDI, 2011) presents analytic models using stochastic
reward nets for three time-based rejuvenation techniques for VMs and VMMs. The au-
thors goal is compute the steady-state availability and the number of transactions lost per
year regarding three analyzed rejuvenation techniques, named: (i) Cold-VM rejuvenation,
in which all VMs are shut down before the VMM rejuvenation; (ii) Warm-VM rejuve-
nation, in which all VMs are suspended before the VMM rejuvenation; (iii) Migrate-VM
rejuvenation, in which all VMs are moved to the other host server during the VMM re-
juvenation. The analyzed server virtualization system comprises two servers. This work
resembles this thesis by the adoption of dependability modeling with a focus on availabil-
ity. A positive aspect of this work is the report of an optimum rejuvenation schedule for
VM and VMM rejuvenation. A difference for this thesis is does not consider the remaining
layers of virtualized systems, such as services in the top-level and operating system and
physical server in bottom-level.

Matos et al. (MATOS et al., 2011) presents an approach that uses time series to sched-
ule rejuvenation to reduce the downtime by predicting the proper moment to perform
the rejuvenation. They used a testbed environment to perform experiments looking for
aging symptoms, characterized by the consumption of CPU time, memory space, hard
disk space, and process IDs. They adopted an Eucalyptus testbed with 4N redundancy
for servers hosting VM, however they adopt only one server to the cloud controller. A
positive aspect of this work was the detection of aging aspects in virtual and resident
memories with experiments with a duration of only 72 hours. This work resembles this
thesis by the adoption of a redundant testbed for servers running virtual machines in a
cloud environment. A difference for this thesis is not to consider the adoption of an HA en-
vironment, such as Pacemaker/Corosync/HAProxy, in the Testbed provision assembling.

Araujo et al. (ARAUJO et al., 2012) investigate the memory leak and memory fragmen-
tation aging effects on the Eucalyptus cloud-computing framework, as well as proposed a
software rejuvenation strategy to mitigate the observed aging effects. A positive aspect of
this work was to experimentally detect the existence of the investigated aging effects in the
cloud environment under study. The aging phenomenon was detected through workloads
composed of intensive requests addressing different virtual machines. The rejuvenation
mechanism was implemented sending restarting signals to the aged processes. This paper
resembles the presented thesis by the analysis of cloud Virtual Infrastructure Manager,
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named Eucalyptus. However, the impact of the adopted rejuvenation mechanism over
dependability measures was proposed as future work.

Alonso et al. (ALONSO et al., 2013) present a comparative experimental study of six
different rejuvenation techniques with different levels of granularity: (i) physical node
reboot, (ii) virtual machine reboot, (iii) OS reboot, (iv) fast OS reboot, (v) standalone
application restart, and (vi) application rejuvenation by a hot standby server. A key aspect
of this work was to discover that application-level rejuvenation strategies are better as
a first tentative approach to mitigate the aging effects. If the rejuvenation at a higher
level was not effective, the rejuvenation of the next level could be adopted. The authors
argue that their results can contribute to availability improvement, but did not analyze
dependability metrics. That last aspect constitutes the key distinction between paper
authors and this thesis.

Nguyen et al. (NGUYEN; KIM; PARK, 2014) show an availability model for a virtualized
servers system using stochastic reward nets considering software rejuvenation of VMs and
VMMs. The models take into account: (i) the detailed failures and recovery behaviors of
multiple VMs; (ii) several failure modes and corresponding recovery behaviors; (iii) depen-
dency between different sub-components (e.g., between physical host failure and VMM).
The authors’ goal is to show numerical analysis on steady-state availability, downtime in
hours per year, transaction loss, and sensitivity analysis. This work resembles this thesis
regarding the dependencies among virtualized system components. The main contribution
of this paper is to show that a frequent rejuvenation policy on VM may lower the SSA
of the virtualized systems, whereas that on VMM may enhance the system SSA. We can
highlight the main difference between this paper and the presented thesis as the absence
of top-level service in authors analyzes.

Melo et al. (MELO et al., 2017a) investigate the software aging effects on the openstack
cloud computing platform using a stressful workload. They collect information about the
utilization of hardware resources and openstack related processes. An All-in-one open-
stack deployment mode was adopted. The study was carried out by performing repeated
instantiations and terminations of virtual machines. Furthermore, a resource utilization
prediction based on time series was performed, with the aim to identify possible failure
scenarios. The authors argue that time series models explain the behavior of the adopted
cloud computing platform, as well as its associated process. Four different types of time
series were analyzed, namely: (i) the linear model; (ii) the exponential growth model;
(iii) the quadratic model; and (iv) the S-Curve Model. The goal was to identify which
one presents the best fitting with the collected results. The main aspect of this work was
the detection of software aging issues regarding database used by openstack, specifically
memory leak aging effects. As a result, openstack processes, like nova-api, suffer degrada-
tion due to memory shortage. This paper resembles the presented thesis by analyzing the
software aging and rejuvenation phenomena in openstack cloud environment. However,
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a single server All-in-one environment was adopted, without considering High Available
implementations.

Torquarto et al. (TORQUATO; MACIEL, 2018) presents an availability model based on
SPN for virtualized servers with software rejuvenation of VMM enabled by VM live mi-
gration scheduling. During model analyses, this paper adopts two different approaches
for VM live migration, named: Cold-Standby Migration and Warm-Standby Migration.
A positive aspect of this paper is observed from its results: in environments with a heavy
workload, the rejuvenation scheduling brings significant improvement over availability.
This work resembles this thesis by adopting live migration during the software rejuvena-
tion process. However, High Available environments were not covered.

Table 4 summarizes the most relevant related works regarding SAR of server virtual-
ized systems, also establishing a comparison between each of them and this thesis.

Table 4 – Comparison with most relevant SAR works

LM
Rejuvenation

SAR of
VNF/SFC

Consider
HA

Cloud
Analysis

(MACHIDA; KIM; TRIVEDI, 2011) Yes No No No
(MATOS et al., 2011) No No No Yes
(ARAUJO et al., 2012) No No No Yes
(ALONSO et al., 2013) No No No No
(NGUYEN; KIM; PARK, 2014) No No No No
(MELO et al., 2017a) No No No Yes
(TORQUATO; MACIEL, 2018) Yes No No Yes
This thesis Yes Yes Yes Yes

Source: The author (2019)

The compared aspects were:

• VMs live migration as a mechanism to rejuvenation;
• Software Aging and Rejuvenation of virtualized networks, with a focus on VNF and

SFC adoption;
• concerns regarding high availability;
• adoption of cloud computing in the studies.

Our aims to define such aspects were justify the adoption of the proposed research
framework and verify the originality in the joint selection of these aspects.
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4 A METHODOLOGY FOR PROVISIONING OF HIGH AVAILABLE VNF
CHAINS

The main objective of this thesis is to propose and analyze stochastic models to evaluate
and improve virtual network functions. An aimed goal of this research is to propose high
availability solutions in the provisioning of these VNF chains.

We now present the adopted methodology in order to achieve these objectives. We aim
to support network specialists on estimate availability and capacity of VNFs, improving
the provision of virtualized network services into their infrastructures.

4.1 METHODOLOGY OVERVIEW

Figure 16 illustrates the adopted methodology and contextualizes the environment in
which this work is inserted. The main activities of the methodology are:

• System Understanding: it encompasses the comprehension of the systems, the iden-
tification of its components and functionalities and the following infrastructure defini-
tion;

• Environment Conception: with the defined infrastructure, the environment concep-
tion takes place with the implementation of the system that will further be modeled;

• Definition of Parameters and Metrics: with the understanding of the system and
the defined environment, the next activity defines the parameters the will be used to
estimate the defined metrics;

• Models Design: this activity is composed of the selection of suitable models and the
tools that are able to design and analyze them;

• State Input Parameters: it aims at identifying the sources of input parameters;
• Evaluation: it aims at performing the analysis of the studied system, producing the

results, i.e., the metrics estimations, of designed models;
• Yield Recommendations: based on generated results from models analysis, produce

the recommendations for network and cloud specialists.

We point out that the proposed methodology can be adopted by users with experience
in combinatorial and state-space based models for infrastructure planning and decision
making in virtualized environments, such as private cloud and its services. It is relevant
to highlight that this methodology can also be adopted to assist in the modeling of
several systems that present characteristics similar to those addressed in this work. The
methodology activities are detailed below.
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Figure 16 – Overview of Adopted Support Methodology
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4.2 METHODOLOGY ACTIVITIES

4.2.1 System Understanding

Aiming at planning virtualized infrastructures, such as server virtualization and cloud
computing ones, requires to understand how that systems work, identifying its main com-
ponents and making a survey of the main existing solutions, applications, and function-
alities. For this thesis, this activity represents a relevant goal, because it aids to delimit
the work, mitigating the risks to its conclusion. Understanding the system requires great
attention and special care by the analyst to avoid misinterpretation that could compro-
mise the later steps of the methodology. This activity is essential, as it enables us to learn
about the techniques that can be adopted, adapted, or will have to be created.

• Inputs: reading of technical and scientific material regarding virtual networks (in-
cluding SDN, NFV, and SFC), dependability modeling, and high available cloud
infrastructure;

• Actions: identification of virtual network components and virtual infrastructure
manager;

• Outputs: theoretical references, related works, as well as software and hardware
requirements for the assembling of cloud infrastructure.

4.2.2 Environment Conception

The assembling of testbeds is a direct activity to consolidate the comprehension of the
studied systems. This activity corresponds to the selection, installation, configuration,
and management of an environment to execute VMs providing VNFs. The testbed must
provide an environment in which an NFV ecosystem can be executed and the VNF chains
can be evaluated. We opt by an open-source solution to keep the research with low costs.
Some fundamental decisions of this activity are presented below:

• Preliminary testbed: a Proxmox VE Server Virtualization was deployed, with the aim at
analyzing VNFs. Such a decision was motivated by its simple installation, configuration,
and management, as well as our previous experience (GUEDES, 2015) with the platform.
We use container-based virtualization with OpenVZ;

• Subsequent testbed: Following, an HA Openstack Cloud Infrastructure was imple-
mented. During the infrastructure update, we performed the HA environment in-
stallation (both hardware and software). Openstack has an official project regarding
SFC (ZHANG et al., 2017). It provides an implementation of the classifier and the VNF
chains. We use full-virtualization with Kernel-based Virtual Machine (KVM), the de-
fault openstack hypervisor. It has the advantage to provide both server virtualization
and network virtualization solutions. As the main OpenFlow Protocol agent, the Open
vSwitch was selected as L2 virtual solution (as Open vSwitch was originally designed
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for virtualized networking, it is fully compatible with L2-L4 networking and can ben-
efit for previously presented advantages provided by SDN). The practical experiences
with these structures aids to generate dependability models that can be sufficiently
representative.

The summary of inputs, actions, and outputs of this activity is presented below:

• Inputs: software and hardware requirements for the assembling of virtual machines
infrastructure provisioning;

• Actions: installation, configuration, and tuning of HA server virtualization and HA
cloud computing environments;

• Outputs: functional testbed and proposition of studied scenarios.

4.2.3 Definition of Parameters and Metrics

Any element in which the variation of its values modifies the solution of a problem,
without, however, changing its nature, is called a parameter. In this work, we can identify
two types of parameters: those used to excite the measurement environments and those
used to estimate the metrics of interest on models. So, at this stage, the analyst must
define which scenarios and metrics will be covered, focusing mainly on those that have
the greatest influence on the quality of provided service.

Regarding environment parameters, the virtualization approach (Full-, Para-, or Container-
based Virtualization), the SFC size, and the video cache spool capacity are the most
influential.

Regarding models parameters, we widely adopted Mean Time To Failure (MTTF)
and Mean Time to Repair (MTTR) of the system components. Furthermore, in rejuvena-
tion scenarios, any preventive maintenance execution, resulting in a live migration of the
chain’s VMs, is scheduled by Mean Time Between Preventive Maintenance (MTBPM)
parameter. As MTBPM expires, a set of conditions is verified to state if the environment
is favorable to the execution of preventive maintenance. If the verification is not favorable,
all issues postponing preventive maintenance must be resolved before migrate the VNF
chain.

The following conditions were adopted:

1. the destination server must be active.

2. there will be no simultaneous VNF chain migration.

3. the VNF chain in destination server must be active.

4. the Open vSwitch in destination server must be active.
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Condition 1 is an evident requirement, as the destination server that will receive VMs,
must be active. Condition 2 prevents simultaneous preventive maintenance in both servers,
that would put the overall system in a down state. Conditions 3 and 4 avoid downtime at
the start of any preventive maintenance, verifying if all the VMs, services, and the Open
vSwitch are active in the destination server.

Besides MTBPM, we are also considering two other parameters: Mean Time To Per-
form Preventive Maintenance (MTTPPM) and Mean Time To Chain Live Migration
(MTTCLM) (Figure 17). The MTTPPM is the estimated mean time interval in which
the maintenance procedures related to the aging elimination take place. On the other
hand, the MTTCLM is the time interval required to migrate all the VMs belonging to a
service chain.

Figure 17 – Aging and Rejuvenation processes
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We consider that the server and their softwares age during MTBPM period, as depicted
in Figure 17. As soon as MTBPM expires, the chain’s VM live migration starts, and
during this period, the chain is not working. We take advantage of MTTCLM window to
reinitialize the VMs. So, when the service chain is activated in destination openstack node,
it is rejuvenated. During the MTTPPM window, preventive maintenance is performed.
The last step of the process is to return the chain to its original openstack node, in order
to minimize the downtime if the destination node fails. Some of the model parameters
only require valid choices. For example, the percentage of a component fast repairs in
comparison with the percentage of its slow repairs. It is evident that the sum of these
percentages must be 100% for a correct estimation of the metric under analysis.

The main conclusions of this thesis will emerge through the metrics analysis. In this
research, we aim at estimating dependability metrics, namely Steady-State Availability
and Capacity Oriented Availability.

The summary of inputs, actions, and outputs of this activity is presented below:

• Inputs: list of scenarios that will be studied;
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• Actions: identification of parameters types;
• Outputs: list of parameters that will be used during the evaluations; list of require-

ments to models design; list of metrics of interest.

4.2.4 Models Design

The activity of models designing is associated with the representation of the infrastructure
scenarios, such as those observed in environment conception activity. Analytical models
may not be satisfactory in its first proposals. Iterative modeling approach may be applied
to adjust proposed models through successive improvements until it is suitable to represent
an achievable target behavior. Dependability modeling may adopt an iterative approach to
consider progressively: the dependencies between system components (RUGINA; KANOUN;

KAÂNICHE, 2007) or yet improvements in the metrics of interest (MATOS et al., 2017).
In this phase, the scenarios are modeled considering the following variables: number

of nodes, number of VNFs, type of services, and redundancy mechanisms. We adopted a
hierarchical and heterogeneous approach for modeling, based on a reliability block diagram
used at low-level, and CTCM or SPN in the top-level.

A modeling tool that has a visual environment is helpful. It assists in model develop-
ment while also enables the computation of the metrics of interest. Among some tools, we
can mention Mercury (SILVA et al., ). The inputs of this activity are: the type of metrics
to be evaluated (for example, dependability metrics, such as availability), established in
previous activities; understanding the operation of key components or subsystems, as well
as the description of dependencies or interconnections between system components.

Firstly, RBD models were created to evaluated Cache VNFs considering both a single
server and two redundant servers. The RBD models enable using closed-form formulas
for computing Steady-State Availability. Closed-form formulas are useful to facilitate the
generation of sensitivity indices with respect to each model parameter. After, hierarchical
and heterogeneous models were conceived to represent systems with a higher number of
components, when load balancers were inserted in the analyzed systems. Next, specific
sub-models were designed to the study of VNF chains in a cloud computing environment.
The combination of these sub-models represents the entire system whose metrics are
estimated.

The summary of inputs, actions, and outputs of this activity is presented below:

• Inputs: the metrics to be evaluated; understanding the operation of key components
or subsystems; the description of dependencies or interconnections between system
components;

• Actions: design and implementation of sub-models; design of hierarchical models
composed by previous designed sub-models;

• Outputs: the models of proposed scenarios.



66

4.2.5 State Input Parameters Sources

With the aim to adequately represent system behavior, some of the input values must be
obtained through measurement experiments. Experiments are used to study the behavior
of processes and systems. Besides the implementation of a test environment, the experi-
ments may also require the creation of support tools. Such a requirement will depend on
the existence of tools that support the combination of the analyzed metrics, the observed
scenario, and the investigated environment. However, for scenarios in which experiments
execution are not feasible, the input parameter values should be obtained through pre-
vious literature with similar features to conduced study. In addition, manufacturer data
can also be used to feed the proposed models. However, caution is required as the values
provided by the manufacturers may be overestimated. In this case, the analyst may adopt
a reduction factor based on literature or even in empirical knowledge, to reduce values
and bring them closer to reality. In some cases, the input parameter values of some models
may be obtained through other models, which may be sub-models of this thesis itself or
models from the literature.

• Input: parameters of the proposed models;
• Actions: obtain input values for the parameters of each system component, ei-

ther by performing measurement experiments, literature studies, data provided by
component manufacturers or other models;

• Output: input parameter values.

4.2.6 Models Evaluation

During this activity, we analyze the designed models, producing the results for the studied
metrics. In the evaluation process, the lower-level models should be resolved first, because
their results will be used as input parameters for top-level models. The solution method
(i.e., numerical analysis, simulation or closed-form equations) may vary for each model,
depending on the constraints of modeling formalism.

The results are compared with predefined reference values. The aim is to observe the
possible improvements that can be obtained by the adoption of the strategies implemented
by the models in existing infrastructures.

New iterations may be conducted to capture updates implemented in the modeled
system or to adjust proposed models through successive improvements until it is suitable
to represent an achievable target behavior.

• Input: models loaded with input parameters values;
• Actions: define whether the estimated metrics are satisfactory or not;
• Output: additional iterations if not satisfactory; improvements in evaluated sys-

tems if satisfactory.
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4.2.7 Yield Recommendations

After the results generation, the analyst should report recommendations regarding im-
provements that may be implemented in an existent system, or establish configuration
requirements for systems under design and/or deployment. We will report the improve-
ments over Steady-State Availability and Capacity Oriented Availability metrics, that
cloud operators may reach through the adoption of the redundancy and rejuvenation
strategies presented in this thesis.

• Input: metrics results from models analysis;
• Actions: analyze improvements from the evaluated models;
• Output: yield recommendations regarding metrics improvements.

4.3 FINAL REMARKS

This chapter presented the methodology used to propose and analyze stochastic models
to evaluate and improve virtual network functions. Through a set of activities that cover
since the understanding of the system’s essential operations to propose improvements to
system components, this chapter provides details of evaluation procedures that can be
replicated by other researchers.
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5 MEASUREMENT EXPERIMENTS

This chapter presents the measurement experiments that were executed in the assembled
testbeds during this research. They were conducted to obtain a set of parameter values
that will be inserted in the proposed models. First, the adopted workload, based on User
Generated Content (UGC), is presented. After, the proper testbeds are presented. Finally,
the measurement experiments for each testbed, as well as their results, are reported.

5.1 WORKLOAD FOR USER GENERATED CONTENT

Global IP traffic has increased fivefold between 2011 and 2015, and it will increase three-
fold until 2020. Additionally, Cisco VNI (CISCO, 2016) indicates that 82% of all IP traffic
will be video and, at every second, nearly a million minutes of video content will cross
the network by 2020. Video streaming is the main factor of this growth, and is basically
composed of two media platforms: Video on Demand (VoD), such as Netflix, and User
Generated Content (UGC), such as Youtube. Motivated by these values, we performed
the workload characterization of User Generated Content (UGC) video system, enabling
us to reproduce the behavior of an UGC video system in a controlled environment. Abhari
and Soraya (ABHARI; SORAYA, 2010) performed a workload characterization of Youtube,
during a five-month period for 250,000 videos. The characterization revealed a file pop-
ularity behavior that fits Zipf distribution (ADAMIC; HUBERMAN, 2002; BRESLAU et al.,
1999) and a file size behavior that fits gamma distribution (MONTGOMERY; RUNGER,
2003). The probability mass function (pmf) and probability density function (pdf) of
these distributions are given respectively by:

𝑓(𝑥) = 1
𝑥𝑠

∑︀𝑛
𝑖=1(1/𝑖)𝑠

𝑥 = 1, 2, ..., 𝑛, (5.1)

and
𝑓(𝑥) = 𝑥𝛽−1𝑒−𝑥/𝛼

𝛼𝛽Γ(𝛽) 𝑥 > 0. (5.2)

In Equation( 5.1), 𝑠 parameter is skew factor of Zipf distribution. In Equation( 5.2), 𝛼

and 𝛽 are respectively the scale and shape parameters of gamma distribution. The pa-
rameter values presented by Abhari and Soraya (ABHARI; SORAYA, 2010) and exhibited
in Table 5 were adopted during the workload tool configuration.

This workload characteristics have been used during the performed measurements
experiments.
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Table 5 – Parameters for UGC video characterization

Parameter Value
skew(𝑠) 0.9
scale(𝛼) 5441.93
shape(𝛽) 1.80

5.2 PROXMOX SERVER VIRTUALIZATION TESTBED

The NFV video cache cluster shown in Figure 18 was designed to support TTFs estimation.
This testbed adopts Proxmox as the MANO component. Proxmox provides a management
interface for orchestration, which allows containers’ loading and monitoring.

Figure 18 – Testbed for UGC video cache cluster

Source: The author (2019)

Two servers (AMD Phenom Quad-Core Processors, 2.3 GHz, 8 GB RAM, Gigabit
Ethernet adapter) compound the cluster. They have 3 directed attached hard disks (HD)
(250GB, 6Gb/s, 7200RPM). Two HDs are exclusively used for cache server spools (labeled
as HD1 and HD2 for Server1 and HD3 and HD4 for Server2), whereas the third HD rooms
the server operating system.

Each server hosts two Container (CT) with sole hard disks. Such an approach improves
availability, as highlighted in our previous work (GUEDES; SILVA; MACIEL, 2014). All VNF
cache servers were implemented using Squid Server 3.4.2. A Gigabit switch interconnects
the testbed nodes. The nodes with Squid Servers adopted an active-active redundant
video cache cluster to measure the failure rates.
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5.3 HA OPENSTACK CLOUD TESTBED

We accomplished HA by incorporating features such as redundancy for failover and repli-
cation for load balancing in each component without using costly specialized hardware
and software.

• HA Openstack Cloud: Hardware Infrastructure

Our HA Cloud is formed by 9 servers divided into 3 Pacemaker clusters, as depicted
in Figure 19.

Figure 19 – Openstack HA Cloud Architecture
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• HA Controllers cluster is composed of 3 servers. Two of them with Intel Xeon CPU
E3-1220 3.10GHz, 16GB RAM, 4 Gigabit Ethernet Adapters, and 1TB of hard disk
capacity, and the third with Intel Core CPU i7-2600 3.40GHz, 8GB RAM, and also
4 Gigabit Ethernet Adapters, and 750GB of hard disk capacity, divided in one disk
with 500GB e another with 250GB;

• HA Computes cluster nodes differs from HA Controllers in the amount of RAM for
Intel Xeon server (32GB);
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• HA Neutron cluster is composed of three servers with AMD Phenom Quad-Core
Processors, 2.3GHz, 8 GB RAM, 5 Gigabit Ethernet adapters, and 500GB of hard
disk capacity. The fifth network adapter of neutron’s nodes is used for an external
Internet connection. Two Gigabit switches interconnect testbed nodes.

Figure 19 shows the redundant connections between clusters and both testbed switches.
Indeed, there are four UTP Cat 5e cables physically connected to each node, as depicted
in Figure 20. Each pair of cables forms a redundant round-robin Linux bond (WILLIAMS,
2011), depicted by the ellipses, and there is no cabling SPOF. Bonding interfaces are a
cost-effective way to provide hardware-level network redundancy to the cloud infrastruc-
ture.

Figure 20 – Bonding between each testbed server and the switches

Source: The author (2019)

We are able to ensure that there are no hardware SPOF in the assembled HA Open-
stack Cloud. The heterogeneity of equipment is due to their availability in the laboratory.
During the testbed assembling, no configuration differences were required due to servers
heterogeneity. The operating systems, openstack components, and pacemaker/corosync
packages were installed without distinctions, as described below.

• HA Openstack Cloud: Software Components

Regarding the installation of openstack software components, Pacemaker and Corosync
were installed and configured in all 9 HA cloud nodes, as depicted in Figures 21, 22,
and 23. The management (initialization, shutdown, re-initialization, and monitoring) of
each openstack daemon is performed by Pacemaker.

MariaDB was adopted as the underlying database. Its HA solution was implemented
through Galera Cluster. The AMPQ message queue system was implemented, and its
native HA solution configured and enabled.

HAProxy was installed to perform the load balancing to requests performed to the HA
Controllers cluster. Any requests regarding instantiation of VMs are forwarded to the Vir-
tual IP (VIP) of HA Controllers cluster. HAProxy receives these requests and forwards
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them, using a round-robin policy, to the aimed openstack component. HAProxy was also
wrapped by Pacemaker (refer to Table 57).

All the clusters (HA Controllers, HA Computes, and and HA Neutron) were configured
in an active/active/active redundancy. Even without spare nodes, there are advantages
in adopt active-active redundancy in the selected clustering softwares system, such as
management centralization (all the nodes in the cluster may be managed in any server)
and dropping of recovery rates.

Figure 21 – Pacemaker: HA Controller Cluster
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Openstack HA implementation is not free of conflicting requirements. For example: it
is not possible to bound services to IP address 0.0.0.0, which results in offering the service
in all configured interfaces, including loopback. So, the service is bounded to virtual IP
instantiated by Pacemaker. But some resource agents configured in pacemaker monitor
port services bounded to the loopback address, by default. This impacts the deployment
time of HA Openstack solution. Some troubles can arise, such as performability issues
related to bottlenecks of network I/O. We had experienced and troubleshooted a similar
issue in a previous work (GUEDES; SILVA; MACIEL, 2014).
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Figure 22 – Pacemaker: HA Neutron Cluster
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Figure 23 – Pacemaker: HA Neutron Compute
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5.4 TIME TO FAILURE MEASUREMENTS IN PROXMOX SERVER VIRTUALIZATION
TESTBED

Software component MTTFs are not readily available, and experiments can be performed
to estimate them. We proposed and executed a series of experiment replications aiming
at measuring TTFs in the UGC video cache cluster of Proxmox Server Virtualization
testbed (Figure 18). The goal was to detect how long all the caching processes take to
cause a cluster failure.

The adopted methodology to measure the TTFs comprises 2 activities, as depicted in
Figure 24:

• Activity 1 - Configure workload generation tool: Web-Polygraph (WP) (POLYGRAPH,
2016) was adopted to excite the video cache VNF cluster (see Figure 25). It includes
both client and server-side simulators. Two additional machines were added to the
Proxmox Testbed with the aim to execute the WP client-side and server-side, as de-
picted in Figure 25.
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Figure 24 – Methodology to estimate TTFs

Source: The author (2019)

The client-side is used to generate and forward the configured workload to video cache
VNF cluster, populating it in a balanced way through a round-robin policy. As any
traditional caching system, when the required objects are found, the caching system
answers the request with the desired object. Otherwise, the request is forwarded to
WP server-side, that answers with the requested objects.

WP natively supports Zipf distribution, so that we could model file popularity be-
havior through WP 𝑝𝑜𝑝𝑍𝑖𝑝𝑓 function. Gamma distribution, required to represent file
size behavior, is not natively available in WP, but we could represent it using a WP
additional resource called user-defined distribution. Non-native distributions can be
modeled as a value-frequency table. We generated value-frequency pairs presented in
the Table 6 using R (FUNDATION, 2016) 𝑟𝑔𝑎𝑚𝑚𝑎 function, adopting shape and scale
parameters as defined in Table 5.

Observing Table 6, one can notice that the majority of UGC video files (32.31%) have
size between 5.12MB and 10.24MB.

• Activity 2 - Run stressing experiment replications: it aims to capture TTFs of VNF
video cache executing UGC video workload.

These experiments are hard to conduct because of time they will take, or yet because
of the difficulty of attributing the cause of failures. With the aim of accelerating the
results of the experiments, avoiding unpredictable experiments duration time intervals
for TTFs estimation, we limited the total cache capacity of the cluster. With UGC
workload and a limited cache space, the storage capacity was quickly exhausted, over-
loading the video cache cluster and accelerating failure events.
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Figure 25 – Proxmox Testbed: additional machines to execute TTF experiments

Source: The author (2019)

Observing the methodology of Figure 24, if the experiments replication time is below
a predefined threshold, the cache capacity is doubled, and three new replications are
executed. The experiments were started with 4GB of cache capacity (1GB per container)
and a time threshold of 1-hour. We were able to increase the cache capacity twice without
infringing the adopted threshold, reaching 16GB of total cache capacity.

Figure 26 exhibits the obtained TTFs. As can be noted, as the storage capacity in-
creases, the failure times also increase. Adopting the configured User Generated Content
workload, a capacity storage greater than 16GB does not result in cluster failure in the 1
hour threshold, and we finalize the experiments.

The MTTF=315.33s from 16GB scenario was adopted as input parameter in avail-
ability models presented in the next chapter, because it is the most relevant due to higher
storage capacity.
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Table 6 – rgamma results: file sizes and frequencies

File size(MB)
[min : max) Frequency(%)
0.128 : 5.12 28.65
5.12 : 10.24 32.31
10.24 : 15.36 19.60
15.36 : 20.48 10.17
20.28 : 25.60 4.98
25.60 : 30.72 2.35
30.72 : 35.84 1.11
35.84 : 40.96 0.45
40.96 : 46.08 0.215
46.08 : 51.20 0.085
51.20 : 56.32 0.03
56.32 : 61.44 0.03
61.44 : 66.56 0.01

Source: The author (2019)

Figure 26 – Time to Failure (TTF) of the 3 evaluated cache capacities

Source: The author (2019)
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5.5 SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD TESTBED

The measurement experiments adopted a VNF chain composed of a load balancer, a fire-
wall, and a cache aimed at store User Generated Content videos, as depicted in Figure 27.

Figure 27 – UGC video flow through SFC composed of a load balancer, a firewall, and a
cache server
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Source: The author (2019)

The UGC workload (Section 5.1) was also configured in Web-Polygraph for SFC live
migration experiments. However, distinctly for Proxmox Testbed, WP server-side was
executed in DST VM (Figure 27) whereas SRC VM executes WP client-side.

The first VNF to process the UGC packet flow is the load balancer. We adopted the
round-robin policy using HA Proxy. After, firewall VNF inspects packets, looking for SYN
flooding and ping of death flows. Lastly, the cache VNF looks for requested video files.

We choose KVM as the hypervisor to execute VM instances in openstack. It is one
of the most popular hypervisors with openstack deployments, it is also the default con-
figuration option, and it has a low configuration time cost. Moreover, as full virtualiza-
tion platform presents large migration times in comparison with para-virtualization or
container-based virtualization (as can be seen in our previous work (GUEDES, 2015)), our
goal is establishing an upper limit for SFC migration time.

When an instance is booted for the first time, neutron assigns a virtual port to each
network interface of the instance. A port for neutron is a logical connection of a vNIC to a
subnet (a layer 3 IPv4 or IPv6 network object). A VM instance running on KVM uses its
vNIC so that the applications, such as load balancers and cache server, can communicate
to the outside world through.

We implemented service function chains using openstack SFC API. When the SFC
API executes the Open vSwitch driver, an Ethernet frame will pass through a set of
virtual devices, as depicted in Figure 28.

The packets flow starts from Web-Polygraph SRC virtual machine, through its vNIC
ens3. But for this vNIC to be operational, it has to be able to connect to something on the
other end that gets it to some destination. This is the purpose of the other components
of the network architecture depicted in Figure 28. So, after vNIC ens3, the next device
is the tap software-only interface. Tap devices are the way that KVM implement a vNIC
attached to the VMs. The traffic from a vNIC (such as ens3), in a virtual machine instance,
can be observed on the respective tap interface in the host Compute server. The tap
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Figure 28 – Detailed openstack SFC flow
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interface was useful during the execution of the experiments because it enables traffic
monitoring in the openstack compute host.

After tap interface in the stack, the Open vSwitch driver requires a Linux Bridge. The
virtual interface with prefix qbr shows the Linux Bridge (the "q" stands for quantum, the
initial name of neutron project in the openstack community). All the iptables support that
implement access rules for virtual machines are configured in the Linux Bridges. The next
two layers, qvb and qvo, constitutes the virtual ethernet (veth) cable. The first one, qvb,
represents the bridge veth side. The second one, qvo, represents the Open vSwitch veth
side, connected to the Open vSwitch integration bridge br-int. The integration bridge is
the central virtual switch that most virtual devices are connected to, including instances,
DHCP servers, and routers. The multi-tenant feature is implemented by the integration
bridges using VLANs. As one can observe in Figure 28, all the five VMs used in the
migration experiments belongs to the same VLAN, identified by its tag ID 1.

The flow from Web-Polygraph SRC VM is now forward, through OpenFlow rules, to
the qvo interface of LB-sf VM, passing through qvb, qbr and tap, reaching LB-sf ens3
vNIC. As all openstack networking services and openstack Compute instances connect to
a virtual network via ports, it is possible to create a traffic steering implementation for
service chaining using only openstack ports.

All the VMs belonging to the service function chain were instantiated in a unique
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compute node (ha-compute-01). In scenarios in which multiple compute nodes would be
used, the integration bridge will forward the traffic through the veth composed of patch-
tun and patch-int connections. The bond1 interface represents the collections of physical
network interfaces.

The SFC API implements the concept of port pair. A port pair represents a specific
service function. The port pairs used in the SFC live migration experiment can be observed
in Figure 28, and are detailed in Table 7.

Table 7 – Port pairs for SFC live migration experiments

VM/Port Pair Name Port IP vNIC

LB-sf/LBPP_C1 pLB1 192.168.66.11 ens3
pLB2 192.168.66.12 ens4

FW-sf/FWPP_C1 pFW1 192.168.66.13 ens3
pFW2 192.168.66.14 ens4

VC-sf/CachePP_C1 pCache1 192.168.66.15 ens3
pCache2 192.168.66.16 ens4

Source: The author (2019)

Regarding LB-sf VM, the ports pLB1 and pLB2 form a port pair. The pLB1 port is
the ingress port in the pair, whereas the pLB2 port in the egress port in the pair. Similar
behavior is presented by port pairs (pFW1, pFW2) and (pCache1, pCache2).

The adopted flow classifier was created using the rules below:

i. IPv4 traffic;
ii. the source IP address equal to Web-polygraph (192.168.66.1);
iii. the destination IP address equal to cache video VNF (192.168.66.15);
iv. TCP protocol;
v. the TCP source ports in the 30000:65535 range;
vi. the TCP destination port equals to the video cache VNF server (3128);
vii. neutron source port equals to WP Source VM (pSrc).

From the dashed line depicted in Figure 28, one can observe that the traffic from Web-
Polygraph SRC VM will ingress in the port chain through port pLB1. The load balancer
VNF will apply its policies in the traffic of vNIC ens3, forwarding the resulting throughout
ens4. The traffic flow egress from port pLB2, continuing its journey inside the port chain.
All the virtual interfaces and virtual devices steer the flow until it reaches VC-sf ens3
vNIC. The video cache VNF looks up its spools. If the desired object is found, the video
cache answers the request, otherwise, it forwards the request to the Web-Polygraph DST
VM. The DST VM simulates all the Internet. Any requested object will be found and
sent to the video cache VNF implemented on VC-sf VM. As the answer is unrelated with
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the port chain, it is sent for the SRC VM outside the port chain, as can be observed by
pointed line.

5.5.1 Experiments execution

The TISVEP (GUEDES, 2015) (Tuning Infrastructure for Server Virtualization Experi-
ment Protocol) was adopted to manage the execution of the experiments. TISVEP au-
tomatizes all required configuration steps to replicate experiments.

We collected three time intervals during experiments:

i. deletion of SFC API openvswitch chain rules;

ii. chain migration;

iii. creation of SFC API openvswitch chain rules.

The procedures (i) and (iii) are mandatory for SFC migration in openstack SFC API
because the packet flow transmitted through the chain will fail after migration if the
Open vSwitch rules were not deleted before VMs migration. As TISVEP is extensible,
five new messages were created to capture VNF chain live migration times. They are
presented below:

• 312 - createChain: results in the execution of all required commands in a controller
node to mount the chain;

• 313 - deleteChain: similar to message 312, but aimed to remove the chain;
• 314 - detectMigration: sent to a compute node, it results in monitoring the VMs hyper-

visor Process Identification (PID). While the PIDs are not detected, TISVEP waits;
• 315 - fwRulesInjection: results in required netfilter (RUSSELL, 2018) configuration of

security rules aimed to allow the chain’s traffic;
• 316 - migrateChain: execute the chain’s migration commands in the controller node.

All physical and virtual machines run TISVEP server-side with the goal to configure
the experiment environment during its execution. Figure 29 depicts the TISVEP messages
that were sent with the aim to capture the time intervals (i), (ii), and (iii).

As can be noted in Figure 29, messages 313, 316, and 312 are delivered for one con-
troller node, whereas messages 314 and 315 are delivered to the migration target compute
node. According to TISVEP, all messages must be answered with the STATUS of executed
configuration commands, so that the experiments can be monitored in the experimenter’s
system.

Forty migration experiments were performed and Table 8 exhibits 95% mean confi-
dence intervals.

Specifically to this set of migration experiments, message 316 (migrateChain) conduced
VMs back and forth nodes ℎ𝑎−𝑐𝑜𝑚𝑝𝑢𝑡𝑒01 and ℎ𝑎−𝑐𝑜𝑚𝑝𝑢𝑡𝑒02, the more powerful servers
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Figure 29 – TISVEP messages for live migration experiments
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Table 8 – Mean Confidence Intervals

Time interval(s) LB(s) Mean(s) UB(s)
SFC rules deletion 6.119 6.147 6.175
VNF chain migration 108.797 114.511 120.226
SFC rules creation 12.049 12.089 12.129

Source: The author (2019)

of HA Computes cluster. The mean values of Table 8 will be inserted in the SPN models
presented in the next chapter.
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5.6 FINAL REMARKS

This chapter presented the measurement experiments that were conducted during this
research. The adopted workload was defined, as well as how it was applied to the assem-
bled testbeds. We automatized the execution of the experiments extending the TISVEP
protocol. The results of the measurement experiments are inserted as input parameter
values in the proposed models during their evaluation.
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6 AVAILABILITY MODELS

6.1 INTRODUCTION

This chapter presents the models that represent the components aimed at providing VNF
chains. Preliminary, a study was conducted with models representing VNFs in the Prox-
mox VE server virtualization platform. After, Service Function Chains sub-models were
proposed for HA openstack cloud.

6.2 MODELS FOR VNFS IN PROXMOX SERVER VIRTUALIZATION INFRASTRUCTURE

For this first proposed models regarding VNFs, the components of the Proxmox platform
were modeled using RBDs, as depicted in Figure 18. The Proxmox servers, the containers,
and the applications provided in containers are the represented components.

6.2.1 Model for VNF Cache Cluster

This model represents the utilization of only two containers running in one node of a
Proxmox Server Virtualization Infrastructure. The components of the model, represented
by the composition of series and parallel RBDs, are depicted in Figure 30. The Server
block represents the hardware components of the physical server. The Storage (S) block
represents the persistent memory of the server. The OS block represents the Operating
System. The CTi blocks represent the containers, whereas the APPi blocks represent the
VNF cache servers.

Figure 30 – RBD for VNF Cache Cluster

Source: The author (2019)

The closed-form equation for availability of the non-redundant VNF cluster is ex-
pressed as: 𝑆𝑆𝐴 = 𝐴𝑆𝑒𝑟𝑣𝑒𝑟 × 𝐴𝑆 × 𝐴𝑂𝑆 × (1 − (1 − 𝐴𝐶𝑇 1 × 𝐴𝐴𝑃 𝑃 1) × (1 − 𝐴𝐶𝑇 2 × 𝐴𝐴𝑃 𝑃 2))

Table 9 report the input parameters adopted in the first case study (Figures 30 and 31).
The parameters represent the mean time to failure and repair of each component. In
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addition to using manufacturer data for the modeling phase, cloud computing analysts,
technicians, and managers can use historical data from their environments. In this way,
the values can contribute to the obtention of closer results.

Table 9 – Dependability parameters for VNF Cache Cluster

Parameter Description
MTTFSRV Server Mean Time To Failure
MTTRSRV Server Mean Time To Repair
MTTFS Storage Mean Time To Failure
MTTRS Storage Mean Time To Repair
MTTFOS Operating System Mean Time To Failure
MTTROS Operating System Mean Time To Repair
MTTFC Container Mean Time To Failure
MTTRC Container Mean Time To Repair
MTTFAPP Application Mean Time To Failure
MTTRAPP Application Mean Time To Repair

Source: The author (2019)

6.2.2 Model for Cache VNF and Load Balancer

The interaction among applications was modeled using top-level CTMCs. The details are
provided below. This first proposed model represents a cache VNF system chained with
a load balancer appliance. We adopted four cache VNF sub-system due to the number
of containers in the first assembled testbed (Figure 18). Each cache VNF sub-system is
composed by one Server(HW), one Storage(S), one OS, one container(CT), and one cache
VNF(APP). The series RBD depicted in Figure 31 represents the low-level cache VNF
model.

Figure 31 – RBD model for VNF cache sub-system

Source: The author (2019)

The reliability of each component (𝑅𝑖(𝑡)) (MACIEL et al., 2012) is considered to compute
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the resulting MTTF of a series RBD:

𝑅𝑖(𝑡) = 𝑒−𝜆𝑖𝑡
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(6.1)

So, for the entire system,

𝑅(𝑡) = 𝑒−𝜆1𝑡 × 𝑒−𝜆2𝑡 × 𝑒−𝜆3𝑡 × ... × 𝑒−𝜆𝑛𝑡 = 𝑒−
∑︀𝑛

𝑖=1 𝜆𝑖𝑡

𝑀𝑇𝑇𝐹𝑆𝑆 = 1∑︀𝑛
𝑖=1 𝜆𝑖

,
(6.2)

where 𝜆𝑖 is the failure rate of each system component. So, the sub-system 𝑀𝑇𝑇𝐹𝑆𝑆 may
be estimated by the Equation 6.3.

𝑀𝑇𝑇𝐹𝑆𝑆 = 1
𝜆𝐻𝑊 + 𝜆𝑆 + 𝜆𝑂𝑆 + 𝜆𝐶𝑇 + 𝜆𝐴𝑃 𝑃

(6.3)

The maintainability of each component(𝑀𝑖(𝑡)) is considered to compute the resulting
MTTR of a series RBD:

𝑀𝑖(𝑡) = 1 − 𝑒−𝜇𝑖𝑡

𝑀𝑇𝑇𝑅𝑖 =
∫︁ ∞

0
1 − 𝑀𝑖(𝑡)𝑑𝑡 =

∫︁ ∞

0
𝑒−𝜇𝑖𝑡𝑑𝑡 =

[︃
−𝑒−𝜇𝑖𝑡

𝜇𝑖

]︃⃒⃒⃒⃒
⃒
∞

0

𝑀𝑇𝑇𝑅𝑖 = lim
𝑡→∞

−𝑒−𝜇𝑖𝑡

𝜇𝑖

− lim
𝑡→0

−𝑒−𝜇𝑖𝑡

𝜇𝑖

= 0 − −1
𝜇𝑖

= 1
𝜇𝑖

(6.4)

So, for the entire system,

𝑀(𝑡) = (1 − 𝑒−𝜇1𝑡) × (1 − 𝑒−𝜇2𝑡) × (1 − 𝑒−𝜇3𝑡) × ... × (1 − 𝑒−𝜇𝑛𝑡) = (𝑒−
∑︀𝑛

𝑖=1 𝜇𝑖𝑡)

𝑀𝑇𝑇𝑅𝑆𝑆 = 1∑︀𝑛
𝑖=1 𝜇𝑖

,
(6.5)

where 𝜇𝑖 is the repair rate of each system component. So, the sub-system 𝑀𝑇𝑇𝑅𝑆𝑆 may
be estimated by the Equation 6.5.

𝑀𝑇𝑇𝑅𝑆𝑆 = 1
𝜇𝐻𝑊 + 𝜇𝑆 + 𝜇𝑂𝑆 + 𝜇𝐶𝑇 + 𝜇𝐴𝑃 𝑃

(6.6)

The top-level model representing the whole system, i.e., the joint behavior of the
cache VNF and the load balancer, was modeled through a CTMC. This hierarchical ans
heterogeneous model is represented in Figure 32. The system will be available when at
least one cache VNF sub-system is working and the load balancer is working.

We adopted a notation for the CTMC model states based on the current condition of
each component. The first character represents the number of working (up) cache VNFs.
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Figure 32 – Hierarchical Composition: top-level CTCM of system’s availability model;
bottom level RBD of cache node sub-system model

Source: The author (2019)

The second character represents the state of the load balancer: up (U) or down (D). We
shaded the states in which the system is down.

The system is at full capacity at state 4, 𝑈 . From this state, the failure of one working
cache VNF sub-system brings the system to state 3, 𝑈 , at a 4𝜆𝑆𝑆 rate. From this latter
state, when a failure occurs in load balancer at 𝜆𝑙𝑏 rate, the system goes to inactive
state 3, 𝐷. From this state, the system can be repaired at 𝜇𝑙𝑏 rate, returning to working
3, 𝑈 state. Likewise, from 3, 𝑈 state, the failed cache VNF sub-system can be repaired
at 𝑚𝑢𝑆𝑆 rate, and the system returns to its full capacity at state 4, 𝑈 . The remaining
states and transitions have a similar understanding. The sub-system failure rate 𝜆𝑆𝑆 and
repair rate 4𝜇𝑆𝑆, obtained through low-level RBD sub-system, are inserted in the top-level
CTMC, as showed by expressions 𝜆𝑆𝑆 = 1/𝑀𝑇𝑇𝐹𝑆𝑆 and 𝜇𝑆𝑆 = 1/𝑀𝑇𝑇𝑅𝑆𝑆 in Figure 32.

The SSA and COA of Figure 32 model are given respectively by:

𝑆𝑆𝐴 = 𝜋4,𝑈 + 𝜋3,𝑈 + 𝜋2,𝑈 + 𝜋1,𝑈 , (6.7)

and
𝐶𝑂𝐴 =

∑︀4
𝑖=1 𝑖 × 𝜋(𝑖,𝑈)

4 , (6.8)

where 𝑖 is the number of available cache sub-systems and 𝜋(𝑖,𝑈) is the long-run steady-state
probability of 𝑖 cache sub-systems and a load balancer were available.
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6.2.3 Model for Cache VNF and Load Balancer without SPOFs

With the aim of claim conformance with the elimination of Single Points Of Failure (SPOF),
defined in the resiliency objective of European Telecommunications Standards Institute
(ETSI) (ETSI, 2015), a redundant load balancer is represented by one additional character
U or D in the model states depicted in Figure 33. As a result, the new model is five states
bigger than the first CTMC.

Figure 33 – Hierarchical Composition: no load balancer SPOF

Source: The author (2019)

The SSA and COA for this scenario are given respectively by:

𝑆𝑆𝐴 =
4∑︁

𝑖=1
𝜋𝑖,𝑈𝑈 + 𝜋𝑖,𝑈𝐷, (6.9)

and
𝐶𝑂𝐴 =

∑︀4
𝑖=1 𝑖 × (𝜋𝑖,𝑈𝑈 + 𝜋𝑖,𝑈𝐷)

4 , (6.10)

where 𝑖 is the number of available cache sub-systems and 𝜋𝑖,𝑈𝑈 and 𝜋𝑖,𝑈𝐷 is the long-
run steady-state probability of 𝑖 cache sub-systems were available with both or one load
balancer, respectively. Again, the sub-system failure rate 𝜆𝑆𝑆 and repair rate 𝜇𝑆𝑆, obtained
through low-level RBD sub-system, are inserted in the top-level CTMC.
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6.3 MODELS FOR SFCS IN OPENSTACK CLOUD INFRASTRUCTURE

Our work adopts regarding SFC in openstack cloud infrastructure adopts time-based live
migration rejuvenation with conditions that may postpone migration, leveraging depend-
ability attributes. The rejuvenation is performed proactively through preventive mainte-
nance. Figure 34 exhibits the system architecture in which the proposed rejuvenation is
applied.

Figure 34 – Architecture for nodes providing VNFs: the software rejuvenation is imple-
mented by VM live migration and conditions
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In Figure 34, two physical servers are presented. They host their own operating sys-
tem (OS), the openstack services, the hypervisor, the VMs running its services, and the
Open vSwitch. The VNFs are provided by each (VMi,Srvi) pair. Our models aim at rep-
resenting the hardware and software components of Figure 34.

Regarding HA openstack cloud infrastructure, its services and the SFCs are modeled
using RBDs. The interaction among nodes, the service chains, and their interconnections,
as well as the aging and rejuvenation phenomena, are modeled using SPN. The presented
modeling is generic and can be used in any cloud infrastructure.

6.4 LOW-LEVEL RBDS FOR OPENSTACK DEPLOYMENT MODES

We model the openstack services (as presented in Figures 5, and 6) as low-level RBDs, as
depicted in Figure 35.

By using these RBDs, one can estimate the MTTF and/or MTTR of each openstack
server configuration. These values will also be injected as input parameters in the top-
level SPN models. The Figures. 35a, 35b, and 35c correspond to openstack servers roles
provided in distinct nodes. Figure 35d depicts the joint roles of controller and neutron pro-
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Figure 35 – Low-level RBDs models: the MTTF of each low-level sub-system is computed
and injected in the top-level SPN models
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vided in one single Node, whereas Figure 35e depicts the RBD for All-In-One assembling,
in which controller, neutron, and compute roles are provided in one physical server.

Table 10 report the input parameters adopted in the low-level sub-models representing
openstack deployment modes (Figure 35).
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Table 10 – Dependability parameters for low-level openstack models

Parameter Description
MTTFSRV Server Mean Time To Failure
MTTRSRV Server Mean Time To Repair
MTTFOS Operating System Mean Time To Failure
MTTROS Operating System Mean Time To Repair
MTTFHV Hypervisor Mean Time To Failure
MTTRHV Hypervisor Mean Time To Repair
MTTFDB Database Mean Time To Failure
MTTRDB Database Mean Time To Repair
MTTFRS Required Services Mean Time To Failure
MTTRRS Required Services Mean Time To Repair

Source: The author (2019)

6.5 LOW-LEVEL RBDS FOR SERVICE FUNCTION CHAINS

The Service Function Chains are modelled as series RBD, as depicted in Figure 36. A
failure in any component results in the chain failure, regardless if the failure occurs in a
VM or in a service being provided in its correspondent VM.

Figure 36 – Low-level RBD for Service Function Chains

VMSrv1 Srv1 VMSrv2 Srv2 VMSrvn Srvn. . . 

Source: The author (2019)

Similarly to low-level RBDs of openstack deployment server roles, it is also possible
to estimate the MTTF and/or MTTR of each chain represented by an RBD.

6.6 TOP-LEVEL SPN SUB-MODELS FOR OPENSTACK NODES

For Service Function Chains provided in openstack infrastructure, besides redundancy, we
also consider the aging phenomenon as well as the rejuvenation countermeasure mecha-
nism. Furthermore, we also modeled the service chain without rejuvenation to be used as
a baseline comparison. The aim was to state the impact of aging and rejuvenation process
in the service chain availability and capacity.

6.6.1 SPN sub-model for openstack nodes without rejuvenation

Figure 37 depicts the SPN that represents openstack’s nodes without rejuvenation. The
presence of a token at place 𝑁𝑢𝑝 indicates the working state of an openstack node.
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Figure 37 – SPN sub-model for node
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The expression 𝑃{(#𝑁𝑢𝑝 > 0)}, meaning the number of tokens probability at place
𝑁𝑢𝑝 is greater than zero, is used to estimate the component’s availability. Only the
𝑛𝐹 transition can fire at the beginning, representing a node failure. When 𝑛𝐹 fires, it
deposits a token at 𝑁𝑀𝑛𝑡 place. At 𝑁𝑀𝑛𝑡, a fast repair representing a simple node
reboot is performed by the 𝑛𝑆𝑅 firing, depositing a token at place 𝑁𝑆𝑀 . From 𝑁𝑆𝑀 ,
there are two alternatives: (i) the fast repair solves the issue, then the 𝑠𝑅 is fired with
a certain probability 𝑝𝑠𝑅, and the token is deposited back at working place 𝑁𝑢𝑝; (ii)
the fast repair procedure is unsuccessful, then 𝑙𝑅 is fired with a (1 − 𝑝𝑠𝑅) probability,
the token reaches 𝑁𝑑𝑛 place and a troubleshooting repair, represented by the transition
𝑛𝐿𝑅, is performed. When 𝑛𝐿𝑅 fires, the token is deposited back at working place 𝑁𝑢𝑝.

The nodes are modeled with redundancy using two or more tokens at place 𝑁𝑢𝑝. As all
nodes may fail simultaneously, the transition 𝑛𝐹 has infinite server semantic(iss) (BOLCH

et al., 1998) concurrency. Table 11 presents the descriptions of the transitions applied in
the Node SPN, whereas Table 12 describes the transitions attributes for that SPN. The
models’ transitions can be tuned to represent service repair policies. So, it is possible to
analyze conditions where the average repair time is shorter or longer, considering service
repair policies.

Table 11 – Dependability parameters for Node SPN

Parameter Description
MTTFN Node Mean Time To Failure
MTTRN Node Mean Time To Repair
TRBT Node Mean Time To Reboot
sR Short Repair
lR Large Repair

Source: The author (2019)
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Table 12 – Transitions attributes for Node SPN

Transition Type Semantics Weight Priority
nF Timed Infinite Server - -

nSR Timed Single Server - -
sR Immediate - psR 1
lR Immediate - 1-psR 1

nLR Timed Single Server - -
Source: The author (2019)

6.6.2 SPN sub-model for openstack nodes with rejuvenation

Figure 38 depicts the SPN sub-model for the openstack nodes adopting rejuvenation.

Figure 38 – SPN sub-model for nodes with rejuvenation
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We used a k-phases Erlang sub-net to model the node aging phenomenon. This pro-
posed sub-net prevents the immediate transition to a failure state after a single firing,
adequately modeling the aging phenomenon. For an aging time interval of 𝑛𝑜𝑑𝑒𝑀𝑇𝑇𝐹 ,
each of the 𝑘 Erlang phases is exponentially distributed with mean 𝑛𝑜𝑑𝑒𝑀𝑇𝑇𝐹/𝑘. The
places 𝑁𝑑𝑢𝑝 and 𝑁𝑑𝑑𝑛 represent the working and the failure states, respectively. When
𝑛𝑑𝐴𝑔1 fires, the 𝑁𝑑𝑢𝑝 token is taken from this place, and (𝑘 − 1) tokens are deposited
at place 𝐴𝑔1𝑛𝑑, representing the first aging period. The transition 𝑛𝑑𝐴𝑔1 also redeposits
a token at 𝑁𝑑𝑢𝑝, as the node remains working. So, a node reaches failure 𝑁𝑑𝑑𝑛 place,
only after 𝑛𝑑𝐴𝑔2 fires (k-1) times, representing the remaining aging periods. When there
are (𝑘 − 1) tokens at place 𝐴𝑔2𝑛𝑑, the immediate transition 𝑑𝑁𝑑 fires, the (𝑘 − 1) tokens
are taken from 𝐴𝑔2𝑛𝑑, the 𝑁𝑑𝑢𝑝 token is also taken, and one token is deposited at place
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𝑁𝑑𝑑𝑛, representing the node failure. The rejuvenation will occur when the service chain
migrates from a node to another. After the VMs migration, all the tokens at places 𝐴𝑔1𝑛𝑑

and 𝐴𝑔2𝑛𝑑 will be consumed by the immediate transitions 𝑟𝑗𝑣𝐴𝑔1𝑛𝑑 and 𝑟𝑗𝑣𝐴𝑔2𝑛𝑑, re-
spectively, completing the rejuvenation. The inhibitor arcs from the places 𝐴𝑔1𝑛𝑑 and
𝐴𝑔2𝑛𝑑 to the transition 𝑛𝑑𝐴𝑔1 avoid 𝑛𝑑𝐴𝑔1 to fire after the start of the aging process.

If one needs to represent redundancy of openstack nodes, it is just required to add two
or more sub-models presented in Figure 38. Tables 13 and 14 report the parameters and
attributes of the transitions belonging to SPN of Figure 38.

Table 13 – Dependability parameters for Node SPN with Rejuvenation

Parameter Description
MTTFN Node Mean Time To Failure
MTTRN Node Mean Time To Repair
RJVN Node Rejuvenation

Source: The author (2019)

Table 14 – Transitions attributes for Node SPN with Rejuvenation

Transition Type Semantics Weight Priority
ndAg1 Timed Single Server - -
ndAg2 Timed Single Server - -

rjvAg1nd Immediate - 1 1
rjvAg1nd Immediate - 1 1

dNd Immediate - 1 1
Source: The author (2019)

6.7 TOP-LEVEL SPN SUB-MODELS FOR SERVICE CHAIN

Figure 39a depicts the chain sub-model without rejuvenation. Initially, two distinct tran-
sitions can be fired: (i) the 𝑐𝐹 transition fires to represent any failure in a VM or in a
service belonging to the chain, depositing the token at place 𝐶𝑠0; and (ii) the 𝑐𝑚𝑝𝐹 fires
to represent a failure in the compute node hosting the chain, depositing the 𝐶𝑠1 token at
𝐶𝑠0. The chain repair is represented by the firing of the 𝑐𝑅 transition, redepositing the
token at working place 𝐶𝑠1.

On the other hand, Figure 39b depicts the chain sub-model considering aging and
rejuvenation. It has a similar behavior of node sub-model (Figure 38). After a chain
migration (see Section 6.8), the place 𝐶𝑠1 will contain two tokens representing two service
chains. The immediate transition 𝑐𝐹 was added to model the failure of the compute node



94

Figure 39 – SPN sub-models for service chains
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hosting the service chain. It fires whenever the compute node fails, depositing the token
at place 𝐶𝑠0.

Tables 15 and 16 report the parameters and attributes of the transitions belonging to
Chain SPN (Figure 39a).

Table 15 – Dependability parameters for Service Chain SPN

Parameter Description
MTTFC Chain Mean Time To Failure
MTTRC Chain Mean Time To Repair
DACTC Chain Deactivation

Source: The author (2019)

Table 16 – Transitions attributes for Service Chain SPN

Transition Type Semantics Weight Priority
cR Timed Single Server - -
cF Timed Single Server - -

cmpF Immediate - 1 1
Source: The author (2019)

Following, Tables 17 and 18 report the parameters and attributes of the transitions
belonging to Chain SPN with rejuvenation (Figure 39b).
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Table 17 – Dependability parameters for Service Chain SPN with Rejuvenation

Parameter Description
MTTFC Chain Mean Time To Failure
MTTRC Chain Mean Time To Repair
RJVC Chain Rejuvenation
DACTC Chain Deactivation
DACTN Node Deactivation

Source: The author (2019)

Table 18 – Transitions attributes for Service Chain SPN with Rejuvenation

Transition Type Semantics Weight Priority
cAg1 Timed Single Server - -
cAg2 Timed Single Server - -
rjv1C Immediate - 1 1
rjv2C Immediate - 1 1

dC Immediate - 1 1
cF Immediate - 1 1

Source: The author (2019)

6.8 TOP-LEVEL SPN SUB-MODEL FOR SERVICE CHAIN LIVE MIGRATION

Figure 40 exhibits the SPN sub-model for service chain live migration. There are two
chains in operation, represented by the tokens at places 𝐶1𝑠1 and 𝐶2𝑠1. The transition
𝑐ℎ1𝑚2 fires, with an 𝑀𝑇𝐵𝑃𝑀 , takes the 𝐶1𝑠1 token and depositing it at 𝑚12. As soon as
the migration conditions in 𝑚𝐶1𝐶2 are satisfied, the 𝑚𝐶1𝐶2 transition becomes enabled
and fires with an 𝑀𝑇𝑇𝐶𝐿𝑀 + 𝑀𝑇𝑇𝑃𝑃𝑀 mean time. The transition 𝑚𝐶1𝐶2 adds a
token at 𝐶2𝑠1, completing the chain migration. As soon as the source node is rejuvenated,
𝑚𝐶2𝐶1𝑟 is enabled and fires with an 𝑀𝑇𝑇𝐶𝐿𝑀 mean time, depositing one token from
𝐶2𝑠1 at 𝐶1𝑠1. Similar behavior occurs when the preventive maintenance starts at 𝐶2𝑠1
and continues with the firing of transitions 𝑐ℎ2𝑚1, 𝑚𝐶2𝐶1, and 𝑚𝐶1𝐶2𝑟.

Tables 19 and 20 report the parameters and attributes of the transitions belonging to
Chain Live Migration SPN (Figure 40).
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Figure 40 – SPN sub-model for VNF chain live migration
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Table 19 – Dependability parameters for Chain Live Migration SPN

Parameter Description
MTBPM Mean Time Between Preventive Maintenance
MTTPPM Mean Time To Perform Preventive Maintenance
MTTCLM Mean Time To Chain Live Migration

Source: The author (2019)

Table 20 – Transitions attributes for Chain Live Migration SPN

Transition Type Semantics Weight Priority
ch1m2 Timed Single Server - -
mC1C2 Timed Single Server - -
mC2C1r Timed Single Server - -
ch2m1 Timed Single Server - -
mC2C1 Timed Single Server - -
mC1C2r Timed Single Server - -

Source: The author (2019)

6.9 TOP-LEVEL SPN SUB-MODELS FOR CHAINS INTERCONNECTION

The chain interconnection sub-model represents the Open vSwitch containing the open-
stack SFC API rules. Such rules are required to redirect the packet flow through the
service chain. The sub-model behavior of Figure 41 is equal to the service chain sub-
model (Figure 39a) for non-rejuvenation approach.

Tables 21 and 22 report the parameters and attributes of the transitions belonging to
Chain Interconnection SPN (Figure 41).

Regarding chains interconnection sub-models applied in rejuvenation scenarios, we
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Figure 41 – SPN for chain interconnection without rejuvenation
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Table 21 – Dependability parameters for Chain Interconnection SPN

Parameter Description
MTTFCI Chain Interconnection Mean Time To Failure
MTTRCI Chain Interconnection Mean Time To Repair
DACTCI Chain Interconnection Deactivation

Source: The author (2019)

Table 22 – Transitions attributes for Chain Interconnection SPN

Transition Type Semantics Weight Priority
cicR Timed Single Server - -
cicF Timed Single Server - -
ndF Immediate - 1 1

Source: The author (2019)

adopted two SPN sub-model, depicted in Figures 43 and42. In the first sub-model, the
transition 𝑐𝑖𝑐𝐷 can fire, enabling the service chain migration, depositing the 𝐶𝑖𝑐𝑢𝑝 token
at place 𝐶𝑖𝑐𝑀𝑛𝑡 (the 𝑀𝑛𝑡 suffix means maintenance), indicating the deletion of SFC
API rules and, as a consequence, the interruption of Open vSwitch rules required for the
packets flow routing throughout the chain.

At 𝐶𝑖𝑐𝑀𝑛𝑡, two alternatives are possible: (i) the transition 𝑐𝑖𝑐𝐶 fires, representing
the recreation of SFC API rules, after the service chain migration; (ii) the 𝑛𝐹𝑀 fires,
indicating the failure of the compute node that is hosting the service chain, depositing the
𝐶𝑖𝑐𝑀𝑛𝑡 token at place 𝐶𝑖𝑐𝑑𝑛. As soon as the compute node is recovered, the 𝑛𝑅 transition
fires, depositing the 𝐶𝑖𝑐𝑑𝑛 token at working place 𝐶𝑖𝑐𝑢𝑝. The mean times adopted in the
𝑐𝑖𝑐𝐷 and 𝑐𝑖𝑐𝐶 exponential transitions were obtained from the measurement experiments,
presented in Chapter 5. In addition, the immediate transition 𝑛𝐹𝑀 will fire if during
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Figure 42 – SPN for chain interconnection adopted in rejuvenation model: the chain in-
terconnection without SAR
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a live migration rejuvenation process, the Node containing the Open vSwitch fails. The
token is taken from place 𝐶𝑖𝑐𝑀𝑛𝑡 and is deposited in place 𝐶𝑖𝑐𝑑𝑛.

Tables 23 and 24 report the parameters and attributes of the transitions belonging to
Chain Interconnection SPN with Rejuvenation, adopted in the First Scenario (Figure 42).

Table 23 – Dependability parameters for Chain Interconnection SPN with Rejuvenation
- First Scenario

Parameter Description
MTTFCI Chain Interconnection Mean Time To Failure
MTTRCI Chain Interconnection Mean Time To Repair
MTTDCI Chain Interconnection Mean Time To Deletion
MTTCCI Chain Interconnection Mean Time To Creation
DACTCI Chain Interconnection Deactivation
RACTCI Chain Interconnection Reactivation

Source: The author (2019)

Table 24 – Transitions attributes for Chain Interconnection SPN with Rejuvenation -
First Scenario

Transition Type Semantics Weight Priority
cicR Timed Single Server - -
cicF Timed Single Server - -
cicD Timed Single Server - -
cicC Timed Single Server - -
nF Immediate - 1 1
nR Immediate - 1 1

nFM Immediate - 1 1
Source: The author (2019)
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In the second sub-model, we consider that the proper chain interconnection software,
i.e., the Open vSwitch, ages. So, in Figure 43 one can observe a similar SAR behavior as
one adopted for service chain (Figure 39b).

Figure 43 – SPN for chain interconnection with rejuvenation
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Tables 25 and 26 report the parameters and attributes of the transitions belonging
to Chain Interconnection SPN with Rejuvenation, adopted in the Second Scenario (Fig-
ure 43).

Table 25 – Dependability parameters for Chain Interconnection SPN with Rejuvenation
- Second Scenario

Parameter Description
MTTFCI Chain Interconnection Mean Time To Failure
MTTRCI Chain Interconnection Mean Time To Repair
MTTDCI Chain Interconnection Mean Time To Deletion
MTTCCI Chain Interconnection Mean Time To Creation
RJVCI Chain Interconnection Rejuvenation
DACTCI Chain Interconnection Deactivation
RACTCI Chain Interconnection Reactivation

Source: The author (2019)
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Table 26 – Transitions attributes for Chain Interconnection SPN with Rejuvenation - Sec-
ond Scenario

Transition Type Semantics Weight Priority
cicR Timed Single Server - -

cicAg1 Timed Single Server - -
cicAg2 Timed Single Server - -
cicD Timed Single Server - -
cicC Timed Single Server - -
nF Immediate - 1 1
nR Immediate - 1 1

nFM Immediate - 1 1
dCic Immediate - 1 1

Source: The author (2019)

6.10 FINAL REMARKS

This chapter presented a series of dependability models that enable the evaluation of
steady-state availability and capacity oriented availability of VNF chains and Service
Function chains considering redundancy and software rejuvenation mechanisms. They are
used in the case studies presented in the next chapter, where several scenarios are studied
with the aim to state which infrastructures can provide high available VNF chains and
service function chains environments.
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7 CASE STUDIES

7.1 INTRODUCTION

This chapter presents practical experiments divided into five cases studies. Preliminary,
two case studies analyze the Steady-State Availability and Capacity Oriented Availability
of cache VNFs and load balancers provided in Proxmox server virtualization environment.

The third case study aims at analyzing how reasonable is our proposed modeling ap-
proach and our results to estimate the availability of Service Function Chains in openstack
cloud through a comparison with previous literature. The fourth case study analyzes the
benefits of the rejuvenation adoption in a 3N redundant SFC provided in openstack cloud.
Finally, the fifth case study analyzes the behavior of SSA and COA facing the reduction
for a 2N redundant environment in an openstack cloud.

7.2 VNF CACHE CLUSTERS

The analyzed scenarios of this first case study are presented in Table 27. Along with the
first case study, we adopted failure and repair rates mentioned in literature (exhibited in
Table 28) and from conduced stressing experiments (see Section 5.4).

Table 27 – Scenarios of First Case Study

Scenario Model
1 Non-Redundant VNF Cache Cluster
2 Redundant VNF Cache Cluster

Source: The author (2019)

In order to compute the measures of interest, we used Mercury Tool (SILVA et al., ).
Mercury provides a Graphical User Interface (GUI) for intuitive modeling of RBDs. As
RBDs provide closed-form equations, Mercury solves them and presents the computed
metrics.

Table 28 – Applied times in the RBD models

Component MTTF MTTR
Server 8760h 1.67h

S 4380h 5 min
OS 2893h 0.25h
CT 2990h 1h

Source: The author (2019)
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In addition to values listed in Table 28, the MTTF of 315.33 seconds for cache servers
were obtained from previous experiments (see Section 5.4) and an MTTR of 10 seconds
was adopted. It is a sufficient time interval to restart the cache cluster services. These
values are inserted in hours on Mercury, as presented in Table 29.

Table 29 – MTTF and MTTR, in hours, for cache servers

Component MTTF MTTR
APP 0.0875925926h 0.0027777778h

Source: The author (2019)

7.2.1 Non-redundant VNF Cache Cluster

This scenario represents the utilization of only two containers running in one node of
Proxmox Server Virtualization. It was modeled using one RBD for VNF Cache Clus-
ter (Figure 30). It is representation can be observer in Figure 44.

Figure 44 – RBD for Non-Redundant Cluster

Source: The author (2019)

The steady-state availability, number of 9’s, and annual downtime were the measures
of interest for this scenario. The results are exhibited in Table 30.

Table 30 – Availability measures for Non-redundant VNF Cache Cluster

Measure Results
SSA (%) 99.87394%
SSA (Number of 9’s) 2.89943
Annual Downtime 11.049853h

Source: The author (2019)

Following the classification of Table 2, two 9’s of availability not even result in a fault-
tolerant system type, with more than 10 hours of downtime per year, or 50 minutes per
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month. Due to users requirements of telecommunication service providers, such downtime
is not suitable for NFV compatible infrastructures.

Aiming at reveal the most impactful parameters over SSA, a parametric sensitivity
analysis was conducted. The closed-form equation for availability of non-redundant VNF
cluster is expressed as:

𝑆𝑆𝐴 = 𝐴𝑆𝑒𝑟𝑣𝑒𝑟1 × 𝐴𝑆1 × 𝐴𝑂𝑆1 × (1 − (1 − 𝐴𝐶𝑇 1 × 𝐴𝐴𝑃 𝑃 1) × (1 − 𝐴𝐶𝑇 2 × 𝐴𝐴𝑃 𝑃 2))
This closed-form equation was used to obtain the partial derivatives and compute the

complete sensitivity ranking, as described in (MATOS et al., 2017). Table 31 shows the
results, where the parameters are presented in decreasing order of the sensitivity index.

Table 31 – Ranking of Sensitivities for SSA of Non-Redundant VNF Cluster

Parameter S(SSA)
𝑆𝑒𝑟𝑣𝑒𝑟1 0.998929836

𝑂𝑆1 0.998825744
𝑆1 0.998758439

𝐴𝑃𝑃𝑛 0.031042188
𝐶𝑇𝑛 0.030098085

Source: The author (2019)

Each value in the ranking of sensitivities represents how changes in any particular
block affect systems’ steady-state availability.

The ranking points Server component as the most important when 𝐴 is the measure
of interest, nearly followed by OS and S components. The results also show that APP and
CT are more than thirty times less influential than the other components. So, Server, OS,
and S should receive priority when improvements to the system availability are considered
on the NFV video cache cluster.

7.2.2 Redundant VNF Cache Cluster

Motived by the results of sensitivity analysis in the first scenario, as Server, OS, and S are
the most important components regarding availability improvements, we replicated them.
Clearly, a directed advantage of such components replication is the possibility of insert
CT and APP blocks, as they model software components running under Server, OS, and S
replicas. Thus, in order to improve availability, we propose the implementation of active-
active parallel redundancy for VNF cache service, representing the utilization of four
containers running in two nodes of Proxmox Server Virtualization testbed (2 containers
per node). The resulting RBD model is shown in Figure 45, where servers 1 and 2 were
connected in parallel to represent the proposed active-active redundancy.

Analysis results are summarized in Table 32.
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Figure 45 – RBD for Redundant VNF Cache Cluster

Source: The author (2019)

Table 32 – Availability measures of Redundant VNF Cache Cluster

Measure Result
SSA (%) 99.99984%
SSA (Number of 9’s) 5.79887
Annual Downtime 0.013929h

Source: The author (2019)

The Steady-State Availability was improved to 99.99984%, meaning an annual down-
time below 5 minutes. According to the ranking of Table 2, the high availability classifica-
tion was reached. Such an increase in availability, in comparison with a simplex scheme, is
an evidence of the improvements in the adoption of the proposed active-active redundancy
strategy.

Regarding sensitivity analysis, the closed-form equation for Steady-Sate Availability
of redundant cluster is expressed as:

𝑆𝑆𝐴 = 1 − (1 − 𝐴𝑆𝑒𝑟𝑣𝑒𝑟1 × 𝐴𝑆1 × 𝐴𝑂𝑆1 × (1 − (1 − 𝐴𝐶𝑇 1 × 𝐴𝐴𝑃 𝑃 1) × (1 − 𝐴𝐶𝑇 2 ×
𝐴𝐴𝑃 𝑃 2))) × (1 − 𝐴𝑆𝑒𝑟𝑣𝑒𝑟2 × 𝐴𝑆2 × 𝐴𝑂𝑆2 × (1 − (1 − 𝐴𝐶𝑇 3 × 𝐴𝐴𝑃 𝑃 3) × (1 − 𝐴𝐶𝑇 4 × 𝐴𝐴𝑃 𝑃 4)))

The results of parametric sensitivity analysis are presented in decreasing order of the
sensitivity index in Table 33.

The ranking shows that the Server components remains as the most relevant compo-
nent when 𝐴 is the measure of interest, again followed by OS and S components. However,
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Table 33 – Ranking of Sensitivities for SSA in Redundant VNF Cluster

Parameter S(SSA)
𝑆𝑒𝑟𝑣𝑒𝑟𝑛 0.0012592133431

𝑂𝑆𝑛 0.0012590821281
𝑆𝑛 0.0012589972864

𝐴𝑃𝑃𝑛 0.0000391306135
𝐶𝑇𝑛 0.0000379278885

Source: The author (2019)

in comparison with the non-redundant scenario, the failure of these components had less
influence on availability, as sensitivity coefficients are smaller due to components replica-
tion.

7.3 REDUNDANT VNF CACHES AND LOAD BALANCERS

In this section, we analyzed the models presented in Sections 6.2.2 and 6.2.3. They are
summarized in Table 34. In this case study, besides rates mentioned in literature (previ-
ously reported in Table 28), estimated guesses were applied for VNF cache application.

Table 34 – Scenarios of Second Case Study

Scenario Model
1 Redundant VNF Cache and Load Balancer
2 Redundant VNF Cache and Load Balancer without SPOFs

Source: The author (2019)

Hierarchical and heterogeneous models were adopted, using RBD in the low-level and
Continuous Time Markov Chains (CTMC) in the top-level. We also evaluated Capacity
Oriented Availability (COA) in this scenario.

7.3.1 Redundant VNF Cache and Load Balancer

The analysis results for the system composed by VNF caches and one load balancer are
presented in Table 35.

The estimated guesses for MTTFAPP presented in the first column of Table 35 corre-
spond to six months, one year, one year and six months, three years, five years, and ten
years.

The application MTTF variability did not result in a significant impact over Steady-
State Availability: the resulting difference among MTTFs over SSA is smaller than 1
second, all of them with an Unavailability (UA) nearly 4h12m11s per year, or 252.18
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Table 35 – Steady-State Availability and COA for CTCM

MTTFAPP(h) SSA COA
4380 99.9520205% 99.8851661%
8760 99.9520180% 99.8870576%
13140 99.9520185% 99.8876941%
26280 99.9520190% 99.8882247%
43800 99.9520192% 99.8885130%
87600 99.9520193% 99.8887930%

Source: The author (2019)

minutes (1 year is equivalent to 525,600 minutes). Regarding Capacity Oriented Un-
availability (COUA), the difference between COUAMTTFAPP=87600 and COUAMTTFAPP=4380

was 1h16m12s.
In order to compare the source of downtime minutes, consider, for instance, the sce-

nario with MTTFAPP=87600h, in which the system is up during 99.9520193% of the
time. Consequently, UA=0.0479807%. The product of UA, one year of functional min-
utes and the number of cache sub-systems (0.000479807 × 525600 × 4 = 1008.74) reveals
that the VNF cache cluster can be expected to be out of operation during 1008.74 min-
utes. Similarly, as COAMTTFAPP=87600=99.8887930%, COUAMTTFAPP=87600=0.0526357%,
and 2338.01 of cache-minutes were not delivered. This downtime consists of 1008.74 cache-
minutes of system downtime (UA) and the remaining 2338.01 − 1008.74 = 1329.27 cache-
minutes of downtime due to degraded capacity (COUA).

The percentage of downtime due to UA and COUA for all considered MTTFAPP can
be observed in Figure 46.

With the aim to state which of the VNF cache system parameters are most influential
in the presented downtime, we proceeded with the SSA and COA sensitivity analysis for
the top-level CTMC of the hierarchical model. Closed-form formulas were obtained using
StateDiagram Software Package available for Mathematica (Wolfram Research Inc., 2015).

The insertion of CTMC infinitesimal generator matrix enables StateDiagram Package
to obtain the respective closed-form formulas for SSA and COA:

𝑆𝑆𝐴 =
𝜇𝑙𝑏𝑛(24𝜆4

𝑠𝑠

𝛽1
)

(𝜆𝑙𝑏𝑛 + 𝜇𝑙𝑏𝑛) (7.1)

𝐶𝑂𝐴 = 𝜇𝑙𝑏𝑛𝜇𝑠𝑠𝛽2

(𝜆𝑙𝑏𝑛 + 𝜇𝑙𝑏𝑛)𝛽1
(7.2)

where:
𝛽1 = 24𝜆4

𝑠𝑠 + 24𝜆3
𝑠𝑠𝜇𝑠𝑠 + 12𝜆2

𝑠𝑠𝜇
2
𝑠𝑠 + 4𝜆𝑠𝑠𝜇

3
𝑠𝑠 + 𝜇4

𝑠𝑠,
𝛽2 = 6𝜆3

𝑠𝑠 + 6𝜆2
𝑠𝑠𝜇𝑠𝑠 + 3𝜆𝑠𝑠𝜇

2
𝑠𝑠 + 𝜇3

𝑠𝑠,
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Figure 46 – Percentage of annual downtime due to UA and COUA
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𝜆𝑠𝑠 = 𝜆𝐻𝑊 + 𝜆𝑆 + 𝜆𝑂𝑆 + 𝜆𝐶𝑇 + 𝜆𝐴𝑃 𝑃 , and
𝜇𝑠𝑠 = 𝜇𝐻𝑊 + 𝜇𝑆 + 𝜇𝑂𝑆 + 𝜇𝐶𝑇 + 𝜇𝐴𝑃 𝑃 .

The parametric sensitivity analysis was computed using equation (2.21) in the closed-
form formulas (7.1) and (7.2). The full methodology can be observed in (MATOS et al.,
2017). We selected the shorter, the intermediate, and the higher values of MTTFAPP,
respectively 4380h, 26280h, and 87600h, to proceed with sensitivity analysis. The sensi-
tivities coefficients 𝑆𝛿(𝑆𝑆𝐴) and 𝑆𝛿(𝐶𝑂𝐴) with respect to system’s failure and recovery
parameters are presented in Table 36.

The sensitivity rankings of Table 36 are ordered from the most influential parameters
to less ones. It reveal that the load balancer failure rate has the greatest influence when
SSA and COA are the metrics of interest, one order of magnitude more influential than
the second parameters, that are 𝜇𝐿𝐵 for steady-state availability and all other failure rate
parameters (𝜆𝐻𝑊 𝜆𝑂𝑆, 𝜆𝑆, 𝜆𝐶𝑇 , and 𝜆𝐴𝑃 𝑃 ) for COA.
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Table 36 – Ranking of Sensitivities for SSA and COA

𝛿 S𝛿(SSA)
𝜆LB -2.39·101

𝜇LB 1.15·10-2

𝜆HW 2.77·10-17

𝜆OS 2.77·10-17

𝜆S 2.77·10-17

𝜆CT 2.77·10-17

𝜆APP 2.77·10-17

𝜇HW 0.0
𝜇S 0.0
𝜇OS 0.0
𝜇CT 0.0
𝜇APP 0.0

(a) MTTFAPP=4380

𝛿 S𝛿(SSA)
𝜆LB -2.39·101

𝜇LB 1.15·10-2

𝜆HW 0.0
𝜆OS 0.0
𝜆S 0.0

𝜆CT 0.0
𝜆APP 0.0
𝜇HW 0.0
𝜇S 0.0
𝜇OS 0.0
𝜇CT 0.0
𝜇APP 0.0

(b) MTTFAPP=26280

𝛿 S𝛿(SSA)
𝜆LB -2.39·101

𝜇LB 1.15·10-2

𝜆HW 0.0
𝜆OS 0.0
𝜆S 0.0

𝜆CT 0.0
𝜆APP 0.0
𝜇HW 0.0
𝜇S 0.0
𝜇OS 0.0
𝜇CT 0.0
𝜇APP 0.0

(c) MTTFAPP=87600

𝛿 S𝛿(COA)
𝜆LB -2.39·101

𝜆HW -4.24·10-2

𝜆OS -4.24·10-2

𝜆S -4.23·10-2

𝜆CT -4.24·10-2

𝜆APP -4.24·10-2

𝜇LB 1.15·10-2

𝜇HW 2.25·10-6

𝜇S 2.25·10-6

𝜇OS 2.25·10-6

𝜇CT 2.25·10-6

𝜇APP 2.25·10-6

(d) MTTFAPP=4380

𝛿 S𝛿(COA)
𝜆LB -2.39·101

𝜆HW -4.24·10-2

𝜆OS -4.24·10-2

𝜆S -4.23·10-2

𝜆CT -4.24·10-2

𝜆APP -4.24·10-2

𝜇LB 1.15·10-2

𝜇HW 1.63·10-6

𝜇S 1.63·10-6

𝜇OS 1.63·10-6

𝜇CT 1.63·10-6

𝜇APP 1.63·10-6

(e) MTTFAPP=26280

𝛿 S𝛿(COA)
𝜆LB -2.39·101

𝜆HW -4.24·10-2

𝜆OS -4.24·10-2

𝜆S -4.23·10-2

𝜆CT -4.24·10-2

𝜆APP -4.24·10-2

𝜇LB 1.15·10-2

𝜇HW 1.58·10-6

𝜇S 1.58·10-6

𝜇OS 1.58·10-6

𝜇CT 1.58·10-6

𝜇APP 1.58·10-6

(f) MTTFAPP=87600

Source: The author (2019)

Due to the replication of their components, the other sensitivity coefficients for 𝑆𝑆𝐴

did not present critical importance, because they had 15 orders of magnitude less (failure
rates when MTTFAPP=4380) than 𝜇𝐿𝐵 or were null.

Regarding COA, 𝜇𝐿𝐵 presented an influence level over system degradation of the same
order of magnitude to 𝜆𝐻𝑊 𝜆𝑂𝑆, 𝜆𝑆, 𝜆𝐶𝑇 , and 𝜆𝐴𝑃 𝑃 , but with only nearly a quarter of
impact. The remaining recovery rates were 4 orders of magnitude less impactful on the
system degradation.
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Yet according to Table 36, note that failure rates present a negative sensitivity co-
efficient because when they increase, SSA and COA decreases, and recovery rates have
positive values because when they increase, SSA and COA also increases.

According to these sensitivity analysis results, a second load balancer was inserted in
the next scenario aiming to improve SSA and COA.

7.3.2 No Load Balancer SPOF

Besides the recommendation for Single Point Of Failures elimination, the indication of
sensitivity analysis results, presented in the previous scenario, also drives to the addition
of a second load balancer.

The prevention of load balancer VNF SPOF results in availability improvement from
three 9’s of the previous scenario (Table 35) to six 9’s, as can be noted in Table 38.
It is an evidence that justifies the ETSI attention to prevent SPOF in their resiliency
objectives (ETSI, 2015) for NFV architectures.

Similarly to the previous scenario, the variability of application MTTF did not result
in a significant impact over steady-state availability. System unavailability, according to
second column of Table 38, was smaller than 15 seconds for all the 𝑀𝑇𝑇𝐹𝐴𝑃 𝑃 variations.
The resulting annual capacity degradation, represented by not delivered cache-minutes,
can be observed in COUA column.

Regarding sensitivity analysis, an identical approach to previous scenario was adopted
and the closed-form formulas are presented below:

𝑆𝑆𝐴 = 𝜇𝑙𝑏𝑛𝜇𝑠𝑠(2𝜆𝑙𝑏𝑛 + 𝜇𝑙𝑏𝑛)𝛽1

𝛽3𝛽4
(7.3)

𝐶𝑂𝐴 = 𝜇𝑙𝑏𝑛𝜇𝑠𝑠(2𝜆𝑙𝑏𝑛 + 𝜇𝑙𝑏𝑛)𝛽2

𝛽3𝛽4
(7.4)

where:
𝛽1 = 24𝜆3

𝑠𝑠 + 12𝜆2
𝑠𝑠𝜇𝑠𝑠 + 4𝜆𝑠𝑠𝜇

2
𝑠𝑠 + 𝜇3

𝑠𝑠,
𝛽2 = 6𝜆3

𝑠𝑠 + 6𝜆2
𝑠𝑠𝜇𝑠𝑠 + 3𝜆𝑠𝑠𝜇

2
𝑠𝑠 + 𝜇3

𝑠𝑠,
𝛽3 = 24𝜆4

𝑠𝑠 + 24𝜆3
𝑠𝑠𝜇𝑠𝑠 + 12𝜆2

𝑠𝑠𝜇
2
𝑠𝑠 + 4𝜆𝑠𝑠𝜇

3
𝑠𝑠 + 𝜇4

𝑠𝑠,
𝛽4 = 2𝜆2

𝑙𝑏𝑛 + 2𝜆𝑙𝑏𝑛𝜇𝑙𝑏𝑛 + 𝜇2
𝑙𝑏𝑛,

𝜆𝑠𝑠 = 𝜆𝐻𝑊 + 𝜆𝑆 + 𝜆𝑂𝑆 + 𝜆𝐶𝑇 + 𝜆𝐴𝑃 𝑃 , and
𝜇𝑠𝑠 = 𝜇𝐻𝑊 + 𝜇𝑆 + 𝜇𝑂𝑆 + 𝜇𝐶𝑇 + 𝜇𝐴𝑃 𝑃 .

The sensitivity rankings of Table 37 show that the load balancer failure rate 𝜆𝐿𝐵

is again the most influential parameter for SSA and COA. For A, 𝜆𝐿𝐵 is 3 orders of
magnitude more influential than 𝜇𝐿𝐵, the second most important parameter. However,
both parameters had their influence level reduced in comparison to SPOF case: 𝜆𝐿𝐵 was
one order of magnitude smaller while 𝜇𝐿𝐵 reduced 3 orders of magnitude. These values



110

Table 37 – Ranking of Sensitivities for SSA and COA: no LB SPOF

𝛿 S𝛿(SSA)
𝜆LB -4.60·10-2

𝜇LB 2.21·10-5

𝜆HW 0.0
𝜆OS 0.0
𝜆S 0.0

𝜆CT 0.0
𝜆APP 0.0
𝜇HW 0.0
𝜇S 0.0
𝜇OS 0.0
𝜇CT 0.0
𝜇APP 0.0

(a) MTTFAPP=4380

𝛿 S𝛿(SSA)
𝜆LB -4.60·10-2

𝜇LB 2.21·10-5

𝜆HW 2.00·10-12

𝜆OS 2.00·10-12

𝜆S 2.00·10-12

𝜆CT 2.00·10-12

𝜆APP 2.00·10-12

𝜇HW 0.0
𝜇S 0.0
𝜇OS 0.0
𝜇CT 0.0
𝜇APP 0.0

(b) MTTFAPP=26280

𝛿 S𝛿(SSA)
𝜆LB -4.60·10-2

𝜇LB 2.21·10-5

𝜆HW 0.0
𝜆OS 0.0
𝜆S 0.0

𝜆CT 0.0
𝜆APP 0.0
𝜇HW 0.0
𝜇S 0.0
𝜇OS 0.0
𝜇CT 0.0
𝜇APP 0.0

(c) MTTFAPP=87600

𝛿 S𝛿(COA)
𝜆LB -4.60·10-2

𝜆HW -4.24·10-2

𝜆OS -4.24·10-2

𝜆S -4.24·10-2

𝜆CT -4.24·10-2

𝜆APP -4.24·10-2

𝜇LB 2.21·10-5

𝜇HW 2.04·10-6

𝜇S 2.04·10-6

𝜇OS 2.04·10-6

𝜇CT 2.04·10-6

𝜇APP 2.04·10-6

(d) MTTFAPP=4380

𝛿 S𝛿(COA)
𝜆LB -4.60·10-2

𝜆HW -4.24·10-2

𝜆OS -4.24·10-2

𝜆S -4.24·10-2

𝜆CT -4.24·10-2

𝜆APP -4.24·10-2

𝜇LB 2.21·10-5

𝜇HW 1.90·10-6

𝜇S 1.90·10-6

𝜇OS 1.90·10-6

𝜇CT 1.90·10-6

𝜇APP 1.90·10-6

(e) MTTFAPP=26280

𝛿 S𝛿(COA)
𝜆LB -4.60·10-2

𝜆HW -4.24·10-2

𝜆OS -4.24·10-2

𝜆S -4.24·10-2

𝜆CT -4.24·10-2

𝜆APP -4.24·10-2

𝜇LB 2.21·10-5

𝜇HW 1.86·10-6

𝜇S 1.86·10-6

𝜇OS 1.86·10-6

𝜇CT 1.86·10-6

𝜇APP 1.86·10-6

(f) MTTFAPP=87600

Source: The author (2019)

reveal an attenuation of the load balancers influence over SSA. The other failure rates
were 7 orders of magnitude smaller than 𝜇𝐿𝐵 for MTTFAPP=26280h and null for the other
MTTFs. The remaining recovery rates were null. So, the load balancers are the critical
component for Steady-State Availability. For COA, in comparison with the previous
scenario: 𝜆𝐿𝐵 reduced one order of magnitude, 𝜇𝐿𝐵 reduced 3 orders of magnitude, and
the other parameters presented similar orders of magnitude.

Figs. 47 and 48 plot a comparison of failure and recovery rates, respectively, for the
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Table 38 – Steady-State Availability, COA and COUA for CTCM without LB SPOF

MTTFAPP SSA COA
COUA

(minutes)
4380 99.99995374% 99.93306726% 1407.19
8760 99.99995381% 99.93496226% 1367.35
13140 99.99995383% 99.93559851% 1353.97
26280 99.99995385% 99.93612895% 1342.82
43800 99.99995365% 99.93641699% 1336.77
87600 99.99995358% 99.93673706% 1330.88

Source: The author (2019)

scenario without SPOF. They demonstrate that maintenance services should be focused
on failures mitigation, mainly in load balancers, whereas the attention of recovery team
should be directed to the load balancer recovery, aiming to mitigate capacity degradation
issues.

Figure 47 – Load balancer failure rate is the most influential parameter for COA, but
with similar magnitude order
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Figure 48 – Load balancer recovery rate is the most influential parameter for COA, but
one order of magnitude higher than other parameters
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7.4 COMPARISON WITH REFERENCE WORK

This case study aims at analyzing how reasonable are our proposed modeling approach
and results to estimate the availability of VNF chains through a comparison with previous
literature. We performed a comparison with the Di Mauro et al. (Di Mauro et al., 2017)
work, because they also perform an availability study of VNFs chains. The authors address
an availability evaluation of a chain of network nodes implementing an SFC managed by
openstack Virtual Infrastructure Manager (VIM). A double-layer model was also adopted,
where an RBD describes the top-level dependencies among the architecture components
and Stochastic Reward Networks (SRN) model the probabilistic behavior of each com-
ponent. Firstly, we present one instance of our proposed model for 3N redundant VNF
chain. Next, we present Di Mauro et al. model. Finally, we compare the results regarding
steady-state availability.

7.4.1 3N Redundant Baseline Model

Figure 49 depicts simultaneously: (i) a 3N redundant model, representing three open-
stack VIM nodes, based on the SPN sub-model of Figure 37 and (ii) a 3N redundant
VNF model, based on sub-models Node (Figure 37), Chain(Figure 39b), and Chain In-
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terconnection (Figure 41). Each openstack VIM node represents the joint operation of
the controller and neutron deployment modes. The VNF sub-system represents three
redundant instances of computer deployment mode providing their chains and chains
interconnections.

Figure 49 – 3N redundant baseline model
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The sub-models representing computer nodes interact with chains and chain intercon-
nection sub-models through the 𝑁𝑖𝑅𝑠𝑡 place and the 𝑟𝑠𝑡𝑖 transition (1 <= 𝑖 <= 3). One
token is deposited at place 𝑁𝑖𝑅𝑠𝑡 whenever a Node is recovered, firing 𝑟𝑠𝑡𝑖. We consider
that all software (Figure 35c) is working when its underlying Node is restarted: the token
is taken from place 𝑁𝑖𝑅𝑠𝑡 and deposited at working places 𝐶𝑖𝑆1 and 𝐶𝑖𝑐𝑖𝑢𝑝.

Using hierarchical modeling, each token in place 𝐶𝑁𝑢𝑝 of top-level SPN represents
a Controller/Neutron joint deployment mode node, as depicted in the low-level RBD of
Figure 50.

Figure 50 – RBD for joint Controller and Neutron deployment modes Node
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Similarly, each token in places 𝑁𝑖𝑢𝑝 of top-level SPN represents a Compute node, as
depicted in the low-level RBD of Figure 51.

Figure 51 – RBD for Compute deployment mode node
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Source: The author (2019)

Finally, each token in places 𝐶𝑖𝑠1 of top-level SPN represents a Service Function Chain,
as depicted in the low-level RBD of Figure 52.

Figure 52 – RBD for Compute deployment mode node
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Source: The author (2019)

The system is considered active when at least one VIM sub-system is active and one
VNF sub-system is also active. The expression

𝑃{(((#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1))𝑂𝑅((#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1))𝑂𝑅

((#𝐶3𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐3𝑢𝑝 = 1)))𝐴𝑁𝐷(#𝐶𝑁𝑢𝑝 > 0)}
(7.5)

was adopted to estimate the Steady-State Availability of our 3N redundant baseline
model (Figure 49).

7.4.2 Reference Work for Comparison

Figure 53 depicts the top-level RBD model representing the dependencies among the VIM
and VNF sub-systems. The VIM sub-system is composed of 𝑁 redundant VIM nodes.
The comparison with our previously proposed model requires 𝑁 = 3.

The Figure 54 depicts the proposed model for openstack VIM, whereas the Figure 55
depicts the authors’ model for VNFs. We describe the model behavior of the reference
work below.

Places 𝑃𝑢𝑝𝐷𝐵, 𝑃𝑢𝑝𝐹 𝐵, 𝑃𝑢𝑝𝐻𝐴, 𝑃𝑢𝑝𝑉 𝑀𝑀 , and 𝑃𝑢𝑝𝐻𝑊 indicate the conditions where the
database, the functional blocks, the HAproxy, the hypervisor, and the hardware of the
VIM are working. Places with index 𝑓 indicate the conditions where such components
are down. Figure 54 shows the fully working condition of VIM sub-system. As an exem-
plary case, consider the failure of the database. When DB fails, 𝑇𝑓𝐷𝐵 fires and the token
removed from 𝑃𝑢𝑝𝐷𝐵 is deposited into 𝑃𝑓𝐷𝐵 . The immediate transition 𝑡𝐷𝐵 fires when
the transition 𝑇𝑓𝑉 𝑀𝑀 is fired, meaning that a hypervisor failure implies virtual modules
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Figure 53 – Top-level model of reference work

Source: The author (2019)

failure as well. Similarly, the immediate transition 𝑡𝑉 𝑀𝑀 accounts for a hypervisor failure
as a consequence of a hardware failure. The inhibitory arc between 𝑃𝑢𝑝𝐻𝑊 and 𝑡𝑉 𝑀𝑀

compels the hypervisor failure in case of hardware failure. The inhibitory arc between
𝑃𝑓𝐻𝑊 and 𝑡𝑟𝑉 𝑀𝑀 forbids the hypervisor repair in case of hardware failure.

Figure 54 – VIM of reference work

Source: The author (2019)

Furthermore, the first guard expressions of Table 39 enables 𝑡𝐷𝐵, 𝑡𝐹 𝐵, 𝑡𝐻𝐴 when hyper-
visor fails, namely, when a token is moved from 𝑃𝑢𝑝𝑉 𝑀𝑀 to 𝑃𝑓𝑉 𝑀𝑀 , whereas #𝑃𝑢𝑝𝑉 𝑀𝑀 = 1
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inhibits the repair of the virtual modules in case of hypervisor failure.

Table 39 – Guard expressions for the VIM of the reference work model

Transition Guard Expressions
𝑡𝐷𝐵, 𝑡𝐹 𝐵, 𝑡𝐻𝐴 #𝑃𝑓𝑉 𝑀𝑀 = 1
𝑡𝑟𝐷𝐵, 𝑡𝑟𝐹 𝐵, 𝑡𝑟𝐻𝐴 #𝑃𝑢𝑝𝑉 𝑀𝑀 = 1

Source: The author (2019)

Figure 55 depicts the VNF sub-system. The place 𝑃𝑢𝑝𝑉 𝑁𝐹 indicates the VNF working
state, implying that the hardware, software and, virtual resources are correctly working.
The token value inside 𝑃𝑢𝑝𝑉 𝑁𝐹 amounts to 𝐿 + 𝑀 , namely, the number of initial working

Figure 55 – VNF of reference work

Source: The author (2019)

VNFs replicas. Originally, the authors of reference work consider the assumption that the
number of deployed VNFs can vary dynamically with time. So, an elasticity functionality
was developed through the sub-net composed by the place 𝑃𝑝 and transitions 𝑡𝑆𝑜, 𝑡𝑆𝑖, 𝑇𝑝,
and through the sub-net composed by the place 𝑃𝐿, and transitions 𝑇𝑟𝑒𝑚, 𝑇𝑎𝑑𝑑. The Scale-
Out (𝑡𝑆𝑜) and Scale-In(𝑡𝑆𝑖) operations corresponding to a provisioning phase (deploying
replicas) and a de-provisioning phase (un-deploying replicas), respectively. Thus, when
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𝑡𝑆𝑜 fires, a token is deposited in place 𝑃𝑝, modeling the condition of a replica requested
but not working yet, until the token enters 𝑃𝑢𝑝𝑉 𝑁𝐹 after 𝑇𝑝 firing. The inhibitory arc
from 𝑃𝑝 to 𝑡𝑆𝑜 models the impairment of multiple provisioning stages. On the contrary, a
Scale-In operation happens when 𝑡𝑆𝑖 fires. The inhibitory arc from 𝑃𝑝 to 𝑡𝑆𝑜 preventing
Scale-In operations during provisioning stages. A complete explanation can be found in
the authors’ work. The reference work models were implemented on SHARPE (Symbolic
Hierarchical Automated Reliability and Performance Evaluator) tool (TRIVEDI, 2019).

The Steady-State Availability of reference work is estimated by

𝐴𝑁𝑆 = 𝐴𝑉 𝐼𝑀

3∏︁
𝑚=1

𝐴
(𝑚)
𝑉 𝑁𝐹 (7.6)

which consider a 3N redundant system.
Aiming at enabling a comparison between the reference work and our models, the

adopted approach was based on 4 steps:

i. Reproduce the reference work model and its results on our adopted Mercury tool;
ii. Remove the elasticity sub-nets of the model;
iii. Execute the analysis of the steady-state availability metric adopting our input values

in the reference work;
iv. compare the results obtained in step iii with the analysis of our model.

Step i: Figure 56 represents the 3N redundant VIM model of reference work imple-
mented by us in Mercury tool. Regarding VNF, we also reproduce the model exhibited in
Figure 55 in Mercury tool.

The VIM sub-system is in working state when at least two instances of database are
active and at least one of instance of functional blocks and HAproxy is active. This state
is represented by the equation:

𝐴𝑉 𝐼𝑀 = 𝑃{(((#𝑃𝑢𝑝𝐷𝐵1 = 1)𝐴𝑁𝐷(#𝑃𝑢𝑝𝐷𝐵2 = 1))

𝑂𝑅((#𝑃𝑢𝑝𝐷𝐵1 = 1)𝐴𝑁𝐷(#𝑃𝑢𝑝𝐷𝐵3 = 1))

𝑂𝑅((#𝑃𝑢𝑝𝐷𝐵2 = 1)𝐴𝑁𝐷(#𝑃𝑢𝑝𝐷𝐵3 = 1)))

𝐴𝑁𝐷((#𝑃𝑢𝑝𝐹𝐵1 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐹𝐵2 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐹𝐵3 = 1))

𝐴𝑁𝐷((#𝑃𝑢𝑝𝐻𝐴1 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐻𝐴2 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐻𝐴3 = 1))}

(7.7)

The VNF sub-system is in working state when the number total replicas is no less
than the number of regular replicas. This state is represented by the equation:

𝐴𝑉 𝑁𝐹 = 𝑃{#𝑃𝑢𝑝𝑉 𝑁𝐹 > #𝑃𝐿} (7.8)

The estimation for Steady-State Availability from the reference work, using Equa-
tion 7.6 at SHARPE tool, is equal to 𝑆𝑆𝐴 = 99.998444%, whereas our result, using
Mercury tool, was equal to 99.998618%. We consider these results close enough to accept
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Figure 56 – VIM of reference work
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them as equivalents, associating the difference in the order of 10−6 due to the adoption
of distinct tools.

Step ii: Figure 57 depicts the VNF model of reference work without elasticity sub-net.

As our goal is to perform a fair comparison with our model, we now estimate the
Steady-State Availability adopting an identical approach used in our model. The VNF
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Figure 57 – VNF without elasticity
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sub-system now is considered in working state when the number of VNFs are not null.
This state is represented by the expression:

𝑃{(#𝑃𝑢𝑝𝑉 𝑁𝐹 > 0)} (7.9)

Step iii: Aiming at perform the comparison between our model and the reference
work model, we consider the working state of VIM sub-system without elasticity as a not
null number of required services. So, the SSA for the model of Figure 57 is estimated by:

𝑃{((#𝑃𝑢𝑝𝐷𝐵1 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐷𝐵2 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐷𝐵3 = 1))

𝐴𝑁𝐷((#𝑃𝑢𝑝𝐹𝐵1 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐹𝐵2 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐹𝐵3 = 1))

𝐴𝑁𝐷((#𝑃𝑢𝑝𝐻𝐴1 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐻𝐴2 = 1)𝑂𝑅(#𝑃𝑢𝑝𝐻𝐴3 = 1))}

(7.10)

Furthermore, the inputted parameters for failure and repair rates for functional blocks
and hardware were originated from RBDs numerical analysis, as depicted in Figure 58.
Using Mercury tool, we can compute the MTTF and MTTR of all RBD. The failure and
repair rates 𝜆𝐹 𝐵 and 𝜇𝐹 𝐵 were inserted in transitions 𝑇𝑓𝐹𝐵𝑖 and 𝑇𝑟𝐹𝐵𝑖, respectively,
whereas 𝜆𝐶𝑁 and 𝜇𝐶𝑁 were inserted in transitions 𝑇𝑓𝐻𝑊𝑖 and 𝑇𝑟𝐻𝑊𝑖, respectively.

Similarly, for VNF SPN, the failure rate for the hardware and for the chain, as well as
the chain repair rate, were also originated from their correspondent RBDs, as depicted in
Figure 59.
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Table 40 – Input mean times for cloud components

Component MTTF MTTR
HW 60000h 8h
Hypervisor 5000h 10min
OS 2893h 0.25h

DB, NTP, rabbitMQ, nova-consoleauth,
nova-scheduler, nova-conductor, nova-api, horizon,

neutron-server, glance-registry, glance-api,
neutron-l3-agent, neutron-dhcp-agent

nova-compute
3000h 1h

VMFW, VMLB, VMCache 2160h 0.25h
FW, LB, Cache 2160h 0.25h

Source: The author (2019)

Table 40 exhibits the parameters’ values (KIM; MACHIDA; TRIVEDI, 2009) used as input
in the RBDs of Figures 58 and 59. We consider a three months for MTTF and 15 minutes
for MTTR to VMs and its hosted services.

Step iv: Finally, aiming at comparing the results, we performed an identical approach
regarding our model, inserting resulting failure and repair rates from RBDs numerical
analysis. The failure and repair rates 𝜆𝑐 and 𝜇𝑐 were inserted in transitions 𝑐𝑖𝐹 and 𝑐𝑖𝑅,
respectively. Also, the failure and repair rates 𝜆𝐶𝑁 and 𝜇𝐶𝑁 were inserted in transitions
𝑐𝑛𝐹 and 𝑐𝑛𝐿𝑅, respectively. Finally, the failure and repair rates 𝜆𝑁 and 𝜇𝑁 were inserted
in transitions 𝑛𝑖𝐹 and 𝑛𝑖𝐿𝑅.

Table 40 exhibits the parameters’ values (KIM; MACHIDA; TRIVEDI, 2009) used as input
in the RBDs of Figure 60.

The input parameters of the RBDs depicted in Figure 60 were also in Table 40.
Table 41 shows the analysis results for both models. As one can observe, the difference

between results is in the order of 10−7. Such a distinction results in a daily downtime
difference of 1.15s between the models’ SSA estimations.

Table 41 – Steady-State Availability Comparison

Model SSA(%)
Reference Model 99.99997229308%
Proposed Model 99.99991759069%

Source: The author (2019)

The evidence of such close results does not allow to claim that the models are different
enough to consider them as heterogeneous. So, we consider our results effectual.
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Figure 58 – Customized VIM of reference work
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Figure 59 – Customized VNF without elasticity
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Figure 60 – 3N redundant baseline model: the insertion of input parameters in chain and
compute node were represented only in the first instances of there sub-models
to do not overload the figure
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7.5 REJUVENATION OF SERVICE FUNCTION CHAINS

The studied service chain is composed of firewalling, load balancing, and video caching
services. Figure 61 depicts the RBD of the adopted service chain. It has a series design
because a failure in any component means a service chain downtime.

Figure 61 – Service Chain’s RBD

VMFW FW VMLB LB VMCache Cache

Source: The author (2019)

The resulting MTTF of Figure 61 RBD, adopting Eq. (6.1), is computed as:

𝑀𝑇𝑇𝐹𝑆𝐹 𝐶 = 1
𝜆𝑣𝑚𝑓𝑤 + 𝜆𝑓𝑤 + 𝜆𝑣𝑚𝑙𝑏 + 𝜆𝑙𝑏 + 𝜆𝑣𝑚𝑐𝑎𝑐ℎ𝑒 + 𝜆𝑐𝑎𝑐ℎ𝑒

(7.11)

Table 40 exhibits the parameters’ values (KIM; MACHIDA; TRIVEDI, 2009) used as input
in the RBDs of Figs. 35 and 61. We consider a three month for MTTF and 15 minutes
for MTTR to VMs and its hosted services.

Table 42 – Input mean times for cloud components

Component MTTF MTTR
HW 60000h 8h
Hypervisor 5000h 10min
OS 2893h 0.25h

DB, NTP, rabbitMQ, nova-consoleauth,
nova-scheduler, nova-conductor, nova-api, horizon,

neutron-server, glance-registry, glance-api,
neutron-l3-agent, neutron-dhcp-agent

nova-compute
3000h 2h

VMFW, VMLB, VMCache 2160h 0.25h
FW, LB, Cache 2160h 0.25h

Source: The author (2019)

Table 43 exhibits the resulting MTTF of all components present in the scenarios
described in Table 49. These values are used as input of the high-level SPN models and
are referred by their IDs.
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Table 43 – Results from low-level RBDs analysis

RBD MTTFID MTTF(h)
Controller cMTTF 248.20083
Neutron nMTTF 589.74019
Compute ndMTTF 640.07020
Joint Controller and Neutron cnMTTF 198.84687
All-In-One allMTTF 179.78082
Service Chain chainMTTF 500.00000

Source: The author (2019)

7.6 3N REDUNDANT SERVICE FUNCTION CHAIN

This case study analyzes an All-In-One openstack deployment. We consider a 3N re-
dundant SFC composed of 3 instances of the chain depicted in Figure 61. The first
scenario (Section 7.6.1) is the baseline one, without rejuvenation, whereas the second
scenario (Section 7.6.2) presents the 3N redundant model with rejuvenation based on VM
live migration.

7.6.1 Baseline model

Figure 62 depicts the 3N redundant model, representing three All-In-One openstack nodes.

Figure 62 – 3N redundant baseline model
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Source: The author (2019)

The sub-models Node, Chain, and Chain Interconnection interact through 𝑁𝑖𝑅𝑠𝑡 place
and 𝑟𝑠𝑡𝑖 transition (1 <= 𝑖 <= 3). One token is deposited at place 𝑁𝑖𝑅𝑠𝑡 whenever a
Node is recovered, firing 𝑟𝑠𝑡𝑖. We consider that all software (Figure 35e) is working when
its underlying Node is restarted. The restarting is represented when the token is taken
from place 𝑁𝑖𝑅𝑠𝑡 and deposited at working places 𝐶𝑖𝑆1 and 𝐶𝑖𝑐𝑖𝑢𝑝.
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Table 44 – Guard expressions and mean times for transitions in the 3N baseline model

Transition Guard Expressions Mean Time
c1F - 500 h
cic1F - 3000 h
c1R, cic1R #N1up>0 2 h
nd1F, ndi1F #N1Mnt>0 -
n1F - 179.780 h
n1SR - 7 min
n1LR - 8 h
rst1, sR1, lR1 - -

Source: The author (2019)

7.6.2 Rejuvenation model

The model exhibited in Figure 63 adopts VM live migration as rejuvenation technique to
improve the system steady-state availability. Figure 63 depicts the 3N redundant model
in which preventive maintenance is performed in the three modeled openstack All-In-One
nodes.

If there is a Node failure during a live migration, the model put the VMs back to the
original place. For example, if Node 01 fails during a migration, 𝑚12𝐹 fires and the token
in 𝑚12 is taken and deposited at place 𝐶1𝑠0. An identical behavior occurs when 𝑚13𝐹 ,
𝑚21𝐹 , 𝑚23𝐹 , 𝑚31𝐹 , or 𝑚32𝐹 fire.

Several requirements must be accomplished to allow preventive maintenance. They
were mapped to the model through guard expressions. All the procedures are similar when
considering preventive maintenance from any openstack node to another. We presented
them only between Nodes 01 and 02 for brevity.

Table 45 presents the guard expressions for transitions involved in the preventive
maintenance from Node 01 to Node 02.

Table 45 – Guard expressions in 3N rejuvenation model: migration sub-model

Transition Guard expressions
Mean

time(h)

ch1m2

(#N2up>0)AND(#m21=0)AND(#m12=0)
AND(#Cic2up=1)AND(#C2s0=0)
AND(#C1s1<2)AND(#C1s0=0) MTBPM

mC1C2 (#N2up>0)AND(#Cic1up=0)
MTTCLM+
MTTPPM

mC2C1r
(#Cic1up=0)AND(#N1up>0)AND
(#C2s1>1)AND(#C1s1+#C1s0=0) MTTCLM

Source: The author (2019)
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The transition ch1m2 fires with an MTBPM, representing the initiation of a preventive
maintenance, if:

i. the destination Node 02 is working (#N2up>0);
ii. there is no other migration between these Nodes in process ((#m21=0)AND(#m12=0));
iii. the destination chain interconnection is working (#Cic2up=1);
iv. there are no failure chains is the destination Node (#C2s0=0);
v. there is only one chain in Node 01 (#C1s1<2);
vi. there are no failure chains in the source Node (#C1s0=0).

Such requirements aim to minimize the downtime, allowing the initiation of mainte-
nance with as many operational resources as possible. From place m12, the model verifies
again if destination Node is active (#N2up>0) and if the openstack SFC API mandatory
requirement of delete Open vSwitch rules before migration is valid (#Cicup=0).

After the preventive maintenance execution, the chain return will occur if

i. the Open vSwitch rules were not configured (#Cic1up=0);
ii. the Node 01 is active (#N1up>0);
iii. there is no chains in Node 01 (#C1s1+#C1s0=0).

An identical behavior is true for the firing of transition triads: ch2m1, mC2C1, mC1C2r;
ch1m3, mC1C3, mC3C1r; ch3m1, mC3C1, mC1C3r; ch2m3, mC2C3, mC3C2r; and ch3m2,
mC3C2, mC2C3r.

Table 46 shows the adopted guard expressions for Node. The two guard expressions
(#Ag1N1>0) and (#Ag2N1>0) prevents the firing of rjv1n1 and rjv1n2, respectively,
without tokens in place Ag1n1 and Ag2n1. The model detects a live migration from Node
01 by:

i. the sum of two tokens at places C2s1 and C2s0 and the sum of one token at places
C3s1 and C3s0 ((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1));

ii. the sum of one token at places C2s1 and C2s0 and the sum of two tokens at places
C3s1 and C3s0 ((#C2s1+#C2s0=1)AND(#C3s1+#C3s0=2));

iii. the sum of three tokens at places C2s1 and C2s0 or at places C3s1 and C3s0 ((#C2s1
+ #C2s0=3)) OR ((#C3s1 + #C3s0=3)).

In any of these conditions, as the live migration occurred, the tokens at places Ag1n1
and Ag2n1 are removed, realizing the rejuvenation. An identical behavior is true for the
rejuvenation of Nodes 02 and 03, with their respective guard expressions.

Table 47 shows the guard expressions for the Chain sub-model.
The requirements for chain rejuvenation are :

i. the presence of tokens in places m12 (#m12>0) or m13 (#m13>0);
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Figure 63 – 3N redundant model with rejuvenation based on VM live migration

Source: The author (2019)

ii. the presence of tokens at places C1s1 or C1s0 (#C1s1+#C1s0>0) while Node 01 is
inactive (#N1dn>0).

because when a Node returns of a downtime period its software will be rejuvenated.
The conditions for rejuvenation are identical for Chain 02 and Chain 03.

Table 48 shows the guard expressions for the Chain interconnection sub-model. The
transition 𝑐𝑖𝑐1𝐷 will be enabled after the initiation of a migration process ((#𝑚12 =
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Table 46 – Guard expressions in 3N rejuvenation model: node sub-model

Transition Guard expressions
Mean

time(h)
c1Ag1, c1Ag2 - 179.780/k

rjv1n1

(#Ag1N1>0)AND
(((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1))
OR((#C2s1+#C2s0=1)AND(#C3s1+#C3s0=2))
OR((#C2s1+#C2s0=3))OR((#C3s1+#C3s0=3))) -

rjv2n1

(#Ag2N1>0)AND
(((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1))
OR((#C2s1+#C2s0=1)AND(#C3s1+#C3s0=2))
OR((#C2s1+#C2s0=3))OR((#C3s1+#C3s0=3))) -

n1R - 8
dN1 - -

Source: The author (2019)

Table 47 – Guard expressions in 3N rejuvenation model: chain sub-model

Transition Guard expressions
Mean

time(h)
c1Ag1, c2Ag1 - 500/k

rjv1c1
(#Ag1C1>0)AND((#m12>0)OR
(#m13>0))OR((#C1s1+#C1s0>0)AND(#N1dn>0)) -

rjv2c1
(#Ag2C1>0)AND((#m12>0)OR
(#m13>0))OR((#C1s1+#C1s0>0)AND(#N1dn>0)) -

dC1 (#Ag2C1=(k-1)) -
c1F (#N1dn=1)AND(#Cic1up=0)AND(#C1s1>0) -
c1R (#N1up>0) 2

Source: The author (2019)

1)𝑂𝑅(#𝑚13 = 1)) or after its conclusion, enabling the return of a chain to its original
Node. The guard expressions for transitions cic1C, cic1R, and, n1R state the conditions
in which a down chain can return to working state, whereas the guard expressions for
transitions n1F and n1MF state the conditions in which an up chain must be conducted
to a down state. This behavior is identical for the Chain Interconnections 02 and 03.

Similar to the baseline model, the system is active if at least one chain and its cor-
responding chain interconnection are active. But for the rejuvenation model, there are
additional conditions of working states: when there are two or three chains in an open-
stack Node due to VM live migrations. So, we adopted Equation 7.12 to compute SSA
for the 3N rejuvenation model. It encompasses all the additional conditions in which the
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Table 48 – Guard expressions and mean times in 3N rejuvenation model: chain intercon-
nection sub-model

Tran. Guard expressions
Mean

time(h)

cic1D

(#m12=1)OR(#m13=1)OR((#C2s1=2)AND
(#C3s1+C3s0=1))OR((#C3s1=2) AND(#C2s1+C2s0=1))
OR(#C2s1+#C2s0=3)OR(#C3s1+#C3s0=3) 0.0017075

cic1C,
cic1R

((#C1s1+#C1s0>0)AND(#N1up>0))
OR((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1)AND(#N2up>0))
OR((#C3s1+#C3s0=2)AND(#C2s1+#C2s0=1)AND(#N3up>0))
OR((#C2s1+#C2s0=3)AND(#N2up>0))
OR((#C3s1+#C3s0=3)AND(#N3up>0))

0.0033580,
2

cic1F - 3000

n1F,
n1MF

((#C1s1+#C1s0>0)AND(#N1dn>0))
OR((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1)AND(#N2dn>0))
OR((#C3s1+#C3s0=2)AND(#C2s1+#C2s0=1)AND(#N3dn>0))
OR((#C2s1+#C2s0=3)AND(#N2dn>0))
OR((#C3s1+#C3s0=3)AND(#N3dn>0)) -

n1R

((#N1Rst=1)AND(#C1s0>0))
OR((#N2Rst=1)AND(#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1))
OR((#N3Rst=1)AND(#C3s1+#C3s0=2)AND(#C2s1+#C2s0=1))
OR((#N2Rst=1)AND(#C2s1+#C2s0=3))
OR((#N3Rst=1)AND(#C3s1+#C3s0=3)) -

Source: The author (2019)

system is considered up.

𝑆𝑆𝐴 = 𝑃{(((#𝐶1𝑠1 = 3)𝑂𝑅(#𝐶2𝑠1 = 3)𝑂𝑅(#𝐶3𝑠1 = 3))𝐴𝑁𝐷

((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐2𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1)))𝑂𝑅

(((#𝐶1𝑠1 = 2)𝐴𝑁𝐷((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐2𝑢𝑝 = 1))𝑂𝑅

((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1))𝑂𝑅

((#𝐶𝑖𝑐2𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1))))𝑂𝑅

(((#𝐶2𝑠1 = 2)𝐴𝑁𝐷((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐2𝑢𝑝 = 1))𝑂𝑅

((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1))𝑂𝑅

((#𝐶𝑖𝑐2𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1))))𝑂𝑅

(((#𝐶3𝑠1 = 2)𝐴𝑁𝐷((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐2𝑢𝑝 = 1))𝑂𝑅

((#𝐶𝑖𝑐1𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1))𝑂𝑅

((#𝐶𝑖𝑐2𝑢𝑝 = 1)𝑂𝑅(#𝐶𝑖𝑐3𝑢𝑝 = 1))))𝑂𝑅

((#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1))𝑂𝑅((#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1))

𝑂𝑅((#𝐶3𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐3𝑢𝑝 = 1))}

(7.12)
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7.6.3 Experimental Results

Figures 64, 65, and 66 present the analysis results for 3N redundant baseline and re-
juvenation models. We performed experiments with varying MTBPM over from one to
seven days, and with a 𝑀𝑇𝑇𝑃𝑃𝑀 of seven minutes, aiming at investigating which value
maximizes availability. Figure 64 shows that the Steady-State Availability is higher than
99.999% (dashed line) for MTBPM values from 24 to 96 hours (i.e., from one to four days).
The comparison with the baseline model is also depicted in Figure 64. The BL column
exhibits the SSA of the baseline model: 99.99872%. The SSA of the baseline strategy is
lower than ones where preventive maintenances are performed in the range from one to
seven days.

Figure 64 – Daily MTBPM and corresponding availability

Source: The author (2019)

From these results, we explored the SSA behavior around the highest result, i.e., with
MTBPM around 24 hours. Figure 65 shows that if preventive maintenance occurs in
mean time intervals of 23 hours, very high availability can be reached. The availability
is higher than 99.9999% (dashed line), with the estimated value of 99.9999131%, which
corresponds to 27.404 seconds of annual downtime. So, the optimal point of SSA occurs
with a preventive maintenance occurring in a time interval of 23 hours.

Finally, Fig 66 depicts the lower end in which the required five 9’s stands. The pre-
ventive maintenance should be performed at least every eight hours.

So, if all the requirements mapped to guard expressions of rejuvenation model were
accomplished, and the MTBPM was equal to 23 hours, the annual downtime can be
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Figure 65 – Very high availability for MTBPM=23hs

Source: The author (2019)

imperceptible to cloud SFC users. Furthermore, if cloud operators with similar SFCs
perform preventive maintenance based on rejuvenation at every four days, they should
experience high availability from their openstack Service Function Chains.
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Figure 66 – High availability with minimum MTBPM=8hs

Source: The author (2019)

7.7 2N REDUNDANT SERVICE FUNCTION CHAIN

This final case study was designed to analyze the benefits of rejuvenation mechanism
in a 2N redundant openstack cloud providing Service Function Chains. So, we also pro-
pose baseline models without rejuvenation to enable a comparison and state the possible
benefits. Six distinct scenarios, listed in Table 49, were analyzed.

Scenarios 1 and 4 require two servers as all deployment modes are implemented in all
servers; scenarios 2 and 5 require four servers, since the Controller and Neutron deploy-
ment modes are implemented together in the same server; and finally, scenarios (3 and 6)
requires six servers, one pair for each deployment mode.

Table 49 – Analyzed scenarios

Id Configured Openstack Deployment Modes Rejuvenation # of Nodes
1 All-In-One

No
2

2 Controller + Neutron and Compute 4
3 Controller, Neutron and Compute 6
4 All-In-One

Yes
2

5 Controller + Neutron and Compute 4
6 Controller, Neutron and Compute 6

Source: The author (2019)
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7.7.1 Baseline models

The SPN models presented in this subsection does not consider the adoption of rejuve-
nation mechanism. Figure 67 depicts the baseline SPN model for scenario 1.

Figure 67 – SPNs for baseline All-In-One scenario

Scenario 1

Nd1up

nd1LR

nd1F

Nd1Mnt

Nd1dn

sR1

lR1

nd1SR

Nd1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

ndc1F

C1s0

C1s1

Nd1Rst rst1

Nd2up

nd2LR

nd2F

Nd2Mnt

Nd2dn

sR2

lR2

nd2SR

Nd2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

ndc2F

C2s0

C2s1

Nd2Rst rst2

Source: The author (2019)

The places 𝑁𝑑𝑖𝑅𝑠𝑡 and the immediate transitions 𝑟𝑠𝑡𝑖 were added to represent the
interaction at recovery occurrences between (i) nodes (𝑁𝑑𝑖𝑢𝑝) and their hosted chains;
and (ii) nodes and its hosted Open vSwitch.

As soon as a node is recovered, a token is deposited at its correspondent place 𝑁𝑑𝑖𝑅𝑠𝑡.
So, the immediate transition 𝑟𝑠𝑡𝑖 becomes enabled and fires, depositing one token at
working places 𝐶𝑖𝑆1 and 𝐶𝑖𝑐𝑖𝑢𝑝. The transitions 𝑐1𝑅, 𝑐𝑖𝑐1𝑅, 𝑐2𝑅, and 𝑐𝑖𝑐2𝑅 will be
enabled only if their correspondent nodes were working, i.e., the places 𝑁𝑑1𝑢𝑝 and 𝑁𝑑2𝑢𝑝

have tokens. The guard expressions reflecting these conditions are presented in Table 50.
Regarding scenario 1, the system is working when at least one service chain (𝐶1𝑠1 or

𝐶2𝑠1) and its correspondent chain interconnection (𝐶𝑖𝑐1𝑢𝑝 or 𝐶𝑖𝑐2𝑢𝑝) are working. The
working condition is represented in the model by the concomitant presence of tokens at
these places. The guard expressions presented in Table 50 assure the dependency between
the service chain and its underlying node and also between the chain interconnection and
its underlying node. So, it is not required to consider them to state the system working
state.

The Equation

𝑆𝑆𝐴𝑠𝑐𝑛1 = 𝑃{((#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1))𝑂𝑅

((#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1))}
(7.13)
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Table 50 – Guard expressions for the All-In-One baseline model

Transition Guard Expressions Mean time (h)
c1F, c2F - chainMTTF
cic1F, cic2F - 3000
c1R, cic1R #𝑁𝑑1𝑢𝑝 > 0 chainMTTR, 2
c2R, cic2R #𝑁𝑑2𝑢𝑝 > 0 chainMTTR, 2
ndc1F,ndi1F #𝑁𝑑1𝑀𝑛𝑡 > 0 -
ndc2F,ndi2F #𝑁𝑑2𝑀𝑛𝑡 > 0 -
rst1,rst2 - -
nd1F #𝑁1𝑀𝑛𝑡 > 0 allMTTF
nd2F #𝑁2𝑀𝑛𝑡 > 0 allMTTF
nd1SR, nd2SR - 0.1166666667
sR1, lR1, sR2, lR2 - -
nd1LR, nd2LR - 8

Source: The author (2019)

computes the SSA for scenario 1. Regarding COA, the Equation

𝐶𝑂𝐴𝑠𝑐𝑛1 =

(2 * (𝑃 (#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1))

+1 * ((𝑃 (#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶2𝑠1 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 0))

+(𝑃 (#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶1𝑠1 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 0))))/2
(7.14)

was adopted to compute it.
Figure 68 depicts the baseline SPN model for scenario 2. The places 𝑁𝑑𝑖𝑢𝑝 represent

Compute nodes. The place 𝐶𝑁𝑢𝑝 represents nodes with the joint controller and neutron
deployment modes. The system is working when at least: (i) one compute node (𝑁𝑑1𝑢𝑝

or 𝑁𝑑2𝑢𝑝) and their associated service chain (𝐶1𝑠1 or 𝐶2𝑠1) and chain interconnection
(𝐶𝑖𝑐1𝑢𝑝 or 𝐶𝑖𝑐2𝑢𝑝), respectively, are working; (ii) one controller/neutron node (𝐶𝑁𝑢𝑝) is
working. The working condition is represented in the model by the concomitant presence
of tokens at these places.

There were no guard expressions in Controller/Neutron sub-net. Table 51 presents the
mean times adopted in the timed transitions of the Controller/Neutron sub-net.

The Equation

𝑆𝑆𝐴𝑠𝑐𝑛2 = 𝑃{(#𝐶𝑁𝑢𝑝 > 0)𝐴𝑁𝐷(((#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1))

𝑂𝑅((#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)))}
(7.15)
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Figure 68 – SPNs for baseline scenario 2
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Source: The author (2019)

Table 51 – Mean times of timed transitions in scenario 2

Transition Mean time (h)
cnF cnMTTF
cnSR 0.1166666667
cnLR 8

Source: The author (2019)

computes the SSA for scenario 2. Regarding COA, the Equation

𝐶𝑂𝐴𝑠𝑐𝑛2 = (2 * (𝑃{(#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶2𝑠1 = 1)

𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶𝑁1𝑢𝑝 > 0)})

+1 * ((𝑃{(#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶2𝑠1 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 0)

𝐴𝑁𝐷(#𝐶𝑁1𝑢𝑝 > 0)})

+(𝑃{(#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶1𝑠1 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 0)

𝐴𝑁𝐷(#𝐶𝑁1𝑢𝑝 > 0)})))/2
(7.16)

was adopted to compute it.
Figure 69 depicts the baseline SPN model for scenario 3. The system is working when
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at least: (i) one compute node (𝑁𝑑1𝑢𝑝 or 𝑁𝑑2𝑢𝑝) and their associated service chain (𝐶1𝑠1
or 𝐶2𝑠1) and chain interconnection (𝐶𝑖𝑐1𝑢𝑝 or 𝐶𝑖𝑐2𝑢𝑝) are working; (ii) one controller
node is working (𝐶𝑢𝑝); and (iii) one neutron node (𝑁𝑢𝑝) is working.

Figure 69 – SPNs for baseline scenario 3

Scenario 3
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Source: The author (2019)

There were no guard expressions in both Controller and Neutron sub-nets. Table 52
presents the mean times adopted in the timed transitions of the Controller and Neutron
sub-nets.

Table 52 – Mean times of timed transitions in scenario 3

Transition Mean time (h)
cF cMTTF
nF nMTTF
cSR, nSR 0.1166666667
cLR, nLR 8

Source: The author (2019)

The Equation

𝑆𝑆𝐴𝑠𝑐𝑛3 = 𝑃{(#𝐶𝑢𝑝 > 0)𝐴𝑁𝐷(#𝑁𝑢𝑝 > 0)𝐴𝑁𝐷(((#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1))𝑂𝑅

((#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)))}
(7.17)
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computes the SSA for scenario 3. Regarding COA, the Equation

𝐶𝑂𝐴𝑠𝑐𝑛3 = (2 * (𝑃{(#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)

𝐴𝑁𝐷(#𝐶𝑢𝑝 > 0)𝐴𝑁𝐷(#𝑁𝑢𝑝 > 0)})

+1 * ((𝑃{(#𝐶1𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶2𝑠1 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 0)

𝐴𝑁𝐷(#𝐶𝑢𝑝 > 0)𝐴𝑁𝐷(#𝑁𝑢𝑝 > 0)})

+(𝑃{(#𝐶2𝑠1 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 1)𝐴𝑁𝐷(#𝐶1𝑠1 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 0)

𝐴𝑁𝐷(#𝐶𝑢𝑝 > 0)𝐴𝑁𝐷(#𝑁𝑢𝑝 > 0)})))/2
(7.18)

was adopted to compute it.
The numerical results of SSA and COA for scenarios 1, 2, and 3 are presented in

Table 53.

Table 53 – SSA and COA for 2N baseline scenarios

Scenario SSA COA
1 99.99676967% 98.92080977%
2 99.99747647% 99.04539234%
3 99.99739319% 99.04530916%

Source: The author (2019)

These values will be used as a comparison basis to the results considering rejuvenation,
presented in the next section.

7.7.2 Rejuvenation models

The models exhibited in Figure 70 represent the scenarios 4, 5, and 6. These models adopt
VM live migration as rejuvenation technique. The goal is to improve the Steady-State
Availability and Capacity Oriented Availability of the 2N redundant openstack infras-
tructure providing a Service Function Chain.

We now consider the SAR of chain interconnections. The sub-model of Figure 43 was
adopted to represent the Open vSwitch.

During any chain migration, if the source node fails, the transition 𝑚𝑖𝐹 fires and any
token at places 𝑚12 or 𝑚21 is deposited at places 𝐶1𝑠0 or 𝐶2𝑠0, respectively. After some
migration, the places 𝐶𝑖𝑠1 will contain two tokes. So, we isolate aging places, 𝐴𝑔1𝐶1,
𝐴𝑔2𝐶1, 𝐴𝑔3𝐶1, and 𝐴𝑔4𝐶1, for chain provided in node 1, and 𝐴𝑔1𝐶2, 𝐴𝑔2𝐶2, 𝐴𝑔3𝐶2,
and 𝐴𝑔4𝐶2 for chain provided in node 2, enabling the aging detection of the distinct
service chains.

The requirements that must be accomplished to allow preventive maintenance through
VM live migration in 2N scenarios are identical for those required in 3N scenarios. The
list below describes the requirements for a SFC live migration from Node 02 to Node 01:
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Figure 70 – SPN Model with Rejuvenation technique
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i. the destination Node 01 is working (#N1up>0);
ii. there is no other migration between these Nodes in process ((#m21=0)AND(#m12=0));
iii. the destination chain interconnection is working (#Cic1up=1);
iv. there are no failure chains is the destination Node (#C1s0=0);
v. there is only one chain in Node 02 (#C2s1<2);
vi. there are no failure chains in the source Node (#C2s0=0).

Scenario 4 represents the All-In-One deployment mode. The tokens in places 𝑁𝑑1𝑢𝑝

and 𝑁𝑑2𝑢𝑝 represent the two physical servers and all the associated required softwares,
as depicted in RBD of Figure 35e.

Scenario 5 represents the Controller + Neutron and Compute deployment mode. For
this scenario, the tokens in the place 𝐶𝑁𝑢𝑝 represent the two controller+neutron servers
and all the associated required softwares, as depicted in RBD of Figure 35d, while the to-
kens in places 𝑁𝑑1𝑢𝑝 and 𝑁𝑑2𝑢𝑝 represent the two compute servers and all the associated
required softwares, as depicted in Figure 35c.

Finally, scenario 6 represents the Controller, Neutron, and Compute deployment mode.
The tokens presented in the place 𝐶𝑢𝑝 represent the two controller servers and all the
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associated required softwares, as depicted in RBD of Figure 35a, whereas he tokens pre-
sented in the place 𝑁𝑢𝑝 represent the two neutron servers and all the associated required
softwares, as depicted in RBD of Figure 35b. The tokens in places 𝑁𝑑1𝑢𝑝 and 𝑁𝑑2𝑢𝑝

have an equivalent meaning of scenario 5.
Table 54 summarizes the guard expressions and the mean time of the transitions

present in the rejuvenation models.

Table 54 – Guard expressions for rejuvenation models

Transition Guard Expression Mean time (h)

nd1Ag1 (#𝐶2𝑠1 + #𝐶2𝑠0 < 2) {nd,all}MTTF/k

nd1Ag2 - {nd,all}MTTF/k

nd1R - {nd,all}MTTR

rjv1nd1 (#𝐴𝑔1𝑁𝑑1 > 0)𝐴𝑁𝐷(#𝐶2𝑠1 > 1) -

rjv2nd1 (#𝐴𝑔2𝑁𝑑1 > 0)𝐴𝑁𝐷(#𝐶2𝑠1 > 1) -

dNd1 - -

c1Ag1

((#𝐶1𝑠1 + #𝐶1𝑠0 == 1)𝐴𝑁𝐷
(#𝐴𝑔1𝐶1 + #𝐴𝑔2𝐶1+

#𝐴𝑔3𝐶1 + #𝐴𝑔4𝐶1 == 0))𝑂𝑅
((#𝐶1𝑠1 + #𝐶1𝑠0 == 2)𝐴𝑁𝐷

(#𝐴𝑔1𝐶1 + #𝐴𝑔2𝐶1 + #𝐴𝑔3𝐶1 + #𝐴𝑔4𝐶1 < 2)
𝐴𝑁𝐷(#𝐶1𝑠0 == 0))

((k-1)*
chainMTTF)/k

c1Ag(2<=i<=4) - chainMTTF/k

c1R #𝑁𝑑1𝑢𝑝 > 0 chainMTTR

c1F (#𝑁𝑑1𝑑𝑛 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 0)

𝐴𝑁𝐷(#𝐶1𝑠1 > 0) -

d1C - -

rjviC1

(#𝐴𝑔𝑖𝐶1 > 0)𝐴𝑁𝐷((#𝐶2𝑠1 > 1)𝑂𝑅
((#𝐶1𝑠1 + #𝐶1𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑1𝑑𝑛 > 0))𝑂𝑅

((#𝐶2𝑠1 + #𝐶2𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑2𝑑𝑛 > 0))) -

cic1Agj - chainMTTF/k

rjvAgjcic1

(#𝐴𝑔𝑗𝑐𝑖𝑐1 > 0)𝐴𝑁𝐷((#𝐶2𝑠1 > 1)𝑂𝑅
((#𝐶1𝑠1 + #𝐶1𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑1𝑑𝑛 > 0))𝑂𝑅

((#𝐶2𝑠1 + #𝐶2𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑2𝑑𝑛 > 0))) -

d1Cic - -

cic1D (#𝑚12 = 1)𝑂𝑅(#𝐶2𝑠1 > 1) 0.0017075

cic1C, cic1R, n1R
((#𝐶1𝑠1 + #𝐶1𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑1𝑢𝑝 > 0))𝑂𝑅

((#𝐶2𝑠1 + #𝐶2𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑2𝑢𝑝 > 0)) 0.00335805556

Continued on next page
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Table 54 – Continued from previous page

Transition Guard Expression Mean time (h)

n1F, n1FM
((#𝐶1𝑠1 + #𝐶1𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑1𝑑𝑛 > 0))𝑂𝑅

((#𝐶2𝑠1 + #𝐶2𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑2𝑑𝑛 > 0)) cicMTTF

nd2Ag1 (#𝐶1𝑠1 + #𝐶1𝑠0 < 2) {nd,all}MTTF/k

nd2Ag2 - {nd,all}MTTF/k

nd2R - {nd,all}MTTR

rjv1nd2 (#𝐴𝑔1𝑁𝑑2 > 0)𝐴𝑁𝐷(#𝐶1𝑠1 > 1) -

rjv2nd2 (#𝐴𝑔2𝑁𝑑2 > 0)𝐴𝑁𝐷(#𝐶1𝑠1 > 1) -

dNd2 - -

c2Ag1

((#𝐶2𝑠1 + #𝐶2𝑠0 == 1)𝐴𝑁𝐷
(#𝐴𝑔1𝐶2 + #𝐴𝑔2𝐶2+

#𝐴𝑔3𝐶2 + #𝐴𝑔4𝐶2 == 0))𝑂𝑅
((#𝐶2𝑠1 + #𝐶2𝑠0 == 2)𝐴𝑁𝐷

(#𝐴𝑔1𝐶2 + #𝐴𝑔2𝐶2+
#𝐴𝑔3𝐶2 + #𝐴𝑔4𝐶2 < 2)

𝐴𝑁𝐷(#𝐶2𝑠0 == 0))
((k-1)*

chainMTTF)/k

c2Ag(2<=i<=4) - chainMTTF/k

c2R #𝑁𝑑2𝑢𝑝 > 0 chainMTTR

c2F (#𝑁𝑑2𝑑𝑛 = 1)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 0)

𝐴𝑁𝐷(#𝐶2𝑠1 > 0) -

d2C - -

rjv(1<=i<=4)C1

(#𝐴𝑔𝑖𝐶2 > 0)𝐴𝑁𝐷((#𝐶1𝑠1 > 1)𝑂𝑅
((#𝐶2𝑠1 + #𝐶2𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑2𝑑𝑛 > 0))

𝑂𝑅((#𝐶1𝑠1 + #𝐶1𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑1𝑑𝑛 > 0))) -

cic2Agj - chainMTTF/k

rjvAgjcic2

(#𝐴𝑔1𝑐𝑖𝑐2 > 0)𝐴𝑁𝐷((#𝐶1𝑠1 > 1)𝑂𝑅
((#𝐶2𝑠1 + #𝐶2𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑2𝑑𝑛 > 0))
𝑂𝑅((#𝐶1𝑠1 + #𝐶1𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑1𝑑𝑛 > 0))) -

d2Cic - -

cic2D (#𝑚21 = 1)𝑂𝑅(#𝐶1𝑠1 > 1) 0.0017075

cic2C, cic2R, n2R
((#𝐶2𝑠1 + #𝐶2𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑2𝑢𝑝 > 0))𝑂𝑅

((#𝐶1𝑠1 + #𝐶1𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑1𝑢𝑝 > 0)) 0.00335805556

n2F, n2FM
((#𝐶2𝑠1 + #𝐶2𝑠0 > 0)𝐴𝑁𝐷(#𝑁𝑑2𝑑𝑛 > 0))𝑂𝑅

((#𝐶1𝑠1 + #𝐶1𝑠0 = 2)𝐴𝑁𝐷(#𝑁𝑑1𝑑𝑛 > 0)) cicMTTF

Continued on next page
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Table 54 – Continued from previous page

Transition Guard Expression Mean time (h)

ch1m2

(#𝑁𝑑2𝑢𝑝 > 0)𝐴𝑁𝐷(#𝑚21 = 0)𝐴𝑁𝐷
(#𝑚12 = 0)𝐴𝑁𝐷

(#𝐶𝑖𝑐2𝑢𝑝 = 1)𝐴𝑁𝐷
(#𝐶1𝑠1 < 2)𝐴𝑁𝐷(#𝐶1𝑠0 = 0) MTBPM

mC1C2 (#𝑁𝑑2𝑢𝑝 > 0)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 0) 0.1484863888

mC2C1r (#𝐶𝑖𝑐1𝑢𝑝 = 0)𝐴𝑁𝐷(#𝑁𝑑1𝑢𝑝 > 0)

𝐴𝑁𝐷(#𝐶2𝑠1 > 1) 0.0318197222

ch2m1

(#𝑁𝑑1𝑢𝑝 > 0)𝐴𝑁𝐷(#𝑚12 = 0)𝐴𝑁𝐷
(#𝑚21 = 0)𝐴𝑁𝐷(#𝐶𝑖𝑐1𝑢𝑝 = 1)

𝐴𝑁𝐷(#𝐶2𝑠1 < 2)𝐴𝑁𝐷(#𝐶2𝑠0 = 0) MTBPM

mC2C1 (#𝐶𝑀𝑃1𝑢𝑝 > 0)𝐴𝑁𝐷(#𝐶𝑖𝑐2𝑢𝑝 = 0) 0.1484863888

mC1C2r (#𝐶𝑖𝑐2𝑢𝑝 = 0)𝐴𝑁𝐷(#𝐶𝑀𝑃2𝑢𝑝 > 0)

𝐴𝑁𝐷(#𝐶1𝑠1 > 1) 0.0318197222

Source: The author (2019)

Table 55 presents the SSA and COA equations of the analyzed aging/rejuvenation
configurations.

7.7.3 Experimental results

This section presents the results regarding the scenarios defined previously in Table 49.
The main goal is to identify and measure how a rejuvenation technique can improve the
availability of service chains and understand how the variation of the MTBPM helps to
achieve high availability.

Figure 71 shows the SSA of All-In-One configuration. In this case, the high availabil-
ity (five 9’s) is reached when the preventive maintenance occurs at intervals of 3 hours
at maximum. When using the baseline approach, the configuration did not achieve high
availability, but reached a good availability (about 99.9967696%), whereas with rejuve-
nation, adopting MTBPM = 3 hours, the SSA reaches 99.9994627%. The goal of high
availability is reached with the adoption of VM live migration rejuvenation.

Figure 72 illustrates the COA for All-In-One configuration.
In this case, the baseline approach achieves a COA close to 98.92080977% (see Ta-

ble 53), and the preventive maintenance produces better results than the baseline when
the MTBPM is greater than 11 hours. This way, if the service provider prioritizes the
high availability, the COA will be closed to 97.9314570%.

The SSA and COA results of scenarios 2 and 5 are depicted in Figs. 73 and 74.
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Table 55 – SSA e COA equations for rejuvenation models

Scn. Mtr. Equation

4

SSA

P{((#C1s1=2)AND((#Cic1up=1)OR(#Cic2up=1)))OR((#C2s1=2)
AND((#Cic1up=1)OR(#Cic2up=1)))
OR((#C1s1=1)AND(#Cic1up=1))OR((#C2s1=1)AND(#Cic2up=1))}

5

P{(((#C1s1=2)AND((#Cic1up=1)OR(#Cic2up=1)))OR ((#C2s1=2)
AND((#Cic1up=1)OR(#Cic2up=1)))
OR((#C1s1=1)AND(#Cic1up=1))
OR ((#C2s1=1)AND(#Cic2up=1)))AND(#CNup>0)}

6

P{(((#C1s1=2)AND((#Cic1up=1)OR(#Cic2up=1)))OR((#C2s1=2)
AND((#Cic1up=1)OR(#Cic2up=1))
OR((#C1s1=1)AND(#Cic1up=1)) OR((#C2s1=1)AND(#Cic2up=1)))
AND(#Cup>0)AND(#Nup>0)}

4

COA

(2*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=1)AND(#Cic2up=1)})
+(P{(#C1s1=2)AND(#Cic1up=1)AND(#Cic2up=1)})+(P{(#C2s1=2)
AND(#Cic1up=1)AND(#Cic2up=1)})

+1*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=0)AND(#Cic2up=0)})
+(P{(#C2s1=1)AND(#Cic2up=1)AND(#C1s1=0)AND(#Cic1up=0)})))/2

5

(2*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=1)AND(#Cic2up=1)
AND(#CNup>0)})
+(P{(#C1s1=2)AND(#Cic1up=1)AND(#Cic2up=1)AND(#CNup>0)})
+(P{(#C2s1=2)AND(#Cic1up=1)AND(#Cic2up=1)AND(#CNup>0)}))
+1*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=0)AND(#Cic2up=0)
AND(#CNup>0)})
+(P{(#C1s1=0)AND(#Cic1up=0)AND(#C2s1=1)AND(#Cic2up=1)
AND(#CNup>0)})))/2

6

(2*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)})
+(P{(#C1s1=2)AND(#Cic1up=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)})
+(P{(#C2s1=2)AND(#Cic1up=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)}))
+1*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=0)AND(#Cic2up=0)
AND(#Cup>0)AND(#Nup>0)})
+(P{(#C1s1=0)AND(#Cic1up=0)AND(#C2s1=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)})))/2

Source: The author (2019)

When deploying the controller and the neutron at the same server, the primary benefit
is the great improvement of the maximum MTBPM to achieve high availability, increas-
ing from 3 hours in the scenario 4 to 60 hours in the scenario 5. This represents a good
achievement from the provider perspective because as more as one can prolong the next
maintenance, fewer resources are wasted. On the other hand, when using this configura-
tion (𝑀𝑇𝐵𝑃𝑀 = 60ℎ𝑜𝑢𝑟𝑠), the baseline approach obtained better COA (99.04539234%)
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Figure 71 – SSA for All-In-One configuration (scenarios 3 and 6)
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result than the preventive maintenance approach, and if the provider focus on high avail-
ability, the COA will be 98.7542228%.

Finally, Figs. 75 and 76 depict the results of scenarios 3 and 6. In this case, when
six servers are adopted in a 2N redundancy for each openstack deployment mode, the
maximum MTBPM to provide high availability was 78 hours. Compared to scenario 5,
the improvement in the MTBPM was 18 hours.

Different from the other previous scenarios, any MTBPM in a time interval from 1 to
120 hours produces better COA results than baseline, as depicted in Figure 76.

The results of this final case study demonstrate the effectiveness in the adoption of VM
live migration rejuvenation technique for achieving high availability, i.e., a Steady-State
Availability greater than 99.999%.
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Figure 72 – COA for All-In-One Configuration (scenarios 3 and 6)
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Figure 73 – SSA for Controller/Neutron Configuration (scenarios 2 and 5)
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Figure 74 – COA for Controller/Neutron Configuration (scenarios 2 and 5)
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Figure 75 – SSA for Controller/Neutron/Compute Configuration (Scenarios 3 and 6)
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Figure 76 – COA for Controller/Neutron/Compute Configuration (Scenarios 3 and 6)
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7.8 FINAL REMARKS

This chapter presented the results obtained by the designed dependability models. The
first two case studies showed the benefits, over the studied metrics, in adopting a strategy
of eliminating single points of failure in Proxmox server virtualization environment. The
third case studied showed how reasonable was our proposed modeling approach in the
estimation of availability in Service Function Chains through a comparison with previous
literature work. The fourth and fifth case studies showed the improvements in steady-state
availability and capacity oriented availability with the joint adoption of redundancy and
software rejuvenation based on service function chain live migration. Therefore, through
the described studies, it was possible to demonstrate how network administrators and
analysts can make decisions in the provision of high available virtual network chains.
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8 CONCLUSION

The changes in the communication networks coming from virtualization enable the re-
placement of static equipment and interconnections by dynamic virtualized components.
The traditional appliances have been replaced by Virtual Network Functions, decoupling
the network functions from their underlying hardware. Virtualized networks represent
additional obstacles to high availability because it results in more layers of software:
the increasing number of software components required to run virtualized systems also
increases the number of possible failures. A widely used design principle in fault toler-
ance is to introduce redundancy to enhance systems availability. Thus, the modeling and
analysis of redundant mechanisms in virtualized environments, as cloud computing infras-
tructures, is relevant to enable high availability and business continuity in concomitance
with resources wastage reduction or elimination.

In this work, we analyzed the steady-state availability and capacity oriented availabil-
ity metrics of Virtual Network Functions using dependability modeling, with the adoption
of hierarchical and heterogeneous modeling.

Testbeds are designed and assembled with the primary purpose of understanding the
operation of high availability infrastructures. After, they also were used to enable the
measurement of parameters used as inputs into the proposed models. We have argued
that these measures can be used by specialists with the aim of improving the precision of
models related to the focus of this thesis.

We presented 5 case studies in which the models’ applicability can be observed. The
first case study focuses on the analysis of server virtualization environments to investigate
the benefits in the adoption of active/active redundancy in a cluster of video caches. The
second analyzes the joint operation of virtualized network function and a traditional
appliance. Sensitivity analysis was adopted in these two case studies to state the most
impactful parameters regarding the evaluated metrics.

The third case study aims at analyzing how reasonable is our proposed modeling ap-
proach regarding Service Function Chains through a comparison with previous literature.
The fourth case study analyzes the benefits in tackling the aging phenomenon presented
in an HA cloud infrastructure adopting rejuvenation through VM live migration in a
3N redundant SFC. Finally, the fifth case study analyzes the behavior of the metrics of
interest facing a reduction for a 2N redundant environment in the cloud infrastructure.

The following sections describe the main contributions of this thesis, the limitations,
and proposes possible extensions as future directions.
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8.1 CONTRIBUTIONS

As the main contributions of this thesis, we can highlight:

• a hierarchical and heterogeneous stochastic set of models to represent Virtual Network
Function and Service Function Chains, including redundancy for high available services
provision, as well as the aging phenomenon analysis and the adoption of its countermea-
sure rejuvenation mechanism based on SFCs live migration;

• a High Available (HA) private cloud computing was assembled using openstack, enabling
the measurement of Mean Time To Chain Live Migration (MTTCLM) parameter in
Service Function Chains experiments. The main goal was to feed the presented stochastic
models also with real measured values;

• the analysis of the proposed VNF and SFC models, improving the previously known
results regarding the number of physical servers required to provide an HA VNF chain.

Also, we extend the Tuning Infrastructure for Server Virtualization Experiment Proto-
col (TISVEP) with messages specifications (reported in Appendix B), as well as with its
coding, automating the experiments execution of Service Function Chains live migration.

8.2 LIMITATIONS

During the period of this work, some limitations were identified. They are reported below.

• Models growth: even with the division of modeled systems in sub-models, the models
tend to grow in the analysis of distinct scenarios, making it difficult to generate results
due to processing times;

• HA Cloud management: the cost of assembling the HA cloud computing infrastructure,
comprises the training regarding installation, configuration, and operation of openstack
cloud, results in a high time-consuming task. The storage and network hardware as-
sembling comprised the acquisition of equipment, their subsequent installation, con-
figuration, and test together with the server hardware, the operating system, and the
openstack software. Updates in the infrastructure, even performed automatically, re-
sulted in re-configuration efforts. So, after the deployment of Ocata version of openstack
software, no updates were implemented;

• Adopted models and techniques: the user must have basic knowledge regarding the
parameterization of the system variables. The users must receive proper training or a
system that aids the users should be created.
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8.3 FUTURE WORK

Although this thesis tackles some issues regarding dependability in the provision of VNFs
and SFCs, there are possibilities to improve and extend the current work. The following
items summarize some possible improvements.

• Explore parallel live migration techniques: the migration between source and destination
server was performed in series. The adoption of parallel live migration is a potential
source to reach lower MTTCLM values. The models can be adjusted to cover parallel
migration updating the firing semantics of the involved transitions from Single Server
to Infinite Server;

• Explore alternative virtualization approaches, such as: para-virtualization (with Xen)
and Container-based virtualization (with LXC). It is also a potential source to reduce
MTTCLM values, consequently reducing the downtime due to VNFs and SFCs migration
times.

• Consider different repair policies. Policies based on component replacement, different
number of repair team size, and different average failure times. Cold and warm standby
policies are also suitable alternatives that may be evaluated by analytical models. More-
over, by combining cost models, this work could be expanded by considering scenarios
that evaluate the violation of a contracted service levels.

• Besides redundancy and live migration software rejuvenation, explore additional ap-
proaches for SSA and COA improvements, such as elasticity. It is possible to allocate
and release replicas of VNFs and SFCs at periods of traffic increasing, as well as release
replicas at periods of traffic decreasing.

• Analyze different sizes of Service Function Chains, aiming to establish an upper bound-
ary in the number of chain services that do not violate the high availability feature (five
9’s of availability).

• Automatize the live migration software rejuvenation mechanism in TISVEP protocol,
allowing the implementation of the adopted rejuvenation approach also in real HA cloud
infrastructures.
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APPENDIX A – HA OPENSTACK IMPLEMENTATION

Table 56 presents the HA deployment status of adopted OpenStack components regarding
the necessity of RA customization and if the component is managed by Pacemaker.

Table 56 – OpenStack Components Status

customized RA HA by Pacemaker
apache
keystone NO YES
horizon NO YES
glance
glance-api NO YES
glance-registry NO YES
nova
nova-api YES YES
nova-conductor NO YES
nova-scheduler NO YES
nova-novncproxy NO YES
nova-consoleauth NO YES
nova-compute NO YES
neutron
neutron-server YES YES
neutron-agent-dhcp NO YES
neutron-agent-l3 NO YES

Source: The author (2019)

Table 57 lists additional OpenStack required softwares for deployment of HA Solution.

Table 57 – OpenStack: Additional Required Softwares

installed available RA HA Solution
MariaDB YES NO Galera
Galera YES YES Pacemaker
HAProxy YES YES Pacemaker
RabbitMQ YES YES native
memcached YES NO none

Source: The author (2019)
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APPENDIX B – SPECIFICATION OF TISVEP EXTENSION MESSAGES

The TISVEP (Tuning Infrastructure for Server Virtualization Experiment Protocol) mes-
sages , that extend the original protocol (GUEDES, 2015), are presented below. Each
transmitted message has the MSG_ID parameter in the first field. Each message is easily
identified by a bold Message Code and name.

312: createChain: the processing of this message results in the execution of open-
stack SFC API commands that create the service function chain.
Example:

<MSG_ID=312:SRC_IP=192.168.99.10:DST_IP=192.168.99.16>

In the above example, the VM source IP 192.168.99.10, in which the Web-Polygraph
client-side will be executed, and the VM destination IP 192.168.99.16, in which the Web-
Polygraph server-side will be executed, are stated. They are the source and the destination
of the service function chain traffic. The result is the creation of the Open vSwitch rules
that will forward the traffic throughout the chain. The message is transmitted to the con-
troller cluster IP. Any node belonging to the cluster is able to process the chain creation.

313: deleteChain: the processing of this message results in the execution of openstack
SFC API commands that delete the service function chain. This results in the deletion of
the Open vSwitch rules that were forwarding the traffic throughout the chain.
Example:

<MSG_ID=313>

In the above example, the message identification is transmitted for the controller clus-
ter IP. Any node belonging to the cluster is able to process the chain deletion.

314: detectMigration: the processing of this message is performed by the compute
node receiving the chain migration. The VMs migration is completed when their processes
are created in the receiving computer node. We monitor the Process Identification (PID)
created by the hypervisor for each VM. When all the PIDs were created, the TISVEP
informs the experimenter node, and the chain creation can continue.
Example:

<MSG_ID=314>

MSG_ID=312:SRC_IP=192.168.99.10:DST_IP=192.168.99.16
MSG_ID=313
MSG_ID=314
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In the above example, the message identification is transmitted for the compute node
receiving the chain migration and the VMs’ PIDs monitoring can start.

315: fwRulesInjection: insert missing rules in linux netfilter, that should be inserted
by openstack SFC API does.
Example:

<MSG_ID=315:SRC_IP=192.168.99.10>

In the above example, the compute node receiving the message will add rules to
the linux netfilter firewall, allowing the traffic from Web-Polygraph server-side machine
(192.168.99.10) to be forward in the chain.

316: migrateChain: the processing of this message results in the initiation of SFC
migration process. The message is transmitted to the controller cluster IP. Any node be-
longing to this cluster is able to process the chain creation.
Example:

<MSG_ID=316:DST_CMP_HN=192.168.99.62>

In the above example, the 316 message ID and the 192.168.99.62 (the IP address of ha-
compute02 openstack node) was passed to the controller cluster IP. Any node belonging
to the controller cluster is able to process the chain migration.

MSG_ID=315:SRC_IP=192.168.99.10
MSG_ID=316:DST_CMP_HN=192.168.99.62
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