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ABSTRACT

Affective computing is a branch of artificial intelligence responsible for the development
of equipment and systems capable of interpreting, recognizing and processing human emo-
tions. The automatic understanding of human behavior is of great interest since it allows
the creation of new human-machine interfaces. Within this behavior, facial expressions
are the most convenient because of the wide range of emotions that can be transmitted.
The human face conveys a large part of our emotional behavior. We use facial expressions
to demonstrate our emotional states and to communicate our interactions. In addition,
we express and read emotions through the expressions of faces without effort. However,
automatic understanding of facial expressions is a task not yet solved from the compu-
tational point of view, especially in the presence of highly variable expression, artifacts,
and poses. Currently, obtaining a semantic representation of expressions is a challenge
for the affective computing community. This work promotes the field of facial expression
recognition by providing new tools for the representation analysis of expression in static
images. First, we present an analysis of the methods of extracting characteristics and
methods of combining classifiers based on sparse representation applied to the facial ex-
pression recognition problem. We propose a system of multi-classifiers based on trainable
combination rules for this problem. Second, we present a study of the main deep neural
networks architectures applied in this problem. A comparative analysis allows to deter-
mine the best models of deep learning for the classification of facial expressions. Third, we
propose a new supervised and semi-supervised representation approach based on metric
learning. This type of approach allows us to obtain semantic representations of the facial
expressions that are evaluated in this work. We propose a new loss function that gener-
ates Gaussian structures in the embedded space of facial expressions. Lastly, we propose
FERAtt, a new end-to-end network architecture for facial expression recognition with an
attention model. The FERAtt neuralnet focuses attention in the human face and uses
a Gaussian space representation for expression recognition. We devise this architecture
based on two fundamental complementary components: (1) facial image correction and
attention and (2) facial expression representation and classification.

Keywords: Facial Expression. Emotion Recognition. Attention Models. Deep Learning.
Metric Learning.



RESUMO

Computação afetiva é um ramo da inteligência artificial responsável pelo desenvolvi-
mento de equipamentos e sistemas capazes de interpretar, reconhecer e processar emoções
humanas. A compreensão automática do comportamento humano é de grande interesse,
já que permitiria a criação de novas interfaces homem-máquina. O rosto humano trans-
mite uma grande parte do nosso comportamento emocional. Usamos expressões faciais
para demonstrar emoções e para melhorar nossas interações sem esforço, devido a que as
expressões são um reflexo incorporado a nosso mecanismo de comunicação. No entanto,
a compreensão automática das expressões faciais é uma tarefa ainda não solucionada do
ponto de vista computacional, especialmente na presença de expressão altamente variável,
artefatos e poses. Atualmente, obter uma representação semântica de expressões faciais
é um desafio para a comunidade de computação afetiva. Este trabalho promove o campo
do reconhecimento da expressão facial, fornecendo novas ferramentas para a análise de
expressão em imagens estáticas a partir do estudo da representação no espaço de car-
acterísticas. Em primeiro lugar, apresentamos uma revisão dos principais métodos de
extração de características e dos métodos de combinação de classificadores com base em
representação escassa que são aplicadas aos problemas de reconhecimento de expressão
facial. Propomos um sistema de multi-classificadores baseado em regras de combinação
treináveis para a classificação das expressões faciais. Em segundo lugar, apresentamos um
estudo das principais arquiteturas de redes neurais profundas aplicadas neste problema.
Uma análise comparativa nos permite determinar os melhores modelos de aprendizagem
profunda para a classificação das expressões. Em terceiro lugar, propomos uma nova abor-
dagem supervisionada e semi-supervisionada de representação baseada na aprendizagem
por métrica. Este tipo de abordagem nos permite obter representações semânticas das ex-
pressões faciais que são avaliadas neste trabalho. Propomos uma nova função de perda que
geram estruturas Gaussianas no espaço de representação. Finalmente, propomos FERAtt,
uma nova arquitetura de rede ponta-a-ponta para o reconhecimento de expressões faciais
com um modelo de atenção. A rede FERAtt, concentra a atenção no rostro humano e usa
uma representação do espaço Gaussiano para reconhecimento de expressão. Concebemos
essa arquitetura com base em dois componentes fundamentais: (1) correção e atenção à
imagem facial; e (2) representação e classificação da expressão facial.

Palavras-chaves: Expressões Faciais. Reconhecimento da Emoção. Aprendizagem Pro-
funda. Modelos de Atenção. Aprendizado por Métrica.
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1 INTRODUCTION

Computers are quickly becoming an ubiquitous part of our lives. We spend a great
amount of time interacting with computers of one type or another. At the moment, the
devices we use are indifferent to our affective states, since they are emotionally blind.
However, successful human-human communication relies on the ability to read affective
and emotional signals. Human-Computer Interaction (HCI) which does not consider the
affective states of its users loses a large part of the information available in the interaction.

Automatic human behaviour understanding has attracted a great deal of interest over
the past two decades, mainly because of its many applications spanning various fields
such as psychology, computer technology, medicine and security. It can be regarded as the
essence of next-generation computing systems as it plays a crucial role in affective com-
puting technologies (i.e. proactive and affective user interfaces), learner-adaptive tutoring
systems, patient-profiled personal well-being technologies, etc. (HIGHFIELD; WISEMAN;

JENKINS, 2009).
Facial Expressions (FE) are vital signaling systems of affect, conveying cues on the

emotional state of the person. Together with voice, language, hands and posture of the
body, they form a fundamental communication system between humans in social con-
texts. Automatic Facial Expressions Recognition (AFER) is an interdisciplinary domain
standing at the crossing of behavioral science, neurology, and artificial intelligence.

Studies of the face were greatly influenced in premodern times by popular theories of
physiognomy and creationism. Physiognomy assumed that a person’s character or person-
ality could be judged by their outer appearance, especially the face (HIGHFIELD; WISE-

MAN; JENKINS, 2009). Leonardo Da Vinci was one of the first to refute such claims stating
they were without scientific support (VINCI, 2002). In the 17th century in England, John
Buwler studied human communication with particular interest in the sign language of
persons with hearing impairment. Buwler’s book Pathomyotomia or Dissection of the
significant Muscles of the Affections of the Mind was the first consistent work in the En-
glish language on the muscular mechanism of FE (GREENBLATT et al., 1994). About two
centuries later, influenced by creationism, Sir Charles Bell investigated FE as part of his
research on sensory and motor control. He believed that FE was endowed by the Cre-
ator solely for human communication. Subsequently, Duchenne de Boulogne conducted
systematic studies on how FEs are produced (DUCHENNE, 1990). He published beautiful
pictures of sometimes strange FEs obtained by electrically stimulating facial muscles (see
Figure 1). Approximately in the same historical period, Charles Darwin firmly placed
FE in an evolutionary context (DARWIN, 1872). This marked the beginning of modern
research of FEs. Important advancements were made through the works of researchers
like Carroll Izard and Paul Ekman who inspired by Darwin performed seminal studies of
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FEs (IZARD, 1971; EKMAN, 1971; EKMAN; OSTER, 1979).

Figure 1 – In the 19th century, Duchenne de Boulogne conducted experiments on how FEs
are produced. In this experiments, the FEs obtained by electrically stimulating
facial muscles for analysis of the response.

Source: (DUCHENNE, 1990)

More recently researchers like Maja Pantic have had a great highlight in this area.
Pantic published over 100 technical papers in the areas of machine analysis of facial
expressions, machine analysis of human body gestures, audiovisual analysis of emotions
and social signals, and human centred HCI (MARRERO-FERNÁNDEZ et al., 2014). Finally,
in recent years successful commercial applications like Emotient1 and Affectiva2, perform
large scale internet-based assessments of viewer reactions to ads and related material for
predicting buying behaviour(CORNEANU et al., 2016).

Facial expression recognition applications are part of more complex systems known as
Multimodal systems. These systems consist of several signals that have to be collected
and represented in order to obtain a final estimate of the emotion (see Figure 2). In
this direction, the representation of the signal is a fundamental aspect of the creation of
more advanced emotion recognition systems. Obtaining facial expressions subspaces with
known structures also could contribute to improving individual classification systems by
providing more information on the decision boundaries of each class.

1 www.emotient.com
2 www.affectiva.com
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Figure 2 – Multimodal subsystems for emotion recognition. For different sensors set of
various technologies, a set of signals is obtained that will be processed and
represented in of features space. The representations are combined to finally
generate a classification of emotion.

Source: The author (2019)

1.1 PROBLEM

Despite the efforts made by the community of researchers in this area, the proposed
systems are still far from the ability of human beings to FER. In (MARRERO-FERNÁNDEZ

et al., 2014) we determine some of the current limitations of this area in form of research
questions:

RQ1. Is it possible to obtain a efficient semantic representation of the facial expression?
RQ2. How can we easily obtain the fast, efficient and safest recovery from the database?
RQ3. Since the dynamics of known behavioural cues play a crucial role in human behaviour

understanding, how continuous representation subspaces of the expression can be
learned?

RQ1 addresses the problem of the representation spaces of the emotion. Present studies
that address spaces of continuous representations (called dimensional) are limited and
most of them impose a prior in the relationships that emotions must have in these spaces.
Emotions have a high degree of subjectivity, which requires a trained staff to create such
datasets and RQ2 refers to this problem. Finally, RQ3 deals with the need to incorporate
temporal dynamics in the characterization of emotions. In this work, we intend to con-
tribute to the answers of these research questions, specifically by providing a mechanism
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of semantic representation of the expressions that allows: to carry out the fusion of mul-
timodal systems; the recovery and filtering of large volumes of facial expression images;
and to be employed by dynamic facial expression recognition systems.

1.2 OBJECTIVE

This work contributes to the field of AFER and representation by dealing with these
issues (RQ1-RQ3) which helps to brings emotionally aware computing more close to real-
ity. The objective of this research is to develop a more accurate learning architecture for
the facial expressions characterization. The specific objectives of the work are:

• Analyze different feature extraction methods and propose a system that combines
different facial features.

• Analyze of the main deep neural network architectures applied to FER.
• Develop representation learning method for FE images based on Deep Metric Learn-

ing (DML).
• Develop a new deep neural network architecture inspired by the human attention

mechanism and the continuous representation of the expression.

1.3 DOCUMENT STRUCTURE

Seven chapters are presented in this work. Figure 3 shows the structure of this thesis.
Chapters inside the blue box represent articles that were published or submitted during
the development of this thesis.

Chapter 2 explain the underlying emotion theories and possible areas of application.
This chapter describes the datasets used in the experiments.

Chapter 3 provides a detailed explanation of the feature extraction methods for clas-
sification for FER via SR and Multiple Classifier Systems (MCS). We propose a MCS
based on Trainable Combination Rules (TCR) for FER.

In Chapter 4 a study of the main architectures of Deep Neural Networks applied to
FER is presented. A comparative analysis allows us to determine the best deep learning
models for the classification of FE.

Chapter 5 proposes two new representation approach based on Deep Metric Learn-
ing (DML): 1) Structured Gaussian Manifold Learning and 2) Deep Gaussian Mixture
Subspace Learning.

Chapter 6 presents a new end-to-end Deep Learning architecture with an Attention
Model for Facial Expression Recognition.

Finally, Chapter 7 provides the conclusion of the thesis and outline the current limi-
tations together with future works.
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Figure 3 – Document Structure. Chapters inside the blue box represent articles that were
published or submitted during the development of this thesis.
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Source: The author (2019)
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2 AFFECTIVE COMPUTING

Affective computing was first popularised by Rosalind Picard’s book "Affective Com-
puting" which called for research into automatic sensing, detection and interpretation of
affect and identified its possible uses in the HCI contexts (PICARD, 2000). Automatic
emotion sensing has attracted a lot of interest from various fields and research groups,
including psychology, cognitive sciences, linguistics, computer vision, speech analysis, and
machine learning. The progress in automatic affect recognition depends on the progress
in all of these seemingly disparate fields.

This chapter aims to provide an overview of the field with an emphasis on emotion
sensing from FE. We described the datasets used for the experimentation, as well as some
of the applications of the area.

2.1 THEORIES OF EMOTION

Before discussing on the automatic detection of emotion, we need to understand what
emotion is. Unfortunately, psychologists themselves, have not reached a consensus on the
definitions of emotion. The three most popular ways that emotion has been conceptualised
in psychology research are: discrete categories, dimensional representation, and appraisal-
based (see Figure 4). These theories are a good starting point to understanding affect
for the purposes of automatic emotion recognition as they provide information about the
ways emotion is expressed and interpreted.

2.1.1 Categorical

A popular way to describe emotion is in terms of discrete categories using the lan-
guage from daily life (EKMAN; FRIESEN; ELLSWORTH, 1982). The most popular example
of such categorization are the basic emotions proposed by Paul Ekman (EKMAN; FRIESEN;

ELLSWORTH, 1982). These are: happiness, sadness, surprise, fear, anger, and disgust. Ek-
man suggests that they have evolved in the same way for all mankind and their recog-
nition and expression is independent of education. This is supported by a number of
cross-cultural studies performed by Ekman et al. (EKMAN; FRIESEN; ELLSWORTH, 1982),
suggesting that the FEs of the basic emotions are perceived in the same way, regardless
of culture.

The problem of using the basic emotions for automatic affect analysis is that they
were never intended as an exhaustive list of possible affective states that a person can
exhibit. What makes them basic is their universal expression and recognition, amongst
other criteria (EKMAN; FRIESEN; ELLSWORTH, 1982). Finally, they are not the emotions
that appear most often in everyday life (ROZIN; COHEN, 2003).
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Figure 4 – Different approaches for emotion recognition. In the center, the 2D approach
with dimensions Arousal and Valence.

Source: The author (2019)

Despite these shortcomings, basic emotions are very influential in automatic recog-
nition of affect, as the majority of research has focused on detecting specifically these
emotions, at least until recently (CORNEANU et al., 2016). However, there is a growing
number of evidence that these emotions are not very suitable for the purposes of affective
computing, as they do not appear very often in HCI scenarios (D’MELLO; CALVO, 2013).

There exist alternative categorical representations that include complex emotions.
An example of such a categorization is the taxonomy developed by Baron-Cohen et al.
(BARON-COHEN, 2004). It is a broad taxonomy including 24 groups of 412 different emo-
tions. This taxonomy was created through a linguistic analysis of emotional terms in
the English language. In addition to the basic emotions, it includes emotions such as
boredom, confusion, interest, frustration, etc. The emotions belonging to some of these
categories such as confusion, thinking and interest, seem to be much more common in ev-
eryday human-human and human-computer interactions (D’MELLO; CALVO, 2013; ROZIN;

COHEN, 2003).
Baron-Cohen’s taxonomy has been used by a number of researches in automatic recog-

nition (KALIOUBY; ROBINSON, 2005; SOBOL-SHIKLER; ROBINSON, 2010) and in the de-
scription of affect (MAHMOUD et al., 2011). However, it is not nearly as popular as the
basic emotion categories. Complex emotions might be a more suitable representation,
however, they lack the same level of underlying psychological research when compared to
the six basic emotions. Furthermore, little is understood about the universality and cul-
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tural specificity of the complex emotions, although there has been some work to suggest
the universality of some of them (BARON-COHEN, 1996).

2.1.2 Dimensional Representation

Another way of describing affect is by using a dimensional representation (RUSSELL;

MEHRABIAN, 1977), in which an affective state is characterised as a point in a multi-
dimensional space and the axes represent a small number of affective dimensions. These
dimensions attempt to account for similarities and differences in emotional experience
(FONTAINE et al., 2007). Examples of such affective dimensions are: valence (pleasant vs.
unpleasant); power (sense of control, dominance vs. submission); activation (relaxed vs.
aroused); and expectancy (anticipation and appraisals of novelty and unpredictability).
Fontaine et al. (FONTAINE et al., 2007) argue that these four dimensions account for most
of the distinctions between everyday emotional experiences, and hence form a good set
to analyse. Furthermore, there is some evidence of the cross-cultural generality of these
dimensions (FONTAINE et al., 2007). FEs which could be associated with certain points in
the emotional dimension space.

Dimensional representation allows for more flexibility when analysing emotions when
compared to categorical representations. However, problems arise when one tries to use
only several dimensions, since some emotions become indistinguishable when projecting
high-dimensional emotional states onto lower dimension representations. For example, fear
becomes indistinguishable from anger if only valence and activation are used. Further-
more, this representation is not intuitive and requires training in order to label expressive
behaviour.

Affective computing researchers have started exploring the dimensional representa-
tion of emotion as well. It is often treated as a binary classification problem (GUNES;

SCHULLER, 2013; SCHULLER et al., 2011) (active vs. passive, positive vs. negative etc.);
or even as a four-class one (classification into quadrants of a 2D space). Treating it as
a classification problem loses the added flexibility of this representation, hence there has
been some recent work, treating it as a regression one (BALTRUŠAITIS; BANDA; ROBINSON,
2013; IMBRASAITĖ; BALTRUŠAITIS; ROBINSON, 2013; NICOLLE et al., 2012).

2.1.3 Appraisal based

The third approach for representing emotion, and very influential amongst psycholo-
gists, is the appraisal theory (JUSLIN; SCHERER, 2005). In this representation, an emotion
is described through the appraisal of the situation that elicited the emotion, thus ac-
counting for individual differences. Unfortunately this approach does not lend itself well
for purposes of automatic affect recognition.
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2.2 DATASETS

In this section, we analyze the main databases used in FE. The acquisition of tagged
data of emotion is a problem, due to the subjectivity of the expressions. There are more
than 40 datasets of static images of FE published in the internet.

In most cases, categorical representation for basic emotions is used: Neutral (NE),
Happiness (HA), Surprise (SU), Sadness (SA), Anger (AN), Disgust (DI), Fear (FR),
Contempt (CO). In this work, we selected two types of facial expression datasets: non-
spontaneous and spontaneous. To create non-spontaneous data sets, images of actors that
pose a particular expression are taken. These datasets are captured in controlled environ-
ments indoor and have few images. For the experiments on the non-spontaneous dataset,
three of the most used datasets by the community were selected for this problem: Extended
Cohn-Kanade (CK+) (LUCEY et al., 2010), Japanese Female Facial Expression (JAFFE)
(LYONS et al., 1998) and Binghamton University 3D Facial Expression (BU-3DFE) (YIN

et al., 2006). Spontaneous datasets captured from internet images were labeling for many
non-expert peoples using crowdsourcing. There are few datasets of this type available.
Two of the most important were selected: Extended Emotion FER (FER+)(BARSOUM et

al., 2016a) and Affect from the InterNet (AffectNet)(PICARD, 2000).
Following the recommendation of (LEE et al., 2014), the images in CK+, JAFFE and

BU-3DFE were cropped and selected based on eyes locations. The landmarks were ob-
tained using OpenFace1. The cropped face image was rescaled to the size of 256×256
pixels.

2.2.1 CK+ dataset

The CK+ dataset includes 593 image sequences from 123 subjects. From the 593
sequences, we selected 325 sequences of 118 subjects, which meet the criteria for one of
the seven emotions (LUCEY et al., 2010). The selected 325 sequences consist of 45 AN, 18
CO, 59 DI, 25 FR, 69 HA, 28 SA and 83 SU (LUCEY et al., 2010). In the neutral face case,
we selected the first frame of the sequence of 31 random selected subjects. Figure 5 shows
examples of this dataset and class distribution.

2.2.2 BU-3DFE dataset

The BU-3DFE dataset has been known to be a challenging and difficult mainly due to
a variety of ethnic/racial ancestries and expression intensity (YIN et al., 2006). We selected
a total of 700 expressive face images (1 intensities × 6 expressions × 100 subjects) and
100 neutral face images (each of which is for one subject) (YIN et al., 2006). Figure 6
shows an example of different face expressions. The final selected 580 sequences consist
of expressions of 90 NE, 89 AN, 92 DI, 86 FR, 89 HA, 85 SA and 49 SU.
1 https://github.com/TadasBaltrusaitis/OpenFace
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Figure 5 – Examples of FE images from the CK+ database.
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Figure 6 – Examples of FE images from the BU-3DFE database.
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2.2.3 JAFFE dataset

The JAFFE dataset (LYONS et al., 1998) contains 10 female subjects and 213 images of
FEs. Each image has a resolution of 256×256 pixels. The number of images corresponding
to each of the 7 categories of expression (neutral, happiness, sadness, surprise, anger,
disgust and fear) is almost the same. An example of these categories is presented in
Figure 7. Each actor repeats the same expression several times (2,3 or 4 times). We
selected 201 sequences consist of 30 NE, 25 AN, 28 DI, 30 FR, 31 HA, 31 SA and 26 SU
expressions.

2.2.4 FER+ dataset

The FER dataset from the Kaggle Facial Expression Recognition Challenge, comprises
48-by-48-pixel grayscale images of human faces, each labeled with one of 7 emotion cate-
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Figure 7 – Examples of FE images from the JAFFE database.
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gories: anger, disgust, fear, happiness, sadness, surprise, and neutral. We used a training
set of 28,709 examples, a validation set of 3,589 examples, and a test set of 3,589 examples.
Figure 8 show examples of this dataset and class distribution across training data.

Figure 8 – Examples of FE images from the train FER+ database.
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The FER+ annotations in (BARSOUM et al., 2016a) provide a set of new labels for the
standard Emotion FER dataset. In FER+, each image has been labeled by 10 crowd-
sourced taggers, which provide better quality ground truth for still image emotion than
the original FER labels. Having 10 taggers for each image enables researchers to estimate
an emotion probability distribution per face. This allows constructing algorithms that
produce statistical distributions or multi-label outputs instead of the conventional single-
label output, as described in (BARSOUM et al., 2016a). The distribution in this dataset
consist of 8733 NE, 2098 AN, 116 DI, 536 FR, 7284 HA, 3022 SA, 3136 SU and CO 120
expressions.
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2.2.5 AffectNet dataset

Affect from the InterNet (AffectNet) dataset contains more than one million images
from the Internet that were obtained by querying different search engines using emotion-
related tags. AffectNet is by far the largest database that provides facial expressions in
two different emotion models (categorical model and dimensional model), of which 450000
images have manually annotated labels for eight basic expressions. The distribution in this
dataset consist of 74874 NE, 134416 AN, 25459 DI, 14090 FR, 6378 HA, 3803 SA, 24882
SU and CO 3750 expressions.

Figure 9 – Examples of FE images from the train AffectNet database.
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2.3 APPLICATIONS

There are a number of areas where the automatic detection and synthesis of affect
would be beneficial. Some of the most prominent research areas in commercial and aca-
demic research using emotion recognition techniques are described below:

• Control and Security: Automatic tracking of attention, boredom and stress is
be highly valuable in the safety of critical systems where the attentiveness of the
operator is crucial. Examples of such systems are air traffic control, nuclear power
plant surveillance, and operating a motor vehicle. An automated tracking tool can
make these systems more secure and efficient, because early detection of negative
affective states could alert the operator or others around him, thus helping to avoid
accidents.

• Consumer neuroscience and neuromarketing: Tracking FEs can be leveraged
to substantially enrich self-reports with quantified measures of more unconscious
emotional responses towards a product or service. Based on FE analysis, products
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can be optimized, market segments can be assessed, and target audiences and per-
sonas can be identified.

• Media testing & advertisement: In media research, individual respondents or
focus groups can be exposed to TV advertisements, trailers, and full-length pilots
while monitoring their FEs. Identifying scenes where emotional responses (particu-
larly smiles) were expected but the audience just did not "get it" is as crucial as to
find the key frames that result in the most extreme FEs.

• Psychological research: Psychologists analyze FEs to identify how humans re-
spond emotionally towards external and internal stimuli. In systematic studies, re-
searchers can specifically vary stimulus properties (color, shape, duration of presen-
tation) and social expectancies in order to evaluate how personality characteristics
and individual learning histories impact FEs.

• Clinical psychology and psychotherapy: Clinical populations such as patients
suffering from Autism Spectrum Disorder (ASD), depression or Borderline Person-
Ality Disorder (BPD) are characterized by strong impairments in modulating, pro-
cessing, and interpreting their own and others’ FEs. Monitoring FEs while patients
are exposed to emotionally arousing stimuli or social cues (faces of others, for ex-
ample) can significantly boost the success of the underlying cognitive-behavioral
therapy, both during the diagnostic as well as the intervention phase. An excellent
example is the "Smile Maze" as developed by the Temporal Dynamics of Learning
Center (TDLC) at UC San Diego. Here, autistic children train their FEs by playing
a Pacman-like game where smiling steers the game character.

• Medical applications & plastic surgery: The effects of facial nerve paralysis can
be devastating. The causes of this problem includes Bell’s Palsy, tumors, trauma,
diseases, and infections. Patients generally struggle with significant changes in their
physical appearance, the ability to communicate, and to express emotions. FE anal-
ysis can be used to quantify the deterioration and evaluate the success of surgical
interventions, occupational and physical therapy targeted towards reactivating the
paralyzed muscle groups. Affect sensing systems could also be used to monitor pa-
tients in hospitals, or when medical staff are not readily available or overburdened. It
could also be used in assisted living scenarios to monitor the patients and inform the
medical staff during emergencies. There are some promising developments in med-
ical applications of affective computing. One such development is the automatic
detection of pain as proposed by Ashraf et al. (ASHRAF et al., 2009).

• Software User Interface (UI) & website design: Ideally, handling software and
navigating websites should be a pleasant experience - frustration and confusion levels
should certainly be kept as low as possible. Monitoring FEs while testers browse
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websites or software dialogs can provide insights into the emotional satisfaction
of the desired target group. Whenever users encounter road blocks or get lost in
complex sub-menus, you might certainly see increased "negative" FEs such as brow
furrowing or frowning.

• Engineering of artificial social agents (avatars): Until recently, robots and
avatars were programmed to respond to user commands based on keyboard and
mouse input. Latest breakthroughs in hardware technology, computer vision, and
machine learning have laid the foundation for artificial social agents, who are able to
reliably detect and flexibly respond to emotional states of the human communication
partner.

2.4 CONCLUSION

This chapter presented an overview of some essential concepts about the theoretical
representation of the emotion. We describe the datasets used in this work and some of
the applications that employ this type of technology. The next chapters describe the main
results obtained in this work for the representation of the facial expression.
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3 FEATURE ENGINEERING METHODS FOR FER VIA SPARSE
REPRESENTATION[1]

Figure 10 – Examples of the new images generate with SR reconstruction. Signals can
be rebuilt with SR, the result depends on the images used for creating the
dictionary. These reconstruction signals are using in this work for generated
new training samples.

Source: The author (2019)

The objective of this chapter is to propose a new facial expression recognition sys-
tem for small datasets, that used different representations and combine them through a
learned model. For this task we perform the following steps: 1) we obtain several represen-
tations of a facial expression applying different methods of representation; 2) we applied a
new dataset regeneration method for augmenting the signals; 3) we carry each of the rep-
resentations obtained to the same domain (the domain of representation errors of Sparse
Representation (SR)); 4) and in this new space, we train a combination model to classify
the signals. The Extended Cohn-Kanade (CK+) dataset, BU-3DFE dataset, and JAFFE
dataset are used to validate the results. We compared 14 combination methods for 247
possible combinations of 8 different features spaces. As a result of this work, we obtained
the best combination rule for this type of problem and a process that improves the results
compared to other methods from the state of the art.

3.1 INTRODUCTION

The notion of Sparse Representation (SR)s, or finding sparse solutions to under-
determined systems, has found applications in a variety of scientific fields. The resulting
sparse models are similar in nature to the network of neurons in V1, the first layer of
the visual cortex in the human, and more generally, the mammalian brain (OLSHAUSEN;
1 Pedro D. Marrero Fernandez, Antoni Jaume-i-Capó, Jose M. Buades-Rubio and Tsang Ing Ren; Centro

de Informática, Universidade Federal de Pernambuco, Brazil; Computer Graphics, Vision and Artificial
Intelligence Group (UGIVIA), Department of Mathematics and Computer Science, University of the
Balearic Islands, 07122 Palma de Mallorca, Spain
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FIELD, 1997; OLSHAUSEN; others, 1996). Patterns of light are represented by a series of in-
nate or learned basis functions, whereby sparse linear combinations form surrogate input
stimuli to the brain. Similarly, for many input signals of interest, such as natural images,
a small number of exemplars can form a surrogate representation of a new test image.

In SR systems, new test images are efficiently represented by sparse linear coefficients
on a dictionary 𝐷 of over-complete basis functions. Specifically, SR systems are comprised
of an input sample 𝑥 ∈ R𝑚 along with a dictionary 𝐷 of 𝑛 samples, 𝐷 ∈ R𝑚×𝑛. SR solves
for coefficients 𝛼 ∈ R𝑛 that satisfy the 𝑙1 minimization problem 𝑥⋆ = 𝐷𝛼.

The advantages of exploiting sparsity in pattern classification have been extensively
demonstrated for the FER problems (WRIGHT et al., 2009; WEIFENG; CAIFENG; YAN-

JIANG, 2012; ZHANG; LI; ZHAO, 2012; PTUCHA; SAVAKIS, 2012). The experimental results
of (WRIGHT et al., 2009) showed that the magnitude of the representation errors the facial
feature vectors obtained for Sparse Representation (SR) is a good metric to classified the
facial expressions.

Different techniques of emotion representation have been created and will be created
in the next years. Representations can be features designed by experts (feature engineer-
ing methods)(WEIFENG; CAIFENG; YANJIANG, 2012; ZHANG; LI; ZHAO, 2012; PTUCHA;

SAVAKIS, 2013; PTUCHA; SAVAKIS, 2012) or embedded vectors obtained training a deep
network. The main objective of this chapter is to define a new facial expression recog-
nizing system that use representation obtained from different sources and combine them
through a learned model.

For this task we perform the following steps: 1) we obtain several representations of
a facial expression applying different methods of representation; 2) we carry each of the
representations obtained to the same domain, the domain of representation errors of SR;
3) in this new space, we train a combination model to classify the signals. Training models
in small data sets is a challenge. We also propose the creation of new training signals using
SR to increase the training data and thus increase the performance of the classification
models. Figure 10 shows examples of the new images generated from the training images
by our method. We used these images to train the FER system.

3.2 RELATED WORKS

Ying et. al. (YING; WANG; HUANG, 2010) used Local Binary Patterns (LBP) and Image
Raw (RAW) to train two classifiers based on SRC. For each of these schemes (LBP+SRC
and RAW+SRC), the approximation error signal is obtained for each class. This error is
used as a fuzzy measure for evaluation of a decision rule. The residual ratio is calculated
as the ratio between the second smallest residual and the smallest residual for LBP+SRC
and RAW+SRC methods. If the results of two classifiers were not the same, the classifi-
cation with the larger residual ratio is chosen. In Li et al. the classifiers are trained using
Local Phase Quantization (LPQ) and GW+Addabost (LI; YING; YANG, 2014). Then, the
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Adaboost algorithm is used to select the most effective 100 features from each Gabor
filter. As in Ying et al. the classification result with the larger residual ratio is chosen if
the classification of two classifiers is not the same (YING; WANG; HUANG, 2010).

Ouyang, Yan (OUYANG; SANG; HUANG, 2015) used Histogram of Oriented Gradients
(HOG) and LBP. This approach is based on the idea that the two features are comple-
mentary because HOG mainly extracts contour-based shape while LBP primarily extracts
the texture information of the images. The output of each classifier is used for evaluating
a decision rule and they applied combination rules (KITTLER et al., 1998). The combina-
tion rules: Product Rule (RP) and the SR provide the best results. Several studies also
employ dynamic features (PTUCHA; SAVAKIS, 2012; JI; IDRISSI, 2012; TSALAKANIDOU;

MALASSIOTIS, 2010). In these works, the variability of facial changes is studied using the
images or interest points in the face image.

3.3 METHODOLOGY

3.3.1 Feature Extraction Methods

In this work, we have grouped the feature methods in local, geometric and global.
The local features will be defined from the extraction of supervised features on the facial
patches. The facial patches are defined as a region in the face that are active during dif-
ferent FEs. It is reported that some facial patches are common during elicitation of all
basic expressions, and some are confined to a single expression (ZHONG et al., 2012). The
results indicate that these active patches are positioned below the eyes, in between the
eyebrows, around the nose and mouth. To extract these patches from the face image, we
have first to locate the facial components. In this work, the locations of active patches are
defined with respect to the positions of landmarks that can be estimated using OpenFace1

(BALTRUŠAITIS; ROBINSON; MORENCY, 2016). Happy and Routray (HAPPY; ROUTRAY,
2015) observed that the features from fewer facial patches can replace the high dimen-
sional features without a significant decrease in the recognition accuracy. The Geometric
Features (GEO) are defined from the distances and regions between the different land-
marks (TSALAKANIDOU; MALASSIOTIS, 2010). The global methods employ unsupervised
features obtained by the Deep Learning models pre-trained "VGG" and "VGGFace" over
the entire image (PARKHI; VEDALDI; ZISSERMAN, 2015).

Gabor Wavelets (GW). Gabor filters have been successfully applied to facial
expression recognition (ZHANG; LI; ZHAO, 2012; LI; YING; YANG, 2014). Gabor wavelets
were introduced to image analysis because of its importance from the biological point of
view since it has been shown to be able to model the properties of the cells in the receptive
fields of the visual cortex of animals.
1 https://github.com/TadasBaltrusaitis/OpenFace
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A family of Gabor kernel is the product of a Gaussian envelope and a plane wave,
defined as:

Ψ𝜇,𝜈(𝑧) = ‖𝑘𝜇,𝜈‖2

𝜎2 𝑒− ‖𝑘𝜇,𝜈‖2‖𝑧‖2

2𝜎2

[︂
𝑒𝑖𝑘𝜇,𝜈𝑧 − 𝑒− 𝜎2

2

]︂
(3.1)

where 𝑧 = (𝑥, 𝑦) is the variable in the spatial domain, 𝑘𝜇,𝜈 is the frequency vector 𝑘𝜇,𝜈 =
𝑘𝜈𝑒𝑖𝜑𝜇 , 𝑘𝜈 = 𝑘𝑚𝑎𝑥/𝑓 𝜈 , 𝑘𝑚𝑎𝑥 = 𝜋/2, 𝑓 =

√︁
(2) and 𝜑𝜇 = 𝜋𝜇/8, 𝜇 and 𝜈 are orientation and

scale factors, respectively. Different kernels can be obtained by varying 𝜇 and 𝜈.
Given an image 𝐼(𝑧), the Gabor transformation at a particular position can be com-

puted by a convolution with the Gabor Kernels using 𝐺𝜇,𝜈 = 𝐼(𝑧)×Ψ𝜇,𝜈(𝑧). The magni-
tude of the resulting complex image is given by |𝐺| =

√︁
𝑅𝑒(𝐺)2 + 𝐼𝑚(𝐺)2. All features

are obtained from |𝐺|. The feature vector 𝐹 is defined as:

𝐹𝑘,𝑙 =
𝑥𝑙+𝑘∑︁

𝑖=𝑥𝑙−𝑘

𝑦𝑙+𝑘∑︁
𝑗=𝑦𝑙−𝑘

|𝐺𝑖𝑗|, 𝑙 = 0, 1, . . . , 𝑁, 𝑘 = 1, 3, 5, 7, 9. (3.2)

where 𝑁 is the number of the landmark point in the face image, 𝑥𝑙 and 𝑦𝑙 are the coor-
dinates of the landmark point 𝑙 in 2𝑘 + 1 neighborhood. In this work 68 landmark points
were selected. For each point a patch of size (2𝑘 + 1) × (2𝑘 + 1) is used to compute the
feature vector according to Equation 3.2. Five scale and eight orientation were used to
calculate the Gabor Kernels and 𝑘 = 7. This selection generate a vector of 2176 elements.

Local Binary Patterns (LBP). LBP was widely used as a robust illumination
invariant feature descriptor. This operator generates a binary number by comparing the
neighbouring pixel values with the center pixel value (HUANG; WANG; YING, 2010). The
pattern with 8 neighborhoods is given by

𝐿𝐵𝑃 (𝑥, 𝑦) =
7∑︁

𝑛=0
𝑠(𝑖𝑛 − 𝑖𝑐) * 2𝑛 (3.3)

where 𝑖𝑐 is the pixel value at coordinate (𝑥, 𝑦) and 𝑖𝑛 are the pixel values at coordinates
in the neighborhoods of (𝑥, 𝑦), and

𝑠(𝑥) =

⎧⎪⎨⎪⎩1 𝑥 ≥ 0

0 𝑥 < 0
(3.4)

The histograms of LBP image can be utilized as feature descriptors, given by:

𝐻𝑖 =
∑︁
𝑥,𝑦

{𝐿𝐵𝑃 (𝑥, 𝑦) = 𝑖}, 𝑖 = 0, 1, . . . , 𝑛− 1 (3.5)

where 𝑛 is the number of labels produced by the LBP operator.
In addition, uniform LBP and rotation invariant uniform LBP (HUANG; WANG; YING,

2010) are also used in the experiment, and their performances are compared. Uniformity
measure (𝑈) corresponds to the number of bitwise transitions from 0 to 1 or vice-versa in a
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pattern when the bit pattern is traversed circularly. For instance, the pattern (00000001)2

and (00100110)2 have 𝑈 values 2 and 4 respectively. The pattern is called uniform (LBPu2)
when 𝑈 <= 2. This reduces the length of the eight-neighborhood patterns to 59-bin
histograms. The effect of rotation can be removed by assigning a unique identifier to each
rotation invariant pattern, given by:

𝐿𝐵𝑃𝑟𝑖𝑢2 =

⎧⎪⎨⎪⎩
∑︀7

𝑛=0 𝑠(𝑖𝑛 − 𝑖𝑐) 𝑖𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑠 𝑢𝑛𝑖𝑓𝑜𝑟𝑚

9 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.6)

Thus, the rotational invariant uniform LBP with eight neighborhood produces 10 his-
togram bins.

Histograms of Oriented Gradients (HOG). The basic idea of HOG features
is that the local object appearance and shape can often be well characterized by the distri-
bution of the local intensity gradients or edge directions, even without precise knowledge
of the corresponding gradient or edge positions. The orientation analysis is robust to the
change in illumination since the histogram gives translational invariance. We formulate a
2D HOG on the 𝑋𝑌 plane. Given an image 𝐼, the horizontal and vertical derivatives 𝐼𝑥

and 𝐼𝑦 are obtained using the convolution operation. More specifically 𝐼𝑥 = 𝐼 *𝐾𝑇 and
𝐼𝑦 = 𝐼 *𝐾, where 𝐾 = [−1 0 1]𝑇 . For each point of the image, its local gradient direction
𝜃 and gradient magnitude 𝑚 are computed as follows:

𝜃 = arg(∇𝐼) = arctan(𝐼𝑦/𝐼𝑥), (3.7)

𝑀 = |∇𝐼| =
√︁

𝐼2
𝑥 + 𝐼2

𝑦 . (3.8)

Let the quantization level for 𝜃 be 𝐵 and ℬ = {1, · · · , 𝐵}, note that 𝜃 ∈ [−𝜋, 𝜋]. Thus
a quantization function of 𝜃 is a mapping 𝑄 : [−𝜋, 𝜋] → ℬ. As a result, the HOG for a
local 2D region (i.e a block) or a sequence of 2D regions (i.e a cuboid) 𝒩 is a function
𝑔 : ℬ → 𝑅. More specifically, it is defined as

𝑔(𝑏) =
∑︁
𝑥∈𝒩

𝛿(𝑄(𝜃(𝑥)), 𝑏) ·𝑚(𝑥), (3.9)

where 𝑚(𝑥) is defined as the magnitude at the point 𝑥, 𝑏 ∈ ℬ and 𝛿(𝑖, 𝑗) is the Kronecker’s
delta function:

𝛿(𝑖, 𝑗) =

⎧⎪⎨⎪⎩1 𝑖𝑓 𝑖 = 𝑗

0 𝑖𝑓 𝑖 ̸= 𝑗
(3.10)

For HOG, each pixel within the block or cuboid has a weighted vote for a quantized
orientation channel 𝑏 according to the response found in the gradient computation.

Local Phase Quantization (LQP). In digital image processing, a blurred image
can be obtained from the original image and the Point Spread Function (PSF), i.e. 𝐺(𝑢) =
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𝐹 (𝑢)𝐻(𝑢), where 𝐺(𝑢), 𝐹 (𝑢), 𝐻(𝑢), are the Fourier transform of the blurred image, the
original images and the PSF respectively. In LPQ, local M-by-M neighborhoods 𝑁𝑦 at
each pixel position 𝑥 of the image 𝐼(𝑥) can examine the phase:

𝐹 (𝑢, 𝑥) =
∑︁

𝑦∈𝑁𝑥

𝑓(𝑥− 𝑦)𝑒−𝑗2𝜋𝑢𝑇 𝑦 (3.11)

where, 𝑢 is frequency. In LPQ, four complex coefficients are 𝑢1 = [𝑎, 0]𝑇 , 𝑢2 = [0, 𝑎]𝑇 , 𝑢3 =
[𝑎, 𝑎]𝑇 , 𝑢4 = [𝑎,−𝑎]𝑇 , where 𝑎 is a small scalar that satisfies 𝐻(𝑢𝑖) > 0, so each pixel
position 𝐹 (𝑥) is defined as 𝐹 (𝑥) = [𝐹 (𝑢1, 𝑥), 𝐹 (𝑢2, 𝑥), 𝐹 (𝑢3, 𝑥), 𝐹 (𝑢4, 𝑥)] and 𝐺(𝑥) =
[𝑅𝑒𝐹 (𝑥), 𝐼𝑚𝐹 (𝑥)]. The phase of Fourier coefficient can be achieved by the symbols of
each part of the real and imaginary to represent

𝑞𝑗 =

⎧⎪⎨⎪⎩1 𝑔𝑗 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.12)

where 𝑔𝑗(𝑥) is the j-th component of 𝐺(𝑥). The resulting eight binary coefficients 𝑞𝑗(𝑥)
are represented as integer values using binary coding.

𝑓𝐿𝑃 𝑄(𝑥) =
8∑︁

𝑗=1
𝑞𝑗(𝑥)2𝑗−1. (3.13)

Geometric Features (GEO). Geometric measurements are computed using the
68 landmarks (TSALAKANIDOU; MALASSIOTIS, 2010). Figure 11 shows the selected order
of the landmarks in this work. The order and the number of landmarks change in some
of the works cited. We maintained the appropriate correspondence in all cases. Table 2
shows the 17 geometric distance measures used.

In this work, also used shape measures for the regions of the eyes, nose, and mouth. We
define the regions from the landmarks in the region. For example, the region of the left eye
is defined by landmarks 37, 38, 38, 40, 41 and 42. The measures are defined for each region
as follows: Soliditys (𝑀18), returns a scalar specifying the proportion of the pixels in the
convex hull that are also in the region, computed as 𝐴𝑟𝑒𝑎/𝐶𝑜𝑛𝑣𝑒𝑥𝐴𝑟𝑒𝑎; Axes relationship
(𝑀19), ratio of the distance between minor and major axis length of ellipse that has the
same normalized second central moments as the region, computed as 𝐴𝑥𝑖𝑠𝑀𝑖𝑛/𝐴𝑥𝑖𝑠𝑀𝑎𝑥;
Circularity factor (𝑀20), computed as 4𝜋𝐴𝑟𝑒𝑎𝑠/𝑃𝑒𝑟𝑚𝑠2; Eccentricity (𝑀21), scalar that
specifies the eccentricity of the ellipse that has the same second-moments as the region;
Extent (𝑀22), scalar that specifies the ratio of pixels in the region to pixels in the total
bounding box. The distances of the centroids from each region to the center of the nose
were also calculated.

Pre-training deep models. Recently, several deep learning algorithms have been
proposed applied to FER (LIU et al., 2014a; LIU et al., 2014b; MOLLAHOSSEINI; CHAN; MA-

HOOR, 2016; FERNANDEZ et al., 2019). Our interest is to combine different representation
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Figure 11 – The 68 landmarks used in this work. The order and the number of landmarks
vary in some of the works cited. We maintained the appropriate correspon-
dence in all cases.

Source: The author (2019)

spaces, which is why we select pre-trained models to obtain a representation of the facial
expression. Training of deep learning architectures for FER is a problem for data sets such
as CK+, JAFFE, BU-3DFE due to the small number of elements in these sets. Models
trained in these datasets are overfitting, which could hinder the objective analysis of the
contribution of characteristics of this model to our system. Therefore, we selected general
classification models (object classification and facial classification models) pre-trained on
extensive databases such as the models VGG-face (PARKHI; VEDALDI; ZISSERMAN, 2015)
and VGG model (SIMONYAN; ZISSERMAN, 2014a). In VGGFace model case, as a feature,
we have selected the output of the Relu layer 33. In the VGG model, we select the output
of the Relu layer 34. The dimension of both vectors is 4096.

3.3.2 Classification via Sparse Representation

Consider a set of training signals 𝐷 = [𝐷1, 𝐷2, . . . , 𝐷𝑘] ∈ R𝑚×𝑝 from 𝑘 different classes,
where the columns of each sub-matrix 𝐷𝑗 are signals from the class 𝑤𝑗. Ideally, giving
sufficient training samples of class 𝑤𝑗, where 𝐷𝑗 = [𝑑𝑗

1, 𝑑𝑗
2, . . . , 𝑑𝑗

𝑛𝑗
] ∈ R𝑚×𝑛𝑗 , a test signal

𝑥 ∈ R𝑚 that belongs to the same class can be approximated by a linear combination of
the training samples from 𝐷𝑗, which can be written as:

𝑥 =
𝑛𝑗∑︁

𝑖=1
𝛼𝑗

𝑖 𝑑
𝑗
𝑖 , (3.14)
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Table 2 – Geometric facial measurements. 𝑑𝑖𝑗: Euclidean distance between landmarks 𝑖 y
𝑗, 𝛼: angle between two lines, 𝜉𝑖𝑗: line defined by 𝑖 and 𝑗. 𝑙𝑖𝑗𝑘 length of the curve
defined by 𝑖, 𝑗, 𝑘, 𝑜1 and 𝑜2: center of the right and left eye respectively.

𝑀1 Inner eyebrow displacement 𝑑40,22, 𝑑43,23

𝑀2 Outer eyebrow displacement 𝑑18,𝑜1 , 𝑑28,𝑜2

𝑀3 Inner eyebrow corners dist. 𝑑22,23

𝑀4 Eyebrow from nose root dist. 𝑑22,28, 𝑑23,28

𝑀5 Eye opening 𝑑39,41, 𝑑44,48

𝑀6 Eye shape 𝑑39,41/𝑑37,40, 𝑑44,48/𝑑29,46

𝑀7 Nose length 𝑑29,31

𝑀8 Nose width 𝑑32,36

𝑀9 Lower lip boundary length 𝑙55,56,57,58,59,60,49

𝑀10 Mouth corners dist. 𝑑49,55

𝑀11 Mouth opening 𝑑63,67

𝑀12 Mouth shape 𝑑63,67/𝑑49,55

𝑀13 Nose–mouth corners angle 𝛼(𝜉32,49, 𝜉36,55)
𝑀14 Mouth corners to eye dist. 𝑑𝑜1,49, 𝑑𝑜2,55

𝑀15 Mouth corners to nose dist. 𝑑49,34, 𝑑55,34

𝑀16 Upper lip to nose dist. 𝑑52,34

𝑀17 Lower lip to nose dist. 𝑑67,34

Source: The author (2019)

that can be rewritten as:

𝑥 = 𝐷𝛿𝑗(𝛼) ∈ R𝑚 (3.15)

where 𝛿𝑗(𝛼) = [0, . . . 0, 𝛼𝑗
1, 𝛼𝑗

2, . . . , 𝛼𝑗
𝑛𝑗

, 0 . . . , 0]𝑇 ∈ R𝑝 is a vector of coefficient having most
of the values equals to zero, except those associated with the class 𝑤𝑗. Since a valid test
sample 𝑥 can be sufficiently represented only using the training samples from the same
class, and this representation is the sparsest among all others, to find the identity of 𝑥

is equal to find the sparsest solution of Equation 3.15. This is the same as solving the
following optimization problem (𝑙0-minimization):

𝛼⋆ = arg min
𝛼∈R𝑝
‖𝛼‖0 𝑠.𝑡 𝐷𝛼 = 𝑥 (3.16)

However, solving the 𝑙0-minimization of an undetermined system of linear equations is
NP-hard. If the sought solution 𝛼⋆ is sparse, the solution of the 𝑙0-minimization problem,
as defined in Equation 3.16, is equal to the solution of the following 𝑙1-minimization
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problem (DONOHO, 2006):

𝛼⋆ = arg min
𝛼∈R𝑝
‖𝛼‖1 𝑠.𝑡 𝐷𝛼 = 𝑥 (3.17)

Algorithm 1 below summarizes the complete recognition procedure. The implementa-
tion minimizes the 𝑙1-norm via a primal-dual algorithm for linear programming based in
Sparse toolbox 2.

Algorithm 1 Sparse Representation-based Classification (SRC). 𝐷 = [𝐷1, . . . , 𝐷𝑘] ∈
R𝑚×𝑝 optional error tolerance, for 𝑘 classes, 𝑥 ∈ R𝑚 a test sample; 𝜖 optional error
tolerance.

1: Normalize the columns of 𝐷 to have unit 𝑙2-norm
2: Solve the 𝑙1-minimization problem:

𝛼⋆
1 ∈ arg min

𝛼
‖𝛼‖1 𝑠.𝑡. 𝑥 = 𝐷𝛼 (3.18)

(Or alternatively, solve)

𝛼⋆
1 ∈ arg min

𝛼
‖𝛼‖1 𝑠.𝑡. ‖𝐷𝛼− 𝑥‖ ≤ 𝜖 (3.19)

3: Compute the residuals
4: for 𝑖 = 1, . . . , 𝑘 do
5:

𝑟𝑖 = ‖𝑥−𝐷𝛿𝑖(𝛼⋆
1)‖2

2 (3.20)
where 𝛿𝑖 selects the entries of 𝛼⋆ corresponding to the class 𝑖

6: end for
7: Return:

𝚤̂ ∈ arg max
𝑖∈{1,...,𝑘}

𝑟𝑖 (3.21)

the estimated class 𝚤̂ for the signal 𝑥.

3.3.3 Multiclasification Systems

Classifier ensembles are successfully receiving great attention and accolade, not to men-
tion the spawning wealth of research. Theoretical and empirical studies have demonstrated
that an ensemble of classifiers is typically more accurate than a single classifier. Research
on classifier ensembles permeate many strands machine learning including streaming data,
concept drift and incremental learning (ELWELL; POLIKAR, 2011).

The parallel combining of classifiers is computed for different feature sets. This may
be especially useful if the objects are represented by different feature sets, when they are
described in different physical domains (e.g. sound and vision), or when they are processed
by different types of analysis (e.g. moments and frequencies). The original set of features
may also be split into subsets in order to reduce the dimensionality and hopefully the
2 http://spams-devel.gforge.inria.fr/
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accuracy of a single classifier. Parallel classifiers are often, but not necessarily, of the
same type.

This subsection discusses ten combining methods based on proposals (KUNCHEVA;

RODRIGUEZ, 2014; JACOBS, 1995; KITTLER et al., 1998). In (KUNCHEVA; RODRIGUEZ,
2014) be include a common probabilistic framework for the following four combination
methods: Majority Vote (MV), Weighted Majority Vote Rule (WMV), Recall Rule (REC)
and Naive Bayes Rule (NB). Each combiner is obtained from the previous one when a
certain assumption is relaxed or dropped. Proposal (KITTLER et al., 1998) is provided with
a theoretical underpinning of many existing classifier combination schemes for fusing the
decisions of multiple experts, each employing a distinct pattern representation. It has
been demonstrated that under different assumptions, and using different approximations
we can derive the commonly used classifier combination schemes such as the Product Rule
(RP), Sum Rule (RS), Min Rule (RMI), Max Rule (RMX) and Median Rule (RMD).

The outputs of the input classifiers can be regarded as a mapping to an intermediate
space. A combining classifier applied on this space then makes a final decision for the
class of a new object. In (JACOBS, 1995) one version of constrained regression for finding
the weights that minimize the variance is derived by assuming the expert’s errors in
approximating the posterior probability.

Probabilistic set-up. Consider a set of classes Ω = {𝑤1, . . . , 𝑤𝑐} and a classifier
ensemble of 𝐿 classifiers. Denote by 𝑠𝑖 the class label proposed by classifier 𝑖 (𝑠𝑖 ∈ Ω). We
are interested in the probability:

𝑃 (𝑤𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠 |𝑠1, 𝑠2, . . . , 𝑠𝐿), 𝑘 = 1, . . . , 𝑐, (3.22)

denoted for short 𝑃 (𝑤𝑘|𝑠), where 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝐿]𝑇 is a label vector. Assume that the
classifiers give their decisions independently, conditioned upon the class label which leads
to the following decomposition:

𝑃 (𝑤𝑘|𝑠) = 𝑃 (𝑤𝑘)
𝑃 (𝑠)

∏︁
𝑖

𝑃 (𝑠𝑖|𝑤𝑘). (3.23)

Once a set of posterior probabilities 𝑝𝑖𝑗(𝑥), 𝑖 = 1, 𝑚; 𝑗 = 1, 𝑐 for 𝑚 classifiers and 𝑐

classes is computed for test object 𝑥, they have to be combined into a new set 𝜇𝑗(𝑥) that
can be used, by maximum selection, for the final classification. We distinguish two sets of
rules, hard combiners and soft combiners.

The combining rules. Let 𝑥 ∈ R𝑛 be a feature vector and {1, 2, . . . , 𝑐} be the
label set of 𝑐 classes. We call a classifier every mapping:

𝐷 : R𝑛 −→ [0, 1]𝑐 − 0, (3.24)

where 0 = [0, 0, . . . , 0]𝑇 is the origin of R𝑐. We call the output of 𝐷 a "class label" and
denote it by [𝜇1

𝐷(𝑥), . . . , 𝜇𝑐
𝐷(𝑥)]𝑇 , 𝜇𝑖

𝐷(𝑋) ∈ [0, 1]. The components 𝜇𝑖
𝐷(𝑥) can be regarded
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as (estimates of) the posterior probabilities for the classes, give 𝑥, i.e, 𝜇𝑖
𝐷 = 𝑃 (𝑖|𝑥).

Alternatively, 𝜇𝑖
𝐷(𝑥) can be viewed as typicalness, belief, certainty, possibility, etc. Bezdek

et al. (KELLER; KRISNAPURAM; PAL, 2005) define three types of classifiers:

1. Crisp classifier: 𝜇𝑖
𝐷(𝑥) ∈ {0, 1},∑︀𝑐

𝑖=1 𝜇𝑖
𝐷(𝑥) = 1,∀𝑥 ∈ R𝑛;

2. Fuzzy classifier: 𝜇𝑖
𝐷(𝑥) ∈ [0, 1],∑︀𝑐

𝑖=1 𝜇𝑖
𝐷(𝑥) = 1,∀𝑥; (Probabilistic interpretation of

the outputs fall in this category)

3. Possibilistic classifier: 𝜇𝑖
𝐷(𝑥) ∈ [0, 1],∑︀𝑐

𝑖=1 𝜇𝑖
𝐷(𝑥) > 0,∀𝑥;

The decision of 𝐷 can be "hardened" so that a crisp class label in {1, 2, . . . , 𝑐} is
assigned to 𝑥. This is typically done by the maximum membership rule:

𝐷(𝑥) = 𝑘 ⇔ 𝜇𝑘
𝐷 = max

𝑖=1,...,𝑐
𝜇𝑖

𝐷(𝑥). (3.25)

Let 𝐷1, . . . , 𝐷𝐿 be the set of 𝐿 classifiers. We denote the output of the ith classifier as
𝐷𝑖(𝑥) = [𝑑𝑖,1(𝑥), . . . ; 𝑑𝑖,𝑐(𝑥)]𝑇 , where 𝑑𝑖,𝑗(𝑥) is the degree of "support" given by classifier
𝐷𝑖 to the hypothesis that 𝑥 comes from class 𝑗. We construct ̂︁𝐷, the fused output of the
𝐿 first-level classifiers as:

̂︁𝐷 = 𝐹 (𝐷1(𝑥), . . . , 𝐷𝐿(𝑥)), (3.26)

where 𝐹 is called aggregation rule.
The combining of hard classifiers. In (KUNCHEVA; RODRIGUEZ, 2014) pro-

pose a common probabilistic framework for the following four combination methods: MV,
WMV, REC and NB. It is shown a summary of each of the equations.

• Majority Vote:

log(𝑃 (𝑤𝑘|𝑠)) ∝ log( 1− 𝑝

𝑝(𝑐− 1)) log(𝑃 (𝑤𝑘)) + |𝐼𝑘
+| (3.27)

where |𝐼𝑘
+| is the number of votes for 𝑤𝑘.

• Weighted Majority Vote Rule:

log(𝑃 (𝑤𝑘|𝑠)) ∝ log(𝑃 (𝑤𝑘)) +
∑︁

𝑖∈|𝐼𝑘
+|

𝜃𝑖 + |𝐼𝑘
+| × log(𝑐− 1) (3.28)

where 𝜃𝑖 = log( 𝑝𝑖

1−𝑝𝑖
), 0 < 𝑝𝑖 < 1
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• Recall Rule:

log(𝑃 (𝑤𝑘|𝑠)) ∝ log(𝑃 (𝑤𝑘)) +
∑︁

𝑖

log(1− 𝑝𝑖𝑘) +
∑︁

𝑖∈|𝐼𝑘
+|

𝑣𝑖𝑘 + |𝐼𝑘
+| × log(𝑐− 1). (3.29)

where 𝑣𝑖𝑘 = log( 𝑝𝑖𝑘

1−𝑝𝑖𝑘
), 0 < 𝑝𝑖𝑘 < 1

• Naive Bayes Rule:

log(𝑃 (𝑤𝑘|𝑠)) ∝ log(𝑃 (𝑤𝑘)) +
∑︁

𝑖

log(𝑝𝑖,𝑠𝑖,𝑘) (3.30)

The combining of soft classifiers. In (KITTLER et al., 1998) which provided a
theoretical underpinning of many existing classifier combination schemes for fusing the
decisions of multiple experts, each employed a distinct pattern representation. It has been
demonstrated that under different assumptions and using different approximations we can
derive the commonly used classifier combination schemes such as the RP, RS, RMI, RMX,
RMD, and MV. It is shown a summary of each of the equations.

• Product Rule:

𝑃 (−(𝑅−1))(𝑤𝑗)
∏︁

𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

𝑃 (−(𝑅−1))(𝑤𝑘)
∏︁

𝑖

𝑃 (𝑤𝑘|𝑥𝑖) (3.31)

which under the assumption of equal priors, simplifies to the following:

∏︁
𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

∏︁
𝑖

𝑃 (𝑤𝑘|𝑥𝑖) (3.32)

• Sum Rule:

(1−𝑅)𝑃 (𝑤𝑗) +
∑︁

𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

[(1−𝑅)𝑃 (𝑤𝑘) +
∑︁

𝑖

𝑃 (𝑤𝑘|𝑥𝑖)] (3.33)

which under the assumption of equal priors simplifies to the following:

∑︁
𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

∑︁
𝑖

𝑃 (𝑤𝑘|𝑥𝑖) (3.34)

• Min Rule:

(1−𝑅)𝑃 (𝑤𝑗) + 𝑅 max
𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

𝑃 (−(𝑅−1))(𝑤𝑘) min
𝑖

𝑃 (𝑤𝑘|𝑥𝑖) (3.35)

which under the assumption of equal priors simplifies to the following:

max
𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

min
𝑖

𝑃 (𝑤𝑘|𝑥𝑖) (3.36)
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• Median Rule:

𝑃 (−(𝑅−1))(𝑤𝑗) min
𝑖

𝑃 (𝑤𝑗|𝑥𝑖) = max
𝑘

𝑚𝑒𝑑𝑖𝑃 (𝑤𝑘|𝑥𝑖) (3.37)

• Majority Vote:

∑︁
𝑖

Δ𝑗𝑖 = max
∑︁

𝑖

Δ𝑘𝑖 (3.38)

where: Δ𝑘𝑖 = 1 if 𝑃 (𝑤𝑘|𝑥𝑖) = max𝑗 𝑃 (𝑤𝑗|𝑥𝑖) or 0 in otherwise.

Trainable combining of classifier. Several trainable combined methods have
been proposed in the literature but two fundamental approaches are highlighted, the
Weighted Average and Fuzzy Integral (FI) (KUNCHEVA, 2004). The weights are set to ex-
press the quality of the classifiers. Accurate and robust classifiers should receive weights
with larger value, such weight assignments may come from subjective estimates or theo-
retical set-ups. Jacobs proposes a version of constrained regression for finding the weights
that minimize the variance (JACOBS, 1995). This method is derived by considering the
expert’s errors in approximating the posterior probability.

One way to set the weights is to fit a linear regression to the posterior probabilities.
Take 𝑑𝑖,𝑗(𝑥), 𝑖 = 1, . . . , 𝐿, to be estimates of the posterior probability 𝑃 (𝑤𝑗|𝑥).

Consider the largest regression model, where the whole decision profile is involved
in approximating each posterior probability as in Equation 3.46. Given a data set 𝑋 =
𝑥1, . . . , 𝑥𝑁 with labels 𝑦1, . . . , 𝑦𝑁 , 𝑦𝑗 ∈ [0, 1], formulate the optimization problem as look-
ing for a weight vector 𝜃 which minimizes:

𝐽𝑖(𝜃𝑖) = 1
𝑁

𝑁∑︁
𝑗=1
ℒ(𝜇𝑖(𝑥𝑗), 𝑦𝑗, 𝑤𝑖, 𝜃𝑖) + 𝑅(𝜃𝑖) (3.39)

where ℒ(𝜇𝑖(𝑧𝑗), 𝑦𝑗, 𝑤𝑖, 𝜃𝑖) is the loss incurred when labeling object 𝑥𝑗 ∈ 𝑋, with true label
𝑦𝑗, as belonging to class 𝑤𝑖. 𝑅(𝜃𝑖) is a regularization term which serves to penalize very
large weights.

The outputs of the input classifiers can be regarded as a mapping to an intermediate
space. A combining classifier applied on this space then makes a final decision for the
class of a new object. In (JACOBS, 1995) a version of constrained regression for finding
the weights that minimize the variance is derived by assuming the expert’s errors in
approximating the posterior probability.

Linear Opinion Pools (LOP):

𝑃 (𝑤𝑘|𝑠) =
∑︁

𝑖

𝜃𝑘𝑖𝑃 (𝑤𝑘|𝑠𝑖) (3.40)

𝐽 =
∑︁

𝑖

∑︁
𝑘

𝜃𝑖𝜃𝑘𝜎𝑖𝑘 − 𝜆(
∑︁

𝑖

𝜃𝑖 − 1) (3.41)
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the solution minimizing 𝐽 is:

𝜃 = Σ−1𝐼(𝐼𝑇 Σ−1𝐼)−1 (3.42)

Fuzzy Integral: The philosophy of the fuzzy integral combiner is to measure the
"strength" not only for each classifier alone but also for all the subsets of classifiers.
Every subset of classifiers has a measure of strength that expresses how good this group
of experts is for the given input 𝑥. The ensemble support for 𝑤𝑗, 𝜇𝑗(𝑥), is obtained from
the support values 𝑑𝑖,𝑗(𝑥), 𝑖 = 1, . . . , 𝐿, by taking into account the competences of the
groups of the various subsets of experts. The measure of strength of the subsets is called
a fuzzy measure.

Algorithm 2 Fuzzy Integral for classifier fusion
1: Fix the 𝐿 fuzzy densities 𝑔1, . . . , 𝑔𝐿.
2: Calculate 𝜆 > −1 as the only real root greater than −1 of the equation

𝜆 + 1 =
𝐿∏︁

𝑖=1
(1 + 𝜆𝑔𝑖) (3.43)

3: For a give 𝑥 sort the 𝑘th columns of 𝐷𝑃 (𝑥) to obtain [𝑑𝑖1,𝑘(𝑥), 𝑑𝑖2,𝑘(𝑥), . . . , 𝑑𝑖𝐿,𝑘(𝑥)]𝑇 ,
𝑑𝑖1,𝑘(𝑥) being the highest degree of support, and 𝑑𝑖𝐿,𝑘(𝑥), the lowest.

4: Arrange the fuzzy densities correspondingly, i.e., 𝑔𝑖1 , . . . , 𝑔𝑖1 and set 𝑔(1) = 𝑔𝑖1 .
5: For 𝑡 = 2 to 𝐿, calculate recursively

𝑔(𝑡) = 𝑔𝑖𝑡 + 𝑔(𝑡− 1) + 𝜆𝑔𝑖𝑡𝑔(𝑡− 1) (3.44)
6: Calculate the final degree of support for class 𝑤𝑘 by

𝜇𝑘(𝑥) = max
𝑡=1,...,𝐿

min(𝑑𝑖,𝑘(𝑥), 𝑔(𝑡)) (3.45)

3.3.4 General Framework for Trainable Combination via SR

When different classifiers based in SR are used, the reconstruction error is used to
evaluate the combination rules. This supposes that the probability of success of each
classifier 𝐷𝑖, to each class, 𝑃 (𝑤𝑗|𝐷𝑖) is the same. Combination methods of this type are
called "class-conscious" (KUNCHEVA; BEZDEK; DUIN, 2001).

Depending on the intrinsic characteristics, each expression can be best characterized
in one of the subspaces, or in a particular subset. For example, expressions that involve
some kind of facial movement, such as opening the mouth, may be better described by the
shape spaces, which are recorded as changes in gradient. On the other hand, changes in the
frequency intensity of the image may be characterized by a texture analysis methods. This
property suggests that there are classifiers that are specialists (experts) for some classes.
These classifiers should have greater weights in the final decision of the classification.
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Figure 12 – Architecture proposal for the classification of FE using multiple classifiers.
The output of classifiers for each class is merged using an estimated model.

Source: The author (2019)

For the calculation of the weights, a new feature space based on the output of each of
the classifiers is generated. The variable 𝑑𝑖,𝑗(𝑥) denotes the support that classifier 𝐷𝑖 gives
to the hypothesis that 𝑥 comes from class 𝑤𝑗. The larger the support, the more likely the
class label belongs to 𝑤𝑗. In this approach, 𝑑𝑖,𝑗(𝑥) are features in a new space, defined as
the intermediate feature space (KUNCHEVA; BEZDEK; DUIN, 2001). The support for class
𝑤𝑗 is calculated as:

𝜇𝑗(𝑥) =
𝐿∑︁

𝑖=1
𝜃𝑖,𝑗𝑑𝑖,𝑗(𝑥). (3.46)

Linear regression is the commonly used procedure to derive the weights for this model
(ERDOGAN; SEN, 2010). Algorithm 3 describes each step to classify a test pattern. Fig-
ure 12 shows the principal component of the system. Note that the output of each classifier
𝑑𝑖,𝑗 , for the class 𝑤𝑗, creates a new feature space. For each output subspace, an estimated
model 𝜃𝑗, weighs the decision of each classifier in the class 𝑤𝑗. For the experiments,
the FI(KUNCHEVA; BEZDEK; DUIN, 2001), LOP(JACOBS, 1995), SVM and Naive Bayes
method are used to adjust the classifiers output (Equation 3.50). Other techniques for
combining expert exist, but they need to be trained with a largest number of objects
(JORDAN; JACOBS, 1994).
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Algorithm 3 Sparse Representation Fusion Classification SRFC. 𝐷1, ....𝐷𝐿 with 𝐷𝑖 ∈
R𝑛𝑖×𝑚; 𝑔1(𝑥), ..., 𝑔𝐿(𝑥) with 𝑔𝑖(𝑥) ∈ R𝑛

𝑖 ; 𝑔𝑖(𝑥) ̸= 𝑔𝑗(𝑥)
1: Calculate sparse representation:

For 𝑖 = 1, ..., 𝐿

𝛼⋆
𝑖 ∈ arg min

𝛼
‖𝛼‖0 𝑠.𝑡. 𝑔𝑖(𝑥) = 𝐷𝑖𝛼; (3.47)

2: Calculate the vote of each representation to each class:
For 𝑖 = 1, ..., 𝐶 and 𝑗 = 1, ..., 𝐿

𝑟𝑖,𝑗 = ‖𝑔𝑖(𝑥)−𝐷𝑖𝛿𝑗(𝛼⋆
𝑖 )‖2

2 , (3.48)
where 𝛿𝑗 selects the entries of 𝛼⋆ corresponding to the class 𝑗; 𝑟𝑗 represents the residual
test sample 𝑔𝑖(𝑥) with the linear combination 𝐷𝑖𝛿𝑗(𝛼⋆). Is apply the softmax function
about the inverse of the normalization of 𝑟𝑖,𝑗 for obtain the vote to each class:

𝑑𝑖,𝑗 = 𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(1− 𝑟𝑖,𝑗

‖𝑟.,𝑗‖1
) (3.49)

where 𝑟.,𝑗 is referent to the all column value and 𝑑𝑖,𝑗 represent to the decision profile.
3: Trained combining rules:

𝜇𝑗(𝑥) =
𝐿∑︁

𝑖=1
𝜃𝑖,𝑗𝑑𝑖,𝑗(𝑥), (3.50)

the weights 𝜃𝑗 are estimated for decision profile for class 𝑤𝑗.
4: Classification:

𝐽 ∈ arg max
𝑗∈{1,...,𝐶}

𝜇𝑗; (3.51)

5: Return: the estimated class 𝐽 for the signal 𝑥.

3.3.5 Regenerate Training Dataset

We propose the creation of new training signals with SR to increase the training data
and thus increase the performance of the classification models. Algorithm 4 shows the
different steps to create the new dataset. The approximation of the signals obtained by
SR contain differences with the original signal but in general, it maintains the high-
level features. Figure 13 shows how a reconstruction of a raw signal preserves the facial
expression however desirable differences are obtained such as the appearance of the eyes,
mouth, etc. (the original image presents almost closed eyes the reconstruction presents
open eyes).
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Figure 13 – Example of a new training signal generated (right) from an original image
(left) using our method. The new images retain high-level features such as
facial expression, but some facial features such as the shape of the eyes,
mouth, etc, are modified.

Source: The author (2019)

Algorithm 4 Regenerate Facial Expression Dataset via SR. 𝑆: Training set; 𝑁 : number
of elements generate.

1: 𝑆 ′ ← ∅
2: for 𝑖 = 1, ..., 𝑁 do
3: Select 𝑥𝑖:

𝑥, 𝑦 ∼ 𝑆
4: Create dictionary 𝐷:

Select 𝑘 random elements for each class in the set 𝑆 ∩ 𝑥:
𝐷 = {𝑥1

1, 𝑥1
2, . . . , 𝑥1

𝑘, . . . , 𝑥𝑐
1, 𝑥𝑐

2, . . . , 𝑥𝑐
𝑘}

with 𝑥𝑗 ∈ 𝑆 ∩ 𝑥
5: Calculate residuals 𝑟:

𝛼⋆ ∈ arg min𝛼 ‖𝛼‖0 𝑠.𝑡. 𝑥← 𝐷𝛼;
6: for 𝑗 = 1, . . . , 𝐶 do
7: 𝑟𝑗 ← ‖𝑥𝑖 −𝐷𝛿𝑗(𝛼⋆)‖2

2 ,
8: end for
9: Add 𝑆 ′ ← 𝑟.

10: end for
11: return: New training set 𝑆 ′

3.4 EXPERIMENTS

In this work, eight feature extraction methods: GW, LBP, HOG, LPQ, RAW, GEO,
VGG and VGGF are used, according to the methodology proposed. These features have
been used widely in the literature for FER (ZHANG; LI; ZHAO, 2012; LI; YING; YANG, 2014;
LI et al., 2015b; YUAN; LIU; YAN, 2012; YING; WANG; HUANG, 2010; WEIFENG; CAIFENG;

YANJIANG, 2012; OUYANG; SANG; HUANG, 2013; OUYANG; SANG; HUANG, 2015; DALAL;

TRIGGS, 2005). We generated 247 possible scenarios which are all combinations of the
selected feature extraction methods. We denote the classification schemes as: GW+SR
with W, LBP+SR with B, HoG+SR with H, LPQ+SR with P, RAW+SR with R,
GEO+SR with G, VGG+SR with V and VGGF+SR with F. Then, a possible combi-
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nation scenarios can be denoted as W/B/H that corresponds to GW/LBP/HOG+SR.
We tested 14 combination rules for each scenario: five soft-level rules: Product Rule
(RP), Sum Rule (RS), Max Rule (RMX), Min Rule (RMI), Median Rule (RMD) (KIT-

TLER et al., 1998), three hard-level rules: Weighted Majority Vote Rule (WMV), Recall
Rule (REC), Naive Bayes Rule (NB)(KUNCHEVA; RODRIGUEZ, 2014) and the trainable
methods: Fuzzy Integral (FI)(KUNCHEVA; BEZDEK; DUIN, 2001), Linear Opinion Pools
(LOP)(JACOBS, 1995), Bayes Model (MB), SVM Linear Kernel Model (MSVML) and
SVM Polynomial Kernel Model (MSVMP). The results are also compared to the individ-
ual methods GW+SRC, LBP+SRC, HOG+SRC, LPQ+SRC, RAW+SRC, GEO+SRC,
VGG+SRC and VGGF+SRC.

One of the important aspects to consider when evaluating the use of multiple classifier
systems is time. The critical component of the system is the features extraction meth-
ods (𝐹𝑠𝑖) and its representation via SRC. As the number of methods increase, time is
increased. It is expected that if the method 𝐹𝑠1+SRC has time 𝑡1, the method 𝐹𝑠2+SRC
has time 𝑡2, . . . , the method 𝐹𝑠𝑛+SRC has time 𝑡𝑛, the system time is 𝑡 = ∑︀

𝑡𝑖. However,
the system components are independent and depend only on the input image (there are
no interdependencies) so if there is not a very large number of methods in the pool, each
can be assigned to a processing unit. In that case, the mean time could be 𝑡 = max(𝑡𝑖)+𝑐,
where 𝑐 is a constant. Nowadays these solutions viable and more accessible.

To validate the proposed method, we performed four experiments. (1) Statistical anal-
ysis is employed to determine which combination rule presents the best classification
results. We evaluated 247 combinations of feature extraction methods and 14 combina-
tion rules in three different datasets. (2) To investigate the generalization performance of
the proposed method vs individual classification methods, we performed an inter-database
experiment. (3) We analyze the influence of the feature methods for each class. (4) We
compare the obtained results with other in the state of the art using the same dataset
and experimental protocol. The results obtained from these experiments are described in
detail in the next section.

3.4.1 Protocol

The parameters for each of the methods were selected from the results obtained in the
state of art. The GW representation was obtained by using 5 scales and 8 orientations
to construct a set of Gabor filter banks of 25 × 25 and 𝑘 = 7 neighborhoods (ZAVASCHI

et al., 2013). The image resolution is 256 × 256 pixels. For extracting LBP features used
in Huang et al.(HUANG; WANG; YING, 2010) and Ying et al.(YING; WANG; HUANG, 2010),
we adopted a uniform LBP operation with parameters of 𝑃 = 8, 𝑅 = 2 in images of
size 256 × 256. The histogram is extracted for each patches of size 25 × 25. For HOG,
the bin number is set to 9, the cell size is 16×16 pixels and block size of 2 × 2 in each
selected landmark points(OUYANG; SANG; HUANG, 2015). For extracting the LPQ(ZHEN;
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ZILU, 2012), we used 𝑀 = 5 and 𝑎 = 1/5. The histograms were extracted from each
selected landmark points for patches of size 25×25. For VGGF case, as a feature we have
selected the output of the Relu layer 33 and VGG case, we select the output of the Relu
layer 34.

For this analysis different metrics are used. Accuracy is calculated as the average
number of successes divided by the total number of observation (in this case each face is
considered an observation). The measures precision, recall, F1-score and confusion matrix
are also used in the analysis of the effectiveness of the system. Dems̆ar (DEMŠAR, 2006)
recommends the Friedman test followed by the pairwise Nemenyi test to compare multi-
ple data. The Friedman test is a nonparametric alternative of the Analysis of Variance
(ANOVA) test. The null hypothesis of the test 𝐻0 is that all classifier models are equiv-
alent. In this work, the Friedman test is used to identify the best classification scheme
between different rules of combination and all features extraction methods. Similar to the
methods in (HUANG et al., 2012; LI et al., 2013; LEE et al., 2014; PTUCHA; SAVAKIS, 2013),
Leave-One-Subject-Out (LOSO) cross validation was adopted in the evaluation.

3.4.2 Statistical Analysis of the Combination Rule

Table 3, 4 and 5 show the accuracies, for 14 combining rules (columns) and the best
combinations classifiers in different subspaces (rows) for CK+ dataset, BU-3DFE dataset
and JAFFE dataset respectively. Regarding CK+ dataset (Table 3) it has been achieved
an accuracy of more than 0.985, in BU-3DFE dataset (Table 4), accuracy of more than
0.821 and for JAFFE (Table 5) 0.776 (in all three cases more than 20 combinations have
been selected). The best accuracies for each combination are shown underline. The last
row of the tables shows the average accuracies across the 247 combinations. With the large
span of classification accuracies, it is unlikely that these accuracies will be commensurable.
But even though the average values across the features combining cannot serve as a valid
performance gauge, they give a rough reference of the achievements of the combiners. The
tables show that the trainable combining rules MSVMP and MSVML present the best
results in most cases. The JAFFE database is the dataset with fewer images (213 images).
The number of images limits the training phase of the trainable combinators. In this case
the best option seems to be the use of non-trainable combinators.

To determine which one is the best for CK+ and BU-3DFE, we calculated the ranks
of the combiners. For example, on the combined features R/W/H/P/V/F in the CK+
dataset, the order by rank is as follows: MSVMP (the best), MSVML, MB, RP, RS, RMD,
MV, WMV, LOP, REC, NB, RMX, FI, RMI (the worst). In case of a tie, the rank are
shared. The average ranks across the combination of features in CK+ (BU-3DFE) dataset
were: RP 6.709(5.830), RS 6.749(5.873), RMX 11.699(12.694), RMI 12.956(12.484), RMD
6.749(5.873), MV 7.820(9.982), WMV 7.524(7.401), REC 7.512(6.328), NB 10.757(9.423),
LOP 8.124(7.294), FI 11.682(12.611), MB 2.767(3.792), MSVMP 1.984(2.678), MSVML
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1.970(2.739), showing that MSVMP, MSVML and MB are the best combiner in both
cases.

The Friedman nonparametric ANOVA test was executed on the ranks, followed by a
multiple comparisons test. The Friedman test is 2326.60 (2249.70), giving a 𝑝 value of ap-
proximately 0 (0) indicating significant differences among the ranks for CK+ (BU-3DFE)
dataset. The Nemenyi post-hoc test and Bonferroni-Dunn post-hoc test were applied to
obtain the methods that have significant differences.

The result for Nemenyi post-hoc test (two-tailed test), shows that there are significant
differences between the MB, MSVMP and MSVML methods and all the others, for a
significance level at 𝛼 < 0.05. For MB, MSVMP and MSVML was applied the Bonferroni-
Dunn post-hoc test (one-tailed test) to strengthen the power of the test hypotheses. For
a significance level of 0.05, the Bonferroni-Dunn post-hoc test did not show significant
differences between the MB, MSVMP and MSVML methods. Therefore we can conclude
that in general these methods have a similar behavior in this case. For BU-3DFE dataset
case, similar results were obtained. The proposed methods (MB, MSVMP and MSVML)
are significantly superior to the others to combination rules in FER problems. When there
is very little training data, the use of non-trainable combination rules is suggested.

Table 6, 7 and 8 show the Accuracy, Precision, Recall and F1-score mesuremens of
the best scheme for each individual and combination rules in CK+ dataset, BU-3DFE
dataset and JAFFE dataset respectively. In CK+ dataset case (Table 6), the schema
R/W/H/P/G/F+MSVMP shows a 0.992 accuracy. This schema also obtains the best
results as Precision, Recall and F1-score with a 0.991, 0.985 and 0.999 respectively. In BU-
3DFE dataset case (Table 7), the schema R/W/B/P/G+MSVMP shows a 0.828 accuracy.
The best values of Precision, Recall and F1-score are obtained in this scheme for a 0.893,
0.833 and 0.965 respectively. In both cases the MSVMP combination rule gets the best
results. In JAFFE dataset case (Table 8), the schema W/H/P/F+MSVML shows a 0.828
accuracy. However, the R/H/P/G+RP scheme shows the best results for Precision, Recall
and F1 with 0.871, 0.809 and 0.959 respectively. This is because, as mentioned earlier,
the trainable combination rules are not adequate when there is insufficient data in the
training dataset.

This result exceeded the results of the state of the art for these types of features. In all
cases, the combining rules increase accuracy of the single methods. Figure 14 shows that
the classification error of the individual methods is greater than the classification error of
combination schemes.

3.4.3 Multiple vs Individual Classification Methods

For the experiment, the datasets BU-3DFE and JAFFE were used to construct the
training and test sets respectively. The training and test sets contained six expression
classes, i.e., Anger, Disgust, Fear, Happiness, Sadness, and Surprise, which were common
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Figure 14 – Classification error of the best schemes for each combination rule and the
individual scheme.
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in both BU-3DFE and JAFFE databases. Experimental result in Table 9 shows that the
fusion method R/W/B/P/G+MSVMP achieves the 0.54 Accuracy and 0.721 F1-score,
which is higher than those of the comparison methods. In general, combining the feature
methods increases of the system performance. This supports the thesis that the trainable
fusion methods are able to find experts for each subspace of features and can efficiently
combine. In all cases, the combination rules are better than the individual methods.
However, the value of metrics are lower than in the case where face images from a single
dataset are used for both training set and test set. This performance degradation is mainly
attributed to the fact that the face images are collected under two different controlled
conditions. In order to generalize across image acquisition conditions, it is required to
collect large training datasets with various image acquisition conditions (LITTLEWORT et

al., 2006).
These evidences show the increased of the accuracy of the system regarding the individ-

ual systems. The best schemes (R/W/H/P/G/F+MSVMP and R/W/B/P/G+MSVMP)
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Table 9 – Generalization Performance on the Two Different Datasets. BU-3DFE dataset
and JAFFE dataset were used for training and testing, respectively. ALL, refers
to all features (R/B/H/W/P/G/V/F).

Method Accuracy F1-measure
ALL 0.523 0.726
R/H/P/F 0.517 0.703
R/W/B/H/P/G/F 0.527 0.722
R/W/B/P/G 0.547 0.721
R 0.433 0.635
B 0.368 0.494
H 0.488 0.626
W 0.353 0.594
P 0.463 0.592
G 0.378 0.582
V 0.189 0.332
F 0.468 0.720

Source: The author (2019)

combine the best and the worst individual schemes. This increases the diversity of the
system, giving the opportunity to select in each case the best subspaces of representation
of each class.

3.4.4 Analyze the Influence of the Feature Methods

The visualization of the learning models (subspaces generated), using classifiers like
SVM and Naive Bayes method, is not trivial. To analyze the contribution of each feature
to each class, a logistic regression model was trained on the decision profile. From the
weights obtained for each class a weight map is created. The weight maps obtained for
each datasets are shown in Figure 15. In the horizontal axis we can see the weight of a
features space on each of the classes. In the vertical axis we can see how important each
subspace of features is over a class.

As can be seen, the LPQ, HOG and RAW methods present high specialization values
for some of the classes. For example, for CK+ dataset, LPQ has great decision power
over the AN and HA classes. The feature space RAW specializes in the NE class and
HOG specializes in SU and SA classes. In general we can observe that the spaces of
characteristics do not always specialize on the same classes. This is because there are
significant differences between the images in the different datasets.

We calculated the frequency of the feature methods from tables 3, 4 and 5. These
frequencies are shown in Figure 16. It can be observed that LPQ, HOG and RAW methods
are present in more than 80 percent of the selected combinations. This demostrates that
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Figure 15 – Weight map learning for the combining of all features. NE: Neutral; AN:
Anger; DI: Disgust; FE: Fear; HA: Happy; SA: Sadness; SU: Surprise
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they have a significant weight in the classification of some emotions.

3.4.5 Our vs State of the Art

Table 10 shows the resulting comparisons between the different FER methods that use
deep learning (BURKERT et al., 2015; LI et al., 2015a; JUNG et al., 2015; MENG et al., 2017;
ZENG et al., 2018, 2018) on CK+ dataset. Although some results in Tables 10 cannot be
directly compared due to different experimental setups, different expression classes and
different preprocessing methods (e.g. face alignment), it is demonstrated that the proposed
method can yield a feasible and promising recognition rate (around 99.2 percent) with
static facial images under person-independent recognition scenario.
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Figure 16 – Frequency of the feature methods select in the Table 3, 4 and 5 for CK+
dataset, BU-3DFE dataset and JAFFE dataset respectively. RAW: (R), GW:
(W), LBP: (B), LPQ: (P), GEO: (G), VGGF: (F)

Source: The author (2019)

Table 10 – Comparisons with Deep Learning Technique in Expression Recognition on
CK+ dataset. ACC: Accuracy, NE: class expression number. †: Six basic ex-
pressions + neutral class and contempt class. ‡: Six basic expressions (con-
tempt is excluded). *: Six basic expressions + contempt class. LOSO: Leave-
one-subject-out cross validation, L-X-SO: Leave-X-subjects-out cross valida-
tion.
Methods ACC(%) NE Validation
(KHORRAMI; PAINE; HUANG, 2015) 98.30 6‡ L-12-SO
(BURKERT et al., 2015) 99.60 7* 10-fold
(LI et al., 2015a) 83.00 7* LOSO
(JUNG et al., 2015) 97.30 7* L-12-SO
(MENG et al., 2017) 95.37 7* L-10-SO
(ZENG et al., 2018) 95.79 7* L-10-SO
(YANG; CIFTCI; YIN, 2018) 97.30 7* L-10-SO
(ZENG et al., 2018) 89.84 8† L-10-SO
Our 99.20 8† LOSO

Source: The author (2019)

3.5 CONCLUSIONS

We show that the combination of classifiers improves the performance of individual
classifiers. The proposed methods (MB, MSVMP, and MSVML) are significantly superior
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to the others combination rules in facial expression recognition problems. With the re-
generation method proposed in this work, we obtained new training data. The new data
retain high-level characteristics of the signal and allows training of the multi-classifier
system.
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4 DEEP LEARNING FOR FACIAL EXPRESSION RECOGNITION

Deep Convolutional Neural Network (DCNN) has recently yielded excellent perfor-
mance in a wide variety of image classification tasks (KRIZHEVSKY; SUTSKEVER; HINTON,
2012; RUSSAKOVSKY et al., 2015; SZEGEDY et al., 2015; SIMONYAN; ZISSERMAN, 2014b).
The careful design of local to global feature learning with convolution, pooling and lay-
ered architecture renders very strong visual representation ability, making it a powerful
tool for FER. Research challenges such as Emotion Recognition in the Wild (EmotiW)
and Kaggle’s Facial Expression Recognition Challenge show the growing interest of the
community in the use of this technique for the solution of this problem.

This chapter aims to explore the different solutions based on deep learning for FER.
A description of the main problems found based on the experimental results is made.
This chapter addressed the following research questions: RQ1) What DCNN offers the
best results for FER problem?; RQ2) What is the generalization capacity of the models
in other domains?; and RQ3) What are the main problems presented by these DCNN
architectures?

In RQ1, we evaluate some architectures designed specifically for FER and some of the
most powerful architectures on ImageNet1. In RQ2, we evaluate the results obtained on
different datasets with different capture conditions. In RQ3, we analyze some problems
that these architectures present.

4.1 RELATED WORKS

The deep learning models for FER and ER were reported in (KAHOU et al., 2013; TANG,
2013; LIU et al., 2014c; LIU et al., 2014a; LIU et al., 2014b; MOLLAHOSSEINI; CHAN; MAHOOR,
2016).

Tang (TANG, 2013) proposed a method for jointly learning a deep CNN with a linear
Support Vector Machine (SVM) output which achieved the first place on both public
(validation) and private data on the FER-2013 Challenge (GOODFELLOW et al., 2013).

Liu et al. (LIU et al., 2014c) introduced a facial expression recognition framework using
3DCNN together with deformable action parts constraints to jointly localize facial action
parts and learn part-based representations for expression recognition. (LIU et al., 2014b)
followed by including the pre-trained Caffe CNN models to extract image-level features.

In 2015, Yu and Zhang (YU; ZHANG, 2015a) achieved state-of-the-art results in the
EmotiW challenge using CNNs. They used an ensemble of CNNs each with five convolu-
tional layers and showed that randomly perturbing the input images yielded a 2-3% boost
in accuracy. Specifically, they applied transformations to the input images at training time.
1 http://www.image-net.org/
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At testing time, their model generated predictions for multiple perturbations of each test
example and voted on the class label to produce a final answer. They used stochastic
pooling (GRAHAM, 2014) rather than max pooling due to its good performance on lim-
ited training data. (MOLLAHOSSEINI; CHAN; MAHOOR, 2016) have also obtained state of
the art results with a network consisting of two convolutional layers, max-pooling, and
four inception layers, the latter introduced by GoogLeNet.

4.2 DATA AUGMENTATION

While the FER+ dataset contains more than 35000 labeled samples, the classifica-
tion performance can be further improved if we randomly perturb the input faces with
additional transforms. The random perturbation essentially generates additional unseen
training samples and therefore makes the network even more robust to deviated and
rotated faces.

A similar method is reported in (KAHOU et al., 2013) where the authors generate
perturbed training data by feeding their network with randomly cropped and flipped
40×40 face images from the original ones. As in (YU; ZHANG, 2015b), we consider a much
more comprehensive set of perturbations through the following randomized affine image
warping:

⎡⎢⎣𝑥′

𝑦′

⎤⎥⎦ =

⎡⎢⎣𝑐 0

0 𝑐

⎤⎥⎦
⎡⎢⎣cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)

⎤⎥⎦
⎡⎢⎣ 1 𝑠1

𝑠2 1

⎤⎥⎦
⎡⎢⎣𝑥− 𝑡1

𝑦 − 𝑡2

⎤⎥⎦ (4.1)

where 𝑠1 and 𝑠2 are the skew parameters along 𝑥 and 𝑦 directions and are both
randomly sampled from {−0.1, 0, 0.1}. 𝜃 is the rotation angle randomly sampled from
three different values: {− 𝜋

18 , 0, 𝜋
18}. 𝑐 is a random scale parameter defined as 𝑐 = 47

(47−𝛿) ,
where 𝛿 is a randomly sampled integer on [0, 4]. 𝑡1 and 𝑡2 are two translation parameters
whose values are sampled from 0, 𝛿 and are coupled with 𝑐. In reality one generates the
warped image with the following inverse mapping:

⎡⎢⎣𝑥

𝑦

⎤⎥⎦ = A−1

⎡⎢⎣𝑥′

𝑦′

⎤⎥⎦+

⎡⎢⎣𝑡1

𝑡2

⎤⎥⎦ , (4.2)

where 𝐴 is the composition of the skew, rotation and scale matrices. The input
(𝑥′ ∈ [0, 47], 𝑦′ ∈ [0, 47]) are the pixel coordinates of the warped image. Equation 4.2
simply computes an inverse mapping to find the corresponding (𝑥, 𝑦). As the computed
mappings mostly contain non-integer coordinates, bilinear interpolation is used to obtain
the perturbed image pixel values. For pixels mapped outside the original image, we take
pixel value of its mirrored position. The input training faces are also randomly flipped.
Finally, we applied a random color transformation to change the brightness, contrast,
gamma, blur, and noise to further introduce additional robustness.
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Table 11 – Convolutional Neural Networks Selected for this Experiments. These five ar-
chitectures are the most used in the problems of facial expression recognition.

Arch. Input size Fine-tuning Reference
FMPNet 48× 48 - (YU; ZHANG, 2015b)
CVGG13 64× 64 - (BARSOUM et al., 2016b)
AlexNet 227× 227 × (KRIZHEVSKY, 2014)
ResNet18 224× 224 × (HE et al., 2015)
PreActResNet18 32× 32 - (HE et al., 2016)

Source: The author (2019)

4.3 EXPERIMENTS

4.3.1 Protocol

Five databases were used to carry out the experiments: FER+(BARSOUM et al., 2016a),
CK+ dataset(LUCEY et al., 2010), BU-3DFE (YIN et al., 2006), JAFFE (LYONS et al.,
1998) and AffectNet (MOLLAHOSSEINI; HASANI; MAHOOR, 2017). We train the neural
networks on the FER+ dataset and AffectNet dataset employing the same split between
training, validation and testing data provided in the original FER dataset and training
and validation provided in the original AffectNet dataset. CK+, BU-3DFE and JAFFE
datasets are used exclusively in the test stage. PyTorch2 was used as a deep learning
framework in all cases. The neural net hyper-parameters were set to generate the same
conditions in the experimentation: 150 epoch; learning rate 0.0001; loss function cross
entropy and Adam optimizer. We used the weighted random sampler in all experiment
for imbalance problems.

Table 11 show the select architectures in this study. We selected the pre-trained models:
AlexNet(KRIZHEVSKY, 2014) and ResNet18(HE et al., 2015) on ImageNet to be re-trained
on FER+. The models were obtained from the torchvision3 repository for PyTorch.

4.3.2 Results

Accuracy, Precision, Recall, and F1 score were calculated to evaluate the results on
FER+ dataset and AffectNet dataset (see Table 12). ResNet18 and AlexNet obtained
the best results in both cases. In particular, ResNet obtained an F1 score of 0.769 as
the best result on FER+ and an F1 score of 0.591 on AffectNet. The obtained models
improvement the results of the (BARSOUM et al., 2016a) and (MOLLAHOSSEINI; HASANI;

MAHOOR, 2017) for FER+ and AffectNet datasets respectively. As a result, we have a set
2 http://pytorch.org/
3 https://download.pytorch.org/models/



Chapter 4. Deep Learning for Facial Expression Recognition 67

Table 12 – Classification results for the FER+ database and AffectNet database. Acc.:
Accuracy, Prec.: Precision, Rec.: Recall, F1: F1 measurement, Arch: Architec-
ture.

FER+ AffectNet
Arch. Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

FMPNet 79.535 66.697 68.582 67.627 54.000 54.629 54.000 54.313
CVGG13 84.316 75.151 67.425 71.079 56.675 58.139 56.675 57.398
AlexNet 86.038 77.658 68.657 72.881 57.875 59.737 57.875 58.791

ResNet18 87.695 85.956 69.659 76.954 58.550 59.847 58.550 59.191
PreActResNet18 82.372 76.915 65.238 70.597 51.425 52.692 51.425 52.051

Source: The author (2019)

of baseline models that can be compared with the different approaches proposed in the
next chapters.

CVGG13 is a particular adaptation of VGG architecture for FER problems. This
network does not obtain the best results but it is considerably smaller compared to ResNet
and AlexNet. Figure 17 shows the relationship between accuracy (%), the estimated total
size (MB) and the number of parameters to be optimized. CVGG13 obtained a good ratio
between memory size and accuracy which makes this architecture one of the most suitable
for low-cost applications, such as mobile applications for FER.

Figure 17 – Accuracy (%) vs. estimated total size (MB), size ∝ parameters. The accuracy
is calculated with models trained on FER+.

Source: The author (2019)

The models were also tested on the JAFFE, CK+ and BU-3DFE datasets. This ex-
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Table 13 – Accuracy (%) of the classification on all datasets for models training on FER+.
Arch: Architecture, FER+†: FER+ test dataset, AffectNet‡ validation dataset.

Arch. FER+† AffectNet‡ JAFFE CK+ BU-3DFE
FMPNet 79.790 29.200 46.766 65.363 41.379
CVGG13 84.316 31.150 46.269 66.201 42.069
AlexNet 86.038 35.075 46.269 70.670 46.379

ResNet18 87.695 34.400 50.746 71.508 45.345
PreActResNet18 82.372 26.100 36.318 55.307 39.828

Source: The author (2019)

Table 14 – Accuracy (%) of the classification on all datasets for models training on Af-
fectNet. Arch: Architecture, FER+†: FER+ test dataset, AffectNet‡ validation
dataset.

Arch. AffectNet‡ FER+† JAFFE CK+ BU-3DFE
FMPNet 54.000 56.073 53.234 87.989 62.586
CVGG13 56.675 60.822 55.224 83.520 66.034
AlexNet 57.875 59.770 57.214 87.151 63.793

ResNet18 58.550 62.894 59.204 87.430 64.310
PreActResNet18 51.425 58.368 47.761 84.078 61.379

Source: The author (2019)

periment allows us to know the degree of generalization of the networks with respect to
emotions captured in different scenarios (controlled environments). Table 13 and Table
14 shows the results of the models trained on FER+ and AffectNet respectively. As can
be seen, there is a degradation of the results, especially in the JAFFE and BU-3DFE
databases. This is because these databases have marked ethnicity differences (JAFFE is
a base for Asian women for example) and capture conditions very different from those of
the FER+ dataset and AffectNet. In general, architectures designed specifically for FERs
such as CVGG and FMPNet improved their performance. However, the best architectures
in terms of accuracy were ResNet18 and AlexNet.

4.3.3 Discussion

What neural net architecture (of the all used in this works) offers the best results for this
problem?

ResNet18 and AlexNet obtained the best results for FER+ and AffectNet respectively
under the conditions proposed. It is important to note that in our experiments, we set the
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hyper-parameters to be able to make general assessments in the same scenario. Although,
the results exceeded (BARSOUM et al., 2016b) and (MOLLAHOSSEINI; HASANI; MAHOOR,
2017), good results were not achieved in terms of the generalization on classification of
the JAFFE, CK+ and BU-3DFE databases. VGG13 shows a good relationship between
the performance level and the memory capacity (see Figure 17), which makes it a good
choice for mobile applications and embedded systems.

A critical problem observed was the imbalance of the classes. There is a relationship
between the error obtained and the frequency of objects per class. Disgust and contempt
present the smallest number of objects in the database (the sum of them does not exceed
1% of the data of training FER+ dataset), which implies that the samples of these classes
may not represent the data of their respective populations. Despite having used a weighted
random sampler and data augmentation, apparently, it was not possible to obtain a good
representation of the high-level features for these classes.

What is the generalization capacity of the models in other domains?

The degradation of the results in the data sets of JAFFE, CK+, BU-3DFE, shows
that the methods, in general, do not get a good generalization in these domains. As in
all machine learning problems, the data are essential to achieve good results. This is
particularly dramatic in the case of facial expression recognition. The experiments reveal
that exist two factors that affect the generalization of models to other domains.

Dataset biases: Datasets such as CK+, JAFFE, and BU-3DFE present specific cap-
ture conditions such as lighting, exposure, type of actors, position, etc. For example,
JAFFE is a dataset of japanese females who repeat the same expression several times to
capture different states of the same emotion. If care is not taken, the field can end up
putting efforts in attaining an “algorithmic local maximum”.

Label subjectivity: The subjective criterion of the manual annotator often plays an
important role on which labels are assigned to a specific data point. When these subjective
effects are large, then the number of manual annotators required to obtain a consistent
labelling grows, and with that the resources required to perform the manual annotation
grow accordingly. Important factors affecting the inter-rater reliability include both the
expertise of the manual annotator for that specific annotation task, and the nature of the
annotation task.

In this particular case, there are some relevant differences between the datasets. It
should be noted that datasets CK+, JAFFE, and BU-3DFE were labeled by experts and
that the expressions are not spontaneous. In the case of FER+ and AffectNet, natural
expressions and crowdsourcing were used.
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What are the main problems presented?

Recent developments for the facial expression recognition problem consider processing
the entire image regardless of the face crop location within the image (YU; ZHANG, 2015b).
Such developments bring in extraneous artifacts, including noise, which might be harmful
for classification. This is problematic as the minutiae that characterizes facial expressions
can be affected by elements such as hair, jewelry, and other environmental objects not
defining the actual face and as part of the image background. Some methods use heuristics
to decrease the searching size of the facial regions to avoid considering objects beyond the
face itself.

We tested ResNet18 for a set of natural images. These images were visually assessed
by the team and we observed a good performance. The results obtained were compared
with the Microsoft Tool4 for FER and coincided in all cases.

Carey Dunne in (DUNNE, 2015) makes a small criticism of the Microsoft Tool in which
he evaluates the results obtained in some emotions of famous portrait subjects. Figure 18
and Figure 19 shows the results of our system versus two of the portrait used for the
analysis in (DUNNE, 2015). Like the results obtained by the Microsoft Tool, our system
gives an insignificant score (0.66%) to the deep melancholy of Florence Thompson (see
Figure 18) and qualifies with 99.9% happiness the super creepy, painted-on grin the of
Cindy Sherman in "Untitled # 414" (see Figure 19).

4 https://azure.microsoft.com/en-us/services/cognitive-services/emotion/
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Figure 18 – Dorothea Lange, "Madre migrante" (1936). The face of Florence Thompson,
a “destitute pea-picker” and 32-year-old mother of seven in Depression-era
California, shot by Dorothea Lange in 1936.

Source: The author (2019)

Figure 19 – Cindy Sherman, "Untitled # 414" (2003). The super creepy, painted-on grin
the of Cindy Sherman.

Source: The author (2019)
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4.4 CONCLUSION

In this chapter, we present an analysis of the main problems of the traditional tech-
niques of facial expression recognition based on deep learning. Some of the most used
architectures for this problem were selected to answer three questions about this type
of technique. The answers to these questions allow identifying the current limitations of
these techniques.
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5 DEEP STRUCTURED METRIC LEARNING APPLIED TO FACIAL
EXPRESSION RECOGNITION[2]

We propose a deep metric learning model to create embedded sub–spaces with a well
defined structure. A new loss function that imposes Gaussian structures on the output
space is introduced to create these sub–spaces thus shaping the distribution of the data.
Having a mixture of Gaussians solution space is advantageous given its simplified and well
established structure. It allows fast discovering of classes within classes and the identifica-
tion of mean representatives at the centroids of individual classes. We also propose a new
semi–supervised method to create sub–classes. We illustrate our methods on the facial
expression recognition problem and validate results on the FER+, AffectNet, Extended
Cohn-Kanade (CK+), BU-3DFE, and JAFFE datasets. We experimentally demonstrate
that the learned embedding can be successfully used for various applications including
expression retrieval and emotion recognition.

5.1 INTRODUCTION

Classical distance metrics like Euclidean distance and cosine similarity are limited and
do not always perform well when computing distances between images or their parts.
Recently, end–to–end methods (SCHROFF; KALENICHENKO; PHILBIN, 2015; BALNTAS et

al., 2016; SONG et al., 2016a; WANG et al., 2014) have shown much progress in learning an
intrinsic distance metric. They train a network to discriminatively learn embeddings so
that similar images are close to each other and images from different classes are far away
in the feature space. These methods are shown to outperform others adopting manually
crafted features such as SIFT and binary descriptors (DOSOVITSKIY et al., 2016; SIMO-

SERRA et al., 2015). Feedforward networks trained by supervised learning can be seen as
performing representation learning, where the last layer of the network is typically a linear
classifier, e.g. a softmax regression classifier.

Representation learning is of great interest as a tool to enable semi-supervised and un-
supervised learning. It is often the case that datasets are comprised of vast training data
but with relatively little labeled training data. Training with supervised learning tech-
niques on a reduced labeled subset generally results in severe overfitting. Semi-supervised
learning is an alternative to resolve the overfitting problem by learning from the vast
unlabeled data. Specifically, it is possible to learn good representations for the unlabeled
data and use them to solve the supervised learning task.
2 Pedro D. Marrero Fernandez, Fidel A. Guerrero Peña, Tsang Ing Ren, Tsang Ing Jyh and Alexandre

Cunha; Centro de Informática, Universidade Federal de Pernambuco, Brazil; University of Antwerp
- IMEC, IDLab research group, Sint-Pietersvliet 7, 2000 Antwerp, Belgium; Center for Advanced
Methods in Biological Image Analysis, California Institute of Technology, USA
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Figure 20 – Classes within classes. The figure depicts some faces in the FER+ dataset
classified by our method as having a surprise expression. Our method further
separates these faces into other sub–classes, as shown in the three examples
above. Each row contains the top eight images identified to be the closest
ones to the centroid of their respective sub–class, and each represented by
its own Gaussian. One could tentatively visually describe the top row as
faces with strong eye and mouth expressions of surprise, the middle row with
mostly mildly surprised eyes, and the bottom row faces with strong surprise
expressed with wide open eyes and mouth, and hands on face. Observe the
face similarities in each sub–class.

Source: The author (2019)

The adoption of a particular cost function in learning methods imposes constraints
on the solution space, whose shape can take any form satisfying the underlying prop-
erties induced by the loss function. For example, in the case of triplet loss (SCHROFF;

KALENICHENKO; PHILBIN, 2015), the optimization of the cost function leads to the cre-
ation of a solution space where every object has the nearest neighbors within the same
class. Unfortunately, it does not generate a much desired probability distribution function,
which is achieved by our formulation.

In theory, we would like to have the solution manifold to be a continuous function
representing the true original information, because, as in the case of the facial expression
recognition problem, face expressions are points in the continuous facial action space
resulting from the smooth activation of facial muscles (EKMAN; FRIESEN; J, 2002). The
transition from one expression to another is represented as the trajectory between the
embedded vectors on the manifold surface.

The objective of this work is to offer a formulation for the creation of separable sub–
spaces each with a defined structure and with a fixed data distribution. We propose a
new loss function that imposes Gaussian structures in the creation of these sub-spaces.
In addition, we also propose a new semi-supervised method to create sub–classes within
each facial expression class, as exemplified in Figure 20.
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5.2 RELATED WORKS

Siamese networks applied to signature verification showed the ability of neural net-
works to learn compact embedding (BROMLEY et al., 1994). OASIS (CHECHIK et al., 2010)
and local distance learning (FROME; SINGER; MALIK, 2007) learn fine-grained image sim-
ilarity ranking models using hand-crafted features that are not based on deep-learning.
Recent methods such as (SCHROFF; KALENICHENKO; PHILBIN, 2015; BALNTAS et al., 2016;
SONG et al., 2016a; WANG et al., 2014) approaches the problem of learning a distance metric
by discriminatively training a neural network. Features generated by those approaches are
shown to outperform manually crafted features (BALNTAS et al., 2016), such as SIFT and
various binary descriptors (DOSOVITSKIY et al., 2016; SIMO-SERRA et al., 2015).

Deep Metric Learning (DML) can be broadly divided into contrastive loss based meth-
ods, triplet networks, and approaches that go beyond triplets such as quadruplets, or even
batch-wise loss. Contrastive embedding is trained on paired data, and it tries to minimize
the distance between pairs of examples with the same class label while penalizing examples
with different class labels that are closer than a margin 𝛼 (HADSELL; CHOPRA; LECUN,
2006). Triplet embedding is trained on triplets of data with anchor points, a positive
that belongs to the same class, and a negative that belongs to a different class (WEIN-

BERGER; SAUL, 2009; HOFFER; AILON, 2015). Triplet networks use a loss over triplets to
push the anchor and positive closer, while penalizing triplets where the distance between
the anchor and negative is less than the distance between the anchor and positive, plus a
margin 𝛼. Contrastive embedding has been used for learning visual similarity for products
(BELL; BALA, 2015), while triplet networks have been used for face verification, person re-
identification, patch matching, for learning similarity between images and for fine-grained
visual categorization (SCHROFF; KALENICHENKO; PHILBIN, 2015; SHI et al., 2016; WANG

et al., 2014; CUI et al., 2016; BALNTAS et al., 2016).
Several works are based on triplet-based loss functions for learning image represen-

tations. However, the majority of them use category label-based triplets (ZHUANG et al.,
2016; WANG et al., 2017; SONG et al., 2016b). Some existing works such as (CHECHIK et al.,
2010; WANG et al., 2014) have focused on learning fine-grained representations. In addition,
(ZHUANG et al., 2016) used a similarity measure computing several existing feature repre-
sentations to generate ground truth annotations for the triplets, while (WANG et al., 2014)
used text image relevance, based on Google image search to annotate the triplets. Unlike
those approaches, we use human raters to annotate the triplets. None of those works focus
on facial expressions, only recently (VEMULAPALLI; AGARWALA, 2019) proposed a system
of facial expression recognition based on triplet loss.
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5.3 CONTRASTIVE EMBEDDING

Contrastive embedding (HADSELL; CHOPRA; LECUN, 2006) is trained on the paired
data {(𝑥𝑖, 𝑥𝑗, 𝑦𝑖𝑗)}. Intuitively, the contrastive training minimizes the distance between a
pair of examples with the same class label and penalizes the negative pair distances for
being smaller than the margin parameter 𝛼. Concretely, the cost function is defined as,

ℒ = 1
𝑚

𝑚/2∑︁
𝑖,𝑗

𝑦𝑖,𝑗Δ2
𝑖,𝑗 + (1− 𝑦𝑖,𝑗)[𝛼−Δ𝑖,𝑗]2+ (5.1)

where 𝑚 stands for the number of images in the batch, 𝑓(·) is the feature embedding
output from the network, Δ𝑖,𝑗 = ||𝑓(𝑥𝑖) − 𝑓(𝑥𝑗)||2, and the label 𝑦𝑖,𝑗 ∈ 0, 1 indicates
whether a pair (𝑥𝑖, 𝑥𝑗) is from the same class or not. The [·]+ operation indicates the
hinge function 𝑚𝑎𝑥(0, ·). For more details we refer to the works of (HADSELL; CHOPRA;

LECUN, 2006; BELL; BALA, 2015).

5.4 TRIPLET LOSS

Triplet Loss is trained on the triplet data 𝑥(𝑖)
𝑎 , 𝑥(𝑖)

𝑝 , 𝑥(𝑖)
𝑛 where 𝑥(𝑖)

𝑎 , 𝑥(𝑖)𝑝 have the same
class labels and 𝑥(𝑖)

𝑎 , 𝑥(𝑖)
𝑛 have different class labels. The 𝑥(𝑖) term is referred to as an anchor

of a triplet. Intuitively, the training process encourages the network to find an embedding
where the distance between 𝑥(𝑖)

𝑎 and 𝑥(𝑖)
𝑛 is larger than the distance between 𝑥(𝑖)

𝑎 and
𝑥(𝑖)

𝑝 plus the margin parameter 𝛼. Let Δ𝑖𝑎,𝑖𝑝 denote the distance between normalized
anchor and positive features and Δ𝑖𝑎,𝑖𝑛 denote the distance between normalized anchor
and negative features, computed using 𝐿2 distance, that is Δ𝑖𝑎,𝑖𝑝 = ||𝑓(𝑥𝑎

𝑖 )− 𝑓(𝑥𝑝
𝑖 )|| and

Δ𝑖𝑎,𝑖𝑛 = ||𝑓(𝑥𝑎
𝑖 ) − 𝑓(𝑥𝑛

𝑖 )||. There are various ways to compute triplet loss. The most
commonly used is the Hinge Loss function, with a hyper-parameter, margin, 𝛼(SCHROFF;

KALENICHENKO; PHILBIN, 2015; WEINBERGER; SAUL, 2009; HOFFER; AILON, 2015). The
loss function is expressed as:

ℒ = 3
2𝑚

𝑚/3∑︁
𝑖,𝑗

[Δ2
𝑖𝑎,𝑖𝑝 −Δ2

𝑖𝑎,𝑖𝑛 + 𝛼]+ (5.2)
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5.5 DEEP METRIC LEARNING VIA LIFTED STRUCTURED FEATURE EMBED-
DING

The structured loss function is define based on all positive and negative pairs of samples
in the training set:

ℒ = 1
2|𝑃 |

∑︁
𝑖,𝑗∈𝑃

max(0,ℒ𝑖,𝑗),

ℒ𝑖,𝑗 = max
(︃

max
𝑖,𝑘∈𝑁̂

𝛼−Δ𝑖,𝑘, max
𝑗,𝑙∈𝑁̂

𝛼−Δ𝑗,𝑙

)︃
+ Δ𝑖,𝑗

(5.3)

where 𝑃 is the set of positive pairs and 𝑁̂ is the set of negative pairs in the training
set. This function poses two computational challenges: (1) it is non-smooth, and (2) both
evaluating it and computing the subgradient requires mining all pairs of examples several
times (SONG et al., 2016a).

5.6 METHODOLOGY

5.6.1 Structured Gaussian Manifold Loss

Let 𝑆 = {𝑥𝑖|𝑥𝑖 ∈ ℜ𝐷} be a collection of i.i.d. samples 𝑥𝑖 to be classified into 𝑐

classes, and let 𝑤𝑗 represent the 𝑗–th class, for 𝑗 = 1, . . . , 𝑐. The computed class function
𝑙(𝑥) = arg max 𝑝(𝑤|𝑓Θ(𝑥)) returns the class 𝑤𝑗 of sample 𝑥 – maximum a posteriori
probability estimate – for the neural net function 𝑓Θ : ℜ𝐷 → ℜ𝑑 drawn independently
according to probability 𝑝(𝑥|𝑤𝑗) for input 𝑥. Suppose we separate 𝑆 in an embedded
space such that each set 𝐶𝑗 = {𝑥|𝑥 ∈ 𝑆, 𝑙(𝑥) = 𝑤𝑗} contains the samples belonging to
class 𝑤𝑗. Our goal is to find a Gaussian representation for each 𝐶𝑗 which would allow a
clear separation of 𝑆 in a reduced space, 𝑑≪ 𝐷.

We assume that 𝑝(𝑓Θ(𝑥)|𝑤𝑗) has a known parametric form, and it is therefore de-
termined uniquely by the value of a parameter vector 𝜃𝑗. For example, we might have
𝑝(𝑓Θ(𝑥)|𝑤𝑗) ∼ 𝑁(𝜇𝑗, Σ𝑗), where 𝜃𝑗 = (𝜇𝑗, Σ𝑗), for 𝑁(., .) the normal distribution with
mean 𝜇𝑗 and variance Σ𝑗. To show the dependence of 𝑝(𝑓Θ(𝑥)|𝑤𝑗) on 𝜃𝑗 explicitly, we
write 𝑝(𝑓Θ(𝑥)|𝑤𝑗) as 𝑝(𝑓Θ(𝑥)|𝑤𝑗, 𝜃𝑗). Our problem is to use the information provided by
the training samples to obtain a good transformation function 𝑓Θ(𝑥𝑗) that generates em-
bedded spaces with a known distribution associated with each category. Then the a
posteriori probability 𝑃 (𝑤𝑗|𝑓Θ(𝑥)) can be computed from 𝑝(𝑓Θ(𝑥)|𝑤𝑗) by the Bayes’ for-
mula:

𝑃 (𝑤𝑗|𝑓Θ(𝑥)) = 𝑝(𝑤𝑗)𝑝(𝑓Θ(𝑥)|𝑤𝑗, 𝜃𝑖)∑︀𝑐
𝑖 𝑝(𝑤𝑖)𝑝(𝑓Θ(𝑥)|𝑤𝑖, 𝜃𝑖)

(5.4)
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We use the normal density function for 𝑝(𝑥|𝑤𝑗, 𝜃𝑗). The objective is to generate em-
bedded sub-spaces with defined structure. Thus, using the Gaussian structures:

𝑝(𝑓Θ(𝑥)|𝑤𝑗, 𝜇𝑗, Σ𝑗) = 1
(2𝜋)𝑛/2|Σ𝑗|1/2 exp(−1

2𝑋𝑇 Σ−1
𝑗 𝑋) (5.5)

where 𝑋 = (𝑓Θ(𝑥)− 𝜇𝑗). For the case Σ𝑗 = 𝜎2𝐼, where 𝐼 is the identity matrix:

𝑝(𝑥|𝑤𝑗, 𝜇𝑗, 𝜎𝑗) = 1√︁
(2𝜋)𝑛𝜎𝑗

exp(−||𝑓Θ(𝑥)− 𝜇𝑗||2

2𝜎2
𝑗

) (5.6)

In a supervised problem, we know the a posteriori probability 𝑃 (𝑤𝑗|𝑥) for the input
set. From this, we can define our structured loss function as the mean square error between
the a posteriori probability of the input set and the a posteriori probability estimated for
the embedded space:

ℒ𝑟𝑒𝑝 = E
{︁
||𝑃 (𝑤𝑗|𝑓Θ(𝑥𝑖))− 𝑃 (𝑤𝑗|𝑥𝑖)||22

}︁
(5.7)

We applied the steps described in Algorithm 5 to train the system. The batch size is
given by 𝑛× 𝑐 where 𝑐 is the number of classes, and 𝑛 is the sample size. In this work, we
use 𝑛 = 30, thus for eight classes the batch size is 240, which was used for the estimation
of the parameters in Equation 5.7.

Algorithm 5 Structured Gaussian Manifold Learning. 𝑓Θ: Neural Network; 𝑆: dataset;
𝐶𝑗 are the subset of the elements of class 𝑤𝑗; 𝑁 : number of updates;

1: 𝑘 ← 0
2: while 𝑘 < 𝑁 do
3: {Sample(𝑥𝑖, 𝑤𝑖)} ∼ 𝑆, get current batch.
4: 𝑧 ← 𝑓Θ(𝑥𝑖), representation.
5: 𝜃𝑗 ← {𝜇𝑗, 𝜎𝑗}

where 𝜎 is a parameters (𝜎 = 0.5 in this work) and 𝜇𝑗 is the mean of the elements
of the class 𝑤𝑗:

𝜇𝑗 = 1
|𝐶𝑗|

∑︁
𝑘∈𝐶

𝑧𝑘

where |.| denotes set cardinality.
6: Evaluation of the Loss function. For the explanation of the loss representation see

equation 5.7:

ℒ ← ℒ𝑟𝑒𝑝(𝑧𝑖, 𝑤𝑖, 𝜇, 𝜎) + 𝜆

|Ω|
∑︁

𝑘

||𝑓Θ(𝑥𝑘)||2

7: Θ𝑡+1 = Θ𝑡 −∇ℒ, backward and optimization steps.
8: end while
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We define the accuracy of the model as the ability of the parameter vector 𝜃 to repre-
sent the test dataset in the embedded space. The prediction of a class can be calculated
as:

𝑗̂ = max
𝑗

𝑃 (𝑤𝑗, 𝑓Θ(𝑥𝑘)) (5.8)

5.6.2 Deep Gaussian Mixture Subspace

The same facial expression may possess a different set of global features. For exam-
ple, ethnicity can determine specific color and shape, while age provides physiological
differences of facial characteristics; moreover, gender, weight, and other features can de-
termine different facial characteristics, while having the same expression. Our proposal
can group and extract these characteristics automatically. We propose to represent each
facial expression class as a Gaussians Mixture. These Gaussian parameters are obtained
in an unsupervised way as part of the learning processes. We start from a representation
space given by Algorithm 5. Subsequently, a clustering algorithm is applied to separate
each class into a new class subset. This process is repeated until reaching the desired
granularity level. Algorithm 6 shows the set of steps to obtain the new sub-classes.

Algorithm 6 Deep Gaussian Mixture Sub-space Learning. 𝐿: Maximum level of subdivi-
sions for the class; 𝑓Θ: Neural Network; 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑: Structure Gaussian
Manifold Algorithm 5; 𝐸𝑀 : Expectation Maximization Algorithm; 𝑆: dataset; 𝐶𝑗 are the
subset of the elements of class 𝑤𝑗; 𝑁 : number of updates;

1: 𝑙← 1
2: 𝑋, 𝑌 ∼ 𝑆
3: 𝑌 ← 𝑌
4: while 𝑙 < 𝐿 do
5: Θ←StructureGaussianManifold({𝑋, 𝑌 }, 𝑁)
6: 𝑍 = 𝑓Θ(𝑋)
7: 𝑌 ← {⊘}
8: 𝑘 ← 0
9: for all class 𝑤𝑗 do

10: 𝑍𝑐 = {𝑧 | ∀𝑧 ∈ 𝐶𝑗}
11: 𝑙̂← min(𝑙, |𝑍𝑐|/𝑀𝑐)
12: 𝑔 ← 𝐸𝑀(𝑙̂, 𝑍𝑐)
13: 𝑌 = {𝑌 , 𝑔 + 𝑘}
14: 𝑘+ = 𝑙̂
15: end for
16: end while
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5.7 EXPERIMENTS

5.7.1 Protocol

For the evaluation of the clustering task, we use the F1-measure and Normalized
Mutual Information (NMI) measures. The F1-measure computes the harmonic mean of
the precision and recall, 𝐹1 = 2𝑃 𝑅

𝑃 +𝑅
. The NMI measure take as input a set of clusters

Ω = {𝑜1, . . . , 𝑜𝑘} and a set of ground truth classes 𝒢 = {𝑔1, . . . , 𝑔𝑘}, 𝑜𝑖 indicates the
set of examples with cluster assignment 𝑖 and 𝑔𝑗 indicates the set of examples with the
ground truth class label 𝑗. Normalized mutual information is defined by the ratio of mu-
tual information and the average entropy of the clusters and the entropy of the labels,
𝑁𝑀𝐼(Ω,𝒢) = 𝐼(Ω;𝒢)

2(𝐻(Ω)+𝐻(𝒢)) , for complete details see (MANNING et al., 2008). For the re-
trieval task, we use the Recall@K (JEGOU; DOUZE; SCHMID, 2011) measure. Each test
image (query) first retrieves K Nearest Neighbour (KNN) from the test set and receives
score 1 if an image of the same class is retrieved among the KNN, and 0 otherwise. Re-
call@K averages those score over all the images. Moreover, we also evaluate accuracy, i.e.
the fraction of results that are the same class as queried image, averaged over all queries.
While the classification task is evaluated using KNN on the training set.

For the training process, we use the Adam method (KINGMA; BA, 2014) with a learning
rate of 0.0001 and batch size of 256 (samples of size 32 to estimate the parameters in each
iteration). In the TripletLoss case, we used 128 triplets in each batch. The neural networks
were initialized with the same weights in all cases.

5.7.2 Representation and Recover

The groups used for the evaluation of the measures are obtained using K-means,
whereas K equals the number of classes (8 in the case of the FER+, AffectNet, CK+
datasets, and 7 for JAFFE and BU-3DFE datasets).

The results obtained for the clustering task show that the proposed method presents
good group quality (see table 15) in similar domains. As can be observed, the results are
degraded for different domains. In general, we observe that the TripletLoss is most robust
to the change of domains on all models. However, the best result is achieved using the
proposed method for the RestNet18 model in FER+, CK+ and BU-3DFE.

Figure 21 shows a 2D t-SNE (MAATEN, 2014) visualization of the learned TripletLoss
(left) and SGMLoss (right) embedding space using the FER+ training set. The amount
of overlap between two categories in this figure roughly tells us about the extent of visual
similarity between them. For example, in the SGMLoss case, happy and neutral have
some objects overlap indicating that these cases could be confused easily, and both of
them have a very low overlap with fear indicating that they are visually very distinct
from fear. Also, the spread of a category in this figure tells us about the visual diversity
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Table 15 – NMI (%) of the clustering task on all datasets of the TripletLoss and SGM-
Loss models trained on FER+. SGMLoss: Structured Gaussian Manifold Loss,
Arch: Architecture, FER+†: FER+ test dataset, AffectNet‡ validation dataset.

Method Arch. FER+† AffectNet‡ JAFFE CK+ BU-3DFE

TripletLoss

FMPNet 55.257 10.627 19.528 71.129 34.901
CVGG13 67.384 9.103 28.295 68.303 27.275
AlexNet 67.035 12.945 30.241 68.800 27.039

ResNet18 64.457 15.588 31.046 74.028 36.708
PreActResNet18 57.904 8.452 20.699 70.079 27.580

SGMLoss

FMPNet 57.880 10.469 26.196 77.839 36.559
CVGG13 65.139 10.355 24.293 66.062 27.233
AlexNet 62.091 10.582 24.560 65.230 28.115

ResNet18 68.840 12.333 30.382 77.902 37.545
PreActResNet18 51.425 6.886 23.216 61.413 26.104

Source: The author (2019)

within that category. For example, happiness category maps to some distinct regions
indicating that there are some visually distinct modes within this category.

Figure 21 – Barnes-Hut t-SNE visualization (MAATEN, 2014) of the TripletLoss (left) and
SGMLoss (right) for the FER+ database. Each color represents one of the
eight emotions including neutral.

Source: The author (2019)

Figure 22 shows the results obtained in the recovery task (Recall@K and Acc@K
measures) for 𝐾 = {1, 2, 4, 8, 16, 32}. TripletLoss obtains better recovery results for all
K but to the detriment of accuracy. Our method manages to increase its recovery value
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while preserving quality. It means that most neighbors are of the same class. Figure 23
shows the top-5 retrieved images for some of the queries on CelebA dataset (LIU et al.,
2015). The overall results of the proposed SGMLoss embedding are clearly better than
the results of TripletLoss embedding.

Figure 22 – Recall@K and Acc@K measures for the test split FER+ dataset. The applied
model was the ResNet18 having 𝐾 = {1, 2, 4, 8, 16, 32}.
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5.7.3 Classification

The proposed SGMLoss method can be used for FER by combining it with the KNN
classifier. Figure 24 shows the average F1-score of the SGMLoss and TripletLoss on the
FER+ validation set as a function of the number of neighbors used. F1-score is maximized
for K=11.

Table 16 compares the classification performance of the SGMLoss embedding (using
11 neighbors) with TripletLoss and CNN models. In general, our method obtains the
best classification results for all architectures. ResNet18 CNN model does not obtains a
significant higher accuracy. Moreover, our results surpass the accuracy 84.99 presented in
(BARSOUM et al., 2016a).

The Facial Expression dataset constitute a great challenge due to the subjectivity of
the emotions (MARRERO-FERNÁNDEZ et al., 2014). The labeling process requires the effort
of a group of specialists to make the annotations. FER+ and AffectNet datasets contains
many problems in the labels. In (BARSOUM et al., 2016a) an effort was made to improve
the quality of the labels of the FER+ (dataset used in our experiments) by re-tagging
the dataset using crowd sourcing. Figure 25 shows some mislabeled images retrieved by
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Figure 23 – Top-5 images retrieved using SGMLoss (left) and TripletLoss (right) embed-
dings. The overall results of the SGMLoss match the query set apparently
better when compared to TripletLoss.

Query Result of the TripletLoss Result of the SGMLoss 

top1 top2 top3 top4 top5 top1 top2 top3 top4 top5

Source: The author (2019)

our method. The scale, position, and context could influence the decision of a non-expert
tagger such as those in crowd sourcing.

Experimental results show the quality of the embedded representation obtained by
SGMLoss in the classification problems. Our representation improves the representation
obtained by TripletLoss, which is the method most used in the identification and repre-
sentation problems.

5.7.4 Clustering

For the training process, we use the Adam method (KINGMA; BA, 2014) with a learning
rate of 0.0001, a batch size of 640 and 500 epoch. The maximum level of subdivision
used is L=5 (this value guarantee that the batch for a subclass in this level to be 128).
The ResNet18 architecture is selected to train the FER+ dataset. The objective of this
experiment is to visually analyse the clustering obtained by this approach.

The results shown in Figure 26 present 64-dimensional embedded space using the
Barnes-Hut t-SNE visualization scheme (MAATEN, 2014) using the Deep Gaussian Mix-
ture Sub-space model for the FER+ dataset. The method created five Gaussian sub-spaces
for the unsupervised case for each class.

For the clustering task, all embedded vectors are calculated and EM method is applied
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Figure 24 – Classification performance of the SGMLoss and TripletLoss on the FER+
validation set when combined with KNN classifier.
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Figure 25 – Examples of mislabeled images on the FER+ dataset that were recovery using
SGMLoss. The first row show the result of the query (1) and the second row
the result (2). We can clearly observer that two very similar images have
different labels in the dataset.
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Source: The author (2019)

creating 40 groups. For each group, the medoid is calculated. The medoid is the object
in the group closest to the centroid (mean to the sample). The Top-k of a group contains
the k-objects nearer to the medoid of the group.

Figure 27 shows the Top-16 images obtained for the happiness category. The first group
(Figure 27 (a) ) shows an expression of happiness closer to surprise (raised eyebrows and
open mouth) with the shape of the eyes similar to each other. The second group (Figure 27
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Table 16 – Classification results of the CNN, TripletLoss and SGMLoss models trained
on FER+. SGMLoss: Structured Gaussian Manifold Loss, Arch: Architecture,
FER+†: FER+ test dataset, AffectNet‡ validation dataset.

Method Arch. Acc. Prec. Rec. F1

CNN

FMPNet 79.535 66.697 68.582 67.627
CVGG13 84.316 75.151 67.425 71.079
AlexNet 86.038 77.658 68.657 72.881

ResNet18 87.695 85.956 69.659 76.954
PreActResNet18 82.372 76.915 65.238 70.597

TripletLoss

FMPNet 82.563 79.554 62.406 69.944
CVGG13 85.974 82.034 68.112 74.428
AlexNet 86.038 80.598 67.895 73.703

ResNet18 87.121 78.543 68.378 73.109
PreActResNet18 83.519 74.081 64.856 69.162

SGMLoss

FMPNet 83.360 78.806 66.520 72.143
CVGG13 86.261 86.321 67.341 75.659
AlexNet 86.643 86.182 67.673 75.814

ResNet18 87.631 88.614 68.724 77.412
PreActResNet18 84.316 89.008 66.519 76.138

Source: The author (2019)

(b)) represents an expression closer to contempt. The third group (Figure 27 (c)) shows
an expression of more intense happiness (the teeth are shown in all cases) with the shape
of the mouth very similar to each other. In the fourth case (Figure 27 (d) ) shows a
subcategory that is present in all facial expressions. Babies are a typically expected subset
due to the intensity of expression and the physiognomical formation. Generally babies and
children from 1 to 4 years old present facial expressions of greater intensity. The last group
(Figure 27 (f) ) represents people with glasses and large eyes.

This method is a powerful tool for tasks such as photo album summarization. In
this task, we are interested in summarizing the diverse expression content present in a
given photo album using a fixed number of images. Figure 28 shows 5 of the 40 groups
obtained on AffectNet dataset. The obtained groups show great similarity in terms of
FER. These results demonstrate the generalization capacity of the proposed method and
its applicability to problems of FER clustering.
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Figure 26 – Barnes-Hut t-SNE visualization (MAATEN, 2014) of the DMGSubspace on the
FER+ database. Each color represents one of the eight emotions including
neutral.

Source: The author (2019)
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Figure 27 – Top-16 of clustering obtained of the happiness class on FER+ dataset.

(a)

(b)

(c)

(d)

(f)

Source: The author (2019)
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Figure 28 – Top-16 of fives clustering obtained on AffectNet dataset.
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(c)
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(f)

Source: The author (2019)
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5.8 CONCLUSIONS

We introduced two new metric learning representation models in this work, namely
Deep Gaussian Mixture Subspace Learning and Structured Gaussian Manifold Learning.
In the first model, we build a Gaussian representation of expressions leading to a robust
classification and grouping of facial expressions. We illustrate through many examples, the
high quality of the vectors obtained in recovery tasks, thus demonstrating the effectiveness
of the proposed representation. In the second case, we provide a semi-supervised method
for grouping facial expressions. We were able to obtain embedded subgroups sharing the
same facial expression group. These subgroups emerged due to shared specific character-
istics other than the general appearance. For example, individuals with glasses expressing
a happy appearance.
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6 FERATT: FACIAL EXPRESSION RECOGNITION WITH ATTEN-
TION NET[3]

We present a new end-to-end network architecture for facial expression recognition
with an attention model. It focuses attention in the human face and uses a Gaussian space
representation for expression recognition. We devise this architecture based on two fun-
damental complementary components: (1) facial image correction and attention and (2)
facial expression representation and classification. The first component uses an encoder-
decoder style network and a convolutional feature extractor that are pixel-wise multiplied
to obtain a feature attention map. The second component is responsible for obtaining
an embedded representation and classification of the facial expression. We propose a loss
function that creates a Gaussian structure on the representation space. To demonstrate
the proposed method, we create two larger and more comprehensive synthetic datasets
using the traditional BU3DFE and CK+ facial datasets. We compared results with the
PreActResNet18 baseline. Our experiments on these datasets have shown the superiority
of our approach in recognizing facial expressions.

6.1 INTRODUCTION

Recent developments for the facial expression recognition problem consider process-
ing the entire image regardless of the face crop location within the image (YU; ZHANG,
2015b). Such developments bring in extraneous artifacts, including noise, which might be
harmful for classification as well as incur in unnecessary additional computational cost.
This is problematic as the minutiae that characterizes facial expressions can be affected
by elements such as hair, jewelry, and other environmental objects not defining the actual
face and as part of the image background. Some methods use heuristics to decrease the
searching size of the facial regions to avoid considering objects beyond the face itself.
Such approaches contrast to our understanding of the human visual perception, which
quickly parses the field of view, discards irrelevant information, and then focus the main
processing on a specific target region of interest – the so called visual attention mechanism
(ITTI; KOCH, 2001; WANG et al., 2017). Our approach tries to mimic this behavior as it
aims to suppress the contribution of surrounding deterrent elements by segmenting the
face in the image and thus concentrating recognition solely on facial regions. Figure 29
illustrates how the attention mechanism works in a typical scene.

Attention mechanisms have recently been explored in a wide variety of contexts
(VINYALS et al., 2015; JADERBERG et al., 2015), often providing new capabilities for known
3 Pedro D. Marrero Fernandez, Fidel A. Guerrero Peña, Tsang Ing Ren and Alexandre Cunha; Centro de

Informática, Universidade Federal de Pernambuco, Brazil; Center for Advanced Methods in Biological
Image Analysis, California Institute of Technology, USA; Published in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2019.
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Figure 29 – Example of attention in an image. Facial expression is recognized on the front
face which is separated from the less prominent components of the image by
our approach. The goal is to jointly train for attention and classification where
a probability map of the faces are created and their expressions learned by
a dual–branch network. By focusing attention on the face features, we try to
eliminate the detrimental influence possibly present on the other elements in
the image during the facial expression classification. In this formulation, we
explicitly target learning expressions solely on learned faces and not on other
irrelevant parts of the image (background).

Source: (FERNANDEZ et al., 2019)

neural networks models (GRAVES et al., 2016; GREGOR et al., 2015; ESLAMI et al., 2016).
While they improve efficiency (MNIH et al., 2014) and performance on state-of-the-art
machine learning benchmarks (VINYALS et al., 2015), their computational architecture is
much simpler than those comprising the mechanisms in the human visual cortex (DAYAN;

ABBOTT et al., 2003). Attention has also been long studied by neuroscientists (UNGER-

LEIDER; G, 2000), who believe it is crucial for visual perception and cognition (CHEUNG;

WEISS; OLSHAUSEN, 2016) as it is inherently tied to the architecture of the visual cortex
and can affect its information.

Our contributions are summarized as follows: (1) We propose a CNN-based method
using attention to jointly solve for representation and classification in FER problems;
(2) We introduce a new dual-branch network to extract an attention map which in turn
improves the learning of kernels specific to facial expression; and (3) We offer a new
synthetic generator to render face expressions which significantly augments training data
and consequently improves the overall classification.

6.2 RELATED WORKS

Recent method the De-expression Residue Learning (DeRL) (YANG; CIFTCI; YIN, 2018),
trains a generative model to create a corresponding neutral face image for any input face.
Then, another model is trained to learn the deposition (or residue) that remains in the
intermediate layers of the generative model for the classification of facial expression.

Zhang et al. (ZHANG et al., 2018) proposed an end-to-end learning model based on
Generative Adversarial Network (GAN). The architecture incorporates a generator, two
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discriminators, and a classifier. The GAN is used for generating multiples variation of one
image, which is used to train a convolutional neural network.

6.3 METHODOLOGY

In this section, we describe our contributions in designing a new network architecture,
in the formulation of the loss function used for training, and in the method to generate
synthetic data.

6.3.1 Network architecture

Given a facial expression image 𝐼, our objective is to obtain a good representation and
classification of 𝐼. The proposed model, Facial Expression Recognition with Attention Net
(FERAtt), is based on the dual-branch architecture (HE et al., 2017; LI et al., 2016; PAN

et al., 2018; ZHU et al., 2016) and consists of four major modules: (i) an attention module
𝐺𝑎𝑡𝑡 to extract the attention feature map, (ii) a feature extraction module 𝐺𝑓𝑡 to obtain
essential features from the input image 𝐼, (iii) a reconstruction module 𝐺𝑟𝑒𝑐 to estimate
a proper attention image 𝐼𝑎𝑡𝑡, and (iv) a representation module 𝐺𝑟𝑒𝑝 that is responsible
for the representation and classification of the facial expression image. An illustration of
the proposed model is shown in Figure 30.

Attention module. We use an encoder-decoder style network, which has been shown
to produce good results for many generative (SHOCHER; COHEN; IRANI, 2018; ZHU et

al., 2016) and segmentation tasks (RONNEBERGER; P.FISCHER; BROX, 2015). In particu-
lar, we choose a variation of the fully convolutional model proposed in (RONNEBERGER;

P.FISCHER; BROX, 2015) for semantic segmentation. Also, we applied four layers in the
coder with skip connections and dilation of 2x. The decoder layer is initialized with pre-
trained ResNet34 (HE et al., 2015) layers. This significantly accelerates the convergence.
The output features of the decoder are denoted by 𝐺𝑎𝑡𝑡, which is used to determine the
attention feature map. This is a probability map that is not the same as a simple seg-
mentation procedure.

Feature extraction module. Four ResBlocks (LIM et al., 2017) were used to extract
high-dimensional features for image attention and to maintain spatial information; no
pooling or strided convolutional layers were used. We denote the extracted features as
𝐺𝑓𝑡 – see Figure 31b.

Reconstruction module. The reconstruction layer adjusts the attention map to
create an enhanced input to the representation module. This module has two convolutional
layers, a Relu layer, and an Average Pooling layer which, by design choice, resizes the
input image of 128 × 128 to 32 × 32. This reduced size was chosen for the input of
the representation and classification module (PreActivationResNet (HE et al., 2016)), the
image size number we borrowed from the literature to facilitate comparisons. We plan to
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Figure 30 – Architecture of FERAtt. Our model consists of four major modules: atten-
tion module 𝐺𝑎𝑡𝑡, feature extraction module 𝐺𝑓𝑡, reconstruction module 𝐺𝑟𝑒𝑐,
and classification and representation module 𝐺𝑟𝑒𝑝. The features extracted by
𝐺𝑎𝑡𝑡, 𝐺𝑓𝑡 and 𝐺𝑟𝑒𝑐 are used to create the attention map 𝐼𝑎𝑡𝑡 which in turn
is fed into 𝐺𝑟𝑒𝑝 to create a representation of the image. Input images 𝐼 have
128× 128 pixels and are reduced to 32× 32 by an Averaging Pooling layer on
the reconstruction module. Classification is thus done on these smaller but
richer representations of the original image.
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experiment with other sizes in the future. We denote the feature attention map as 𝐼𝑎𝑡𝑡 –
see Figure 31d.

Representation and classification module. For the representation and classifi-
cation of facial expressions, we have chosen a Fully Convolutional Network (FCN) of
PreActivateResNet (HE et al., 2016). This architecture has shown excellent results when
applied on classification tasks. The output of the FCN, vector 𝑧, is evaluated in a linear
layer to obtain a vector 𝑧 ∈ R𝑑 with the desired dimensions. 𝑓Θ : R𝐷 → R𝑑, the network
function, builds a representation for a sample image 𝑥 ∈ R𝐷, (e.g. 𝐷 = 128×128 pixels) in
an embedded space of reduced dimension R𝑑 (we use 𝑑 = 64 in our experiments). Vector
𝑧 is then evaluated in a regression layer to estimate the probability 𝑝(𝑤|𝑧) for each class
𝑤𝑗, 𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝑐].

6.3.2 Loss functions

The FERAtt network generates three outputs: a feature attention map 𝐼𝑎𝑡𝑡, a rep-
resentation vector 𝑧, and a classification vector 𝑤̂. In our training data, each image 𝐼
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Figure 31 – Generation of attention map 𝐼𝑎𝑡𝑡. A 128 × 128 noisy input image (a) is pro-
cessed by the feature extraction 𝐺𝑓𝑡 and attention 𝐺𝑎𝑡𝑡 modules whose results,
shown, respectively, in panels (b) and (c), are combined and then fed into the
reconstruction module 𝐺𝑟𝑒𝑐. This in turn produces a clean and focused atten-
tion map 𝐼𝑎𝑡𝑡, shown on panel (d), that is classified by the last module 𝐺𝑟𝑒𝑝

of FERAtt. The 𝐼𝑎𝑡𝑡 image shown here is before reduction to 32× 32 size.

Source: (FERNANDEZ et al., 2019)

has an associated binary ground truth mask 𝐼𝑚𝑎𝑠𝑘 corresponding to a face in the image
and its expression class vector 𝑤. We train the network by jointly optimizing the sum of
attention, representation, and classification losses:

𝜃 = arg min
𝜃∈Θ
{ℒ𝑎𝑡𝑡(𝐼𝑎𝑡𝑡, 𝐼 ⊗ 𝐼𝑚𝑎𝑠𝑘) + ℒ𝑟𝑒𝑝(𝑧, 𝑤) + ℒ𝑐𝑙𝑠(𝑤̂, 𝑤)} (6.1)

where Θ represents the collective parameters that need be optimized. We use the pixel-
wise MSE (Mean Square Error) loss function for ℒ𝑎𝑡𝑡, and for ℒ𝑐𝑙𝑠 we use the CE (Cross
Entropy) loss function. The Structured Gaussian Manifold Loss function ℒ𝑟𝑒𝑝 were pro-
posed in this work (Equation 5.7).

6.3.3 Synthetic image generator

A limiting problem of currently available face expression datasets for supervised learn-
ing is the reduced number of correctly labeled data. We propose a data augmentation
strategy to mitigate this problem in the lines of what has been introduced in (FERNÁN-

DEZ et al., 2019). Our image renderer 𝑅 creates a synthetic larger dataset using real face
datasets by making background changes and geometric transformations of face images.
The example in Figure 32 shows a synthetic image generated pipeline by combining an
example face of the CK+ dataset and a background image.
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Figure 32 – The pipeline of the synthetic image generation. The horizontal alignment of
the image (b) is based on the inner points of the eyes (red points in (a)). The
face is obtained as the convex hull of the landmarks set (c) and a random
transform matrix is generated (d). The face image is projected on the back-
ground image (e). A face image and a general cropped background image are
combined to generate a composite image (f). By using distinct background
images for every face image, we are able to generate a much larger training
data set. We create a large quantity of synthetic new images for every face of
a database: approximately 9,231 synthetic images are generated for each face
in the CK+ database, and 5,000 for the BU-3DFE database. This covers a
great variety of possible tones and different backgrounds.

(a) (b) (c) (d) (e) (f)

Source: (FERNANDEZ et al., 2019)

6.4 EXPERIMENTS

We describe here the creation of the dataset used for training our network and its
implementation details. We discuss two groups of experimental results: (1) Expression
recognition result, to measure the performance of the method regarding the relevance of
the attention module and the proposed loss function for attention, and (2) Correction
result, to analyze the robustness to noise.

6.4.1 Datasets

We employ two public facial expression datasets, namely Extended Cohn-Kanade
(CK+) (LUCEY et al., 2010) and Binghamton University 3D Facial Expression (BU-3DFE)
(YIN et al., 2006) to evaluate our method. We apply in all experiments person-independent
FER scenarios (ZENG et al., 2009). Subjects in the training set are completely different
from the subjects in the test set, i.e., the subjects used for training are not used for test-
ing. The CK+ dataset includes 593 image sequences from 123 subjects. We selected 325
sequences of 118 subjects from this set, which meet the criteria for one of the seven emo-
tions (LUCEY et al., 2010). The selected 325 sequences consist of 45 Angry, 18 Contempt,
58 Disgust, 25 Fear, 69 Happy, 28 Sadness and 82 Surprise (LUCEY et al., 2010) facial ex-
pressions. In the neutral face expression case, we selected the first frame of the sequence
of 33 random selected subjects. The BU-3DFE dataset is known to be challenging mainly
due to a variety of ethnic/racial ancestries and expression intensity (YIN et al., 2006). A
total of 600 expressive face images (1 intensity x 6 expressions x 100 subjects) and 100
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Figure 33 – Examples from the synthetic BU-3DFE dataset. Different faces are trans-
formed and combined with randomly selected background images from the
COCO dataset. We then augment images after transformation by changing
brightness and contrast and applying Gaussian blur and noise.

Source: (FERNANDEZ et al., 2019)

neutral face expression images, one for each subject, were used (YIN et al., 2006).
We employed our renderer 𝑅 to augment training data for the neural network. 𝑅

uses a facial expression dataset (we use BU-3DFE and CK+, which were segmented to
obtain face masks) and a dataset of background images chosen from the COCO dataset.
Figure 33 shows some examples of images generated by the renderer on the BU-3DFE
dataset.

6.4.2 Implementation and training details

In all experiments, we considered the neural network architecture PreActResNet18
for the classification and representation processes. We adopted two approaches: (1) a
model with attention and classification, FERAtt+Cls, and (2) a model with attention,
classification, and representation, FERAtt+Rep+Cls. These models were compared with
the classification results. For representation, the last convolutional layer of PreActResNet
is evaluated by a linear layer to generate a vector of selected size. We have opted for 64
dimensions for the representation vector 𝑧.

All models were trained on Nvidia GPUs (P100, K80, Titan XP) using PyTorch1 for
60 epochs for the training set with 200 examples per mini batch and employing Adam
optimizer. Face images were rescaled to 32×32 pixels. The code for the FERAtt is available
in a public repository2.

6.4.3 Expression recognition results

This set of experiments makes comparisons between a baseline architecture and the
different variants of the proposed architecture. The objective is to evaluate the relevance
of the attention module and the proposed loss function for attention.
1 http://pytorch.org/
2 https://github.com/pedrodiamel/ferattention
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Table 17 – Classification results for the Synthetic/Real BU-3DFE database (6 expression
+ neutral) and CK+ database (7 expression classes + neutral). Baseline: Pre-
ActResNet18(HE et al., 2016), Acc.: Accuracy, Prec.: Precision, Rec.: Recall,
F1: F1 measurement. Leave-10-subjects-out cross-validation is used for all ex-
periments.

Synthetic Real
Database Method Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

BU-3DFE

Baseline 69.37 71.48 69.56 70.50 75.22 77.58 75.49 76.52
±2.84 ±1.46 ±2.76 ±2.05 ±4.60 ±3.72 ±4.68 ±4.19

FERAtt+Cls 75.15 77.34 75.45 76.38 80.41 82.30 80.79 81.54
±3.13 ±1.40 ±2.57 ±1.98 ±4.33 ±2.99 ±3.75 ±3.38

FERAtt+Rep+Cls 77.90 79.58 78.05 78.81 82.11 83.72 82.42 83.06
±2.59 ±1.77 ±2.34 ±2.01 ±4.39 ±3.09 ±4.08 ±3.59

CK+

Baseline 77.63 68.42 68.56 68.49 86.67 81.62 80.15 80.87
±2.11 ±2.97 ±1.91 ±2.43 ±3.15 ±7.76 ±9.50 ±8.63

FERAtt+Cls 84.60 74.94 76.30 75.61 85.42 75.65 78.79 77.18
±0.93 ±0.38 ±1.19 ±0.76 ±2.89 ±2.77 ±2.30 ±2.55

FERAtt+Rep+Cls 85.15 74.68 77.45 76.04 90.30 83.64 84.90 84.25
±1.07 ±1.37 ±0.55 ±0.97 ±1.36 ±5.28 ±8.52 ±6.85

Source: (FERNANDEZ et al., 2019)

Protocol. We used different metrics to evaluate the proposed methods. Accuracy is
calculated as the average number of successes divided by the total number of observations
(in this case each face is considered an observation). Precision, recall, F1 score, and
confusion matrix are also used in the analysis of the effectiveness of the system. Dems̆ar
(DEMŠAR, 2006) recommends the Friedman test followed by the pairwise Nemenyi test to
compare multiple data. The Friedman test is a nonparametric alternative of the analysis
of variance (ANOVA) test. The null hypothesis of the test 𝐻0 stipulates that models
are equivalent. Similar to the methods in (PTUCHA; SAVAKIS, 2013), Leave-10-subject-out
(L-10-SO) cross-validation was adopted in the evaluation.

Results. Tables 17 shows the mean and standard deviation for the results obtained
on the real and synthetic datasets. For the BU-3DFE database the Friedman nonpara-
metric ANOVA test reveals significant differences (𝑝 = 0.0498) between the methods.
The Nemenyi post-hoc test was applied to determine which method present significant
differences. The result for the Nemenyi post-hoc test (two-tailed test) shows that there are
significant differences between the FERAtt+Cls+Rep and all the others, for a significance
level at 𝛼 < 0.05.

In the CK+ database case, the Friedman test found significant differences between
the methods with a level of significance of 𝑝 = 0.0388 for the Synthetic CK+ dataset and
𝑝 = 0.0381 for Real CK+ dataset. In this case, we applied the Bonferroni-Dunn post-hoc
test (one-tailed test) to strengthen the power of the hypotheses test. For a significance level
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Table 18 – Comparison of the average recognition accuracy with state-of-the-art FER
methods for the BU-3DFE database. NE: number of expressions, †: six basic
expressions + neutral class. Leave-10-subjects-out cross-validation is used for
all methods.

Methods Accuracy NE
(LOPES et al., 2017) 72.89 7†
(JAMPOUR; MAUTHNER; BISCHOF, 2015) 78.64 7†
(ZHANG et al., 2016) 80.10 7†
(ZHANG et al., 2018) 80.95 7†
Our 82.11 7†

Source: (FERNANDEZ et al., 2019)

Table 19 – Comparison of the average recognition accuracy with state-of-the-art FER
methods for the CK+ database. NE: number of expressions, †: six basic ex-
pressions + neutral class and contempt class, ‡: six basic expressions + con-
tempt class (neutral is excluded). *: the value in parentheses is the mean
accuracy, which is calculated with the confusion matrix given by the authors.
Leave-10-subjects-out cross-validation is used for all methods.

Methods Accuracy* NE
(MENG et al., 2017) 95.37 7‡

(ZENG et al., 2018) 95.79 (93.78) 7‡

(YANG; CIFTCI; YIN, 2018) 97.30 (96.57) 7‡

Our 97.50 7‡

(ZENG et al., 2018) 89.84 (86.82) 8†

Our 90.30 8†

Source: (FERNANDEZ et al., 2019)

of 0.05, the Bonferroni-Dunn post-hoc test did not show significant differences between
the FERAtt+Cls and the Baseline for Synthetic CK+ with 𝑝 = 0.0216. When considering
FERAtt+Rep+Cls and Baseline methods, it shows significant differences for the Real
CK+ dataset with 𝑝 = 0.0133.

Table 18 and 19 show the comparisons results between the different FER methods for
the BU-3DFE database (YANG; CIFTCI; YIN, 2018; LOPES et al., 2017; JAMPOUR; MAUTH-

NER; BISCHOF, 2015; ZHANG et al., 2016; ZHANG et al., 2018) and for the CK+ database
(MENG et al., 2017; ZENG et al., 2018; YANG; CIFTCI; YIN, 2018). Although some results
cannot be directly compared due to different experimental setups, different expression
classes and different preprocessing methods (e.g. face alignment), it is demonstrated that
the proposed method can yield a feasible and promising recognition rate (around 82.11
percent for the BU-3DFE database and 90.30 for the CK+ database) with static facial
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images under person-independent recognition scenario.

6.4.4 Robustness to noise

The objective of this set of experiments is to demonstrate the robustness of our method
to the presence of image noise when compared to the baseline architecture PreActRes-
Net18.

Protocol. To carry out this experiment, the Baseline, FERAtt+Class, and FER-
Att+Rep+Class models were trained on the Synthetic CK+ dataset. Each of these models
was readjusted with increasing noise in the training set (𝜎 ∈ [0.05, 0.30]). We maintained
the parameters in the training for fine-tuning and used the real database CK+, so that
2000 images were generated for the synthetic dataset for test.

Results. One of the advantages of the proposed approach is that we can evaluate the
robustness of the method under different noise levels by visually assessing the changes in
the attention map 𝐼𝑎𝑡𝑡. Figure 34 shows the attention maps for an image for white zero
mean Gaussian noise levels 𝜎 = [0.01, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3]. We observe that our
network is quite robust to noise for the range of 0.01 to 0.1 and maintains a distribution of
homogeneous intensity values. This aspect is beneficial to the subsequent performance of
the classification module. Figures 35 and 36 present classification accuracy results of the
evaluated models in the Real CK+ dataset and for 2000 synthetic images. The proposed
method FERAtt+CLs+Rep provides the best classification in both cases.
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Figure 34 – Attention maps 𝐼𝑎𝑡𝑡 under increasing noise levels. We progressively added
higher levels (increasing variance 𝜎) of zero mean white Gaussian noise to
the same image and tested them using our model. The classification numbers
above show the robustness of the proposed approach under different noise
levels, 𝜎 = 0.10, 0.20, 0.30, where the Surprise and all other scores are mostly
maintained throughout all levels, with only a minor change of the Surprise
score, from 0.280 to 0.279, occurring for the highest noise contamination of
𝜎 = 0.30.

(a) 𝜎 = 0.10 (b) 𝜎 = 0.20 (c) 𝜎 = 0.30

Source: (FERNANDEZ et al., 2019)
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Figure 35 – Classification accuracy after adding incremental noise on the Real CK+
dataset. Our approach results in higher accuracy when compared to the base-
line, specially for stronger noise levels. Our representation model clearly lever-
ages results showing its importance for classification. Plotted values are the
average results for all 325 images in the database.

Source: (FERNANDEZ et al., 2019)

Figure 36 – Average classification accuracy after adding incremental noise on the Syn-
thetic CK+ dataset. The behavior of our method in the synthetic data repli-
cates what we have found for the original Real CK+ database, i.e., our
method is superior to the baseline for all levels of noise. Plotted average
values are for 2,000 synthetic images.

Source: (FERNANDEZ et al., 2019)
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6.5 CONCLUSIONS

In this chapter, we present a new end-to-end neural network architecture with an
attention model for facial expression recognition. We create a generator of synthetic im-
ages which is used for training our models. The results show that, for these experimental
conditions, the attention module improves the system classification performance in com-
parison to other methods from the state-of-the-art. The loss function presented works as
a regularization method on the embedded space.
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7 GENERAL CONCLUSION

The main goal of this thesis was to develop a more accurate learning architecture
for the facial expressions characterization. In this work, we propose FERAtt, a new deep
architecture with attention net for facial expression recognition. This architecture provides
a robust representation of the facial expression obtained through our Structured Gaussian
Manifold Loss algorithm.

7.1 CONTRIBUTIONS

The main contributions of this dissertation are as follows. First, we present an analysis
of the combination of feature engineering and classification methods based on SR applied
to the problems of FER. Second, a study is made on the main neural network architec-
tures applied to this problem. Third, we propose a new supervised and semi-supervised
representation approach based on DML. Fourth, we offer a new synthetic generator to
render face expressions. Last, we propose a new end-to-end network architecture for facial
expression recognition with an attention model. A brief description of these contributions
follows.

7.1.1 Combination of feature engineering methods based on SR

We proposed a FER system based on SR. We show that the combination of clas-
sifiers improves the performance of individual classifiers. The proposed methods (MB,
MSVMP, and MSVML) are significantly superior to the others combination rules in FER
problems. The regeneration method proposed in this work allowed the use of a trainable
multiclassifier system.

7.1.2 Study on the main neural network architectures for FER

A comparative analysis allowed us to determine that there are two important reasons
for the problem of the generalization of models: 1) Biases of the dataset, the datasets
are captured with particular characteristics of illuminations and different types of sources
of spontaneous emotion vs non-spontaneous; 2) Label subjectivity, where the intrinsic
subjectivity of the emotion in the images that contain different emotional components
and complex contexts causes the labelers to commit mistakes. We also show the difficulty
of current systems to deal with sarcasm and irony. We suppose that some of the possible
causes of the errors due to the artifacts in the images given to the network such as jewelry,
hair,etc.
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7.1.3 New representation approach based on DML

Two new methods of representation were presented in this work: 1) Deep Gaussian Mix-
ture Subspace and 2) Structured Gaussian Manifold Loss. The first one obtains Gaussian
representation of the expressions that allow classifying and grouping facial expressions.
We show that the high quality of the vectors obtained in recovery tasks, which explains the
quality of the obtained representation. In the second case, we provide a semi-supervised
method for grouping the facial expressions. New subgroups of the same facial expression
were obtained. In these subgroups, different types of characteristics that have to do with
the appearance and, in some cases, with different artifacts such as glasses are observed.

7.1.4 New synthetic generator to render FE

We proposed a new image renderer 𝑅, for creating a larger synthetic dataset using
real face datasets by making background changes and geometric transformations of the
face images. In this way, it is possible to train classification systems under extreme global
conditions.

7.1.5 New end-to-end attention network architecture for FER

We present a new end-to-end neural network architecture with an attention model for
facial expression recognition. The results show that, for these experimental conditions,
the attention module improves the system classification performance in comparison to
other methods from the state-of-the-art. The Structured Gaussian Manifold loss function
presented works as a regularization method on the embedded space.

7.2 FUTURE WORKS

This work addressed a number of existing issues in the field of facial expression recog-
nition. It also points to certain areas which could benefit from further research.

Obtaining a high-quality representation allows us to use a recurrence approach for
temporal analysis in videos. It would also allow the multimodal combination from different
data sources with our classifier combination algorithm.

One of the challenges we have is to eliminate any method of preprocessing the image.
The attention module could be the solution to this problem. We are adapting the attention
module so that it is able to adapt to extreme conditions of lighting changes, misalignment
of the facial image and occlusion.

We will evaluate the trained representation models in the proposed multiclassifier
system. The differences between the representation spaces obtained could contribute to
the diversity of the system and increase its performance.

We proposed two methods of data generating. The algorithm for regenerate datasets
obtained new reconstructed data with low-level features. Our image renderer 𝑅 creates
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a larger synthetic dataset using real face datasets by making background changes and
geometric transformations of face images. With the combination of these approaches,
more robust and diverse datasets could be created.

7.3 SUMMARY OF PUBLICATIONS

Articles published during this thesis:

• Fernández, P. D. M., Peña, F. A. G., Ren, T. I., and Leandro, J. J. (2019). Fast and
robust multiple ColorChecker detection using deep convolutional neural networks.
Image and Vision Computing, 81, 15-24.

• Peña, F. A. G., Fernández, P. D. M., Ren, T. I., Leandro, J. J., and Nishihara, R.
(2019). Burst ranking for blind multi-image deblurring. In Transactions on Image
Processing.

• Marrero Fernandez, P. D., Guerrero Pena, F. A., Ren, T., and Cunha, A. (2019).
FERAtt: Facial Expression Recognition With Attention Net. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops.

• Guerrero-Pena, F. A., Fernandez, P. D. M., Ren, T. I., Yui, M., Rothenberg, E.,
and Cunha, A. (2018). Multiclass Weighted Loss for Instance Segmentation of Clut-
tered Cells, 2018 25th IEEE International Conference on Image Processing (ICIP),
Athens, Greece, pp. 2451-2455.
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