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RESUMO 
 
 
A previsão de eventos futuros pode ajudar organizações e empresas a tomar decisões mais 
informadas, levando a resultados mais desejáveis em termos de alinhamento estratégico. 
Entretanto, a previsão de séries temporais financeiras e econômicas é uma tarefa 
desafiadora devido a dependências não lineares e propriedades não estacionárias que os 
dados do mundo real geralmente exibem, entre outras questões. Com dados transacionais, 
como pagamentos, esses problemas se tornam mais aparentes e relevantes. Esta tese 
busca encontrar evidências de que a modelagem linear é suficiente para entender as 
complexidades que os dados financeiros do mundo real oferecem, comparando seu 
desempenho a modelos mais complexos por meio de um estudo de caso de previsão. Como 
os dados empíricos consistem em pagamentos provenientes do uso do cartão de crédito 
do BNDES, sendo de natureza transacional, as interdependências estruturais e a dinâmica 
do mercado regional no Brasil também são discutidas por meio de estatísticas e ilustrações 
descritivas. As principais contribuições desta tese incluem o desenvolvimento e a 
implementação de uma metodologia de previsão adequada para métodos baseados em 
aprendizagem profunda com entradas uni e multivariadas derivadas de dados de 
pagamento. A competitividade dos métodos de aprendizagem profunda é verificada através 
de várias métricas e testes estatísticos. Além disso, a literatura sobre a avaliação de 
impacto regional do BNDES no Brasil é ampliada, e a aplicação empírica dos dados do 
cartão de crédito do BNDES é a primeira de seu tipo. 
 

 

Palavras-chaves: Séries temporais financeiras, macroeconomia, econometria, 
aprendizagem de máquina, aprendizagem profunda, computação inteligente, pagamentos 
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ABSTRACT 
 

 

The prediction of upcoming events can aid organisations and enterprises in making more 
informed decisions resulting in more desirable outcomes in terms of strategic alignment. 
However, financial and economic time series forecasting is a challenging task due to 
nonlinear dependencies and nonstationary property that real-world data commonly exhibits, 
among other issues. With transactional data such as payments, these issues become more 
apparent and relevant. This thesis seeks to find evidence whether linear modelling is 
sufficient for understanding the complexities that real-world financial data offers by 
comparing its performance to more complex models via a forecasting case study. Since the 
empirical data consists of payments from the BNDES Credit Card usage thus being 
transactional in nature, underlying interdependencies and regional market dynamics in 
Brazil are also discussed through descriptive statistics and illustrations. The main 
contributions of this thesis include developing and implementing a forecasting methodology 
that suits for deep learning-based methods with uni- and multivariate inputs derived from 
payment data. The competitiveness of deep learning methods is verified via various metrics 
and statistical testing. Furthermore, the literature on evaluating the regional influence of 
BNDES in Brazil is expanded, and the empirical application to the BNDES Credit Card data 
is the first of its kind. 
 

Keywords: Time series forecasting, macroeconomics, econometrics, machine learning, 
deep learning, intelligent computing, payments 
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1 INTRODUCTION 
 
 

1.1  Presentation 

 
Forecasting financial and economical time-series’ is not a straightforward task due to 

the various properties that real-world data exhibits. The data belonging to different markets 

are rarely independent from each other and often the underlying distribution of data 

generating processes cannot be anticipated or assumed as static. By nature, many of the 

real-world data streams progressing on time possess noisy, erratic, dynamic and chaotic 

characteristics leading to nonlinearities and unstable complexity (TRAN et al. (2019) and 

SUN et al. (2018)). In particular, real-world financial and economic systems may experience 

unexpected events related to political issues and government interventions, movements of 

macroeconomic indices and changing trends in high-value commodities, financial news and 

reports as well as changing sentiments of market participants, irregular activities in critical 

infrastructures, societies and nature, to name a few (LÄNGKVIST et al. (2014) and 

NASSIRTOUSSI et al. (2014)). As such, a relatively small event or change in one data 

source can have a significant impact to other ongoing processes due to multiplicative effects 

making it difficult to describe the output of these systems proportional to its inputs. However, 

because of their relative ease on solvability and interpretability, research across a range of 

disciplines, including finance and economics, has been dedicated to finding linear 

approximations of nonlinear phenomena1. These factors raise the question, which is 

currently under debate in the scientific community, of how one should approach these 

systems when managing them (CAVALCANTE et al. (2016)). 

 

1.2  Objective 

 
The main motivation of this work is to empirically shed light to the capabilities of 

current state-of-the-art in intelligent computing when evaluated against traditionally used 

models from econometrics and macroeconomic forecasting, via a preliminary financial time 

series prediction case study. The purpose of the study is to gather evidence whether linear 

models are sufficient for understanding, incorporating and leveraging as much of the 

 
1 Autoregressive Integrated Moving Average (ARIMA) for example assumes linearity thus excluding more 
complex joint distributions and focuses on fixed temporal dependencies having the need of specifying the 
number of lags. 
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complexities that real-world financial data offers, and also if the use of more complex models 

offers any further benefits. In addition to the forecasting exercise, descriptive statistics are 

also provided with brief insights on participant dynamics since payment data is used in the 

case study, or in other words, the data is transactional in nature. 

Contributions of the thesis include a literature review of recent works in 

macroeconomic and deep learning-based forecasting, and a successful development and 

implementation of methodology for making predictions with uni- and multivariate inputs 

derived from payment data, which can be applied to other transactional scenarios. Evidence 

supporting the competitiveness of deep learning methods are provided through various 

metrics and statistical testing. This thesis expands the literature on evaluating the regional 

influence of BNDES in Brazil by inspecting data from BNDES Credit Card usage2, and also 

provides a first attempt in forecasting aggregated payment flows using deep learning. 

 

1.3  Structure of the thesis 

 
From now on, the thesis unfolds as follows. FMIs (Financial Market Infrastructure) are 

introduced and their relationship to the Brazilian Development Bank (BNDES) which 

provided the data used in the experiments is established. Then a literature review based on 

recent works in the field of macroeconomic forecasting, deep learning and graph-based 

deep learning is provided. Next, the deep learning methods used in the experiments are 

briefly discussed following a detailed description of the methodology carried out. As the 

forecasting exercise is realised, an assessment on the results is provided, before which 

descriptive statistics and interdependencies in payment data are explored. Finally, some 

limitations of the study and suggestions for future works are outlined. Concluding remarks 

wrap up the thesis. 

 

 
2 See e.g. CORSEUIL (2019) and BNDES (2018a), as well as the BNDES digital repository of research 
https://web.bndes.gov.br/bib/jspui/?locale=pt_BR. 

https://web.bndes.gov.br/bib/jspui/?locale=pt_BR
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2 FINANCIAL MARKET INFRASTRUCTURES AND BNDES 
 
 

FMI is a multilateral system among participating institutions, including the operator of 

the system. It is used for clearing, settling, or recording monetary transactions such as 

transfer of funds, securities, derivatives, or other financial transactions. FMIs are generally 

sophisticated systems that handle substantial amounts of transactions and sizable monetary 

values. They can differ significantly in organisation, function and design - FMIs can be legally 

organised in a variety of forms, including associations of financial institutions, non-bank 

clearing corporations, and specialised banking organisations. They may be owned and 

operated by a central bank or by the private sector, operate as for-profit or non-profit entities. 

Bank and non-bank FMIs can be subject to different licensing and regulatory schemes 

depending on organisational form. Nevertheless, FMIs typically establish a set of common 

rules and procedures for all participants, a technical infrastructure, and a specialised risk-

management framework managing the risks they incur. Also, through the centralisation of 

specific activities, FMIs allow participants to manage their risks more efficiently and 

effectively, and in some instances, reduce or eliminate certain risks. FMIs can also promote 

increased transparency in particular markets and some of them are critical to helping central 

banks conduct monetary policy and maintain financial stability (CPSS-TCIOSC (2012)). 

The term FMI refers to payment systems, central securities depositories (CSDs), 

securities settlement systems (SSSs), central counterparties (CCPs), and trade repositories 

(TRs)3. These infrastructures facilitate the clearing, settlement and recording of monetary 

transactions. There can be significant variation in design among FMIs with the same 

function: some FMIs settle in real-time while others may use deferred settlements, or settle 

individual transactions while others settle batches of transactions. The presumption is that 

all CSDs, SSSs, CCPs and TRs are systematically important. In general, a payment system 

is systemically important if it has the potential to trigger or transmit systemic disruptions. 

These may be systems that are the sole payment system in a country or the principal system 

in terms of the aggregate value of payments. They can also be, among other things, systems 

that mainly handle time-critical, high-value payments or settle payments used to effect 

settlement in other systemically important FMIs (CPSS-TCIOSC (2012)). 

A payment system is a set of instruments, procedures and rules for transferring funds 

between or among participants. Payment systems are typically based on an agreement 

 
3 See CPSS (2016) for the definition of each FMI. In some cases, exchanges or other market infrastructures 
may own or operate entities or functions that perform centralised clearing and settlement processes. 
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between or among participants and the operator of the arrangement, and the transfer of 

funds is executed using an agreed-upon operational infrastructure. A payment system is 

generally categorised as either a retail payment system or a LVPS (Large-Value Payment 

System). A retail payment system is a funds transfer system that typically handles a large 

volume of relatively low-value payments in forms such as cheques, credit transfers, direct 

debits, and card payment transactions. Retail payment systems may be operated either by 

the private sector or the public sector, using multilateral DNS (Deferred Net Settlement) or 

RTGS (Real-Time Gross Settlement) mechanisms. LVPS is a funds transfer system that 

typically handles large-value and high priority payments. In contrast to retail systems, many 

LVPSs are operated by central banks, using an RTGS or equivalent mechanism (CPSS-

TCIOSC (2012)). While the processing of large-value payments is not a sufficient condition 

for a system to be considered systemically important, systems handling primarily large-value 

payments are usually considered as systemically important since they are vulnerable to 

events that may threaten the stability of a financial system as a whole (CPSS (2005)).  

Before the mid-1990s, when Brazil was battling with chronic inflation of up to 2% per 

month, the changes in the Brazilian payment, clearing and settlement systems aimed at 

increasing the speed of processing of financial transactions. Further on, the focus shifted to 

risk management in the reform carried out by the Central Bank of Brazil (BCB) in 2001 and 

2002: the BCB implemented a system called the STR (Reserves Transfer System) that uses 

RTGS for funds transfers (CPSS (2011)). Today, the central-bank controlled STR serves as 

the backbone of the Brazilian financial system. STR is the Brazilian LVPS which settles 

transactions in the monetary, foreign exchange and capital markets among institutions that 

hold accounts at BCB. The clearing and settlement systems’ operations are also settled 

through the STR as well as funds transfers related to the collection of income taxes and 

payments for the federal government (BCB (2011)).  

There are three different types of accounts in STR: i) Bank Reserves Accounts held 

by banking institutions; ii) Settlement Accounts held by non-banking institutions, payment 

institutions and FMIs such as clearing and settlement providers; and iii) Government 

Single/Unique Account held by the National Treasury. When considering Bank Reserves 

Accounts, holding is mandatory for commercial and universal banks with commercial bank 

activities and savings banks, and optional for development, investment, foreign exchange 

and universal banks without commercial bank activities. Regarding Settlement Accounts, 

holding is mandatory for systemically important FMIs such as clearing and settlement 

providers and optional for non-systemically important FMIs, non-banking institutions 
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authorised to operate by BCB and payment institutions (BCB (2011)). Participants in STR 

can execute funds transfers of unlimited value on their own or a customer’s behalf for credit 

to the account of another participant or its customer. As of 23/8/2019, there are 233 

participants in total in STR and one of them is BNDES, holding a reserves account in BCB 

since 30/6/2014 (BNDES (2019) and BCB (2019)). BNDES4 is the main financing institution 

for development in Brazil.  

Micro and small sized companies play a significant role in the Brazilian economy and 

employment. In 2016, there were 6.8 million establishments corresponding 99% of all firms. 

These accounted for 16.9 million (54.5%) of all formal non-agricultural jobs while being 

responsible for 44% of all salaries paid.  Between 2006 and 2016, micro and small sized 

companies generated in total of 5 million jobs as the number of establishments increased 

21.9%. More than one fourth of the Brazilian GDP was generated by micro and small sized 

enterprises in 2011 (SEBRAE (2014)). Moreover, when compared to medium and large 

sized companies, the micro and small companies are more resilient to shocks such as crises 

(SEBRAE (2016)). 

Despite their importance for economic growth, micro and small sized companies have 

had difficulties in accessing financial support in the form of credit which may contribute to 

the high rate of defaults among these companies (MACHADO et al. (2011)). To finance their 

business, entrepreneurs often seek other sources than banks due to the cost of money, 

bureaucracy and the excessive requirement of guarantees. As an alternative to banks, most 

entrepreneurs negotiate payments with suppliers or use post-dated checks, overdrafts or 

corporate credit cards (BNDES (2018b)). To this end, BNDES has made efforts in 

overcoming the challenges faced by micro and small sized companies regarding financial 

support thus contributing to the economic and social growth in Brazil. 

BNDES offers various elements of financing through which enterprises of different 

sizes can access financial support. Some of the principal elements include products5 which 

define general funding rules according to each purpose with specific clients, objectives and 

conditions. For example, Finame is designed to help acquiring, producing and modernising 

machines and equipment, and micro-sized entrepreneurs, who may or may not have access 

to the traditional financial system, can opt for small loans through Microcredit.  

 
4 BNDES is the Brazilian development bank whose mission is to foster sustainable and competitive 
development in the Brazilian economy as well as generate jobs while reducing social and regional inequalities. 
5 More information about these products can be found from BNDES’ website (in Portuguese), 
https://www.bndes.gov.br/wps/portal/site/home/financiamento. 

https://www.bndes.gov.br/wps/portal/site/home/financiamento
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The BNDES Credit Card is a product launched in 2002 focusing on acquisition of 

goods and services targeted for micro, small and medium sized enterprises (MSEs). More 

specifically, it is a line of pre-approved credit based on the idea of providing a credit card to 

companies similar to what individuals have, which initially represented a paradigm shift in 

offering financial support for smaller enterprises. Instead of acting with MSEs through a 

network of commercial banks spread over the country, the Credit Card automates 

transaction procedures electronically removing the need of case-by-case analysis and the 

products (for investing) are conveniently made available in one marketplace6 (CORSEUIL 

et al. (2019)). In essence, the Credit Card brings together suppliers and buyers from various 

industrial sectors by facilitating investments in products such as equipment and machines 

used in production, commerce and services. Here, BNDES provides support offering long-

term payment plans, lower credit tax rates, guarantees and security, among others7. 

The data for the experiments in this thesis was provided by the BNDES and contains 

operations from the BNDES Credit Card8 usage. The data is reviewed in detail in Section 

5.1 and Chapter 6. 

 
6 The portal, or e-catalog, where investments can be made, is available in BNDES Credit Card’s website for 
users with proper credentials (https://www.cartaobndes.gov.br/cartaobndes/). 
7 The tax rate is fixed and updated monthly by BNDES. In August 2019, the tax rate was 1.21%. For more 
information, see https://www.cartaobndes.gov.br/cartaobndes/PaginasCartao/Taxa.asp?Acao=L. Payment 
plans are available from 3 to 48 months. For each client, pre-approved credit can be acquired as far as 2 
million reals. 
8 I would like to thank Alessandra Sleman Cardoso (Gerente da ADIG/DEPOD/GEROP – Gerência 
Operacional, do DEPOD – Departamento de Plataformas Digitais, da ADIG – Área de Operações e Canais 
Digitais, do BNDES – Banco Nacional de Desenvolvimento Econômico e Social – Brazilian Development 
Bank) for providing the dataset. 

https://www.cartaobndes.gov.br/cartaobndes/
https://www.cartaobndes.gov.br/cartaobndes/PaginasCartao/Taxa.asp?Acao=L
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3 LITERATURE REVIEW AND RECENT WORKS 
 
 

3.1 Macroeconomic forecasting 

 
Before reviewing machine and deep learning literature, a summary of recent works 

in the field of macroeconomic forecasting is provided. Lately, studies in macroeconomic 

forecasting have been focusing on investigating whether including information from different 

markets and incorporating innovations leads to enhanced predictive ability. Especially the 

development of reduced-form models has been accelerating and produced many novel 

approaches. Moreover, a strand of literature focuses on improving Bayesian VAR (BVAR) 

methods and their variants, as they are standard tools in macroeconomic forecasting and 

policy analysis for practitioners such as central bankers and scientific community. 

Carriero et al. (2019) provided a comprehensive evaluation on the current state-of-

the-art in both reduced-form and full structural modelling. The authors computed forecasts 

for output growth and inflation for seven different economies using three classes of latest 

reduced-form forecasting models and the performance of a medium-sized structural DSGE9 

(Dynamic Stochastic General Equilibrium) was compared to the reduced-form models in the 

US, the UK and the euro area. The RMSE (Root Mean Squared Error) and logscores10 were 

used for measuring the models’ relative forecasting performances and DM-test (Diebold & 

Mariano) was used for verifying the statistical significance of forecasts. The study used 

datasets up to 155 variables11 including a mix of measures of economic activity such as 

survey data, prices and financial variables of different frequencies. In another work, Domit 

et al. (2019) delivered a comparison of a medium-scale BVAR and the DSGE model 

COMPASS (Central Organising Model for Projection Analysis & Scenario Simulation) 

developed by the Bank of England, outlined in Burgess et al. (2013). Both models were 

estimated with UK economy data and quarterly forecasts for horizons of up to three years 

were produced. The forecasting performance of the models was evaluated with RMSFE 

(Root Mean Squared Forecast Error) and the statistical difference of RMSFEs was analysed 

with DM-test.  

 
9 The employed DSGE followed the Smets-Wouters’ approach (SMETS and WOUTERS (2007)). 
10 The authors argued that the maximization of the logscore is equivalent to the minimisation of the Kullback-
Leibler distance between the model and the true density. 
11 Time-varying VARs and VARs with stochastic volatility were excluded from the study due to their adaptability 
to large datasets. 
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Due to the availability of more granular financial data, Knotek II and Zaman (2019) 

made forecasts of macroeconomic variables with multivariate quarterly BVARs12 of differing 

dimensions conditioned to nowcasts generated from high-frequency financial variables. The 

authors also explored which set of financial variables produced the most accurate 

predictions. Chen and Ranciere (2019) examined the forecasting power of financial 

variables by predicting several macroeconomic variables using a set of financial variables 

via relatively simple panel model. In addition to the whole and highly imbalanced sample (62 

countries), the model was also estimated twice for advanced economies, once for emerging 

markets and once for low-income markets. Country-specific and pooled international data 

were also used. Another swing at mixing low- and high-frequency variables for 

macroeconomic forecasting was taken by Gorgi et al. (2019) by the means of a hybrid13 

reduced-form model. The approach can be specified to deal with conditional heteroskedastic 

errors and parameter updates that are robust to outliers. In other words, stochastic volatility 

and fat-tailed distributions can be incorporated in the model. The authors used the proposed 

framework with dynamic factor model specifications for forecasting. 

In a recent work, Louzis (2019) argued that there exist many available priors in the 

BVAR literature, but they are not informative enough in many cases when considering the 

trend of the process in stationary and nonstationary variables, or the steady state. To that 

end, the author proposed incorporating prior beliefs of the steady state in a VAR model and 

investigated whether the information from steady-state priors further enhances forecasting 

quality, among other things. More specifically, for steady-states the author proposed an 

adaptive hierarchical NG-prior and a time-varying parameter model, and the proposed 

settings were generalised to account for fat-tailed and heteroskedastic innovations by 

augmenting the models with CSV (Common Stochastic Volatility) and Student-t errors. The 

alternative specifications were estimated using Gibbs and Metropolis-within-Gibbs 

algorithms.  Korobilis and Pettenuzzo (2019), on the other hand, proposed a relief on the 

computational load in estimating BVAR models while maintaining forecast accuracies. They 

argued that the majority of existing applications featuring hierarchical priors are limited 

because they rely on heavy-duty simulation-based MCMC (Markov-Chain Monte-Carlo) 

methods which may become infeasible when dealing with high-dimensional data. Other 

 
12 Techniques such as using Normal-inverse Wishart conjugate and “sum of coefficients” priors were employed 
for making the model less susceptible to overfitting. 
13 GAS (Generalised Autoregressive Score) was used with MIDAS (Mixed Data Sampling) model for enabling 
a data-driven approach for updating time-varying parameters. The authors argued GAS models are flexible, 
easy to implement and lightweight to use. 
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approaches have been introduced in the literature, but they have their own restrictions. That 

said, the authors proposed a new simulation-free estimation algorithm for (high-dimensional) 

VARs employing independent hierarchical shrinkage priors14. 

While there were some discrepancies in the findings of works mentioned above, 

many of them concluded that including information from different markets with varying 

frequencies and taking nonlinearities into account indeed improves prediction performance. 

One of interesting rationales, brought up by Chen and Ranciere (2019), was that high-

frequency variables such as financial ones have a forward-looking nature since they capture 

information about the future of the economy that is not yet reflected in current 

macroeconomic outcomes. Moreover, leveraging different types of innovations may result 

in seizing information from unknown factors, and their interrelations acting in the complex 

real-world environment, which can be beneficial in terms of forecasting. 

In the following section, the literature on machine and deep learning related to 

forecasting is treated more in depth. 

 

3.2  Machine and deep learning 

 
In their paper Cavalcante et al. (2016) presented a comprehensive review through 

reputable papers published between 2009 and 2015 on how methods from computational 

intelligence have been utilised in several financial applications. The authors survey articles 

focusing on pre-processing and clustering of financial data, forecasting future market 

movements and mining financial information. They also discuss the main challenges, open 

problems and opportunities as well as future directions in the applications of solving financial 

problems using computational intelligence. Interestingly, the authors found for example that 

the application of deep learning methods to the field of financial forecasting remained still 

largely unexplored and they acknowledged deep learning as an important contribution for 

future works. Längkvist et al. (2014) reviewed recent developments at that time in deep 

learning and unsupervised feature learning for time-series problems including models and 

techniques that were used for modelling temporal relations. While the paper dealt with 

various time-series tasks such as motion capture, speech and music recognition, the authors 

recognised the potential of deep learning for predicting stock markets with multiple data 

sources, which had not yet been realised in the scientific community. Online-text-mining for 

 
14 The basis for the proposed algorithm comes from van den Boom et al. (2015), which is further generalised 
and applied to hierarchical priors of Normal-Jeffreys, Spike-and-Slab and NG. 
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market prediction was reviewed by Nassirtoussi et al. (2014) with the objective of clarifying 

the theoretical and technical framework of approaching the problem. They argued that 

correctly interpreting the sentiments of people in social media and financial news can 

increase the predictability of financial markets by presenting successful example studies. 

The authors reviewed past literature with an emphasis on the state-of-the-art at the time and 

offered a comparative analysis of the available systems including main differentiating factors 

among the works. Observations on the lack of research and suggestions for future works 

were also made where one of the identified aspects was machine learning in the context of 

market-predictive text-mining.  

One of the unifying components of the mentioned reviews from a couple of years ago 

is the pursuit of understanding real-world time series’ complex nature through more 

advanced machine learning methods instead of traditional approaches which either estimate 

parameters from an assumed time-series model or do not have the capacity to accurately 

model such data by containing only a small number of nonlinear operations. One of the main 

interests of exploration in the study of forecasting financial time series’ is deep learning-

based techniques as mentioned above: they are able to learn representations and derive 

complex, nonlinear and hierarchical features with little or no prior knowledge from high-

dimensional input data and their capabilities have been demonstrated through 

breakthroughs in various applications such as computer vision, speech recognition, natural 

language processing and recommender systems (LIU et al. (2017)). Next, some recent 

studies in applying machine and deep learning to forecasting financial and economical time 

series are reviewed. 

In a recent work Siami-Namini et al. (2018) provided empirical evidence on using a 

LSTM (Long Short-Term Memory) model in forecasting univariate economical and financial 

time series data by comparing its performance to the traditional ARIMA model. The authors 

used monthly data from several commonly known stock market indices with a time frame of 

January 1985 to August 2018. Various monthly economic time series were also collected 

for different time periods spanning from 50 to 70 years. The predictive performance of the 

models was evaluated by the means of RMSE. Rolling forecasts, or walk-forward model 

validation, was used, where the model was rebuilt and trained each time with all available 

data before making a new prediction. The LSTM model outperformed ARIMA in all five stock 

indices and financial time series predicted with average error reductions of 87 and 84 

percent, respectively. The stateful model was constructed with one hidden layer consisting 

four memory cells and optimised using Adam and MSE as the loss function. However, further 
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specifications such as data transformation were deliberately left out and other performance 

measures for validating the models could have been added. Nevertheless, the results 

demonstrated the superiority of the LSTM model. Finally, the authors recognize the potential 

for extending the use of deep learning-based algorithms to other prediction problems in 

economics and finance under multivariate setting. 

In another recent work by Sun et al. (2018) a novel approach to univariate financial 

time series forecasting was presented. The authors hypothesised that the composition of 

multiple learning algorithms, or ensemble learning, can obtain better predictive performance 

in comparison to a single algorithm. In their approach, the AdaBoost-algorithm (Adaptive 

Boosting) was used for enhancing and integrating the forecasting results of all predictors 

from a set of LSTM models. In other words, multiple LSTM models were created and trained 

according to the resampled training data by AdaBoost, and forecasting results were 

combined. The proposed approach was empirically tested using daily data from two stock 

indices and exchange rates, and forecasting accuracies were evaluated with MAPE (Mean 

Absolute Percentage Error) and DS (Directional Symmetry). The model was compared 

against predictions made by a set of single models, namely LSTM, ELM (Extreme Learning 

Machine), SVR (Support Vector Regression), MLP (Multilayer Perceptron) and ARIMA as 

well as AdaBoost-equipped ensemble models MLP, SVR, ELM and LSTM. ARIMA was 

found to be consistently outperformed by the other individual models and all ensemble 

learning approaches were superior to single models. The proposed AdaBoost-LSTM 

outperformed all other benchmark models and produced 19 to 22 percent improvements on 

directional forecasts when compared to ARIMA. While the results show the efficacy of 

AdaBoost-LSTM, one could argue that the datasets, which had more or less 600 samples 

each and spanned from January 2015 to May 2017, were relatively small. Thus, it would be 

interesting to verify the results with larger samples. The specifics of chosen 

hyperparameters for the LSTM predictors were also not disclosed. 

While not an application to financial data, Hua et al. (2019) presented a novel 

approach to time series prediction using the LSTM architecture. Inspired by the work of Hill 

et al. (2012) on events before synaptic connections are formed in neural microcircuits, the 

authors investigate whether, instead of applying the conventional fully connected LSTM, 

randomly created neural connections resulting in a sparse LSTM, or RCLSTM (Random 

Connectivity LSTM), could yield potential benefits to LSTM’s performance and efficiency. In 

essence, an assigned probability value that obeys an arbitrary statistical distribution 
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indicated the tendency of corresponding neuron pairs to be connected15. Given its 

computational efficiency, the uniform distribution was chosen by the authors and a hand-

crafted threshold value determined the percentage of connected neurons. In this way, the 

total number of involved parameters to be trained in the RCLSTM can be substantially 

decreased reducing also the computational load. The proposed model’s performance was 

empirically tested with real-world network traffic data and location history data from mobile 

users. The model was compared against SVR, MLP and ARIMA, and validated using RMSE 

for traffic data and prediction accuracy16 for human mobility prediction. In traffic prediction, 

and with only 1 percent neural connections, the RCLSTM outperformed ARIMA, SVR and 

FFNN. While having a three-layer stack with a memory cell size of 300 per layer, it performed 

also better than a conventional LSTM with a memory size of 30. The prediction accuracy of 

RCLSTM in user-mobility task was also close to the conventional LSTM even with 30 percent 

neural connectivity. Overall, the proposed model was capable of traffic prediction and user-

location forecasting with less than half the neural connections. The obtained results suggest 

that in latency-stringent and resource-constrained applications, RCLSTM is more suitable 

than the conventional LSTM. It would be interesting to see how this type of architecture 

would perform in financial applications, especially when there is not much data available in 

terms of frequency. In this case, the RCLSTM could be a viable option to prevent overfitting 

and able to capture the essential features of the underlying data generating process while 

modelling long-term dependencies. 

Another novel approach was proposed by Maggiolo and Spanakis (2019) where a 

hybrid model is built. While ensemble models commonly merge the outputs of multiple 

similar individual models, different approaches are combined in the hybrid setting. This is 

also the direction the authors take: they propose a combination of CNN (Convolutional 

Neural Network) and RNN (Recurrent Neural Network). They argue that RNN, and its 

variants LSTM and GRU (Gated Recurrent Unit), are able to model long-term and infrequent 

dependencies over time whereas CNN can model short-term highly frequent patterns in time 

series. Conceptually, the proposed model extracts feature from the time-dependent input 

via CNN and then the extracted sequence is encoded with three recurrent GRU units 

followed by a linear transformation to obtain the output. In addition to modelling 

 
15 Note that this is different from dropping out individual neurons from a model architecture, as single 
connections are being discussed. A neuron can have multiple connections and when a neuron is dropped, all 
connections are lost. 
16 Defined as the ratio of the number of correct predictions to the total number of predictions. 
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nonlinearities as explained, the authors also generated predictions using linear regression 

so that the final prediction for the whole model is the sum of linear and nonlinear predictions. 

Initially, the model also takes three versions of the original input time series creating two 

additional down sampled versions by a factor of ½ and ¼, averaging the values accordingly. 

The causal convolution in the model’s convolutional part takes inspiration from van den Oord 

et al. (2016). The proposed model was empirically tested in two uni- and two multivariate 

settings, which were nonfinancial, and three metrics, namely MSE, MAE (Mean Absolute 

Error) and DTW (Dynamic Time Warping), were used to compare the model’s prediction 

accuracy against LSTM- and GRU-equipped RNN models, SVM, ARIMA and LSTNet (LAI 

et al. (2018)) which is similar to the proposed model. In the multivariate setting, SVM was 

dropped and ARIMA was changed to ridge regression model. The results demonstrated that 

the proposed model outperformed the baseline models under multivariate setting. However, 

possibly because the datasets were simple enough for simpler models, the proposed 

architecture did not excel in the univariate setting. It is worth mentioning that for all datasets, 

normalisation and gaussian filters were applied for denoising. The inclusion of attention 

mechanism was suggested for future works from the authors. A financial or economical 

multivariate setup would also be an interesting use-case for the proposed model. 

Shah et al. (2018) compared the performance of LSTM and DNN (Deep Neural 

Network) when applied to predicting stock prices. The authors argue that there were only a 

few studies that addressed doubts such as when and why LSTM networks perform well, and 

in which cases LSTM should be chosen over a DNN. A daily dataset with closing prices 

spanning from 1997 to 2017 was extracted from the Bombay Stock Exchange index for 

empirical testing. The data were normalised to relative change over the specified time 

window at hand: the authors justify the conversion by explaining that predicting percent 

change instead of actual value is more suitable, especially for guaranteeing convergence 

for the optimisation process. Furthermore, for the DNN, the converted data was mapped to 

[0,1]-scale with min-max procedure. The authors also explain thoroughly the processes for 

choosing the models’ architectural structures, hyperparameters and optimisation methods. 

RMSE, DS and forecast bias were used for comparing the predictive abilities of the models 

which showed and confirmed the superiority of LSTM. However, one important notion was 

made in the study: while the daily one-step-ahead predictions seemed promising, both of 

the models were making point-by-point predictions meaning that the predictions were not 

based on any previous predictions but on the last true value. A similar finding was made in 

Leccese (2019) where it was stated that for predicting the next day value, LSTM uses a 
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value very close to the previous day closing price meaning that a model has no predictive 

ability. Therefore, predicting multiple time horizons ahead would better qualify as testing the 

models’ capabilities. The 7-days-ahead forecasts demonstrated that the LSTM can handle 

better weekly movements: in more than half of the cases LSTM was able to predict volatile 

movements in the true data. Measures for ensuring and verifying that the models generalize 

well on new data were also taken by evading overfitting and testing with a new stock dataset. 

For future works, the authors identified the opportunity of adding more variables, as for now 

only price data were used for predictions. 

Sezer and Ozbayoglu (2018) proposed a novel algorithmic trading model based on 

CNN. The authors elaborated that in recent years for financial time series forecasting, 

recurrent type of neural networks have been most commonly used from the deep learning 

spectrum and models integrating technical analysis data with DNNs occurs rarely in 

literature. With the use of CNN, the authors combine technical analysis and deep learning: 

the main difference between the proposed model and other methods was that the technical 

analysis data was applied on prices to create two-dimensional feature vectors and matrices 

that were fed to the CNN as input. In this way, the financial time series forecasting problem 

was turned into an image classification problem. More specifically, daily stock prices and 

ETFs (Exchange-Traded Fund) were collected from 2002 to 2017 and the size of 15x15 

images were created daily using 15 mostly oscillator- and trend-based technical indicators. 

The architecture of the proposed CNN was described in detail and the model’s performance 

was evaluated both computationally and financially, where the financial evaluation included 

some benchmarks such as BaH (Buy & Hold -strategy), RSI (Relative Strength Index), SMA 

(Simple Moving Average), LSTM and MLP methods as well as several metrics. The 

proposed model outperformed other baselines over the long run and demonstrated stable 

and robust operating characteristics. For future works, the authors suggested further 

optimisation in the proposed model’s hyperparameters either manually or using an 

evolutionary algorithm. They also recognised the need for a bigger and more granular 

dataset in order to build deeper models as more training data would be available. However, 

the technical indicators used in the work are fairly simple and assume certain characteristics 

about the data which may weaken the model’s performance. It is also worth mentioning that 

according to the authors, that in overall, the application of DNNs on financial forecasting 

models is very limited in the public domain. 

The study from Chong et al. (2017) attempted to provide a comprehensive and 

objective assessment on both the pros and cons of deep learning algorithms for stock 
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market analysis and prediction. In their work, high-frequency intraday stock returns data 

from the Korean stock market was used as an input data to several deep learning algorithms. 

The effects of three unsupervised feature extraction methods, namely PCA (Principal 

Component Analysis) (linear), AE (Autoencoder) and RBM (Restricted Boltzmann Machine) 

(nonlinears), were examined on the overall ability to predict future market behaviour. The 

created features by these methods were then fed to standard AR and DNN models for 

comparison. More specifically, stock prices from 38 different stocks were collected every 

five minutes between January 2010 and December 2014 and then logarithmic returns were 

calculated. This procedure resulted in 73,041 five-minute returns over 1239 trading days. 

Using the mean and standard deviation, all stock returns in the training dataset were 

normalised. The performance of the methods was evaluated with NMSE (Normalized Mean 

Squared Error), RMSE, MAE and MI (Mutual Information) while representations created by 

extracting features were assessed by reconstruction errors and prediction accuracies. From 

the results authors find that the DNN can extract additional information from input data and 

improve predictions. They also continue that while any conclusive deduction cannot be 

derived in favour to the superiority of DNNs, they do suggest promising extensions and 

directions for further investigation. The ability to extract raw features from a large set of raw 

data without relying on prior knowledge on predictors was recognised as the main advantage 

of DNNs but applying deep learning and finding the most appropriate model can be 

challenging. The authors mention for future works that the input could be augmented with 

variables that carry information about the future price movement and other data 

representation methods could be utilised.  It would have also been interesting to see how, 

for example, RNN-based method would have performed in this study. Lastly, according to 

the authors, while there has been growing interest whether deep learning can be effectively 

applied to problems in finance, the literature still remains limited. 

Fischer and Krauss (2018) deployed LSTM networks against memory-free 

classification methods such as RAF (Random Forest), DNN and LOG (Logistic Regression 

Classifier) in a large-scale financial market prediction task. Daily total cum-dividend prices 

from January 1990 until October 2015 were extracted from all participants of S&P 500. The 

authors provided an in-depth guide on how to frame a prediction task, extract representative 

features and pre-process the data, construct a suitable architecture for the models and 

derive a trading strategy based on the predictions. The LSTM was found to outperform the 

standard DNN and logistic regression by a clear margin while being most of the times 

superior to random forest with the exception of global financial crisis period. The findings 
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also challenge the semi-strong form of market efficiency with statistically and economically 

significant returns of 0.46 percent per day. Another attempt to predicting stock prices was 

taken by Weng et al. (2018) where their goal was to develop a novel financial expert system 

incorporating historical stock prices, well-known technical indicators, counts and sentiment 

scores of published news articles for a given stock, trends in Google searches for the given 

stock ticker and number of unique visitors for pertinent Wikipedia pages. Then, after data 

preparation, the system trained four separate machine learning ensemble regression 

methods based on ANN (Artificial Neural Network), SVR, boosted regression tree and RaF 

and then the platform selected the best-performing ensemble for a given stock in the cross-

validation phase. PCA was also experimented as a dimensionality reduction technique in 

the data preparation process. Model evaluation was done with RMSE, MAE and MAPE. 

Superior results compared to the literature that uses either single data sources or 

individual/ensemble learning models were achieved in the study and it was verified that, with 

varying importance, online data features contributed significantly to the prediction accuracy. 

Many opportunities for future research were identified, such as differing time-horizons for 

predictions, dealing with non-US markets, adding new features, utilising a recurrent 

architecture such as LSTM and taking advantage of a firm’s location information. 

By Du et al. (2018), a more end-to-end type of approach was taken in solving time 

series forecasting problems. They propose a deep sequence-to-sequence model which is a 

more generalised approach for learning from sequential data and makes minimal 

assumptions on the sequence structure. The method involves an architecture familiar from 

autoencoders: an encoder first compresses the input sequence to a fixed-length vector with 

lower dimensionality and then a decoder produces the output by attempting to reconstruct 

the original input from the compressed data. According to the authors, they applied 

sequence-to-sequence learning for the first time to time series forecasting. As the encoder 

and decoder, the authors applied the LSTM model in order to account for spatial-temporal 

dependencies in the multivariate time series input data. Real air quality time series data with 

multiple variables were used for conducting experiments. Input data were also normalised 

to [0,1]-scale using min-max procedure. The proposed model was compared with SVR using 

three different kernels and three recurrent models, namely standard RNN, LSTM and GRU, 

via MSE. The results illustrate the superiority of the proposed model in single- and multi-

step forward predictions. The approach taken by the authors is intriguing and it would be 

interesting to see how it performs in forecasting multivariate financial time series. It could 

also be worthwhile to verify the necessity for input normalisation since data manipulation 
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can lead to unintentional costs in terms of model performance. One could also argue 

whether LSTM is able to extract spatial features in addition to temporal ones. 

One of the challenges for neural network-based systems, as found in reviewed works, 

is to find the best optimal architecture. Tran et al. (2019) proposed a data-driven learning 

scheme where the architecture of the fully connected FFNN is constructed by adopting a 

progressive learning paradigm that gradually extends the network topology. The algorithm 

takes advantage of GOPs (Generalized Operational Perceptron) which have a richer set of 

functionals when comparing to traditional building blocks of neural networks, the perceptron. 

Simply put, the network topology gets extended by adding a new GOP-block on the current 

hidden layer if it improves the network’s performance and if the performance saturates, the 

block is added to a new hidden layer. Finally, when the learning procedure is over, the 

parameters of the newly created network are optimised. Using a large-scale imbalanced 

LOB-dataset (Limit Order Book) and predicting the movement of mid-price in the future, the 

proposed algorithm was evaluated by the means of F1 score, recall, precision and accuracy 

against 12 models, including machine learning methods using vector and tensor inputs, and 

three other progressive learning algorithms. The empirical study verified the superiority over 

the benchmarks, including multilinear methods that make use of privileged information. It 

would be interesting to see how these neural architecture learning algorithms perform with 

different multivariate financial time series of varying time horizons, spans and frequencies. 

There are also hybrid approaches in the literature that attempt to combine 

econometric and deep learning models. In their study, Kim and Won (2018) conjectured that 

for predicting financial market volatility, combining various information from several 

econometric models with a neural network would be more effective. To that end, the authors 

proposed a hybrid LSTM model where the parameters of two or more GARCH-type 

(Generalized Autoregressive Conditional Heteroskedasticity) models were entered as inputs 

to the LSTM. They argued that as capturing heteroskedastic and leptokurtic nature of 

financial time series data as well as long-term dependencies are difficult to reproduce in out-

of-sample predictions by econometric methods, a neural network could alleviate this issue. 

The dataset used considers the volatility of KOSPI (Korea Composite Stock Price Index) 

200 stock index returns from January 2001 to September 2011, and predictions were made 

until January 2017. The presence of heteroskedasticity (until the fifth lag), non-stationarity 

and non-normality in the dataset was verified with ARCH-LM (ARCH-Lagrange Multiplier), 

ADF (Augmented Dickey-Fuller) and Jarque-Bera tests, respectively. Further computations 

revealed high kurtosis and negative skewness. The authors explained that the parameters 
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of GARCH and EWMA (Exponential Weighted Moving Average) represent for example 

different properties of volatility shocks, such as its magnitude, direction and persistence. For 

the empirical study, GARCH, EGARCH (Exponential GARCH) and EWMA were leveraged 

as “GARCH-type” models for constructing LSTM-models that integrate two out of three of 

them, and finally an LSTM that integrated all three of them. For comparison, a DNN was 

also composed with one GARCH-type model separately, and all of the models were 

evaluated as individual models too. For measurements and validation, RV (Realised 

Volatility), MAE, MSE, HMAE (Heteroskedasticity-adjusted MAE) and HMSE 

(Heteroskedasticity-adjusted MSE) were used as well as the DM and WS (Wilcoxon Signed 

Rank) tests. Various forecast horizons were examined, namely 1, 14 and 21 days ahead 

with differing window lengths of 7, 14 and 22. The results confirmed that the LSTM model 

which integrated three GARCH-type models demonstrated superior out-of-sample 

performance in all scenarios and measures to all other benchmark models. Moreover, the 

other hybrid models outperformed single individual models. For future works authors 

recognized the inclusion of more diversified information in various forms such as text or 

images, since only 7 to 14 financial numerical inputs were used in the empirical part. 

Another attempt on combining econometric and deep learning models was recently 

proposed by León and Ortega (2018). Their aim was to test if highly frequent electronic 

payments among individuals, firms and the central governments, instead of using traditional 

macroeconomic and financial variables, could be useful for incorporating signals of 

economic activity to a nowcasting model. An important distinction of their work is that unlike 

a traditional econometric approach, the purpose was not to explain which variables change 

the state of an economy and with what magnitude, but to construct an effective out-of-

sample prediction model that tries to capture and leverage the complex information that 

underlies in financial data. In other words, as the authors summarised, their proposal is more 

of a machine learning approach instead of explanatory modelling for policy purposes. The 

authors decided to nowcast ISE (Colombian Economic Monitoring Index) which is a monthly 

indicator of economic activity that combines information about the production of goods and 

services pertaining to the most important activities in Colombia. Through the electronic 

payments, their economic activity nowcasting model seeks to make use of the information 

related to consumption, investment and government expenditure. More specifically, the 

electronic payment input included the value and number of operations from different FMIs 

resulting in three time series’ that represent values and three time series’ representing the 

number of operations in the corresponding FMIs. Closer inspection of the inputs revealed 
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the presence non-normality and heteroskedasticity. The authors used a NARX-ANN (Non-

Linear-Autoregressive-Exogenous-ANN), which essentially involves approximating the non-

linear function of ARX with an ANN, with the aim of modelling the underlying nonlinear 

dynamic system. The out-of-sample performance was measured with RMSE and correlation 

was also used between the observed and the predicted logarithmic returns of ISE. The 

contribution of electronic payments data to the error of economic activity nowcast was 

verified against a NAR-ANN which showed that the payments data significantly reduced the 

nowcast error. The authors also demonstrated the competitiveness of their method against 

UK’s economic quarterly growth nowcast performance. For future works, they suggested 

forecasting several periods of ahead instead of nowcasting and the use of produced 

nowcasts in these forecasting models. Moreover, the authors continue that financial and 

macroeconomic variables could be tested and as debit, credit and cash payments were 

excluded from the study, they could be added too. 

Many scientific fields research networked data such as in biological, chemical, social, 

economic and financial applications, where the system under investigation has 

interdependent entities and components interacting with each other. In fact, these systems’ 

underlying structure is a non-Euclidean space17. This is an important notion since initially, 

the power of deep learning was demonstrated in variety of applications with Euclidean or 

grid-like structure such as analysing speech, image and video signals, and later on, the 

success led to the wide adoption of deep learning in many other fields as one could see in 

the reviewed studies so far (BRONSTEIN et al. (2017)). However, in non-Euclidean 

applications the implementation of these tools has required the conversion from non-

Euclidean data to Euclidean form - the familiar operations used with Euclidean data are not 

well defined in non-Euclidean domains (XU et al. (2018)). The conversion18 essentially 

results into information loss which can have unintended consequences. This is also the case 

with the works reviewed and with the empirical study conducted in this thesis. 

In practice, networked systems can be expressed with graphs which translate to non-

Euclidean spaces. Through graphs it is possible to monitor and inspect the target system’s 

 
17 Intuitively speaking Euclidean geometry is flat, or planar, and non-Euclidean is curved. In Euclidean space 
it is possible to draw lines directly between two points but in non-Euclidean space, it is possible to draw only 
on the surface of the curvature, leading to different properties. Non-Euclidean geometry encompasses data 
types such as manifolds, curvatures, elliptic and hyperbolical functions, graphs or shapeless 3D-meshes. For 
example, the Global Positioning System (GPS) works with non-Euclidean data since the surface of the earth 
is curved, and in Einstein’s relativity theory, the universe’s geometrical shape is presumed as non-Euclidean. 
18 A classic example of this type of conversion is expressing an image, taken from a real-world object, as a 
function over 2D-plane by enumerating the image colour intensities in each pixel to a square grid. 
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structural changes over different domains as well as nonlinear and complex interactions 

between participants. Graphs have also more capacity to encode complicated relationships 

in the data (XU et al. (2018)). Thus, there has been an accelerating growth in trying to apply 

machine learning on non-Euclidean geometric data, which covers data structures such as 

graphs and manifolds. The main idea in machine learning on graphs is to find out how all of 

the information encoded in a graph such as its structure, entities and interactions, can be 

incorporated into a machine learning model (HAMILTON et al. (2017)). New generalisations 

and definitions for important operations have been under development over the past few 

years by researchers for handling the complexity of graph data and extending the ideas of 

Euclidean-proven neural network architectures to graph-based machine learning. A 

comprehensive overview19 on graph neural networks was recently provided by Wu et al. 

(2019). A couple of selected recent studies applying machine learning on graphs, focusing 

on graph-based deep learning, in financial and other applications are presented, as follows. 

 

3.3  Graph-based deep learning 

 
Chen and Wei (2018) argued that although improvements have been made in stock 

price prediction by leveraging news information in deep learning approaches, many factors 

from financial markets are still ignored. To that end, the authors investigated whether 

including information on corporation relationships to the forecasting model leads to 

enhanced predictions on stock prices. The authors used two types of information, namely 

historical time series on stocks and an adjacency matrix for encoding a weighted graph 

where each node stands for a company and the edges between the nodes are formed via 

shareholding ratio between companies. They introduced two models, namely a pipeline 

prediction model and a joint prediction model. The former integrated corporation 

relationships via node embeddings where the goal is to encode nodes as low-dimensional 

vectors summarising their positions in the graph and the structure of their local 

neighbourhood - a review on node embedding methods can be found in Hamilton et al. 

(2017). More specifically, at first, each company obtained a representation vector through 

the node embedding layer based on the constructed graph of corporation relationships. 

Then, using cosine similarity, the most related nodes to the target node in question were 

selected by averaging the features of the top N related companies. Lastly, the computed 

 
19 For more information, see e.g. Battaglia et al. (2018) as well as the GitHub repositories 
https://github.com/thunlp/GNNPapers and https://github.com/DeepGraphLearning/LiteratureDL4Graph. 

https://github.com/thunlp/GNNPapers
https://github.com/DeepGraphLearning/LiteratureDL4Graph
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average was combined with the target company’s feature vector. The resulting vector, where 

the relevant companies’ information is included, was fed as an input to an LSTM-based 

encoder. Three different node embedding approaches were also used for comparisons. 

While the pipeline model considers features of the top N relevant companies, the joint 

prediction model based on GCN (Graph Convolutional Neural Network) (KIPF and 

WELLING (2017)) was able to incorporate information for all relevant companies. The GCN 

takes as an input an adjacency matrix representing the graph and node-specific features in 

a vector that was constructed through the LSTM-based encoder. In total of seven models 

were experimented in the empirical study: the joint model, the three variants of the pipeline 

model, LSTM and GCN separately as well as a logistic regression-based method. From the 

node embedding methods, namely DeepWalk (PEROZZI et al. (2014)), node2vec 

(GROVER e LESKOVEC (2016)) and LINE (TANG et al. (2015)), LINE performed best in 

combination with the LSTM. The proposed joint prediction model outperformed all the 

baselines in predicting stock price movements, and the prediction accuracy of pipeline and 

joint models, was better than the other baselines. Daily historical price movement data from 

CSI300 stocks were used in the empirical analysis. For future works the authors identify 

different ways for establishing the relationship graph and including heterogeneous 

information sources, in addition to stock price movement data. The main drawback of the 

study is the used GCN: high computational cost, missing support for edge features, suitable 

only for undirected and static graphs, and inapplicable for large and densely connected 

graph datasets (KIPF and WELLING (2017)). Nevertheless, the study successfully 

demonstrates the superiority of a graph-based deep learning approach. 

As discussed before, Du et al. (2018) proposed a sequence-to-sequence scheme for 

time series forecasting. However, Xu et al. (2018) argued that as many machine learning 

tasks have inputs naturally represented as graphs, existing sequence-to-sequence models 

have difficulties in accurately converting underlying graph-structured data into sequential 

form. Therefore, the authors come up with a novel graph-to-sequence approach that 

encodes a graph directly, and also implements the conventional encoder-decoder 

framework. The proposed model maps an input graph to a sequence of vectors and from 

these, an attention-based LSTM is used for decoding the target sequence. The model can 

also cope with raw inputs that are originally expressed in a sequential form since these 

inputs can be further enhanced with additional information resulting in constructing graph 

inputs. The ideal situation would be, according to the authors, to build a powerful method 

that is capable of learning representations of input data regardless of its inherent structure. 
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The proposed model includes a graph encoder that generates node embeddings and then 

graph embeddings are constructed based on the learned embeddings. A sequence decoder 

takes both the graph and node embeddings as input and sequences are generated by an 

attention mechanism employed over the node embeddings. The experiments were not 

conducted with financial data, but the model demonstrated impressive capabilities in 

reasoning (path finding) and natural language generation (translating SQL queries to text). 

The efficacy of the model’s architecture was also verified through an ablation study. The 

proposed model outperformed existing graph neural networks and sequence-to-sequence 

models in real-world and synthetic settings. A financial or economical application of the 

model with networked data could be an interesting avenue for future research. 

Many of the studies in graph-based deep learning and graph representation learning 

literature are limited by their applicability to dynamic environments while in real-world 

applications, one often encounters underlying graph data structures that evolve over time. 

Built on recent success of GNNs (Graph Neural Network) for static graphs, Pareja et al. 

(2019) approach the model adaptation problem to changing environment by implementing 

the commonly used recurrent mechanism directly in the model. In other words, while earlier 

studies focus on learning time-dependent representations from node embeddings by 

GNN+LSTM-setup, the proposed model’s network parameters are updated based on the 

dynamism of incoming input graphs. In this way, the recurrent mechanism is built inherently 

to the model - in every iteration, the recurrence injects the dynamism into the parameters of 

GNN thus the model keeps evolving. The chosen graph-based method was GCN (KIPF and 

WELLING (2017)) and while it has the drawbacks as discussed earlier, the authors root for 

its simplicity and effectiveness. The recurrence was achieved via modified GRU. Paired with 

a task-specific classifier, the proposed model’s performance was empirically tested in node 

and edge classification tasks as well as in link prediction against a GCN without temporal 

modelling and a GCN+GRU that utilised learned node embeddings. The proposed model 

outperformed the baselines proving that a model-oriented approach to dynamically changing 

graphs is a viable solution. For future works, the authors recognize that the proposed model 

does not scale up well to larger datasets. They recognize some remedies from emerging 

architectures such as alternatives for the GRU and the convolution operation in the chosen 

GCN. The authors will investigate how to adapt the model to an anomaly detection task 

where the data may be imbalanced. The proposed model has an appealing property 

because in non-stationary environments there always exists the question of how often and 

with what mechanism the model should be updated. Also, the model-oriented approach 
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does not require any historical information for nodes that did not appear before. These 

properties could prove to be effective in forecasting financial or economic time series. 

 

3.4  Remarks on recent works 
 

The common trend in the current macroeconomic forecasting literature seems to be 

developing more efficient data-driven methods that mix high- and low-frequency data from 

different markets as well as include different types of innovations for accounting complexities 

and nonlinearities. The same ideas are present also in the intelligent computing literature, 

where the notion of limited applications of deep learning methods in economic and financial 

time series forecasting literature is repeatedly apparent. As it was stated, the issue with 

many traditional approaches is that they do not have the capacity to accurately model 

complex time series data whereas deep learning-based techniques are able to interpret 

complex structures from data without prior specifications. Therefore, efforts and 

contributions have been made towards applying methods that attempt to understand 

underlying data generating processes as they are. However, while deep learning has 

demonstrated promises in doing so, applying deep learning and finding the most appropriate 

model is indeed challenging. One of the most recent developments in deep learning 

research is the late birth of graph-based deep learning which is currently evolving rapidly. 
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4 TECHNICAL BACKGROUND 
 
 

Machine learning is an umbrella term for algorithms and techniques that give 

computers the ability to act and learn without being explicitly programmed. More specifically, 

machine leaching can be understood20 as the training of a model from data that generalises 

a decision against a performance measure (BROWNLEE, (2013)). In other words, the 

strength of these methods lies in their ability to provide generalised and adaptable solutions 

through architectures that can learn to improve their performance (KUMAR et al. (2019)). 

Machine learning methods can be roughly divided into supervised and unsupervised 

learning algorithms. In supervised learning, a dataset 𝐷 = {𝑥, 𝑦}𝑛=1
𝑁  consisting pairs of input 

features 𝑥 and corresponding output labels or values 𝑦, is presented to the model. In 

classification tasks, the output is commonly a fixed set of classes, whereas in regression 

problems, 𝑦 can also be a vector with continuous values. There may be one or more input 

features to learn from and one or more output targets to estimate simultaneously. In practice, 

supervised learning is typically about finding a set of optimal model parameters 𝛩 that best 

predict the data based on a loss function 𝐿(𝑦, 𝑦̂), where the estimate 𝑦̂ denotes the output 

of the model. The estimation is ultimately obtained by feeding an observation 𝑥, or a data 

point, to the function 𝑓(𝑥, 𝛩) that represents the model while attempting to approximate the 

underlying data generating process (LITJENS et al. (2017)).  

Unsupervised learning algorithms differ from supervised ones in that there are no 

output labels or values available. In other words, the purpose of the learning process is to 

find patterns without guidance. One example of unsupervised learning is by the means of 

reconstruction loss 𝐿(𝑥, 𝑥̂), where the idea is to learn to reconstruct the input, often through 

a lower-dimensional or noisy representation. While the reconstruction loss is commonly 

used in deep learning methods, some traditional unsupervised machine learning 

approaches include clustering algorithms and PCA (LITJENS et al. (2017)).  

Another approach commonly present in the literature is semi-supervised learning, 

which bridges the gap between supervised and unsupervised approaches. In semi-

supervised learning, only a small subset of the observations has corresponding class labels 

or values, and the rest of the data is unlabelled. The semi-supervised approach is an 

attractive option when obtaining class labels for the entire dataset is expensive or even 

 
20 Alternative definition of machine learning: “A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P if its performance at tasks in T, measured by P, 
improves with experience E”, by Mitchell (1997). 
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impossible (KINGMA et al. (2014)). Other approaches include reinforcement learning, which 

is a technique that enables sequential decisions from evaluative feedbacks using unlabelled 

data. Reinforcement learning is essentially the task of learning how agents ought to take 

sequences of actions in an environment for maximising cumulative rewards (FRANÇOIS-

LAVET et al. (2018)). 

Machine learning techniques can be further divided into shallow and deep learning. 

The technical difference between these is subtle: deep learning is a term used to describe 

different types of ANN architectures that consists of more than one hidden layer and shallow 

learning can be understood as all other machine learning techniques that does not fit the 

description of deep learning. While shallow learners are limited by hand-crafted features, 

strong prior assumptions about the underlying data and application-specific expert 

knowledge, deep learning architectures are capable of learning representation and features 

with little or no prior knowledge directly from high-dimensional input data (BALL et al. 

(2017)).  

In the following sections, deep learning methods used in the experiments are briefly 

introduced. The selection of methods is largely guided by the literature review and the 

intention is to choose models with different capabilities for gaining breadth in the empirical 

analysis. The chosen models21 include DNN, LSTM and CNN. While not covered in the 

literature review, Convolutional LSTM is also added which is a certain type of combination 

of the two latter models, which will be discussed in section 4.4. 

 

4.1  Artificial Neural Networks 

 
ANNs are a type of learning algorithm which forms the basis of most deep learning 

methods. A neural network comprises of neurons22 with some activation 𝑎 and parameters 

𝛩 = {𝑊, 𝐵}, where 𝑊 is a set of weights and 𝐵 a set of biases. The activation is the result of 

a linear combination of the input 𝑥 to the neuron and the parameters, followed by an element-

wise nonlinearity 𝜎(∙), which is commonly known as the activation function or transfer 

function. A single neuron can be mathematically defined, in matrix23 notation, and 

conceptually visualised, as follows (LITJENS et al. (2017)24): 

 
21 See e.g. SIAMI-NAMINI et al. (2018), SHA et al. (2018), SEZER and OZBAYOGLY (2018) and FISCHER 
and KRAUSS (2018). 
22 Also called as perceptrons, which were first introduced by Rosenblatt (1958). 
23 For a summary of matrix calculus required for deep learning, see e.g. PARR and HOWARD (2018). 
24 Unless stated otherwise, all illustrations in the thesis are elaborated by the author and referenced 
accordingly. 
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𝑎 = 𝜎(𝑤1𝑥1 + 𝑤2𝑥2  + … + 𝑤𝑛𝑥𝑛 + 𝑏) = 𝜎 (∑ 𝑤𝑛𝑥𝑛 + 𝑏

𝑁

𝑛=1

) =  𝜎(𝑤𝑇𝑥 + 𝑏) (1) 

 

 

Figure 1: The concept of a single neuron with related variables. 

 

For traditional neural networks, typical activation functions are the sigmoid and tanh 

function. However, since the inherent properties of sigmoid and tanh regarding their 

derivatives can result into slow learning rates, deep architectures based on new non-

saturating activation functions have been suggested to be more effectively trainable during 

the learning process of a deep learning model. One of the most successful and widely 

popular activation functions is the ReLU (Rectified Linear Unit) activation, 𝜎(𝑥) = max {0, 𝑥} 

(ARORA et al. (2018)). The traditional neural network MLP has several layers of activations, 

or transformations. The activations from the previous layer serve as a part of the input for 

the next layer’s activations, all the way until the final estimate is produced (LITJENS et al. 

(2017)): 

 

𝑦 ≈ 𝑦̂ = 𝑓(𝑥, 𝛩) = 𝜎(𝑊𝑇𝜎(𝑊𝑇 …  𝜎(𝑊𝑇𝑥 +  𝑏)) + 𝑏) (2) 

 

Now, the weight columns 𝑤𝑘 associated with activation 𝑘, generates the weight matrix 

𝑊. Note that in each layer there are commonly many neurons25. These sequential layers 

between the input and output are often called as hidden layers which refers to the fact that 

during learning, the parameters related to the hidden layers are automatically determined 

 
25 Recall that more than one hidden layer in an ANN is effectively a DNN. 
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via an iterative indirect optimisation procedure26 and they are not seemingly visible to the 

end user, in the same way as inputs and outputs are (LITJENS et al. (2017)). In Figure 2, 

an example of a deep neural network is demonstrated: 

 

Figure 2: A deep neural network with three input variables and two hidden layers. 

Using the formulation in (2), the output of the DNN showed in Figure 2 can be computed as 

follows27: 

 

𝑦̂ = 𝜎(𝑤1,1
3 𝑎1

2 + 𝑤2,1
3 𝑎2

2 + 𝑏1
3) (3)  

where [
𝑎1

2

𝑎2
2] = [

𝜎(𝑤1,1
2 𝑎1

1 + 𝑤2,1
2 𝑎2

1 + 𝑤3,1
2 𝑎3

1 + 𝑏1
2)

𝜎(𝑤1,2
2 𝑎1

1 + 𝑤2,2
2 𝑎2

1 + 𝑤3,2
2 𝑎3

1 + 𝑏2
2)

] & [

𝑎1
1

𝑎2
1

𝑎3
1

] = [

𝜎(𝑤1,1
1 𝑥1 + 𝑤2,1

1 𝑥2 + 𝑤3,1
1 𝑥3 + 𝑏1

1)

𝜎(𝑤1,2
1 𝑥1 + 𝑤2,2

1 𝑥2 + 𝑤3,2
1 𝑥3 + 𝑏2

1)

𝜎(𝑤1,3
1 𝑥1 + 𝑤2,3

1 𝑥2 + 𝑤3,3
1 𝑥3 + 𝑏3

1)

]  

 

To illustrate a supervised setting, given a dataset of inputs 𝑥 and corresponding 

targets 𝑦, and a loss function 𝐿(𝑦, 𝑦̂) that measures the difference between the output 𝑦̂ =

𝑓(𝑥, 𝛩) and the target 𝑦, the model parameters 𝛩 = {𝑊, 𝑏} can be learned28 and chosen via 

minimising the sum of errors: 

 
26 Optimisation algorithms used for training deep models are different from pure optimisation problems in a 
sense that in most cases, a separate performance measure is defined with respect to the test set which is then 
controlled by minimising a loss function (GOODFELLOW et al. (2016)). 

27 Recall that 𝐴𝑥 =  [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] [

𝑥1

⋮
𝑥𝑛

] =  [

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥1

⋮
𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛

]. 

28 The learning procedure is also called as training. As ANNs are fully connected, the learnable parameters for 
a hidden layer equal to (𝑛 + 1)𝑚, where 𝑛 is the number of inputs and 𝑚 is the number of outputs. Each output 
node is also associated with a bias term. 
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min
𝛩

𝐽 =  ∑ 𝐿(𝑦, 𝑦̂) (4) 

 

The minimisation problem can be solved using first-order gradient descent-based 

backpropagation29 given that appropriate activation functions and the loss function 𝐿(∙) are 

provided (CHONG et al (2017)).  

 

4.2  Convolutional Neural Networks 

 
CNNs30 are a certain type of neural network architecture for processing grid-like 

topological data structures. Time-series data can be thought of as a one-dimensional grid, 

or a vector, where samples are taken at regular time intervals. Image data can be structured 

as a two-dimensional grid of pixels, or a matrix. Images can also be three-dimensional, 

where the 2D pixel values of each RGB-channel (Red-Green-Blue) are stacked in the third 

dimension. CNNs are similar to basic neural networks, but instead of employing general 

matrix multiplication in (at least one) of their layers, a convolution operation takes place. 

Oftentimes, the convolutional procedure used in neural networks differs from its counterparts 

in other fields. The basic discrete convolution operation can be formulated as 

(GOODFELLOW et al. (2016)): 

 

(𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)

∞

𝑎=−∞

(5) 

 

Generally speaking, convolution is an operation between two functions that produces 

a real value. In this case, 𝑥 and 𝑤 represent functions with an input parameter, and a 

convolution operation ∗ is performed at a time step 𝑡, where 𝑎 is the age of a measurement. 

The terminology here is that 𝑥 is an input whereas 𝑤 is a kernel, or a filter31. A so-called 

feature map is produced from the convolution. In more practical terms, assume that a two-

dimensional image 𝐼 is used as an input and the kernel 𝐾 has two dimensions as well, but it 

 
29 Backpropagation is based on applying the chain rule when calculating gradients, see e.g. LE (2015a) and 
NIELSEN (2019). For an overview of gradient descent optimisation algorithms and their variants designed to 
train deep models, among others, see RUDER (2018).  
30 Influential papers on CNNs from the past include e.g. FUKUSHIMA (1980) and LECUN et al. (1999). 
31 The convolution has a fundamental role in digital signal processing as a general filtering operation 
(PRANDONI and VETTERLI (2013)). 
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is greatly smaller than the image itself. Then, the convolution can be expressed as 

(GOODFELLOW et al. (2016)): 

 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

(6) 

 

With images, convolution32 means passing a small matrix consisting of numbers, 

which is the kernel, over the image. At a given position of the kernel, element-wise 

multiplication of each cell value in the kernel is performed with the corresponding image 

pixel value that overlaps the kernel cell, and the sum of these multiplications is taken, 

resulting in a single value. The type of multiplication applied between the filter and the filter-

sized area in the image is the dot product. The equation above depicts this procedure: the 

filter is systematically applied step by step across the grid-shaped image, which eventually 

produces the feature map. Then, each value in the feature map is passed through a 

nonlinearity 𝜎(∙), similar to ANNs. The following toy example visualises the procedure33: 

 

 

Figure 3: A toy example of convolution on images. 

 

One key difference between CNNs and ANNs can be noted here: while in a traditional 

neural net, each element of the weight matrix is used once when computing the output of a 

layer, the weights in the convolutional neural network are shared, meaning that the value of 

weight applied to one input is tied to the value of a weight applied elsewhere 

 
32 In machine learning applications, the basic convolution equals to cross correlation. 
33 The visualisation is from Veličković (2018). 



44 

 

 

(GOODFELLOW et al. (2016)). Another key difference is the use of pooling layers in CNNs 

which commonly follow the convolutional layers. Pooling is the aggregation of neighbouring 

values typically through recording the mean or maximum value of a given mapping. A certain 

amount of translation invariance is induced through pooling. Both of these key differences 

contribute to the property of not needing to learn separate detectors for the same object 

occurring at different positions in an image (LITJENS et al. (2017)). Moreover, the 

convolution operation leverages the spatial properties of the data meaning that for example 

in the case of images, pixels that are closer together are treated differently than ones being 

further apart (LECUN et al. (2015)). A bias value is also associated with a kernel. Finally, a 

basic neural network structure is commonly added to the successive convolutional and 

pooling layers before calculating the output of the network. 

What the CNN needs to figure out, or learn34, are the values in the kernels, which 

determine how the feature maps are produced. In principle, the training of CNNs35 follow the 

same pattern as training ANNs. However, it is worth mentioning that when comparing to 

ANN, the calculation of derivatives on the convolutional layers is more complicated due to 

the shared weight parameters. 

 

4.3  Long Short-Term Memory 

 

RNNs are a class of more dynamic models that are better suited for modelling 

temporal relationships in sequential data. Intuitively speaking, RNNs pass input data to the 

network across time steps and allows for information to persist, which is enabled through 

internal loops in the network design. This is a property that the forward feeding ANNs and 

CNNs do not have. The original RNN performs well when modelling short sequences, but it 

fails to capture long-term dependencies due to the problem of vanishing and exploding 

gradients36 during learning. LSTM37 is a variant38 of the original RNN designed to relieve its 

learning issues (SHAH et al. (2018); KIM and WON (2018)). 

 
34 The amount of learnable parameters in a convolutional layer equals to (𝑚𝑛𝑙 + 1)𝑘, where 𝑚𝑛 are the 
dimensions of a kernel, 𝑙 is the number of feature maps in the previous layer, 𝑘 is the number of resulting 
feature maps and each feature map has a bias term. 
35 For a tutorial on CNNs, see e.g. OLAH (2014) and LE (2015b). 
36 Due to chain rule, gradients coming from deeper layers go through multiple matrix multiplications and as 
they approach earlier layers, the gradients may shrink or grow exponentially. Shrinking may occur if the 
gradients have small values (<1) and growing if gradients are greater than one. 
37 For the original paper, see HOCHREITER and SCHMIDHUBER (1997). 
38 Another important variant in RNN literature is the GRU, proposed in CHO et al. (2014). While it is simpler 
and computationally efficient, LSTM is still widely used due to its performance in empirical applications. 
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The LSTM is composed of an input layer, one39 or more hidden layer(s) and an output 

layer, similar to the ANNs. But, differently from neurons, the key to LSTMs is memory cells. 

The LSTM has the ability to remove or add information to its state in the memory cell, or cell 

state, by using components called gates. The responsibility of the gates is to decide whether 

to include new information in the model or not. The LSTM has three gates for controlling the 

cell state: the forget gate defines how much information is removed, the input gate specifies 

how much information is added and the output gate decides which information from the cell 

state is used as output. The forget and input gates output a value between zero and one, 

which translates to the proportion of absorbing information, one considering all information 

and zero forgetting everything (OLAH (2015)). Together, these gates and the cell state form 

a memory cell which is the building block of hidden layers. Next, the inner workings of the 

LSTM are detailed, following Fischer and Krauss (2018) and Olah (2015). 

At first, the LSTM layer seeks to find out which information should be removed from 

its previous cell state 𝑠𝑡−1. The activation values in the forget gate 𝑓𝑡 are thus calculated 

based on three values: the current input 𝑥𝑡, the output ℎ𝑡−1 of the memory cells at the 

previous timestep, and the bias terms 𝑏𝑓. The activation function used is sigmoid: 

 

𝑓𝑡 =  𝜎(𝑊𝑓,𝑥𝑥𝑡 + 𝑊𝑓,ℎℎ𝑡−1 + 𝑏𝑓) (7) 

 

Then the LSTM decides how much information will be stored in the cell state. The 

activation values in the input gate 𝑖𝑡 are calculated through sigmoid and candidate values 

𝑠̃𝑡, that could be added to the cell states, are computed with tanh: 

 

𝑖𝑡 =  𝜎(𝑊𝑖,𝑥𝑥𝑡 + 𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖) (8) 

𝑠̃𝑡 =  tanh(𝑊𝑠̃,𝑥𝑥𝑡 + 𝑊𝑠̃,ℎℎ𝑡−1 + 𝑏𝑠̃) (9) 

 

In the next step, the candidate values and the calculated activation values in forget 

and input gates are used for computing the new cell states. In other words, the old cell state 

gets multiplied by the forget gate’s values and the values from the input gate are multiplied 

with the candidate values: 

 

 
39 Technically deep learning constitutes more than one hidden layer, but LSTM’s building blocks are inherently 
deep. 
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𝑠𝑡 = 𝑓𝑡 ○ 𝑠𝑡−1 + 𝑖𝑡 ○ 𝑠̃𝑡 (10) 

 

Note that ○ denotes the elementwise-product (Hadamard). Finally, the activation 

values for the output gate 𝑜𝑡 are calculated with sigmoid. The values are then leveraged in 

producing the output values ℎ𝑡 together with the newly established cell states, which go 

through tanh first: 

 

𝑜𝑡 =  𝜎(𝑊𝑜,𝑥𝑥𝑡 + 𝑊𝑜,ℎℎ𝑡−1 + 𝑏𝑜) (11) 

ℎ𝑡 = 𝑜𝑡 ○ tanh(𝑠𝑡) (12) 

 

For better intuition, the dynamic data flow in a memory cell can be visualised following 

Fischer and Krauss (2018), in line with the equations presented: 

 

 

Figure 4: The dynamic data flow of one LSTM memory cell. 

 

Note that the equations are in vectorised format and describe the update of the 

memory cells in the LSTM layer at every timestep. There can be one or more memory cells 

in one hidden layer, and multiple hidden layers can be stacked. A standard feed-forward 

hidden layer commonly follows the LSTM layer(s). Increasing the depth of LSTM network 

potentially allows the hidden state at each level to operate at a different timescale 

(PASCANU et al. (2014)).  
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The training40 of LSTM is similar to the traditional ANN: the minimisation problem of 

the specified loss function is done via adjusting the weights, namely the kernel weights for 

inputs and recurrent weights for hidden states, and biases of the LSTM. The 

backpropagation method used for training RNNs is often referred to as Backpropagation 

Through Time (BPTT) where the RNN is “unfolded” by creating several copies of the 

recurrent units which can then be treated like a feed-forward network with tied weights. 

Then, the standard backpropagation techniques can be used for model training. The 

disadvantage of the standard BPTT is that, while being computationally efficient, it is also 

fairly intensive in memory41 usage due the requirement of storing internal states of the 

unfolded network core at every time-step in order to be able to evaluate correct partial 

derivatives (GRUSLYS et al. (2016)).  

 

4.4  Convolutional LSTM 

 
Both CNNs and LSTMs have their own advantages, as they are capable of dealing 

with spatial and temporal data, respectively, but they also lack the properties of one another. 

To that end, Shi et al. (2015) proposed the convolutional LSTM in order to leverage both 

spatial and temporal information from the input data in the model. Their model is based on 

a modified LSTM presented in Gers et al. (2002) and follows the formulation of Graves 

(2014). The slight difference between the modified and the original LSTM is the inclusion of 

“peephole connections” meaning that in the equations for input and forget gates, a term is 

added which includes the cell state from the previous time step, and the information of the 

current state is added to the output gate. In other words, the LSTM becomes more 

connected increasing the awareness of the cell state information across different 

components, which in turn, enhances network performance42. The governing equations for 

the convolutional LSTM are as follows, in line with the LSTM notation. Recall also the 

notation for convolution: the internal matrix multiplications of LSTM are exchanged with 

convolution operations: 

 
40 The number of learnable parameters can be derived from 4ℎ𝑖 + 4ℎ + 4ℎ2 = 4(ℎ(𝑖 + 1)) + ℎ2 where ℎ 
denotes the number of hidden units of the LSTM layer and 𝑖 the number of input features. 4ℎ𝑖 corresponds to 

the dimensions of the four weight matrices applied to the inputs at each gate, 4ℎ refers to the dimensions of 

the four bias vectors and 4ℎ2 represents the dimensions of the weight matrices applied to the outputs at the 
previous timestep. 
41 GRUSLYS et al. (2016) present a more memory-efficient BPTT algorithm which uses dynamic programming 
for balancing the trade-off between storing and recomputing intermediate results.  
42 The convolutional LSTM used in the experiments does not include the peephole connections due to the 
limitation of the API leveraged in implementations. For details, see https://keras.io/layers/recurrent/. 

https://keras.io/layers/recurrent/
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𝑓𝑡 =  𝜎(𝑊𝑓,𝑥 ∗ 𝑥𝑡 + 𝑊𝑓,ℎ ∗ ℎ𝑡−1 + 𝑊𝑓,𝑐 ∗ 𝑠𝑡−1 + 𝑏𝑓) (13) 

𝑖𝑡 =  𝜎(𝑊𝑖,𝑥 ∗ 𝑥𝑡 + 𝑊𝑖,ℎ ∗ ℎ𝑡−1 + 𝑊𝑖,𝑐 ∗ 𝑠𝑡−1 + 𝑏𝑖) (14) 

𝑠̃𝑡 =  tanh(𝑊𝑠̃,𝑥𝑥𝑡 + 𝑊𝑠̃,ℎℎ𝑡−1 + 𝑏𝑠̃) (15) 

𝑠𝑡 = 𝑓𝑡 ○ 𝑠𝑡−1 +  𝑖𝑡 ○ 𝑠̃𝑡 (16) 

𝑜𝑡 =  𝜎(𝑊𝑜,𝑥 ∗ 𝑥𝑡 + 𝑊𝑜,ℎ ∗ ℎ𝑡−1 + 𝑊𝑜,𝑐 ∗ 𝑠𝑡 + 𝑏𝑜) (17) 

ℎ𝑡 = 𝑜𝑡 ○ tanh(𝑠𝑡) (18) 

 

As it can be seen, there exist an additional set of weights for each gate equations. 

Note also that one of the drawbacks of LSTM in handling spatiotemporal data, which is 

commonly presented in three dimensional tensors for dynamical systems, is that the inputs 

must be flattened out to 1D vectors before processing thus all spatial information in the 

original data will be lost. Therefore, the equations above, are capable of dealing with 3D 

tensors where last two dimensions are spatial dimensions, namely the rows and columns. 

 

4.5  Remarks on deep learning 

 

The history of deep learning began already in 1940s and since then, it has gone by 

many names. The current resurgence under the name of deep learning began in 2006 and 

the deep learning renaissance can be dated only 5 to 10 years back. Until 2006, deep 

networks were generally believed to be highly difficult to train requiring large computational 

costs when comparing to the hardware available at the time. Then, due to algorithmic 

advances made in training neural networks, deep neural networks started to outperform 

competing intelligent systems based on other machine learning technologies as well as 

hand-designed functionality (BROWNLEE (2019b) and GOODFELLOW (2016)). Nowadays, 

deep learning-based technologies are all around us.  

The learning algorithms reaching and exceeding human performance on complex 

tasks today are almost identical to the algorithms that were used to solve problems in the 

1980s. Key reasons why neural networks are wildly successful after enjoying relatively little 

success since the 1980s include having the computational resources to run much larger 

models, the availability of data and further advances in algorithm development. Perhaps the 

most dramatic moment in the history of deep learning was when a CNN won the largest 

contest in object recognition in 2012 with over 10 percent error rate margin and since then, 
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these competitions are consistently won by deep convolutional nets (KRIZHEVSKY et al. 

(2012) and GOODFELLOW (2016)). Deep learning techniques43 have also been successful 

in other applications winning numerous contests in pattern recognition and machine learning 

(SCHMIDHUBER (2014)). In general, deep learning is being widely used to automate 

processes, improve performance, detect patterns, and solve problems. 

 
43 The methods reviewed in this section, while being current state-of-the-art, constitute only a small portion of 
available and developed deep learning architectures in the literature. For a summary of different architectures, 
see e.g. VAN VEEN and LEIJNEN (2019). 
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5 METHODOLOGY 
 
 

5.1  Data 

 
As discussed earlier, the data for the empirical study was provided by BNDES. The 

main two basic entities to consider are buyers and suppliers in Brazil. A buyer is a company 

that owns and uses the BNDES Credit Card. A supplier is a company registered to the 

network of suppliers (in the BNDES Credit Card’s portal of operations) offering products that 

follow the standards of BNDES. A supplier can be a producer or a distributor selling items 

fabricated by others. The data records transactions between suppliers and buyers inter- and 

intrastate, where an observation consists of i) a timestamp in month-year format, ii) from 

which state and iii) city the purchase was made (buyer), iv) to which state and v) city the 

money was transferred (supplier), and finally vi) the transaction value in Brazilian reals. 

Figure 5 gives a glimpse on the data structure by displaying the first and last 10 observations 

from the dataset.  Further descriptive statistics are provided in the next chapter. For following 

sections, the city-specific information is excluded.  
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5.2  Setup and data preparation 

 

In the experiments, the regression problem of forecasting multiple steps ahead with 

uni- and multivariate inputs is being considered. In total of five deep learning methods are 

implemented in the univariate setting and three methods in the multivariate setting. The 

forecasting performance of the deep learning methods are compared to a baseline which is 

formed by ARIMA, as it was commonly used in the reviewed works (e.g. SIAMI-NAMINI 

(2018); SUN et al. (2018); MAGGIOLO e SPANAKIS (2019)). 

Figure 5: First and last 10 observations displayed from the BNDES Credit Card dataset. 
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The univariate setup is constructed by transforming the raw data into 189 monthly 

observations44, where each value represents the sum of all transactions45 made in the 

corresponding month. The deep learning models implemented with univariate input include 

DNN, CNN and LSTM as well as CNN+LSTM46, which is a hybrid from the two models 

meaning that the output from the CNN is entered as an input to an LSTM, and the 

convolutional LSTM, which inherently employs convolutions as part of the LSTM model. The 

CNN+LSTM hybrid was the basis for the approach proposed by Maggiolo and Spanakis 

(2019), and the authors also argued that while LSTM is able to model long-term and 

infrequent dependencies over time, CNN can model short-term highly frequent patterns. 

Thus, it would be interesting to see how the hybrid model performs when compared to the 

convolutional LSTM which presumably has similar characteristics. One key difference 

between the two methods, in addition to how convolutions are leveraged, is that the hybrid 

model is computationally more expensive. 

The multivariate setup is inspired by the methodologies presented in Triepels et al. 

(2017) and Sezer and Ozbayogly (2018). Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}  be a set of 𝑛 states 

participating in the credit card payments and 𝑇 = < 𝑡1, 𝑡2, … , 𝑡𝑚 > an ordered set of 𝑚 

consecutive time intervals of equal duration, where 𝑡1 = [𝜏0, 𝜏1), 𝑡2 = [𝜏1, 𝜏2) and so on. The 

amount of money transferred from one state to another through the credit card system over 

time is recorded. Let 𝐷 = {𝐴(1), 𝐴(2), … , 𝐴(𝑚)} be a set of 𝑚 matrices where each 𝐴(𝑘) 𝜖 𝐷 is 

the 𝑛 by 𝑛 matrix: 

 

𝐴(𝑘) = [
𝑎11

(𝑘)
⋯ 𝑎1𝑛

(𝑘)

⋮ ⋱ ⋮

𝑎𝑛1
(𝑘)

⋯ 𝑎𝑛𝑛
(𝑘)

] (19) 

 

Each element 𝑎𝑖𝑗
(𝑘)

 𝜖 [0, ∞) denotes the total amount of money transferred from state 

𝑠𝑖 to 𝑠𝑗 in time interval 𝑡𝑘, including the cases where 𝑖 = 𝑗. The matrix 𝐴(𝑘) is essentially an 

adjacency matrix with the total value of payments as link weights, forming a payment 

network at time interval 𝑡𝑘. Moreover, a vectorised representation 𝑎(𝑘) from the adjacency 

matrix 𝐴(𝑘) can be derived, which results in: 

 
44 The original data spanned from 2003-04 to 2018-12, resulting in 15 years and 9 months, i.e., 189 months. 
45 The sum is formed from the transaction values. Transaction data aggregation is present in other studies 
related to BNDES Credit Card, see e.g. MARTINI and TEIXEIRA (2016) and CORSEUIL (2019). 
46 Note that in the univariate case CNN and CNN+LSTM employ one-dimensional convolutions. 
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𝑎(𝑘) =  [𝑎11
(𝑘)

, … , 𝑎𝑛1
(𝑘)

, … , 𝑎1𝑛
(𝑘)

, … , 𝑎𝑛𝑛
(𝑘)

]
𝑇

(20) 

 

where 𝑎(𝑘) is a column vector of size 𝑛2 consisting of all columns of 𝐴(𝑘) vertically 

enumerated. In practice, 189 adjacency matrices of size 27x27 and corresponding vector 

representations of size 729 can be formed from the BNDES data in the way described 

above47. The resulting adjacency matrices and vector representations are used as an input 

for deep learning models in the multivariate setting. This allows for including state-specific 

information in the model, in contrast to the univariate setting. The models implemented with 

the vectorised input were the convolutional LSTM and bidirectional48 LSTM, and the 

adjacency matrices were fed to a CNN. One could think that the CNN processes the 

adjacency matrices as 2D-images. Below is a sample adjacency matrix constructed from 

the observations dated to 2003-07: 

 
47 The validation phase in model development revealed that ordering the columns and rows of adjacency 
matrices (states) according to the sum of transactions in each state (descending) for the training period 
(defined on p. 43) resulted in enhanced performance and stability. Other schemes could be also applied. 
48 The bidirectional LSTM is an LSTM at its core, but the input sequence is processed both forward and 
backward directions.  
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Figure 6: An example adjacency matrix constructed from the observations dated to 2003-07. 

Note that while the given sample in Figure 6 is sparse, there are also matrices that 

are relatively dense. For example, in the corresponding adjacency matrix for 2014-10 which 

consists almost 31000 observations, more than two thirds are nonzero values. 

In both settings, the purpose is to forecast the monthly sum of transaction values in 

the future. In order to use machine and deep learning methods for time series forecasting, 

the forecasting problem is commonly formulated as a supervised learning problem. This 
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means that given a sequence of numbers for a time series dataset, the data is restructured 

by using previous timesteps as input variables and the next timestep or multiple steps as 

the output, depending on the problem formulation. The use of prior time steps to predict the 

next time step(s) is called the sliding window or the rolling forecast method, or in terms of 

statistics, a lag or lag method. As it is assumed that there are dependencies between 

observations in the dataset, the rolling forecast method is required (BROWNLEE (2019a); 

SIAMI-NAMINI et al. (2018)). 

A supervised learning algorithm requires that data is provided as a collection of 

samples, where each sample has an input component and an output component. Consider 

for example the univariate time series represented as a vector of observations 

[1, 2, 5, 6, 4, 3, 8, 9, 10, 12], depicting some sums for ten timesteps. Then, if using three prior 

timesteps to predict the next three timesteps, the first and second sample would look like 

[1, 2, 5] [6, 4, 3] and [2, 5, 6] [4, 3, 8], and so on: 

 

[1 2 5]

[2 5 6]

[5 6 4]
[6 4 3]
[4 3 8]

  

[6 4 3]

[4 3 8]

[3 8 9]
[8 9 10]
[9 10 12]

 

 

The first row in the left side and the corresponding row in the right side is the first 

input-output sample, the second row similarly the second input-output sample, and so on. 

Note that only one variable is considered. The supervised learning algorithm can be trained 

by using these input-output samples. It is important to maintain the order of samples when 

training the model. This way the model learns from input samples what it is expected to 

output, and the procedure also defines what the model requires for making forecasts. In 

order words, if the model is trained with the input-output samples described above, it takes 

three values as input to predict three timesteps ahead (BROWNLEE (2019a)).  

For multivariate setting, assume a multivariate time series represented as: 
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[𝑥1 𝑥2 𝑥3 𝑦]
[1 2 5 8]

[2 5 6 13]
[5 6 4 15]
[6 4 3 13]
[4 3 8 15]

[7 4 9 20]

   

 

where the first three columns are three variables and the last column is the sum of these 

three variables. A row represents an observation. Now, by using the three variables, the 

sum is predicted. Then, if using three prior timesteps to predict the next three timesteps, the 

input-output samples are: 

 

[1 2 5]

[2 5 6]
[5 6 4]
[2 5 6]

[5 6 4]
[6 4 3]

  
[15 13 15]

[13 15 20]

   

 

During training, when the first three rows from the left side are entered as the input 

for the model, it is expected to output the numbers [15 13 15]. This is the first input-output 

sample, and the second one follows similarly. Note that in both cases, uni- and multivariate, 

the number of prior timesteps considered and the forecast horizon is related to the size of 

the whole sample. For example, even though the univariate series had ten observations, 

five input-output samples were created, and in the multivariate case, the six observations 

lead to only two input-output samples (BROWNLEE (2019a)). The time series forecasting 

problem for the both cases is transformed to a supervised learning problem leveraging the 

schemes presented. Adjacency matrices do not raise an issue, since the vectorised49 

representations can be easily converted back to the matrix form. 

Finally, instead of making a forecast once, forecasting models are commonly tested 

and validated by making multiple sequential or rolling forecasts further to the future against 

real data. This is called as walk-forward validation. This is convenient due to the fact that as 

newer information becomes available, the earlier fitted models may not be valid anymore. 

The walk-forward validation also gives the best opportunity for the model to make good 

 
49 For a 729-long sequence, consider {𝑥𝑛}𝑛=1

729  and 𝑦 as the sum for that month. Note also that ∑ 𝑥𝑛
729
𝑛=1 = 𝑦. 
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forecasts at each time step (BROWNLEE (2019a)). It is worth mentioning too that the 

forecasts should be evaluated with unseen test data. 

In the experiments, the last 36 months are left as test data and the training data (153 

observations)50 is transformed in a way that three prior months are required for creating a 

forecast three months ahead. This results in 12 separate forecasts with the test data51. 

During walk-forward validation, the ARIMA model is re-fitted before each forecast is made 

with all data it has available in the timestep in question52. The deep learning models are 

given the most recent three observations before each prediction is made and they are fitted 

only once before the first forecast is made due to their computational cost. On a side note, 

one of the reasons why predictions are made for multiple steps ahead is due to the findings 

of Sha et al. (2018) and Leccese (2019): DNN and LSTM do not demonstrate predictive 

abilities when forecasting one step ahead. Therefore, for testing the models’ capabilities, 

using multiple steps ahead is more adequate. On the other hand, as the size of the training 

data is relatively small, the timesteps for back and forth should not be increased too much, 

as it affects on the number of input-output samples and ideally, more samples to train on is 

better for the deep learning models. Finally, while only for convenience, three-steps ahead 

gives quarterly forecasts which can be beneficial in businesses’ point of view. 

 

5.3  Performance metrics and statistics 

 
One of the most important and also challenging aspects of forecasting problems is to 

determine how much the forecasts were off from the actual values in a reliable and 

informative manner. In the experiments, RMSE, MAE, MAPE, MSLE and MDA (Mean 

Directional Accuracy) are used for measuring forecasting performance as well as the DM-

test53 for verifying that two forecasts are statistically different from each other. The DM-test 

can be commonly encountered from the forecasting literature for checking the statistical 

significance of forecasts (e.g. CARRIERO et al. (2019) and DOMIT et al. (2019)). Assume 

 
50 The split to training and test sets is often guided by proportional rules such as 70:30, 80:20 and 90:10, 
depending on the size of the original sample. For convenience, data until 2016 is selected for training (of which 
last 12 months are used for validation) and the rest is left for test data (by the end of 2018), which results into 
splitting rule around 80:20. 
51 Note that some of the models, as will be discussed in section 5.4, had to be implemented forecasting four 
steps ahead (requiring four prior months) due to their construction, resulting in 9 separate forecasts with the 
test data. 
52 The approach where all observations available up to each forecasting origin are used, is also known as 
expanding samples, as described in Carriero et al. (2019). 
53 The modified test proposed by Harvey et al. (1997) is used, since predictions are done multiple steps ahead 
and the sample is relatively small. See the paper also for the original DM statistic. 
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that 𝑦𝑡 is the realised value at time 𝑡 and 𝑦̂𝑡 the predicted value. Then, the metrics are as 

follows: 

 

RMSE =  √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

(21) 

MAE =  
1

𝑛
∑|𝑦𝑡 −  𝑦̂𝑡|

𝑛

𝑡=1

(22) 

MAPE =  
1

𝑛
∑

|𝑦𝑡 − 𝑦̂𝑡|

𝑦𝑡

𝑛

𝑡=1

100% (23) 

MSLE =  
1

𝑛
∑ log (

𝑦̂𝑡 + 1

𝑦𝑡 + 1
)

2
𝑛

𝑡=1

(24) 

MDA =  
1

𝑛
∑ 𝟏𝑠𝑖𝑔𝑛(𝑦𝑡−𝑦𝑡−1)==𝑠𝑖𝑔𝑛(𝑦̂𝑡−𝑦𝑡−1)

𝑛

𝑡=1

(25) 

 

And the modified DM-test statistic 𝑆, where DM is the original test statistic, ℎ is the 

horizon and 𝑛 the amount of resulted errors between two forecasts: 

 

S =  DM√
1

𝑛
[𝑛 + 1 − 2ℎ + 𝑛−1ℎ(ℎ − 1)] (26) 

 
The null hypothesis of the test is that the two forecasts has equal predictive accuracy 

and the alternative hypothesis depends on whether the test is run as one- or two-sided. The 

statistic is compared to the critical values from Student-t distribution with (𝑡 − 1) degrees of 

freedom. 

The selected measures are not without their caveats. In fact, many error measures 

have drawbacks that can lead to inaccurate evaluation of forecasting results. Therefore, 

more than one measure is highly recommended to be used but still, it is a difficult task to 

choose the most appropriate set of measures. RMSE, MAE and MAPE are selected for their 

frequent usage in forecasting papers (e.g. CARRIERO et al. (2019) and CHONG et al. 

(2017) and SUN et al. (2018)). However, these error measures are sensitive to different 

scales in the data and to outliers, RMSE more than MAE. They can also give different results 

on different fractions of data (SHCHERBAKOV et al. (2013)). With MAPE, while being easy 
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to interpret, there exist the danger of division by zero, it is sensitive to outliers, it is biased 

towards methods whose predictions are too low and it is not symmetric in a sense that 

interchanging 𝑦𝑡 and 𝑦̂𝑡 does not lead to the same answer, despite the fact that the absolute 

error remains the same54. Therefore, in addition to MAPE, MSLE is also applied to the 

analysis as suggested by Tofallis (2015). MSLE is dimensionless and it treats positive and 

negative errors with an appropriate symmetry, and the possible ranges are equal on both 

sides. Lastly, the MDA is rather simple but effective measure on determining whether the 

forecasts have captured the overall trend of the actual data. It essentially illustrates how 

often the model got the trend right by comparing the sign produced by subtracting the current 

prediction from the previous one, to the sign yielded by differencing the corresponding actual 

data. 

 
 

5.4  Modelling 

 
Traditionally, the ARIMA model is fitted manually via the Box-Jenkins methodology. 

In this case, as explained before, 12 sequential three-steps-ahead out-of-sample forecasts 

are made and after each forecast, the realised data along with the full history is made 

available for producing the next forecast with a re-fitted ARIMA model. As the nature of the 

data generating process may change as time evolves, the optimal solution would be 

choosing the model parameters (p, q, d)55 before each forecast is made. However, this is 

rather cumbersome, thus the model parameters are determined using the training data and 

these parameters are then used each time when the model is re-fitted for developing a new 

forecast. This is also in line with the deep learning models, where the model fitting occurs 

only once. Furthermore, in order to determine which model parameters results in best 

performance over the whole forecasting scenario on average, a systematic grid search56 

guided by correlograms and statistical testing is employed. The grid search is also run for 

Box-Cox transformed data, where the transform is re-executed before each forecast during 

 
54 Consider the example provided in Makridakis (1993), where the forecast error is 50 units in both cases: 

 
|150−100|

150
 ≠ 

|100−150|

100
. 

55 Recall that ARIMA(p, d, q) model is an approach where dependencies between observations are captured 
by an autoregressive process with p lags, dependencies between residual error terms by a moving average 

process with q lags and d represents the order of differencing required. 
56 For p and q, the list of parameters [0, 1, 2, 3, 4, 5, 6] is considered, and for d [0, 1, 2]. From these numbers, 
every possible combination (p, d, q) is evaluated against the metrics introduced earlier as well as AIC and BIC. 

This results in 147 individual configurations. Parameter settings (12,0,0), (12,1,0), (12,0,1), (12,1,1) are also 
evaluated for comparison and completeness. 
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model fitting. The grid search may not result in the most optimal model, but it provides an 

effective representative baseline for analysis purposes. Nevertheless, for completeness, 

evidence for inherent characteristics present in raw and transformed training data are 

investigated, and the results are provided in Appendix I. Interestingly, after grid search, the 

best performing model on average over the in-sample validation forecasting period, taking 

the parsimony principle into account, is ARIMA(4,0,0) with raw input data. As the 

correlograms and stationarity tests indicated, at least differencing would have been 

expected. However, all difference-equipped models performed significantly worse than 

models with no differencing. It is worth mentioning that the data to be modelled in this case 

is relatively difficult due to the suggested presence of nonlinearity, heteroskedasticity, 

heavy-tailed distribution, serial correlation and outliers by Appendix I. 

For each of the deep learning methods, a similar grid search framework is developed 

in the same sense that the model’s forecasting performance is evaluated against the metrics 

as before. However, there is more freedom now in the validation phase and in finding the 

optimal parameters as by definition, neural networks are capable of learning arbitrary 

complex mappings from inputs to outputs. In other words, neural network models may not 

require transformed and stationary inputs. Moreover, they are capable of directly inferring 

trend and seasonality, among other characteristics commonly present in real-world time 

series data. Deep learning methods are also highly versatile being able to handle uni- and 

multivariate inputs as well as multi-step outputs, and different types of methods can 

automatically extract possibly nonlinear spatial and temporal dependencies (BROWNLEE 

(2019a)). On the other hand, this freedom comes with many parameters that can be 

optimised when fitting deep learning models. There does not exist deterministic rules on 

how to optimize deep learning models and which model architectures deliver the best results 

meaning that dealing with deep learning methods is somewhat of a dark art (BROWNLEE 

(2019b)). In many scientific papers in the field, the model parameters are found by trial-and-

error, grid search or thorough experimentation, or applying all of them at the same time. 

However, for starters, one can find good suggestions for model parameters by, for example, 

finding architectures used in the literature, and there also exist a myriad of recommendations 

that have been found to be useful in practice when optimising deep learning models.  

While grid search helps in finding model parameters for deep learning methods, it is 

still mechanical. The performance of a deep learning model is uniquely application 

dependent. Oftentimes, the deep learning practitioner must assess quanti- and qualitatively 

the type of problem that is possibly occurring and evaluate proper remedies for the issue. 
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The poor performance of a deep learning based neural network model is generally 

accounted to problems with learning, generalisation and predictions (BROWNLEE (2019b)). 

In other words, the deep learning model should be able to effectively learn from training data 

without overfitting. This practically means that as neural networks are universal (continuous) 

function approximators57, they tend to fit any dataset ideally. This may not be desired 

behaviour since real-world data commonly contains noise and underlying continuity cannot 

be guaranteed in a training sample, especially when dealing with small sample sizes. In 

essence, it cannot be trusted that the samples at hand fully reflect the underlying physical 

system or environment, so it is better to not fit too strongly but to generalize and try to learn 

the most essential features. Overfitting manifests when a model is performing well with a 

training set but performance drops against the test set. Moreover, the trainable model 

parameters such as weights are commonly initialised in a randomised way, and by 

construction more randomness may be injected in the model. This means that neural 

networks are stochastic in nature which may result in high variability in predictions. To 

summarize, an ideal model performs well with training and test data, gives stable and 

reliable results, while learning fast. This was also the main goal when fitting the models, and 

a couple of techniques were used in trying to accomplish it. 

Firstly, the modern AMSGrad was selected as the gradient-based optimisation 

algorithm due to the fact that while Adam is widely used, there exists a stochastic convex 

optimisation problem for which Adam does not converge to the optimal solution (REDDI et 

al. (2018)). AMSGrad also attempts to avoid some of the pitfalls recognised in other 

gradient-based algorithms for stochastic optimisation. The best-performing loss functions as 

per learning rate, stability and metrics, were MAPE and MAE. Model capacities were 

systematically varied in terms of layer and node sizes. As it is common in the literature, data 

scaling techniques such as logarithmic transformation and minmax-scaling to [0,1] range 

were tested also, as well as the combination of both58. Moreover, some regularisation 

techniques were applied and evaluated in different components of the models. Intuitively, 

regularisation means penalising high-valued weights in proportion to the norm of the model 

weights, resulting in changes in the loss function. Practically, all the weights are summed up 

 
57 According to the universal approximation theorem, arbitrary decision functions can be arbitrarily well 
approximated by a neural network with only one internal layer and a continuous sigmoidal nonlinearity 
(Cybenko (1989)). In other words, neural nets can be used to approximate any continuous process. However, 
the theorem focuses only on existence, which leaves questions such as how many neural nodes are required 
to yield an approximation of a given quality unanswered. Nevertheless, the approximation properties of neural 
nets are very powerful. 
58 See e.g. Shah et al. (2018), Du et al. (2018) and Triepels et al. (2017). 
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and either the absolute value is taken, or the sum is squared (L1 and L2 norms, 

respectively), and the resulting value is added to the overall loss. The regularisation 

parameter determines the magnitude of the penalisation effect. Regularisation promotes 

smaller weights and, in turn, lower complexity. Dropout and input noise were also applied: 

in the former, units such as neurons (and the parameters attached to it) are probabilistically 

ignored from the model and the latter reduces the model’s dependence on specific input 

values. The batch sizes and number of epochs were also systematically searched59. Due to 

the stochastic nature of the models, 15 consecutive stable predictions were run in the 

experiments, and then the final prediction was formed by taking the means60. Finally, there 

exists a rule-of-thumb that when developing deep learning models, there should be ten times 

more data available than the model has trainable parameters. This further highlight the small 

sample size and the risk of overfitting. 

The following list describes the univariate model architectures used in the analysis: 

- All models use AMSGrad as optimizer, ReLU as activations and log-transformed 

input data.  

- The ANN has 5 hidden layers with [10, 20, 10, 20, 10] neurons, respectively. The 

last four layers are equipped with L2(10−3) regularizer. The loss function used is 

MAE. The number of epochs is set up to 150 and the batch size to 24. Total 

trainable parameters equal to 933. 

- The CNN has two one-dimensional convolutional layers with 512 and 256 filters, 

where kernel sizes are 6 and 2, respectively. The first layer has the same padding. 

After the convolutional layers, 1D-maxpooling is employed with a pool size of 2 

and valid padding. Then, before output, the data is flattened out and fed through 

a 3-layer [10, 10, 10] ANN. The number of epochs is 300 and the batch size 16. 

The loss function used is MAPE. There are 268,807 trainable parameters in total. 

- The LSTM has one hidden layer with 80 memory cells. Before the hidden layer’s 

activation, Gaussian Noise (0.65) layer is applied. Before output, there is also one 

additional basic hidden layer with 10 neurons, before which dropout layer (0.05) 

 
59 Batch size refers to the number of samples used at a time from the training set to update the model weights. 
One training epoch means one pass through the training set. For an example, say 30 observations are used 
for training. Then, using a batch size of 10 results in three model updates per epoch. Lower batch sizes result 
in less accurate and noisy estimates, but they offer a regularising effect, lower generalisation error, faster 
learning and consume less memory. 
60 Achieving stability with more complex models tends to be challenging which the experiments also 
demonstrated. Only 15 runs were run due to limited computational resources. 
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is applied. The model is trained with 300 epochs and a batch size of 24. The loss 

used is MAPE. The model requires 27,083 trainable parameters. 

- For the CNN+LSTM, by the way it is implemented due to LSTM, the number of 

prior timesteps had to be increased to 4. Similarly, the forecasting horizon was 

increased to 4 timesteps. The model has three 1D-convolutional layers with same 

padding, each having 64 filters with kernel size of 2. Then, 1D-maxpooling with 

pool size of 2 is employed and data is flattened out for the one-layer LSTM with 

20 memory cells. Before output, there is a basic hidden layer with 20 neurons. 

The loss function used is MAPE. The model is trained with 200 epochs and a 

batch size of 24. There are 24,008 trainable parameters in this specification. 

- The timestep-setup had to be also changed for the convolutional LSTM to 4 

predictions for each 4 prior timesteps. The model has one ConvLSTM layer with 

100 filters and a kernel size of (1,2). L2(10−4) regularizer is employed also in the 

first layer for kernel weights. A dropout (0.15) layer precedes flattening the data, 

after which the data goes through a two-layer neural network with 20 neurons 

each layer. A dropout (0.05) layer is also between the two layers. 200 epochs with 

batch size of 32 was selected. The loss function used is MAE. There are 83,724 

trainable parameters in total. 

The multivariate models have the following specifications: 

- All models use AMSGrad as optimizer, MAE as loss function, ReLU as activations 

and raw input data. 

- The convolutional LSTM uses again 4 prior time steps to predict 4 steps ahead. 

The model has one ConvLSTM layer with 20 filters and a kernel size of (1,2). 

L2(10−5) regularizer is employed also in the first layer for kernel weights. A 

dropout (0.15) precedes flattening the data, after which the data goes through a 

three-layer neural network with [40, 40, 10] structure neuron-wise. A dropout 

(0.10) is again applied between the first two layers. The model is trained using 

120 epochs and with a batch size of 16. The loss function used is MAE. The 

number of trainable parameters is 122,854. 

- The CNN model, which takes the adjacency matrices as input, is constructed as 

follows. The first convolutional layer has 64 filters with a kernel size of (3,3). Then, 

three convolutional-2D-maxpooling layers are added, where first two layers has 

128 filters and the last one 64. Pool-size is kept at (2,2) and kernel size remains 

at (3,3). Then a dropout (0.2) is added, and the data gets flattened out for a 128-
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neuron basic hidden layer. Before the output, a dropout (0.1) is added. The model 

is trained using 100 epochs and a batch size of 16. This model has 305,731 

trainable parameters. 

- The bidirectional LSTM has two hidden layers with 90 memory cells and L2(10−3) 

regularizer each. The results from the bidirectional layers are merged via 

averaging. 350 epochs are used with a batch size of 24. In this case, 720,811 

trainable parameters are in effect. 

 

For clarification, Figure 7 represents a conceptual high-level flowchart for applying the 

methodology presented: 

 

 

Figure 7: Flowchart illustrating the deep learning-based forecasting scenario with pseudo-code for walk-
forward validation/rolling forecasts. 

 

The pseudo-code61 for walk-forward validation in the figure above is valid for training 

and validating as well as testing and evaluating deep learning models.  

Python (3.4.9) was used in model development. Deep learning models were 

implemented using Keras (2.2.4) with TensorFlow (gpu-1.14.0) as the backend. ARIMA was 

implemented using statsmodels (0.10.1). 

 

 
61 Note that the purpose of the given concise pseudo-code is to illustrate only the essentials of the 
procedure. 
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6 RESULTS AND ANALYSIS 
 
 

Before going into the results given by the presented methodology applied, descriptive 

statistics and illustrations about the BNDES data are shortly provided. Recall Figure 5 which 

demonstrated the data structure. As was discussed, the data contains transactional 

information with state- and city-specific details and corresponding dates in month-year 

format. In the dataset, there are buyers and suppliers from all 27 states in Brazil. 5129 

different cities can be found from the buyers’ side whereas 2452 cities among the suppliers. 

From 2003-04 to 2018-12 a total of approximately 72.8 billion in reals was transferred in 

2103674 transactions, which is also the amount of observations in the whole dataset. The 

largest amount transferred in the whole period was 28089562.14 from São Paulo to São 

Paulo in 2014-10, and the minimum of 12 occurred twice (2013-05 and 2014-07), in both 

cases the buyer being from Londrina, Paraná. In 2013-05, the supplier was from Santo 

Andre, São Paulo and in 2014-07 from Brasilia, Distrito Federal. 

 

 

Figure 8: Visualisation of the monthly sum of transactions over the whole period. 

 
Above62 the monthly sum of transactions is visualised. One can notice that there 

exists plenty of variability in different periods. As the BNDES Credit Card is relatively young 

being launched in 2002, the first years were markedly steady until 2009. Then, the flow of 

payments started to experience steep growth, which interestingly coincides for example with 

the growth of Brazilian GDP of over 7.5 percent in 2010. The trend remained upwards until 

2014, as the growth of GDP decelerated to zero. Around this time, the corruption scandal 

related to the state-owned oil company Petrobras started to disentangle and shake the 

 
62 Note that the scale is in billions of reals (1𝑒9 = 10^9). In the upcoming line and bar plots, a similar 
convention is used. 
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political atmosphere of Brazil. These shocks eventually propagated strongly throughout the 

Brazilian economy leading to crisis, which manifested later on as investment failures, 

plummeting exchange rates and increasing unemployment, to mention a few. These events 

have seemingly had a strong impact to the progress of payment flows63. In the next table, 

summary statistics from each year are provided: 

 

 Sum Cum% Count Cum% Mean Std Min 25% 50% 75% Max 

2003 1578229 0.0 97 0.0 16270 15719 187 4165 9380 24000 50000 

2004 15282494 0.0 952 0.0 16053 14906 535 5000 10000 22992 80841 

2005 85277353 0.1 4289 0.3 19883 29720 150 4772 10700 25750 670397 

2006 253028715 0.5 11711 0.8 21606 44696 99 4462 10156 25500 1875135 

2007 546861278 1.2 23729 2.0 23046 56806 76 4402 10000 25900 2454413 

2008 933484383 2.5 36272 3.76 25736 68654 50 4728 11210 28850 4446862 

2009 2767410041 6.3 93076 8.1 29733 105697 88 5014 12000 31112 11310453 

2010 4737282889 12.8 152522 15.3 31060 133521 18 5053 11941 30500 15940780 

2011 8214375864 24.1 231199 26.3 35529 172345 28 5300 12798 338400 23272182 

2012 10031153431 37.9 283760 39..8 35351 171338 30 5252 12650 33122 26438670 

2013 10626937233 52.5 300324 54.1 35385 168596 12 5443 12729 32682 23336693 

2014 12365054030 69.5 315809 69.1 39154 180194 12 5840 13854 35800 28089563 

2015 11606817300 85.5 295470 83.2 39283 170479 17 5890 13741 35546 25880041 

2016 5733365856 93.3 185487 91.8 30910 114980 22 5400 12000 28711 14318974 

2017 2870579913 97.3 99448 96.7 28865 96776 32 5355 11820 27900 9079755 

2018 1970043346 100 69529 100 28334 80489 27 5691 12332 28810 5574301 

tot. 72758532355  2103674         

Table 1: Summary statistics for each year. 

 
Table 1 demonstrates further how the data exhibits strong trends and differences in 

scales. The period from 2010 to 2016 is responsible for over 80 percent in terms of money 

transferred, and the amount of transactions follow closely with 76.5 percent in the same 

period. Between 2012-2016 alone, 1380850 transactions were made worth of over 50 billion. 

Next, Tables 2 and 3 focus on state-specific data over the whole period as follows: 

 
63 Discussions with BNDES personnel revealed that until 2009, the credit card financed mainly equipment 
acquisitions and had only few card-providing banks in its network. As the Brazilian economy started to grow, 
the credit card expanded its financing operations beyond equipment and increased the network of 
credentialised banks. However, as the Brazilian economy entered in recession after 2016, the network of banks 
diminished leading to a significant decrease in the scale of operations. 
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 Suppliers 

 States Cities 

 Sum Count Sum Count 

1. São Paulo 

(28782582633) 

São Paulo 

(742953) 

São Paulo 

(8342532138) 

São Paulo 

(103650) 

2. Minas Gerais 

(8244108119) 

Rio Grande do Sul 

(269145) 

Betim 

(3261878892) 

Curitiba 

(45978) 

3. Rio Grande do 

Sul 

(7913309698) 

Paraná 

(257566) 

São Bernando do 

Campo 

(2437651534) 

Betim 

(40341) 

4. Paraná 

(7797534983) 

Minas Gerais 

(220157) 

Curitiba 

(2045921645) 

São Bernando do 

Campo 

(38160) 

5. Santa Catarina 

(5626398560) 

Santa Catarina 

(210456) 

Caxias do Sul 

(1342489116) 

Eldorado do Sul 

(34604) 

6. Rio de Janeiro 

(1982138690) 

Bahia 

(50597) 

São Caetano do 

Sul 

(1157775010) 

Sapucaia do Sul 

(32211) 

7. Goiás 

(1588930773) 

Rio de Janeiro 

(48588) 

Porto Alegre 

(1080269761) 

Campinas  

(31374) 

8. Bahia 

(1514672313) 

Goiás 

(41935) 

Belo Horizonte 

(1058550021) 

Piracicaba 

(31307) 

9. Mato Grosso 

(1100287159) 

Espírito Santo 

(37416) 

Rio de Janeiro 

(1039153006) 

Caxias do Sul 

(30783) 

10. Espírito Santo 

(1082242482) 

Pernambuco 

(31170) 

Eldorado do Sul 

(1008193456) 

Maringa  

(29081) 

Table 2: Top 10 states and cities according to the sum of transactions and total count over the whole period 
(suppliers). 
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 Buyers 

 States Cities 

 Sum Count Sum Count 

1. São Paulo 

(20460963062) 

São Paulo 

(487159) 

São Paulo 

(4964249696) 

São Paulo 

(30310) 

2. Minas Gerais 

(7266954392) 

Minas Gerais 

(255418) 

Rio de Janeiro 

(1485051080) 

Rio de Janeiro 

(16721) 

3. Paraná 

(7058415932) 

Rio Grande do Sul 

(208516) 

Curitiba 

(1338856597) 

Belo Horizonte 

(14845) 

4. Rio Grande do Sul 

(5793658427) 

Paraná 

(201800) 

Belo Horizonte 

(1197110144) 

Curitiba 

(14622) 

5. Santa Catarina 

(5296387495) 

Santa Catarina 

(171175) 

Goiânia 

(1053324745) 

Porto Alegre 

(13496) 

6. Rio de Janeiro 

(3487269693) 

Bahia 

(119444) 

Porto Alegre 

(922806651) 

Goiânia 

(13076) 

7. Bahia 

(3457788586) 

Rio de Janeiro 

(87576) 

Brasília 

(883526412) 

Salvador 

(11427) 

8. Goiás 

(2724928015) 

Goiás 

(73374) 

Fortaleza 

(818884529) 

Fortaleza 

(10732) 

9. Mato Grosso 

(2079309415) 

Mato Grosso 

(67707) 

Salvador 

(714912614) 

Brasília 

(10527) 

10. Ceará 

(1778638851) 

Ceará 

(49863) 

Campinas 

(617754058) 

Ribeirão Preto 

(9759) 

Table 3: Top 10 states and cities according to the sum of transactions and total count over the whole period 
(buyers). 

 

In Tables 2 and 3, the sum and amount of transactions are calculated over the whole 

period for states and cities differentiating suppliers and buyers. As said before, there are 

suppliers from 2452 different cities and buyers from 5129, making purchases more 

diversified by over two-fold when considering the origin. Nevertheless, there are not many 

differences among the top 10 states and cities from both sides. In other words, states and 

cities that tend to trade often and high in value do not change. This finding aligns also with 
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the study64 made by Martini and Teixeira (2016). To further demonstrate payment flows in 

different periods, the evolution of payments from the top 10 states by total value transferred 

per month is visualised in Figures 9 and 10: 

 
 

 

Figure 9: Evolution of payment flows aggregated per month according to top 10 states (suppliers). 

 

 
64 Note that Martini and Teixeira (2016) used BNDES Credit Card data only from 2014. However, it is the year 
when most transactions are recorded both in value and count, being responsible for almost 20% of transactions 
in value in the whole sample. 
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Figure 10: Evolution of payment flows aggregated per month according to top 10 states (buyers). 

 

São Paulo seems to play a significant role in both suppliers’ and buyers’ side being 

responsible to a great proportion of value transferred, which the Tables 2 and 3 

demonstrated as well. Martini and Teixeira (2016) made also similar findings in their study. 

Figures 11 and 12 give a better notion of the proportions exhibited by all states for the whole 

period, including the top 10 ones. The charts reveal that the suppliers’ side relies more in 

São Paulo and in a few states from the southeast and south of Brazil, again agreeing with 

Martini and Teixeira (2016). In buyers’ side, São Paulo’s role is more discreet, and the 

purchasing activity is more evenly distributed across states. The Figures 13-18 further reveal 

the evolution of these proportions among suppliers and buyers in different time periods, 

namely 2003-2008, 2009-2016 and 2017-2018. Finally, Figures 19-21 represent the network 

structure65 formed by payment activity in the mentioned periods. One can notice that among 

the suppliers, São Paulo’s position remains strong across time periods, being responsible 

for almost half of the value transferred in 2003-2008. In the buyers’ side, as already noted, 

São Paulo’s status is more subtle, and the value transferred is more evenly spread. The 

network graphs demonstrate the connectedness among the states effectively showing which 

states are more central and which states contribute less in terms of the whole network 

 
65 The directed graphs were constructed with Gephi (network visualization software) leveraging the force atlas 
layout algorithm and using weighted degrees as the condition for node partitioning. 
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structure66. The graphs also give a good hierarchical sense on the monetary flows between 

states: in addition to São Paulo, three tiers are clearly distinguishable demonstrating the 

importance of a state when considering credit card usage. For example in Figure 18, where 

payment flows between states in 2009-2016 are illustrated, the most important states are 

São Paulo, Bahia, Paraná, Minas Gerais, Rio Grande do Sul and Santa Catarina, forming 

the first tier. These findings are also in line with Martini and Teixeira (2016) with the 

exception of Santa Catarina. The states mentioned are present in other time periods as well 

in the first tier. The similarities between this study and the study made by Martini and Teixeira 

(2016) highlights the fact that market dynamics among BNDES Credit Card users (or states) 

have not experienced significant changes over time, even though the scale of operations in 

terms of transaction values and counts has changed drastically. 

 

 

Figure 11: Share of transactions according to states for the whole period (suppliers). 

 
66 While drawn for illustrative purposes, the graphs visualise and capture the strength of interrelations between 
states in such a compact manner that earlier tables and figures cannot. 
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Figure 12: Share of transactions according to states for the whole period (buyers). 

 
Figure 13: Share of transactions according to states for 2003-2008 (suppliers). 



73 

 

 

 
Figure 14: Share of transactions according to states for 2009-2016 (suppliers). 

 
Figure 15: Share of transactions according to states for 2017-2018 (suppliers). 
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Figure 16: Share of transactions according to states for 2003-2008 (buyers). 

 
Figure 17: Share of transactions according to states for 2009-2016 (buyers). 
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Figure 18: Share of transactions according to states for 2017-2018 (buyers). 

 
Figure 19: Network graph illustrating payment flows between states in 2003-2008. 



76 

 

 

 

Figure 20: Network graph illustrating payment flows between states in 2009-2016. 

 
Figure 21: Network graph illustrating payment flows between states in 2017-2018. 
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To summarize, São Paulo seems to play a significant role among BNDES Credit Card 

users over the whole period. When compared to buyers, the network of suppliers seems to 

be more compact and relies largely on couple of states especially in south-eastern and 

southern Brazil. There also exists clear hierarchy between states in terms of regional 

activities and their relative magnitudes. Lastly, the underlying structure of market dynamics 

has stayed rather static even though the scale of operations has changed greatly over time. 

Next, the results from the time series forecasting problem are discussed. Recall that the 

monthly sum of transactions (in value) is being predicted with the uni- and multivariate 

models implemented according to the methodology. Figures 22 and 23 illustrate67 the 

forecasts from each model against actual data: 

 

 
Figure 22: Univariate prediction results. 

 
67 Note that the actual data starts 42 months away (corresponding to 2015-06) and the predictions from 36 
months away (corresponding to 2016-01) from 2018-12. 
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Figure 23: Multivariate prediction results. 

 

While the visualisations of the predictions do not offer much information for analysis 

purposes, some notions can be made based on them. In the univariate case, ARIMA, DNN 

and CNN-LSTM seem to consistently over-estimate the actual data, whereas other 

univariate models demonstrate more favourable variability in terms of forecasting bias. All 

univariate models have difficulties in capturing the strong downward trend in the beginning 

of the test period. Interestingly, even though the multivariate models are much more complex 

in terms of input data and model architecture, they show steadiness and competitiveness 

as well as relatively neutral results when considering forecasting bias. 
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 RMSE MAPE MAE MSLE MDA 

ARIMA 61921182.447 13.794 41853079.334 0.02513585 0.51428571 

DNN 
66229944.532 

(-6.96%) 
13.881  

(+0.63%) 
43690546.354 

(+4.39%) 
0.02675362 

(+6.44%) 
0.65714286 
(+27.78%) 

CNN 
47520703.748 

(-23.26%) 
11.292  

(-18.14%) 
33551821.985 

(-19.83%) 
0.01743506 
(-30.64%) 

0.71428571 
(+38.89%) 

LSTM 
62619773.038 

(+1.13%) 
15.574 

(+12.90%) 
46529724.597 

(+11.17%) 
0.02978695 
(+18.50%) 

0.65714286 
(+27.78%) 

CNN-LSTM 
79786289.111 

(+28.85%) 
18.842 

(+36.60%) 
58638034.662 

(+40.10%) 
0.03999117 
(+50.10%) 

0.42857143 
(-16.67%) 

ConvLSTM 
62922734.643 

(+1.62%) 
16.365 

(+18.64%) 
47326546.805 

(+13.08%) 
0.03401049 
(+35.31%) 

0.57142857 
(+11.11%) 

MultiCNN 
56079607.704 

(-9.43%) 
11.687  

(-15.27%) 
36279434.928 

(-13.32%) 
0.02065243 
(-17.84%) 

0.48571429 
(-5.56%) 

MultiConvLSTM 
38166738.569 

(-38.36%) 
11.988  

(-13.09%) 
30740556.82 

(-26.55%) 
0.02209509 
(-12.10%) 

0.48571429 
(-5.56%) 

MultiBiLSTM 
57377753.786 

(-7.34%) 
12.428  

(-9.90%) 
37941839.405 

(-9.35%) 
0.02226637 
(-11.42%) 

0.68571429 
(+33.33%) 

Table 4: Prediction results by metrics. 

 

The performance results (Table 4) indicate that the best performing model is CNN 

being superior to the other models by a clear margin in three measures, as bolded. Note 

that lower result is better with the first four measures while higher is better with MDA. The 

CNN outperforms ARIMA in all measures by 19 to 38 percent margins. Another model 

outperforming ARIMA when all measures are considered is the MultiBiLSTM with 7 to 33 

percent margins. The bidirectional functionality may have assisted in interpreting the 729-

variable long input sequences. Other multivariate models, while being slightly more 

inaccurate than ARIMA, also show competitive results beating the baseline in the first four 

measures, and notably the MultiConvLSTM has the lowest RMSE and MAE, as bolded. The 

multivariate models demonstrate promising capabilities rem,00embering that the data is not 

transformed, and the input is high dimensional. 

DNN is also competitive when comparing to the baseline, having especially high 

MDA. The LSTM and ConvLSTM also show better accuracy, while being otherwise relatively 

incompetent. The worst model is the CNN-LSTM demonstrating the poorest performance in 

all measures when compared to the baseline and seems to have great difficulties capturing 

the overall trend being wrong in more than half of the cases on average. This may be, among 
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other reasons, due to model complexity (as two different models are sequentially combined) 

and suboptimal model architecture. 

 

j = ARIMA DNN CNN LSTM MultiCNN MultiBiLstm 

i  - - - - - - 

ARIMA - 0.6596 0.03317 0.8189 0.05819 0.0494 

DNN 0.3405 - 0.04551 0.7566 0.02928 0.02407 

CNN 0.9668 0.9545 - 0.9985 0.8337 0.827 

LSTM 0.1811 0.2434 0.001534 - 0.03014 0.007086 

MultiCNN 0.9418 0.9707 0.1663 0.9699 - 0.2754 

MultiBiLSTM 0.9506 0.9759 0.173 0.9929 0.7246 - 
Table 5: p-values of the modified DM test for methods with h = 3. 

 

j = CNN-LSTM ConvLSTM MultiConvLSTM 

i    

CNN-LSTM - 0.1184 0.06648 

ConvLSTM 0.8816 - 0.064045 

MultiConvLSTM 0.9335 0.9396 - 
Table 6: p-values of the modified DM test for methods with h = 4. 

 
In the first row of Table 568, when forecasting three steps ahead, it can be noticed 

that the DM-test suggests superior forecasting accuracy of CNN and MultiBiLSTM to the 

baseline ARIMA under 5% significance level. The predictive ability of MultiCNN against the 

baseline is also statistically significant under 10% level. Statistical significance for the 

efficacy of CNN, MultiCNN and MultiBiLSTM can be found also from the 2th and 4th row, 

when compared to DNN and LSTM (under 5% level). Interestingly, the test results cannot 

support the hypothesis that ARIMA is more accurate than any of the other models with 

forecast horizon of three timesteps ahead confirming that all models tested against the 

baseline are competitive in this case. In Table 6, the p-values of the models with 4-month 

horizon demonstrate the superiority of MultiConvLSTM under 10% significance level which 

supports the performance results in Table 4. 

A separate but similar forecasting experiment was also conducted with additional 

BNDES Credit Card payment data, namely the first semester of 2019, using three well-

performed models from the previous experiment. The selected models were CNN, MultiCNN 

and MultiBiLSTM with some minor modifications. The experiment included making 

predictions with the same forecasting horizons as before and also using six prior time steps 

 
68 The alternative hypothesis is that model j is better than model 𝑖 in terms of forecasting accuracy. Recall also 
that the forecasting horizons differ according to the model. 
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to predict six steps ahead. In other words, when predicting three steps ahead, two sequential 

forecasts were done, as only one forecast was required for predicting six steps onward. In 

addition to the training scheme as earlier, the models were also updated using data for 

training until the end of 2018, for further comparison. The following charts visualise the 

prediction results, where the names of the models indicate the forecasting horizon applied 

and whether an updated version was used69: 

 

 

Figure 24: Prediction results for the period 2019-01 – 2019-06 (CNN). 

 
Figure 25: Prediction results for the period 2019-01 – 2019-06 (MultiCNN). 

 
69 The updated model of MultiCNN with h = 6 (MultiCNN-6-upd) had a batch size of 24 and was run with 130 
epochs. Both updated models of MultiBiLSTM (MultiBiLSTM-3-upd & MultiBiLSTM-6-upd) had a batch size of 
16. Otherwise, model architectures remained untouched. These changes were necessary for producing stable 
predictions. Note also that the results from h = 6 without updating are not reported since it did not produce 
satisfactory results initially, that is, it would have required the optimisation of model architectures again. 
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Figure 26: Prediction results for the period 2019-01 – 2019-06 (MultiBiLSTM). 

 

From the bar charts one can notice that the univariate CNNs, while demonstrating 

fairly stable results, could not track the fluctuations of the actual data. The MultiBiLSTM and 

its different versions showed better ability in keeping up with the realisations. Interestingly, 

among CNNs and MultiBiLSTMs, the model updates did not seem to have much of an effect 

on the model’s forecasting performance. Also, even though the updated MultiCNN with 6-

month horizon appears to follow well the realisations, the predictions are very similar to each 

other thus demonstrating rather conservative results. Performance results of the models 

were also calculated using the same metrics as in the previous experiment, which are 

collected in the following table. Note that the CNN (CNN-3) from the former experiment is 

used as a baseline: 
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 RMSE MAPE MAE MSLE MDA 

CNN-3 13111610.338 7.762 11015911.510 0.00944295 0.40 

CNN-3-upd 
13637202.463 

(+4.01%) 
8.261 

(+6.43%) 
11661635.466 

(+5.86%) 
0.01033221 

(+9.42%) 
0.60 

(+50.00%) 

CNN-6-upd 
13058076.955 

(-0.41%) 
7.531  

(-2.98%) 
10710861.110 

(-2.77%) 
0.00938962 

(-0.56%) 
0.40 

(±0.00%) 

MultiCNN-3 
14651362.838 

(+11.74%) 
9.059 

(+16.71%) 
12844263.724 

(+16.60%) 
0.01195106 
(+26.56%) 

0.40 
(±0.00%) 

MultiCNN-3-upd 
16261953.800 

(+24.03%) 
10.050 

(+29.48%) 
14254070.510 

(+39.40%) 
0.01495003 
(+58.32%) 

0.20 
(-50.00%) 

MultiCNN-6-upd 
7417893.457 

(-43.43%) 
4.322  

(-44.32%) 
5982255.944 

(-45.69%) 
0.00293072 
(-68.96%) 

1.00 
(+150.00%) 

MultiBiLSTM-3 
7026743.014 

(-46.41%) 
4.413  

(-43.16%) 
6191763.922 

(-43.79%) 
0.00255168 
(-72.98%) 

0.40  
(±0.00%) 

MultiBiLSTM-3-
upd 

7504390.035 
(-42.77%) 

4.876  
(-37.18%) 

6820265.548 
(-38.09%) 

0.00293746 
(-68.89%) 

0.40 
(±0.00%) 

MultiBiLSTM-6-
upd 

7428622.549 
(-43.34%) 

4.824  
(-37.85%) 

6718918.214 
(-39.01%) 

0.00291029 
(-69.18%) 

0.40 
(±0.00%) 

Table 7: Prediction results for the period 2019-01 – 2019-06 by metrics. 

 

The performance results confirm the deductions made from the bar charts. However, 

while the MultiCNN-6-upd demonstrated cautiousness, it was able to capture the trends 

perfectly. Updating models with most recent data especially in the case of longer forecasting 

horizons may thus be a crucial factor for forecasting performance. Intuitively, this makes 

sense since more situation-aware models should indeed produce better predictions. 

Moreover, four multivariate models (representing half of the models) showed improvements 

of 37 to 73 percent in first four metrics when compared to the (univariate) baseline. Finally, 

the most accurate predictions from both experiments, namely from models CNN and 

MultiCNN-6-upd, are collected to the following figure70: 

 
70 In this case, the actual data starts 48 months away (corresponding to 2015-06) and the predictions from 42 
months away (corresponding to 2016-01) from 2019-06. 



84 

 

 

 

Figure 27: Most accurate predictions from both experiments. 

 

When considering the results from both experiments and the figure above, the best 

performing models demonstrate impressive capabilities in forecasting aggregated payment 

flows. The contribution of the multivariate setting is also highly relevant and shows very 

promising results. 

Some important indications can be derived from the forecasting study and results 

presented. As it was a preliminary study, there are many extensions to it which will be 

detailed in the next chapter. Nevertheless, a systematic methodology to forecasting time 

series data with deep learning methods was implemented successfully. Moreover, a 

methodology to include transaction data where granularities such as sources and 

destinations was developed and carried out showing promising results. It is worth noting 

also that the created adjacency matrices of payment flows provide a natural stepping point 

to graph-based methods. The results demonstrate the efficacy and further potential of deep 

learning methods in forecasting transactional data of different forms. Also, based on the 

literature review, there still does not exist an application of the convolutional LSTM to 

forecasting payment data, as performed in this study71. Note that some deep learning 

techniques have been applied to payment data before, but mostly in the problems of 

detecting anomalies, as e.g. in Roy et al. (2018), Ziegler et al. (2017) and Triepels et al. 

(2017).  

Forecasting transaction and other types of financial time series data can be helpful 

when foreseeing upcoming events are important for example in terms of predictive business 

process monitoring. With accurate and reliable forecasts, public and private organisations 

 
71 This can be due to the fact that the model is challenging to implement from scratch. Recall also that the 
model implemented in Keras does not fully represent the model in the original paper. 
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and enterprises can align their own strategies and policies towards more desirable and 

perhaps profitable outcomes while ensuring continuity of operations. For example, in the 

case of foreseeing the BNDES Credit Card usage, BNDES may be able to make more 

informed decisions regarding their capital reserved for financing, using and further 

enhancing the models developed in this work. Moreover, forecasting is one of the major 

aims of economic and econometric analysis (CARRIERO et al. (2019)). Also, the discovery 

of complex structures in raw data with no prior assumptions that may result in better out-of-

sample prediction models plays an important role in econometric approaches, as the 

traditional approaches commonly seek for understanding causal theories or explaining 

determinants of economic activity (CARRIERO et al. (2019); LEÓN and ORTEGA (2018)). 

There were some limitations in the preliminary forecasting experiments. There was a 

lack of both, experience and computational resources, which impacted the development of 

deep learning models. The data sample was also relatively small – deep learning methods 

perform better when more data is available. Nonetheless, the methodologies developed are 

versatile and flexible in many directions. One clear extension is deeper investigation of 

different forecasting horizons with varying prior timesteps and proportions for splitting test 

and training data, and quarterly data could be applied instead of monthly. Model updates 

could also occur in each forecasting origin meaning that the deep learning models could be 

retrained with all available data, hypothetically resulting in more accurate forecasts, similarly 

to the second experiment. Instead of predicting only one variable, the prediction of multiple 

variables at once is possible as well. In this study, only the available payment data was 

considered, thus the study could be extended to verifying whether i) adding financial or 

macroeconomic variables72 of different frequencies and ii) incorporating information from 

news and sentiments or satellite imagery data could improve the forecasting accuracies. 

The payment data itself could be also used as an auxiliary variable for predicting 

macroeconomic variables as was done in León and Ortega (2018). Deep learning models 

could be also combined with macroeconomic models through hybrid- or ensemble-based 

approaches, and as mentioned before, the methodology can be easily adapted to graph-

based approaches73. More traditional methods could also be added for wider comparison. 

With more computational resources, it might be possible to find a model configuration for 

 
72 Recall the similarities in trends between the state of Brazilian economy (represented by the GDP) and the 
monthly sum of transactions. 
73 Note that the forecasting study was executed in the Euclidean setting. Recall the end of section 2.2 and 
2.3. 
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the simpler models that does not require data transformation techniques which can have 

undesired effects on forecasting performance - working with raw data ensures that overall 

complexity or randomness of the data is not reduced (BODSTRÖM and HÄMÄLÄINEN 

(2019)). For completeness, sensitivity and robustness analysis should be added as well as 

efforts made in terms of interpreting and characterising the behaviour of deep learning 

models while making predictions (FRANCA LEPPÄNEN and HÄMÄLÄINEN (2019)). Finally, 

the methodologies can be used with all kinds of data that are transactional in nature. 

The descriptive statistics and the brief study of participant dynamics in the usage of 

BNDES Credit Card could also largely benefit from further extensions. One interesting 

aspect would be incorporating currency fluctuations in transaction values and comparing 

whether it has some effect in the results. One could also investigate how the flow of 

payments follow the trends and dynamics of other macroeconomic and financial variables. 

Complex network theory may also offer useful tools74 for deriving structural and behavioural 

insights from payment data – the theory is strongly present for example in the stream of 

literature regarding transactional data producing FMIs in Brazil (see e.g. SILVA et al. (2017) 

and SILVA et al. (2018)). The city-specific data could also be more explored, and certainly 

if more granular such as firm- and employment-level data were available, more avenues for 

further studies could be explored. 

 
74 Summary statistics derived from complex network theory may be limited in some cases because they cannot 
adapt to changes in data, paving the way for more flexible techniques such as the deep learning methods 
presented in this thesis. Nevertheless, some good introductory references about data mining and complex 
network theory include Zaki and Meira (2016), Silva and Zhao (2016) and Soramäki and Cook (2016).  
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7 CONCLUDING REMARKS 
 
 

In this thesis, a brief introduction to FMIs and BNDES was given followed by a 

literature review on forecasting in the fields of macroeconomics, machine and deep learning 

as well as graph-based deep learning. Common factors, challenges and further research 

directions were also identified. Moreover, a methodology for forecasting transactional time 

series data was developed and successfully implemented in uni- and multivariate cases 

taking advantage of state-of-the-art deep learning algorithms. A technical background for 

the deep learning methods used in the experiments was also provided. Moreover, another 

study direction was taken by providing descriptive statistics and insights on the dynamics 

underlying the BNDES Credit Card payment data used in experiments. In addition, the 

limitations experienced during the empirical part and suggestions for future works were 

discussed.  

The development of more efficient data-driven methods with more degrees of 

freedom mixing data from different frequencies and sources seems to be the main driver in 

both macroeconomic and deep learning-based forecasting literature. In recent years, deep 

learning has gained a massive amount of interest in various disciplines due to its capability 

of learning arbitrary complexities directly from high-dimensional input data possibly without 

prior specifications. The competitiveness and utility of deep learning in predicting payments 

was confirmed by clear margins through various metrics and statistical testing, when 

forecasting the monthly sum of transaction values (derived from BNDES Credit Card data) 

multiple steps ahead in the future in uni- and multivariate setting. Interestingly, while the 

univariate CNN was found as the best performing model in the main experiment, the 

multivariate models with raw payment data input also consistently outperform the baseline 

ARIMA. 

The brief exploration of interdependencies among BNDES Credit Card participants 

revealed the strong influence of São Paulo and the role of south-eastern and southern states 

in suppliers’ network. The regional activities and their proportional strength can be 

characterised by a hierarchical structure, which stays relatively steady over the whole period 

despite the substantial changes in the amount trading. 

Various and diverse research avenues for future works were identified which are 

hoped to be explored by the researchers of BNDES and the scientific community in general 

in their respective studies related to transactional data. 
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APPENDIX I 
 

 
Figure 28 visualises the whole raw dataset, where the vertical line indicates the split 

for training75 and test sets:  

 

Figure 28: Monthly sum of transactions derived from the BNDES dataset. 

 

One can notice that the scale varies greatly in different time periods: the difference 

for example from 2008 to 2015 is over 12-fold, when considering yearly totals. First, possible 

structural breaks are investigated via Zivot-Andrews test. While it suggests potential 

structural break point for the whole data (07-2015), the test statistic does not imply 

significance76. Next, in the figure below, histograms for raw77 and Box-Cox transformed 

training data are plotted: 

 

 

Figure 29: Histograms for raw (left) and transformed (right) training data. 

 
75 Recall that the last 12 months from the training set were used for validation purposes. 
76 The critical value for 10% significance level was -4.58 while the test statistic was -3.9393.  
77 The heavy-tailed distributions displayed by the histograms follow the findings in Martini and Teixeira (2016). 
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The figures do not offer much support for the presence of normality in both raw and 

transformed training data as histograms do not conform to normal distribution. One a side 

note, the Box-Cox transformation reduces a certain amount of skewness. In terms of 

statistical tests, Shapiro-Wilk, D'Agostino's K-squared and Anderson-Darling cannot support 

the null hypothesis that the raw or transformed data were drawn from a normal distribution78. 

The same applies to exponential distribution according to Anderson-Starling test79. 

Furthermore, even though KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test supports the 

null hypothesis of stationarity for raw data, the ADF and PP (Phillips-Perron) tests cannot 

reject the null hypothesis of stationarity80. In the case of transformed data, ADF and PP tests 

cannot reject the null hypothesis of nonstationarity and KPSS cannot support the null 

hypothesis of stationarity81. In essence, stationarity cannot be assumed in both cases. Next, 

fitting a linear regression model to raw and transformed training data gives the opportunity 

to verify whether misspecification occurs. 

 

 
78 For Shapiro-Wilk and D'Agostino's K-squared, the highest p-value was in the order of 10−9. While the critical 
value for 1% significance level in Anderson-Starling’s test was in both cases 1.065, the lowest test statistic 
was 5.656. 
79 The lowest Anderson-Starling’s test statistic was 17.753 while the critical value for 1% significance level was 
1.949. 
80 ADF’s p-values until 5 lags did not go lower than 0.468 for all specifications (no drift no trend, with drift no 
trend, with drift and trend). Lowest p-value for PP was 0.529 for the previous three configurations. KPSS 
suggests nonstationarity at 10% (0.0698) significance level for drift and trend, otherwise stationarity. 
81 ADF’s p-values until 5 lags did not go lower than 0.346 for all specifications (no drift no trend, with drift no 
trend, with drift and trend). Lowest p-value for PP was 0.86 for the previous three configurations. KPSS 
suggests nonstationarity (for no drift no trend, and drift and trend) with a significance level of 5% (0.0133 and 
0.0362, respectively). 



99 

 

 

 

Figure 30: Diagnostics for the linear regression model fitted for raw data. 

 

The first row of Figure 30 suggest that the residuals have a pattern indicating 

nonlinearity and do not exhibit normality. The second row shows non-constant variances in 

the residuals’ errors suggesting heteroskedasticity, whereas the presence of outliers, while 

demonstrating weak evidence, cannot be confirmed. According to RESET test, the model 

suffers from misspecification with a p-value in the scale of 10−16
. 
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Figure 31: Diagnostics for the linear regression model fitted for transformed data. 

 

From Figure 31, even though more subtle in nature, similar deductions can be made 

as previously. Misspecification is present by RESET test with a p-value again in the range 

of 10−16. These findings suggest the presence of nonlinearity. Finally, the correlograms for 

the raw and transformed training data are as follows: 

 

 

Figure 32: Correlograms for the raw training data. 
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Figure 33: Correlograms for the Box-Cox transformed training data (λ ≈ 0.235).  

 

 The correlograms indicate that without differencing the observations in the training 

data in both cases are serially correlated until the 14th lag whereas in residual errors there 

appears to be useful information until the first lag. 


