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ABSTRACT

In recent years, deep convolutional neural networks has overcome several challenges

in the Ąeld of Computer Vision and Image Processing. Particularly, pixel-level tasks such

as image segmentation, restoration, generation, enhancement, and inpainting have shown

signiĄcant improvements thanks to the advances of the technique. In general, training a

neural network is similar to solving a complex optimization problem where the unknowns

are the parameters of the model, and the goal is to transform vectors from the input do-

main to the output set. This optimization process can be seen as a directed search through

an error surface where the optimal set of weights is the one that gives a minimal error over

a data sample. Since reaching the global minimum is very difficult, the task is simpliĄed

to Ąnd an acceptable solution for the task. However, because of the high dimensionality of

the solution space, the non-convexity of the error surface, and the presence of many Ćat

regions and saddle points in the surface, the process of training a neural network is gener-

ally addressed by carefully tuning the hyperparameters of the model and annotating a vast

training dataset. The three core components of the cost function used for supervised train-

ing are the architecture, the data, and the loss function. Despite the emergence of many

new architectures, Ąnding better networks to solve a task is difficult. The modeling of new

loss functions is a more feasible approach to improve the optimization and, therefore, Ąnd

better-performed models. This work proposes to use a given network, and concentrates on

the designing of loss functions for pixel-level regression and pixel-level classiĄcation prob-

lems, namely, image segmentation, to improve results. The rationale behind proposed loss

functions is that the incorporation of priors in the form of regularization terms helps to

distinguish between similarly-performed models, like the ones found in Ćat regions. New

pre-processing and post-processing techniques are also introduced in each case to assist

in solving real-life problems. The applicability of pixel-level classiĄcation loss functions

in instance segmentation task with full and weak supervision was studied using challeng-

ing biological image datasets with isolated and clustered cells for both 2D and 3D. A

pixel-level regression loss function was applied to the multi-focus image fusion problem.

Experimental results for instance segmentation and image restoration tasks suggest an

improvement of the performance when compared to other competitive loss functions. 3D

segmentation and multi-focus image fusion approaches showed low execution time.

Keywords: Deep Convolutional Neural Networks. Loss Function. Instance Segmentation.

Multi-focus Image Fusion.



RESUMO

Nos últimos anos, os métodos baseados em redes convolucionais profundas superaram

vários desaĄos no campo de Visão Computacional e Processamento de Imagens. Particu-

larmente, tarefas em nível de pixel, como segmentação, restauração, geração, inpainting,

e recuperação de informação em imagens, mostraram melhorias signiĄcativas graças ao

avanço das redes neurais profundas. No geral, o treinamento de uma rede neural é o mesmo

que resolver um problema de otimização complexo, onde as incógnitas são os parâmetros

do modelo, e o objetivo é transformar vetores do domínio de entrada para o conjunto de

saída. Esse processo de otimização pode ser visto como uma busca direcionada em uma

superfície de erro, em que o conjunto ideal de pesos é aquele que gera um erro mínimo

em uma amostra de dados. Dado que chegar ao mínimo global é muito difícil, a tarefa é

simpliĄcada a encontrar uma solução aceitável para uma tarefa dada. No entanto, devido

à alta dimensionalidade do espaço da solução, a não-convexidade da superfície de erro, e a

presença de muitas planícies, o processo de treinamento de uma rede neural é geralmente

tratado por meio do ajuste cuidadoso dos hiperparâmetros do modelo e criando anotações

de um amplo conjunto de dados de treinamento. As três componentes principais da função

de custo usada no treinamento supervisionado são a arquitetura, os dados, e a função de

perda. Apesar do surgimento de muitas novas arquiteturas, encontrar modelos com de-

sempenho aceitável é muito difícil. A modelagem de funções de perda é uma abordagem

mais efetiva para melhorar o processo de otimização e, por consequência, achar modelos

com melhor desempenho. Este trabalho propõe-se a usar uma rede dada e concentra-se

na proposição de funções de perda para problemas de regressão e classiĄcação em nível

de pixel, também conhecida como segmentação de imagem, visando a melhorar o desem-

penho. A lógica por trás das funções de perda propostas é que a incorporação de priors

em forma de regularização ajuda a diferenciar modelos com desempenho semelhante. No-

vas técnicas de pré-processamento e pós-processamento também são propostas em cada

caso para ajudar na solução de problemas reais. A aplicabilidade das funções de perda

de classiĄcação em nível de pixel na tarefa de segmentação de instância com supervisão

completa e fraca foi estudada usando conjuntos de dados desaĄadores de imagem bio-

lógica com células isoladas e agrupadas para 2D e 3D. A função de perda de regressão

em nível de pixel foi aplicada ao problema de fusão de imagem com múltiplos focos. Os

resultados da experimentação em tarefas de segmentação de instâncias e restauração de

imagens sugerem uma melhoria do desempenho quando comparado com funções de perda

semelhantes. Nas propostas de segmentação 3D e fusão de imagens com múltiplos focos,

foi observado um baixo tempo de execução.

Palavras-chave: Redes Convolucionais Profundas. Função de Perda. Segmentação de

Instâncias. Fusão de Imagens com Múltiplos Focos.
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1 INTRODUCTION

ArtiĄcial Intelligence (AI) is an area of Computer Science that has as a goal the de-

velopment of techniques for solving tasks simulating human intelligence. The term was

proposed by John McCarthy in 1955 (MCCARTHY et al., 2006) and it includes several topics

such as Natural Language Processing, Computer Vision, and decision making. Different

kinds of disciplines can be found within AI solutions, such as Rule-based systems, Ma-

chine Learning, Representation Learning, and Deep Learning (DL) that is a sub-Ąeld of

ArtiĄcial Neural Networks (ANN) area (GOODFELLOW; BENGIO; COURVILLE, 2016). This

last discipline, in particular, has proven capable of solving complex real-world tasks that

were considered very difficult for computers few years before. The technique is a subset

of Machine Learning that uses ANN to learn to transform objects from an input domain

to an output set.

Among the different Ąelds of research under the Deep Learning category, Computer

Vision (CV) has seen great improvements with the recent advances in a particular type

of ANN known as Convolutional Neural Networks (CNN). In this Ąeld, the input element

for the method is an image or sequence of images. An image can be formally expressed as

a mapping 𝑥 : Ω ⊃ ❘
𝑑c , where Ω ⊆ ❘𝑑i is a regular grid. The elements 𝑝 ∈ Ω are called

pixels in the case 𝑑𝑖 = 2 and voxels when 𝑑𝑖 = 3. For 𝑑𝑐 taking value of 1, the image is

said to be in gray-levels. Color images are represented by using a color model where 𝑑𝑐

could take values of 3 or 4.

According to the shape of the output space, CV tasks can be grouped into three sub-

categories: image-level, pixel-level, and region-level (SUN et al., 2018). Examples of image-

level and region-level problems are image classiĄcation and object detection, respectively.

However, because the number of tasks in Computer Vision is so immense, this work focus

only on pixel-level category, where input and output mappings are deĄned over the same

grid Ω. This means that the width and height of the expected output is the same as the

input image, but the number of channels might be different. According to the number set

in which the output mapping is deĄned, a task can be further grouped as classiĄcation or

regression, e.g. , integer or real-valued outputs (Figure 1). The pixel-level category includes

tasks as image segmentation, restoration, generation, enhancement, and inpainting, among

others. This study pivots its attention in two problems within pixel-level classiĄcation and

regression: instance segmentation and multi-focus image fusion.

For solving such kind of tasks, Deep Learning-based models learn to transform inputs

to outputs given a training dataset of examples, 𝑆 = ¶(𝑥, 𝑦)♣𝑥 ∈ I and 𝑦 ∈ O♢. In general,

the neural networks used for learning the mapping are just complex function 𝑓𝜃 : I ⊃ O,

consisting of millions of parameters 𝜃. Here, the notation 𝑓𝜃(𝑥), also written as 𝑓(𝑥; 𝜃),

is used to refer to a speciĄc function within the family of functions ¶𝑓𝜃i
♢ for a given
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Figure 1 Ű Computer Vision tasks taxonomy according to the dimension and number set
of the output vector 𝑦. An example of CNN structure is given for image-level,
pixel-level and region-level tasks.

𝑦(𝑝) ∈ ❩𝑑o 𝑦(𝑝) ∈ ❘𝑑o

Source: The author (2019)

representation of the target function 𝑓 . An speciĄc function 𝑓𝜃 ∈ ¶𝑓𝜃i
♢ is known as

a model. The sets I and O refer to the domain and image of the function and varies

according to the task to be solved. In terms of optimization, training a network means

Ąnding a good combination of parameters 𝜃* such that the predictions for inputs 𝑥 within

the training set match the expected output. The accuracy of a model to solve a task

directly depends on the values of the parameters vector.

Finding appropriate values for 𝜃 relies on the speciĄcation of a cost function. The cost

of a model in supervised learning is commonly deĄned as

𝒞(𝜃) =
1
♣M♣

∑︁

(𝑥i,𝑦i)∈M

ℒ(𝑦𝑖, 𝑓𝜃(𝑥𝑖)), (1.1)

where M ⊖ 𝑆 (GOODFELLOW; BENGIO; COURVILLE, 2016). The optimal value for 𝜃 is

then obtained by solving the optimization problem 𝜃* = arg min𝜃∈Θ 𝒞(𝜃), which tries to

minimize the value of the cost. In the end, the entire optimization can be seen as a guided

search over an error surface where the height of the landscape corresponds with the value

of the cost 𝒞. As can be seen in the equation above, the morphology of the error surface

depends implicitly on three key components: the data M, the representation of the target

function 𝑓 , and the metric ℒ. The last one is known as the loss function ℒ(𝑦, 𝑦) and is

the one in charge of measuring how well the model predicts the output of a given data

sample.

Because of the extremely high dimension of the parameter space and the non-convex

nature of the error surface (DAUPHIN et al., 2014; CHOROMANSKA et al., 2015), the global

optima 𝜃* is not reached after the training Ąnishes. Then, the ultimate goal when train-

ing a deep neural network is simpliĄed to Ąnd an acceptable solution. Obtaining such
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good models is very related to the proper deĄnition of each component in Equation 1.1.

ModiĄcations of the data, for a given task, is not always possible because this usually

corresponds to real-acquired inputs. Nevertheless, obtaining alternative output represen-

tations 𝑦 can still lead to the discovery of better-performed models (CHEN et al., 2016).

On the other hand, manual design of new architectures is one of the most common prac-

tices in current DL research (MINAR; NAHER, 2018). However, because of the hierarchical

shape and complexity of existing architectures, changes in network topology has unknown

effects over the error surface. This makes the entire process of manually looking for an

architecture that leads to improvements in the performance very challenging and mostly

based on extensive trials and errors. In this regard, community opinion is divided about

the scientiĄc practice and rigor of the technique, sometimes referring to the approach as

a modern form of alchemy (HUDSON, 2018).

1.1 MOTIVATION

The difficulties of manually proposing new architectures usually lead to deepest and

over-parameterized networks, e.g. , there are more parameters than needed to solve the

problem. This over-parameterization could lead to memorization of the training sam-

ples, resulting in poor generalization. Then, to avoid overĄtting, the training of this type

of networks is usually addressed by conĄguring, carefully testing and adjusting the hy-

perparameters (SERRE, 2019). Despite the proven results, this is a time-consuming and

resource-intensive approach. This work goes in the opposite direction by Ąxing an ar-

chitecture for all tasks and assuming that there is a subset of models within ¶𝑓𝜃i
♢ that

leads to acceptable solutions. Then, the efforts are concentrated in Ąnding a model such

that the performance of 𝑓 for the task is improved. A feasible approach to do this is by

modeling the loss function, which intuitively deĄnes the morphology of the error surface,

𝒞(𝜃) = ❊[ℒ(≤)]. Finding better-performed models is very related with the morphology

of the error surface because the performance of a model is indirectly improved by min-

imizing the cost. However, some of the most well-adopted loss functions for pixel-level

classiĄcation and regression does not constitute the best surrogate for the measurement

of interest (GOODFELLOW; BENGIO; COURVILLE, 2016). In particular, some of the loss

functions used in segmentation problems are very unstable and unable to obtain good

generalization in the presence of class imbalance and under-represented regions. Addi-

tionally, besides the Mean Square Error (L2) loss function be the most used loss for

pixel-level regression problems (ZHAO et al., 2016), it has a very small penalization for

small errors leading to the appearance of many artifacts or long training times. Then,

the modeling of new loss functions aiming to overcome previously related problems is of

great importance for obtaining better-performed Deep Learning systems. Especially, the

study of the effects in the performance when using different loss functions is interesting

for helping in the understanding of the training process. Furthermore, its applicability is
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independent of the pixel-level architecture used to solve the task, e.g. , the performance

of a very well-performed architecture could be increased even more by modeling a better

loss function.

At the same time, instance segmentation task is of high interest for biomedical image

community. For example, in developmental cell biology studies, signals of interest needs

to be quantiĄed on a per cell basis. This requires segmenting every cell in many images,

accounting to hundreds or thousands of cells per experiment. Despite the success of current

deep learning solutions, the challenge begins when clustered cells, weak annotation and

imbalanced classes are accounted in the task. Complex architectures (XU et al., 2017; HE et

al., 2017) try to overcome some of these situations but mostly relying on the assumption of

correct annotated data. In this work each challenge is addressed by proposing a different

loss functions, but always maintaining robustness to the previous one, e.g. , Ąrst clustered

cell separation is performed, later clustered cell separation and weak supervision, and

lastly the three challenges are aimed in the same loss.

On the other hand, the study of multi-focus image fusion is also of great relevance

for image processing Ąeld. The applications include medical and biological imaging, video

surveillance and digital photography. The lack of a supervised dataset for the task, as well

as the challenge for identifying the focus map and proper fusion rule makes the problem

very interesting to investigate. Overall, a fast and accurate fusion for images with high

resolution is important for the practical use of such solution in current mobile devices.

1.2 OBJECTIVES

This work aims to propose new loss functions on two chosen pixel-level classiĄcation and

regression tasks, using a Ąxed Convolutional Neural Network architecture.

The speciĄc objectives of this research are:

• To model and implement new segmentation loss functions for clustered cell separa-

tion.

• To model and implement new segmentation loss functions considering weak anno-

tation.

• To model and implement new segmentation loss functions addressing highly imbal-

anced classes.

• To model and implement new pixel-level regression loss functions for multi-focus

image fusion.

To achieve these objectives the study of the literature regarding loss functions design-

ing for pixel-level regression and classiĄcation tasks, as well as the most used architectures

for instance segmentation and multi-focus image fusion is performed. After modeling and
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implementing the proposals their validity is evaluated and compared with different loss

functions from the literature.

1.3 CONTRIBUTIONS

The contributions of this work can be summarized as follows:

• The proposal of Ąve new loss functions for pixel-level tasks. The Ąrst two propos-

als comprises fully supervised instance segmentation for clustered cells. Then, a

weakly supervised generalization is proposed using a robust shape aware weight

map. A Youden based regularization term was then introduced for accounting high

imbalance in pixel-level classiĄcation. Finally, a new loss function with bound reg-

ularization was proposed for pixel-level regression.

• The proposal of a multi-class semantic segmentation framework for instance seg-

mentation. Instance segmentation is cast as a semantic segmentation by creating

a new touching class to enforce separation of clustered cells. Later, a fourth class

is introduced in regions between near non-touching cells for obtaining better con-

tour adequacy. This approaches are combined with a new touching region contrast

modulation for learning separation with scarce data.

• The proposal of a multi-class Thresholded maps and Watershed-based post-processing

for instance segmentation problems. The methods are introduced for improving sep-

aration between adjoining cells with uncertain touching classiĄcations.

• The proposal of a bi-variable U-Net architecture for multi-source pixel-level tasks.

Supervised training is attained by using a new synthetic data creation for multi-

focus image fusion.

The publications which comprise this thesis are listed below:

• Multi-class Weighted Loss for Instance Segmentation of Cluttered Cells.

Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Mary Yui; Ellen

Rothenberg; Alexandre Cunha. In: Proceedings of the IEEE International Confer-

ence on Image Processing (ICIP), 2018. (PEÑA et al., 2018)

• Instance Segmentation of Biological Cells under Weakly Supervised Con-

ditions. Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Alexan-

dre Cunha. In: South California Machine Learning Symposium (SOCALML), 2019.

• Weakly Supervised Instance Segmentation of Biological Cells. Fidel A.

Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Alexandre Cunha. In:

Workshop of the International Conference on Medical Image Computing and Computer-

Assisted Intervention (MICCAI-MIL), 2019. (PEÑA et al., 2019b)
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• 𝐽 Regularization Improves Imbalanced Multiclass Segmentation. Fidel

A. Guerrero Peĳa; Pedro Marrero Fernandez; Paul Tarr; Tsang Ing Ren; Elliot

Meyerowitz; Alexandre Cunha. Available at <https://arxiv.org/abs/1910.09783>,

2019. (PEÑA et al., 2019)

• Burst Ranking for Blind Multi-Image Deblurring. Fidel A. Guerrero Peĳa;

Pedro Marrero Fernández; Tsang Ing Ren; Jorge J.G. Leandro; Ricardo Nishihara.

In: IEEE Transactions on Image Processing (TIP), 2020. (PEÑA et al., 2020)

• A Multiple Source Hourglass Deep Network for Multi-focus Image Fu-

sion. Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Germano

Crispim Vasconcelos; Alexandre Cunha. Available at <https://arxiv.org/abs/1908.

10945>, 2019. (PEÑA et al., 2019a)

1.4 THESIS STRUCTURE

Besides this Introduction chapter, this thesis is divided into six additional chapters. Chap-

ters from 3 to 6 are associated with either a submitted or published paper. Chapters 3,

4, and 5 aims to solve instance segmentation task but incrementally addressing a new

challenge at each chapter. Chapter 6 aims to solve multi-focus image fusion task. Figure 2

shows the diagram of the organization of the thesis. The remaining chapters are organized

as follows:

• Chapter 2: In this chapter the main concepts of deep neural networks training,

the selected architecture, and a review of the literature on loss functions designing

for pixel-level regression and classiĄcation tasks are presented. The most relevant

works for biomedical instance segmentation, and multi-focus image fusion, are also

presented.

• Chapter 3: This chapter introduces a new touching-based data modiĄcation and the

modeling of two new loss functions for fully supervised biomedical image segmenta-

tion. The results and comparison with classical segmentation loss functions are also

shown. The method address the challenge of separating clustered cells. The content

of this chapter has been published in the IEEE International Conference on Image

Processing (ICIP), 2018. (PEÑA et al., 2018)

• Chapter 4: This chapter introduces a new touching contrast modulation and a new

loss function for weakly supervised biomedical images instance segmentation. The

results and comparison with other loss functions from the literature for instance

and zero-shot segmentation are also presented. The method address separation of

clustered cells and weak supervision. The content of this chapter has been pub-
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lished in Medical Image Computing and Computer-Assisted Intervention Workshop

(MICCAI-MIL), 2019. (PEÑA et al., 2019b)

• Chapter 5: This chapter introduces a new proximity class augmentation and a new

Youden based regularization for Cross Entropy loss function. Evaluation over 2D

and 3D datasets, as well as a comparison with different loss functions are presented.

The method address separation of clustered cells, weak supervision, and highly

imbalanced classes. The content of this chapter is available at <https://arxiv.org/

abs/1910.09783>. (PEÑA et al., 2019)

• Chapter 6: In this chapter a new regression loss function and a multi-source archi-

tecture for multi-focus image fusion tasks are proposed. The results under different

conditions are shown and compared with literature methods. The content of this

chapter is available at <https://arxiv.org/abs/1908.10945>. (PEÑA et al., 2019a)

• Chapter 7: In this chapter the conclusions of the thesis, limitations, and future works

are presented.

Figure 2 Ű Thesis structure diagram. Contributions for pixel-level classiĄcation are di-
vided into three chapters that increasingly address clustered cells, weakly su-
pervision, and imbalanced data. Contributions for pixel-level regression are
shown in Chapter 6.

Multiclass Weighted Loss for 

Instance Segmentation of 

Clustered Cells

A Weakly Supervised Method 

for Instance Segmentation of 

Biological Cells

J Regularization Improves 

Imbalanced Multiclass 

Segmentation

Source: The author (2019)
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2 BACKGROUND

This chapter presents a quick review of deep neural networks training and the U-Net

architecture. Loss functions for pixel-level classiĄcation and regression, as well as a few

key concepts from mathematical morphology used in the rest of this thesis are described.

Most well-known methods for instance segmentation and multi-focus image fusion are also

presented.

2.1 DEEP NEURAL NETWORKS TRAINING

The traditional way to introduce newcomers to the neural networks Ąeld is through a

connectionist approach (HAYKIN, 2009). In this kind of deĄnition, the focus is on network

topology and operation within the computation units. However, as discussed before, ef-

fectively training a network is a very complicated process that depends on more than the

architecture. In fact, the learning process is the same as solving a complex optimization

problem where the value of the cost 𝒞 is minimized.

Minimizing the cost 𝒞 involves deĄning a loss function ℒ such that small values are

obtained whenever a good Ąt between 𝑦 and 𝑦 is attained. Therefore, the value of the cost

serves as a surrogate measurement of model performance on a given training dataset. Let

𝑓 be a network that has only two parameters, e.g. , 𝜃 ∈ ❘2. An ideal convex-like error

surface looks like in Figure 3A where the ordinate and abscissa axes represent the values

for 𝜃0 and 𝜃1 respectively, being 𝜃 = (𝜃0, 𝜃1). Here, the height of the landscape corresponds

to the value of the cost 𝒞 for a particular 𝜃. A minimization problem over an error surface

is the same as Ąnding an optimal combination of weights where the minimum value 𝒞 is

attained. The point 𝜃* in the Ągure has the smallest value of 𝒞 in the error surface, and

it is known as a minimizer for 𝒞 (GOODFELLOW; BENGIO; COURVILLE, 2016). Then, the

challenges of effectively training a neural network are very related to the characteristics

of the explored error surface.

In practice, loss landscapes of deep neural networks are more similar to the one shown

in Figure 3B. The main features of these error surfaces are the presence of many local

minima, saddle points, and a high dimensionality (BRAY; DEAN, 2007; DAUPHIN et al.,

2014; CHOROMANSKA et al., 2015). Thus, the harder it is to navigate the error surface,

the more difficult it gets to train a neural network. In the end, the height for every point

within the error surface is the same as the expected value of the loss function E[ℒ(.)] over

a given dataset. This means that the loss function has a direct inĆuence in the landscape

morphology and characteristics, and, therefore, a core role when training a neural network.

Because the error surface is entirely unknown, a random initialization of the weights 𝜃0

is a common approach for beginning the search with. However, special care must be taken
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when choosing initialization distribution. The problems are very related to exploding and

vanishing gradients (GLOROT; BENGIO, 2010) when setting either too large or too small

values for the weights. Despite that several methods (GLOROT; BENGIO, 2010; HE et al.,

2015) have been proposed for initializing the parameters, usually Glorot initialization

(GLOROT; BENGIO, 2010) works well in most cases.

Figure 3 Ű Example of (A) convex-like error surfaces and (B) loss landscape of a neural
network with an initial 𝜃0 and optimal 𝜃* solution.
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The directed search algorithm that allows Ąnding a minimizer 𝜃* given an initial

solution 𝜃0 is called Gradient Descent(CAUCHY, 1847). This is a Ąrst-order iterative op-

timization algorithm, and the basic idea is to move over the surface by looking at each

instant for the direction where the expected value of the loss is minimized. Formally, the

direction is obtained as the exact opposite to the gradient vector,

∇𝒞(𝜃) =

⎡

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

𝜕𝒞(𝜃)
𝜕𝜃0

...
𝜕𝒞(𝜃)
𝜕𝜃m

⋂︀

⎥

⎥

⎥

⎥

⋀︀

, (2.1)

being the weights update rule expressed as

𝜃𝑛+1 = 𝜃𝑛 ⊗ Ò ≤ ∇𝒞(𝜃𝑛) = 𝜃𝑛 ⊗ Ò ≤
∑︁

(𝑥i,𝑦i)∈𝑆

∇ℒ(𝑦𝑖, 𝑓(𝑥𝑖; 𝜃𝑛)), (2.2)

where 𝜃𝑛 is the weights vector in the 𝑛-th iteration of the algorithm, and Ò represents the

velocity of the movement over the error surface towards the negative gradient direction,

also known as the learning rate. Setting either too high or too small values for the learning

rate leads to bouncing or too long optimizations respectively. The values are usually set
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between Ò ∈ (10⊗6, 1) (BENGIO, 2012) depending on the task to be solved. Adaptive

strategies (HINTON, 2012; TIELEMAN; HINTON, 2012; KINGMA; BA, 2015) are also common

to dynamically change the value of the learning rate according to the morphology of the

surface. The Adaptive Moment estimation strategy (KINGMA; BA, 2015), also known as

Adam, was used here because it accelerates the search in the direction of the minima

while preventing the search in the direction of oscillations. Its update rule is computed

as:

𝜃𝑛+1 = 𝜃𝑛 ⊗ Ò ≤ Ü𝑛

√
𝑠𝑛 + 𝜖

≤ ∇𝒞(𝜃𝑛) (2.3)

in which Ò is the initial learning rate, Ü𝑛 = Ñ1 ≤ Ü𝑛⊗1⊗ (1⊗Ñ1) ≤∇𝒞(𝜃𝑛) is the exponential

average of gradients, and 𝑠𝑛 = Ñ2 ≤ 𝑠𝑛⊗1 ⊗ (1⊗ Ñ2) ≤ ∇2𝒞(𝜃𝑛) is the exponential average of

squares of gradients. The hyperparameter Ñ1 is kept at 0.90, Ñ2 is kept at 0.99, and 𝜖 is

chosen to be around 10⊗10, being the defaults values suggested by the authors (KINGMA;

BA, 2015).

However, navigating complex error surfaces, like the one shown in Figure 3B, are chal-

lenging for Gradient Descent. In general, the algorithm is more prone to get stuck in a

local minima or saddle point because the cost over 𝑆 tends to create an error surface

with same characteristics. An example of this can be seen in Figure 4, where six loss

landscapes and their average are shown. As observed in the Ągure the average surface

maintains the same noisy behavior. Randomness helps in such situations by optimizing at

each iteration over a different error surface. This way, the probability of getting stuck at

a local zero-gradient region is reduced. The method is called Stochastic Gradient Descent

(SGD)(KIEFER; WOLFOWITZ, 1952), and it is the standard for training deep neural net-

works. The updates are computed by using the gradient of the loss of a randomly sampled

subset (without replacement) of the training set, M ⊆ 𝑆.

𝜃𝑛+1 = 𝜃𝑛 ⊗ Ð ≤
∑︁

(𝑥i,𝑦i)∈M

∇ℒ(𝑦𝑖, 𝑓(𝑥𝑖; 𝜃𝑛)), (2.4)

where Ð can be either a static or adaptive learning rate and (𝑥𝑖, 𝑦𝑖) pairs are usually

randomly sampled following a uniform distribution.

Regardless of the network architecture, Gradient Descent or its stochastic version can

always be applied. Because the connections are usually forward, 𝑓 is a composed function,

and derivative respect to the weights can be computed using the chain rule.
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Figure 4 Ű Error surfaces for six different elements along with expected value of the loss.
ℒ(𝑦1, 𝑓(𝑥1; 𝜃)) ℒ(𝑦2, 𝑓(𝑥2; 𝜃)) ℒ(𝑦3, 𝑓(𝑥3; 𝜃))

ℒ(𝑦4, 𝑓(𝑥4; 𝜃)) ℒ(𝑦5, 𝑓(𝑥5; 𝜃)) ℒ(𝑦6, 𝑓(𝑥6; 𝜃)) E[ℒ(.)]

Source: The author (2019)

2.2 PIXEL-LEVEL ARCHITECTURE

Several architectures for pixel-level tasks have been proposed in the past few years (LONG;

SHELHAMER; DARRELL, 2015; RONNEBERGER; FISCHER; BROX, 2015; JÉGOU et al., 2017;

CHEN et al., 2017; CHEN et al., 2018; WU et al., 2019). However, one of the most well-known,

straightforward, and well-behaved architecture is U-Net (RONNEBERGER; FISCHER; BROX,

2015). Here it has been opted to use U-Net due to its proven success for different kinds

of tasks (ISOLA et al., 2017; AITTALA; DURAND, 2018). This is an encoder-decoder type of

network where the Ąrst half of the layers contracts the width and heights of feature maps

increasing the analyzed receptive Ąeld, while the second half transforms the representation

to a domain with the same dimension of the input. The full scheme of the architecture is

shown in Figure 5.

In the encoder path every block is a sequence of two 3 × 3 convolution with ReLu

layers, followed by a 2 × 2 max-pooling operation. The reduction of feature maps reso-

lution is constrasted with the increase of the number of kernels. A signiĄcantly smaller

representation is learned in the bottleneck block (two 3×3 convolutions with ReLu layers

followed by 2× upsampling layer), forcing the identiĄcation of sufficiently relevant fea-

tures to describe the inputs. Then, the second half of the layers acts as a reconstruction

path leading to a feature space with the same width and height of those of the source
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inputs. Each block applies two 3 × 3 convolutions with ReLu layers followed by a 2×
upsampling layer. In the decoder path, the number of kernels is doubled for each block

thus maintaining symmetry respect to the Ąrst half of the network. Skipping connections

linking the same depths in the encoder and decoder branches are used to localize and

propagate high-resolution features. The linking is performed by concatenating the feature

maps of corresponding contraction and expansion layers. This ensures that detailed fea-

tures learned in the encoder are combined with more global features from the decoder. The

network does not have any fully connected layers, and in this Thesis, a 1 pixel padding

was used for convolutions operations to maintaining the same size of the input map.

Figure 5 Ű Overall scheme of the encoder-decoder type of network U-Net.
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The network has more than 31 millions of learnable parameters, e.g. , 𝜃 ∈ ❘31,000,000,

and as it can be seen in Table 1 the weights are concentrated in convolutional layers. The

column of trainable parameters refers to the number of weights in the kernels plus the

biases for each kernel.

A softmax layer can be added to the end of U-Net in case of pixel-level classiĄcation

problems. Then, the goal is to assign a class to every pixel by applying a decision rule to

a probabilistic output map.
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Table 1 Ű Output tensor size, convolution kernels shapes and trainable parameters for
each layer in U-Net network assuming an RGB input image of 1024× 1024.

Layer (type) Feature maps shape Kernels shapes Number of trainable parameters

Input-0 [batch, 3, 1024, 1024] 0
Conv2d-1 [batch, 64, 1024, 1024] [3, 3, 3, 64] 1,792

ReLU-2 [batch, 64, 1024, 1024] 0
Conv2d-3 [batch, 64, 1024, 1024] [64, 3, 3, 64] 36,928

ReLU-4 [batch, 64, 1024, 1024] 0
MaxPool2d-5 [batch, 64, 512, 512] 0

Conv2d-6 [batch, 128, 512, 512] [64, 3, 3, 128] 73,856
ReLU-7 [batch, 128, 512, 512] 0

Conv2d-8 [batch, 128, 512, 512] [128, 3, 3, 128] 147,584
ReLU-9 [batch, 128, 512, 512] 0

MaxPool2d-10 [batch, 128, 256, 256] 0
Conv2d-11 [batch, 256, 256, 256] [128, 3, 3, 256] 295,168

ReLU-12 [batch, 256, 256, 256] 0
Conv2d-13 [batch, 256, 256, 256] [256, 3, 3, 256] 590,080

ReLU-14 [batch, 256, 256, 256] 0
MaxPool2d-15 [batch, 256, 128, 128] 0

Conv2d-16 [batch, 512, 128, 128] [256, 3, 3, 512] 1,180,160
ReLU-17 [batch, 512, 128, 128] 0

Conv2d-18 [batch, 512, 128, 128] [512, 3, 3, 512] 2,359,808
ReLU-19 [batch, 512, 128, 128] 0

MaxPool2d-20 [batch, 512, 64, 64] 0
Conv2d-21 [batch, 1024, 64, 64] [512, 3, 3, 1024] 4,719,616

ReLU-22 [batch, 1024, 64, 64] 0
Conv2d-23 [batch, 1024, 64, 64] [1024, 3, 3, 1024] 9,438,208

ReLU-24 [batch, 1024, 64, 64] 0
Upsample-25 [batch, 1024, 128, 128] 0

Conv2d-26 [batch, 512, 128, 128] [1536, 3, 3, 512] 7,078,400
ReLU-27 [batch, 512, 128, 128] 0

Conv2d-28 [batch, 512, 128, 128] [512, 3, 3, 512] 2,359,808
ReLU-29 [batch, 512, 128, 128] 0

Upsample-30 [batch, 512, 256, 256] 0
Conv2d-31 [batch, 256, 256, 256] [768, 3, 3, 256] 1,769,728

ReLU-32 [batch, 256, 256, 256] 0
Conv2d-33 [batch, 256, 256, 256] [256, 3, 3, 256] 590,080

ReLU-34 [batch, 256, 256, 256] 0
Upsample-35 [batch, 256, 512, 512] 0

Conv2d-36 [batch, 128, 512, 512] [384, 3, 3, 128] 442,496
ReLU-37 [batch, 128, 512, 512] 0

Conv2d-38 [batch, 128, 512, 512] [128, 3, 3, 128] 147,584
ReLU-39 [batch, 128, 512, 512] 0

Upsample-40 [batch, 128, 1024, 1024] 0
Conv2d-41 [batch, 64, 1024, 1024] [192, 3, 3, 64] 110,656

ReLU-42 [batch, 64, 1024, 1024] 0
Conv2d-43 [batch, 64, 1024, 1024] [64, 3, 3, 64] 36,928

ReLU-44 [batch, 64, 1024, 1024] 0

Total of trainable parameters: 31,379,140

Source: The author (2019)
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2.3 LOSS FUNCTIONS

As stated before, the loss function is the one in charge of measuring the agreement be-

tween the expected and obtained outputs. A proper deĄnition of such is crucial for getting

suitable error surfaces and for the entire training process in general. However, most of

the time, the metric of interest for solving a task is not differentiable. This means that

Gradient Descent-based optimization is not possible. In such situations, a tractable sur-

rogate for the metric of interest is optimized instead. Despite there is a high number of

loss functions in the supervised deep learning category, depicting all would be unfeasible

due to the extensive research in the area. Instead, this work focus only on pixel-level

loss functions. SpeciĄcally, the most relevant losses for both semantic segmentation and

pixel-level regression are explored. Loss functions for Generative Adversarial Networks,

Metric Learning and unsupervised approaches are not included here because they fall out

of the scope of this research.

In pixel-level classiĄcation, also called semantic segmentation, each pixel of a given

input must be assigned to one class. The problem refers to the prediction of an integer

value, where each class is assigned a unique integer value from 0 to (𝐶 ⊗ 1), being 𝐶 the

number of classes. Because minimizing expected 0-1 loss is intractable in practice (GOOD-

FELLOW; BENGIO; COURVILLE, 2016), the problem is cast as predicting the probability of

the example belonging to each known class. In this category, two signiĄcant groups of loss

functions can be identiĄed: information theory-based and region-based loss functions.

The most well-known and used function into the information theory-based approach

is the Cross Entropy (CE),

ℒ(𝑦, 𝑧) = ⊗ 1
♣Ω♣

𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

𝑦𝑙(𝑝) ≤ log 𝑧𝑙(𝑝), (2.5)

where 𝑦 : Ω ⊃ ¶0, 1♢𝐶 is called the one-hot representation of the segmentation ground

truth and 𝑧 : Ω ⊃ ❘
𝐶 is the output probability map. Although Cross Entropy has been

vastly used in Machine Learning before, its Ąrst application for Deep Learning-based

semantic segmentation can be traced back to the work of Long et al.(LONG; SHELHAMER;

DARRELL, 2015).

Although acceptable solutions are usually obtained with CE, its deĄnition assumes

that all pixels/voxels have the same importance for the training process. One of the main

disadvantages of this deĄnition is its ineffectiveness in the case of imbalanced classes

(ZHOU et al., 2017a). A generalization of CE loss, known as Weighted Cross Entropy

(WCE), is more suitable for these situations, that requires the creation of custom weights

maps,

ℒ(𝑦, 𝑧) = ⊗ 1
♣Ω♣

𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

æ𝜚(𝑝) ≤ 𝑦𝑙(𝑝) ≤ log 𝑧𝑙(𝑝), (2.6)
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where æ𝜚 is a weight map. The standard for this weight map for imbalance class problems

is known as Balance Weight Map (BWM) (ZHOU et al., 2017a) and it is expressed as

æ𝐵(𝑝) =
√︁

𝑝∈Ω 1/𝑛𝑙(𝑝), being 𝑛𝑙(𝑝) the number of pixels in the class 𝑙, such that 𝑦𝑙(𝑝) = 1.

One of the Ąrst uses of WCE for DL-based semantic segmentation was in the work of

Ronneberger et al.(RONNEBERGER; FISCHER; BROX, 2015) along with a weight map for

increasing the focus of the loss function on background regions between two near objects.

æ𝑈𝑁𝐸𝑇
à (𝑝) = æ𝐵(𝑝) + Ü ≤ exp

(︃

⊗(ã1(𝑝) + ã2(𝑝))2

2à2

)︃

, (2.7)

where ã1 denotes the distance to the border of the nearest object, and ã2 is the distance

to the edge of the second-closest object.

Two years later, a dynamic weight map variation of WCE was introduced by (LIN

et al., 2017). This loss function, known as Focal loss, was initially applied with success

for object detection tasks (LIN et al., 2017), but later adapted for image segmentation in

(ZHOU et al., 2017b) allowing to focus more the attention on the regions that were wrongly

segmented.

ℒ(𝑦, 𝑧) = ⊗ 1
♣Ω♣

𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

(1⊗ 𝑧𝑙(𝑝))2 ≤ æ𝜚(𝑝) ≤ 𝑦𝑙(𝑝) ≤ log 𝑧𝑙(𝑝). (2.8)

Inside the region-based loss function category, the most used loss is the Soft Dice func-

tion (MILLETARI; NAVAB; AHMADI, 2016) that was initially proposed for binary segmen-

tation and later generalized for multi-class problems. Several variants for Dice (FIDON et

al., 2017; HASHEMI et al., 2018; YANG; KWEON; KIM, 2019) and its combination with Cross

Entropy (WONG et al., 2018) and Focal loss (ZHU et al., 2019) has been proposed recently,

aiming to drive optimizations towards a solution that maximizes the F1 score,

ℒ(𝑦, 𝑧) =
𝐶⊗1
∑︁

𝑙=0

∏︀

̂︁

̂︁

̂︁

∐︁

1⊗
2 ≤
∑︁

𝑝∈Ω

𝑦𝑙(𝑝) ≤ 𝑧𝑙(𝑝)

∑︁

𝑝∈Ω

𝑦2
𝑙 (𝑝) +

∑︁

𝑝∈Ω

𝑧2
𝑙 (𝑝)

∫︀

̂︂

̂︂

̂︂

̂︀

. (2.9)

However, because the denominator in the expression can be zero, numerical instabilities

are very common with this approach. A year later a follow up of the Dice loss function

led to the creation of the Tversky loss function (SALEHI; ERDOGMUS; GHOLIPOUR, 2017)

and its combination with Focal loss (ABRAHAM; KHAN, 2019),

ℒ(𝑦, 𝑧) =
𝐶⊗1
∑︁

𝑙=0

∏︀

̂︁

̂︁

̂︁

∐︁

1⊗

∑︁

𝑝∈Ω

𝑦𝑙(𝑝) ≤ 𝑧𝑙(𝑝)

∑︁

𝑝∈Ω

𝑦𝑙(𝑝) ≤ 𝑧𝑙(𝑝) + Ð
∑︁

𝑝∈Ω

(1⊗ 𝑦𝑙(𝑝)) ≤ 𝑧𝑙(𝑝) + Ñ
∑︁

𝑝∈Ω

𝑦𝑙(𝑝) ≤ (1⊗ 𝑧𝑙(𝑝))

∫︀

̂︂

̂︂

̂︂

̂︀

(2.10)

A more recent approach was introduced by Berman et al. (BERMAN; TRIKI; BLASCHKO,

2018) for direct optimization of the mean intersection-over-union loss (also known as
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Jaccard index) in neural networks.

ℒ(𝑦, 𝑧) =
1
𝐶

𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

𝑚𝑙(𝑝) ≤ 𝑔𝑚(𝑝), (2.11)

where the error 𝑚𝑙 is deĄned as:

𝑚𝑙(𝑝) =

∏︁

⨄︁

⋃︁

1⊗ 𝑧𝑙(𝑝) if 𝑦𝑙(𝑝) = 1

𝑧𝑙(𝑝) otherwise
, (2.12)

and 𝑔𝑚 is the difference between the consecutive values of the cumulative distribution of

𝑚.

Despite other approaches (KERVADEC et al., 2019; LEE et al., 2019; CLOUGH et al., 2019)

have been recently proposed for applying shapes regularization into the loss function, their

goal is to segment only one object. Then, applying these to images with hundred of cells

is unpractical. Because this work focus on instance segmentation, e.g. , more than one

object needs to be segmented, this kind of loss functions are not considered.

On the other hand, in pixel-level regression each pixel must be assigned a real-valued

quantity. Some of the tasks into this category are Depth Estimation (ALHASHIM; WONKA,

2018), Style Transfer (KOTOVENKO et al., 2019), Super Resolution (ZHAO et al., 2019),

Denoising (YUE et al., 2019), Deblurring (AITTALA; DURAND, 2018), Fusion (LIU et al.,

2017), among others. The loss functions can be further grouped in per-pixel and perceptual

losses.

The Mean Squared Error loss, also known as L2, is the standard per-pixel loss function

used in regression problems. Mean Squared Error loss is computed as the mean of the

squared differences between expected and predicted values for each pixel. The result

is always positive independently of the sign of the predicted and actual output, and

accurate estimations lead to values of 0. The squaring means that more signiĄcant mistakes

result in more error than smaller ones, meaning that the model is punished for higher

disagreements. In general L2 loss for a 𝐶 channels output can be computed as:

ℒ(𝑦, 𝑧) =
1

𝐶 ≤ ♣Ω♣
𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

(𝑦𝑙(𝑝)⊗ 𝑧𝑙(𝑝))2. (2.13)

However, small disagreements are also signiĄcant, especially in the Ąnal steps of the

optimization. Then, the L2 measurement usually leads to the appearance of noisy artifacts.

In cases where robustness to outliers is required, the Mean Absolute Error, also known

as L1 loss, is the more appropriate approach. The loss is calculated as the average of the

absolute difference between the actual and predicted values for every pixel.

ℒ(𝑦, 𝑧) =
1

𝐶 ≤ ♣Ω♣
𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

♣𝑦𝑙(𝑝)⊗ 𝑧𝑙(𝑝)♣. (2.14)
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A general expression that accounts the behavior of both L2 and L1 is called Huber

loss (CAVAZZA; MURINO, 2016) and it is deĄned as:

ℒÓ(𝑦, 𝑧) =

∏︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋃︁

1
2

𝑎2 for ♣𝑎♣ ⊘ Ó

Ó
(︂

♣𝑎♣ ⊗ 1
2

Ó
)︂

otherwise
, (2.15)

where ♣𝑎♣ and 𝑎2 are the expression for L1 and L2 loss respectively.

When the expected output is an image, enhancement of edges can be further ensured

by using image gradient as a regularization term of the loss function (CHAITANYA et al.,

2017),

ℒ(𝑦, 𝑧) =
1

𝐶 ≤ ♣Ω♣

∏︀

∐︁

𝐶⊗1
∑︁

𝑙=0

∑︁

𝑝∈Ω

♣𝑦𝑙(𝑝)⊗ 𝑧𝑙(𝑝)♣+ ♣∇𝑦𝑙(𝑝)⊗∇𝑧𝑙(𝑝)♣
∫︀

̂︀ , (2.16)

where 𝑦 and 𝑧 are images and ∇𝑦, ∇𝑧 their respective gradients.

Nevertheless, per-pixel loss functions do not capture visually coherent similarities.

Perceptual losses try to tackle this problem by measuring the agreement in terms of

structural similarities. This is the case of the loss function proposed by Johnson et al.

(JOHNSON; ALAHI; FEI-FEI, 2016), which combines the L2 loss with a pre-trained VGG

(SIMONYAN; ZISSERMAN, 2014) network 𝜙 also used as part of the loss function. The idea

is to compute the difference between 𝑦 and 𝑧 by taking the average of the L2 but in the

feature space deĄned by 𝐹 features maps that are obtained evaluating 𝑦 and 𝑧 into VGG.

ℒ(𝑦, 𝑧) =
1

𝐹 ≤√︁𝐹
𝑘=0 ♣Ω𝑘♣+ 𝐶𝑘

𝐹
∑︁

𝑘=0

𝐶k
∑︁

𝑙=0

∑︁

𝑝∈Ωk

(𝜙𝑘(𝑦𝑙)(𝑝)⊗ 𝜙𝑘(𝑧𝑙)(𝑝))2 , (2.17)

where 𝜙𝑘 represents the 𝑘-th feature map given by the pre-trained network 𝜙. Note that

the weights of the network 𝜙 are never updated. One of the major drawbacks of this

approach is that it requires using VGG for extracting the features of the obtained response

𝑧 at each iteration, which is time-consuming and computationally expensive.

A Structural Similarity-based (SSIM) loss function was proposed in the same year

(ZHAO et al., 2016), aiming to obtain a perceptual loss with visually pleasing results.

Based on the SSIM deĄnition, the loss is deĄned as:

ℒ(𝑦, 𝑧) =
𝐶⊗1
∑︁

𝑙=0

1⊗ 2 ≤ Û𝑦l
(𝑝) ≤ Û𝑧l

(𝑝) + 𝐶1

Û2
𝑦l

(𝑝) + Û2
𝑧l

(𝑝) + 𝐶1

≤ 2 ≤ à𝑦l,𝑧l
(𝑝) + 𝐶2

à2
𝑦l

(𝑝) + à2
𝑧l

(𝑝) + 𝐶2

, (2.18)

where Û𝑦(𝑝) and Û𝑧(𝑝) are the intensities average over a neighborhood of 𝑝 for 𝑦 and 𝑧

respectively. Similarly, à2 is the variance for each patch. Although structural similarities

are enforced, colors shift are common with this kind of measurement (ZHAO et al., 2016).

Task speciĄc loss functions like the one proposed for High Dynamic Range reconstruc-

tion (EILERTSEN et al., 2017) and Inpainting (LIU et al., 2018) were not considered in this

work.



35

2.4 MATHEMATICAL MORPHOLOGY

Some of the concepts used in the following chapters are part of the Mathematical Mor-

phology sub-Ąeld. The methods in this area use shape information of each object in the

image. The primary operations are dilation, ℎ ⊕ 𝑠 = ¶𝑧♣(𝑠𝑧 ∩ ℎ ̸= ∅)♢, and erosion,

ℎ− 𝑠 = ¶𝑧♣(𝑠𝑧 ⊖ ℎ)♢, where 𝑠 is a structural element, 𝑠 is the reĆection of the structural

element, and 𝑧 ∈ Ω is a pixel/voxel location. Then, the morphological opening is deĄned

as ℎ◇𝑠 = (ℎ−𝑠)⊕𝑠, and the closing as ℎ∙𝑠 = (ℎ⊕𝑠)−𝑠. Additionally, top-hat transform

is deĄned as 𝜚𝑠 = ℎ⊗ (ℎ ◇ 𝑠), and bottom-hat transform as 𝜚𝑠 = (ℎ ∙ 𝑠)⊗ ℎ (GONZALEZ;

WOODS, 2007).

Convex Hull. Let 𝑡 be the mask of an object in a binary image. The convex hull 𝑐𝑡

of the blob is deĄned as the smallest convex mask that contains the elements of 𝑡. In this

deĄnition, a convex mask refers to a blob where, for any two chosen points of the contour,

the line between them does not contain any other contour point (GONZALEZ; WOODS,

2007). The algorithm begins selecting an initial contour point and includes the relative

leftmost contour point successively counterclockwise. An example is shown in Figure 6B.

Binary Image Skeleton. The skeleton of a binary mask 𝑡 refers to a one-pixel

wide representation of 𝑡 that maintains the general morphology of the mask. Several

approaches exist in the literature for computing such kinds of representations. In this work,

the thinning algorithm (LAM; LEE; SUEN, 1992) is adopted because of its computational

efficiency and less branched skeleton. The skeleton for 𝑠𝑡 is shown in red in Figure 6C on

top of the mask 𝑡.

Distance Transform. Given a mask 𝑡, its distance transform ã𝑡 is deĄned as ã𝑡(𝑝) =

min ♣♣𝑝 ⊗ 𝑞♣♣22 where 𝑝, 𝑞 ∈ Ω and 𝑡(𝑞) > 0. In other words, for every pixel/voxel in the

image, its Euclidean distance to the closest non-zero point is computed. Figure 6D shows

the distance transform for a binary blob. In this work, the linear time algorithm proposed

in (MAURER; QI; RAGHAVAN, 2003) was used.

Figure 6 Ű Example of (A) a mask 𝑡 and its (B) convex hull 𝑐𝑡, (C) skeleton 𝑠𝑡, and (D)
distance transform ã𝑡. The mask contour and skeleton are shown in red in (B)
and (C) for better visualization.

𝑡 𝑐𝑡 𝑠𝑡 ã𝑡

A B C D

Source: The author (2019)
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Watershed Transform. The Watershed Transform (WT) is deĄned as the succes-

sively Ćooding of a topological surface, and a barrier is created wherever two sources

of water meet. In this work, the Watershed with markers (MEYER, 1994) approach was

adopted being every source of water associated to a different instance number. In Figure

7A is show a blob ℎ along with the initial markers represented in color red and blue,

respectively. The regions marked by the seed increasingly grows following the topological

surface (Figure 7B). The points where the regions meet delimitate the division between

both instances like the one shown in Figure 7C.

Figure 7 Ű Example of (A) a binary image ℎ along with two initial markers represented
in color red and blue respectively, (B) the topological surface to be Ćooded,
and (C) the Ąnal segmentation segmentation.

A B C

Source: The author (2019)

2.5 INSTANCE SEGMENTATION

One of the most important and challenging task in pixel-level classiĄcation is instance

segmentation. Long et al. (LONG; SHELHAMER; DARRELL, 2015) proposed the Ąrst DL-

based solution for the task using a Fully Convolutional Network (FCN) which improved

the image-level classiĄcation in a Convolutional Neural Network (CNN) to a pixel-level

classiĄcation. This allowed segmentation maps to be generated for images of any size, and

it was much faster compared to the then common patch classiĄcation approach. In the

same year, Ronneberger et al.(RONNEBERGER; FISCHER; BROX, 2015) introduced U-Net,

a FCN encoder-decoder type of network architecture, together with a Weighted Cross

Entropy loss function to segment biomedical images. This network was a breakthrough,

achieving remarkable segmentation results, from cells to organs.

Browet et al.(BROWET et al., 2016), working with mouse embryo cells, estimated pixel

probabilities for cell interior, borders, and background and then minimized an energy

cost function to match the class probabilities via graphŰcuts. In this work it is favored

to avoid the pitfalls of graph-cuts and the thresholding adopted in their formulation to

deĄne seeds within cells. Chen et al.(CHEN et al., 2016) proposed DCAN, a contour aware

FCN to segment glands from histology images towards improving the automatic diagnosis
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of adenocarcinomas. They also modeled a loss with contours which led them to win the

2015 MICCAI Gland Segmentation Challenge (SIRINUKUNWATTANA; PLUIM; CHEN, 2017)

conĄrming the advantages of explicitly learning contours. Zhang et al.(ZHANG; YARKONY;

HAMPRECHT, 2014) developed a learning-based method to do correlation clustering of

superpixels and obtain a contour segmentation of each cell in bright Ąeld and phase-

contrast images, with particular attention to almost transparent cells. Recently, Xu et

al.(XU et al., 2017) proposed a three-branch network to segment individual glands in colon

histology images.

However, a signiĄcant limitation of all previous methods is the need for near-perfect

annotations. Although several approaches were proposed recently for working in weakly

supervised conditions with color images (LI; ARNAB; TORR, 2018; REDONDO-CABRERA;

BAPTISTA-RÍOS; LÓPEZ-SASTRE, 2019), usually a prior knowledge of daily life images is

used to solve the problem. Probably the most popular instance segmentation solution is

Mask R-CNN (HE et al., 2017) that uses two stacked networks for detection followed by

segmentation of natural images. Others have used three stacked networks for semantic

segmentation and regression of a Watershed energy map allowing separating nearby ob-

jects (BAI; URTASUN, 2017). In (BRABANDERE; NEVEN; GOOL, 2017; FATHI et al., 2017) the

authors use loss functions for regressing pixel-level embeddings that are later grouped. In

(KERVADEC et al., 2019), the authors propose a weakly semantic segmentation method for

biomedical images. They include prior knowledge in the form of constraints into the loss

function for regularizing the size of the segmented object. The work in (YANG et al., 2017)

proposes a way to keep annotations at a minimum while still capturing the essence of the

signal present in the images. The goal is to avoid excessively annotating redundant parts,

present due to many repetitions of almost identical cells in the same image. In (LIANG et

al., 2018), the authors also craft a tuned loss function applied to improve segmentation

on weakly annotated gastric cancer images.

2.6 MULTI-FOCUS IMAGE FUSION

Multi-focus Image Fusion is a pixel-level regression task within the image restoration

subĄeld. The problem consist in, given two sources frames with different focus planes,

obtaining an all-in-focus image. Depending on the adopted fusion, the methods can be

classiĄed either as a transform domain or a spatial domain based approach (NEJATI;

SAMAVI; SHIRANI, 2015). While most methods fall into the Ąrst category, recent advances

in neural networks have attracted the attention to spatial domain approaches, mostly due

to efficiency improvements.

Transform domain methods. This class of methods, such as in every transforma-

tion approach in Computer Vision, attempts to solve the problem in another domain.

In multi-focus methods, one usually transforms the source images to a multi-scale do-

main, a subset of coefficients is selected or Ąltered from each source, and then a fusion
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of the decomposed coefficients is applied generating a reconstructed image in the corre-

sponding domain. Finally, an inverse transform creates an all-in-focus spatial image. Main

contributions in this area are in transformation selection, Ąltering of coefficients, and for-

mulation of fusion rules. Some of the methods employ Gradient Pyramid (PETROVIC;

XYDEAS, 2004), Wavelet Transforms (LEWIS et al., 2007), Contourlet Transform (ZHANG;

GUO, 2009) and Discrete Cosine Transform (HAGHIGHAT; AGHAGOLZADEH; SEYEDARABI,

2010), (HAGHIGHAT; SEYEDARABI, 2011). These methods usually have higher computa-

tional costs due to the transform and inverse transform operations. Some methods do not

even specify the domain, but they try to learn the best feature space to solve the problem.

Examples include the approaches based on Independent Component Analysis and Sparse

Representation (YANG; LI, 2010).

Spatial domain methods. Differently, to the previous approach, methods in this

category try to reconstruct the all-in-focus image using intensity information. The formu-

lation usually relies on the proposal of a focus metric that allows selecting the sharpest

pixel within the sources. A sequence of Ąltering or morphological operations is also typical

in this kind of methods. Some of the most representative approaches include the Image

Matting for fusion (LI et al., 2013) and the Guided Filtering Fusion (LI; KANG; HU, 2013),

both proposed by Li, Kang, and Hu with results comparable to transform domain strate-

gies but without the associated computational cost incurred by transformations. However,

their manually designed morphological Ąltering assumes speciĄc priors that may not apply

to all images.

New spatial methods use deep learning as an alternative to hand-crafted solutions.

Their main contributions are on the creation of network architecture and training datasets.

Since the proposed architectures are generally Siamese based, these methods use a local

neighborhood feature approach where every pixel is classiĄed either as blurred or sharp.

Despite the good results, morphological post-processing is still needed to resolve global

features, e.g. , Ąlling holes. This increases the execution time as well as might add an

unnecessary constraint to the solution space, no small holes, for example. The work most

related to this research was proposed by Xiang Yan et al. (YAN et al., 2018), which em-

ploys a structural similarity (SSIM) based loss function to achieve end-to-end unsuper-

vised learning. However, differently to the proposal in this work, Xiang Yan et al. use

a Siamese-based architecture with several intermediate average fusions. This is a com-

mon approach in image fusion (LIU et al., 2017; TANG et al., 2018) but it lacks Ćexibility

when compared to multiple sources models where all frames are processed at the same

time (ZAGORUYKO; KOMODAKIS, 2015). Another method related to the approach pre-

sented here is the segmentation-based model proposed by Liu et al. (LIU et al., 2017). In

their Siamese CNN method, the multi-focus image fusion is treated as a pixel classiĄca-

tion problem. However, the post-processing required to combine the classiĄcation of each

patch from the image increases the total execution time.
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3 MULTICLASS WEIGHTED LOSS FOR INSTANCE SEGMENTATION

OF CLUSTERED CELLS[1]

[1]

In this chapter two new loss functions are introduced for fully supervised image seg-

mentation. The context is medical imaging, and the motivation is the need of the biologists

to quantify and model the behavior of blood TŰcells which might help in the understand-

ing of their regulatory mechanisms and ultimately help researchers in their quest for

developing an effective immunotherapy cancer treatment. The challenge in terms of the

optimization is that, different to natural images datasets that have a vast amount of data,

medical images datasets are usually smaller, and therefore, Ąnding a well-performed model

is difficult.

3.1 INTRODUCTION

It is not fully understood how blood stem cells differentiate over time to generate all blood

cell types in the body nor what are the mechanisms that drive their specialization. TŰcells

are descendants of blood stem cells with an important role in emerging immunotherapy

cancer treatments (ROSENBERG; RESTIFO, 2015). The main interest is to determine how

decisions are made by individual progenitor TŰcells under controlled environmental con-

ditions (ROTHENBERG; MOORE; YUI, 2008). To carry out experiments, individual TŰcells

are isolated in microwells where they grow and proliferate for approximately six days.

Multiple cell divisions occur in each microwell leading to a dense cell population origi-

nated from a single cell. Multichannel images are acquired at time intervals to follow cell

development, which can then be quantiĄed by analyzing Ćuorescent signals expressing

speciĄc markers of differentiation. Segmenting individual cells is necessary to measure

signal activation per cell and to count how many cells are active over time (see Figure 8).

The difficulties are in segmenting adjoining cells. These can take any shape, when clus-

tered or isolated, and their touching borders have nonuniform patterns defeating classical
[1] Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Mary Yui; Ellen Rothenberg;

Alexandre Cunha. Centro de Informática, Universidade Federal de Pernambuco, Brazil; Division of
Biology and Biological Engineering, California Institute of Technology, USA; Center for Advanced
Methods in Biological Image Analysis, California Institute of Technology, USA. Published in: IEEE
International Conference on Image Processing (ICIP), 2018.
©2018 IEEE. Reprinted, with permission, from Fidel A. Guerrero Peĳa, Pedro Marrero Fernandez,
Tsang Ing Ren, Mary Yui, Ellen Rothenberg, Alexandre Cunha. Multiclass Weighted Loss for Instance
Segmentation of Clustered Cells, IEEE International Conference on Image Processing, October 2018.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of UFPEŠs products or services. Internal or personal use of this material is
permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or pro-
motional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/ rights/rights_link.html to learn how to
obtain a License from RightsLink.
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segmentation approaches. Weak boundaries are also troubling (Figure 8E). Furthermore,

the total pixel count on adjoining borders is considerably smaller than the pixel count for

the other image parts which contributes to numerical optimization difficulties when train-

ing a neural network with imbalanced data (HE; GARCIA, 2009) and without a properly

calibrated loss function. The situation is exacerbated in large clusters where cells might

overlap making it difficult, even for the trained eye, to locate cell contours.

Figure 8 Ű Example of cells marked by the mTomato Ćuorophore are shown in (A). Their
corresponding signal of interest, CD25, which changes over time, is expressed
in some cells (B). The goal is to segment individual cells, as shown in (C), and
colocalize CD25 to measure its concentration within each cell (D) and conse-
quently count how many cells are active at any given time. In this illustration,
the top two cells are fully active as reported by their high CD25 content. Col-
ored masks in (C) are for illustration purpose only. A typical cluttering of
TŰcells is presented on panel E.

Source: PEÑA et al. (2018)

3.2 MULTICLASS SHAPE-BASED WEIGHTED CROSS ENTROPY LOSS FUNC-

TIONS

Let 𝑆 = ¶(𝑥1, ℎ1), ..., (𝑥𝑁 , ℎ𝑁)♢ be the training set, with cardinality ♣𝑆♣ = 𝑁 , where

𝑥𝑘 : Ω ⊃ ❘
+, Ω ⊆ ❘2, is a gray-level image and ℎ𝑘 : Ω ⊃ ¶0, ..., 𝐶♢ its segmentation

ground truth with 𝐶 + 1 classes. Let (𝑥, ℎ) be a generic tuple from 𝑆. Here it is called

ℎ0 and ℎ1, respectively, the background and foreground subsets of a binary ground truth

ℎ, and more generally ℎ𝑙 = ¶𝑝 ♣ ℎ(𝑝) = 𝑙, 𝑝 ∈ Ω♢ with cardinality 𝑛𝑙 = ♣ℎ𝑙♣ for non-binary

cases. The pixel indicator function 1ℎl(𝑝) is written simply as 𝑦𝑙(𝑝), e.g. 𝑦𝑙(𝑝) = 1 if

𝑝 ∈ ℎ𝑙, otherwise 𝑦𝑙(𝑝) = 0. The connected components of ℎ, ℎ𝑇 = ¶𝑡𝑗♣𝑡𝑗 ∩ 𝑡𝑖 = ∅, 𝑗 ̸=
𝑖♢,⎷𝑗 𝑡𝑗 = ℎ1, are the non-empty masks for all trainable cells in 𝑥. For a mask 𝑡, Γ𝑡

represents its contour and 𝑐𝑡 gives its convex hull. Let Γ =
⎷

𝑡 Γ𝑡 be the set of all contour

pixels in ℎ. A mask admits a skeleton 𝑠𝑡 here computed using the thinning algorithm
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(LAM; LEE; SUEN, 1992). The notation ãℎ : Ω⊃ ❘ refers to the distance transform of an

image that assigns to every pixel of ℎ its Euclidean distance to the closest non-background

pixel (MAURER; QI; RAGHAVAN, 2003), as decribed in Section 2.4. The goal of training a

segmentation network is to obtain a segmentation map ℎ̂ as close as possible to ℎ, ℎ̂ ≡ ℎ,

given the image 𝑥. When 𝑥 is evaluated in the segmentation network 𝑓 , a probability map

𝑧 : Ω ⊃ ❘
𝐶+1 is obtained such that 𝑧𝑙(𝑝) reports the probabilities of pixel 𝑝 belonging

to the class 𝑙. Then, the binary segmentation ℎ̂ can be obtained from 𝑧 by applying a

decision rule.

3.2.1 Class Augmentation

Touching cells in an image 𝑥 share a common boundary, which, by construction, is a one-

pixel wide background gap separating their respective connected components in ℎ𝑇 . Some

authors, e.g. , (RONNEBERGER; FISCHER; BROX, 2015; XU et al., 2017), consider the one

pixel wide gaps in ℎ separating connected components to be part of the background but

with larger weights. By doing so, it might be diminished the discriminative power of the

network as the foreground and background intensity distributions overlap to some extent

causing separation of pixels more difficult, as suggested by the histograms shown in Figure

9. In the Ągure it can be seen the difference between the signatures of touching borders,

cell interiors, and background. If touching pixels are considered background pixels for the

purpose of training the network with only two classes, the distance between the classes,

foreground and background, would not be as pronounced as if three separate classes

are considered. This way, background is far off the other two classes leaving interior

and touching regions to be resolved. In this work a multiclass learning approach for

binary segmentation of clustered objects is proposed, which it is expected to enhance the

discriminative resolution of the network and hence obtain a more accurate segmentation

of individual cells.

Figure 9 Ű Example of distinct intensity and structural signatures of the three predomi-
nant regions: background (A), cell interior (B), in-between cells (C). The com-
bined histogram curves for comparison is show in (D). This distinction led us
to adopt a multiclass learning approach which helped resolve the narrow bright
boundaries separating touching cells, as seen in (C).

A B C D

background interior touching histograms

Source: PEÑA et al. (2018)

For performing label augmentation on the binary ℎ it is created a third class corre-
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sponding to touching borders. This is done using morphological operations (Algorithm 1).

By design, this new class occupies a slightly thicker region than the original gap between

cells. Then, the training is done using an augmented ℎ and the resulting map 𝑧 will have

an extra class representing the distribution for touching pixels.

The goal in this step is, given a 𝐶 classes label ℎ, to return a 𝐶+1 classes label ℎ′. In this

work the input annotation had 𝐶 = 2 classes (Figure 10A). First, a morphological closing,

e.g. , a dilation followed by an erosion, is performed. With this operation it is obtained a

cluster of cells as a single connected component, Figure 10B. Then, the difference between

closed region and original cluster returns the cell division pixels (Figure 10C), followed by

a morphological dilation (Figure 10D). Addition of obtained region with original 2 classes

label as in step 4 of Algorithm 1 results in a 3 classes label as shown in Figure 10E. All

ℎ′ values above 𝐶 + 1 are assigned to last class guarantying that dilated pixels of division

regions do not fall outside labels range 𝑙 ∈ [0, 𝐶 + 1] (step 5 Algorithm 1). The notation

ℎ′♣[0,𝐶+1] is used to refer that ℎ′ is constrained to the domain [0, 𝐶 + 1]. In this work a

3× 3 squared structuring element 𝑠𝑒 was used.

Figure 10 Ű Example of (A) two classes ground truth, (B) cluster of cells after morpho-
logical closing, (C) touching region and (D) its morphological dilation, and
(E) Ąnal three classes label augmentation.

Source: PEÑA et al. (2018)

Algorithm 1: Augment ground truth
Input: ℎ,𝑠𝑒

Output: ℎ′

1 ℎ′ ⊂ (ℎ⊕ 𝑠𝑒)− 𝑠𝑒;

2 ℎ′ ⊂ ℎ′ ⊗ ℎ;

3 ℎ′ ⊂ ℎ′ ⊕ 𝑠𝑒;

4 ℎ′ ⊂ ℎ + (max(ℎ) + 1) * ℎ′;

5 ℎ′ ⊂ ℎ′♣[0,max(ℎ)+1];

3.2.2 Focus Weights Map

Yet, another challenge of typical biomedical datasets is the high imbalance of the classes.

Despite the most common approach for treating the problem is the Balanced Cross En-

tropy (ZHOU et al., 2017a) loss function, an improvement in the results for clustered objects

was shown by Ronneberger et al. (RONNEBERGER; FISCHER; BROX, 2015) when using
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custom weight maps. In this work it is proposed to use higher weights to alleviate the

imbalance of classes in the training data and to emphasize cell contours, especially at

touching borders, while maintaining lower weights for the abundant, more homogeneous,

easily separable background pixels. However, it is also critical that background pixels

around cell contours should carry proportionally higher weights as they help to capture

cell borders more accurately especially in acute concave regions. The Weighted Cross En-

tropy loss function (RONNEBERGER; FISCHER; BROX, 2015) is here used to focus learning

on important but underrepresented parts of an image:

ℒ(𝑦, 𝑧) = ⊗
𝐶
∑︁

𝑙=0

∑︁

𝑝∈Ω

æ𝜚(𝑝) ≤ 𝑦𝑙(𝑝) ≤ log 𝑧𝑙(𝑝) (3.1)

where æ𝜚 is a known weight map parameterized by 𝜚, 𝑦𝑙(𝑝) is the class indicator function,

and 𝑧𝑙(𝑝) is the probability of pixel 𝑝 belonging to class 𝑙, where 𝐶 ∈ ¶1, 2♢ depending on

the annotation used, e.g. , binary ℎ or multiclass ℎ′ respectively. The Ąrst proposed loss

function uses Equation 3.1 as base and a distance transform based weight map (DWM)

computed as:

æ𝐷𝑊 𝑀
Ñ (𝑝) = æ𝐵(𝑝) ≤

(︃

1⊗min

(︃

ãℎ(𝑝)
Ñ

, 1

)︃)︃

+ 1 (3.2)

where Ñ > 1 is a control parameter that decays the weight from the contour, and æ𝐵(𝑝) =

1/𝑛𝑙, for 𝑝 ∈ ℎ𝑙, is the class imbalance weight (ZHOU et al., 2017a), inversely proportional

to the number of pixels in the class. Typically ♣ℎ0♣ > ♣ℎ1♣ > ♣ℎ2♣, but the weights hold

regardless. Note that æ𝐷𝑊 𝑀
Ñ becomes one for ãℎ > Ñ, and for ãℎ ∈ [1, Ñ], a linear decay

æ𝐷𝑊 𝑀
Ñ (𝑝) = æ𝐵(𝑝) ≤ (1 ⊗ ãℎ(𝑝)/Ñ) + 1 is obtained for background pixels 𝑝 ∈ ℎ0. Non-

background pixels (ãℎ = 0) have class constant weights æ𝐵 + 1. An step by step example

for computing this weight map is shown in Figure 11. Figure 13C shows and example of

æ𝐷𝑊 𝑀
Ñ with Ñ = 30.

Figure 11 Ű Example of computation of each term in Equation 3.2 for going from the
semantic segmentation ground truth to the Ąnal DWM weight map. Color
code is normalized to maximum weight value with red representing higher
weights and blue small weights.

ℎ ãℎ min
(︁

ãh

Ñ
, 1
)︁

1⊗min
(︁

ãh

Ñ
, 1
)︁

æ𝐷𝑊 𝑀
Ñ

Source: The author (2019)
It turns out that segmenting valid minutiae, e.g. , cell tip in Figure 12A, usually in the

form of narrow regions, requires relatively stronger weights. This leads to the formulation
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of a shape aware weight map to take into account small but important nuances around

contours. Let 𝑟𝑡 = 𝑐𝑡 ∖ 𝑡 be the concave complement of 𝑡 ∈ ℎ𝑇 . Let 𝐾 be a binary image

with skeletons 𝑠𝑡 ∪ 𝑠𝑟 as foreground pixels, and ã𝐾 the distance transform over 𝐾. Let

Γ𝐻 = Γ𝑡 ∪ Γ𝑟. Then, the second proposal based on a shape aware weight map (SAW) is

æ𝑆𝐴𝑊
á,à (𝑝) = æ𝐵(𝑝) + 𝐹à * æ𝑐

á (𝑝) + 1 (3.3)

where convolution with Ąlter 𝐹à, which combines copy padding and Gaussian smoothing

(Figure 12C), propagates æ𝑐
á values, shown in Figure 12B, from Γ𝐻 to neighboring pixels,

æ𝑐
á (𝑝) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

1⊗ ã𝐾(𝑝)/á for 𝑝 ∈ Γ𝐻

0 otherwise
(3.4)

Figure 12 Ű Example of (A) cell contour Γ𝑡 and concave complement contour Γ𝑟 with
(B) its respective skeletons 𝑠𝑡 and 𝑠𝑟. The contour points importance æ𝑐

á (𝑝),
for 𝑝 ∈ Γ, is also shown in (B). Finally, (C) copy padding and Gaussian
smoothing is applied and (D) sum to the class balance weight æ𝐵 + 1. Color
code is normalized to maximum weight value with red representing higher
weights and blue small weights.

Source: PEÑA et al. (2018)

In Equation 3.4, á = sup𝑝∈ΓH
ã𝐾(𝑝) represent a distance normalization factor. In this

work it was iterated 𝐹à twenty times to broadly propagate æ𝑐. This last term measures the

shape complexity for each cell 𝑡 by computing distances to the skeletons of the mask and of

its concave complement to assess how narrow are the regions around the contours. Small

distances give rise to large weights. The value of á governs the distance tolerance and it is

application dependent. Note that SAW assigns large weights to small objects without any

further processing or loss function change contrary to what has been proposed by Zhou

et al. (ZHOU et al., 2017b). Examples of SAW for single and touching cells are shown in

Figure 12D and Figure 13D respectively.

Both proposed weights maps acts as an specialization of the general Weighted Cross

Entropy. Each proposal creates a family of loss functions ¶ℒ𝜚♢𝜚 representing different error

surfaces.
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Figure 13 Ű An example of clustered cells is shown in (A). The weight maps, from left to
right, are the (B) class balancing weight map æ𝐵, the (C) proposed distance
transform based weight map æ𝐷𝑊 𝑀 , and the (D) proposed shape aware weight
map æ𝑆𝐴𝑊 . Color code is normalized to maximum weight value with red
representing higher weights and blue small weights.
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Source: PEÑA et al. (2018)

3.2.3 Assignment of Touching Pixels

Because the task is binary segmentation, the touching pixels identiĄed by the network,

according to the generated probability map 𝑧, need to be distributed to adjacent cells. The

usual approach is to classify with Maximum a Posteriori (MAP) where the segmentation

is obtained with ℎ̂(𝑝) = arg max𝑙 𝑧𝑙(𝑝). However, since pixels in the touching and cell

regions of an image have similar intensity distributions, it is expected some classiĄcation

confusion in these areas. Therefore, a hard classiĄcation strategy different than MAP is

needed. This is done in Algorithm 2 where each pixel 𝑝, for which it has been determined

that 𝑝 ∈ ℎ̂2, is assigned to its closest adjacent cell. The method uses two given thresholds

Ò1 and Ò2 as decision rules to build the Ąnal binary segmentation ℎ̂ where ℎ̂1 contains the

segmented cell masks. The threshold Ò2 determines touching pixels and Ò1 determines cell

masks: if 𝑧2(𝑝) > Ò2 then 𝑝 ∈ ℎ̂2, and if 𝑧1(𝑝) > Ò1 and 𝑧2(𝑝) ⊘ Ò2 then 𝑝 ∈ ℎ̂1. The rest

of the pixels are assigned to the background class. For obtaining a binary segmentation,

all pixels in touching class are assigned to the closest mask always they are not equidistant

to two different cells (steps 4-9 Algorithm 2). As a Ąnal step, morphological hole Ąlling

and small object deletion are applied to eliminate spurious regions. A diagram of the

proposed thresholded maps post-processing is shown in Figure 14.
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Figure 14 Ű Overall segmentation scheme with touching pixels assignments and thresh-
olded maps approach.

Source: The author (2019)

Algorithm 2: Pixel class assignment
Input: 𝑧,Ò1,Ò2

Output: ℎ′

1 if 𝑧2(𝑝) > Ò2 then 𝑝 ∈ ℎ̂2;

2 if 𝑧1(𝑝) > Ò1 and 𝑝 /∈ ℎ̂2 then 𝑝 ∈ ℎ̂1;

3 for all 𝑝 such that 𝑝 ∈ ℎ̂2 do

4 𝑞0 ⊂ arg min𝑞0∈ℎ̂1 ♣♣𝑝⊗ 𝑞0♣♣22;
5 𝑞1 ⊂ arg min𝑞1∈ℎ̂1 and 𝑞1 ̸=𝑞0

♣♣𝑝⊗ 𝑞1♣♣22;
6 if ♣♣𝑝⊗ 𝑞0♣♣22 = ♣♣𝑝⊗ 𝑞1♣♣22 then

7 ℎ̂(𝑝)⊂ 0 // equidistant touching pixels belongs to background

8 else

9 ℎ̂(𝑝)⊂ 1 // the rest is assigned to foreground

3.3 EXPERIMENTS AND RESULTS

For demonstrating the advantages of the proposals in the training process, a manually

curated TŰcell segmentation dataset containing thirteen images of size 1024× 1024 pixels

was used. The data was augmented with warping and geometrical transformations (ro-

tations, random crops, mirroring, and padding) in every training iteration. Ten images

were used for training (RONNEBERGER; FISCHER; BROX, 2015). Here it is called UNET2

to the use of U-Net with a binary ground truth and the near objects weights maps from

(RONNEBERGER; FISCHER; BROX, 2015). The same model with 3 classes label augmenta-

tion is referred to as UNET3. DWM and SAW refer to training U-Net architecture using,

respectively, the proposed æ𝐷𝑊 𝑀 and æ𝑆𝐴𝑊 weights maps. In this work it is used FL for

referring to the Focal loss function (ZHOU et al., 2017b) which was applied in the segmenta-
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tion of small objects using an adaptive weight map. All networks were equally initialized

with the same normally distributed weights using XavierŠs method (GLOROT; BENGIO,

2010), e.g. , Ąxed seed for random numbers generators led to the same initialization for

the weights of all networks. After training, binary segmentations are created using the

pixel assignment algorithm described in Section 3.2.3. Please note that, for guaranteeing

same conditions during training, the order of minibatches, data augmentation, network

architecture, and initialization is ensured to be same for all networks during the entire

training, and the differences in the solutions are only obtained because the loss functions

deĄne different error surfaces.

To compare computed contours to ground truth the F1 score was adopted. To allow

small differences in the location of contours, an uncertainty radius Ø ∈ [2, 7], measured

in pixels, is used for the F1 calculation, following (ESTRADA; JEPSON, 2009). Table 2

compares the results from different methods for several radii. For all radii the proposed

methods outperform the other approaches in terms of segmentation results. Better contour

adequacy is obtained mainly with SAW for Ø < 6 in the training set. In the testing phase,

however, higher generalization can be observed with SAW for all radii. The proposed

DWM was ranked second best.

Table 2 Ű F1 scores for different contour uncertainty radii. The method SAW performed
better than others, with DWM the second best on training data.

Radius 2 3 4 5 6 7

Training set

UNET2 0.7995 0.8762 0.8936 0.9053 0.9109 0.9137

UNET3 0.7997 0.8896 0.9087 0.9244 0.9320 0.9356

FL 0.7559 0.8557 0.8821 0.9007 0.9087 0.9125

DWM (Proposed) 0.8285 0.9139 0.9333 0.9484 0.9546 0.9578

SAW (Proposed) 0.8392 0.9183 0.9353 0.9485 0.9544 0.9573

Testing set

UNET2 0.6158 0.7116 0.7368 0.7627 0.7721 0.7828

UNET3 0.6529 0.7505 0.7770 0.8021 0.8158 0.8238

FL 0.5434 0.6566 0.6958 0.7263 0.7414 0.7505

DWM (Proposed) 0.6749 0.7847 0.8156 0.8398 0.8531 0.8604

SAW (Proposed) 0.7332 0.8298 0.8499 0.8699 0.8800 0.8860

Source: PEÑA et al. (2018)

Plots of F1 score for different radii and Ąelds of view are shown in Figure 15 for

all methods. The experiment included image sizes 1024 × 1024, 900 × 900, 500 × 500,

and 250 × 250 pixels corresponding to 1X, 1.1X, 2X and 4X Ąelds of view. Objects look

smaller to the network when the resolution is reduced compromising the segmentation.
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FL performed poorly when the Ąeld of view was increased. In most of the cases best

performance was obtained using SAW and DWM.

Figure 15 Ű F1 scores for radii Ø ∈ [1, 7] in (A) 1X, (B) 1.1X, (C) 2X, and (D) 4X Ąeld
of view size for each model. F1 values were consistently better for SAW and
DWM in most of the cases.
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To measure the cell detection success, every recognized cell with Jaccard Index (CSURKA

et al., 2004) greater than 0.5 is counted as True Positive. Contrary to the Intersection over

Union (IoU) metric for detection (HOSANG et al., 2016) which uses bounding boxes, the

Jaccard Index calculates the instance adequacy from object segmentation. Precision, Re-

call and F1 are calculated as described by Ozdemir et al. (ÖZDEMIR et al., 2010). Table 3

shows the recognition metrics for all the approaches. In this regard it can be seen that the

proposed methods outperform with high margin all the other methods. The SAW method

showed an improvement of 6% over DWM for the training set and an improvement of

14% for the testing set. UNET2 behaved poorly in clustered cells, unable to separate

them. The combination of background and touching regions by UNET2 into a single class

prevented the proper detection of individual cells. These encouraging results suggest that

combining multiclass learning with shape aware weights maps might be advantageous to

achieve improved segmentation results. On the other hand, differences between training
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and testing results restates that the small size of the training data is harmful for obtaining

a good generalization.

Table 3 Ű Detection metrics for Jaccard Index above 0.5 is much pronunciated for SAW
meaning it can detect more cells than the other methods.

UNET2 UNET3 FL DWM (Proposed) SAW (Proposed)

Training set

Precision 0.6506 0.7553 0.7276 0.8514 0.8218

Recall 0.4187 0.6457 0.4076 0.7191 0.8567

F1 metric 0.5096 0.6962 0.5225 0.7797 0.8389

Testing test

Precision 0.5546 0.7013 0.6076 0.7046 0.8113

Recall 0.2311 0.3717 0.2071 0.5195 0.6713

F1 metric 0.3262 0.4858 0.3089 0.5980 0.7347

Source: PEÑA et al. (2018)

SAW training convergence can be viewed in Figure 16A with training weighted accu-

racy shown in blue and loss in red. Even when loss oscillates during optimization product

to a high learning rate value (𝑙𝑟 = 0.1) and SGD behavior, a tendency for it to decrease

can be observed along the training. Loss diminution reĆects directly in accuracy where

a high trend to increase is observed. Models accuracies are compared in Figure 16B sug-

gesting that the proposed loss functions improve the optimization during learning process

with respect to previous approaches.

Figure 16 Ű Class weighted accuracy (blue) and Weighted Cross Entropy (red) of SAW
network for every epoch are shown in (A). In (B) it is observed the models
accuracy during training with outperforming rates of proposed DWM and
SAW.
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In Figure 17 it can be observed some segmentations results highlithing the improve-

ment of proposed methods over the others. An example of wrong cluster division product

to weak boundaries cases can be observed in the yellow panel of the Ąrst row of the Fig-

ure 17. The resulting segmentation over an image is shown in Figure 18. Although the

segmentation is very similar to the ground truth, some uncertainty can be seen in the

probability map. This occurs because these loss functions assume a fully supervised an-

notation, e.g. , no mistakes in the annotation. However, as can be seen in the example the

top-right cell is missing in the annotation and the network struggles to both learn to seg-

ment and discard this object, causing confusion in the Ąnal probability map. Additional

examples of segmentations obtained with each loss function can be seen in Figure 19.

T-cells images used in the experiments were acquired by specialist from the Rothenberg

Lab at the California Institute of Technology.

Figure 17 Ű Examples of segmentation contour obtained with UNET2 (Ò1 = 0.50,Ò2 =
0.06), UNET3 (Ò1 = 0.40,Ò2 = 0.06), FL (Ò1 = 0.50,Ò2 = 0.16), DWM
(Ò1 = 0.45,Ò2 = 0.06), and SAW (Ò1 = 0.50,Ò2 = 0.11) and ground truth
delineations for eight regions of two images. Results are for the best combi-
nation of Ò1 and Ò2 thresholds. Contour colors are merely used to illustrate
the separation of individually segmented regions.

Source: PEÑA et al. (2018)

Figure 18 Ű Example of image with its corresponding annotation and obtained probability
map and segmentation using DWM. Probability map is show as an RGB
image whith background (red), cell (green) and touching (blue) classes.

Image Annotation DWM segmentation Probability map

Source: The author (2019)
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Figure 19 Ű Instance segmentation of clustered cells of four images. Instances colors and
green contour are merely used to illustrate the separation of individually
segmented regions.

Binary Weighted Cross Entropy with UNET weight map

Focal loss

Weighted Cross Entropy with UNET weight map

Weighted Cross Entropy with DWM weight map (Proposed)

Weighted Cross Entropy with SAW weight map (Proposed)

Source: The author (2019)
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3.4 CONCLUSIONS

In this chapter a new touching-based class augmentation and two new information theory-

based loss functions derived from Weighted Cross Entropy were introduced. Also, a new

thresholded maps post-processing was proposed for transforming the obtained probability

map into a binary segmentation in cases of dime probability maps. Experiments performed

over a challenging TŰcells segmentation dataset showed the feasibility of the proposal. In

particular, an increase of the performance for both segmentation and instances detection

was observed with DWM and SAW for Ąxed training conditions and by only varying

the loss function. These are very encouraging results because they show that Ąnding

better performed models is not conditioned on the ability to craft new architectures, but

also by modeling an appropriated loss function. Despite the improvements in the results,

differences between train and test sets performances suggest that a small training dataset

is not sufficient to obtain a high generalization. Weak supervisions also showed to harm

the learning process, leading to confusion between classes in the resulting probability map.
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4 A WEAKLY SUPERVISED METHOD FOR INSTANCE SEGMENTA-

TION OF BIOLOGICAL CELLS[2]

[2]

In this chapter a new weakly supervised loss function is presented to perform instance

segmentation of cells present in microscope images. The motivation is that, because an-

notation of biomedical images can be scarce, incomplete, and inaccurate, the optimized

error surface usually leads to solutions with poor performance and bad generalization. To

overcome the curse of reduced learning data, a loss function operating in three classes that

drives the optimizer to classify underrepresented regions and promote separating adjacent

cells properly is proposed. Different to binary segmentation where only a binary mask is

available for each image, the instance segmentation problem deal with separated masks

for each object.

4.1 INTRODUCTION

Instance segmentation is predominantly done in biomedical image analysis as it allows

characterizing individual objects of interest in an image. For example, in cell biology

studies one generally needs to quantify signals, e.g. , protein concentration, on a per cell

basis. This suggests segmenting many individual cells in the images when fully supervised

training is considered. However, full annotation is expensive, time-consuming, and it is

often inaccurate and incomplete when done at the lab (see Figure 20). These problems

can be exacerbated when only a few specialists can perform annotations or when an

annotation protocol is not in place.

Here, as in the previous chapter, the cells present complex shapes, e.g. , with small

necks, slim invaginations, and protrusions, requiring a more attentive to details segmen-

tation model when compared to round, mostly convex shapes. Also, small edges and slim

parts, equally important for the segmentation result can be easily dismissed by the op-

timizer if their contribution is not explicitly accounted for and on par with other more

dominant regions.

[2] Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Alexandre Cunha. Centro de
Informática, Universidade Federal de Pernambuco, Brazil; Center for Advanced Methods in Biological
Image Analysis, California Institute of Technology, USA. Published in: Medical Image Computing and
Computer-Assisted Intervention Workshop (MICCAI MIL), 2019.
Reprinted/adapted by permission from Springer Nature Customer Service Centre GmbH: Cham,
Springer. Fidel A. Guerrero Peĳa, Pedro Marrero Fernandez, Tsang Ing Ren, Alexandre Cunha. A
Weakly Supervised Method for Instance Segmentation of Biological Cells. In: Domain Adaptation and
Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data by Wang
Q. et al., ©2019.
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Figure 20 Ű Examples of (A) incomplete and (B) inaccurate annotations of training im-
ages, pointed by arrows above. The goal of weakly supervised methods is to
be able to segment well under uncertainty and limited data as shown in the
examples of a missing cell and slim part, respectively, in the right panels of
(A) and (B).

Image Crop Annotation Segmentation Image Crop Annotation Segmentation

Source: PEÑA et al. (2019b)

4.2 MULTICLASS SHAPE-BASED WEAKLY SUPERVISED LOSS FUNCTION

Despite the proven results of related approaches for weakly supervised instance segmen-

tation task, the methods rely on big datasets. For dealing with this problem here it is

used U-Net as in the previous chapter due to its simplicity and proven results in small

datasets. Then, the instance segmentation problem is formulated as a semantic segmen-

tation problem where objects segmentation and separation of cells are obtained at once.

In this context the training instance segmentation set is deĄned as 𝑆 = ¶(𝑥𝑗, 𝑔𝑗)♢𝑁
𝑗=1

where 𝑥𝑗 : Ω⊃ ❘
+ is a single channel gray image deĄned on the regular grid Ω ∈ ❘2, and

𝑔𝑗 : Ω⊃ ¶0, . . . , 𝑚𝑗♢ its instance segmentation ground truth map which assigns to a pixel

𝑝 ∈ Ω a unique label 𝑔𝑗(𝑝) among all 𝑚𝑗 + 1 distinct instance labels, one for each object,

including background, labeled 0. For a generic (𝑥, 𝑔), 𝑡𝑖 = ¶𝑝 ♣ 𝑔(𝑝) = 𝑖♢ contains all

pixels belonging to instance object 𝑖, hence forming the connected component (segment)

of object 𝑖. Due to label uniqueness, 𝑡𝑖 ∩ 𝑡𝑗 = ∅, 𝑖 ̸= 𝑗, a pixel cannot belong to more than

one instance thus satisfying the panoptic segmentation criterion (KIRILLOV et al., 2019).

Let ℎ : Ω⊃ ¶0, . . . , 𝐶♢ be a semantic segmentation map, obtained using 𝑔, which reports

the semantic class of a pixel among the 𝐶 +1 possible semantic classes, and 𝑦 : Ω⊃ ❘
𝐶+1

its one hot encoding mapping. That is, for vector 𝑦(𝑝) ∈ ❘𝐶+1 and its 𝑙-th component

𝑦𝑙(𝑝), it is obtained that 𝑦𝑙(𝑝) = 1 iff ℎ(𝑝) = 𝑙, otherwise 𝑦𝑙(𝑝) = 0. Let 𝑛𝑙 =
√︁

𝑝∈Ω 𝑦𝑙(𝑝)

be the number of pixels of class 𝑙, and Ö𝑘, 𝑘 > 1, the (2𝑘 + 1)× (2𝑘 + 1) neighborhood of

a pixel in Ω. In this work it was adopted 𝑘 = 2.

4.2.1 From Instance to Semantic Ground Truth

To transform an instance ground truth to semantic ground truth, the three semantic

classes scheme of the previous chapter was adopted, e.g. , image background, cell interior,

and touching region between cells. This seems to be feasible because the intensity distri-

bution of input images in those regions remains multi-modal. The semantic ground truth
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ℎ is deĄned as

ℎ(𝑝) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

0 if 𝑔(𝑝) = 0 Ű background

2 if
∑︁

𝑝′∈Ök(𝑝)
[𝑔(𝑝′) ̸= 𝑔(𝑝)] ≤ [𝑔(𝑝′) ̸= 0] > 1 Ű touching

1 otherwise Ű cell

(4.1)

where [≤] refers to Iverson bracket notation (BERMAN; TRIKI; BLASCHKO, 2018): [𝑏] = 1

if the boolean condition 𝑏 is true, otherwise [𝑏] = 0. Equation 5.2.1 assigns class 0 to all

background pixels, assigns class 2 to all pixels whose neighborhood Ö𝑘 contains pixels of

another connected component, and assigns class 1 to cell pixels not belonging to touching

regions. For an example of transforming an instance ground truth to semantic see Figure

21.

Figure 21 Ű Example of transformation from instance 𝑔 to semantic ℎ segmentation
ground truth.

Source: PEÑA et al. (2019b)

4.2.2 Touching Region Augmentation

Touching regions have the lowest pixel count among all semantic classes, having few

examples to train the network. They are in general brighter than their surroundings, but

not necessarily, with varying values along its length. To train with a larger gamut of

touching patterns, including weak edges, it was augmented existing ones by modulating

their pixel values according to the following expression: 𝑥𝑎(𝑝) = (1 ⊗ 𝑎) ≤ 𝑥(𝑝) + 𝑎 ≤ 𝑥̃(𝑝),

applied only when ℎ(𝑝) = 2, where 𝑥̃ is the median Ąltered image of 𝑥 (a 7 × 7 window

was used). For values 𝑎 < 0 (𝑎 > 0) is increased (decreased) the contrast. During training,

the parameter 𝑎 was generated following a uniform random distribution, 𝑎 ≍ 𝑈(⊗1, 1).

An example of this modulation is shown in Figure 22.

4.2.3 Robust Weight Maps for Weak Annotations

Cross Entropy loss function is the most common loss function used when training U-Net

as in this work. However, its usefulness is limited for weakly supervised problems because
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Figure 22 Ű Example of contrast modulation around touching regions. In this Ągure,
higher, 𝑎 = ⊗1.0,⊗0.5, and lower, 𝑎 = 0.5, 1.0, contrast examples are shown.
𝑎 = 0 gives the original image.

⊗1.0 ⊗0.5 0.0 0.5 1.0

Source: PEÑA et al. (2019b)

the network also learns errors in the annotation. The Weighted Cross Entropy (WCE)

(RONNEBERGER; FISCHER; BROX, 2015) is a generalization of this function where a pre-

computed weight map assigns to each pixel its importance for the learning process. This

allows creating a customizable loss function family ¶ℒ𝜌♢𝜌 for speciĄc tasks like weakly

supervised instance segmentation. As expressed before the WCE is deĄned as:

ℒ(𝑦, 𝑧) = ⊗
𝐶
∑︁

𝑙=0

∑︁

𝑝∈Ω

æ𝜚(𝑝) ≤ 𝑦𝑙(𝑝) ≤ log 𝑧𝑙(𝑝) (4.2)

Weak annotations in this work are in the form of incomplete and inaccurate segments.

Given that recent results have shown that training data for pixel-level tasks (e.g. , denois-

ing, segmentation) are statistically correlated within an image, and that selecting a small

set of pixels for training might be sufficient (LI; ARNAB; TORR, 2018), it is proposed a

contour based weight map to assist in the instance segmentation with weak supervision.

Let 𝑅(𝑢) = 𝑢+ be the rectiĄed linear function, ReLu, and 𝜙Ñ(𝑢) = 𝑅(1⊗𝑢/Ñ), 𝑢 ∈ ❘,

a rectiĄed inverse function saturated in Ñ ∈ ❘+. The proposed Triplex Weight Map, 𝑊 3

is computed as:

æÑ,Ü,à(𝑝) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

Ü/𝑛0 + Ü ≤ 𝜙Ñ (ãℎ(𝑝)) /𝑛1 if ℎ(𝑝) = 0

Ü/𝑛1 + Ü ≤ 𝜙Ñ (ã𝐾(𝑝)) if ℎ(𝑝) = 1, 𝑝 ∈ Γ

Ü/𝑛1 + æÑ,Ü,à(ÕΓ(𝑝)) ≤ exp(⊗ã2
Γ(𝑝)/à2) if ℎ(𝑝) = 1, 𝑝 /∈ Γ

Ü/𝑛2 if ℎ(𝑝) = 2

(4.3)

where Γ is the cell contour, ãℎ is the distance transform over ℎ that assigns to every pixel

its Euclidean distance to the closest non-background pixel, ã𝐾 and ãΓ are, respectively, the

distance transforms with respect to the skeleton of cells and cell contours, and ÕΓ : Ω⊃ Ω

gives the closest contour pixel to a given pixel 𝑝. The 𝑊 3 model almost disregard all

background pixels distant at least Ñ to a cell contour by setting æ𝜚(𝑝) = Ü/𝑛0. This way,

cells that are eventually not annotated and located beyond Ñ from annotated cells have a

very low importance during training, since, by design, the weights on those unannotated

regions are close to zero. The goal behind the recursive expression for foreground pixels
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is to create a set of Gaussians centered on each pixel of the contour. The Gaussians have

amplitudes which are inversely proportional to their distances to the cell skeleton. The

weight at a foreground pixel is simply the value of the Gaussian centered on the point

closest to this pixel on the contour. The touching region is assigned a constant weight for

class balance, larger than all other weights. Figure 23 shows an example of weights values

for a Ąxed row of a semantic ground truth and its corresponding 𝑊 3 weight map.

Figure 23 Ű Example of semantic classes and weights values for a row (black line) in ℎ
and æÑ,Ü,à with Ñ = 30,Ü = 10, and à = 3. A semantic ground truth and
its corresponding weight map are shown in top left and bottom left images.
Points P and Q denotes background tip and touching region respectively.
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Source: The author (2019)

4.2.4 From Semantic to Instance Segmentation

After training the network for semantic segmentation, the transformation from seman-

tic to panoptic instance segmentation is performed. For this, a decision rule over the

output probability map 𝑧 needs to be applied to hard classify each pixel, ℎ̂. However,

since pixels in the touching and cell regions of an image have similar intensity distri-

butions it is expected some classiĄcation confusion in those regions if MAP is used. A

simple approach is to use an instance segmentation version of thresholding (TH) post-

processing (Algorithm 2) as a decision rule where the parameters Ò1 and Ò2 control,

respectively, the assignment of pixels to cell and touching classes: ℎ̂(𝑝) = 2 if 𝑧2(𝑝) ⊙ Ò2,

and ℎ̂(𝑝) = 1 if 𝑧1(𝑝) ⊙ Ò1 and 𝑧2(𝑝) < Ò2, and 0 otherwise. Finally, the estimated in-

stance segmentation 𝑔 labels each cell segment 𝑡𝑖 and distributes touching pixels to the

closest component.

𝑔(𝑝) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

0 if ℎ̂(𝑝) = 0

𝑖 if ℎ̂(𝑝) = 1 and 𝑝 ∈ 𝑡𝑖

𝑔(ÕΓ(𝑝)) otherwise

(4.4)
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Another alternative for post-processing is to segment using the Watershed Transform

(WT) with markers (MEYER, 1994). Here, WT is applied on a topographic map built

from the probability map with seeds formed by pixels 𝑝 satisfying 𝑧0(𝑝) ⊙ á0 or 𝑧1(𝑝) ⊙ á1.

These seeds are basically the pixels in the background and cell regions whose probabilities

are larger than given thresholds á0 and á1. Then, the topographic map is the surface

deĄned by the difference between touching and cell probability maps, 𝑧2⊗ 𝑧1. The overall

procedure can be seen in Figure 24.

Figure 24 Ű Overall segmentation scheme of the proposed Watershed-based approach.

𝑧0

𝑧1

á0

á1

𝑧2

seeds

energy
𝑧2 ⊗ 𝑧1

Source: The author (2019)

4.3 EXPERIMENTS AND RESULTS

To evaluate and validate the weakly supervised approach a U-Net was trained, as stated

before, initialized with normally distributed weights using Xavier method(GLOROT; BEN-

GIO, 2010). For a better comparison, all the seeds of random numbers generators were

Ąxed, and therefore all methods began with the same initialization 𝜃0 and used the same

mini-batch for training, including augmentations for the images. Then, the different solu-

tions obtained with each loss function are uniquely affected by the morphology of the error

surface. In the following the Lovász-Softmax loss function (BERMAN; TRIKI; BLASCHKO,

2018) ignoring the background class is referred as LSMAX. Here the Weighted Cross En-

tropy using class Balance Weight Map is called BWM, near objects weight map is called

UNET(RONNEBERGER; FISCHER; BROX, 2015), and the proposed Triplex Weight map is

named 𝑊 3. The per-class average of the probability maps obtained with BWM, UNET
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and 𝑊 3, followed by a softmax, is called here COMB. Despite changing the architecture

is out of the scope of this thesis, the classical proposal-based method Mask R-CNN (MR-

CNN) (HE et al., 2017) was included in the comparison for establishing a reference point

with the state-of-the-art in instance segmentation.

All networks were trained over a cell segmentation dataset containing twenty-eight

images of size 1024 × 1024 pixels with weak supervision in the form of incomplete and

inaccurate annotations. The optimizer Adam (KINGMA; BA, 2015) with 𝑙𝑟 = 10⊗4 was

used for training. The number of epochs and minibatch size was 1000 and 1 respectively.

For training purpose, random mirroring, rotations, warping, gamma, and touch contrast

modulation data augmentations were applied.

For evaluation of the detection, the Precision (P05) and the Recognition Quality (RQ)

(KIRILLOV et al., 2019) of instances with Jaccard index above 0.5 were used. To evaluate

the segmentation, the Segmentation Quality (SQ) computed as the average Jaccard of

matched segments (KIRILLOV et al., 2019) was computed. For overall evaluation of both

detection and segmentation, it was used the Panoptic Quality (PQ) metric (KIRILLOV et

al., 2019). Higher values of all these measurements implies better performance.

Because Thresholded Maps and Watershed post-processings depends on two parame-

ters, it was performed the exploration over the parameters space. Table 4 shows a com-

parison of the different post-processing for the best combination of the parameters for

Thresholds (TH) and Watershed (WT). Although Lovász-Softmax is one of the most

promising loss functions, the small training dataset and minibatch size harmed the op-

timization process in earlier iterations resulting in poor performance. For most values of

thresholds with TH post-processing, the average combination (COMB) improved the over-

all result because of the reduction of False Positives (see P05 column). Also, in most cases,

the proposed 𝑊 3 approach obtained better SQ value than the other methods suggesting

better contour adequacy. The best combination of parameters for each post-processing

method is shown in Table 5.

Table 4 Ű Results for different post-processing methods where TH and WT represent
the best thresholds combination for Threshold and Watershed post-processing
respectively.

Methods
MAP TH WT

P05 RQ SQ PQ P05 RQ SQ PQ P05 RQ SQ PQ

LSMAX 0.3871 0.3236 0.7455 0.2408 0.4348 0.3119 0.7171 0.2286 0.4000 0.3149 0.7073 0.2237

BWM 0.6756 0.5580 0.8674 0.4858 0.8583 0.8504 0.8769 0.7476 0.8193 0.8405 0.8831 0.7437

UNET 0.6801 0.5381 0.8418 0.4556 0.8413 0.8508 0.8791 0.7492 0.8708 0.8600 0.8850 0.7621

𝑊 3(Proposed) 0.7384 0.6305 0.8721 0.5513 0.8477 0.8439 0.8994 0.7604 0.9028 0.8775 0.8995 0.7896

COMB(Proposed) 0.7587 0.6129 0.8698 0.5351 0.8952 0.8851 0.8908 0.7889 0.8925 0.8759 0.8944 0.7837

Source: PEÑA et al. (2019b)

Because of the overlapping between touching and cell intensities distributions, a softer

classiĄcation was obtained in these regions (Figure 25). Then, wrong cell separation is
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Table 5 Ű Best thresholds combinations for TH and WT in each method.

Methods
TH WT

Ò1 Ò2 á0 á1

LSMAX 0.50 0.10 0.50 0.50

BWM 0.50 0.10 0.30 0.90

UNET 0.50 0.10 0.60 0.70

W3 0.60 0.20 0.40 0.90

COMB 0.60 0.10 0.60 0.80

Source: The author (2019)

obtained as a result of the MAP post-processing leading to worse performance when

compared with other post-processing approaches.

Figure 25 Ű Example of wrong cell separation using Maximum A Posteriori post-
processing because of the confusion in the probability map. Probability maps
are showed as RGB images where the channels correspond with background
(B), cell (C) and touching (T) classes respectively.

Image Segmentation MAP Prob. map Prob. values

Source: PEÑA et al. (2019b)

The behavior in Table 4 remains during training as shown in Figure 26. As can be seen

in the Ągure, the proposed 𝑊 3 method had a faster convergence for local minimal than

related approaches. This is due to near to contour pixels miss-classiĄcations have more

importance for the optimization, creating peaks in the error surface. This mountains in

the landscape serve as a constraint to possible wrong optimization paths while creating

leaned surfaces that helps Adam optimizer to move faster.

An example of cell segmentation obtained over a test image with each approach,

including MRCNN, is shown in Figure 27. In the experiments, MRCNN was able to

detect correctly isolated and nearly adjacent cells (second row), but in a high-density

cluster, both bounding box proposals and segmentation were deteriorated. BWM and

UNET tend to miss-classify background pixels in neighboring cells (second row) because

estimated contours are generally beyond cells membrane. 𝑊 3 had the better detection and

segmentation performance with a slight but essential improvement of contour adequacy

over COMB. An example of segmentation over two weakly annotated training images

after the optimization ends is shown in the right panels of Figure 20AB.

Because weakly supervised learning is very related to the generalization capability, it
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Figure 26 Ű Panoptic Quality (PQ) metric during training for Lovász-Softmax (LSMAX),
Weighted Cross Entropy with class Balance Weight Map (BWM), UNET
weight map, and Triplex Weight Map (𝑊 3) methods using (A) Maximum A
Posteriori (MAP), (B) Thresholded Maps (TH), and (C) Watershed Trans-
form (WT) post-processing.

Maximum A Posteriori Threshold Watershed

A B C

Source: PEÑA et al. (2019b)

Figure 27 Ű Example of segmentation results with Lovász-Softmax (LSMAX), Mask R-
CNN (MRCNN), Weighted Cross Entropy with class Balance Weight Map
(BWM), UNET weight map, Triplex Weight Map (𝑊 3) and average com-
bination (COMB). Instances colors and green contour are merely used to
illustrate the separation of individually segmented regions.

Image crop LSMAX MRCNN BWM UNET 𝑊 3 COMB Annotation

Source: PEÑA et al. (2019b)

was tested the robustness of 𝑊 3 for segmenting instances of near-domains images. An ex-

ample of panoptic segmentation over a Meristem and Sepal image crops with the network

trained over the TŰcells dataset is showed in Figure 28. As can be seen, an acceptable

solution is obtained, and presumably can be improved with a Ąne-tuning over a few anno-

tated examples. The presented proposal probed to generalize well even when trained with

a small dataset. The related used data augmentation made the neural networks suitable

for segment similarly intensity distributed images of other domains.

In Figure 29 it can be seen a comparison between the obtained probability maps for

both SAW (Section 3.2.2) and W3 along with their corresponding instance segmentation.

As show in the Ągure, the confusion between classes in SAW was signiĄcantly reduced with
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Figure 28 Ű Zero-shot panoptic segmentation for meristem and sepal images with 𝑊 3

approach trained for TŰcells images. Instances colors and green contour are
merely used to illustrate the separation of individually segmented regions.

Meristem Segmentation Sepal Segmentation

Source: PEÑA et al. (2019b)

the new weakly supervised loss function. As result a higher number of cells are detected

in this complex image. This behavior was also observed when compared with competitive

approaches (Figure 30). Other examples of segmentations obtained with each method can

be seen in Figure 31. T-cells images used in the experiments were acquired by specialist

from Rothenberg Lab at the California Institute of Technology.
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Figure 29 Ű Example of ideal probability map with its corresponding annotation and ob-
tained probability maps and segmentation by SAW and proposed W3 loss
function. Instances colors and green contour are merely used to illustrate the
separation of individually segmented regions. Probability map is show as an
RGB image with background (red), cell (green) and touching (blue) classes.

Ideal probability map SAW probability map W3 probability map

Annotation SAW segmentation W3 segmentation

Source: The author (2019)

Figure 30 Ű Example of confusion reduction with W3 when compared with LSMAX,
UNET, and BWM. Probability map is show as an RGB image with back-
ground (red), cell (green) and touching (blue) classes.

Source: The author (2019)
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Figure 31 Ű Weakly supervised biomedical image instance segmentation of four images.

Lovász Softmax

Mask R-CNN

Weighted Cross Entropy with class balance weight map

Weighted Cross Entropy with UNET weight map

Weighted Cross Entropy with W3 weight map (Proposed)

Source: The author (2019)
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4.4 CONCLUSIONS

In this chapter a new weakly supervised extension of the Weighted Cross Entropy was

introduced. The proposal, along with a new contrast modulation for data augmentation,

enabled to train U-Net to effectively segment crowded cells with incomplete and inaccurate

annotations. A new Watershed-based post-processing allowed the improvement of models

performance when compared with other approaches like Thresholded maps and Maximum

a Posteriori. The experiments showed a better detection rates, contour adequacy and faster

convergence when the proposed W3 loss function is used for training in comparison to

others loss functions. Obtained results suggest that the methodology proposed here, e.g. ,

solving instance segmentation with a semantic approach, is more adequate in cases with

highly clustered objects and small size datasets than the common Mask R-CNN approach.

The proposed contrast modulation augmentation allowed the panoptic segmentation of

cells in different domain but with near intensity distribution. Despite the performance

improvement, the proposed Watershed and Thresholded maps post-processing depends

on two parameters that needs to be manually adjusted. Although the general confusion

in the output probability map was reduced, obtaining high probabilities for pixels in the

minority touching class showed to remain challenging.
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5 J REGULARIZATION IMPROVES IMBALANCED MULTICLASS

SEGMENTATION[3]

[3]

In this chapter a new loss formulation to improve the multiclass segmentation of clus-

tered cells under weakly supervised conditions is proposed. A Youden regularization term

is added to the Cross Entropy loss to enhance the separation of touching and immediate

cells further while promoting sharp segmentation boundaries with high adequacy. This

regularization intrinsically supports class imbalance. Another training class representing

gaps between immediate cells is added to help the network to identify narrow gaps as

background and no longer as touching regions. The proposal works for both 2D and 3D

images, from bright Ąeld to confocal stacks, containing different types of cells.

5.1 INTRODUCTION

The long-term goal of this work has been the automatic segmentation of cells found in

different modalities of microscopy images so that it can ultimately help in the quan-

tiĄcation of biological studies. The task remains a challenge particularly when cells are

densely packed in clusters exhibiting a range of signals and when training with a small

number of weak annotations (see Figure 32A). Separation of clustered cells is specially

difficult when shared edges have low contrast and are similar to cell interiors. Weak anno-

tations, when incomplete and inaccurate, can harm the learning process as the optimizer

might be confused when deciding if annotated and non annotated regions with same pat-

terns must be segmented or not. Additionally, typical biomedical images have a highly

class imbalance that increases with the number of dimensions. Then, balancing weights

(RONNEBERGER; FISCHER; BROX, 2015; LONG; SHELHAMER; DARRELL, 2015; SUDRE et

al., 2017) or equibatches (BERMAN; TRIKI; BLASCHKO, 2018) are required for obtaining

acceptable solutions. Despite the usefulness of such balancing methods, the optimization

may be difficult, especially for higher dimensions problems. This occurs because weak

supervision in the minority class leads to a very noisy gradient causing instabilities dur-

ing training. The solution proposed in this chapter aims at solving these problems with

advances in loss formulation, class imbalance handling, multiclass classiĄcation, and weak

annotation.
[3] Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Paul T. Tarr; Tsang Ing Ren; Elliot M. Meyerowitz;

Alexandre Cunha. Centro de Informática, Universidade Federal de Pernambuco, Brazil; Howard
Hughes Medical Institute, California Institute of Technology, USA; Division of Biology and Biological
Engineering, California Institute of Technology, USA; Center for Data-Driven Discovery, California
Institute of Technology, USA; Center for Advanced Methods in Biological Image Analysis, California
Institute of Technology, USA. Available at <https://arxiv.org/abs/1910.09783>, 2019.
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5.2 IMBALANCED MULTICLASS WEAKLY SUPERVISED LOSS FUNCTION

Let a 𝑑-dimensional single-channel image be deĄned as 𝑥 : Ω ⊃ ❘
+, where Ω ⊆ ❘

𝑑 is

a regular grid with 𝑑 ∈ ❩+. The elements 𝑝 ∈ Ω are called pixels in the case 𝑑 = 2

and voxels when 𝑑 = 3. Then, the goal of panoptic segmentation is to assign to each

element 𝑝 ∈ Ω a semantic label, and instance identiĄcation if 𝑝 belongs to a countable

category (KIRILLOV et al., 2019). For learning to solve such task, a training set 𝑆 =

¶(𝑥1, 𝑔1), ..., (𝑥𝑁 , 𝑔𝑁)♢ is given, where for every image 𝑥 its instance segmentation ground

truth 𝑔 is known. In general, an annotation 𝑔 can be expressed as 𝑔 : Ω ⊃ ¶0, . . . , 𝑚𝑗♢
representing a 𝑑-dimensional mapping where 𝑔(𝑝) = 0 for elements in the background,

and assigning a unique label 𝑔(𝑝) > 0 for each object within the image. Here, the task is

cast as a semantic segmentation problem by modifying the approach proposed in Section

4.2.1 for transforming the instance annotation 𝑔 into a semantic ground truth ℎ, and

generalizing for higher dimensions by using a (2𝑘 + 1)𝑑 neighborhood Ö𝑘(𝑝), 𝑘 > 1, of an

element 𝑝 ∈ Ω. Let 𝑦 : Ω⊃ ❘
𝐶+1 be the one-hot representation of the 𝐶-classes semantic

mapping ℎ : Ω ⊃ ¶0, . . . , 𝐶♢, and 𝑛𝑙 =
√︁

𝑝∈Ω 𝑦𝑙(𝑝) the number of elements of class 𝑙. Let

𝜚𝑒 : Ω ⊃ ❘
+ be the bottom hat transform over 𝑔 using the structuring element 𝑒. The

bottom hat transform is deĄned as the difference between the morphological closing of

𝑔 and the original map 𝑔. An hyper-sphere was used as structuring element whose size

was empirically determined for every dataset. The expected output for the method is a

probability map 𝑧 for every pixel or voxel such that 𝑧 ≡ 𝑦. Finally, a post-processing

similar to the one proposed in Section 4.2.4 is applied to build a panoptic segmentation

𝑔 from 𝑧.

5.2.1 Gap Class

Using three semantic classes for image background, cell interior, and a touching region

between cells has shown in the previous chapter that leads to an increase of network

discriminative power when segmenting adjoining cells. However, such a deĄnition also

leads to the misclassiĄcation of background regions of near touching cells (see Figure

32B). By introducing a new training class representing the gap between nearby cells, the

network can now classify the regions separating nearby cells as background. The new class

is here named gap Ű white pixels shown in Figure 32C. These regions are obtained using

the bottom hat transform. Given an instance annotation 𝑔, a semantic ground truth ℎ

with four classes is deĄned here as

ℎ(𝑝) =

∏︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋃︁

0 if 𝑔(𝑝) = 0 and 𝜚𝑒(𝑝) = 0⊗ background

3 if 𝑔(𝑝) = 0 and 𝜚𝑒(𝑝) > 0⊗ gap

2 if 𝑔(𝑝′) ̸= 𝑔(𝑝) and 𝑔(𝑝′) ̸= 0,∀𝑝′ ∈ Ö𝑘(𝑝)⊗ touching

1 otherwise⊗ cell
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If 𝑝 is in the background and lies in the bottom hat transform, then 𝑝 is a gap pixel/voxel,

ℎ(𝑝) = 3. Here 𝑘 = 2 is used for all experiments.

Figure 32 Ű Example of (A) near touching cells image with its respective weak annota-
tion, and the obtained (B) three and (C) four classes output probability map
and instance segmentation. The exclusion of dimmed, unseen cells during
annotation is not intentional. Image is enhanced only for better visualization.

A B C

Image Annotation 𝐽3 probability 𝐽3 segmentation 𝐽4 probability 𝐽4 segmentation

Source: PEÑA et al. (2019)

5.2.2 𝐽 Regularization

The J statistic was formulated by statistician William J. Youden to improve the rating

performance of diagnostic tests of diseases (YOUDEN, 1950). A high 𝐽 index implies that

the test could predict with high probability if an individual was diseased or not. An ideal

test would be able to eliminate false negatives (sick, at risk individuals falsely reported

as healthy) and false positives (healthy individuals falsely reported as sick) thus always

reporting with certainty diseased (true positive) and healthy (true negative) individuals.

The effectiveness of this index in binary classiĄcation is due to the equal importance it

gives to correctly classifying the subjects belonging and not belonging to a class, thus

giving equal weight to true positive (sensitivity) and true negative (speciĄcity) rates.

The main difference of this statistic with other more prevalent measurements like the F1

score is that it considers both true positives rates (TPR) and true negatives rates (TNR)

predictions for measuring the agreement between the expected and obtained classiĄcation.

𝐽 = sensitivity+speciĄcity-1 = 𝑇𝑃𝑅 ≤ 𝑇𝑁𝑅⊗ 𝐹𝑃𝑅 ≤ 𝐹𝑁𝑅

where FPR and FNR are false positive rates and false negative rates respectively. 𝐽 is

thus a suitable measure for predicting segmentation with imbalanced classes: biomedical

datasets typically holds that 𝑛0 ⪰ 𝑛1 ⪰ 𝑛2 ≡ 𝑛3, e.g. , touching and gap classes are

comprised of a few pixels/voxels when compared to background and cell classes. Despite

the practical range of above expression being (0, 1), here its theoretical interval (⊗1, 1)

(SHAN, 2015) is used to penalize negatives correlations.

Including speciĄcity in the score computation allows to have a more robust measure-

ment in case of highly imbalanced data. For the analysis of these measurements some

ideas from (BOUGHORBEL; JARRAY; EL-ANBARI, 2017) were used. As can be seen in Fig-

ure 33 the performance of 𝐽 under different imbalance ratios Þ = 𝑛1/𝑛0, Þ ∈ (0.01, 0.50),
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is similar to the Matthews Correlation Coefficient (MATTHEWS, 1975) (MCC), which

is a well-known performance measurement for highly imbalanced data (BOUGHORBEL;

JARRAY; EL-ANBARI, 2017). This is not the case for common metrics as Jaccard index ,

F1 score, Tversky index, and Accuracy that are usually used for training of neural net-

works by using a loss surrogate (MILLETARI; NAVAB; AHMADI, 2016; SALEHI; ERDOGMUS;

GHOLIPOUR, 2017; BERMAN; TRIKI; BLASCHKO, 2018). The most common surrogate for

Accuracy is the Cross Entropy loss (GOODFELLOW; BENGIO; COURVILLE, 2016).

Figure 33 Ű Performance of classiĄers C1 and C3 (BOUGHORBEL; JARRAY; EL-ANBARI,
2017) measured by Youden (𝐽), Matthews Correlation Coefficient (MCC),
Jaccard, F1, Tversky, and Accuracy scores for different imbalance ratios Þ.
Youden and MCC are the only ones invariant to all imbalance ratios.
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For comparing the correlation between YoudenŠs index 𝐽 and Matthews Correlation

Coefficient, the settings for classiĄer C3 from (BOUGHORBEL; JARRAY; EL-ANBARI, 2017)

were used. C1 is a random prediction where each class has the same imbalance ratio Þ as

in the ground truth. C3 is a random prediction with uniform distribution for all classes,

Þ = 0.5. Then, the linear correlation between MCC and 𝐽 values for imbalance ratios Þ of

0.01, 0.25, and 0.50 was measured by using PearsonŠs Correlation Coefficient. Figure 34

shows that even for high imbalance between classes (Þ = 0.01) a high linear correlation of

0.92 is obtained between both measurements. This supports the idea that YoudenŠs index

is robust for binary imbalanced class problems.

Assuming a binary segmentation problem, a surrogate for 𝐽 can be deĄned as

ℒ𝐽(𝑦, 𝑧) = ⊗Ú log
(︂1 + 𝐽

2

)︂

= ⊗Ú log

(︃

1 + Ð ≤ Ñ ⊗ Ò ≤ Ó
2

)︃

(5.1)

where Ð, Ñ, Ò and Ó are soft deĄnitions for TPR, TNR, FPR, and FNR respectively.

Adding one and dividing by two has the effect of shifting the original (⊗1, 1) interval to

(0, 1). Based on Equation 5.1, a multiclass surrogate for 𝐽 can be deĄned as the pairwise

loss expression:

ℒ𝐽(𝑦, 𝑧) = ⊗
𝐶
∑︁

𝑖=0

𝐶
∑︁

𝑘=0

Ú𝑖,𝑘 log

(︃

1 + Ð𝑖 ≤ Ñ𝑖,𝑘 ⊗ Ò𝑖,𝑘 ≤ Ó𝑖

2

)︃

(5.2)
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Figure 34 Ű Correlation between values of MCC and 𝐽 for different imbalance ratios Þ.
The linear correlation was measured using Pearson Correlation Coefficient
with values of 0.92 for Þ = 0.01, 0.99 for Þ = 0.25, and approximately 1.0 for
Þ = 0.5.
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Source: PEÑA et al. (2019)

where Ú is a user-deĄned weighting matrix and Ú𝑖,𝑘 is an element of the matrix. Ð𝑖, Ñ𝑖,𝑘,

Ò𝑖,𝑘 and Ó𝑖 represent the soft deĄnitions for TPR, TNR, FPR, and FNR respectively where

𝑖 is considered to be the positive class and 𝑘 the negative one. Here deĄnitions close to

the one used for Soft Dice (MILLETARI; NAVAB; AHMADI, 2016) and Tversky (SALEHI;

ERDOGMUS; GHOLIPOUR, 2017) loss functions are used,

Ð𝑖 =

∑︁

𝑝∈Ω

𝑧𝑖(𝑝) ≤ 𝑦𝑖(𝑝)

∑︁

𝑝∈Ω

𝑦𝑖(𝑝)
,Ñ𝑖,𝑘 =

∑︁

𝑝∈Ω

(1⊗ 𝑧𝑖(𝑝)) ≤ 𝑦𝑘(𝑝)

∑︁

𝑝∈Ω

𝑦𝑘(𝑝)
,

Ò𝑖,𝑘 =

∑︁

𝑝∈Ω

𝑧𝑖(𝑝) ≤ 𝑦𝑘(𝑝)

∑︁

𝑝∈Ω

𝑦𝑘(𝑝)
,Ó𝑖 =

∑︁

𝑝∈Ω

(1⊗ 𝑧𝑖(𝑝)) ≤ 𝑦𝑖(𝑝)

∑︁

𝑝∈Ω

𝑦𝑖(𝑝)

In practice, because Ò𝑖,𝑘 = 1⊗Ð𝑖 and Ó𝑖 = 1⊗Ñ𝑖,𝑘, the term Ò𝑖,𝑘 ≤Ó𝑖 = (1⊗Ð𝑖)≤(1⊗Ñ𝑖,𝑘) =

1 + Ð𝑖 ≤ Ñ𝑖,𝑘 ⊗ Ð𝑖 ⊗ Ñ𝑖,𝑘. Then, Equation 5.2 can be rewritten as:

ℒ𝐽(𝑦, 𝑧) = ⊗
𝐶
∑︁

𝑖=0

𝐶
∑︁

𝑘=0

Ú𝑖,𝑘 log

(︃

1 + Ð𝑖 ≤ Ñ𝑖,𝑘 ⊗ 1⊗ Ð𝑖 ≤ Ñ𝑖,𝑘 + Ð𝑖 + Ñ𝑖,𝑘

2

)︃

= ⊗
𝐶
∑︁

𝑖=0

𝐶
∑︁

𝑘=0

Ú𝑖,𝑘 log

(︃

Ð𝑖 + Ñ𝑖,𝑘

2

)︃

By evaluating Ð𝑖 and Ñ𝑖,𝑘 expressions into above equation and using the deĄnition

𝑛𝑙 =
√︁

𝑝∈Ω 𝑦𝑙(𝑝), the loss can be expressed as:
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ℒ𝐽(𝑦, 𝑧) = ⊗
𝐶
∑︁

𝑖=0

𝐶
∑︁

𝑘=0

Ú𝑖,𝑘 log

∏︀

̂︁

̂︁

̂︁

∐︁

∑︁

𝑝∈Ω

𝑧𝑖(𝑝) ≤ 𝑦𝑖(𝑝)

2𝑛𝑖

+

∑︁

𝑝∈Ω

(1⊗ 𝑧𝑖(𝑝)) ≤ 𝑦𝑘(𝑝)

2𝑛𝑘

∫︀

̂︂

̂︂

̂︂

̂︀

= ⊗
𝐶
∑︁

𝑖=0

𝐶
∑︁

𝑘=0

Ú𝑖,𝑘 log

∏︀

̂︁

̂︁

̂︁

∐︁

∑︁

𝑝∈Ω

𝑧𝑖(𝑝) ≤ 𝑦𝑖(𝑝)

2𝑛𝑖

⊗

∑︁

𝑝∈Ω

𝑧𝑖(𝑝) ≤ 𝑦𝑘(𝑝)

2𝑛𝑘

+

∑︁

𝑝∈Ω

𝑦𝑘(𝑝)

2𝑛𝑘

∫︀

̂︂

̂︂

̂︂

̂︀

Taking 𝑧𝑖 as a common factor and using the fact that
√︁

𝑝∈Ω
𝑦k(𝑝)

𝑛k

= 1, an expression

for Equation 5.2 can be obtained and rewritten as:

ℒ𝐽(𝑦, 𝑧) = ⊗
𝐶
∑︁

𝑖=0

𝐶
∑︁

𝑘=0

Ú𝑖,𝑘 log

⎡

⨄︀

1
2

+
∑︁

𝑝∈Ω

𝑧𝑖(𝑝) ≤
(︃

𝑦𝑖(𝑝)
2𝑛𝑖

⊗ 𝑦𝑘(𝑝)
2𝑛𝑘

)︃

⋂︀

⋀︀ (5.3)

This formulation favors obtaining high difference between probabilities of elements in

different classes. Here, Equation 5.3 is used as a regularization term for assisting the Cross

Entropy (CE) loss, ℒ𝐶𝐸(𝑦, 𝑧) = ⊗ 1
♣Ω♣

√︁𝐶
𝑙=0

√︁

𝑝∈Ω 𝑦𝑙(𝑝) ≤ log 𝑧𝑙(𝑝). This is, from all solutions

with equal values of CE, the one with higher difference between class is favored. Then,

the loss function used for training in this work is ℒ(𝑦, 𝑧) = ℒ𝐶𝐸(𝑦, 𝑧) + ℒ𝐽(𝑦, 𝑧).

At the beginning of training, when cell class begins to be learned, it appears as a large

region that progressively shrinks until it Ąts the cell. At the same time, the probabilities

for every class slowly increase, reaching near one values Ąrst for majority classes. This

same behavior was simulated here, and the value of the loss for each term in ℒ was

measured independently. Figure 35 shows some examples of the segmentation obtained

at different iterations as well as the values of the loss and gradient. As can be seen in the

Ąrst 40 iterations, Cross Entropy leads the optimization while Youden term has values of

gradient near to zero. At iteration 46 can be observed that a small concavity belonging

to background class and the touching class is missing, but Cross Entropy has gradient

values near to zero. On the other hand, Youden gradient increases as the value for the

loss begins to decrease very fast, enforcing the appearance of the touching class and the

right classiĄcation of pixels in the small gap region.

5.2.3 Gap Output Assignment

A semantic segmentation can be obtained from an output probability map by using the

Maximum A Posteriori (MAP) decision rule, ℎ̂(𝑝) = arg max𝑙 𝑧𝑙(𝑝). However, since the

fourth class represents uncertainty in the classiĄcation, the elements in this category are

assigned to the second most likely class. In the end, the post-processing is the same of ap-

plying MAP over the Ąrst three classes of the probability map, ℎ̂(𝑝) = arg max𝑙∈¶0,1,2♢ 𝑧𝑙(𝑝).

From this point an instance segmentation is achieved by a sequence of labeling operations

of each region in the semantic segmentation map following Section 4.2.4.
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Figure 35 Ű Simulations performed for analyzing the behavior of Cross Entropy and
Youden index-based loss functions. During the Ąrst iterations, the segmen-
tation is shrunk until it Ąts the ground truth, with a slow increase of the
probabilities for each class. After this point, the probabilities are gradually
increased for all classes at each time step resulting in CE values near to zero
but higher values of 𝐽 .
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Source: PEÑA et al. (2019)

5.3 EXPERIMENTS AND RESULTS

For comparing different loss functions the U-Net architecture (RONNEBERGER; FISCHER;

BROX, 2015) was used. For initialization of the weights the Xavier method with normal

distribution was used (GLOROT; BENGIO, 2010). For 3D volumes, the same architecture

was adopted but having 3D convolutions instead of 2D (MILLETARI; NAVAB; AHMADI,

2016). All networks are guaranteed to begin with the same random set of weights. Mini-

batches and random data augmentation are also guaranteed to be the same during training

by Ąxing all random seeds. The loss function Weighted Cross Entropy with class Balance

(BWM), Weighted Cross Entropy with Triplex weight map (W3) from Section 4.2.3, and

Cross Entropy with Dice score regularization (DSC) (ISENSEE et al., 2019) over three

classes were used for comparison with the proposed Cross Entropy with Youden-based

regularization on three (𝐽3) and four (𝐽4) classes. A Watershed post-processing (WT) is

also used in the comparison for assisting networks with uncertainty in touching separation.

The inĆuence of the proposed gap class during training was also analyzed by comparing

𝐽3 and 𝐽4 over DIC Hela dataset (ISBI, 2019), a 3D confocal image stacks of Meristem
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Figure 36 Ű Segmentation results for Hela cells (A), Hela nuclei (B*), T-cells (C), meris-
tem cells (a YZ-slice of the 3D segmented stack is shown) (D), Drosophila cells
(E*), and sepal cells (z projection) (F*) images using networks trained with
𝐽3 and 𝐽4 loss functions. Probability maps are shown as RGB images with
background (red), cell (green), and touching (blue) classes. For 𝐽4, the prox-
imity prediction is shown in white. Asterisks (*) indicate zero-shot instance
segmentations with networks trained exclusively over T-cells (C). Colors are
to show cell separation. Original images were enhanced to help visualization.
Whites arrows and circles are used to indicate some differences between 𝐽3
and 𝐽4.

Source: PEÑA et al. (2019)

cells (WILLIS et al., 2016), and the T-cells cells dataset. Zero-shot segmentation of Hela cells

(LJOSA; SOKOLNICKI; CARPENTER, 2012), Drosophila and Sepal dataset was obtained by
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using a model trained over the T-cells data. For training purposes, the optimizer Adam

(KINGMA; BA, 2015) with an initial learning rate of 10⊗4 was used. Data augmentation

included random rotation, mirroring, gamma correction, touching contrast modulation,

and warping. For performance evaluation Precision (P05) and F1 score (RQ) were used

for cell detection rates. Segmentation Quality (SQ) and Panoptic Quality were used for

measuring contour adequacy and instance segmentation qualities, respectively (KIRILLOV

et al., 2019).

5.3.1 Loss Landscape Visualization

The approach proposed by Li et al. (LI et al., 2018) for loss landscape visualization was used

to have an insight into the kind of modiĄcations of the error surface obtained with different

loss functions. Of course, such type of reduction of the dimensionality of the actual error

surface is not representative of the entire landscape morphology. However, the surfaces

can be used for comparing the behavior of loss functions around a Ąxed optimizer. For this

experiment, the same plane was selected, and the center of each surface corresponds with

a Ąxed optimizer 𝜃*. As can be seen in Figure 37 the landscape for the Weighted Cross

Entropy with class balance ℒ𝐵𝑊 𝑀 is almost Ćat for the entire plane slice. On the other

hand, the Triplex weight map loss has a better penalization than BWM for networks that

makes mistakes in higher weighted regions, but near-constant loss for areas around the

optimizer. Presumably, these Ćat regions are composed of networks that produced small

probabilities values at the end of the touching area. However, the proposed Cross Entropy

with Youden regularization ℒ𝐶𝐸 + ℒ𝐽 obtain a better discrimination for solutions near

the optimizer.

Figure 37 Ű Loss landscape visualization around a Ąxed optimizer of Weighted Cross En-
tropy with class balance ℒ𝑊 𝐶𝐸, proposed Triplex weight map ℒW3 , and in-
troduced Cross Entropy with Youden-based regularization ℒ𝐶𝐸 + ℒ𝐽 .

ℒ𝐵𝑊 𝑀 ℒW3 ℒ𝐶𝐸 + ℒ𝐽

Source: PEÑA et al. (2019)
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5.3.2 Instances Segmentation Performance

Table 6 shows a performance comparison of U-Net trained over T-cell dataset with differ-

ent loss functions. As can be seen, Watershed (WT) post-processing effectively increased

the performance for BWM, DSC and W3 when compared with Maximum a Posteriori

(MAP) approach. However, WT method depends on two parameters that need to be

found. On the other hand, networks trained with the proposed Youden-based loss func-

tion are able to improve the instances detection rates by only using the parameter-free

MAP post-processing. This occurs because touching regionsŠ probabilities are very high,

obtaining a better separation between adjacent cells. Because this is a weakly annotated

dataset (see annotation in Figure 32), a bias in the value of the parameter SQ toward

loose segmentations can be observed.

Table 6 Ű Performance comparison of U-Net trained over T-cell dataset using Weighted
Cross Entropy with class Balance (BWM), Cross Entropy with Dice regular-
ization (DSC), Weighted Cross Entropy with Triplex weight map (W3), and
Youden based regularization over three (𝐽3) and four (𝐽4) classes.

Loss function Post P05 RQ SQ PQ

BWM MAP 0.6756 0.5580 0.8674 0.4858

DSC MAP 0.9028 0.7674 0.9011 0.6923

W3 MAP 0.7384 0.6305 0.8721 0.5513

BWM WT 0.8193 0.8405 0.8831 0.7437

DSC WT 0.8726 0.8269 0.8925 0.7390

W3 WT 0.9028 0.8775 0.8995 0.7896

𝐽3 (Proposed) MAP 0.9127 0.9069 0.8733 0.7921

𝐽4 (Proposed) MAP 0.9334 0.9353 0.8689 0.8132

Source: PEÑA et al. (2019)

The proposed loss function was used for measuring the gap class inĆuence. Table 7

shows obtained results over each dataset. The best Panoptic Quality for all cases was

obtained with four classes. An improvement on the Segmentation Quality is observed for

the Ąrst two datasets as a direct consequence of the fourth class (see Ąrst three rows

in Figure 36). However, as stated before, weak annotations, as in the case of T-cells

and Meristem datasets, bias the SQ value, decreasing the performance even when the

obtained segmentation has better contour adequacy. Figure 36C shows an example of the

segmentation and probability map using 𝐽3 and 𝐽4 for T-cell dataset. In Figure 36D can

be seen an XY-plane segmentation of the Meristem volume.

An example of 3D segmentation of the Meristem training with the proposed 𝐽4 loss

function is shown in Figure 38. The segmentation for a portion of the volume are only

shown due to the difficulties in visualizing the difference between obtained volumes. This

crop has been previously segmented using the watershed with markers technique, which



76

Table 7 Ű Results obtained over different datasets show the beneĄts of using the additional
gap class. In all cases a higher PQ value is obtained for 𝐽4. A (*) indicates zero-
shot segmentation.

Loss function Dataset RQ SQ PQ

𝐽3 DIC 0.8950 0.8547 0.7633

𝐽4 DIC 0.8884 0.8833 0.7841

𝐽3 HELA* 0.8527 0.8475 0.7237

𝐽4 HELA* 0.9046 0.8574 0.7764

𝐽3 TCELLS 0.9069 0.8733 0.7921

𝐽4 TCELLS 0.9353 0.8689 0.8132

𝐽3 MERISTEM 3D 0.8829 0.8820 0.7787

𝐽4 MERISTEM 3D 0.8947 0.8804 0.7878

Source: PEÑA et al. (2019)

is considered as an approximate ground truth. Enhancing the signal quality improves

segmentation, as shown for those undersegmented regions of the noisy stack manually

marked with black circles. The trained network can process large, 1024 × 1024 × 508,

meristem stacks in under 9 minutes using 2 Nvidia K80 GPU cards (31 minutes in a

single card).

Examples of the segmentation obtained with 𝐽3, 𝐽4, and Dice regularizations for 2D

images are shown in Figure 39. T-cells images were acquired by specialist from Rothenberg

Lab at the California Institute of Technology. 3D segmentations obtained with 𝐽4 can be

seen in Figure 40. Meristem volumes showed in the Ągure were acquired by specialist from

Meyerowitz Lab at the California Institute of Technology.
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Figure 38 Ű Example of 3D segmentation using the proposed 𝐽4 loss function. Original
and enhanced versions (left column) of a meristem portion image stack and
their respective segmentations (two views on the middle and right columns).
Instances colors and black contour are merely used to illustrate the separation
of individually segmented regions. Colors are randomly assigned for every cell.

Source: PEÑA et al. (2019)
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Figure 39 Ű Examples of 2D weakly supervised biomedical image instance segmentation
with 𝐽3, 𝐽4, and Dice regularizations. Instances colors and green contour are
merely used to illustrate the separation of individually segmented regions.

Cross Entropy with Dice regularization

Cross Entropy with Youden regularization over three classes (Proposed)

Cross Entropy with Youden regularization over four classes (Proposed)

Cross Entropy with Youden regularization over three classes (Proposed)

Cross Entropy with Youden regularization over four classes (Proposed)

Source: The author (2019)
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Figure 40 Ű 3D weakly supervised instance segmentation with 𝐽4 over two views of the
meristem volumen. Instances colors and black contour are merely used to il-
lustrate the separation of individually segmented regions. Colors are randomly
asigned for every cell.

pWUS volumen

Cross Entropy with Youden regularization over three classes (Proposed)

Cross Entropy with Youden regularization over four classes (Proposed)

Source: The author (2019)
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5.4 CONCLUSIONS

In this chapter a new Youden regularization term for accounting high class imbalance was

introduced. Youden imbalance robustness was shown through several simulations. Better

contour adequacy was enforced by adding a new class for background regions between

near cells. The approach proved to be feasible for 2D and 3D instance segmentation of

highly clustered cells even in the presence of weak annotations. The results showed an

improvement in the performance by using the parameter-free Maximum A Posteriori post-

processing. The proposed approach also revealed to be feasible for segmenting images of

near domains never seen before during training. An increment of the detection rate in

almost all datasets was observed when the proposed fourth class was used. Contour ad-

equacy in weakly supervised cases was also improved, as seen from visual inspection.

Landscape analysis and performance evaluation with different loss functions suggest ob-

taining better-performed models when the proposed loss function is used.



81

6 A MULTIPLE SOURCE HOURGLASS DEEP NETWORK FOR

MULTI-FOCUS IMAGE FUSION[4]

[4]

Multi-focus Image Fusion seeks to improve the quality of an acquired burst of images

with different focus planes. In this chapter two fast and straightforward approaches are

proposed for image fusion based on deep neural networks. The solution uses a U-Net

architecture trained in an end-to-end fashion. The designed training loss function for the

regression-based fusion includes learning of both the activity level measurement and the

fusion rule. Despite there is a vast amount of data available for this task, the optimization

challenge remains because the typical loss functions for regression are usually insufficient

for solving the problem.

6.1 INTRODUCTION

Usually, the limited depth-of-Ąeld of digital cameras causes only one image of the plane

to stay in focus while the others appear blurred. This focus plane is composed of all ob-

jects near to a Ąxed focus point. Taking several shots with different focus points allows

the capture of a burst of images where all focus planes become available. The process of

reconstructing the entirely focused image by estimating the sharpest pixel values using

frame information is named Multi-focus Image Fusion (MFIF), see Figure 41. The result-

ing focused image is known in the literature as the all-in-focus image and is typically used

for further computer processing. Thus, MFIF can be described as a pre-processing step

that improves the quality of the acquired burst of images (TAN et al., 2017; TANG et al.,

2018). Applications of MFIF include, but are not limited to, medical and biological imag-

ing, video surveillance and digital photography (GANGAPURE; BANERJEE; CHOWDHURY,

2015; KONG; LEI; ZHAO, 2014). Many challenges, such as identifying the focus map in each

frame, selecting the fusion function to combine the focus planes and performing a quick

and reliable combination of images remain as open issues, making the multi-focus image

fusion an interesting problem to investigate.

Most of the existing MFIF method contributions rely on proposals for new activity

level measurements and/or fusion rules to solve the task. However, in recent years, this

practice has been simpliĄed through the employment of deep convolutional neural net-

works (CNN), and several deep learning based methods have been introduced to create

faster and simpler MFIF approaches.

[4] Fidel A. Guerrero Peĳa; Pedro Marrero Fernandez; Tsang Ing Ren; Germano Crispim Vasconcelos;
Alexandre Cunha. Centro de Informática, Universidade Federal de Pernambuco, Brazil; Center for
Advanced Methods in Biological Image Analysis, California Institute of Technology, USA. Available
at <https://arxiv.org/abs/1908.10945>, 2019.
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Figure 41 Ű Example of different focus source images and the all-in-focus resulting image.
The sources A and B represent the same image in different focal planes.

Source A Source B All-in-focus

Source: PEÑA et al. (2019a)

6.2 MULTI-FOCUS IMAGE FUSION LEARNING

Despite the increasing interest of deep learning community in MFIF problems, a direct

regression technique has not been proposed because the associated complexity of the

regression is not well addressed with current regression loss functions. Here, the multi-

focus image fusion problem is formulated as a multiple source segmentation/regression

process where two frames are given to a Convolutional Heteroencoder (U-Net), and an

RGB all-in-focus image is obtained as a result.

The set of all multi-focus image pairs is deĄned as ❳ = ¶①𝑘 ♣ ①𝑘 = (𝑥𝑘𝐴, 𝑥𝑘𝐵)♢, where

𝑥𝑘 : Ω ⊃ ❘
3, Ω ⊆ ❘

2, is an RGB source image. For MFIF task the training set is de-

Ąned as 𝑆 = ¶(①𝑖, 𝑦𝑖)♢𝑙
𝑖=0, with cardinality ♣𝑆♣ = 𝑙, where ①𝑘 ∈ ❳ is a source image pair

and 𝑦𝑘 : Ω ⊃ ❘
3 is an all-in-focus ground truth image. Here, all images are assumed

to be in the normalized range [0, 1]. Let ① = (𝑥𝐴, 𝑥𝐵) be a generic source tuple of ❳

and 𝑦 its focused ground truth. The goal is to Ąnd a fusion function 𝑓(①) which takes

two sources frames with different focus as input and obtain a fused image 𝑦 as close as

possible to the latent image 𝑦, 𝑦 ≡ 𝑦. Note that a fusion function 𝑓 must be indepen-
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dent to pair order and therefore must meet the commutative law. This is regarded as

𝑓(①) = 𝑓(①̄) where ①̄ is the reverse order of the tuple ①, ①̄ = (𝑥𝐵, 𝑥𝐴). Here, the func-

tion 𝑓 is approximated using U-Net(RONNEBERGER; FISCHER; BROX, 2015), which is a

well-known hourglass architecture. The commutative property is ensured through an ap-

propriate training protocol as described later. Although 𝑓 is bi-variable, a generalization

for bursts ①𝑛 = (𝑥0, ..., 𝑥𝑛) with 𝑛 + 1 frames can be deĄned as the 𝑛-th functional power

𝑓𝑛, 𝑓𝑛(①𝑛) = (𝑓 ◇ 𝑓𝑛⊗1)(①𝑛), where ◇ represent the partial composition operation, e.g. ,

𝑓 2(①2) = (𝑓 ◇𝑓)(①2) = 𝑓(𝑓(𝑥0, 𝑥1), 𝑥2). Figure 42 shows the overall process for multi-focus

fusion of 𝑛 frames.

Figure 42 Ű Overall method scheme for a multi-focus fusion of an input burst. The images
within the burst are incrementally fused through the 𝑛-th functional power
𝑓𝑛.
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Source: PEÑA et al. (2019a)

6.2.1 Multi-focus Image Fusion Dataset

Training the neural network to predict the latent focused image given two blurry inputs

requires a vast amount of training data. However, there is not a public multi-focus im-

age fusion dataset with the all-in-focus ground truth available. Therefore, a dataset is

synthetically generated in this work to allow the training of such CNN. A potential idea

would be to apply blur in some randomly selected patches of a sharp image 𝑦, and cre-

ate the pair ① with the blurred and sharp patches, e.g. , if 𝑥𝐴 is blurred then 𝑥𝐵 is its

corresponding sharp patch from 𝑦. This approach was used recently by Liu et al. (LIU

et al., 2017), where the ImageNet classiĄcation dataset was used to generate the training

data. However, because the network here used is not a patch classiĄcation approach, the

Ąnal input sources are required to contain a focus map where focused and blurred regions

appear in the same frame. Following this idea, the data generation method proposed in

(TANG et al., 2018) simulate situations where an image patch include both focused and

de-focused regions. This is done by deĄning 12 masks of blurred and unchanged areas

used as a focus map. Nevertheless, this small size set of masks might be insufficient to

model the latent focus maps space signiĄcantly. Also, creating an MFIF dataset by hand
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is very expensive, given the enormous amount of ground truth data required to train the

network.

Here, a new dataset generation is proposed by applying synthetic blur to randomly

selected objects instances extracted from the MS COCO segmentation dataset (LIN et al.,

2014). This dataset contains highly varied real-world images collected from the internet

and its segmentation ground truth. Let 𝐸 = ¶(𝑦0, 𝑔0), . . . , (𝑦𝑚, 𝑔𝑚)♢ be a panoptic seg-

mentation set where 𝑦𝑘 is an image and 𝑔𝑘 is its segmentation mask, 𝑔𝑘 : Ω⊃ ¶0, . . . , Ò𝑘♢
being Ò𝑘 the number of segmented objects. Let (𝑦, 𝑔) be a generic tuple from 𝐸 where

there are Ò segmented objects. Let Γ ⊆ ¶0, . . . , Ò♢ be a randomly selected subset of objects

of 𝑔. Then, a focus map set 𝐺 = ¶𝑝 ♣ 𝑐(𝑝) ∈ Γ♢ can be deĄned where 𝑐(𝑝) returns the

object number assigned to pixel 𝑝, 𝑐 : Ω⊃ ¶0, . . . , Ò♢. A binary focus map 𝑔𝑏 : Ω⊃ ¶0, 1♢,
is then deĄned as 𝑔𝑏(𝑝) = 1𝐺(𝑝) where 1𝐺 is the indicator function over 𝐺, e.g. , 𝑔𝑏(𝑝) = 1

if 𝑐(𝑝) ∈ Γ, otherwise 𝑔𝑏(𝑝) = 0.

A Gaussian blur kernel ℎà is created using a uniformly generated standard deviation

à ≍ 𝑈(1, 5). Then, a blurred image 𝑦 = 𝑦*ℎà is obtained by convolving the focused image

with the blur kernel. Finally, a multi-focus input tuple ① = (𝑥𝐴, 𝑥𝐵) is generated on-the-

Ćy using the focus map 𝑔𝑏 and the blurred and sharp versions of the frame 𝑦 (Equation

6.1).

① =
(︁

𝑦 ≤ 𝑔𝑏 + 𝑦 ≤ (1⊗ 𝑔𝑏), 𝑦 ≤ (1⊗ 𝑔𝑏) + 𝑦 ≤ 𝑔𝑏
)︁

(6.1)

A generated sample of the proposed realistic synthetic dataset is shown in Figure

43, with the corresponding sharp image 𝑦 and its segmentation mask 𝑔. Some objects

randomly selected were taken as background, leaving the rest in the foreground, resulting

in the focus map 𝑔𝑏. Finally, the generated source frames computed according to Equation

6.1, are shown in the last row. Hence, this approach can provide an endless amount of

training data.

6.2.2 Multiple Sources Hourglass Network

In this research two methodologies are proposed for training the U-Net architecture to ap-

proximate the fusion function 𝑓 . An extension for multiple input sources is proposed here

based on the results of (ZAGORUYKO; KOMODAKIS, 2015) to learn a similarity function.

In their work the superiority of multiple source approaches was validated when compared

with Siamese methods, which takes a single image as input in the feature extraction

path. Nevertheless, the scheme proposed by Zagoruyko et al. for single value regression is

generalized here to full RGB images regression/segmentation tasks.

The two variants of the hourglass architectures presented here that seeks to solve

the multi-focus image fusion problem are called Hourglass Fusion Segmentation network

(HF-Seg) and Hourglass Fusion Regression network (HF-Reg). Figure 44 shows the overall

multi-source U-Net architecture.
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Figure 43 Ű Example of synthetic tuple ① created by applying the MFIF dataset using MS
COCO image 𝑦 and its segmentation mask 𝑔. The focus map 𝑔𝑏 was created
using two classes as background and the other three objects as foreground.
The blurred image 𝑦 and resulting sources (𝑥𝐴, 𝑥𝐵) are shown in the second
row.

Image 𝑦 Segmentation mask 𝑔 Focus map 𝑔𝑏

Blurred image 𝑦 Source A Source B

𝑦 ≤ 𝑔𝑏 + 𝑦 ≤ (1⊗ 𝑔𝑏) 𝑦 ≤ (1⊗ 𝑔𝑏) + 𝑦 ≤ 𝑔𝑏

Source: PEÑA et al. (2019a)

Fusion map prediction (HF-Seg network). The Ąrst proposal uses the hourglass

network for fusion map estimation. This is based on the ideas of (TANG et al., 2018; LIU et

al., 2017) for obtaining a focus map. Differently to theirs, here, the problem is deĄned as

a segmentation process where the HF-Seg architecture receive two RGB sources as a 6-

channels map ① = (𝑥𝐴, 𝑥𝑏), and the output is fed into a Softmax layer, used to obtaining a

two-channel segmentation map ③ = (𝑧0, 𝑧1). In practice, this segmentation map represents

the predicted fusion map and its complement, 𝑧0 = 1⊗ 𝑧1. After obtaining the focus map,

the resulting fused image can be inferred by applying a fusion rule. The fusion function

𝑓𝑆 is expressed as the pixel-wise weighted-average rule of the network output map (LIU et

al., 2017; TANG et al., 2018):

𝑓𝑆(①) = 𝑧0 ≤ 𝑥𝐴 + 𝑧1 ≤ 𝑥𝐵 (6.2)
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Figure 44 Ű Multiple sources hourglass networks for multi-focus image fusion. Sources are
showed separated in the Ągures but the input block is 6 channels depth map.
For HF-Reg the output layer corresponds to the all-in-focus regressed image.
In the case of HF-Seg, the output layer is a 2-channel feature map, and values
𝑧𝑖(𝑝) represents the probability of selecting pixel 𝑝 from input source 𝑖.
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Source: PEÑA et al. (2019a)

Training of such network requires the ground truth of the fusion map for every input

pair ① to be known. However, during the synthetic sources generation, the focus map 𝑔𝑏

is obtained. Then, the HF-Seg training is carried out by using the Binary Cross Entropy

(BCE) loss function:

ℒ𝑆(③, 𝑔𝑏) = ⊗ 1
♣Ω♣

∑︁

𝑝∈Ω

𝑔𝑏(𝑝) ≤ log (𝑧0(𝑝)) +
(︁

1⊗ 𝑔𝑏(𝑝)
)︁

≤ log (𝑧1(𝑝)) (6.3)

where ③ = (𝑧0, 𝑧1) is the output of HF-Seg and 𝑔𝑏 is created as described in Section 6.2.1.

In terms of optimization, this approach follows the same idea of previous chapters, despite

the amount of data makes it possible to use BCE directly without further weighting.

All-in-focus image regression (HF-Reg network). Although the HF-Seg ap-

proach is straightforward, the fusion rule has to be previously established (Equation 6.2).

Then, this network works better in problems where a focus map and a fusion rule can be

used, such as in multi-focus image fusion. However, a more general model can be derived

from the HF-Seg method to learn the best fusion rule for source combination automati-

cally. This second proposal uses an end-to-end approach where the hourglass network is

used to regress the all-in-focus image directly. Here, the fusion function input is also a

6-channel map. The architecture remains as a sequence of convolutions and max-pooling

in the encoder and convolutions-upsampling blocks in the decoder. Differently, to the seg-

mentation approach, the output feature block is a 3-channels map 𝑦 corresponding to an

RGB focused image. In this approach, the learning process requires an appropriate regres-

sion loss function rather than the BCE. In this context, let 𝑦 = (𝑦0, 𝑦1, 𝑦2) be a ground

truth focused image where 𝑦0, 𝑦1 and 𝑦2 are its RGB channels respectively. Similarly, the

estimated RGB all-in-focus image is given by 𝑦 = (𝑦0, 𝑦1, 𝑦2). The regression loss function

is deĄned as in Equation 6.4, where 𝜙Ð is an intensity dissimilarity function. Note that the
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proposed loss function is the sum of the mean distance for each channel, rather than the

mean distance of all channels. This per-channel loss has shown to be better for color esti-

mation because averaging the errors of the 3 channels usually leads to a grayscale output

space. Also, when values are regressed, the output space during training is not bounded

as opposed to the previous segmentation approach. This lack of boundaries can bring

difficulties to obtain an output map in the expected range. To this end, a regularization

term that forces the convergence of minimum and maximum values of each channel was

added to the loss function. This regularization term penalizes more severely fused images

with low contrast or intensity values outside the interval [0, 1], assuring the output map

to be in the right range. The idea behind this regularization is to create mountains in the

loss landscape wherever a solution leads to an invalid image, e.g. , 𝑦(𝑝) /∈ [0, 1].

ℒ𝑅(𝑦, 𝑦) =
1
♣Ω♣

2
∑︁

𝑖=0

∑︁

𝑝∈Ω

𝜙Ð(𝑦𝑖(𝑝), 𝑦𝑖(𝑝)) +
2
∑︁

𝑖=0

♣min(𝑦𝑖)⊗min(𝑦𝑖)♣+
2
∑︁

𝑖=0

♣max(𝑦𝑖)⊗max(𝑦𝑖)♣

(6.4)

Among the possible dissimilarity functions such as the Mean Square Error or L2 norm,

and L1 norm, here is deĄned 𝜙Ð as the Normalized Positive Sigmoid (NPS) between two

intensities parameterized by Ð:

𝜙Ð(𝑦, 𝑦) =
2

𝑒⊗Ð≤♣𝑦⊗𝑦♣ + 1
⊗ 1 =

𝑒Ð≤♣𝑦⊗𝑦♣ ⊗ 1
𝑒Ð≤♣𝑦⊗𝑦♣ + 1

(6.5)

Given the ground truth intensity 𝑦 and the estimated intensity 𝑦, the minimum metric

value is obtained when 𝑦 = 𝑦, 𝜙Ð(𝑦, 𝑦) = 0. Also, the maximum value is approximately 1

for Ð > 5, lim
♣𝑦⊗𝑦♣⊃∞

𝜙Ð = 1. Furthermore, with the proposed NPS, a lower decay is observed

when compared to the usual L2 and L1 approaches. This behavior forces the creation of

leaned surfaces favoring a faster convergence of the optimizer. Figure 45 shows the error

mapping for the L1 norm, L2 and NPS for different values of Ð, e.g. , NPS6, NPS8 and

NPS10 corresponding to Ð = 6, 8 and 10, respectively.

The simplicity and power of the proposed network allow performing image fusion

without further post-processing. This regression approach concedes the learning of the

best fusion function, and it is not limited to problems where the fusion map can be

obtained, e.g. , multi-modal fusion, and multi-exposure fusion.

6.2.3 Implementation Details

To fulĄll the commutative law, required for all fusion functions, an appropriate training

protocol was employed. For every generated tuple ① = (𝑥𝐴, 𝑥𝐵), the inverted tuple ①̄ =

(𝑥𝐵, 𝑥𝐴) was also forwarded in the same minibatch. In the HF-Reg network training,

any further ground truth modiĄcation for ①̄ is needed, because the all-in-focus image 𝑦

remains the same. However, for the HF-Seg approach, the ground truth focus map needs
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Figure 45 Ű Distances mapping for L1, L2, NPS6, NPS8 and NPS10 dissimilarity func-
tions.
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to be inverted, e.g. , 1⊗ 𝑔𝑏, so the obtained reconstruction remains as close as possible to

𝑦.

Because the best pixel value that can be obtained belongs to one of the sources, e.g. ,

the multi-focus image fusion problem can be seen as a selection problem where 𝑦(𝑝) is

either equal to 𝑥𝐴(𝑝) or 𝑥𝐵(𝑝), a posterior post-processing for selecting the nearest value

can be applied. Let 𝑦 be a fused image obtained by the regression network 𝑓𝑅(①). The

Ąnal all-in-focus image is obtained as follows:

𝑦*(𝑝) =

∏︁

⋁︁

⨄︁

⋁︁

⋃︁

𝑥𝐴(𝑝) if ♣♣𝑦(𝑝)⊗ 𝑥𝐴(𝑝)♣♣2 < ♣♣𝑦(𝑝)⊗ 𝑥𝐵(𝑝)♣♣2

𝑥𝐵(𝑝) otherwise
(6.6)

6.3 EXPERIMENTS AND RESULTS

To evaluate and validate the proposed approach several experiments were conducted.

For establishing a comparison the Image Matting for fusion (IM) (LI et al., 2013), the

variance based image fusion in Discrete Cosine Transform domain (DCT) (HAGHIGHAT;

AGHAGOLZADEH; SEYEDARABI, 2010) and with consistency veriĄcation (DCT+CV) (HAGHIGHAT;

SEYEDARABI, 2011), the Guided Filtering Fusion (GFF) (LI; KANG; HU, 2013) and the

deep Convolutional Neural Network (CNN) (LIU et al., 2017) approaches were used. The

nearest source color post-processing explained in the previous section is referred to as

Near. The experiments were conducted over synthetic and real datasets with different

number of images within the burst.
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Segmentation and regression networks were trained over the proposed synthetic multi-

focus dataset using the provided training split in the MS COCO dataset. The optimizer

Adam (KINGMA; BA, 2015) with its defaults parameters was applied, and the initial learn-

ing rate was set to 10⊗5. The number of epochs and mini-batch sizes was 1000 and 3

respectively. For training purpose random crops of 400× 400 and random mirroring were

applied. The size of the crops are mainly determined by the RAM of the video card used

for training. The networkŠs initialization was made with normally distributed weights us-

ing XavierŠs method (GLOROT; BENGIO, 2010). For test phase it was used the test split

of MS COCO dataset for synthetic data creation and the Lytro dataset for real-image

experimentation. In this last one, the size of the original images was used since, after

learning the kernels, the networks are size invariant.

6.3.1 Commutativity

All fusion functions must produce the same all-in-focus image no matter the order of the

sources frames are presented. Since the hourglass network input is a six-channel map, ①

and ①̄ represents different objects, and therefore, the output might be different. However,

due to the training protocol, the learned fusion function leads to approximately the same

point in the output space for inputs ① and ①̄, ensuring the required commutative property.

Figure 46 shows two different pairs ① from the real dataset, and the results obtained

applying a forward of the tuple and its reverse into each proposed network. As can be

seen, no signiĄcant differences are observed in the all-in-focus images. The obtained mean

squared error between 𝑓(①) and 𝑓(①̄) was in the order of 10⊗5 for all images and can not

be visually perceived. This property remained for all tested images.

6.3.2 Multi-focus Image Fusion Metrics

Quantitative evaluation analysis for image fusion problems is a challenging task since the

reference all-in-focus images are unknown. Among the several proposals introduced in the

literature, there is no precise measurement that is considered the best. Here some of the

most used metrics like Normalize Mutual Information 𝑄𝑀𝐼 , Tsallis Entropy 𝑄𝑇 𝐸, Nonlin-

ear Correlation Information Entropy 𝑄𝑁𝐶𝐼𝐸, Gradient-based 𝑄𝐺, Phase Congruency 𝑄𝑃 ,

Piella-Heijmans 𝑄𝑆, and Chen-Blum 𝑄𝐶𝐵 are explored. For the 𝑄𝑀𝐼 was followed Hossny

deĄnition because it reduces the bias of the original 𝑄𝑀𝐼 metric toward the sources. Ev-

ery metric belongs to one of the four groups of objective assessment metrics, information

theory, feature-based, structural similarity-based, and human perception inspired. Higher

metrics values mean better fusion quality. A detailed explanation of each of the metrics

can be found in (LIU et al., 2012). Despite the generalized use of these metrics, it was found

that computing the agreement of the resulting image with every source, including blurred

regions of the sources, may not represent a good measurement of the fusion quality. Liu

et al.(LIU et al., 2012) also arrives at this conclusion in their work.
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Figure 46 Ű Example of fusion results for tuples with normal and reversed order. In the
Ąrst row are shown the frames within the tuples. In second and third row
are shown the fusion results with the regression and segmentation networks
respectively for both normal and reverse order evaluations.

Tuple ①1 Tuple ①2

Output 𝑓𝑅(①1) Output 𝑓𝑅(①̄1) Output 𝑓𝑅(①2) Output 𝑓𝑅(①̄2)

Output 𝑓𝑆(①1) Output 𝑓𝑆(①̄1) Output 𝑓𝑆(①2) Output 𝑓𝑆(①̄2)

Source: PEÑA et al. (2019a)

An example of bias toward the source is shown in Figure 47. The Ąrst image in the

Ągure refers to the output of the HF-Reg network without Near post-processing, followed

by the same image after the nearest post-processing. Dummy A and Dummy B images

correspond with the outputs of the methods that return exactly the source A and B,

respectively. As can be seeing in the Ągure, most metrics get higher values when the

output is one of the sources. This means that a dummy method that outputs an input

image has a better metric value than others that returns a visually acceptable all-focused

image. The behavior is expected because most of the metrics Ąnd a quality value using

the similarity between the resulting image within each source. Then, when an all-in-focus

image is obtained with a subtle colors variation respect to the sources, the metrics values
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highly decrease as in the case of HF-Reg network without Near. The values of the metrics

for dummies methods in this example even super-passes most of the literature methods,

so caution must be taken when using objective assessment metrics to give a conclusive

result. The full reference Structural SIMilarity index (SSIM) between the resulting fused

image and the all-in-focus ground truth was also computed in the synthetic dataset for a

stronger comparison.

Figure 47 Ű Example of the values of the fusion metrics for HF-Reg without and with Near
post-processing and two dummy methods that returns the Ąrst (Dummy A)
and second (Dummy B) image of the tuple as a result for the fusion.

HF-Reg (without Near) HF-Reg (with Near) Dummy A Dummy B

𝑄MI 0.8463 1.1097 1.2812 1.2812

𝑄T E 0.3616 0.3766 0.4432 0.4435

𝑄NCIE 0.8212 0.8336 0.8631 0.8628

𝑄G 0.6255 0.6768 0.5330 0.6614

𝑄P 0.7151 0.7610 0.7210 0.8007

𝑄S 0.9510 0.9473 0.8536 0.8841

𝑄CB 0.7336 0.7806 0.6955 0.7591

Source: PEÑA et al. (2019a)

6.3.3 Loss Function - L1 vs L2 vs NPS

This experiment has the objective of demonstrating the feasibility of the proposed NPS

loss function. For this, the HF-Reg architecture was trained over the synthetic MS COCO

multi-focus dataset but using L1, L2, and the proposed NPS6. The training hyper-

parameters are the same as described at the beginning of the section. After training

during 1000 epochs, a synthetic multi-focus test dataset was created for evaluation pur-

poses. This dataset was composed of 100 randomly selected images from the test data

of the MS COCO panoptic segmentation, and then the multi-focus data creation process

was applied. Despite the usefulness of the L1 and L2 loss functions in other regression

problems, here was found it difficult to regress the appropriated all-in-focus image. The

obtained output during different epochs of the training are shown in Figure 48 for every

training function over a real image from the Lytro dataset. It can be observed that L1

and L2 loss functions fail to obtain a valid image during the entire training. However,
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with the proposed NPS6 loss function, the colors and contrast of the regressed image are

well estimated even in earlier epochs.

Figure 48 Ű Example of the multi-focus image fusion obtained with intermediate L1, L2
and HF-Reg networks during the training.

L1

L2

NPS6

Epoch 200 Epoch 600 Epoch 1000

Source: PEÑA et al. (2019a)

The behavior is corroborated by the mean error curve over the synthetic dataset

(Figure 49). This Ągure shows the mean L1 difference between estimated all-in-focus

image 𝑦 and the ground truth 𝑦 over different epochs. The y-axis is shown in log scale for
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better interpretation. It can be seen a better convergence when NPS is used, succeeding

to obtain a visually good solution for the MFIF problem.

Figure 49 Ű Logarithm of the error over
the synthetic multi-focus test
dataset.
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Figure 50 Ű Box plot for SSIM refer-
ence metric over the synthetic
multi-focus test dataset.
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6.3.4 Two Source Synthetic Dataset

For evaluation purposes, the proposed methods were evaluated in the synthetic multi-

focus test dataset. The dataset had 100 pairs with its corresponding all-in-focus ground

truth. Because the reference image is known, the SSIM metric between the obtained

reconstruction and the ground truth was used in the evaluation. Figure 50 shows the

obtained box plots with the SSIM metric for every tested method. A high mean with a

small variance is observed for HF-Seg method that has values of SSIM nearly to 1 for most

of the pairs. The HF-Reg also behaves well, obtaining comparable results to GFF and

lower variance with respect to CNN. In three of the seven objective assessment metrics,

the proposals had higher mean and lower variance than the state-of-the-art (Table 8).

However, despite the higher mean value in some references and multi-focus metrics, no

statistically signiĄcant difference was measured for the results of the CNN, GFF, HF-Reg,

and HF-Seg, according to the Friedman (FRIEDMAN, 1940) test and Nemenyi (NEMENYI,

1962) post-hoc.

For almost every pair in the synthetic test dataset, the CNN, GFF, HF-Reg, and HF-

Seg approaches return a similar focused image with very few differences in terms of pixels

colors. However, as stated before, some times, the metrics can confuse the judgment of

the fusion quality, as shown in the example of Figure 51A. For this pair, CNN and GFF

outperform the proposed approaches in term of metrics except for 𝑄𝑇 𝐸 and SSIM (bar

graph in Figure 51B), but on a visual inspection over Figure 51A, HF-Reg, and HF-Seg

obtained a better quality fusion.
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Table 8 Ű Mean and standard deviation of the objective assessment over the synthetic
multi-focus test dataset.

Metrics CNN DCT+CV DCT GFF IM HF-Reg (Proposed) HF-Seg (Proposed)

𝑄𝑀𝐼 1.1467∘ 0.1474 0.9014∘ 0.1777 0.8827∘ 0.1726 1.0920∘ 0.1695 1.1350∘ 0.1501 1.1828∘ 0.1107 1.1924∘ 0.1156

𝑄𝑇 𝐸 0.4101∘ 0.0412 0.3869∘ 0.0458 0.3810∘ 0.0452 0.4049∘ 0.0417 0.4055∘ 0.0418 0.4129∘ 0.0328 0.4152∘ 0.0352

𝑄𝑁𝐶𝐼𝐸 0.8425∘ 0.0111 0.8275∘ 0.0100 0.8263∘ 0.0092 0.8390∘ 0.0121 0.8418∘ 0.0113 0.8432∘ 0.0087 0.8445∘ 0.0095

𝑄𝐺 0.7499∘ 0.0405 0.6788∘ 0.0620 0.6759∘ 0.0615 0.7526∘ 0.0390 0.7365∘ 0.0447 0.6714∘ 0.0895 0.7182∘ 0.0548

𝑄𝑃 0.7985∘ 0.0816 0.7376∘ 0.0870 0.6959∘ 0.0963 0.7964∘ 0.0811 0.7426∘ 0.0831 0.7414∘ 0.1110 0.7722∘ 0.0938

𝑄𝑆 0.9566∘ 0.0159 0.9411∘ 0.0211 0.9408∘ 0.0210 0.9586∘ 0.0144 0.9440∘ 0.0210 0.9493∘ 0.0174 0.9548∘ 0.0153

𝑄𝐶𝐵 0.8198∘ 0.0383 0.7112∘ 0.0621 0.6838∘ 0.0666 0.8125∘ 0.0376 0.7950∘ 0.0515 0.7449∘ 0.0844 0.7719∘ 0.0572

Source: PEÑA et al. (2019a)

Figure 51 Ű Example of synthetic test example, most methods have (B) higher values in
objective assessment metrics. However, with a visual inspection (A) it can be
observed that the proposed methods show a better quality fusion.

Source A Source B CNN

DCT+CV DCT GFF

IM HF-Reg HF-Seg

A

𝑄MI 𝑄T E 𝑄NCIE 𝑄G 𝑄P 𝑄S 𝑄CB SSIM
0

0.2

0.4

0.6

0.8

1

HF-Seg

HF-Reg

GFF

CNN

B

Source: PEÑA et al. (2019a)

6.3.5 Two Sources Real Dataset

The Lytro two sources dataset was used to evaluate the methods under real multi-focus

environment. This dataset has 20 pairs of multi-focused images captured with the Lytro

camera that uses the Light-Ąeld technology, allowing to expand the depth of Ąeld after the

image was taken. Since the all-in-focus ground truth is not available, only the objective

assessment metrics were used in this experiment. Table 9 shows the same behavior than

in synthetic setting, e.g. , the proposals had higher mean and lower variance for the Ąrst

three metrics.
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Table 9 Ű Mean and standard deviation of the objective assessment over the Lytro multi-
focus two sources dataset.

Metrics CNN DCT+CV DCT GFF IM HF-Reg (Proposed) HF-Seg (Proposed)

𝑄MI 1.1467 ± 0.1107 0.8476 ± 0.1419 0.8347 ± 0.1403 1.0932 ± 0.1209 1.1376 ± 0.1045 1.1538 ± 0.0865 1.1758 ± 0.0968

𝑄T E 0.3994 ± 0.0299 0.3702 ± 0.0380 0.3656 ± 0.0381 0.3969 ± 0.0320 0.3961 ± 0.0287 0.3984 ± 0.0268 0.4020 ± 0.0286

𝑄NCIE 0.8425 ± 0.0080 0.8259 ± 0.0081 0.8251 ± 0.0077 0.8390 ± 0.0081 0.8420 ± 0.0078 0.8423 ± 0.0066 0.8443 ± 0.0076

𝑄G 0.7234 ± 0.0280 0.6939 ± 0.0328 0.6853 ± 0.0353 0.7182 ± 0.0307 0.7159 ± 0.0301 0.6636 ± 0.0420 0.7096 ± 0.0315

𝑄P 0.8488 ± 0.0395 0.8140 ± 0.0490 0.7633 ± 0.0658 0.8465 ± 0.0395 0.8205 ± 0.0472 0.8004 ± 0.0432 0.8387 ± 0.0408

𝑄S 0.9466 ± 0.0124 0.9377 ± 0.0143 0.9367 ± 0.0147 0.9467 ± 0.0123 0.9419 ± 0.0131 0.9418 ± 0.0131 0.9447 ± 0.0130

𝑄CB 0.8058 ± 0.0381 0.7230 ± 0.0395 0.7030 ± 0.0466 0.7929 ± 0.0400 0.7922 ± 0.0408 0.7550 ± 0.0477 0.7898 ± 0.0439

Source: PEÑA et al. (2019a)

There was not a statistically signiĄcant difference in the values of the metrics for the

proposals compared to the CNN and GFF approaches. Some examples of the obtained

all-in-focus images with HF-Reg and HF-Seg are shown in Figure 52.

Figure 52 Ű Example of fusion results with HF-Reg and HF-Seg over the Lytro two sources
real dataset.

Source A Source B HF-Reg HF-Seg

Source: PEÑA et al. (2019a)

However, an advantage of the proposals is that it was not applied any further morpho-

logical operation in the post-processing step. The problem with this kind of operation is

that the size and shape of the structural elements restrict the solution space. An example
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of this is shown in Figure 53 for the "golf" image of the Lytro dataset. A visually compara-

ble result is obtained with CNN, GFF, HF-Reg, and HF-Seg. But, a careful inspection into

the marked area reveals that, contrary to HF-Reg and HF-Seg, the consistency veriĄcation

steps in CNN and GFF causes a wrong fusion in the gap region.

Figure 53 Ű Example of fusion results with different literature methods and the proposed
HF-Reg and HF-Seg methods over the "golf image" of the Lytro 2 dataset.

Source A Source B CNN

DCT+CV DCT GFF

IM HF-Reg HF-Seg

Source: PEÑA et al. (2019a)
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6.3.6 Three Sources Real Dataset

To show the performance of the methods with more than two sources was used the Lytro

three-source real dataset. The dataset has four triplets of multi-focused images also cap-

tured with the Lytro camera. The 3-functional power of fusion functions was computed

in each case. Since the objective assessment metrics are deĄned for two sources, the eval-

uation was done visual and as observed in Figure 54, the methods can correctly obtain

an all-in-focus image. Here, a better reconstruction is obtained with the HF-Seg network

for the keyboard triplet fusion. These results are obtained because the accumulation of

errors during the fusion is worst when a regression is done.

6.3.7 Execution Time

One of the core concerns of MFIF methods is to have low execution time. To better com-

parison, the original implementations proposed by the authors of the compared methods

were used. For a fair evaluation was also included the time reported by the authors of

CNN (LIU et al., 2017) since the available implementation in Matlab is much slower than

the reported. All methods were tested on the same computer with an Intel(R) Core(TM)

i7-6800K 3.40 GHz CPU and 64GB RAM. An Nvidia GeForce GTX 1070 GPU with Py-

Torch deep learning framework was used for HF-Seg and HF-Reg. The time for loading

the data was not considered for all methods. The synthetic multi-focus image dataset with

100 pairs was used for the experiment. Three different image sizes 520 × 520, 260 × 260

and 130× 130 were tested. Table 10 shows the average execution time for the 100 images

pairs. As can be seen, the proposals have high computational efficiency when compared

with the other methods. This computation result makes the methods appropriated for

near real-time applications where the multi-focus fusion is required. As shown in the ex-

periments, this high efficiency does not decrease the performance that is comparable or

superior in most situations to the state-of-the-art.

6.3.8 Applications of HF-Reg

The HF-Reg network can regress an image that does not need to be composed of pixels

of the source if Near post-processing is not considered, obtaining an improved Ąltered

version. An example of this can be observed in Figure 55 for an HF-Reg network trained

during 500 epochs for a multi-focus fusion of noisy inputs. This kind of Ąltering and fusion

was achieved by only applying Gaussian noise with a variable variance to the synthetic

sources, and applying the previously described training protocol with NPS6.
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Figure 54 Ű Example of fusion results over the Lytro three sources real dataset.

Source A

Source B

Source C

HF-Reg

HF-Seg

Source: PEÑA et al. (2019a)
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Table 10 Ű Execution time for each mĄf method with three different image size. Time unit
is second.

Method 520× 520 260× 260 130× 130

CNN GPU (reported in (LIU et al., 2017)) 0.7800 - -

CNN slight GPU (reported in (LIU et al., 2017)) 0.3300 - -

CNN (Matlab) 94.7100 33.8200 12.6821

IM 2.7095 0.8112 0.4870

DCT+CV 0.7648 0.2982 0.1949

GFF 0.1280 0.0373 0.0149

HF-Seg 0.0026 0.0023 0.0022

HF-Reg 0.0023 0.0022 0.0021

Source: PEÑA et al. (2019a)

Figure 55 Ű Example of multi-focus image fusion and Ąltering of noisy sources.

Noisy Source A Noisy Source B HF-Reg

Source: PEÑA et al. (2019a)

6.4 CONCLUSIONS

In this chapter a multi-source architecture for multi-focus image fusion problem was pre-

sented. Supervised learning was attained by using a new multi-focus synthetic data cre-

ation. The Ąrst approach uses a semantic segmentation and the weighted average fusion

rule for obtaining the all-in-focus image. A new pixel-level regression loss function was

proposed obtaining comparable results to a network trained with HF-Seg method, but

with the additional capability of Ąltering the sources. Regression based solution achieved

comparable results to state-of-the-art methods while trained to learn both the activity

level measurement and the fusion rule at once. Regression based solution proved to be

more suitable than traditional L2 and L1 loss functions. Both approaches showed compa-

rable results with literature methods, but with a higher computational efficiency.
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7 CONCLUSIONS

In this work, new loss functions were proposed aiming to improve the performance of

U-NET architecture for pixel-level classiĄcation and regression tasks. For studying the

behavior of the proposals, biomedical image instance segmentation and multi-focus image

fusion tasks were chosen. For all studied tasks, proper loss function modeling improved

the performance of the Ąxed architecture. The subset of models obtained in this research

led to acceptable solutions. Additionally, experimentation suggests the applicability of the

proposed loss functions with any existing pixel-level architecture for improving its per-

formance. This result reinforces the idea that there is no need to further overparametrize

models for Ąnding feasible solutions.

For fully supervised biomedical image segmentation, two new loss functions were devel-

oped on top of a proposed three classes semantic segmentation framework. The proposals

included shape information in the form of weight maps for penalizing more severely the

errors made on underrepresented parts of the image. Even with a small training dataset,

only ten images, the F1 detection rate improvement was of 0.25 when compared with sim-

ilar approaches from the literature. The best segmentation rate was also obtained with

the proposal with F1 values of 0.8860. This performance was attained by using a new

threholded map post-processing.

A new W3 loss function was proposed for accounting weak supervision using near to

zero weights for the background. By further applying a new touching contrast modulation

over the input image and increasing the amount of training data a model with Panoptic

Quality values of 0.79 was founded. W3 detection precision was above 0.90, improving the

performance over a network trained with UNET weight map (0.87). Also, the Watershed-

based post-processing proposed here was able to further enhance segmentation with PQ

improvement of 0.03 over the proposed thresholded maps approach, and 0.24 over Max-

imum A Posteriori. In general, the method proved to be good in separating adjoining

cells with low touching probability between them, and to remove spurious regions in the

probability map. The proposed semantic based methodology also showed improvement

over the detection based approach Mask R-CNN, with a PQ difference of 0.09. Zero-shot

instance segmentation over Meristem and Sepal images was also achieved by using only

twenty-eight TŰcells images for training the network. This is a very encouraging result

considering the inability of deep neural networks to generalize well in domains never seen

before when a small training dataset is used.

A loss function that uses a surrogate for Youden index as a regularization term was in-

troduced for generalization to 3D weakly supervised instance segmentation. The approach

works on four classes with the proposed semantic framework, aiming to obtain better con-

tour adequacy. The proposed regularization term showed to be sufficient for segmentation
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in highly imbalance classes cases. The approach further improved the performance over

the T-cell dataset obtaining PQ values of 0.81 by using the parameter-free post-processing

Maximum A Posteriori. The detection rate was improved to a great extent missing only 9

cells of 138. The quality of obtained segmentation was also improved, and was veriĄed by

visual inspection that in some cases surpassed human annotations. The experiments in

several 2D and 3D biological image datasets showed similar performance, PQ above 0.77.

The analysis of the loss landscape suggest a better differentiation when the proposed 𝐽4

loss function is used. 3D instance segmentation of 1024×1024×508 volume was achieved

in nine minutes which is a very low execution time considering the complexity of the task,

detecting 6890 cells of 7128. Zero-shot segmentation was also attained with Youden based

loss function showing the feasibility of the proposal.

Finally, a new pixel-level loss function for regression problems was proposed. The func-

tion was used in multi-focus image fusion problem, proving to be sufficient for providing

feasible solutions while similar loss functions of the literature were not able to Ąnd. The

particularities of the task, e.g. , input is a pair of images, lead to the creation of a new

bi-variable U-Net, resulting just in a small increase of 0.006% of the number of parame-

ters. The visual inspection showed the beneĄts of the proposed regression approach, being

able to learn the best fusion rule for solving the task. For better comparison of the results

other methods from the literature were used. In particular, the fusion around the contours

of the objects in the scene was more visually pleasant with the regression approach than

with the approaches considered in this study. Supervised training was achieved thanks to

the proposed synthetic data creation that proved to be good enough for generalizing to

real acquired bursts. According to the explored metrics, the results were comparable to

other approaches, but with signiĄcant improvements in processing time (60 times faster

than GFF). Finally, a joint fusion and Ąltering approach proved the feasibility of the

proposal for multi-focus image fusion of noisy sources, that is not possible with current

pixel selection methods.

7.1 LIMITATIONS

In this work it is assumed that exist at least one combination of the weights that can

provide an acceptable solution. However, there is not a guarantee that for any given

architecture this always holds. Instance segmentation methods in this work are limited to

panoptic cases, e.g. disjoint connected components. This means that images with overlap

between instances are segmented assuming an empty intersection. The most common case

of failure in the proposed semantic segmentation based approach is dangling touching

separation that cause merging neighboring connected components. Despite the proven

advantages of proposed multi-focus image fusion approaches, exist a limitation for doing

a proper quantitative analysis. This is related with the difficulties to acquire a real dataset,

that impede using reference metric. Furthermore, current non-reference metrics showed
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to be insufficient to correctly quantify the performance.

7.2 FUTURE WORKS

Several topics may be useful for further investigation as future works to this research. Us-

ing other architectures in combination with proposed loss functions seems to be a promis-

ing path for improving performance over different tasks. Finding new representations for

the output layer is another interesting topic that can lead to generalizing this work for

instance segmentation but considering non-disjoint connected components. Unsupervised

approaches for automatically determination of the best number of classes in instances

segmentation methods could be also examined. Investigating dynamic loss functions that

changes its behavior over time is also an interesting approach to future research. Incorpo-

ration of perceptual terms in the regression loss can be also investigated for learning more

robustly objects gradient. Further noise sensibility analysis for the proposed regression

loss function is also recommended. Applying the proposed pixel-level regression loss for

other kind of image restoration task seems to be also promising.
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