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ABSTRACT

Label noise detection has been widely studied in Machine Learning due to its impor-

tance to improve training data quality. Satisfactory noise detection has been achieved by

adopting an ensemble of classifiers. In this approach, an instance is assigned as misla-

beled if a high proportion of members in the pool misclassifies that instance. Previous

authors have empirically evaluated this approach with results in accuracy, nevertheless,

they mostly assumed that label noise is generated completely at random in a dataset.

This is a strong assumption since there are other types of label noise which are feasible in

practice and can influence noise detection results. This work investigates the performance

of ensemble noise detection in two di�erent noise models: the Noisy at Random (NAR),

in which the probability of label noise depends on the instance class, in comparison to the

Noisy Completely at Random model, in which the probability of label noise is completely

independent. In this setting, we also investigate the e�ect of class distribution on noise

detection performance, since it changes the total noise level observed in a dataset under

the NAR assumption. Further, an evaluation of the ensemble vote threshold is carried

out to contrast with the most common approaches in the literature. Finally, it is shown

in a number of performed experiments that the choice of a noise generation model over

another can lead to distinct results when taking into consideration aspects such as class

imbalance and noise level ratio among di�erent classes.

Keywords: Noise Detection. Label Noise. Noise at Random. Ensemble. Classification Fil-

tering.



RESUMO

A detecção de ruído de dados tem sido amplamente estudada em Aprendizagem de

Máquina devido à sua importância para melhorar a qualidade dos dados de treinamento.

Uma detecção de ruído satisfatória tem sido conseguida através da utilização de um con-

junto de classificadores (ensemble). Nessa abordagem, uma instância é considerada como

rotulada erroneamente se uma alta proporção de classificadores a classificarem incorreta-

mente. Trabalhos anteriores avaliaram empiricamente esta abordagem obtendo resultados

na acurácia. No entanto, a maioria deles, assumem que o ruído de rótulo é gerado comple-

tamente ao acaso em um conjunto de dados. Essa suposição singular pode induzir em erro

ou a resultados incompletos uma vez que existem outros tipos de ruídos de rótulo que são

viáveis na prática e podem influenciar os resultados de detecção. Este trabalho investiga o

desempenho da detecção de ruído levando em consideração o modelo "Noisy at Random"

(NAR), no qual a probabilidade de ruído de rótulo depende da classe da instância, em

comparação ao modelo "Noisy Completely at Random" (NCAR), em que o ruído de rótulo

é totalmente aleatório. Nesse cenário, também investigamos o efeito do desbalanceamento

de classes no desempenho da detecção de ruído, uma vez que essa desproporção altera o

nível total de ruído observado quando há a suposição de NAR. Além disso, uma avaliação

do limiar para a votação do ensemble é realizada para contrastar com as abordagens mais

comuns na literatura. Finalmente, é demonstrado em vários experimentos realizados que

a escolha por um modelo de geração de ruído em detrimento de outro pode levar a resul-

tados distintos considerando-se aspectos como desbalanceamento de classes e proporção

de ruído em cada classe.

Palavras-chaves: Detecção de Ruído. Combinação de Classificadores. Ruído Aleatório.

Ruído de Classe.
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1 INTRODUCTION

Data quality is of great importance for Machine Learning (ML) applications and, in
particular, for classification tasks. Conventionally in these tasks, a training set of labeled
instances is given as input to an ML algorithm, which will acquire useful knowledge to
make predictions for new instances. In practice, real-world datasets frequently contain
irregularities such as incompleteness, noise and data inconsistencies, which can impact
ML performance (HAN; KAMBER; PEI, 2012). In this light, noise detection and filtering
are quite relevant tasks for ML (ZHU; WU, 2004).

According to the literature, noise may occur in both attributes and classes (ZHU;

WU, 2004). This work focuses on the latter problem, in which an unknown proportion of
instances in a dataset are mislabeled due to di�erent reasons. This is a relevant problem
since label noise can harm the identification of true class boundaries in a problem, increase
the chance of overfitting and a�ect learning performance in general (FRENAY; VERLEYSEN,
2014).

Previous works adopted the classification noise filtering approach (BRODLEY; FRIEDL,
1999)(SLUBAN; LAVRA, 2015a)(GUAN et al., 2018) for label noise detection, which is re-
ally widespread in the literature. In this approach, mislabeled instances in a dataset are
identified according to the output results of a classifier or an ensemble of classifiers. For
example, in the majority vote for ensemble noise detection, an instance is marked as mis-
labeled if most classifiers in a pool incorrectly classify the instance. In the consensus vote
for ensemble noise detection, in turn, an instance is considered as noisy if all classifiers in
the pool misclassify it.

In real-world, to evaluate whether an instance from a dataset is noisy or not is usually
necessary the help of a domain specialist, which is not always available. Moreover, the
preprocessing step cost and duration may increase when depending on a specialist judg-
ment. This problem is mitigated when artificial datasets are used, or simulated noise is
injected into a dataset in a controlled way. The validation of noise detection techniques
and the study on how noise influence the learning process is simplified when a systematic
addition of noise is performed (GARCIA et al., 2019).

Injecting label noise usually follows two main approaches: random, in which each
instance has the same probability of having its label exchanged by another one, or in a
pairwise way, in which the majority class examples have their labels modified to the same
label of the second majority class (SAEZ et al., 2015)(GARCIA et al., 2019). Label noise
can be modeled in data in three main ways: (1) Noisy Completely at Random (NCAR),
in which the probability of an instance being noisy is random, (2) Noisy at Random
(NAR), the probability of an instance being noisy depends on its label, and (3) Noisy
not at Random (NNAR), the probability of an instance being noisy depends also on its
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attributes (FRENAY; VERLEYSEN, 2014).
In many previous works (SLUBAN; LAVRA, 2015a) (BRODLEY; FRIEDL, 1999) (SAEZ

et al., 2015) (GARCIA et al., 2019), one type of noise is chosen over another to model the
experiments. Nevertheless, it is unknown how this choice can impact the results. In this
work, it is investigated how noise models can influence the noise detection under di�erent
contexts such as noise level, class imbalance, and noise distribution. It is shown that
di�erent results are achieved depending on the context.

This chapter is structured as follows. In Section 1.1, the main problems and motivation
of this research are presented. In Section 1.2, the goals and contributions are delineated.
The research methodology is described in Section 1.3. Finally, in Section 1.4, it is shown
how this dissertation is organized.

1.1 MOTIVATION AND PROBLEM STATEMENT

Many works on noise detection have investigated and presented noise handling techniques
in a variety of scenarios such as large datasets, imbalanced data, noise in and out bor-
derline examples and di�erent percentage of noise (FRENAY; VERLEYSEN, 2014)(SLUBAN;

LAVRA, 2015b)(ZHU X., 2003)(SAEZ et al., 2015). In order to do so, it is usually followed a
step of noise injection in the research experiments in which a type of noise model is chosen.
For instance, in Sluban, Gamberger e Lavra� (2014), label noise was randomly injected
in dataset (NCAR model) so to measure the performance of the proposed NoiseRank
method. In a di�erent approach, in Saez et al. (2015), label noise was injected according
to each class (NAR model) to measure the SMOTE-IPF approach. On the other hand,
in Bootkrajang (2016), an feature-dependent label noise (NNAR model) was employed to
evaluate the gLR method.

The main focus of these studies has been to improve the performance in classification
or in detecting noise itself. While important results have been achieved in these previ-
ous works, questioning how the choice of one noise model over another can influence the
results, if so, seems to be pertinent. Furthermore, given the well-known and common
problem of imbalanced datasets, in which a standard classifier is biased toward the ma-
jority class due to its representation inside the dataset, it is also important to analyze the
influence of di�erent noise models in this scenario.

Once the noise is generated under di�erent assumptions on how it is distributed in the
instance space (being more or less adequate depending on the application) the performance
of the noise detectors may strongly depend on such noise distributions. For instance, it
may be more di�cult for a human supervisor in some contexts to correctly label instances
in the minority class. The impact of NAR on noise detection techniques may depend on
which class is noisier and how noisy it is. For instance, in imbalanced class problems, an
ensemble noise detector may be very e�ective to detect noise in the majority class since the
ensemble tends to have a better predictive behavior on this class (GALAR A. FERNANDEZ;
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HERRERA, 2012). However, if the noise level in the majority class is not high, the good
quality of detection, in this case, may not be relevant. On the other hand, a fail in detecting
noise in the minority class may be critical.

In addition, notwithstanding that there are several noise handling techniques, ensemble-
based noise filters are widespread in the literature and they generally apply two vot-
ing schemes to identify noisy examples: consensus and majority (BRODLEY; FRIEDL,
1999)(ZHU X., 2003)(SLUBAN; LAVRA, 2015b)(SAEZ et al., 2015)(GARCIA et al., 2019). Use-
ful insights have been attained regarding these two approaches, for instance, the consensus
vote tends to achieve high levels of precision but low recall. The majority vote, in turn,
may achieve high levels of recall depending on the pool diversity (SLUBAN; LAVRA, 2015a).

Nevertheless, few works also investigated the influence of ensemble threshold varia-
tions, i.e., the impact of varying the number of erroneous ensemble predictions used to
identify an instance as noisy. Previous works (KHOSHGOFTAAR; ZHONG; JOSHI, 2005)(SABZE-

VARI; MARTINEZ-MUNOZ; SUAREZ, 2018) showed that selecting adequate values of the
ensemble threshold for noise filtering is superior to using standard filtering at all noise
levels. In this way, noise distribution may also influence the optimal ensemble threshold
and studying NCAR and NAR impact on these conditions may be pertinent.

1.2 OBJECTIVES

In contrast to previous studies, in this work, the influence of distinct label noise models on
ensemble noise detection is investigated. The main objective is to analyze how choosing
one noise model generator over another can influence the results under di�erent contexts
such as class imbalance, noise distribution, ensemble thresholds and percentage of noise
in data.

To that end, the specific objectives were defined in order to answer the following
questions:

• Is noise detection a�ected by the type of noise model assumed?

• Regarding the NAR model: how di�erent ratios of noise distribution influence the
detection (if so)?

• How is detection performance impacted under NCAR and NAR when dealing with
imbalanced datasets?

• Is the majority/consensus always the best vote approach? How varying the ensemble
threshold would impact on noise detection?
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1.3 RESEARCH METHODOLOGY

In order to investigate how noise generation models can influence label noise detection, a
variety of scenarios is created taking into consideration variables such as the amount of
noise in data, noise distribution among classes and class imbalance ratio.

The research is divided into two main parts. First, experiments are run on synthetic
datasets generated properly to produce a more controlled environment on which analysis
is performed and results measured. Later, the experiments are run on real-world datasets
to validate previous findings.

In order to answer the questions raised in previous section, we attack only binary
problems (minority vs majority) applying three di�erent types of noise levels: (1) NCAR;
(2) NAR, by injecting a high proportion of label noise in the majority class; (3) NAR,
by injecting a high proportion of label noise in the minority class. Noise is injected in
balanced and imbalanced data and the ensemble noise filter with the majority vote is
used as the noise detector. Later, di�erent thresholds for ensemble vote is assessed as well.
Analysis and discussion are conducted through graphical analysis on the noise detection
performance using most common measures in the literature.

1.4 ORGANIZATION OF THE DISSERTATION

The remainder of this Dissertation is organized as follows: In Chapter 2, an overview of
label noise detection along with the main Noise Filtering (NF) techniques are presented.
In the same chapter, the ensemble-based filter is detailed and the di�erent types of noise
models are defined.

With the most important concepts established in Chapter 2, the proposed method-
ology is described in Chapter 3. The synthetic and real-world datasets, the ensemble of
algorithms and noise injection approach are also introduced in the chapter.

Experiments are conducted in Chapter 4. The results are then evaluated and discussed
in the chapter according to the research methodology presented previously.

Lastly, the main points presented in this dissertation are summarized in Chapter 5.
The conclusions derived from the experimental results are summarized and this work’s
contributions are outlined. Finally, future works are suggested at the end of the chapter.
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2 LABEL NOISE DETECTION

In Machine Learning, predicting the real classes of some sample is called classification.
For this, a classifier (algorithm) is trained (learning process) so to infer the labels of new
data. What occurs, eventually, is that the training data may be polluted with wrong
values named noise.

The presence of noise in the training dataset can hinder ML models induction with
an increase in processing time, a higher complexity, overfitting of the induced model and
also harm the predictive performance (LORENA; CARVALHO, 2004).

In Zhu e Wu (2004), for supervised learning datasets, two types of noise are distin-
guished: attribute (or feature) and class (or label) noise. The former is present in one or
more features as a result of absent, incorrect or missing values. The latter can be caused
by errors or by the use of wrong information in the labeling process.

According to the literature, the removal of examples with feature noise is not as useful
as label noise detection. This occurs since the values of non-noisy features can be helpful
in the classification process and also because there is only one label while there are many
attributes (FRENAY; VERLEYSEN, 2014). Besides, feature noise can later lead to label
noise. Hence, this work will concentrate on the label noise problems. Hereinafter, label
noise is also referred to as noise.

In theory, noise detection requires a verification step, in which examples marked as
noisy are confirmed by a domain expert before they can be further processed as applied
in Sluban, Gamberger e Lavra� (2014). Since eliminating noisy data is the common ap-
proach, it is important to di�erentiate these data from the noiseless data, which should
be preserved as they have features that represent the knowledge required for an adequate
model induction.

In real-world applications, to evaluate whether an example is noisy or not generally
requires the examination of domain specialists. Nonetheless, this is not always feasible as
they may not be available. Moreover, the need for consulting a specialist tends to increase
the duration and cost of the preprocessing step. This problem is mitigated when artificial
datasets are used, or simulated noise is injected into a dataset in a controlled way. The
study and further validation of noise detection techniques and noise models influence on
the learning process are simplified when a systematic addition of noise is performed.

In order to do so, it is imperative to choose the method by which the noise will
be inserted into a dataset. Usually, three types of models are chosen: NCAR (SLUBAN;

GAMBERGER; LAVRA�, 2014), NAR (SAEZ et al., 2015) and/or NNAR (BOOTKRAJANG,
2016). Whatever the model employed to inject noise to a dataset, it is necessary to corrupt
the examples within a given rate (percentage of noise), and, due to its stochastic nature,
this injection is normally repeated a number of times for each noise level.
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In the next sections, we present the background information necessary to describe
our studies and analysis: in Section 2.1, label noise detection is reviewed and well-known
techniques in the literature are presented. In Section 2.2, the chosen label noise detection
technique for this work is explained. The main di�erent label noise models are outlined
in Section 2.3. Finally, in Section 2.4, the metrics used for noise detection evaluation are
described.

2.1 DETECTION APPROACHES

In the literature, there are several techniques for label noise detection. According to Frenay
e Verleysen (2014), two ways of implementing these techniques are: (1) designing classifiers
that are more robust and noise-tolerant and (2) performing data cleaning by filtering
instances as a preprocessing step.

While the first approach aims to implement robust models by using some available
information related to the noise present in data, the preprocessing step, on the other
hand, usually involves the application of noise filtering techniques to identify the presence
of noise.

Therefore, we may say that the first is an algorithm-level approach, which relies on
algorithms that are naturally robust to label noise, or algorithms that directly model
noisy data during the learning process.

Likewise, the second is a data-level approach, in which noisy data is handled prior to
the training process such as data filter implementations. The separation of noise filtering
and the learning phase has the advantage of avoiding the use of polluted instances in the
classifier building process. In addition, filter approaches are cheap and easy to implement
(FRENAY; VERLEYSEN, 2014). Our work is included in this category.

2.1.1 Algorithm-level Approach

One way of building models to overcome noise problems is by including the noise informa-
tion during the learning process. In Bootkrajang (2016), for example, it is proposed the
generalized robust Logistic Regression (gLR) to tackle not only problems with NCAR and
NAR but also with NNAR noise models. For this, it was employed the probability density
function of the exponential distribution to model noises in a scenario where points that
are closer to the decision boundary have a relatively higher chance of being mislabelled
than those that live further away.

There are some notable model-based approaches proposed early for dealing with
NCAR and NAR noise models such as robust Kernel Fisher Discriminant (LAWRENCE;

SCHöLKOPF, 2001), in which is proposed a method that associates to each example a prob-
ability of the label being noisy, applying an Expectation Maximization (EM) algorithm for
updating the probabilities (later improved in Li et al. (2007) for more complex datasets),
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and robust kernel logistic regression (BOOTKRAJANG; KABAN, 2014) in which the optimal
hyper-parameters for the method are automatically determined using Multiple Kernel
Learning and Bayesian regularisation techniques.

Recently, studies on NNAR problems have gained attention and extensions of previous
works have been proposed to tackle the associated issues. In Bootkrajang (2016), for
instance, a logistic regression classifier employing a noise model based on a mixture of
Gaussians is proposed.

Another approach consists in modifying the learning algorithm to reduce the influence
of label noise. In Biggio, Nelson e Laskov (2011), for example, a model is proposed (Label
Noise robust SVMs) for the analysis of label noise in support vector learning in which it
is developed a modification of the SVM that indirectly compensates for the noise present
in data by correcting the kernel matrix of SVM with a specially structured matrix based
on the information regarding the level of noise in data.

The aforementioned approaches directly model label noise during the learning process.
Although the advantage of this approach is to use prior knowledge regarding a noise
model and its consequences (FRENAY; VERLEYSEN, 2014), they increase the complexity
of learning algorithms and can lead to overfitting, because of the additional parameters
of the training data model.

Some approaches are naturally tolerant to noise and this can be used as a benefit.
Ensemble methods like bagging have the diversity increased in the presence of noise what
help to cope with mislabeled examples. The Decision Tree (DT) pruning process is also
more robust to noisy data as it has been shown that this technique decreases the influence
of label noise once it prevents data overfitting (ABELLÁN; MASEGOSA, 2010).

2.1.2 Data-level Approach

Another way of overcoming the noise problem is to improve the quality of training data
before using it in the classification process. This improvement is accomplished through
the application of filtering techniques that clean data by removing possible noises. Upon
completion of the filtering step, which delivers a noiseless dataset, the training data is
ready to be used.

In this case, noisy labels are detected and dealt in a preprocessing step and mislabeled
instances can either be relabeled or simply removed (Garcia; Lorena; Carvalho, 2012). The
general procedure is depicted in Figure 1.

Noisy
data

Noise
Filtering Cleaned

data

Learning
algorithm

Figure 1 – General procedure for improving data quality applying noise filtering (FRENAY;
VERLEYSEN, 2014).
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Various studies have showed that using class NF techniques can lead to a better
classification performance and also reduce classifiers complexity (Garcia; Lorena; Carvalho,
2012)(SLUBAN; GAMBERGER; LAVRA�, 2014) (SAEZ et al., 2015). For this, there are, in the
literature, many di�erent NF approaches, i.e, di�erent procedures are followed to decide
whether a certain information should be treated as noise or not.

NF can be performed, for example, by using complexity measures, in which instances
are removed when the values exceed a predefined threshold (SUN et al., 2007) (SMITH;

MARTINEZ; GIRAUD-CARRIER, 2014); using the prediction of a classifier or an ensemble of
classifiers, in which instances are removed when a certain number of algorithms misclas-
sifies them (YUAN et al., 2018); partitioning approaches for removing mislabeled instances
for large datasets (ZHU X., 2003)(GARCIA-GIL et al., 2019); filtering noisy instances by ver-
ifying the impact of the removal on learning process (MALOSSINI; BLANZIERI; NG, 2006);
using k-NN algorithms to remove instances that are distant from the ones of same class
(WILSON; MARTINEZ, 2000), among others.

The highlighted NF in the literature are following summarized:

• Edited Nearest Neighbor (ENN) (KANJ et al., 2016). This algorithm eliminates in-
stances whose class does not match the majority of its k-nearest neighbors.

• Classification Filter (CF) (GAMBERGER et al., 1999). The training dataset is divided
into n subsets. A set of classifiers is trained based on the union of any n ≠ 1 sub-
sets. The examples misclassified in the remaining subset are then removed from the
training dataset.

• Ensemble Filter (EF) (SLUBAN; LAVRA, 2015a)(YUAN et al., 2018). The training
dataset is classified using n-fold cross-validation with various di�erent classifiers.
Then, a vote combination is applied (usually consensus or majority) to decide which
examples will be eliminated.

• Iterative-Partitioning Filter (IPF) (Khoshgoftaar; Rebours, 2004). Noisy instances through
multiple iterations are removed. In each iteration, the training dataset is divided
into n subsets, and a DT is built over each of these subsets to evaluate all the
instances. Then, the misclassified instances are removed (using the consensus or
majority voting scheme), and a new iteration is started.

• Synthetic Minority Over-sampling Technique (SMOTE)-IPF (SAEZ et al., 2015). Syn-
thetic Minority Over-sampling Technique is combined with the IPF approach for
dealing with noisy examples in imbalanced datasets.

• High Agreement Random Forest (HARF) (SLUBAN; GAMBERGER; LAVRA�, 2014).
It uses Random Forest (RF) classifiers for noise identification. HARF considers the
rate of disagreement in the predictions from the individual trees in the forest to



25

detect the noisy examples: if this rate is relatively high, the example is considered
noisy; otherwise, it is labeled as clean.

• Saturation Filter (SF) (GAMBERGER; LAVRA�, 1997)(SLUBAN; GAMBERGER; LAVRA�,
2014). It is is based on the observation that the elimination of noisy examples re-
duces the Complexity of the Least Correct Hypothesis (CLCH) value of the training
set.

• Cross-validated Committees Filter (CVCF) (VERBAETEN; ASSCHE, 2003). Induces
classifiers in a cross-validation strategy. The number of times an example is marked
as noisy reflects its reliability. If the example is marked as noisy in most of the
cross-validation rounds, CVCF classifies the example as noisy.

In this work, the ensemble-based noise filtering is employed in the experiments. It
applies the prediction results through an ensemble of classifiers which has been used
in many related works (SLUBAN; LAVRA, 2015a)(BRODLEY; FRIEDL, 1999)(SAEZ et al.,
2015)(YUAN et al., 2018). In the following section, we will further discuss this approach.

2.2 ENSEMBLE-BASED FILTERING

Label noise can be detected from the prediction of a classifier or an ensemble of classifiers.
The idea is to remove instances that are misclassified by the algorithm(s), i.e, instances
which observed classes are di�erent from the true classes. This approach has been widely
chosen in early and recent works (BRODLEY; FRIEDL, 1999)(ZHU X., 2003)(VERBAETEN;

ASSCHE, 2003) (SLUBAN; LAVRA, 2015b)(SLUBAN; GAMBERGER; LAVRA�, 2014)(SAEZ et

al., 2015)(YUAN et al., 2018)(GUAN et al., 2018) so to overcome the problem of using a
single classifier.

Using only one classifier for the noise filter brings the risk of removing too many
instances. A solution is to combine the predictions of a set of di�erent algorithms (FRENAY;

VERLEYSEN, 2014). This approach improves the noise detector, once that an instance is
likely to have been incorrectly labeled if distinct classifiers disagree on their predictions
for the instance.

The ensemble noise filtering applies the k-fold cross-validation, i.e, in k repetitions,
k-1 folds of the dataset are used for training each algorithm in the ensemble, and the
remaining fold is used for validation. Then, all instances are classified by all algorithms
in the pool.

There are di�erent techniques for combining the results of the predictions. The most
common are consensus and majority vote (GUAN et al., 2018)(SLUBAN; LAVRA, 2015a)(YUAN

et al., 2018). Whereas majority vote classifies an instance as incorrectly labeled if a ma-
jority of the algorithms in the pool misclassifies it, the consensus vote requires that all
classifiers have misclassified the instance.
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The two vote techniques produce di�erent results. As consensus requires a higher
agreement of classifiers, it tends to remove a few lines of the sample. On the other hand,
the majority vote may throw out too many instances. Nevertheless, few works have also
investigated the influence of ensemble threshold variations, i.e., the influence on noise
detection when varying the number of erroneous ensemble predictions used to identify an
instance as noisy. Khoshgoftaar, Zhong e Joshi (2005) and Sabzevari, Martinez-Munoz
e Suarez (2018) showed, for example, that selecting adequate values of the ensemble
threshold for noise filtering is superior to using standard filtering at all noise levels.

In this work, a variation of the ensemble threshold is applied so to analyze the impact
of choosing one approach over another, besides checking if any specific threshold would
maximize the results in a certain context.

2.3 NOISE MODELS

Broadly speaking, class label noise can be classified into two types: random and non-
random noise. The random noise occurs independently of the input features and its prob-
ability is assumed to be class-conditional and equally shared among examples of the same
class. On the other hand, a non-random noise is a noise which is influenced by the in-
put features and its probability is not necessarily equal to examples of the same class
(BOOTKRAJANG, 2016).

Label noise can be generated due to many reasons such as low reliability of human
experts during labeling, incomplete information, communication problems, among others
(SLUBAN; LAVRA, 2015b).

In Frenay e Verleysen (2014), the authors provided a taxonomy of label noise models,
which reflects the distribution of noisy instances in a dataset. The three models are shown
in Figure 2. Let’s considered X the vector of features, Y the true class, Ŷ the observed
label and E a binary variable telling if a labeling error occurred. Each model has a di�erent
assumption on how noise is generated:

X Ŷ

Y E

(a)

X Ŷ

Y E

(b)

X Ŷ

Y E

(c)

Figure 2 – Statistical taxonomy of label noise according to (FRENAY; VERLEYSEN, 2014).
(a) NCAR, (b) NAR, and (c) NNAR. X denotes the vector of features, Y is the
true class, Ŷ is the observed label, and E is a binary variable telling whether
a labeling error occurred. Arrows report statistical dependencies.

1. Noisy Completely at Random (NCAR): the occurrence of a mislabeled instance is in-
dependent on the instance’s attributes and class. Mislabeled instances are uniformly
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present across the instance space. In a binary classification problem, for example,
there will exist the same proportion of mislabeled instances in both classes. In other
words, as shown in Figure 2a, the occurrence of an error E is independent of the
other random variables, including the true class itself (Y ). For this model, the mis-
labeled instance probability is given by pe = P (E = 1) = P (Y ”= Ŷ).

2. Noisy at Random (NAR): it is assumed that the probability of labeling errors de-
pends on the instance class although it is not dependent on instance’s attributes.
Once mislabeling is conditional to instance classes, it allows us to model asym-
metric label noise, i.e., when instances from certain classes are more prone to be
mislabeled. This model could be applied, for example, to simulate mislabelling clas-
sification that is often verified in medical case–control studies where the misclassifi-
cation of disease outcome may be unrelated to risk factor exposure (non-di�erential)
(GILBERT et al., 2016). As shown in Figure 2b, E is still independent of X but it is
conditioned by Y. For this model, the mislabeled instance probability is given by
pe = P (E = 1) = q

yœY P (Y = y)P (E = 1|Y = y).

3. Noisy not at Random (NNAR): the probability of an error occurrence depends
not only on the instance class but also on the instance attributes. In this case, for
example, samples are more likely to be mislabeled when they are similar to instances
of another class or when they are located in certain regions of the instance space.
By applying this model, it is possible to simulate mislabeling near classification
boundaries or in low density regions, it also can be applied for medical case-control
studies where the misclassification of disease outcome may be related to risk factor
exposure (di�erential) (GILBERT et al., 2016). As can be seen in Figure 2c, this is a
more complex model, where E depends on both X and Y, i.e., labeling errors are
more likely for certain classes and in certain regions of the X space.

It is usually quite di�cult to identify the kind of noise present in a dataset without
any background knowledge. Nevertheless, it is important to evaluate how sensitive noise
detection techniques are to the noise distribution in a dataset. In this work, analysis
regarding the NAR and NCAR models were performed in di�erent scenarios.

2.4 PERFORMANCE MEASURES

Most experiments in the literature assess the e�ciency of methods in detecting noise
regarding accuracy (FRENAY; VERLEYSEN, 2014). A basic measure to evaluate the per-
formance of noise detection is precision, which means how many instances the detector
correctly identified as noisy among all instances identified as noisy by the detector:

Precision = number of noisy cases correctly identified
number of all noisy cases identified
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In addition to the precision, another useful measure is recall, which calculates how
many instances the detector correctly identified as noisy among all the noisy instances
inserted into the dataset:

Recall = number of noisy cases correctly identified
number of all noisy cases in dataset

Finally, a measure that trades o� precision versus recall is the F-score, which is the
weighted harmonic mean of precision and recall:

F-score = — ◊ Precision ◊ Recall

Precision + Recall

(2.1)

where —

2 = 1≠–
– , with – œ [0, 1] and —

2 œ [0, Œ].
By setting the — parameter, it is possible to assign more importance to either precision

or recall in the calculation of the F-score. In this work, the standard F-score (also referred
to F1score, — = 1 and – = 1/2 ) was used. It equally weights precision and recall.

2.5 CHAPTER REMARKS

In this chapter, an overall view of the main approaches of dealing with label noise problems
was presented. In Section 2.1, the techniques were categorized according to their nature
of implementation in two ways: algorithm-level approach, in which noise is dealt by adap-
tation of a classifier, and data-level approach, in which noise is dealt in a preprocessing
step and is classifier-independent.

Well-known NF techniques were briefly described and the ensemble-based filtering
was further discussed in Section 2.2 once this work focuses on an EF approach. The most
common ensemble voting combinations, consensus and majority, were described along
with their advantages and disadvantages. Precision, Recal, and F-score were defined as
they will be applied to assess the EF performance.

Random and non-random noise types were defined in Section 2.3 and NCAR, a non-
class-conditional model, and NAR, a class-conditional model, were di�erentiated, once
both are random noise and will be employed in the experiments detailed in the proposed
methodology presented in Chapter 3.
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3 PROPOSED METHODOLOGY

This chapter provides details of the experimental setup adopted in our work to evaluate
the ensemble noise detectors under NCAR and NAR models. In Section 3.1, the algorithms
for the ensemble filter and the vote scheme approach are presented. In Section 3.2, the
synthetic and real-world datasets are presented and the methodology for data generation
with specific settings are described. The procedure for noise injection regarding the noise
model is explained in Section 3.3. Lastly, the input variables and the experimental protocol
are detailed in Section 3.4.

3.1 ENSEMBLE

The noise detection ensemble used in the experiments was generated from 10 algorithms as
found in related work (SLUBAN; LAVRA, 2015a). They are from di�erent families: decision
trees, Bayesian models, neural networks, support vector machines, random forest, nearest
neighbors and ruled-based methods. All the classifiers are implemented in R from specific
packages as shown in Table 1.

Table 1 – Learning algorithms for classification noise filtering.

Algorithm R Package
CN2 (rule learner) RoughSets
kNN (nearest neighbor) class
Naive Bayes naivebayes
Random forest randomForest
SVM (RBF Kernel) e1071
J48 RWeka
JRip RWeka
Multiplayer perceptron RSNNS
Decision tree party
SMO (linear Kernel) RWeka

All algorithms’ parameters used in the experiments were the default ones suggested
in the R packages.

To combine the results from the ensemble, we employed di�erent thresholds L of
the ensemble, i.e, the proportion of algorithms used to make a decision regarding the
classification of an instance. For this study, we made L varies from 10% to 100%.
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In this way, when L = 50%, the combination corresponds to the majority vote, i.e,
if more than half (50% plus 1) of the votes from the ensemble predict a label di�erent
from the true class for an instance, it is considered mislabeled (noise). Likewise, when
L = 100%, the combination corresponds to the consensus vote, i.e, if all votes from the
ensemble predict a label di�erent from the true class for an instance, it is considered
mislabeled.

Our goal is to analyze and check if there is a threshold that would maximize the noise
detection under a specific context, i.e, taking into consideration the class imbalance ratio,
noise distribution, and percentage of total noise.

3.2 DATA

Quantitative assessment of noise detection methods requires knowing which are the noisy
instances beforehand. In real-world datasets, this is achieved either by expert labeling or
by randomly injecting artificial noise into a dataset. While the former approach is not
feasible for an extensive evaluation, the latter still has the problem of uncertainty about
which instances are (originally) noisy when dealing with real-world datasets.

In order to handle this problem we divided our analysis into two parts: first, we
performed several experiments on a set of synthetic datasets with a more controlled envi-
ronment, and, then, we ran the experiments on a set of real-world datasets so to confirm
our findings.

3.2.1 Synthetic data

To address the problem of quantitative assessment of noise detection in real-world datasets
and still have reliable results, we first performed an analysis on ten (10) synthetic datasets.
They are listed in Table 3 and illustrated in Figure 31.

In alignment with other researchers, we chose binary classification problems (the mi-
nority vs the majority class) with instances randomly distributed in the two-dimensional
space. Following related works, we decided to use specific artificial datasets in order to
have a more controlled environment.

The P2 dataset was generated according to Valentini (2005), and the remain datasets
were generated with Mlbench2. All synthetic data employed in the experiments are binary
(two-classes) problems.

We initially adopted the P2 dataset, where each class is defined in multiple decision
regions determined by polynomial and trigonometric functions (VALENTINI, 2005). P2 is
a convenient synthetic dataset for evaluation due to its complex and multimodal decision
boundary. The P2 problem is illustrated in Figure 3a.

1 Only bi-dimensional datasets are illustrated
2 Mlbench package: rdocumentation.org/packages/mlbench
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Table 3 – Synthetic data information.

Dataset Setting
P2 P2(n)

2dnormals 2dnormals(n, cl=2)

circle circle(n, d=2)
circle(n, d=5)

ringnorm ringnorm(n, d=2)
ringnorm(n, d=5)

spirals

spirals(n)
spirals(n, cycles=2)
spirals(n, cycles=4)

cassini cassini(n)

Figure 3 – Class distribution of synthetic data. a) P2 problem, b) 2dnormals(n,cl=2), c)
cassini(n), d) spirals(n,cycles=4), e) circle(n, d=2), and f) ringnorm(n, d=2).

Afterward, we also included other binary synthetic datasets from the Mlbench Package
(which is available in R libraries) using di�erent input parameters (Table 3) to generate
more data. In Figures 3b-f, it is possible to check the class distribution of datasets and
their complexity. Some graphs for spirals datasets are omitted as the general behavior
can be seen in Figure 3d. The circle(n,d=5) and ringnorm(n,d=5) are not bi-dimensional
datasets, hence they are not presented in Figure 3.



32

An imbalance ratio generation step was included in the process in order to evaluate the
impact of class imbalance. In this way, three di�erent configurations of class distribution
were created for each dataset. They are described as follows:

• Configuration 1: it was generated balanced data, i.e., data with equal instance
distribution per class (50% for class 1 and 50% for class 2).

• Configuration 2: it was generated imbalanced data with uneven distribution of
30% of instances for class 1 and 70% for class 2.

• Configuration 3: it was generated imbalanced data with uneven distribution of
20% of instances for class 1 and 80% for class 2.

Although class 1 was the minority class in aforementioned cases, we highlight that the
experiments were also performed by adopting class 2 as the minority class in turn. The
results were practically the same compared to the ones obtained when class 1 was adopted
as the minority class as it will be discussed later. In fact, both classes are comparable in
terms of classification di�culty as can be observed in Figure 3.

3.2.2 Real-world data

The second part of the experiments was carried out on 20 (twenty) binary real-world
dataset available at the KEEL-dataset repository (ALCALA-FDEZ A. FERNANDEZ, 2011),
UCI repository (DUA; TANISKIDOU, 2017) and Open Media Library (VANSCHOREN et al.,
2013). Some multi-class datasets are modified to obtain two-class imbalanced problems,
defining the joint of one or more classes as positive and the remainder as negative. The
list of datasets is presented in Table 4.

Unlike the process for synthetic data generation, when dealing with real-world data,
we must be aware of some issues. First, it is likely that some datasets already contain
noisy instances. Second, most of the real data present a certain original class Imbalance
Ratio (IR).

In order to tackle the aforementioned issues, in our experiments, we applied a prepro-
cessing step for data cleaning and also for imbalance ratio generation. While the former
aim to remove possible existing noises, the latter aim to adequate real-world data imbal-
ance ratio to simplify results comparison with synthetic data.
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Table 4 – Real-world data information, where Attr, Inst, and Rem denote, respectively,
the quantity of attributes, instances, and removed instances.

Dataset Attr. Original After cleaning
IR Inst. IR Inst. Rem.(%)

arcene 10001 44:56 200 44:56 199 0.50
breast-c-w 10 34:66 699 35:65 673 3.72
column2C 7 32:68 310 32:68 308 0.65
credit 16 44:56 690 45:55 644 6.67
cylinder-bands 40 42:58 540 36:64 276 48.89
diabetes 9 35:65 768 31:69 720 6.25
eeg-eye-state 15 45:55 14980 45:55 14979 0.01
glass0 10 33:67 214 33:67 214 0.00
glass1 10 36:64 214 35:65 212 0.93
heart-c 14 46:54 303 45:55 289 4.62
heart-statlog 14 44:56 270 44:56 262 2.96
hill-valley 101 50:50 1212 48:52 1184 2.31
ionosphere 35 36:64 351 35:65 345 1.71
kr-vs-kp 37 48:52 3196 48:52 3194 0.06
mushroom 23 48:52 8124 38:62 5644 30.53
pima 9 35:65 768 32:68 732 4.69
sonar 61 47:53 208 46:54 206 0.96
steel-plates-fault 34 35:65 1941 35:65 1941 0.00
tic-tac-toe 10 35:65 958 35:65 958 0.00
voting 17 39:61 435 47:53 228 47.59

Data
cleaningOriginal data

Data
generation

Noise
injection New data

Figure 4 – Data generation process.
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In this way, we chose datasets with low classes disparities as can be observed in Table 4.
This made possible to generate new data from the original one with the same IR described
in the previous section. The process of data generation for each dataset is summarized in
Figure 4, and the details are described below:

• Data cleaning: A 10-fold classification was applied and the consensus vote was
used to remove instances more likely to be noisy, i.e., instances misclassified by all
classifiers were removed.

• Data generation: For generating data with new specific imbalance ratio, an un-
dersampling process was applied as general illustrated in Figure 5. New data was
generated for three di�erent IR configurations: (1) 50:50, (2) 30:70, and (3) 20:80
as following described:

– Configuration 1: it was generated balanced data, i.e., data with equal in-
stance distribution per class (50% for class 1 and 50% for class 2). To do so, it
was performed an undersampling process on the majority class so that instances
were removed until reaching a balanced ratio. Taking eeg-eye-state dataset as
an example, which has 8239 instances in the majority class and 6741 in the
minority class, it would have 1498 random instances removed from majority
label. In this case, the final dataset would have a total of 13482 rows with 6741
each class.

– Configuration 2: it was generated imbalanced data with uneven distribution
of 30% of instances for class 1 and 70% for class 2. To do so, it was applied
a random undersampling process on the minority class. For the eeg-eye-state
dataset example, the final minority class would have 3531 instances, corre-
sponding to 30% of data, while the majority class would have 6741 instances,
corresponding to 70% of data.

– Configuration 3: it was generated imbalanced data with uneven distribution
of 20% of instances for class 1 and 80% for class 2. Again, to do so, it was
applied a random undersampling process on the minority class. For the eeg-
eye-state dataset example, the final minority class would have 2060 instances,
corresponding to 20% of data, while the majority class would have 6741 in-
stances, corresponding to 70% of data.
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Figure 5 – Imbalance ratio generation for real data.

• Noise injection: The process for injecting noise was the same applied on synthetic
datasets and it is described in Section 3.3.

3.3 NOISE INJECTION

For noise detection evaluation, random label noise was injected in the testing set by
adopting the NAR, and the NCAR models with distinct Noise levels in dataset (p). In
this works, p assumed 4 (four) di�erent values: 5%, 10%, 15%, and 20%, which correspond
to the proportion of noisy instances in the testing set. This was done by changing the
classes labels in a certain number of instances randomly selected.

For NAR model, noise was inserted to achieve a certain Noise Ratio (M) of noisy
instances per class:

• M = 9/1: for every nine noisy instances in minority class, there is one noisy instance
in majority class. It means that it is more di�cult to label instances in the minority
class. This chosen ratio corresponds to NAR (9:1) on results discussion.

• M = 1/9: in turn, for each noisy instance in minority class, there are nine noisy
instances in majority class. It means that the majority class is more prone to label
noise. This chosen ratio corresponds to NAR (1:9) on results discussion.

This ratio was chosen in such a way as to have a great discrepancy between the noises
in each class so as to be better analyzed. The exact number of noisy instances of each
class is derived according to both the desired noise level p and the ratio M . Let dn be the
number of instances in the testing set. Let p be the desired noise level in the data test.
Let n1 and n2 be the number of noisy instances in each class. Then n1 + n2 = p ◊ dn and
M = n1/n2. In order to obtain such constraints, n1 and n2 are defined according to the
following equations:

n1 = M ◊ (dn ◊ p)
M + 1 (3.1)
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n2 = dn ◊ p

M + 1 (3.2)

For instance, suppose that we have dn = 1000 instances in the testing set, that the
desired noise level is p = 0.10 (100 noisy instances), and that we are going to inject noise
with the three di�erent models explored in this work: (1) NCAR (M = 1), (2) NAR 9:1
(M = 9), and (3) NAR 1:9 (M = 1/9).

By adopting the above equations for the first example, NCAR (M = 1), we would find
n1 = 50 and n2 = 50. In this case, the number of noisy instances injected in the testing
set are equal for both classes. This example is illustrated in Figure 6. Notice that NCAR
is a special case of NAR.

Figure 6 – Noise injection with NCAR model in data with di�erent imbalance ratios.

Likewise, when applying previous equations for the second example, NAR 9:1 (M = 9),
we would find n1 = 90 (90 noisy instances in minority class) and n2 = 10 (10 noisy
instances in majority class). In this case, the number of noisy instances injected in the
testing set are greater for the minority class. This example is illustrated in Figure 7.

Figure 7 – Noise injection with NAR 9:1 model - grater noise ratio in minority class - in
data with di�erent imbalance ratios.

Lastly, for the third example, NAR 1:9 (M = 1/9), we would find n1 = 10 (10 noisy
instances in the minority class) and n2 = 90 (90 noisy instances in the majority class) as
results of the previous equations. In this case, the number of noisy instances injected in
the testing set are greater for the majority class as illustrated in Figure 8.
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Figure 8 – Noise injection with NAR 1:9 model - grater noise ratio in majority class - in
data with di�erent imbalance ratios.

3.4 EXPERIMENTAL PROTOCOL

In this section, it is described the steps followed so to have the outputs necessary to
perform the analysis discussed in Sections 4.1 and 4.2.

The combination of the main input values used in the experiments is presented in
Table 6. The main input parameters are: class imbalance ratio (IR), total percentage of
noisy instances in the data test (p), and noise ratio (M ).

Table 6 – Experiment setup

Imbalance Ratio (IR) Total percentage of Noise Ratio (M)
Class 1 : Class 2 noise in testing set (p) Class 1 : Class 2

50 : 50 5% 10% 15% 20%
NCAR
NAR (1 : 9)
NAR (9 : 1)

30 : 70 5% 10% 15% 20%
NCAR
NAR (1 : 9)
NAR (9 : 1)

20 : 80 5% 10% 15% 20%
NCAR
NAR (1 : 9)
NAR (9 : 1)
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The general process followed according to steps described in previous sections is pre-
sented in Figure 9.

Data
source

Real

Synthetic Select
function

Generate IR by
defining data size

Generate IR
by undersampling

Clean
data

Split data

Testing

Training Train
algorithms

Inject
noise

Select vote
threshold

Ensemble
prediction

Evaluation

Figure 9 – General experimental protocol.

The general flow were executed for each input combination shown in Table 6. As can
be observed, the only di�erence between synthetic and real data analysis is the data
generation approach.

For a more detail analysis and protocol replication, the process is also outlined in
Algorithm 1 and Algorithm 2 for synthetic and real data respectively. Each one uses
specific parameters as input to generate a certain scenario for analysis. The algorithms
use the following taxonomy:

• IR: corresponds to one of the three class imbalance ratio shown in Table 6.

• p: corresponds to one of the four percentage of noise (to be injected in testing set)
shown in Table 6.

• M : corresponds to one of the three noise ratio (noise distribution between classes)
shown in Table 6.

• dataset: corresponds to each dataset listed in Sections 3.2.1 and 3.2.2 for synthetic
and real data respectively.

• number_rows: defines the total of instances in synthetic datasets. For this work,
number_rows had a fixed value of 2000.

• threshold(L): assumes the values described in Section 3.1.

• classifiers: are the classifiers presented in Section 3.1.

The procedure outlined in Algorithm 1 is detailed as follows:

Line 1 A dataset is generated according to one of the datasets in Table 3, the desired
number of rows (instances), and the class imbalance ratio.
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Algorithm 1 Experimental procedure for synthetic data

Input: IR, M, p, dataset, classifiers, threshold (L)
Output: performance measures

1: dat Ω generateData(dataset, number_rows, IR)
2: training, testing Ω split(dat, 70%, 30%) {Split data in training and testing}
3: testing_n Ω injectNoise(testing, M, p)
4: for c in classifiers do
5: model Ω train(training, c)
6: predictions Ω classify(model, testing_n)
7: end for
8: ensemble_prediction Ω voting(predictions, L)
9: measures Ω calculate(ensemble_prediction)

Line 2 The generated dataset is split into training (70%) and testing (30%) data.

Line 3 The percentage of noise p is injected into the data test according to the noise ratio
M.

Line 5 Each classifier is trained with the training data.

Line 6 Then, each classifier is used to classify the testing data.

Line 8 With all predictions, an ensemble vote is applied using a proportion L of algorithms.

Line 9 F-score, precision, and recall are then calculated.

Algorithm 2 Experimental procedure for real data

Input: IR, M, p dataset, classifiers, threshold (L)
Output: performance measures

1: clean Ω dataCleasing(dataset, classifiers)
2: dat Ω generateData(clean, IR)
3: training, testing Ω split(dat, 70%, 30%) {Split data in training and testing}
4: testing_n Ω injectNoise(testing, M, p)
5: for c in classifiers do
6: model Ω train(training, c)
7: predictions Ω classify(model, testing_n)
8: end for
9: ensemble_prediction Ω voting(predictions, L)

10: measures Ω calculate(ensemble_prediction)

The procedure outlined in Algorithm 2 is detailed as follows:

Line 1 A data cleaning process using all classifiers (consensus vote) is applied to remove
possible noise from data (Table 4).
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Line 2 A new dataset is generated from cleaned data with the desired class imbalance ratio
(as described in Section 3.2.2).

Line 3 The generated dataset is split into training (70%) and testing (30%) data.

Line 4 The percentage of noise p is injected into the data test according to the noise ratio
M.

Line 6 Each classifier is trained with the training data.

Line 7 Then, each classifier is used to classify the testing data.

Line 9 With all predictions, an ensemble vote is applied using a proportion L of algorithms.

Line 10 F-score, precision, and recall are then calculated.

Due to the stochastic nature of noise injection, this insertion is normally repeated
a number of times for each noise level (SLUBAN; GAMBERGER; LAVRA�, 2014) (ZHU X.,
2003). In this work, for each combination of parameters, the procedures in Algorithm 1
and 2 was repeated 100 times and the ensemble noise detector was evaluated in terms of
the average results of Precision, Recall, and F1-Measure.
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4 RESULTS

In this chapter, the findings from the experiments described in Section 3.4 are presented
and examined. The discussion is divided into two main parts: the results on synthetic
data in Section 4.1, and the results on real data in Section 4.2.

The analysis is performed considering the metrics presented in Section 2.4 for assessing
the ensemble filter (Section 2.2) performance under following noise models: NCAR and
NAR (Section 2.3). The behavior examination of noise detection is conducted applying a
di�erent percentage of noise (Section 3.3) in several datasets with a variation of the class
imbalance ratio (Section 3.2). Lastly, an analysis of the impact on noise detection when
changing the ensemble vote threshold (Section 3.1) is performed.

The experiments were performed on all datasets for all combination of parameters
as described in Section 3.4. The results for each one can be found in Appendix A for
synthetic data and in Appendix B for real data.

4.1 RESULTS ON SYNTHETIC DATA

The results shown in this section were obtained from the steps outlined in Algorithm 1.
To facilitate the analysis, the discussion is carried out putting into perspective each input
parameter that resulted in a specific scenario. In this way, we first examine the noise
detection under balanced and imbalanced datasets in Section 4.1.1. Then, we explore the
impact of di�erent noise level per class in Section 4.1.2. Lastly, in Section 4.1.3, we analyze
noise detection under di�erent noise ensemble thresholds.

4.1.1 Balanced vs Imbalanced Datasets

As discussed earlier, we generated datasets and repeatedly injected random noise into
them. We analyzed the experiments by applying three di�erent noise distributions in
order to investigate how NCAR and NAR have an influence on the results. The outcome
is shown in Figures 10 and 11. They present the F-score performance vs percentage of
noise p in data testing. In the columns, it is possible to observe the imbalance ratios,
while, in the rows, each dataset can be checked.
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Figure 10 – F-score performance for majority vote on 2dnormals(n,cl=2), P2, and
cassini(n) datasets.

Observing the first column (IR 50:50) for each dataset, i.e, when dealing with balanced
datasets, we can see, from the overlapping lines, that NCAR and NAR have practically
the same impact on noise detection. There is no significant di�erence in noise detection
performance. From our experiments with synthetic data, only the spirals(n,cycles=2)
dataset (Figure 30) had partially a di�erent result.

In light of this, it is possible to infer that the amount of noise in a class with regards
to the other class is not relevant in the scenario of balanced classes. In fact, if we take into
consideration that algorithms are equally trained regarding the two classes, there will be
no tendency in mislabeling one over another.

Nevertheless, it is known that most real-world datasets are more likely to have classes
unevenly distributed. Imbalanced datasets are usually challenging since instances in the
minority group are, in general, prone to be misclassified. The performance of ensemble
noise detectors may be a�ected as well. This leads us to another scenario where we in-
vestigated the behavior of NCAR and NAR in imbalanced datasets. The results can be
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verified in the second and third columns of Figures 10 and 11. In the second column (IR
of 30:70), we have datasets with 30% of instances in the minority class, whereas, in the
third column (IR of 20:80), the datasets with 20% of instances in minority class.

Figure 11 – F-score performance for majority vote on circle(n,d=5), ringnorm(n,d=5),
and spirals(n,cycles=4) datasets.

Unlike the observed results for balanced class distributions, ensemble detection can
have di�erent behaviors considering both NCAR and NAR models when dealing with
imbalanced datasets. This can be easily checked by visually comparing the F-score lines
for an IR of 50:50 in contrast with the other IRs.

For most datasets, class imbalance harmed the performance of noise detection under
the NCAR model. To better access this behavior, the F-score variation was calculate
and summarized in Table 8. This variation was obtained by calculating the di�erence
between the F-score in imbalanced data (IR of 20:80) and the F-score in balanced data (IR
50:50). In other words, in Table 8, it is shown the variation produced on F-score measure
when the IR varies from a balanced dataset to an imbalanced data of 20:80 ratio. The
negative numbers denote a decrease in noise detection, whereas, positive numbers denote



44

an improvement. For example, in Figure 11, for 15% of injected noise, the average F-score
under NCAR for circle(n,d=5) dataset is 82.6 in balanced datasets, then, it decreases to
67.5 for a class imbalance ratio of 20:80. This corresponds to a total variation of ≠15.1
as shown in Table 8.

Table 8 – F-score variation vs class imbalance ratio in synthetic data when class 1 is the
minority class.

Datasets
F-score variation when IR goes from 50:50 to 20:80

5% of noise 10% of noise 15% of noise 20% of noise
NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

2dnormals(n,cl=2) 12.8 9.2 5.7 8.4 5.1 3.6 6.1 4.2 2.7 4.4 3.2 2.0
cassini(n) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
circle(n,d=2) -13.2 -12.2 -11.8 -8.8 -7.5 -6.9 -8.2 -6.0 -4.9 -5.8 -4.9 -4.0
circle(n,d=5) -31.1 -20.8 -14.6 -30.6 -18.0 -11.5 -28.5 -15.1 -8.6 -25.5 -12.9 -6.7
P2 -9.8 -4.2 10.9 -11.3 -3.2 9.4 -10.4 -4.2 7.3 -9.2 -2.2 6.5
ringnorm(n,d=2) -23.7 -1.6 7.4 -34.8 -1.5 8.1 -38.2 -2.4 7.7 -40.0 -2.6 6.8
ringnorm(n,d=5) -6.3 2.5 2.3 -7.0 1.7 3.5 -7.1 1.4 2.4 -6.2 1.0 2.7
spirals(n) -18.1 -9.0 -5.1 -14.5 -7.5 -3.1 -13.4 -7.6 -2.5 -14.2 -8.3 -2.1
spirals(n,cycles=2) -75.9 -58.3 -39.4 -75.3 -51.0 -32.2 -72.3 -42.7 -26.6 -70.4 -37.1 -20.4
spirals(n,cycles=4) -17.7 -2.7 10.1 -25.8 -3.9 11.8 -30.7 -2.6 13.0 -32.7 -2.6 13.6

In this same context (column 15% of noise and NCAR), it was also verified a de-
crease in noise detection, when IR is increased, for circle(n,d=2), P2, circle(n,d=2), ring-
norm(n,d=2), ringnorm(n,d=5), spirals(n), spirals(n,cycles=2) and spirals(n,cycles=2)
problems. Observing the other percentages (5%, 10% and 20% of noise columns), the
same overall negative variation was verified. This behavior makes more evident the dam-
age caused in detection when applying NCAR in a imbalanced dataset.

The ensemble performance in identifying mislabeled instances decreases due to the
majority class influence. In fact, classifiers are biased to predict more instances as being
from the majority class. In such a case, many instances from the minority class were incor-
rectly labeled as the majority were judged as being correctly classified by the ensemble.
Hence, the ensemble failed in detecting many minority instances as noisy, which strongly
harmed the Recall measure (results for Recall measure can be assessed in Appendix A).

As shown, this behavior is also verified for the other percentages of noise in data
although with less or more impact. For instance, taking the spirals(n,cycles=2) dataset
under NCAR model at each level of noise, we can see that the negative variation of F-
score decreases from ≠57.7 (at 5% of noise) to ≠36.8 (at 20% of noise). In other words,
when the percentage of noise in data test is higher in a more imbalanced class scenario,
noise detection is improved. This is reasonable once the classifiers are considered of high
quality as they are trained from noiseless datasets in these experiments. In this way, more
noise injected in the majority class (which implies noise not only in the boundaries areas)
are easily detected.
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Furthermore, we also changed the minority and majority classes, i.e, class 1 corre-
sponding to the majority class (while class 2 corresponding to the minority class) in
order to to evaluate if the negative influence also would occur in such a scenario. As
shown in Table 9, the same behavior is verified in most datasets.

Nevertheless, we found two exceptions: 2dnormals (also in Table 8) and ringnorms
datasets which presented positive variations. For example, when class 1 was the minority
class, the F-score of ringnorm(n,d=2), at 15% of noise and under NCAR, had a negative
variation of ≠2.4 (Table 8). When class 1 became the majority class, the F-score, under
the same settings, had a positive variation of 27.8 (Table 9).

This led us to investigate the way data are spread in the space for those datasets
when the IR gets higher. Class distribution for both datasets is shown in Figures 12 for
2dnormals and in 13 for ringnorms.

Table 9 – F-score variation vs class imbalance ratio in synthetic data when class 2 is the
minority class.

Datasets
F-score variation when IR goes from 50:50 to 20:80

5% of noise 10% of noise 15% of noise 20% of noise
NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

2dnormals(n,cl=2) 6.1 11.4 1.9 4.2 6.2 1.2 3.3 5.2 1.1 2.3 3.9 0.9
cassini(n) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
circle(n,d=2) -15.0 -15.7 -10.0 -10.7 -9.1 -6.0 -8.8 -7.6 -4.0 -6.4 -6.8 -3.1
circle(n,d=5) -43.5 -28.1 -18.9 -43.9 -26.6 -15.7 -40.8 -23.0 -12.3 -37.6 -20.4 -9.8
P2 -9.8 -4.2 10.9 -11.3 -3.2 9.4 -10.4 -4.2 7.3 -9.2 -2.2 6.5
ringnorm(n,d=2) 24.0 38.0 33.3 21.4 33.7 27.9 17.8 27.8 23.9 11.9 23.9 20.2
ringnorm(n,d=5) 5.2 13.3 15.8 4.5 13.1 13.5 3.0 10.7 11.7 2.0 8.4 10.1
spirals(n) -24.3 -15.2 -5.9 -22.5 -13.4 -4.0 -18.1 -13.4 -3.4 -22.7 -13.6 -2.9
spirals(n,cycles=2) -73.8 -57.7 -39.1 -70.6 -50.6 -32.0 -65.7 -42.4 -26.4 -63.1 -36.8 -20.3
spirals(n,cycles=4) -17.6 -3.0 9.8 -25.7 -4.2 10.5 -30.6 -3.0 12.1 -32.5 -2.9 12.6

Figure 12 – Data distribution of the 2dnormals dataset: a) IR = 50:50, b) IR = 20:80 and
class 1 = minority class, and c) IR = 20:80 and class 2 = minority class.
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From Figures 12 and 13, we can rationalize why noise detection under the NCAR
had increased instead of decreasing in such cases. First, data are more distinguished in
2dnormals with a higher IR, i.e, data from each class are more separated from each other.
This, in turn, makes the classification process easier and, consequently, the ensemble noise
detection.

Figure 13 – Data distribution of the ringnorm dataset: a) IR = 50:50, b) IR = 20:80 and
class 1 = minority class, and c) IR = 20:80 and class 2 = minority class.

Second, for ringnorms dataset, there were two di�erent behaviors for data distribution
depending on which class was the minority one: 1) class 1 as the minority presents an even
smaller inner circle without a separability boundary from the surround data; 1) class 2 as
the minority, on the contrary, has a bigger inner circle with a more defined boundary line
between classes. This explicates why the ringnorm datasets had di�erent results. Negative
in the first scenario and positive in the second. This alerts us for the intrinsic influence of
datasets particularities on the outcome, which is an inherent issue in ML.

4.1.2 Noise Level in the Minority vs Majority Class

Class imbalance also a�ected the noise detection performance under the NAR model, but
in di�erent ways depending on which class is noisier. In the great majority of datasets, a
negative impact was verified when the minority class was noisier than the majority class.
On the other hand, noise detection performance had a minor impact or the result was
even improved in most datasets when the majority class was the noisiest one.

When there is a higher noise ratio in the minority class, NAR(9:1), the harm on the
ensemble filter performance is worse compared to NCAR as shown in Figures 10 and 11
for IRs of 30:70 and 20:80 as NAR(9:1) lines are usually under NCAR lines.

The impact on performance is higher with a greater class imbalance ratio. For example,
under NAR(9:1) model, for P2 dataset at 15% of noise level, F-score decreased from 72.1
when IR is 30:70 to 65.0 when IR is 20:80. This is also verified for other datasets, as
shown in Tables 8 and 9, F-score under NAR(9:1) su�ers a higher variation in contrast
to NCAR.
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In turn, when there is a higher noise ratio in the majority class, NAR(1:9), the noise de-
tection performance is improved or less impacted in comparison to NCAR and NAR(9:1).
This is observed from the positive numbers or smaller variation on NAR(1:9) column
in comparison to the other models in Tables 8 and 9 and also from the upper lines in
Figures 10 and 11 when IR gets higher.

Figure 14 – Variation in F-score performance when IR increases from 50:50 (F-score1) to
20:80 (F-score2) in presence of a noise level of 15%.

The prevalence in the number of instances in the majority class makes the detection
process easier in the presence of noisier instances in this class. The noise detection still
failed in the minority class but it does not impact performance since there are fewer noisy
instances in this class for M = 1/9. Based on these findings, we can suppose that previous
work that assumed the NCAR model may be over or underestimating the performance of
noise detectors, which will be a�ected by the class imbalance ratio and noise level at each
class.

Figure 14 shows a visual representation of Table 8 which presents the general behavior
of noise detection performance under the three noise models configuration when class
imbalance ratio goes from a balanced dataset to a dataset with IR of 20:80. In Figure 14,
bars situated below zero denote a decrease in detection performance while the opposite
implies an improvement.

As can be seen in Figure 14, there is a pattern in the way noise detection behaves
according to each noise model. Some exceptions were found as explained in the previous
section. In all experiments, for the cassini(n) dataset, we did not verify any pattern
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discussed so far which can be attributed to the low level of di�culty in classification (see
Figure 3).

4.1.3 Noise Detection vs Ensemble Vote Thresholds

In this work, we also performed experiments taking into consideration the proportion L
of algorithms in the ensemble to have a final decision on noise detection. The main idea
is to verify in which circumstances a di�erent threshold would respond better in terms of
noise detection performance in contrast with the most commonly used approaches in the
literature.

For this, we varied L from 10% to 100% and grouped the results by the highest F-
scores. The results are shown in Table 10.

Table 10 – Best ensemble threshold. #min denotes a greater noise ratio in minority class
(NAR 9:1), #maj denotes a greater noise ratio in majority class (NAR 1:9),
and #c denotes the noise ratio equally distributed (NCAR).

Datasets

Noise

%

Best ensemble threshold

IR of 50:50 IR of 30:70 IR of 20:80

#min #c #maj #min #c #maj #min #c #maj

2dnormals

(n,cl=2)

5 10 10 10 10 10 10 9 10 10
10 10 10 10 9 10 10 9 10 10
15 9 10 9 9 10 9 9 9 10
20 9 9 9 8 9 9 4 8 9

circle

(n,d=5)

5 8 8 7 6 9 9 5 10 10
10 7 7 7 5 8 9 3 6 10
15 7 7 6 4 7 9 3 5 9
20 7 6 6 3 6 8 3 4 9

P2

5 8 8 8 7 7 10 5 7 10
10 8 7 8 6 7 10 4 7 9
15 7 7 7 5 7 9 3 5 9
20 7 7 7 4 6 9 2 4 9

ringnorm

(n,d=5)

5 9 9 10 8 9 10 7 9 10
10 8 9 9 7 8 10 4 8 10
15 8 8 8 6 8 9 4 7 9
20 7 8 8 5 7 9 3 6 9

spirals

(n,cycles=4)

5 8 8 8 1 10 10 1 10 10
10 8 7 8 1 10 10 1 10 10
15 7 7 8 1 10 10 1 1 10
20 7 7 8 1 1 10 1 1 10

úWhere values 1, 2, ... , 10 correspond to 10%, 20%, ..., 100%.

For better visualization, the values shown in Table 10 goes from 1 (one) to 10 (ten),
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where, 1 corresponds to L = 10%, 10 corresponds to L = 100% and so forth. In this
setting, if the best threshold found is L = 2, for example, it means that the highest noise
detection performance was achieved when 20% of the algorithms were used in the pool.
In this way, majority and consensus vote are the best choices when L = 5 and L = 10
respectively.

The values in Table 10 show many thresholds that would deliver better results than
consensus and majority vote under a specific context. In order to analyze the gain in
choosing a di�erent threshold, we plotted every F-score result of each L for all datasets
(see Appendix A).

In Figure 15, for example, the results for circle(n,d=5) dataset are shown. In this case,
for an IR of 20:80 with 15% of noise under the NAR (9:1) model, the F-score would be
63.0 and 14.80 if applied a majority and consensus vote respectively. On the other hand, if
a threshold of L = 3 is applied, which corresponds to the best L (Table 10), the resulting
F-score would be equal to 70.85.
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Figure 15 – Noise detection F-score on circle(n,d=5) dataset under di�erent ensemble
vote thresholds (where 1 = 10%, 2 = 20%,..,10 = 100%).

Although these findings are part of a preliminary investigation, interestingly aspects
were found from analysis on the plotted graphs for all data (Appendix A). These aspects
were similar for most datasets, therefore, the following discussion will be conducted from
Figure 15. For better analysis, we focused on one variable at a time while examining the
behavior of noise detection.

4.1.3.1 Varying Class Imbalance Ratio (IR)

In general, we observed that, for NCAR and NAR(9:1) models, when the IR gets higher
(from a 50:50 to 20:80), the threshold to produce the best noise detection tends to have a
smaller number. What may indicate that, for this context, only specialized algorithms are
able to detect properly whether an instance is noisy or not. Conversely, for the case when



51

the majority class is the noisiest one, NAR (1:9) model, we verified that, as IR gets higher,
a higher threshold produces better noise detection. In this case, as the noise may be more
spread in the space, a diversity pool might improve the ensemble filter performance.

This aforementioned pattern can be verified in Figure 15 when we look at one column
at a time (which indicates the percentage of noise). Looking at NAR (9:1) curve, the peak
points of each curve (which indicates the best threshold) are located on the left side of
the graphs (which indicates a smaller threshold). Conversely, the peak points of NAR
(1:9) curve are located on the right side of the graphs which indicates a greater threshold.
Interestingly, in the case noise are equally distributed between classes (NCAR model), a
center-tendency is observed. In this case, choosing an L around the majority vote is likely
to result in satisfactory noise detection performance.

4.1.3.2 Varying the Total Percentage of Noise

Although the amount of noise in data impacts the performance in detection, it does not
seem to have significant influence (compared to IR variable) on the best threshold choice.
If we look at one row at a time (which indicates the IR) in Figure 15, we can verify that
the pattern in the three curves is practically the same for di�erent levels of noise when
data are balanced.

Nevertheless, it is observed that, if the total amount of noise in the dataset is increased,
the best threshold has a slight tendency to have a smaller number for higher values of
IR. This can also be visualized in Table 10 for each noise model. Although the threshold
has the same behavior of getting lower as the percentage of noise gets higher, we can see
a greater impact when the minority class is the noisiest one. In Figure 15, for an IR of
30:70, the best threshold for NCAR goes down from 9 to 6, and from 9 to 8 or NAR(1:9)
model when the noise percentage varies from 5% to 20%. For the NAR (9:1) model, in
turn, this decrease is from 6 to 3. This behavior is also found for an IR of 20:80, but in a
more pronounced way.

4.1.4 Statistical tests

The Friedman test (FRIEDMAN; RAFSKY, 1979) was used in order to compare the impact of
all three noise models over the 108 problems (91 datasets X 3 IR’s X 4 di�erent percentages
of noise). Since we are comparing the e�ect of three di�erent noise models on ensemble
detection, the degree of freedom is 2. The level of significance was set to – = 0.05, i.e., 95%
confidence. The Friedman test shows that there is a significant di�erence on the detection
noise under the three models. The p-value obtained for each problem is presented in
Table 12

1 Cassini dataset was removed due to its 100% precision.
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Table 12 – Friedman test results of each problem. Non-significantly di�erence (– > 0.05)
are marked with *.

Datasets

IR

Friendman test result

p-value

5% 10% 15% 20%

2dnormals(n,cl=2)

50:50 0.0000 0.0000 0.0000 0.0000
30:70 0.0009 0.0001 0.0004 0.0008
20:80 0.0000 0.0000 0.0000 0.0000

circle(n,d=2)

50:50 0.0164 0.0118 0.0039 0.0167
30:70 0.0003 0.0032 0.0013 0.0000
20:80 0.0821* 0.0110 0.0000 0.0305

circle(n,d=5)

50:50 0.0446 0.0055 0.0177 0.0050
30:70 0.0000 0.0000 0.0000 0.0000
20:80 0.0000 0.0000 0.0000 0.0000

P2

50:50 0.0004 0.0000 0.0000 0.0001
30:70 0.0450 0.0202 0.0000 0.0000
20:80 0.0000 0.0000 0.0000 0.0000

ringnorm(n,d=2)

50:50 0.0006 0.0009 0.0010 0.0003
30:70 0.0000 0.0000 0.0000 0.0000
20:80 0.0000 0.0000 0.0000 0.0000

ringnorm(n,d=5)

50:50 0.1225* 0.0015 0.0068 0.1588*
30:70 0.0082 0.3904* 0.0482 0.0072
20:80 0.0000 0.0000 0.0000 0.0000

spirals(n,cycles=2)

50:50 0.1309* 0.0842* 0.4907* 0.1496*
30:70 0.0000 0.0000 0.0000 0.0000
20:80 0.0000 0.0000 0.0000 0.0000

spirals(n,cycles=4)

50:50 0.6483* 0.3558* 0.7408* 0.1588*
30:70 0.0000 0.0000 0.0000 0.0000
20:80 0.0000 0.0000 0.0000 0.0000

spirals(n)

50:50 0.2941* 0.0155 0.0811* 0.0045
30:70 0.0000 0.0000 0.0000 0.0000
20:80 0.0000 0.0000 0.0000 0.0000

From all problems, only 14 did not show statistical di�erences on the noise detection.
85% of those 14 cases occurred on balanced datasets. In this way, apart of observing
variation on detection when the IR is 50:50, the tests indicate there is no significant
di�erence in such cases. In other words, when dealing with balanced datasets, it is not
possible to reject the hypothesis that NAR and NCAR produce equivalent influence on
the ensemble detector performance. On the other hand, as expected from the experiments,
Friedman test showed there is a di�erent impact on noise detection according to the noise
model applied when a IR is present.

Additionally, statistical comparisons in each of the problems were also performed.
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Wilcoxon’s signed ranks statistical test (DEMSAR, 2006) was applied to compare the
impact on noise detection of each noise model. The Wilcoxon’s signed ranks is a non-
parametric pairwise test that aims to detect significant di�erences between two sample
means, that is, the behavior of noise detection under the two noise models verified in
each comparison. The test was applied with level of significance set to – = 0.05 and the
pairwise comparison was performed over all problems.

Table 14 – Wilcoxon test results when there is 15% noise in data. W/T/L = win-
s/ties/losses. p-value < 0.05 are highlighted.

IR Noise Model 50:50 30:70 20:80

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

50:50

NAR(9:1) W/T/L 5/0/4 5/0/4 8/0/1 8/0/1 9/0/0 8/0/1 8/0/1 8/0/1
p-value 0.407 0.286 0.013 0.013 0.009 0.013 0.018 0.013

NCAR W/T/L 5/0/4 8/0/1 8/0/1 9/0/0 6/0/3 7/0/2 8/0/1
p-value 0.906 0.018 0.018 0.009 0.097 0.058 0.018

NAR(1:9) W/T/L 6/0/3 7/0/2 7/0/2 4/0/5 4/0/5 4/0/5
p-value 0.097 0.033 0.024 0.813 0.722 1.000

30:70

NAR(9:1) W/T/L 9/0/0 8/0/1 6/0/3 8/0/1 8/0/1
p-value 0.009 0.013 0.477 0.013 0.024

NCAR W/T/L 7/0/2 0/0/9 1/0/8 7/0/2
p-value 0.058 0.009 0.013 0.155

NAR(1:9) W/T/L 0/0/9 0/0/9 2/0/7
p-value 0.009 0.009 0.033

20:80
NAR(9:1) W/T/L 8/0/1 9/0/0

p-value 0.013 0.009

NCAR W/T/L 9/0/0
p-value 0.009

The tests were performed for each di�erent percentage of noise. As the results were
equivalent (independently of the amount of noise), the following discussion will be regard-
ing the noise percentage of 15% shown in Table 14. The remain results can be accessed
in Appendix A.3.

In Table 14, a pairwise comparison on the noise detection results under each noise
model is presented. The W/T/L denote the wins (better performance on noise detection),
ties (equivalent performance on noise detection), and losses (worse performance on noise
detection), produced by the noise models on the columns in comparison to the ones on
the rows. For instance, the ensemble detector on problems under NAR(1:9) with 30:70
IR (column) performed 7 times better and 2 times worse (7/0/2) in comparison to the
detection on problems under NAR(1:9) with 50:50 IR (row). For this same example, the
p-value = 0.024 implies there is a significant di�erence in the results.
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Focusing on problems under same IR, as discussed previously, the models seems not
to have significant e�ect on detection on balanced problems as similar values of 5/0/4 for
W/T/L and the p-values > 0.05 show. For the case of 30:70 IR, NAR(9:1) - more noise in
minority class, harmed detection as its performance was worse 9 times when compared to
detection under NCAR, and 8 times when compared to detection under NAR(1:9) - more
noise in majority class. Lastly, when increasing IR (20:80), tests shows that noise detection
is significantly improved under NAR(1:9) in comparison to the other noise models.

Results from statistical tests are aligned to the hypothesis raised in the previous section
for imbalanced problems. In this type of problem, the ensemble detector performs better
under the NAR(1:9) model than under NCAR and NAR(9:1) models; and it performs
better under NCAR than NAR(9:1). For balanced problems, statistical tests did not show
significant di�erences.

4.2 RESULTS ON REAL-WORLD DATA

The results shown in this section were obtained from the steps outlined in Algorithm 2.
In the same way as in the previous section, the discussion is carried out putting into per-
spective each input parameter that resulted in a specific scenario in order to facilitate the
analysis and comparison. Therefore, we first examine the noise detection under balanced
and imbalanced datasets in Section 4.2.1. Then, we explore the impact of di�erent noise
level per class in Section 4.2.2. Lastly, in Section 4.2.3, we analyze noise detection under
di�erent noise ensemble thresholds.

4.2.1 Balanced vs Imbalanced Datasets

After generating datasets with specific IRs (Section 3.2.2), we repeatedly injected noise
on all datasets described in Table 4. In Figures 16 and 17, we gathered some results to
make discussion easier but the complete list of performance graphs can be assessed in
Appendix B.
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Figure 16 – F-score performance for majority vote on arcene, cylinder-bands, diabetes, and
eeg-eye-state datasets.

Interestingly, as can be observed in the first column of Figures 16 and 17 and intu-
itively infer, the general behavior found on synthetic datasets was also verified in most
real data. Likewise, the noise distribution per class seems not to be relevant in the sce-
nario of balanced data (IR 50:50), that is, NCAR and NAR produce almost the same
e�ect on noise detection. However, we found exceptions on arcene and cylinder-bands
(Figure 16) with a slight discrepancy in results for NCAR and NAR models. This was
also observed for column2C, glass0, glass1, and sonar datasets especially with 5% of noise
level (Appendix B).
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Figure 17 – F-score performance for majority vote on heart-c, heart-statlog, hill-valley,
and pima datasets.

Although, a decrease in noise detection under NCAR model was expected from re-
sults on synthetic data, the numbers we found on real data experiments did not present a
consistent pattern to confirm such behavior. On column NCAR of Table 15, which shows
what happens to the F-score when the dataset varies from a balanced dataset to an imbal-
anced dataset (negative and positive number denote, respectively, a decrease and increase
in noise detection), we can observe that there is no agreement or tendency in the results.
Apparently, when the noise is evenly distributed in an imbalance dataset, the particular-
ities and di�culties of the problem are more crucial in noise detection performance than
the IR.



57

Table 15 – F-score variation vs class imbalance ratio in real data.

Datasets
F-score variation when IR goes from 50:50 to 20:80

5% of noise 10% of noise 15% of noise 20% of noise
NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

arcene -3.6 1.1 2.8 -17.4 -5.4 7.1 -19.2 1.3 7.6 -21.6 1.7 9.8
breast-cancer-wisconsin -1.1 -1.4 4.7 -0.4 0.0 3.8 -0.9 -0.6 2.2 -0.4 -0.1 1.7
column2C -13.6 4.1 -2.8 -10.5 -2.1 -0.4 -15.6 1.7 1.8 -13.3 -2.4 0.9
credit -5.8 -1.2 2.3 -8.6 0.6 1.6 -7.0 0.0 1.4 -6.6 -0.3 2.0
cylinder-bands -13.8 6.6 5.4 -23.6 -5.1 13.8 -33.0 -1.8 16.2 -35.8 -2.6 20.8
diabetes -12.8 3.0 5.5 -10.0 -2.9 7.2 -11.8 -2.6 5.4 -11.1 -0.6 5.4
eeg-eye-state -27.2 -15.0 -6.3 -27.5 -14.0 -4.8 -27.0 -12.4 -3.4 -25.4 -10.9 -2.2
glass0 -1.5 1.9 -3.0 -0.5 8.8 7.9 -5.1 3.5 6.5 -4.5 3.3 8.9
glass1 -7.6 -6.2 -0.8 -18.1 3.1 8.8 -21.6 2.2 8.9 -27.0 -1.8 11.9
heart-c -4.7 11.1 13.7 -8.8 4.9 11.4 -9.0 1.3 9.2 -8.8 3.1 9.6
heart-statlog -8.2 -12.6 -7.0 -11.4 2.3 -0.5 -11.4 -4.6 0.4 -10.9 -0.3 2.1
hill-valley -8.8 7.6 17.4 -13.3 12.1 26.5 -18.1 12.6 29.0 -17.2 15.7 30.8
ionosphere -4.6 -5.3 3.6 -4.1 -2.8 3.3 -6.4 1.5 1.1 -4.7 0.1 1.9
kr-vs-kp -8.7 -6.8 -7.4 -5.9 -3.9 -3.6 -4.7 -3.0 -3.0 -3.9 -2.1 -2.0
mushroom -0.1 -0.1 -0.1 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
pima -4.5 0.9 8.2 -6.1 1.4 9.9 -5.9 5.0 8.9 -5.7 2.3 8.5
sonar 14.1 18.6 15.0 13.4 13.4 19.4 9.0 13.7 17.8 6.3 10.0 16.5
steel-plates-fault 0.0 1.0 0.4 -0.0 0.4 0.3 0.0 0.4 0.2 -0.0 0.1 0.1
tic-tac-toe -22.1 -4.9 5.0 -26.1 -5.9 5.4 -26.6 -5.2 5.1 -27.1 -5.4 5.4
voting -6.8 -13.6 -4.1 -5.8 -7.6 -2.5 -4.4 -6.2 -2.0 -4.7 -4.8 -1.4

4.2.2 Noise Level in the Minority vs Majority Class

Noise detection was impacted by class imbalance under the NAR model as expected from
the findings on synthetic data. In the same way, F-score is degraded when the minority
class is noisier than the majority class and it is improved or has an attenuated impact
when the majority class is the noisiest one. This can be verified in the greater number of
datasets as shown in Table 15 where we can observe a pattern of negative numbers on
NAR(9:1) column and positive numbers on NAR(1:9) column for di�erent levels of noise.

Like in the experiments on synthetic data, Figures 18 and 19 show a better visualiza-
tion of the general behavior of noise detection under NAR model when IR increases. The
results are aligned to the ones found previously. This can be observed by the bigger and
negative bar on the left side of the graphs in contrast to a smaller and positive bar on the
right.

The aforementioned behavior was found in all data with the exception of sonar dataset.
This may imply that the noise model characteristics and class imbalance ratio, in general,
have more influence on the noise detection than the nature of the classification problem
for the majority of the problems.
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Figure 18 – Variation in F-score performance when IR increases from 50:50 (F-score1) to
20:80 (F-score2) in presence of a noise level of 15% - parte 1.

Figure 19 – Variation in F-score performance when IR increases from 50:50 (F-score1) to
20:80 (F-score2) in presence of a noise level of 15% - parte 2.
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Figure 20 – F-score on arcene, cylinder-bands, diabetes, and eeg-eye-state datasets under
di�erent ensemble vote thresholds (where 1 = 10%, 2 = 20%,..,10 = 100%)
in presence of 15% of noise.

4.2.3 Noise Detection vs Ensemble Vote Thresholds

Similarly to the experiments performed on synthetic data, we also evaluated the noise
detection under di�erent ensemble vote thresholds on real data. The findings are aligned
with previous results for the majority of datasets. Results were gathered in Figures 20
and 21.

In Section 4.1.3, we divided the analysis under two variables: imbalance ratio and
percentage of noise. As the latter did not present much influence on the results, here we
will focus on the former. In this way, we gathered the main results in Figures 20 and 21,
which show the noise detection performance for each threshold at 15% of noise level under
NAR and NCAR models. The complete result can be assessed in Appendix B.

As can be seen, most data present the same behavior: better noise detection is achieved
with smaller threshold values under the NAR (9:1) model, and with higher threshold val-
ues under the NAR (1:9) model when IR is increased. Under the NCAR model, threshold
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Figure 21 – F-score on heart-c, heart-statlog, hill-valley, and pima datasets under di�erent
ensemble vote thresholds (where 1 = 10%, 2 = 20%,..,10 = 100%) in presence
of 15% of noise

values close to L = 5 (majority vote) return higher F-score results.
The above behavior is verified in a more or less pronounced way depending on the

dataset. For example, in Figure 20 for arcene dataset, the best threshold under the
NAR(9:1) model is L = 7 with 55.4 of performance when IR is 50:50, L = 5 with 45.3
when IR is 30:70, and L = 3 with 51.0 for an IR of 20:80. Under the same setting, for
pima dataset in Figure 21, the best threshold under the NAR(9:1) model is L = 8 with
55.2 of performance when IR is 50:50, L = 6 with 49.5 when IR is 30:70, and L = 4 with
48.5 for an IR of 20:80. Values are di�erent but the general behavior is the same.

Results on real data validate, for the majority of cases, the findings on synthetic data
regarding di�erences in the way noise model can influence the noise detection under a
specific context.
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4.2.4 Statistical tests

The Friedman test (FRIEDMAN; RAFSKY, 1979) was also performed in order to compare
the impact of all three noise models over the 228 problems (192 datasets X 3 IR’s X
4 di�erent percentages of noise). Since we are comparing the e�ect of three di�erent
noise models on ensemble detection, the degree of freedom is 2. The level of significance
was set to – = 0.05, i.e., 95% confidence. All p-values obtained can be accessed in the
Appendix B.3 in Tables 21 and 23. In order to facilitate analysis, a summary of the results
is presented in Table 16.

The Friedman test shows that there is a significant di�erence on the detection noise for
the three models in certain contexts. As shown in Table 16, from the 152 imbalanced data
problems analyzed, 77.63% (118/152) presented a significant di�erence on the detection
results. When considering only the problems with 20:80 IR, this number is equal to 88.16%.
On the other hand, when it comes to balanced datasets (76 of cases), only 18.42% are
significant di�erent. These results are aligned with the hypothesis discussed in the previous
section. The choice of a noise generation model are more likely to have impact on detection
results in data-imbalance problems.

Table 16 – Summary of Friedman test results on each problem.

IR Cases with significant di�erence Total per IR
5% of noise 10% of noise 15% of noise 20% of noise

50:50 6/19 31.6% 1/19 5.3% 6/19 31.6% 1/19 5.3% 14/76 18.4%
30:70 11/19 57.9% 14/19 73.7% 12/19 63.2% 14/19 73.7% 51/76 67.1%
20:80 15/19 78.9% 16/19 84.2% 18/19 94.7% 18/19 94.7% 67/76 88.2%

Total per noise 32/57 56.1% 31/57 54.4% 36/57 63.2% 33/57 57.9%

The influence of the amount of noise on ensemble detection was also tested. From
the 57 problems for each di�erent percentage of noise, approximately half of the cases
presented significant di�erence (56.1% for 5% of noise, 54.4% for 10%, 63.2% for 15% and
57.9% for 20%). In this way, the amount of noise in data seems not be as relevant as the
IR on noise detection under di�erent noise models.

A second statistical analysis was also conducted in a pairwise fashion in order to verify
if the noise models significantly improve/harm the noise detection under certain contexts.
To that end, the Wilcoxon non-parametric signed rank test with the level of significance
– = 0.05 was used over all problems.

The tests were performed for each di�erent percentage of noise. As the results were
equivalent (independently of the amount of noise), the following discussion will be regard-
ing the noise percentage of 15% shown in Table 17. The remain results can be accessed
in Appendix B.3.
2 Mushroom dataset was removed due to its 100% precision.
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Table 17 – Wilcoxon test on real problems when there is 15% noise in data. W \T \L =
wins\ties\losses. p-value < 0.05 are highlighted.

IR Noise Model 50:50 30:70 20:80

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

NAR
(9:1)

NCAR NAR
(1:9)

50:50

NAR(9:1) W/T/L 5/0/14 11/1/7 16/0/3 17/0/2 15/0/4 17/0/2 17/0/2 16/0/3
p-value 0.073 0.360 0.001 0.000 0.001 0.001 0.001 0.001

NCAR W/T/L 15/0/4 11/0/8 10/0/9 9/0/10 13/0/6 8/0/11 12/0/7
p-value 0.038 0.481 0.952 0.324 0.409 0.952 0.153

NAR(1:9) W/T/L 6/0/13 4/0/15 4/0/15 3/0/16 3/0/16 3/0/16
p-value 0.021 0.005 0.007 0.003 0.002 0.004

30:70

NAR(9:1) W/T/L 17/0/2 17/0/2 16/0/3 16/0/3 17/0/2
p-value 0.000 0.000 0.012 0.001 0.000

NCAR W/T/L 17/0/2 4/0/15 9/0/10 15/0/4
p-value 0.000 0.004 0.856 0.004

NAR(1:9) W/T/L 1/0/18 4/0/15 7/0/12
p-value 0.000 0.001 0.035

20:80
NAR(9:1) W/T/L 18/0/1 19/0/0

p-value 0.000 0.000

NCAR W/T/L 19/0/0
p-value 0.000

In Table 17, a pairwise comparison on the noise detection results under each noise
model is presented. Once again, the W/T/L denote the wins (better performance on noise
detection), ties (equivalent performance on noise detection), and losses (worse performance
on noise detection), produced by the noise models on the columns in comparison to the
ones on the rows. For instance, the ensemble detector on problems under NAR(1:9) with
30:70 IR (column) performed 15 times worse and 4 times better (4/0/15) in comparison to
the detection on problems under NAR(1:9) with 50:50 IR (row). For this same example,
the p-value = 0.007 implies there is a significant di�erence in the results.

Focusing on problems under same IR, as discussed previously, only one case showed
significant di�erence. Under balanced data, NAR(1:9) produced a positive impact on noise
detection, performing 15 times out of 19 better than the detection under NCAR although
with a p-value = 0.038. This same behavior was found when in presence of 5% of noise
(Table 18) but not for 10% of noise (Table 19) and 20% of noise (Table 20). On the
other hand, for the case of 30:70 IR, NAR(9:1) - more noise in minority class, harmed
detection as its performance was worse 17 times when compared to the detection under
NCAR and NAR(1:9) - more noise in majority - with a really small p-value. This was also
verified when data was exposed to di�erent percentage of noise. Lastly, when increasing
IR (20:80), tests showed noise detection is significantly improved under NAR(1:9) in
comparison to the other noise models as the ensemble detector performed better in all
problems (19/0/0).
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4.3 CHAPTER REMARKS

In this chapter, the results obtained from the execution of the methodology proposed
in Section 3.4 were presented. More than 100 problems were accessed for synthetic data
analysis and more than 200 for real-data analysis. The problems were created as to con-
template a combination of three main inputs: class imbalance ratio, amount of noise, and
noise distribution per class.

For each dataset, three di�erent class imbalance ratio were created: 50:50 (balanced),
30:70, and 20:80 (imbalanced). Noise was injected in 5%, 10%, 15% and 20% of the
data, and distributed applying three di�erent models: (1) NCAR - noise injected equally
between classes, (2) NAR, by injecting a high proportion of label noise in the majority
class, and (3) NAR, by injecting a high proportion of label noise in the minority class.
The three models were named (1) NCAR, (2) NAR(1:9), and (3) NAR(9:1), to simplify
reference.

On each problem combination, the ensemble noise detector was evaluated using the
F-score as the main variable. The majority vote scheme was chosen to combine algorithms
predictions and, then, other thresholds for ensemble voting were also analyzed. Results
indicated di�erent e�ect on noise detection according to the context and noise model
applied.

On imbalance-class problems, the noise detection performance is significantly bet-
ter under NAR(1:9) model in comparison to NAR and NAR(9:1) independently on the
amount of noise in data. The ensemble detector also performs better under NCAR model
than NAR(9:1). In other words, more presence of noise in minority class, makes noise de-
tection more di�cult. On balanced-problems, no significant results were found, although
noise detection presents similar behavior independently on the model used.

When varying the ensemble threshold, experiments show that a smaller number of
voting algorithms delivers better noise detection under NAR(1:9) model, and that a higher
threshold produces better performance under NAR(9:1). Finally, under NCAR models,
the majority vote performs better.
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5 CONCLUSIONS

Many studies have focused their attention on data quality issues due to its importance
in ML applications and also due to the known fact that real-world datasets frequently
contain noise (FRENAY; VERLEYSEN, 2014).

Noise can be present in data in its attributes and also in its classes (ZHU; WU, 2004).
This work is focused on class noise (also label noise) behavior. For this type of problem,
classification noise filtering approach is usually applied so to remove data irregularities
prior to the learning step. The most common filtering approach consists of using the
predictions of an ensemble of algorithms so that instances are removed upon a wrong
classification (BRODLEY; FRIEDL, 1999)(SLUBAN; LAVRA, 2015a)(GUAN et al., 2018).

In order to evaluate Noise Filters, simulated noise is usually injected into a dataset,
and analysis are performed on the detection results (GARCIA et al., 2019). In (FRENAY;

VERLEYSEN, 2014), three di�erent label noise generation models are presented: (1) NCAR,
in which the probability of an instance being noisy is random, (2) NAR, the probability
of an instance being noisy depends on its label, and (3) NNAR, the probability of an
instance being noisy depends also on its attributes.

Although there are many approaches to model di�erent noise behaviors, in many
previous works (SLUBAN; LAVRA, 2015a) (BRODLEY; FRIEDL, 1999) (SAEZ et al., 2015)
(GARCIA et al., 2019), one type of noise is chosen over another without considering the
di�erent impacts of each one. Also, in spite of the majority and consensus being the
most common ensemble voting schemes used for filtering noise, studies (KHOSHGOFTAAR;

ZHONG; JOSHI, 2005)(SABZEVARI; MARTINEZ-MUNOZ; SUAREZ, 2018) have shown that
selecting adequate values for the ensemble threshold can lead to superior results.

In this work, it was presented an empirical study focused on an ensemble-based noise
detector and its performance under three di�erent noise generation models: NCAR, where
noise is equally distributed among class; NAR model, where the majority class is noisier
than the minority class, and NAR, where the minority class is the noisiest one. Detection
performance versus injected noise model relation was assessed through performance mea-
sures (F-score, Precision, Recall) considering di�erent inserted noise ratios and imbalance
class configurations. The impact produced on the filtering performance was also evaluated
under di�erent ensemble thresholds.

In the next sections, some conclusions, considerations and future works are presented.

5.1 CONTRIBUTIONS

The main contributions of this work consist of the following findings:

• Noise detection is not a�ected by the noise model in balanced data. In
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this scenario, no major change in detection was observed under the three noise
models applied. NCAR and both NAR models presented equivalent detection rates
independently of the amount of noise in data.

• Noise detection is harmed when the minority class is noisier than the
majority. When dealing with imbalanced class and choosing the NAR model ap-
plying more noise in the minority class, the noise detection was harmed in overall
problems (synthetic and real).

• Noise detection is improved when the majority class is noisier than the
minority. When dealing with imbalanced class and choosing the NAR model ap-
plying more noise in the majority class, the noise detection was improved in most
problems.

• High-imbalance class increases the impact on noise detection. In our stud-
ies, class imbalance was increased from a 30:70 IR to a 20:80 IR in every problem.
Increasing the ratio intensified the results found when NAR was applied. In other
words, the noise detection was even worse when minority class was the noisiest one
and the opposite was verified for the majority class.

• Noise equally distributed does not influence the noise detection. When
noise is evenly distributed between classes (NCAR model), no consistent results on
noise detection were found throughout the problems when dealing with imbalanced
data.

• Noise detection under NCAR or NAR(9:1) is improved when applying a
smaller ensemble threshold. The experiments performed with di�erent ensemble
thresholds showed that the majority and consensus voting schemes are not always
the best options. Better noise detection was achieved for both models (NCAR and
NAR 9:1 - when there is more noise in minority class) if less than 50% of the
algorithms are selected.

• Noise detection under NAR(1:9) is improved when applying a higher en-
semble threshold. In the experiments, it was observed that better noise detection
is achieved for NAR 1:9 (when there is more noise in majority class) if more than
50% of the algorithms are selected.

5.2 FUTURE WORKS

Although interesting behaviors were found in this work, this research is a preliminary
study and important aspects are open to be investigated in a more comprehensive context
in future works. Following are some activities that can be undertaken:
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• Include other noise filtering techniques (as those ones described in Chapter 2) in
order to check if the results are also verified for other noise detection approaches.

• NNAR model should also be analyzed in contrast to the noise models studied in
this research.

• Apply a new set of algorithms for the ensemble or add more algorithms or use
di�erent combinations to verify if results are not method-dependent.

• Study ways to model the di�erent scenarios discussed in this work in order to find
the best ensemble threshold to improve ensemble-based noise filters.

• Expand the work for multi-class problems.

5.3 PUBLICATION

The partial findings of this study resulted in the following publication:

MOURA de, K. G.; PRUDENCIO, R. B. C.; CAVALCANTI, G. D. C. “Ensemble
Methods for Label Noise Detection Under the Noisy at Random Model”, 7th Brazil-
ian Conference on Intelligent Systems (BRACIS), Sao Paulo, 2018, pp. 474-479.
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APPENDIX A – RESULTS ON SYNTHETIC DATA

A.1 PERFORMANCE MEASURES

Figure 22 – Noise detection performance for majority vote on P2 problem when class 1
is the minority class.



72

Figure 23 – Noise detection performance for majority vote on 2dnormals(n,cl=2) dataset
when class 1 is the minority class.

Figure 24 – Noise detection performance for majority vote on cassini(n) dataset when
class 1 is the minority class.
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Figure 25 – Noise detection performance for majority vote on circle(n,d=2) dataset when
class 1 is the minority class.

Figure 26 – Noise detection performance for majority vote on circle(n,d=5) dataset when
class 1 is the minority class.
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Figure 27 – Noise detection performance for majority vote on ringnorm(n,d=2) dataset
when class 1 is the minority class.

Figure 28 – Noise detection performance for majority vote on ringnorm(n,d=5) dataset
when class 1 is the minority class.
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Figure 29 – Noise detection performance for majority vote on spirals(n) dataset when
class 1 is the minority class.

Figure 30 – Noise detection performance for majority vote on spirals(n,cycles=2) dataset
when class 1 is the minority class.
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Figure 31 – Noise detection performance for majority vote on spirals(n,cycles=4) dataset
when class 1 is the minority class.

Figure 32 – Noise detection performance for majority vote on P2 problem when class 2
is the minority class.
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Figure 33 – Noise detection performance for majority vote on 2dnormals(n,cl=2) dataset
when class 2 is the minority class.

Figure 34 – Noise detection performance for majority vote on cassini(n) dataset when
class 2 is the minority class.
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Figure 35 – Noise detection performance for majority vote on circle(n,d=2) dataset when
class 2 is the minority class.

Figure 36 – Noise detection performance for majority vote on circle(n,d=5) dataset when
class 2 is the minority class.
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Figure 37 – Noise detection performance for majority vote on ringnorm(n,d=2) dataset
when class 2 is the minority class.

Figure 38 – Noise detection performance for majority vote on ringnorm(n,d=5) dataset
when class 2 is the minority class.
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Figure 39 – Noise detection performance for majority vote on spirals(n) dataset when
class 2 is the minority class.

Figure 40 – Noise detection performance for majority vote on spirals(n,cycles=2) dataset
when class 2 is the minority class.



81

Figure 41 – Noise detection performance for majority vote on spirals(n,cycles=4) dataset
when class 2 is the minority class.
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A.2 ENSEMBLE VOTE THRESHOLD

Figure 42 – F-score on P2 problem under different ensemble vote thresholds (where 1 =
10%, 2 = 20%,..,10 = 100%).



83

Figure 43 – F-score on 2dnormals(n,cl=2) dataset under different ensemble vote thresh-
olds (where 1 = 10%, 2 = 20%,..,10 = 100%).

Figure 44 – F-score on cassini(n) dataset under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 45 – F-score on circle(n,d=2) dataset under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).

Figure 46 – F-score on circle(n,d=5) dataset under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 47 – F-score on ringnorm(n,d=2) dataset under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).

Figure 48 – F-score on ringnorm(n,d=5) dataset under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 49 – F-score on spirals(n) dataset under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).

Figure 50 – F-score on spirals(n,cycles=2) dataset under different ensemble vote thresh-
olds (where 1 = 10%, 2 = 20%,..,10 = 100%).



87

Figure 51 – F-score on spirals(n,cycles=4) dataset under different ensemble vote thresh-
olds (where 1 = 10%, 2 = 20%,..,10 = 100%).
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A.3 STATISTICAL TESTS

Table 18 – Wilcoxon test on synthetic problems when there is 5% of noise in data. W/T/L
= wins/ties/losses. p-value < 0.05 are highlighted.

IR Noise Model
50:50 30:70 20:80

NCAR
NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

50:50

NAR(9:1)
W/T/L 5/0/4 4/0/5 8/0/1 8/0/1 9/0/0 8/0/1 8/0/1 8/0/1

p-value 0.554 0.906 0.018 0.013 0.009 0.024 0.018 0.013

NCAR
W/T/L 4/0/5 8/0/1 8/0/1 9/0/0 6/0/3 7/0/2 7/0/2

p-value 0.906 0.033 0.033 0.009 0.155 0.097 0.058

NAR(1:9)
W/T/L 6/0/3 8/0/1 7/0/2 4/0/5 4/0/5 4/0/5

p-value 0.058 0.044 0.024 1.000 0.722 0.722

30:70

NAR(9:1)
W/T/L 9/0/0 8/0/1 4/0/5 8/0/1 8/0/1

p-value 0.009 0.013 0.722 0.024 0.033

NCAR
W/T/L 7/0/2 0/0/9 1/0/8 5/0/4

p-value 0.076 0.009 0.018 0.636

NAR(1:9)
W/T/L 0/0/9 0/0/9 3/0/6

p-value 0.009 0.009 0.058

20:80

NAR(9:1)
W/T/L 8/0/1 9/0/0

p-value 0.018 0.009

NCAR
W/T/L 9/0/0

p-value 0.009
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Table 19 – Wilcoxon test on synthetic problems when there is 10% of noise in data.
W/T/L = wins/ties/losses. p-value < 0.05 are highlighted.

IR Noise Model
50:50 30:70 20:80

NCAR
NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

50:50

NAR(9:1)
W/T/L 5/0/4 4/0/5 8/0/1 8/0/1 9/0/0 8/0/1 8/0/1 8/0/1

p-value 0.554 0.554 0.013 0.013 0.009 0.018 0.018 0.013

NCAR
W/T/L 4/0/5 8/0/1 8/0/1 8/0/1 7/0/2 7/0/2 8/0/1

p-value 1.000 0.018 0.024 0.013 0.097 0.076 0.033

NAR(1:9)
W/T/L 6/0/3 8/0/1 8/0/1 4/0/5 4/0/5 4/0/5

p-value 0.076 0.024 0.018 0.906 1.000 0.906

30:70

NAR(9:1)
W/T/L 9/0/0 8/0/1 5/0/4 8/0/1 8/0/1

p-value 0.009 0.013 0.722 0.024 0.024

NCAR
W/T/L 7/0/2 0/0/9 0/0/9 6/0/3

p-value 0.076 0.009 0.009 0.343

NAR(1:9)
W/T/L 0/0/9 0/0/9 2/0/7

p-value 0.009 0.009 0.044

20:80

NAR(9:1)
W/T/L 8/0/1 9/0/0

p-value 0.018 0.009

NCAR
W/T/L 9/0/0

p-value 0.009

Table 20 – Wilcoxon test on synthetic problems when there is 20% of noise in data.
W/T/L = wins/ties/losses. p-value < 0.05 are highlighted.

IR Noise Model
50:50 30:70 20:80

NCAR
NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

50:50

NAR(9:1)
W/T/L 4/0/5 5/0/4 8/0/1 8/0/1 9/0/0 8/0/1 8/0/1 8/0/1

p-value 0.813 0.554 0.013 0.013 0.009 0.013 0.018 0.013

NCAR
W/T/L 4/0/5 8/0/1 8/0/1 9/0/0 6/0/3 7/0/2 8/0/1

p-value 0.722 0.018 0.018 0.009 0.124 0.058 0.033

NAR(1:9)
W/T/L 6/0/3 7/0/2 7/0/2 4/0/5 4/0/5 4/0/5

p-value 0.155 0.024 0.033 0.722 0.722 0.906

30:70

NAR(9:1)
W/T/L 9/0/0 8/0/1 5/0/4 8/0/1 8/0/1

p-value 0.009 0.013 0.554 0.013 0.024

NCAR
W/T/L 7/0/2 0/0/9 2/0/7 6/0/3

p-value 0.044 0.009 0.058 0.155

NAR(1:9)
W/T/L 0/0/9 0/0/9 3/0/6

p-value 0.009 0.009 0.058

20:80

NAR(9:1)
W/T/L 8/0/1 9/0/0

p-value 0.018 0.009

NCAR
W/T/L 9/0/0

p-value 0.009
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APPENDIX B – RESULTS ON REAL DATA

B.1 PERFORMANCE MEASURES

Figure 52 – Noise detection performance for majority vote on arcene dataset.
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Figure 53 – Noise detection performance for majority vote on breast-cancer-wisconsin
dataset.

Figure 54 – Noise detection performance for majority vote on column2C dataset.
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Figure 55 – Noise detection performance for majority vote on credit dataset.

Figure 56 – Noise detection performance for majority vote on cylinder-bands dataset.
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Figure 57 – Noise detection performance for majority vote on diabetes dataset.

Figure 58 – Noise detection performance for majority vote on eeg-eye-state dataset.
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Figure 59 – Noise detection performance for majority vote on glass0 dataset.

Figure 60 – Noise detection performance for majority vote on glass1 dataset.
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Figure 61 – Noise detection performance for majority vote on heart-c dataset.

Figure 62 – Noise detection performance for majority vote on heart-statlog dataset.
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Figure 63 – Noise detection performance for majority vote on hill-valley dataset.

Figure 64 – Noise detection performance for majority vote on ionosphere dataset.
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Figure 65 – Noise detection performance for majority vote on kr-vs-kp dataset.

Figure 66 – Noise detection performance for majority vote on mushroom dataset.
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Figure 67 – Noise detection performance for majority vote on pima dataset.

Figure 68 – Noise detection performance for majority vote on sonar dataset.
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Figure 69 – Noise detection performance for majority vote on steel-plates-fault dataset.

Figure 70 – Noise detection performance for majority vote on tic-tac-toe dataset.
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Figure 71 – Noise detection performance for majority vote on voting dataset.
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B.2 ENSEMBLE VOTE THRESHOLD

Figure 72 – F-score on arcene problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).
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Figure 73 – F-score on breast-cancer-wisconsin problem under different ensemble vote
thresholds (where 1 = 10%, 2 = 20%,..,10 = 100%).

Figure 74 – F-score on column2C problem under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).



103

Figure 75 – F-score on credit problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).

Figure 76 – F-score on cylinder-bands problem under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 77 – F-score on diabetes problem under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).

Figure 78 – F-score on eeg-eye-state problem under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 79 – F-score on glass0 problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).

Figure 80 – F-score on glass1 problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).
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Figure 81 – F-score on heart-c problem under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).

Figure 82 – F-score on heart-statlog problem under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 83 – F-score on hill-valley problem under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).

Figure 84 – F-score on ionosphere problem under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 85 – F-score on kr-vs-kp problem under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).

Figure 86 – F-score on mushroom problem under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).



109

Figure 87 – F-score on pima problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).

Figure 88 – F-score on sonar problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).
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Figure 89 – F-score on steel-plates-fault problem under different ensemble vote thresholds
(where 1 = 10%, 2 = 20%,..,10 = 100%).

Figure 90 – F-score on tic-tac-toe problem under different ensemble vote thresholds (where
1 = 10%, 2 = 20%,..,10 = 100%).
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Figure 91 – F-score on voting problem under different ensemble vote thresholds (where 1
= 10%, 2 = 20%,..,10 = 100%).
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B.3 STATISTICAL TESTS

Table 21 – Friedman test results of each problem. Non-significant differences (α > 0.05)
are marked with *. Part I.

Datasets IR

Friendman test result

p-value

5% 10% 15% 20%

arcene

50:50 0.0220 0.8700* 0.0920* 0.5840*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

breast-cancer-wisconsin

50:50 0.5900* 0.4090* 0.1110* 0.5470*

30:70 0.6340* 0.2720* 0.9910* 0.7730*

20:80 0.0390 0.0020 0.0040 0.0030

column2C

50:50 0.0000 0.5500* 0.5760* 1.0000*

30:70 0.0100 0.0120 0.0000 0.0000

20:80 0.0020 0.0000 0.0000 0.0000

credit

50:50 0.3580* 0.7290* 0.4580* 0.9670*

30:70 0.0520* 0.0000 0.0000 0.0000

20:80 0.0020 0.0000 0.0010 0.0000

cylinder-bands

50:50 0.0010 0.5250* 0.0140 0.1720*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

diabetes

50:50 0.1540* 0.5150* 0.5310* 0.9430*

30:70 0.0020 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

eeg-eye-state

50:50 0.0410 0.5690* 0.0480 0.2330*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

glass0

50:50 0.0020 0.0660* 0.0390 0.0340

30:70 0.0710* 0.0010 0.0000 0.0000

20:80 0.4340* 0.0000 0.0000 0.0000

glass1

50:50 0.2400* 0.2080* 0.0640* 0.1990*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000
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Table 23 – Friedman test results of each problem. Non-significantly difference (α > 0.05)
are marked with *. Part II.

Datasets IR

Friendman test result

p-value

5% 10% 15% 20%

heart-c

50:50 0.1030* 0.7690* 0.6530* 0.3810*

30:70 0.0060 0.0000 0.0000 0.0000

20:80 0.0160 0.0000 0.0000 0.0000

heart-statlog

50:50 0.7770* 0.0260 0.2180* 0.6900*

30:70 0.1890* 0.0250 0.1010* 0.0250

20:80 0.0360 0.0000 0.0000 0.0000

hill-valley

50:50 0.9430* 0.8750* 0.6480* 0.5870*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

ionosphere

50:50 0.6390* 0.0960* 0.3740* 0.6550*

30:70 0.3880* 0.5640* 0.2420* 0.2540*

20:80 0.0080 0.0010 0.0030 0.0030

kr-vs-kp

50:50 0.1230* 0.5560* 0.3330* 0.3190*

30:70 0.8970* 0.1500* 0.2880* 0.1010*

20:80 0.1830* 0.0370 0.0470 0.0000

pima

50:50 0.4000* 0.9920* 0.0090 0.5390*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

sonar

50:50 0.0000 0.6010* 0.0390 0.9750*

30:70 0.0010 0.0030 0.0520* 0.0020

20:80 0.0000 0.0550* 0.0040 0.0030

steel-plates-fault

50:50 0.6250* 0.6400* 0.7590* 0.1380*

30:70 0.8190* 0.3680* 0.0740* 0.4170*

20:80 0.1740* 0.0860* 0.0470 0.0000

tic-tac-toe

50:50 0.7920* 0.5060* 0.5990* 0.9270*

30:70 0.0000 0.0000 0.0000 0.0000

20:80 0.0000 0.0000 0.0000 0.0000

voting

50:50 0.2770* 0.5590* 0.0370 0.6150*

30:70 0.1300* 1.0000* 0.3020* 0.8730*

20:80 0.1070* 0.1080* 0.2180* 0.1740*
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Table 25 – Wilcoxon test on real problems when there is 5% of noise in data. W \T \L
= wins\ties\losses. p-value < 0.05 are highlighted.

IR Noise Model
50:50 30:70 20:80

NCAR
NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

50:50

NAR(9:1)
W/T/L 6/0/13 10/0/9 16/0/3 11/0/8 16/0/3 17/0/2 13/0/6 15/0/4

p-value 0.019 0.433 0.002 0.153 0.001 0.002 0.038 0.004

NCAR
W/T/L 14/1/4 13/0/6 10/0/9 15/0/4 14/0/5 9/0/10 13/0/6

p-value 0.012 0.013 0.615 0.004 0.023 0.763 0.021

NAR(1:9)
W/T/L 7/0/12 4/0/15 7/0/12 5/0/14 4/0/15 7/0/12

p-value 0.305 0.009 0.268 0.061 0.009 0.205

30:70

NAR(9:1)
W/T/L 13/0/6 16/1/2 13/0/6 13/0/6 17/0/2

p-value 0.433 0.000 0.103 0.121 0.001

NCAR
W/T/L 17/0/2 8/0/11 10/0/9 15/0/4

p-value 0.000 0.457 0.952 0.002

NAR(1:9)
W/T/L 2/0/17 3/1/15 7/0/12

p-value 0.001 0.002 0.286

20:80

NAR(9:1)
W/T/L 12/0/7 19/0/0

p-value 0.220 0.000

NCAR
W/T/L 19/0/0

p-value 0.000

Table 26 – Wilcoxon test on real problems when there is 10% of noise in data. W \T \L
= wins\ties\losses. p-value < 0.05 are highlighted.

IR Noise Model
50:50 30:70 20:80

NCAR
NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

50:50

NAR(9:1)
W/T/L 7/0/12 12/0/7 17/0/2 16/0/3 15/0/4 18/0/1 16/0/3 16/0/3

p-value 0.615 0.165 0.001 0.001 0.001 0.001 0.002 0.001

NCAR
W/T/L 11/0/8 11/0/8 10/0/9 11/0/8 8/0/11 9/0/10 11/0/8

p-value 0.433 0.268 0.324 0.073 0.856 0.763 0.268

NAR(1:9)
W/T/L 5/0/14 4/0/15 3/0/16 3/0/16 3/0/16 5/0/14

p-value 0.007 0.007 0.009 0.003 0.003 0.006

30:70

NAR(9:1)
W/T/L 16/1/2 18/0/1 15/0/4 16/0/3 17/0/2

p-value 0.001 0.000 0.015 0.002 0.000

NCAR
W/T/L 18/0/1 4/0/15 9/0/10 16/0/3

p-value 0.000 0.004 0.560 0.004

NAR(1:9)
W/T/L 1/0/18 1/0/18 7/0/12

p-value 0.000 0.000 0.056

20:80

NAR(9:1)
W/T/L 17/0/2 19/0/0

p-value 0.001 0.000

NCAR
W/T/L 19/0/0

p-value 0.000
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Table 27 – Wilcoxon test on real problems when there is 20% of noise in data. W \T \L
= wins\ties\losses. p-value < 0.05 are highlighted.

IR Noise Model
50:50 30:70 20:80

NCAR
NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

NAR

(9:1)
NCAR

NAR

(1:9)

50:50

NAR(9:1)
W/T/L 6/0/13 11/0/8 17/0/2 17/0/2 16/0/3 18/0/1 17/0/2 17/0/2

p-value 0.587 0.533 0.000 0.000 0.001 0.000 0.001 0.001

NCAR
W/T/L 11/0/8 9/0/10 9/0/10 10/0/9 11/0/8 11/0/8 13/0/6

p-value 0.305 0.702 0.888 0.794 0.920 0.658 0.387

NAR(1:9)
W/T/L 6/0/13 6/0/13 4/0/15 3/0/16 3/0/16 3/0/16

p-value 0.009 0.005 0.005 0.002 0.001 0.002

30:70

NAR(9:1)
W/T/L 16/0/3 17/0/2 14/0/5 17/0/2 17/0/2

p-value 0.000 0.000 0.028 0.000 0.000

NCAR
W/T/L 18/0/1 3/0/16 10/0/9 16/0/3

p-value 0.000 0.001 0.984 0.003

NAR(1:9)
W/T/L 1/0/18 3/0/16 6/0/13

p-value 0.000 0.001 0.021

20:80

NAR(9:1)
W/T/L 18/0/1 19/0/0

p-value 0.000 0.000

NCAR
W/T/L 19/0/0

p-value 0.000


