
Victor Laerte de Oliveira

An Empirical Study on the Usage of the Kotlin Programming Language for
Android Development

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao


Victor Laerte de Oliveira

An Empirical Study on the Usage of the Kotlin Programming Language for
Android Development

Dissertation presented to the Post-Graduate Pro-
gram in Computer Science of the Informatics
Center of the Federal University of Pernambuco
as a partial requirement to obtain the Master of
Computer Science degree.

Field: Software Engineering
Advisor: Leopoldo Motta Teixeira

Recife
2019



          

 

 

 

 
 

 
Catalogação na fonte

Bibliotecária Mariana de Souza Alves CRB4-2106

O48e     Oliveira, Victor Laerte de.
An Empirical  Study on the Usage of  the Kotlin Programming

Language for Android Development/ Victor Laerte de Oliveira. –
2019.

87 f.: il., fig., tab.

Orientador:  Leopoldo Motta Teixeira.
Dissertação  (Mestrado) –  Universidade  Federal  de

Pernambuco. CIn, Ciência da computação. Recife, 2019.
Inclui referências e apêndices.

1.  Engenharia de Software. 2.   Linguagens de Programação.
3. Android. 4.  Kotlin. I. Teixeira, Leopoldo Motta  (orientador). II.
Título.
    
    005.1             CDD (22. ed.)                   UFPE-MEI 2019-161    



Victor Laerte de Oliveira

“An Empirical Study on the Usage of the Kotlin Programming Language 
for Android Development”

Dissertação de Mestrado apresentada ao 
Programa de Pós-Graduação em Ciência da 
Computação da Universidade Federal de 
Pernambuco, como requisito parcial para a 
obtenção do título de Mestre em Ciência da 
Computação.

Aprovado em: 08 de agosto de 2019.

BANCA EXAMINADORA

_________________________________________________
Prof. Dr. Fernando José Castor de Lima Filho

Centro de Informática / UFPE

_________________________________________________
Prof. Dr. Gustavo Henrique Lima Pinto

Instituto de Ciências Exatas e Naturais /UFPA

_________________________________________________
Prof. Dr. Leopoldo Motta Teixeira

Centro de Informática / UFPE
(Orientador)



To my family, and friends. I love you all.



ACKNOWLEDGEMENTS

A Deus por tudo que tenho em minha vida e por Sua benevolência para comigo, que
tornou possível chegar até aqui com o suporte de todos que amo ao meu lado.

À minha esposa, Marianna, a qual eu pude agradecer em minha graduação ainda como
namorada e hoje posso agradece-la como minha esposa e companheira por todo o incentivo
na busca dos meus objetivos.

À minha família, especialmente aos meus pais Sebastião e Grace, por todo amor e
sacrifícios feitos para ajudar na realização dos meus sonhos.

À minha irmã Priscila, pelo coração extremamente generoso e pelo simples fato de
existir e fazer parte de minha vida.

Aos meus avós maternos Domingos e Maria, pelas inúmeras vezes que me aconselharam
a estudar e procurar sempre o meu melhor. Esse trabalho é para vocês.

Agradeço ao meu Professor e orientador, Leopoldo Teixeira, pelos ensinamentos, paciên-
cia e oportunidade de me orientar, mesmo sabendo que eu teria que dividir o tempo entre
o estudo e o trabalho.

Aos meus colegas Karine, Alex e Gabriel que entraram junto comigo sob a orientação
do Professor Leopoldo e que mesmo não tão próximos no dia a dia conseguimos criar laços
de amizade e ajuda mútua.

Agradeço também à empresa Liferay, em especial a Bruno Farache, que por muitas
vezes demonstrou sensibilidade em me liberar para atividades acadêmicas e até mesmo
me patrocinar em eventos.

A todos vocês que contribuíram direta ou indiretamente com a minha formação, meus
sinceros agradecimentos.



“Any sufficiently advanced technology is indistinguishable from magic” (CLARKE, 1973)



ABSTRACT

In 2017, Google announced Kotlin as one of the officially supported languages for
Android development. Until then, only Java and C++ were part of this list. Among the
reasons for choosing Kotlin, Google mentioned it is “concise, expressive, and designed
to be type and null-safe”. Another important reason is that Kotlin is a language fully
interoperable with Java and runs on the JVM. Despite Kotlin’s rapid rise in the indus-
try, little has been done in academia to understand how developers are dealing with its
adoption. This research aims to gather evidence to understand how developers are deal-
ing with the recent adoption of Kotlin as an official language for Android development,
their perception about the advantages and disadvantages related to its usage, and the
most common problems faced by them. This research was conducted using the concur-
rent triangulation strategy, which is a mixed-method approach. We performed a thorough
analysis of 9,405 questions related to Kotlin development for the Android platform on
StackOverflow. Concurrently, we also conducted a basic qualitative research interviewing
seven Android developers that use Kotlin, to confirm and cross-validate our results. Our
study reveals that developers do seem to find the language easy to understand and to
be adopted. This perception begins to change when the functional paradigm becomes
more evident. According to the developers, readability and legibility are compromised if
developers overuse the functional flexibility that the language provides. The developers
also consider that Kotlin increases the quality of the produced code, mainly due to its
null-safety guarantees. Nonetheless, they also report that it can also become a challenge
when interoperating with Java, despite of the interoperability being considered as an ad-
vantage. While adopting Kotlin requires some care from developers, the benefits of its
adoption on Android seem to bring many advantages to the platform according to the de-
velopers, especially in the aspect of adopting a more modern language while maintaining
the consolidated Java-based development environment.

Keywords: Programming Languages. Android. Kotlin. Java.



RESUMO

Em 2017, o Google anunciou o Kotlin como uma das linguagens de programação
oficialmente suportadas para o desenvolvimento Android. Até então, apenas Java e C++
faziam parte dessa lista. Entre as razões para a escolha do Kotlin, o Google mencionou
que ele é “conciso, expressivo e projetado para ser seguro em termos de tipo e variáveis
nulas”. Outra razão importante foi que o Kotlin é uma linguagem totalmente interop-
erável com Java e roda na JVM. Apesar da rápida ascensão de Kotlin na indústria,
pouco foi feito na academia para entender como os desenvolvedores estão lidando com
sua adoção. Esta pesquisa tem como objetivo coletar evidências para entender como os
desenvolvedores estão lidando com a recente adoção do Kotlin como uma linguagem ofi-
cial para o desenvolvimento Android, sua percepção sobre as vantagens e desvantagens
do Kotlin e os problemas mais comuns enfrentados por eles. Esta pesquisa foi conduzida
usando a estratégia de triangulação concorrente, uma abordagem de método misto. Real-
izamos uma análise completa de 9.405 questões relacionadas ao desenvolvimento do Kotlin
para a plataforma Android no StackOverflow. Simultaneamente, também realizamos uma
pesquisa qualitativa básica entrevistando sete desenvolvedores Android que usam o Kotlin,
para confirmar e validar de forma cruzada nossa análise. Nosso estudo revela que os de-
senvolvedores parecem achar a linguagem fácil de entender e ser adotado. Essa percepção
começa a mudar quando o paradigma funcional se torna mais evidente. De acordo com
os desenvolvedores, a legibilidade é comprometida quando os desenvolvedores abusam do
paradigma funcional que a linguagem oferece. Os desenvolvedores também consideram
que o Kotlin aumenta a qualidade do código produzido, principalmente devido às suas
garantias de segurança contra tipos nulo. No entanto, eles também relatam que também
pode se tornar um desafio ao interoperar com o Java, apesar da interoperabilidade ser
vista como uma vantagem. Embora a adoção do Kotlin exija algum cuidado dos desen-
volvedores, de acordo com os desenvolvedores os benefícios de sua adoção no Android
parecem trazer muitas vantagens para a plataforma, especialmente pela possibilidade de
adotar uma linguagem mais moderna fazendo uso de todo o ambiente de desenvolvimento
consolidado baseado em Java.

Palavras-chaves: Linguagens de Programação. Android. Kotlin. Java.



LIST OF FIGURES

Figure 1 – GitHub Repositories using Kotlin. . . . . . . . . . . . . . . . . . . . . . 18
Figure 2 – StackOverflow Questions about Kotlin. . . . . . . . . . . . . . . . . . . 19
Figure 3 – Kotlin Release Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4 – Diagram of the Kotlin collection interfaces. . . . . . . . . . . . . . . . . 25
Figure 5 – Triangulation strategy diagram. . . . . . . . . . . . . . . . . . . . . . . 37
Figure 6 – LDAvis: global topic view on the left, and the term bar charts on the

right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 7 – LDAvis: selected topic in the right panel, and the estimated relevance

and overall term frequency of each term in bar charts on the right. . . . 46
Figure 8 – LDAvis: the distribution of the term ‘studio’ over the topics at the right

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 9 – Relevance of ‘java’ term between topics. . . . . . . . . . . . . . . . . . 50
Figure 10 – Relevance of ‘function’ term between topics. . . . . . . . . . . . . . . . 53
Figure 11 – Relevance of ‘gradle’ term between topics. . . . . . . . . . . . . . . . . 56
Figure 12 – Relevance of ‘studio’ term between topics. . . . . . . . . . . . . . . . . 57



LIST OF TABLES

Table 1 – Kotlin on Android YoY growth in StackOverflow. . . . . . . . . . . . . . 31
Table 2 – Characteristics of research participants. . . . . . . . . . . . . . . . . . . 41
Table 3 – LDA Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 4 – Open Code Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



LIST OF CODES

Code 1 – Data Class example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Code 2 – Destructuring Declarations example. . . . . . . . . . . . . . . . . . . . . 21
Code 3 – Destructuring compiled code. . . . . . . . . . . . . . . . . . . . . . . . . 21
Code 4 – Destructuring to iterate through a map. . . . . . . . . . . . . . . . . . . 22
Code 5 – Safe and Unsafe declaration. . . . . . . . . . . . . . . . . . . . . . . . . 22
Code 6 – Checking for null in conditions. . . . . . . . . . . . . . . . . . . . . . . . 22
Code 7 – Safe call operator (?). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Code 8 – Chaining safe call operator. . . . . . . . . . . . . . . . . . . . . . . . . . 22
Code 9 – Elvis operator (?:). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Code 10 – Not-null assertion operator (!!). . . . . . . . . . . . . . . . . . . . . . . . 23
Code 11 – Defining and calling a companion object. . . . . . . . . . . . . . . . . . . 23
Code 12 – Implementing interfaces within a companion object. . . . . . . . . . . . 23
Code 13 – Covariance with immutable list. . . . . . . . . . . . . . . . . . . . . . . . 24
Code 14 – List example usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Code 15 – Set example usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Code 16 – Map example usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Code 17 – Function declaration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Code 18 – Declaring first class function with lambda expression. . . . . . . . . . . . 26
Code 19 – Passing anonymous function as parameter. . . . . . . . . . . . . . . . . . 26
Code 20 – Passing anonymous function with implicit parameter. . . . . . . . . . . . 27
Code 21 – Passing a lambda to the last parameter. . . . . . . . . . . . . . . . . . . 27
Code 22 – Closures example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Code 23 – Inline function before compiler translation. . . . . . . . . . . . . . . . . 27
Code 24 – Inline function after compiler translation. . . . . . . . . . . . . . . . . . 28
Code 25 – Defining and calling extension functions. . . . . . . . . . . . . . . . . . . 28
Code 26 – ‘let’ function example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Code 27 – ‘with’ function example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Code 28 – ‘run’ function example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Code 29 – ‘apply’ function example. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Code 30 – ‘also’ function example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Code 31 – Type checking example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Code 32 – Cast example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Code 33 – Pre-processing StackOverflow Data. . . . . . . . . . . . . . . . . . . . . 72



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 THE KOTLIN PROGRAMMING LANGUAGE . . . . . . . . . . . . . . . . 17
2.1.1 Kotlin Language Characteristics . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.1 Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.2 Destructuring Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.3 Null Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2.4 Companion Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2.5 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2.6 Higher-Order Functions and Lambdas . . . . . . . . . . . . . . . . . . . . 26
2.1.2.7 Extension Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2.8 Scope Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2.9 Type Checks and Cast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Kotlin in Android Development . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4 Android KTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 RESEARCH QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 TRIANGULATION STRATEGY . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 STACKOVERFLOW DATA ANALYSES . . . . . . . . . . . . . . . . . . . 37
3.3.1 Acquiring and Pre-processing Data . . . . . . . . . . . . . . . . . . . 37
3.3.2 Topic Modeling and Visualization . . . . . . . . . . . . . . . . . . . . 38
3.4 BASIC QUALITATIVE STUDY . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 GENERAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 RESEARCH QUESTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 RQ1 - What are the most common problems faced by Kotlin de-

velopers on Android Platform? . . . . . . . . . . . . . . . . . . . . . . 48



4.2.2 RQ2 - How are Android developers dealing with the Java-Kotlin
interoperability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 RQ3 - How are Android developers dealing with the functional
paradigm Kotlin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 RQ4 - How are Android developers dealing wit the development
environment tools available for Kotlin? . . . . . . . . . . . . . . . . . 55

4.2.5 RQ5 - What is the perception of Android developers about Kotlin
adoption? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 OVERALL ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 LITERATURE ENFOLDING . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 IMPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 THREATS TO VALIDITY . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . 67

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

APPENDIX A – PRE-PROCESSING STACKOVERFLOW DATA . 72

APPENDIX B – INTERVIEW SCRIPT . . . . . . . . . . . . . . . . 76

APPENDIX C – CONSENT FORM FOR RESEARCH PARTICI-
PATION . . . . . . . . . . . . . . . . . . . . . . . 78

APPENDIX D – QUESTIONS PRESENTED IN THE RESULTS . 81



14

1 INTRODUCTION

Over the last few years, the mobile smartphone market has become one of the most
powerful industries in the world (STATISTA, 2019). Apple and Google, the producers of
the most popular smartphone operating systems, iOS and Android, are now the two most
valuable companies in the world (FORBES, 2018). Smartphone users around the world
surpassed the 3 billion mark and it could reach 3.7 by 2021 (NEWZOO, 2018). Global
app revenues also show numbers that exceed the $100 billions in revenue in 2019 with
projections of $139.6 billions in 2021.

These facts create a high demand not only for new mobile developers, but also for
new techniques, tools, and frameworks to ease mobile programming practice. Until the
middle of 2017, Java was the main development language for Android. Although well-
established, Java did not have major constant releases, which decelerated its evolution and
consequently the modernity of the language and the platform. In the case of Android, the
landscape was a bit worse because, for a long time, the platform only supported limited
features of Java 8, such as lambda expressions, through third-party libraries1 or the Jack
(Java Android Compiler Kit) (ANDROID, 2017a; ANDROID, 2017b). Kotlin2 comes as an
alternative to this context.

Kotlin is a statically-typed programming language that runs on the Java Virtual Ma-
chine and can also be compiled to JavaScript source code. It was released to the public
in February 2016. Its primary development is from a team of JetBrains programmers
based in Saint Petersburg, Russia. Its name comes from Kotlin Island in Saint Petersburg
(PANCHAL, 2016), and it is distributed under the Apache 2 Open Source license.

Kotlin brings the possibility of fully interoperating with Java code, so it is possible
to mix both languages freely. Migrating to Kotlin can be gradual and does not have to
alter the entire codebase. Developers can also take advantage of the Java environment
using all its existing libraries and frameworks running with the same performance level as
Java, while taking advantage of modern features such as functional programming, smart
casting, destructuring declarations, null safety support, extension functions, lazy loading,
and others (JANGID, 2017; BANERJEE et al., 2018; PANCHAL, 2016).

All the advantages brought by Kotlin ended up creating a developer community even
before the official announcement of the support for Kotlin in the Android Platform. In
fact, Google stated in its blog that many developers have told them they love the Kotlin
language. “Many of our own developers on the Android team have also been saying similar
things... The Android community has spoken, and we listened” (CLERON, 2017).

In this regard, Google announced in its event, Google I/O in May of 2017, the offi-
1 <https://github.com/evant/gradle-retrolambda>
2 <https://kotlinlang.org>

https://github.com/evant/gradle-retrolambda
https://kotlinlang.org


15

cial support for the Kotlin language on the Android platform. Among other reasons for
choosing Kotlin, Google mentioned it is “concise, expressive, and designed to be type
and null-safe” and also “many Android developers have already found that Kotlin makes
development faster and more fun” (GOOGLE, 2017). Another important reason is that
Kotlin is a language fully interoperable with Java and runs on the JVM. From Kotlin
source code, it is possible to generate Java bytecode for the JVM or JavaScript source
code (KOTLIN, 2019b).

About a year after its 1.0 version release and two years after Google’s official an-
nouncement of support for Kotlin, the language appeared in 2018 in the ranking of the
most popular languages (22nd) and also in the raking of languages most loved by de-
velopers (2nd)(STACKOVERFLOW, 2018). Kotlin was rapidly adopted in the industry by
companies like Pinterest, Gradle, Evernote, Uber, Corda, Coursera, and Pivotal that are
already using Kotlin not only to build Android Apps but also for many other purposes,
such as create internal desktop tools, and web applications (KOTLIN, 2019b).

Despite Kotlin’s rapid rise in the industry, very little has been done in academia to
understand how developers are dealing with the adoption of Kotlin. This enforces the
urgent need for research in this field to assist the industry and other researchers toward
a better comprehension of the technology and to guide the development of new tools and
new researches. Due to the scarce number of research studies in the area, this work aims
to investigate the subject in depth.

In this research we aim to gather evidence to understand how developers are dealing
with the recent adoption of Kotlin as an official language for Android development, their
perceptions about the advantages and disadvantages using Kotlin, and the most common
problems faced by them. To this end we defined the following research questions to guide
this study:

• What are the most common problems faced by Kotlin developers on Android Plat-
form?

• How are Android developers dealing with the Java-Kotlin interoperability?

• How are Android developers dealing with the functional paradigm in Kotlin?

• How are Android developers dealing with the development environment tools avail-
able for Kotlin?

• What is the perception of Android developers about Kotlin adoption?

Based on the above questions we believe that the main implications of this research
are: (i) to be used as a guide for companies and developers who want to make a prelim-
inary analysis before adopting Kotlin; (ii) assist decision making of how is the best way



16

for adopting Kotlin in companies scenario; (iii) to facilitate improving techniques, tools,
processes, and mechanisms to make the best use of the language on the Android platform.

Many researchers have proposed methods and criteria for evaluating programming lan-
guages (WIRTH, 1976; CHANDRA; CHANDRA, 2005; SCHMAGER; CAMERON; NOBLE, 2010),
however, no consensus has emerged since most of them are prone to subjective assessment.
In this research, we decided to mix different methods to enrich the results of our analyses
through a concurrent triangulation strategy (EASTERBROOK et al., 2008). One method is
based on two previous works (REBOUÇAS et al., 2016; BARUA; THOMAS; HASSAN, 2014),
and consists on data analysis from StackOverflow questions, a popular collaborative Q&A
website for developers. The other method uses basic qualitative strategies (MERRIAM; TIS-

DELL, 2016) to confirm and cross-validate the results.
Our main findings reveal that developers are facing many problems, including code

conversion from Java to Kotlin, as well as interoperability between both languages, espe-
cially regarding variables coming from Java, which does not have null-safety. Developers
do seem to consider Kotlin easy to understand and to adopt it. This perception begins
to change when the functional paradigm becomes more evident. According to the devel-
opers, the readability, and legibility are compromised if developers overuse the functional
flexibility that the language provides. The developers also consider that Kotlin increases
the quality of the produced code mainly due to its null-safety guarantees.

The remainder of this work is organized as follows:

• Chapter 2 shows an overview of Kotlin and its role in the Android development,
aiming to support the understanding about our study.

• Chapter 3 describes the methodology used to conduct this study.

• Chapter 4 presents our finds and organize them in terms of each RQ.

• Chapter 5 we perform an overall assessment, a comparison with the literature, and
an analysis of the validity and limitations of this work.

• Chapter 6 shows the conclusion of this work and future works proposals.



17

2 BACKGROUND

In this chapter, we introduce the Kotlin programming language and its role in Android
development. We also present related works in Section 2.2

2.1 THE KOTLIN PROGRAMMING LANGUAGE

Kotlin was created by JetBrains in 2010 as an experiment looking at how some Java
developers could benefit from a better programming experience for JVM (BRESLAV, 2018).
Kotlin is a modern statically typed language that compiles to JVM bytecodes, JavaScript,
and native bytecode. The language is backed by JetBrains, creator of IntelliJ IDEA, and
distributed under the Apache 2 Open Source license. Its name comes from Kotlin Island
in Saint Petersburg (PANCHAL, 2016).

Andrey Breslav, the creator of Kotlin, describes Kotlin as “a modern language for the
industry because it is focused on flexible abstractions for code reuse and readability, static
type safety for early error detection and explicit capturing of intent for maintainability
and clarity” (REBELLABS, 2013).

Kotlin adoption rapidly increased after its v1.0 release in February of 2016. Figure 1
shows how the usage of Kotlin has increased over the years:

The same growth trend is shown in Figure 2, which shows the number of questions
with the kotlin tag in the StackOverflow forum:

Both Figures (1, and 2) presents a significant increase after Kotlin v1.0 release in 2016,
and also after Google’s official announce for Kotlin support in 2017. The reason for such
popularity success is interpreted by many specialists, including Breslav, because of the
possibility to fully interoperate with Java. Hence, both languages can be freely mixed
and the migration can be gradual and does not have to alter entire codebase. Developers
can also take advantage from the Java environment using all its existing libraries and
frameworks running with the same performance level as Java (KOTLIN, 2019c).

2.1.1 Kotlin Language Characteristics

Kotlin is a multi-paradigm language which supports Object-Oriented (OO) and Functional
Programming Paradigm (FP), i.e., it allows the developer to use OO and FP, or simply
to combine them as it happens in most of the modern languages in industry (FLAUZINO et

al., 2018). Furthermore, its support for non-nullable types makes applications less prone
to null pointer exceptions. Kotlin also includes smart casting, higher-order functions, and
extension functions which allows developers to focus on making code more readable and
less verbose (BRESLAV, 2016; KOTLIN, 2019c).

JetBrains describe the main characteristics of Kotlin as the following (KOTLIN, 2019c):



18

Figure 1 – GitHub Repositories using Kotlin.

Fonte: The author (2019)

• Expressiveness: Kotlin has innovative language features, such as the support for
type-safe builders, and delegated properties.

• Scalability: Kotlin has support for coroutines1 which help building applications that
scale to massive numbers of clients with modest hardware requirements.

• Interoperability: Kotlin is fully compatible with all Java-based frameworks, which
lets developers stay on their familiar technology stack while reaping the benefits of
a more modern language.

• Migration: Kotlin supports gradual, step by step migration of large codebases from
Java to Kotlin. Developers can start writing new code in Kotlin while keeping older
parts of your system in Java.

• Tooling: Kotlin is widely supported with plugins for different IDEs also with many
framework-specific toolings.

1 Computer program components that generalize subroutines for non-preemptive multitasking,
by allowing execution to be suspended and resumed. <https://kotlinlang.org/docs/reference/
coroutines-overview.html>

https://kotlinlang.org/docs/reference/coroutines-overview.html
https://kotlinlang.org/docs/reference/coroutines-overview.html


19

Figure 2 – StackOverflow Questions about Kotlin.

Fonte: The author (2019)

• Learning Curve: For a Java developer, getting started with Kotlin is very easy. The
automated Java to Kotlin converter included in the Kotlin plugin helps with the
first steps.

Kotlin documentation (KOTLIN, 2019a) also states that the language follows the prin-
ciple of pragmatic evolution, i.e., the language is built taking into consideration three
main aspects:

• Keep the language modern over the years: Evolve the language to keep it
relevant to the needs of the users and up-to-date with their expectations, includ-
ing not only adding new features but also removing old ones that are no longer
recommended for production use and have altogether become legacy.

• Stay in the constant feedback loop with the users: Always announce incom-
patible changes well in advance, mark things as deprecated and provide automated
migration tools before the change happens.

• Make updating to new versions comfortable for the users: Before take design
decisions use every opportunity to make early versions of it with experimental status
to gather feedback from early adopters.

Figure 3 presents the Kotlin releases timeline:



20

Figure 3 – Kotlin Release Timeline

Fonte: The author (2019)

It is possible to identify that the language is evolving with at least one major and
many minor releases per year.



21

2.1.2 Key Features

In this section we present the key features of Kotlin, specially when compared with Java
(KOTLIN, 2019a). All the following subsections are part of or refer to the official Kotlin
documentation (KOTLIN, 2019c).

2.1.2.1 Data Classes

Data Classes are classes whose main purpose is to hold data. It automatically implements
standard functionalities and utility functions that are often mechanically derivable from
the data. To use this special type of classes, the class should be marked with data:

Code 1 – Data Class example.
1 data class User(val name: String , val age: Int)

The compiler automatically derives the following members from all properties declared
in the primary constructor:

• equals()/hashCode() pair.

• toString() of the form "User(name=John, age=42)".

• componentN() functions corresponding to the properties in their order of declaration.

• copy() function with a matching signature to copy the object. Providing explicit
implementations is not allowed.

To ensure consistency and meaningful behavior of the generated code, data classes (i)
needs to have at least one parameter; (ii) all primary constructor parameters need to be
marked as val or var; (iii) cannot be abstract, open, sealed or inner;

2.1.2.2 Destructuring Declarations

Kotlin allows destructuring declarations, which means that you can destructure an object
and creates multiple variables from it at once. For example:

Code 2 – Destructuring Declarations example.
1 val person = User("Laerte", 30)

val (name , age) = person

This code is compiled down using componentN():

Code 3 – Destructuring compiled code.
val person = User("Laerte", 30)

2 val name = person.component1 ()

val age = person.component2 ()

A very good example of usage for Destructuring Declarations is when you need to
iterate through a map:



22

Code 4 – Destructuring to iterate through a map.
1 for ((key , value) in map) {

// do something with the key and the value

3 }

2.1.2.3 Null Safety

Kotlin was designed to eliminating the danger of null references from code, also known as
the The Billion Dollar Mistake.2

In languages like Java, for example, if you access a member with a null reference it
will result in a NullPointerException. Kotlin aims to eliminate, or at least reducing the
opportunities for NullPointerException making programming more secure.

In Kotlin, regular variable types, such as String, Int, and Boolean, can not hold null

references. To allow nulls, the variable should be declared as optional with the ? operator,
e.g. String?, Int?, and Boolean?. For example:

Code 5 – Safe and Unsafe declaration.
1 var myString: String = "abc"

var optionalString: String? = null

If you try to access an unsafe property directly the compiler will report the error
variable 'optionalString' can be null, but there are some ways to access null prop-
erties safely:

• Checking for null in conditions, where you explicitly check if the variable is null,
and handle the two options separately:

Code 6 – Checking for null in conditions.
val optionalString: String? = "Kotlin"

2 if (optionalString != null) {

print(optionalString.length)

4 }

• Using the safe call operator (?):

Code 7 – Safe call operator (?).
val optionalString: String? = "Kotlin"

2 println(optionalString ?. length)

Safe calls are also useful in chains or together with the scope functions:

Code 8 – Chaining safe call operator.
bob?. department ?.head?.name

• Elvis operator (?:), which is an alias for the expression “if X is not null, use it,
otherwise use some non-null value Z”:

2 <https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/>

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/


23

Code 9 – Elvis operator (?:).
1 val optionalString: String? = "Kotlin"

val length = optionalString ?. length ?: -1

There is also another option with the not-null assertion operator (!!) which converts
any value to a non-null type, but it throws an NullPointerException if the value
is null. This is not the recommended way to unwrap an optional variable:

Code 10 – Not-null assertion operator (!!).
val optionalString: String? = "Kotlin"

2 val length = optionalString !!. length

2.1.2.4 Companion Objects

Kotlin does not have static members in classes or interfaces. Instead, it has companion
objects which are more powerful than Java static members because they can extend classes
and interfaces, and can be referenced and passed around like other objects. Members of
the companion object can be called by using the class name as the qualifier:

Code 11 – Defining and calling a companion object.
class MyClass {

2 companion object {

val emptyString = ""

4 }

}

6
val instance = MyClass.emptyString

Even though the members of companion objects look like static members in other
languages, at runtime those are still instance members of real objects. Therefore, as such,
they can, for example, implement interfaces:

Code 12 – Implementing interfaces within a companion object.
1 interface Factory <T> {

fun create (): T

3 }

5 class MyClass {

companion object : Factory <MyClass > {

7 override fun create (): MyClass = MyClass ()

}

9 }

11 val f: Factory <MyClass > = MyClass

However, on the JVM you can have members of companion objects generated as real
static methods and fields, if you use the @JvmStatic annotation.



24

2.1.2.5 Collections

Collections are a common concept for most programming languages. A collection usually
contains a number of objects (this number may also be zero) of the same type. The
Kotlin Standard Library provides implementations for basic collection types: sets, lists,
and maps. The two top interfaces of collections are:

• A read-only interface that provides operations for accessing collection elements.

• A mutable interface that extends the corresponding read-only interface with write
operations: adding, removing, and updating its elements.

The read-only collection types are covariant, i.e., if a Rectangle class inherits from
Shape, you can use a List<Rectangle> anywhere the List<Shape> is required, because
the immutability of the list guarantees that they will always be rectangles in this case, so
they are threaded like subtypes. For example:

Code 13 – Covariance with immutable list.
1 fun main() {

val rectangles: List <Rectangle > = listOf ()

3 acceptShape(rectangles) // It compiles!

}

5
fun acceptShape(shapeList: List <Shape >) {

7 // function body

}

In turn, mutable collections are not covariant, otherwise, this would lead to runtime
failures. If MutableList<Rectangle> was a subtype of MutableList<Shape>, you could
insert other Shape inheritors (for example, Circle) into it, thus violating its Rectangle

type argument. Figure 4 shows the diagram of the Kotlin collection interfaces.
As shown in Figure 4, Collection<T> is the root of the collection hierarchy. This in-

terface represents the common behavior of a read-only collection: retrieving size, checking
item membership, and inherits from the Iterable<T> interface that defines the opera-
tions for iterating elements. A MutableCollection add write operations, such as add and
remove. Different from Java, Kotlin has separated interfaces for read-only and mutable
collections, but they do not differ in its implementation, i.e. the implementation for the
kotlin.collections.MutableList interface is usually an java.util.ArrayList.

The List<T>interface stores elements in a specified order and provides indexed access
to them. List elements (including nulls) can duplicate: a list can contain any number of
equal objects or occurrences of a single object. MutableList is a List with list-specific
write operations to add or remove an element at a specific position.

In Kotlin, the default implementation of List is ArrayList which you can think of as
a resizable array:



25

Figure 4 – Diagram of the Kotlin collection interfaces.

Fonte: Kotlin Official Documentation (KOTLIN, 2019c)

Code 14 – List example usage.
val numbers = mutableListOf (1, 2, 3, 4)

2 numbers.add(5)

numbers.removeAt (1)

4 numbers [0] = 0

numbers.shuffle ()

6 println(numbers) // [0, 5, 3, 4]

Set<T> stores unique elements; their order is generally undefined. null elements are
unique as well: a Set can contain only one null. MutableSet is a Set with write operations
from MutableCollection.

The default implementation of a Set is LinkedHashSet which preserves the order of
inserted elements. Hence, the functions that rely on the order:

Code 15 – Set example usage.
val numbers = setOf(1, 2, 3, 4) // LinkedHashSet is the default implementation

2 val numbersBackwards = setOf(4, 3, 2, 1)

4 println(numbers.first() == numbersBackwards.first()) // false

println(numbers.first() == numbersBackwards.last()) // true

The alternative implementation is HashSet which does not preserve order and requires
less memory to store the same number of elements.

Map<K, V> is not an inheritor of the Collection interface, however, it is a Kotlin
collection type as well. A Map stores key-value pairs; keys are unique, but different keys
can be paired with equal values. The Map interface provides specific functions, such as



26

access to value by key, searching keys and values. MutableMap is a Map with map write
operations.

The default implementation of Map is LinkedHashMap which preserves the order of
elements insertion when iterating the map:

Code 16 – Map example usage.
1 val numbersMap = mutableMapOf("one" to 1, "two" to 2)

numbersMap.put("three", 3)

3 numbersMap["one"] = 11

5 println(numbersMap) // {one=11, two=2, three =3}

In turn, an alternative implementation is HashMap which does not preserves the ele-
ments order.

2.1.2.6 Higher-Order Functions and Lambdas

A higher-order function is a function that takes functions as parameters, or returns a
function. Kotlin functions are first-class citizen, which means that they can be stored in
variables and data structures, passed as arguments and returned from other higher-order
functions.

The signature of the functions have a parenthesized parameter types list and a re-
turn type, e.g., (A, B) -> C which denotes a type that represents functions taking two
arguments of types A and B and returning a value of type C. For example:

Code 17 – Function declaration.
1 class Math {

fun avg(a: Double , b: Double): Double {

3 return (a + b) / 2

}

5 }

7 Math().avg(10.5, 2.5) // Invoking f(x)

Kotlin supports lambda expressions which are function literals, i.e. functions that
are not declared. Kotlin also support first-class functions, which means that they can be
stored in variables and data structures, passed as arguments to and returned from other
higher-order functions:

Code 18 – Declaring first class function with lambda expression.
1 val sum = { x: Int , y: Int -> x + y }

sum.invoke(2, 5) // Invoking f.invoke(x)

Code 19 – Passing anonymous function as parameter.
val ints = listOf (-1,0,1,2)

2 ints.filter ({ pred -> pred > 0 }) // this literal is of type ’(pred: Int) -> Boolean

’



27

A lambda expression is always surrounded by curly braces, parameter declarations in
the full syntactic form go inside curly braces and have optional type annotations, and the
body goes after an -> sign. If the inferred return type of the lambda is not Unit, the last
(or possibly single) expression inside the lambda body is treated as the return value.

If the compiler can figure out the signature, it is allowed not to declare the only
parameter and omit ->. The parameter will be implicitly declared under the name it:

Code 20 – Passing anonymous function with implicit parameter.
ints.filter ({ it > 0 }) // this literal is of type ’(it: Int) -> Boolean ’

In Kotlin, there is a convention that if the last parameter of a function accepts a
function, a lambda expression that is passed as the corresponding argument can be placed
outside the parentheses:

Code 21 – Passing a lambda to the last parameter.
1 val product = items.fold (1) { acc , e -> acc * e } //Last parameter omitted

3 run { println("...") } //If the lambda is the only argument to that call , the

parentheses can be omitted entirely

A lambda expression can also access its closure, i.e. the variables declared in the outer
scope. Unlike Java, the variables captured in the closure can be modified:

Code 22 – Closures example.
1 fun bar() {

val ints = listOf (1,2,3,4,5)

3 var sum = 0 // local variable

ints.filter { it > 0 }. forEach {

5 sum += it // sum is outer scope

}

7 print(sum)

}

Using higher-order functions imposes certain runtime penalties. Each function is an
object, and it captures a closure, i.e. those variables that are accessed in the body of
the function. Memory allocations (both for function objects and classes) and virtual calls
introduce runtime overhead.

Kotlin, provides a method to eliminate this overhead by inlining the lambda expres-
sions by adding the inline keyword to the function declaration. When using inline func-
tions, the compiler inlines the function body, i.e. it substitutes the body directly into
places where the function gets called. This increases the resulting bytecode size.

The forEach function from Kotlin collections is marked as inline, which means that
the following code:

Code 23 – Inline function before compiler translation.
val numbers = listOf(1, 2, 3, 4, 5)

2 numbers.forEach { println(it) }



28

Is translated to:

Code 24 – Inline function after compiler translation.
val numbers = listOf(1, 2, 3, 4, 5)

2 for (number in numbers)

println(number)

2.1.2.7 Extension Functions

Kotlin, provides the ability to extend a class with new functionality without having to
inherit from the class. This is done via special declarations called extensions.

To declare an extension function, we need to prefix the function name with a receiver
type, i.e. the type being extended:

Code 25 – Defining and calling extension functions.
1 fun MutableList <Int >.swap(index1: Int , index2: Int) {

val tmp = this[index1] // ’this ’ corresponds to the list

3 this[index1] = this[index2]

this[index2] = tmp

5 }

7 val list = mutableListOf (1, 2, 3)

list.swap(0, 2) // ‘this ’ inside ‘swap()’ will hold the value of ‘list ’

Extensions do not actually modify classes they extend. By defining an extension we
do not insert new members into a class, but merely make new functions callable with the
dot-notation on variables of this type:

2.1.2.8 Scope Functions

Scopes functions are functions which executes a block of code within the context of an
object. Such functions are called on an object with a lambda expression provided, and
it forms a temporary scope. In this scope, it is possible to access the object without its
name. This type of functions does not introduce any new technical capabilities, because
its only purpose is to make the code more concise and readable.

In short, these functions do the same: execute a block of code on an object. What is
different is:

• How this object becomes available inside the block:

Inside the lambda of a scope function, the context object is available by a short
reference instead of its actual name. Each scope function uses one of two ways to
access the context object: as a lambda receiver (this), which is recommended to
operate on the object members, e.g., call its functions or assign properties; or as
a lambda argument (it), which is better when the object is mostly used as an
argument in function calls.



29

• What is the result of the whole expression:

Scope functions can return the context of the object, which allows chaining
function calls on the same object after them; or return the result of the lambda,
making possible to assign the result to a variable, chaining operations on the result,
and so on.

There are five scope functions available on Kotlin:

• let: It can be used to invoke one or more functions on results of call chains. It’s
also used to perform non-null checking. The context object is available as an
argument (it). The return value is the lambda result:

Code 26 – ‘let’ function example.
val str: String? = "Hello"

2 val length = str?.let {

println("let() called on $it")

4 processNonNullString(it) // OK: ‘it’ is not null inside ‘?.let { }’

it.length

6 }

• with: It is used to call functions on the context object. It can be read as “with this
object, do the following”. It is a non-extension function. The context object is
passed as an argument, but inside the lambda, it’s available as a receiver (this).
The return value is the lambda result:

Code 27 – ‘with’ function example.
val numbers = mutableListOf("one", "two", "three")

2 val firstAndLast = with(numbers) {

"The first element is ${first()}," +

4 " the last element is ${last()}"

}

6 println(firstAndLast) // The first element is one , the last element is

three

• run: It does the same as with but invokes as let - as an extension function of the
context object, and can also be used to execute a block of several statements where
an expression is required. The context object is available as a receiver (this).
The return value is the lambda result:

Code 28 – ‘run’ function example.
val numbers = mutableListOf("one", "two", "three")

2 val countEndsWithE = numbers.run {

add("four")

4 add("five")

count { it.endsWith("e") }

6 }

println("There are $countEndsWithE elements that end with e.") // There

are 3 elements that end with e.



30

• apply: It is used for code blocks that do not return a value and mainly operate
on the members of the receiver object. The common case for apply is the object
configuration. Such calls can be read as “apply the following assignments to the
object”. The context object is available as a receiver (this). The return value
is the object itself:

Code 29 – ‘apply’ function example.
1 data class ApplicationConfig(

var url: String = "UNKNOWN",

3 var autoRefresh: Boolean = true ,

var autoLoad: Boolean = false)

5
val appConfig = ApplicationConfig ()

7 appConfig.apply {

this.url = "https ://www.victorlaerte.com" // ‘this ’ can be omitted

9 this.autoRefresh = false

this.autoLoad = true

11 }

• also: It is used for additional actions that do not alter the object, such as logging
or printing debug information. Usually, it is possible to remove the calls of also

from the call chain without breaking the program logic. The context object is
available as an argument (it). The return value is the object itself:

Code 30 – ‘also’ function example.
1 val numbers = mutableListOf("one", "two", "three")

numbers

3 .also { println("The list elements before adding new one: $it") }

.add("four")

2.1.2.9 Type Checks and Cast

Kotlin provides the keyword is to perform type checking operations and whether an
object conforms to a given type at runtime, Kotlin performs an implicit cast if it is an
immutable value, for example:

Code 31 – Type checking example.
fun demo(x: Any) {

2 if (x is String && x.length > 0) {

print(x) // x is automatically cast to String

4 }

}

It is also possible to use the operator as to cast objects. If the cast is not possible it
throws an exception, i.e. its an unsafe cast. To avoid an exception being thrown, one can
use a safe cast operator as? that returns null on failure:

Code 32 – Cast example.
1 val x: String? = y as? String



31

Kotlin ensures type safety of operations involving generics at compile time, while, at
runtime, instances of generic types hold no information about their actual type arguments,
e.g. List<Foo> is erased to just List<*>. In general, there is no way to check whether an
instance belongs to a generic type with certain type arguments at runtime.

2.1.3 Kotlin in Android Development

In 2017, Google announced Kotlin as one of the officially supported languages for Android
development. Until then, only Java and C++ were part of this list. Among the reasons
for choosing Kotlin, Google mentioned that they believe Kotlin is a “great language that
will make writing Android apps easier and more enjoyable.” (CLERON, 2017)

Google also believes that Kotlin is a great match for the existing Android ecosystem
due to its 100% compatibility with the Java programming language also making both
languages fully interoperable, i.e., both languages can be mixed into the existing codebase
without any developer effort via some automatically applied translation conventions (e.g.
property getters and setters are automatic created). It is also possible to customize how
the translation is performed through Kotlin annotations. Another reason pointed was the
demand by the Android community that has been said to “love the Kotlin language”
(CLERON, 2017; ANDROID, 2019b), a statement reinforced by the StackOverflow 2018
developer survey that shown Kotlin as the second most loved programming language
(STACKOVERFLOW, 2018). This phenomenon is also observed in the growth of questions
related to Kotlin regarding Android development in the most popular question and answer
site for software developers, the StackOverflow. Table 1 shows year over year growth.

Table 1 – Kotlin on Android YoY growth in StackOverflow.

Year Number of questionsa

2018 9,405
2017 (Google announces the official support
for Kotlin in Android Development

3,071

2016 (Kotlin v1 release) 506
aThese numbers are only for Kotlin regarding Android Development

Fonte: The author (2019)

It is possible to identify in Table 1 that Kotlin was being used in Android applica-
tions even before Google announces its official support for Kotlin. It was possible due to
the capability of full interoperation between Kotlin and Java. However, The Kotlin an-
nouncement for Android has started a new chapter in the partnership between JetBrains
and Google, which in turn guaranteed to keep supporting Kotlin in Android development
while improving the support in its official IDE, Android Studio. Hence, the IDE embedded



32

Kotlin since version 3.0, i.e. developers do not need to install any extra plugin or worry
about compatibility issues (SHAFIROV, 2017).

JetBrains describe the main advantages that Kotlin brings for Android platform as
the following (KOTLIN, 2019c):

• Compatibility: Kotlin is fully compatible with JDK 6, ensuring that Kotlin appli-
cations can run on older Android devices with no issues. The Kotlin tooling is fully
supported in Android Studio, and compatible with the Android build system.

• Performance: A Kotlin application runs as fast as an equivalent Java one, due to
the very similar bytecode structure. With Kotlin’s support for inline functions, code
using lambdas often runs even faster than the same code written in Java.

• Interoperability: Kotlin is 100% interoperable with Java, allowing to use all existing
Android libraries in a Kotlin application.

• Footprint: Kotlin has a very compact runtime library, which can be further reduced
through the use of ProGuard.3 In a real application, the Kotlin runtime adds only
a few hundred methods and less than 100K to the size of the .apk file.

• Compilation Time: Kotlin supports efficient incremental compilation, so while there
is some additional overhead for clean builds, incremental builds are usually as fast
as or faster than with Java.

Among all the benefits brought by Kotlin to Android, Java’s limitations on the plat-
form also contributed greatly to the rapid rise of Kotlin. Even though Android Nougat
(API 24) has introduced new features in Java 8 using the Jack compiler (ANDROID,
2017b), this can only be put to use if developers work with a minimal version of the SDK
24 or higher, which makes it a problem for anyone who wants to support older versions
of Android, and following trends today, updating Android versions by their users occurs
at a very slow pace (JANGID, 2017).

Another important point mentioned by Google and JetBrain’s when they announced
the official support for Kotlin is regarding Android Studio, the official IDE for Android
Development. It is a collaboration between JetBrains and Google, and it is built atop
JetBrain’s IntelliJ. In JetBrains’s official post they pointed out that, “there will be close
collaboration between the product teams to make sure that Kotlin is always working
correctly in Android Studio” (SHAFIROV, 2017). Since then, Kotlin plugin was bundled
with Android Studio and several features for Kotlin were introduced, such as Java–Kotlin
code conversion, Kotlin project setup, and great support for code completion. Android
Studio also provides a full-featured integration with Git and Gradle (CLERON, 2017).
3 A free Java class file shrinker, optimizer, and obfuscator. <https://www.guardsquare.com/en/

products/proguard>

https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard


33

2.1.4 Android KTX

In February of 2018, Google announced Android KTX, a set of Kotlin extensions that are
included with Android Jetpack.4 (ANDROID, 2019a)

KTX extensions provide concise, idiomatic Kotlin to Jetpack and Android platform
APIs. To do so, these extensions leverage several Kotlin language features, such as exten-
sion functions, extension properties, lambdas, named parameters, and parameter default
(ANDROID, 2019a). With the exception of the core module, core-ktx, all KTX module
artifacts replace the underlying Java dependency in the build.gradle file, e.g. it is pos-
sible to replace a androidx.fragment:fragment dependency with androidx.fragment:

fragment-ktx (ANDROID, 2019a).
The core-ktx include some default packages, such as androidx.core.animation,

androidx.core.content, androidx.core.graphics, androidx.core.graphics.drawable,
androidx.core.net, androidx.core.os, androidx.core.text, androidx.core.transition,
androidx.core.util, androidx.core.view, androidx.core.widget.

The other availables modules are:

• Fragment KTX, provides a number of extensions to simplify the fragment API.
For example, one can simplify fragment transactions with lambdas.

• Palette KTX, offers idiomatic Kotlin support for working with color palettes. For
example, when working with a Palette instance, one can retrieve the selected swatch
for a given target by using the get operator ([ ]).

• SQLite KTX, wraps SQL-related code in transactions, eliminating a lot of boiler-
plate code.

• Collection KTX, contains utility functions for working with Android’s memory-
efficient collection libraries, including ArrayMap, LongParseArray, LruCache, and
others. Collections extensions take advantage of Kotlin’s operator overloading to
simplify things such as collection concatenation, e.g., arrayOf(1, 2) + arrayOf(3, 4).

• ViewModel KTX, provides a viewModelScope() function that makes it easier to
launch coroutines5 from a ViewModel.

• Reactive Streams KTX, provides functionalities to work with Reactive Program-
ming through LiveData observable.

• Navigation KTX, provides extension functions to adapt the API of navigation
components, such as Fragment, to become more succinct and Kotlin-idiomatic.

• WorkManager KTX, adds support for Kotlin coroutines by adding extension
functions to Operations and ListenableFutures to suspend the current coroutine.

4 <https://developer.android.com/jetpack>
5 <https://developer.android.com/kotlin/coroutines>

https://developer.android.com/jetpack
https://developer.android.com/kotlin/coroutines


34

2.2 RELATED WORK

The primary objective of this study is to understand how developers are dealing with the
Kotlin adoption on Android Platform. Although, to the best of our knowledge, very few
studies have been conducted with this purpose.

Jangid (JANGID, 2017) addressed significant parts where Java lacked as an Android
programming language and presented Kotlin advantages and disadvantages over Java.
As the main advantages, the author listed the Java interoperability, null safety guaran-
tee, less verbosity, smart casts, destructuring declarations, and good support in the IDE
environment. The drawbacks are the increase in compilation time, the small developer
community, the increase in package size, and also the Android Studio code converter that
still lacks on Java to Kotlin conversion.

Similarly, Banerjee et. al (BANERJEE et al., 2018) conducted a study of various features
of both Java and Kotlin. They concluded that Kotlin is safer and more concise than Java,
but it suffers from the lack of community support material.

Flauzino et al. (FLAUZINO et al., 2018) conducted a large-scale empirical study involv-
ing more than 6 million lines of code from programs available in 100 repositories (50
Kotlin/50 Java), selected by order of popularity (stargazers count) on GitHub, and in-
cluding Android and non-Android projects. They analyzed five well-known code smells:
data class, large class, long method, long parameter list, and too many methods. The
findings support the hypothesis that Kotlin presents fewer code smells than Java accord-
ing to descriptive statistics, except for long parameter list. They believe that, since Kotlin
is more concise with a significant decrease in the number of lines of code, this may have
been responsible for the result, where they identified that the smells are directly bound
to this metric.

Schwermer (SCHWERMER, 2018) evaluated the performance of Kotlin and Java on An-
droid Runtime using four benchmarks from the Computer Language Benchmarks Game
suite.6 The metrics used to evaluate the performance includes runtime, memory consump-
tion, garbage collection, boxing of primitives as well as bytecode n-grams. The results show
that Kotlin is slower than Java for all studied benchmarks. Another interesting result in-
dicates the existence of an underlying garbage collection overhead when reclaiming Kotlin
objects compared to Java. Furthermore, Kotlin produces larger and more varied bytecode
than Java for a majority of the benchmarks.

Shah et al. (SHAH; SHAH; KANSARA, 2018) implemented prevention against App Repack-
aging using Proguard against a Kotlin Android app, aiming to assist Android app devel-
opers in securing their apps against reserve engineering attacks.

Moreover, there are several studies focused on investigating Q&A websites. For in-
stance, Barua et al. (BARUA; THOMAS; HASSAN, 2014), analyzed the textual content of
6 <https://benchmarksgame-team.pages.debian.net/benchmarksgame>

https://benchmarksgame-team.pages.debian.net/benchmarksgame


35

Stack Overflow discussions using the Latent Dirichlet Allocation (LDA) (BLEI; NG; JOR-

DAN, 2003), a statistical topic modeling technique, to automatically discover the main
topics present in developer discussions. The same approach was later used by Rebouças
et al. (REBOUÇAS et al., 2016) to assess the adoption of the Swift Programming Language.
The last study also combined a qualitative analysis to cross-validate the results. A similar
strategy is used in this study to evaluate the Kotlin programming language.



36

3 METHODOLOGY

This chapter presents the research questions which guide our study (Section 3.1) followed
by the mixed-method concurrent triangulation strategy used in this research (Section 3.2),
the methods used to acquire, process and analyse data from StackOverflow (Section 3.3),
and then conduct a basic qualitative study with Android developers (Section 3.4).

3.1 RESEARCH QUESTIONS

The goal of this study is to understand how developers are dealing with the recent adoption
of Kotlin as the official language for Android development. By the term ‘dealing with’ we
mean, the perception about the advantages and disadvantages of using Kotlin, and the
most common problems faced by them. To guide our study, we established the following
research questions:

• RQ1. What are the most common problems faced by Kotlin developers on Android
Platform?

• RQ2. How are Android developers dealing with the Java-Kotlin interoperability?

• RQ3. How are Android developers dealing with the functional paradigm in Kotlin?

• RQ4. How are Android developers dealing with the development environment tools
available for Kotlin?

• RQ5. What is the perception of Android developers about Kotlin adoption?

3.2 TRIANGULATION STRATEGY

According to Creswell and Clark (CRESWELL; CLARK, 2011), mixed methods research is
a research design to analyze data through the mixture of qualitative and quantitative
methods in a single study or series of studies. Its central premise is that the use of
quantitative and qualitative approaches in combination provides a better understanding
of research problems that either approach alone.

Our methodology is based on the mixed-method concurrent triangulation strategy
(EASTERBROOK et al., 2008). It is a mixed-method approach which uses different methods
concurrently, and it aims to confirm, cross-validate or corroborate the results. As East-
erbrook et al. (EASTERBROOK et al., 2008) states, the triangulation is motivated by the
fact that often “what people say” could be different than “what people do”, and thus, col-
lecting data from multiple sources helps increasing the validity. In addition, by collecting
both types of data simultaneously, rather than sequentially, each analysis can be adapted



37

to explore emerging results from the other. Thus, we decided to analyse developers’ dis-
cussions about Kotlin for Android on StackOverflow, and concurrently we conducted a
qualitative study by interviewing Android developers. Figure 5 shows a visual diagram of
the concurrent triangulation strategy used in this study (ATIF; RICHARDS; BILGIN, 2013).

Figure 5 – Triangulation strategy diagram.

Fonte: Principles of Mixed Methods and Multimethod Research Design (MORSE, 2003)

Figure 5 shows quantitative and qualitative in capital letters. According to Morse
(MORSE, 2003) notation system for mixed methods strategies, the capitalisation means
that the priority is equal between the two approaches.

3.3 STACKOVERFLOW DATA ANALYSES

The first method of this study aims to analyze the repository of the StackOverflow,
with the specific goal of uncovering the main topics discussed about Kotlin and Android.
To this end, we reproduced the method from Barua et al. (BARUA; THOMAS; HASSAN,
2014) by analysing textual content using Latent Dirichlet Allocation (LDA), a statistical
topic modeling technique, to automatically discover the main topics present in developer
discussions (BLEI; NG; JORDAN, 2003). Next, we used LDAvis (SIEVERT; SHIRLEY, 2014),
a web-based interactive visualization of the estimated topics.

3.3.1 Acquiring and Pre-processing Data

We used the StackExchange Database, publicly available in Internet Archive1 to extract
StackOverflow questions related to Kotlin and Android. We retrieved questions containing
the combination of ‘kotlin’ and any Android related tags. By related tags we mean not
only ‘android’ but also tags that refer to the Android platform like: ‘fragments’, ‘recy-
clerview’, ‘intent’, ‘retrofit’, ‘room’, ‘sqlite’, ‘parcelable’, ‘glide’, ‘picasso’, ‘realm’, ‘gson’,
‘dagger’, ‘butterknife’, ‘eventbus’, ‘rxjava’, ‘volley’, ‘okhttp’, and ‘fresco’. One might ar-
gue that tagging is a manual process, which would incur in mistagged questions. However,
1 <https://archive.org/details/stackexchange>

https://archive.org/details/stackexchange


38

StackOverflow has an autocomplete feature for tagging to help diminishing the probabil-
ity of using a misleading tag. A total of 9,405 questions were found. The publication date
of the StackOverflow dump is 2019-03-04.

Before applying the topic modeling in our corpus, we performed five pre-processing
steps (Appendix A):

1. Removal of the content inside the tags <code>, <pre> and <blockquotes>;

2. Removal of the HTML tags;

3. Removal of the URLs;

4. Removal of the stop words and one-letter-words;

5. Stemming of the remaining words using the Porter stemming algorithm (PORTER,
1997)

The Porter stemming is an algorithm for suffix stripping (PORTER, 1997). According
to Porter, a document is represented by a vector of words or terms, and these terms with
a common stem will usually have similar meanings, e.g. connect, connected, connecting,
connection, connections. The suffix stripping process is then improved combining groups
such as this into a single term. As a consequence, it will also reduce the total number of
terms, and hence, diminish the size and complexity of the data in the system, which is
advantageous.

For instance, after all these steps, the question “<p>How can I make a phone call or
dial a number in Android Kotlin? For example: Call <code>*21*2#</code></p>&#xA;”
is reduced to “make phone call dial number android kotlin exampl call”.

3.3.2 Topic Modeling and Visualization

Since manual inspection of 9,405 questions would require too much effort and too much
time, we decided to follow the same approach of Barua et al. (BARUA; THOMAS; HASSAN,
2014), based on LDA, which is a flexible generative probabilistic model for collections of
discrete data. It is based on a simple exchangeability assumption for the words and topics
in a document (BLEI; NG; JORDAN, 2003).

In our analysis, each StackOverflow question (the composition of the title and body) is
considered as a document for LDA, so that each word in the document can be associated
with one or more topics with a certain weight for each topic.

We used the Mallet 2.0.8 LDA implementation publicly available on Mallet’s Website,2

which supports different input parameters for training the model:
2 <http://mallet.cs.umass.edu/>

http://mallet.cs.umass.edu/


39

• –num-topics is the number of topics created. There is no “right” value for this
parameter as it depends on the granularity one wants to achieve. We choose 15
after testing values ranging from 5 to 20 and have noticed which small values lead
to topics too generic while big value leads to topics with small weight and with too
much overlapping.

• –optimize-interval turns on hyperparameter optimization, i.e. it allows the model
to better fit the data by allowing some topics to be more prominent than others.
We used 20 after testing values ranging from 10 to 100;

• –num-iterations is the number of sampling iterations and should be a trade off
between the time taken to complete the sampling and the quality of the topic model.
We chose 1,000;

• –num-top-words defines the top k words for each topic. We used 10 after analyzing
that this number is enough to allow a qualitative analysis of the generated topics
and also because greater numbers lead to terms with very low weight.

To support the qualitative analysis of the generated topics from LDA, we decided
to resort to a topic viewing tool called LDAvis. Sievert and Shirley (SIEVERT; SHIRLEY,
2014) present LDAvis as a web-based interactive visualization of topics estimated using
Latent Dirichlet Allocation. They also propose a novel measure, relevance, by which to
rank terms within topics to help in topic interpretation.

They define the relevance of a term 𝑤 to a topic 𝑘 given a weight parameter 𝜆 (where
0 ≤ 𝜆 ≤ 1) as:

𝑟(𝑤, 𝑘|𝜆) = 𝜆𝑙𝑜𝑔(𝜑𝑘𝑤) + (1 − 𝜆)𝑙𝑜𝑔

(︃
𝜑𝑘𝑤

𝑝𝑤

)︃
(3.1)

where 𝜑𝑘𝑤 denotes the probability of a term 𝑤 ∈ 1, ..., 𝑉 for topic 𝑘 ∈ 1, ..., 𝐾, where 𝑉

denotes the number of terms in the vocabulary, and let 𝑝𝑤 denote the marginal probability
of term 𝑤 in the corpus. 𝜆 determines the weight given to the probability of term 𝑤 under
topic 𝑘 relative to its lift (measuring both on the log scale). Setting 𝜆 = 1 results in the
familiar ranking of terms in decreasing order of their topic-specific probability, and setting
𝜆 = 0 ranks terms solely by their lift. In the same study they presented the “optimal”
value of 𝜆 for topic interpretation as 0.6.

3.4 BASIC QUALITATIVE STUDY

The goal of this study is to understand how developers are dealing with the recent adoption
of Kotlin as the official language for Android development, their perception about the
advantages and disadvantages of its usage, and the most common problems faced by
them. To this end, we performed a basic qualitative study.



40

Merriam and Tisdell (MERRIAM; TISDELL, 2016) points as possible motivations to
conduct a basic qualitative study is to understand:

1. How people interpret their experiences?

2. How they construct their worlds?

3. What meaning they attribute to their experiences?

Therefore, the overall purpose of basic qualitative research is to understand how people
make sense of their lives and their experiences. In this sense, we believe that a basic
qualitative study is an appropriate method to gather relevant findings for this research.

In a basic qualitative study, data can be collected through interviews, observations,
or document analysis. In this study, we conducted semi-structured interviews (MERRIAM;

TISDELL, 2016; SJØBERG et al., 2008) with Android developers.

3.4.1 Sample Selection

The sample selection strategy adopted was intentional, i.e. based on the assumption
that the researchers choose the most appropriate sample to learn about the phenomenon
investigated (RUNESON; HöST, 2009), and convenience-based, i.e. non-probability sampling
where the sample is taken from a group of people easy to contact or to reach (SAUMURE;

GIVEN, 2008).
We selected a group of individuals with the purpose of meeting specific prescribed

criteria. The criteria used for the sample selection was:

1. Developers need to have experience with Android and Kotlin development: Given
the fact that this research aims to understand the perception of developers in relation
to Kotlin specifically on the Android platform, it does not make sense to interview
developers who are not included in this context;

2. There will be no restrictions on the level of experience of the developer: We de-
cided to diversify the level of experience of the participants, because the difficulties
and easiness faced by a developer may be related to the level of experience in that
technology. In this way, we can understand both what most inexperienced and ex-
perienced developers think;

3. Individuals need to speak English or Portuguese (the languages in which researchers
are fluent): This was a necessary requirement so that there was no difficulty in
conducting and understanding the interviews.

Table 2 presents some characteristics of the participants that fulfilled the requirements
and compromised with the researchers from the beginning to the end of the whole process.



41

Table 2 – Characteristics of research participants.

Id Age Role
Years
in SDa

Years
in ADb

Years
in KDc

D1 29 Mobile Developer 6 5 3
D2 27 Mobile Engineer 6 1.5 0.75
D3 25 Android Test Analyst 5 0.66 0.66
D4 34 Mobile Leader Engineer 12 9 1
D5 30 Mobile Consultant 6 5 2
D6 28 Mobile Engineer 5 1.33 0.33
D7 38 Mobile Developer 7 7 2
aSoftware Development
bAndroid Development
cKotlin Development

Fonte: The author (2019)

The participants of this research include people with many levels of experience and
different roles such as developers, engineers, testers and team leaders. They are distributed
in two different countries, all of them selected according to the sample selection criteria
previously established assessed from a volunteer form sent in the most varied channels
of communication for developers: email groups, Slack and Facebook communities, and
also the official Kotlin forum.3 Following the ethical criteria presented in Section 3.4.4,
altogether seven professionals were invited by the researchers, and voluntarily participated
in the research. During the interviews, the participants reported their experiences with
Kotlin development on Android.

3.4.2 Data Collection

The data collection was performed using semi-structured interviews (RUNESON; HöST,
2009). As Merriam states (MERRIAM; TISDELL, 2016), the semi-structured interview is in
the middle, between structured and unstructured. In this type of interview, either all of
the questions are more flexibly worded or the interview is a mix of more and less structured
questions. Usually, specific information is desired from all the respondents, in which case
there is a more structured section to the interview. But some part of the interview is
guided by a list of questions or issues to be explored, and neither the exact wording nor
the order of the questions is determined ahead of time. This format allows the researcher
to respond to the situation at hand, to the emerging worldview of the respondent, and to
new ideas on the topic.
3 <https://discuss.kotlinlang.org>

https://discuss.kotlinlang.org


42

Following this strategy, we interviewed seven developers. In total, approximately 215
minutes of individual interviews were performed. Three interviews were conducted in
person, while the remaining ones were conducted via video-conference. All interviewees
are professional developers. Among them, three professionals are Android Specialists (one
is Leader Engineer), three others consider themselves as Android developers but they
also work with other platforms such as iOS or hybrid frameworks. One of them work
specifically with Android automation tests. On average, they have 6.71 years of software
development experience (SD 2.24), 4.21 years of Android development experience (SD
2.93), and 1.39 years of experience with Kotlin development (SD 0.89). Also, six of them
have strong experience with Java. We refer to them as D1–D7.

The interviews were grounded in all of our RQs. We started asking about the in-
terviewee’s background in software development. Then, we moved to specific questions,
including overview questions about Kotlin, Java-Kotlin Interoperability, Functional Pro-
gramming, and Tools (i.e. Android Studio, gradle). The interview script is available on
Appendix B. All interviews were recorded and transcribed ipsis litteris.4 Due to the usage
of two languages (English and Portuguese) in the interviews, the coding process was done
using the original transcription and interview language, then we translated only the codes
used in this report.

3.4.3 Data Analysis

It is a process of making sense out of data. It can be limited to determine how best to
arrange the material into a narrative account of the findings (MERRIAM; TISDELL, 2016).

The qualitative analysis of the data was based on the open, and axial coding. Corbin
and Strauss (CORBIN; STRAUSS, 2014) define the coding task as the process of making
notations next to bits of data that strike you as potentially relevant for answering your
research questions. As we are open to anything possible at this point, this form of coding
is often called open coding (MERRIAM; TISDELL, 2016). The research steps were assisted
by the qualitative data analysis software, MAXQDA 18.2.0.5

MAXQDA has several features that assist in the analysis and presentation of results
in qualitative research. Among the main ones used in this research are:

• Transcription of audio files;

• Reading, editing, and coding of the data;

• Creation of links between a specific part from one document to another document;

• Exporting of demographic information;

• Full-text searching engine;
4 word by word
5 <https://www.maxqda.com>

https://www.maxqda.com


43

• Exporting reports files to text, excel, html, xml;

• Statistical analysis of qualitative data (descriptive statistics);

The open coding of the transcripts was performed with the selection of text segments
relevant to the research (codes). The codes were generated using an iterative approach,
for each interview, and constantly compared to each other, both within the same inter-
view and between interviews, to identify similarities and differences. From this, the codes
were grouped into categories (axial coding (CORBIN; STRAUSS, 2014)). The names of our
categories were derived from a mix of sources:

1. The researchers;

2. The literature;

3. Kotlin and Android documentation.

3.4.4 Ethics

In order to follow research ethics regulations, all participants agreed with a consent form
following the Research Ethics Board (REB) constraints, available on Appendix C. All the
consents were previously sent to the interviewers by email and the agreement is registered
in the interview record.



44

4 RESULTS

In this chapter, we first describe the general results from the StackOverflow data analysis.
Following this, we organize the results in terms of each RQ. All the questions presented
in this chapter as examples are detailed in Appendix D.

4.1 GENERAL RESULTS

Table 3 summarizes the topics generated by Mallet command line interface for 15 topics
and 10 top terms through 1,000 iterations:

Table 3 – LDA Results.

Topic Name (Mallet) Questions (%)
Topic
Weighta

LDAvis
Idb

General Questions (14) 4,907 (52,17%) 0.36189 1
Java–Kotlin (13) 3,402 (36,17%) 0.23409 3

Classes, Objects, and
Methods/Functions (4)

2,813 (29,90%) 0.19012 4

Build–Compilation (10) 2,038 (21,66%) 0.13145 2
UI–Layout (7) 1,712 (18,20%) 0.10986 5

UI–Navigation (11) 1,528 (16,24%) 0.0956 7
Data Types and Structures (5) 1,440 (15,31%) 0.09439 9

Google/Android
Components (1)

1,388 (14,75%) 0.08868 6

Background Tasks (6) 1,373 (14,59%) 0.08586 8
UI–Data View Layouts (3) 1,199 (12,74%) 0.07408 10

Connectivity (0) 1,140 (12,12%) 0.06363 11
Multimedia Handling (2) 908 (9,65%) 0.05532 13

Data Storage (12) 867 (9,21%) 0.05353 12
Dependency Injection (8) 797 (8,47%) 0.04669 14

Testing (9) 510 (5,42%) 0.02913 15
aThe table is sorted by topic weight in descending order
bLDAvis column is used to identify topics in Figure 6

Fonte: The author (2019)

The first column represents the topics already labeled, and its Mallet identifier within
the parentheses. The second column shows the number of questions inside the topic. Its
percentage does not sum up 9,405 and neither 100%, because one question can contain



45

more than one topic. Hence, to compute this metric we did not take into consideration
questions with weight lower than 10% for that topic. The topics are sorted by the topic
weight in the third column. The LDAvis Id column is the identifier of the topic in the
LDAvis tool (SIEVERT; SHIRLEY, 2014) that we used to support topic naming.

LDAvis is a topic visualization tool which supports qualitative analyses through a
global visualization of the topics and how they differ from each other, while at the same
time allowing for a deep inspection of the terms most highly associated with each indi-
vidual topic (SIEVERT; SHIRLEY, 2014). Figure 6 shows the LDAvis output for our topic
model with relevance adjusted to 𝜆 = 0.6.

Figure 6 – LDAvis: global topic view on the left, and the term bar charts on the right.

Fonte: The author (2019)

In Figure 6, the left panel shows the topics as circles, where the areas of the circles
are proportional to the relative prevalence of the topic in the corpus. The number within
is the identifier of the topic which corresponds to the LDAvis Id column from Table 3.
The right panel shows the most relevant terms when some topic from the left panel is
selected, which is helpful for interpreting a topic. Figure 7 shows the Java–Kotlin topic
when selected.

In addition, selecting a term reveals the conditional distribution over topics for the
selected term, as shown in Figure 8 when we select the term ‘studio’ for the topic Kotlin–
Java. These interactions can be checked online.1 As there is no selected topic in Figure 6,
it only shows the overall term frequency for all topics.

1 <https://www.victorlaerte.com/kotlin-stackoverflow-data-analysis/#topic=0&lambda=0.6&term=
>

https://www.victorlaerte.com/kotlin-stackoverflow-data-analysis/##topic=0&lambda=0.6&term=
https://www.victorlaerte.com/kotlin-stackoverflow-data-analysis/##topic=0&lambda=0.6&term=


46

Figure 7 – LDAvis: selected topic in the right panel, and the estimated relevance and
overall term frequency of each term in bar charts on the right.

Fonte: The author (2019)

Figure 8 – LDAvis: the distribution of the term ‘studio’ over the topics at the right panel.

Fonte: The author (2019)



47

Regarding the basic qualitative study, we summarized our results in Table 4.

Table 4 – Open Code Analyses.

Category Topic Codes %

Language Paradigm
and Style

Functional Programming 17 9.14
Less Verbose/More Concise 15 8.06
Pragmatic Evolution 7 3.76
Multi-Paradigm Language 6 3.23
Modern Language 5 2.69
Programming Style 5 2.69

Tools

Android Studio 15 8.06
Code Hints 8 4.30
Gradle 7 3.76
Code Convertion 6 3.23

Java Interop
Soft/Optional Migration 8 4.30
Calling Kotlin from Java 8 4.30
JVM Annotations 6 3.23
Constraints to Keep Interop 3 1.61
Constructor Overloading 3 1.61
Calling Java from Kotlin 1 0.54

Performance,
Productivity, and Quality

Readability/Legibility 13 6.99
Performance/Productivity 9 4.84
QA 5 2.69

Classes and Objects

Null Safety/Optionals 9 4.84
Scope Functions 4 2.15
Companion Object 3 1.61
Extension Functions 2 1.08
Collections 1 0.54
Selead Classes 1 0.54

Documentation StackOverflow 5 2.69
Oficial Documentation 3 1.61

Similarities between
Kotlin and Swift

11 5.91

186 100%

Fonte: The author (2019)

The first column represents the main categories which groups related topics of the
second column. Column three represents the number of codes, or segments, to that topic
followed by its percentage over all codes. The last category ‘Similarities between Kotlin
and Swift’ does not have any subdivision.



48

4.2 RESEARCH QUESTIONS

Here we organize the results in terms of each RQ.

4.2.1 RQ1 - What are the most common problems faced by Kotlin developers on
Android Platform?

To answer this RQ, we rely on the StackOverflow data analysis where Table 3 summarizes
the topics that developers are asking about Kotlin and Android. We named all the topics
found with the support of LDAvis and describe all of them below.

• Top 5 topics - The topics with the highest weight are:

1. General Questions (4,907) – this topic relies on general questions about
the usage of Kotlin and/or Android platform, such as questions asking for a
solution given a stack trace log or examples of usage, e.g., “How to download
feature modules in an Android app?” (Q3848), and “What are the advantages
of Kotlin programming language?” (Q170).

2. Java–Kotlin (3,402) – this topic contains questions that relate with Kotlin
and Java regarding code conversion and also interoperation, e.g. “Can we build
Kotlin and Java Mix application?” (Q5187), and “Why do I receive “as non-
null is null” error after Android Studio converts Java code into Kotlin code
automatically?” (Q5535).

3. Classes, Objects, and Methods/Functions (2,813) – this topic ad-
dresses issues related to the structure of classes, objects, and methods of Kotlin.
It contains questions that refer to the usage of properties, lambdas, construc-
tors, or static attributes, e.g. “In which situation val/var is necessary in Kotlin
constructor parameter?” (Q1624), and “Is it possible to pass lambda to Intent?”
(Q9087).

4. Build–Compilation (2,038) – this topic consists mainly of questions related
to Gradle and Android Studio, but also questions about problems with versions,
libraries, modules, and the Kotlin plugin that lead to compiling failures, e.g.
“Force Android Studio to use gradle 4.1” (Q9381), and “Android 3.1 build
gradle 4.4 error occurred configuring project ‘:app’ ” (Q4400).

5. UI–Layout (1,712) – in the last topic of the top 5, we can find questions
related to the construction of layouts in general, such as the use of visual
Android components, custom layout creation, manipulating layout.xml files,
or getting and handling view components in its controllers, e.g. “How add
TextView to View in kotlin” (Q9383), and “Android - How to change draw
color of custom View?” (Q2979).



49

• 6 - 10:

6. UI–Navigation (1,528) – This topic also relies on UI questions, but it is
more related to navigation mechanisms on Android, such as fragments transi-
tions, navigation between activities, tabs interaction, and drawer layouts be-
haviors, e.g. “Android, how to replace initial fragment?” (Q6504).

7. Data Types and Structures (1,440) – this topic include questions about
basic Kotlin data types, such as strings, numbers, dates, arrays, and lists, e.g.
“How to append 2 strings in Kotlin?” (Q6570).

8. Google/Android Components (1,388) – This topic is composed of various
questions about how Android/Google components are behaving in different
devices, such as notification services, Google Play, maps, and firebase, e.g.
“Android Notification Not Showing On API 26” (Q1159).

9. Background Tasks (1,373) – This topic refers to multithreading methods
on Android and brings together various questions about coroutines, and also
libraries like RxJava which is widely used to this purpose on Android, e.g.
“Android ViewState using RxJava or kotlin coroutines” (Q3583).

10. UI–Data View Layouts (1,199) – Again in UI components, this topic
deals specifically with components for data visualization like RecyclerView,
ListView, Spinner, e.g. “How to show single item selected in recyclerview using
kotlin” (Q2808).

• 11 - 15: Among the topics with lowest weight remains:

11. Connectivity (1,140), e.g. “Retrofit parse result in Kotlin” (Q3839).

12. Multimedia Handling (908), e.g. “How to save captured photos as jpg files
on android camera2” (Q5096).

13. Data Storage (867), e.g. “How to make primary key as autoincrement for
Room Persistence lib” (Q773).

14. Dependency Injection (797), e.g. “Dagger2 + Kotlin: lateinit property has
not been initialized” (Q5412).

15. Testing (510), e.g. “How can I run a single Android Test using Kotlin?”
(Q324).

Although developers are suffering from problems that are common to all Android
developers, there are specific Kotlin issues regarding code conversion from Java to Kotlin,
as well as interoperability between the two languages, how the Kotlin class members
works, and also many compilation problems.



50

4.2.2 RQ2 - How are Android developers dealing with the Java-Kotlin interoper-
ability?

We have studied the interoperability between Kotlin and Java mainly because this is one
of the highlights of Kotlin creators for its adoption. Furthermore, another reason that
led us to study this subject is that although the languages are interoperable, they have
distinct characteristics such as the native null safety support in Kotlin that Java does not,
so these difference in the languages can lead interesting results.

To answer this RQ, we first analyzed the LDA results and then went deeper into the
subject by conducting interviews to acquire more evidence about it.

During the LDA analysis, the topic that most seemed relate with Kotlin-Java interop-
eration was the topic Java–Kotlin, but due to LDAvis visualization it was possible to see
that the ‘java’ term is relevant to other three different topics: Classes, Objects, and
Methods/Functions, Build–Compilation, and Data Storage, as shown in Figure
9.

Figure 9 – Relevance of ‘java’ term between topics.

Fonte: The author (2019)

Then, we selected and manually investigated the 100 top questions of each topic to
double check the classification. During the analysis of these questions, we removed the
Data Storage topic due to the many number of false-positive questions, resulting in
300 questions in total. After examining the title, the question body, and the associated
tags of these selected questions, we ended up with questions regarding problems with
Optionals, Kotlin Properties, Generics, Static Objects, Android API, Libraries



51

Compatibility, and general problems that we did not address due to over-generality. We
discuss these new topics below:

• Optionals: In this category, we grouped questions regarding problems with optionals
and null pointer exceptions that the developers complain that crash their apps, e.g.
“Non-null assert is needed even after checking is not null in kotlin” (Q3853), and
“How can I override a java method, and change the nullability of a parameter?”
(Q216).

• Kotlin Properties: This category groups questions about problems dealing with how
Kotlin represents Java getters and setters as properties, e.g. “Why do some Java
setter methods automatically become Kotlin properties but some don’t?” (Q2698),
and “Kotlin: Setting a private Boolean in Java class via a Data class in Kotlin.
Why am I not able to do this?” (Q1486).

• Generics: This category groups questions about problems using Generics in Kotlin
such as question Q3215 where the user did not understand the differences in declaration-
site variance for Generics between Java and Kotlin.

• Static Objects: The usage of static objects between Kotlin and Java are leading to
questions such as: “How to access static variable of java class in kotlin?” (Q6396).

• Android API and Libraries Compatibility: These are questions about the usage of
parts of Android API and libraries that still do not provide the best support for
Kotlin, such as the use of support annotations, or the Intent constructor that only
accepts a Java class reference (Q4171).

Regarding the interviews, all interviews pointed the interoperation as an advantage to
use Kotlin. Some of them call attention to the possibility of adopting Kotlin without the
need for full codebase migration:

“The biggest benefit is that you can adopt Kotlin without having to change
your whole project, as we have done in the company I work for. We had a
project in Java that we decided to include Kotlin, and from now on, everything
new is done in Kotlin. So, this increases the adoption curve and you have the
ability to experiment by interacting with legacy code.” (D2)

“The main benefit is you can have a product that is already developed with
Java and slowly migrate things to improve your product’s technology stack and
do things faster with Kotlin. So, you can keep the legacy application you have,
but develop the new features in Kotlin. This is the main thing.” (D1)



52

“Since our system is a bit old and already developed in Java, people are
migrating it to Kotlin. It is good that you can do it gradually, no need to go
from scratch.” (D3)

“I think the main benefit, and I think it’s a very huge one, is the interop-
erability, so you can keep an existing codebase in Java and introduce Kotlin,
or use a Java library, or. . . Then you can have both, Kotlin and Java, in the
same project. I think it’s a very, very important benefit of Kotlin. I think it’s
the reason for the success of Kotlin because you don’t throw away all the Java
libraries, or you don’t throw away all the old Java code, you can just call it
from Java and vice-versa.” (D4)

Some of them also pointed out that, in order to keep full interoperability, there are
several constraints that the language has to follow:

“There are things that are very complex and are already written in Java,
so you don’t have to go out redoing it all just because you’re writing a new
application in Kotlin.” (D1)

“(...) to be interoperable with Java, there are some deficiencies in the lan-
guage that I don’t like, something that it doesn’t support but I would like to
have it supported. Like different support for generics, for example.” (D4)

Among the main problems reported by the interviewees are about the optionals and
the difficulty to deal with nullable objects:

“There’s no null safety in Java, so you can simply call a code that has
no nullability control inside Kotlin passing something that is null and it will
crash.” (D2)

“Java does not have this null safety control, so when you work with code
coming from Java is dangerous. Even the Android SDK itself does not have
much support for that.” (D5)

Other reported problems are related to static objects that in Kotlin need to be declared
in a companion object and annotated as @JvmStatic to be called as static objects in Java,
and also overriding methods in Kotlin:

“Companion Object. I think this is ugly and could have been abstracted for
the developer.” (D1)

“I think the biggest problems I’ve had in the project I worked on was this
static method issue. Declaration of constants, static methods between the lan-
guages.” (D5)



53

“(...) we had to use the JVMStatic annotations and the construction an-
notations to be able to represent all the constructors that the Android SDK
needs. It’s complicated, or at least it’s not very intuitive, and it’s strange be-
cause it loses some of the elegance, the beauty of the language, using these
annotations.” (D4)

Despite of experiencing problems with optionals and nullability, as well as the use of
static objects and overriding methods, among other less common problems, developers
seems to consider the interoperability as a great benefit of adopting Kotlin.

4.2.3 RQ3 - How are Android developers dealing with the functional paradigm
Kotlin?

We decided to study the functional programming in Kotlin because it was a point an-
nounced by JetBrains to bring a multi-paradigm modern approach to Android Platform
(SHAFIROV, 2017). For many years, Android only had support to the Object-Oriented
paradigm, so the adoption of functional programming can be very challenging even for
experienced programmers, as shown by Chambers et al. (CHAMBERS et al., 2012). Hence
the need to understand how developers are dealing with the new possibilities that the
paradigm brings to the platform.

To answer this RQ we proceeded in a similar way to RQ2. We selected 100 questions
from each topic that had the most relevant terms related to the functional paradigm
according to LDAvis. Figure 10 shows the relevance for the term ‘function’ between the
topics. The selected topics are: Classes, Objects, and Methods/Functions, General
Questions, and Background Tasks.

Figure 10 – Relevance of ‘function’ term between topics.

Fonte: The author (2019)



54

During the analysis of these questions, we removed the Background Tasks topic due
to the high number of false-positive questions, resulting in 200 questions in total. After
the manual process, we ended up with questions regarding functional programming con-
cepts such as Higher-order Functions/Lambdas, Closures, Scope Functions, First
Class Functions, and general problems that we not addressed due to over-generality.
We discuss these topics bellow:

• Higher-order Functions/Lambdas: This category contains questions regarding the
usage of Higher-orderfunctions that are mainly achieved in Kotlin by the use of
lambdas, e.g. “How to pass a function as parameter in kotlin - Android” (Q6181),
and “What is better approach of callback in Kotlin? Listener vs High-Order function”
(Q5381).

• Closures: This category contains questions regarding problems about scopes of en-
closing functions, e.g. “How to make ‘this’ a reference of Listener instead of the Ac-
tivity in Kotlin?” (Q3432), and “Kotlin ‘it’ syntax in the context of Volley” (Q1582).

• Scope Functions: This category relies on the special functions provided by Kotlin
standard library. For instance, “difference between kotlin also, apply, let, use, takeIf
and takeUnless in Kotlin” (Q2698).

• First Class Functions: These are mainly questions about the usage of function as first
class citizens, i.e. assignee functions to variables or storing them in data structures,
e.g. (Q1585).

During the open coding process, we coded 17 segments from the interviews as related
to Functional Programming. Five of the interviewees consider Kotlin as fully supporting
the Functional Programming language, two of them did not respond or partially responded
to the questions about functional programming because of the lack of experience in the
subject. Some respondents related the functional programming as a factor that enhances
the flexibility and modernity of language. We present some fragments from the interviews
bellow:

“Yeah, I think Kotlin supports functional programming. Everything from
the collections are very functional programming oriented. The lambdas, the
functions as first-class citizens, having functions apart from classes, all those
things I think that help to program in a functional programming way very
easily” (D4)

“It is a language that is much more modern and already has the concepts
of lambda, code blocks, closures ... What I can say is that it is very robust and
modern.” (D6)



55

When asked about the problems faced with the functional paradigm, two interviewees
mentioned difficulties to initially understand the Scope Functions, and one mentioned that
had several problems using inline functions, but could not remember which ones exactly:

“(...) actually, I look for the old codes and I see that I used ‘let’ and ‘also’ in
the wrong way, and also the ‘apply’ that I didn’t know where to use it properly.
Then today I look the code and see that I didn’t use it right.” (D2)

“I remember to have to look for several problems I find compiling with the
inline functions. We were using inline functions a lot, because of the reified
generics and I had to search for several problems with it.” (D4)

Despite of the fact that the interviewees consider the functional paradigm as part of
a modern approach and that it also helps in the readability of the code, they also state
that the overuse of the paradigm can have the opposite effect causing the code to become
more difficult to read:

“Lambdas are things that make our day to day easier for writing code, but
can also make it difficult to read” (D7)

“(...) it’s a trade-off. Kotlin is so powerful that you can use ‘let’,‘ also’,
the Elvis operator to reduce and chain your code so much, thus that a simple
code can become hard to understand.” (D6)

“Kotlin gives you practicality to create code blocks and in this block, if I
don’t explicitly define the name of the input variable, it will always be called
‘it’. Then, if I nest functions, I can get lost in context with too many enclosed
functions.” (D2)

Despite of the fact that developers consider the functional paradigm as a factor that
enhances the flexibility and modernity of language, they are facing problems regarding
the usage of lambdas and closures. They also consider that its overuse can decrease code
readability.

4.2.4 RQ4 - How are Android developers dealing wit the development environment
tools available for Kotlin?

We decided to study the environment tools for Android because, as mentioned by Breslav
(BRESLAV, 2018), creating a new programming language is more than just creating a
new compiler. A whole ecosystem needs to be created, including tools that support other
developers adopting it. Hence, we believe that by assessing the tools available for a pro-
gramming language, we are also partially assessing how the adoption of such language is
being perceived by the developers (ANSLOW; MARKSTRUM; MURPHY-HILL, 2011).



56

To answer this RQ we proceeded in a similar way to RQ2 and RQ3. We selected
100 questions from the topic Build–Compilation which presents a big relevance for the
terms ‘gradle’ and ‘studio’, and 100 more questions from the topic Java–Kotlin that
shows a high relevance for the term ‘studio’ according to LDAvis and shown in Figures
11, and 12 respectively. We also take into consideration the relevance of other terms that
refer to tools, such as ‘plugin’, ‘librari’, ‘proguard’ and ‘kapt’.

Figure 11 – Relevance of ‘gradle’ term between topics.

Fonte: The author (2019)

After the analysis of the 200 questions, we categorized the problems as the following:

• Android Studio code converter: This category groups questions regarding problems
using the Android Studio code converter, a functionality that automatically trans-
late Java code to Kotlin. Most of the questions report that compilation fails after
code conversion, e.g. “Kotlin Type mismatch after converted in Android Studio”
(Q3111), and “Converting Java file to Kotlin now it won’t compile - Internal com-
piler error” (Q8770).

• Error After Upgrade: This category relies on compilation problems that appear after
upgrading Android Studio, Kotlin, Kotlin Plugin or Gradle. e.g. “Android unable to
build project after updating kotlin runtime to 1.2.31” (Q4689), and “After update



57

Figure 12 – Relevance of ‘studio’ term between topics.

Fonte: The author (2019)

to Android studio 3.1 i’m facing this erorr Could not find org.jetbrains.kotlin:kotlin-
stdlib-jre8:1.2.0” (Q4341).

• Version Conflicts: This category relies on problems about version conflicts between
libraries, the Kotlin plugin, the Kotlin language, and also Android tools. “Warning
“Kotlin plugin version is not the same as library version” (but it is!)” (Q4784)2.

• Kotlin Setup: This category contains questions about the difficulty faced by de-
velopers to setup Kotlin in their projects, e.g. “I am unable to configure Kotlin
in my android studio. getting error Error: Unable to find method ‘BaseVariant-
Data.getOutputs()Ljava/util/List;’.” (Q1002).

• kapt & databinding: The last category contains questions related to problems using
Kotlin Annotation Processor (kapt) and Databinding library. Both terms presented
high relevance in the LDAvis and manual analysis. (Q5941, and Q5294).

During the open coding process, we coded 36 segments from the interviews about
Tools for Android/Kotlin development. The greatest number of problems reported by the
interviewees relates to version upgrades of tools such as Gradle or Android Studio. The
2 <https://youtrack.jetbrains.com/issue/KT-23744>

https://youtrack.jetbrains.com/issue/KT-23744


58

responses point out that even minor version upgrades can cause a lot of problems to the
developers, leading their projects to stop compiling:

“I didn’t have such a good, fluid experience [with Android Studio]. Well,
I think we’ve seen the project break sometimes because Android Studio was
updated.” (D1)

“Kotlin code was working... A simple code that was already working and
then stopped working after we updated the gradle. It just stopped compiling.”
(D3)

“When there’s a new version of Android Studio or Gradle it’s quite shocking
and a lot of things stop working.” (D7)

Some respondents also report that fixing such issues is difficult because it is hard
to identify where the problem really is, or what is causing the problem, whether it is a
problem with Android Studio, Gradle, or Kotlin:

“I think it wasn’t an easy thing to understand, especially when you have
multiple projects with multiple dependencies... sometimes it’s not so clear
what’s wrong. After some time suffering you can come up with some trick
or set of steps that facilitate how to solve some problems.” (D1)

Regarding Android Studio, the interviewees think there are many features that help
the development with Kotlin, such as the automatic code converter from Java to Kotlin,
and the project templates that already have Kotlin configured:

“I know that someone already solved that problem in Java so I can copy it,
paste the code and see it converted to Kotlin. This is very cool.” (D3)

“The IDE already creates a full setup project for you, including a base
architecture, and dependency plugins. So, I can’t see any difficult to start code
with Kotlin. [with Android Studio]” (D6)

However, they point out that there is still a lot to improve on automatic code conver-
sion, code suggestions, and fixing a few bugs:

“First I did the automatic code conversion, then I saw that Android Studio
could not do all the conversions by itself, so I had to understand how is the
Kotlin syntax to start covert it manually.” (D7)

“...the code translation between Java code can be improved to generate code
that is more idiomatic. It’s working, but it’s creating code that it’s not following
the best practices of Kotlin.” (D4)



59

“I’ve seen problems that the IDE doesn’t understand that the code is right,
even it being right. For example, error messages that appear when you are
implementing the parcelable interface and the IDE say that you have to create
a CREATOR static object, but this is already correct the way it is.” 3 (D2)

Developers are facing many problems with tools for Kotlin development, specially
regarding the Android Studio code converter, Gradle, and new versions of libraries. In-
terviewees report that even minor version upgrades can lead to various problems.

4.2.5 RQ5 - What is the perception of Android developers about Kotlin adoption?

The goal of this RQ is to investigate the perception of the developers about Kotlin
adoption for Android through the analysis of the interviews. In this section, we address
the most relevant topics identified in the open coding process (Table 4) which were not
previously analyzed.

In this RQ, we decided not to address the topics within the categories Tools, Interop-
erability, and Classes and Objects as they were already addressed by previous questions.

• In the category Language Paradigm and Style (55), we removed from the
analysis the topic Functional Programming (17) since it was widely discussed
in RQ3. Then, we analysed the remaining topics: Less Verbose/More Concise
(15), Pragmatic Evolution (7), Multi-Paradigm Language (6), Modern
Language (5), and Programming Style (5). Analyzing these topics it was pos-
sible to identify that interviewees consider Kotlin a more concise and less verbose
language than Java:

“I think it’s very concise. It’s not as verbose as Java. I think it’s more
elegant. I don’t have to specify everything that takes a lot of time. I think
the conciseness of the language is the thing I like the most.” (D4)

Developers points out that Kotlin is in constant evolution, and sometimes it is even
hard to follow it:

“Kotlin is constantly bringing several improvements, sometimes it is
even difficult following it.” (D5)

They also consider that multi-paradigm support makes the language more flexible,
which they believe is a characteristic of modern languages, as well as the new style
of programming that Kotlin brings to the Android platform:

3 <https://youtrack.jetbrains.com/issue/KT-19300>

https://youtrack.jetbrains.com/issue/KT-19300


60

“Kotlin is a language designed to be a much more functional language.
You can define functions receiving other functions, this shows that it was
thought in a way that you can program in a much simpler way than you
do in Java [...] Since it is a language that already was born with functional
paradigm it makes simpler to, for example, define high order functions, or
extension functions, or... everything is much simpler.” (D7)

“You can even make a better, more modern architecture so you can
modernize your code much easier and less costly.” (D3)

“It can improve if the person knows how to use with a new mindset.
It’s no use for you to program in Kotlin with Java style and not use the
resources that Kotlin provides for you to develop in a secure way.” (D1)

• The category Performance, Productivity and Quality (27) was subdivided
into the following topics: Readability/Legibility (13), Performance/Produc-
tivity (9), and QA (5). By analyzing these topics, it was possible to identify that
developers consider the language to be more idiomatic, making it easier to read the
code, and improving individual performance:

“In my opinion, it is much easier to read a Kotlin code than a Java
code for example.” (D3)

“We see a huge reduction of the codes to develop the same functionality
[in Java], and this helped me a lot, I found it easy and I started to gain
performance because of it.” (D7)

However, they point out that such readability may begin to deteriorate with the
excessive usage of the functional paradigm:

“Kotlin brings many functions that improve readability, for example,
aggregation functions that help you a lot... iterate over a list sometimes
is not so clear in Java, you have too much code that decreases the code
understanding, but it’s necessary. I think Kotlin goes very well in this
aspect producing very good code output. Sometimes it is also the opposite
when you use too much of Kotlin’s resources you can generate a code that
is not so clear, for example, using too many ‘let’ or ‘also’ you can end up
creating a code that is not easy to understand.” (D2)

All interviewees consider that the Kotlin language leads to an improvement in the
quality of the code produced, pointing to the null safety as the main factor to this:



61

“I think that what helps developers most in Android is the null support,
dealing with null references in an easy way. Also the support for lambda,
all those mini features that you can use in Android. I think it helps a lot
in code quality, especially the null support.” (D4)

• The Documentation (8) with the topics StackOverflow (5) and Official doc-
umentation (3) show us that some interviewees believe that the official Documen-
tation still lacks on specific information for Android Platform:

“I think what’s missing for Kotlin is some very specific documentation
for the platform.” (D5)

They also point out the importance of StackOverflow as a source of knowledge:

“I think nowadays every developer uses StackOverflow. It is a very
large community to ask questions and solve specific problems that perhaps
the documentation can not address. Kotlin has a very good, robust docu-
mentation, but consequently it will not be able to cover all use cases and
needs. StackOverflow ends up being a tool, a very fast parallel platform
for you to solve a problem. And the people from the community exemplify
in a very simple and practical way.” (D6)

• The last category, Similarities between Kotlin and Swift (11), was only pos-
sible to identify due to the semi-structured interview method that we adopted. We
did not subcategorize it because we only identified one subject regarding it. Four
interviewees brought to light the similarities between Kotlin and Swift (language
used in iOS, the main competitor of Android platform). Some of them report that,
because they had experience with Swift and with the two languages being simi-
lar, this has made Kotlin adoption easier, reducing the learning curve. Others even
point out as a reason for Kotlin adoption in his company, a startup, where according
to him they need more multidisciplinary teams, and then decided to adopt Kotlin
because people with experience in Swift could also work well with Kotlin.

“It was more natural to me because it was very similar to Swift.” (D1)

“There was a very cool situation that I experienced in the startup I worked
for, which one of the reasons that led us to adopt Kotlin was the similarity with
Swift. So what was the benefit we saw for our team? We were very small, only
four mobile developers, two Android and two iOS. So if we decided to adopt a
language that was a bit similar, we could somehow get closer to the platform
of our teammates and then we were able to do code review... I was able to
do code review in Swift, focused more on issues of code quality, clean code,



62

not the platform itself, even because I have no deeper knowledge in Swift. This
might be interesting to see if more multidisciplinary teams could also follow
this approach.” (D5)



63

5 DISCUSSION

This chapter discusses and analyses the results, putting them all together in an over-
all assessment, comparing with the existing literature, presenting its implications, and
examining the threats to validity.

5.1 OVERALL ASSESSMENT

Developers consider Kotlin a modern language with many features that make it easy to
adopt. Being able to use a new language without having to undergo an abrupt migration
is an advantage pointed out by all the developers we interviewed. In fact, none of them
cited a case where the code base was migrated 100% from Java to Kotlin. In most cases
the code bases were partially migrated, or only the new things were developed in Kotlin,
keeping the legacy in Java. Some of them have also stated that making use of the entire
development environment from Java is a great facility. In this regard, we found many
questions from developers about problems using null variables from Java, which has no
nullability control, that was also reported by the interviewed developers.

Kotlin’s multi-paradigm support is reported by respondents as a modern feature that
brings more flexibility to development within the Android platform. Despite of this, they
also consider that the overuse of the functional paradigm can make the code more complex
and difficult to understand. This problem also appears in the analyzed questions, where
it is possible to find questions regarding scope context within closures and also about the
use of high order functions.

Additionally, many questions on StackOverflow pertain to problems in the toolset,
specially the upgrade version of those, and gradle error messages that are either hard-to-
understand or unhelpful.

According to the interviewees, Kotlin contributes to improving productivity and per-
formance because it is a modern language, less verbose, and improves readability when
compared to Java (only when the functional paradigm is not overused). It also brings
more quality to the code produced. They also point out that a different mindset, or
programming style, is required in order to use Kotlin features in the best way possible.

Regarding the documentation, developers believe that much can still be done to im-
prove the support material of the language and point out StackOverflow as a platform of
utmost importance to the developer community.

Finally, developers report that the similarity between Kotlin and Swift as one of the
potentiating factors of Kotlin’s adoption. One of the interviewees states that adopting it
can greatly benefit multidisciplinary teams, especially in the startup’s environment where,
according to him, due to the scarcity of resources, much of the developers have to work



64

on more than one platform such as Android and iOS.

5.2 LITERATURE ENFOLDING

In this section, the results of this research are compared the with the literature presented
in Chapters 1 and 2 in order to identify similarities and differences.

According to JetBrains (BRESLAV, 2016; REBELLABS, 2013), and Google (CLERON,
2017), the reason for Kotlin’s popularity is the flexibility, modernity, and the possibility
to fully interoperate with Java. Our results converge to the same opinion, as the possi-
bility of mixing both languages in a single code base as the main factor for its adoption,
followed by the flexibility, and modernity, much for the possibility of using multiple pro-
gramming paradigms, among them the functional paradigm as emphasized by Flauzino et
al. (FLAUZINO et al., 2018). Despite of this, we had a complementary finding that, although
interoperability is a great facilitator, it also leads developers to face many problems, being
the second topic with more questions and reported by all the interviewees.

JetBrains (BRESLAV, 2016; REBELLABS, 2013), and Google (CLERON, 2017) also states
that smart casting, higher-order functions, and extension functions allow developers to
focus on making code more readable and less verbose. This statement is only partially
supported by this research because despite of developers considering Kotlin as a language
that helps readability, they believe that the overuse of functional capacities and operators,
such as elvis operator, can cause the opposite effect, making the code difficult to read and
understand. This might be explained by Chambers et al. (CHAMBERS et al., 2012) which
conducted a long-term observational study to understand how experienced imperative pro-
grammers performed in an introductory graduate course on functional programming. They
reported that students commonly encounter several conceptual difficulties when learning
functional languages, specially implementing recursive functions, and nested operations.
Other studies also present similar results where functional programming demonstrate sev-
eral challenges to learners such as, difficulty understanding the concept of higher-order
functions (CHAKRAVARTY; KELLER, 2004), the type of functional expressions (JOOSTEN;

BERG; HOEVEN, 1993), and the evaluation of iteration and recursive functions (EBRAHIMI,
1994; SEGAL, 1994).

Shafirov (SHAFIROV, 2017) affirms in the official Kotlin’s Blog that developers do not
need to install any extra plugin or worry about compatibility since JetBrains and Google
improved the Kotlin support in the Android Studio IDE after its official announcement
as an Android supported language. However, developers are still facing many problems
regarding version compatibility, specially for Android Studio and Gradle, but also for
other tools.

Our findings are also in agreement with Jangid (JANGID, 2017) regarding Kotlin’s
advantages (Java interoperability, null safety guarantee, less verbosity, smart casts, de-
structuring declarations, and good support in the IDE), and disadvantages (increase in



65

compilation time, the small developer community, the increase in package size, and the
not efficient Android Studio code converter).

In a large-scale empirical study with GitHub repositories involving more than 6 million
lines of code, Flauzino et al. (FLAUZINO et al., 2018) identified that source code written in
Kotlin usually have fewer code smells than code that are written in Java. The same find is
presented by Banerjee et al. (BANERJEE et al., 2018). In this regard, our study found similar
results where developers believe that Kotlin improves code quality, especially because of
the null safety guarantee, scope functions, and lambdas.

Although Rebouças et al. (REBOUÇAS et al., 2016) research was about Swift, the simi-
larity between both programming languages (Kotlin and Swift) came to light throughout
the work. By comparing their findings with ours, it is possible to identify which in both
studies the interviewees find languages easy to adopt. Another important similarity is
that in both languages dealing with optional variables seems to cause problems to de-
velopers. Also, developers related problems with to the toolset, this can be explained by
the immaturity of tools due to the short time since languages were released. Unlike their
work, we did not find major problems with Kotlin compiler, only one of the interviewees
raised the point that the compilation could be faster.

5.3 IMPLICATIONS

As a general implication of this work, we believe this is a valuable guide for companies and
developers who want to make a preliminary analysis before adopting Kotlin. It is possible
to assess if its adoption is worth for their context, and also assist decision making of how
is the best way to adopt it. In addition, for those who have already adopted the Kotlin
language, it is equally relevant for improving techniques, tools, processes, and mechanisms
to make the best use of the language on the Android platform.

The implications of this work are detailed per research questions:

• RQ1: Companies and developers can know in advance what kind of problems they
will face if they decide to adopt Kotlin. They may take preliminary steps to mitigate
these problems, or even decide to not adopt the language if they find its advantages
do not outweigh the potential problems of its adoption.

• RQ2: Companies and developers can understand the advantages and disadvantages
of interoperating Java and Kotlin code, so it is easier for them to choose between a
partial Kotlin adoption or a full code-base migration.

• RQ3: It is very important for developers a better understanding of the functional
paradigm because until then the support for it was very limited in Android. As
shown by Chambers et al. (CHAMBERS et al., 2012) even experienced developers face
a number of conceptual problems learning functional programming. Researchers can



66

also use these results for studying if the usage of Kotlin in functional programming
disciplines can help the understanding of the functional paradigm.

• RQ4: Toolmakers can take advantage of the finds to create new tools and improve
existing ones, e.g. developers reported several issues with Android Studio’s auto-
matic code converter making clear the need for a more efficient conversion tool.

• RQ5: Companies and developers can understand how Kotlin adoption has been
perceived by the developers, taking into account productivity, readability, and code
quality. They can create processes and mechanisms to maximize gains and mitigate
losses, e.g. create static code analyzers to be integrated into the development process
to prevent readability degradation due to the overuse of functional paradigm.

5.4 THREATS TO VALIDITY

The first threat to validity is related to the number of LDA topics chosen. Although there
is no “right” solution, we ran several tests to verify the number of topics that best fit
our study. Even though, we had to label the topic 2 (Java–Kotlin) with a more generic
name due to the diversity of questions that the topic presented, especially regarding
interoperability and code conversion, manual or automatic. Despite of that, we believe
this is not a limitation of our work due to the fact that we approached the topic in detail
in other research questions, RQ2 and RQ4. This can also be explained by the fact that
the most difficult part to migrate the codebase from Java to Kotlin is how to deal with
null variables from Java.

Secondly, due to the high number of questions, we manually analyzed only 700 ques-
tions. However, this number exceeds the minimum of 564 required to achieve a 95%
confidence level with 4% of error margin for the population of 9,405 questions analyzed in
this study (SYSTEMS, 2012). We also used LDAvis analyses1 to support and corroborate
our manual analyses.

Thirdly, our interview script might not have covered all possible questions. However,
the interviews were designed as semi-structured. Hence, this allowed us to cover other
kind of questions during the interview that were not listed in the script.

Finally, one can argue the fact that the study was performed with only seven developers
as a limitation, but it does not invalidate the results of our research, because with the use of
mixed methods and especially of the simultaneous triangulation strategy it was possible to
adapt our analysis to explore the emergent results more effectively, consequently increasing
the validity of the study. Nevertheless, we recognize that the lack of women in our sample
is rather a limitation of our work.

1 <http://www.victorlaerte.com/kotlin-stackoverflow-data-analysis/#topic=0&lambda=0.6&term=>

http://www.victorlaerte.com/kotlin-stackoverflow-data-analysis/##topic=0&lambda=0.6&term=


67

6 CONCLUSIONS AND FUTURE WORK

In this research, we conducted two studies to understand how developers are dealing with
the recent adoption of Kotlin as an official language for the Android Platform. To this
end, we first performed an in-depth analysis of StackOverflow questions related to Kotlin
and Android, and interviewed seven Kotlin developers to complement our analysis.

Our results indicate that developers seem to find the language easy to understand and
to adopt. They believe that the use of Kotlin can improve the code quality, as well as
readability and productivity. Among the main factors are: (i) Java interoperability which
brings the flexibility of the Kotlin with the advantage to use well established libraries from
Java; (ii) the null safety guarantee that decrease the chances of having to face null pointer
exceptions; (iii) the less verbosity which increases the readability and understanding, (iv)
the lambdas and higher-order functions (v) the good support in the IDE. However, even
with all the advantages that Kotlin has brought to the Android platform, developers
continue to face many problems using it. Among them: (i) the use of null variables and
optionals within Kotlin; (ii) the problems with the toolset, specially with Android Stu-
dio and Gradle; (iii) the degradation of readability with the overuse of the functional
paradigm, and (iv) the interoperation with Java, which despite bringing advantages, it
still requires a lot of work from the developers, e.g. the need to use annotations on static
object objects, and method overriding.

Finally, the main finding of this study is that developers consider that Kotlin adoption
brings many advantages to the Android platform, specially in the aspect of adopting
a more modern language while maintaining the consolidated Java-based development
environment.

We believe that this study is the first step towards a better understanding of Kotlin
within the Android platform. As future work, we plan to analyze Android open source
projects to investigate in depth the Kotlin adoption and usage in the wild deeper, es-
pecially projects that use both languages, Java and Kotlin. We also encourage other
researchers to conduct new studies on how Kotlin and Swift can be related in the mobile
development context, comparing its optional variables usages. Other researchers could
also investigate existing codebases to look at how Java to Kotlin migration is happening,
how Kotlin is being introduced in existing systems, how this affects the structure of these
systems, how does this impact bugs and code reviews, and whether reengineering of pre-
existing Java code is happening. Since Kotlin is open source, we encourage researchers
to contribute with new proposals for the language that could mitigate the problems pre-
sented in this research. In addition, new tools can be created to help developers regarding
the toolset, but we strongly recommend researchers to focus on code conversion tools.



68

REFERENCES

ANDROID. Android Developers - Use Java 8 language features. 2017. Accessed: 2019-
02-15. Disponível em: <https://developer.android.com/studio/write/java8-support>.

ANDROID. Compiling with Jack. 2017. Accessed: 2019-02-15. Disponível em:
<https://source.android.com/setup/build/jack>.

ANDROID. Android Developer - Android KTX. 2019. Accessed: 2019-02-15. Disponível
em: <https://developer.android.com/kotlin/ktx>.

ANDROID. Android Developers - Develop Android apps with Kotlin. 2019. Accessed:
2019-02-15. Disponível em: <https://developer.android.com/kotlin/index.html>.

ANSLOW, C.; MARKSTRUM, S.; MURPHY-HILL, E. Evaluation and usability of
programming languages and tools: (plateau). In: Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. New York, NY, USA: ACM, 2011. (Onward! 2011), p. 119–120. ISBN
978-1-4503-0941-7. Disponível em: <http://doi.acm.org/10.1145/2048237.2048258>.

ATIF, A.; RICHARDS, D.; BILGIN, A. A student retention model: Empirical, theoretical
and pragmatic considerations. In: . [S.l.: s.n.], 2013.

BANERJEE, M.; BOSE, S.; KUNDU, A.; MUKHERJEE, M. A comparative study:
Java vs kotlin programming in android application development. International Journal
of Advanced Research in Computer Science, v. 9, n. 3, p. 41–45, 2018. ISSN 0976-5697.
Disponível em: <https://www.ijarcs.info/index.php/Ijarcs/article/view/5978>.

BARUA, A.; THOMAS, S. W.; HASSAN, A. E. What are developers talking about? an
analysis of topics and trends in stack overflow. Empirical Software Engineering, v. 19, n. 3,
p. 619–654, Jun 2014. Disponível em: <https://doi.org/10.1007/s10664-012-9231-y>.

BLEI, D. M.; NG, A. Y.; JORDAN, M. I. Latent dirichlet allocation. J. Mach.
Learn. Res., JMLR.org, v. 3, p. 993–1022, mar. 2003. ISSN 1532-4435. Disponível em:
<http://dl.acm.org/citation.cfm?id=944919.944937>.

BRESLAV, A. Kotlin Blog - Kotlin 1.0 Released: Pragmatic Language for JVM and
Android. 2016. Accessed: 2019-02-15. Disponível em: <https://blog.jetbrains.com/
kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android/>.

BRESLAV, A. History of Kotlin. 2018. Accessed: 2019-02-15. Disponível em: <https:
//www.coursera.org/lecture/kotlin-for-java-developers/history-of-kotlin-K8pZr>.

CHAKRAVARTY, M. M. T.; KELLER, G. The risks and benefits of teaching purely
functional programming in first year. J. Funct. Program., Cambridge University Press,
New York, NY, USA, v. 14, n. 1, p. 113–123, jan. 2004. ISSN 0956-7968. Disponível em:
<http://dx.doi.org/10.1017/S0956796803004805>.

CHAMBERS, C.; CHEN, S.; LE, D.; SCAFFIDI, C. The function, and dysfunction,
of information sources in learning functional programming. J. Comput. Sci. Coll.,
Consortium for Computing Sciences in Colleges, USA, v. 28, n. 1, p. 220–226, out. 2012.
ISSN 1937-4771. Disponível em: <http://dl.acm.org/citation.cfm?id=2379703.2379745>.

https://developer.android.com/studio/write/java8-support
https://source.android.com/setup/build/jack
https://developer.android.com/kotlin/ktx
https://developer.android.com/kotlin/index.html
http://doi.acm.org/10.1145/2048237.2048258
https://www.ijarcs.info/index.php/Ijarcs/article/view/5978
https://doi.org/10.1007/s10664-012-9231-y
http://dl.acm.org/citation.cfm?id=944919.944937
https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android/
https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android/
https://www.coursera.org/lecture/kotlin-for-java-developers/history-of-kotlin-K8pZr
https://www.coursera.org/lecture/kotlin-for-java-developers/history-of-kotlin-K8pZr
http://dx.doi.org/10.1017/S0956796803004805
http://dl.acm.org/citation.cfm?id=2379703.2379745


69

CHANDRA, S. S.; CHANDRA, K. A comparison of java and c#. J. Comput. Sci. Coll.,
Consortium for Computing Sciences in Colleges, USA, v. 20, n. 3, p. 238–254, fev. 2005.
ISSN 1937-4771. Disponível em: <http://dl.acm.org/citation.cfm?id=1040196.1040228>.

CLARKE, A. C. Book. Profiles of the future; an inquiry into the limits of the possible,
by Arthur C. Clarke. Rev. ed. [S.l.]: Harper Row New York, 1973. xvii, 237 p. p. ISBN
0060107928.

CLERON, M. Android Developers Blog - Android Announces Support for Kotlin. 2017.
Accessed: 2019-02-15. Disponível em: <https://android-developers.googleblog.com/
2017/05/android-announces-support-for-kotlin.html>.

CORBIN, J.; STRAUSS, A. Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE Publications, 2014. ISBN 9781483315683.
Disponível em: <https://dx.doi.org/10.4135/9781452230153>.

CRESWELL, J.; CLARK, V. Designing and Conducting Mixed Methods Research.
SAGE Publications, 2011. ISBN 9781412975179. Disponível em: <https://books.google.
com.br/books?id=YcdlPWPJRBcC>.

EASTERBROOK, S.; SINGER, J.; STOREY, M.-A.; DAMIAN, D. Selecting
empirical methods for software engineering research. In: . Guide to Advanced
Empirical Software Engineering. London: Springer London, 2008. p. 285–311. ISBN
978-1-84800-044-5. Disponível em: <https://doi.org/10.1007/978-1-84800-044-5_11>.

EBRAHIMI, A. Novice programmer errors: language constructs and plan composition.
International Journal of Human-Computer Studies, v. 41, n. 4, p. 457 – 480, 1994.
ISSN 1071-5819. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S107158198471069X>.

FLAUZINO, M.; VERÍSSIMO, J.; TERRA, R.; CIRILO, E.; DURELLI, V.
H. S.; DURELLI, R. S. Are you still smelling it?: A comparative study between
java and kotlin language. In: Proceedings of the VII Brazilian Symposium on
Software Components, Architectures, and Reuse. New York, NY, USA: ACM,
2018. (SBCARS ’18), p. 23–32. ISBN 978-1-4503-6554-3. Disponível em: <http:
//doi.acm.org/10.1145/3267183.3267186>.

FORBES. The World’s Most Valuable Brands. 2018. Accessed: 2019-02-15. Disponível
em: <https://www.forbes.com/powerful-brands/list/>.

GOOGLE. Google I/O Developer Keynote. 2017. Accessed: 2019-02-15. Disponível em:
<https://events.google.com/io2017/schedule/?section=may-17&sid=__keynote2__>.

JANGID, M. Kotlin – the unrivalled android programming language lineage. Imperial
Journal of Interdisciplinary Research, v. 3, n. 8, 2017. ISSN 2454-1362. Disponível em:
<http://www.imperialjournals.com/index.php/IJIR/article/view/5491>.

JOOSTEN, S.; BERG, K. V. D.; HOEVEN, G. V. D. Teaching functional programming
to first-year students. Journal of Functional Programming, Cambridge University Press,
v. 3, n. 1, p. 49–65, 1993.

KOTLIN. Kotlin Docs - Comparison to Java Programming Language. 2019. Accessed:
2019-02-15. Disponível em: <https://kotlinlang.org/docs/reference/comparison-to-java.
html>.

http://dl.acm.org/citation.cfm?id=1040196.1040228
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://dx.doi.org/10.4135/9781452230153
https://books.google.com.br/books?id=YcdlPWPJRBcC
https://books.google.com.br/books?id=YcdlPWPJRBcC
https://doi.org/10.1007/978-1-84800-044-5_11
http://www.sciencedirect.com/science/article/pii/S107158198471069X
http://www.sciencedirect.com/science/article/pii/S107158198471069X
http://doi.acm.org/10.1145/3267183.3267186
http://doi.acm.org/10.1145/3267183.3267186
https://www.forbes.com/powerful-brands/list/
https://events.google.com/io2017/schedule/?section=may-17&sid=__keynote2__
http://www.imperialjournals.com/index.php/IJIR/article/view/5491
https://kotlinlang.org/docs/reference/comparison-to-java.html
https://kotlinlang.org/docs/reference/comparison-to-java.html


70

KOTLIN. Kotlin Language Official Website. 2019. Accessed: 2019-02-15. Disponível em:
<https://kotlinlang.org/>.

KOTLIN. Kotlin Official Documentation. 2019. Accessed: 2019-02-15. Disponível em:
<https://kotlinlang.org/docs/reference/>.

MERRIAM, S. B.; TISDELL, E. J. Qualitative research: A guide to design and
implementation. [S.l.]: John Wiley and Sons, 2016. ISBN 111900361X.

MORSE, J. Principles of mixed methods and multimethod research design. In: .
[S.l.: s.n.], 2003.

NEWZOO. Global Mobile Market Report - Free Version. 2018. Accessed: 2019-02-15.
Disponível em: <https://resources.newzoo.com/hubfs/Reports/Newzoo_2018_Global_
Mobile_Market_Report_Free.pdf>.

PANCHAL, A. K. P. R. K. A comparative study: Java vs kotlin programming in android.
International Journal of Advanced Research in Computer Science, v. 2, n. 9, 2016. ISSN
2456-4338. Disponível em: <https://www.ijiter.com/wp-content/uploads/papers/2016/
A-comparative-study-Java-Vs-kotlin-Programming-in-Android.pdf>.

PORTER, M. F. Readings in information retrieval. In: JONES, K. S.; WILLETT,
P. (Ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997. cap.
An Algorithm for Suffix Stripping, p. 313–316. ISBN 1-55860-454-5. Disponível em:
<http://dl.acm.org/citation.cfm?id=275537.275705>.

REBELLABS. JVM Languages Report extended interview with Kotlin creator Andrey
Breslav. 2013. Accessed: 2019-02-15. Disponível em: <https://jrebel.com/rebellabs/
jvm-languages-report-extended-interview-with-kotlin-creator-andrey-breslav/>.

REBOUÇAS, M.; PINTO, G.; EBERT, F.; TORRES, W.; SEREBRENIK, A.;
CASTOR, F. An empirical study on the usage of the swift programming language.
In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). [S.l.: s.n.], 2016. v. 1, p. 634–638.

RUNESON, P.; HöST, M. Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg., Kluwer Academic Publishers, Hingham,
MA, USA, v. 14, n. 2, p. 131–164, abr. 2009. ISSN 1382-3256. Disponível em:
<http://dx.doi.org/10.1007/s10664-008-9102-8>.

SAUMURE, K.; GIVEN, L. M. The SAGE Encyclopedia of Qualitative Research
Methods. Thousand Oaks: SAGE Publications, Inc., 2008. Disponível em: <http:
//sk.sagepub.com/reference/research>.

SCHMAGER, F.; CAMERON, N.; NOBLE, J. Gohotdraw: Evaluating the go
programming language with design patterns. In: Evaluation and Usability of
Programming Languages and Tools. New York, NY, USA: ACM, 2010. (PLATEAU ’10),
p. 10:1–10:6. ISBN 978-1-4503-0547-1. Disponível em: <http://doi.acm.org/10.1145/
1937117.1937127>.

SCHWERMER, P. Performance Evaluation of Kotlin and Java on Android Runtime.
Dissertação (Mestrado) — KTH, School of Electrical Engineering and Computer Science
(EECS), 2018.

https://kotlinlang.org/
https://kotlinlang.org/docs/reference/
https://resources.newzoo.com/hubfs/Reports/Newzoo_2018_Global_Mobile_Market_Report_Free.pdf
https://resources.newzoo.com/hubfs/Reports/Newzoo_2018_Global_Mobile_Market_Report_Free.pdf
https://www.ijiter.com/wp-content/uploads/papers/2016/A-comparative-study-Java-Vs-kotlin-Programming-in-Android.pdf
https://www.ijiter.com/wp-content/uploads/papers/2016/A-comparative-study-Java-Vs-kotlin-Programming-in-Android.pdf
http://dl.acm.org/citation.cfm?id=275537.275705
https://jrebel.com/rebellabs/jvm-languages-report-extended-interview-with-kotlin-creator-andrey-breslav/
https://jrebel.com/rebellabs/jvm-languages-report-extended-interview-with-kotlin-creator-andrey-breslav/
http://dx.doi.org/10.1007/s10664-008-9102-8
http://sk.sagepub.com/reference/research
http://sk.sagepub.com/reference/research
http://doi.acm.org/10.1145/1937117.1937127
http://doi.acm.org/10.1145/1937117.1937127


71

SEGAL, J. Empirical studies of functional programming learners evaluating recursive
functions. Instructional Science, v. 22, n. 5, p. 385–411, Sep 1994. ISSN 1573-1952.
Disponível em: <https://doi.org/10.1007/BF00891962>.

SHAFIROV, M. Kotlin Blog - Kotlin on Android. Now official. 2017. Ac-
cessed: 2019-02-15. Disponível em: <https://blog.jetbrains.com/kotlin/2017/05/
kotlin-on-android-now-official/>.

SHAH, Y.; SHAH, J.; KANSARA, K. Code obfuscating a kotlin-based app with
proguard. In: . [S.l.: s.n.], 2018. p. 1–5.

SIEVERT, C.; SHIRLEY, K. LDAvis: A method for visualizing and interpreting topics.
In: Proceedings of the Workshop on Interactive Language Learning, Visualization, and
Interfaces. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014.
p. 63–70. Disponível em: <https://www.aclweb.org/anthology/W14-3110>.

SJØBERG, D. I. K.; DYBÅ, T.; ANDA, B. C. D.; HANNAY, J. E. Building theories
in software engineering. In: . Guide to Advanced Empirical Software Engineering.
London: Springer London, 2008. p. 312–336. ISBN 978-1-84800-044-5. Disponível em:
<https://doi.org/10.1007/978-1-84800-044-5_12>.

STACKOVERFLOW. Developer Survey Results. 2018. Accessed: 2019-02-15. Disponível
em: <https://insights.stackoverflow.com/survey/2018/>.

STATISTA. Statista dossier about Smartphones. 2019. Accessed: 2019-07-30. Disponível
em: <https://www.statista.com/study/10490/smartphones-statista-dossier/>.

SYSTEMS, C. R. Sample Size Calculator. 2012. Accessed: 2019-02-15. Disponível em:
<https://www.surveysystem.com/sscalc.htm>.

WIRTH, N. Programming languages: What to demand and how to assess them. Software
Engineering, 01 1976.

https://doi.org/10.1007/BF00891962
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://www.aclweb.org/anthology/W14-3110
https://doi.org/10.1007/978-1-84800-044-5_12
https://insights.stackoverflow.com/survey/2018/
https://www.statista.com/study/10490/smartphones-statista-dossier/
https://www.surveysystem.com/sscalc.htm


72

APPENDIX A – PRE-PROCESSING STACKOVERFLOW DATA

To remove the content inside the tags <code>, <pre> and <blockquotes> we performed
simple replacement using regex with Visual Studio Code:1

• <code.*?/code>

• <pre.*?/pre>

• <blockquote.*?/blockquote>

Then, we ran the routines below to perform the remaining pre-processing steps:

Code 33 – Pre-processing StackOverflow Data.
1 import org.jsoup.Jsoup

import java.io.File

3 import java.nio.charset.StandardCharsets

import java.nio.file.Files

5 import java.nio.file.Paths

7 fun main() {

removeHtml ()

9 removeURLs ()

removePunctuation ()

11 removeStopWordsAndOneLetterWords ()

stem()

13 nameAndLabel ()

}

15
fun getReadFile(fileName: String): File = File(fileName)

17 fun getOrCreateWriteFile(fileName: String): File {

val file = File(fileName)

19 if (!file.exists ()) {

file.createNewFile ()

21 }

return file

23 }

25 fun removeHtml () {

val readFile = getReadFile("kotlin -posts -1.csv")

27
if (readFile.exists ()) {

29 val lines = Files.lines(Paths.get(readFile.toURI()))

val newFile = getOrCreateWriteFile("kotlin -posts -2.csv")

31
lines.forEach {

33 val text = Jsoup.parse(it).text()

35 val newText = text.replace("\n", "").replace("\r", "")

newFile.appendText("$newText\n")

1 <https://code.visualstudio.com/>

https://code.visualstudio.com/


73

37 }

}

39 }

41 fun removeURLs () {

43 val readFile = getReadFile("kotlin -posts -2.csv")

45 if (readFile.exists ()) {

val lines = Files.lines(Paths.get(readFile.toURI()))

47 val newFile = getOrCreateWriteFile("kotlin -posts -3.csv")

val regex = Regex(

49 "((https?|ftp|gopher|telnet|file|Unsure|http):((//) |(\\\\))+[\\w\\d:#@

%/;$()~_?+ -=\\\\.&]*)")

51 lines.forEach {

val text = it.replace(regex , "")

53 newFile.appendText("$text\n")

}

55 }

}

57
fun removePunctuation () {

59 val readFile = getReadFile("kotlin -posts -3.csv")

61 if (readFile.exists ()) {

val lines = Files.lines(Paths.get(readFile.toURI()))

63 val newFile = getOrCreateWriteFile("kotlin -posts -4.csv")

val regex = Regex("[\\p{P}&&[^\ u0027]]")

65 lines.forEach {

val text = it.replace(regex , " ")

67 newFile.appendText("$text\n")

}

69 }

}

71
fun removeStopWordsAndOneLetterWords () {

73 val readFile = getReadFile("kotlin -posts -4.csv")

75 if (readFile.exists ()) {

val lines = Files.lines(Paths.get(readFile.toURI()))

77 val newFile = getOrCreateWriteFile("kotlin -posts -5.csv")

79 val stopWords = listOf("a", "about", "above", "after", "again", "against", "

all", "am", "an", "and", "any", "are", "aren ’t", "aren ‘t", "arent", "as"

, "at", "be", "because", "been", "before", "being", "below", "between",

"both", "but", "by", "can ’t", "can ‘t", "cant", "cannot", "could", "

couldn ’t", "couldn ‘t", "couldnt", "did", "didn ’t", "didn ‘t", "didnt", "

do", "does", "doesn ’t", "doesn ‘t", "doesnt", "doing", "don ’t", "don ‘t",

"dont", "down", "during", "each", "few", "for", "from", "further", "had"

, "hadn ’t", "hadn ‘t", "hadnt", "has", "hasn ’t", "hasn ‘t", "hasnt", "have

", "haven ’t", "haven ‘t", "havent","having", "he", "he’d", "he‘d", "he’ll

", "he‘ll", "he’s", "he‘s", "hes", "her", "here", "here ’s", "here ‘s", "

hers", "herself", "him", "himself", "his", "how", "how ’s", "how ‘s", "

hows","i", "i’d", "i‘d", "id", "i’ll", "i‘ll", "ill", "i’m", "i‘m", "im"

, "i’ve", "i‘ve", "ive", "if", "in", "into", "is", "isn ’t", "isn ‘t", "

isnt", "it", "it’s", "it‘s", "its", "itself", "let ’s", "let ‘s", "lets",



74

"me", "more", "most", "mustn ’t", "mustn ‘t", "my", "myself", "no", "nor",

"not", "of", "off", "on", "once", "only", "or", "other", "ought", "our"

, "ours ourselves", "out", "over", "own", "same", "shan ’t", "shan ‘t", "

she", "she ’d", "she ‘d", "she ’ll", "she ‘ll", "she ’s", "she ‘s", "shes", "

should", "shouldn ’t", "shouldn ‘t", "shouldnt", "so", "some", "such", "

than", "that", "that ’s", "that ‘s", "thats", "the", "their", "theirs", "

them", "themselves", "then", "there", "there ’s", "there ‘s", "theres", "

these", "they", "they ’d", "they ‘d", "they ’ll", "they ‘ll", "they ’re", "

they ‘re", "they ’ve", "they ‘ve", "this", "those", "through", "to", "too",

"under", "until", "up", "us", "very", "was", "wasn ’t", "wasn ‘t", "wasnt

", "we", "we’d", "we‘d", "we’ll", "we‘ll", "we’re", "we‘re", "we’ve", "

we‘ve", "were", "weren ’t", "weren ‘t", "what", "what ’s", "what ‘s", "whats

", "when", "when ’s", "when ‘s", "where", "where ’s", "where ‘s", "wheres",

"which", "while", "who", "who ’s", "who ‘s", "whos", "whom", "why", "why ’s

", "why ‘s", "with", "won ’t", "won ‘t", "wont", "would", "wouldn ’t", "

wouldn ‘t", "wouldnt", "you", "you ’d", "you ‘d", "you ’ll", "you ‘ll", "you ’

re", "you ‘re", "you ’ve", "you ‘ve", "your", "yours", "yourself", "

yourselves")

81 lines.forEach { line ->

val text = line.toLowerCase ()

83 val words = text.split(" ").toMutableList ()

val newLine = StringBuffer ()

85
words.forEach { word ->

87 if (word.length > 1 && !stopWords.contains(word)) {

newLine.append(word)

89 newLine.append(" ")

}

91 }

93 newFile.appendText("$newLine\n")

}

95 }

}

97
fun stem() {

99 val readFile = getReadFile("kotlin -posts -5.csv")

101 if (readFile.exists ()) {

103 val output = getOrCreateWriteFile("kotlin -posts -6. csv")

Stemmer.stem(readFile.absolutePath , output.absolutePath)

105 }

}

107
fun nameAndLabel () {

109 val readFile = getReadFile("kotlin -posts -6.csv")

111 if (readFile.exists ()) {

val lines = Files.lines(Paths.get(readFile.toURI()), StandardCharsets.

ISO_8859_1)

113 val newFile = getOrCreateWriteFile("kotlin -posts -final.txt")

115 var i = 0

lines.forEach {

117 val myString = it.prependIndent("q$i Question$i ").toByteArray(Charsets.



75

ISO_8859_1)

val text = String(myString , Charsets.UTF_8)

119 newFile.appendText("$text\n")

i++

121 }

}

123 }



76

APPENDIX B – INTERVIEW SCRIPT

The interview script was developed based on the Research Questions presented in section
3.1. As we used semi-structured interviews (RUNESON; HöST, 2009) the following interview
script was used to gather specific desired information but the interview was not restricted
by these questions.

Context of the Participant

• Can you please tell us your name?

• How old are you?

• How long have you been working as a developer?

• How long have you been working with Android development?

• What is your current role in the organization you work for?

• How long have you been working with Kotlin?

• How do you consider your knowledge level in Kotlin?

• Do you have any background with Java ?

Kotlin

• How was your first contact with Kotlin?

• What are the reasons that made you adopt Kotlin in Android Development?

• Do you think Kotlin improves code quality in any way?

• What do you most like in Kotlin development?

• What do you most dislike in Kotlin development?

• Can you remember one or more problems you faced in Kotlin development and had
to resort to any specialized forum like StackOverflow?

Java-Kotlin Interoperability

• Kotlin is designed with Java Interoperability in mind. Existing Java code can be
called from Kotlin in a natural way, and Kotlin code can be used from Java as well.
In your opinion, how do you face the Kotlin and Java interoperability?



77

• Despite the fact that Kotlin and Java are interoperable, both languages are quite
distinct. Have you ever experienced problems trying to interoperate Kotlin and Java?

• What you think could be improved in Kotlin-Java Interoperability?

Functional Programming

• Do you think that Kotlin provides support for functional programming in any way?

• Have you ever experienced problems with any functional programming practices in
Kotlin?

• What do you think could be improved in Kotlin functional paradigm support?

Tools

• In your opinion does Android Studio provide a good experience for Kotlin Develop-
ers?

• Have you experienced any problems trying to develop Android Apps with Kotlin
regarding Android Studio?

• Gradle is currently the most popular compilation automation system used by An-
droid developers. To use Kotlin with Gradle some settings must be made, but may
vary depending on the version of gradle and Android Studio you are using. Have
you experienced problems using gradle?

• What do you think could be improved in Android Studio regarding Kotlin?

Closing

• Is there anything else you would like to discuss that was not addressed by the
previous questions or you believe that can improve this interview?

• Do you have any question for me?



78

APPENDIX C – CONSENT FORM FOR RESEARCH PARTICIPATION

FEDERAL UNIVERSITY OF PERNAMBUCO
CONSENT FORM FOR RESEARCH PARTICIPATION

Study Title: An Empirical Study on the Usage of the Kotlin Programming
Language for Android Development

Principal Investigator: Victor L. de Oliveira

Professor Advisor: Leopoldo Teixeira

I am a master student at the Federal University of Pernambuco, in the Center of In-
formatics (CIn). I am planning to conduct a research study with android developers,
which I invite you to take part in. This form has important information about the reason
for doing this study, what we will ask you to do if you decide to be in this study, and the
way we would like to use information about you if you choose to be in the study.

Why are you doing this study?
You are being asked to participate in a research study about the usage of Kotlin Pro-

gramming Language for Android Development. The purpose of the study is to understand
how developers are dealing with the recent adoption of Kotlin as the official language for
Android development: The perception about the advantages and disadvantages to using
Kotlin for Android development; Most common problems faced by developers that choose
Kotlin as Android programming language.

What will I do if I choose to be in this study?
You will be asked to describe your experience as an Android Developer and to describe

your experience with Kotlin in deep.
Study time: Study participation will take approximately 40 minutes in one session.

There may be a future contact with the interviewee to solve questions that may appear
in the course of the research.

Study location: All study procedures will be conducted via video conference or in
loco, depending on the availability of both parties. I would like to audio-record this in-
terview to make sure that I remember accurately all the information you provide. I will
keep these tapes in a private repository and they will only be used to extract data for
this research. I may quote your remarks in presentations or articles resulting from this
work. A pseudonym will be used to protect your identity unless you specifically request



79

that you be identified by your true name.

What are the possible risks or discomforts?
Your participation in this study does not involve any physical or emotional risk to you

beyond that of everyday life.
As with all research, there is a chance that confidentiality of the information we collect

from you could be breached – we will take steps to minimize this risk, as discussed in
more detail below in this form.

What are the possible benefits for me or others?
You are not likely to have any direct benefit from being in this research study. This

study is designed to learn more about the Usage of the Kotlin Programming Language for
Android Development. The study results may be used to help other people in the future.

How will you protect the information you collect about me, and how will
that information be shared?

Results of this study may be used in publications and presentations. Your study data
will be handled as confidentially as possible. If results of this study are published or
presented, individual names and other personally identifiable information will not be
used.

To minimize the risks to confidentiality, we will keep all confidential data in a private
repository in a trustful storage provider.

We may share the data we collect from you for use in future research studies or with
other researchers – if we share the data that we collect about you, we will remove any
information that could identify you before we share it.

Financial Information
Participation in this study will involve no cost to you. You will not be paid for par-

ticipating in this study.

What are my rights as a research participant?
Participation in this study is voluntary. You do not have to answer any question you do

not want to answer. If at any time and for any reason, you would prefer not to participate
in this study, please feel free not to. If at any time you would like to stop participating,
please tell me. We can take a break, stop and continue at a later date, or stop altogether.
You may withdraw from this study at any time, and you will not be penalised in any
way for deciding to stop participation. If you decide to withdraw from this study, the
researchers will ask you if the information already collected from you can be used.

Who can I contact if I have questions or concerns about this research study? If you



80

have questions, you are free to ask them now. If you have questions later, you may contact
the principal researcher at:

Name: Victor Laerte de Oliveira
Email: vlo2@cin.ufpe.br



81

APPENDIX D – QUESTIONS PRESENTED IN THE RESULTS

Q3848
Title: How to download feature modules in an Android app?
Body: Now that instant apps are a thing (and a great thing, in my opinion), I was

wondering if there is a way to actually being able to download certain parts of your app
(modules) in order to reduce the initial size of the APK. For example, in my app I have
a module that relies on a 3rd party library that increases the size of the APK in around
15 MB, and it only applies to certain users, so I would prefer to not to include that
functionality in the final APK and make it optional. So far, while this looks very similar
to Instant Apps, I haven’t been been able to find a solution to this problem, and I totally
believe that many apps could benefit from something like this. Tags: java, android, kotlin,
android-instant-apps.

Q170
Title: What are the advantages of Kotlin programming language?
Body: I am quite eager to know the advantages of Kotlin programming language over

Java for Android application development as I would love to explore new things. If any
one have any knowledge about it please do needful. Thank you. Tags: android, mobile,
kotlin, android-developer-api.

Q5187
Title: Can we build Kotin and Java Mix application?
Body: I started learning kotlin , but as I had good work experience in making android

application in java language.So i want to use my native java experience with Kotlin.So I
had some queries: If we used some of the files in Kotlin language and some in java? Tags:
android, kotlin.

Q5535
Title: Why do I receive "as non-null is null" error after Android Studio converts Java

code into Kotlin code automatically?
Body: When I copy and paste Code B (Java Code) into Android Studio 3.1.2, I choose

to convert to Kotlin code automatically. So I get the shown Code A in Kotlin, but with
the following error. Why? Why is that error occurring when Android Studio converts the
Java code into Kotlin code automatically? BTW, Code B (Java code) works well. Error
Code A (Kotlin Code) Code B (Java Code) Tags: android, kotlin.

Q1624
Title: In which situation val/var is necessary in Kotlin constructor parameter?
Body: Right code: cannot be resolved code: cannot be resolved code screenshot The

only difference is the "val" has been deleted and cannot be resolve. Which might be im-
portant is that it’s a inner class. BUT This one class without "val/var" in constructor



82

parameter is working: And if I add var/val before "queue: RequestQueue", I’ll get sug-
gestion: "Constructor parameter is never used as a property less. This inspection reports
primary constructor parameters that can have ‘val’ or ‘var’ removed. Unnecessary usage of
‘val’ and ‘var’ in primary constructor consumes unnecessary memory." I am just confused
about it. Tags: android, kotlin.

Q9087
Title: Is it possible to pass lambda to Intent?
Body: I was wondering if it would be possible to pass a lambda to Intent in kotlin,

since lambdas are Serializable, but with this code I am getting error when creating a
PendingIntent. error: Tags: android, serialization, lambda, kotlin.

Q9381
Title: Force Android Studio to use gradle 4.1
Body: I have downloaded a previous version of Android Studio (3.0.1) since I must use

the android gradle plugin version 3.0.1 and gradle 4.1. The code, and the other modules it
depends on, were written using Android Studio 3.2, kotlin 1.3.10 and gradle version 4.10.2
When I try to synchronize the project with the older version of Android Studio (3.0.1) or
running it says the minimum gradle version is 4.6 even though the gradle wrapper version
is 4.1 and the gradle plugin version is 3.0.1. The kotlin version for all dependencies was set
on 1.2.41 This is the error: How can I compile such project using older the older version?
Tags: android-studio, gradle, kotlin, android-gradle.

Q4400
Title: Android 3.1 build gradle 4.4 error occurred configuring project ‘:app’
Body: When i build app to android studio 3.1 with emulator api<26 not error, but

when i build api>26 error. i have not to use kotlin because not import kotlin,but build
api>26 error. > kotlin.KotlinNullPointerException (no error message). com.android.build
.gradle.tasks.ir.InstantRunMainApkResourcesBuilder$ConfigAction.execute( InstantRun-
MainApkResourcesBuilder.kt:129) Build gradle: Build gradle app: Tags: android, gradle,
kotlin, android-gradle.

Q9383
Title: How add TextView to View in kotlin
Body: I have button when click I want to show (View) and inside it textview I did

view but I can’t add to it textView inside it this is what I want and too I want corner
radius for View by code Tags: android, kotlin.

Q2979
Title: Android - How to change draw color of custom View?
Body: I thought my code would change the draw color of my custom view - but it

doesn’t (screen is just black), so how do I do change the draw color of a view in Android?
You have to do it like this: Tags: android, kotlin.

Q6504



83

Title: Android, how to replace initial fragment?
Body: I create this fragment and set initial fragment , if I don’t set this initial frag-

ment, the app will crash. And then I use this function to replace the fragment, this works
fine, every fragment can be replaced by other fragment except , this fragment keep dis-
playing on screen. How can I replace this fragment? Tags: android, android-fragments,
kotlin.

Q6570
Title: How to append 2 strings in Kotlin?
Body: I am trying to concatenate 2 String but not sure how to go about it. this is my

code: and i’m trying to append it with inside the i tried to make it in this way and this
way and it did not work , it only shows me numbers not the text Tags: android, kotlin,
android-context.

Q1159
Title: Android Notification Not Showing On API 26
Body: I recently updated my app to API 26, and notifications are no longer working,

without even changing the code. Why isn’t it working? Was there some change to the
API that I’m not aware of? Tags: android, notifications, kotlin, android-8.0-oreo.

Q3583
Title: Android ViewState using RxJava or kotlin coroutines
Body: I’m trying to learn how to use RxJava in Android, but have run into a dead

end. I have the following DataSource: I want to trigger an update downstream, whenever
I change the value of , but this doesn’t happen. It works when the is initialized, but not
when I’m updating the value. Here’s my ViewModel, from where I update the value: This
is the code from the that does the subsciption: Tags: android, rx-java2, kotlinx.coroutines.

Q2808
Title: How to show single item selected in recyclerview using kotlin
Body: How can we mark single item is selected in using kotlin. When I select an item

and after that click on other item then previously selected item should be dis-selected.Here
is my adapter class in kotlin: Tags: android, kotlin.

Q3839
Title: Retrofit parse result in Kotlin
Body: I have a webservice that takes username and password in a post request and

returns a token (JWT) and a code if http statuscode is 200. If statuscode is 403 then
the code contains the details and token is null. On iOS it is working but now I’m trying
to implement it in Kotlin and Retrofit. What I have created so far: 2 DTOs: (JWT
handling will be next step) A client service: and the code that calls the service: The
request itself is working. It returns a 200 with correct login data and 403 with incorrect.
But the LoginResultDto is empty. How can I populate the result in LoginResultDto?
Tags: android, kotlin, retrofit2.



84

Q5096
Title: How to save captured photos as jpg files on android camera2
Body: current when I click capture button, show camera preview capture image on

Imageview.. but I want to save camera preview capture image in jpg format. in my storage.
How to save my capture image? on ‘/sdcard/DCIM/’ folder. this source show camera
preview capture on ImageView. I want capture photo, save jpg file. how to save capture
image? thanks. Tags: android, kotlin, android-camera2.

Q773
Title: How to make primary key as autoincrement for Room Persistence lib
Body: I am creating a Entity(Room Persistence lib) class Food, where i want to

make as autoincrement. How can i set an autoincrement field? Tags: android, kotlin,
android-room.

Q5412
Title: Dagger2 + Kotlin: lateinit property has not been initialized
Body: I’m trying to inject the ViewModelFactory into my Activity, but it keeps

throwing this same error: lateinit property viewModelFactory has not been initialized. I
can’t find what I may be doing wrong. See the code above from my classes AppCompo-
nent.kt MainModule.kt MainActivity.kt TweetSentimentsApplication.kt Tags: android,
kotlin, dagger-2.

Q324
Title: How can I run a single Android Test using Kotlin?
Body: I am using Kotlin 1.0.3 for Android Development in Unit Testing but when I

try to run a single test it runs all tests of the class. Does anyone know how to avoid that
behaviour? Tags: android, unit-testing, junit, kotlin.

Q3853
Title: Non-null assert is needed even after checking is not null in kotlin
Body: I have this code in Kotlin in android studio: As you can see I check registerDate

is not null, but I have to put non-null assert after to eliminate null error: Is this a bug in
Kotlin or is related to Android Studio? Tags: android, kotlin.

Q216
Title: How can I override a java method, and change the nullability of a parameter?
Body: I’m overriding a method from a Java library, and the parameter for the function

is annotated as . However, when the method is called, the parameter frequently comes in
with a value. When I override the method in Kotlin, it forces me to respect the annotation
and mark the parameter as not nullable. Of course, Kotlin throws an exception at run
time when the parameter comes in with a null value. Is there some way I can override
the method in Kotlin and ignore the annotation? Specifically, I’m using the appcompat
library for Android. The method is in AppCompatActivity.java The override in Kotlin:
Tags: java, android, nullable, kotlin.



85

Q2698
Title: Why do some Java setter methods automatically become Kotlin properties but

some don’t??
Body: e.g. this WebSettings Java class. It has a Java method that turns into a Kotlin

property as below, but there is also that does not turn into a Kotlin property . Tags:
android, properties, kotlin, kotlin-interop.

Q1486
Title: Kotlin: Setting a private Boolean in Java class via a Data class in Kotlin. Why

am I not able to do this?
Body: I have a Java class of the format: And I am overriding this class into a Data

class in Kotlin, which is of the format: When I do this, the name initialization this way
doesn’t give a problem, but I can’t initialize x in this way. The IDE complains that x is
invisible. Why with x and not with name? I created a new variable in the Kotlin class
with the name x with a custom getter and setter and it complains about an accidental
override for the setter (That is understandable.). This means that the the Java setter and
getter is visible in the Data class. So why is the setter not being used for x in the init
block, like it is doing for name? Tags: java, kotlin, kotlin-android-extensions.

Q3215
Title: Kotlin Generics Error in Java
Body: Given the following three kotlin classes: I am unable to compile following lines

in java code: Error says: I am still new to kotlin and this might be something very small
but I can’t seem to figure it out. I will appreciate any help. Tags: java. android, generics,
kotlin, kotlin-generics.

Q6396
Title: How to access static variable of java class in kotlin?
Body: Eg: I have a java class First First.java Second.kt So help me to call the static

variable TAG declared in First.java inside Second.kt kotlin class Tags: java, android,
kotlin.

Q4171
Title: Intent in Kotlin
Body: Why can’t I just write class. instead of writing class.java. Because is a kotlin

class and I am getting an error when I write this, How can I fix it. Tags: java, android,
android-intent, kotlin.

Q6181
Title: How to pass a function as parameter in kotlin - Android
Body: How to pass a function in android using Kotlin . I can able to pass if i know the

function like : I want to pass any function like -> Tags: android, function, parameters,
kotlin.

Q5381



86

Title: What is better approach of callback in Kotlin? Listener vs High-Order function
Body: Please explain a use cases and pros and cons of each approach. Use of interface.

Use of high-order function. Tags: android, kotlin.
Q3432
Title: How to make ‘this’ a reference of Listener instead of the Activity in Kotlin?
Body: I have a situation similar to the following example and when I call it references

the not the . Is there way to make this a reference of the listener? Tags: android, kotlin.
Q1582
Title: Kotlin ‘it’ syntax in the context of Volley
Body: Can someone explain to me how the Kotlin ‘it’ syntax in this snippet of code

works? This code is very hard to read, someone sent it to me to fix my problem and it
works like magic for multiple consecutive requests. I have used Volley before but this code
is very confusing. I believe Kotlin is easier to read than Java but this particular code is
very hard to understand. Tags: android android-volley kotlin

Q2698
Title: Why do some Java setter methods automatically become Kotlin properties but

some don’t?
Body: e.g. this WebSettings Java class. It has a Java method that turns into a Kotlin

property as below, but there is also that does not turn into a Kotlin property . Tags:
android, properties, kotlin, kotlin-interop.

Q1585
Title: How to differentiate between a bound callable member reference and a function

of the same type in kotlin?
Body: When it comes to a method signature or definition, is there any way to dif-

ferentiate and ? That is, to specify that a bound member reference is required and not a
function instance, or vice versa. Here is the signature of the above example: On the same
note, is it possible to differentiate between a constructor reference and a function which
just returns a type? E.g. vs. (without kotlin.reflect, if possible) Tags: java, android, jvm,
kotlin.

Q3111
Title: Kotlin Type mismatch after converted in Android Studio
Body: I have tried to convert the existing the android code to Kotlin code. However, it

showed the following error The code before conversion. The code after conversion. Tags:
android, android-recyclerview, kotlin, android-studio-3.0.

Q8770
Title: Converting Java file to Kotlin now it won’t compile - "Internal compiler error"
Body: I’m working on converting a Java Android project to Kotlin in Android Stu-

dio and I’m getting problems. It worked fine when I had converted one file to Kotlin
with the MainActivity still being in Java but after converting the MainActivity the code



87

no longer compiles. It fails with a Gradle / Kotlin related error and the stack trace
isn’t very useful and doesn’t point to anything in my code. MainActivity.kt source Any
ideas please? Here’s the stack trace: Full build log: <https://paste.pound-python.org/
show/XgPRLyb3JLBdsCZkUFPJ/> Thanks :) Tags: java, android, android-studio, gra-
dle, kotlin.

Q4689
Title: Android unable to build project after updating kotlin runtime to 1.2.31
Body: After updating kotlin runtime to 1.2.31 from 1.2.30 this morning, I was unable

to build the project. Below are the build.gradle in project level. What I did is only changing
the line of the ext.kotlin_version to ‘1.2.31’. The android studio also prompted me to
upgrade the gradle plugin to 4.4, which i did but I don’t know if it’s related to this issue.
And the errors are as below And at the end, it also said Tags: android, gradle, kotlin.

Q4341
Title: After update to Android studio 3.1 i’m facing this erorr Could not find org.

jetbrains.kotlin:kotlin-stdlib-jre8:1.2.0
Body: After updating to Android Studio 3.1, I’m facing this error. Note: I’m using

Java not Kotlin Tags: java, android, android-studio, kotlin, android-gradle.
Q4784
Title: Warning "Kotlin plugin version is not the same as library version" (but it is!)
Body: I have an Android studio project in which I have added a Java library module,

which I call . My three Gradle build files look like this. project/build.gradle core/build.gradle
app/build.gradle The problem I have is that, in , the line is giving me the warning . I have
tried changing it to: But the warning is still there. The build still runs successfully, and I
know I can surpress the warning without any problems and ignore it, but I really want to
know why this is happening and how I can get rid of it. I am using Android Studio 3.0.1.
Does anyone know of a solution to this? Tags: android, android-studio, gradle, kotlin.

Q1002
Title: unable to configure Kotlin
Body: i am unable to configure Kotlin in my android studio. getting error Error:Unable

to find method ‘com.android.build.gradle.internal.variant.BaseVariantData.getOutputs()
Ljava/util/List;’. Tags: android, kotlin.

https://paste.pound-python.org/show/XgPRLyb3JLBdsCZkUFPJ/
https://paste.pound-python.org/show/XgPRLyb3JLBdsCZkUFPJ/

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Codes
	Contents
	Introduction
	Background
	The Kotlin Programming Language
	Kotlin Language Characteristics
	Key Features
	Data Classes
	Destructuring Declarations
	Null Safety
	Companion Objects
	Collections
	Higher-Order Functions and Lambdas
	Extension Functions
	Scope Functions
	Type Checks and Cast

	Kotlin in Android Development
	Android KTX

	Related Work

	Methodology
	Research Questions
	Triangulation Strategy
	StackOverflow Data Analyses
	Acquiring and Pre-processing Data
	Topic Modeling and Visualization

	Basic Qualitative Study
	Sample Selection
	Data Collection
	Data Analysis
	Ethics


	Results
	General Results
	Research Questions
	RQ1 - What are the most common problems faced by Kotlin developers on Android Platform?
	RQ2 - How are Android developers dealing with the Java-Kotlin interoperability?
	RQ3 - How are Android developers dealing with the functional paradigm Kotlin?
	RQ4 - How are Android developers dealing wit the development environment tools available for Kotlin?
	RQ5 - What is the perception of Android developers about Kotlin adoption?


	Discussion
	Overall Assessment
	Literature Enfolding
	Implications
	Threats to Validity

	Conclusions and Future Work
	References
	Pre-processing StackOverflow Data
	Interview Script
	CONSENT FORM FOR RESEARCH PARTICIPATION
	Questions presented in the Results

