
Renato Oliveira dos Santos

LEVERAGING COLLECTION DIVERSITY TO IMPROVE ENERGY
EFFICIENCY

Federal University of Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife
2019

Renato Oliveira dos Santos

LEVERAGING COLLECTION DIVERSITY TO IMPROVE ENERGY
EFFICIENCY

A M.Sc. Dissertation presented to the Center of Informatics
of Federal University of Pernambuco in partial fulfillment
of the requirements for the degree of Master of Science in
Computer Science.

Concentration Area: Software Engineering
Advisor: Fernando José Castor de Lima Filho

Recife
2019

Catalogação na fonte
Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S237l Santos, Renato Oliveira dos
 Leveraging Collection Diversity to Improve Energy Efficiency/

Renato Oliveira dos Santos – 2019.
 67 f.: il., fig., tab.

 Orientador: Fernando José Castor de Lima Filho.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco.

CIn, Ciência da Computação, Recife, 2019.
 Inclui referências e apêndice.

 1. Engenharia de Software. 2. CECOTool. 3. Energy profiling. I.
Lima Filho, Fernando José Castor de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2019-093

Renato Oliveira dos Santos

“​Leveraging Collection Diversity to Improve Energy Efficiency​”​”

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 15/02/2019.

BANCA EXAMINADORA

__
Prof. Dr. ​Kiev Santos da Gama
Centro de Informática / UFPE

Prof. Dr. ​Lincoln Souza Rocha

Departamento de Computação / UFC

Prof. Dr. ​Fernando José Castor de Lima Filho

Centro de Informática / UFPE
(​Orientador)

I dedicate this thesis to all my family, friends and professors who gave me the necessary support
to get here.

ACKNOWLEDGEMENTS

I wish to thank my advisor Fernando José Castor de Lima Filho for his assistance on my
journey during this research, from its beginning to its completion, for being a partner, and for
understading any personal matters that unfortunatelly slowed things down.

I wish to thank the postgraduate student Wellington de Oliveira Junior for helping me
with my research and for allowing me to cowork with him.

I wish to thank Gustavo Henrique Lima Pinto and José Benito Fernandes de Araújo Neto
for allowing us to extend their work and for helping us to ramp up with what has already been
done.

I wish to thank my family who supported me during this journey and for never letting
me turn back.

ABSTRACT

The increase in the use of pocket devices, such as smartphones and tablets, and the growth
of embedded systems and data centers have moved the scientific community towards research
lines involving the area of energy consumption. Many of these studies were initially focused on
hardware, such as CPU and memory, and on operational systems, as means of improving the
energy efficiency. This research, instead of focusing on these infrastructure components, proposes
solutions to reduce the energy consumption of the applications that run on this infrastructure.
In particular, this work proposes a tool called CT+, which statically analyses software systems
that are written in Java and that use collections intensively, and proposes alternative collections
implementations that are more efficient regarding energy consumption. The tool is an extension
of another tool proposed in a previous work, called CECOTool, but it implements a series of
improvements that solve limitations of the original approach. More specifically, depending on
the context of use, it is capable of (i) recommending either collections that are safe for multiple
threads or collections that are not (but that tend to be more efficient), (ii) do recommendations
taking into account two other commonly used collections libraries, the Eclipse Collections and
the Apache Commons Collections, (iii) distinguish operations executed on the beginning, middle
or ending of a sequential structure; (iv) automatically apply the recommendations. Furthermore,
CT+ makes use of points-to analysis to identify objects that are passed as parameters to other
methods, making it possible for the recommendations to take into account the use of the same
collection in different methods. In addition, besides being able to recommend to desktop or
server applications, CT+ is also capable of recommending to mobile applications that target
the Android platform. The CT+ evaluation shows how it was possible to improve the results
of the original study by doing a comparison of the energy reduction on the two originally used
benchmarks, reducing 5.49% of energy consumption against 3.49% on Xalan application and
4.83% against 4.37% on Tomcat. The effectiveness of CT+ in recommending collections for
Android application was evaluated on the context of three different devices. It was possible to
reach a reduction of energy consumption of up to 14.73%.

Keywords: CECOTool. CT+. Java Collections Framework. Energy profiling.

RESUMO

A maior utilização de dispositivos de bolso, como smartphones e tablets, e o crescimento
de sistemas embarcados e de data centers, têm levado a comunidade científica a iniciar linhas
pesquisa na área de consumo de energia. Muitos desses estudos inicialmente tiveram foco em
hardware, como CPU e memória RAM, e em sistemas operacionais, como forma de melhorar
a eficiência energética. Este trabalho, ao invés de focar nestes componentes de infraestrutura,
visa propor soluções para reduzir o consumo de energia das aplicações que rodam sobre essa
infraestrutura. Em particular, propõe uma ferramenta chamada CT+, que analisa estaticamente
sistemas de software escritos na linguagem Java e que usem coleções intensamente e propõe
implementações alternativas de coleções que sejam mais eficientes do ponto de vista energético.
A ferramenta é uma extensão de uma ferramenta proposta em um trabalho anterior, chamada
CECOTool, mas implementa diversas melhorias que atacam limitações da abordagem original.
Mais especificamente, dependendo do contexto de uso, ela é capaz de (i) recomendar tanto
coleções seguras para múltiplas threads quanto coleções que não são seguras (mas que tendem
a ser mais eficientes), (ii) fazer recomendações levando em conta mais duas bibliotecas de
coleções muito usadas na prática, a Eclipse Collections e a Apache Commons Collections, (iii)
distinguir operações realizadas no começo, no meio e no final de uma estrutura sequencial;
(iv) aplicar automaticamente as recomendações realizadas. Além disso, CT+ utiliza-se de
análise points-to para identificar objetos passados como parâmetros de métodos, o que torna
possível que recomendações levem em conta usos de uma mesma coleção em diferentes métodos.
Complementarmente, CT+ é capaz de realizar recomendações tanto para aplicações que rodam
em máquinas desktop ou servidores quanto para aplicações móveis que tenham como alvo a
plataforma Android. A avaliação de CT+ mostra como foi possível superar os resultados do
estudo original fazendo um comparativo da melhoria de consumo de energia obtida nos dois
benchmarks originalmente utilizados, economizando 5.49% de energia contra 3.49% na aplicação
Xalan e 4.83% contra 4.37% no Tomcat. A eficácia de CT+ para recomendar melhorias para
aplicações Android foi avaliada no contexto de três dispositivos diferentes. Foi possível obter
uma redução de consumo de energia de até 14.73%.

Palavras-chave: CECOTool. CT+. Framework de Coleções Java. Perfil de energia.

LIST OF FIGURES

Figure 1 – Example of the usage of jRAPL. Note lines 184 and 195. 21
Figure 2 – Ite function AST, taken from (Moller, 2018, p.11) 24
Figure 3 – Ite function CFG, taken from (Moller, 2018, p.13) 25
Figure 4 – CECOTool flow . 27

Figure 5 – Example of the points-to analysis metadata 33
Figure 6 – Multiple recommendations example. Part of the COMMONS MATH

recommendations for note . 34
Figure 7 – Picture of the dashboard . 36
Figure 8 – CT+ command-line usage help . 38
Figure 9 – Schema comparison between CECOTOOL and CT+. The green boxes

are the improvements of CT+. The white boxes represent the original
tool features. 39

Figure 10 – Order of dominance between the thread-safe Map implementations on
server. Arrows point from the dominating collection to the dominated
one. 51

Figure 11 – Non-thread-safe map operations for note 64
Figure 12 – Non-thread-safe set operations for note 65
Figure 13 – Thread-safe list additions for note 65
Figure 14 – Thread-safe list removals for note . 66
Figure 15 – Thread-safe list traverse for note . 66
Figure 16 – Thread-safe map operations for note 67

LIST OF TABLES

Table 1 – Improvements summary . 29
Table 2 – Code occurrences of Java collections July/2018 30
Table 3 – The selected implementations to be used in the CT+. Three different

sources were used: Java Collections Framework, Eclipse Collections and
Apache Commons Collections . 31

Table 4 – Operations used on each collection. 31
Table 5 – Android Platform version cumulative distribution (July/2018) 37

Table 6 – The devices used in the experiments and their characteristics 41
Table 7 – All the benchmarks used on the experiments 43
Table 8 – Results for the desktop and server environments. Energy results are red

for the original versions and green for the modified versions. 46
Table 9 – Results for the mobile environment. Energy results are red for the original

versions and green for the modified versions. 47
Table 10 – Recommended collections for note and server 53
Table 11 – Recommended collections for S8, J7, and G2 54

LIST OF ACRONYMS

ADB Android Debug Bridge
AOT Ahead-Of-Time
API Application Programming Interface
ART Android Runtime
AST Abstract Syntax Tree
CECOTool Collections Energy Consumption Optimization Tool
CPU Central Processing Unit
DAQ Data Acquisition
GC Garbage Collection
HAL Hardware Abstraction Layer
IDE Integrated Develpment Environment
JCF Java Collections Framework
JDK Java Development Kit
JIT Just-In-Time
jRAPL Java Running Average Power Limit
MSR Machine Specific Register
RAM Random Access Memory
RAPL Running Average Power Limit

SEEDs
Software Engineer’s Energy-optimization Decision Support
framework

WALA T.J. Watson Libraries for Analysis

CONTENTS

1 INTRODUCTION . 13
1.1 MOTIVATION . 13
1.2 STRUCTURE OF THE WORK . 15

2 BACKGROUND . 16
2.1 COLLECTIONS . 16
2.1.1 The Java Collections Framework . 16
2.1.2 The Eclipse Collections . 18
2.1.3 The Apache Commons Collections . 19
2.2 MEASURING ENERGY CONSUMPTION 20
2.2.1 Running Average Power Limiting (RAPL) 20
2.2.2 Java Running Average Power Limit (jRAPL) 20
2.2.3 Android . 21
2.2.3.1 The Android Debug Bridge (ADB) . 22
2.2.3.2 Energy measurement in Android . 22
2.3 STATIC CODE ANALYSIS . 23
2.3.1 General concepts . 23
2.3.2 Points-to Analysis . 24
2.4 T.J. WATSON LIBRARIES FOR ANALYSIS 25
2.5 CECOTOOL . 26

3 THE DEVELOPMENT OF CT+ . 28
3.1 CECOTOOL . 28
3.2 LIMITATIONS OF THE CECOTOOL 28
3.3 IMPROVEMENTS . 29
3.4 THREAD SAFETY . 29
3.5 MORE COLLECTIONS . 30
3.6 POSITIONING OF OPERATIONS ON SEQUENTIAL STRUCTURES . 30
3.7 BETTER ANALYSIS . 32
3.8 MULTIPLE RECOMMENDATIONS FOR THE SAME VARIABLE . . . 34
3.9 CREATION OF A NEW MODULE, THE CT+ TRANSFORMER 34
3.10 COMPATIBILITY CHECK BEFORE RECOMMENDING A COLLECTION 35
3.11 ANDROID COMPATIBILITY . 35
3.12 MAKING THE TOOL IDE-INDEPENDENT 36
3.13 LIMITATIONS OF CT+ . 37
3.14 SUMMARY OF THE DIFFERENCES BETWEEN CECOTOOL AND CT+ 39

4 EVALUATION . 40
4.1 METHODOLOGY . 40
4.2 BENCHMARKS . 42
4.2.1 Benchmarks from the DACAPO BENCHMARK SUITE 43
4.2.2 Benchmarks from F-DROID . 44
4.2.3 Benchmarks from GITHUB . 44
4.2.4 Benchmarks from SOURCE FORGE . 45
4.3 RESULTS . 45
4.3.1 Desktop and server results . 45
4.3.2 Mobile results . 47
4.4 DISCUSSION . 48
4.4.1 Prevalence of the alternative implementations of the JCF 48
4.4.2 Commonly used collections and energy efficiency 48
4.4.3 Different devices matter . 49
4.4.4 Number of recommendations and energy reduction 50
4.4.5 Dominance among collections implementations 50
4.5 THREATS TO VALIDITY . 51

5 RELATED WORKS . 55

6 CONCLUSION . 59

REFERENCES . 61

APPENDIX A – ENERGY PROFILE OF THE STUDIED
COLLECTIONS . 64

131313

1
INTRODUCTION

1.1 MOTIVATION

In the recent years, with the widespread usage of mobile devices, such as: tablets,
smartphones and, more recently, smartwatches; and also with the growth of the number of data
centers, in which companies like Amazon, Google and Microsoft are involved; the demand for
energy-efficient machines has been increasing. For one part, we have users requesting devices
with more battery capacity or requesting systems that are specialized in saving energy, and for
another part we have companies interested in reducing the energy cost of their servers, and
also interested in reducing the CO² that is produced as a result of the resources that are used to
power their data centers. These concerns contribute to the relevance of the subject of energy
consumption, making it the main topic of many recent studies.

Initially, many studies were focused on optimizations of the infrastructure where software
systems run. To name some, Heller et al. (2010) comes up with a solution to dynamically adjust
the switches and ports of a network of servers in a data center in order to save energy, satisfying
the changing traffic loads; Kültürsay et al. (2013) studies the Spin-Transfer Torque Random
Access Memory (RAM) as a replacement for the commonly used Dynamic RAM, as a means of
saving energy; and Ding et al. (2013) analyzes the impact of the wireless signal strength on the
energy consumption of mobile devices, improving the state of the art power model for WiFi and
3G by incorporating the signal strength factor to it.

More recently, software aspects, such as data structures and concurrency constructs
(Lima et al., 2016; Pinto et al., 2016), code refactorings (Sahin et al., 2014) and development
approaches (Oliveira et al., 2016), have emerged as the main subject of some of the new
studies in the area of energy consumption. Lima et al. (2016) benchmarks 10 operations on 23
functional data structures for the Haskell programming language, finding out differences in the
time and energy consumption ranging between 2% and 85%. It also studies and benchmarks the
behavior of two of the Haskell’s data sharing primitives, showing that, in concurrent contexts,
the execution time cannot be relied as proxy for the energy consumption, finding differences in
the energy consumption that can vary not only depending on the operation and on the sharing
primitive, but also due to the context in which they are used, thus concluding that there is no

141414

overall winner. Manotas et al. (2014) creates a framework capable of automatically changing a
set of implementations of a given Application Programming Interface (API) on a given program’s
test suite, benchmarking every change to find the configuration with the most efficient energy
consumption. Sahin et al. (2014) analyses 197 refactored versions of 9 applications, measuring
the impact of the modified versions on the energy consumption. The study finds out that the
changes can either improve or decrease the energy efficiency, and that commonly used predictors
for energy consumption, such as the runtime and the execution count, may not accurately
predict the energy impacts of applying the refactorings. Oliveira et al. (2017) evaluates the
energy footprint of three available development approaches for the ANDROID platform: JAVA,
JAVASCRIPT and C/C++. The study selects 33 public benchmarks, from the ROSETTA CODE

and THE COMPUTER LANGUAGE BENCHMARK GAME (TCLBG) repositories, 22 of them
in two versions, in JAVA and in JAVASCRIPT, and the remaining benchmarks in three versions,
using all the cited languages. It also re-engineers four open source applications, using a hybrid
approach where the modified version would use either JAVA and JAVASCRIPT, or JAVA and
C/C++. The research finds out that the JAVASCRIPT approach consumed less energy than the
JAVA approach in 26 of the benchmarks, but when it comes to the re-engineered apps there is no
overall winner.

These and other studies in the area shed light and help us understand how complex and
challenging is the task of properly measuring and predicting the impacts of software aspects on
the energy consumption of an application. We’ve seen that factors such as the programming
language, the target platform, the API implementation, the development approach, the usage
context, and other software aspects, all play an important role on the energy consumption of an
application. It is, therefore, natural that many developers, although having extensive knowledge
on a language, are still unsure on how to build energy efficient systems (Pinto & Castor, 2017;
Pang et al., 2016). For this reason, many of the studies share a common concern: there is a lack
of tools to support developers in building energy efficient applications.

On this research, we propose a tool called CT+, which analyzes Java code statically,
detecting energy-efficient collections and recommending replacements that are more efficient
regarding the energy consumption. The tool is an extension of another tool, called CECOTool,
developed in the previous work of de Araújo Neto (2016). In this research, we (i) add two
popular sources of collections that implement the Java Collections Framework (JCF): the Eclipse
Collections and the Apache Commons Collections; (ii) we include collections that are not safe
for concurrent access, (iii) we benchmark more operations, distinguishing the different positions
where an element can be removed, added or retrieved, in sequential collections, (iv) we extend the
tool to also recommend for Android applications, (v) we improve the static analysis by making
use of points-to analysis and finally (vi) we automate the process of applying recommendations.
With these improvements we intend to answer two research questions (RQs):

� RQ1: Can CT+ reduce the energy consumption further when compared to the
original tool?

151515

� RQ2: Are recommendations device-independent?

We’ll show how CT+ was able to reduce the energy consumption further when compared
to CECOTOOL (de Araújo Neto, 2016). We reuse one of the environments used on the original
study and also a low-end desktop environment close to the one used on the original study
to attempt a fair comparison. We also show how CT+ succeeded in reducing the energy
consumption of Android applications, being able to achieve up to 14.73% of reduction in one of
the mobile benchmarks.

1.2 STRUCTURE OF THE WORK

In Chapter 2, we introduce the JCF collections and present some of the collections of the
two other sources that also implement the JCF. We present the approach that led to the creation
of Collections Energy Consumption Optimization Tool (CECOTool) and we introduce the static
code analysis concepts that are needed to understand CT+.

In Chapter 3, we start by presenting the limitations of the original tool. We then detail the
improvements and new features that together comprehend CT+. Finally, we present a schema
with an overview of everything that CT+ has in comparison with CECOTOOL.

In Chapter 4, we explain our methodology, introduce the benchmarks we used on our
experiments and which precautions we took to prevent noises on the experiments. We then show
and discuss our results.

In the remaining chapters, 5 and 6, we present relevant related works and conclude this
study.

161616

2
BACKGROUND

In this chapter we introduce the main concepts that are needed to understand this study.
We start by presenting the standard JAVA collections and some of the collections of the APACHE

COMMONS COLLECTIONS and the ECLIPSE COLLECTIONS; we talk about energy measurement
in general and in particular for mobile devices; we present the static code analysis concepts that
are needed to understand CT+; and finally we present the approach that led to the creation of
CECOTOOL, from which CT+ was based off;

2.1 COLLECTIONS

In this section, we introduce the JAVA collections API and present some of the its general
purpose collections. We explain the three categories in which each of these collections are
included and we also introduce two other libraries, the ECLIPSE COLLECTIONS and the APACHE

COMMONS COLLECTIONS, along with some of the implementations that we are going to
consider in this research.

2.1.1 The Java Collections Framework

The JCF is the set of standard JAVA collections implementations and interfaces. It has
three main categories of collections that are exposed in the form of API: Sets, where elements
are stored without order and without repetition; Maps, in which elements are stored based on
key-value pairs and hashing, and keys are unique; Lists, where elements are stored sequentially
and can be accessed through indexes.

For each of these categories, the JCF provides different implementations that serve for
different purposes. For example, there is ArrayList, which stores data sequentially on the
memory, just as a regular array does. And there is LinkedList, which, as the name suggests,
stores the data the same way a linked list data structure does.

The JCF also includes collections that are safe for threads, commonly called synchro-
nized collections, meaning that they can be shared by multiple threads and be free from syn-
chronization problems. Some examples are: Vector, ConcurrentHashMap and Con-

171717

currentSkipListSet. Additionally, the JCF also has a functionality to wrap any col-
lection with a synchronized construct, making it thread-safe. It is accessible through the
java.util.Collections class, invoking the methods: synchronizedList, syn-
chronizedMap and synchronizedSet.

There are many studies exploring the performance and the bottlenecks of the JCF. For
example, Costa et al. (2017) finds out, in a comparison between the JCF and six other libraries
with alternative implementations of the JCF API, that any List alternative implementation has
better performance than LinkedList, they also discover that two of the studied libraries have
Set implementations with better performance than HashSet and that primitive collections can
be faster than ArrayList up to four times. Hasan et al. (2016) compares the JCF with the
TROVE1 and the APACHE COMMONS COLLECTIONS libraries and finds out there is always an
alternative implementation that consumes less energy than any JCF collection in at least one
operation. Some of the JCF collections included in this study are the following:

ArrayList. It employs an internal array to store its data, providing constant time on
operations such as: get, set and isEmpty. It grows as elements are inserted, but it also
exposes a constructor and a method, ensureCapacity, to give developers the ability to
allocate space for new elements.

LinkedList has a linked list as its internal data structure. It has the advantage of not
needing to shift elements when new values are not added at the end, but it has the disadvantage
of taking O(n) time for accesses.

Vector is similar to ArrayList in the sense that every element can be accessed
in constant time through an index, but it follows a different strategy when it comes to space.
Besides growing, it can also shrink whenever elements are removed. The growth strategy is ruled
by two parameters, capacity and capacityIncrement, that can be specified through its
constructor. The user can set its capacityIncrement to dictate by how much it will grow
when necessary. Also, it is a thread-safe collection.

CopyOnWriteArrayList has an ArrayList internally and it is thread-safe, but
whenever a changing operation occurs (e.g.: removal or addition), it clones itself with the applied
change. This strategy, according to its documentation, can be quite expensive. However, this
policy makes it possible to avoid the use of synchronization when reading and traversing. An
iteration, or a retrieval operation, will act on a list whose state is preserved, as any change that
occurs happens in a copy of the original list.

HashMap is the most used general purpose Map implementation. It uses a hash table
base internally and, differently from its synchronized counterpart, Hashtable, it accepts
null values and null keys. It provides constant time for the retrievals and additions, given the
internal hashtable is properly dispersed. Its traversal time is proportional to its capacity. It lets
the developer define two important parameters on its constructor: the initial capacity and the
load factor. The initial capacity is used to allocate a predefined amount of space initially. The

1https://bitbucket.org/trove4j/trove/src

181818

load factor is a float number between 0 and 1 that dictates a threshold for growing the table.
Whenever the number of added entries is equal to the load factor multiplied by the capacity, the
internal hash table doubles in size and is then rebuilt.

LinkedHashMap. By default, it stores elements in the order they were inserted, and
this order is to be expected when iterating over it. It uses a doubly-linked list internally for the
inserted elements, hence the name. It also provides a third parameter in its constructor, besides
the initial capacity and load factor, which gives the possibility of defining a different ordering for
the elements. By default it is the insertion order, the other option is to follow the last recently
used order.

Hashtable is a thread-safe version of HashMap. Its synchronization mechanism
works by locking the whole table when an operation occurs. This makes it very inefficient when
it is shared across a high number of threads.

ConcurrentHashMap is also a synchronized collection that works similar to HashMap,
but it has the advantage of not locking the whole table when a thread invokes operations on it.
It locks just a portion of its internal table, making the other parts of the table still available for
other threads. Thus, it can be thought of as an improved version of Hashtable.

2.1.2 The Eclipse Collections

The ECLIPSE COLLECTIONS 2 is a set of alternative implementations of the JCF. It
was created and originally maintained by the Goldman Sachs company to attend their needs. It
started off as a private library, in 2004, but it was then published on GitHub in 2012. Its set of
collections comes with improvements ranging from performance to memory footprint, and also
includes features that are not present in the standard JCF, such as collections for primitive types,
bidirectional maps, composite collections, among others.

For this research, we tried to select general purpose collections, staying close to the func-
tionalities provided and most commonly used from the JCF. The collections are the following:

FastList is designed to be a replacement for the ArrayList class from the JCF, but
without support for the ConcurrentModificationException. It provides direct access
to its internal array of elements, something that is not possible when sub-classing ArrayList.
When an instance of FastList is initialized with zero capacity, its internal array points to a
shared static array of size zero, making it memory-efficient on initialization. It only initializes its
own instance of an array when at least one element is inserted.

UnifiedMap is a map implementation that employs an array internally and that does
not use hashes. Alternate slots of this internal array serve as the key-value pair. Its creators say
this configuration is more cache friendly because consecutive memory addresses are cheaper to
access than hash mapped indexes. Since key and value might have different types, we conducted
an examination on its source code to find out how this approach was implemented. We discovered

2https://www.eclipse.org/collections/

191919

that it employs an internal array of type Object, making it possible to store objects of different
types.

ConcurrentHashMap, as the name suggests, is a general purpose synchronized hash
map. Its documentation does not have a description of its features and in which points it is
different from the ConcurrentHashMap from the JCF. However, an examination of its source
code revealed that it uses an AtomicReferenceArray to store its elements, whilst the JCF
implementation uses a private implementation of the Set interface for its keys, and a private
implementation of the Collection interface for its values.

UnifiedSet is an implementation of the Set interface that also provides methods
required by an alternate collection interface, called SMALLTALK COLLECTION PROTOCOL.

2.1.3 The Apache Commons Collections

The APACHE COMMONS COLLECTIONS is another alternative implementation of the
JCF. Differently from the ECLIPSE COLLECTIONS, it was open source since its beginning. But
its purpose is similar: it provides more data structures implementations, complementing the JCF
already offers. Among its implementations, we chose:

TreeList is an implementation of the List interface that is optimized for insertions
and removals anywhere on the list. Its documentation says it is designed to ensure that all
insertions and removals have complexity O(logn).

NodeCachingLinkedList is an implementation of the List interface that stores a
cache of nodes when elements are added, potentially avoiding memory allocation and garbage
collection on lists that receive multiple additions and removals. Its documentation states that
it is more suitable for long-lived lists where both additions and removals occurs, and that its
performance might be worse if this is not the case.

CursorableLinkedList is a list implementation that was created with the goal
of providing a collection which allows the underlying list and the list iterator to be modified
at the same time. To this end, it exposes the methods listIterator and cursor. The
documentation makes it clear that the regular iterator method from the List interface
shouldn’t be used.

HashedMap is a general purpose map that serves as an alternative to HashMap. The
original motivation behind this map was to provide the functionality of the class MapIterator
that did not exist on Java Development Kit (JDK)1.7.

StaticBucketMap is a thread-safe implementation of the Map interface, designed
for intense concurrent modifications. Its documentation states that it provides efficient retrievals,
removals and additions, given the number of elements does not exceed the number of buckets
- or slots - on the map. As the name suggests, the number of slots for this map is fixed at the
time of the creation. Therefore, it is up to the developer the job of allocating enough buckets
for the operations that are going to be necessary. Also, this map contains a monitor for each

202020

allocated bucket, meaning that concurrent accesses do not lock the entire entity, only a bucket.
Because of this, it has the downside of not behaving as expected when multiple threads try to use
the methods putAll or removeAll. The operation can be entirely canceled, leaving the map
unchanged, or the result might be a mix of both operations.

2.2 MEASURING ENERGY CONSUMPTION

In this section we introduce the tools we used to measure the energy consumption of the
benchmarks of this study. We start by presenting Running Average Power Limit (RAPL) and the
jRAPL, and later the ANDROID POWER PROFILER.

2.2.1 Running Average Power Limiting (RAPL)

The RAPL is a mechanism capable of measuring and controlling the power consumption
of the CPU, RAM and of other components, such as the level-three cache and the GPU. It was
created by Intel and was presented by David et al. (2010). Modern Intel Central Processing
Units (CPUs) come equipped with the RAPL interface, making Machine Specific Registers
(MSRs) available for the developers. From these registers, developers can retrieve the energy
consumption information. The RAPL interface is, unfortunately as for now, only available for
LINUX platforms and MAC, through a kernel driver, and is only available on processors with
architecture greater than or equal to Sandy/Ivy Bridge. As we use it for our measurements, the
benchmarks for desktop platforms on this research are always ran on Linux environments. RAPL
gives us the energy consumption information in four levels:

� Package: the total energy consumption on the CPU socket

� PP0: the total energy consumption of the CPU cores

� PP1: the total energy consumption of the components around the core (L3 cache,
GPU, connectors)

� DRAM: the total energy consumption of the RAM

2.2.2 jRAPL

The jRAPL open-source JAVA library serves as an interface for gathering data from the
machine-specific registers that come with RAPL compatible processors. It was developed by Liu
et al. (2015) and eases the process of communicating with the RAPL interface. By employing it,
JAVA programmers can easily measure the energy consumption of blocks, or even lines, of codes,
without the need for any peripheral measurement device.

The communication with RAPL is intermediated by a JAVA class with native method
calls. The methods that are called reside in a compiled .so file, which in turn have access to the

212121

Figure 1: Example of the usage of jRAPL. Note lines 184 and 195.

MSRs. Lines 184 and 195 of the code on Figure 1 show how energy information can be retrieved
using jRAPL. The call to EnergyCheckUtils.getEnergyStats returns a double array
with the energy consumption information, as explained in Section 2.2.1.

2.2.3 Android

The ANDROID platform is one of the most popular mobile device platform on the market.
It had 85% of the market share of the smartphones’ operating system, in the 1st quarter of 2018,
according to Statista3. Developers can write applications for it using JAVA and alternatively
using JAVASCRIPT, C/C++ or KOTLIN.

Its operating system is open-source and Linux-based, composed of a stack containing Java
APIs, C/C++ libraries, the Android Runtime (ART), system apps, a Linux kernel, a Hardware
Abstraction Layer (HAL), used for the peripherals such as camera, and a power management
module.

Being based on the Linux kernel makes it easier for manufactures to write drivers for it.
The HAL provides a set of libraries through which JAVA applications can communicate with the
device peripherals. These libraries are loaded on-demand, whenever an app makes a call to one
of the libraries from the HAL.

The ART, in its current state, runs each app separately on its own process, within its
own instance of the ART. The type of executable the runtime runs is called DEX. It is a type
of bytecode specially designed to have low memory footprint. It features Ahead-Of-Time
(AOT) and Just-In-Time (JIT) compiling, optimized Garbage Collection (GC) and debugging
capabilities.

All the features available in Android for the developers are exposed through the Java
API framework. Some features include: the resource manager, which makes it possible for the
developer to access graphics, strings and layout files; the notification manager, making it possible

3https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

222222

for the user to display alerts; the activity manager, allowing the developer to configure the life-
cycle of an app, among others. Some C/C++ libraries are also accessible for the developer through
the Java APIs. One example is the graphics library, accessible from the android.opengl
package.

Finally, system apps are also part of the stack. They are composed of support applications
that come with the device from the factory. They include messaging apps, calendars, alarms,
browsers, contact lists, and more. They also provide interfaces on which the developer can rely
to build their apps.

2.2.3.1 The ADB

The ADB4 is a command-line tool that is bundled within the Android SDK Platform
tools. It makes it possible for developers to issue commands through a Unix shell to Android
devices connected to a host machine. It is composed of three parts: a client, a server and a
daemon. The client runs on the developer’s machine. Whenever a command is issued, it searches
for an active server and, if not found, a new server is instantiated. The server then searches for
any device connected to the machine and establishes connections with them. The daemon is a
background process that runs on the device and executes the commands that are issued to it.

From the adb, the user can query for connected devices, dump logs or battery usage
information, open ports on the devices so they can be connected through Wi-Fi, among other
things. In this research, we use the ANDROID POWER PROFILER (explained in Section 2.2.3.2),
via ADB to gather the battery usage information, avoiding the burden of having to connect each
experimental device to a Data Acquisition (DAQ).

2.2.3.2 Energy measurement in Android

In order to measure the energy consumption of ANDROID devices, researchers have been
using two main approaches. One of them is to wire the device to a data acquisition system (DAQ),
and the other approach is to use the ANDROID POWER PROFILER, which will be introduced
below.

Using a hardware-based approach for measurement can be expensive and tiring, since
each device has to be opened so we can wire them to a DAQ. Some devices can also be hard to
wire. In particular, many medium and high-end contemporary smartphones do not allow their
batteries to be removed in a straightforward manner. Thus trying to wire these devices can be
time consuming and, given the number of devices that will be subjected to an experiment, it can
be unpractical.

The ANDROID POWER PROFILER is accessible through the ADB using the command-
line adb shell dumpsys batterystats. This command will output the battery usage

4https://developer.android.com/studio/command-line/adb

232323

information since the last time the device was charged, including voltage level, overall and per-
app energy consumption in milli-amper-hour (mAh) units, foreground time of each app, among
others. The use of this profiler for energy measurements has the advantage of not requiring any
wiring. The only downside to which researches naturally pay attention is that it may be not as
accurate as hardware-based energy measurement tools. On this matter, (Nucci et al., 2017)
compares the two approaches, analyzing 54 ANDROID apps, showing that the margin of error
between hardware and software based measurements is less than 5%. Thus, using the ANDROID

POWER PROFILER presents calculated risks to the research.

2.3 STATIC CODE ANALYSIS

In this section we present the general concepts of static code analysis and we also go
in-depth into the fundamentals needed to understand the improvements that were done in this
research.

2.3.1 General concepts

Static code analysis is a type of software analysis that acts upon the software’s source
code, which can be in the form of compiled code or not. It is the opposite of dynamic analysis,
where a running application is analysed. It has been used since the 70’s to optimize compil-
ers (Moller, 2018). More recently, it has been used to solve a range of other problems, such as:
finding bugs in applications (Bessey et al., 2010), security checks (Larochelle & Evans, 2002)
and malware detection (Schmidt et al., 2009).

Usually, only a subset of the static code analysis concepts is used depending on the
objective of the developer. For this reason, whenever a concept is introduced, the problem that
the given concept tries to solve is mentioned along with it. Here, we focus on the main concepts
that help us understand our tool. We first talk about the two data structures that are used to
represent source code’s statements:

Listing 2.1: ite function
1 p u b l i c s t a t i c i n t i t e (i n t n) {
2 i n t f ;
3 f = 1 ;
4 w h i l e (n >0) {
5 f = f *n ;
6 n = n−1;
7 }
8 r e t u r n f ;
9 }

Abstract syntax trees (ASTs), which is also used by compilers, is a form representation
where the order of execution of the statements does not matter. In this representation, the

242424

statements are child nodes of functions. It is useful when the analysis does not need to take
into account the program flow (Moller, 2018). For instance, given the Listing 2.1, its AST is
represented on Figure 2. This is the representation used on points-to analysis, which will be
explained in Section 2.3.2.

Figure 2: Ite function AST, taken from (Moller, 2018, p.11)

Control flow graphs (CFGs) are used in analysis where the order of execution of
the statements matter. This representation is a directed graph where the nodes correspond to
statements and the edges correspond to possible flows. The CFG representation of the Listing
2.1 is shown in Figure 3.

Regarding the analysis that use these structures, we start by describing the INTERPROCE-
DURAL ANALYSIS, which is an analysis that uses a CFG and, therefore, takes into account the
order of execution of a program’s statements. It receives this name because it is able to consider
multiple methods in its analysis. It works by first constructing the CFGs for all the individual
methods of a program; then it treats function calls by using two nodes, a call node with an edge
going from the original method to the callee, and an after-call node pointing back to the caller
where the execution must resume. This analysis can still vary regarding its sensitivity to context.
We say that the interprocedural analysis is context-insensitive when it does not distinguish
between different calls to the same function. The counterpart, when it does distinguishes the
different calls to a method, is described in Moller (2018). But it is often not used on a whole
program, due to being expensive, it is usually used together with heuristics to consider only parts
of a program.

2.3.2 Points-to Analysis

Points-to analysis, or pointer analysis, is described in Moller (2018). It is a concept of
static program analysis that aims to find to which objects the pointers in a program point. It
makes use of an strategy, called allocation-site abstraction, to deal with the fact that there is no

252525

Figure 3: Ite function CFG, taken from (Moller, 2018, p.13)

heap information available without running a program. This concept creates, for each allocation
instruction found in code, an unique index to an abstract memory location. In this manner, every
pointer has, as a target, an abstract memory location.

The analysis result can vary regarding its sensitiveness to flow or context. The flow-
insensitive pointer analysis is often used due to being computationally cheaper than its sensitive
counterpart (Moller, 2018˙ p.107). The result of this analysis is, for each pointer, a set of possible
variables to which the pointers may point during the program execution. The flow-sensitive
analysis outputs a different set for each program location where a pointer assignment occurs.
The context sensitiveness is related to taking into account the method, and its call origin, when
defining the points-to set of a pointer. For example, if a pointer is passed to the same method
as a parameter in two different locations, a context sensitive analysis would have two different
points-to sets for that pointer on that method.

2.4 T.J. WATSON LIBRARIES FOR ANALYSIS

The T.J. Watson Libraries for Analysis (WALA) library is a static analysis library that
is able to read Java bytecode, Dalvik bytecode and JavaScript. Its set of features include:
construction of class hierarchies, interprocedural analysis, context-sensitive analysis, points-to
analysis, call graph construction, among others.

262626

In this research, we make use of points-to analysis in CT+ to consider the different
methods in which a collection is being used and only recommend if the recommendation is the
same for all of these methods.

Regarding this topic, WALA’s built-in points-to analysis is flow-insensitive, and the
context-sensitiveness can be controlled through 2 entities, the HeapModel and the ContextS-
elector. The HeapModel dictates how instantiated objects will be disambiguated. For
example, if String objects do not matter in an analysis, the HeapModel can be adjusted so
that all the String allocations will point to the same allocation site. The ContextSelector
dictates the context rules that will decide if a method will be cloned as a result of different calls.
For example, one way to decide if a method will be cloned is by using the call-string approach
(Moller, 2018, p.82), which will produce different method contexts for each different point in
code that calls that method. This approach also defines a constraint, which is the maximum level
of methods in the call stack allowed in the analysis.

WALA comes with 3 default analysis policies, which define different context-sensitiveness.
The first policy is the most cheaper, called ZeroCFA, which creates just one allocation site
for each object type in the code, and uses a single context for each method, meaning it is
context-insensitive. The second policy is called ZeroOneCFA, which creates one allocation site
per allocation found in code. But also creates only a single global context for each method. And
finally, there is the ZeroOneContainerCFA which offers object-sensitivity for collection
objects, meaning that every position in a collection gets its own allocation site, but this makes
the analysis more expensive.

This research uses the ZeroOneCFA, which is sufficient for our needs. With it, we aim
to gather the points-to set for collection type variables, and from that we get all the other pointers
pointing to the same variable, called aliases, giving all the possible variables that may point to a
same collection in memory.

2.5 CECOTOOL

The work of de Araújo Neto (2016) proposes an approach to recommend changes on pre-
defined interchangeable software abstractions, such as implementations of an interface, classes,
data structures - among others - according to the energy profile of each possible abstraction
implementation. This approach is depicted in Figure 4.

Phase I: Creation of energy profiles, which is the part of the tool in charge of measuring
the different energy consumptions of each abstraction implementation. It follows strict rules
elucidated by Georges et al. (2007), to avoid garbage collection and JIT compiler influence. The
output of the profiler is also directed to the recommender, which will use it on its formula to
decide which abstraction implementation is the best for each identified hotspot.

Phase II: Usage analysis, which receives as input the compiled code of the target
application. It searches the code for energy variation hotspots, which are places that can easily

272727

Figure 4: CECOTool flow

Profiles
Data

Usage
Data

Recommendations
Applications Phase III:

Recommendation

Phase I: Creation of
Energy Profiles

Phase II: Usage Analysis

Alternative
Impl. of Prog.

Constructs

be changed to improve the energy consumption of the target application. On its analysis, it takes
into account the nesting loop level, if any, of an operation, and also carries out this information
interprocedurally. The output of the analyzer is a metadata file that will be later used by the
recommender, with indications of where and how intense an abstraction operation is being used.

Phase III: Recommendation, which is the last end of the approach. It uses the data
from the analyzer and the profiler to estimate the different energy consumptions on each different
energy variation hotspot. For this, de Araújo Neto (2016) uses a formula that takes into account
the number of occurrences and the nesting level of an operation: totalFactor = ∑ pi × ui +

∑ pp ×up +∑ pr ×ur

In which px means the consumption of a specified operation (x is i for insertion, p for traversal
and r for removal).

CECOTool is an instantiation of the proposed approach, targeting thread-safe JAVA

collections from the JCF. In this instantiation, de Araújo Neto (2016) was able to reduce the
energy consumption of two real-world highly concurrent applications: XALAN, reducing the
energy consumption by up to 3.49% and TOMCAT by up to 4.37%.

282828

3
THE DEVELOPMENT OF CT+

In this chapter, we explain how we built CT+. We start by giving an explanation about
the original solution and then discuss the limitations that led us to extend it, building a new tool
capable of covering those limitations and that also includes features from other related studies.
In Section 3.14 we build a detailed schema of the original tool and of CT+, highlighting the
differences between them. In Section 3.13 we talk about the limitations of CT+.

3.1 CECOTOOL

The original tool was developed with the intent of instantiating the recommendation
approach explained in Section 2.5. Thread-safe collections from the JCF was one possible choice
of many other kinds of abstractions to which the approach could be applied. The reasons for
choosing collections came from the importance they have on applications. They are extensively
used when writing software and are usually focus of performance improvements (Xu, 2013;
Costa & Andrzejak, 2018). Choosing the wrong collection for a task may even cause applications
to consume too much memory or CPU (Costa et al., 2017). CECOTOOL achieves good results
by reducing the energy consumption of two real-world multi-threaded applications by up to
4.37%. Therefore, it proves that the proposed approach works.

3.2 LIMITATIONS OF THE CECOTOOL

The tool, as originally proposed, targets only thread-safe collections from the JCF. Also,
it targets only desktop environments and profiles 9 operations, three operations from each of the
three JCF interfaces. Additionally, the positioning of the operations on sequential collections
are not distinguished, which we know to have impact on the energy consumption (Hasan et al.,
2016).

In this research, we intend to focus on recommending collections to reduce the energy
consumption of applications. We take, for this end, CECOTOOL as a starting point. We add
more collections to the tool, including the non-thread-safe collections of the JCF, and we also
add collections from two other sources that implement the JCF; we distinguish and profile the

292929

different positions of the operations on sequential collections; we improve the static analysis of
the tool; and we also make it compatible with ANDROID devices, giving us a new platform to
explore. We put together these and other improvements, building a new tool which we called
CT+.

3.3 IMPROVEMENTS

In this section we explain and detail all the improvements that together comprehend CT+.
We start by summarizing them on Table 1. We then proceed to explain each of them individually.

Table 1: Improvements summary

Improvement Description

Thread safety JCF non-thread safe collections were included

More collections
Addition of the ECLIPSE COLLECTIONS
and the APACHE COMMONS COLLECTIONS

Positioning of operations
on sequential collections

We profile and consider the different positions where
additions, removals and accesses happen on a list.
We also check if they are being traversed sequentially
or not

Better analysis

We use points-to analysis to find recommendations
that attend all the methods in which a collection is used
and we traverse every class to search for which
collection instance is being assigned to a variable

Multiple recommendations for the same variable
To give the user more options, we output not only the best
recommendation, but multiple energy-ordered options that
are better than the original collection

Recommendations are automatically applied Creation of a new module, the CT+ Transformer

Compatibility check before recommending a collection
We check if the behavior and the constructor being
used on the original collection are compatible
with the recommended collection

Android compatibility We designed CT+ to be compatible with Android devices

The tool became IDE-independent
We made the tool IDE-independent by creating a
command-line interface for it

3.4 THREAD SAFETY

The original tool by de Araújo Neto (2016) was focused only on thread-safe collections.
A quick code search on GitHub1 for the JAVA language, show us that non-thread-safe collections
are more present on JAVA projects than thread-safe collections. The Table 2, with GitHub data
from July/2018, gives us an overview. Also, previous researches about the JCF include the
non-thread safe collections (Costa et al., 2017; Hasan et al., 2016). Besides being more popular,

1https://github.com/search

303030

non-thread-safe collections also tend to be more efficient, since primitives to implement both
pessimistic and optimistic concurrency are expensive from a performance standpoint.

Table 2: Code occurrences of Java collections July/2018

Collection Is it thread safe? Amount of ocurrences
java.util.ArrayList No 28,602,937
java.util.HashMap No 14,518,657
java.util.HashSet No 5,597,900
java.util.Vector Yes 4,192,029
java.util.LinkedList No 3,331,905
java.util.Hashtable Yes 1,768,504
java.util.ConcurrentHashMap Yes 920,201

To correctly recommend between thread-safe and non-thread-safe collections, we con-
sider the thread-safety of the original collection instance being assigned to a variable. The
recommender was modified to ensure that thread-safe collections are only recommended when
the original implementation is also thread-safe.

3.5 MORE COLLECTIONS

Another improvement of CT+, in comparison to the original CECOTOOL, is the use
of sources of collections that are not part of the JCF. Hasan et al. (2016) analyzes the APACHE

COMMONS COLLECTIONS and the TROVE library, Costa et al. (2017) analyzes a total of
5 other alternative implementations of the JCF, showing that there is always an alternative
implementation that outperforms the standard Java collections, either in performance or in
memory footprint. Thus, we added the ECLIPSE COLLECTIONS and the APACHE COMMONS

COLLECTIONS to CT+, the reason being their popularity. By searching for their root pack-
ages - org.eclipse.collections and org.apache.commons.collections - on
GITHUB, we found 466,394 and 1,022,778 code occurrences in Java projects, in January of
2019. A summary of all the collections included in this study, is shown on Table 3.

3.6 POSITIONING OF OPERATIONS ON SEQUENTIAL STRUCTURES

As evidenced by Hasan et al. (2016), taking the position of an operation on a sequential
collection into account is important, as it can have strong impact on the performance and on
the energy consumption of the operation. Hasan et al. (2016), for instance, finds out that
ArrayList consumes less energy than LinkedList for elements added in the middle of the
list, but LinkedList is the winner when it comes to insertions in the beginning. In our study,
we corroborate these results and find more cases in which this happens. We extend CECOTool to
distinguish between insertion and removals on the beginning, on the middle and on the end of a
list.

313131

Table 3: The selected implementations to be used in the CT+. Three different sources were used:
Java Collections Framework, Eclipse Collections and Apache Commons Collections

CollectionThread
Safety Implementations

List
Safe Vector, CopyOnWriteArrayList, SynchronizedArrayList, SynchronizedList, and

SyncronizedFastList.

Unsafe ArrayList, LinkedList, FastList, CursorableLinkedList, NodeCachingLinkedList, and
TreeList.

Map
Safe

Hashtable, ConcurrentHashMap, ConcurrentSkipListMap, SynchronizedHashMap,
SynchronizedLinkedHashMap, SynchronizedTreeMap, SynchronizedWeakHashMap,
ConcurrentHashMapEC, SynchronizedUnifiedMap and StaticBucketMap.

Unsafe HashMap, LinkedHashMap, TreeMap, WeakHashMap, UnifiedMap, HashedMap,

Set
Safe

ConcurrentSkipListSet, CopyWriteArraySet, SetConcurrentHashMap,
SynchronizedHashSet, SynchronizedLinkedHashSet, SynchronizedTreeSet,
SynchornizedTreeSortedSet and SyncronizedUnifiedSet.

Unsafe HashSet, LinkedHashSet, TreeSet, TreeSortedSet, and UnifiedSet.

The heuristic we used for this was to consider insertions or removals on the index zero as
operations in the beginning. This heuristic works when a constant value is used as index, as we
cannot infer with certainty when a variable is evaluated to zero statically; or when the method
addFirst() of LinkedList is used. For operations in the middle, we consider that this is
the case whenever a variable is used as index. We could have a false positive in this case, but due
to the existence of operations that are used to explicitly add at the end or at the beginning, and
due to the common use of variables as loop counters, the chances of a false positive are low. And
as for operations at the end, we consider that this is the case when the method add(), which
adds at the end, is used.

Table 4: Operations used on each collection.

Collection Operation Types

List

insertions default, start, middle, and end

iterations random, iterator, and loop

removals default, start, middle, end, and object

Map

insertions default

iteration iterator and loop

removal default

Set

insertions default

iteration loop

removal default

We also distinguish between sequential or random access on a list. This is also inspired
by Hasan et al. (2016) findings, that notices there is a difference on the energy consumption
while traversing a list sequentially or randomly. The heuristic we used for this was to consider a

323232

list access as sequential whenever a variable being used as index is also being used on the tail of
a loop in which the list resides, otherwise the access will be considered random. We carefully
adjusted the profiler to not take into account the random number generation when calculating
the energy consumption of accessing a list randomly. A summary of all operations we take into
account is shown in Table 4.

3.7 BETTER ANALYSIS

During our initial experiments we were confronted with a problem when running some
of the benchmarks. The energy consumption after some recommendations, along with the
application performance, sometimes increased significantly. We found out that some of the
recommendations made by CECOTOOL, when a collection is passed from a method A to another
method B, were different for each method. This is a problem for two reasons: (i) method B
does not know the type of the collection since the type of the parameter is often of interface
type (e.g. List); and (ii) the recommendations for method B do not account for uses of the
collection made by method A and these uses could produce different recommendations. The
case is illustrated below.

1 c l a s s A {
2 p u b l i c s t a t i c methodA () {
3 / / L i n k e d L i s t would be recommended h e r e
4 / / due t o a d d i t i o n i n t h e b e g i n n i n g
5 L i s t < I n t e g e r > l i s t = new A r r a y L i s t < I n t e g e r > () ;
6 f o r (i n t i = 0 ; i < 1000 ; i ++) {
7 l i s t . add (0 , i) ;
8 }
9 B . methodB (l i s t) ;

10 }
11 }
12 c l a s s B{
13 p u b l i c s t a t i c methodB (L i s t < I n t e g e r > l i s t) {
14 / / A r r a y L i s t would be recommended h e r e
15 / / due t o t r a v e r s a l u s i n g i n d e x (mos t l y a c c e s s i n t h e midd le)
16 f o r (i n t i = 0 ; i < 1000 ; i ++) {
17 l i s t . g e t (i) ;
18 }
19 }
20 }

Cases like this one occurred in our experiments. We dealt with them by considering
the different recommendations for the methods to which a collection is being passed, and only
making a general recommendation applying to all these methods, if all the methods, when
analyzed in isolation would receive the same recommendation. In this manner, we mitigate
the risk of doing a recommendation that can have negative effects on other scopes. To do

333333

this, we recurred to points-to-analysis, using the WALA library, which is already employed on
CECOTool.

The analysis used in this case was flow-insensitive, which means that instead of having
different points-to sets for different parts of the program, the set will contain all possible pointed
variables, and the HeapModel we used was able to distinguish different memory allocations.
This is enough for us, as we only need to distinguish pointers that may point to the same variable.

Finally, with these parameters configured, we extracted all the pointers pointing to each
member, static or local variable in which the type of the variable is List, Map or Set. CT+
outputs this new metadata on a json file in the end of the analysis. The recommender receives
this file as input and, before recommending, checks if, for a given variable and its pointers, the
recommendation in all the possible contexts are the same. The execution of the points-to analysis
and the use of its file by the recommender were implemented as optional steps, as this analysis
can be time consuming.

Figure 5: Example of the points-to analysis metadata

The points-to analysis output is a bidirectional graph where the nodes are variables of
collection type along with the class and method where they are located, and the edges are pointers
to other variables which may receive the same object instance as that variable. This graph is
depicted on Figure 5. Whenever the recommender encounters a variable that is a node with at
least one edge on that graph, it executes a depth-first search traversal on all connected nodes, and
only recommends a collection when the recommendation is the same for all the visited nodes. For
simplicity, in this process we compare the first recommendation of the ordered recommendations
for each node. On the example shown on Figure 5, if a recommendation happens, it would

343434

require changing the list instances assigned to the variables aList of classes A and C to an
instance that would be the same for both variables and that would also attend classes B and C.

The tool originally relied only on WALA to infer the variables type. The type inference
API of WALA, from the TypeInference class, is intraprocedural. As a result, most of the
types were inferred as being of the interface type: List, Set or Map. The drawback of this is
that we do not know if the collection that is being assigned to a variable is thread-safe or not, and
if we can indeed recommend a better collection or not. To mitigate this problem, complementing
the WALA type inference, CT+ traverses every analyzed class’ methods, constructors and
declarations to discover which instances are being assigned to collection-type variables. The
cases where an instance can not be found happen with variables that come from another method
or class. Those cases are handled by the points-to analysis, as explained before.

3.8 MULTIPLE RECOMMENDATIONS FOR THE SAME VARIABLE

After adding more collections and using the tool extensively on real applications, we
noticed that, sometimes, the collection with the lowest energy footprint was not compatible
with the original collection. The reason being: constructor arguments that are not available on
the recommended collection; or a change of behavior between the recommended and original
collection. For this reason, CT+ recommendation file outputs all the possible replacements for
the original collection, rather than just the best option, ordered from the lowest energy footprint
to highest. An example is shown in Figure 6.

Figure 6: Multiple recommendations example. Part of the COMMONS MATH recommendations
for note

3.9 CREATION OF A NEW MODULE, THE CT+ TRANSFORMER

While using the tool and applying the recommendations, we noticed that although the
changes are easy to apply, a considerable amount of time is taken changing the source code. The

353535

problem with this is that, given the number of the recommendations, it can also be error-prone.
To make this process faster we developed a new module for CT+ to be in charge of applying the
recommendations to the source code, which we called the CT+ Transformer2.

This part of the tool, differently from the analyzer, receives the project’s source code and
the recommendations file as input, which can be manually changed. For example, the developer
can change the recommended collection by changing the last column of the file, shown in Figure
6, or he can also delete lines from it to avoid a recommendation. This module works by using
the JavaParser3 library, which parses the code and makes it possible to use declaration and
assignment visitors to apply the recommendations.

3.10 COMPATIBILITY CHECK BEFORE RECOMMENDING A COLLEC-

TION

After applying recommendations and trying to compile an application for the first time,
it was not rare to run into compilation problems originated from constructor mismatch. This
mostly happened with lists. For example, it happens when an ArrayList collection that is
instantiated with initial size is replaced by LinkedList or TreeList, which do not have
a constructor where the developer can inform the initial size. In order to avoid this problem,
CT+ checks if the constructor used on the original collection also exists on the recommended
collection, if it doesn’t exist, it then recurs to the next best collection available. For this to work
we visited each collection documentation and hard coded which constructors are available for
them, the recommender uses this information and proceeds as explained.

Another compatibility check we understood was important was the collection’s behavior
check. For example, LinkedHashMap maintains the order in which an element is inserted
and this order is expected to be the iteration order, whereas HashMap does not have this
behavior. So making a substitution from LinkedHashMap to HashMap is risky, but not the
opposite. Similarly, TreeMap stores the elements according to the natural ordering4 of its
elements, making it risky to change from TreeMap to HashMap or LinkedHashMap. Thus,
we checked the collection’s documentation and implemented this additional check on CT+,
recurring to the next best recommended collection when a substitution is not possible due to
behavior change.

3.11 ANDROID COMPATIBILITY

Although we decided to do our measurements with the ANDROID POWER PROFILER,
which already saves us from having to connect our devices to DAQ systems, we still had the

2https://github.com/ros3cin/CTplus-transformer
3http://javaparser.org/
4The order dictated by an object’s comparator

363636

burden of having to recompile our apps whenever we tweaked something or changed benchmarks.
Thus, to save us from this, we built a web dashboard, with NodeJS technology.

The dashboard can be instantiated multiple times, allowing us to benchmark multiple
devices at once, showing us their respective experiment statuses. It also provides actions to make
it possible for us to stop a benchmark, start from any point in the experiment, list the attached
devices and run all the benchmarks available in sequence. The dashboard interface can be seen
in picture 7.

Figure 7: Picture of the dashboard

In order to use the ECLIPSE COLLECTIONS on the Android devices, we had to use a
JDK7 compatible version of it. The reason being we have only at most Android API 23 with us,
which is at most compatible with JDK7. We also tried to make our profiling and benchmarking
applications compatible with most of the Android devices by targeting the minimum API as
being 15. The Android API version compatibility distribution, from July 2018, is shown on
Table 5.

3.12 MAKING THE TOOL IDE-INDEPENDENT

The original tool, by de Araújo Neto (2016), requires the user to setup the project on
the SCALA IDE FOR ECLIPSE5 in order to use it. This process can be time consuming and
may prevent new users, which do not have expertise with the IDE or the language, from trying
the tool. It also makes machines such as servers, which usually do not employ a graphical user
interface (GUI), being unable to run it. Furthermore, a project setup on a IDE is a step that
should only be required by developers interested in contributing to the project. For this reason,

5http://scala-ide.org/

373737

Table 5: Android Platform version cumulative distribution (July/2018)

Android Version Version Name Api Level Cumulative distribution

4.0 Ice Cream Sandwich 15 99.99%

4.1 Jelly Bean 16 99.2%

4.2 Jelly Bean 17 96.0%

4.3 Jelly Bean 18 91.4%

4.4 KitKat 19 90.1%

5.0 Lollipop 21 71.3%

5.1 Lollipop 22 62.6%

6.0 Marshmallow 23 39.3%

7.0 Nougat 24 8.1%

7.1 Nougat 25 1.5%

we equipped CT+ Analyzer and Transformer modules with a command-line interface, and also
made their compiled versions available in the form of .jar on their GITHUB pages67, in the
releases section. For instance, the Analyzer command-line usage help is shown on Figure 8.

3.13 LIMITATIONS OF CT+

The improvements and features presented on the previous sections aim to not only make
the quality and the scope of the recommendations better, some of them also target the usability
of the tool and accelerate some of its processes, such as the addition of a command-line interface
to make the tool IDE-independent and the creation of the Transformer module to automatically
apply the recommendations. But still, there are some aspects of the tool, that will be discussed
here, that need further improvement.

The profiling phase, specially for mobile devices, can take hours to complete. This
aspect started to be problematic after the addition of more collections and after we started
gathering the energy profiles for the mobile devices. Some collections are so different in their
performance that a workload that is reasonable for one implementation may be too much for
another implementation. One example of this is the difference between adding to Vector

and adding to CopyOnWriteArrayList. The energy consumption along with the runtime
performance is orders of magnitude different. This means that a workload that runs for 20
seconds on Vector can run for 2000 seconds on CopyOnWriteArrayList. We were able
to manage this discrepancy on the desktop platform by using small workloads, since jRAPL is
capable of fine-grained measurement. But this strategy was not possible on the mobile platform

6https://github.com/ros3cin/CTplus
7https://github.com/ros3cin/CTplus-Transformer

383838

Figure 8: CT+ command-line usage help

because, as we will see on Section 4.1, we needed to make sure that every workload ran for at
least 20 seconds.

Another aspect that can be improved is the compatibility of the tool with other desktop
operational systems. Aside from needing Intel processors with architecture newer than or equal
to Sandy/Ivy Bridge, the tool currently can only run its desktop profiler on Linux systems. This
is a consequence of the convenience we have in Linux accessing the CPU registers that provide
the energy consumption information. This access is intermediated by a kernel driver, called
MSR, activated through the modprobe command, which jRAPL needs. Future work could
contribute to this aspect by writing a driver for other operational systems to have access to the
machine-specific registers on compatible Intel processors.

Finally, WALA’s current version (1.4.3) is not able to read the names of local variables
and is not able to accurately infer the source code line number of variables on Android applica-
tions. Hence, some of the recommendations for Android applications will have virtual variable
names (numbers) and an approximation of the real source code line number. Thus, for the mobile
applications, we had manually adjust the variables’ names and their source code line numbers on
the recommendations file. Should this issue be resolved in the future, we infer that an update of
the library will be sufficient.

393939

Figure 9: Schema comparison between CECOTOOL and CT+. The green boxes are the
improvements of CT+. The white boxes represent the original tool features.

3.14 SUMMARY OF THE DIFFERENCES BETWEEN CECOTOOL AND

CT+

In order to have an overview of the improvements and new features that CT+ implements,
we show on Figure 9 a schema where the CT+ improvements and features, in green boxes, are
put together with the aspects that were inherited from the original tool, presented in the white
boxes. With this representation, we are able to see that CT+ improvements reach all the modules
of the tool, bringing five new aspects to the profiling phase, six new aspects to the analysis
phase and three new aspects to the recommendation phase. Each of these aspects can still be
broken and detailed further. Additionally, the tool is able to do recommendations for mobile
Android applications, and now possesses a new module - the Transformer module - capable of
automatically applying the recommendations.

404040

4
EVALUATION

In this chapter we present the evaluation of CT+. In this evaluation, we aim to assess
wether CT+ can be used to reduce the energy consumption of real-world systems, and also to
quantify the impact of the proposed improvements, answering the following research questions
(RQs):

� RQ1: Can CT+ reduce the energy consumption further when compared to the
original tool?

� RQ2: Are recommendations device-independent?

This chapter is organized as follows: the methodology section, in which we present the
devices and benchmarks we used in our experiments, explaining how we measured the energy
consumption of each and what precautions we took to reduce any threats to the experiments and
which workloads we used; the benchmarks section, in which we present all the benchmarks we
used; the results section, where we begin by looking into the energy consumption reductions
achieved by CT+ on the benchmarks, followed by the analysis of the recommendations that were
applied; the discussion section, where we discuss the results, talking about dominance between
collections and sharing our insights about the achieved results; the threats to validity section,
where we expose the threats to validity of this study and what we did to mitigate them.

4.1 METHODOLOGY

To evaluate CT+ we use three types of execution environment: server, desktop and
mobile. These environments differ in processing power, available memory, use of battery and
measurement procedure. We employ jRAPL to perform the energy measurements on the server
and on the desktop environments, and for the mobile environment we use the Android Energy
Profiler. We use five different devices, summarized on Table 6. As desktop environment we use
a notebook (note) with an Intel Core i7-7500U with four 2.7GHz cores, and 16GB of RAM. For
the server environment we use a high-end server (server) with a two-node Intel Xeon E5-2660
v2 processor with 20 2.20GHz cores (10 per node) and 256GB of RAM. As for the mobile

414141

Table 6: The devices used in the experiments and their characteristics

Machine Alias RAM Chipset CPU

Notebook note 16GB i7-7500U Quad-core 2.70GHz
Server serv 256GB Intel Xeon E5-2660 v2 40-core 2.2 GHz

Samsung J7 J7 1.5GB Exynos 7580 Octa-core 1.5 GHz Cortex-A53

Samsung S8 S8 4GB Exynos 8895 Octa
4x2.3 GHz Mongoose M2 &
4x1.7 GHz Cortex-A53

Motorola G2 G2 1GB Qualcomm MSM8226 Snapdragon 400 Quad-core 1.2 GHz Cortex-A7

environments, we use three smartphones: a Samsung Galaxy J7 (J7), a Samsung Galaxy S8 (S8),
and a Motorola G2 (G2).

When creating the profiles for each environment, we took the same precautions of the
previous works of Oliveira et al. (2017) and Hasan et al. (2016). We ran a series of micro-
benchmarks, 30 times each, comprised of pairs of collection-operation, from which we collected
the energy consumptions and used the average value. We reduced the influence of the JIT
(Georges et al., 2007) by running a warm-up phase, comprised of 10% of the workload of the
benchmark, before collecting the samples. Whenever profiling thread-safe collections, we used
four threads, dividing the workload between them, and when profiling for the non-thread-safe
collections, we used just one thread.

We analyzed seven desktop-based benchmarks: BARBECUE, BATTLECRY, JODATIME,
TWFBPLAYER, XISEMELE, XALAN and TOMCAT; two mobile-based: FASTSEARCH and
PASSWORDGENERATOR; and three on both-environments: APACHE COMMONS MATH 3.4,
GOOGLE GSON and XSTREAM. These benchmarks, with the exception of FASTSEARCH

and PASSWORDGENERATOR, were all used in previous related work (de Araújo Neto, 2016;
Pereira et al., 2018; Hasan et al., 2016). XALAN and TOMCAT, specifically, were used in the
original work of de Araújo Neto (2016), from which we built CT+. So the results of these two
benchmarks will be our main reference of how much further we reduced the energy consumption,
making them important subjects of our experiments.

BARBECUE, BATTLECRY, JODATIME, TWFBPLAYER and XISEMELE are used to assess
a tool developed on the work of Pereira et al. (2018), called JSTANLEY, which also uses static
code analysis to recommend energy-efficient collections. We use them to check how well CT+
was able to reduce their energy consumption when compared to JSTANLEY. APACHE COMMONS

MATH 3.4, GOOGLE GSON and XSTREAM are used on the work of Hasan et al. (2016), where
the original collections being used on these benchmarks are replaced to reduce or increase the
energy consumption, given their energy footprints.

For TOMCAT, we were not able to use all the libraries that were included on this research.
We had to exclude the ECLIPSE COLLECTIONS, the reason being the DACAPO BENCHMARK

SUITE endorses the use of JDK 6 for the TOMCAT benchmark to work properly, which is not
compatible with ECLIPSE COLLECTIONS. Thus, we could only use the APACHE COMMONS

424242

COLLECTIONS, which is compatible with JDK 6.
As for the workloads, for TOMCAT and XALAN, we used the workloads provided by

the DACAPO SUITE. The only difference is the number of threads that the suite spawns when
executing the benchmarks. On server, the number of threads is 40, on note the number of
threads is four. For BARBECUE, JODATIME, TWFBPLAYER and XISEMELE we used the test
suite that comes with them. For BATTLECRY, we use as benchmark a class inside the app that
was designed to test it. These are the same approaches used on the work of Pereira et al. (2018).
For GOOGLE GSON and XSTREAM, we constructed a class to exercise each Java primitive.
Since these are serialization libraries, the benchmark consisted of serializing this class. For
APACHE COMMONS MATH 3.4, we executed multiple statistical functions from its API. As
for both PASSGENERATOR and FASTSEARCH, since they are very simple apps, designed for
a very specific functionality, their workloads consisted of executing their main function (e.g.,
generating passwords).

The mobile devices required extra care when executing the benchmarks. Whereas the
jRAPL is capable of fine-grained energy measurement, the Android Energy Profiler collects
this information at process level. Therefore, in order to mitigate any noise or imprecision, we
adjusted the workloads so that they could run for at least 20 seconds.

For the majority of the experiments, we collected the results of 30 executions of each
benchmark of both original and modified version, for each device. The only exception was the
TOMCAT benchmark, which we executed both versions 600 times and discarded the first 30
executions. This was needed because, according to the DACAPO SUITE developers, it has a very
flat warm-up curve1 when compared to the other benchmarks of the suite. As for the results
comparison, since most of our samples were not normally distributed, according to the Shapiro-
Wilk’s normality test (S. Shapiro & B. Wilk, 1965), we used the Wilcoxon-Mann-Whitney
test (Wilks, 2011) to test wether the differences on the energy consumption were statistically
significant. We also employ the Cliff’s Delta (Cliff, 1993) as a measure of effect size. We did
not remove outliers.

4.2 BENCHMARKS

In this section, we present all the benchmarks used in this study along with the suite or
repository from which they were taken. We organize the sections by suite or repository name, and
in each of them we to introduce the benchmarks we used. A summary with all the benchmarks
we use on the experiments, along with their source and target platform is presented on Table 7.

1Section 4.2 of https://github.com/dacapobench/dacapobench/blob/master/benchmarks/RELEASE_NOTES.txt

434343

Table 7: All the benchmarks used on the experiments

Benchmark Source Platform

TomCat DaCapo Benchmark Suite Desktop
Xalan DaCapo Benchmark Suite Desktop

Barbecue SourceForge Desktop
Battlecry SourceForge Desktop
JodaTime SourceForge Desktop
Xisemele SourceForge Desktop
Twfbplayer SourceForge Desktop

Google Gson GitHub Desktop/Mobile
XStream GitHub Desktop/Mobile
Apache Commons Math 3 GitHub Desktop/Mobile

Fast App Search F-Droid Mobile
Password Generator F-Droid Mobile

4.2.1 Benchmarks from the DACAPO BENCHMARK SUITE

The DACAPO BENCHMARK SUITE2 (Blackburn et al., 2006) is a collection of bench-
marks for the JAVA programming language, featuring real applications with non-trivial behavior.
The set of benchmarks it includes are: ARVORA, BATIK, ECLIPSE, FOP, H2, JYTHON, LUINDEX,
LUSEARCH, PMD, SUNFLOW, TOMCAT, TRADEBEANS, TRADESOAP and XALAN.

In this research, we use XALAN and TOMCAT to compare our results to the results of
de Araújo Neto (2016). Additionally, we modify the suite by adding jRAPL to it and making it
output the energy consumption of an execution of a benchmark, along with the performance data
it already outputs.

Following the advice of the suite developers, we report that the suite version we use in
this study is the version 9.12. We highlight that although the version of the suite is different from
the one used by de Araújo Neto (2016), the benchmarks are the same. We used this new version
because it fixes a number of repository URLs - needed to build the benchmarks - that, due to
being outdated, were broken or no more existent. Also, similarly to the aforementioned work,
we use the large workload size of XALAN and TOMCAT benchmarks. In our experiments, we
use these two benchmarks, explained below:

XALAN, is an application that processes eXtensible Stylesheet Language for Transforma-
tion (XSLT), being able to transform XML documents into HTML, text or other types of XML
documents. It can be ran as a standalone application, from the command-line, or from inside
another application, in the form of library.

APACHE TOMCAT is a well known Java web server that, in the version used in this
study (6), implements the JAVA SERVLET and JAVASERVER PAGES specifications from the JAVA

2http://dacapobench.org/

444444

COMMUNITY PROCESS3. It can be used to either deploy web applications or web services.

4.2.2 Benchmarks from F-DROID

F-DROID4 is a catalog, available online and also as an ANDROID app, of free and open
source applications for the ANDROID platform. We chose two applications from the catalog and
exercised the core method of each to use as benchmarks. They are:

FAST APP SEARCH TOOL, which we call FASTSEARCH for short, is an ANDROID app
that helps users finding apps, making it possible to search them by package name. We

PASSWORD GENERATOR is an app capable of generating random passwords for the user.
These passwords are safely stored by one master password defined by the user.

4.2.3 Benchmarks from GITHUB

GITHUB5 is an online repository of open source code, founded in 2007, that runs the
GIT source code version control. We chose three applications from there that were also used in
the related work of Hasan et al. (2016). They are described below:

GSON is a JAVA library, created by GOOGLE, that is capable of serializing JAVA classes
into json and deserialize back to a class. It doesn’t require the developer to put any kind of
annotation on a class or on its attributes to make it serializable. Additionally, it is also capable
of deserializing classes, that are in the form of JSON, whose source code is not available on the
application that is deserializing. To use this library as a benchmark, we built a class containing,
as attributes, JAVA primitives, such as int, boolean, String, float, double and a List
of integers initialized with a variable number of elements, depending on the desired workload.

XSTREAM is an open source library that serializes JAVA classes into XML and back.
Similar to GSON, it also doesn’t require the use of annotations, making it easy to use. Also, due
to its similarities with GSON, which involve serializing and deserializing classes, we used the
same approach as in GSON to use it as a benchmark.

COMMONS MATH 3 is an open source library, developed by APACHE, which adds
support to mathematical and statistical functionalities that are not available in the JDK. It
addresses common mathematical and statistical problems, such as solving a linear system of
equations, generating random vectors of data, hypothesis tests, among others. The benchmark
we built for it involved exercising its API using a set of examples found on its documentation
and on its unit tests.

3https://www.jcp.org/en/home/index
4https://f-droid.org/en/
5https://github.com/

454545

4.2.4 Benchmarks from SOURCE FORGE

SOURCE FORGE6 is an online repository of both open source and proprietary software.
For the applications taken from there, we use their unit tests as benchmarks, except for the
BATTLECRY application, in which we used a test input, that comes within the app, as benchmark.
The approach we chose to follow for these benchmarks are the same used on the related work of
Pereira et al. (2018). A description of each benchmark is given below:

BARBECUE is an open-source JAVA library capable of creating and displaying bar-codes.
BATTLECRY is an open-source application that generates lyrics for songs using a list of

words and grammar definitions, both provided by the user.
JODA TIME is a library designed to replace JDK’s date and time classes, including full

support for other types of calendar, such as the gregorian calendar and the buddhist calendar.
THE WEST FORTBATTLE PLAYER, TWFBPLAYER for short, is an open source applica-

tion that replays battles from a browser game called THE WEST7.
XISEMELE is an open source library for JAVA that makes it possible to read, edit and

write XML documents.

4.3 RESULTS

On this section we divide our results into two groups: desktop and server, and mobile.
For each group, we first look into the energy reduction achieved in each benchmark, and later we
discuss the recommendations that were applied.

4.3.1 Desktop and server results

From Table 8 we can see the results of applying CT+ to the server and desktop environ-
ments. The column improv shows how much more energy the original version of the benchmark
consumed when compared to the modified version. A positive value indicates that the modified
version consumes less energy than the original version. For the server environment, only TOM-
CAT and XALAN were executed, as these are applications that are expected to be executed on a
server. The TWFBPLAYER and XISEMELE benchmarks had no statistically significant difference
between the original and modified version, for this reason they are not shown on the table. As for
the remaining benchmarks, CT+ was able to reduce their energy consumption. Also, according
to Romano et al. (2006), which says that a Cliff’s Delta greater than 0.474 is considered large,
CT+ recommendations resulted in versions with large effect size. For XALAN, in particular, the
effect size was 1, meaning that every execution of the modified version of the benchmark had
lower energy consumption than the original. JODATIME exhibited the greatest reduction, with a
value of 6.65%.

6https://sourceforge.net/
7https://www.the-west.net/

464646

Table 8: Results for the desktop and server environments. Energy results are red for the original
versions and green for the modified versions.

Device Benchmark Improv Changes p-value Mean(J) Stdev Effect
Size

note

Barbecue 4.37% 21 7.0−4 56.17 2.70
0.50

53.71 2.53

Battlecry 2.82% 4 1.5−3 67.95 2.67
0.48

66.06 3.18

Gson 0.7% 16 8.0−5 29.93 0.22
0.57

29.72 0.16
Commons
Math

1.02% 133 6.3−12 48.93 0.29
0.90

48.43 0.15

JodaTime 6.65% 16 < 2.2−16 123.02 2.42
0.94

114.83 3.50

Tomcat 3.96% 13 < 2.2−16 32.77 1.02
0.86

31.47 0.41

Xalan 4.77% 63 < 2.2−16 107.04 0.19
1

101.93 0.15

Xstream 2.53% 95 3.122−13 59.97 0.52
0.94

58.45 0.49

server
Tomcat 4.83% 60 < 2.2−16 89.33 2.06

0.86
85.01 2.03

Xalan 5.49% 56 < 2.2−16 242.29 4.4
0.86

228.98 7.02

Table 10 shows which collections were replaced, according to the recommendations
of CT+. In both server and note, we can see that Hashtable was substituted by Concur-
rentHashMapEC many times on XALAN benchmark, 49 times on server and 48 times on
note. Also, commonly used collections from the JCF, such as ArrayList, HashMap and
Vector, were also replaced by alternative, more efficient, collections from the ECLIPSE COL-
LECTIONS and from the APACHE COMMONS COLLECTIONS. TOMCAT recommendations
varied a lot between both environments. Whereas note had 13 recommendations, server had
60 recommendations. Most of the recommendations of the latter were to replace HashMap
by HashedMap (from APACHE COMMONS COLLECTIONS), which happened 39 times. As
for the former, most of the recommendations were to replace Hashtable by Concurren-
tHashMap, which happened six times. It is important to reiterate that we were not able to
use the ECLIPSE COLLECTIONS for the TOMCAT recommendations, for reasons explained in
Section 4.1. As for the other six benchmarks, there were 285 recommendations. Only three of
these recommendations suggested the use of collections from the JCF. 88 of the recommenda-
tions suggested the use of collections from APACHE COMMONS COLLECTIONS, and 194 from
ECLIPSE COLLECTIONS. Once again it is possible to observe a trend of replacing well-known
collections such as Hashtable, HashMap, and ArrayList by more energy-efficient but

474747

Table 9: Results for the mobile environment. Energy results are red for the original versions and
green for the modified versions.

Device Benchmark Improv Changes p-value Mean(J) Stdev Effect
Size

S8

Commons Math 10.16% 26 1.25−8 92.06 2.59
0.86

82.70 9.61

FastSearch 0.085% 5 1.67−3 35.06 3.32
-0.47

35.03 1.78

Google Gson 0.97% 11 6.42−4 16.45 0.22
0.40

16.29 0.20

PasswordGen 4.44% 2 2.38−9 16.86 0.41
0.90

16.11 0.65

J7

Commons Math -0.33% 22 2−4 23.82 2.33
-0.56

23.90 2.62

Google Gson 4.78% 9 3.2−3 13.78 1.59
0.44

13.12 2.67

PasswordGen 14.73% 5 6.44−9 12.83 0.90
0.87

10.94 0.76

G2 Commons Math -1.16% 27 0.0091
17.22 0.51

-0.41
17.42 0.14

less-known alternatives.

4.3.2 Mobile results

From Table 9, we can see that the mobile results varied a lot among devices. For instance,
CT+ recommendations for COMMONS MATH on S8 had the second best energy reduction of the
mobile devices, whereas the recommendations of the same benchmark for G2 and J7 resulted in
versions that consumed more energy than the original versions. The best energy reduction was
obtained on J7, where the original version of the PASSWORDGENERATOR benchmark consumed
14.73% more energy than the modified version. The reduction of this benchmark for S8 was
of 4.44%, more than 3 times less than on J7. FASTSEARCH recommendations resulted in a
more efficient version only for S8, albeit small (0.085%). For J7, the energy consumption of
FASTSEARCH was not statistically different from the original version. For G2, CT+ did not
generate any recommendations for FASTSEARCH and PASSWORDGENERATOR, meaning that
the tool estimated that the original collections being used on these two apps are already the best
efficient alternative for G2.

The recommended collection for the mobile devices are summarized on Table 11. It is
interesting to see that the COMMONS MATH benchmark on S8 has more recommendations to
replace the original collection to another JCF collection than all the benchmarks we evaluated
on the note machine combined. On the one hand, the only collection recommended by CT+

484848

that is not from the JCF for this benchmark is TreeList, from THE APACHE COMMONS

COLLECTIONS. On the other hand, it follows the pattern of recommending alternatives to
widely popular collections, e.g., it recommends the use of TreeList, or FastList, instead
of ArrayList, and LinkedHashMap in place of HashMap. For the remaining benchmarks,
CT+ made few recommendations, 11 for GSON, two for PASSWORDGENERATOR, and five for
FASTSEARCH. Overall, the recommendations only produced a large effect size for COMMONS

MATH and PASSWORDGENERATOR. Furthermore, these were the only benchmarks that could
achieve energy savings greater than 1% in the S8. Among the 22 recommendations of COMMONS

MATH on J7, 14 were for ECLIPSE COLLECTIONS and eight were for APACHE COMMONS

COLLECTIONS. In all these cases, CT+ recommended that developers replace ArrayList
by an alternative implementation. For this specific context, the recommendations did not yield
energy savings. CT+ also recommended replacing ArrayList by alternatives in the case of
GSON and PASSWORDGENERATOR. These substitutions yielded considerable energy savings.
The G2 differed from the others in this study in the sense that only one of the benchmarks
exhibited significant differences between the original and modified versions. Notwithstanding,
the trend of CT+ recommending less popular collections as replacements for widely-used ones
such as ArrayList and HashMap can still be observed.

4.4 DISCUSSION

This section presents a more in-depth discussion about the results achieved in the previous
sections.

4.4.1 Prevalence of the alternative implementations of the JCF

The implementations from ECLIPSE COLLECTIONS and APACHE COMMONS COLLEC-
TIONS were the most recommended. On the desktop and server environments, out of the 477
recommendations, they were recommended 446 times, accounting for more than 93% of the
recommendations on that environment. On the mobile environment, albeit not so frequent, they
were still the majority of the recommendations. They were recommended 77 times, out of the 107
total recommendations for the mobile environment. Agregatting all the results, the collections
from the JCF amount for only 11.47% of the recommendations.

4.4.2 Commonly used collections and energy efficiency

Our results imply that the most commonly used collection from the JCF have a more
energy-efficient counterpart. 97.9% of all the statistically significant recommendations for the
server and desktop environments that CT+ performed were replacements for Hashtable (121
times), HashMap (140 times), HashSet (20 times), Vector (8 times), and ArrayList (178
times). This results follows the popularity of these collections, shown in Table 2 of Section 3.4.

494949

Since they are popular, it is expected they constitute many of the recommendations. Corroborating
with the observation that they have a more energy-efficient counterpart, they were mostly not
recommended as replacements. Exceptions ocurred when, for example, LinkedList was
replaced by ArrayList, where traversals can be orders of magnitude more optimal. These
results, along with the improvements on the energy consumption, suggest that these collections
might not be good choices when energy consumption is important, raising the importance of
considering alternative implementations when this is the case.

We investigated further and looked into the metadata generated by CT+ to elucidate why
ArrayList was replaced so many times. The reason to the attention given to that collection is
due the fact that it is arguably the most popular collection of the JAVA language. Two factors
help explain the lack of recommendations in its favor and why it was replaced so often. First,
the majority of the operations on sequential collections are the add(value), which adds
an element at the end of the collection, and iteration(random). ArrayList’s energy
footprint for both of these operations is, in most of the devices, greater than on FastList, which
is an alternative general purpose implementation of the List interface, especially designed to be
more efficient than ArrayList in terms of speed. Also, differently from ArrayList, it does
not throw concurrent modification exceptions. Consequently, it is able to provide direct iterator
access to the internal array of items 8. Secondly, there are many cases where ArrayList is
the most efficient collection, but since it is the most commonly used collection, chances are it is
already being used, thus no replacement is recommended by CT+. This is what happened on
FASTSEARCH and PASSWORDGENERATOR on G2. In other words, as a result of being widely
used, in cases where ArrayList is the most efficient collection, it is already being employed
and thus no more benefits can be achieved by changing it, given the collections’ libraries included
on CT+.

4.4.3 Different devices matter

Although for some cases, such as in the FASTSEARCH applications, the recommendations
were similar. Our results show that, in general, they vary significantly across devices. For
example, for XALAN on note, CT+ recommended that 10 ArrayList instances be changed to
FastList and one to NodeCachingLinkedList. For server, in contrast, it recommended
changing from ArrayList just two times, suggesting the use of TreeList. And in both
machines, the energy consumption decreased.

The effectiveness of CT+ in decreasing the energy consumption also varied across
devices. XSTREAM, for instance, for most of the devices, did not result in a version that
significantly reduces the energy consumption. The only exception was on note, where CT+ was
able to reduce its energy consumption significantly (p-value of 3.12−13), and with a large effect
size (0.94). We can attribute to this result the differences between recommendations and devices.

8https://www.eclipse.org/collections/

505050

On note, CT+ applied 95 modifications, whereas the mobile device with most changes (G2),
only had 41. The collections that were target of the recommendations were also different. On
note, ArrayList was replaced by FastList 21 times, and by LinkedList one time. On
G2, ArrayList was replaced by TreeList three times. Those two devices had different
energy profiles and, by the number of changes, we noticed that the implementations used on the
mobile versions were already optimized for that environment, which was not the case for the
desktop environment.

4.4.4 Number of recommendations and energy reduction

Contradicting our natural assumption that more recommendations imply more savings,
our results suggest that there is no correlation between the number of recommendations and
the energy reduction. For instance, note had 133 recommendations for the Commons Math
application, achieving a reduction of 1.02% in the energy consumption, whereas for the JodaTime
application, with only 16 recommendations, we achieved the reduction of 6.65%, the best energy
saving for note. Doing a comparison between the number of recommendations for TomCat
on note and server, we can see that while the former had only 13 recommendations, the latter
had 60, but the difference between the percentages of energy reduction was of only 0.87%.
Furthermore, for the mobile benchmarks, the number of recommendations for Commons Math
on S8, J7 and G2 were 26, 22 and 27 respectively. These numbers are relatively close, taking
into account the discrepancy found on the mentioned desktop cases. But the energy consumption
reductions for each of those devices on that application were surprisingly different, whereas for
S8 we had the reduction of 10.16%, for the other two devices we had an increase on the energy
consumption.

4.4.5 Dominance among collections implementations

Among all the 40 different collection implementations, CT+ only recommended 20 of
them. When trying to understand this behavior, we noticed that some collections completely
dominate (Peterson, 2009) the others. We say that a collection implementation dominates the
other when, for every operation, subject to a device and a given workload, that collection always
have lower energy footprint than the other. Since every dominated collection has a dominating
alternative, they will never be recommended by CT+.

Figure 10 depicts dominance relation for the thread-safe Map implementations on the
server machine. Based on this dominance relation, only four thread-safe Map implementations
can be recommended by CT+ on the server machine: ConcurrentHashMap, Synchro-
nizedLinkedHashMap, ConcurrentHashMapEC and SynchronizedUnifiedMap.
These are collections that are not dominated by any other. For instance, as shown in the picture,
Hashtable is dominated by ConcurrentHashMapEC, and Hashtable itself dominates
SynchronizedTreeMap. Thus, ConcurrentHashMapEC also dominates Synchro-

515151

Concurrent
SkipListMap

Synchronized
TreeMap

Synchronized
HashMap Hashtable

Synchronized
LinkedHashMap

StaticBucketMap

Concurrent
HashMap(EC)

Concurrent
HashMap

Synchronized
UnifiedMap

Figure 10: Order of dominance between the thread-safe Map implementations on server. Arrows
point from the dominating collection to the dominated one.

nizedTreeMap transitively. Then, for the server device, SynchronizedTreeMap and
Hashtable will never be recommended. In fact, we observed that Hashtable was dom-
inated in every device we experimented with. This result, along with the scalability issues it
presents, discussed in Pinto et al. (2016), and with the vast availability of more energy-efficient
alternatives, suggests that it should be rarely used in practice. Implementations such as Con-
currentSkipListSet, SynchronizedTreeMap and SynchronizedUnifiedMap
were dominated in three out of the five devices.

4.5 THREATS TO VALIDITY

Regarding internal validity, we mitigate the influence of other factors on the energy
consumption by reducing the number of any background processes or applications that usually
run along with the devices we used. Also, we deactivate energy consumption policies such as
turning off the screen, on both mobile and desktop, and hibernation on desktops. On the mobile
platform, we make sure that whenever we start running the 30 executions of each benchmark,
the battery capacity is at 100%. This mitigates the influence of batteries with varying voltage on
the energy consumption and this also gives each benchmark the same starting point, thus having
a fair comparison of the consumed energy. Additionally, we always adjust the mobile workload
so that each sample runs for at least 20 seconds, decreasing any imprecisions that the Android
Energy Profiler may present. As for the statistical inferences, we used Shapiro-Wilk to verify
wether the samples followed normal distribution and, in negative case, resorted to the use of the
non-parametric test of Mann-Whitney-Wilcoxon, with 95% confidence level.

We highlight that, although we compare the differences on the results and on the recom-
mendations between the desktop and mobile platforms, the tools used to measure the energy
consumption of the benchmarks are different for each platform, presenting a potential threat to
validity. Whereas we use jRAPL for the desktop platforms, which is capable of fine-grained mea-
surement, on the mobile platform we use the Android Power Profiler, which outputs the energy
consumption at process level. This can impact the measurement of the reductions achieved in

525252

each platform because at different levels of granularity we have different resources being taken
into account.

For the external validity, we run our experiments in three different classes of devices,
desktops, servers and smartphones, amounting to the total of five devices, achieving positive
results on most of the benchmarks. Despite this, we can not generalize our results. We could
see that, although not frequently, some of the recommendations had negative impact on the
energy consumption. This can happen to any other pair of device-application that might be
subject to our tool. Also, we highlight that it is necessary that the target application make
medium to extensive use of collections for the changes to be significant. We limit our results to
Java collections, as other languages, despite having the same data structure abstractions, may
have different interfaces and implementations. Furthermore, we show how different the energy
consumption reduction and the recommendations can be, depending on the device. For this
conclusion, we use devices with notably different specifications. They vary in: the number of
cores, processing power, amount of RAM, model, brand, among other specifications. Further
investigation is needed to check if the same variability happens between different devices with
equal specifications.

Table 10: Recommended collections for note and server

Benchmark Original Recommended # of times

Development machine: note

Barbecue HashMap HashedMap 13
ArrayList FastList 8

Battlecry LinkedList ArrayList 2
LinkedList FastList 2

Commons
Math

ArrayList FastList 112
HashSet UnifiedSet 6
HashMap HashedMap 9
HashMap UnifiedMap 3
ArrayList TreeList 3

Google
Gson

ArrayList FastList 12
HashMap HashedMap 3
ConcurrentHashMap ConcurrentHashMapEC 1

JodaTime
ArrayList FastList 8
HashMap HashedMap 7
ConcurrentHashMap ConcurrentHashMapEC 1

Tomcat

Hashtable ConcurrentHashMap 6
HashMap HashedMap 4
Hashtable StaticBucketMap 2
Vector Synchronized LinkedList 1

Xalan

Hashtable ConcurrentHashMapEC 48
ArrayList FastList 10
Vector Synchronized FastList 3
ArrayList NodeCachingLinkedList 1
HashMap HashedMap 1

Xstream

HashMap HashedMap 52
ArrayList FastList 21
HashSet UnifiedSet 12
HashMap UnifiedMap 7
LinkedList TreeList 1
ArrayList LinkedList 1
HashSet TreeSortedSet 1

Development machine: server

Tomcat

HashMap HashedMap 39
Hashtable ConcurrentHashMap 16
LinkedList TreeList 2
LinkedList ArrayList 1
HashSet LinkedHashSet 1
Vector Synchronized ArrayList 1

Xalan

Hashtable ConcurrentHashMap(EC) 49
Vector Synchronized ArrayList 3
ArrayList TreeList 2
HashMap HashedMap 1
HashMap UnifiedMap 1

Table 11: Recommended collections for S8, J7, and G2

Benchmark Original Recommended # of times

Device: S8

Commons
Math

ArrayList TreeList 8
HashMap LinkedHashMap 7
HashSet LinkedHashSet 6
TreeSet LinkedHashSet 2
TreeMap LinkedHashMap 2
ArrayList LinkedList 1

Google Gson

ArrayList FastList 6
HashMap LinkedHashMap 3
ArrayList TreeList 1
ConcurrentHashMap Synch LinkedHashMap 1

PasswordGen ArrayList FastList 2

FastSearch ArrayList FastList 4
HashMap HashedMap 1

Device: J7

Commons
Math

ArrayList FastList 14
ArrayList NodeCachingLinkedList 5
ArrayList TreeList 3

Google Gson ArrayList FastList 7
ArrayList NodeCachingLinkedList 2

PasswordGen ArrayList FastList 5

Device: G2

Commons
Math

HashMap LinkedHashMap 12
ArrayList FastList 8
ArrayList TreeList 5
CopyOnWriteArrayList Vector 1
ArrayList LinkedList 1

555555

5
RELATED WORKS

Regarding energy consumption optimization, there is the interesting work of (Manotas
et al., 2014), in which the Software Engineer’s Energy-optimization Decision Support framework
(SEEDs) was created. It also aims to automate the entire process of optimizing the energy
consumption of a software. But, differently from our work, for this to happen the application
must’ve been previously prepared with test cases that can be tweaked in order for the algorithm
to run its strategy.

The inputs of the framework are: the application code, a set of potential code changes,
optimization parameters and context information. The potential code changes could be, for
example, the different implementations of List from the JCF, the optimization parameters
could be, in this case, the different consumption of each known List operation and the context
information could be the platform in which the tool will be ran.

What is also interesting in this study, and that is directly linked with this work, is that an
instantiation of SEEDs was done targeting the JCF and alternative collections, aiming to identify
improvements from switching from a collection to another. They first built a preliminary study
where 13 benchmarks were created and a collection from the JCF was initially chosen. They ran
each benchmark 10 times, switching collections each time and then they counted how many times
switching from the initial collection improved the energy consumption. In 7 of the benchmarks
there were benefits from switching the initial collection, up to 96% improvement, and in 6 cases
the energy consumption was negatively affected, and the increase in the consumption reached
a value of up to 2,598%, which is evidence that it is easier to worsen an application’s energy
consumption than it is to make it better.

Later they went on to test their instantiation of SEEDs on 7 real applications. They made
two experiments, one of which they only allowed SEEDs to switch between JCF implemen-
tations, and on the other one they allowed the framework to switch between any alternative
implementation. From the results we can see that the improvement gain from allowing the tool
to use other collections implementations was at max 3%. Thus, despite knowing that alternative
JCF implementations can outperform the standard Java collections, the complexity of a real
application makes it more challenging for a non-standard collection to make difference on the
overall efficiency.

565656

The work of Costa & Andrzejak (2018) presents the COLLECTIONSWITCH, an approach
for switching Java collections at runtime, taking into account the collection allocation site and
individual collection peculiarities, in this case performance and memory footprint. The study
makes use of adaptive collections, which are collections that use other collections internally,
allowing them to change due to pre-defined conditions. For example, the researchers at this
work used the AdaptiveSet, from KOLOBOKE COLLECTIONS1, which works internally as
an ArrayList for small sizes and works as a HashMap for large sizes.

Their approach involve changing applications code so they can be aware of allocation
site and workload. Adaptive collections variants are then introduced in place of the original
collections so they can change between the desired variants at runtime. They also need, as we
did on our research, to collect workload profile from the collections’ operations that they are
going to take into account, such as add, put, remove or iterate. They also come up with a formula
to calculate the estimated cost of a variant replacement, similar to what (de Araújo Neto, 2016)
had to do, that takes into account the number of operations, weighted by the workload used, and
the average cost of that operation on a specific collection, for a specific maximum number of
elements.

They evaluate their approach on a collection of microbenchmarks, the COLLECTIONS-
BENCH2, and also on 5 applications from the DaCapo Benchmark Suite. Their results show they
were able to improve execution time on all types of collections abstractions: maps, sets and lists,
when compared to the JCF standard collections; and they also managed o improve the execution
time of the applications by up to 15% and reduce the peak memory usage by up to 10%.

These results corroborate the conclusion that there is no definite winner when it comes
to collections. We saw that even for a specific operation there is a better alternative than the best
implementation can offer, which is the possibility of using more than one implementation at
once, with adaptive collections.

The work of (Hasan et al., 2016) is another study about the Java collections energy
consumptions from which some of the improvements presented in this research were based off. It
analyzes the energy behavior of collections’ implementations of the JCF, the Apache Commons
Collections and the Trove library, and it targets the Android mobile platform.

The experiments are conducted in an infrastructure called GREENMINER, originated
from (Hindle et al., 2014). Similar to the dashboard presented in this research, it is composed of:
a web server (the host), which store results, show information about running tests and provides
control of the clients; and a client, which is composed of a Raspberry Pi attached to an Android
device. In this case, the energy measurement is done by a sensor of current called Adafruit
INA2193.

Corroborating with our findings, the research also concludes that there is no winner

1https://koloboke.com/
2https://github.com/DiegoEliasCosta/CollectionsBench
3https://www.adafruit.com/product/904

575757

among the different implementations. For example, it is shown that, among the studied libraries,
HashMap was more energy efficient when mostly insertion and random access is required,
but if insertion order should be preserved, the LinkedMap from the APACHE COMMONS

COLLECTIONS is a better alternative.
It also shows how the different List implementations behave depending on the position

of an insertion and depending on the type of list access (random or sequential). Due to these
results, we made CT+ capable of distinguishing the different positions of insertions and removals.
And we also came up with a heuristic to distinguish random from sequential accesses.

Pereira et al. (2018) build a tool called jStanley with the same purpose of CT+, it
recommends Java collections with the purpose of saving energy. It is a Eclipse plugin which
traverses the Abstract Syntax Tree (AST) finding direct invocations of collections’ methods
and also indirect invocations, which is defined as an invocation of a method containing a direct
invocation of a collection operation. It then exposes for the user, in the form of a warning on
the Integrated Develpment Environment (IDE), suggestions for replacing the current collection,
along with an estimation of how much would be saved with the change. It also lets the user
change the workload size and also prioritize performance to change the suggestions. The tool
was able to reduce the energy consumption of the studied applications by up to 17%.

Taking a look on the applied recommendations4, we realized that the tool allows the
substitution of thread-safe collections to non-thread-safe collections and vice-versa. On CT+,
since we want to maintain the target code’s original behavior and also due to different workload
and number of threads used on the profiling phase, which makes it not viable for us to compare
the consumptions of collections with different thread-safeness, we do not allow this kind of
change. But this work make us think of an interesting further improvement of the tool which
would aim to investigate if it is safe to change collections with different thread-safeness.

Helano et al. (2015) develop a tool called ECODROID, which works in the form of
ANDROID STUDIO plugin, capable of identifying parts of the application code of ANDROID

apps that may result in an anomalous energy consumption. The tool uses a model for estimating
the energy consumption of the multiple components of a ANDROID device, such as GPS,
WIFI, AUDIO CARD and CPU. This model is an adaptation of a model developed in the
previous work of Couto et al. (2014), which calibrates the consumption of each of the mentioned
components for a ANDROID device. ECODROID works by first automatically instrumenting,
using the JAVAPARSER library, the target code that is of interest for the analysis. In this
process, the original code is cloned with new lines added to either the test and the application
classes. The instrumented code is then updated, with the android update project

command, and then a battery of tests is executed using the adb shell am instrument

command. After the tests execution, their output is downloaded to the computer running the
ANDROID STUDIO, with the adb pull command, and, with this data, ECODROID constructs
a SUNBURST graph, that is displayed on the IDE. With this approach, although no rigorous

4https://github.com/greensoftwarelab/jStanley/blob/master/paper-resources/projectchanges.txt

585858

evaluation of the tool was done, they state that the tool was being actively used by a research
group that is in contact with big companies of the mobile area, having identifying, during its
usage, that the dispatchMessage(android.os.Message) method from the ANDROID

framework was the reason for many of the anomalies they found. They then show how they were
able to successfully add an anomalous method to an existing application by making a call to
dispatchMessage(android.os.Message) on that method’s body. This work shows a
different way to find energy variation hotspots, as explained in Section 2.5. While CT+ approach
executes static analysis, giving weights for method calls inside loops, finding the usages of a
target API and finally applying the results to a formula, ECODROID instruments methods, that
will have its calls to a previously calibrated target API tracked and properly accounted, using a
consumption model that depends on a device’s components.

595959

6
CONCLUSION

In this work, we implemented a series of improvements that were inspired by previous
related studies with collections. We accounted for the impacts of the positioning of operations
in sequential collections (Hasan et al., 2016); we included two different sources of collections,
both popular in GITHUB and also used in previous work (Costa & Andrzejak, 2018), and
discussed how dominant they are over the standard JCF collections; we included non-thread-
safe collections, hence covering the most popular collections of the JCF (e.g.: ArrayList,
HashMap), where they accounted for the majority of the recommendations.

We improved the recommendation further by using points-to analysis so collections that
are passed along to other methods are only recommended when the recommendation is the same
for all methods. We also built CT+ to be compatible with the ANDROID platform, being able
to successfully reduce the energy consumption of mobile applications. Also, we automated the
approach even more by creating the CT+ TRANSFORMER module, which made it possible to
apply recommendations efficiently, avoiding the error-prone task of applying them manually.

With these improvements, CT+ was able to further reduce the energy consumption
on both benchmarks used on the original study, achieving the reduction of 5.49% on XALAN,
and 4.83% on TOMCAT. We also saw significant energy consumption reduction on mobile
applications, reaching up to 14.73% of reduction on PASSWORDGENERATOR and having
positive results for most of the remaining pairs of benchmark-device.

These results answer our RQ1, in which CT+, along with all the new features it possesses,
was able to further reduce the energy consumption of the two benchmarks used on the original
study of de Araújo Neto (2016). They also helped us answering RQ2, where we could see
how different the recommendations and the results are, depending on the device executing a
benchmark.

Although we did our best to cover in CT+ features that would help replacing JAVA

collections for more energy-efficient alternatives - consequently reducing the energy consumption
of applications - we understand that we are still far from having the ideal tool. Future work
could, for instance, include even more collections or even more operations; make use of the
points-to analysis metadata to implement a different strategy to resolve the recommendations for
collections that are shared among different methods; or improve the static analysis to take into

606060

account even more static code information.
Further investigation is needed to understand why some recommendations led to versions

that consumed more energy than the original version. Also, the aspects of the studied collections
that influence their energy profile still need to be elucidated. Understanding this phenomena and
their interactions with the underlying hardware might be a challenging task, but we believe that
this can be an important step towards generating energy-efficient software.

616161

REFERENCES

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A.,
McPeak, S., & Engler, D. (2010). A few billion lines of code later: Using static analysis to find
bugs in the real world. Commun. ACM, 53(2):66–75.

Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R., Diwan,
A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss,
J. E. B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D., & Wiedermann, B.
(2006). The dacapo benchmarks: Java benchmarking development and analysis. SIGPLAN Not.,
41(10):169–190.

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psycholog-
ical Bulletin, 114:494–509.

Costa, D. & Andrzejak, A. (2018). Collectionswitch: A framework for efficient and dynamic
collection selection. In Proceedings of the 2018 International Symposium on Code Generation
and Optimization, 16–26.

Costa, D., Andrzejak, A., Seboek, J., & Lo, D. (2017). Empirical study of usage and performance
of java collections. In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering, 389–400.

Couto, M., Carção, T., Cunha, J., Fernandes, J., & Saraiva, J. (2014). Detecting anomalous
energy consumption in android applications. In Programming Languages, 77–91.

David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., & Le, C. (2010). Rapl: Memory power
estimation and capping. In 2010 ACM/IEEE International Symposium on Low-Power Electronics
and Design (ISLPED), 189–194.

de Araújo Neto, J. B. F. (2016). UMA ABORDAGEM ESTÁTICA PARA RECOMENDAR
ESTRUTURAS DE DADOS JAVA PARA MELHORAR O CONSUMO DE ENERGIA. Master’s
thesis, Federal University of Pernambuco, Brazil.

Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y. C., & Rice, A. (2013). Characterizing and
modeling the impact of wireless signal strength on smartphone battery drain. SIGMETRICS
Perform. Eval. Rev., 41(1):29–40.

Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically rigorous java performance
evaluation. SIGPLAN Not., 42(10):57–76.

Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., & Hindle, A. (2016). Energy profiles
of java collections classes. In Proceedings of the 38th International Conference on Software
Engineering, 225–236.

Helano, F., Rocha, L., & Gomes, D. (2015). Ecodroid: Uma ferramenta para análise e visualiza-
ção de consumo de energia em aplicativos android. In Conference: III Workshop on Software
Visualization, Evolution, and Maintenance.

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., & McKeown,
N. (2010). Elastictree: Saving energy in data center networks. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, 17–17.

626262

Hindle, A., Wilson, A., Rasmussen, K., Barlow, E. J., Campbell, J. C., & Romansky, S. (2014).
Greenminer: A hardware based mining software repositories software energy consumption
framework. In Proceedings of the 11th Working Conference on Mining Software Repositories,
12–21.

Kültürsay, E., Kandemir, M., Sivasubramaniam, A., & Mutlu, O. (2013). Evaluating stt-ram
as an energy-efficient main memory alternative. In 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 256–267.

Larochelle, D. & Evans, D. (2002). Improving security using extensible lightweight static
analysis. IEEE Software, 19:42–51.

Lima, L. G., Soares-Neto, F., Lieuthier, P., Castor, F., Melfe, G., & Fernandes, J. P. (2016).
Haskell in green land: Analyzing the energy behavior of a purely functional language. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), 1:517–528.

Liu, K., Pinto, G., & Liu, Y. D. (2015). Data-oriented characterization of application-level
energy optimization. In Egyed, A. & Schaefer, I., editors, Fundamental Approaches to Software
Engineering, 316–331.

Manotas, I., Pollock, L., & Clause, J. (2014). Seeds: A software engineer’s energy-optimization
decision support framework. In Proceedings of the 36th International Conference on Software
Engineering, 503–514.

Moller, A. S. M. (2018). Static Program Analysis. Department of Computer Science, Aarhus
University.

Nucci, D. D., Palomba, F., Prota, A., Panichella, A., Zaidman, A., & Lucia, A. D. (2017).
Software-based energy profiling of android apps: Simple, efficient and reliable? In 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering (SANER),
103–114.

Oliveira, W., Oliveira, R., & Castor, F. (2017). A study on the energy consumption of android
app development approaches. In Proceedings of the 14th International Conference on Mining
Software Repositories, 42–52.

Oliveira, W., Torres, W., Castor, F., & Ximenes, B. H. (2016). Native or web? a preliminary study
on the energy consumption of android development models. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 1:589–593.

Pang, C., Hindle, A., Adams, B., & Hassan, A. E. (2016). What do programmers know about
software energy consumption? IEEE Software, 33(3):83–89.

Pereira, R., Simão, P., Cunha, J., & Saraiva, J. a. (2018). jstanley: Placing a green thumb on
java collections. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 856–859.

Peterson, M. (2009). Decisions under ignorance, 40–63. Cambridge Introductions to Philosophy.
Cambridge University Press.

Pinto, G. & Castor, F. (2017). Energy efficiency: A new concern for application software
developers. Commun. ACM, 60(12):68–75.

636363

Pinto, G., Liu, K., Castor, F., & Liu, Y. D. (2016). A comprehensive study on the energy
efficiency of java’s thread-safe collections. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 20–31.

Romano, J., Kromrey, J., Coraggio, J., & Skowronek, J. (2006). Appropriate statistics for ordinal
level data: Should we really be using t-test and Cohen’sd for evaluating group differences on the
NSSE and other surveys? In annual meeting of the Florida Association of Institutional Research,
1–3.

S. Shapiro, S. & B. Wilk, M. (1965). An analysis of variance test for normality. Biometrica,
52:591–.

Sahin, C., Pollock, L., & Clause, J. (2014). How do code refactorings affect energy usage? In
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 36:1–36:10.

Schmidt, A. ., Bye, R., Schmidt, H. ., Clausen, J., Kiraz, O., Yuksel, K. A., Camtepe, S. A.,
& Albayrak, S. (2009). Static analysis of executables for collaborative malware detection on
android. In 2009 IEEE International Conference on Communications, 1–5.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences. Elsevier Academic Press,
Amsterdam; Boston.

Xu, G. (2013). Coco: Sound and adaptive replacement of java collections. In Proceedings of the
27th European Conference on Object-Oriented Programming, 1–26.

646464

APPENDIX A – ENERGY PROFILE OF THE STUDIED COLLECTIONS

Figure 11: Non-thread-safe map operations for note

656565

Figure 12: Non-thread-safe set operations for note

Figure 13: Thread-safe list additions for note

666666

Figure 14: Thread-safe list removals for note

Figure 15: Thread-safe list traverse for note

676767

Figure 16: Thread-safe map operations for note

