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RESUMO

Neste trabalho, investigamos o mecanismo de uma memoria no espalhamento
de fétons individuais por um conjunto de 4tomos frios bombeados para uma transigao
ciclica. Através do uso de fungdes de correlagdo, identificamos um tempo de vida
para essa memoria que é muito maior que o tempo de vida do estado excitado dos
atomos e é resiliente ao processo de leitura. O trabalho de interpretagdo dos dados
releva a necessidade de cuidado ao pressupor simplicidade a estatistica dos processos
envolvidos para que artefatos experimentais ndo se manifestem de forma relevante
nos resultados finais. Por fim, propomos um modelo teérico para o mecanismo dessa
memoria que possibilita uma interpretacdo mais concreta da natureza da memoria
observada, atribuindo sua origem a um efeito coletivo nos graus de liberdade externos

dos dtomos.

Palavras-chave: Correlagdo. Coeréncia. Atomos frios. Meméria. Espalhamento.



ABSTRACT

In this work, we investigate the mecanism of a memory in the scattering of
individual photons by an ensemble of cold atoms pumped to a cyclic transition. Through
the use of correlation functions, we identify a lifetime for this memory that is much
larger than the lifetime of the exicted state of the atoms and is resilient to the reading
process. The task of interpretation of the results shows the necessity of care in making
assumptions about the simplicity of the statistics of the relevant processes so that
experimental artifacts do not manifest themselves in a relevant way in the final results.
Finally, we propose a theoretical model for the mecanism of this memory that allows
a more concrete interpretation of the nature of the memory we observe, assigning its
origin to a collective effect in the external degrees of freedom of the atoms.

Keywords: Correlation. Coherence. Cold atoms. Memory. Scattering.
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1 INTRODUCAO

Um dos maiores desafios na drea de informagdo quéntica é o do desenvolvimento
de protocolos que sejam escalondveis, isto é, que possam ser implementados em escalas

cada vez maiores, tornando-se mas poderosos.

Um dos elementos necessdrios ao escalonamento de tais protocolos é a memoria.
Quando o escalonamento de uma tarefa requer que certo procedimento probabilistico
seja repetido com sucesso varias vezes para a construgdo do sistema em escala maior,
se ndo houver memoria a probabilidade de sucesso global é muito menor do que se
for possivel guardar os sucessos anteriores em uma memdria. Isso acontece pois sem

memdria, todos os sucessos precisam acontecer simultaneamente.

O exemplo mais relevante dessa ideia para o presente trabalho é o protocolo
DLCZ (Duan, Lukin, Cirac, Zoller, os autores do protocolo) [2] para distribui¢do de
emaranhamento quantico entre locais distantes. Nesse protocolo, o efeito de troca de
emaranhamento [3] é utilizado para conectar dois pares de ensembles de d&tomos frios
emaranhados, gerando emaranhamento entre as pontas extremas de cada um dos pares.
Esse procedimento pode ser repetido vérias vezes, aumentando cada vez mais a distancia
entre os locais com emaranhamento, diferentemente do emaranhamento que pode ser
obtido com propagacdo direta de f6tons [4]. Nesse protocolo, o elemento de memoria
utilizado é o tempo de vida dos estados fundamentais internos dos dtomos.

Interessantemente, uma memdoria na nuvem de dtomos frios que € resistente ao
processo de leitura foi identificada no regime em que luz classica é espalhada [5]. Sendo
essa propriedade de resiliéncia perante o processo de leitura interessante, esse trabalho
propde-se a investigar o comportamento desta memoria no regime de espalhamento

espontaneo de fétons individuais.

Ainda que a memoéria que estudamos tenha analogo classico, propomos um mo-
delo tedrico quantico do seu mecanismo de funcionamento, atribuindo sua origem a um
efeito coletivo. Com isso, uma perspectiva de estudo das propriedades exclusivamente
quanticas do sistema é vislumbrada para a aplicacdo futura desta memoria a protocolos

de informagdo quantica.

Comegamos o texto com o objetivo de introduzir os principios de funcionamento
da nossa fonte de d&tomos, no capitulo 2. Em seguida, no capitulo 3, desenvolvemos uma
intuicdo matematica das ferramentas de analise estatistica necessarias ao entendimento
da investigacdo da memoria. No capitulo 4, discutimos configuragdes experimentais
basicas em 6ptica que sdo relacionadas a medidas de correlacdo. Finalmente, no capitulo

5, apresentamos o experimento realizado e discutimos como deve ser realizada uma
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andlise de dados que possibilite uma clara interpretacdo dos fendmenos envolvidos.
Apresentamos um modelo tedrico da memoria no espalhamento de luz por dtomos
frios no capitulo 6, e a conclusdo do trabalho no capitulo 7. Detalhes sobre o tratamento
dos dados experimentais podem ser encontrados nos apéndices ao final do texto. Uma
discussdo mais completa do capitulo 2 pode ser encontrada em [6] e [7], do capitulo 3
em [8] e [7], e do capitulo 4 em [7] e [9].
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2 ARMADILHA MAGNETO-OPTICA

O experimento que forneceu os dados sobre os quais realizamos a anélise
estatistica tem como base uma nuvem de dtomos de rubidio 87 frios, a uma temperatura
da ordem de centenas de uK. Por isso, a presente secdo serd dedicada a explicar a fisica
que permite que um sistema desse tipo seja construido. Para tanto, precisamos entender
como o movimento de um atomo € alterado pela sua interagdo com um campo luminoso
e a partir disso descrever um esquema que desacelere e prenda os 4tomos, formando

um conjunto frio numa regido do espago.

2.1 Interacao entre luz e atomo de dois niveis

Como a taxa de troca de momento entre o campo luminoso e o 4tomo esta
relacionada com a taxa com que esse 4tomo absorve e emite fétons, precisamos de
um modelo para a interacdo dtomo-luz [6]. Por simplicidade, supomos um atomo de
dois niveis, |1) e |2), onde a energia de |2) é maior que a de |1), e um campo luminoso
monocromatico com frequéncia angular w, dessintonizado de 6 da transigdo |1) — |2).

Esse sistema estd representado na figura 1.

by

B

Ly

Figura 1 — Diagrama de energia do 4tomo de dois niveis

Se 0 hamiltoniano do atomo livre é Hy, entdo Hy|l) = E1|1) e Ho|2) = E3|2).
Se ligamos o campo eletromagnetico E(t) = Egpcos wt, o hamiltoniano passa a ser

H = Hy + er - Ep cos wt e agora escrevemos o estado num tempo ¢ como

W) = cr(t)e ML) + ca(t)e2M2). (2.1)

Aplicando (1| e (2| na equagdo de Schroedinger, H|W) = ih%l‘l’) , e definindo
Q = (1ler - Eo|2) /h, w1 = E1/h, w2 = Ez/hi e wo = wp — w1,chegamos no seguinte sistema
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de equacdes diferenciais:

ic1 = Qcos (a)t)e"iwotcz,
_ (2.2)
Twot

ich = Q cos(wt)e' " cy.

Em seguida, aplicamos a chamada aproximagdo de onda girante. Para tanto,
escrevemos 0s cossenos em termos de exponenciais complexas. Isso levara ao apareci-

mento dos termos e (@-@0)t g pEi(@+wo)t

. Para as altas frequéncias utilizadas na 6ptica, os
termos do segundo tipo oscilam muito mais rapidamente que os do primeiro e podem

ter sua média considerada desprezivel. Com isso, obtém-se o novo sistema

.. N O)
icy = cre'@ “’O)tz,
' 0 (2.3)
icy = C1€_l(w_w0)t7-
No que se segue consideramos ) = Q)%, e definimos 6 = w — wy. Realizamos a mudanga
de coordenas para ¢1 = ¢ e~i01/2 6 & = cyet/2 o que remove a dependéncia temporal

explicita do sistema de equag¢des. Com o novo sistema, podemos escrever as equagdes
diferenciais para os termos da matriz densidade |[W)(W| = p11|1){1] + p22|2)(2| +
P12e 1) (2] + pare0H2)(1] .

) Q. .

P11 = l;(mz — p21),

) QL -

P2 = —15(912 - p21),
(2.4)

L e Q)

P12 = —10p12 + ZE(PH - p22),

- e Q)

P21 = i0p21 — 15(1011 - p22).

Essas equagdes ndo incluem o decaimento expontaneo por principio, entdo,

.. . . T ~ 2 T~ 2
adicionamo-o somando szz a P11, —szz a P22, _7912 a P12, € _7921 a P21.

Qo .
P11 = 15(,012 — p21) +T'pao,
Q. .
P22 = —15(1012 — p21) = Tpa,
(2.5)
e Q) |
P12 = —i0p12 + ZE(Pll - p22) — 5P12,
e T Ir_
P21 = 10p21 — ZE(pll - p2)— 5 P21

O que nos interessa aqui é o estado apds tempos muito maiores que o tempo de

decaimento I'"!. Por isso, supomos um estado estaciondrio, isto é, p11 = p2 = p;lz =
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p}l = 0. Com isso, levando em consideragdo a normalizacdo do estado, que impde
p11 + p22 = 1, obtemos

0?/4
P22 = .
I2/4+Q2/2 + 62

(2.6)

2.2 Forca de espalhamento

F
—>

-G —+— G >

Figura 2 — Luz laser exerce forga sobre atomos como resultado de sucessivas absor¢des
dos fétons do feixe laser e das emissdes espontaneas subsequentes.

Como a emissdo espontdnea ndo tem direcdo preferencial, se um dtomo é
iluminado por um feixe de luz laser, como ilustra a figura 2, ele sofrerd uma forca na
direcdo de propagacdo dessa luz devido aos sucessivos espalhamentos. Ao absorver
um féton do feixe que se propaga na dire¢do +x, o &tomo ganha um momento +7kx.
Em seguida, pode espontaneamente emitir um féton de mesma energia, isto é, com
mesmo momento em moédulo, em alguma direcao aleatéria. Repetindo essa sequéncia
muitas vezes, todos os ganhos de momento por absorc¢ao sdo na mesma diregdo, mas os
espalhamentos espontaneos tenderdo a se cancelar. O caminho no espago dos momentos
realizado pelo 4&tomo pode ser exemplificado pelo esquema na figura 3.

10 1
¢4 HEmissao espontanea
I
¢1  Absorcao
S e I
N
— W
2
ol
0 2 4 6 8 lb 12 14
Px

Figura 3 — Ilustragdo da variagdo do momento linear do d&tomo apds sucessivas absor¢oes
e das emissdes espontaneas de fétons
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Esse raciocinio sugere a seguinte expressdo para a forca exercida sobre o d&tomo:

F, espalhamento = thz (2-7)

onde R ¢é a taxa de emissdo espontanea e ik é o momento linear dos fétons do feixe
de laser incidente sobre o 4tomo. Como a taxa de emissdo espontanea é proporcional
a populagdo no estado excitado, py, e também a taxa de emissdo espontédnea, I',

escrevemos R = I'py; e utilizamos o resultado da se¢do anterior para po>.

Q0?%/2
I2/4+Q2/2 + 6%

r
Fespa]hamento(ér k) = Ehk (2.8)

onde 6 = w — wy.

E importante ter em mente que essa expressao se refere apenas a forca média
que resulta da sequéncia de absor¢des e emissdes. O dtomo em cada instante de tempo
pode ganhar momento em dire¢des diferentes da direcdo do laser, o que adiciona uma

varidncia em torno da média nula no ganho de momento nessas diregdes.

2.3 Melaco éptico

Sabemos ja que um feixe de laser que se propaga na dire¢do x exerce uma forga
na direcdo X sobre os 4tomos que ilumina. Mais interessante é o que acontece se temos 2
feixes contrapropagantes de mesma frequéncia. Veremos que é possivel resfriar dtomos

com um arranjo desse tipo [10] [11].

Figura 4 — Um par de feixes de laser contrapropagantes sintonizados abaixo da frequéncia
de ressonancia do atomo resulta em uma forga do tipo viscosa ao longo de
sua direcdo.

Consideramos agora que o efeito Doppler desloca a frequéncia do laser como
percebida pelos &tomos. Supomos que ambos os feixes e 0 movimento do atomo sdo
paralelos ao eixo x. Se a velocidade do atomo é v, um feixe de luz que se propaga na
direcdo +x é percebido pelo &tomo com uma frequéncia deslocada de —kv. Um feixe

de luz na diregdo —x, por sua vez, é percebido com uma frequéncia deslocada de +kv.
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Pela forma de 6, temos que w — w £+ kv = 0 — 0 + kv. Assim, a forga sobre o 4tomo
devido aos dois feixes fica:

Pmelago = Fespalhamento(é - k?), k) + Fespalhamento(é + ko, _k) (29)

Expandindo Fpelaco em poténcias de kv até primeira ordem, obtemos o seguinte:

hk2Q’T
Fmelago ~ 0 > v. (210)
(T2/4 + Q2/2 + 62)

Quando 6 < 0, essa é uma forga do tipo —|a|v que sempre se opde a0 movimento
da particula, uma forga viscosa. Se adicionarmos mais 2 pares de feixes contrapropagantes
nas dire¢des 7 e Z , qualquer d4tomo que entre na regido iluminada pelos 6 feixes tendera
a parar seu movimento. Nessa regido, a luz cria uma resisténcia a qualquer movimento
dos atomos, funcionando como um meio viscoso. Dai o nome de melago 6ptico para

essa técnica.

Intuitivamente, podemos entender que o efeito Doppler favorece sempre o
feixe contrapropagante ao movimento do atomo desde que a frequéncia da luz esteja

sintonizada abaixo da frequéncia de ressonédncia da transi¢do atomica.

2.4 Armadilha magneto-6ptica

Veremos agora que a influéncia do efeito Zeeman [12] sobre um melago 6ptico
pode levar ao aprisionamento de 4&tomos, numa configuragdo experimental conhecida
como armadilha magneto 6ptica (MOT, do inglés magneto-optical trap) [13]. Supomos
que o dtomo de 2 niveis que consideramos até aqui é, na verdade, um atomo com 4
niveis, sendo que um desses niveis tem energia E; e momento angular nulo, e os outros
trés sdo degenerados, com energia E; e momento angular quadrado /2. Esse é o caso de
uma transi¢do entre niveis finos com momento angular total ] = 0 e | = 1. Por conta
do efeito Zeeman, os trés niveis de energia mais alta se tornardo ndo degenerados na

presenca de um campo magnético.

Para campos magnéticos fracos, o deslocamento Zeeman pode ser escrito como
gupBM; onde g é o fator de Landé, 11 é o magneton de Bohr e M; é o niimero quantico
magnético. No nosso caso, Mj = 0,1, —1 para o nivel de energia superior e Mj = 0 para o
inferior. Se geramos um campo magnético que na origem é nulo com gradiente constante,

.. 9By s , 9By ~ . 9B, 2 .
temos na vizinhanga dela B(x,y,z) = 5 % + It Assim, os deslocamentos

Zeeman em funcdo de cada direc¢do ficam como na figura 5 para o eixo x.

Esses deslocamentos por sua vez, tornam as transi¢oes ¢+ e o~ diferentemente

provaveis nas regides de x,y,z positivos ou negativos. Escolhendo, entdo, as polarizagdes



Capitulo 2. Armadilha Magneto-Optica 18

A
m = —1
E m =20
m=1
= » T
rz=0

Figura 5 — Deslocamento Zeeman na vizinhaga da regido em que o campo magnético é
nulo.

dos feixes de armadilha de acordo com a figura 6, os 4tomos sempre terdo maior
probabilidade de absorver fétons do laser que aponta na dire¢do da origem do que do
laser que aponta para fora da origem por causa da maior proximidade da condi¢do de

ressondncia. Esse desbalango na probabilidade gerard uma forca restauradora.

x <0 x>0

o~ favorecido o1 favorecido

- € -

Figura 6 — Escolhendo apropriadamente a polarizagdo dos feixes de acordo com o seu
sentido de propagacao, é possivel favorecer sempre a forca que aponta na
direcdo da origem.

Para ver matematicamente o que acontece, consideremos duas bobinas na

configuragdo anti-Helmholtz segundo o esquema mostrado na figura 7. Aqui, na dire¢do

z, a frequéncia wy € alterada para wy + g‘%—B%z. Expandindo a expressdo exatamente
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como fizemos para a for¢a no melaco 6ptico, obtém-se que

2
Fuor = hkQ2TS (ko + g&aaBzz)'
(2/4+ Q22 + 6?) h oz

(2.11)

aaBZ = > (), essa expressao significa que h4, além da

forca do tipo viscosa, uma forga restauradora tipo —|f|z nesse sistema. E interessante

Como no caso da figura de exemplo

notar que dado um campo magnético nulo com gradiente constante na regido de
intersecdo dos 6 feixes de laser que formam o melago 6ptico, sempre é possivel escolher
combinagdes de polarizagdes dos pares de laser contrapropagantes tais que a forca

resultante serd —|f|z. Um esquema da MOT pode ser visualizado na figura 7.

Figura 7 — Esquema de uma armadilha magneto 6ptica

2.5 Limitacoes da técnica

A abordagem simples que adotamos no presente capitulo pode passar a impressao
de que dtomos que entram na regido da armadilha magneto-6ptica, a interse¢do entre os
6 feixes de luz laser contrapropagantes, chegarao a velocidades cada vez mais baixas
sem limitagdo, o que levaria a temperatura sem empecilhos até 0 K. Esse nédo € o caso.
Por causa da natureza discreta e probabilistica da interacdo entre os d&tomos e a luz, o

que calculamos foi apenas um efeito médio.

Na prética, os &tomos armadilhados (que foram desacelerados o suficiente pelo
melago 6ptico para que o desbalango devido ao campo magnético seja capaz de prendé-
los) continuam absorvendo e emitindo espontaneamente fétons. Esse processo resulta

em uma média nula, mas em uma variancia diferente de zero a velocidade dos dtomos.
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Sucessivas absor¢oes e emissoes aleatdrias criardo uma caminhada aleatéria dos dtomos

no espaco das velocidades em torno da origem.

Esse limite inferior na média da velocidade quadrada dos atomos corresponde
a uma temperatura minima a qual o melaco 6ptico consegue trazer um conjunto de
atomos. Esse limite é chamado de limite Doppler, e pode ser alcangado quando 6 = —I'/2

[6]. Ele corresponde a temperatura Tp dada por

ksTp = Z—F (2.12)

No entanto, em medidas experimentais da temperatura de 4tomos armadilhados
por essa técnica, as temperaturas observadas podem facilmente ser bem menores do
que a temperatura do limite Doppler [14]. A diferenca entre o limite tedrico que citamos
e a observagdo experimental tem origem na nossa simplificacdo em utilizar 4tomos de 2
niveis. Atomos reais possuem niveis degenerados, que acabam contribuindo com novos
mecanismos de resfriamento. Um importante mecanismo para isso é o chamado efeito
Sisifo [15]. Nele, o gradiente de polarizacdo resultante da soma dos feixes de cada par
do melago 6ptico faz com que sequéncias de absorc¢do e emissdo espontanea saindo de
um nivel fundamental de mais alta energia e terminando em um de mais baixa energia
sejam mais provdveis que o inverso, através do deslocamento dos niveis de energia pela
luz.

No nosso experimento, ndo alcangamos o limite de temperatura Doppler, que €,
para a transicdo que escolhemos, de 144K [16]. Isso acontece pois nossa configuragao
experimental tem o objetivo de otimizar a profundidade 6ptica da nuvem gerada, e ndo
a temperatura dos atomos.
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3 FUNCOES DE CORRELACAO

A presente se¢do é dedicada a introduzir o conceito de fun¢des de correlagao.
Tais fun¢des quantificam nossa intuicdo de similaridade no contexto de processos
aleatdrios. Quando comparamos uma fungao consigo mesma esperamos obter o maximo
de similaridade possivel entre duas fun¢des comparadas, e assim acontece com o valor
da fungdo da correlacdo de primeira ordem quando a aplicamos a uma fungdo em
relacdo a si mesma.

Para chegar as defini¢des das fung¢des de correlacao, falaremos sobre os conceitos
de variavel aleatdria, processo aleatério, estacionariedade e por fim sobre as referidas
funcdes. As defini¢Oes utilizadas aqui seguem a abordagem de [8], ja que ela se adequa

bem a interpretacdo do nosso procedimento experimental.

3.1 Variaveis Aleatorias

Em certos casos, em especial em sistemas quanticos, os experimentos que
realizamos fornecem resultados os quais ndo podemos controlar. Algumas vezes essa
impossibilidade tem origem no fato de que, durante a preparagdo do experimento, ndo
se controla todas as varidveis relevantes para o resultado. Esse é o caso de um jogo de
dados ou de um jogo de cara ou coroa. Outras vezes, no caso de sistemas quanticos, essa
impossibilidade de escolha dos resultados é intrinseca a fisica dos processos e ocorre

ndo importa o qudao bem nés controlemos o ambiente.

De toda forma, como € util atribuir ndmeros aos resultados de nossos experi-
mentos, isto é, definir variaveis que dependem dos resultados experimentais, somos

levados naturalmente nesses casos a definicdao de variaveis aleatorias.

Variaveis aleatdrias sdo definidas como varidveis cujos valores dependem do
resultado de experimentos aleatérios e que possuem associadas a cada um de seus
possiveis valores as probabilidades correspondentes aos respectivos resultados do
experimento. Por exemplo, em um jogo de dados, os possiveis resultados do jogo podem

ser agrupados em um conjunto como o da figura 8.

Figura 8 — Resultados possiveis do lancamento de um dado.
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Se definirmos entdo a varidvel U associando a ela os resultados do experimento

de acordo com a figura 9, teremos parte da nossa defini¢do de varidvel aleatéria satisfeita.

<>
u ® ) =3

u( @ ) =5

>
u(Bugy) = 7

Figura 9 — Associagao dos resultados de um experimento aleatério aos valores de uma
varidvel aleatdria.

Como as configuracdes do dado com valor 2 ou 1 voltados para cima ocorrem
com probabildade de 1/3, o valor u = 2 da varidvel U aleatdria tem associado a si a
probabilida de 1/3. Da mesma forma, o valor de u = 3 tem probabilidade de 1/6 e assim
por diante. Com isso, podemos considerar a varidvel u como uma varidvel aleatéria, e a
ela teremos associados valores médios, variancia e todas as quantidades comumente

utilizadas em estatistica.

3.2 Processos Aleatdrios

Com o conceito de varidvel aleatéria bem definido, é facil entender o que é um
processo aleatdério. Suponhamos que ao invés de associar as configuragdes possiveis do
dado os niimeros 2, 3, 5 e 7 como fizemos na secdo anterior, associemos 4 funcées do
tempo, f,(t), fu(t), fc(t) e fa(t), de acordo com a figura 10.
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F((Pugy)t) = = fa(t)
QDN S RAVAVAVAVAVAVAVAVEES (1())
@ )t = = fe(t)
fa(t)

<>
f( h‘ﬁi 7t):wwww»www

Figura 10 — Num processo aleatério, fung¢des do tempo estao associadas aos resultados
imprevisiveis do experimento aleatério.

De maneira analoga a como lidamos com as varidveis aleatérias, se hd uma
fungdo F(t) que, dependendo do resultado do experimento, pode assumir os valores de
fa(t), fo(t), fo(t) ou f4(t) e ndo podemos prever qual desses casos acontecerd, dizemos

que F(t) é um processo aleatério.

Um ponto importante dessa descrigdo é notar a presenca da fungao sendide no
exemplo aqui apresentado, a funcdo f;,(f). Normalmente ndo considerariamos uma
funcao seno como sendo resultado de um processo aleatério. Aqui, no entanto, essa
funcao faz parte de um ensemble de fungdes associado a um processo aleatério. Como
ndo sabemos se é a fungdo seno que sera sorteada ou ndo, ela pode fazer parte da
descri¢do de um processo aleatério sem que confundamos sua presenga com um processo

deterministico.

E importante notar ainda que esses eventos aleatérios por trds das funcdes que
ndo podemos prever podem ser sequéncias de miltiplos eventos. Por exemplo, se
utilizamos como evento aleatério duas rodadas de cara e coroa os resultados possiveis
passam a ser quatro: cara cara, cara coroa, coroa cara, coroa coroa. Aos quatro eventos
podem estar associadas 4 ou menos fungdes, e a cada uma dessas funcdes esta associada
a probababilidade de que qualquer um de seus eventos correspondentes aconteca.
Uma descri¢gdo completa do processo aleatério é uma enumeracado de todas as fungdes

possiveis de serem observadas junto com suas respectivas probabilidades.

Em geral, ndo temos acesso a descricdo completa do processo, mas é suficiente
utilizar a densidade de probabilidade de primeira ou segunda ordem. Essa quantidade
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pode ser entendida a partir da figura 11.

31 ta t3

Figura 11 — Do ensemble de fung¢des podemos visualizar o significado das distribui¢ées
de probabilidade que caracterizam o processo aleatério.

Na figura 11, podemos olhar para o ensemble de fun¢dées empilhando-as alinhadas
no tempo. Olhando para a lista de todas as fungdes possiveis, podemos escolher um
instante t; e perguntar-nos qual a probabilidade de uma fung¢do que tem F(t;) = f; ser
observada. A resposta para essa pergunta para qualquer instante de tempo ¢ é a densidade
de probabilidade de primeira ordem pr( f1; t1). A generaliza¢do dessa pergunta para mais
pontos é simples. A densidade de probabilidade de segunda ordem é a probabilidade
de que se observe uma fung¢do que tem F(t1) = fi e F(t2) = f», que escrevemos como
pr(fi, f2; t1, t2). A de terceira ordem escreve-se como pr(fi, f2, f3; t1, t2, t3) e assim por
diante.

Com essas densidades de probabilidades, podemos calcular o valor esperado da

varidvel f no instante #;:

Flt) = / afs Fpe(fu ). (3.1)

Naturalmente, se dispomos de pr(fi, f2; t1, t2) , podemos calcular médias con-
juntas f(t1)f(t2):

(k) = / / dfi dfs fiLfape(fi, fos 1, t2). (3.2)
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Também € possivel definir médias no tempo. Estas, no entanto, correspondem a
uma fun¢do de amostra em particular, e ndo retornam fung¢des do tempo, mas apenas

nimeros. Escolhendo uma certa funcdo f,(f) do ensemble, temos, por exemplo:

T/2
(fattn = Jim 7 [ at g, 33
e
TR
ol = pim 1 [ e 64

E claro que é possivel definir mais médias sobre esses processos. Veremos
como certas defini¢des de outras médias serdo tteis mais tarde, ao discutir fungdes de

correlacdo.

Médias sdo as quantidades com as quais geralmente lidamos. Elas sdo tteis
porque em processos aleatdrios normalmente a forma das fungdes do ensemble ndo pode
ser descrita em forma analitica. Essa impossibilidade, por sua vez, dificulta a andlise do

processo. E dificil, por exemplo, comparar uma func¢do de amostra com outra.

Como as médias no tempo sdo quantidades bem definidas para cada funcdo de
amostra, elas servem para caracterizar essas fungdes individualmente (ou o processo
inteiro quando houver ergodicidade, como veremos a frente). As médias por ensemble,
por sua vez, sdo bem definidas para o processo e servem para caracterizar o processo
aleatério como um todo. Essa distingao entre médias temporais e médias no ensemble

sera bastante importante para o nosso trabalho de anélise dos dados experimentais.

Por fim, pontuamos que normalmente, enquanto o processo de medida acontece,
ndo temos conhecimento de qual fungdo f,(t) obteremos ao final do experimento
(sabemos isso, por exemplo, no caso de encontrar o seno no primeiro exemplo aqui
apresentado). Isso acontece porque geralmente ndo temos acesso a lista de eventos
aleatorios, fungdes associadas a eles e suas respectivas probabilidades. Vendo desse
modo, ficam claros os motivos pelos quais nunca lidamos com descrigdes completas dos

processos aleatdrios, e também a utilidade da descri¢do parcial em termos de densidades
de probabilidade.

3.3 Estacionariedade

Para modelos fisicos, certos tipos de processos aleatdrios tém uma importancia
muito maior do que os outros. Nesta se¢cdo, descrevemos algumas classes de tais

processos que sao uteis a nossa andlise.
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3.3.1 Processos estritamente estacionarios

Um processo aleatdrio é classificado como estritamente estacionario quando a
funcdo de densidade de probabilidade pr(fi, ..., fu; t1, ..., tn) ndo depende da origem

temporal para qualquer . Isso significa que, nesse caso:

pp(fl, ...,fn; t,...ty) = pp(fl, fn/ t1—=T,...t,=T) (3.5)
para qualquer T e qualquer n.

Uma intuigdo visual dessa propriedade pode ser inferida a partir da figura 12,
apresentada para ilustragdo do que é um processo estaciondrio num sentido amplo,
desde que tenhamos em mente que ela precisa valer para qualquer escolha de qualquer

conjunto de n pontos no tempo.

A necessidade de que essa condicdo seja satisfeita para qualquer valor de n pode
tornar essa classificagdo impraticavel. Ainda que um processo de fato seja estritamente
estaciondrio, como normalmente nés ndo dispomos da sua descricdo completa e essa
descricdo completa equivale a conhecer pr(fi, ..., fu; t1, ..., tn) para todo n, é dificil ter
certeza de que podemos considerar isto como sendo verdadeiro. Todavia, a hipétese de
que um processo pertence a essa categoria pode simplificar a argumentacao e levar a
resultados compativeis com o que é observado. Mais tarde, veremos uma classe ainda
mais restritiva que a dos processos estritamente estacindrios mas que é de grande
utilidade.

3.3.2 Processos estacionarios num sentido amplo

Quando tratamos de processos aleatérios, é comum que as quantidades mais
relevantes para nossos objetivos sejam valores esperados. Isto é natural pois os valores
esperados sdo aquelas quantidades que devem se manter iguais entre conjuntos de
repeti¢des dos experimentos. Assim, definimos um processo como estaciondrio num

sentido amplo quando ele obedece a duas condi¢des:

* (f(t1)) ndo depende de ¢,

* (f(t1)f(t2)) depende apenas da diferenca 7 = t — f;.
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Processo estacionario Processo nao estacionario

fa(t) — oyl £ (t) —Ww e A

t fb(t)‘www‘:ww—’t
t fd(t)jW‘MWWWV

i1 t}2 t}3 11 2 t§3

Figura 12 — Comparagao entre um processo estacionario em um sentido amplo e um
processo ndo estacionario. No processo estaciondrio, as distribuigdes de
probabilidade ao longo do ensemble dado um instante ¢ ndo dependem da
origem temporal.

fc(t)w

E interessante notar que essa classe é um caso particular da classe dos processos
estritamente estaciondrios. Se relaxarmos a condigao da equagdo 3.5 para que ela seja
vélida apenas para n = 1 e n = 2, entdo o processo obedece pr(fi,t1) = pr(fi—-T;t1—T)
epr(fi, fo,t1 — T, t2 — T). Com isso, escolhas apropriadas dos valores de T nas equagdes
3.1 e 3.2 recuperam as condi¢des para que um processo seja estaciondrio num sentido
amplo. Assim, vemos que o0s processos estritamente estacionarios formam um sub

conjunto dos processos estacionarios num sentido amplo.

3.3.3 Processos ergddicos

A tdltima classe aqui descrita serd a classe dos processos ergddicos. Esses processos
sdo aqueles em que cada uma das fungdes que se pode observar numa realiza¢do dos
experimentos €, em certo sentido, tipica do processo. Mais especificamente, 0os processos
ergddicos sdo aqueles em que a distribuicdo de probabilidades ao longo do tempo em
qualquer fun¢do de amostra é a mesma que a distribui¢do em qualquer instante de
tempo ao longo do ensemble de fungdes. Por isso, quando um processo é ergddico, é
equivalente para a investigagdo se os dados sdo provenientes de uma longa fungdo de

amostra ou vém de muitas funcdes de amostra curtas.
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Para que um processo seja ergddico, é necessario que ele seja estritamente
estacionario. Isso fica claro se olharmos para um processo cujas fun¢des de amostra sao
todas parecidas, isto €, tém a mesma distribuigdo de probabilidades ao longo do tempo,
mas cuja distribui¢do ao longo do tempo depende da origem temporal que escolhemos.

Processo nao ergdédico por Lo
nao estacionariedade Processo ergodico

L AW ‘H-I‘I\r R TL ARl P N t

5] to 3 t to t3

Figura 13 — Comparacao entre um processo ergddico e um processo ndo ergddico devido
ando estacionariedade. E importante ter em mente que nao estacionariedade
ndo € a unica razdo para nao ergodicidade.

Um exemplo de um processo desse tipo é o mostrado pela figura 13. Nesse
exemplo, o processo ergddico, a direita, é colocado em contraste com um processo ndo
ergddico por nao ser estaciondrio. A principio se pode confundir o processo da esquerda
por ergddico pois todas as fun¢des do ensemble seguem a mesma distribui¢do no tempo,
e nesse sentido elas sdo caracteristicas do processo. No entanto, para classificarmos esse
processo como ergddico, é necessario que as médias no tempo dada uma fungao de
amostra sejam idénticas as médias por ensemble dado um tempo. Considerando isso
e notando que em t; o processo da esquerda varia numa regido de valores mais larga
do que qualquer das fun¢des de amostra ao longo do tempo, entendemos de que nao
se trata de um processo ergédico, e, portanto, ndo podemos considerar para ele que as

médias no tempo caracterizam o processo como um todo.

Em fisica, ¢ comum que a suposi¢do de que se trabalha com processos ergédicos

leve a conclusdes consistentes com os dados observados apesar deles compreenderem
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uma classe muito restrita dentro dos processos aleatérios.

Esse ndo é o caso do experimento analisado no presente trabalho. Neste trabalho,
mostraremos que a suposicdo de que podemos tratar as médias temporais como médias
no ensemble e usa-las para caracterizar o processo pode levar a artefatos nas curvas

experimentais que dificultam a interpretacao da fisica do problema.

3.4 Funcoes de correlacao

Agora que conhecemos os tipos relevantes de processos aleatérios, resta-nos
introduzir um método que nos dé informagdes sobre esses processos. Ja mencionamos
que as médias sdo quantidades que algo dizem sobre os processos, e ndo apenas
sobre uma realizacdo experimental em particular. Agora, partimos de uma percepgao

importante sobre as defini¢des das médias estatisticas previamente estabelecidas.

Em algebra linear, podemos interpretar fun¢gdes como vetores e seu produto
escalar pode ser definido em termos de integrais. Além disso, esses produtos escalares
sdo abstragdes da nossa intuigdo sobre projecdes, que servem como comparagdes entre
dire¢des, ou vetores, diferentes. Por isso, podemos usar integrais, as médias, para definir

as fungdes de correlacdo que comparam diferentes fun¢des de amostra.

Definimos entdo a funcdo de autocorrelacdo estatistica através de uma média
como as definidas acima. Primeiro, partimos de uma média temporal para comparar

uma fung¢do de amostra f,(t) consigo mesma em outro instante, f,(f + 7):

i g TR
Fa®) = (fult + D) = Jim 7 [ defute - o0 36)

De acordo com a nossa motivagao, quanto maior o valor de ['4(), mais o valor da funcao
fo em t + T depende do valor dela mesma em .

Essa média temporal caracteriza uma fun¢do de amostra. Apenas quando se trata
de processos ergddicos, podemos usar esse tipo de média para tirar conclusdes sobre o

processo como um todo.

Agora podemos utilizar o outro tipo de média que definimos, a média por
ensemble, com uma média anédloga a essa média temporal, para obter informacédo do

mesmo tipo em relagdo ao processo como um todo. Assim, definimos

Tr(ty, t2) = (f(t) f(t2)) = [00 [00 dfidf> f1 f2rr(f1, f2; 11, t2). (3.7)

Se for o caso de f ser uma fungdo complexa, fazemos f1 f» — f; f2 nas defini¢bes acima.
Com isso, podemos utilizar I'r(t1, t2) para medir o quanto o processo como um todo em

t» depende dele mesmo em t;.
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Pelas caracteristicas dos processos estaciondrios, concluimos que no caso em que
h4 estacionariedade, essa funcdo depende apenas de 7 = t; — 1. Ja para os processos
ergodicos, as duas funcdes de correlagio acima definidas coincidem, I'(7) = T'(t1, t2) =
I'(tp — t1). Por isso, conhecer as caracteristicas dos processos que estudamos pode

simplificar a analise.

Pela analogia que fizemos com o produto escalar, podemos dizer que I'r(7) =
(f(t1), f(t2)). Pela desigualdade de Cauchy-Schwarz, |{u, v)|* < {(u, u){v,v). Logo,

IT(t1, t2)]?
T(t1, t)I(t2, £2) —

Como essa quantidade a esquerda na expressao 3.8 é normalizada, ela é a

(3.8)

quantidade verdadeiramente ttil que podemos utilizar para comparar sistemas diferentes
entre si quanto as suas correla¢des. Dessa forma, definimos o que chamaremos aqui de
funcgdo de correlacdo de primeira ordem, g(l)(tl, t).

(f(t1)f(t2))
[UFEDRXf ()R]

onde as médias consideradas sdo as médias estatisticas utilizadas na equacao 3.7. Caso

gW(t, b)) = (3.9)

se trate de um processo ergédico, utilizar a média temporal que aparece na equacao 3.6
leva ao mesmo resultado. Essa quantidade obedece

1§V (t, )| < 1. (3.10)
Além disso, se t1 = 1y,
(f(£)%)
Ot 1) =~ =1 3.11
D= o =Y G

de forma que ao comparar uma func¢do consigo mesma, obtemos o valor maximo

possivel.

E possivel que queiramos comparar as correlacdes entre mais de 2 fungdes
simultaneamente. Para isso, podemos simplesmente adicionar as fun¢ées que desejamos
dentro de valores esperados como os de g(l)(tl, t2) . Ao proceder por este caminho,
deixamos de falar de produtos escalares, mas podemos carregar a intui¢do prévia para
as novas defini¢des. Tendo isso em mente, definimos o grau de correlacdo de ordem r,

que relaciona fun¢ées medidas em 2r pontos do tempo:

(f(t1)...f(2r))
[FEDP.- 1 f (21) 2]

Neste trabalho, aplicaremos casos particulares dessa expressdo a 6ptica.

gty ... ty) = (3.12)

1/2°
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3.5 Funcoes de correlacao em optica

Sabemos que, quando tratamos de luz, estamos lidando com campos eletromag-
néticos que variam ao longo do tempo. Se o sistema de interesse for, por exemplo, um
conjunto de muitos 4tomos cujas posic¢oes e velocidades ndo conhecemos, como é o
caso de um géas, havera incertezas nos detalhes do processo de emissdo da luz que
exigirdo um tratamento estatistico. Além disso, sistemas quanticos mostrardo varia¢oes

imprevisiveis que sdo caracteristicas desse tipo de sistema.

Assim, se nos interessa caracterizar as correlagdes presentes nesse tipo de processo,
podemos definir algumas quantidades em termos dos campos eletromagnéticos. Dessa

forma, em temos do campo elétrico complexo, definimos as seguintes:

Grau de coeréncia temporal de primeira ordem: é a simples funcdo de correlacdo de

primeira ordem comparando o campo elétrico em instantes diferentes:

Wy - _ (EWEE+D)
VAE®PE( + 1))

onde as médias sdo temporais, sobre f.

g (3.13)

Grau de coeréncia de segunda ordem: é a generalizagdo da func¢do de primeira ordem

para as intensidades:

@) (E*(t)E(t)E(t + T)E*(t + 7))
T) =

VAE®PYIEBIPYIE + T)PYE(E + 1)) (3.14)
_IOI(E+ 1))
—IO)I(E+ 1))’

onde as médias sdo temporais, sobre ¢.

8

3.5.1 Algumas propriedades gerais em processos classicos

Ja sabemos que a funcdo de correlagdo de primeira ordem obedece em qualquer
processo

180 (1, 1) <1, (3.15)
§W(t, t) =1. (3.16)

Agora listamos duas propriedades gerais da fun¢do de correlagdo de segunda ordem

quando calculadas sobre processos cldssicos.
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Como (I(t1) = I(t2))? > 0, entdo

20(+1)I(t) < I(t1)? + I(£2)%. (3.17)

Disso segue uma desigualdade relacionada a g?):

[1(t) + .. + I(tn) ] = D))
i
< % Z I(tz')2 + % Z I(t]')z = Z I(i’j)z.
ij ij i,j

Segue que
[1(t) + .. + I(tn)]* < NTI(t2)2 + ... + I(tn)2. (3.18)

Dividindo ambos os lados da tltima desigualdade por N2:

[1(t) + . +1tN)]S T2 + .+ I(En)?
N2 < N .

(3.19)

Como ndo definimos quem sdo os t;, o lado esquerdo dessa expressdao pode ser
entendido como (I(t))? e o direito como (I(t)?), tanto para médias temporais quanto

médias estatisticas. Logo,

A1) _
1)

A expressdo 3.17 implica em mais uma propriedade:

g?(0) > 1. (3.20)

It +T) + oo + It + D)7 = > I + DI+ T)
. ] )
i,]
< %Z]: I(t)2I(t) + 1) + % Z]: I(t)2I(t; + 1)

= Z I(t)?1(t; + T)°.
L]
Segue que
[I(tl)l(fl+T)+...+I(tN)I(tN+T)]2 < (Il .+ I(E)?) (I(F1+T)* +. + T (B +17)7). (3.21)

Dividindo essa expressdo por N2, o lado esquerdo pode ser entendido como a média
((I(H)I(t + 7)))? e o direito como (I(t)?){I(t + 7)?). Entdo, se o processo em questdo for
estaciondrio, ao dividir a inequacdo resultante por (I(t))>(I(t + 7))?, obtemos mais uma

propriedade de g‘?(7):
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IOIE+1)* ) At +1)%)
(TENXI(E+ 1))~ I1)* (It + 1))

——
=[g@())? =[g@0)] =[g@(0)]
ou
g? (1) < ?(0). (3.22)

Essas duas propriedades podem ser colocadas dentro de uma mesma expressao. Para

processos estaciondrios e classicos, concluimos que
1< ¢?(1) < g?(0). (3.23)

3.5.2 Algumas propriedades em processos caoticos classicos

Em vérios casos de interesse, por exemplo gases como o que estudamos experi-
mentalmente, o campo elétrico sobre o qual calculamos a intensidade pode ser visto
como a soma de varios campos elétricos independentes mas equivalentes (com mesma
amplitude). A esse tipo de processo chamaremos de processos cadticos, tendo em mente
que ndo devemos confundir essa denominagao de caédtico, propria da 6ptica, com a
utilizada em teoria do caos. Veremos nesta segdo algumas propriedades das correlagdes
na luz emitida por esse tipo de sistema, validas para processos estaciondrios em sistemas

desse tipo. Consideremos o campo total

N
E(t) = ) Ei(t) (3.24)
i=1

emitido pelos 4tomos. Entdo,

(I(HI(t + 7)) = (E*(H)E(H)E*(t + T)E(t + 7))
= Z E(t)E;(H)E(t + T)E (t + 7)). (3.25)

ijk,1

Se cada 4tomo emite independentemente dos outros, cada termo E; é proporcional

a uma fase aleatéria e'?i. Por isso, todos os termos em que sobre algum E; ou E® ndo

multiplicado por seu conjugado acabardo por se cancelar pelo somatério. Isso significa

que podemos considerar apenas os termoscom i = j,k=1,i #koui=1,j=k,i # kou
i=j=k=1I

(IDOIE+ 1)) = D (E(DEAE;(t + DE(t + 1)) + Y (E}OE(DE](t + T)E;(t + 7))
i i#]
+ > ENOE[(DE(E + TE(t + 7).
! (3.26)
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Como consideramos que as emissdes de cada d&tomo sdo independentes e sabemos
que o valor esperado do produto de duas varidveis independentes é o produto de seus

valores esperados, podemos escrever

<E’;(t)Ei(t)E;(t +7)Ej(t + 1)) = (E:(t)Ei(t»(E;(t + 7)E;(t + 1)), (3.27)

(E:(t)Ej(t)E}f(t + T)Ei(t + 7)) = (E:(t)E;(t + T)><E]'(i')E;(t +17)). (3.28)

Pela equivaléncia entre as emissdes dos atomos, esses valores esperados nao

dependem dos indices i. Escolhendo um certo i, entdo, temos

(I(OI(t + 1)) = NCE}(HEi(DE[(t + DEi(t + 7))+ (3.29)
+ NN = D[EDE0) + EE](t+ DXE(DE(t + )]

onde utilizamos o fato de que o processo € estacionério para escrever (E;(t +7)E;(t +7)) =
(Ei(£)E;(1))-
Quando N é grande, N 2 > N. Como esse é 0 caso comum em um gds, utilizamos

essa aproximagéo para escrever

(DIt + 1)) = N*[(E(DE;(1))* + KE{DE(t + T)[?]. (3.30)
Dividindo esse resultado por N 2(E,-(t)]:":(t))2 = (I(t))?, obtemos o seguinte:

qOIt+7) _ (Ei(DE;(t + 1)) (E;(H)Ei(t + 7))
w3z (Ei(DE;t))  (EdDE(H))

ou ainda

gP(0) =1+ g0 (331)
Vemos que a fungao g% (1) para os casos de processos estacionarios caéticos, onde o
sinal é resultado da soma dos sinais de vérias fontes independentes, fornece informagdo

sobre a funcao ¢M(7).

Como ja sabemos que ¢V(0) = 1, também concluimos que, para esse tipo de

processo,

g?0)=2. (3.32)

Esse segundo resultado pode ser estendido para uma fungdo de grau de correlagdo
de ordem r anéloga a ¢'». Quando consideramos na equacdo 3.12 que f(t,) é E*(t)

quando " < r e E(t) quando 1’ > r, temos

¢0(0) = BT (3.33)

N
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Se E(t) = fil Ei(t), entdo

ey = (D Ew Y E0))
i j
(D EE®))
i,

2. 2 (En(D-Ei(OE; (1)..E; (1)

il/-"/ir jl/"-/]r

Z ( (i, (£)...Ei, (O)E;, (1)...E} (1)) +

11,000,y

(3.34)

X

j1:i1r~--rjr:ir

+ (Eiy ()i, (DE;, (1)...E} (1)) +...

=12 jr=ir
onde a soma nos indices j é considerada apenas para os arranjos de j tais que para todo
iq existe algum jg = iy, i.e., para os arranjos de j que sdo permutagdes do arranjo de i.
Fazemos esta aproximacgao pois, pelo mesmo argumento utilizado anteriormente, os
termos em que sobrem fases aleatdrias tenderdo a se cancelar pelo somatério para N

grande. Com isso, continuamos

Ay = > Pl ()1, (1)

1,00,y

=7l > (T (). (1, (1)
i1l (3.35)

=7l > (I (1)

i1 iy
= rIN"(I; (1))
Sabemos também que, pela independéncia dos campos elétricos, que (I(t))" = N"(I;,(t))".

Portanto, disto resulta mais uma propriedade dos processos cadticos estaciondrios:

gN(0) = 1. (3.36)

3.5.3 Grau de correlagdo num processo com alargamento por colisdo

Pelo que vimos na sec¢do anterior, no contexto dos processos do nosso interesse,
podemos utilizar uma teoria de primeiros principios para ¢!)(t) para que obtenhamos
uma expressio para ¢?(t), a quantidade que de fato medimos experimentalmente.
Assim o faremos na presente se¢do para o caso de um sistema onde as fases em cada

campo elétrico E; variam com o tempo por causa de colisdes entre os atomos. Como as
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colisdes que um determinado 4tomo sofre ao longo do tempo sdo tipicas para todos os

outros, esse é um processo de descoeréncia chamado homogéneo.

Primeiro, investigamos o efeito das colisdes sobre ¢(!)(7). Supondo que as colises
que acontecem entre os a&tomos sdo eldsticas, o efeito que elas causam deve ser apenas o
de adicionar ao campo elétrico emitido por cada atomo fases que dao saltos aleatérios

ao longo do tempo. Essas fases podem ser funcdes como a mostrada na figura 14.

0 100 200 300
t[re]

Figura 14 — A fase de cada atomo da saltos aleat6rios com o passar do tempo devido as
colisdes entre d&tomos. A distribuicdo de probabilidade de tempo sem dar
saltos de fase é dada por ~¢~*/% com 7. 0 tempo médio entre colises.

Tc
Assim, nas nossas consideracgoes, fazer E;(t) — E;(t)e'?i ) onde as fases adicio-
nadas sdo descorrelacionadas com os campos E; nos dard o efeito das colisdes. Com

isso, calculamos |gV(t)|?:

(E'(OE(t + 1)) = (O Ej(HEj(t + 1)e’t# et
Lj
= > (E{(DE;(t + 1)(eltw et
i
= Y (E(BEi(t + 1))(e @O0y 4 N (E(BE,(t + 1)) (el O-pit+)
i i#]

=0 por causa da independéncia das fases

= (E}(DEi(t + 1)) ) (e @i(-wiltrey,
1 (3.37)

Quando todos os dtomos ja colidiram, isto é, com T — oo, > i{eilpilt)=eilt+T)y — pois
trata-se de uma soma de fases aleatérias. Quando nenhum atomo colidiu, essa soma
resulta em N. Dai vemos que a soma € proporcional ao nimero de 4tomos que ainda

ndo colidiram, que decai exponencialmente segundo a mecénica estatistica. Logo,

(E*(t)E(t + 7)) = (Ej(t)E(t + 7))e /N, (3.38)



Capitulo 3. Fungoes de Correlagdo 37

onde 7. é o tempo médio entre colisdes. Sendo o processo estaciondrio, (E*(t)E(t + 7))

resulta dessa expressdo ao tormamos 7 = 0. Dessa forma, concluimos que

(l) ( )_ 1) o (T)e_T/Tc. (339)

& com colisdo &8 sem colisdo
Este resultado mostra que o processo de colisdo adiciona um decaimento exponencial a
funcdo ¢M(7). Quando 7, é muito maior do que a escala de tempo em que o sistema
perde a coeréncia através de outros processos, entdo podemos aproximar 7, — ©0, 0
que recupera o processo sem colisdo de acordo com a expressado calculada. No caso em

que 7. € o processo mais rapido relevante para a descoeréncia, obtemos

gh (1)~ gW(0)e /% = 7T, (3.40)

Se supomos uma emissdao monocromédtica com a mesma frequéncia para todos
os dtomos, E;(t) = Ege~**. Logo, (EX(HEi(t + 1)) = (e71®Ty = ¢7i%T Chegamos entdo ao
importante resultado de que a luz cldssica emitida por gases em que a principal fonte de
alargamento espectral é o alargamento por colisdes tem o grau de correlacdo de segunda

ordem dado por

¢? (1) =1+, (3.41)

cohsao

de acordo com as expressoes 3.31 e 3.39. A aparéncia dessa fungdo pode ser vista na
figura 15. Em particular, apontamos que esse decaimento é abrupto a partir de 7 = 0.

2.0

1.5

1.0

g(Z)(T)

0.5

001 3 35 4 5 6 7
tH1/A]

Figura 15 — Decaimento da funcéo ¢ (1) num processo dominado por alargamento por
colisdo.

3.5.4 Grau de correlagdo num processo com alargamento Doppler

Interessados em conhecer o efeito do alargamento Doppler sobre o grau de

coeréncia de segunda ordem, prosseguimos por um caminho andlogo ao que percorremos
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na secdo sobre o efeito do alargamento por colisdo.

Como o efeito Doppler altera as frequéncias emitidas por cada dtomo diferente-
mente, seu efeito ndo é tdo simples quanto a multiplicacdo de cada E; por um fator de
fase, como fizemos na segdo anterior, o que caracteriza agora um processo inomogéneo.
Por esse motivo, partimos ja de um sistema em que cada d4tomo emite luz em apenas

uma frequéncia que serd deslocada de acordo com o efeito Doppler, tal que

Ei(t) = Ege~'@itei®i, (3.42)

onde w; varia de &tomo para 4tomo. Com isso,

(E*(t)E(t + 1)) = E% Z<e—i[wit—a)j(t+”[)]e—i((pi_(pj)>
ij
= E2 Z(ezw,T> + E2 Z(e ilwjt—wj(t+1)] >61((PJ )
7 (3.43)

=0 pelas fases independentes

= E% Z eIt
1

Precisamos calcular }; ¢’“i*. Para tanto, notamos que os w; sdo frequéncias
descocadas de um certo wo natural dos dtomos de acordo com a componente da
velocidade de cada um ao longo da diregcdo de propagacdo do campo. Como essas
velocidades sdo distribuidas de acordo com a distribuicdo de Maxwell-Boltzmann, que
é uma distribuigdo gaussiana nas suas componentes, entdo w; também deve seguir uma
distribui¢do gaussiana que deve ter wg como média e uma largura que chamaremos de
A, alargura Doppler.

Por isso, podemos calcular }}; e'®?

Z eiwi’f = Neiwit

wr 4P (w)
=N / dw (3.44)

- NW/ duette e
Tt -

— Ne—ione—Asz/Z

pelo seu valor médio entre os 4tomos:

Logo, (E*(t)E(t + 7)) =N E%e‘ione‘Asz/ 2, Como trata-se de um processo estaciondrio,
também concluimos que (E*(t)E(t)) = (E*(t + T)E(t + 7)) = NE%. Portanto,

g(l)(’c) = e"ione_Asz/Z, (3.45)
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e o grau de correlacdo de segunda ordem, por sua vez, fica dado por

¢D(1) =1+¢27, (3.46)

Essa func¢do tem uma aparéncia como a da figura 16. Podemos diferencia-la do que
obtém-se quando o alargamento por colisdo domina por duas caracteristicas: quando
domina o alargamento Doppler, a fun¢do cai mais rapidamente para T mais longo, mas

tem um caimento menos abrupto quanto T — 0.

2.01

1.51

1.0

g(2)(T)

0.51

0.0 —
0 1 2 3 4
H1/A]

6 7

Figura 16 — Decaimento da fungio ¢®(7) num processo dominado por alargamento
Doppler

3.6 Funcoes de correlacao em mecanica quantica

Desenvolvida uma intuigdo classica sobre o significado das fung¢des de correlacao,
resta-nos estender matematicamente as expressdes para o caso quantico para que

apliquemos essa teoria a0 nosso experimento.

Quando fazemos a quantizagdo do campo elétrico [7][9], passamos de lidar com

fungoes Ex(z, t) para lidar com operadores Ex(z, t) escritos na forma

R hw 1/2 . B how 1/2 . B
Ba,t)= (5oy) oo™+ (505) Catel ), (347)

=E{(z,t) =E (z,t)

e o operador de intensidade, por sua vez, pode ser escrito como

I(z,t) = 2€9c®E~(z, )E* (2, t
(z,t) i (z,t)E™(z,t) (3.48)
= 1a, .

Assim, a intensidade no modo k é proporcional ao ntimero esperado de fétons nesse

modo, como poderia-se suspeitar.
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Com isso, é possivel definir o grau de correlacdo de primeira ordem nos campos

elétricos:

1) . _ (E™(z1, t1)E* (22, t2))
g (le tl,/ Z2, tZ) - 12 (349)

[(E(z1, 1B (21, t))(E" (22, 12)E* (22, 12)

Para o grau de correlagdo de segunda ordem, temos vérias opgdes de escolha de

ordenamento dos operadores E*/~(z, t). Definimos a a fungio ¢'» da seguinte forma:

(E7(z1, t1)E™ (22, t2)E* (22, t2)E* (21, 1))
(E~(z1, t1)E*(z1, t1)){E~ (22, t2)E¥ (22, t2))

Para nossos propdsitos, interessa apenas o caso z1 = zp, de forma que podemos

g(Z)(zll t1, 22, t2) = (350)

omitir a escrita de z. Além disso, notando que os operadores em um tempo mais tardio
to > t1 estdo no centro, e os operadores de destrui¢cdo atuam nos estados antes dos

operadores de criagdo, podemos escrever ¢? em termos do operador intensidade:

(: I(t)I(t2) )
(I(F))(I(t2))

onde :: indica o ordenamento normal dos operadores de criagdo e destruigdo, com

g (ty, 1) = (3.51)

tempos mais tardios ao centro e operadores de destruigdo a direita dos de criacao.

Essa expressdo, além de ter a forma intuitivamente conectada com o caso cléssico,
por poder ser escrita em termos do operador ntimero 71 = a'a estd diretamente conectada
com as medidas de fétons individuais, que resultam em certo nimero de clicks. Com ela,

podemos calcular os valores de ¢'?(0) para diferentes estados quanticos importantes.

A seguir, nosso objetivo é exemplificar ¢?(0) para estados quanticos comuns na

Optica, sendo aquele dado por

(:12:) (a'a'aa)
D2 (ata)?

A razéo pela qual escolhemos ¢®(7) como a quantidade observada no nosso experimento,

g0 = (3.52)

em que investigamos uma memoria no sistema, ficard mais clara no capitulo dedicado a

ele.

3.6.1 Estado térmico

O estado térmico é definido como uma soma estatistica de estados de ntimero tal

que a probabilidade de um certo ntimero de f6tons ser detectado segue uma distribuicdo
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de Boltzmann. Utilizando a matriz densidade, ele é definido por:

o0

_ 1 _nha/ksT
p= Ze—nha}/kBT Ze ’ |1’l><1’l|
n=0

- (3.53)
— (1 _ e—ha}/kBT) Z e—nhw/k3T|n><n|
n=0
Com isso, o numerador e denominador de g(z)(O) ficam
(:1*:) =Tr(a'a*aap) = hw/kBT)Z n(n —1)e "e/ksT (3.54)
e
> 2
(1Y% = Tr (atap)’ = ((1 —eThefkaT) 3 ne_”h‘”/kBT) . (3.55)
n=0

As somas podem ser calculadas notando que elas representam derivadas de séries

geométricas, levando-nos ao seguinte resultando:

2(1 _ e—ha)/kBT)—Ze—Zha)/kBT

g?(0) = = 2. (3.56)

((1 _ e—hw/kBT)—le—hw/kBT)z

Esse valor corresponde com os resultados classicos que obtivemos sob a suposicao de
tratarmos de processos caéticos.

3.6.2 Estado coerente

O estado coerente é definido como autoestado do operador de destruigdo a.
Como processos de detecgdo estdo geralmente associados a absorgdo de fétons, essa
definicdo os conecta a estados para os quais podemos associar algum valor observado, e
é o estado que melhor modela lasers funcionando bem acima do limiar de amplificac¢do.

Por essa defini¢do, o estado coerente |v) = ) ¢, |n) obedece a a|v) = v|v) e é dado por

o) = ¢ 1°! /22 —|n> (3.57)

onde v pode ser qualquer niimero complexo, pois a ndo é um operador hermitiano.

Prosseguindo como fizemos com o estado térmico:

(: I%2:) = (v]atataa|v) = v*, (3.58)

(D? = (vla*alv))? = (0%, (3.59)
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e, portanto,
g(2)(0) =1. (3.60)

Esse nimero difere dos exemplos cldssicos exibidos aqui, mas podemos ter uma
intuicdo classica sobre ele notando que a probabilidade de detectar n fétons em um

estado coerente é dada por

pplol”

P(n) = [(nfo) = e PP,

(3.61)
e portanto corresponde a uma distribuigdo de Poisson.

Sabendo que a distribuicdo de Poisson pode ser definida como uma distribuigdo
em que a probabilidade de um evento ocorrer num certo intervalo de tempo é indepen-
dente da probabilidade de um evento ocorrer em qualquer outro intervalo, podemos
interpretar esse estado como aquele em que ndo hé correlacdo alguma entre a detecgdo
de diferentes fétons. Assim, a nossa intuicao classica de que ¢®(0) = 1 indica processos

sem correlagao é valida.

3.6.3 Estado de Fock

Por fim, calculamos ¢‘?(0) para um estado de Fock |n):

(172 = (m|ataTaaln) = n(n - 1), (3.62)
()2 = (nlataln)? = n, (3.63)

© 1
¢@0)=1- -, (3.64)

onde é natural supor n # 0, ji que o contrério significa que nenhum féton foi preparado.

Aqui, vemos uma grande diferenca entre sistemas quanticos e qualquer sistema
classico. Para um estado de Fock, a condicdo de que ¢ (1) > 1 é violada, em particular
para n = 1, onde ¢?(0) = 0. Isso demonstra que existe uma diferenca fundamental entre

as correlacdes possiveis em sistemas quanticos e classicos.

Por essa possibilidade, podemos utilizar ¢(0) como um teste da natureza
quantica do sistema que estudamos: quando g'®(0) < 1, o sistema nao tem analogo
classico. E preciso ter cuidado, no entanto, com a afirmagio contraria. ¢?(0) > 1 nao

implica que o sistema em questdo ndo é quantico.
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4 MEDIDAS EXPERIMENTAIS DE CORRELACAO EM OP-
TICA

Agora que desenvolvemos uma intuigdo matemaética por trds das fungdes de
correlacdo e conhecemos vérias de suas propriedades mais gerais, passaremos a uma
discussdo de medidas experimentais que estdo relacionadas diretamente com tais
fungdes. O experimento que realizamos para investigar a memoria no espalhamento
da luz é precisamente um dos dois aparatos experimentais discutidos nesta secédo, o
interferometro de Hanbury Brown-Twiss [17].

4.1 Intensidade da luz cadtica em medidas

Quando uma fonte de luz é caética, no sentido discutido na se¢do 3.5.1, podemos

supor duas formas principais de perda da fase entre os emissores [7].

A primeira forma de perda de fase é a em que cada emissor é uma fonte
monocromaética com frequéncia wg mas com uma fase prépria que varia no tempo, de

forma que, na notagdo complexa dos campos,

E(t) = E1(t) + ...En(t)
— Eoe—iw0t+i(p1(t) + ..+ Eoe—ia>0t+i(PN(t)
_ Eoe—iwot{ei(pl(f) + .+ ei(PN(t)}

— Eoe_iwota(t)ei(p(t),

(4.1)

onde escrevemos a soma de exponenciais complexas contendo as fases como um niimero
complexo de amplitude a(t) e fase global ¢(t). O campo elétrico fisico é a parte real da
expressao que escrevemos. Essa forma de perda de fase corresponde a dos processos

com alargamento por colisdo.

A segunda forma de perda de fase é a em que cada emissor é uma fonte com uma
fase aleatéria fixa ¢; mas com frequéncias w que variam em torno de uma frequéncia

central wp, de forma que w; = wp + dw;. Nesse caso,

E(t) = Ege "1 4 | 4 Ege 'ON!FON
— Eoe—iwgt{e—iéle(pl + ..+ e—iéa)Nt+(p;} (42)
= Ege @0ty (1)e? ™,
de forma andloga ao primeiro caso, porém com uma soma de niimeros complexos

diferente.
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A intensidade do campo, por sua vez, é dada pelo médulo do vetor de Poynting,

I(t) = eoc| R{E(H)}*. (4.3)

Note que em ambos os casos descritos acima, temos

|'R{E(t)}| o cos(wot + @(t)). (4.4)

Como os detectores normalmente ndo tém resolucdo temporal para detectar
oscilagdes do campo elétrico nas frequéncias 6pticas, a intensidade detectada é uma
média sobre o periodo de oscilacdo dessa expressdo. Como ha varia¢do na intensidade
numa escala de tempo maior que a das frequéncaias 6pticas, essa média ndo elimina

completamente a dependéncia temporal da intensidade. Assim, o sinal detectado é

- 1 1
I(t) = EeocEga(t)z = EeoclE(t)lz, (4.5)

onde E(t) estd na forma complexa e o a(t) vem da soma dos termos que modelam a

perda da relagdo de fase entre os emissores.

Para ganharmos intuigdo sobre o efeito disso nos sinais detectados, dois exemplos
serdo exibidos aqui. Primeiro, supomos ¢(t) dando saltos aleatérios devido a colisoes
entre os 4tomos, como discutido na se¢do 3.5.3. Aqui, a intensidade varia no tempo de
acordo com o médulo quadrado da soma eiP1t) 4 +eion(®) onde os @i(t) sdo fungdes
como a da figura 14. Isso resulta em intensidades que variam bruscamente no tempo

como o exemplo na figura 17.
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Figura 17 — Intensidade em funcdo do tempo quando a perda de fase do processo de
emissdo é dominada por colisGes entre os &tomos. Nesta simula¢do, 1000

emissores foram utilizados (N=1000). A escala de tempo é o tempo de voo
livre médio 7..
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Quando a perda da relagdo de fase entre os emissores for dominada pelo efeito
Doppler, isto é, quando as fases @;(t) podem ser consideradas constantes ¢;, mas cada
atomo emite uma frequéncia w; = wp + dw; que varia da frequéncia original segundo
uma distribui¢do gaussiana (ja que a distribuicdo de velocidades dos dtomos é uma

distribuicdo de Maxwell), temos o ilustrado na figura 18.
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Figura 18 — Intensidade em func¢do do tempo quando a perda de fase do processo de
emissdo é dominada pelo efeito Doppler. Nesta simula¢do, 1000 emissores
foram utilizados (N=1000). A escala de tempo € o inverso da largura Doppler
Aw.

De forma analoga ao caso em que o alargemento por colisdio dominava, esse

perfil de intensidade ao longo do tempo é devido a uma soma de fases, que agora é
p—idwit+ipp | 4 o—idwnt+ipN

As duas formas de alargamento, ou perda de fase, contrastam na escala de
tempo de suas variagdes. Quando domina o alargamento Doppler, a flutuacdo da
intensidade é suave e para intervalos de tempo curtos ndo se observa grande variacao.
Essa propriedade é refletida na queda suave de ¢gV(t) perto de T = 0 desse tipo de
processo, dada por uma curva gaussiana, como vimos na se¢do 3.5.4. Quando domina
o alargamento por colisdo, a intensidade varia de forma brusca e em qualquer escala
de tempo podemos ver uma flutuacdo grande da intensidade acontecer, revelando a
natureza fractal dos flutuacdes [18]. Por isso, nesse tipo de processo, a funcéo ¢M(7) cai

abruptamente a partir de 7 = 0 segundo uma curva exponencial.

4.2 Interferometro de Mach-Zehnder

O primeiro experimento de 6ptica que envolve fungdes de correlagdo a ser discu-
tido aqui é um experimento de interferéncia. O aparato experimental do interferémetro

de Mach-Zehnder esta representado na figura 19.
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E(t)*/

Figura 19 — Esquema experimental de um interferometro de Mach-Zehnder. Os divisores
de feixe transmitem 50% o campo elétrico e refletem os outros 50%.

Nesse experimento, o campo elétrico incidente no primeiro divisor de feixes é
dividido em dois caminhos 6pticos diferentes e a luz que passa por esses dois caminhos
é misturada novamente pelo segundo divisor de feixes. Dessa forma, o campo elétrico
E4(t) fica dado por

(t=z/c) |, E(t=z/c)
2 2 ’
onde z1 e z3 sd0 os comprimentos dos caminhos em cada braco do interferémetro.

Eyt) = £ (4.6)

Supondo que estamos escrevendo os campos E;(f) na forma complexa, a intensi-
dade do campo E4 fica dada entdo por

Ta(t) = seoclEa(t)

1 4.7)
= g€oc {|E(t —z1/0)]® + |[E(t — z2/0)]* + 2R [E*(t — z1/c)E(t — zz/c)]} :

Como, além de serem mais lentos que as frequéncias 6pticas, os detectores
costumam ser mais lentos que o tempo de colisdo entre os 4tomos, a intensidade final
detectada deve ser uma média temporal sobre um periodo T > 7.. Calculamos entdo
a média dessa intensidade sobre esse periodo. Essa segunda média temporal serd
representada por ():

(Iu(t)) = %eoc {IE(t = z1/c)?) + (|E(t — z2/c)*) + 2R [(E*(t — z1/c)E(t — z2/c))]} .
(4.8)
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Se essas médias ddo o mesmo valor para todo ¢, ja que sdo mais lentas que as
flutuacdes de intensidade, temos

_ 1 ' (E*(t = z1/c)E(t — z2/c))
s = 30®) {1 R B - e P AGEG - Zz/c>|2>1/2]}

_ %q(t)) {1 LR :g(l)(ﬂ)” (4.9)

c

_ %(T(t)) f1+®[gM0)|}.

Chegamos a importantissima conclusdo de que o padrdo de interferéncia em um
experimento do tipo do interferometro de Mach-Zehnder depende do grau de correlagao
de primeira ordem no campo elétrico da fonte. Assim, conhecendo as propriedades
estatisticas da emissdo pela fonte, podemos obter informagao sobre sua capacidade
de produzir padrdes de interferéncia. Da mesma forma, se conhecemos os padrdes
de interferéncia produzidos pela luz de uma fonte, obtemos informacdo sobre as
propriedades estatisticas do processo pelo qual a luz é emitida, através do grau de

correlagcdo de primeira ordem.

4.3 Interferometro de Hanbury Brown-Twiss

O interferometro de Hanbury Brown-Twiss (HBT), assim como o de Mach-
Zehnder pode ser usado para realizar medidas de correla¢do para a luz. Diferentemente
do que vimos na secdo anterior, no entanto, o HBT é o experimento prototipico da
medida do grau de correlagio de segunda ordem nos campos elétricos, g?(1).

Figura 20 — Esquema experimental de um interferometro de Hanbury Brown-Twiss. O
sinal resultante é a multiplicacao das intensidades em diferentes (z;, t)

Nesse experimento, as intensidades dos campos E3 e E4 sdo detectadas e multi-

plicadas em um correlacionador. Classicamente, elas se relacionam a intensidade de E
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por

I3(z,t) = I4(z, t) = %T(z, t). (4.10)

Assim, com () representando uma média longa no tempo, (I5(z, 1)) = (I4(z, 1)) =
%(T(z, t)). Se o correlacionador normaliza o produto (Is(z, t)h(zl, t)), acabamos com
uma medida direta do grau de correlagdo de segunda ordem:

(I5(z2, H)l4(z1, 1)) _ (I(z1, )I(z2, 1))
(I3(z2, ))(Ia(z1, 1)) (I(z1, 1)) (I(z2, 1))
It = z1/OI(t = z2/c)
At =z /) - z2/0)) (411)
= ¢t —z1/c,t - z2/c)

_ (z)( _4 —ZZ)
g§\T p ’

onde o ultimo passo vale se a estatistica for estaciondria.

Sabemos que para processos caéticos, a funcdo ¢®(7) se relaciona com ¢V (1) por
¢@ (1) =1+ |gW(1)[?, de forma que podemos obter com esse experimento informacéo
do mesmo tipo que aquela fornecida pelo interferémetro de Mach Zehnder.

O fato de que o interferdmetro de Hanbury Brown-Twiss utiliza dois detectores
pode ser uma vantagem. Detectores reais do tipo avalanche tém uma caracteristica que
denominamos "tempo morto"[19]. Trata-se do tempo que o detector leva para recuperar-
se de uma detecgdo e preparar-se para uma nova detecgdo. Como esse interferdmetro
divide o feixe incidente em 2 partes que serdo levadas a detectores diferentes, ele pode
compensar parte da informacgado perdida na detecgdo por causa do tempo morto. No
regime de fétons individuais isso é crucial, e por essa razdo utilizamos esse tipo de

aparato no nosso experimento de investigacdo da memoria nos atomos frios.

Com o tempo morto, se dois fétons chegam juntos, simultaneamente, a um
detector, a deteccdo ndo consegue diferenciar a dupla de um féton tnico. Isso limita as
médidas, ja que torna-se impossivel, por exemplo, obter ¢‘?(0) sem medir coincidéncias

temporais de duas detec¢des. Com o HBT, essa limitacado é vencida.

Outro problema, mais grave, de medir correla¢des utilizando o interferometro de
Mach-Zehnder, e que é superado pelo HBT, é que o tamanho do aparato experimental
necessario pode ser muito maior do que é prético realizar. Para tempos de coeréncia de

30 us, por exemplo, seria necessdrio varrer seus bragos por cerca de 30us * ¢ = 9km.

Além disso, o ¢(7) é uma quantidade muito importante para a 6ptica quantica
[20], e pode ser utilizado, por exemplo para mostrar a natureza quantica da luz [9]. Esse

fato realga a importancia do HBT.
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5 MEMORIA ATOMICA

Vimos no capitulo introdutério que a disponibilidade de memérias quanticas é
crucial para a implementacdo experimental de protocolos de informacdo quéntica que
pretendem alcancar escalabilidade. O exemplo mais relevante disso para este trabalho é
o protocolo DLCZ, apresentado em [2], para comunica¢do quantica. Nesse trabalho, o
objetivo dos autores é apresentar um protocolo que permita o estabelecimento pratico
de emaranhamento entre locais distantes, um elemento essencial para a construgao de

redes quanticas.

Nesse protocolo, o efeito coletivo que um conjunto de d4tomos é capaz de gerar
e que reforca o acoplamento entre 4tomo e luz é usado para criar emaranhamento
entre nuvens atomicas. O tempo de vida dos estados internos atdmicos, por sua vez, é

utilizado como a memoria necesséria a escalabilidade do protocolo.

No trabalho presente, investigamos o comportamento de outra meméoria, cuja
origem identificamos em um efeito coletivo nos graus de liberdade externos, de momento
linear, dos 4tomos. Veremos que essa memoria tem tempo de vida muito maior que os
estados excitados dos niveis de energia internos dos 4tomos e € resistente ao processo
de leitura, duas caracteristicas que podem ser exploradas em informagdo quantica.

5.1 O experimento

No experimento que analisamos, utilizamos um interferémetro de Hanbury
Brown e Twiss para estudar as correlagdes da luz espalhada por um conjunto de 4tomos
frios, que por sua vez é gerado por uma armadilha magneto 6ptica.

Nossa MOT fornece ensembles de atomos frios com temperaturas na faixa de
centenas de uK. Utilizamos dtomos de rubidio 87 bombeados para o estado |55 />(F = 2)).

O diagrama de niveis do rubidio pode ser visto na figura 21.
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Figura 21 — Diagrama de niveis de energia do rubidio 87 [16] com as energias relevantes
para a armadilhagem e resfriamento dos 4tomos. O feixe de rebombeio é
responsavel por manter toda a populagdo no nivel |55 »(F = 2)). Os feixes
de armadilha sdo os feixes da MOT como descrita no capitulo 2.

Com anuvem de d4tomos frios criada, desligamos a MOT e em seguida bombeamos
0s dtomos para o nivel fundamental com F=2 usando um feixe de rebombeio ressonante
de [5S1)2(F = 1)) — [5P3/5(F = 2)), como mostra a figura 21. Depois ligamos os
detectores SPCM (do inglés Single Photon Counting Module) e aplicamos uma sequéncia
de pulsos de luz circularmente polarizada ¢*, com durag¢do de 70 ns, e sintonizada em
56 MHz abaixo da frequéncia de ressonancia da transicdo [5S;5(F = 2, mp = 2)) —
1553/2(F = 3, mp = 3)). Os pulsos estdo separados por um intervalo de T, que variamos
de 0.5 pus a 2.0 us. Toda essa sequéncia experimental de agdes pode ser visualizada na

tigura 22.
—=> <T0ns
Campo
de excitacao
> <7
SPCM
1ms
Rebombeio s « s>
MOT
0 23ms 23.9ms 25-,;:

Figura 22 — Sequéncia de a¢des no experimento que analisamos. Esse ciclo se repente
durante o tempo em que a medida é realizada, até que repetigdes suficientes
para a estatistica sejam realizadas. Aqui, SPCM refere-se a Single Photon
Counting Module, médulo contador de fétons indiduais.
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A escolha da polarizagdo faz com que esses pulsos bombeiem rapidamente os
atomos para o estado de mr extremo, de forma que podemos tratar o sistema como um

conjunto de d&tomos de 2 niveis, como mostra a figura 23.

-2 =1 0 nH 2 3

5P3/5(F = 3) [=3)

decaimento

5S1/2(F = 2)

[=2) [=1 o) ) ]2

Figura 23 — A escolha da polarizacao do feixe de excitagdo faz com que os 4tomos sejam
bombeados para o subnivel Zeeman de mr extremo.

Aluz dos pulsos do feixe de excitacdo espalhada pela nuvem de d4tomos é coletada
por uma fibra 6ptica monomodo, que seleciona apenas um modo da luz para nossa
analise. A fibra conduz os fétons para um interferémetro HBT, que como sabemos é
atil ao estudo das corelagdes da luz, e cujo divisor de feixe no nosso experimento é um
divisor de feixe em fibra, FBS (do inglés Fiber Beam Splitter), cujas terminag¢ées levam a
dois SPCM.

A intensidade do feixe de excitagdo é atenuada o suficiente para que trabalhemos
no regime de fétons individuais. A probabilidade de detectarmos um féton no modo

espalhado, ap6s o envio de um pulso de excitagdo a nuvem de dtomos, é de cerca de 2%.
PCM
}‘- sEspelho
PCM PBS

mmmmm Feixe de excitacao

s [uz espalhada ¢
Espelho

Figura 24 — Esquema do aparato experimental utilizado para estudar as correla¢des na
luz.

O sinal analisado neste experimento foi o da intensidade da luz espalhada pela
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nuvem de d4tomos de rubidio variando tanto pardmetros da armadilhagem (profun-
didade 6tica e temperatura da nuvem de dtomos) quanto parametros do feixe a ser
espalhado (poténcia e dessintonia em relagdo a transicao ciclica) e da detecgdo (angulo

de espalhamento).

5.2 Analise de dados

Sobre o sinal que detectamos segundo a segdo anterior descreve, utilizamos as
ferramentas de anélise estatistica, também previamente discutidas neste trabalho, que
revelardo a existéncia de uma memoria no comportamento do conjunto de 4tomos que
mais tarde interpretaremos como sendo armazenada nos graus de liberdade externos,

de momento linear, do sistema.

Os dados gerados pelos SPCM e o tratamento inicial que lhes damos antes de
processar as quantidades fisicas relevantes estao descritos no apéndice A. Como os dados
tém a forma de clicks por tempo, precisamos calcular sobre eles uma quantidade discreta
que nos dé informagao sobre a memoria. Isso pode ser conseguido se processarmos
os dados para obter a probabilidade conjunta de duas detec¢des, uma no detector A
e outra no detector B, separadas por um intervalo de tempo 7. Denominamos essa

probabilidade por Psp(7).

Fazemos isso porque se houver algum processo que possamos chamar de memdoria
no nosso sistema, a probabilidade conjunta de duas detec¢des separadas no tempo deve
ser diferente do produto das probabilidades individuais, P4 e Pg, que corresponde ao

caso em que os dois eventos sdo independentes.

Normalizando entdo a probabilidade P4g(7) pelo que ela corresponderia no caso

sem memoria, medimos

Pag(T)
PsPg

Quando essa quantidade assumir valores diferentes de 1 para um 7 finito, entendemos

(5.1)

que ha algum tipo de memoria no sistema.

Note que essa abordagem ndo leva em conta a origem temporal. Portanto, para
que essa quantidade caracterize o sistema, é necessario que estejamos lidando com um

processo estacionario.

Para o caso com probabilidades pequenas, elas devem ser aproximadamente

proporcionais as intensidades dos campos. Assim, a quantidade que queremos medir
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coincide com a funcdo de correlagdo de segunda ordem:

ABIE+ 1) Pap(r)
AO)IE+ 1)~ PaPp

Por isso podemos utilizar as propriedades conhecidas da estatistica para inter-

§?(1) = (5.2)

pretar o resultado do experimento. Sob a suposi¢do de estacionariedade do processo, os
dados podem ser analisados de acordo com o procedimento descrito no apéndice B,

resultando em curvas como as da figura 25:

g?}(1) variando perfodo entre pulsos
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*» T=0.5us
T=1.0us
o T=2.0us
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Figura 25 — Resultado experimental da fungdo ¢ (1) supondo que o processo é estacio-
nario

Como esperdvamos, essas curvas mostram um aumento na probabilidade con-
junta em relacdo ao produto das duas probabilidades quando 7 é préximo de 0. Porém,
levando em conta o que argumentamos considerando propriedades bastante gerais da
fungao ¢(7) no capitulo 4, encontramos dificuldades em explicar duas propriedades

dessas curvas:
§2(0) > 2, (5.3)

g (c0) £ 1. (5.4)

A primeira, é caracteristica de processos que raramente aparecem na literatura

e que ndo conseguimos conectar com nosso experimento. A segunda significa que o
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sistema tem correla¢des que nunca desaparecem ou que tém tempo de vida muito maior
do que a escala de tempo em que os d&tomos se movimentam consideravelmente na
armadilha.

Olhando para a forma de g'?(t), é possivel conectar essas propriedades nao
esperadas com a forma como tratamos os dados.

Se supomos que o nosso sinal fisico de interesse I’(t) estd modulado por um uma
flutuagdo estocdstica com a qual ndo tem correlagdo [21], i.e., 0 sinal e a modulagdo tem

distribui¢des de probabilidade independentes, teriamos
I(t) = I'(t)m(t). (5.5)

Entao temos, como consequéncia, separando as médias de quantidades indepen-

dentes,
')t + )ym(t)m(t + 1))

g?(1) =
I()ym())I'(t + 1)m(t + 7))
_ IO+ ) (m(bmt+ 1) (5.6)
TOWIE+ 1)) (m(®)(m(t + 1)
= ¢2(0)g? ().

Essa situagdo permite que escolhendo 7 = 0, se m(t) tiver gg)(O) > 1,0 ¢?(0)
resultante pode ser aumentado e assumir valores acima de 2 mesmo que o processo
fisico de interesse ndo seja capaz disso. De fato, a armadilha magneto 6ptica utilizada
no nosso experimento sofre flutua¢des ao longo do tempo e a isso podemos atribuir a
explicagdo do valor de g?(0) > 2, como mostra a figura 26.
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Figura 26 — Variacdo da probabilidade de detec¢do com o tempo.
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Quanto ao outro problema, basta notarmos que a fungao ¢?(t) contém nio
apenas no nimerador, mas também no denominador, dependéncia temporal. No entanto,
a quantidade que medimos, P4p(7)/PaPp ndo contém essa dependéncia temporal.
Assim, se o processo fugir da condicdo de estacionariedade, fatalmente perdemos a
correspondéncia entre g'?(7) e nossa medida, e com isso a normalizagao dos dados.
Novamente, pudemos confirmar que isso acontece em nosso experiento como ilustra a

tigura 27.
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Figura 27 — Variagdo das probabilidades de detec¢do com o tempo apds uma preparacdo
da MOT.

Em conclusdo desta se¢do, encontramos a suspeita de que os valores dificeis de
explicar na fungao g(2)(7) podem ser devidos a uma modulagao estocastica indepen-
dente do processo de espalhamento da luz e a um desvio do processo da condicao
de estacionariedade. Na préxima sec¢do, utilizaremos um tratamento de dados mais

complexo que leva em conta essas observagoes.

5.2.1 Compensando ¢?(0) > 2 e g@(c0) # 1

Podemos compensar o efeito da modulagao estocastica ao considerar dados
provenientes de intervalos de tempo mais curtos do que a escala de tempo que m(t)

precisa para variar apreciavelmente. Com isso, em cada um desses intervalos m(t) =
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m = cte. Dai,

= (m)(my) (5.7)

Por isso, decidimos por cortar os dados em segmentos de 1 s de duragdo (o que
no nosso caso foi o suficiente para mitigar o efeito de aumento do g(z)(O)) e calcular uma
funcio g'? () para cada um desses segmentos. A escolha do periodo de 1 s foi feita de
acordo com a figura 28. Nela, vemos que ao diminuir o tempo de integragdo, o valor
de g(z)(O) vai para um patamar préximo a 2, e depois cai novamente. Nao podemos
utilizar os valores com tempo de integracdo pequeno demais pois nesse caso, perdemos
estatistica ao ponto de a medida perder significado. Assim, o tempo de 1 s acaba por ser
o menor tempo de integracdo possivel antes dessa perda de estatistica.

g (0) em funcao do tempo de integracao

2.081 L.
2.061 .

2.041
2.021 .
2.001 .

1.981

T

0125 1.25 125 125 1250
t[s]

Figura 28 — Variagao do valor de ¢g'?(0) quando variamos o tempo de integragao das
medidas.

Para recuperar a estatistica final, calculamos a média entre essas vérias fungdes,
obtendo um ¢?(7) sem o efeito de ¢?(0) > 2. Uma representacio diagramatca desse
tratamento pode ser vista na figura 29.
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Figura 29 — Diagrama do tratamento necessario para remover o efeito de uma modulacdo
estocastica do sinal de interesse. Para nosso experimento, o tempo de 1s ja é
menor do que a escala de tempo de variacdo da flutuacéo.

Precisamos ainda de uma estratégia para lidar com g (c0) > 1. De acordo com
o argumento da segdo anterior, isso deve ser causado por um desvio da condic¢do de

estacionariedade, que influencia no denominador da fungdo g(Z)(T).

No capitulo 3 vimos que quando estudamos processos ndo estaciondrios, as
médias no tempo ndo caracterizam bem o processo como um todo e precisamos recorrer

a médias por ensemble. Assim, precisamos definir qual é o nosso ensemble de fungdes.

Se a modulagdo estocéstica que vimos afetar g(z)(O) é uma flutuagdo da MOT, que
por sua vez é preparada antes de cada trem de pulsos na sequéncia experimental, entdo
podemos interpretar cada trem de N pulsos como a medida de N pontos no tempo da
funcdo I(t), ou seja, cada preparacdo da MOT corresponderd a uma funcdo do ensemble.

Assim, a segunda parte do tratamento que faremos consiste em separar os dados
por preparacdo da MOT, de acordo com quantos pulsos sdo enviados no periodo de
1ms do trem de pulsos. Depois, com o ensemble de fungdes I(f) em maos (que no
nosso experimento sao funcdes clicks vs tempo) calculamos g'?(t, t + 1), com 2 pontos
no tempo. Note que essa quantidade depende de 2 varidveis. Entdo, como queremos
interpretar o resultado como sendo o comportamento da memoria a medida que o tempo
passa, tiramos a média na primeira das varidveis, t. Uma representacdo diagramatica
desse procedimento aparece na figura 30, e o algoritmo relacionado a esse tratamento

esta descrito no anexo B.
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Figura 30 — Diagrama do procedimento responsavel por garantir a normalizagao cor-
reta da funcdo ¢, que leva em consideracio o desvio da condicdo de
estacionariedade do processo.

Combinando esses dois procedimentos, o que fazemos é separar cada 1s de
dados em um ensemble de fungdes, e depois de calcular ¢?(7) como descrito na figura
30. Tiramos entdo a média entre os valores dos vérios segundos, o que resulta na nossa

funcio ¢g'?(7) final. Esse procedimento composto esté representado na figura 31.
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segmentos de o a1 \ Média no primeiro
Is argumento  Média nas fungdes
obtidas
t0 al bl /
L= az b2 t af bf L fT dt
T Jo
[imor ] (2) 2)
. g (Lt +7) g (7)
- t0 al bl
tl a2 b2
/ 1seg \
t0 al bl tf af bf J
2 &2 [ . 1MOT 5
: g (1)
-
to al bl
tl a2 b2 \
Ny 7 | T
Dados completos | ° et of 7)o dt
p n [1mor ] (2) (2)
. gn (Lt +7) gn (T)
" | al bl J
tl a2 b2
T Ny Correlagao Correlagao
Dados de 1s J entretet+ T apos T
tf af _bf
1MOT
Dados por

preparacao da MOT

Figura 31 — Tratamento composto entre separacdo dos dados em segmentos de 1s e
célculo das médias utilizando médias por ensemble
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Este tratamento fornece, finalmente, figuras bem comportadas, para as quais
conseguimos atribuir sentido fisico. Obtivemos assim gréaficos que comparam o efeito de
diversos pardmetros na fungao g(z)('c). Sdo esses: angulo de espalhamento em relacao
ao feixe de excitagdo, periodo entre pulsos, profundidade 6ptica da armadilha (OD, do
inglés optical depth), probabilidade de espalhamento, dessintonia do feixe de excitagdo
em relagdo a transi¢do dos atomos, e tempo de rebombeio apds o desligamento da MOT.
As figuras 34 até 38 contém esses resultados.

g'?)(t) variando periodo

2.0+
1.51%
LOT O AN e N ey

0.51

} T=0.5us
T=1.0us
} T1=2.0us

20

0.0 10 60 80
t[ps]

Figura 32 - g(Z)(T) variando o periodo T entre os pulsos de excitagdo.

Como mostra a figura 32, o tempo de decaimento da memoria que estudamos é
independente do periodo entre os pulsos. Por isso, podemos conectar nosso resultado
com a interpretagdo dada por [5] ao seu resultado, de que existe na nuvem atdmica uma
memoria resistente ao processo de leitura, uma memdaria ndo volatil. De acordo com a
ilustragdo na figura 33, cada uma das curvas na figura 32 interage com uma quantidade
diferente de pulsos de excitacdo durante o tempo de decaimento. Essa diferenga, que
estd no processo de leitura (o envio de pulsos de excitacdo para a nuvem), ndo altera o
tempo de decaimento da memoria, caracterizando a nado volatilidade da meméria no

regime de fétons individuais.

Pulsos de excitacao

I

Figura 33 — Representacdo da diferenca na aplicagdo dos pulsos sobre a nuvem entre as
curvas da figura 32.
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Podemos também variar o angulo de espalhamento dos fétons que detectamos.
Ao fazé-lo, obtemos as curvas da figura 34. Elas mostram uma dependéncia do tempo
de decaimento com o angulo, sendo esse o primeiro pardmetro que vemos modificar
o tempo de vida da memoria. Essa dependéncia, porém, se da apenas apds um certo
tempo que é igual para as trés curvas, revelando a existéncia de duas escalas de tempo
diferentes na dindmica dessa memoria.

g?)(1) variando angulo

2.0

1.51

1.01

0.51

f 6=11
6=2.5"

P e=ar

0.0

20 40 60 80
t[ps]

Figura 34 — ¢'?(7) variando o angulo 0 entre o modo da luz espalhada e o modo do
feixe de excitagao.

Ao variar a dessintonia do feixe de excitacdo em relagdo a transicdao atomica, a
profundidade 6ptica da nuvem atdmica ou a probabilidade de deteccdo de um féton
espalhado, vemos variar a forma como se relacionam as duas escalas de tempo do
processo, como mostram as figuras 35, 36 e 37. Essa dependéncia das escalas de tempo
com os pardmetros ndo é muito simples, mas poderemos escrever ao final do tratamento

tedrico uma expressao capaz de ajustar os dados.

g?)(1) variando dessintonia

2.0+
1.54.\"\/;'\,\
1.0 - - o -
0.51
} o6=40
6=56
} o6=60
00520 60 80

i)

Figura 35 - g(z)(’() variando a dessintonia do feixe de excitacdo em relacdo a transicao
atOomica.
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Ha uma diferenca importante entre variar o periodo entre pulsos, angulo de
deteccdo e dessintonia, ou variar profundidade 6ptica e probabilidade de deteccdo de um
féton espalhado. Para os trés primeiros parametros, estamos variando apenas parametros
externos ao ensemble atdmico. Para os dois tltimos, a variagdo dos pardmetros nao
altera a detecgdo, mas a propria caracteristica da nuvem de dtomos. Para a profundidade
Optica isso é claro pois trata-se de um parametro de algum meio material, sempre.
Para a probabilidade isso acontece pois essa variagdo se d4 com a poténcia do feixe de
excitagdo, que por sua vez pode perturbar a temperatura da nuvem. Essa observacdo

serd importante para o ajuste de pardmetros ao fim do tratamento tedrico.

g'?)(1) variando OD

2.0 ]

1.51

1.04

0.5

§ op=24
0D=14.8
} o0D=25.0

0.0

0 20 40, = 60 80
t[ps]

Figura 36 — ¢® (1) variando a profundidade 6ptica da nuvem atémica gerada pela MOT.

g'2)(1) variando probabilidade

2.01

1.51 %

1.04

0.51

} p=0.02490
p=0.06390
} p=0.10965

0002 40, ~ 60 80
t[ps]

Figura 37 — ¢®(7) variando a probabilidade de deteccdo de um féton espalhado.

Em todas as figuras, vemos a existéncia da memoria com tempo de decaimento
de cerca de 10 us, muito maior que o tempo de vida do estado excitado do rubidio,
que é de 26 ns. Esse tempo de decaimento é consistente com o tempo de vida dos
estados de momento dos 4tomos. Como s6 temos um estado fundamental, associaremos
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a origem da memoria aos niveis de energia externos, de momento linear, do 4tomo. Essa

interpretagdo ganhard mais for¢ca com a teoria desenvolvida no préximo capitulo.

Outro ponto importante a notar é que as figuras revelam a existéncia de duas
escalas de tempo de decaimento. A primeira escala é mais rapida, pertode r =0, e a
outra lenta, em seguida. A origem dessa mudanga de comportamento ainda nao esta
bem explicada, porém, nossa teoria modificada com uma motivagdo fenomenolégica é
capaz de ajustar bem as curvas. Ainda assim, suspeitamos de que ela tenha origem num
campo magnético residual apds o desligamento da MOT. Isso é indicado pela figura 38,
onde a utilizagdo de um tempo de rebombeio mais curto, de apenas 70us, influencia o
decaimento da memoria na escala de tempo inicial. Isso pode ser dado por um campo
magnético quadrupolar transiente apds o desligamento do campo magnético da MOT,

que degrada o bombeamento dos atomos.

g?)(1) variando tempo de rebombeio

)

1.51 ..

10 A ——_1 T 1 1 AN TR Y hbd. L T S—"y L

0.51

} Trebombeio=70
Trebombeio =900

20 40, 60 80
t[ps]

0.0

Figura 38 — ¢®(7) variando o tempo de rebombeio ap6s o desligamento da MOT. Note
que essa figura apresenta uma escala de tempo menor que as das anteriores.
Além disso, a probabilidade de detec¢do utilizada aqui foi de 4%.

Uma das caracteristicas da memoria que vemos aqui serd crucial para nossa
modelagem tedrica no capitulo seguinte. Na figura em que variamos o periodo T entre os
pulsos aplicados a nuvem, vé-se que o tempo de decaimento da memoria ndo depende
de T. Essa caracteristica, que chamamos de ndo volatilidade, é consistente com o que se
observou em [5] e permitird que modelemos a descoeréncia da memoria considerando
apenas 2 pulsos, responsédveis por fornecer os fétons do click em A e do click em B.

Prosseguimos assim para a modelagem tedrica no préximo capitulo.
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6 MODELAGEM QUANTICA DA MEMORIA NO ESPALHA-
MENTO DA LUZ

Para a modelagem tedrica da memoria que observamos, consideramos um

hamiltoniano na forma

N N
H= Z ﬁjz'/zm + Z hwkazak + Z Z [ — ihQpe ke R Tjpiwet g H'C']' (6.1)
j=1 k k j=1

=H0 =V

Q. . N . o
onde Qj = 5 Agk , Q, é a frequéncia de Rabi do campo de excitacdo, gx a constante de

acoplamento entre 4tomo e modo k da luz, A a dessintonia entre o campo de excitacdo e
frequéncia da transicdo dos atomos, w, a frequéncia do campo de excitacao, k. é o vetor
de onda do feixe de excitagdo, ax o operador de destrui¢do do modo k, rj 0 operador

posicdo do d&tomo j, e p; € o operador momento do 4tomo j.

Aqui, Hy é o hamiltoniano do 4tomo livre mais os modos quantizados do campo
da luz espalhada (vacuo) e V é o hamiltoniano que modela a interagdo do 4tomo com o
campo eletromagnético de excitacdo classica mais o vacuo. Esse hamiltoniano segue da
aproximacao de seguimento adiabatico para o sistema de 2 niveis, o que remove o nivel
excitado e nos dd um processo em que o &tomo comega e termina o espalhamento no

mesmo nivel de energia interno.

O hamiltoniano de interagdo pode ser interpretado como gerador da transferéncia
de momento linear dos fétons para os 4tomos e vice-versa, pela destrui¢do de fétons no

modo k pelo operador a; e adigdo do momento desse f6ton ao 4tomo j pelo operador
p-ilke=K);.

O objetivo deste capitulo é modelar o efeito de um pulso de excitagdo sobre o

sistema e com isso obter uma previsao tedrica para a quantidade de interesse, o ¢®(7).

6.1 Modelagem da acao de um pulso de luz sobre a nuvem
de atomos

Podemos interpretar diretamente o hamiltoniano de interacao, pois o operador
ar destr6i um féton do modo k e o operador e*k<=¥)j ¢ um operador translacio no
espago dos momentos que subtrai a diferenca de momento, entre o f6ton do campo de

excitacdo adicionado e o f6ton do campo da luz espalhada, ao d4tomo j que espalhou esse
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téton. Esse hamiltoniano modela, assim, a conserva¢do de momento no espalhamento

do féton que detectamos.

Se supomos que logo antes de um pulso de luz passar pela nuvem de dtomos
o estado que descreve o conjunto é dado por uma certa distribui¢do de momentos,

podemos escrevé-lo como

0)a = |p1).--IpN)- (6.2)

Para calcular o estado logo ap6s o pulso, é conveniente usar a representagao de
interacao [12], definida pela transformagao unitaria dada pelo operador e0!/", Nesse
célculo, a origem temporal fica definida como o instante em que o pulso chega na regido
onde estdo os dtomos. Pela transformacdo definida acima, a equagao de Schroedinger

fica:

[H0+V]|‘If(t)>—zh |\y(t)>—>e1H0f/h[H0+V]|\y(t)>—elHof/hzh |\I’(t)> (6.3)

Com mais alguma manipulagao, essa equacgao é simplificada para:

eiHot/h[HO + V]E_iHot/heiHot/hl\y(t» — eiHot/hihai{e—iHot/heiHot/h|\I](t)>}
t
= [Ho+ Vi(t)]IW1(t)) = Ho|Wi(t)) + 171 |‘1’1(t)> (6.4)

= Vi()|¥1(1)) = ihgl‘l’z(f)%

Na equacio acima, |W;(t)) = e'Hot/"|W(t)) e Vi(t) = e'Hot/hye=iHot/h Com isso, se Vi(t)
puder ser escrito de forma conveniente, podemos resolver essa equagdo mais simples,
analoga a equagdo de Schroedinger original. De fato, isso é possivel e assim prosseguimos

nessa direcdo.

Considerando que [p;, ax] = [p;, ai] = 0, escrevemos

VI — eiHof/hVe—iHot/h

Z

k j=1

. N A2 . _yN 52
_ Zthelwgtel Z]”:] p/t/the_l(ke_k)r]e 1 Z]"/:l p]/,t/thX

(6.5)

Xeizk/hwk/az,aklt/hake—izkuhwknt/h +H.c.l.
Como [afax, ax] = [nk, ax] = —axdwk, simplificamos:

ei Dk ha)klnk/t/hake—i D hwgmngnt [h — eiwknkt[lke_iwknkt. (66)
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Pela formula de Baker-Campbell-Hausdorff [12], para quaisquer dois operadores X e Y,

temos

2

e Xye™Y =y + %[X, Y]+ %[x, X, Y]] +... . 6.7)
No nosso caso, com Y = ai, X = ng e s = iwkt, podemos facilmente calcular os
comutadores:
[k, ak] = —ak, (6.8)
[nk, [1ka ]] = (—-1)%ay, (6.9)
e
[nk, [nK, ...[nk, ax]...]] = (=1)"ar. (6.10)
———
m vezes
Logo,
. . -1)1 t -1 2(3 2
ela)knktake—la)knkt = ay + ( )]-l!a)k ax + ( )2('1601() a
— —iwit)?
_ s zixjkt +( lC;k ) vl (6.11)
= eTiwktgy

Como também sabemos que para dois operadores A e B quaisquer (ABAT)" =
(AN)'(AB)" = ABTAT, também podemos escrever para o termo hermitiano conjugado

eizkl a)klta'l'e—i Zkl! a)k//t — (e_iwktak)+
k (6.12)

iwgt o1

=e llk.

Com isso, 0 hamiltoniano de intera¢do V; fica um pouco mais simples:

N _
. N a2 . N ~2
Vi = Z Z — ihQpage  (@rmwoty! Ly P12 il o=k o1 Ly Pyt 2mA H.c.l
k j=1 L
5 . Aot IS PAE2mh _infe.gp —i SN PO, t/2mh
:ZZ — ihQpage' e =107 e AT =L + H.c.|,
kK j=1t

(6.13)
onde Ak =k, — ke Aw = wi — w,.
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O préximo passo é inserir a relagdo de completeza / @p;lp;)(p;l = 1 naequagdo
acima.
iyN_pEt2mh _iAk-p zz,, p,,t/th 3 , p>t/2mh
e "I e”'M e - d°pj |P]><P]|€ = X
—iAk-7; —i XN P, t/2mh
L A AL

2_p2\¢t2mh Ak ’
dpidp! |pj)(pjle" Vi kTt

I
\‘\\\‘\

Bpidp eI ) i1~ BAK) (P

d3pj ei[p]. (]+hAk) t/2mh| ]><p]+hAk|

A ¢TI AR 20 gy s K]

d3p]€ iNk-pit/m zhAkzt/2m|p hAk><p]|
(6.14)

Para pequenos angulos de espalhamento e t < t, = 70ns, as exponenciais
dependentes do tempo acima sdo aproximadamente constantes em torno de 1, ja que
seus argumentos sdo muito pequenos. Mais tarde precisaremos calcular o valor médio
dessas exponenciais mesmas para a circunstancia do nosso experimento e esse calculo

justificard com mais forca essa aproximacgado. Fazendo entdo

/d3p] e—iAk.p]-t/meihAkt/Zm'pj _ hAk><p]| ~ /d3p] |p] _ hAk><p]|, (615)

o hamiltoniano de interac¢do fica muitissimo mais simples. A seguir, além da expressao

IAwyt

acima, consideramos que essa aproximacdo implica que, e ~ 1 e também que

Q = QO ndo depende de k para os modos do nosso interesse:

N
Vi :ZZ/dspj |—ihQaklpj—hAk><pj|+H-c.]. (6.16)
k j=1

Essa forma independente do tempo facilita muito a solugdo do problema. Pela
forma da equagdo 6.4, se Vi ndo depende do tempo, a solucdo é dada simplesmente
por [W(t)) = e~ /M@ 1(0)). Como, pela definicdo da transformacao realizada em 6.4,
|W1(0)) = [¥(0)), concluimos que |W¥(t)) = e~Vit/h|\p(0)) serd nossa solucéo.

Podemos ainda fazer mais uma aproximacao. Se o campo de excitagdo for fraco o

suficiente, os eventos de espalhamento para outros dngulos que ndo aqueles que acoplam
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com a fibra 6ptica que conduz a luz aos detectores podem ser considerados despreziveis
para a estatistica observada. Assim, separamos a soma sobre os varios modos como
Yk = 2+ 2 onde ) é asoma sobre os modos que podem ser detectados e )} sobre
o restante. Desprezamos )} e definimos

as = Z ar, (6.17)
k

o operador de aniquila¢do de f6tons no modo da fibra 6ptica coletora. Com isso,

N
Vi :Z/d3pj [—ihﬂaslm—%k)(ijH-c. : (6.18)

Na equagédo acima, o vetor p; — Ak deve ser entendido como o momento do
atomo j ap6s espalhar um féton para o modo da fibra 6ptica. Como todos os fétons
espalhados tém a mesma frequéncia, que ndo é alterada pelo espalhamento, e os angulos
de espalhamento estdo numa faixa muito estreita definida pela fibra 6ptica, ainda faz
sentido escrever Ak depois de nos livrarmos da soma em k tratando-o como uma certa
constante. E importante notar também que ndo podemos aproximar |p; — #Ak) por |p;)
pois aqui ndo trata-se apenas de um fator numérico. Se cometemos esse erro, perdemos
a informacdo de que a interagdo com o feixe de excitacdo coloca a nuvem de 4tomos em
um estado de surperposicdo, que pode levar a efeitos importantes de interferéncia (o

que de fato acontece, como veremos).

A forma da equacdo 6.18 é sugestiva. O operador no espago dos momentos que
aparece entre colchetes cria um impulso no d4tomo j, que cede o momento ao féton
espalhado. Como sucessivas aplica¢des de V| adicionardo ou removerdo impulso a
passos iguais sempre na mesma dire¢do, vemos aparecer uma estrutura que parece com

a dos operadores de cria¢do e aniquila¢do. Motivados por isso, definimos

N

1

= [ #pilp; - makyp,), (6.19)
=1

e também

N

5l-

d*pjlp;){p; — hAK|

=/
/d3pj P + hAk) (p)].

(6.20)

iz 1=

5l
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Aplicando a! ao estado definido pela equagdo 6.2, obtemos uma superposigao

de estados, cada um com apenas um atomo com impulso devido a espalhamento:

N
at|0), = LZ|p1>...|pj+hAk>...|pN>. (6.21)

VN 95
O significado disso é que o ensemble espalhou um féton através de um dtomo, mas sem

especificar qual dos d&tomos foi responsavel pelo espalhamento. Como veremos a frente,

essa superposicdo é responsével pelo efeito coletivo que da o valor de ¢?(7).

Generalizando a definicdo, fazemos

(a3)"
V!

Ha4 aqui uma sutileza a se notar. Quando o operador 4, atua sobre um atomo que ja

1), = 10)a. (6.22)

possui um impulso, esse impulso é destruido. No entanto, quando a, atua sobre um
atomo que ndo ganhou impulso por espalhamento, ele cria um estado com impulso na
direcdo contraria. Para que o a&tomo receba impulso na dire¢do contréria, é necessério que
ele tenha espalhado um f6ton num modo diferente daqueles que acoplam com a fibra
6ptica. Como noés ja desprezamos os termos que correspondem a esse espalhamento,

precisamos desprezar a atuacdo de a4, sobre a&tomos sem impulsos.

4]0)a = 0. (6.23)

Dessa forma, ficamos com todas as propriedades de operadores de criagao e

aniquilacdo para al ea:

a;rln),Z =Vn+1jn+1),, (6.24)
Ag|n), = \/Eh’l = 1), (6.25)

que, no espaco dos estados gerados pelos |1),, implicam em

[aq,al] = 1. (6.26)

Considerando tudo isso, escrevemos o hamiltoniano de interagdo para nosso problema.

Vi = ihQ[a;ra;r —asa,]. (6.27)
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iVit/h

Resta calcular e~ com t = t,, o tempo de duragdo de um pulso. Como

» ot
e ZV[tp — thp(asag asaa)’ (628)

usando o teorema do desemaranhamento [22] [23], podemos escrever e~V no ordena-

mento normal:

thp(aZaZ—asaﬂ) _ eraga;e—g(ﬁs+fzg+1)e—l’a5ag (6.29)

onde I' = tanh (Q)t,) e ¢ = In[cosh (Qt,)]. Tendo em mente que eA Z A]/]'

—Ta.a - _rasaa ]
e T 0),10), = > L8 o) 1o,
]'=O ]' (6.30)

= |0>s|0>az

o = (=) (s + g + 1)
e_g(”s+nﬂ+1)e_rasaa|O>s|0>a = Z Lo _- ) 10)510)4

. j!
7=0
2 (—¢)
-3 0.0 (©31)
j=1 7
= €74|0)5|0)a,

© mi ot oy
erﬂ:(l;e—g(fls"rfla"rl)e—r{lsﬂa — e_g Z r (Elslla) |O>S|O>a
1l

=1
N (aly (at)/
=8 l ( )( |O>a)l
2"
o0 (6.32)
= e ) Tlj)slja
j=1
1 N 1 . .
= coshaa, 201 Q1]

]_
Definindo p = [tanh(Qt,)]?, para Qt, pequeno p fica sendo aproximadamente a
probabilidade da nuvem espalhar um féton. J4 que cosh (Qt,) = 1/sech(Qt,) =

1 /\/1 — (tanh Qt, 2,

@i(t)) = VT=p > p21)sl - (6.33)
j=1

Este é o estado do sistema logo apds um pulso de luz, na representacdo de interagéo.

Nesse ponto, ja podemos calcular o valore de g?(0).
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6.2 Calculo de ¢(0)

Como g(z)(”c) é escrito na representacdo de Heisenberg como

oy _ L+ D) )
§7) GIE+T) )G s )

podemos facilmente escrevé-lo com 7 = 0 em termos da nossa fungdo de onda logo ap6s

(6.34)

o término do pulso na representac¢do de interacdo.

(WH| : Ll g (tp)|Wh)

(sl s (1)1
(W) LL ()

(Cwe v ))

<\I;(tp)|e—iHotp/heiH0t,,/h LI, e_iHotP/heiHotP/h|\I](tp)>

g2(0) =

(6.35)

. . . . 2
((\Ij(tp)|e—zH0t,,/hezHotp/h I e—zHOtp/hezHotp/h|\I](tp)>)
_ <\I]I(tp)| Y PV (tp)l\yl(tp»

2
(Wit 1o 12, )

Agora escrevemos : IIs ;1 e : I; i, que estdo na representacdo de interagao,

sabendo que na representacdo de Schroedinger, : I;Is := a;ra;rasas e:ls:= azas:

. - iHot/h . . ,—iHpt/h
. IS .1 e . Is e

iHot/h —iHot/h

_ t
=e nagase

— T]elzk hwknka:ase—lzkhwknk (636)

— nezhwsnsa:ase—zhwsns
+

= 1asds,

ja que pelas aproximagdes, Z;c WiKax = Wsds, se k ndo compde a; entdo [az,as] =0,e
fis = alas. Segue que

LI oy = ettty g e=iHot/h
P o (6.37)
=e'""qalalasase™ ",
MaS como [ﬁs, [1;] = IZZ : ﬁsa; = ﬂ: + agﬁs e [ﬁs, as] = _as :> ﬁsas = _as + asﬁs,

entao



Capitulo 6. Modelagem qudntica da memoria no espalhamento da luz 71
St ot o tay ot
fisazazasas = (a; +aiig)azasas
t ot toot s
=ajaiasas +az(a; +a;is)asas
= Za:a;rasas + a;ra;r(—as + agsfig)as
t ot t ot t ot P
= asasasas - llsﬂlsllsﬂs + ﬂsasﬂsasns
t+ ot -
=a,a,as057s,
logo,
ﬁsa:a:asas - a:a:asasﬁs = [ﬁ,a;ra:asas] =0. (6.38)
Portanto,
t 1+
. Isls :I: T[EIS(ZSEISEIS. (6.39)
Com isso, escrevemos ¢?(0):
Wi(t))|alalasas | Wi(t,)
2 _ ( p)llststhstts| T I Ep
g2(0) = . (6.40)

2
((Witplalaswi(t,))

Como (‘Iﬁ(t‘r,)lazagr = (asaq |\P1(tp)))+, calculamos asas|W((t,)) para em seguida

obter o numerador de ¢‘?(0):

asa5|Wi(tp)) = asasyT=p D 21l j)a
j=0

=ds Vl _pr]/Z\/ﬂ] _1>s|j>a
=1

VT Y PTG - 2l
j=2

(6.41)
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Logo,

(Wilty)latatasas|Wity)) = (1—p) > plj(j = 1)
j=2

=(1-p) ) piGi-1)

=0

=(1=p) ) P55
= P (6.42)

E, de forma anéloga,

as|Pi(tp)) = asyT=p D p/21j)sla
=0
=VT=p 2 p\ilidsla
j=0

= (Wi(ty)latas|Wi(ty)) = 1 -p) > jp/
j=0
J 1

=(1 —P)P$E

(6.43)

P
1-p°

Finalmente, obtemos o resultado:

-2l
§70) 1-p2\ p )

= 2.

(6.44)

Esse valor concorda bem com todas as figuras produzidas pela andlise de dados e mostra,

com isso, que essa abordagem tedrica de fato capta algo da esséncia do experimento.

Pelo que discutimos ao decidir utilizar ¢'?(7) para caracterizar a meméria do
sistema, se o valor dessa fun¢do ndo é igual a 1, identificamos a existéncia de uma
correlagdo que interpretamos como memoria. Além disso, o fato de que o valor de g(z)(O)

segundo nossa teoria deve ser 2 independentemente do tempo do pulso ja indica algo
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sobre a natureza ndo volatil, isto €, independente do processo de leitura, dessa memoria.
Aqui, chamamos de processo de leitura a excita¢gdo da nuvem atomica por um pulso do
laser, de forma analoga ao que é considerado em [5]. Se desconsiderarmos o processo de
descoeréncia, a aplicagdo de um segundo pulso ao sistema € equivalente a multiplicar

por 2 o tempo do pulso, 0 que ndo altera a o valor de ¢?(0).

6.3 Calculo da descoeréncia da memaria

Para calcular ¢'?(7) recorremos novamente a sua expressio em termos da matriz
densidade. Olhando para seu numerador, uma manipulacdo da expressdo em termos
da matriz densidade nos leva a uma expressao simples em termos da fun¢do de onda
|Wi(ty)) que calculamos previamente. Consideraremos a seguir que o operador evolugao
temporal entre quaisquer dois instantes de tempo t; e ¢, é dado por U(t1, t2), chamamos
iHot

e'"" =T, e quando um operador estiver dependente do tempo assumimos que ele esta

na representacdo de Heisenberg (omitindo o subscrito H).

CIL(t+ D)) =Tr [ : a:(t + T)as(t + T)a:(t)as(t) : p(O)]
=Tr [U'(0, t)alUI(0, YU (0, t + T)alli(0, t + T)x
x U0, t + 1)asU(0, t + T)U'(0, t)asU(0, t)p(0)]
=Tr [U'(0, t)al U(0, )UT (0, t + 7) atasx

(6.45)
=U(0,HU*(0,H) Ut (1, t+7)

x U(0, t + T)U'(0, ) asU(0, t)p(0)]

=U(t,t+7)U(0,H)Ut(0,t)
=Tr [UY0, H)alU™(t, t + T)alasU(t, t + T)asU(0, t)p(0)]

Usando a propriedade do traco de que Tr(ABC) = Tr(BCA), continuamos

¢ Is(t+ T)Is(t) ) = Tr [alasU(t, t + T)as U0, H)p(O)UT(0, t)alU™(t, t + 7)]

=p(t)

=Tr [ala,U(t,t + )T ' Tas T Tp(H)T ! Tal T TU(t, t + 7))
=ase~iost  =pi(t)  =gleiwst

=Tr [a;rasll(t, t+ )T aspr(t)al TU (¢, t + T)].
(6.46)

No nosso experimento, a ndo volatilidade, i.e., a independéncia do tempo de
vida da memoria com o periodo T entre pulsos, significa que a descoeréncia da memoria

ndo depende da quantidade de pulsos que atingiram a nuvem atomica entre o click A
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e o click B. Assim, podemos desprezar esses pulsos ndo detectados e considerar que
a evolucdo temporal entre os 2 pulsos que fornecem os fétons detectados é dada pelo
hamiltoniano livre Hy. Como g¢'?(t) envolve a detecgéo de 2 fétons, um logo apés o
término de um primeiro pulso e outro logo apds o término de um segundo, escolhemos
t = t,. Com essa escolha, U(t,t + t) modela a evolugdo entre o fim do primeiro pulso e
o fim do segundo. Dessa forma, podemos escrever U(t,t + 1) = Upulsoe‘iHoT/ " O termo
mais a direita modela a evolugdo livre entre os dois pulsos e o termo a esquerda modela

a influéncia do segundo pulso sobre o conjunto de d&tomos. Logo,

<Z is(t + T)js(t) 3> =Tr [ﬂgﬂs upulsoe_iHOT/he_iHOtpaspl(tp)a-sreiHOtp/heiHOT/hu;ulSO]
~ Tr [a} asUpusoe ™0™ Ma, Pl(tp)ﬂ;reiHoT/hu;ulso]

- Tr [e—iHot,,/h eiHotp/ha;rase—iHotp/h eiHOt”/hupulsz
=a;ra5
% e—iHo(T+tp)/haspl(tp)a:eiHo(THp)/hu;ulso]
= Tr [a:aseiHotp/hupulso e—ng(T+tp)/haspl(tp)a'sl'eiHo(THp)/h u;ulsoe—iHotp/h].
=p’(0)

(6.47)
Na tltima linha da expressao acima, p’(0) pode ser interpretado como um certo estado
da representagdo de Schroedinger. Com isso, automaticamente sua transformacao por
e'Hotp/h Upulso deve ser interpretada como o estado p” apés aplica¢do de um pulso, na
representacdo de interagdo. Por isso,

eiHoi’p/hupulsopl(O)u"' e—iHotp/h — e_iV]tp/hp}(O)eiV]tp/h

pulso
— e—iV[tp/heiHotp/hp/(o)e—iHotp/heiV[tp/h (648)
— e_ivltp/he_iHOT/hasp[(tp)a:eiHOT/heiVIt”/h.
Logo,
( Is(t + T)Is(t) ) = Tr (afase Viltn/hemiHot/hg o (1, )ale ot /heiVity/h), (6.49)

No nosso caso, temos um estado puro p;(t,) = [Wi(t,))(Wi(ty)|. Com essa
substituicdo, escrevemos o traco em termos da func¢éo de onda:

G Is(t + D) ) = (Wi(ty)|aleTot/heiVite /i o=iVity g =iHotlhg |\ (¢,)). (6.50)
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A interpretacdo dessa expressdo é direta: como I(t + 17)Is(t) corresponde a duas
detetec¢bes, uma ocorrendo em t e outraem t+7, entdo o estado logo apds o espalhamento
do primeiro féton é alterado pelo operador deteccdo a5, modelando a detecgdo desse
féton, depois evolui livremente durante 7. Depois da evolugdo livre, mais um pulso
altera o estado pelo operador ¢~V1» e entdo sobre o estado final, calculamos o valor
esperado do nimero de fétons espalhados no segundo pulso.

Para o que se segue, sera suficiente aproximar o estado |W(t,)) e o operador
e_lvl(tp):

[W(t,)) = e Vitr/7]0),|0),

= (et |0), o),

(6.51)
~ [1+Qty(alal — asas)]10)s]0),
=10)s10)a + Qtp[1)s[1)q.
Logo,
e~ g |Wi(ty)) ~ Qe 0T/ |0)s]1),
= Qtye i Tk wniikt =1 2 Pie/2mh 0y 11y, (6.52)

S9N 22
= Qt,[0)s (e 2R P21, ).

Pelas defini¢des no inicio da teoria,

N

_iyN 5 1 —iyN 52

e 12j=17’;2'7/2mh|1>a = \/—Nze ZZJ’=1”J"T/th|pl)...|pj + hAk)...|pn)
j=1

N
1 .
— N Z e—1[p%+...+(pj+hAk)2+...+p12\,]T/th|p1>m|pj + hAk>|pN>
VAV =

(6.53)
Entdo vé-se que a evolugdo livre leva os estados para fora do espago gerado pelos
|n),. Somos obrigados a retornar, por isso, para a base dos estados de momento.
Por conveniéncia de notagdo, definimos g(j) = e ilpTHH(pjHhARY AR 1T 2mh - A ggim



Capitulo 6. Modelagem qudntica da memoria no espalhamento da luz 76

—iV[tp/h

aplicamos e mais uma vez:

N
e—iVItp/he—iHoT/has|\I/I(tp)> ~ Qtpe—iVItp/h\/__ Z:; g(])|0>5|p1>|p] + hAk>|pN>

Q tp )
—(1+ Qtp(a — asa,)) Z g(])|0>s|p1>~~|r’j +hAk)...|pNn)
“ W 2.

or N
= % 2g(j)|0>s|p1>...|pj + hAk)...|pN)+

o2 & &
2 2 8DIDslpr)-wlpj + BAK)...|py + hAK)...|px).
=1 j=1

~—

(6.54)

A expressao acima ja serd usada para escrever o numerador de ¢?(7). Aplicando

ils, apenas o segundo termo sobrevive:

o B (Qt )2 N N
figeiVit/h 1H07/hasl\yl(tp)> ~ ]\;7 ZZg(])ﬂ)S p1)...lpj + hAk)...|p; + hAk)...|pN)
I=1 j=1

(6.55)
Qualquer soma da forma acima satisfaz 3, ; A(i, j) = X;=; A(i, ) + 2<; A, j) +
2i>j A(i, j). Como X A(i, j) = X< A(j, 1), a soma original se torna

ZA(Z i) =" [AG, j)+AG, )], (6.56)

l<]

logo

Vit i Ot [
fge Vit Me=iHot/hg (¢, = 1\7 {Zg(])|1>s|p1>...|pj+2hAk)...|pN)+

/=1 (6.57)

+ Z[g(]') +8(DI|Dslp1)lpj + hAk)...|p1 + hAK)...|pN)
j<l
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Entéo, pela ortonormalidade dos estados de momento |p1)...|pN),

<\I]I(tp)|a:eiHoT/h iVltp/hﬁ e_ivltp/he_iHoT/has|\I/1(tp)) ~

Qt
~(M{EEWBUMMEJng+ymw0wanHm&
j<l j'<rl’
_@ tp)‘L ) ,
- WU )

j<l

=Y 1=N =3 318G+ (D

Q) (@Qtp)t

; 2
o 2 180)+ gl
jLj#l

(6.58)

Agora precisamos do valor de 2. 1.ix |8(j) + g(1)|?. Pela definicdo de g(j), temos
que:
|g(]) + g(l)|2 |e—z(p1+ +pN)12mh(e—z(p] AkT/m+H2AK2 T [2mh) + e—z(p; AkT/m+h2Ak27/2mh))|2
— |e—zp]-AkT/m + e—zpl-AkT/m|2

— —i(pj—p1)-Akt/m i(pj—p1)-Akt/m
2+e +e .

(6.59)
Com isso,
D18+ gMP = D 24 Y ekt N ilpypot/m
j Ll pLiEl jLj#l j Ll (6.60)
- 2(N2 - N)+ Z o~ ipj—p1)-Akt/m | Z elpj—pt/m ’
jLj#l jLj#l

Podemos usar o fato de que |p1)...|pn) segue uma distribuicdo de Maxwell para

aproximar um valor para as duas somas:

N
Z e—i(pj—pl)~Ak"c/m ~ Z e—ipj-AkT/m Z ez’pl~AkT/m
JLj#l i=1
N 2
(S 61

2
3 N(pj)e‘if’f'““/m) .
pj

Il
—
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Onde N(pj) é o ntimero de dtomos com momento p;. Entdo, sendo f(p) a fragdo
de 4tomos com momento p, e N o namero total de 4tomos, e em seguida usando a

distribuicdo de Maxwell dos momentos f,(p):

- 2
Z o—ilpj—p1)-Akt/m _ Z Nf(Pj)e_i”f'AkT/ml
- p;

JLj#l

R

r 2
[ evniersn]
i/‘ 1 3/2 2
— d3pN( ) e /kaBTe—ip-AkT/m
| ankBT

- 3
1 2 .
— N d —ps/2mkgT —szAkXT/mX
»27'ckaTl | / Px ¢ ¢

2
x/dpy e—Pﬁ/kaBTe—ipyAkyT/mx/d]?z e—pg/zkaTe_ipZAkZT/ml .
(6.62)

—v2/4a

2

. —ax? i
Por uma tabela de transformadas de Fourier, f dxe e ™Y = \/nt/ae

Com isso, obtemos que

3 2
Z o—ilpj=p)-AkT/m 1 N(ankBT)3/2€—kBTAk§T2/2me—kBTAkf,TZ/zme—kBTAkgrz/zm
et 2nimkgT
_ NZe—Iﬂ k272
(6.63)
Como esse resultado ndo depende do sinal de Ak, sabemos também que
Z eippIAkT/m o N2o= BT AR (6.64)
jj#l
e portanto,
kgT
Z 1g(j) + (D2 ~ 2(N? = N) + 2N2e ™ A7, (6.65)
jlij#l
Finalmente,
<\I,I(tp)|a:eng’c/heiV1tp/hﬁSe—iVpr/he—iHOT/has|\Ill(tp)> ~
Qt,)* (Qty)*
LS O e on sonze e (6.66)
N 2N?

kgT
= (Ot} (1 + e AT,



Capitulo 6. Modelagem qudntica da memoria no espalhamento da luz 79

que é o valor do numerador da expressao de ¢‘?(7). Resta calcular o denominador, o
que faremos de forma analoga ao que fizemos com o numerador. Dessa vez, no entanto,
a medida envolve o espalhamento de apenas um pulso. Por isso, havera o efeito de s6

um pulso incluido nos operadores de evolugdo temporal.

CI(t+1):) = Tr(a;r(t + 1)as(t + 7)p(0))
= Tr(U'(0,t + 7)alU(0, t + T)U'(0, t + T)asU(0, t + 7)p(0))
= Tr(fsUpuisoU (tp, ty + T)p(OVU (), t + T)u;ulso)
= Tr(fts Upuisoe ™ 00 p(0)e Hor ¥ O/ 1)
= Tr(ﬁse_ivftp p(O)eiV’tP)

= (0]5(0l,e™V1tr Mz e~ TVt |0),|0),

(6.67)

Aproximando até ordem de Qf,,

e Vilr /1 = 10)5]0)q + Qty|1)s]1)a (6.68)

Entao,

(0s <0|aeivltp/hﬁse_ivltp/h|0>s|0>a ~ (<0|5 0]z + Qtr?(lls(lla) (Qtr?|1>s|1>a)
(6.69)
~ (Qtp)zl

independentemente de 7. Com isso, concluimos que

kgT
g(z)(”{) =1+ ¢ AT (6.70)

Como pode ser observado na figura 39, este resultado mostra o decaimento da
funcdo de correlagdo de segunda ordem de 2 para 1, bem préximo do comportamento
real. Algumas propriedades dos dados experimentais, no entanto, ndo podem ser
explicadas por esse modelo. As oscilagdes com frequéncia bem definida que vemos
modular a fun¢ao ¢‘¥(7) (ndo confundir com a modulacio da intensidade espalhada
cuja influéncia foi eliminada pela anélise do capitulo anterior) e a primeira escala de
tempo do decaimento, préximo de 7 = 0, ndo sdo explicadas por ele. Uma discussao
sobre a origem dessa primeira escala de tempo encontra-se ao final do capitulo 5. Na
préxima secdo, propomos uma modificacdo fenomenolégica sobre esse resultado de

forma a obter um melhor ajuste dos dados.

Olhando para o estado logo apds a deteccdo de um féton, vemos que ele
corresponde a uma distribuicdo de &tomos modulada espacialmente, formando uma

grade de densidade atdmica na regido da nuvem. A densidade de probabilidade de
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1.00 ~

g'?(T)

0.75 +

0.50 +

0.25 1

0.00

tital

Figura 39 — Previsio da teoria para a fungao ¢?(7) no nosso experimento. A escala de
tempo estd em unidades de tempo de decaimento 74 = (2L AK2)~1/2,

encontrar algum atomo na posigdo (x, y) dada pela fungdo de onda de |1), pode ser

escrita aproximadamente como

p(x) = Ag + Aq cos (Akyx + Akyy), (6.71)

o que corresponde a uma densidade modulada espacialmente por um cosseno. Isso pode
ser visualizado na figura 40. Assim, nosso tratamento quantico pode ter sua interpretacdo
conectada com a interpretacdo dada ao experimento de [5]. Nela, a memoria existe
pois o sistema age como uma grade de difracdo, e o tempo de decaimento lento pode
ser interpretado classicamente como o tempo que esta grade leva para se desfazer
segundo o movimento dos d4tomos, sem colisdes. Com isso além do tratamento quéntico,
atil a informacdo quantica, dispomos de uma intuigdo classica sobre os mecanismos

participando do processo.
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y[1/AK]
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Figura 40 — Representacdo da densidade de dtomos da fungdo de onda de [1),, que
domina o estado do sistema logo apds a detecgdo de um féton.

6.4 Modificacao fenomenoldgica e comparacao com expe-

rimento

Para dar conta das duas escalas temporais observadas, podemos supor que um
subconjunto dos dtomos perde suas relacdes de fase de forma homogénea [24][25] e
apresenta, além do decaimento gaussiano predito pela nossa teoria, um decaimento
exponencial na func¢do de correlagdo. Se isso acontece com uma fragdo € dos 4tomos, e o
tempo do decaimento homogéneo é t;,, a expressao para ¢'?(7) fica escrita como

kpT kgT
g1y =1+ |1 —e)e m AT 4 ee‘BTAkZTZe‘T/”I]. (6.72)

Com isso, temos 2 parametros livres além da temperatura T para ajuste das

curvas experimentais, € e tj,. Os ajustes podem ser vistos nas figuras 41 até 45.

W =063
g'?)(1) variando angulo th =1.75
e T = 352uK
1 0=1.1°
1.51
W =063
ty, = 1.75
101 T = 352uK
0 = 2.5°
0.51 n— B <=063
= (I
0065~ 4o~ 60 s 1 =352uK
t{ps) 0 =4.7°

Figura 41 — Ajustes teéricos da fungao ¢®(7) variando o angulo 0 entre o modo da luz
espalhada e o modo do feixe de excitagdo.
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g'?)(1) variando periodo

2.0

1.51

1.0

0.51

0.0

} T=0.5us

4  T=lous

} T=2.0ps

20

t{is)

60

80

B =07
ty, = 2.62

T = 190uK
0 =2.5°
B =075
tp, = 2.62

T = 190uK
0 =2.5°
B =075
th = 2.62

T =190puK
6 =2.5°

Figura 42 — Ajustes teéricos da fungdo ¢ (1) variando o periodo T entre os pulsos de

excitagao.
g'?)(t) variando OD
2.0
1.54
1.0
0.51
} ob=24
} oD=148
} ob=25.0
00620 40 60
tps]

80

B =036

t, = 0.78
T = 186puK

0 = 2.5°

B €=0.50

tp, = 1.22
T=171puK

0 =2.5°

B =074

tn = 2.60
T=197TuK

0 =2.5°

Figura 43 — Ajustes tedricos da fungao ¢®(7) variando a profundidade éptica (OD, do
inglés optical depth) da nuvem atomica gerada pela MOT.

g'?)(1) variando probabilidade

2.0
1.51
1.0
0.5] § p=0.024%0
1} p=0.06390
} p=0.10965
00690 40 60
t[ps]

80

B =074
tp, = 2.58

T =200uK
0 =2.5°
B e=054
t, = 1.61

T =321pK
0 = 2.5°
B =046
ty, = 1.22

T =342uK
0 =2.5°

Figura 44 — Ajustes te6ricos da fungdo g'?(t) variando a probabilidade de detecgao de
um féton espalhado.
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B =074
g'?)(1) variando dessintonia th =1.67
2.0 T = 295K
\ 0 =2.5°
1.5
B =074
| tn, = 1.67
1.04 T =295uK
1 0 = 2.5°
0-51 i 6=40 . e=0.74
| I— th = 1.67
0.0 20 40, 60 80 T =295pK
t[ps] 6 =2.5°

Figura 45 — Ajustes te6ricos da fungdo ¢‘?(7) variando a dessintonia do feixe de excitagdo
em relacdo a transicao atdmica.

Nas figuras variando periodo e dessintonia, todas as curvas foram ajustadas por
apenas um conjunto de parametros, dados pelas curvas com T = 0.5us e 6 = 56MHz,
respectivamente. Isso foi feito pois ndo esperamos que esses dois parametros influenciem

os resultados.

Na figura em que variamos o angulo de espalhamento, deixamos livre apenas o
parametro de dngulo para variar entre as curvas, sendo todos os outros ajustados pela
curva de 6 = 1.1°. O motivo é que toda a configuragdo experimental exceto o dngulo de

deteccdo foi o mesmo para as trés curvas.

Por fim, nas figuras variando profundidade 6ptica e probabilidade de espalha-
mento, todos os parametros exceto angulo estdo livres para variar. Para a profundidade
Optica da armadilha magneto 6ptica isso se justifica porque, ao alterd-la, esperamos
que todas as caracteristicas da nuvem atomica mudem, desde seu tamanho (o que
pode afetar € e t;, se esses estiverem relacionados com uma imperfeicdo espacial no
cancelamento do campo magnético, por exemplo) até a temperatura dos d&tomos. Para
a probabilidade de espalhamento a justificativa se dd porque se esta for muito alta, a
sequéncia de pulsos do feixe de excitagdo pode esquentar a nuvem atdmica, mudando

suas caracteristicas.

Considerando o bom ajuste dos dados pela teoria em sua parte mais lenta,
podemos concluir que a origem da memoria resiliente ao processo de leitura presente
no conjunto de 4tomos frios estd no efeito coletivo causado pela superposicdo entre
autoestados de momento linear da nuvem em que diferentes atomos foram responsaveis
pelo espalhamento do f6ton detectado. Além disso, imperfei¢cdes no aparato experimental

podem ser incluidas no modelo a partir da introdugdo dos parametros ajustaveis € e t;,.
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7 CONCLUSAO

Neste trabalho, partindo do reconhecimento da importancia do entendimento de
memorias quanticas para protocolos de informagdo quantica, especialmente memorias
em ensembles de dtomos frios, investigamos o mecanismo de uma memdria no espalha-
mento de luz por um sistema desse tipo. Experimentalmente esta investigacdo pode ser
feita utilizando configura¢des bem conhecidas. Para nés, o uso de um interferometro de

Hanbury Brown-Twiss foi bem recompensado.

Apesar de ser possivel verificar rapidamente por uma andlise simples dos dados
experimentais que de fato hd memoria no sistema, e que essa memoéria armazena
informacgdo sobre com quais modos da luz os atomos interagiram, essa andlise pode

trazer problemas interpretativos.

A partir de um entendimento mais sutil sobre quais sdo as pressuposi¢des sobre
o tipo de estatistica envolvida no processo que sdo embutidas na andlise dos dados, é
possivel identificar possiveis origens dos aspectos mais dificeis de explicar dos dados.
Além de ser possivel explicar a origem de tais aspectos ndo esperados dos resultados
através da andlise estatistica, também pode ser possivel utilizar esse conhecimento para
propor novas formas de processamento dos dados que filtram o que ndo interessa no

resultado final.

Possuindo os resultados provenientes da andlise de dados adequada, pudemos
rastrear a origem da memoria nos atomos a um efeito coletivo do ensemble de dtomos.
A fungdo de onda ap6s a deteccdo de um fé6ton em um certo modo é uma superposicao
de autoestados de momento em que diferentes d&tomos foram o d&tomo responsavel por
espalhar o féton detectado. Esse estado que pode ser interpretado como consequéncia
da indistinguibilidade entre caminhos diferentes que levam a detec¢do do féton, é o
estado responsével pelo desvio da fungao ¢?(0) para valores acima de 1, o que vimos

resultar em uma memoria.

A previsdo tedrica fornecida pelo nosso tratamento, no entanto, ndo leva em
conta todas as imperfei¢des ou processos relevantes ao processo inteiro, mas apenas
modela o decaimento geral da memdria. Ainda assim, com uma modificagdo nessa
previsdo de acordo com um argumento fenomenolégico, podemos obter um bom acordo

entre o experimento e a teoria, completando o resultado deste trabalho.
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APENDICE A — TRATAMENTO DOS DADOS BRUTOS

A placa contadora gera, para nossos dados que correspondem a observagdes
durante periodos de cerca de 3 horas, arquivos de tamanho relativamente grande, em
torno de 2 GB. Esse tamanho exagerado pode aumentar a dificuldade computacional
da anélise. Felizmente, como estamos num regime de baixissima intensidade, e a
probabilidade de detecgdo de luz ap6s aplicacdo de cada pulso vai a cerca de 2%, a maior
parte da informacgéo escrita pela placa contadora é redundante. Esquematicamente,

temos na pratica arquivos de dados no seguinte formato:

Inicio de uma nova contagem
Detecgao no detector A, um tempo T1 desde o tltimo inicio de contagem
Inicio de uma nova contagem
Inicio de uma nova contagem
Inicio de uma nova contagem
Deteccdo no detector A, um tempo T2 desde o tltimo inicio de contagem
Detec¢ao no detector B, um tempo T3 desde o tltimo inicio de contagem
Inicio de uma nova contagem

e assim por diante. N@s interpretamos como um instante cada janela temporal
entre dois inicios de contagem (isto €, duas detec¢des dentro da mesma contagem
sdo interpretadas como simultaneas). Por isso, é possivel comprimir a sequéncia de

anotagOes acima para:

Contagens desde a tltima deteccdo | Ntimero de detecgdes em A | Niimero de detec¢des em B
1 1 0
3 1 1
1 0 0

Uma compressao desde tipo, em que escrevemos apenas os nameros da tltima

tabela leva o tamanho dos arquivos de cerca de 2 GB para cerca de 200 MB, devido

a grande quantidade de linhas “inicio de contagem” repetidas no arquivo original,

tornando-os facilmente analisaveis pelo computador.

O formato dos dados que utilizamos para anélise, porém, esta na forma "clicks

vs tempo". Assim, para que esses dados comprimidos estejam nessa forma, basta que o

valor da coluna que conta as varreduras acumule o total de varreduras desde a primeira

linha. Com isso, os dados ficam na seguinte forma:

Verreduras desde o inicio do experimento | Ntmero de detecgdes em A | Numero de detecgdes em B
1 1 0
4 1 1
5 0 0
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Os dados nessa forma sdo representados nos diagramas que ilustram o processo

de anélise dos dados por figuras como a 46.

to
tl

al bl
a2 b2

Figura 46 — Representacdo diagramatica dos dados ap6s tratamento de compressdo e
formatagdo. Essa representacdo aparece nos diagramas de analise de dados
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APENDICE B — ANALISE DOS DADOS EXPERIMENTAIS

¢?(1) supondo estatistica estacionaria

A primeira forma, mais simples, que podemos pensar para obter ¢‘?(7) de dados
na forma da tabela no apéndice A comeca pela interpretacao da expressao para ¢ em

termos de probabilidades de deteccdo:

(2)(,1,) — <: j(T)j(O) :> — P(A(T)/B(O)) _ NA,B(T/ 0)
8 10 9¢10) ) PAM)P(BO) - NaNp

onde N4 p(7,0) é a quantidade de detec¢des em A apds um tempo 7 depois de uma

deteccdo em B, Ny é o nimero de deteccbes em A, Np o nimero de deteccdes em B, e N,
o numero total de inicios de contagem de deteccdes na tiragem de dados. Para o tltimo
passo, o de escrever as probabilidades em termos de ntimeros de clicks, supomos que as
probabilidades ndo dependem da origem temporal, o que significa supor que lidamos
com uma estatistica estaciondria. Falando em termos do arquivo de dados comprimido,
isso significa que cada linha pode funcionar como um ponto de partida para a contagem
de N p. Assim, um programa que, sobre o arquivo de dados na forma da tabela A, siga

o seguinte algoritmo serd capaz de obter o grafico de g?(7) para um intervalo [0, Tmax]:

Primeiro passo Escolher uma nova linha i:

1. Somar o ntmero de inicios de contagem contabilizados na linha i a N;
2. Se ha detec¢ao em A na linha i, somar 1 em Ny
3. Se ha deteccdo em B na linha 7, somar 1 em Np

4. Se hé detec¢do em A e em B na linha 7, somar 1 em N4 5(0,0)
Segundo passo Para cada j € {1, T/u4x/(tempo entre pulsos)}:

1. Se existe a linha i + j e h4 deteccdo em A ou em Bna linha i + j, somar 1 em

N4 p(j * (tempo entre pulsos), 0)
Terceiro passo Se o final do arquivo néo tiver sigo alcangado, voltar ao primeiro passo.

Quarto passo Calcular g'?(7) para cada 7 utilizando os nimeros de contagens obtidos.
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g(z)(T) através de média por ensemble

Para realizar médias por ensemble, de acordo com a discussdo do capitulo 3, é
preciso separar os dados em uma série de fungdes do tempo. Para isso, definimos como o
inicio de cada uma delas a preparagdo de cada MOT. Se o trem de pulsos consiste de 2000
pulsos (no nosso experimento, utilizamos 1999, 999 e 499 pulsos, mas para este exemplo
utilizaremos 2000), um evento que ocorreu t; pulsos apds o inicio do experimento conta
como um click da #;/2000-ésima fun¢do de amostra, onde / indica a parte inteira da
divisdo. Pela defini¢do da origem temporal, também segue que o click ocorreu um tempo
ti%2000 desde o inicio dessa fungdo, onde % indica o resto da divisao.

Assim, ao varrer os dados somando clicks no detector A ou B em t = £;%2000,
estamos contando Na(t) e Np(t). Contando clicks em A e B em ¢4 e tp desde que
t4/2000 = tg/2000 (isto é, ambos pertencem a mesma preparacao da MOT), estamos
contando Ngg(ta, tg). Com esses ntimeros e o numero total de fun¢des dado por
tr = max{t;} dividido pela quantidade de pulsos por preparagdao da MOT, temos o
numero de fun¢des de amostra. Logo, obtemos a fung¢do g(z)(tl, ty) fazendo

Nap(t1, t2)
Na(t1)Np(tp)

O algoritmo para calcular os N4, Ng e Nap a partir dos dados fica:

?(ty, 1) = X (t¢/2000) (B.1)

Passo zero Fazerff =0
Primeiro passo Escolher uma nova linha i:

1. Set; >ty fazerty :=t;

2. Se hé deteccdo em A na linha i, somar 1 em N4 (#;%2000)

3. Se hé deteccdo em B na linha 7, somar 1 em Ng(t;%2000)

4. Se hé deteccdo em A e em B na linha i, somar 1 em N4 5((#;%2000), (t;%2000))

Segundo passo Se houve deteccdao em A, para cada j € (i, 7 + 2000]:

1. Se existe a linha i + j, e ha detecgdo em B na linha i + j, e t;/2000 = t; /2000
somar 1 em Ny p(t;%2000, t;%2000)

Terceiro passo Se nem todas as linhas tiverem sido escolhidas como linha i, voltar ao

primeiro passo

Quarto passo Calcular ¢?(t1, t,) utilizando os ntimeros de contagens obtidos
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