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RESUMO

Neste trabalho, investigamos o mecanismo de uma memória no espalhamento
de fótons individuais por um conjunto de átomos frios bombeados para uma transição
cíclica. Através do uso de funções de correlação, identificamos um tempo de vida
para essa memória que é muito maior que o tempo de vida do estado excitado dos
átomos e é resiliente ao processo de leitura. O trabalho de interpretação dos dados
releva a necessidade de cuidado ao pressupor simplicidade à estatística dos processos
envolvidos para que artefatos experimentais não se manifestem de forma relevante
nos resultados finais. Por fim, propomos um modelo teórico para o mecanismo dessa
memória que possibilita uma interpretação mais concreta da natureza da memória
observada, atribuindo sua origem a um efeito coletivo nos graus de liberdade externos
dos átomos.

Palavras-chave: Correlação. Coerência. Átomos frios. Memória. Espalhamento.



ABSTRACT

In this work, we investigate the mecanism of a memory in the scattering of
individual photons by an ensemble of cold atoms pumped to a cyclic transition. Through
the use of correlation functions, we identify a lifetime for this memory that is much
larger than the lifetime of the exicted state of the atoms and is resilient to the reading
process. The task of interpretation of the results shows the necessity of care in making
assumptions about the simplicity of the statistics of the relevant processes so that
experimental artifacts do not manifest themselves in a relevant way in the final results.
Finally, we propose a theoretical model for the mecanism of this memory that allows
a more concrete interpretation of the nature of the memory we observe, assigning its
origin to a collective effect in the external degrees of freedom of the atoms.

Keywords: Correlation. Coherence. Cold atoms. Memory. Scattering.
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1 INTRODUÇÃO

Um dos maiores desafios na área de informação quântica é o do desenvolvimento
de protocolos que sejam escalonáveis, isto é, que possam ser implementados em escalas
cada vez maiores, tornando-se mas poderosos.

Um dos elementos necessários ao escalonamento de tais protocolos é a memória.
Quando o escalonamento de uma tarefa requer que certo procedimento probabilístico
seja repetido com sucesso várias vezes para a construção do sistema em escala maior,
se não houver memória a probabilidade de sucesso global é muito menor do que se
for possível guardar os sucessos anteriores em uma memória. Isso acontece pois sem
memória, todos os sucessos precisam acontecer simultaneamente.

O exemplo mais relevante dessa ideia para o presente trabalho é o protocolo
DLCZ (Duan, Lukin, Cirac, Zoller, os autores do protocolo) [2] para distribuição de
emaranhamento quântico entre locais distantes. Nesse protocolo, o efeito de troca de
emaranhamento [3] é utilizado para conectar dois pares de ensembles de átomos frios
emaranhados, gerando emaranhamento entre as pontas extremas de cada um dos pares.
Esse procedimento pode ser repetido várias vezes, aumentando cada vezmais a distância
entre os locais com emaranhamento, diferentemente do emaranhamento que pode ser
obtido com propagação direta de fótons [4]. Nesse protocolo, o elemento de memória
utilizado é o tempo de vida dos estados fundamentais internos dos átomos.

Interessantemente, uma memória na nuvem de átomos frios que é resistente ao
processo de leitura foi identificada no regime em que luz clássica é espalhada [5]. Sendo
essa propriedade de resiliência perante o processo de leitura interessante, esse trabalho
propõe-se a investigar o comportamento desta memória no regime de espalhamento
espontâneo de fótons individuais.

Ainda que a memória que estudamos tenha análogo clássico, propomos um mo-
delo teórico quântico do seu mecanismo de funcionamento, atribuindo sua origem a um
efeito coletivo. Com isso, uma perspectiva de estudo das propriedades exclusivamente
quânticas do sistema é vislumbrada para a aplicação futura desta memória a protocolos
de informação quântica.

Começamos o texto com o objetivo de introduzir os princípios de funcionamento
da nossa fonte de átomos, no capítulo 2. Em seguida, no capítulo 3, desenvolvemos uma
intuição matemática das ferramentas de análise estatística necessárias ao entendimento
da investigação da memória. No capítulo 4, discutimos configurações experimentais
básicas em óptica que são relacionadas a medidas de correlação. Finalmente, no capítulo
5, apresentamos o experimento realizado e discutimos como deve ser realizada uma
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análise de dados que possibilite uma clara interpretação dos fenômenos envolvidos.
Apresentamos um modelo teórico da memória no espalhamento de luz por átomos
frios no capítulo 6, e a conclusão do trabalho no capítulo 7. Detalhes sobre o tratamento
dos dados experimentais podem ser encontrados nos apêndices ao final do texto. Uma
discussão mais completa do capítulo 2 pode ser encontrada em [6] e [7], do capítulo 3
em [8] e [7], e do capítulo 4 em [7] e [9].
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2 ARMADILHA MAGNETO-ÓPTICA

O experimento que forneceu os dados sobre os quais realizamos a análise
estatística tem como base uma nuvem de átomos de rubídio 87 frios, a uma temperatura
da ordem de centenas de µK. Por isso, a presente seção será dedicada a explicar a física
que permite que um sistema desse tipo seja construído. Para tanto, precisamos entender
como o movimento de um átomo é alterado pela sua interação com um campo luminoso
e a partir disso descrever um esquema que desacelere e prenda os átomos, formando
um conjunto frio numa região do espaço.

2.1 Interação entre luz e átomo de dois níveis

Como a taxa de troca de momento entre o campo luminoso e o átomo está
relacionada com a taxa com que esse átomo absorve e emite fótons, precisamos de
um modelo para a interação átomo-luz [6]. Por simplicidade, supomos um átomo de
dois níveis, |1〉 e |2〉, onde a energia de |2〉 é maior que a de |1〉, e um campo luminoso
monocromático com frequência angular ω, dessintonizado de δ da transição |1〉 → |2〉.
Esse sistema está representado na figura 1.

Figura 1 – Diagrama de energia do átomo de dois níveis

Se o hamiltoniano do átomo livre é H0, então H0 |1〉 � E1 |1〉 e H0 |2〉 � E2 |2〉.
Se ligamos o campo eletromagnetico E(t) � E0 cosωt, o hamiltoniano passa a ser
H � H0 + er · E0 cosωt e agora escrevemos o estado num tempo t como

|Ψ〉 � c1(t)e−iE1t/~ |1〉 + c2(t)e−iE2t/~ |2〉. (2.1)

Aplicando 〈1| e 〈2| na equação de Schroedinger, H |Ψ〉 � ih ∂
∂t |Ψ〉 , e definindo

Ω � 〈1|er · E0 |2〉/~, ω1 � E1/~, ω2 � E2/~ e ω0 � ω2 −ω1,chegamos no seguinte sistema
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de equações diferenciais:

i Ûc1 � Ω cos (ωt)e−iω0t c2,

i Ûc2 � Ω∗ cos (ωt)e iω0t c1.
(2.2)

Em seguida, aplicamos a chamada aproximação de onda girante. Para tanto,
escrevemos os cossenos em termos de exponenciais complexas. Isso levará ao apareci-
mento dos termos e±i(ω−ω0)t e e±i(ω+ω0)t . Para as altas frequências utilizadas na óptica, os
termos do segundo tipo oscilam muito mais rapidamente que os do primeiro e podem
ter sua média considerada desprezível. Com isso, obtém-se o novo sistema

i Ûc1 � c2e i(ω−ω0)tΩ
2 ,

i Ûc2 � c1e−i(ω−ω0)tΩ
∗

2 .
(2.3)

No que se segue consideramos Ω � Ω∗, e definimos δ � ω − ω0. Realizamos a mudança
de coordenas para c̃1 � c1e−iδt/2 e c̃2 � c2e iδt/2, o que remove a dependência temporal
explicita do sistema de equações. Com o novo sistema, podemos escrever as equações
diferenciais para os termos da matriz densidade |Ψ〉〈Ψ| � ρ11 |1〉〈1| + ρ22 |2〉〈2| +
ρ̃12e iδt |1〉〈2| + ρ̃21e−iδt |2〉〈1| .

Ûρ11 � i
Ω

2 (ρ̃12 − ρ̃21),

Ûρ22 � −i
Ω

2 (ρ̃12 − ρ̃21),

Û̃ρ12 � −iδρ̃12 + i
Ω

2 (ρ11 − ρ22),

Û̃ρ21 � iδρ̃21 − i
Ω

2 (ρ11 − ρ22).

(2.4)

Essas equações não incluem o decaimento expontâneo por princípio, então,
adicionamo-o somando Γρ22 a Ûρ11, −Γρ22 a Ûρ22, −Γ2 ρ̃12 a Û̃ρ12, e −Γ2 ρ̃21 a Û̃ρ21.

Ûρ11 � i
Ω

2 (ρ̃12 − ρ̃21) + Γρ22,

Ûρ22 � −i
Ω

2 (ρ̃12 − ρ̃21) − Γρ22,

Û̃ρ12 � −iδρ̃12 + i
Ω

2 (ρ11 − ρ22) −
Γ

2 ρ̃12,

Û̃ρ21 � iδρ̃21 − i
Γ

2 (ρ11 − ρ22) −
Γ

2 ρ̃21.

(2.5)

O que nos interessa aqui é o estado após tempos muito maiores que o tempo de
decaimento Γ−1. Por isso, supomos um estado estacionário, isto é, Ûρ11 � Ûρ22 � Û̃ρ12 �
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Û̃ρ21 � 0. Com isso, levando em consideração a normalização do estado, que impõe
ρ11 + ρ22 � 1, obtemos

ρ22 �
Ω2/4

Γ2/4 +Ω2/2 + δ2 . (2.6)

2.2 Força de espalhamento

Figura 2 – Luz laser exerce força sobre átomos como resultado de sucessivas absorções
dos fótons do feixe laser e das emissões espontâneas subsequentes.

Como a emissão espontânea não tem direção preferencial, se um átomo é
iluminado por um feixe de luz laser, como ilustra a figura 2, ele sofrerá uma força na
direção de propagação dessa luz devido aos sucessivos espalhamentos. Ao absorver
um fóton do feixe que se propaga na direção +x̂, o átomo ganha um momento +~k x̂.
Em seguida, pode espontaneamente emitir um fóton de mesma energia, isto é, com
mesmo momento em módulo, em alguma direção aleatória. Repetindo essa sequência
muitas vezes, todos os ganhos de momento por absorção são na mesma direção, mas os
espalhamentos espontâneos tenderão a se cancelar. O caminho no espaço dos momentos
realizado pelo átomo pode ser exemplificado pelo esquema na figura 3.

Figura 3 – Ilustração da variação domomento linear do átomo após sucessivas absorções
e das emissões espontâneas de fótons
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Esse raciocínio sugere a seguinte expressão para a força exercida sobre o átomo:

Fespalhamento � R~k , (2.7)

onde R é a taxa de emissão espontanea e ~k é o momento linear dos fótons do feixe
de laser incidente sobre o átomo. Como a taxa de emissão espontânea é proporcional
à população no estado excitado, ρ22, e também à taxa de emissão espontânea, Γ ,
escrevemos R � Γρ22 e utilizamos o resultado da seção anterior para ρ22.

Fespalhamento(δ, k) �
Γ

2~k
Ω2/2

Γ2/4 +Ω2/2 + δ2 , (2.8)

onde δ � ω − ω0.

É importante ter em mente que essa expressão se refere apenas à força média
que resulta da sequência de absorções e emissões. O átomo em cada instante de tempo
pode ganhar momento em direções diferentes da direção do laser, o que adiciona uma
variância em torno da média nula no ganho de momento nessas direções.

2.3 Melaço óptico

Sabemos já que um feixe de laser que se propaga na direção x̂ exerce uma força
na direção x̂ sobre os átomos que ilumina. Mais interessante é o que acontece se temos 2
feixes contrapropagantes de mesma frequência. Veremos que é possível resfriar átomos
com um arranjo desse tipo [10] [11].

Figura 4 – Umparde feixesde laser contrapropagantes sintonizados abaixoda frequência
de ressonância do átomo resulta em uma força do tipo viscosa ao longo de
sua direção.

Consideramos agora que o efeito Doppler desloca a frequência do laser como
percebida pelos átomos. Supomos que ambos os feixes e o movimento do átomo são
paralelos ao eixo x. Se a velocidade do átomo é v, um feixe de luz que se propaga na
direção +x é percebido pelo átomo com uma frequência deslocada de −kv. Um feixe
de luz na direção −x, por sua vez, é percebido com uma frequência deslocada de +kv.
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Pela forma de δ, temos que ω→ ω ± kv �⇒ δ→ δ ± kv. Assim, a força sobre o átomo
devido aos dois feixes fica:

Fmelaço � Fespalhamento(δ − kv , k) + Fespalhamento(δ + kv ,−k). (2.9)

Expandindo Fmelaço em potências de kv até primeira ordem, obtemos o seguinte:

Fmelaço ≈
~k2Ω2Γδ(

Γ2/4 +Ω2/2 + δ2
)2 v. (2.10)

Quando δ < 0, essa é uma força do tipo −|α |v que sempre se opõe ao movimento
dapartícula, uma força viscosa. Se adicionarmosmais 2paresde feixes contrapropagantes
nas direções ŷ e ẑ , qualquer átomo que entre na região iluminada pelos 6 feixes tenderá
a parar seu movimento. Nessa região, a luz cria uma resistência a qualquer movimento
dos átomos, funcionando como um meio viscoso. Daí o nome de melaço óptico para
essa técnica.

Intuitivamente, podemos entender que o efeito Doppler favorece sempre o
feixe contrapropagante ao movimento do átomo desde que a frequência da luz esteja
sintonizada abaixo da frequência de ressonância da transição atômica.

2.4 Armadilha magneto-óptica

Veremos agora que a influência do efeito Zeeman [12] sobre um melaço óptico
pode levar ao aprisionamento de átomos, numa configuração experimental conhecida
como armadilha magneto óptica (MOT, do inglês magneto-optical trap) [13]. Supomos
que o átomo de 2 níveis que consideramos até aqui é, na verdade, um átomo com 4
níveis, sendo que um desses níveis tem energia E1 e momento angular nulo, e os outros
três são degenerados, com energia E2 e momento angular quadrado ~2. Esse é o caso de
uma transição entre níveis finos com momento angular total J � 0 e J � 1. Por conta
do efeito Zeeman, os três níveis de energia mais alta se tornarão não degenerados na
presença de um campo magnético.

Para campos magnéticos fracos, o deslocamento Zeeman pode ser escrito como
gµBBMJ onde g é o fator de Landé, µB é o magneton de Bohr e MJ é o número quântico
magnético. No nosso caso, MJ � 0, 1,−1 para o nível de energia superior e MJ � 0 para o
inferior. Se geramos um campomagnético que na origem é nulo com gradiente constante,
temos na vizinhança dela B(x , y , z) � ∂Bx

∂x x̂ +
∂By

∂y ŷ +
∂Bz
∂z ẑ. Assim, os deslocamentos

Zeeman em função de cada direção ficam como na figura 5 para o eixo x.

Esses deslocamentos por sua vez, tornam as transições σ+ e σ− diferentemente
prováveis nas regiões de x,y,z positivos ou negativos. Escolhendo, então, as polarizações
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Figura 5 – Deslocamento Zeeman na vizinhaça da região em que o campo magnético é
nulo.

dos feixes de armadilha de acordo com a figura 6, os átomos sempre terão maior
probabilidade de absorver fótons do laser que aponta na direção da origem do que do
laser que aponta para fora da origem por causa da maior proximidade da condição de
ressonância. Esse desbalanço na probabilidade gerará uma força restauradora.

Figura 6 – Escolhendo apropriadamente a polarização dos feixes de acordo com o seu
sentido de propagação, é possivel favorecer sempre a força que aponta na
direção da origem.

Para ver matematicamente o que acontece, consideremos duas bobinas na
configuração anti-Helmholtz segundo o esquema mostrado na figura 7. Aqui, na direção
z, a frequência ω0 é alterada para ω0 + g µB

~
dBz
dz z. Expandindo a expressão exatamente
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como fizemos para a força no melaço óptico, obtém-se que

FMOT �
hkΩ2Γδ(

Γ2/4 +Ω2/2 + δ2
)2

(
kv + g

µB

~

∂Bz

∂z
z
)
. (2.11)

Como no caso da figura de exemplo ∂Bz
∂z > 0, essa expressão significa que há, além da

força do tipo viscosa, uma força restauradora tipo −|β |z nesse sistema. É interessante
notar que dado um campo magnético nulo com gradiente constante na região de
interseção dos 6 feixes de laser que formam o melaço óptico, sempre é possível escolher
combinações de polarizações dos pares de laser contrapropagantes tais que a força
resultante será −|β |z. Um esquema da MOT pode ser visualizado na figura 7.

Figura 7 – Esquema de uma armadilha magneto óptica

2.5 Limitações da técnica

Aabordagem simples que adotamos nopresente capítulo podepassar a impressão
de que átomos que entram na região da armadilha magneto-óptica, a interseção entre os
6 feixes de luz laser contrapropagantes, chegarão a velocidades cada vez mais baixas
sem limitação, o que levaria a temperatura sem empecilhos até 0 K. Esse não é o caso.
Por causa da natureza discreta e probabilistica da interação entre os átomos e a luz, o
que calculamos foi apenas um efeito médio.

Na prática, os átomos armadilhados (que foram desacelerados o suficiente pelo
melaço óptico para que o desbalanço devido ao campo magnético seja capaz de prendê-
los) continuam absorvendo e emitindo espontaneamente fótons. Esse processo resulta
em uma média nula, mas em uma variância diferente de zero à velocidade dos átomos.
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Sucessivas absorções e emissões aleatórias criarão uma caminhada aleatória dos átomos
no espaço das velocidades em torno da origem.

Esse limite inferior na média da velocidade quadrada dos átomos corresponde
a uma temperatura mínima à qual o melaço óptico consegue trazer um conjunto de
átomos. Esse limite é chamado de limite Doppler, e pode ser alcançado quando δ � −Γ/2
[6]. Ele corresponde à temperatura TD dada por

kBTD �
~Γ

2 . (2.12)

No entanto, em medidas experimentais da temperatura de átomos armadilhados
por essa técnica, as temperaturas observadas podem facilmente ser bem menores do
que a temperatura do limite Doppler [14]. A diferença entre o limite teórico que citamos
e a observação experimental tem origem na nossa simplificação em utilizar átomos de 2
níveis. Átomos reais possuem níveis degenerados, que acabam contribuindo com novos
mecanismos de resfriamento. Um importante mecanismo para isso é o chamado efeito
Sísifo [15]. Nele, o gradiente de polarização resultante da soma dos feixes de cada par
do melaço óptico faz com que sequências de absorção e emissão espontânea saindo de
um nível fundamental de mais alta energia e terminando em um de mais baixa energia
sejam mais prováveis que o inverso, através do deslocamento dos níveis de energia pela
luz.

No nosso experimento, não alcançamos o limite de temperatura Doppler, que é,
para a transição que escolhemos, de 144µK [16]. Isso acontece pois nossa configuração
experimental tem o objetivo de otimizar a profundidade óptica da nuvem gerada, e não
a temperatura dos átomos.
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3 FUNÇÕES DE CORRELAÇÃO

A presente seção é dedicada a introduzir o conceito de funções de correlação.
Tais funções quantificam nossa intuição de similaridade no contexto de processos
aleatórios. Quando comparamos uma função consigo mesma esperamos obter o máximo
de similaridade possível entre duas funções comparadas, e assim acontece com o valor
da função da correlação de primeira ordem quando a aplicamos a uma função em
relação a si mesma.

Para chegar às definições das funções de correlação, falaremos sobre os conceitos
de variável aleatória, processo aleatório, estacionariedade e por fim sobre as referidas
funções. As definições utilizadas aqui seguem a abordagem de [8], já que ela se adequa
bem à interpretação do nosso procedimento experimental.

3.1 Variáveis Aleatórias

Em certos casos, em especial em sistemas quânticos, os experimentos que
realizamos fornecem resultados os quais não podemos controlar. Algumas vezes essa
impossibilidade tem origem no fato de que, durante a preparação do experimento, não
se controla todas as variáveis relevantes para o resultado. Esse é o caso de um jogo de
dados ou de um jogo de cara ou coroa. Outras vezes, no caso de sistemas quânticos, essa
impossibilidade de escolha dos resultados é intrínseca à física dos processos e ocorre
não importa o quão bem nós controlemos o ambiente.

De toda forma, como é útil atribuir números aos resultados de nossos experi-
mentos, isto é, definir variáveis que dependem dos resultados experimentais, somos
levados naturalmente nesses casos à definição de variáveis aleatórias.

Variáveis aleatórias são definidas como variáveis cujos valores dependem do
resultado de experimentos aleatórios e que possuem associadas a cada um de seus
possíveis valores as probabilidades correspondentes aos respectivos resultados do
experimento. Por exemplo, em um jogo de dados, os possíveis resultados do jogo podem
ser agrupados em um conjunto como o da figura 8.

Figura 8 – Resultados possíveis do lançamento de um dado.
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Se definirmos então a variável U associando a ela os resultados do experimento
de acordo com a figura 9, teremos parte da nossa definição de variável aleatória satisfeita.

Figura 9 – Associação dos resultados de um experimento aleatório aos valores de uma
variável aleatória.

Como as configurações do dado com valor 2 ou 1 voltados para cima ocorrem
com probabildade de 1/3, o valor u � 2 da variável U aleatória tem associado a si a
probabilida de 1/3. Da mesma forma, o valor de u � 3 tem probabilidade de 1/6 e assim
por diante. Com isso, podemos considerar a variável u como uma variável aleatória, e a
ela teremos associados valores médios, variância e todas as quantidades comumente
utilizadas em estatística.

3.2 Processos Aleatórios

Com o conceito de variável aleatória bem definido, é fácil entender o que é um
processo aleatório. Suponhamos que ao invés de associar às configurações possíveis do
dado os números 2, 3, 5 e 7 como fizemos na seção anterior, associemos 4 funções do
tempo, fa(t), fb(t), fc(t) e fd(t), de acordo com a figura 10.



Capítulo 3. Funções de Correlação 23

Figura 10 – Num processo aleatório, funções do tempo estão associadas aos resultados
imprevisíveis do experimento aleatório.

De maneira análoga a como lidamos com as variáveis aleatórias, se há uma
função F(t) que, dependendo do resultado do experimento, pode assumir os valores de
fa(t), fb(t), fc(t) ou fd(t) e não podemos prever qual desses casos acontecerá, dizemos
que F(t) é um processo aleatório.

Um ponto importante dessa descrição é notar a presença da função senóide no
exemplo aqui apresentado, a função fb(t). Normalmente não consideraríamos uma
função seno como sendo resultado de um processo aleatório. Aqui, no entanto, essa
função faz parte de um ensemble de funções associado a um processo aleatório. Como
não sabemos se é a função seno que será sorteada ou não, ela pode fazer parte da
descrição de umprocesso aleatório semque confundamos sua presença comumprocesso
determinístico.

É importante notar ainda que esses eventos aleatórios por trás das funções que
não podemos prever podem ser sequências de múltiplos eventos. Por exemplo, se
utilizamos como evento aleatório duas rodadas de cara e coroa os resultados possíveis
passam a ser quatro: cara cara, cara coroa, coroa cara, coroa coroa. Aos quatro eventos
podem estar associadas 4 ou menos funções, e a cada uma dessas funções está associada
a probababilidade de que qualquer um de seus eventos correspondentes aconteça.
Uma descrição completa do processo aleatório é uma enumeração de todas as funções
possíveis de serem observadas junto com suas respectivas probabilidades.

Em geral, não temos acesso à descrição completa do processo, mas é suficiente
utilizar a densidade de probabilidade de primeira ou segunda ordem. Essa quantidade
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pode ser entendida a partir da figura 11.

Figura 11 – Do ensemble de funções podemos visualizar o significado das distribuições
de probabilidade que caracterizam o processo aleatório.

Nafigura 11, podemos olhar para o ensemble de funções empilhando-as alinhadas
no tempo. Olhando para a lista de todas as funções possíveis, podemos escolher um
instante t1 e perguntar-nos qual a probabilidade de uma função que tem F(t1) � f1 ser
observada.A resposta para essaperguntapara qualquer instantede tempo t é adensidade
de probabilidade de primeira ordem pF( f1; t1). A generalização dessa pergunta paramais
pontos é simples. A densidade de probabilidade de segunda ordem é a probabilidade
de que se observe uma função que tem F(t1) � f1 e F(t2) � f2, que escrevemos como
pF( f1, f2; t1, t2). A de terceira ordem escreve-se como pF( f1, f2, f3; t1, t2, t3) e assim por
diante.

Com essas densidades de probabilidades, podemos calcular o valor esperado da
variável f no instante t1:

〈 f (t1)〉 �
∫ ∞

−∞
d f1 f pF( f1, t1). (3.1)

Naturalmente, se dispomos de pF( f1, f2; t1, t2) , podemos calcular médias con-
juntas f (t1) f (t2):

〈 f (t1) f (t2)〉 �
∫ ∞

−∞

∫ ∞

−∞
d f1 d f2 f1 f2pF( f1, f2; t1, t2). (3.2)
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Também é possível definir médias no tempo. Estas, no entanto, correspondem a
uma função de amostra em particular, e não retornam funções do tempo, mas apenas
números. Escolhendo uma certa função fα(t) do ensemble, temos, por exemplo:

〈 fα(t)〉 � lim
T→∞

1
T

∫ T/2

−T/2
dt fα(t), (3.3)

e

〈 fα(t)2〉 � lim
T→∞

1
T

∫ T/2

−T/2
dt fα(t)2. (3.4)

É claro que é possível definir mais médias sobre esses processos. Veremos
como certas definições de outras médias serão úteis mais tarde, ao discutir funções de
correlação.

Médias são as quantidades com as quais geralmente lidamos. Elas são úteis
porque em processos aleatórios normalmente a forma das funções do ensemble não pode
ser descrita em forma analítica. Essa impossibilidade, por sua vez, dificulta a análise do
processo. É difícil, por exemplo, comparar uma função de amostra com outra.

Como as médias no tempo são quantidades bem definidas para cada função de
amostra, elas servem para caracterizar essas funções individualmente (ou o processo
inteiro quando houver ergodicidade, como veremos a frente). As médias por ensemble,
por sua vez, são bem definidas para o processo e servem para caracterizar o processo
aleatório como um todo. Essa distinção entre médias temporais e médias no ensemble
será bastante importante para o nosso trabalho de análise dos dados experimentais.

Por fim, pontuamos que normalmente, enquanto o processo de medida acontece,
não temos conhecimento de qual função fα(t) obteremos ao final do experimento
(sabemos isso, por exemplo, no caso de encontrar o seno no primeiro exemplo aqui
apresentado). Isso acontece porque geralmente não temos acesso à lista de eventos
aleatórios, funções associadas a eles e suas respectivas probabilidades. Vendo desse
modo, ficam claros os motivos pelos quais nunca lidamos com descrições completas dos
processos aleatórios, e também a utilidade da descrição parcial em termos de densidades
de probabilidade.

3.3 Estacionariedade

Para modelos físicos, certos tipos de processos aleatórios têm uma importância
muito maior do que os outros. Nesta seção, descrevemos algumas classes de tais
processos que são úteis à nossa análise.
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3.3.1 Processos estritamente estacionários

Um processo aleatório é classificado como estritamente estacionário quando a
função de densidade de probabilidade pF( f1, ..., fn ; t1, ..., tn) não depende da origem
temporal para qualquer n. Isso significa que, nesse caso:

pF( f1, ..., fn ; t1, ...tn) � pF( f1, ... fn ; t1 − T, ..., tn − T) (3.5)

para qualquer T e qualquer n.

Uma intuição visual dessa propriedade pode ser inferida a partir da figura 12,
apresentada para ilustração do que é um processo estacionário num sentido amplo,
desde que tenhamos em mente que ela precisa valer para qualquer escolha de qualquer
conjunto de n pontos no tempo.

A necessidade de que essa condição seja satisfeita para qualquer valor de n pode
tornar essa classificação impraticável. Ainda que um processo de fato seja estritamente
estacionário, como normalmente nós não dispomos da sua descrição completa e essa
descrição completa equivale a conhecer pF( f1, ..., fn ; t1, ..., tn) para todo n, é dificil ter
certeza de que podemos considerar isto como sendo verdadeiro. Todavia, a hipótese de
que um processo pertence a essa categoria pode simplificar a argumentação e levar a
resultados compatíveis com o que é observado. Mais tarde, veremos uma classe ainda
mais restritiva que a dos processos estritamente estacinários mas que é de grande
utilidade.

3.3.2 Processos estacionários num sentido amplo

Quando tratamos de processos aleatórios, é comum que as quantidades mais
relevantes para nossos objetivos sejam valores esperados. Isto é natural pois os valores
esperados são aquelas quantidades que devem se manter iguais entre conjuntos de
repetições dos experimentos. Assim, definimos um processo como estacionário num
sentido amplo quando ele obedece a duas condições:

• 〈 f (t1)〉 não depende de t1,

• 〈 f (t1) f (t2)〉 depende apenas da diferença τ � t2 − t1.
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Figura 12 – Comparação entre um processo estacionário em um sentido amplo e um
processo não estacionário. No processo estacionário, as distribuições de
probabilidade ao longo do ensemble dado um instante t não dependem da
origem temporal.

É interessante notar que essa classe é um caso particular da classe dos processos
estritamente estacionários. Se relaxarmos a condiçao da equação 3.5 para que ela seja
válida apenas para n � 1 e n � 2, então o processo obedece pF( f1, t1) � pF( f1 −T; t1 −T)
e pF( f1, f2; t1 − T, t2 − T). Com isso, escolhas apropriadas dos valores de T nas equações
3.1 e 3.2 recuperam as condições para que um processo seja estacionário num sentido
amplo. Assim, vemos que os processos estritamente estacionários formam um sub
conjunto dos processos estacionários num sentido amplo.

3.3.3 Processos ergódicos

Aúltima classe aqui descrita será a classe dos processos ergódicos. Esses processos
são aqueles em que cada uma das funções que se pode observar numa realização dos
experimentos é, em certo sentido, típica do processo. Mais especificamente, os processos
ergódicos são aqueles em que a distribuição de probabilidades ao longo do tempo em
qualquer função de amostra é a mesma que a distribuição em qualquer instante de
tempo ao longo do ensemble de funções. Por isso, quando um processo é ergódico, é
equivalente para a investigação se os dados são provenientes de uma longa função de
amostra ou vêm de muitas funções de amostra curtas.
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Para que um processo seja ergódico, é necessário que ele seja estritamente
estacionário. Isso fica claro se olharmos para um processo cujas funções de amostra são
todas parecidas, isto é, têm a mesma distribuição de probabilidades ao longo do tempo,
mas cuja distribuição ao longo do tempo depende da origem temporal que escolhemos.

Figura 13 – Comparação entre um processo ergódico e um processo não ergódico devido
a não estacionariedade. É importante ter emmente que não estacionariedade
não é a unica razão para não ergodicidade.

Um exemplo de um processo desse tipo é o mostrado pela figura 13. Nesse
exemplo, o processo ergódico, à direita, é colocado em contraste com um processo não
ergódico por não ser estacionário. A princípio se pode confundir o processo da esquerda
por ergódico pois todas as funções do ensemble seguem a mesma distribuição no tempo,
e nesse sentido elas são características do processo. No entanto, para classificarmos esse
processo como ergódico, é necessário que as médias no tempo dada uma função de
amostra sejam idênticas as médias por ensemble dado um tempo. Considerando isso
e notando que em t2 o processo da esquerda varia numa região de valores mais larga
do que qualquer das funções de amostra ao longo do tempo, entendemos de que não
se trata de um processo ergódico, e, portanto, não podemos considerar para ele que as
médias no tempo caracterizam o processo como um todo.

Em física, é comum que a suposição de que se trabalha com processos ergódicos
leve a conclusões consistentes com os dados observados apesar deles compreenderem
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uma classe muito restrita dentro dos processos aleatórios.

Esse não é o caso do experimento analisado no presente trabalho. Neste trabalho,
mostraremos que a suposição de que podemos tratar as médias temporais como médias
no ensemble e usá-las para caracterizar o processo pode levar a artefatos nas curvas
experimentais que dificultam a interpretação da física do problema.

3.4 Funções de correlação

Agora que conhecemos os tipos relevantes de processos aleatórios, resta-nos
introduzir um método que nos dê informações sobre esses processos. Já mencionamos
que as médias são quantidades que algo dizem sobre os processos, e não apenas
sobre uma realização experimental em particular. Agora, partimos de uma percepção
importante sobre as definições das médias estatísticas previamente estabelecidas.

Em álgebra linear, podemos interpretar funções como vetores e seu produto
escalar pode ser definido em termos de integrais. Além disso, esses produtos escalares
são abstrações da nossa intuição sobre projeções, que servem como comparações entre
direções, ou vetores, diferentes. Por isso, podemos usar integrais, as médias, para definir
as funções de correlação que comparam diferentes funções de amostra.

Definimos então a função de autocorrelação estatística através de uma média
como as definidas acima. Primeiro, partimos de uma média temporal para comparar
uma função de amostra fα(t) consigo mesma em outro instante, fα(t + τ):

Γ̃α(τ) � 〈 fα(t + τ) fα(t)〉 � lim
T→∞

1
T

∫ T/2

−T/2
dt fα(t + τ) fα(t). (3.6)

De acordo com a nossa motivação, quanto maior o valor de Γ̃α(τ), mais o valor da função
fα em t + τ depende do valor dela mesma em t.

Essa média temporal caracteriza uma função de amostra. Apenas quando se trata
de processos ergódicos, podemos usar esse tipo de média para tirar conclusões sobre o
processo como um todo.

Agora podemos utilizar o outro tipo de média que definimos, a média por
ensemble, com uma média análoga a essa média temporal, para obter informação do
mesmo tipo em relação ao processo como um todo. Assim, definimos

ΓF(t1, t2) � 〈 f (t1) f (t2)〉 �
∫ ∞

−∞

∫ ∞

−∞
d f1 d f2 f1 f2pF( f1, f2; t1, t2). (3.7)

Se for o caso de f ser uma função complexa, fazemos f1 f2→ f ∗1 f2 nas definições acima.
Com isso, podemos utilizar ΓF(t1, t2) para medir o quanto o processo como um todo em
t2 depende dele mesmo em t1.
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Pelas características dos processos estacionários, concluímos que no caso em que
há estacionariedade, essa função depende apenas de τ � t2 − t1. Já para os processos
ergódicos, as duas funções de correlação acima definidas coincidem, Γ̃(τ) � Γ(t1, t2) �
Γ(t2 − t1). Por isso, conhecer as características dos processos que estudamos pode
simplificar a análise.

Pela analogia que fizemos com o produto escalar, podemos dizer que ΓF(τ) �
〈 f (t1), f (t2)〉. Pela desigualdade de Cauchy-Schwarz, |〈u , v〉|2 ≤ 〈u , u〉〈v , v〉. Logo,

|Γ(t1, t2)|2
Γ(t1, t1)Γ(t2, t2)

≤ 1. (3.8)

Como essa quantidade à esquerda na expressão 3.8 é normalizada, ela é a
quantidadeverdadeiramenteútil quepodemosutilizar para comparar sistemasdiferentes
entre si quanto às suas correlações. Dessa forma, definimos o que chamaremos aqui de
função de correlação de primeira ordem, g(1)(t1, t2).

g(1)(t1, t2) �
〈 f (t1) f (t2)〉[

〈| f (t1)|2〉〈| f (t2)|2〉
]1/2 , (3.9)

onde as médias consideradas são as médias estatísticas utilizadas na equação 3.7. Caso
se trate de um processo ergódico, utilizar a média temporal que aparece na equação 3.6
leva ao mesmo resultado. Essa quantidade obedece

|g(1)(t1, t2)| ≤ 1. (3.10)

Além disso, se t1 � t2,

g(1)(t , t) �
〈 f (t)2〉
〈| f (t)|2〉 � 1, (3.11)

de forma que ao comparar uma função consigo mesma, obtemos o valor máximo
possível.

É possível que queiramos comparar as correlações entre mais de 2 funções
simultaneamente. Para isso, podemos simplesmente adicionar as funções que desejamos
dentro de valores esperados como os de g(1)(t1, t2) . Ao proceder por este caminho,
deixamos de falar de produtos escalares, mas podemos carregar a intuição prévia para
as novas definições. Tendo isso em mente, definimos o grau de correlação de ordem r,
que relaciona funções medidas em 2r pontos do tempo:

g(r)(t1, ..., t2r) �
〈 f (t1)... f (t2r)〉[

〈| f (t1)|2〉...〈| f (t2r)|2〉
]1/2 . (3.12)

Neste trabalho, aplicaremos casos particulares dessa expressão à óptica.
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3.5 Funções de correlação em óptica

Sabemos que, quando tratamos de luz, estamos lidando com campos eletromag-
néticos que variam ao longo do tempo. Se o sistema de interesse for, por exemplo, um
conjunto de muitos átomos cujas posições e velocidades não conhecemos, como é o
caso de um gás, haverá incertezas nos detalhes do processo de emissão da luz que
exigirão um tratamento estatístico. Além disso, sistemas quânticos mostrarão variações
imprevisíveis que são características desse tipo de sistema.

Assim, senos interessa caracterizar as correlaçõespresentes nesse tipodeprocesso,
podemos definir algumas quantidades em termos dos campos eletromagnéticos. Dessa
forma, em temos do campo elétrico complexo, definimos as seguintes:

Grau de coerência temporal de primeira ordem: é a simples função de correlação de
primeira ordem comparando o campo elétrico em instantes diferentes:

g(1)(τ) � 〈E∗(t)E(t + τ)〉√
〈|E(t)|2〉〈|E(t + τ)|2〉

, (3.13)

onde as médias são temporais, sobre t.

Grau de coerência de segunda ordem: é a generalização da função de primeira ordem
para as intensidades:

g(2)(τ) � 〈E∗(t)E(t)E(t + τ)E∗(t + τ)〉√
〈|E(t)|2〉〈|E(t)|2〉〈|E(t + τ)|2〉〈E(t + τ)|2〉

�
〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉 ,

(3.14)

onde as médias são temporais, sobre t.

3.5.1 Algumas propriedades gerais em processos clássicos

Já sabemos que a função de correlação de primeira ordem obedece em qualquer
processo

|g(1)(t1, t2)| ≤ 1, (3.15)

e
g(1)(t1, t1) � 1. (3.16)

Agora listamos duas propriedades gerais da função de correlação de segunda ordem
quando calculadas sobre processos clássicos.
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Como (I(t1) − I(t2))2 ≥ 0, então

2I(t1)I(t2) ≤ I(t1)2 + I(t2)2. (3.17)

Disso segue uma desigualdade relacionada a g(2):[
I(t1) + ... + I(tN)

]2
�

∑
i , j

I(ti)I(t j)

≤ 1
2

∑
i , j

I(ti)2 +
1
2

∑
i , j

I(t j)2 �

∑
i , j

I(t j)2.

Segue que [
I(t1) + ... + I(tN)

]2 ≤ N[I(t1)2 + ... + I(tN)2]. (3.18)

Dividindo ambos os lados da última desigualdade por N2:[
I(t1) + ... + I(tN)

]2

N2 ≤ I(t1)2 + ... + I(tN)2
N

. (3.19)

Como não definimos quem são os ti , o lado esquerdo dessa expressão pode ser
entendido como 〈I(t)〉2 e o direito como 〈I(t)2〉, tanto para médias temporais quanto
médias estatísticas. Logo,

〈I(t)2〉
〈I(t)〉2 � g(2)(0) ≥ 1. (3.20)

A expressão 3.17 implica em mais uma propriedade:

[
I(t1)I(t1 + τ) + ... + I(tN)I(tN + τ)

]2
�

∑
i , j

I(ti)I(t j + τ)I(t j)I(ti + τ)

≤ 1
2

∑
i , j

I(ti)2I(t j + τ)2 +
1
2

∑
i , j

I(t j)2I(ti + τ)2

�

∑
i , j

I(ti)2I(t j + τ)2.

Segue que[
I(t1)I(t1+τ)+...+I(tN)I(tN+τ)

]2 ≤
(
I(t1)2+...+I(tN)2

) (
I(t1+τ)2+...+I(tN+τ)2

)
. (3.21)

Dividindo essa expressão por N2, o lado esquerdo pode ser entendido como a média
(〈I(t)I(t + τ)〉)2 e o direito como 〈I(t)2〉〈I(t + τ)2〉. Então, se o processo em questão for
estacionário, ao dividir a inequação resultante por 〈I(t)〉2〈I(t + τ)〉2, obtemos mais uma
propriedade de g(2)(τ):
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〈I(t)I(t + τ)〉2
〈I(t)〉2〈I(t + τ)〉2︸                ︷︷                ︸

�[g(2)(τ)]2

≤ 〈I(t)
2〉

〈I(t)〉2︸ ︷︷ ︸
�[g(2)(0)]

〈I(t + τ)2〉
〈I(t + τ)〉2︸       ︷︷       ︸
�[g(2)(0)]

,

ou
g(2)(τ) ≤ g(2)(0). (3.22)

Essas duas propriedades podem ser colocadas dentro de uma mesma expressão. Para
processos estacionários e clássicos, concluímos que

1 ≤ g(2)(τ) ≤ g(2)(0). (3.23)

3.5.2 Algumas propriedades em processos caóticos clássicos

Em vários casos de interesse, por exemplo gases como o que estudamos experi-
mentalmente, o campo elétrico sobre o qual calculamos a intensidade pode ser visto
como a soma de vários campos elétricos independentes mas equivalentes (com mesma
amplitude). A esse tipo de processo chamaremos de processos caóticos, tendo emmente
que não devemos confundir essa denominação de caótico, própria da óptica, com a
utilizada em teoria do caos. Veremos nesta seção algumas propriedades das correlações
na luz emitida por esse tipo de sistema, válidas para processos estacionários em sistemas
desse tipo. Consideremos o campo total

E(t) �
N∑

i�1
Ei(t) (3.24)

emitido pelos átomos. Então,

〈I(t)I(t + τ)〉 � 〈E∗(t)E(t)E∗(t + τ)E(t + τ)〉
� 〈

∑
i , j,k ,l

E∗i (t)E j(t)E∗k(t + τ)El(t + τ)〉. (3.25)

Se cada átomo emite independentemente dos outros, cada termoEi é proporcional
a uma fase aleatória e iϕi . Por isso, todos os termos em que sobre algum Ei ou E∗i não
multiplicado por seu conjugado acabarão por se cancelar pelo somatório. Isso significa
que podemos considerar apenas os termos com i � j, k � l , i , k ou i � l , j � k , i , k ou
i � j � k � l:

〈I(t)I(t + τ)〉 �
∑

i

〈E∗i (t)Ei(t)E∗i (t + τ)Ei(t + τ)〉 +
∑
i, j

〈E∗i (t)Ei(t)E∗j(t + τ)E j(t + τ)〉

+

∑
i, j

E∗i (t)E j(t)E∗j(t + τ)Ei(t + τ)〉.

(3.26)
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Como consideramos que as emissões de cada átomo são independentes e sabemos
que o valor esperado do produto de duas variáveis independentes é o produto de seus
valores esperados, podemos escrever

〈E∗i (t)Ei(t)E∗j(t + τ)E j(t + τ)〉 � 〈E∗i (t)Ei(t)〉〈E∗j(t + τ)E j(t + τ)〉, (3.27)

e
〈E∗i (t)E j(t)E∗j(t + τ)Ei(t + τ)〉 � 〈E∗i (t)Ei(t + τ)〉〈E j(t)E∗j(t + τ)〉. (3.28)

Pela equivalência entre as emissões dos átomos, esses valores esperados não
dependem dos índices i. Escolhendo um certo i, então, temos

〈I(t)I(t + τ)〉 � N 〈E∗i (t)Ei(t)E∗i (t + τ)Ei(t + τ)〉+
+ N(N − 1)

[
〈Ei(t)E∗i (t)〉

2
+ 〈Ei(t)E∗i (t + τ)〉〈E

∗
i (t)Ei(t + τ)〉

] (3.29)

onde utilizamos o fato de que o processo é estacionário para escrever 〈Ei(t+τ)E∗i (t+τ)〉 �
〈Ei(t)E∗i (t)〉.

Quando N é grande, N2 � N . Como esse é o caso comum em um gás, utilizamos
essa aproximação para escrever

〈I(t)I(t + τ)〉 � N2 [〈Ei(t)E∗i (t)〉
2
+ |〈Ei(t)E∗i (t + τ)〉|

2] . (3.30)

Dividindo esse resultado por N2〈Ei(t)E∗i (t)〉
2 � 〈I(t)〉2, obtemos o seguinte:

〈I(t)I(t + τ)〉
〈I(t)〉2 � 1 +

〈Ei(t)E∗i (t + τ)〉
〈Ei(t)E∗i (t)〉

〈E∗i (t)Ei(t + τ)〉
〈Ei(t)E∗i (t)〉

,

ou ainda
g(2)(τ) � 1 + |g(1)(τ)|2. (3.31)

Vemos que a função g(2)(τ) para os casos de processos estacionários caóticos, onde o
sinal é resultado da soma dos sinais de várias fontes independentes, fornece informação
sobre a função g(1)(τ).

Como já sabemos que g(1)(0) � 1, também concluímos que, para esse tipo de
processo,

g(2)(0) � 2. (3.32)

Esse segundo resultadopode ser estendidopara uma funçãode graude correlação
de ordem r análoga a g(2). Quando consideramos na equação 3.12 que f (tr′) é E∗(t)
quando r′ ≤ r e E(t) quando r′ > r, temos

g(r)(0) � 〈I(t)
r〉

〈I(t)〉r . (3.33)
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Se E(t) � ∑N
i�1 Ei(t), então

〈I(t)r〉 � 〈
(∑

i

Ei(t)
∑

j

E∗j(t)
) r
〉

� 〈
(∑

i , j

Ei(t)E∗j(t)
) r
〉

�

∑
i1 ,...,ir

∑
j1 ,..., jr

〈Ei1(t)...Eir (t)E∗j1(t)...E
∗
jr
(t)〉

≈
∑

i1 ,...,ir

(
〈Ei1(t)...Eir (t)E∗j1(t)...E

∗
jr
(t)〉︸                              ︷︷                              ︸

j1�i1 ,..., jr�ir

+

+ 〈Ei1(t)...Eir (t)E∗j1(t)...E
∗
jr
(t)〉︸                              ︷︷                              ︸

j1�i2 ,..., jr�ir

+...

)
(3.34)

onde a soma nos índices j é considerada apenas para os arranjos de j tais que para todo
iα existe algum jβ � iα, i.e., para os arranjos de j que são permutações do arranjo de i.
Fazemos esta aproximação pois, pelo mesmo argumento utilizado anteriormente, os
termos em que sobrem fases aleatórias tenderão a se cancelar pelo somatório para N
grande. Com isso, continuamos

〈I(t)r〉 �
∑

i1 ,...,ir

r!〈Ii1(t)...Iir (t)〉

� r!
∑

i1 ,...,ir

〈Ii1(t)〉...〈Iir (t)〉

� r!
∑

i1 ,...,ir

〈Ii1(t)〉r

� r!N r 〈Ii1(t)〉r .

(3.35)

Sabemos tambémque, pela independência dos campos elétricos, que 〈I(t)〉r � N r 〈Ii1(t)〉r .
Portanto, disto resulta mais uma propriedade dos processos caóticos estacionários:

g(r)(0) � r!. (3.36)

3.5.3 Grau de correlação num processo com alargamento por colisão

Pelo que vimos na seção anterior, no contexto dos processos do nosso interesse,
podemos utilizar uma teoria de primeiros princípios para g(1)(τ) para que obtenhamos
uma expressão para g(2)(τ), a quantidade que de fato medimos experimentalmente.
Assim o faremos na presente seção para o caso de um sistema onde as fases em cada
campo elétrico Ei variam com o tempo por causa de colisões entre os átomos. Como as
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colisões que um determinado átomo sofre ao longo do tempo são típicas para todos os
outros, esse é um processo de descoerência chamado homogêneo.

Primeiro, investigamos o efeito das colisões sobre g(1)(τ). Supondo que as colisões
que acontecem entre os átomos são elásticas, o efeito que elas causam deve ser apenas o
de adicionar ao campo elétrico emitido por cada átomo fases que dão saltos aleatórios
ao longo do tempo. Essas fases podem ser funções como a mostrada na figura 14.

Figura 14 – A fase de cada átomo dá saltos aleatórios com o passar do tempo devido às
colisões entre átomos. A distribuição de probabilidade de tempo sem dar
saltos de fase é dada por 1

τc
e−t/τc com τc o tempo médio entre colisões.

Assim, nas nossas considerações, fazer Ei(t) → Ei(t)e iϕi(t), onde as fases adicio-
nadas são descorrelacionadas com os campos Ei nos dará o efeito das colisões. Com
isso, calculamos |g(1)(t)|2:

〈E∗(t)E(t + τ)〉 � 〈
∑
i , j

E∗i (t)E j(t + τ)e i(ϕi(t)−ϕ j(t+τ))〉

�

∑
i , j

〈E∗i (t)E j(t + τ)〉〈e i(ϕi(t)−ϕ j(t+τ))〉

�

∑
i

〈E∗i (t)Ei(t + τ)〉〈e i(ϕi(t)−ϕi(t+τ)〉 +
∑
i, j

〈E∗i (t)E j(t + τ)〉〈e i(ϕi(t)−ϕ j(t+τ))〉︸                                        ︷︷                                        ︸
�0 por causa da independência das fases

� 〈E∗i (t)Ei(t + τ)〉
∑

i

〈e i(ϕi(t)−ϕi(t+τ))〉.

(3.37)
Quando todos os átomos já colidiram, isto é, com τ → ∞, ∑i 〈e i(ϕi(t)−ϕi(t+τ)〉 � 0 pois
trata-se de uma soma de fases aleatórias. Quando nenhum átomo colidiu, essa soma
resulta em N. Daí vemos que a soma é proporcional ao número de átomos que ainda
não colidiram, que decai exponencialmente segundo a mecânica estatística. Logo,

〈E∗(t)E(t + τ)〉 � 〈E∗i (t)Ei(t + τ)〉e−τ/τc N, (3.38)
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onde τc é o tempo médio entre colisões. Sendo o processo estacionário, 〈E∗(t)E(t + τ)〉
resulta dessa expressão ao tormamos τ � 0. Dessa forma, concluímos que

g(1)com colisão(τ) � g(1)sem colisão(τ)e
−τ/τc . (3.39)

Este resultado mostra que o processo de colisão adiciona um decaimento exponencial à
função g(1)(τ). Quando τc é muito maior do que a escala de tempo em que o sistema
perde a coerência através de outros processos, então podemos aproximar τc → ∞, o
que recupera o processo sem colisão de acordo com a expressão calculada. No caso em
que τc é o processo mais rápido relevante para a descoerência, obtemos

g(1)colisao(τ) ≈ g(1)(0)e−τ/τc � e−τ/τc . (3.40)

Se supomos uma emissão monocromática com a mesma frequência para todos
os átomos, Ei(t) � E0e−iωt . Logo, 〈E∗i (t)Ei(t + τ)〉 � 〈e−iωτ〉 � e−iωτ. Chegamos então ao
importante resultado de que a luz clássica emitida por gases em que a principal fonte de
alargamento espectral é o alargamento por colisões tem o grau de correlação de segunda
ordem dado por

g(2)colisao(τ) � 1 + e−2τ/τc . (3.41)

de acordo com as expressões 3.31 e 3.39. A aparência dessa função pode ser vista na
figura 15. Em particular, apontamos que esse decaimento é abrupto a partir de τ � 0.

Figura 15 – Decaimento da função g(2)(τ) num processo dominado por alargamento por
colisão.

3.5.4 Grau de correlação num processo com alargamento Doppler

Interessados em conhecer o efeito do alargamento Doppler sobre o grau de
coerênciade segundaordem,prosseguimosporumcaminhoanálogo aoquepercorremos
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na seção sobre o efeito do alargamento por colisão.

Como o efeito Doppler altera as frequências emitidas por cada átomo diferente-
mente, seu efeito não é tão simples quanto a multiplicação de cada Ei por um fator de
fase, como fizemos na seção anterior, o que caracteriza agora um processo inomogêneo.
Por esse motivo, partimos já de um sistema em que cada átomo emite luz em apenas
uma frequência que será deslocada de acordo com o efeito Doppler, tal que

Ei(t) � E0e−iωi t e iϕi , (3.42)

onde ωi varia de átomo para átomo. Com isso,

〈E∗(t)E(t + τ)〉 � E2
0

∑
i , j

〈e−i[ωi t−ω j(t+τ)]e−i(ϕi−ϕ j)〉

� E2
0

∑
i

〈e iωiτ〉 + E2
0

∑
i, j

〈e−i[ω j t−ω j(t+τ)]〉e i(ϕ j−ϕi)

︸                             ︷︷                             ︸
�0 pelas fases independentes

� E2
0

∑
i

e iωiτ .

(3.43)

Precisamos calcular
∑

i e iωiτ. Para tanto, notamos que os ωi são frequências
descocadas de um certo ω0 natural dos átomos de acordo com a componente da
velocidade de cada um ao longo da direção de propagação do campo. Como essas
velocidades são distribuidas de acordo com a distribuição de Maxwell-Boltzmann, que
é uma distribuição gaussiana nas suas componentes, então ωi também deve seguir uma
distribuição gaussiana que deve ter ω0 como média e uma largura que chamaremos de
∆, a largura Doppler.

Por isso, podemos calcular
∑

i e iωiτ pelo seu valor médio entre os átomos:∑
i

e iωiτ � Ne iωiτ

� N
∫ ∞

−∞
dω e iωτ dP(ω)

dω

� N
1

(2π∆2)1/2

∫ ∞

−∞
dω e iωτe−(ω0−ω)2/2∆2

� Ne−iω0τe−∆
2τ2/2.

(3.44)

Logo, 〈E∗(t)E(t + τ)〉 � NE2
0e−iω0τe−∆

2τ2/2. Como trata-se de um processo estacionário,
também concluímos que 〈E∗(t)E(t)〉 � 〈E∗(t + τ)E(t + τ)〉 � NE2

0. Portanto,

g(1)(τ) � e−iω0τe−∆
2τ2/2, (3.45)
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e o grau de correlação de segunda ordem, por sua vez, fica dado por

g(2)(τ) � 1 + e−∆
2τ2
. (3.46)

Essa função tem uma aparência como a da figura 16. Podemos diferencia-la do que
obtém-se quando o alargamento por colisão domina por duas características: quando
domina o alargamento Doppler, a função cai mais rapidamente para τ mais longo, mas
tem um caimento menos abrupto quanto τ→ 0.

Figura 16 – Decaimento da função g(2)(τ) num processo dominado por alargamento
Doppler

3.6 Funções de correlação em mecânica quântica

Desenvolvida uma intuição clássica sobre o significado das funções de correlação,
resta-nos estender matematicamente as expressões para o caso quântico para que
apliquemos essa teoria ao nosso experimento.

Quando fazemos a quantização do campo elétrico [7][9], passamos de lidar com
funções Ek(z , t) para lidar com operadores Êk(z , t) escritos na forma

Ê(z , t) �
( ~ωk

2ε0V

)1/2
ak e−i(ωk t−kz)︸                       ︷︷                       ︸

�E+

k (z ,t)

+

( ~ωk

2ε0V

)1/2
a†k e i(ωk t−kz)︸                     ︷︷                     ︸

�E−k (z ,t)

, (3.47)

e o operador de intensidade, por sua vez, pode ser escrito como

Î(z , t) � 2ε0c2Ê−(z , t)Ê+(z , t)
� ηa†k ak .

(3.48)

Assim, a intensidade no modo k é proporcional ao número esperado de fótons nesse
modo, como poderia-se suspeitar.
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Com isso, é possível definir o grau de correlação de primeira ordem nos campos
elétricos:

g(1)(z1, t1,; z2, t2) �
〈E−(z1, t1)E+(z2, t2)〉[

〈E−(z1, t1)E+(z1, t1)〉〈E−(z2, t2)E+(z2, t2)〉
]1/2 . (3.49)

Para o grau de correlação de segunda ordem, temos várias opções de escolha de
ordenamento dos operadores Ê+/−(z , t). Definimos a a função g(2) da seguinte forma:

g(2)(z1, t1; z2, t2) �
〈E−(z1, t1)E−(z2, t2)E+(z2, t2)E+(z1, t1)〉
〈E−(z1, t1)E+(z1, t1)〉〈E−(z2, t2)E+(z2, t2)〉

. (3.50)

Para nossos propósitos, interessa apenas o caso z1 � z2, de forma que podemos
omitir a escrita de z. Além disso, notando que os operadores em um tempo mais tardio
t2 > t1 estão no centro, e os operadores de destruição atuam nos estados antes dos
operadores de criação, podemos escrever g(2) em termos do operador intensidade:

g(2)(t1, t2) �
〈: Î(t1)Î(t2) :〉
〈I(t1)〉〈I(t2)〉

, (3.51)

onde :: indica o ordenamento normal dos operadores de criação e destruição, com
tempos mais tardios ao centro e operadores de destruição à direita dos de criação.

Essa expressão, além de ter a forma intuitivamente conectada com o caso clássico,
por poder ser escrita em termos do operador número n̂ � a†a está diretamente conectada
com as medidas de fótons individuais, que resultam em certo número de clicks. Com ela,
podemos calcular os valores de g(2)(0) para diferentes estados quânticos importantes.

A seguir, nosso objetivo é exemplificar g(2)(0) para estados quânticos comuns na
óptica, sendo aquele dado por

g(2)(0) � 〈: I2 :〉
〈I〉2 �

〈a†a†aa〉
〈a†a〉2 . (3.52)

A razãopela qual escolhemos g(2)(τ) comoaquantidadeobservadanonosso experimento,
em que investigamos uma memória no sistema, ficará mais clara no capítulo dedicado a
ele.

3.6.1 Estado térmico

O estado térmico é definido como uma soma estatística de estados de número tal
que a probabilidade de um certo número de fótons ser detectado segue uma distribuição
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de Boltzmann. Utilizando a matriz densidade, ele é definido por:

ρ �
1∑

e−n~ω/kBT

∞∑
n�0

e−n~ω/kBT |n〉〈n |

� (1 − e−~ω/kBT)
∞∑

n�0
e−n~ω/kBT |n〉〈n |

(3.53)

Com isso, o numerador e denominador de g(2)(0) ficam

〈: I2 :〉 � Tr (a†a†aaρ) � (1 − e−~ω/kBT)
∞∑

n�0
n(n − 1)e−n~ω/kBT , (3.54)

e

〈I〉2 � Tr (a†aρ)2 �

(
(1 − e−~ω/kBT)

∞∑
n�0

ne−n~ω/kBT
)2
. (3.55)

As somas podem ser calculadas notando que elas representam derivadas de séries
geométricas, levando-nos ao seguinte resultando:

g(2)(0) � 2(1 − e−~ω/kBT)−2e−2~ω/kBT(
(1 − e−~ω/kBT)−1e−~ω/kBT

)2 � 2. (3.56)

Esse valor corresponde com os resultados clássicos que obtivemos sob a suposição de
tratarmos de processos caóticos.

3.6.2 Estado coerente

O estado coerente é definido como autoestado do operador de destruição a.
Como processos de detecção estão geralmente associados a absorção de fótons, essa
definição os conecta a estados para os quais podemos associar algum valor observado, e
é o estado que melhor modela lasers funcionando bem acima do limiar de amplificação.
Por essa definição, o estado coerente |v〉 � ∑

cn |n〉 obedece a a |v〉 � v |v〉 e é dado por

|v〉 � e−|v |
2/2

∞∑
n�0

vn
√

n
|n〉, (3.57)

onde v pode ser qualquer número complexo, pois a não é um operador hermitiano.

Prosseguindo como fizemos com o estado térmico:

〈: I2 :〉 � 〈v |a†a†aa |v〉 � v4, (3.58)

〈I〉2 � (〈v |a†a |v〉)2 � (v2)2, (3.59)
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e, portanto,
g(2)(0) � 1. (3.60)

Esse número difere dos exemplos clássicos exibidos aqui, mas podemos ter uma
intuição clássica sobre ele notando que a probabilidade de detectar n fótons em um
estado coerente é dada por

P(n) � |〈n |v〉|2 � e−|v |
2 |v |n

n! , (3.61)

e portanto corresponde a uma distribuição de Poisson.

Sabendo que a distribuição de Poisson pode ser definida como uma distribuição
em que a probabilidade de um evento ocorrer num certo intervalo de tempo é indepen-
dente da probabilidade de um evento ocorrer em qualquer outro intervalo, podemos
interpretar esse estado como aquele em que não há correlação alguma entre a detecção
de diferentes fótons. Assim, a nossa intuição clássica de que g(2)(0) � 1 indica processos
sem correlação é válida.

3.6.3 Estado de Fock

Por fim, calculamos g(2)(0) para um estado de Fock |n〉:

〈: I2 :〉 � 〈n |a†a†aa |n〉 � n(n − 1), (3.62)

〈I〉2 � 〈n |a†a |n〉2 � n , (3.63)

e
g(2)(0) � 1 − 1

n
, (3.64)

onde é natural supor n , 0, já que o contrário significa que nenhum fóton foi preparado.

Aqui, vemos uma grande diferença entre sistemas quânticos e qualquer sistema
clássico. Para um estado de Fock, a condição de que g(2)(τ) ≥ 1 é violada, em particular
para n � 1, onde g(2)(0) � 0. Isso demonstra que existe uma diferença fundamental entre
as correlações possíveis em sistemas quânticos e clássicos.

Por essa possibilidade, podemos utilizar g(2)(0) como um teste da natureza
quântica do sistema que estudamos: quando g(2)(0) < 1, o sistema não tem análogo
clássico. É preciso ter cuidado, no entanto, com a afirmação contrária. g(2)(0) > 1 não
implica que o sistema em questão não é quântico.



43

4 MEDIDAS EXPERIMENTAIS DE CORRELAÇÃO EM ÓP-
TICA

Agora que desenvolvemos uma intuição matemática por trás das funções de
correlação e conhecemos várias de suas propriedades mais gerais, passaremos a uma
discussão de medidas experimentais que estão relacionadas diretamente com tais
funções. O experimento que realizamos para investigar a memória no espalhamento
da luz é precisamente um dos dois aparatos experimentais discutidos nesta seção, o
interferômetro de Hanbury Brown-Twiss [17].

4.1 Intensidade da luz caótica em medidas

Quando uma fonte de luz é caótica, no sentido discutido na seção 3.5.1, podemos
supor duas formas principais de perda da fase entre os emissores [7].

A primeira forma de perda de fase é a em que cada emissor é uma fonte
monocromática com frequência ω0 mas com uma fase própria que varia no tempo, de
forma que, na notação complexa dos campos,

E(t) � E1(t) + ...EN(t)
� E0e−iω0t+iϕ1(t) + ... + E0e−iω0t+iϕN (t)

� E0e−iω0t{e iϕ1(t) + ... + e iϕN (t)}
� E0e−iω0t a(t)e iϕ(t),

(4.1)

onde escrevemos a soma de exponenciais complexas contendo as fases como um número
complexo de amplitude a(t) e fase global ϕ(t). O campo elétrico físico é a parte real da
expressão que escrevemos. Essa forma de perda de fase corresponde à dos processos
com alargamento por colisão.

A segunda forma de perda de fase é a em que cada emissor é uma fonte com uma
fase aleatória fixa ϕi mas com frequências ω que variam em torno de uma frequência
central ω0, de forma que ωi � ω0 + δωi . Nesse caso,

E(t) � E0e−iω1t+iϕ1 + ... + E0e−iωN t+ϕN

� E0e−iω0t{e−iδω1t+ϕ1 + ... + e−iδωN t+ϕi }
� E0e−iω0t a′(t)eϕ′(t),

(4.2)

de forma análoga ao primeiro caso, porém com uma soma de números complexos
diferente.
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A intensidade do campo, por sua vez, é dada pelo módulo do vetor de Poynting,

I(t) � ε0c |<{E(t)}|2. (4.3)

Note que em ambos os casos descritos acima, temos

|<{E(t)}| ∝ cos(ω0t + ϕ(t)). (4.4)

Como os detectores normalmente não têm resolução temporal para detectar
oscilações do campo elétrico nas frequências ópticas, a intensidade detectada é uma
média sobre o período de oscilação dessa expressão. Como há variação na intensidade
numa escala de tempo maior que a das frequêncaias ópticas, essa média não elimina
completamente a dependência temporal da intensidade. Assim, o sinal detectado é

I(t) � 1
2ε0cE2

0a(t)2 �
1
2ε0c |E(t)|2, (4.5)

onde E(t) está na forma complexa e o a(t) vem da soma dos termos que modelam a
perda da relação de fase entre os emissores.

Para ganharmos intuição sobre o efeito disso nos sinais detectados, dois exemplos
serão exibidos aqui. Primeiro, supomos ϕ(t) dando saltos aleatórios devido a colisões
entre os átomos, como discutido na seção 3.5.3. Aqui, a intensidade varia no tempo de
acordo com o módulo quadrado da soma e iϕ1(t) + ... + e iϕN (t), onde os ϕi(t) são funções
como a da figura 14. Isso resulta em intensidades que variam bruscamente no tempo
como o exemplo na figura 17.

Figura 17 – Intensidade em função do tempo quando a perda de fase do processo de
emissão é dominada por colisões entre os átomos. Nesta simulação, 1000
emissores foram utilizados (N=1000). A escala de tempo é o tempo de voo
livre médio τc .
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Quando a perda da relação de fase entre os emissores for dominada pelo efeito
Doppler, isto é, quando as fases ϕi(t) podem ser consideradas constantes ϕi , mas cada
átomo emite uma frequência ωi � ω0 + δωi que varia da frequência original segundo
uma distribuição gaussiana (já que a distribuição de velocidades dos átomos é uma
distribuição de Maxwell), temos o ilustrado na figura 18.

Figura 18 – Intensidade em função do tempo quando a perda de fase do processo de
emissão é dominada pelo efeito Doppler. Nesta simulação, 1000 emissores
foram utilizados (N=1000). A escala de tempo é o inverso da largura Doppler
∆ω.

De forma análoga ao caso em que o alargemento por colisão dominava, esse
perfil de intensidade ao longo do tempo é devido a uma soma de fases, que agora é
e−iδωi t+iϕi + ... + e−iδωN t+iϕN .

As duas formas de alargamento, ou perda de fase, contrastam na escala de
tempo de suas variações. Quando domina o alargamento Doppler, a flutuação da
intensidade é suave e para intervalos de tempo curtos não se observa grande variação.
Essa propriedade é refletida na queda suave de g(1)(τ) perto de τ � 0 desse tipo de
processo, dada por uma curva gaussiana, como vimos na seção 3.5.4. Quando domina
o alargamento por colisão, a intensidade varia de forma brusca e em qualquer escala
de tempo podemos ver uma flutuação grande da intensidade acontecer, revelando a
natureza fractal dos flutuações [18]. Por isso, nesse tipo de processo, a função g(1)(τ) cai
abruptamente a partir de τ � 0 segundo uma curva exponencial.

4.2 Interferômetro de Mach-Zehnder

O primeiro experimento de óptica que envolve funções de correlação a ser discu-
tido aqui é um experimento de interferência. O aparato experimental do interferômetro
de Mach-Zehnder está representado na figura 19.
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Figura 19 – Esquema experimental de um interferômetro deMach-Zehnder. Os divisores
de feixe transmitem 50% o campo elétrico e refletem os outros 50%.

Nesse experimento, o campo elétrico incidente no primeiro divisor de feixes é
dividido em dois caminhos ópticos diferentes e a luz que passa por esses dois caminhos
é misturada novamente pelo segundo divisor de feixes. Dessa forma, o campo elétrico
E4(t) fica dado por

E4(t) �
E(t − z1/c)

2 +
E(t − z2/c)

2 , (4.6)

onde z1 e z2 são os comprimentos dos caminhos em cada braço do interferômetro.

Supondo que estamos escrevendo os campos Ei(t) na forma complexa, a intensi-
dade do campo E4 fica dada então por

I4(t) �
1
2ε0c |E4(t)|2

�
1
8ε0c

{
|E(t − z1/c)|2 + |E(t − z2/c)|2 + 2<[E∗(t − z1/c)E(t − z2/c)]

}
.

(4.7)

Como, além de serem mais lentos que as frequências ópticas, os detectores
costumam ser mais lentos que o tempo de colisão entre os átomos, a intensidade final
detectada deve ser uma média temporal sobre um período T � τc . Calculamos então
a média dessa intensidade sobre esse período. Essa segunda média temporal será
representada por 〈〉:

〈I4(t)〉 �
1
8ε0c

{
〈|E(t − z1/c)|2〉 + 〈|E(t − z2/c)|2〉 + 2<[〈E∗(t − z1/c)E(t − z2/c)〉]

}
.

(4.8)



Capítulo 4. Medidas experimentais de correlação em óptica 47

Se essas médias dão o mesmo valor para todo t, já que são mais lentas que as
flutuações de intensidade, temos

〈I4(t)〉 �
1
2 〈I(t)〉

{
1 +<

[ 〈E∗(t − z1/c)E(t − z2/c)〉
〈|E(t − z1/c)|2〉1/2〈|E(t − z2/c)|2〉1/2

]}
�

1
2 〈I(t)〉

{
1 +<

[
g(1)

( z1 − z2
c

)]}
�

1
2 〈I(t)〉

{
1 +<

[
g(1)(τ)

]}
.

(4.9)

Chegamos à importantíssima conclusão de que o padrão de interferência em um
experimento do tipo do interferômetro deMach-Zehnder depende do grau de correlação
de primeira ordem no campo elétrico da fonte. Assim, conhecendo as propriedades
estatísticas da emissão pela fonte, podemos obter informação sobre sua capacidade
de produzir padrões de interferência. Da mesma forma, se conhecemos os padrões
de interferência produzidos pela luz de uma fonte, obtemos informação sobre as
propriedades estatísticas do processo pelo qual a luz é emitida, através do grau de
correlação de primeira ordem.

4.3 Interferômetro de Hanbury Brown-Twiss

O interferômetro de Hanbury Brown-Twiss (HBT), assim como o de Mach-
Zehnder pode ser usado para realizar medidas de correlação para a luz. Diferentemente
do que vimos na seção anterior, no entanto, o HBT é o experimento prototípico da
medida do grau de correlação de segunda ordem nos campos elétricos, g(2)(τ).

Figura 20 – Esquema experimental de um interferômetro de Hanbury Brown-Twiss. O
sinal resultante é a multiplicação das intensidades em diferentes (zi , t)

Nesse experimento, as intensidades dos campos E3 e E4 são detectadas e multi-
plicadas em um correlacionador. Classicamente, elas se relacionam à intensidade de E
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por

I3(z , t) � I4(z , t) �
1
2 I(z , t). (4.10)

Assim, com 〈〉 representando uma média longa no tempo, 〈I3(z , t)〉 � 〈I4(z , t)〉 �
1
2 〈I(z , t)〉. Se o correlacionador normaliza o produto 〈I3(z2, t)I4(z1, t)〉, acabamos com
uma medida direta do grau de correlação de segunda ordem:

〈I3(z2, t)I4(z1, t)〉
〈I3(z2, t)〉〈I4(z1, t)〉

�
〈I(z1, t)I(z2, t)〉
〈I(z1, t)〉〈I(z2, t)〉

�
〈I(t − z1/c)I(t − z2/c)
〈I(t − z1/c)〉〈I(t − z2/c)〉

� g(2)(t − z1/c , t − z2/c)

� g(2)
(
τ �

z1 − z2
c

)
,

(4.11)

onde o último passo vale se a estatística for estacionária.

Sabemos que para processos caóticos, a função g(2)(τ) se relaciona com g(1)(τ) por
g(2)(τ) � 1 + |g(1)(τ)|2, de forma que podemos obter com esse experimento informação
do mesmo tipo que aquela fornecida pelo interferômetro de Mach Zehnder.

O fato de que o interferômetro de Hanbury Brown-Twiss utiliza dois detectores
pode ser uma vantagem. Detectores reais do tipo avalanche têm uma característica que
denominamos "tempo morto"[19]. Trata-se do tempo que o detector leva para recuperar-
se de uma detecção e preparar-se para uma nova detecção. Como esse interferômetro
divide o feixe incidente em 2 partes que serão levadas a detectores diferentes, ele pode
compensar parte da informação perdida na detecção por causa do tempo morto. No
regime de fótons individuais isso é crucial, e por essa razão utilizamos esse tipo de
aparato no nosso experimento de investigação da memória nos átomos frios.

Com o tempo morto, se dois fótons chegam juntos, simultaneamente, a um
detector, a detecção não consegue diferenciar a dupla de um fóton único. Isso limita as
médidas, já que torna-se impossível, por exemplo, obter g(2)(0) sem medir coincidências
temporais de duas detecções. Com o HBT, essa limitação é vencida.

Outro problema, mais grave, de medir correlações utilizando o interferômetro de
Mach-Zehnder, e que é superado pelo HBT, é que o tamanho do aparato experimental
necessário pode ser muito maior do que é prático realizar. Para tempos de coerência de
30 µs, por exemplo, seria necessário varrer seus braços por cerca de 30µs ∗ c ≈ 9km.

Além disso, o g2(τ) é uma quantidade muito importante para a óptica quântica
[20], e pode ser utilizado, por exemplo para mostrar a natureza quântica da luz [9]. Esse
fato realça a importancia do HBT.
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5 MEMÓRIA ATÔMICA

Vimos no capítulo introdutório que a disponibilidade de memórias quânticas é
crucial para a implementação experimental de protocolos de informação quântica que
pretendem alcançar escalabilidade. O exemplo mais relevante disso para este trabalho é
o protocolo DLCZ, apresentado em [2], para comunicação quântica. Nesse trabalho, o
objetivo dos autores é apresentar um protocolo que permita o estabelecimento prático
de emaranhamento entre locais distantes, um elemento essencial para a construção de
redes quânticas.

Nesse protocolo, o efeito coletivo que um conjunto de átomos é capaz de gerar
e que reforça o acoplamento entre átomo e luz é usado para criar emaranhamento
entre nuvens atômicas. O tempo de vida dos estados internos atômicos, por sua vez, é
utilizado como a memória necessária à escalabilidade do protocolo.

No trabalho presente, investigamos o comportamento de outra memória, cuja
origem identificamos emumefeito coletivo nos graus de liberdade externos, demomento
linear, dos átomos. Veremos que essa memória tem tempo de vida muito maior que os
estados excitados dos níveis de energia internos dos átomos e é resistente ao processo
de leitura, duas características que podem ser exploradas em informação quântica.

5.1 O experimento

No experimento que analisamos, utilizamos um interferômetro de Hanbury
Brown e Twiss para estudar as correlações da luz espalhada por um conjunto de átomos
frios, que por sua vez é gerado por uma armadilha magneto óptica.

Nossa MOT fornece ensembles de átomos frios com temperaturas na faixa de
centenas de µK. Utilizamos átomos de rubídio 87 bombeados para o estado |5S1/2(F � 2)〉.
O diagrama de níveis do rubídio pode ser visto na figura 21.
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Figura 21 – Diagrama de níveis de energia do rubidio 87 [16] com as energias relevantes
para a armadilhagem e resfriamento dos átomos. O feixe de rebombeio é
responsável por manter toda a população no nível |5S1/2(F � 2)〉. Os feixes
de armadilha são os feixes da MOT como descrita no capítulo 2.

Comanuvemdeátomos frios criada, desligamos aMOTeemseguidabombeamos
os átomos para o nível fundamental com F=2 usando um feixe de rebombeio ressonante
de |5S1/2(F � 1)〉 → |5P3/2(F � 2)〉, como mostra a figura 21. Depois ligamos os
detectores SPCM (do inglês Single Photon Counting Module) e aplicamos uma sequência
de pulsos de luz circularmente polarizada σ+, com duração de 70 ns, e sintonizada em
56 MHz abaixo da frequência de ressonância da transição |5S1/2(F � 2,mF � 2)〉 →
|5S3/2(F � 3,mF � 3)〉. Os pulsos estão separados por um intervalo de T, que variamos
de 0.5 µs a 2.0 µs. Toda essa sequência experimental de ações pode ser visualizada na
figura 22.

Figura 22 – Sequência de ações no experimento que analisamos. Esse ciclo se repente
durante o tempo em que a medida é realizada, até que repetições suficientes
para a estatística sejam realizadas. Aqui, SPCM refere-se a Single Photon
Counting Module, módulo contador de fótons indiduais.
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A escolha da polarização faz com que esses pulsos bombeiem rapidamente os
átomos para o estado de mF extremo, de forma que podemos tratar o sistema como um
conjunto de átomos de 2 níveis, como mostra a figura 23.

Figura 23 – A escolha da polarização do feixe de excitação faz com que os átomos sejam
bombeados para o subnível Zeeman de mF extremo.

A luz dos pulsos do feixe de excitação espalhada pela nuvemde átomos é coletada
por uma fibra óptica monomodo, que seleciona apenas um modo da luz para nossa
análise. A fibra conduz os fótons para um interferômetro HBT, que como sabemos é
útil ao estudo das corelações da luz, e cujo divisor de feixe no nosso experimento é um
divisor de feixe em fibra, FBS (do inglês Fiber Beam Splitter), cujas terminações levam a
dois SPCM.

A intensidade do feixe de excitação é atenuada o suficiente para que trabalhemos
no regime de fótons individuais. A probabilidade de detectarmos um fóton no modo
espalhado, após o envio de um pulso de excitação à nuvem de átomos, é de cerca de 2%.

Figura 24 – Esquema do aparato experimental utilizado para estudar as correlações na
luz.

O sinal analisado neste experimento foi o da intensidade da luz espalhada pela
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nuvem de átomos de rubídio variando tanto parâmetros da armadilhagem (profun-
didade ótica e temperatura da nuvem de átomos) quanto parâmetros do feixe a ser
espalhado (potência e dessintonia em relação à transição cíclica) e da detecção (ângulo
de espalhamento).

5.2 Análise de dados

Sobre o sinal que detectamos segundo a seção anterior descreve, utilizamos as
ferramentas de análise estatística, também previamente discutidas neste trabalho, que
revelarão a existência de uma memória no comportamento do conjunto de átomos que
mais tarde interpretaremos como sendo armazenada nos graus de liberdade externos,
de momento linear, do sistema.

Os dados gerados pelos SPCM e o tratamento inicial que lhes damos antes de
processar as quantidades físicas relevantes estão descritos no apêndice A. Como os dados
têm a forma de clicks por tempo, precisamos calcular sobre eles uma quantidade discreta
que nos dê informação sobre a memória. Isso pode ser conseguido se processarmos
os dados para obter a probabilidade conjunta de duas detecções, uma no detector A
e outra no detector B, separadas por um intervalo de tempo τ. Denominamos essa
probabilidade por PAB(τ).

Fazemos issoporque se houver algumprocesso quepossamos chamardememória
no nosso sistema, a probabilidade conjunta de duas detecções separadas no tempo deve
ser diferente do produto das probabilidades individuais, PA e PB, que corresponde ao
caso em que os dois eventos são independentes.

Normalizando então a probabilidade PAB(τ) pelo que ela corresponderia no caso
sem memória, medimos

PAB(τ)
PAPB

. (5.1)

Quando essa quantidade assumir valores diferentes de 1 para um τ finito, entendemos
que há algum tipo de memória no sistema.

Note que essa abordagem não leva em conta a origem temporal. Portanto, para
que essa quantidade caracterize o sistema, é necessário que estejamos lidando com um
processo estacionário.

Para o caso com probabilidades pequenas, elas devem ser aproximadamente
proporcionais às intensidades dos campos. Assim, a quantidade que queremos medir
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coincide com a função de correlação de segunda ordem:

g(2)(τ) � 〈I(t)I(t + τ)〉
〈I(t)〉〈I(t + τ)〉 ≈

PAB(τ)
PAPB

. (5.2)

Por isso podemos utilizar as propriedades conhecidas da estatística para inter-
pretar o resultado do experimento. Sob a suposição de estacionariedade do processo, os
dados podem ser analisados de acordo com o procedimento descrito no apêndice B,
resultando em curvas como as da figura 25:

Figura 25 – Resultado experimental da função g(2)(τ) supondo que o processo é estacio-
nário

Como esperávamos, essas curvas mostram um aumento na probabilidade con-
junta em relação ao produto das duas probabilidades quando τ é próximo de 0. Porém,
levando em conta o que argumentamos considerando propriedades bastante gerais da
função g(2)(τ) no capítulo 4, encontramos dificuldades em explicar duas propriedades
dessas curvas:

g(2)(0) > 2, (5.3)

e
g(2)(∞) , 1. (5.4)

A primeira, é característica de processos que raramente aparecem na literatura
e que não conseguimos conectar com nosso experimento. A segunda significa que o
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sistema tem correlações que nunca desaparecem ou que têm tempo de vida muito maior
do que a escala de tempo em que os átomos se movimentam consideravelmente na
armadilha.

Olhando para a forma de g(2)(τ), é possível conectar essas propriedades não
esperadas com a forma como tratamos os dados.

Se supomos que o nosso sinal físico de interesse I′(t) está modulado por um uma
flutuação estocástica com a qual não tem correlação [21], i.e., o sinal e a modulação tem
distribuições de probabilidade independentes, teríamos

I(t) � I′(t)m(t). (5.5)

Então temos, como consequência, separando as médias de quantidades indepen-
dentes,

g(2)(τ) � 〈I′(t)I′(t + τ)m(t)m(t + τ)〉
〈I′(t)m(t)〉〈I′(t + τ)m(t + τ)〉

�
〈I′(t)I′(t + τ)〉
〈I′(t)〉〈I′(t + τ)〉

〈m(t)m(t + τ)〉
〈m(t)〉〈m(t + τ)〉

� g(2)I′ (τ)g
(2)
m (τ).

(5.6)

Essa situação permite que escolhendo τ � 0, se m(t) tiver g(2)m (0) > 1, o g(2)(0)
resultante pode ser aumentado e assumir valores acima de 2 mesmo que o processo
físico de interesse não seja capaz disso. De fato, a armadilha magneto óptica utilizada
no nosso experimento sofre flutuações ao longo do tempo e a isso podemos atribuir a
explicação do valor de g(2)(0) > 2, como mostra a figura 26.

Figura 26 – Variação da probabilidade de detecção com o tempo.
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Quanto ao outro problema, basta notarmos que a função g(2)(τ) contém não
apenas no númerador,mas tambémno denominador, dependência temporal. No entanto,
a quantidade que medimos, PAB(τ)/PAPB não contém essa dependência temporal.
Assim, se o processo fugir da condição de estacionariedade, fatalmente perdemos a
correspondência entre g(2)(τ) e nossa medida, e com isso a normalização dos dados.
Novamente, pudemos confirmar que isso acontece em nosso experiento como ilustra a
figura 27.

Figura 27 – Variação das probabilidades de detecção com o tempo após uma preparação
da MOT.

Em conclusão desta seção, encontramos a suspeita de que os valores difíceis de
explicar na função g(2)(τ) podem ser devidos a uma modulação estocástica indepen-
dente do processo de espalhamento da luz e a um desvio do processo da condição
de estacionariedade. Na próxima seção, utilizaremos um tratamento de dados mais
complexo que leva em conta essas observações.

5.2.1 Compensando g(2)(0) > 2 e g(2)(∞) , 1

Podemos compensar o efeito da modulação estocástica ao considerar dados
provenientes de intervalos de tempo mais curtos do que a escala de tempo que m(t)
precisa para variar apreciavelmente. Com isso, em cada um desses intervalos m(t) �
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m � cte. Daí,

g(2)m (τ) �
〈m2〉
〈m〉〈m〉

� 1.
(5.7)

Por isso, decidimos por cortar os dados em segmentos de 1 s de duração (o que
no nosso caso foi o suficiente para mitigar o efeito de aumento do g(2)(0)) e calcular uma
função g(2)(τ) para cada um desses segmentos. A escolha do período de 1 s foi feita de
acordo com a figura 28. Nela, vemos que ao diminuir o tempo de integração, o valor
de g(2)(0) vai para um patamar próximo a 2, e depois cai novamente. Não podemos
utilizar os valores com tempo de integração pequeno demais pois nesse caso, perdemos
estatistica ao ponto de a medida perder significado. Assim, o tempo de 1 s acaba por ser
o menor tempo de integração possível antes dessa perda de estatística.

Figura 28 – Variação do valor de g(2)(0) quando variamos o tempo de integração das
medidas.

Para recuperar a estatística final, calculamos a média entre essas várias funções,
obtendo um g(2)(τ) sem o efeito de g(2)(0) > 2. Uma representação diagramátca desse
tratamento pode ser vista na figura 29.
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Figura 29 – Diagrama do tratamento necessário para remover o efeito de umamodulação
estocástica do sinal de interesse. Para nosso experimento, o tempo de 1s já é
menor do que a escala de tempo de variação da flutuação.

Precisamos ainda de uma estratégia para lidar com g(2)(∞) > 1. De acordo com
o argumento da seção anterior, isso deve ser causado por um desvio da condição de
estacionariedade, que influencia no denominador da função g(2)(τ).

No capítulo 3 vimos que quando estudamos processos não estacionários, as
médias no tempo não caracterizam bem o processo como um todo e precisamos recorrer
a médias por ensemble. Assim, precisamos definir qual é o nosso ensemble de funções.

Se a modulação estocástica que vimos afetar g(2)(0) é uma flutuação da MOT, que
por sua vez é preparada antes de cada trem de pulsos na sequência experimental, então
podemos interpretar cada trem de N pulsos como a medida de N pontos no tempo da
função I(t), ou seja, cada preparação da MOT corresponderá a uma função do ensemble.

Assim, a segunda parte do tratamento que faremos consiste em separar os dados
por preparação da MOT, de acordo com quantos pulsos são enviados no período de
1ms do trem de pulsos. Depois, com o ensemble de funções I(t) em mãos (que no
nosso experimento são funções clicks vs tempo) calculamos g(2)(t , t + τ), com 2 pontos
no tempo. Note que essa quantidade depende de 2 variáveis. Então, como queremos
interpretar o resultado como sendo o comportamento damemória àmedida que o tempo
passa, tiramos a média na primeira das variáveis, t. Uma representação diagramática
desse procedimento aparece na figura 30, e o algoritmo relacionado a esse tratamento
está descrito no anexo B.
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Figura 30 – Diagrama do procedimento responsável por garantir a normalização cor-
reta da função g(2), que leva em consideração o desvio da condição de
estacionariedade do processo.

Combinando esses dois procedimentos, o que fazemos é separar cada 1s de
dados em um ensemble de funções, e depois de calcular g(2)(τ) como descrito na figura
30. Tiramos então a média entre os valores dos vários segundos, o que resulta na nossa
função g(2)(τ) final. Esse procedimento composto está representado na figura 31.

Figura 31 – Tratamento composto entre separação dos dados em segmentos de 1s e
cálculo das médias utilizando médias por ensemble
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Este tratamento fornece, finalmente, figuras bem comportadas, para as quais
conseguimos atribuir sentido físico. Obtivemos assim gráficos que comparam o efeito de
diversos parâmetros na função g(2)(τ). São esses: ângulo de espalhamento em relação
ao feixe de excitação, período entre pulsos, profundidade óptica da armadilha (OD, do
inglês optical depth), probabilidade de espalhamento, dessintonia do feixe de excitação
em relação à transição dos átomos, e tempo de rebombeio após o desligamento da MOT.
As figuras 34 até 38 contém esses resultados.

Figura 32 – g(2)(τ) variando o período T entre os pulsos de excitação.

Como mostra a figura 32, o tempo de decaimento da memória que estudamos é
independente do período entre os pulsos. Por isso, podemos conectar nosso resultado
com a interpretação dada por [5] ao seu resultado, de que existe na nuvem atômica uma
memória resistente ao processo de leitura, uma memória não volátil. De acordo com a
ilustração na figura 33, cada uma das curvas na figura 32 interage com uma quantidade
diferente de pulsos de excitação durante o tempo de decaimento. Essa diferença, que
está no processo de leitura (o envio de pulsos de excitação para a nuvem), não altera o
tempo de decaimento da memória, caracterizando a não volatilidade da memória no
regime de fótons individuais.

Figura 33 – Representação da diferença na aplicação dos pulsos sobre a nuvem entre as
curvas da figura 32.



Capítulo 5. Memória atômica 60

Podemos também variar o ângulo de espalhamento dos fótons que detectamos.
Ao fazê-lo, obtemos as curvas da figura 34. Elas mostram uma dependência do tempo
de decaimento com o ângulo, sendo esse o primeiro parâmetro que vemos modificar
o tempo de vida da memória. Essa dependência, porém, se dá apenas após um certo
tempo que é igual para as três curvas, revelando a existência de duas escalas de tempo
diferentes na dinâmica dessa memória.

Figura 34 – g(2)(τ) variando o ângulo θ entre o modo da luz espalhada e o modo do
feixe de excitação.

Ao variar a dessintonia do feixe de excitação em relação à transição atômica, a
profundidade óptica da nuvem atômica ou a probabilidade de detecção de um fóton
espalhado, vemos variar a forma como se relacionam as duas escalas de tempo do
processo, como mostram as figuras 35, 36 e 37. Essa dependência das escalas de tempo
com os parâmetros não é muito simples, mas poderemos escrever ao final do tratamento
teórico uma expressão capaz de ajustar os dados.

Figura 35 – g(2)(τ) variando a dessintonia do feixe de excitação em relação à transição
atômica.
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Há uma diferença importante entre variar o período entre pulsos, ângulo de
detecção e dessintonia, ou variar profundidade óptica e probabilidade de detecção de um
fóton espalhado. Para os três primeiros parâmetros, estamos variando apenas parâmetros
externos ao ensemble atômico. Para os dois últimos, a variação dos parâmetros não
altera a detecção, mas a própria característica da nuvem de átomos. Para a profundidade
óptica isso é claro pois trata-se de um parâmetro de algum meio material, sempre.
Para a probabilidade isso acontece pois essa variação se dá com a potência do feixe de
excitação, que por sua vez pode perturbar a temperatura da nuvem. Essa observação
será importante para o ajuste de parâmetros ao fim do tratamento teórico.

Figura 36 – g(2)(τ) variando a profundidade óptica da nuvem atômica gerada pela MOT.

Figura 37 – g(2)(τ) variando a probabilidade de detecção de um fóton espalhado.

Em todas as figuras, vemos a existência da memória com tempo de decaimento
de cerca de 10 µs, muito maior que o tempo de vida do estado excitado do rubídio,
que é de 26 ns. Esse tempo de decaimento é consistente com o tempo de vida dos
estados de momento dos átomos. Como só temos um estado fundamental, associaremos
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a origem da memória aos níveis de energia externos, de momento linear, do átomo. Essa
interpretação ganhará mais força com a teoria desenvolvida no próximo capítulo.

Outro ponto importante a notar é que as figuras revelam a existência de duas
escalas de tempo de decaimento. A primeira escala é mais rápida, perto de τ � 0, e a
outra lenta, em seguida. A origem dessa mudança de comportamento ainda não está
bem explicada, porém, nossa teoria modificada com uma motivação fenomenológica é
capaz de ajustar bem as curvas. Ainda assim, suspeitamos de que ela tenha origem num
campo magnético residual após o desligamento da MOT. Isso é indicado pela figura 38,
onde a utilização de um tempo de rebombeio mais curto, de apenas 70µs, influencia o
decaimento da memória na escala de tempo inicial. Isso pode ser dado por um campo
magnético quadrupolar transiente após o desligamento do campo magnético da MOT,
que degrada o bombeamento dos átomos.

Figura 38 – g(2)(τ) variando o tempo de rebombeio após o desligamento da MOT. Note
que essa figura apresenta uma escala de tempo menor que as das anteriores.
Além disso, a probabilidade de detecção utilizada aqui foi de 4%.

Uma das características da memória que vemos aqui será crucial para nossa
modelagem teórica no capítulo seguinte. Na figura em que variamos o período T entre os
pulsos aplicados à nuvem, vê-se que o tempo de decaimento da memória não depende
de T. Essa característica, que chamamos de não volatilidade, é consistente com o que se
observou em [5] e permitirá que modelemos a descoerência da memória considerando
apenas 2 pulsos, responsáveis por fornecer os fótons do click em A e do click em B.
Prosseguimos assim para a modelagem teórica no próximo capítulo.
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6 MODELAGEM QUÂNTICA DA MEMÓRIA NO ESPALHA-
MENTO DA LUZ

Para a modelagem teórica da memória que observamos, consideramos um
hamiltoniano na forma

H �

N∑
j�1

p̂2
j /2m +

∑
k

~ωk a†kak︸                           ︷︷                           ︸
�H0

+

∑
k

N∑
j�1

[
− i~Ωk e−i(ke−k)·r j e iωe t ak + H.c.

]
︸                                                 ︷︷                                                 ︸

�V

, (6.1)

onde Ωk �
Ωe gk

2∆ , Ωe é a frequência de Rabi do campo de excitação, gk a constante de
acoplamento entre átomo e modo k da luz, ∆ a dessintonia entre o campo de excitação e
frequência da transição dos átomos, ωe a frequência do campo de excitação, ke é o vetor
de onda do feixe de excitação, ak o operador de destruição do modo k, r j o operador
posição do átomo j, e p̂ j é o operador momento do átomo j.

Aqui, H0 é o hamiltoniano do átomo livre mais os modos quantizados do campo
da luz espalhada (vácuo) e V é o hamiltoniano que modela a interação do átomo com o
campo eletromagnético de excitação clássica mais o vácuo. Esse hamiltoniano segue da
aproximação de seguimento adiabático para o sistema de 2 níveis, o que remove o nível
excitado e nos dá um processo em que o átomo começa e termina o espalhamento no
mesmo nível de energia interno.

O hamiltoniano de interação pode ser interpretado como gerador da transferência
de momento linear dos fótons para os átomos e vice-versa, pela destruição de fótons no
modo k pelo operador ak e adição do momento desse fóton ao átomo j pelo operador
e−i(ke−k)·r j .

O objetivo deste capítulo é modelar o efeito de um pulso de excitação sobre o
sistema e com isso obter uma previsão teórica para a quantidade de interesse, o g(2)(τ).

6.1 Modelagem da ação de um pulso de luz sobre a nuvem
de átomos

Podemos interpretar diretamente o hamiltoniano de interação, pois o operador
ak destrói um fóton do modo k e o operador e−i(ke−k)·r j é um operador translação no
espaço dos momentos que subtrai a diferença de momento, entre o fóton do campo de
excitação adicionado e o fóton do campo da luz espalhada, ao átomo j que espalhou esse
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fóton. Esse hamiltoniano modela, assim, a conservação de momento no espalhamento
do fóton que detectamos.

Se supomos que logo antes de um pulso de luz passar pela nuvem de átomos
o estado que descreve o conjunto é dado por uma certa distribuição de momentos,
podemos escrevê-lo como

|0〉a � |p1〉...|pN〉. (6.2)

Para calcular o estado logo após o pulso, é conveniente usar a representação de
interação [12], definida pela transformação unitária dada pelo operador e iH0t/~. Nesse
cálculo, a origem temporal fica definida como o instante em que o pulso chega na região
onde estão os átomos. Pela transformação definida acima, a equação de Schroedinger
fica:

[H0 + V]|Ψ(t)〉 � i~
∂
∂t
|Ψ(t)〉 → e iH0t/~[H0 + V]|Ψ(t)〉 � e iH0t/~i~

∂
∂t
|Ψ(t)〉 (6.3)

Com mais alguma manipulação, essa equação é simplificada para:

e iH0t/~[H0 + V]e−iH0t/~e iH0t/~ |Ψ(t)〉 � e iH0t/~i~
∂
∂t

{
e−iH0t/~e iH0t/~ |Ψ(t)〉

}
�⇒

[
H0 + VI(t)

]
|ΨI(t)〉 � H0 |ΨI(t)〉 + i~

∂
∂t
|ΨI(t)〉

�⇒ VI(t)|ΨI(t)〉 � i~
∂
∂t
|ΨI(t)〉.

(6.4)

Na equação acima, |ΨI(t)〉 � e iH0 t/~ |Ψ(t)〉 e VI(t) � e iH0t/~Ve−iH0t/~. Com isso, se VI(t)
puder ser escrito de forma conveniente, podemos resolver essa equação mais simples,
análoga a equação de Schroedinger original. De fato, isso é possível e assimprosseguimos
nessa direção.

Considerando que [p j , ak] � [p j , a†k] � 0, escrevemos

VI � e iH0t/~Ve−iH0t/~

�

∑
k

N∑
j�1

[
− i~Ωk e iωe t e i

∑N
j′�1 p̂2

j t/2m~e−i(ke−k)·r j e−i
∑N

j′′�1 p̂2
j′′ t/2m~×

× e i
∑

k′ ~ωk′a†k′ak′ t/~ake−i
∑

k′′ ~ωk′′ t/~
+ H.c.

]
.

(6.5)

Como [a†k ak , ak] � [nk , ak] � −akδk′k , simplificamos:

e i
∑

k′ ~ωk′nk′ t/~ak e−i
∑

k′′ ~ωk′′nk′′ t/~
� e iωk nkt ake−iωk nk t . (6.6)
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Pela formula de Baker-Campbell-Hausdorff [12], para quaisquer dois operadores X e Y,
temos

e sXYe−sY
� Y +

s
1![X,Y] +

s2

2! [X, [X,Y]] + ... . (6.7)

No nosso caso, com Y � ak , X � nk e s � iωk t, podemos facilmente calcular os
comutadores:

[nk , ak] � −ak , (6.8)

[nk , [nk ,ak ]] � (−1)2ak , (6.9)

e
[nk , [nk , ...[nk︸           ︷︷           ︸

m vezes

, ak]...]] � (−1)m ak . (6.10)

Logo,

e iωk nk t ak e−iωk nk t
� ak +

(−1)iωk t
1! ak +

(−1)2(iωk)2
2! ak + ...

�

[
1 +
−iωk t

1! +
(−iωk t)2

2! + ...

]
ak

� e−iωk t ak .

(6.11)

Como também sabemos que para dois operadores A e B quaisquer (ABA†)† �
(A†)†(AB)† � AB†A†, também podemos escrever para o termo hermitiano conjugado

e i
∑

k′ ωk′ t a†k e−i
∑

k′′ ωk′′ t � (e−iωk t ak)†

� e iωk t a†k .
(6.12)

Com isso, o hamiltoniano de interação VI fica um pouco mais simples:

VI �
∑

k

N∑
j�1

[
− i~Ωkak e−i(ωk−ωe )t e i

∑N
j′�1 p̂2

j′ t/2m~e−i(ke−k)·r j e−i
∑N

j′′�1 p̂2
j′′ t/2m~

+ H.c.
]

�

∑
k

N∑
j�1

[
− i~Ωkak e i∆ωt e i

∑N
j′�1 p̂2

j′ t/2m~e−i∆k·r j e−i
∑N

j′′�1 p̂2
j′′ t/2m~

+ H.c.
]
,

(6.13)
onde ∆k � ke − k e ∆ω � ωk − ωe .
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Opróximo passo é inserir a relação de completeza
∫

d3p j |p j〉〈p j | � 1 na equação
acima.

e i
∑N

j′�1 p̂2
j′ t/2m~e−i∆k·r̂ j e−i

∑N
j′′�1 p̂2

j′′ t/2m~
�

∫
d3p j |p j〉〈p j |e

i
∑N

j′�1 p̂2
j′ t/2m~×

× e−i∆k·r̂ j e−i
∑N

j′′�1 p̂2
j′′ t/2m~

∫
d3p′j |p

′
j〉〈p

′
j |

�

∫
d3p jd3p′j |p j〉〈p j |e i(p2

j−p′2j )t/2m~e−i∆k·r̂ j |p′j〉〈p
′
j |

�

∫
d3p jd3p′j e i(p2

j−p′2j )t/2m~ |p j〉〈p j |p′j − ~∆k〉〈p′j |

�

∫
d3p j e i[p2

j−(p j+~∆k)2]t/2m~ |p j〉〈p j + ~∆k |

�

∫
d3p j e−i∆k·p j t/m e−i~∆k2t/2m |p j〉〈p j + ~∆k |

�

∫
d3p j e−i∆k·p j t/m e i~∆k2t/2m |p j − ~∆k〉〈p j |

(6.14)

Para pequenos ângulos de espalhamento e t ≤ tp � 70ns, as exponenciais
dependentes do tempo acima são aproximadamente constantes em torno de 1, já que
seus argumentos são muito pequenos. Mais tarde precisaremos calcular o valor médio
dessas exponenciais mesmas para a circunstância do nosso experimento e esse cálculo
justificará com mais força essa aproximação. Fazendo então

∫
d3p j e−i∆k·p j t/m e i~∆kt/2m |p j − ~∆k〉〈p j | ≈

∫
d3p j |p j − ~∆k〉〈p j |, (6.15)

o hamiltoniano de interação fica muitíssimo mais simples. A seguir, além da expressão
acima, consideramos que essa aproximação implica que, e i∆ωk t ≈ 1 e também que
Ωk ≈ Ω não depende de k para os modos do nosso interesse:

VI �
∑

k

N∑
j�1

∫
d3p j

[
− i~Ωak |p j − ~∆k〉〈p j | + H.c.

]
. (6.16)

Essa forma independente do tempo facilita muito a solução do problema. Pela
forma da equação 6.4, se VI não depende do tempo, a solução é dada simplesmente
por |ΨI(t)〉 � e−iVI t/~ |ΨI(0)〉. Como, pela definição da transformação realizada em 6.4,
|ΨI(0)〉 � |Ψ(0)〉, concluímos que |ΨI(t)〉 � e−iVI t/~ |Ψ(0)〉 será nossa solução.

Podemos ainda fazer mais uma aproximação. Se o campo de excitação for fraco o
suficiente, os eventos de espalhamento para outros ângulos que não aqueles que acoplam
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com a fibra óptica que conduz a luz aos detectores podem ser considerados desprezíveis
para a estatística observada. Assim, separamos a soma sobre os vários modos como∑

k �
∑′

k +
∑′′

k onde
∑′

k é a soma sobre os modos que podem ser detectados e
∑′′

k sobre
o restante. Desprezamos

∑′′
k e definimos

as �

′∑
k

ak , (6.17)

o operador de aniquilação de fótons no modo da fibra óptica coletora. Com isso,

VI �

N∑
j�1

∫
d3p j

[
− i~Ωas |p j − ~∆k〉〈p j | + H.c.

]
. (6.18)

Na equação acima, o vetor p j − ~∆k deve ser entendido como o momento do
átomo j após espalhar um fóton para o modo da fibra óptica. Como todos os fótons
espalhados têm amesma frequência, que não é alterada pelo espalhamento, e os ângulos
de espalhamento estão numa faixa muito estreita definida pela fibra óptica, ainda faz
sentido escrever ∆k depois de nos livrarmos da soma em k tratando-o como uma certa
constante. É importante notar também que não podemos aproximar |p j − ~∆k〉 por |p j〉
pois aqui não trata-se apenas de um fator numérico. Se cometemos esse erro, perdemos
a informação de que a interação com o feixe de excitação coloca a nuvem de átomos em
um estado de surperposição, que pode levar a efeitos importantes de interferência (o
que de fato acontece, como veremos).

A forma da equação 6.18 é sugestiva. O operador no espaço dos momentos que
aparece entre colchetes cria um impulso no átomo j, que cede o momento ao fóton
espalhado. Como sucessivas aplicações de VI adicionarão ou removerão impulso a
passos iguais sempre na mesma direção, vemos aparecer uma estrutura que parece com
a dos operadores de criação e aniquilação. Motivados por isso, definimos

aa �
1√
N

N∑
j�1

∫
d3p j |p j − ~∆k〉〈p j |, (6.19)

e também

a†a �
1√
N

N∑
j�1

∫
d3p j |p j〉〈p j − ~∆k |

�
1√
N

N∑
j�1

∫
d3p j |p + ~∆k〉〈p j |.

(6.20)
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Aplicando a†a ao estado definido pela equação 6.2, obtemos uma superposição
de estados, cada um com apenas um átomo com impulso devido a espalhamento:

a†a |0〉a �
1√
N

N∑
j�1
|p1〉...|p j + ~∆k〉...|pN〉. (6.21)

O significado disso é que o ensemble espalhou um fóton através de um átomo, mas sem
especificar qual dos átomos foi responsável pelo espalhamento. Como veremos a frente,
essa superposição é responsável pelo efeito coletivo que dá o valor de g2(τ).

Generalizando a definição, fazemos

|n〉a �
(a†a)n√

n!
|0〉a . (6.22)

Há aqui uma sutileza a se notar. Quando o operador aa atua sobre um átomo que já
possui um impulso, esse impulso é destruído. No entanto, quando aa atua sobre um
átomo que não ganhou impulso por espalhamento, ele cria um estado com impulso na
direção contrária. Para que o átomo receba impulso na direção contrária, é necessário que
ele tenha espalhado um fóton num modo diferente daqueles que acoplam com a fibra
óptica. Como nós já desprezamos os termos que correspondem a esse espalhamento,
precisamos desprezar a atuação de aa sobre átomos sem impulsos.

aa |0〉a � 0. (6.23)

Dessa forma, ficamos com todas as propriedades de operadores de criação e
aniquilação para a†a e aa :

a†a |n〉a �
√

n + 1|n + 1〉a , (6.24)

aa |n〉a �
√

n |n − 1〉a (6.25)

que, no espaço dos estados gerados pelos |n〉a , implicam em

[aa , a†a] � 1. (6.26)

Considerando tudo isso, escrevemos o hamiltoniano de interação para nosso problema.

VI � i~Ω[a†s a†a − as aa]. (6.27)
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Resta calcular e−iVI t/~ com t � tp , o tempo de duração de um pulso. Como

e−iVI tp � eΩtp(a†s a†a−as aa), (6.28)

usando o teorema do desemaranhamento [22] [23], podemos escrever e−iVI tp no ordena-
mento normal:

eΩtp(a†s a†a−as aa) � eΓa†s a†a e−g(n̂s+n̂a+1)e−Γas aa , (6.29)

onde Γ � tanh (Ωtp) e g � ln[cosh (Ωtp)]. Tendo em mente que eÂ �
∑∞

j�0 Â j/ j!,

e−Γas aa |0〉s |0〉a �

∞∑
j�0

(−Γas aa) j
j! |0〉s |0〉a

� |0〉s |0〉a ,
(6.30)

e−g(n̂s+n̂a+1)e−Γas aa |0〉s |0〉a �

∞∑
j�0

(−g) j(n̂s + n̂a + 1) j
j! |0〉s |0〉a

�

∞∑
j�1

(−g) j
j! |0〉s |0〉a

� e−g |0〉s |0〉a ,

(6.31)

e

eΓa†s a†a e−g(n̂s+n̂a+1)e−Γas aa � e−g
∞∑
j�1

Γ j(a†s a†a) j
j! |0〉s |0〉a

� e−g
∞∑
j�1

[
Γ j

(
(a†s ) j√

j!
|0〉s

) (
(a†a) j√

j!
|0〉a

)]
� e−g

∞∑
j�1
Γ j | j〉s | j〉a

�
1

coshΩtp

∞∑
j�1
[tanh (Ωtp)] j | j〉s | j〉a .

(6.32)

Definindo p � [tanh(Ωtp)]2, para Ωtp pequeno p fica sendo aproximadamente a
probabilidade da nuvem espalhar um fóton. Já que cosh (Ωtp) � 1/sech (Ωtp) �

1/
√

1 − (tanhΩtp)2,

|ΨI(tp)〉 �
√

1 − p
∞∑
j�1

p j/2 | j〉s | j〉a . (6.33)

Este é o estado do sistema logo após um pulso de luz, na representação de interação.
Nesse ponto, já podemos calcular o valore de g(2)(0).
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6.2 Cálculo de g(2)(0)
Como g(2)(τ) é escrito na representação de Heisenberg como

g(2)(τ) � 〈: Is(t + τ)Is(t) :〉
〈: I(t + τ) :〉〈: Is(t) :〉 , (6.34)

podemos facilmente escrevê-lo com τ � 0 em termos da nossa função de onda logo após
o término do pulso na representação de interação.

g(2)(0) �
〈ΨH | : Is Is :H (tp)|ΨH〉(
〈ΨH | : Is :H (tp)|ΨH〉

)2

�
〈Ψ(tp)| : Is Is : |Ψ(tp)〉(
〈Ψ(tp)|Is |Ψ(tp)〉

)2

�
〈Ψ(tp)|e−iH0tp/~e iH0tp/~ : Is Is : e−iH0tp/~e iH0tp/~ |Ψ(tp)〉(
〈Ψ(tp)|e−iH0tp/~e iH0tp/~ : Is : e−iH0tp/~e iH0tp/~ |Ψ(tp)〉

)2

�
〈ΨI(tp)| : Is Is :I (tp)|ΨI(tp)〉(
〈ΨI(tp)| : Is :I |ΨI(tp)〉

)2

(6.35)

Agora escrevemos : Is Is :I e : Is :I , que estão na representação de interação,
sabendo que na representação de Schroedinger, : Is Is :� a†s a†s as as e : Is :� a†s as :

: Is :I � e iH0t/~ : Is : e−iH0t/~

� e iH0t/~ηa†s as e−iH0t/~

� ηe i
∑

k ~ωk n̂k a†s as e−i
∑

k ~ωk n̂k

� ηe i~ωs n̂s a†s as e−i~ωs n̂s

� ηa†s as ,

(6.36)

já que pelas aproximações,
∑′

k ωkak � ωs as , se k não compõe as então [a†k , as] � 0, e
n̂s � a†s as . Segue que

: Is Is :I � e iH0t/~ηa†s a†s as as e−iH0t/~

� e iωs n̂s a†s a†s as as e−iωs n̂s .
(6.37)

Mas como [n̂s , a†s ] � a†s �⇒ n̂s a†s � a†s + a†s n̂s e [n̂s , as] � −as �⇒ n̂s as � −as + as n̂s ,
então
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n̂s a†s a†s as as � (a†s + a†s n̂s)a†s as as

� a†s a†s as as + a†s (a†s + a†s n̂s)as as

� 2a†s a†s as as + a†s a†s (−as + as n̂s)as

� a†s a†s as as − a†s a†s as as + a†s a†s as as n̂s

� a†s a†s as as n̂s ,

logo,
n̂s a†s a†s as as − a†s a†s as as n̂s � [n̂ , a†s a†s as as] � 0. (6.38)

Portanto,

: Is Is :I� ηa†s a†s as as . (6.39)

Com isso, escrevemos g(2)(0):

g(2)(0) �
〈ΨI(tp)|a†s a†s as as |ΨI(tp〉(
〈ΨI(tp)|a†s as |ΨI(tp)〉

)2 . (6.40)

Como 〈ΨI(tp)|a†s a†s � (as as |ΨI(tp)〉)†, calculamos as as |ΨI(tp)〉 para em seguida
obter o numerador de g(2)(0):

as as |ΨI(tp)〉 � as as
√

1 − p
∞∑
j�0

p j/2 | j〉s | j〉a

� as
√

1 − p
∞∑
j�1

p j/2√ j | j − 1〉s | j〉a

�
√

1 − p
∞∑
j�2

p j/2√ j( j − 1)| j − 2〉s | j〉a .

(6.41)
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Logo,

〈ΨI(tp)|a†s a†s as as |ΨI(tp)〉 � (1 − p)
∞∑
j�2

p j j( j − 1)

� (1 − p)
∞∑
j�0

p j j( j − 1)

� (1 − p)
∞∑
j�0

p2 ∂
2

∂p2 p j

� (1 − p)p2 ∂
2

∂p2

∞∑
j�0

p j

� (1 − p)p2 ∂
2

∂p2
1

1 − p

�
2p2

(1 − p)2 .

(6.42)

E, de forma análoga,

as |ΨI(tp)〉 � as
√

1 − p
∞∑
j�0

p j/2 | j〉s | j〉a

�
√

1 − p
∞∑
j�0

p j/2√ j | j〉s | j〉a

�⇒ 〈ΨI(tp)|a†s as |ΨI(tp)〉 � (1 − p)
∑
j�0

jp j

� (1 − p)p ∂
∂p

1
1 − p

�
p

1 − p
.

(6.43)

Finalmente, obtemos o resultado:

g(2)(0) �
2p2

(1 − p)2

(
1 − p

p

)2
.

� 2.
(6.44)

Esse valor concorda bem com todas as figuras produzidas pela análise de dados emostra,
com isso, que essa abordagem teórica de fato capta algo da essência do experimento.

Pelo que discutimos ao decidir utilizar g(2)(τ) para caracterizar a memória do
sistema, se o valor dessa função não é igual a 1, identificamos a existência de uma
correlação que interpretamos comomemória. Além disso, o fato de que o valor de g(2)(0)
segundo nossa teoria deve ser 2 independentemente do tempo do pulso já indica algo
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sobre a natureza não volátil, isto é, independente do processo de leitura, dessa memória.
Aqui, chamamos de processo de leitura a excitação da nuvem atômica por um pulso do
laser, de forma análoga ao que é considerado em [5]. Se desconsiderarmos o processo de
descoerência, a aplicação de um segundo pulso ao sistema é equivalente a multiplicar
por 2 o tempo do pulso, o que não altera a o valor de g(2)(0).

6.3 Cálculo da descoerência da memória

Para calcular g(2)(τ) recorremos novamente à sua expressão em termos da matriz
densidade. Olhando para seu numerador, uma manipulação da expressão em termos
da matriz densidade nos leva a uma expressão simples em termos da função de onda
|ΨI(tp)〉 que calculamos previamente. Consideraremos a seguir que o operador evolução
temporal entre quaisquer dois instantes de tempo t1 e t2 é dado por U(t1, t2), chamamos
e iH0t � T, e quando um operador estiver dependente do tempo assumimos que ele está
na representação de Heisenberg (omitindo o subscrito H).

〈: Îs(t + τ)Îs(t) :〉 � Tr
[

: a†s (t + τ)as(t + τ)a†s (t)as(t) : ρ(0)
]

� Tr
[
U†(0, t)a†s U(0, t)U†(0, t + τ)a†s U(0, t + τ)×

×U†(0, t + τ)asU(0, t + τ)U†(0, t)asU(0, t)ρ(0)
]

� Tr
[
U†(0, t)a†s U(0, t)U†(0, t + τ)︸                 ︷︷                 ︸

�U(0,t)U†(0,t)U†(t ,t+τ)

a†s as×

×U(0, t + τ)U†(0, t)︸                 ︷︷                 ︸
�U(t ,t+τ)U(0,t)U†(0,t)

asU(0, t)ρ(0)
]

� Tr
[
U†(0, t)a†s U†(t , t + τ)a†s asU(t , t + τ)asU(0, t)ρ(0)

]
(6.45)

Usando a propriedade do traço de que Tr(ÂB̂Ĉ) � Tr(B̂ĈÂ), continuamos

〈: Îs(t + τ)Îs(t) :〉 � Tr
[
a†s asU(t , t + τ)as U(0, t)ρ(0)U†(0, t)︸                  ︷︷                  ︸

�ρ(t)

a†s U†(t , t + τ)
]

� Tr
[
a†s asU(t , t + τ)T−1 TasT−1︸  ︷︷  ︸

�as e−iωs t

Tρ(t)T−1︸     ︷︷     ︸
�ρI(t)

Ta†s T−1︸  ︷︷  ︸
�a†s e iωs t

TU†(t , t + τ)
]

� Tr
[
a†s asU(t , t + τ)T−1asρI(t)a†s TU†(t , t + τ)

]
.

(6.46)

No nosso experimento, a não volatilidade, i.e., a independência do tempo de
vida da memória com o período T entre pulsos, significa que a descoerência da memória
não depende da quantidade de pulsos que atingiram a nuvem atômica entre o click A
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e o click B. Assim, podemos desprezar esses pulsos não detectados e considerar que
a evolução temporal entre os 2 pulsos que fornecem os fótons detectados é dada pelo
hamiltoniano livre H0. Como g(2)(τ) envolve a detecção de 2 fótons, um logo após o
término de um primeiro pulso e outro logo após o término de um segundo, escolhemos
t � tp . Com essa escolha, U(t , t + τ)modela a evolução entre o fim do primeiro pulso e
o fim do segundo. Dessa forma, podemos escrever U(t , t + τ) � Upulsoe−iH0τ/~. O termo
mais a direita modela a evolução livre entre os dois pulsos e o termo à esquerda modela
a influência do segundo pulso sobre o conjunto de átomos. Logo,

〈: Îs(t + τ)Îs(t) :〉 � Tr
[
a†s asUpulsoe−iH0τ/~e−iH0tp asρI(tp)a†s e iH0tp/~e iH0τ/~U†pulso

]
≈ Tr

[
a†s asUpulsoe−iH0τ/~asρI(tp)a†s e iH0τ/~U†pulso

]
� Tr

[
e−iH0tp/~ e iH0tp/~a†s as e−iH0tp/~︸                   ︷︷                   ︸

�a†s as

e iH0tp/~Upulso×

× e−iH0(τ+tp)/~asρI(tp)a†s e iH0(τ+tp)/~U†pulso
]

� Tr
[
a†s as e iH0tp/~Upulso e−iH0(τ+tp)/~asρI(tp)a†s e iH0(τ+tp)/~︸                                    ︷︷                                    ︸

≡ρ′(0)

U†pulsoe−iH0tp/~] .
(6.47)

Na última linha da expressão acima, ρ′(0) pode ser interpretado como um certo estado
da representação de Schroedinger. Com isso, automaticamente sua transformação por
e iH0tp/~Upulso deve ser interpretada como o estado ρ′ após aplicação de um pulso, na
representação de interação. Por isso,

e iH0tp/~Upulsoρ
′(0)U†pulsoe−iH0tp/~ � e−iVI tp/~ρ′I(0)e iVI tp/~

� e−iVI tp/~e iH0tp/~ρ′(0)e−iH0tp/~e iVI tp/~

� e−iVI tp/~e−iH0τ/~asρI(tp)a†s e iH0τ/~e iVI tp/~.

(6.48)

Logo,

〈: Îs(t + τ)Îs(t) :〉 � Tr
(
a†s as e−iVI tp/~e−iH0τ/~asρI(tp)a†s e iH0τ/~e iVI tp/~) . (6.49)

No nosso caso, temos um estado puro ρI(tp) � |ΨI(tp)〉〈ΨI(tp)|. Com essa
substituição, escrevemos o traço em termos da função de onda:

〈: Îs(t + τ)Îs(t) :〉 � 〈ΨI(tp)|a†s e iH0τ/~e iVI tp/~n̂s e−iVI tp e−iH0τ/~as |ΨI(tp)〉. (6.50)
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A interpretação dessa expressão é direta: como Îs(t + τ)Îs(t) corresponde a duas
detetecções, umaocorrendoem t e outra em t+τ, entãoo estado logo apóso espalhamento
do primeiro fóton é alterado pelo operador detecção as , modelando a detecção desse
fóton, depois evolui livremente durante τ. Depois da evolução livre, mais um pulso
altera o estado pelo operador e−iVI tp e então sobre o estado final, calculamos o valor
esperado do número de fótons espalhados no segundo pulso.

Para o que se segue, será suficiente aproximar o estado |ΨI(tp)〉 e o operador
e−iVI(tp):

|ΨI(tp)〉 � e−iVI tp/~ |0〉s |0〉a
� eΩtp(a†s a†a−as aa) |0〉s |0〉a
≈ [1 +Ωtp(a†s a†a − as as)]|0〉s |0〉a
� |0〉s |0〉a +Ωtp |1〉s |1〉a .

(6.51)

Logo,

e−iH0τ/~as |ΨI(tp)〉 ≈ Ωtp e−iH0τ/~ |0〉s |1〉a

� Ωtp e−i
∑

k ωk n̂kτe−i
∑N

j�1 p̂2
j τ/2m~ |0〉s |1〉a

� Ωtp |0〉s
(
e−i

∑N
j�1 p̂2

j τ/2m~ |1〉a
)
.

(6.52)

Pelas definições no início da teoria,

e−i
∑N

j�1 p̂2
j τ/2m~ |1〉a �

1√
N

N∑
j�1

e−i
∑N

j′�1 p̂2
j′τ/2m~ |p1〉...|p j + ~∆k〉...|pN〉

�
1√
N

N∑
j�1

e−i[p2
1+...+(p j+~∆k)2+...+p2

N ]τ/2m~ |p1〉...|p j + ~∆k〉...|pN〉.

(6.53)
Então vê-se que a evolução livre leva os estados para fora do espaço gerado pelos
|n〉a . Somos obrigados a retornar, por isso, para a base dos estados de momento.
Por conveniência de notação, definimos g( j) ≡ e−i[p2

1+...+(p j+~∆k)2+...+p2
N ]τ/2m~. Assim,
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aplicamos e−iVI tp/~ mais uma vez:

e−iVI tp/~e−iH0τ/~as |ΨI(tp)〉 ≈ Ωtp e−iVI tp/~ 1√
N

N∑
j�1

g( j)|0〉s |p1〉...|p j + ~∆k〉...|pN〉

≈
Ωtp√

N
(1 +Ωtp(a†s a†a − as aa))

N∑
j�1

g( j)|0〉s |p1〉...|p j + ~∆k〉...|pN〉

�
Ωtp√

N

N∑
j�1

g( j)|0〉s |p1〉...|p j + ~∆k〉...|pN〉+

+
(Ωtp)2

N

N∑
l�1

N∑
j�1

g( j)|1〉s |p1〉...|p j + ~∆k〉...|pl + ~∆k〉...|pN〉.

(6.54)

A expressão acima já será usada para escrever o numerador de g(2)(τ). Aplicando
n̂s , apenas o segundo termo sobrevive:

n̂s e−iVI tp/~e−iH0τ/~as |ΨI(tp)〉 ≈
(Ωtp)2

N

N∑
l�1

N∑
j�1

g( j)|1〉s |p1〉...|p j + ~∆k〉...|pl + ~∆k〉...|pN〉

(6.55)

Qualquer soma da forma acima satisfaz
∑

i , j A(i , j) � ∑
i� j A(i , j) +∑

i< j A(i , j) +∑
i> j A(i , j). Como

∑
i> j A(i , j) � ∑

i< j A( j, i), a soma original se torna

∑
i , j

A(i , j) �
∑
i< j

[
A(i , j) + A( j, i)

]
, (6.56)

logo

n̂s e−iVI tp/~e−iH0τ/~as |ΨI(tp)〉 �
(Ωtp)2

N

{ N∑
j�1

g( j)|1〉s |p1〉...|p j + 2~∆k〉...|pN〉+

+

∑
j<l

[g( j) + g(l)]|1〉s |p1〉|p j + ~∆k〉...|pl + ~∆k〉...|pN〉
} (6.57)
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Então, pela ortonormalidade dos estados de momento |p1〉...|pN〉,

〈ΨI(tp)|a†s e iH0τ/~e iVI tp/~n̂s e−iVI tp/~e−iH0τ/~as |ΨI(tp)〉 ≈

≈
(Ωtp)4

N2

{∑
j, j′

g( j)g∗( j′)δ j j′
∑
j<l

∑
j′<l′
[g( j) + g(l)][g∗( j′)g∗(l′)]δ j j′δll′

}
�
(Ωtp)4

N2

( N∑
j

|g( j)|2︸      ︷︷      ︸
�
∑N

j�1 1�N

+

∑
j<l

|g( j) + g(l)|2︸               ︷︷               ︸
�

1
2
∑

j,l; j,l |g( j)+g(l)|2

)

�
(Ωtp)4

N
+
(Ωtp)4

2N2

∑
j,l; j,l

|g( j) + g(l)|2

(6.58)

Agora precisamos do valor de
∑

j,l; j,l |g( j) + g(l)|2. Pela definição de g( j), temos
que:

|g( j) + g(l)|2 � |e−i(p1+...+pN )τ2m~(e−i(p j ·∆kτ/m+~2∆k2τ/2m~)
+ e−i(pl ·∆kτ/m+~2∆k2τ/2m~))|2

� |e−ip j ·∆kτ/m
+ e−ipl ·∆kτ/m |2

� 2 + e−i(p j−pl)·∆kτ/m
+ e i(p j−pl)·∆kτ/m .

(6.59)
Com isso,

∑
j,l; j,l

|g( j) + g(l)|2 �

∑
j,l; j,l

2 +

∑
j,l; j,l

e−i(p j−pl)·∆kτ/m
+

∑
j,l; j,l

e i(p j−pl)τ/m

� 2(N2 − N) +
∑

j,l; j,l

e−i(p j−pl)·∆kτ/m
+

∑
j,l; j,l

e i(p j−pl)τ/m .
(6.60)

Podemos usar o fato de que |p1〉...|pN〉 segue uma distribuição de Maxwell para
aproximar um valor para as duas somas:

∑
j,l; j,l

e−i(p j−pl)·∆kτ/m ≈︸︷︷︸
se N é grande

N∑
j�1

e−ip j ·∆kτ/m
N∑

l�1
e ipl ·∆kτ/m

�

( N∑
j�1

e−ip j ·∆kτ/m
)2

�

(∑
p j

Ñ(p j)e−ip j ·∆kτ/m
)2
.

(6.61)



Capítulo 6. Modelagem quântica da memória no espalhamento da luz 78

Onde Ñ(p j) é o número de átomos com momento p j . Então, sendo f (p) a fração
de átomos com momento p, e N o número total de átomos, e em seguida usando a
distribuição de Maxwell dos momentos fp(p):

∑
j,l; j,l

e−i(p j−pl)·∆kτ/m
�

[∑
p j

N f (p j)e−ip j ·∆kτ/m
]2

≈
[ ∫

d3p N fp(p)e−ip·∆kτ/m
]2

�

[ ∫
d3p N

(
1

2πmkBT

)3/2
e−p2/2mkBT e−ip·∆kτ/m

]2

�

[
1

2πmkBT

]3 [
N

∫
dpx e−p2

x/2mkBT e−ipx∆kxτ/m×

×
∫

dpy e−p2
y/2mkBT e−ipy∆kyτ/m ×

∫
dpz e−p2

z/2mkBT e−ipz∆kzτ/m
]2
.

(6.62)

Por uma tabela de transformadas de Fourier,
∫

dx e−αx2
e−iνx �

√
π/αe−ν

2/4α.
Com isso, obtemos que

∑
j,l; j,l

e−i(p j−pl)·∆kτ/m ≈
[

1
2πmkBT

]3 [
N

(
2πmkBT

)3/2
e−kBT∆k2

xτ
2/2m e−kBT∆k2

yτ
2/2m e−kBT∆k2

zτ
2/2m

]2

� N2e−
kBT

m ∆k2τ2
.

(6.63)

Como esse resultado não depende do sinal de ∆k, sabemos também que

∑
j,l; j,l

e i(p j−pl)·∆kτ/m ≈ N2e−
kBT

m ∆k2τ2
, (6.64)

e portanto,

∑
j,l; j,l

|g( j) + g(l)|2 ≈ 2(N2 − N) + 2N2e−
kBT

m ∆k2τ2
. (6.65)

Finalmente,

〈ΨI(tp)|a†s e iH0τ/~e iVI tp/~n̂s e−iVI tp/~e−iH0τ/~as |ΨI(tp)〉 ≈

≈
(Ωtp)4

N
+
(Ωtp)4

2N2

(
2N2 − 2N + 2N2e−

kBT
m ∆k2τ2

)
� (Ωtp)4(1 + e−

kBT
m ∆k2τ2),

(6.66)
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que é o valor do numerador da expressão de g(2)(τ). Resta calcular o denominador, o
que faremos de forma análoga ao que fizemos com o numerador. Dessa vez, no entanto,
a medida envolve o espalhamento de apenas um pulso. Por isso, haverá o efeito de só
um pulso incluído nos operadores de evolução temporal.

〈: Îs(t + τ) :〉 � Tr(a†s (t + τ)as(t + τ)ρ(0))
� Tr(U†(0, t + τ)a†s U(0, t + τ)U†(0, t + τ)asU(0, t + τ)ρ(0))
� Tr(n̂sUpulsoU(tp , tp + τ)ρ(0)U†(tp , tp + τ)U†pulso)

� Tr(n̂sUpulsoe−iH0(τ+tp)ρ(0)e iH0(tp+τ)/~Upulso)
� Tr(n̂s e−iVI tpρ(0)e iVI tp )
� 〈0|s 〈0|a e iVI tp/~n̂s e−iVI tp~ |0〉s |0〉a

(6.67)

Aproximando até ordem de Ωtp ,

e−iVI tp/~ � |0〉s |0〉a +Ωtp |1〉s |1〉a (6.68)

Então,

〈0|s 〈0|a e iVI tp/~n̂s e−iVI tp/~ |0〉s |0〉a ≈
(
〈0|s 〈0|a +Ωtp 〈1|s 〈1|a

) (
Ωtp |1〉s |1〉a

)
≈ (Ωtp)2,

(6.69)

independentemente de τ. Com isso, concluímos que

g(2)(τ) � 1 + e−
kBT

m ∆k2τ2
. (6.70)

Como pode ser observado na figura 39, este resultado mostra o decaimento da
função de correlação de segunda ordem de 2 para 1, bem próximo do comportamento
real. Algumas propriedades dos dados experimentais, no entanto, não podem ser
explicadas por esse modelo. As oscilações com frequência bem definida que vemos
modular a função g(2)(τ) (não confundir com a modulação da intensidade espalhada
cuja influência foi eliminada pela análise do capítulo anterior) e a primeira escala de
tempo do decaimento, próximo de τ � 0, não são explicadas por ele. Uma discussão
sobre a origem dessa primeira escala de tempo encontra-se ao final do capítulo 5. Na
próxima seção, propomos uma modificação fenomenológica sobre esse resultado de
forma a obter um melhor ajuste dos dados.

Olhando para o estado logo após a detecção de um fóton, vemos que ele
corresponde a uma distribuição de átomos modulada espacialmente, formando uma
grade de densidade atômica na região da nuvem. A densidade de probabilidade de
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Figura 39 – Previsão da teoria para a função g(2)(τ) no nosso experimento. A escala de
tempo está em unidades de tempo de decaimento τd � ( kBT

m ∆k2)−1/2.

encontrar algum átomo na posição (x , y) dada pela função de onda de |1〉a pode ser
escrita aproximadamente como

ρ(x) � A0 + A1 cos
(
∆kx x + ∆ky y

)
, (6.71)

o que corresponde a uma densidademodulada espacialmente por um cosseno. Isso pode
ser visualizado na figura 40. Assim, nosso tratamento quântico pode ter sua interpretação
conectada com a interpretação dada ao experimento de [5]. Nela, a memória existe
pois o sistema age como uma grade de difração, e o tempo de decaimento lento pode
ser interpretado classicamente como o tempo que esta grade leva para se desfazer
segundo o movimento dos átomos, sem colisões. Com isso além do tratamento quântico,
útil à informação quântica, dispomos de uma intuição clássica sobre os mecanismos
participando do processo.
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Figura 40 – Representação da densidade de átomos da função de onda de |1〉a , que
domina o estado do sistema logo após a detecção de um fóton.

6.4 Modificação fenomenológica e comparação com expe-
rimento

Para dar conta das duas escalas temporais observadas, podemos supor que um
subconjunto dos átomos perde suas relações de fase de forma homogênea [24][25] e
apresenta, além do decaimento gaussiano predito pela nossa teoria, um decaimento
exponencial na função de correlação. Se isso acontece com uma fração ε dos átomos, e o
tempo do decaimento homogêneo é th , a expressão para g(2)(τ) fica escrita como

g(2)(τ) � 1 +

[
(1 − ε)e−

kBT
m ∆k2τ2

+ εe−
kBT

m ∆k2τ2
e−τ/th

]
. (6.72)

Com isso, temos 2 parâmetros livres além da temperatura T para ajuste das
curvas experimentais, ε e th . Os ajustes podem ser vistos nas figuras 41 até 45.

Figura 41 – Ajustes teóricos da função g(2)(τ) variando o ângulo θ entre o modo da luz
espalhada e o modo do feixe de excitação.
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Figura 42 – Ajustes teóricos da função g(2)(τ) variando o período T entre os pulsos de
excitação.

Figura 43 – Ajustes teóricos da função g(2)(τ) variando a profundidade óptica (OD, do
inglês optical depth) da nuvem atômica gerada pela MOT.

Figura 44 – Ajustes teóricos da função g(2)(τ) variando a probabilidade de detecção de
um fóton espalhado.



Capítulo 6. Modelagem quântica da memória no espalhamento da luz 83

Figura 45 – Ajustes teóricos da função g(2)(τ) variando a dessintonia do feixe de excitação
em relação à transição atômica.

Nas figuras variando período e dessintonia, todas as curvas foram ajustadas por
apenas um conjunto de parâmetros, dados pelas curvas com T � 0.5µs e δ � 56MHz,
respectivamente. Isso foi feito pois não esperamos que esses dois parâmetros influenciem
os resultados.

Na figura em que variamos o ângulo de espalhamento, deixamos livre apenas o
parâmetro de ângulo para variar entre as curvas, sendo todos os outros ajustados pela
curva de θ � 1.1◦. O motivo é que toda a configuração experimental exceto o ângulo de
detecção foi o mesmo para as três curvas.

Por fim, nas figuras variando profundidade óptica e probabilidade de espalha-
mento, todos os parâmetros exceto ângulo estão livres para variar. Para a profundidade
óptica da armadilha magneto óptica isso se justifica porque, ao alterá-la, esperamos
que todas as características da nuvem atômica mudem, desde seu tamanho (o que
pode afetar ε e th se esses estiverem relacionados com uma imperfeição espacial no
cancelamento do campo magnético, por exemplo) até a temperatura dos átomos. Para
a probabilidade de espalhamento a justificativa se dá porque se esta for muito alta, a
sequência de pulsos do feixe de excitação pode esquentar a nuvem atômica, mudando
suas características.

Considerando o bom ajuste dos dados pela teoria em sua parte mais lenta,
podemos concluir que a origem da memória resiliente ao processo de leitura presente
no conjunto de átomos frios está no efeito coletivo causado pela superposição entre
autoestados de momento linear da nuvem em que diferentes átomos foram responsáveis
pelo espalhamento do fótondetectado.Alémdisso, imperfeições no aparato experimental
podem ser incluídas no modelo a partir da introdução dos parâmetros ajustáveis ε e th .
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7 CONCLUSÃO

Neste trabalho, partindo do reconhecimento da importância do entendimento de
memórias quânticas para protocolos de informação quântica, especialmente memórias
em ensembles de átomos frios, investigamos o mecanismo de uma memória no espalha-
mento de luz por um sistema desse tipo. Experimentalmente esta investigação pode ser
feita utilizando configurações bem conhecidas. Para nós, o uso de um interferômetro de
Hanbury Brown-Twiss foi bem recompensado.

Apesar de ser possível verificar rapidamente por uma análise simples dos dados
experimentais que de fato há memória no sistema, e que essa memória armazena
informação sobre com quais modos da luz os átomos interagiram, essa análise pode
trazer problemas interpretativos.

A partir de um entendimento mais sutil sobre quais são as pressuposições sobre
o tipo de estatística envolvida no processo que são embutidas na análise dos dados, é
possível identificar possíveis origens dos aspectos mais difíceis de explicar dos dados.
Além de ser possível explicar a origem de tais aspectos não esperados dos resultados
através da análise estatística, também pode ser possível utilizar esse conhecimento para
propor novas formas de processamento dos dados que filtram o que não interessa no
resultado final.

Possuindo os resultados provenientes da análise de dados adequada, pudemos
rastrear a origem da memória nos átomos a um efeito coletivo do ensemble de átomos.
A função de onda após a detecção de um fóton em um certo modo é uma superposição
de autoestados de momento em que diferentes átomos foram o átomo responsável por
espalhar o fóton detectado. Esse estado que pode ser interpretado como consequência
da indistinguibilidade entre caminhos diferentes que levam à detecção do fóton, é o
estado responsável pelo desvio da função g(2)(0) para valores acima de 1, o que vimos
resultar em uma memória.

A previsão teórica fornecida pelo nosso tratamento, no entanto, não leva em
conta todas as imperfeições ou processos relevantes ao processo inteiro, mas apenas
modela o decaimento geral da memória. Ainda assim, com uma modificação nessa
previsão de acordo com um argumento fenomenológico, podemos obter um bom acordo
entre o experimento e a teoria, completando o resultado deste trabalho.
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APÊNDICE A – TRATAMENTO DOS DADOS BRUTOS

A placa contadora gera, para nossos dados que correspondem a observações
durante períodos de cerca de 3 horas, arquivos de tamanho relativamente grande, em
torno de 2 GB. Esse tamanho exagerado pode aumentar a dificuldade computacional
da análise. Felizmente, como estamos num regime de baixíssima intensidade, e a
probabilidade de detecção de luz após aplicação de cada pulso vai a cerca de 2%, a maior
parte da informação escrita pela placa contadora é redundante. Esquematicamente,
temos na prática arquivos de dados no seguinte formato:

Início de uma nova contagem
Detecção no detector A, um tempo T1 desde o último início de contagem

Início de uma nova contagem
Início de uma nova contagem
Início de uma nova contagem

Detecção no detector A, um tempo T2 desde o último início de contagem
Detecção no detector B, um tempo T3 desde o último início de contagem

Início de uma nova contagem

e assim por diante. Nós interpretamos como um instante cada janela temporal
entre dois inícios de contagem (isto é, duas detecções dentro da mesma contagem
são interpretadas como simultâneas). Por isso, é possível comprimir a sequência de
anotações acima para:

Contagens desde a última detecção Número de detecções em A Número de detecções em B
1 1 0
3 1 1
1 0 0

Uma compressão desde tipo, em que escrevemos apenas os números da última
tabela leva o tamanho dos arquivos de cerca de 2 GB para cerca de 200 MB, devido
a grande quantidade de linhas “início de contagem” repetidas no arquivo original,
tornando-os facilmente analisáveis pelo computador.

O formato dos dados que utilizamos para análise, porém, está na forma "clicks
vs tempo". Assim, para que esses dados comprimidos estejam nessa forma, basta que o
valor da coluna que conta as varreduras acumule o total de varreduras desde a primeira
linha. Com isso, os dados ficam na seguinte forma:

Verreduras desde o início do experimento Número de detecções em A Número de detecções em B
1 1 0
4 1 1
5 0 0
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Os dados nessa forma são representados nos diagramas que ilustram o processo
de análise dos dados por figuras como a 46.

Figura 46 – Representação diagramática dos dados após tratamento de compressão e
formatação. Essa representação aparece nos diagramas de análise de dados
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APÊNDICE B – ANÁLISE DOS DADOS EXPERIMENTAIS

g(2)(τ) supondo estatística estacionária

A primeira forma, mais simples, que podemos pensar para obter g(2)(τ) de dados
na forma da tabela no apêndice A começa pela interpretação da expressão para g(2) em
termos de probabilidades de detecção:

g(2)(τ) � 〈: Î(τ)Î(0) :〉
〈: Î(τ) :〉〈: Î(0) :〉

�
P(A(τ), B(0))

P(A(τ))P(B(0)) �
NA,B(τ, 0)

NANB
Ns ,

onde NA,B(τ, 0) é a quantidade de detecções em A após um tempo τ depois de uma
detecção em B, NA é o número de detecções em A, NB o número de detecções em B, e Ns

o número total de inícios de contagem de detecções na tiragem de dados. Para o último
passo, o de escrever as probabilidades em termos de números de clicks, supomos que as
probabilidades não dependem da origem temporal, o que significa supor que lidamos
com uma estatística estacionária. Falando em termos do arquivo de dados comprimido,
isso significa que cada linha pode funcionar como um ponto de partida para a contagem
de NA,B. Assim, um programa que, sobre o arquivo de dados na forma da tabela A, siga
o seguinte algoritmo será capaz de obter o gráfico de g(2)(τ) para um intervalo [0, τmax]:

Primeiro passo Escolher uma nova linha i:

1. Somar o número de inícios de contagem contabilizados na linha i a Ns

2. Se há detecção em A na linha i, somar 1 em NA

3. Se há detecção em B na linha i, somar 1 em NB

4. Se há detecção em A e em B na linha i, somar 1 em NA,B(0, 0)

Segundo passo Para cada j ∈ {1, τmax/(tempo entre pulsos)}:

1. Se existe a linha i + j e há detecção em A ou em B na linha i + j, somar 1 em
NA,B( j ∗ (tempo entre pulsos), 0)

Terceiro passo Se o final do arquivo não tiver sigo alcançado, voltar ao primeiro passo.

Quarto passo Calcular g(2)(τ) para cada τ utilizando os números de contagens obtidos.
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g(2)(τ) através de média por ensemble

Para realizar médias por ensemble, de acordo com a discussão do capitulo 3, é
preciso separar os dados em uma série de funções do tempo. Para isso, definimos como o
início de cada uma delas a preparação de cadaMOT. Se o trem de pulsos consiste de 2000
pulsos (no nosso experimento, utilizamos 1999, 999 e 499 pulsos, mas para este exemplo
utilizaremos 2000), um evento que ocorreu ti pulsos após o início do experimento conta
como um click da ti/2000-ésima função de amostra, onde / indica a parte inteira da
divisão. Pela definição da origem temporal, também segue que o click ocorreu um tempo
ti%2000 desde o início dessa função, onde % indica o resto da divisão.

Assim, ao varrer os dados somando clicks no detector A ou B em t � ti%2000,
estamos contando NA(t) e NB(t). Contando clicks em A e B em tA e tB desde que
tA/2000 � tB/2000 (isto é, ambos pertencem à mesma preparação da MOT), estamos
contando NAB(tA , tB). Com esses números e o número total de funções dado por
t f � max{ti} dividido pela quantidade de pulsos por preparação da MOT, temos o
número de funções de amostra. Logo, obtemos a função g(2)(t1, t2) fazendo

g(2)(t1, t2) �
NAB(t1, t2)

NA(t1)NB(tB)
× (t f /2000) (B.1)

O algoritmo para calcular os NA, NB e NAB a partir dos dados fica:

Passo zero Fazer t f � 0

Primeiro passo Escolher uma nova linha i:

1. Se ti > t f , fazer t f :� ti

2. Se há detecção em A na linha i, somar 1 em NA(ti%2000)

3. Se há detecção em B na linha i, somar 1 em NB(ti%2000)

4. Se há detecção em A e em B na linha i, somar 1 em NA,B((ti%2000), (ti%2000))

Segundo passo Se houve detecção em A, para cada j ∈ (i , i + 2000]:

1. Se existe a linha i + j, e há detecção em B na linha i + j, e t j/2000 � ti/2000
somar 1 em NA,B(ti%2000, t j%2000)

Terceiro passo Se nem todas as linhas tiverem sido escolhidas como linha i, voltar ao
primeiro passo

Quarto passo Calcular g(2)(t1, t2) utilizando os números de contagens obtidos
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