
Vinícius Matos da Silveira Fraga

A comparison between OSv unikernels and Docker containers as building
blocks for an Internet of Things platform

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife
2019

www.cin.ufpe.br/~posgraduacao

Vinícius Matos da Silveira Fraga

A comparison between OSv unikernels and Docker containers as building
blocks for an Internet of Things platform

A M.Sc. Dissertation presented to the Center of Informatics
of Federal University of Pernambuco in partial fulfillment
of the requirements for the degree of Master of Science in
Computer Science.

Concentration Area: Computer Networks
Advisor: Djamel Fawzi Hadj Sadok

Recife
2019

Catalogação na fonte
Bibliotecária Mariana de Souza Alves CRB4-2106

F811c Fraga, Vinícius Matos da Silveira
A comparison between OSv unikernels and Docker containers

as building blocks for an Internet of Things platform – 2019.
64f.: il., fig., tab.

Orientador: Djamel Hadj Fawzi Sadok
Dissertação (Mestrado) – Universidade Federal de

Pernambuco. CIn, Ciência da computação. Recife, 2019.
Inclui referências.

1. Redes de Computadores. 2. Unikernels. 3. Internet das
Coisas. 4. Computação em Nuvem. I. Sadok, Djamel Hadj Fawzi
(orientador). II. Título.

 004.6 CDD (22. ed.) UFPE-MEI 2019-145

Vinícius Matos da Silveira Fraga

“A COMPARISON BETWEEN OSV UNIKERNELS AND DOCKER
CONTAINERS AS BUILDING BLOCKS FOR AN INTERNET OF THINGS

PLATFORM”

 Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Mestre em Ciência da

Computação.

Aprovado em: 22 de agosto de 2019.

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa

Centro de Informática / UFPE

Prof. Dr. Rafael Roque Aschoff

Instituto Federal de Pernambuco/Campus Palmares

Prof. Dr. Djamel Fawzi Hadj Sadok

Centro de Informática / UFPE

(Orientador)

I dedicate this dissertation to all my family.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Dr. Djamel Sadok, for guiding me during this
research, as well as for being understanding and supportive since 2012, when first started working
together. I would also like to thank Thiago Oliveira, who helped me in my LaTeX journey to
write this work. Cleber Morais, Daniel Bezerra, and Carolina Cani, for all the tips they provided
me, and Michaela Carmo, who helped me a lot with this thesis images and kept me going during
the toughest days of work.

ABSTRACT

The Internet of Things (IoT) growth has been stimulating the development of novel
technology to better fulfil its requirements. Due to its scale, IoT is powered by distributed,
horizontally scalable systems, such as service oriented architectures and cloud computing. In
this context, a potentially cheaper, safer and more efficient approach to virtualisation in the
cloud could be the unikernel model. A unikernel is a single-process binary made of a kernel and
an application built together, therefore fitting into microservice architectures, and capable of
lowering computational costs in terms of time and space per service. The objective of this work is
to analyse how viable it would be to develop an IoT platform meant to run on unikernels, as well
as evaluate and compare unikernels’ performance to containers. In order to do so, a microservice
IoT platform was proposed and deployed to OSv unikernel and Docker containers to work as
a benchmark. Results show that it is possible to deploy modern solutions to unikernels, while
highlighting open challenges and issues. Also, the expected performance gains of unikernels
cannot be yet generalised, as in many cases they are still surpassed by containers.

Keywords: Unikernels. Performance. Internet of Things. Cloud Computing. Containers.

RESUMO

O crescimento da Internet das Coisas (IoT) é um fenômeno que impulsiona diversas
áreas da computação para melhor atender a seus requisitos. Devido a sua grande escala, a IoT se
sustenta em tecnologias distribuídas e horizontalmente escaláveis, como arquiteturas orientadas
a serviço e computação em nuvem. Nesse contexto, uma alternativa potencialmente mais barata,
eficiente e segura do que as atuais técnicas de virtualização utilizadas na nuvem é o modelo
de unikernel. Um unikernel executa apenas uma aplicação por vez, adequando-se ao modelo
de microsserviços, enquanto economiza processamento e espaço utilizados por instancia da
aplicação. O objetivo deste trabalho é analisar a viabilidade de implementação de uma plataforma
de serviços para IoT utilizando unikernels, assim como comparar seu desempenho com o de
containers. Para tanto, foi proposta e implementada uma arquitetura que atende a um conjunto
mínimo de requisitos de IoT, baseada na literatura e em soluções comercias, para servir de
benchmark de comparação entre essas plataformas de virtualização. Os resultados apontam
a viabilidade de se utilizar unikernels para entregar serviços de IoT, considerando algumas
dificuldades encontradas, porém demonstram que os ganhos de desempenho não podem ser
generalizados.

Palavras-chave: Unikernels. Desempenho. Internet das Coisas. Computação em Nuvem.
Containers.

LIST OF FIGURES

Figure 1 – Internet of Things (IoT) Reference Architecture. 18
Figure 2 – Granularity differences among Monolithic, SOA, and Microservices

architectures. 19
Figure 3 – Hypervisor architectures. 21
Figure 4 – KVM architecture. 22
Figure 5 – Container and Docker architectures. 23
Figure 6 – Unix-like vs Unikernel architectures. 25
Figure 7 – Unikernel deployment stack. 26
Figure 8 – Deployment stacks of Virtual Machine (VM)s and Docker containers. . 26

Figure 9 – DNS server results. The box plots refer to the response latencies, while
the line chart reflects the response rate. 30

Figure 10 – HTTP server results. 31
Figure 11 – Throughput (a) and memory footprint (b) of Nginx 1.8 HTTP Server. . 32
Figure 12 – Throughput (a) and memory footprint (b) of Redis 3.0.1. 33
Figure 13 – Docker, OSv and KVM startup time for 10, 20, and 30 concurrent

instances. 34
Figure 14 – Open Stack full workload times. 35
Figure 15 – Bubble sort execution time for OSv and Docker. 36
Figure 16 – REST service performance of OSv and Docker. 37
Figure 17 – Memory consumption of OSv and Docker. 38

Figure 18 – Jung’s publish/subscribe communication scheme. 41
Figure 19 – Jung Architecture. 42
Figure 20 – Jung tasks and results serialisation format. 45

Figure 21 – Jung experiments flowchart. 50
Figure 22 – CPU usage of OSv vs Docker. Less is better. 51
Figure 23 – Memory usage of OSv vs Docker. 52
Figure 24 – Total memory usage of OSv vs Docker, including Docker runtime. . . 52
Figure 25 – Images sizes on disk. 53
Figure 26 – OSv vs Docker response times. 54
Figure 27 – Latencies of OSv vs Docker. 55

LIST OF TABLES

Table 1 – Comparison to related work . 39

Table 2 – Requests per user . 47
Table 3 – CPU Usage . 49
Table 4 – Memory Usage . 53
Table 5 – Requests Summary . 54
Table 6 – Results summary. 57

LIST OF ACRONYMS

AWS Amazon Web Services

BLE Bluetooth Low Energy

cgroups control groups

CLI Command Line Interface

DNS Domain Name System

HTTP HyperText Transfer Protocol

IFTTT If This, Then That

IoT Internet of Things

IP Internet Protocol

KVM Kernel-based Virtual Machine

MQTT Message Queue Telemetry Transport

NIST National Institute of Standards and Technology

OS Operating System

PAN Personal Area Network

SD Standard Deviation

SOA Service-oriented Architecture

UUID Universally Unique Identifier

VM Virtual Machine

CONTENTS

1 INTRODUCTION . 13
1.1 MOTIVATION . 13
1.2 RESEARCH QUESTIONS . 14
1.3 OBJECTIVES . 14
1.4 METHODOLOGY . 15

2 BACKGROUND . 16
2.1 INTERNET OF THINGS . 16
2.2 MICROSERVICES . 18
2.3 VIRTUALISATION . 20
2.3.1 Hypervisors . 20
2.3.2 Containers . 22
2.4 UNIKERNELS . 24
2.4.1 OSv . 27

3 RELATED WORK . 28
3.1 UNIKERNELS AND THE INTERNET OF THINGS 28
3.2 PERFORMANCE EVALUATION OF UNIKERNELS 28
3.2.1 Mirage vs OSv vs Linux . 28
3.2.2 Rumprun vs Debian . 31
3.2.3 Rumprun vs OSv vs Ubuntu vs Docker 32
3.2.4 Time Provisioning: OSv vs Docker vs Linux 33
3.2.5 OSv vs Docker . 35
3.3 CONTRIBUTION SUMMARY . 38

4 BENCHMARK DESIGN AND IMPLEMENTATION 40
4.1 THE JUNG PROJECT . 40
4.1.1 API Gateway . 41
4.1.2 Auth Manager . 43
4.1.3 User Registry . 43
4.1.4 Device Registry . 43
4.1.5 Device Monitor . 43
4.1.6 Device Commander . 43
4.1.7 Rule Engine . 44
4.1.8 Device Gateway . 44
4.2 IMPLEMENTATION . 44
4.3 ISSUES AND CHALLENGES . 46

5 EXPERIMENTAL EVALUATION . 47
5.1 SCENARIO . 47
5.1.1 Metrics . 47
5.1.2 Execution . 48
5.2 RESULTS . 49
5.2.1 CPU Usage . 49
5.2.2 Memory Usage . 51
5.2.3 Disk Space . 53
5.2.4 Networking . 54
5.3 DISCUSSION . 55

6 CONCLUSION . 58
6.1 SUMMARY AND FINAL THOUGHTS 58
6.2 CONTRIBUTIONS . 59
6.3 FUTURE WORK . 59

REFERENCES . 61

131313

1 INTRODUCTION

1.1 MOTIVATION

Since the creation of the web in the early 90’s, the number of users connected to the
internet has grown exponentially. Soon enough, various businesses (e.g. Amazon in 1995) have
started harnessing the World Wide Web due to its long reach and cost efficiency when compared
to affording physical stores and traditional propaganda. People were not just chatting online,
they were also shopping. But it did not stop there; this phenomenon got to a stage where much
more than just users are connected: all things are. It is the IoT era. This means that every single
object might be connected to the internet, generating insightful data and accepting remote or
even fully automated control. Empowered by the IoT, users, companies, and governments can
now benefit from wireless home automation, smart healthcare, smart cities, autonomous vehicles,
and the list goes on.

By its very definition, IoT encompasses a set of well-known requirements, such as
scalability, availability, flexibility, security, performance, and privacy (Morabito et al., 2018).
Nevertheless, deployments of smart city solutions, or even hospitals and factories, can involve
thousands to billions of connected devices. To meet these requirements in scenarios with such
dimensions, the upfront cost of ownership could be prohibitive, despite maintenance and further
upgrades. Fortunately, there is already an alternative to optimise this kind of situation: cloud
computing. Based on a proven principle of focusing on your expertise and leaving everything
else to third parties, cloud providers offer on-demand services at many levels, from virtual
infrastructure to serverless applications. Thus allowing for clients to worry only about their own
business while drastically reducing costs with a pay-as-you-go model.

Despite providing flexible and scalable infrastructure, cloud computing alone is not
enough to meet IoT requirements. An IoT system needs an architectural style capable of
exploring the cloud features. Monolithic architectures, for instance, would produce brittle IoT
solutions, as they would only scale only by replicating the entire system. A better option would
be the microservices architecture, which conceives multiple independent, fine granular services
with a single responsibility each. Thus allowing for precise scaling and maintenance, fitting into
dynamic IoT scenarios. However, cloud computing started based on VMs, emulating computers
from top to bottom. It turned out that in many cases that was not the best fit for clients demands,
and microservices are an example of that, as full Operating System (OS)s on top of VMs are
too bloated to run a microservice alone. Containers then appeared to be a sufficiently isolated
solution with better cost-benefit. Containers are light weight and encapsulate apps in their own
environment, while sharing the kernel of a host operating system OS and therefore eliminating
the need of a full VM to run a specific service or appliance. Cloud providers then started offering
container-based provisioning, making it transparent to the client how the underlying OS functions
are managed.

141414

Considering that IoT solutions require granular architectures such as microservices, on
top of cloud infrastructure, and that cloud computing is evolving towards light virtualisation to
better fulfil such requirements, a new alternative has emerged: unikernels. Unikernels are based
on the not so recent concept of library operating systems (Engler et al., 1995). A unikernel goes
against the concept of multitasking OSs, because it is a whole system compiled to run a single
process application. Notice that this is a match to microservices architecture. Furthermore, it has
no separation between user and kernel space, an nothing else besides the required libraries to
run the desired application. As a consequence, some unikernels boot really fast (milliseconds
magnitude), have a reduced memory footprint and can execute faster, as there are much less tasks
sharing the CPU. Besides, they are also safer, as the attack surface is limited by the application
requirements. However, unikernels are not being widely used in production yet, and no cloud
provider offers any unikernel-based solution so far. The available publications and experiments
do not cover enough ground for one to be confident in deploying unikernels to production.
While containers are the status quo of light virtualisation, comparative studies based on realistic
scenarios and architectures deployed to unikernels can lead cloud and IoT to the next stage.

1.2 RESEARCH QUESTIONS

Given the context, this work was developed aiming to answer the following question:
How unikernels performance compare to containers in microservice-based, cloud-oriented IoT

solutions? However, in order to answer that question, another one arises: can unikernels be used
to deploy such architectures? This dissertation will answer both of them, highlighting difficulties
and challenges encountered in the process.

1.3 OBJECTIVES

The main objective of this dissertation is to evaluate unikernels performance and
behaviour when compared to containers in an IoT platform context. Furthermore, there are
some specific objectives to be accomplished:

� Define an archetype of IoT architectures based on literature and industry solutions,
to work as an IoT benchmark;

� Identify the most suitable unikernel for implementing the benchmark architecture;

� Provide a software implementation of the benchmark and the tools to deploy it to
both containers and unikernels;

� Provide a report of issues and open challenges found during the process of deploying
the benchmark architecture to unikernels;

� Validate literature results.

151515

1.4 METHODOLOGY

The methodology applied to this study can be separated into the following phases:
literature review, architecture definition, implementation and deployment, experimentation, and
analysis.

More than just familiarising with the state of the art, the literature review was performed
with the premise of filtering which metrics to observe during the experiments, and to find an
architecture template for IoT platforms. While the performance evaluation portion of the selected
works is exposed in Chapter 3, the remainder is used as reference in Chapter 2.

For the related work part, we searched for the string "performance evaluation of uniker-

nels" in Google Scholar engine, which returned around five hundred results at the time. Theoreti-
cal evaluations, mathematical models, framework proposals, security analysis, and comparisons
of light virtualisation that did not include unikernels in any experiment, were all discarded. The
selected ones are discussed in Chapter 3.

To start experimenting, the first step was to find a valid IoT architecture template.
When searching "Internet of Things architecture" in Google Scholar, the amount of results was
astonishing. Therefore, only surveys were considered by using the string "Internet of Things

architecture surveys", and only the ones from 2018 upwards. As the results would still be in
the order of tens of thousands, the selected pieces were an outcome of a cherry-picking process,
based mainly on title and abstract filtering.

Once we defined the architecture (detailed in Chapter 4), the implementation followed
a unikernel-first manner. In other words, it was permeated by partial testing on OSv unikernel
to make sure everything would work at the end. This precaution was taken due to unikernels
immaturity, and that proved to be a wise decision as we faced many OS-related issues during
development (those issues will also be discussed in Chapter 4).

After the implementation was finished and tested on unikernels and containers, the real
experimentation began. A set of different request types was defined in order to explore all
the features provided by the architecture (and thus put all the microservices to work). Every
experiment was repeated 30 times. Finally, a discussion was conducted to put unikernels and
containers results into perspective.

161616

2 BACKGROUND

This chapter introduces basic concepts for the understanding of this work. Starting with
the Internet of Things, which provides context for the experiments, to a thorough explanation of
unikernels, which are on focus in this research. Related technologies in the dependency stack are
also included, such as microservices architecture, cloud computing, and containers.

2.1 INTERNET OF THINGS

In 1926, Nikola Tesla made the following prediction: "When wireless is perfectly applied

the whole earth will be converted into a huge brain, which in fact it is, all things being particles

of a real and rhythmic whole." (Kennedy, 1926). His statement unveils the main idea behind IoT:
to connect everything to the Internet.

The expression Internet of Things was used for the first time by Kevin Ashton, in 1999,
during a presentation at Procter & Gamble (Ashton, 2009). However, it was only after years of
debate and research that IoT achieved maturity in literature. Many authors surveyed the Internet
of Things and were capable of identifying dominant characteristics. In 2015, researchers from
IEEE provided a formal definition:

"Internet of Things envisions a self configuring, adaptive, complex network that intercon-

nects ’things’ to the Internet through the use of standard communication protocols. The inter-

connected things have physical or virtual representation in the digital world, sensing/actuation

capability, a programmability feature and are uniquely identifiable. The representation contains

information including the thing’s identity, status, location or any other business, social or

privately relevant information. The things offer services, with or without human intervention,

through the exploitation of unique identification, data capture and communication, and actuation

capability. The service is exploited through the use of intelligent interfaces and is made available

anywhere, anytime, and for anything taking security into consideration." (Chebudie et al., 2015).
Given this definition, it is clear that IoT solutions can be used in a multitude of scenarios.

Connected devices can turn common environments into smart environments, capable of obtaining
and applying knowledge autonomously. These environments can be smart homes, offices,
hospitals, parking lots, or even entire cities (Ahmed et al., 2016). However, along with the
benefits of having smart things generating insightful data and actuating on its own decisions,
comes a series of requirements to be met. Since the number of devices can reach billions (Shah
& Yaqoob, 2016), Big Data comes as a natural consequence, bringing scalability issues. All
things can be different and often are, meaning heterogeneity is also a concern when making it
all communicate. Last but not least, privacy and security are major issues (Saadeh et al., 2016),
especially considering that IoT devices can carry personal and sensitive information. In addition,
these devices are in many cases running on power constrained platforms, incapable of heavy
cryptography computation.

171717

As aforementioned, heterogeneity in IoT systems became a challenge to overcome. Such
a wide range of use cases has pushed different companies, researchers, and manufacturers to
invest (the economic impact is expected to reach trillions of dollars by 2025(Al-Fuqaha et al.,
2015).) and produce new IoT solutions and protocols. Nonetheless, despite its idiosyncrasies, it
was observed that many architectures have much in common. It is expected for an IoT solution to
have a middleware at its core (Al-Fuqaha et al., 2015) (Kraijak & Tuwanut, 2015), and that this
middleware can manage different types of services, such as data storage and analytics (Ngu et al.,
2017). In fact, almost every reference cited in this work relies on a service-based architecture or
has a layer dedicated to services. These services are commonly provided to the application layer
through RESTful APIs (Ngu et al., 2017) (Lea & Blackstock, 2014).

Not all devices in IoT are capable of connecting directly to the internet. In many cases,
they have simple hardware and connect to each other through Personal Area Network (PAN)s.
The solution of choice is to have a gateway sitting in between the middleware and such devices.
A gateway is often a more powerful device which can communicate using different protocols,
such as Zigbee and Bluetooth Low Energy (BLE) (Ahmed et al., 2016). A common practice to
communicate with gateways is through message brokers, based on publish/subscribe protocols
such as Message Queue Telemetry Transport (MQTT) (Al-Fuqaha et al., 2015) (Lee et al., 2017).

To help summarise the Internet of Things concepts, Guth proposed an IoT architecture
model (Guth et al., 2018). It successfully maps different open source projects and private IoT
solutions from big cloud companies (Amazon, Microsoft, IBM) into a six-layer architecture.
This architecture was used as a reference to design the Jung platform (detailed in Chapter 4),
proposed and evaluated in this dissertation’ experiments. From top to bottom, the first layer is
the application layer, which sits on top of an IoT middleware. Between the middleware and the
devices, there is a gateway. As aforementioned, not every device needs a gateway to connect
to the middleware; Internet Protocol (IP)-capable devices can connect directly. Finally, each
device can have sensors and actuators, and thus it must have proper drivers. Figure 1 depicts the
architecture.

181818

Figure 1: IoT Reference Architecture.

Source: (Guth et al., 2018)

Despite having Guth’s architecture template to guide the IoT platform development, a
few more questions still need to be addressed to meet real-world requirements. Where to run
the middleware? How to scale the system? How to distribute gateways? The answer to all these
questions is often the same: cloud computing. IoT benefits from cloud "virtually unlimited"
resources, horizontal scalability and other established services, such as real-time analytics and
data-oriented models (Gil et al., 2016).

At this point, we have a definition for IoT and its requirements, along with solutions
of choice such as cloud computing and service-based architectures, as well as a reference
architecture. The next section explores the specifics of microservices architectural style, which is
an important premise for unikernels and containers to shine.

2.2 MICROSERVICES

First of all, please note that service-based architecture does not mean Service-oriented
Architecture (SOA). Both SOA and microservices are service-based architectures, but they are
not the same.

SOA moved from monoliths towards distributable modular systems, where each module
would provide a service; each service would encompass a variety of tasks related to a given
domain, such as orders from an online shop. An Order service would provide different informa-
tion to other modules of the system, such as logistics, financial, and customer services. All this

191919

information could be stored in a single database as well. In the SOA world, it is acceptable.
Microservices, on the other hand, would separate each sub-domain of an order into an

independent service. There would be a microservice to provide customers with its customer-
related information of an order, another one for financial-related information, and yet another
for logistics. Moreover, each one would ideally have its own database. While SOA is a coarse-
grained, share-as-much-as-possible (e.g., use a single database) architecture, microservices are a
fine-grained, share-as-little-as-possible, and context-bound (Richards, 2016). Figure 2 illustrates
those differences.

Figure 2: Granularity differences among Monolithic, SOA, and Microservices architectures.

Source: (Fraga, 2019)

It is clear that microservices introduce challenges: all these moving parts must somehow
work together to provide consistent outputs. What are the benefits of having such a sparse
architecture? The answer is that it mitigates complexity. By separating concerns into very
specific microservices, one can avoid bloated implementations which are hard to maintain and
costly to deploy. It gives freedom to develop each service using the most appropriate tools, even
using different languages and frameworks, despite not enforcing it. Given the dynamic range of
IoT scenarios, those are desirable features for a system to have, as every requirement can vary
depending on each feature and involved devices. In fact, microservice-based IoT solutions have
been proposed and tested in literature (Vresk & Čavrak, 2016) (Bak et al., 2015) (Wanigasekara,
2015).

Organisation, communication, and deployment of microservices are well studied. One of
the most prominent books on the subject, Building Microservices (Newman, 2015), advocates for

202020

choreography over orchestration to organise the architecture. It means that every microservice
should be smart enough to know its own responsibilities and course of action. In orchestration, a
central unit of control would be required to command every service, tending for brittle designs.
In choreography, they would be talking to each other. Communication can be synchronous or
asynchronous, translating in most cases to request/reply and event-driven models. The first one
is simpler, while the latter is highly decoupled, thus more flexible.

The cloud is the most natural place for microservices to be, as they are designed to be
distributed, and highly scalable. Due to their small size and context-boundaries, they are often
encapsulated into minimalist VMs, or in containers, which are an appealing deployment platform
in this case (Chris Richardson, 2016).

In a nutshell, microservices are an architectural pattern to develop systems as a composed
set of small, single-responsibility services. Each microservice should be as independent and
decoupled as possible. Microservices architectures are flexible and dynamic by design, and are
often deployed using small VMs or containers. The next section is an overview of virtualisation,
presenting fundamental concepts of containers and unikernels.

2.3 VIRTUALISATION

Previous sections mentioned the relation of IoT and cloud computing multiple times.
Cloud is formally defined by the U.S. National Institute of Standards and Technology (NIST) as
"a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service provider

interaction" (Mell & Grance, 2011). The cornerstone for its flexibility and convenience is
virtualisation.

Virtualisation is an abstraction technique to create a given resource, e.g. a VM or a
network device, on top of a physical layer. Differently from what one might think, virtualisation
is not a synonym to emulation nor simulation. Emulation would be a software reproduction of
hardware features, while virtualisation can access the hardware itself, thus achieving superior
performance. Simulation, for its turn, is based on modelling and mimicking instead of reproduc-
ing any infrastructure behaviour; it is just an enclosed representation of an environment, such as
flight simulators for pilots.

2.3.1 Hypervisors

VMs access to hardware is crucial for cloud computing to be a cost-effective paradigm.
But how do these virtual machines compete for resources? How are they managed and isolated
from each another? The answer is that there is a software component in between the hardware
and the VMs, called hypervisor (also known as Virtual Machine Monitor). According to its

212121

definition, a hypervisor must exhibit three properties: equivalence, efficiency, and resource
control (Popek & Goldberg, 1974).

� Equivalence states that any program running on a VMs performs the same as if
it were running on hardware, except for resource availability and timing. These
exceptions are explained by the possibility of multiple VMs to be running on top of
one physical CPU, creating the need for scheduling and limiting execution time.

� Efficiency states that a statistically dominant subset of a virtual processor’s instruc-
tions run directly on a real processor, without intervention from the hypervisor.

� Resource control states that the hypervisor manages all hardware, preventing any
program running on a VM to affect resources availability to other VMs.

Hypervisors can be classified into two different types: Type-1, which sits on top of
hardware and manages resources by itself; and Type-2, which runs on top of a host OS that
manages resources. Both can be seen in Figure 3. Note that it is possible to run multiple Type-2
hypervisors at the same time, while Type-1 has a performance advantage due to its direct contact
with hardware. Popular examples of type-1 hypervisors are Xen, VMWare ESXi, and Microsoft
Hyper-V. As for type-2 there are VirtualBox, QEMU, and VMWare Player.

Figure 3: Hypervisor architectures.

(a) Type-1 (b) Type-2

Source: (Fraga, 2019)

Nevertheless, there is a "hypervisor" which deserves special attention: the Kernel-based
Virtual Machine (KVM). KVM, which architecture is illustrated in Figure 4, is a module of the
Linux kernel which provides hardware-assisted virtualisation features to upper layers, meaning

222222

it turns the OS into a type-1 hypervisor (KVM, 2016). KVM does not create virtual machines by
itself, but it can be used to bridge QEMU (which is type-2 when used alone) access to hardware,
powering it with type-1 performance, and providing full hardware-assisted virtualisation. It was
the hypervisor of choice for this dissertation experiments, and it is the core of Amazon Web
Services (AWS) 1 virtualisation (Sharwood, 2017).

Figure 4: KVM architecture.

Source: (Fraga, 2019)

2.3.2 Containers

The previous subsection explained how virtualisation of full OSs works. However,
considering a microservices scenario, something smaller than an entire OS would be preferable
to deploy each of those independent, isolated, often tiny microservices. Such a lightweight
deployment is possible through the use of containers. Containerisation is a technique to run
software as isolated as possible from a host OS while sharing its kernel functionality. As the
containerisation tool used in this dissertation was Docker, and it is the dominant container
technology (Pahl et al., 2017), this section provides a quick Docker-oriented timeline to explain
containers principles.

One of the basic ideas behind containerisation dates from 1979, when the chroot system
call was added to Unix V7 (Marquez, 2018). The chroot command changes the root directory
to an arbitrary path and then executes a given command, thus allowing for encapsulating a
process separately from the real filesystem of the host. Fast forwarding to 2008, control groups

1Leading cloud service at writing time

232323

(cgroups) were merged into Linux 2.6.24; cgroups enable the creation of groups of processes,
allowing for resource management (memory, CPU, and I/O) in a per-group fashion. However,
those processes would still be able to "see" every other process running on the OS, living in thin
isolation. Then Linux namespaces come in: a set of system calls to isolate cgroups, network
devices, filesystem (replacing chroot with pivot_root), user and groups ids, process ids, and
interprocess communication queues. Namespaces were added to Linux in 2002, but only 11 years
later it reached the "container ready" state, providing all these features in kernel 3.8 (Kerrisk,
2013).

Docker project started in 2013, built on top of namespaces and cgroups and designed to
run only one application per container. Docker has a runtime to manage containers and a remote
repository called Docker Hub (Docker, 2019a), where Docker images can be stored and shared.
A Docker image is a file containing the needed information to run code in a container. It has
multiple layers, making it possible to create new images on top of existing ones. For example, a
user could take an image containing Python3 interpreter and add Django 2 to it, saving it as a
Django image which could be later used to create a Django app. To assemble an image, a user
can write a Dockerfile, which is a text document containing all the commands needed to build
the image from Command Line Interface (CLI)3. Figure 5 demonstrates the internals of a regular
container and an overview of Docker deployment architecture.

Figure 5: Container and Docker architectures.

(a) Container architecture

Source: (Fraga, 2019)

(b) Docker containerisation architecture.

Source: (Docker, 2019b)

When compared to VMs, containers stand out by requiring less disk space, less memory,
and "booting" faster (as they are just processes starting), thus being considered lightweight. On

2Django is a popular web framework for Python
3Image building details can be found at https://docs.docker.com/engine/reference/builder/#usage

242424

the other hand, despite their multiple software isolation levels, they still less isolated than VMs,
which have hardware-level isolation. It makes them more vulnerable, and depending on the
security requirements they might not be a suitable approach. The next section presents unikernels,
which are lightweight compared to VMs while keeping the same isolation, and conceptually very
distinct from containers at the same time.

2.4 UNIKERNELS

The first paper about unikernels was published in 2013 and states the following: "Uniker-

nels are single-purpose appliances that are compile-time specialised into standalone kernels, and

sealed against modification when deployed to a cloud platform." (Madhavapeddy et al., 2013).
It is still mostly accurate, except for that last part where it restricts unikernels immutability to
cloud deployments, which is not correct. They are immutable by nature. Beyond its definition, a
useful way to understand unikernels is to compare them to a traditional OS. The first difference
is that systems like Linux and Mac OS were built to provide multiple services to multiple users
(while unikernels run a single process). This diversity led to the necessity of controlling the
access of users and applications to the machine’s resources, to avoid interference among them.
The solution of choice was to separate code execution into different privilege levels, based
on different addressing spaces: kernel space and user space. As its name suggests, the kernel
space is the home for kernel code, which is responsible for filesystems, networking and I/O in
general, memory management, and process management. User space is where libraries and user
programs live. Every time a process needs I/O, the control has to be passed to the kernel. This
is accomplished by using system calls, which rely on special CPU instructions to change the
privilege. Besides, every time a process gets rescheduled from a CPU, a context switch4 must
be performed. This means CPU registers content must be moved into memory, and a switch
into kernel mode is required. All these modes and context switches consume processing time,
specially context switches because of memory access.

Unikernels, as can be seen in Figure 6, have a single address space. This is what the
"standalone kernel" in the definition means: the application, its dependencies, and the kernel
code are all executed "together" in a single process with maximum privilege. Hence they are free
of mode and context switches, saving processing time.

4A context switch consists of storing a task state in memory for later execution

252525

Figure 6: Unix-like vs Unikernel architectures.

(a) Unix systems. (b) Unikernels.

Source: (Fraga, 2019)

Also in Figure 6 it is noticeable that Unix systems and unikernels architectures have
different sizes. That is a representation of unikernels minimalism, as they only ship what is
strictly needed by its application. Traditional OSs, on the other hand, have tons of software such
as libraries and device drivers that are never used as a whole by a single app. This characteristic
can be useful for deployment to constrained devices, such as routers or battery-powered sensors,
which do not usually have much memory and could benefit from unikernels to host applications
smarter than a firmware and lighter than a traditional OS.

Besides a small footprint, unikernels benefit with improved security due to its reduced
attack surface. By including only dependencies it avoids unwatched software laying around;
commonly there is no shell to interact with, no unused drivers, nor password files or connections
to external machines beyond the application needs (Duncan et al., 2017)(De Lucia, 2017). It
means that even in the situation of a successful invasion to a unikernel, an attacker would only
have access to the application itself, being unable to harm other VMs processes of the system
unless they were capable of breaking into the hypervisor itself. Besides, it is a useful characteristic
for deployment to constrained devices, as it provides security while saving resources. On the
other hand, it can make it difficult to monitor and debug unikernels in production environments,
for example. One option would be to kill troublesome instances, replace them with new ones, and
rely on logs to perform maintenance and prevent bugs. But this would require specific studies to
measure how costly it can be to maintain unikernels in production environments.

In terms of deployment, there are unikernels designed to be exclusively used with a
given hypervisor, such as MirageOS with Xen; others can run on different hypervisors but never
on hardware, such as OSv ; and others enable bare-metal deployment, such as Rumprun and
HermitCore. However, even those last two need some kind of underlying hardware abstraction
layer (CloudKernels, 2019) (RWTH Aachen University, 2017). Therefore we can visualise
unikernels deployment stack as in Figure 7, replacing the hypervisor for a specific tool in some

262626

cases.

Figure 7: Unikernel deployment stack.

Source: (Fraga, 2019)

For the sake of comparison, VMs and containers deployment would look like Figure 8.
Note that it is also possible to deploy containers inside virtual machines on the cloud (as offered
by Google (Google, 2019) and VMWare (VMWare, 2018), for example), stacking more layers.

Figure 8: Deployment stacks of VMs and Docker containers.

(a) Virtual Machine (b) Docker native-hosted containers

Source: (Fraga, 2019)

Unikernels are still in their infancy, but they are receiving increasing attention. At the
time of writing there are at least 11 unikernel projects5 ranging from high level, language-specific

5A complete list can be found at http://unikernel.org/projects/

272727

designs such as MirageOS, to POSIX-compliant alternatives such as OSv and Rumprun. Their
ecosystem is also evolving, counting with tools like Unik (Levine, 2018) to simplify building
and orchestration of multiple unikernel flavours, and research on live updating (Walla, 2017)
and provisioning (Madhavapeddy et al., 2015) as well. Investment-wise, many companies have
already contributed to unikernels development, such as IBM an Microsoft (Pavlicek, 2017).
In 2016 Docker bought Unikernel Systems, a company which contributes to MirageOS and
Rumprun (Blatstein, 2016). In 2017 they made their LinuxKit project open source. LinuxKit is
"a toolkit for building custom minimal, immutable Linux distributions." (Docker, 2017), with
clear unikernel influences.

2.4.1 OSv

Among the multiple unikernel flavours, we have decided to use OSv for this dissertation
experiments. It is one of the most mature projects (already supports different hypervisors and
cloud providers), and it was designed to run almost any POSIX program (given it is single-
process), eliminating the need for learning new languages and stacks. Nevertheless, other options
were tested, as will be discussed in Chapter 4.

OSv is defined by its creators as "a new guest operating system designed specifically

for running a single application on a virtual machine in the cloud" (Kivity et al., 2014). It
was created to be a general-purpose unikernel, accepting unmodified Linux programs (Cloudius
Systems, 2019). There is a list of supported applications in the project’s page6 which are ready to
be used. To ease building and deployment OSv has the Capstan tool, which provides docker-like
configuration files and CLI (MIKELANGELO, 2015).

Regarding its implementation, the first important aspect is that OSv does not have drivers
for real hardware, only for hypervisors. The core of OSv is new code written in C++ version 11,
including memory management, thread scheduler, virtual-hardware drivers and more. It follows
a traditional Unix virtual filesystem design, having ZFS7 as its major filesystem while counting
with some alternatives, such as the in-memory ramfs.

Despite not having multiple processes, OSv does allow for multi-threading. Its thread
scheduler keeps separated run queues for each available CPU, performing load balance to
preserve the fairness. Notice that for OSv to support multithreading it needs to implement context
switches between threads, but those are lightweight when compared to traditional OSs because
of the single address space. OSv also has an optimised TCP/IP stack, inspired by Van Jacobson
net channels (Van Jacobson, 2006). Kivity et al. presented results of improved throughput (25%)
and reduced latencies (up to 47%) when compared to Linux.

6https://github.com/cloudius-systems/osv-apps
7Learn more about ZFS at https://itsfoss.com/what-is-zfs/

282828

3 RELATED WORK

This chapter surveys the literature in unikernels performance evaluation, comparison to
other virtualisation techniques, and applications in IoT scenarios. In the following sections it is
noticeable that CPU and memory usage are the most popular metrics, along with image size and
request throughput. Methodologies generally consist of running a specific application or piece of
software and on a given unikernel and a regular Linux or container deployment. Each of these
papers has a contribution for this dissertation, either in the form of an insight or a methodology
reference.

3.1 UNIKERNELS AND THE INTERNET OF THINGS

In (Morabito et al., 2018), there is a discussion on the applicability of unikernels and
containers in edge computing elements of IoT platforms. After highlighting IoT requirements,
the authors present their architecture proposals for three different scenarios: vehicular networks,
smart city, and augmented reality. For each one of the architectures, an edge layer (between the
devices and the cloud) would provide extra processing, storage, and network resources to the
whole system, alleviating the cloud workload. This edge layer would be constituted by devices
such as Raspberries, running lightweight virtualised applications/systems.

As an outcome of their research, they provide a list of open challenges and issues.
Despite covering relevant topics as standardisation and security certificates, one aspect was
particularly insightful for this research: unikernels are unfit for data storage. As their nature
is to be immutable and isolated, once a unikernel crashes or needs code maintenance, the rule
of thumb is to kill the instance, compile and run a new one, making it costly to maintain data
consistency. Also, databases commonly need to be closely monitored, while unikernels would
only provide logging capabilities by design.

Although their proposals and discussion are valid, the authors did not perform any
experiments or evaluation in their work, limiting their contribution to the theoretical field.
This dissertation, on the other hand, proposes an IoT architecture and provides a performance
evaluation when running it on containers and unikernels.

3.2 PERFORMANCE EVALUATION OF UNIKERNELS

3.2.1 Mirage vs OSv vs Linux

One of the first performance evaluation works found during literature review was pre-
sented in 2014, titled "A Performance Evaluation of Unikernels" (Briggs et al., 2014). The
authors’ goal was to validate the claims about unikernels performance, that could be found in
papers from their creators where they were commonly presented and tested against a specific

292929

application. In order to provide a broader evaluation, the authors picked two different unikernels,
Mirage and OSv , which they considered to be more stable at the time. They used macrobench-
marks based on network performance tools to compare the unikernels against a regular Linux
system (Ubuntu 14.04), aiming to achieve results closer to real-world scenarios.

Despite the objective of validating unikernels performance, two things require attention in
this publication: the first one is that the authors opted not to measure memory utilisation, claiming
that running an additional process to monitor it could impact the performance. The second is
that they also decided not to measure CPU utilisation as well. The reason would be that the tools
they were using were not capable of handling this kind of monitoring in client-server scenarios.
That said, the metrics they measured were response latency and request throughput from Domain
Name System (DNS) queryperf (Nominum, 2012) and HyperText Transfer Protocol (HTTP)
httperf(Hewlett-Packard, 2005) benchmarks.

Their DNS tests reflected that OSv performed better than Linux, showing lower response
latencies (box plots) and higher response rate (line chart), as can be seen in Figure 9. Mirage
achieved even higher request rates, but with some response latency outliers with significantly
high values, as can be seen in the grey area above the line. The authors speculate that OCaml’s
runtime garbage collection was the cause of it.

303030

Figure 9: DNS server results. The box plots refer to the response latencies, while the line chart
reflects the response rate.

(a) Ubuntu 14.04 (b) OSv

(c) Mirage OS

Source: (Briggs et al., 2014)

When looking at the HTTP server results, depicted in Figure 10, it is noticeable that
Mirage’s numbers are quite odd. It starts with high latency and then its response rate abruptely
drops. The authors concluded that it was caused by a memory leak every time a TCP connection
was opened. This bug severely compromised its performance. On the other hand, OSv surpassed
Linux, maintaining consistent performance over 5,000 requests per second.

313131

Figure 10: HTTP server results.

Source: (Briggs et al., 2014)

Ultimately, "A Performance Evaluation of Unikernels" confirms unikernels potential,
especially with OSv , while it also uncovers bugs and paints a picture of immaturity for production.
Their scope was very limited metric-wise, as memory and CPU were ignored, and thus the
authors include such observations in their future work. Among other improvements, they suggest
comparing unikernels to containers, as well as using a more dynamic testbed instead of static
content servers, all of which were done in this dissertation.

3.2.2 Rumprun vs Debian

In (Elphinstone et al., 2017) the authors objective was to measure how difficult it would
be to run a unikernel on top the seL41 OS, besides evaluating its performance. They also compare
Rumprun unikernel performance to a regular Linux, thus providing relevant information for this
dissertation.

During their tests, the authors used Iperf tool to generate TCP traffic loads, and then
measured the CPU utilisation of different deployments of Rumprun on top of seL4, along with a
bare metal deployment and a Debian Linux. At the end of the day, Linux achieved the lowest
CPU utilisation in all experiments. However, authors claimed that the Linux machine was
running a different network card driver and thus it was difficult to draw direct comparisons. In
spite of that driver difference, their results reflect values five times lower for Linux, even when
compared to bare metal Rumprun. Such a difference is at least a signal that regular Linux can

1seL4 is a microkernel focused on security which has a formal proof of its implementation, guaranteeing its
correctness.

323232

be more CPU efficient than the Rumprun unikernel. Despite that insight, the authors did not
perform any other performance comparison, such as memory, image size, or boot time.

3.2.3 Rumprun vs OSv vs Ubuntu vs Docker

As an effort to draw a comprehensive comparison of lightweight virtualisation techniques,
the authors of (Plauth et al., 2017) conducted experiments with two different unikernels (OSv

and Rumprun), containers (Docker and LXD), regular virtual machines (Ubuntu), as well as bare
metal deployments of all the prior except OSv . Their experiments were directed by two major
research questions: how fast these virtualisation techniques could be when running different
workloads, and which one would be best for on-demand provisioning scenarios. In order to
answer those questions, they have used cloud-based application workloads, testing an HTTP
server and a key-value store. Each experiment was repeated 30 times.

For the first case, the authors picked Nginx HTTP server 1.8, and configured it to run
concurrent requests. Then they used the weighttp benchmark tool to collect performance metrics,
running it on a dedicated client machine sending requests over local network to a server. This
client-server approach can also be observed in (Goethals et al., 2018). As for the results, they
unveiled a similar performance between containers and Rumprun. However, unikernels do not
have context switches, thus they are supposed to perform better in I/O intensive workloads. The
authors attribute this result to Rumprun network stack, based on NetBSD, claimed to be inferior
to Linux network stack on top of which the containers were running. The highest throughput
was obtained by a regular Ubuntu VM, while Docker consumed the least amount of memory.
Rumprun consumed twice as much memory as Docker, and OSv results were not presented.
Figure 11a depicts the throughput for virtualised environments and Figure 11b depicts memory
footprints.

Figure 11: Throughput (a) and memory footprint (b) of Nginx 1.8 HTTP Server.

(a) (b)

Source: (Plauth et al., 2017)

333333

In regard to the key-value store experiments, the authors used Redis, an in-memory
database, to perform their experiments. Redis throughput was higher when running on unikernels,
demonstrating some potential. On the other hand, memory consumption was still kept at
minimum by containers. While Rumprun was able to stay below Ubuntu consumption, OSv

demanded around 40% more. The authors argue that a memory leak bug in OSv -port of Redis
could have caused this higher consumption. However, no reference or evidence is provided to
confirm this suspicion.

Figure 12: Throughput (a) and memory footprint (b) of Redis 3.0.1.

(a) (b)

Source: (Plauth et al., 2017)

Looking at the bigger picture, it becomes noticeable that unikernels do not outperform
more traditional virtualisation techniques out of the box. However, the experiments were limited
to Nginx HTTP requests and Redis in-memory reads and writes, leaving room for further
investigations on different programming languages and application contexts.

3.2.4 Time Provisioning: OSv vs Docker vs Linux

A relevant aspect to consider when planning cloud-based systems is the required time to
provide running instances. This is directly related to availability and reliability of a system. In
(Xavier et al., 2016), the authors conducted a study on time provisioning of unikernels in a cloud
platform, comparing OSv to Docker and KVM virtual machines on top of Open Stack. OSv

was chosen due to its flexibility when it comes to hypervisors to run (KVM, Xen, VirtualBox,
VMWare), as well as its acceptance for different runtimes and programming languages. Notice
that in this study OSv was deployed on top of KVM, just as its full virtual machine counterparts.

The first evaluation they made was on startup time, which can be seen in Figure 13.

343434

Figure 13: Docker, OSv and KVM startup time for 10, 20, and 30 concurrent instances.

Source: (Xavier et al., 2016)

It is noticeable that the overall time for an OSv instance to be up and running, despite its
clear advantage over regular virtual machines, is many times higher than a Docker container. It
is explainable by the fact that, even though it is a light one, there is a virtual machine instance
to be created by the hypervisor for OSv before it can run, while Docker does not suffer from
that delay. On the other hand, they also concluded that when running on Open Stack, and thus
considering its overheads, the provisioning time for the total workload of instances to become
ready was better for OSv , as can be seen in Figure 14.

353535

Figure 14: Open Stack full workload times.

Source: (Xavier et al., 2016)

The main contributions found in this work were the references for unikernels technology
(OSv) and its comparison counterparts, as well as the insight that unikernels do not surpass
containers’ performance in every aspect, e.g., startup time in a cloud environment.

3.2.5 OSv vs Docker

One of the most relevant publications found in literature in the context of this work is
(Goethals et al., 2018). It is a performance study of microservices deployed both to unikernels
and containers. More specifically, during the experiments the authors utilised the OSv unikernel
and Docker.

The study was motivated by similar reasons to this dissertation, sharing an interest in
understanding how unikernels behave and would compare to current production technologies.
In order to define which unikernel to use, the authors tested three different options: Rumprun,
UniK, and OSv . The outcome of their testing led to the conclusion that OSv was the only viable
option, due to its counterparts instability (they reported crashes at run time) and steep learning
curve. Also, the hypervisor of choice to run OSv was Xen.

The authors decided to test three different programming languages, comparing the results
of two different implementations: one focused on a heavy workload, in the form of a simple
bubble sort, and a more realistic one to the context of distributed systems, which was a RESTful
API. The languages were Go, Java, and Python. More specifically, they utilised Python 2.7,

363636

claiming that at the time of their writing there was no easy way to use Python 3, as many needed
system calls were missing in OSv .

In the bubble sort scenario, both Go and Java implementations showed very similar
results for OSv and Docker (Go was 3% slower and Java was 1% faster). However, the Python
version took twice as long to finish on OSv compared to its Docker deployment. The authors’
thought on this result is that it might be caused by the python interpreter implementation, which
relies on operations that run slower in a virtual environment, such as array and variable access.
This result seems to put unikernels’ promised performance in check. It can be observed in Figure
15.

Figure 15: Bubble sort execution time for OSv and Docker.

Source: (Goethals et al., 2018)

Their methodology for testing the API consisted of using a dedicated server to host
the unikernels and containers (not at the same time) and a client machine to send requests.
They used 40 threads firing 50,000 requests each, and measured throughput, response time,
and memory consumption. When running the API in single threaded mode, results reflected
a 15% improvement in throughput for Python when using OSv , which was similar to Java’s
16%, and around 38% for Go. However, multithreaded results were worse then the previous
in OSv . Go only managed to reach 75% of its original performance, while Python stayed 3%
below its single-threaded throughput. Java showed an improvement of 60%, but at the cost of
using 4 times more CPU. These results, depicted in Figure 16, indicate that OSv is not capable

373737

of handling multithreading consistently.

Figure 16: REST service performance of OSv and Docker.

(a) Single-threaded (b) Multi-threaded

Source: (Goethals et al., 2018)

In regard to the remainder metrics, latency was on average 10% better on OSv for Python,
slightly better for Go, and stayed the same for Java. The memory footprint, as can be seen in
Figure 17, was way higher on unikernels: Java consumed twice as much memory on OSv than on
Docker; Python consumed six times more memory on OSv than in Docker, while Go consumed
30 times more. It can be explained by the fact that unikernels have a kernel implementation after
all, and containers rely on its host OS kernel.

383838

Figure 17: Memory consumption of OSv and Docker.

Source: (Goethals et al., 2018)

As a quick summary, this work presented the following insights: Python performance
seems to be much less affected in OSv than other lower level languages such as Java and Go. OSv

was pointed as the most mature unikernel platform to perform the experiments (which was also
concluded by authors of other papers, including this dissertation). Unikernels are expected to
consume more memory than containers, but can deliver better processing performance depending
on the type of workload.

3.3 CONTRIBUTION SUMMARY

In Table 1 we can see a summary of the contributions found in literature in perspective to
this dissertation’s contributions. Notice that this work was he only one to use an IoT benchmark
to perform its experiments, with the most complete metric set, including image size, which was
not observed by the others.

Table 1: Comparison to related work

Author Platform Testbed CPU Mem Image
Size Latency Resp.

Time
Prov.
Time

Briggs
OSv,
Mirage HTTP X X

Plauth
OSv, Ubuntu,
Rumprun,
Docker

Memory
I/O X X

Goethals OSv, Docker
HTTP,
Bubblesort X X

Xavier
OSv, Docker,
Linux OpenStack X

Fraga OSv, Docker IoT benchmark X X X X X

Source: (Fraga, 2019)

404040

4 BENCHMARK DESIGN AND IMPLEMENTATION

This chapter describes the development process of the IoT benchmark used to obtain
the results presented in Chapter 5. It details the chosen technology stack and design decisions,
including issues and challenges encountered along the way and how they were solved. The
experiments methodology is documented here as well, providing a visualisation of how the
results were obtained and how to replicate the tests.

4.1 THE JUNG PROJECT

Three major elements were needed to fulfil this dissertation main objective: an IoT
benchmark, a unikernel platform, and a container platform. This Section addresses the first.
A suitable IoT benchmark would be microservice-based to meet scalability and flexibility
requirements, provide IoT features such as device management, and log performance metrics.
The Jung1 project was then conceived, an archetype of IoT platforms to be used as a benchmark.
As the goal was the comparison between unikernels and containers, and not to have a production-
ready solution, the design was kept minimalist.

Jung’s architecture is portrayed in Figure 19. It is based on the template mentioned in
Chapter 2. Therefore, it has a device gateway at the bottom, which is a simulator of multiple
IoT devices generating readings and receiving commands. Such a decision was made because
device management at gateway level is out of the scope of the research. The layer on top of
the device gateway has a microservice-based middleware. The middleware is composed by six
microservices: auth manager, user register, device register, device monitor, device commander,
and rule engine. They provide authentication, authorisation, user account and device registration,
monitoring of device readings, device controlling, and the creation of logic rules to trigger actions
automatically. These features were based on literature and commercial solutions (such AWS IoT
and Azure IoT) review, found in Guth et al. (2018). They address security, management, and
minimal human interaction requirements. On top of the middleware there is an API gateway,
which exposes a RESTful interface for client applications to consume the services provided by
Jung.

As discussed in Section 2.2 in the background chapter, microservices can be orchestrated
or choreographed. Jung follows Newman’s advice and implements choreography, meaning
all of its microservices are aware of how to complete their tasks. Communication relies on a
broker-based publish/subscribe2 pattern, allowing for services to collaborate with each other
without knowing anything about their counterparts. This is particularly useful in distributed

1The project’s name was inspired in Carl Jung, who was a Swiss psychiatrist and psychoanalyst, founder of
analytical psychology. One of his main contributions were the 12 Jungian archetypes, which are models used to
help shaping human personality.

2Publish/subscribe consists of producers creating messages on a given topic, and subscribed consumers receiving
those messages. A broker is a known entity which keeps messages and topics.

414141

Figure 18: Jung’s publish/subscribe communication scheme.

Source: (Fraga, 2019)

architectures such as microservices, specially in systems designed to work in scenarios as big as
IoT.

Each microservice uses at least two topics, depicted in Figure 18: one for incoming
tasks and another to publish results. Those topics are in the format microservice_tasks and
microservice_results. A service can publish a task into another service’s topic, and subscribe
to its result topic to get a response. For simplicity reasons, communication among services is
synchronous. It means that after publishing a task, a service waits for its result instead of doing
other activities. Every task has a Universally Unique Identifier (UUID), which allows consumers
to filter responses.

The element at the centre of Jung’s architecture is the broker responsible for hosting
topics and messages. Despite seeming like a centralised approach, it was conceived to be a
distributable cluster of brokers instead of a single node. The broker must have such properties to
meet IoT scalability requirements. It was implemented with Kafka framework, which provides
these features, as will be described in Section 4.2.

4.1.1 API Gateway

An API gateway is often applied to microservices architectures. It consists of a single
entrypoint to route application requests to the correspondent services and collect results. Jung’s
API gateway translates HTTP REST requests into task messages and publishes them to the
proper topics, returning the output when the job is done.

424242

Figure 19: Jung Architecture.

Source: (Fraga, 2019)

434343

4.1.2 Auth Manager

Auth manager is responsible for authorisation and authentication of every request coming
into the middleware. It replies to the AUTH task, created by the API Gateway with a username,
password, and a device ID depending on the request. It does not use any complex mechanism:
for authorisation it fetches user data from user registry and matches the password. When the
task needs authentication, i.e. there is a device involved, it fetches the device data from device
registry to perform the validation.

4.1.3 User Registry

User registry is a simple in-memory data storage that holds user information, including
a list with its devices IDs. It responds to the following tasks: CREATE a user, GET a user,
ADD_DEVICE to a user, and ADD_RULE to a user. The ADD_DEVICE task is generated
by the device registry when creating a new device record. All the others come from client
applications through the API Gateway.

4.1.4 Device Registry

The device registry is analogous to user registry, holding device information, including a
reference to the owner of each device. It can CREATE a device, and GET a device. Jung expects
a device to be introduced to the system containing the username of owner; device registry will
take the username which comes along with CREATE task, and publish an ADD_DEVICE task
in the user_tasks topic. An instance of user registry will then update the proper user with the ID
of its new device.

4.1.5 Device Monitor

Device monitor subscribes to the "reading_tasks" topic. From this topic it receives
readings from multiple devices, forwarded by the Device Gateway inside WRITE tasks. A
WRITE task contains the ID of the origin device, the reading value, and a timestamp of when
it was "measured". The monitor then can reply to READ tasks, returning paginated results of
readings from specific devices.

4.1.6 Device Commander

Device commander replies to COMMAND tasks. To send a command properly, it needs
to know which device gateway is responsible for the target device. To obtain this information,
the commander creates a GET task for the device registry. Once it receives the response, it adds
an entry to an internal cache to avoid further queries.

444444

4.1.7 Rule Engine

The rule engine is a simple If This, Then That (IFTTT) mechanism. It supports equal
(==), not equal (!=), greater than (>), and less than (<) operators. A user can then define
conditions to be checked within devices’ readings, and if the current reading does not comply
with the condition, a command is triggered. It implies that the rule engine must check the
readings of all the devices in its internal list. This verification is performed every second by
creating READ tasks for the device monitor microservice. When a rule is triggered, it creates a
COMMAND task for the device commander to process.

When the rule engine receives a CREATE task, it expects to receive a rule definition and
a target device. If the device is not in its cache yet, it publishes a GET task to the device registry.
It then stores the device in a list of devices with their respective rules. It also responds to GET
tasks, returning the rules of a requested device.

4.1.8 Device Gateway

The device gateway simulates a set of devices sending readings and accepting commands.
It sends readings to Jung every second, publishing to the "reading_tasks" topic; those readings are
then consumed by the device monitor microservice. The gateway keeps a dictionary of devices
with their last state. The state value is source of the readings being sent to the middleware, and
for the experiments of this dissertation it was just a hardcoded value. By keeping it hardcoded, it
was possible to have total control of how many times the rules would be triggered, as the only
way to change the readings was by sending commands to the devices.

4.2 IMPLEMENTATION

Jung was developed in Python 3, which is a mature, flexible and popular language. It
was elected language of the year in 2018 (TIOBE, 2019). Its expressiveness allows for fast
development and maintenance, which are desirable characteristics for research endeavours such
as this dissertation. Besides, we have seen related work in Chapter 3 that presented results in
Python 2 rather than Python 3, leaving room for tests with this implementation that is the present
and future3 of the language.

As aforementioned, Jung’s microservices communicate by creating and resolving tasks
using specific topics in the message broker. Both tasks and results were kept at an abstract level
until now, but they need a serialisation format. The chosen one was the popular JavaScript Object
Notation (JSON), due to its large adoption an easy manipulation. Figure 20 provides an example
of how a task to retrieve information about a userX would look like, as well as a response to that
task.

3Versions 2 and 3 are based on different specifications; Python 2 will not be maintained past January 1, 2020.

454545

Figure 20: Jung tasks and results serialisation format.

(a) Task to retrieve userX. (b) Response containing userX data.

Source: (Fraga, 2019)

The next step was to decide how to implement the message broker itself. The selected
technology was Kafka, a data streaming framework created at LinkedIn and open sourced in
2011 under Apache. The reason is that Kafka is designed to be highly distributable4 and to
provide horizontal scalability (Apache Software Foundation, 2017). Moreover, Kafka’s topics
are load balanced by groups. It means that multiple instances of microservices could share huge
loads of tasks by subscribing to a topic under the same group name. Any service inside the group
would never receive replicated messages. Services from different domains can use different
group names, as all the groups receive all the messages.

Once the middleware communication was resolved, the remainder decision was how
to provide the RESTful API at the gateway. Among the many web frameworks5 available
for Python, we chose Falcon due to its microservice focus, minimalist design, and superior
performance compared to its counterparts (Falcon Contributors, 2019).

As many of the microservices shared common task-related needs such creating, adding
UUID, publishing, and getting results of a specific task, we developed a library called PyJung. It
is composed by the JungTasker class, which is widely used on Jung to perform the aforementioned
activities, and the JungRegistry class, which provides in-memory storage features to registry
services and rule engine.

There is a part of the Jung that was not mentioned yet: the experimentation tools. They
consist of auxiliary scripts to help run Jung to process a batch of requests, while collecting
performance metrics. The details will be discussed in Section 5.1.2. For now it is worth
mentioning what libraries we used to collect those metrics. For CPU and memory, we used psutil
library on the machine running Jung. Docker provides a library that could be used to measure
containers data, but to keep them under the same methods applied to OSv , we just used psutil as

4Kafka runs on top of ZooKeeper, a high-performance coordination service for distributed applications. See
more at https://zookeeper.apache.org/doc/r3.5.5/

5A thorough list is available at https://wiki.python.org/moin/WebFrameworks

464646

well. That was done by keeping track of each process PID when starting Jung.
The source is available under Apache-2.0 license. All the microservices, PyJung library,

and experiment tools are submodules of the Jung project. They can be downloaded together from
https://gitlab.com/vinicius-masters/jung.

4.3 ISSUES AND CHALLENGES

This Section is dedicated to reporting issues, challenging bugs, and workarounds applied
to overcome them. Unikernel technology is recent (six years old at the time of writing), especially
considering its goal to substitute traditional OSs for cloud deployments; therefore, problems
were expected to be faced.

The experimental portion of this research started with unikernel prospection. Theoretical
review pointed out that the most mature option would be MirageOS, but at the cost of learning
a new stack as it works exclusively with OCaml language. Besides, it only works on Xen
hypervisor, reducing its reach even more. We aimed at more generalist alternatives which could
accept legacy software and achieve better adoption. With this goal in mind, the language-specific
flavours were put aside. The most promising options then were POSIX-compliant unikernels,
such as Rumprun and OSv .

When comparing OSv to Rumprun, we noticed that the first had approximately six times
more results when searched in Google Scholar (430 vs 77), meaning more research resources.
Its community were also more active, counting with five times more contributors (94 x 18) on
GitHub and three times more commits (7,7k x 2,3k). Despite these indicators, we tried both
of them. Rumprun did not compile at the beginning and required manual efforts to configure
networking. We tried to build it using UniK tool, but it crashed every time we ran it. OSv , on
the other hand, worked roughly as its tutorial stated it would. Considering the odds, we moved
forward with OSv from that point on.

Foreseeing that OSv would be the main source of bugs, we performed tests step-by-step
along with the implementation. The first one was to run a Kafka client for Python inside OSv

. The first choice was the popular confluent-kafka-python library, provided by Confluent6. It
crashed as soon as imported, reporting a missing ELF7 tag. There was no simple solution
available at the time. The next option was kafka-python library. This option could be imported,
but its default clients (both KafkaConsumer and KafkaProducer) would crash on creation due
to a socket assertion failure. The workaround was to use kafka-python deprecated clients,
SimpleConsumer and SimpleProducer. These two required more coding effort to listen for
messages, retry connections and setting message offsets, though.

6Confluent is company founded by Kafka’s creators.
7Executable and Linkable Format. It is a binary format for executable files. See more at

https://www.linuxjournal.com/article/1059

474747

5 EXPERIMENTAL EVALUATION

This chapter thoroughly explains how the experiments were designed, implemented, and
performed. The next section starts by describing the scope of the tests, the observed metrics and
setup configuration. Then it details the execution steps to obtain the results, which are presented
thereafter.

5.1 SCENARIO

The most studied IoT scenarios (with real-world experimentation) are smart home,
smart healthcare, and smart city. Such scenarios were recurrently tested with 23 to 28 devices,
mostly capable of sensing temperature, acceleration, light, and humidity (Morais et al., 2019).
Combining this piece of information with the experiment numbers from Chapter 3, which shows
results based on tens of thousand requests, we defined our testbed as follows: a set of 30 users
owning 30 devices each, reflecting the number of devices used in real testbeds in literature. Each
device has 1 conditional rule which triggers a command, to ensure every aspect of the platform
will be seen during the tests, as the rule engine will constantly monitor device readings and
generate commands based on its rules. Each user would then send 500 requests concurrently
to the API gateway, summing 15k requests per iteration. The request dataset is organised
in a per-user fashion, as described in Table 2. We assembled the request dataset according
to the aforementioned IoT scenarios, which are expected to be monitoring-intensive as well
as actuation-heavy, considering the context of smart environments managing themselves and
accepting human interaction.

5.1.1 Metrics

We observed the following metrics:

� CPU usage - Percentage of time a process spent using CPU resourcer during its
execution. Measured using psutil library for Python3.

Table 2: Requests per user

Endpoint Verb Per User Total %
/users/<username> GET 25 750 5
/users/<username>/devices/<device_id> GET 25 750 5
/users/<username>/devices/<device_id>/readings GET 225 6750 45
/users/<username>/devices/<device_id>/commands POST 225 6750 45
TOTAL 500 15000 100

Source: (Fraga, 2019)

484848

� RAM usage - measured using psutil library for Python3

� Latencies - measured with Apache JMeter

� Throughput - measured with Apache JMeter

� Response Time - measured with Apache JMeter

� Binary size - collected from server with du command

5.1.2 Execution

To achieve statistically significant results, the experiments were configured to run multiple
times. The default value was set to 30, meaning that for each platform the experiment was
repeated 30 times with 15k concurrent requests each. In total, 900000 requests were analysed.

Two components are responsible for the experiments execution: a controller script and a
runner script. Each of these scripts is running on a dedicated machine; the goal was to save as
much resources as possible for the Jung host to process the requests. Both controller and runner
communicate to each other using Kafka topics named controller and runner.

The runner script is responsible for processing two types of commands sent by the
controller: RUN and STOP. When it receives a RUN command, it also comes with parameters
for the execution ahead. Those parameters include the platform (OSv or Docker) and the list
of microservices to start (usually all the six of them), amount of users, devices per user, and
readings and rules per device. Once the platform is initialised and ready to start, the runner sends
a READY message to the controller. At this point Jung is running in separate processes, and the
runner process is just listening for more commands. The next command is expected to be STOP,
which makes to runner collect metrics data from Jung’s execution, kill Jung (which is composed
by multiple processes, one per microservice plus Device Gateway and API Gateway) and send
the results to the controller.

The controller script has a configuration file which defines what platforms to test (OSv

and Docker), how many iterations should be executed (30), and all the aforementioned parameters
needed by the runner. For each platform the controller runs a given amount of iterations. After
sending the RUN command to the runner, it waits for a READY message. Once received, the
controller starts the JMeter tool as an external process (JMeter uses a configuration file, which
path is in the controller configuration file as well). JMeter sends the HTTP requests described in
subsection 5.1, while collecting metrics such as latency and throughput. These results are stored
in a JTL1 file. After the requests are over, the controller sends a STOP command and expects to
receive CPU and memory data from Jung’s execution. It then stores the iteration results in a list,
which will be used to produce a summary at the of the platform’s iterations.

1Output file used to automatically generate a report dashboard with JMeter.

494949

Table 3: CPU Usage

Microservice OSv (%) Docker (%)
User Registry 21,279 ±0,515 6,925 ±0,060
Auth Manager 24,633 ±0,679 9,568 ±0,094
Rule Engine 58,326 ±1,375 33,404 ±0,157
Device Registry 15,411 ±0,379 3,150 ±0,027
Device Monitor 60,374 ±1,320 34,509 ±0,146
Device Commander 38,328 ±1,288 24,699 ±0,233

Source: (Fraga, 2019)

The final result of the experiments is a JSON file for each platform containing CPU
and memory data summarised from all the iterations, as well as a JTL file with accumulated
requests data. Those are the files used to produce the charts of Section 5.2. The entire experiment
life-cycle is demonstrated in Figure 21.

5.2 RESULTS

This section presents results of each one of the metrics mentioned in Section 5.1.1,
followed by a reasoning about the numbers of OSv and Docker. Just as a reminder, every result
is based on the mean and standard deviation values of 30 iterations. During each iteration, Jung
processed 15000 concurrent requests.

5.2.1 CPU Usage

The first observed metric was the CPU usage. The presented values reflect the amount of
time that each microservice spent using the available CPU resources during the execution. OSv

finished the experiment in 132 minutes, while Docker version finished in 110 minutes. Therefore,
it is visible in Figure 22 that containers completed their tasks more efficiently, consuming less
CPU and yet finishing the tasks in less time. Standard Deviation (SD) was too small to be seen
in the chart, but the values can be checked in Table 3.

The diversity among microservices results can be explained by the characteristics of the
requests. As only 5% of them were related to get user and device information directly, both
registry services were expected to require lower CPU activity. However, User Registry is a
little higher than Device Registry, and Auth Manager is higher than both. The reason is simple:
besides the GET tasks sent by the clients, Auth Manager creates additional requests to check
user and device information. It checks for user information 100% of the time, but only 95% for
devices.

The workload was more CPU intensive for the 3 remaining microservices. 45% of the
requests were to get readings, and 45% were to send commands. But there was also the fact
that every device had a programmed rule, meaning Rule Engine was checking on readings every

505050

Figure 21: Jung experiments flowchart.

Source: (Fraga, 2019)

515151

Figure 22: CPU usage of OSv vs Docker. Less is better.

Source: (Fraga, 2019)

second, thus generating more tasks to Device Monitor. When the command requests start to hit
Jung, every command triggers a rule, that creates an opposite command task in response. Hence,
Rule Engine kept Device Monitor busy even during the command-focused requests and doubled
Device Commander load.

The difference between Monitor and Commander is further explained by their inner
activities. The Monitor collects readings from Device Gateway and delivers them when requests,
processing pagination, while Commander just sends a single key:value message.

5.2.2 Memory Usage

The memory results in Figure 23 resemble the Python 2 results from Section 3.2.5, as
OSv usage is approximately 6 times higher than Docker. For most of the microservices the
reasons are also similar: OSv has kernel code running, while Docker containers are limited to
application code. All the drivers and resource management are running in the host OS, thus its
memory usage is invisible to Docker. Just as for CPU results, SD was low. Table 4 presents
the full numbers for each microservice. However, there is a crucial element for Docker to run
that was not considered in the related work, and that increasingly uses memory as well: Docker
runtime, which is the dockerd daemon process. As can be seen in Figure 24, when summing the
memory usage of all six microservices plus the runtime, Docker numbers become higher than
OSv . The runtime alone uses an average of 888MB when running Jung, unveiling itself as a
major source of memory usage.

525252

Figure 23: Memory usage of OSv vs Docker.

Source: (Fraga, 2019)

Figure 24: Total memory usage of OSv vs Docker, including Docker runtime.

Source: (Fraga, 2019)

535353

Table 4: Memory Usage

Microservice OSv (MB) Docker (MB)
User Registry 123,015 ±0,908 17,889 ±0,122
Auth Manager 123,164 ±0,841 17,891 ±0,117
Rule Engine 128,002 ±0,985 18,373 ±0,167
Device Registry 122,662 ±1,004 18,616 ±0,144
Device Monitor 126,182 ±1,14 20,866 ±0,133
Device Commander 196,420 ±1,049 62,834 ±0,156

Source: (Fraga, 2019)

Figure 25: Images sizes on disk.

Source: (Fraga, 2019)

5.2.3 Disk Space

Small image size is a unikernel idiosyncrasy, and OSv is not different. While Docker
default2 image for Python 3 interpreter has 937MB, OSv version has only 28MB. Adding PyJung
increases 8MB to Docker and 1MB to OSv . The microservices are in KB magnitude (ranging
from 1 to 5KB), reflecting no practical difference. However, Docker still has an advantage in
that matter: the base image is shared among all microservice instances. The last bar in Figure 25
illustrates the accumulated size that all six microservices would have on disk. For OSv , they
stack. For Docker, only the KB of each microservice stacks on top of a shared base image. It
indicates that there is a threshold for running multiple instances of OSv before it starts consuming
more disk space than Docker containers.

2There are other Docker images optimised for image size; in this research we opted to avoid optimisations in
both Docker and OSv and stick to the defaults.

545454

Table 5: Requests Summary

Platform Execution Response Times Throughput Network

KO Error %
Avg
(ms)

Min
(ms)

Max
(ms)

Transactions
(s)

Received
(KB/s)

Sent
(KB/s)

OSv 957 0,21 391,67 7 29522 56,95 25,01 13,15
Docker 802 0,18 366,65 9 4583 67,95 29,84 15,69

Source: (Fraga, 2019)

Figure 26: OSv vs Docker response times.

Source: (Fraga, 2019)

5.2.4 Networking

Table 5 is the starting point to analyse networking metrics. Similarly to CPU and memory,
the network results are in favour of Docker. The error rate was only 0,03% higher on OSv , but
while its response time was on average 25ms longer, it had spikes of 29 seconds. Docker delayed
4,5 seconds at maximum. As a consequence of its quicker responses, Docker achieved almost
20% higher throughput values.

Despite the spikes of OSv response times, when grouping the number of responses, as
depicted in Figure 26, it becomes apparent that both platforms had a similar behaviour, denoting
consistency between their results. The majority of the responses stayed under 500ms, followed
by another big group between 500 and 1500ms. The outliers amount was almost the same: 1399
for OSv and 1349 for Docker.

When looking at the latencies in Figure 27, what can be seen is the behaviour of each

555555

Figure 27: Latencies of OSv vs Docker.

Source: (Fraga, 2019)

request group. The X-Axis represents the data of those 500 requests dataset mentioned in Section
5.1, being concurrently transmitted by 30 clients. The first 50 requests in the chart are GET
user and GET device, followed by 225 GET readings. Starting from this point, the curve goes
from stable values under 100ms to oscillating hundreds that surpass 1 second at times; when
considering the sparse deviation values in the background, an instability becomes clear. It is
not by coincidence that is starts to happen when the requests change from getting readings to
sending commands, triggering the device rules, which sends more commands. The chain effect
causes increased CPU activity, as concluded in Section 5.2.1.

OSv has consistently demonstrated to be more vulnerable than Docker through the
experiments, and the same has happened at latencies level. However, Docker did not perform
much better from this perspective.

5.3 DISCUSSION

We performed 30 iterations of a set of 30 clients running concurrently, sending 500
requests each, summing up to a total of 900000 analysed requests. While Jung was processing
these requests, separate processes were monitoring its resource consumption, including network
metrics. The big picture of the results unveils a very similar behaviour between both OSv and
Docker, which at least indicates that OSv did not break during the execution. However, its
numbers for CPU usage, response latencies, and throughput were outperformed by Docker
containers. The memory usage, when looking at microservice level, was higher on OSv ; this is
explained by the fact that OSv kernel is accountable in its memory usage, and the same is not

565656

true for Docker, which runs on top of the host OS kernel. However, when taking Docker runtime
into account, it became notOSv disk images were more than 100x smaller, as expected due to the
minimalist design of unikernels.

Nevertheless, the CPU usage was expected to be smaller on OSv as well, but the results
showed otherwise. Our workload at the microservices level was majorly composed by memory
access and Kafka communication, which executes a binary protocol on top of TCP. According to
OSv release paper, it outperforms Linux on TCP flows, meaning it should reduce latencies and
achieve higher throughput. Both technologies were configured to run with bridge networking;
both were given 2 cores to execute each microservice. Considering these conditions, further
research is required to determine the reasons behind such a performance gap, going deep into
implementation details. It is worth mentioning that OSv has a very specific implementation of
scheduling for its threads and network stack, leaving room for granular investigation and future
improvements.

It is also noticeable that OSv images are smaller than the Docker images used. Such
small images can be transferred though the network at a cheaper cost, allowing for fast and
flexible migrations, for example. Besides saving space in cloud deployments of complex systems,
e.g. IoT platforms, this characteristic opens a range of scenarios in which unikernels such as OSv

could be valuable. For example, deploy unikernels to networking hardware, such as switches or
routers, embedding it with smart software at a low space cost. Another possibility would be to
deploy unikernels to edge computing devices, such as simple Raspberry Pis.

In section 3.2.5 we have seen that the results for Python 2 showed containers outper-
forming OSv for bubble sort, and OSv in slight advantage on network intensive workloads. Our
results indicate that when running Python 3 OSv is not capable of outperforming Docker as well.
Despite having different specifications and implementations3, both versions of the language are
compiled into bytecode and then interpreted by a Python Virtual Machine, and certainly share
common ground. The explanation for OSv weaker performance with Python might be related to
the language internal design as well, considering OSv idiosyncrasies.

As we can see in Table 6, the overall results point that OSv and Docker obtained
advantages in different aspects of the tests. The big picture leads to see different use cases for
each technology, depending on requirements and available resources; an important observation is
that OSv can be used to deploy IoT systems, and trusted to deliver the same results as established
platforms such as Docker, given the same inputs. It then draws a baseline of what can be explored
with this technology.

3Python language has implementations in multiple languages, e.g. C, Java, C#, JavaScript. All the mentions in
this dissertation refer to CPython, which is the official and default implementation.

Table 6: Results summary.

Metric Best
Platform

CPU Docker
Memory OSv

Image Size OSv

Networking Docker

585858

6 CONCLUSION

6.1 SUMMARY AND FINAL THOUGHTS

Unikernels started to be disseminated six years ago as a resource efficient and safe
alternative to deploy software to the cloud. A perfect match to their minimalist design would be
the microservices architectural pattern. These are also the same years of the Internet of Things
rise, leading the industry into its 4.0 version with massive scalability and security requirements.
Despite both technologies apparent affinity, there is a lack of studies correlating the two. This
dissertation had the objective of filling this gap, defining a baseline on unikernels behaviour in
IoT context. To achieve this goal, we performed experiments comparing unikernels to containers,
using a microservice IoT platform as testbed.

The architecture design was guided by IoT surveys. We developed Jung, an archetype
of an IoT platform. Jung follow the literature patterns and has a device gateway at its bottom
layer, followed by a middleware, and an API gateway as the application layer at the top. The
middleware has a choreographed and synchronous microservice architecture. Its message broker
had to be scalable, thus we selected Kafka for the job.

Once the architecture was defined, we went through the list of available unikernel flavours
and decided for OSv . OSv was designed to be a cloud OS, matching our goal to test cloud-
oriented IoT deployments, and it is almost1 100% POSIX compliant, allowing to run legacy
applications and develop new ones in many different languages. Moreover, it worked as its
tutorials stated, in contrast to other unikernels and specific tooling such as Rumprun and UniK.
For the container platform, on the other hand, we just picked the most popular one, Docker,
which worked out of the box.

After analysing the results, the overall conclusion is that OSv has a consistent behaviour
in perspective to established techniques such as Docker, meaning it can be used to deploy an IoT
system and will deliver the same outputs as Docker when both are fed with the same inputs. But it
still needs improvements to achieve the same performance level and development stability. While
it required adaptations workarounds to properly execute simple Kafka clients, Docker containers
worked out-of-the-box. On the other hand, it takes advantage of being hardware isolated and
exposing a much smaller attack surface, noticeable by its tiny images. Therefore, instead of
granting both performance and security, OSv offers a tradeoff between security and performance
when compared to containers, at least for CPython. We then conclude that unikernels meet
the requirements for IoT solutions with development restrictions, being a viable option for
microservice deployments due to their small functionality set.

1Except for system calls such as fork() and exec(), given that unikernels are designed to be single-process.

595959

6.2 CONTRIBUTIONS

The development of this dissertation led to contributions ranging from theoretical insights
to open source tooling for further research work. The first one is the comparison between
unikernels and containers in the IoT context. Jung was designed to be an archetype of an IoT
platform, based on literature review and industry solutions, to work as an IoT benchmark. Prior
unikernel evaluations were limited to compare raw throughput and resource consumption while
performing simple tasks, such as responding to contextless HTTP requests, and running sort
algorithms such as bubble sort. Jung experiments provided prime matter for reasoning, leading
to a baseline understanding of how an IoT platform behaves when running o top of unikernels,
and also how it compares to a Docker-based version.

Besides the experimental results, Jung itself is a contribution. It is a feasible microservices-
based benchmark for IoT platforms; based on related work which identified an architectural
pattern, Jung is a step forward into specifying components to be implemented, including a
publish/subscribe communication scheme among the services. Its python implementation was
also made open source 2 under Apache 2 license, including a repository with the tools needed to
run the experiments with different configurations.

Moreover, in section 4.3 we listed issues and challenges faced during the development,
as well as the applied workarounds to overcome the obstacles. It can help other researchers to
deploy their own applications to OSv faster.

6.3 FUTURE WORK

Multiple research paths still open after the conclusion of this work. We have listed a
number of possibilities below:

� Use Jung and its tooling to compare different unikernels and containers, such as
Rumprun, rkt3 and Microsoft containers.

� Compare Kafka performance when deployed to OSv and Docker.

� Test Jung with real devices and compare the results to the simulation of this disserta-
tion.

� Improve Jung security with state-of-the-art techniques to compare pentesting results
between unikernels and containers.

� Implement Jung architecture on compiled programming languages, such as C and
Go, to rerun the experiments and compare the results.

2Available at https://gitlab.com/vinicius-masters/jung
3Main competitor of Docker, rkt (pronounced "rocket") is container technology from CoreOS.

606060

� Evaluate performance of device gateways deployed as unikernels on edge devices.

� Analyse the maintenance capabilities of unikernels in perspective to containers and
VMs.

616161
REFERENCES

Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based
smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless
Communications, 23(5):10–16.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of
things: A survey on enabling technologies, protocols, and applications. IEEE Communications
Surveys Tutorials, 17(4):2347–2376.

Apache Software Foundation (2017). Apache Kafka - a distributed streaming platform. Accessed
February 3, 2019.

Ashton, K. (2009). That ’Internet of Things’ Thing. Accessed February 3, 2019.

Bak, P., Melamed, R., Moshkovich, D., Nardi, Y., Ship, H., & Yaeli, A. (2015). Location
and context-based microservices for mobile and internet of things workloads. In 2015 IEEE
International Conference on Mobile Services, 1–8.

Blatstein, M. (2016). Docker Acquires Unikernel Systems to Extend the Breadth of the Docker
Platform. Accessed February 3, 2019.

Briggs, I., Day, M., Guo, Y., Marheine, P., & Eide, E. (2014). A performance evaluation of
unikernels. Technical report, tech. rep, Tech. Rep.

Chebudie, A. B., Minerva, R., & Rotondi, D. (2015). Towards a definition of the Internet of
Things (IoT). PhD thesis.

Chris Richardson, F. S. (2016). Microservices: from design to deployment. NGINX.

Cloudius Systems (2019). OSv Linux ABI Compatibility. Accessed June 2, 2019.

CloudKernels (2019). Run a rumprun unikernel on a RPi3. Accessed June 2, 2019.

De Lucia, M. (2017). A survey on security isolation of virtualization, containers, and unikernels.
Technical report.

Docker (2017). LinuxKit. Accessed February 3, 2019.

Docker (2019a). Docker hub. Accessed May 17, 2019.

Docker (2019b). What is a container? Accessed May 16, 2019.

Duncan, B., Happe, A., & Bratterud, A. (2017). Cloud cyber security: Finding an effective
approach with unikernels. In Sen, J., editor, Advances in Security in Computing and Communi-
cations, chapter 2. IntechOpen, Rijeka.

Elphinstone, K., Zarrabi, A., Mcleod, K., & Heiser, G. (2017). A performance evaluation of
rump kernels as a multi-server os building block on sel4. In Proceedings of the 8th Asia-Pacific
Workshop on Systems, 11:1–11:8.

Engler, D. R., Kaashoek, M. F., & O’Toole, Jr., J. (1995). Exokernel: An operating system
architecture for application-level resource management. SIGOPS Oper. Syst. Rev., 29(5):251–266.

626262

Falcon Contributors (2019). Falcon Benchmarks. Accessed February 3, 2019.

Fraga, V. (2019). A comparison between OSv unikernels and docker containers as building
blocks for an internet of things platform. Master’s thesis, Federal University of Pernambuco.

Gil, D., Ferrández, A., Mora, H., & Peral, J. (2016). Internet of things: A review of surveys
based on context aware intelligent services. Sensors, 16:1069.

Goethals, T., Sebrechts, M., Atrey, A., Volckaert, B., & De Turck, F. (2018). Unikernels vs
containers: An in-depth benchmarking study in the context of microservice applications. 1–8.

Google (2019). Deploying Containers on VMs and Managed Instance Groups. Accessed June 2,
2019.

Guth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F., & Reinfurt, L.
(2018). A detailed analysis of iot platform architectures: Concepts, similarities, and differences.
In Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, 81–101.
Springer.

Hewlett-Packard (2005). httperf, a tool for measuring web server performance. Accessed May
3, 2019.

Kennedy, J. B. (1926). An interview with Nikola Tesla. Accessed February 3, 2019.

Kerrisk, M. (2013). Namespaces in operation, part 5: User namespaces. Accessed May 16, 2019.

Kivity, A., Laor, D., Costa, G., Enberg, P., Har’El, N., Marti, D., & Zolotarov, V. (2014).
Osv—optimizing the operating system for virtual machines. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), 61–72.

Kraijak, S. & Tuwanut, P. (2015). A survey on iot architectures, protocols, applications, security,
privacy, real-world implementation and future trends. In 11th International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM 2015), 1–6.

KVM (2016). Main page — kvm,. Accessed May 16, 2019.

Lea, R. & Blackstock, M. (2014). Smart cities: An iot-centric approach. In Proceedings of the
2014 International Workshop on Web Intelligence and Smart Sensing, 12:1–12:2.

Lee, S., Bae, M., & Kim, H. (2017). Future of iot networks: A survey. Applied Sciences
(Switzerland), 7(10).

Levine, I. (2018). UniK: Build and Run Unikernels with Ease. Accessed February 3, 2019.

Madhavapeddy, A., Leonard, T., Skjegstad, M., Gazagnaire, T., Sheets, D., Scott, D. J., Mortier,
R., Chaudhry, A., Singh, B., Ludlam, J., Crowcroft, J. A., & Leslie, I. M. (2015). Jitsu:
Just-in-time summoning of unikernels. In NSDI.

Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T., Smith, S., Hand,
S., & Crowcroft, J. (2013). Unikernels: Library operating systems for the cloud. SIGPLAN Not.,
48(4):461–472.

Marquez, E. (2018). The history of container technology. Accessed May 16, 2019.

636363

Mell, P. M. & Grance, T. (2011). Sp 800-145. the nist definition of cloud computing. Technical
report, Gaithersburg, MD, United States.

MIKELANGELO (2015). Capstan, a tool for packaging and running your application on OSv.
Accessed February 3, 2019.

Morabito, R., Cozzolino, V., Ding, A. Y., Beijar, N., & Ott, J. (2018). Consolidate iot edge
computing with lightweight virtualization. IEEE Network, 32(1):102–111.

Morais, C. M. d., Sadok, D., & Kelner, J. (2019). An iot sensor and scenario survey for data
researchers. Journal of the Brazilian Computer Society, 25(1):4.

Newman, S. (2015). Building Microservices. O’Reilly Media, Inc., 1st edition.

Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). Iot middleware: A
survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1):1–20.

Nominum (2012). queryperf DNS query performance testing tool. Accessed May 3, 2019.

Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). Cloud container technologies: a state-of-
the-art review. IEEE Transactions on Cloud Computing, PP:1–1.

Pavlicek, R. (2017). Existing unikernel projects. In Unikernels: Beyond Containers to the Next
Generation of Cloud, chapter 3, 27. O’Reilly Media.

Plauth, M., Feinbube, L., & Polze, A. (2017). A performance evaluation of lightweight ap-
proaches to virtualization.

Popek, G. J. & Goldberg, R. P. (1974). Formal requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421.

Richards, M. (2016). Microservices vs Service-Oriented Architecture. O’Reilly.

RWTH Aachen University (2017). HermitCore - A lightweight unikernel for a scalable and
predictable runtime behavior. Accessed June 3, 2019.

Saadeh, M., Sleit, A., Qatawneh, M., & Almobaideen, W. (2016). Authentication techniques for
the internet of things: A survey. In 2016 Cybersecurity and Cyberforensics Conference (CCC),
28–34.

Shah, S. H. & Yaqoob, I. (2016). A survey: Internet of things (iot) technologies, applications
and challenges. In 2016 IEEE Smart Energy Grid Engineering (SEGE), 381–385.

Sharwood, S. (2017). Aws adopts home-brewed kvm as new hypervisor. Accessed May 16,
2019.

TIOBE (2019). The python programming language. Accessed Jun 6, 2019.

Van Jacobson, B. F. (2006). Speeding up networking. Accessed May 3, 2019.

VMWare (2018). Building and Deploying Single Containers to a Virtual Container Host.
Accessed June 2, 2019.

646464

Vresk, T. & Čavrak, I. (2016). Architecture of an interoperable iot platform based on microser-
vices. In Proc. Electronics and Microelectronics (MIPRO) 2016 39th Int. Convention Information
and Communication Technology, 1196–1201.

Walla, A.-A. (2017). Live updating in unikernels. Master’s thesis, University of Oslo.

Wanigasekara, N. (2015). A semi lazy bandit approach for intelligent service discovery in
iot applications. In Adjunct Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International
Symposium on Wearable Computers, 503–508.

Xavier, B., Ferreto, T., & Jersak, L. (2016). Time provisioning evaluation of kvm, docker
and unikernels in a cloud platform. In Proc. Cloud and Grid Computing (CCGrid) 2016 16th
IEEE/ACM Int. Symp. Cluster, 277–280.

	Introduction
	Motivation
	Research Questions
	Objectives
	Methodology

	Background
	Internet of Things
	Microservices
	Virtualisation
	Hypervisors
	Containers

	Unikernels
	OSv

	Related Work
	Unikernels and the Internet of Things
	Performance Evaluation of Unikernels
	Mirage vs OSv vs Linux
	Rumprun vs Debian
	Rumprun vs OSv vs Ubuntu vs Docker
	Time Provisioning: OSv vs Docker vs Linux
	OSv vs Docker

	Contribution Summary

	Benchmark Design and Implementation
	The Jung Project
	API Gateway
	Auth Manager
	User Registry
	Device Registry
	Device Monitor
	Device Commander
	Rule Engine
	Device Gateway

	Implementation
	Issues and Challenges

	Experimental Evaluation
	Scenario
	Metrics
	Execution

	Results
	CPU Usage
	Memory Usage
	Disk Space
	Networking

	Discussion

	Conclusion
	Summary and Final Thoughts
	Contributions
	Future Work

	REFERENCES

