
Clayton Wilhelm da Rosa

A Combinator Based, Certifiable, Parsing Framework

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Clayton Wilhelm da Rosa

A Combinator Based, Certifiable, Parsing Framework

Dissertação apresentada ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Per-
nambuco, como requisito parcial para obtenção
do título de Mestre em Ciência da Computação.

Área de concentração: Linguagens de Progra-
mação e Engenharia de Software.

Orientador: Prof. Dr. Márcio Lopes Cornélio.

Recife
2019

Catalogação na Fonte
Bibliotecário Vimário Carvalho CRB4/1204

R788c Rosa, Clayton Wilhelm da.
 A Combinator based, certifiable, parsing framework / Clayton

Wilhelm da Rosa. - 2019.
 100 f.: il., fig.

 Orientador: Prof. Dr. Márcio Lopes Cornélio.
 Dissertação (Mestrado) - Universidade Federal de Pernambuco.

CIN, Ciência da Computação. Recife, 2019.
 Inclui Referências e apêndices.

1. Linguagem de programação. 2. Engenharia de software.
3. Software confiável. I. Cornélio, Márcio Lopes (orientador).
II. Título.

 005.13 CDD (22. ed.) UFPE-MEI 2019-136

Clayton Wilhelm da Rosa

“A Combinator Based, Certifiable, Parsing Framework”

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 28 de agosto de 2019.

BANCA EXAMINADORA

__
Prof. Dr. Gustavo Henrique Porto de Carvalho

Centro de Informática/UFPE

__
Prof. Dr. Rodrigo Geraldo Ribeiro

Departamento de Computação e Sistemas / UFOP

__
Prof. Dr. Márcio Lopes Cornélio

Centro de Informática/UFPE
 (Orientador)

ABSTRACT

Parsers are ubiquitous software, much more common than one would normally take
notice. Parsing spreads from simple command line functionalities to natural languages pro-
cessing, to language composition. Parsing is also somewhat regarded as a solved problem
in computation. However, that does not translate into reality, especially when consider-
ing their implementations, which can be complex and difficult to maintain. In the last
decades, multiple tools have surged aiming to improve the process of parsing, from the
now well established parser generators to recent interactive parsing frameworks, which
try to reduce the knowledge requirements for the specification of parsers. Although these
tools have their own merits, very little effort was put into their standardization and formal
reliability. We try to address these issues by implementing a reliable and flexible parsing
framework that is composed of a small and extensible library of parser combinators, and
a reliable, easily verifiable, parser generator based on the standardized meta-syntax of the
extended Backus-Naur notation. We also provide valuable insight into the implementation
of the General LL parsing technique in a purely functional setup.

Keywords: Parsing. Functional programming. Software reliability.

RESUMO

Parsers são softwares muito mais comuns do que normalmente nos damos conta.
Parsers estão presentes nas mais diversas áreas, no processamento de linhas de comando,
no processamento de linguagens naturais, ou ainda na composição de linguagens. O pro-
cesso de parsing é considerado por muitos um problema já solucionado, porém isto não é
inteiramente verdade, especialmente quando falamos das implementações de parsers que
podem ser complexas e de difícil manutenção. Nas últimas décadas, muitas ferramen-
tas que buscam facilitar o processo de parsing surgiram. Ferramentas como geradores de
parsers, ou mais recentemente, frameworks interativos, que tentam reduzir a quantidade
de conhecimento necessária para a especificação de parsers. Ainda que estas ferramentas
tenham seus méritos, estas também apresentam algumas limitações. Estas ferramentas ap-
resentam pouca ou quase nenhuma padronização entre si, além de não oferecerem garan-
tias de confiabilidade. Nós buscamos mitigar estes problemas com a implementação de um
framework para parsing, confiável e flexível. O framework é composto de uma biblioteca
extensível de combinadores, e de um gerador de parsers que é facilmente verificável, e que
se baseia na meta-sintaxe padrão da notação estendida de Backus-Naur. Além disso, nós
apresentamos informações valiosas sobre a implementação do algoritmo GLL, sob uma
perspectiva puramente funcional.

Palavras-chave: Parsing. Programação funcional. Software confiável.

LIST OF FIGURES

Figure 1 – Ambiguous derivation trees. 21
Figure 2 – Simple GSS example. 31

LIST OF TABLES

Table 1 – RegEx operations to set operations correspondence. 15
Table 2 – RegEx examples. 16
Table 3 – Grammar operators. 17
Table 5 – ISO EBNF stand alone symbols/operators. 33
Table 6 – ISO EBNF balanced symbols. 34
Table 7 – Examples of values and their types. 36
Table 8 – Examples of functions and their types. 36
Table 9 – Haskell function applications. 38
Table 10 – Values and their types with type synonyms. 39
Table 11 – Natural numbers and their corresponding digits. 40

LIST OF ABBREVIATIONS

ADT Algebraic Data Type

BNF Backus-Naur Form

CFG Context-Free Grammar

CFL Context-Free Language

CPS Continuation-Passing Style

DSL Domain-Specific Language

EBNF Extended Backus-Naur Form

FL Functional Language

GLL Generalized LL

GLR Generalized LR

GSS Graph-Structured Stack

NL Natural Language

PEG Parsing Expression Grammar

PL Programming Language

RD Recursive Descent

RegEx Regular Expression

RG Regular Grammar

RL Regular Language

RRG Right Regular Grammar

CONTENTS

1 INTRODUCTION . 11
1.1 CONTRIBUTIONS . 12
1.2 OUTLINE . 13

2 LANGUAGES, PARSING, AND TOOLS 14
2.1 REGULAR LANGUAGES . 14
2.1.1 Regular Expressions . 15
2.1.2 Regular Grammars . 16
2.2 CONTEXT-FREE LANGUAGES . 19
2.2.1 Derivation Trees . 20
2.3 PARSING . 22
2.3.1 Recursive Descent Parsing . 23
2.3.2 Drawbacks of RD Parsers . 24
2.3.3 GLL Parsing . 27
2.4 EXTENDED BACKUS-NAUR FORM . 32
2.5 HASKELL . 35
2.5.1 Expressions and Types . 35
2.5.2 Definitions . 37
2.5.3 Type Classes and Monads . 41

3 ON THE IMPLEMENTATION OF GLL COMBINATORS 43
3.1 STANDARD PARSER COMBINATORS 43
3.2 CPS COMBINATORS . 48
3.3 MEMOIZED COMBINATORS . 49

4 A COMBINATOR BASED PARSER GENERATOR 57
4.1 PARSER GENERATOR . 57
4.2 VALIDATION . 60

5 CONCLUSIONS . 71
5.1 RELATED WORK . 71
5.2 FUTURE WORK . 73

REFERENCES . 74

APPENDIX A – JSON EBNF . 77

APPENDIX B – GENERATED JSON PARSER 79

APPENDIX C – JAVA 1.7 SYNTACTICAL EBNF 82

APPENDIX D – GENERATED JAVA 1.7 PARSER 90

11

1 INTRODUCTION

“ If you think it is simple, then you probably misunderstood the problem. ”
Bjarne Stroustrup, 1997

Software has become a ubiquitous element of our daily lives. In fact, without even
noticing we, in one way or another, rely on software to fulfill just about every task. We
rely on software for communication, transportation, paying bills, and the list goes on.
While we take the availability and reliability of software for granted, more often then
what should be expected we are remembered otherwise.

For many domains such as health care, automotive industry, and information security,
errors and defects in the development of an application can lead to serious financial
losses, or even threaten the users’ lives. These so-called critical domains require a rigorous
verification of their systems to provide reliable software.

Normally such verification is accomplished by the exhaustive analysis of the states and
transitions of idealized software models. However, the analysis of bigger programs by such
technique is limited by the growth in the number of states of the software models (1).
Also, such idealized models neither represent the application code, where implementation
errors can impair the software reliability (2), nor can detect defects introduced by external
agents such as compilers and interpreters (3, 4).

For the majority of ordinary software, defects introduced by interpreters or compil-
ers will cause little harm, specially when compared to the defects related to erroneous
implementation (5). Critical software on the other hand should not neglect this sort of
defects, since they can nullify any reliability guarantee given by techniques such as model
verification and static analysis (5).

For this reason, various research projects are trying to achieve precise formalizations
of semantics and implementations of Programming Languages (PLs) (4, 5, 6) with the
intent of improving critical software reliability in a more fundamental way. Even so, a
fundamental component of any PL development, the parser, is sometimes neglected by
these projects, which many times depend on non-reliable third party parsers. However,
the same projects point out that the absence of a formally verified parser contributes for
less reliable results (4, 7).

Let’s take a step back from critical software and allow ourselves to contemplate parsing
from a less strict and demanding perspective. It is very likely that programmers overlook
the fact that parsers are more common than one would expect. Parsing spreads from a
simple AWK one-liner, to a JSON or markup library for any PL, to the processing of
Domain-Specific Languages (DSLs) and Natural Languages (NLs), to a tool for language

Chapter 1. Introduction 12

composition, domain from where we borrow the very fitting sentence “Parsing: The Solved
Problem That Isn’t”1.

Parsing has a long research history, with refined techniques and seen by many as a
solved problem. However, some works (8, 9) argue that the reality is different, specially
when considering the implementation of parsers, which can be complex and have a costly
maintenance. The last decades popularized the use of parser generators as a tool to facil-
itate the build and maintenance of these software. Parser generators take a Backus-Naur
Form (BNF) like high-level specification of a grammar and synthesize a parser for the
given grammar. This way, in theory, we would only concentrate on specifying the syntax
of a language.

Even though largely adopted in production, parser generators do not come without
some pitfalls. Parser generators rely on their own particular syntax for the specification of
grammars, mostly without concern for compatibility or standardization. Also, they require
some knowledge of how their underlying parsing algorithm works, largely because of the
limitations of parsing techniques, a classical example is the necessity for factorization of
left-recursive grammars. At last, parser generators do not provide any formal guarantees
of their reliability.

Most recently, various works (8, 10, 11, 12) have put a great effort towards the im-
plementation of more “accessible” parser generators and frameworks, aiming to reduce
the knowledge requirements of theories such as formal languages, making the user distant
from the parser inner workings. This is achieved in two major ways. First, they provide
tools that help the user solve common recurrent problems, such as ambiguity detection
and resolution. Second, a more general solution, is the application of general parsing
algorithms, which can cope with any grammar specified by the user.

In the light of initiatives such as the aforementioned, we aim to provide an easy to
verify, compact, and flexible, parsing framework. A solution that critical and “regular”
software projects would benefit from. The framework is composed by an intuitive parsing
combinators library and a parser generator that synthesizes parsers based on a standard-
ized, simple, input meta-syntax.

1.1 CONTRIBUTIONS

Before listing the contributions of this work we must present a disclaimer. This work
originally had more ambitious objectives, it was, in fact, supposed to implement a parser
generator that would synthesize fully general parsers, what would have been one of the
first adaptations of the recently discovered Generalized LL (GLL) (13) parsing technique
in a purely functional setup. Alas, the intrinsic imperative nature of the algorithm im-
1 The title of an article written by Laurence Tratt on the use of parsers in the context of language com-

position. The article can be found at <https://tratt.net/laurie/blog/entries/parsing_the_solved_
problem_that_isnt.html>.

https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html
https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html

Chapter 1. Introduction 13

paired us from achieving our goal, for now. An in depth discussion of the design decisions
and adversities encountered along this project execution will be given throughout this
work. The main objective of this work is to provide a reliable and easily certifiable pars-
ing framework. Recognizing that the term certifiable may lead to misunderstandings, we
clarify. The development of this work focus on establishing a reliable foundation that will
allow/facilitate a formal verification of its implementation.

We have two specific objectives.

• To generate parsers capable of recognizing a reasonable subset of Context-Free Lan-
guages (CFLs). The definition and manipulation of grammars must be simple and
standardized. Also, the generated parser code must be human readable, easy to
maintain and reason about.

• To explore the adaptation and implementation of the GLL parsing algorithm on the
purely Functional Language (FL) Haskell, and provide valuable insight for future
works.

1.2 OUTLINE

This work is organized as follows. In Chapter 2, we review the main concepts on formal
languages, principles regarding the parsing of these languages. We also and introduce a
standard notation for specifying syntax, and cover the main concepts of the language we
chose for this work implementation. Chapter 3 covers the implementation of combinators
and provides insight into our efforts trying to adapt our combinators to the GLL technique.
In Chapter 4, we elaborate on the organization, limitations, and reliability of our parser
generator. We follow with the presentation and discussion on validation of our solution. We
present our conclusions, discuss related research, and propose future work in Chapter 5.

14

2 LANGUAGES, PARSING, AND TOOLS

“ Language shapes the way we think, and determines what can we think
about. ”

Benjamin Lee Whorf,

Although very familiar, the term language is difficult to define. From the study of
speech perspective, one could say that a language is an auditory and motor system for the
communication between individuals. Dictionaries broadly define a language as “a system
of sounds, words and rules for communication”. In this work when we refer to a language
we do so from the formal languages perspective, where the definition is as follows (14, 15).

Definition 2.0.1: Language

A set of strings (or words) over a set Σ∗, where Σ∗ = {ε} ∪ Σ.

The symbol ε represents the empty string, and Σ is the language alphabet. An alphabet
is a finite, non-empty set of symbols. For most occidental languages Σ would be some
variation of the Latin alphabet, for Japanese the set of kana, and binary words are build
over Σ = {0, 1}.

At this point, most textbooks on formal languages would present a set of concepts
such as the length of a word, concatenation, pre-, su-, and infixes. However, as they will
not contribute for the understanding of this work, they will not be covered here. That
said, a concept is missing.

If a language is a set of strings, how do we build those strings? Even if a word, in
any human language, can ultimately be seen as an arbitrary displacement of the symbols
of its alphabet, that is not true for all of what we may want to write. A real number,
for example, cannot be written as “1234,” (with a comma, but no real fragment). Taking
this idea a step further, what about sentences? In most human languages one cannot just
arrange words randomly in a sentence and expect it to make any sense. The same is true
in a PL, we cannot write any sequence of words and expect it to be a program.

What is implied above is that we require a set of rules on how to structure our
languages. There are many types of languages, with varying expressiveness, and in Sections
2.1 and 2.2 we present some of them and their main concepts, such as the mentioned
structuring rules.

2.1 REGULAR LANGUAGES

Normally, the formal definition of Regular Languages (RLs) require the definition of what
is a finite automaton, and how it works, but since we do not directly deal with automata

Chapter 2. Languages, Parsing, and Tools 15

in this work, for conciseness, we will not present such concepts. Despite that, the defini-
tion of an RL is given bellow (14, 15).

Definition 2.1.1: Regular Language

A language L is regular iff there exists a finite automaton A such that
L = L(A), where L(A) is the set of all words accepted by A.

Even though definition 2.1.1 relies on the automata theory, it does not lessen the under-
standing of this work, since, at this point, we are more interested on how the structure of
an RL can be represented, than on how it can be recognized.

2.1.1 Regular Expressions

Regular Expressions (RegExs) are algebraic mechanisms for defining RLs, the words/lex-
emes we recognize as part of our languages (14, 15). RegExs are simple compositions of the
symbols in a given alphabet and three operators ‘+’, ‘∗’, and juxtaposition1. parentheses
can also be used to group sub-expressions, in similar fashion to when we write arithmetic
expressions. The precedence of the operators is, from highest to lowest: ‘∗’, juxtaposition,
and ‘+’.

Operations on RegExs have and interesting correspondence to set operations on RLs.
Given r and r′, RegExs, this correspondence is described in Table 1.

Table 1 – RegEx operations to set operations correspondence.

RegEx Set
1 L(r + r′) L(r) ∪ L(r′)
2 L(rr′) {srsr′|sr ∈ L(r) ∧ sr′ ∈ L(r′)}
3 L(r∗) ∪n

i=0 Li(r)

This correspondence is not particularly important for this work, we present it and do not
look back at it. What should be noticed is that RegExs and sets present two different
intuitions. RegExs show us how2 to recognize (build) the words of a language, while sets
tell us what words are part of a language. A similar phenomenon holds between grammars
and sets, as well.

In line 1 (Table 1) the RegEx says “match either r or r′”, while its corresponding set
states “the valid words of the language defined by /r + r′/ are the valid words of the
language defined by r, and also the valid words of the language defined by r′”. In line 2
1 Often times this operator is called the dot operator ‘·’, however when defining RegExs this operator

is not actually written down, therefore we use the juxtaposition.
2 RegExs are definitions/specifications of RLs, but we can read a RegEx this way “match a 0 followed

by a 1, then match either any number of 0’s or any number of 1’s, for /01(0∗ +1∗)/. This is a sequential
description of how to recognize the words of a language.

Chapter 2. Languages, Parsing, and Tools 16

we have “match r followed by r′”, and the corresponding set definition is similar to a
Cartesian product, but instead of pairs it is composed of the juxtaposition of the valid
words in L(r) with the valid words in L(r′). Finally, (3) represents repetition, it specifies
n juxtapositions (n ≥ 0) of the string defined by r; its corresponding set is the union of
all sets of words of size i (L0(r) = {ε}), which are juxtapositions of r.

For a better comprehension of what and how RegExs work, in Table 2 we give a RegEx
r, a textual description of what language it defines, and examples of valid words for L(r).

Table 2 – RegEx examples.

RegEx L(r) Examples
000 + 111 The words 000 and 1113. 000, 111
01(0∗ + 1∗) All words that have any number of 0’s, or

any number of 1’s, prefixed by 01.
01, 010000, 011

0 + 1(0 + 1)∗ The Language of all binary numbers 4. 0, 1, 0001, 010101
01∗ All words with an arbitrary number of 1’s

prefixed by a single 05.
0, 01, 011. . . 1

(0 + 1)∗00(0 + 1)∗ Any word that has at least one occurrence of
consecutive 0’s.

000, 001, 100, 1001010

2.1.2 Regular Grammars

Grammars are a mathematical mechanism for describing languages, formal languages.
They tell us if a word or sentence is well-formed in a certain language (15). A gram-
mar translates verbal rules such as “a sentence is composed by a subject, followed by a
predicate” into a formal structure of the form.

SENTENCE → SUBJECT PREDICATE

SUBJECT → ARTICLE NOUN

Each line of this structure is called a rule or production. To the left of the arrow
symbol, left-hand side, we define the syntactical category, also called variable or non-
terminal, SENTENCE. The arrow itself is a separator called production symbol,
it indicates the definition of a rule. On the right-hand side of the production symbol,
there is a sequence of n ≥ 0 syntactical elements, which compose a SENTENCE, in this
example, SUBJECT and PREDICATE (14).
3 RegExs 000 and 111 are examples of juxtaposition of three symbols, 0 or 1.
4 This RegEx illustrates a very common pattern /rr∗/, which exists for grammars as well, and will have

its own operator defined in Section 2.4.
5 Note that the ‘∗’ operator applies only to the very first RegEx to its left, in this case 1, and not 01.

Chapter 2. Languages, Parsing, and Tools 17

Definition 2.1.2: Grammar

Is a quadruple G = (V, T, S, P), where
V is a finite set of nonterminals,
T is a finite set of symbols called terminals,
S ∈ V is the so called start variable, and
P is a finite set of rules.

Formally a grammar is defined as we see in definition 2.1.2. If we were to define our
sentence grammar formally, we could have V = {SENTENCE, SUBJECT, ARTICLE,
NOUN, PREDICATE}, T = {a, the} if ARTICLE was to be defined as

ARTICLE → a | the

a and the are “constant” elements of the grammar and do not label rules, they exist by
themselves, while nonterminals are defined in terms of other elements of the grammar.
S = SENTENCE, which on a top-down, left-right reading of the grammar is the first
rule to be defined. Finally our set of rules would look like as follows.

P =



SENTENCE → SUBJECT PREDICATE,

SUBJECT → ARTICLE NOUN,

ARTICLE → a,

ARTICLE → the,

NOUN → . . . ,

PREDICATE → . . . ,

PREDICATE → . . .


Before we move on to the specifics of Regular Grammars (RGs), we discuss grammar

operators. In Table 3, we present the two basic grammar operators.

Table 3 – Grammar operators.

a | b Alternative or choice
a b Sequence or juxtaposition

First, the alternative operator indicates that a rule will hold for any sequence of
elements in (V ∪ T)∗ separated by ‘|’ in its right-hand side. This operator is actually an
abbreviation, so we can, for example, write the article production of the sentence grammar
as given by 2.2, instead of 2.1.

ARTICLE → a

ARTICLE → the
(2.1) ARTICLE → a | the (2.2)

Chapter 2. Languages, Parsing, and Tools 18

The alternative operator corresponds to the ‘+’ operator used by RegExs. The article
rule would be /a + the/ if defined as a RegEx. The article production also illustrates the
use of the sequence operator, which relates to juxtaposition in RegExs.

Consider the terminal the, the second alternative of ARTICLE (2.2). This terminal
can be seen as the juxtaposition of three other symbols, t, h, e, and so the article rule
could be written as.

ARTICLE → a | t h e

Notice that the sequence operator has greater precedence, the alternative operator ex-
tends, to its left and right, as far as a sequence goes, this means it will not match
something like /(a | t) h e/. In fact, the use of parentheses as grouping mechanism is not
allowed in basic grammar notation (see Section 2.4).

The ‘∗’ operator does not have a grammar corresponding. At least, not a direct corre-
sponding symbol in the grammars’ syntax (again, we defer to Section 2.4). Still, grammars
are capable of representing the same set of languages by means of recursion.

As we have seen, ‘∗’ represents repeated juxtaposition of the RegEx immediately to its
left. Now, remember the binary number RegEx from Table 2, we present a corresponding
grammar (2.3), where we can clearly see the same /rr∗/ repetition pattern, with the
DIGITS rule being the recursive corresponding of r∗.

BNUM → DIGIT DIGITS

DIGITS → DIGIT DIGITS | ε

DIGIT → 0 | 1

(2.3)

This correspondence allows us to rely on a single mechanism for recognition of the
whole spectrum of languages we are interested in. Even if this correspondence was dis-
cussed in terms of a more general concept of grammar, it will become clear that it holds
for the more restrict grammars, which we will work with.

Now that we covered the main concepts regarding grammars, what is an RG? As the
name implies it is a grammar and therefore all that has been introduced so far holds for
RGs, except for restrictions to its structure, which makes them regular. In definition 2.1.3
we formalize the concept of an RG.

Definition 2.1.3: Regular Grammar

A grammar G = (V, T, S, P) is regular if all its productions are either

left-linear

A → Bx,

A → x.

or
right-linear

A → xB,

A → x.
where A, B ∈ V and x ∈ T ∗.

Chapter 2. Languages, Parsing, and Tools 19

Definition 2.1.3 states that any right-hand side of an RG can have at most one nonter-
minal, and it must be either the left-most or right-most element of a sequence, otherwise
a rule can only be defined as a sequence of n ≥ 0 terminals (15).

In this work we use RG as a synonym of Right Regular Grammar (RRG), which are
right-linear grammars, their productions closely resemble RegExs and this resemblance ac-
tually translates into an interesting theoretical result that states “RRGs generate RegExs”
(15), what reinforces our assertions regarding the correspondence between RegExs and
grammars, in particular RGs.

To conclude this section, we recall grammar 2.3, which, as it stands, is not regular,
and, to illustrate the structures of RGs, we show a regular version of it.

BNUM → 0 DIGITS | 1 DIGITS

DIGITS → 0 DIGITS | 1 DIGITS | ε
(2.4)

2.2 CONTEXT-FREE LANGUAGES

While very useful for describing simple patterns, which have very useful applications,
and are specially important for this work when laying down the foundations of formal
languages, RLs are very limited. Indeed, simple languages formed by balanced parentheses
or palindromes, are not regular.

For the study of PLs and NLs, we present the definitions of Context-Free Grammar
(CFG) (2.2.1) and CFL (2.2.2), followed by the introduction of mechanisms necessary for
the understanding of the process of parsing.

Definition 2.2.1: Context-free Grammar

A grammar G = (V, T, S, P) is context-free if all its productions have the
form

A→ x,

where A ∈ V and x ∈ (V ∪ T)∗.

Notice that CFGs have no restrictions to the structure of their right-hand side, neither
on the number of nonterminals nor on their positioning.

Definition 2.2.2: Context-free Language

A language L is context-free iff there exists a CFG G such that L = L(G).

Chapter 2. Languages, Parsing, and Tools 20

2.2.1 Derivation Trees

So far we referred to grammars solely as a notation, but grammars can also be used to
describe and visualize how we can recognize a sentence as part of a language, that is, if a
sentence satisfies a given set of grammar rules.

The derivation is a process for defining the language of a grammar (14). We proceed
from the top of the grammar, the start symbol, expanding it to one of its right-hand side
rules. From the resulting sequence of elements, we choose one nonterminal and expand it
by one of its rules, this substitution process goes on until we have a sequence composed
only of terminals (14). The intuition behind this process is to search amidst the rules for
the ones that will lead us to the token(s) in our sentence, if we fail to do so, the sentence
is not recognized as part of a language.

Let w = 0101 be a four bit binary and G the binary number grammar 2.3. The
derivation of w according to G is illustrated by the following sequence of steps6.

BNUM ⇒ DIGIT DIGITS ⇒ 0 DIGITS ⇒ 0 DIGIT DIGITS ⇒ 01 DIGITS

⇒ 01 DIGIT DIGITS ⇒ 010 DIGITS ⇒ 010 DIGIT DIGITS

⇒ 0101 DIGITS ⇒ 0101 (2.5)

We start at BNUM and expand it into DIGIT DIGITS, the only rule defined by
BNUM . Next we substitute DIGIT . At this point, we have a choice, either to derive the
terminal 0 or 1. We chose the former since w starts with it. Then we have to substitute
DIGITS. Again, we must choose, this time between DIGIT DIGITS and ε; we chose
the first one, because choosing an empty rule would leave us with zero nonterminals to
expand and terminate the derivation not recognizing w7. The remaining derivations follow
the same pattern, until we reach the last derivation, when we substitute DIGITS by ε

and conclude that w ∈ L(G).
Presented as it is, derivation 2.5 is actually dependent on the order we choose for our

substitutions8. In our derivation we chose to always substitute the first nonterminal to
the left of a rule, such derivation is called a left-most derivation. If we choose to do
the opposite the derivation is called a right-most derivation.

An order independent, more intuitive and very useful way of expressing CFG deriva-
tions is to use derivation trees, mostly known as parse trees. Parsing is the process of
describing the structure of a sentence through the derivations of a grammar (15).

6 The symbol ‘⇒’ indicates a derivation, a substitution of a nonterminal.
7 The derivation process is basically a hit and miss procedure, it is possible to improve it, but we will

not cover how to do so.
8 Different orders of substitution will produce structurally different derivations.

Chapter 2. Languages, Parsing, and Tools 21

Definition 2.2.3: Parse Tree

A tree τ is a parse tree of a sentence for a grammar G = (V, T, P, S) if it
satisfies the following conditions (14, 15).

1. The root of τ is labeled by S, the starting rule of G.

2. For all n, interior node of τ , n ∈ V .

3. Every leaf l of τ is in T ∪ {ε}. If l = ε, then l is the only child of its
parent.

4. If a node A ∈ V have its children labeled a1, a2, . . . , an, then P must
contain a rule

A→ a1 a2 . . . an

Lets define a set of rules (2.6) of a binary arithmetic expressions grammar as follows,

EXPR→ EXPR OP EXPR | BNUM

OP → + | ×
(2.6)

where BNUM is defined by grammar 2.3. The derivation of, say w = 01 + 11 × 00, is
given by the parsing trees illustrated in Figure 1.

Figure 1 – Ambiguous derivation trees.

EXPR

EXPR

EXPR

BNUM

01

OP

+

EXPR

BNUM

11

OP

×

EXPR

BNUM

00

(a) Left

EXPR

EXPR

BNUM

01

OP

+

EXPR

EXPR

BNUM

01

OP

×

EXPR

BNUM

01
(b) Right

It is easy to see that trees 1a and 1b are parse trees of w for grammar 2.6, according
to Definition 2.2.3 9. The important thing to notice is that there are two valid parse trees
for the same sentence w. This phenomenon is called ambiguity and it is one important
concept for this work. Grammars for which some sentences can have multiple parse trees
are called ambiguous (14, 15), and parsing sentences for these grammars present us with
9 Keep in mind that in order to keep their size reasonable trees 1a and 1b are a little loose with the

derivation of the BNUM rule.

Chapter 2. Languages, Parsing, and Tools 22

a challenge. What is the “correct” result of the parsing? We will revisit the ambiguity
topic later when implementing our combinators, in Chapter 3.

Parse trees are particularly important for the implementation of parsers in general,
they are the output of the application of parsing functions to a source input. Parse trees
represent the structure of a language and can be naturally processed by programs such
as analyzers and translators (14).

2.3 PARSING

As hinted in Section 2.2.1, parsing is the process of finding a sequence of derivations
which leads us to conclude that a certain sentence is part of a language or not, based on
a set of rules specified by a grammar (15). Until now we have talked about parsing from
a lose and “generic” perspective, sometimes referred as exhaustive search parsing (15).
For practical purposes, we need a more strict and organized technique that can give us
an efficient implementation of a parser, and that is the topic we will cover in this section.

The parser is the component of a compiler10 responsible for carrying out the parsing
task. A parser will not only assert the membership of a sentence in a language, but also
“organize” the components of the sentence into a structure that resembles the one defined
by the grammar of the language, doing so by producing the data structure equivalent of
the parse tree seen in Section 2.2.1 (15, 16, 17).

Parsing techniques are commonly discriminated into two categories, each with different
advantages and capabilities, details that will not be covered due to the great variety
of parsing techniques. Top-down parsers parse the input stream performing left-most
derivations, they build the parse tree from the root, the grammar start symbol, down to
the leafs, the grammar terminals (18). Bottom-up parsers map their input stream into
the reverse of a right-most derivation, the idea is to “fill in” the internal nodes of the
parse tree, starting from its leafs up to the root (16, 18).

In addition to being categorized in one of the above sets of parsing techniques, a
parser can also be a general one, meaning that they are applicable to the whole set of
CFGs (19, 16). In this work we explore the implementation of GLL parsers in a refer-
entially transparent FL. First, in Section 2.3.1, we look at the basic Recursive Descent
(RD) parsing technique, which will serve as foundation for presenting, in Section 2.3.3,
the more sophisticated GLL technique.

This work will not cover bottom-up parsers, neither go into some of the details normally
associated with top-down parsing, which will not contribute to the understanding of what
is core to this work.
10 Roughly speaking, a compiler is a program that translates a given text in some source language into

text in a target language. Strict and more accurate descriptions of a parser can be found in the vast
literature on this topic, some referenced in this work.

Chapter 2. Languages, Parsing, and Tools 23

2.3.1 Recursive Descent Parsing

RD parsers are normally described as members of a larger set of top-down parsers called
LL(1), because they scan the input stream from Left to right (the first L of LL) and
produce a parse tree from Left-most derivations (second L), while using only one (1)
element of the input stream, the one being matched, to unambiguously determine the
control flow of the parsing procedure (17, 20).

As implied by the name, an RD parser relies on the use of recursive functions to
fulfill its task. The intuition behind this technique is quite simple, the idea is to represent
elements of a grammar by corresponding elements of source code, achieved by following
a few basic directives (17, 18).

1. Each rule R in the grammar is implemented by a function in the parser code. The
right-hand side of R specifies the structure of its corresponding function;

2. Sequences of terminals and nonterminals correspond to matches against the input
stream and function calls, while alternatives correspond to conditionals in the code;

3. A terminal on the right-hand side of R is matched against the input. In case of a
match, we advance to the next element of the input stream, and to the next element
on the right-hand side of R, otherwise an error must be reported;

4. A nonterminal is represented as a call to its corresponding function. We wait for
the return of the called function. When it returns we continue to the next element
on the right-hand side of R;

5. The process continues until there are no more elements to the right-hand of R that
need to be handled.

To illustrate how these directives can generate a parser, let us consider the simple
arithmetic expressions grammar 2.7. For rule FACTOR of this grammar, we would derive
a function like the one described by Algorithm 2.1.

EXPR→ EXPR ADD TERM | TERM

ADD → + | −

TERM → TERM MUL FACTOR | FACTOR

MUL→ ∗ | /

FACTOR→ (EXPR) | NUM

(2.7)

By directive 1, each rule of the grammar is implement by a function of the parser,
therefore we define the function FACTOR, line 1 of parser 2.1.

Directive 2 states that alternatives in the grammar correspond to conditionals in the
code. We use the case statement to check if the next element of the input matches the

Chapter 2. Languages, Parsing, and Tools 24

Algorithm 2.1 Parses the rule FACTOR of grammar 2.7.
1: function factor
2: case input of ▷ input is a shared stream
3: ‘(’:
4: match(‘(’), expr, match(‘)’)
5: num:
6: num
7: otherwise:
8: error

first terminal expected by the first alternative in the right-hand side of FACTOR, which
is ‘(’, or if it matches a number11, first terminal expected by the second alternative of the
FACTOR rule, represented in the code as the identifier num, in line 5.

Lines 4 and 6 of Algorithm 2.1 are also derived from directive 2. They represent a
sequence of terminals and nonterminals for each alternative of the FACTOR rule. The
calls to function MATCH are derived from directive 3, matching their arguments against
the input. Functions EXPR and NUM are products of directive 4, and upon call will
try to parse their corresponding rules. Directive 5 is self-explanatory. We now finish this
section.

RD parsers are quite attractive for a couple of reasons. These parsers, as we saw, can be
generated from simple directives and are quite suitable for handwriting, also the directives
we have presented are mechanical in nature and therefore can be automated (18, 20). Not
only that, but if we look at Algorithm 2.1, we can spot the similarities between the
structure of the code and the structure of the rules of grammar 2.7. This last property
is quite useful when we consider the verification and maintenance of a parser. They are
human readable parsers, especially when compared to table driven techniques (13).

2.3.2 Drawbacks of RD Parsers

Even though RD parsers are quite attractive for their simplicity and close resemblance
to the structure of grammars, as some other LL(1) parsers, they are not widely used as a
production solution (18). From the drawbacks of RD parsing two are quite notorious and
limit the capabilities of the technique.

The first limitation of the basic RD technique is due to a phenomenon called the
common prefix. Common prefixes happen when two alternatives for the same gram-
mar rule begin with the same sequence of grammar elements (18, 20). This is sometimes
called a prediction conflict, since it is not possible to predict, based only on the input
11 The matching of a number is loosely presented here. A stricter matching would require the definition

of first and follow sets, intuitive concepts, but that would be troublesome to introduce, and would
improve the understanding of the technique very little. We could also rewrite the function, removing
the second case of the conditional, but the idea is to show how the directives work, keeping the
structure of the function closer to what is described by them.

Chapter 2. Languages, Parsing, and Tools 25

element being matched, which alternative will lead to a successful parsing (20). To clar-
ify how common prefixes can be an issue for the implementation of RD parsers we use
grammar 2.8.

IF → if EXPR then STMTS

| if EXPR then STMTS else STMTS
(2.8)

For grammar 2.8 we would derive a parser like the one shown in Algorithm 2.2.

Algorithm 2.2 RD parser with prediction conflict.
1: function if
2: case input of
3: if:
4: match(if), expr, match(then), stmts
5: if:
6: match(if), expr, match(then), stmts, match(else), stmts
7: otherwise:
8: error

Now, which is the right case to match? The one in line 3 of Algorithm 2.2, or the one
in line 5? Well, most PLs that implement similar case constructs will match only one of
its alternatives, normally the first one from the top. This is not what we want, because
our parser would not recognize any source with an else particle, what does not correspond
to the language specified by grammar 2.8.

To solve this problem we could look ahead on the input to learn what sentence is
being parsed, with or without an else clause. But, how far do we need to look ahead? The
answer is, there is no way to know, the else token we are looking for could lie (or not)
anywhere ahead in the input (20), making this a not really practical solution.

Another possible solution is to modify the parser function IF into something like
described by Algorithm 2.3.

Algorithm 2.3 RD parser avoiding prediction conflict.
1: function if
2: match(if)
3: expr
4: match(then)
5: stmts
6: if input = else then
7: match(else), stmts

Whilst Algorithm 2.3 is a practical solution to the problem and one that actually
recognizes the language specified by grammar 2.8, there are some catches. Not only do
we need to modify the parser structure, what may be a quite onerous task on bigger and
more complex parsers, but this parser also lost its resemblance to grammar 2.8 structure.

Chapter 2. Languages, Parsing, and Tools 26

In fact, the structure of Algorithm 2.3 corresponds to the structure of another grammar,
one that cannot be described by basic BNF syntax (18).

The second RD parsing weakness lies on recursion. Recursion is intrinsic to grammars,
but not all recursions present us with an obstacle. What concerns us is left-recursion for
the implementation of RD parsers.

From its name, one can figure that left-recursion is a particular case of recursion to
the left of a sequence. Left-recursion can however be found in two forms. Rules EXPR and
TERM of grammar 2.7 are examples of direct left-recursion, the nonterminal being
defined is also the left-most element of at least one of its alternatives (20). Indirect
left-recursion happens when there exists N

+=⇒ αNβ, where α can be empty, i.e. there
exists a sequence of one or more derivations that consume no input, leading to a left-most
derivation of rule N (17, 18).

The problem with left-recursion in RD parsers is illustrated by Algorithm 2.4, which
implements a parser for rule EXPR of grammar 2.7.

Algorithm 2.4 Left-recursive RD parser.
1: function expr
2: case input of
3: expr:
4: expr, add, term

...
5: otherwise:
6: error

At line 4 of Algorithm 2.4 we can see the sequence of function calls corresponding to
the first alternative of rule EXPR of grammar 2.7. We have identified that the element of
the input currently being parsed can be derived from EXPR, therefore we immediately
proceed to call function EXPR, the first of the sequence. Notice this is a recursive call
to the same parser function, so we will again decide which of the alternatives to derive.
However, we have not advanced in the input, since no terminal has been matched, thereby
we fall again to line 4, where we call function EXPR again, once more without consuming
any input, and so on.

It should be clear that the recursive pattern described by Algorithm 2.4 is one of
nontermination; the execution of the parser will continue indefinitely. As for common
prefixes the solution to left-recursion is to modify the parser, which is the same as to
modify the grammar and implement a completely different parser.

Other possible disadvantages of RD are discussed when we present the implementation
in Chapter 3. For now, in Section 2.3.3, we discuss a technique that allow us to overcome
the limitations of the basic RD parsing technique, while maintaining its attractive prop-
erties.

Chapter 2. Languages, Parsing, and Tools 27

2.3.3 GLL Parsing

As explained before, RD parsers are attractive because their control flow closely resemble
the structure of their respective grammar, alas the set of grammars accepted by such
parsers is limited. GLL is an RD-like parsing technique that addresses the aforementioned
RD limitations by borrowing some of the tools used by Generalized LR (GLR), a natural
language, bottom-up parsing technique developed by Masaru Tomita (19).

General parsing techniques normally incur less efficient implementations, but GLL
parsers, as GLR parsers, have the property of having a linear performance as their gram-
mars get closer to being deterministic, while their implementations maintain an almost
one-to-one correspondence to the grammar structure (13), which speaks of the need for
efficient human-readable parsers (16, 13).

We use grammar 2.9 as reference to introduce how GLL works.

S → ASd | BS | ε

A→ a | c

B → a | b

(2.9)

To build an RD parser for grammar 2.9 would give us something like Algorithm 2.5.

Algorithm 2.5 Common RD parser for grammar 2.9.
1: I ▷ The input stream
2: i← 0 ▷ The current input index
3: function parse
4: s
5: function s
6: case I[i] of
7: {a, c}:
8: a, s, match(d)
9: {a, b}:

10: b, s
11: function a
12: case I[i] of
13: a:
14: match(a)
15: c:
16: match(c)
17: otherwise:
18: error
19: function b ▷ It has the same structure as function A
20:

...

As we can see, grammar 2.9 is not LL(1) and therefore Algorithm 2.5 will not behave
correctly, given the common prefixes of rules A and B, which can easily be found at lines 7
and 9 of the parser.

Chapter 2. Languages, Parsing, and Tools 28

The GLL technique addresses this issue by way of a couple of simple measures. First,
function calls are substituted by labels and the parser control flow is explicitly carried by
stack operations, and goto statements. The labels are also used for partitioning functions
corresponding to non-LL(1) grammar rules. Lastly, the technique introduces the use of a
mechanism called descriptor (13).

A descriptor is a triple of the form (L, s, i), where L is a label, s is a stack, and i

is an index of input I. Basically, the set of descriptors R is used to record each possible
parsing choice for any given rule, and control the termination of the parser (13).

Algorithm 2.6 illustrates how Algorithm 2.5 is modified by the GLL technique, so that
it becomes capable of parsing the language defined by grammar 2.9.

For a better comprehension of how GLL works, using Algorithm 2.6, we go through
some of the steps of parsing the string I = “aad$”, where ‘$’ is a special symbol that
marks the end of the input. To begin with, as most programming languages, we index our
input starting at 0 and as expected initialize our input pointer, i, with 0. The descriptors
set is empty and the current call stack contains the single special pair L0

0. Since label L0

will serve as our control, or dispatch loop, we must guarantee that we return to it at some
point, and that is the purpose of initializing s with L0

0
12.

After initializing our control variables we proceed to label LS. Here, as in the ba-
sic RD parser 2.5, we can see code instances for the three alternatives of rule S, from
grammar 2.9, as well as the conflict between its first and second alternatives, at lines
3 and 4, respectively. What happens for the GLL parser 2.6, though, is that instead of
trying to parse one of the alternatives, by immediately calling their corresponding pars-
ing function, we add one descriptor for each of them to R, and fall to label L0 with
R = {(LS1 , [L0

0], 0), (LS2 , [L0
0], 0)}.

At label L0 the descriptor (LS1 , [L0
0], 0) is removed from R. Each of the descriptors

in R serve as a parsing state register of sorts, where the current label L indicates what
parsing procedure is to be applied, the index i indicates from which position we should
parse the input, and s is the call stack for this particular procedure. As indicated by the
descriptor just removed from R, we jump to label L = LS1 .

Once at label LS1 we take two simple actions, first we push the pair L0
1 to s, and then

proceed to LA. Pushing L0
1 before we go to LA is how we keep track of where we should

return to, after parsing rule A. For this reason label L1 is one of the so-called return
labels. If L1 is a return label, LS1 is what is called an alternate label, the label for the
first alternative of S.

Label LA corresponds to the parsing function A from Algorithm 2.5. It will match
the input against the expected terminal, perform a POP operation, and return to L0.
Label LA is a representative of the last category of labels used by GLL parsers, it is a
nonterminal label, which is self-explanatory.
12 L0

0 is a syntax sugar for the pair (L0, 0), where the second element of the pair is an input index.

Chapter 2. Languages, Parsing, and Tools 29

Algorithm 2.6 GLL parser for grammar 2.9.
1: i← 0, R ← ∅, s← [L0

0]
2: LS:
3: if I[i] ∈ {a, c} then (LS1 , s, i) is added to R

4: if I[i] ∈ {a, b} then (LS2 , s, i) is added to R

5: if I[i] ∈ {d, $} then (LS3 , s, i) is added to R

6: L0:
7: if R is not empty then
8: (L, s, i)← R ▷ A descriptor is removed from R
9: if L = L0, s is empty, and i = |I| then

10: success
11: else
12: go to L

13: else
14: failure
15: LS1 :
16: push(Li

1, s), go to LA ▷ Li
χ is syntactic sugar for the pair (Lχ, i)

17: L1:
18: push(Li

2, s), go to LS

19: L2:
20: if I[i] = d then
21: match(d)
22: pop(s, i, R)

go to L0

23: LS2 :
24: push(Li

3, s), go to LB

25: L3:
26: push(Li

4, s), go to LS

27: L4:
28: pop(s, i, R), go to L0

29: LS3 :
30: pop(s, i, R), go to L0

31: LA:
32: if I[i] = a then
33: match(a)
34: pop(s, i, R)
35: go to L0
36: else if I[i] = c then
37: match(c)
38: pop(s, i, R)
39: go to L0

40: LB:
41:

...

Chapter 2. Languages, Parsing, and Tools 30

Before we go back to L0 it is worth noticing that the POP function used by GLL is a
little unconventional. While a conventional pop operation would take a stack as parameter,
remove the top element and return it as result, the pop action used by Algorithm 2.6 takes
the current call stack and input pointer, as well as the set of descriptors R. What happens
is that POP will indeed remove the top element of s, which, at this point, would be L0

1,
but it will also create a descriptor of this return point in the parsing procedure and add
it to R. We add descriptor (L1, [L0

0], 1) to R as consequence of the POP in LA, where L1

is the label at the top of s, [L0
0] is the remainder of the call stack after the pop, and i = 1

after matching the first ‘a’ in the input.
Back at L0 we remove descriptor (LS2 , [L0

0], 0) and go on to repeat the same series of
steps we performed for the first descriptor we removed from R, except we start at LS2

and finish at label LB instead of starting at LS1 and finishing at LA.
After processing the first two descriptors in R, we have completed the early steps of

parsing the conflicting alternatives of rule S, with R = {(L1, [L0
0], 1), (L3, [L0

0], 1)}. We
will then remove the first of these descriptors and continue the parsing from label L1 as
we did before. This process will go on until we eventually have R = {(L0, [], 3), (L2, [], 2)}.
Removing (L0, [], 3) will satisfy the conditional at line 9, and successfully finish parsing
our input.

Whilst the GLL technique as illustrated by Algorithm 2.6 is capable of handling am-
biguous grammars, it is not general, given that left-recursion remains a drawback. Say,
for example, we needed to build a parser for some grammar similar to 2.10

S → Sβ | . . . (2.10)

In the same way as Algorithm 2.6, we would have a label LS were we could potentially
add a descriptor (LS1 , [L0

0], 0) to R, for the first alternative of S. After dispatched to parse
the first alternative of S we would find ourselves executing line 8 of Algorithm 2.7.

Algorithm 2.7 Left-recursive GLL labels for grammar 2.10.
1: LS:
2: if I[i] ∈ some matching set of terminals then
3: (LS1 , s, i) is added to R

4:
...

5: L0:
6:

...
7: LS1 :
8: push(Li

1, s), go to LS

At label LS1 we would update our call stack to s = [L0
0, L0

1] and immediately return
to LS. Even though we have a new call stack, we have not advanced the input pointer.

Chapter 2. Languages, Parsing, and Tools 31

This means we would once more satisfy the conditional at line 2, adding the “same”13

descriptor as before, such that R = {. . . , (LS1 , [L0
0, L0

1], 0)}. When we later remove this
descriptor from R we will repeat the exact same steps just described. As result, we have
R = {. . . , (LS1 , [L0

0, L0
1, L0

1], 0)}, leading into an infinite recursion.
Besides the remaining issue with left-recursion, as presented, the GLL technique can

create a number of descriptors exponential in the size of the input (13). To cope with this
issue the GLL algorithm employs a few extra machinery. The core modification needed
is to replace the traditional call stack used on the descriptors by what is called a Graph-
Structured Stack (GSS) (19, 13, 21).

The GSS is a directed cyclic graph14, a shared data structure that allows the com-
bination of all call stacks into a single structure (13, 21). For set R = {(LS3 , [L0

0, L1
2, L2

2], 2),
(LS3 , [L0

0, L1
2, L2

4], 2), (LS3 , [L0
0, L1

4, L2
2], 2), (LS3 , [L0

0, L1
4, L2

4], 2)}, created when parsing “aad$”
with Algorithm 2.6, its four stacks are combined into the graph depicted by Figure 2, as
a consequence we can reduce the size of R, by treating descriptors that share the same
call stack top element as a single descriptor, so that R = {(LS3 , L2

2, 2), (LS3 , L2
4, 2)}.

Figure 2 – Simple GSS example.

L0
0 L1

2 L2
2

L1
4 L2

4

Finally, to allow the GLL to process left-recursive grammars, we also need some aux-
iliary tools to help keep track of the operations performed on the GSS and R structures.
First, a list of sets Ui = {(L, u)|(L, u, i), has already been added to R} that allow us to
cut out left recursion before it “explodes”. Before adding a descriptor to R, we check if it
was already added for the current input index. A set P, which stores all pairs of labels
and input indexes for which a pop action has been executed. It will be consulted every
time a new node is added to the GSS, to guarantee that all the needed descriptors are
added to R (13, 21).

The addition of this extra machinery will not really affect most of the intuition behind
the algorithm, its core components and properties, or execution flow, for this reason we
do not explore the GLL technique any further. In depth insight into its operation can
be found in works such as (13, 21), details on how to operate using the GSS, auxiliary
structures Ui and P, a set of directives for parser generation, and more.
13 Despite the fact that their stacks are actually different, having the same label and input index is

enough, in this case, for calling them the same.
14 This is for GLL, the original work of Tomita (19) defines the GSS as being acyclic.

Chapter 2. Languages, Parsing, and Tools 32

To finish this section, we observe that the GLL algorithm is designed for imperative
languages, and even for those languages its implementation will incur the need for adap-
tations, since unrestricted goto statements, used in the GLL pseudo code, are not at
all common. Also, the algorithm heavily relies on shared, mutable data structures (21).
These factors present us with a difficult challenge, re-imagining how to implement the
GLL algorithm by using a functional PL, specially a referentially transparent one, such
as Haskell. We discuss the details of this GLL implementation in Chapter 3.

2.4 EXTENDED BACKUS-NAUR FORM

In previous sections, when we had to show examples of grammars we used a notation
common to some books on the theory of formal languages. While fairly common and
not “harmful” in any way, this notation is not ideal for this work. This section covers
the notation chosen as input format for our parser generator, which provides convenient
mechanisms for the practical specification of languages.

A syntactic metalanguage is a notation for defining the syntax of a language. Despite
their importance, many different notations do exist, what leads to misunderstandings and
non-appreciation of the advantages provided by rigorous notations (22).

Since the introduction of the Algol 60, PLs have followed the tradition of “defining
themselves” formally. The BNF notation was introduced as the syntactic metalanguage
for the definition of Algol 60. It has been adopted, extended and/or slightly altered by
many ever since (22). The existence of many extended or modified notations for BNF,
however, leads to a series of problems such as:

• Having to adapt to many different notations can be quite confusing. Every time
you may want to learn some detail about a language syntax, you will find yourself
looking at a different metalanguage;

• Also, different metalanguages often make use of particular, special notation or fea-
tures. This can hinder the understanding of what is being defined, and ultimately,
make those metalanguages unsuitable for the definition of another language;

• Finally, the lack of consistent formalism impairs the development of tools for pro-
cessing meta languages.

The ISO/IEC 14977 notation is an effort to define the standard for BNF-based meta-
languages, compiling the most common BNF extensions. The ISO 14977 standard is used
as the input format for our parser generator, as well as a guide for the implementation of
our combinators, and as reference for defining this work own Extended Backus-Naur Form
(EBNF) parser. We now take a brief look at its core components. We start by defining
the main components of the ISO 14977 EBNF.

Chapter 2. Languages, Parsing, and Tools 33

Sequence An ordered list of zero or more items.

Sub-sequence A sequence within another.

Non-terminal A syntactic element of the language.

Meta-identifier The name of a non-terminal symbol.

Start symbol A non-terminal that does not occur in any other syntax rule.

Sentence A sequence of symbols representing the start symbol.

Terminal A sequence of one or more characters forming an irreducible ele-
ment of a language.

Before we proceed, some notes about the definition of these components. The sequence
component is presented above as it is on the ISO standard, but the requirement of some
sort of order between its items is an odd one, specially when no order criteria is provided.
For this reason, we will ignore it. Also, it states that the length of a sequence can be null.
Since grammar rules correspond to parsing functions, defining a rule as an empty sequence
of elements would compare to the definition of a function without a body, therefore, a
sequence must contain at least one item.

Regarding the start symbol, the ISO EBNF does not anticipate any indirect recursion
over the start symbol, a restriction we overlook in this work. It does not affect in any way
the definition of input grammars, nor the implementation of combinators.

Next, we present the set of operators and symbols defined by the ISO EBNF, and give
an informal description of their semantics. We divide them into two sets. In Table 5, we
list stand-alone operators and symbols, while in Table 6, we list the balanced ones.

Table 5 – ISO EBNF stand alone symbols/operators.

* repetition-symbol
, concatenate-symbol
| alternative-symbol
= defining-symbol
; terminator-symbol

In Table 5, the concatenate- and alternative-symbol correspond directly to the alterna-
tive and sequence operators from CFGs (in Table 3), with the exact same semantics. The
defining-symbol, as implied by its name, indicates the definition of a rule (non-terminal),
it unifies the notation for symbols such as ‘::=’, ‘→’, or ‘:’. The terminator-symbol is just
a punctuation indicating the end of a rule definition.

The repetition-symbol needs a more elaborate explanation. It must not be confused
with the RegExs ‘∗’ operator (introduced in Section 2.1.1), it is a binary operator for defin-

Chapter 2. Languages, Parsing, and Tools 34

ing the finite concatenation (“repetition”) of a sub-sequence ß, such that n∗ß ≡ ß1, . . . , ßn,
where n ∈ N15.

Finally, in regard to the precedence of the operators in Table 5, their precedence is as
laid out by the table, from the highest precedence at the top, to the lowest, at the bottom
row. However, the termination-symbol is not an operator, and defining-symbol also does
not need to be seen as one.

Table 6 – ISO EBNF balanced symbols.

’ single-quote-symbol
“ double-quote-symbol
(start-group-symbol end-group-symbol)
[start-option-symbol end-option-symbol]
{ start-repeat-symbol end-repeat-symbol }

Table 6 lists a set of grouping symbols. Lets start with both quotation marks, single-
quote- and double-quote-symbol. These symbols are used to define, group together, a
terminal. A terminal started by a single quote must end with a single quote, the same ap-
plies to double quotes. Quoted sub-sequences can exist inside another using the alternate
quotation, “Quote this, ‘quote that’”, but at no point the same quotation symbol can be
used in a sub-sequence of itself, “Quote ‘this, “quote that”’”.

The next three balanced pair of symbols define the grouping of rule structures, meaning
that any element used on a non-terminal definition can be used inside of these grouping
symbols, except for defining-symbol, and termination-symbol. These structures defined
inside of a grouping pair of symbols act as anonymous rules definitions, terminated by
one of the end-*-symbols.

The only semantic addition made by these symbols has to do with precedence and
grouping. Consider the following definition id = (letter | digit), 31∗(letter | digit);, al-
though ‘,’ has precedence over ‘|’, because the alternative between letter and digit occurs
inside ‘()’, choosing one of them must be resolved before the sequencing, also the repeti-
tion, in the second element of the sequence, is applied over the hole choice and not only
its first element, such that we have

id = (letter | digit), (letter | digit)1, . . . , (letter | digit)31;

instead of
id = letter | digit, letter1, . . . , letter31 | digit; .

The described grouping and precedence modification effects also hold for the remaining
two grouping symbols, but both add their own extra semantic twist.
15 If greater clarification is needed. N = N0 = N ∪ {0}.

Chapter 2. Languages, Parsing, and Tools 35

First, the *-option-symbols define an optional rule structure, all that is defined between
‘[]’ may be matched at most once. Finally, the *-repeat-symbols define a similar repetition
pattern as the repetition-symbol from Table 5, but it defines a non-deterministic number
of repetitions of whatever is described between ‘{ }’. Instead of a finite one, it will match
a pattern for as long as it happens in the input stream.

To illustrated some of the EBNF functionalities and syntax we recall grammar 2.8. Its
parser, Algorithm 2.3, was said to actually correspond to another grammar, one that could
not be described by basic BNF notation. We introduce the EBNF grammar corresponding
to Algorithm 2.3, using the syntactic metalanguage described in this section.

if = 'if ', expr , 'then ', stmts , ['else ', stmts];

More examples to help understanding the ISO EBNF notation can be found in Chap-
ter 4, and Appendixes A and C. Details regarding the implementation of our EBNF parser
and combinators, as well as their limitations, are discussed in Chapter 3 and Section 4.2,
respectively.

2.5 HASKELL

Before we proceed to the discussion of our implementation and results, we introduce what
we believe are necessary concepts for the understanding of this work implementation and
discussion. We present the fundamental concepts of Haskell, a general purpose, purely
functional PL.

We take a moment to consider the term “purely functional”. It is because of this
purity that the so-called pure FLs are regarded as tools for writing secure, error-free, sys-
tems (23). The term itself is controversial, and there is no agreement on its meaning (24).
For the purposes of this work, we focus on the fact that pure FLs center around the notion
of evaluation of expressions, rather than the modification of the state of a program (25).
We do not dwell on this topic any longer, and defer to works such as (24) for deeper and
more accurate discussion.

To center around the evaluation of expressions means that the programmer defines
functions in terms of equations, which obey normal mathematical principles, and that
determine the value of a function for an arbitrary input (23, 26). This idea is sometimes
called computation by calculation, because the role of the underlying machine is to act as
a simple evaluator (calculator), except that we can increase the power of this evaluator
by introducing new definitions (25, 26).

2.5.1 Expressions and Types

Let us start our Haskell tour by defining some fundamental concepts. First, if we are to
perform calculations, what are the objects of these calculations? As already hinted, in the

Chapter 2. Languages, Parsing, and Tools 36

beginning of this section, we perform calculations on expressions. Expressions are used
to denote values, which can be atomic, indivisible, such as a number or a character, or can
be structured, composed of smaller elements, such as lists, tuples and functions (25, 26).
Values are expressions resulting of an evaluation (25).

Every well-formed Haskell expression has a type (25). Types are collections or sets of
values, which are in some way similar to each other (23, 25, 26). For example, although
‘a’ and ‘b’ are different characters, both are elements of the set of all characters, and
we can apply the same kind of operations over them, such as capitalization. Some Haskell
values and their associated types are illustrated in Table 7.

Table 7 – Examples of values and their types.

101 :: Integer

'a' :: Char

['a', 'b', 'c'] :: [Char]

(['o','n','e'], 1) :: ([Char], Integer)

The symbol ‘::’ can be read as “has type” or “is a(n)”. The last two items of the
table are Haskell’s basic structured types, the first is a list of characters and the second a
tuple of two elements (a pair), the first element a list of characters, the second an integer
number.

A list is a homogeneous sequence of elements, all elements must be of the same type,
enclosed by brackets, and separated by commas (27). Lists may have an arbitrary number
of elements, from zero up to ∞, including other lists. In this case its type would be
indicated by [[T]], for a list of lists of T. If lists are homogeneous and possibly infinite,
tuples are possibly heterogeneous and finite, with elements enclosed by parentheses and
separated by commas (27). Tuples of many elements have type (T1, . . . , TN).

For a FL the most important kind of expressions is the function. A function f is a
relation, a rule of correspondence, from an element of type A into a value of type B. This
relation is expressed by a type signature of the form f :: A -> B. Table 8 shows examples
of functions and their corresponding types.

Table 8 – Examples of functions and their types.

odd :: Integer -> Bool

toUpper :: Char -> Char

length :: [a] -> Int

There are a couple of new elements worth noticing in Table 8. First, we can see that
the type names in the signature of functions are separated by the operator (->). The
arrow operator is used to define function types, it takes two types as parameters and

Chapter 2. Languages, Parsing, and Tools 37

gives us a function type. Functions with more than two types can be defined by extending
the arrow notation T1 -> . . . -> TN, where TN indicates the return type of a function.

Another new element can be noticed in the type signature of function length. Instead
of specifying its parameter type with a type name, as the other functions, id uses a
variable, which is called a type variable. Haskell expressions are polymorphic by default,
the type variable a indicates the polymorphic nature of function length. A type variable
can be substituted by any Haskell type, “allowing” the parametrization of a function,
meaning that length can calculate the length of any list (27).

2.5.2 Definitions

Haskell programs are composed of a number of definitions, which associate an identifier
(name) to an expression (23). For example.

pi :: Float

pi = 3.1416

The first line of the above definition declares pi to be of type Float, and the second line
associates (binds) the identifier pi to the value 3.1416. The second line of the definition
of pi is called an equation (25).

Now suppose we want to use pi to calculate the area of a circle. We can define a
function circleArea as follows.

circleArea :: Float -> Float

circleArea r = pi * square r

where

square n = n * n

Notice that function circleArea is defined in the same way as pi, except that it
takes a parameter r :: Float, and its body, the expression to the right of the symbol
‘=’, is slightly more elaborate. The body of circleArea tells us that the area of a circle
is given by the product of pi and the square value of r. We observe that square is a
local definition, introduced by the use of the keyword where16. The function square takes
a number n and multiplies it by itself. If we look closer, we see that square is applied
to its argument without parentheses, common in many other PLs. In Haskell, function
application is indicated by spaces between the function name and its arguments. We show
some examples of function applications in Table 9.

First function, sort, takes a list of numbers and return a list of numbers in ascending
order. The second function takes a pair, not a pair of arguments, but a single tuple
composed of two elements, and returns the first of them. And at last, the function apply,
16 There are other ways to introduce local definitions, such as the let . . . in . . . construction, which

can be found in Chapter 3.

Chapter 2. Languages, Parsing, and Tools 38

takes two arguments, a function over numbers and a number, then it applies the first
argument to the second.

Table 9 – Haskell function applications.

sort [1, 0, 3, 2]

fst (x, y)

apply (\n -> n * n) 0

There are a couple of things worth discussing about the function apply. As mentioned,
it takes another function as an argument. In Haskell, functions can be handled as any
other object, such as numbers (23). A function that takes another function as argument,
or returns a function as its result, is called a high-order function. Next, the function,
argument of apply, is a lambda-expression, or simply lambda, an anonymous definition
of a function. A lambda starts with a backslash (\) symbol, followed by a list of arguments
separated by spaces, then the definition symbol ‘->’, and an expression. Finally, notice
that the lambda-expression is enclosed within parentheses to guarantee that apply will
see the whole expression as a single parameter.

One last note on the definition of functions. We mentioned that the binding of an
identifier to an expression can be called an equation, this has some meaning that goes
beyond just nomenclature. A Haskell function can be defined by multiple equations. Con-
sider for example the definition of addition over natural numbers in axiomatic set theory.
If we were to define its equivalent in Haskell, we could do so as follows.

+(m, 0) = m ∀m ∈ N;

+(m, S(n)) = S(+(m, n)) ∀m, n ∈ N

add :: Nat -> Nat -> Nat

add m Zero = m

add m (Succ n) = Succ (add m n)

We see that there are two equations for the definition of addition, both in set theory
and Haskell. The first equation defines the addition of any number m to zero to be
equal to m. The second equation is defined recursively, for the sum of a number m and
the successor (S, Succ) of another number n, is the successor of the sum of m and n.
Simplifying, for each iteration of add in which we reduce n by one, we add one to m.

Now that we have two equations with the same name, which one should we use when
calling add? Functions defined by this sort of equational reasoning are chosen by pattern
matching over the structure of their arguments values. The syntactic expressions of values,
called patterns, are used to choose, on a top-down order, which is the appropriate equa-
tion (27). For example, if we call add a Zero, the first equation will be applied, since the
second parameter matches the pattern defined in the first equation. On the other hand,
if we call add Zero a, we will fall to the second equation, which will then be applied,

Chapter 2. Languages, Parsing, and Tools 39

assuming that a is of the form Succ (...)17.
One interesting aspect of the addition of natural numbers, previously defined, is the

natural number type and its structure, which closely relates to the definition of natural
numbers in set theory. How is that possible? Does Haskell defines natural numbers in
such an “unconventional” manner, instead of using digits?18 What happens is that Haskell
allows us to define our own types, a topic we discuss next.

We walk or way up on the definition of types in Haskell by first introducing the idea of
type synonyms. As its name implies, type synonyms is a mechanism for giving alterna-
tive names for types, possibly more suggestive, clearer names, for an already existing type
(26). Now, remember Table 7, some of the types used to describe those values are “suit-
able” for having type synonyms. In fact, the third line of Table 7, the list of characters,
has a common type synonym defined by Haskell. Also, the last item of Table 7 could, for
example, represent some element of an associative list. The code bellow illustrates how
these synonyms would be defined.

type String = [Char]

type Entry = (String , Int)

We can use the synonyms in the example above to rewrite the last two entries from
Table 7 as shown in Table 10.

Table 10 – Values and their types with type synonyms.

"abc"19 :: String

("one", 1) :: (String, Integer)

We can further elaborate on the idea of type synonyms and their utility. Consider the
type Entry we just defined. Say for example that we want to represent any type of entry
indexed by a string, we could do that by introducing a type variable, rewriting our type
Entry as follows.

type Entry a = (String , a)

We can use this type synonym to define other synonyms, such as the associative list in
which an Entry would be stored.

type Assoc a = [Entry a]

17 More information and examples on pattern matching can be found in the references used in this
section.

18 Some Haskell implementations actually provide a similar implementation of natural numbers.
19 A list of characters can be written as one would normally write a string in most PLs.

Chapter 2. Languages, Parsing, and Tools 40

Although type synonyms can prove to be quite useful, they do not actually define
new types, only aliases. Algebraic Data Types (ADTs) are Haskell’s mechanism for
defining new types. ADTs resemble grammar rules in the structure of their definitions.
They are composed of a left-hand side called type constructor, which defines a new type
(similar to nonterminals), and a right-hand side composed of an “enumeration” of value
constructors, which specify what values a certain type may have (alternatives).

To illustrate the definition of an ADT, we recall the Nat type, previously used to
illustrate the definition of functions, which can be defined in the following manner.

data Nat = Zero | Succ Nat

What this definition tells us is that a natural number is either zero, or the successor
of another natural number. Any natural number could be constructed as described in
Table 11.

Table 11 – Natural numbers and their corresponding digits.

Nat Digit
Zero 0
Succ Zero 1
Succ (Succ Zero) 2
Succ (Succ (Succ Zero)) 3

... ...

Types where at least one of its value constructors is defined in terms of the type
constructor, in the case of Nat its second value constructor, are called recursive types.
The recursive pattern of type Nat should be clear in the values listed in Table 11.

To finish this section we would like to observe that Haskell offers yet another device for
defining types. It is similar to ADTs in the sense that it is composed of a left-hand side,
where the type constructor is defined, and a right-hand side, where the value constructor
is defined, except that it can only have a single value constructor. We show an example
of this mechanism in the following code, a slightly different version of the associative list
introduced earlier.

newtype Assoc a = Assoc [Entry a]

Despite the restriction to the number of value constructors, the newtype construction
provides an easy way to define a simple type that can be made into an element of a type
class, the main topic of our next section.

Chapter 2. Languages, Parsing, and Tools 41

2.5.3 Type Classes and Monads

If a type is a class of values similar to each other according to some criteria, normally the
kind of operations we can perform over such values (23), type classes define a class of
types, similar in regards to the functions that can be applied over the values of a type
within such class. For example, the type class Eq defines a set of types that can, in some
way, be compared for equality. Specifically, it specifies the fundamental common behaviors
amongst the instances of a type class. The definition of the type class Eq follows.

class Eq a where

(==) :: a -> a -> Bool

One way of reading the above class definition is as “a type a is an instance of class
Eq if the operation (==) can be defined for type a” (25). To illustrate how a type can
be made into an instance of a type class, we implement an instance of the type Assoc,
introduced at the end of Section 2.5.2, for the type class Eq.

instance Eq a => Eq (Assoc a) where

(Assoc []) == (Assoc []) = True

(Assoc []) == (Assoc _) = False

(Assoc _) == (Assoc []) = False

(Assoc (x:xs)) == (Assoc (y:ys)) = x == y && xs == ys

What the implementation of Assoc as instance of Eq tells us is, two empty associative
list are equal. An empty associative list is not equal to another list that is not empty.
And finally, an associative list is equal to another, if each of its elements is equal to the
corresponding element in the other list20. This instance says something like “type Assoc

is an instance of class Eq and this is how the operation (==) is performed on it”.
Type classes can also be used to enforce restrictions on certain operations. This is

sometimes referred to as qualified types, which is a solution for when one might need or
prefer to limit a type variable (polymorphic type) to a smaller class of possibilities (25).
This happens on the first line of our Assoc instance of Eq, where we say “are instances of
class Eq only those associative lists composed of elements of type a, such that a can also
be compared for equality”.

A particularly notorious Haskell type class is called Monad. In Haskell a monad is
a parametrized type m, an instance of the type class Monad, which has its fundamental
behaviors characterized by the following functions (28).

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

20 Notice that our associative list is actually a common list of pairs, so the comparisons of the elements
are perfomed in an ordered fashion, from the left to right, something that might not happen on an
actual implementation of an associative list.

Chapter 2. Languages, Parsing, and Tools 42

The return function states that a value of type a can be lifted, put in the context of type
constructor m. Operator (>>=), also known as bind, states that computations over values
within some context identified by m can be sequentialized.

To clarify these ideas of context and computations within contexts, consider the monad
Maybe, which we will see later in Chapter 3. The type Maybe represents uncertainty,
whether a computation returns a value or not, it is a way to represent partial functions
via types. Imagine for example some collection of type c, and that we want to define a
function that retrieves some element of said collection. Such a function cannot return a
value that is not in the collection, but a function in Haskell always returns a value and
therefore we need some way of adding extra context to this computation. The type Maybe

provides us such context by means of two constructors, Just for when a function returns
a value for a given argument, Just c for our collection, and Nothing otherwise. There is
a catch to this “trick” though, we cannot operate directly over values wrapped within a
context. A value of type Maybe Int is not the same as a value of type Int, for instance,
we cannot directly add (+) values of the former. Functions such as (>>=) provides us with
a tool for reaching for the values within the context of a monad. The bind function in
particular, allows us to apply operations to those values sequentially, while being capable
of “storing” the intermediate results.

With this brief introduction to monads, we conclude our tour of Haskell. Although a
simple language in terms of its syntax, Haskell has plenty of semantic aspects that are
unconventional for those not used to functional programming. Yet, we do not wish to dwell
to long on its details, and possibly complicate the understanding of concepts necessary
for this work comprehension. We encourage the reader, if interested or in need, to take a
look at the references utilized throughout this section.

43

3 ON THE IMPLEMENTATION OF GLL COMBINATORS

“ Three witches you shall meet, along the road to your fate. The first is
twilight, the second is night, and the third is the coming of day. ”

The Sword, 2010

To start this chapter we take a moment to consider its epigraph. This quote was
intended as a metaphor for the general structure in which the few articles (9, 21, 29) dis-
cussing the implementation of the GLL parsing technique, in a mostly functional manner,
are organized.

Those works normally discuss their implementation of GLL as a three step process.
First, the implementation of standard parser combinators, where the basic and main
concepts are covered. This section would be analogous to the first witch mentioned in the
epigraph, the twilight.

The second step would be to formalize extra machinery necessary to achieve the im-
plementation of a general, GLL like, set of combinators. At this point the concept of
Continuation-Passing Style (CPS) combinators and the basic notions of memoization are
introduced. This step is analogous to the night.

And finally, the memoization of parsing combinators and continuations, as a tool for
coping with left-recursion and ambiguity is discussed. This third step would finally lead
us to the dawn of a new parsing tool, one that adapts a strictly imperative technique into
a set of composable functions for parsing.

Although this work fails to provide GLL like combinators, as the underlying parsing
tool of our parser generator, we still cover their implementation and choose to do so in
the same format described above. We believe it is a good constructive strategy to provide
insights into the pitfalls of GLL implementation in a pure FL, such as Haskell.

3.1 STANDARD PARSER COMBINATORS

Parser combinators are simple high-order functions used to represent grammar construc-
tions such as choice, repetition, and so on (30, 31). In this context, a parser is both
the combination of many parser combinators, but also each of these smaller components.
Therefore, a parser is normally defined as a function, or a function type.

type Parser i a = i -> [(i, a)]

As defined above, a parser is a function from some input i into a list of pairs, which
are composed by the remaining unconsumed input, and some result of type a. The return
being a list makes it possible to represent the failure of a parser, by yielding an empty

Chapter 3. On the Implementation of GLL Combinators 44

list, and also the non-deterministic nature of grammars, returning a list of results, one for
each alternative of a rule, for example.

We take a slightly different approach. A parser is defined as a class of types, in this
case a class of function types (32):

class Parser m where

parse :: m a -> String -> [(String , a)]

fullParse :: m a -> String -> [a]

fullParse p i = [a | ("", a) <- parse p i]

where the function parse is the main interface for the application of a parser, and
fullParse applies a parser but does not return partial results of that parser applica-
tion, it only returns results for parsers that consume the whole input.

The use of a type class, instead of a data type or type alias, allows simple extensions to
the concept of parser, whilst maintaining a consistent interface to its different definitions.

Another particular characteristic of this combinators implementation is their sepa-
ration into two “sets”. The first corresponds to a monadic implementation of a parser
instance, similar to what happens in many other works. The second component imple-
ments a stricter version of the combinators to be used as the main back-end tool for
parser generation. This separation of the combinators into two components allows the use
of the combinators apart from the parser generator, as a library for the implementation
of parsers, similar to what is proposed by many works on functional parsing.

Our implementation of the basic idea on parser combinators starts with the definition
of a “standard” parser.

newtype Std a = Std (String -> [Res a])

-- where

type Res a = (String , a)

It should be clear by now why this is called a standard parser, it is a simple parametrization
of the general concept of parser presented in the beginning of this section. A parser is a
function from an input string into a list of results.

The next step is to make this function type an instance of Parser and Monad. The
implementation of the standard parser instance is quite simple.

instance Parser Std where

parse (Std p) = p

The implementation of the parse function consists of the simple extraction of the actual
parsing function from its constructor.

Now, the instance of Monad for the standard parser is defined as follows1.
1 Instances of the Monad type class are required to be instances of the Functor and Applicative type

classes. We chose to not cover their implementations, since it does not contribute to the understanding
of how parsing combinators work.

Chapter 3. On the Implementation of GLL Combinators 45

instance Monad Std where

-- return :: a -> Std a

return a = Std $ \i -> [(i, a)]

-- (>>=) :: Std a -> (a -> Std b) -> Std b

Std p >>= f = Std $ \i ->

concat [q i' | (i', a) <- p i , let Std q = f a]

First, return defines a parser that always succeeds for an arbitrary value a. The
parser just makes a the second element of its return value, and consumes no input. The
bind operator takes a standard parser p and applies it to an input i, then the function
f is applied to the second element of each result produced by p. The application of f

results in another parser q which is then applied to the remaining input i’. We use list
comprehensions to define our bind operator2.

Despite being an instance of Monad, our standard combinators are not very useful. For
changing this, first we define the basic grammar operators listed in Table 3, Chapter 2.

class GrammO m where

(<:>) :: m a -> m b -> m (a, b)

(<|>) :: m a -> m a -> m a

Operator (<:>) corresponds to the sequence operator, and (<|>) corresponds to the
alternative operator. The implementation of both operators is given bellow.

instance GrammO Std where

-- (<:>) :: Std a -> Std b -> Std (a, b)

p <:> q = do a <- p

b <- q

return (a, b)

-- (<|>) :: Std a -> Std a -> Std a

p <|> q = Std $ \i -> parse p i ++ parse q i

The sequence operator takes two parsers p and q. Parser p is applied first and its result
is stored in a; then q is applied, its result is stored in b. Finally, we return a pair (a, b),
a binary representation of a sequence3. Longer sequences are represented by nested pairs,
for example, see the following application.

a <:> b <:> c <:> d
+

=⇒ ((a, b), c), d)

We note that nesting occurs to the left, because of the left-associativity of the (<:>)

operator. The sequence combinator fails to parse an input if any of its elements fail, think
of it as an and over parsers.
2 For simplicity, list comprehensions can be seen as syntactic sugar for iterators that always produce a

list of values.
3 Tuples are the “default” data type for sequences representation in many works on functional parsing.

Chapter 3. On the Implementation of GLL Combinators 46

The alternative operator defines a simple concatenation of the returns from its pa-
rameters, parsers p and q. One can think of it as an or over parsers. Let the results of
applying p and q be the lists xs and ys, respectively, then, we have:

xs ++ ys = x0: . . . :xn−1:ys

xs ++ [] = xs

[] ++ ys = ys

[] ++ [] = []

An alternative combinator will only fail if both of its parameters fail. The same reasoning
can be extend to rules with an arbitrary number of alternatives.

With this we have covered all of the instances implementations. Before we proceed to
discuss the implementation of the combinators synthesized by the parser generator, we
define the structure of parse trees, which result from the applications of these combinators.

data ParseTree = Eps

| Token Tk

| Seq L R

| Rule Label Alt

A ParseTree is composed of at least one of the following elements.

Eps: Represents an empty production;

Token: A leaf node that corresponds to a grammar terminal. The parameter for this
constructor is a string Tk;

Seq: A grammar rule is composed by at least one sequence of n ≥ 1 juxtapositions
of elements. This juxtaposition is represented by the Seq constructor. Seq is
a binary sub-tree with (L)eft and (R)ight branches. The recursive structure of
Seq allows for arbitrarily big sequences, building an unbalanced ParseTree;

Rule: Corresponds to the parsing of one of the (Alt)ernatives of the grammar
rule identified by Label. Rule acts as a sort of container for the elements of
ParseTree.

The first “parse tree generating” combinator we define is the empty one.

eps :: Std ParseTree

eps = success Eps

Parser eps always succeeds4 with an “empty” ParseTree as result. The name eps is
short for epsilon, a letter from the Greek alphabet used in this work, and textbooks on
formal languages, to represent an empty production.

We are still to define a combinator which consumes input.
4 The function success is an alias for the previously defined monadic function return.

Chapter 3. On the Implementation of GLL Combinators 47

term :: String -> Std ParseTree

term "" = error "Terminals must be non -empty strings!"

term s = Std $ \i ->

let n = length s

s' = take n i

i' = drop n i

in if s == s' then [(i', Token s')]

else []

The combinator term takes a string s and matches it against the first n characters of
input i, where n is the length of the parameter s. In case of a match, the Token s (or s’)
is returned. Unlike most common parser combinators, no parametrization of a terminal
value is allowed, strings are the only literal values matched or generated, as defined by
the ISO EBNF standard.

The alternative operator utilized by the parser generator is the same as the one defined
as instance of the GrammO type class, while the sequence operator is slightly different.

sqnc :: Std ParseTree -> Std ParseTree -> Std ParseTree

sqnc p q = p <:> q >>= \(x, y) -> return $ Seq x y

The sqnc combinator uses operator (<:>), previously defined, to parse the input, taking
the resulting sequence pair and converting it into a sequence value of the ParseTree type.

Finally, the last of the basic combinators.

rule :: Label -> Std ParseTree -> Std ParseTree

rule l alts = Std $ \i -> label l $ parse alts i

where

-- label :: String -> [Res ParseTree] -> [Res ParseTree]

label l rs = [(i', Rule l t) | (i', t) <- rs]

The rule function acts as a wrapper combinator of sorts. It takes a label l, which
will identify a set of alternatives alts. The function label takes the result of parsing the
alternatives of rule and “encapsulates” them into a new result. If the original result was
a failure, label behaves like the identity function. Otherwise, it will take the resulting
parse tree t and “put it inside” a new parse tree Rule labeled by l. No change to the
structure of t occurs.

As will be discussed in Chapter 4, one of the measures to provide an easily verifiable
implementation of a parser generator is to define a set of combinators describing a one-to-
one mapping between EBNF operators and parser combinators. To achieve this one-to-one
relation we need a few extra combinators.

The missing combinators are the ones corresponding to the definition of optional sub-
rules (‘[]’), as well as unbound (‘{}’) and finite repetition (‘∗’). We define their relative
combinators as follows.

First, the optional (opt) combinator, where we first make use of the rule parser, by
way of its infix notation (=!>).

Chapter 3. On the Implementation of GLL Combinators 48

opt :: Std ParseTree -> Std ParseTree

opt p = "Optional" =!> p <|> eps

The use of a standard label, in this case “Optional”, will allow pattern matching
over sub-trees generated by this parser in the implementation of the parser generator, see
Chapter 4 for details.

The closure combinator, which implements unbound repetition.

closure :: Std ParseTree -> Std ParseTree

closure p = "Closure" =!> p' <|> eps

where

p' = p # closure p

Here we see the infix alias (#) for the sequence (sqnc) combinator.

times :: Int -> Std ParseTree -> Std ParseTree

times 0 _ = eps

times 1 p = p

times n p = "Repetition" =!> p'

where

p' = p # (n - 1) *. p

Finally, the combinator for finite repetition, where the operator (*.) is the infix version
of the function times.

3.2 CPS COMBINATORS

Pushing onwards in our path to the implementation of GLL combinators we take our sec-
ond step, rewriting the introduced parser combinators into CPS combinators. Intuitively,
as suggested by its name, a continuation is a function that tell us what to do next, or
rather what to do next with the result of a previous computation.

A continuation can have various forms5. It can be defined as a simple identity function
type a -> a, or be something a bit more general a -> b, or even incorporate some type
of context a -> m b. If we recall the monadic bind definition, from Section 3.1, we can
observe the pattern a -> m b as the second parameter of that function. We define our
continuation parser type in a similar fashion6.

newtype KP m a = KP (forall b. (a -> m b) -> m b)

In the same way that the function f, parameter of the standard parser monadic bind,
takes the result from a previous parser application and returns a new parser, a continuation
5 The term “form” is loosely used here to refer to a general idea of a function behavior, based on his

type alone, and not his actual body.
6 The use of forall in the definition of KP requires the ghc extension RankNTypes. We try to avoid

“language extensions” as much as possible. This is the only one in the whole implementation.

Chapter 3. On the Implementation of GLL Combinators 49

parser KP takes a value of type a and returns a parser m b, which will then continue the
parsing process.

A continuation is made into a parser by the implementation of the parse interface
from the Parse type class.

instance (Monad m, Parser m) => Parser (KP m) where

parse (KP p) i = parse (p return) i

CPS functions do not return directly to their callers, instead, they take an extra
parameter, a continuation that will take their computed result (28). In the implementation
of the parse function, the monadic return acts as the continuation argument of parser
p. In fact, any other function of type a -> m b could be used.

Much of the code presented in Section 3.1 is replicated by the CPS combinators, one
could compare their implementations, the sources are available at <https://bitbucket.
org/claytown/hgll-re>. Because of this similarity, we choose not to list the entirety of the
code for the implementation of the CPS combinators, and discuss only what we consider
to be the most relevant components, significantly different parsers.

We start with the implementation of the Monad instance.

instance Monad (KP m) where

-- return :: a -> (KP m) a

return v = KP $ \k -> k v

-- (>>=) (KP m) a -> (a -> (KP m) b) -> (KP m) b

KP p >>= f = KP $ \k -> p (\a -> let KP q = f a in q k)

The function return, instead of returning a Res a, it applies a continuation k to its
parameter a. If we substitute k by our continuation return, from parse, we have return

v, a parser of type m b.
In the bind function, the continuation, argument of p, is a lambda that takes the

computed value a, from p, and applies f to it, the resulting parser q is applied to the
continuation k, closing the sequence.

Even as CPS functions, if we compare the combinators and descriptions just given, to
the standard combinators, we can notice their great similarity, despite some differences in
code. If the standard and CPS combinators are so similar, why use CPS? Continuations
can be used as a tool to achive backtracking functionality in a functional language, and
backtracking is a way for achieving non-determinism in the implementation of parser
combinators (28, 33). Also, the combination of continuations and memoization allows
top-down parsers to terminate even when processing left recursive grammars (33).

3.3 MEMOIZED COMBINATORS

Before going into details on the limitations of this work to deliver GLL combinators, we
try to understand how combinators relate to GLL, a technique that could not seem more

https://bitbucket.org/claytown/hgll-re
https://bitbucket.org/claytown/hgll-re

Chapter 3. On the Implementation of GLL Combinators 50

apart. If we first look at the relation between traditional, imperative, RD parsing, this
relation should be more obvious than one would expect.

Conventional RD parsers translate grammars into functions and conditionals. Combi-
nators do the same, and so does GLL, only that it makes the control flow of the parser
explicit. Looking back at the structure of a GLL descriptor, its first element, the label, is
just a reference to a function. The second element of a descriptor, a stack of labels, is the
explicit representation of a parser call stack, storing references to where this parser must
return. The third element is an index to the remaining input to be processed by a parser.

Now imagine the combinators as GLL descriptors. The reference to a parsing function,
is the combinator itself. The call stack of a parser is implicitly controlled by the system
or interpreter. The input index is the only constant parameter of a parser combinator
definition. Further on, the so-called return labels represent procedures applied after the
return of some other parsing procedure. Their relation to the continuations introduced in
Section 3.2 should be intuitive enough.

The difference between the combinators discussed so far and GLL lies in two main
elements. First, they do not apply a especial procedure for dispatch control, such as label
L0. Also, they lack the tools to cut out left-recursion, especially memoization.

To our knowledge, all works that implemented the GLL technique utilizing combina-
tors did it in what could be called a “mostly functional” manner. Although their com-
binators are “functional”, they rely on non-functional machinery to purge left-recursion.
However, a recent work, which we discuss in Section 5.1, has an approach that is different
from these previous works.

Mark Johnson (33) introduced a technique that combined continuations and mem-
oization to handle left-recursion in top-down parsers based on combinators. Johnson’s
technique can be related to most of the works we discuss in this section, what complicates
the understanding of what makes a set of combinators GLL. We elaborate on this topic
in Section 5.1, for now we focus on the works derived from Johnson’s approach.

Johnson starts by defining a set of combinators, very similar to the set we implement
in Section 3.1. After presenting the setbacks of his set of combinators, he introduces
a memoization procedure, which at first aims only to reduce the number of redundant
computations performed by backtracking parsers.

This first memoization procedure is a simple wrapper function that takes a parser
(unmemoized) and returns a memoized version of it. The memoized parser is a function
which defines a shared data structure that maps the parser arguments into its result.
Every time a memoized parser is called, it checks if a result was previously computed for
his set of arguments. If true, the stored value is returned, otherwise the parser is applied
to its arguments and the result is stored in the shared map before it is returned.

The memoization just described cannot cope with left-recursion because the unmem-
oized parser is called before an entry is created in the map, thus leading into non-

Chapter 3. On the Implementation of GLL Combinators 51

termination. The Scheme code bellow comes from Johnson’s paper and illustrates this
situation. The unmemoized parser fn is called in the first line, while the map update
should happen in the second line.

(let ((result (apply fn args)))

(set! alist (cons (cons args result) alist))

To be able to implement left-recursive grammars both, the original set of combinators
and the memoization machinery must change. A new set of CPS combinators is imple-
mented. Finally, memoization is adapted to accommodate continuations and multiple
results per parser, since CPS combinators introduce non-deterministic behavior.

The memoization still defines and relies on a map data structure, still indexed by the
arguments of a parser, except that now each entry of the map is composed by a pair of
sets. One is a set of results. The other one is a set of all continuations passed as argument
to the parser identified by the entry index.

When a memoized procedure is called it checks whether it has already been called
with the current set of arguments. If not, the current continuation argument is added to
the memoization map. Then the unmemoized parser is called to process the input. Its
result will be passed to another continuation which will then store the result7.

If the memoized parser was previously called for a particular set of arguments the
current continuation argument is stored, and the continuation is applied to each of the
results in the corresponding map entry. No call is made to the unmemoized procedure.

Even though some of the details about the memoization procedure were hid, the main
concepts for handling left-recursion were covered. We can question why do we spend such
an effort on a technique that predates the GLL algorithm by about 15 years? Well, because
most of the works that implement GLL combinators make use of the same or very similar
concepts.

Johnson’s technique is attractive not only because of its simplicity and generality, but
also, because of the way memoization is implemented and utilized, which helps to preserve
a certain familiarity, common to the implementation of combinators amongst many works.
It helps to reason about their code. Also, at the time of the development of this work, we
were not aware of any other technique for the functional implementation of GLL.

We have not succeeded to implement GLL in Haskell. We discuss the pitfalls in what
follows. Let us start with considerations regarding shared mutable states. In his work
Spiewack (21) states “The primary motivation for the mutable state was convenience not
necessity.”. We dare to disagree.

To address this affirmation, let us revisit the implementation of parser combinators,
forget about monads, type classes, and so on. Let us take a look at a simple deterministic
parser, similar to the first set of combinators from Johnson (33), and others (21, 29, 34).
7 Some steps are omitted for simplicity. Please refer to the original article if necessary (33).

Chapter 3. On the Implementation of GLL Combinators 52

type Parser a = String -> Maybe (String , a)

A parser is a function that takes an input i, and may or may not return a result.
After we finished implementing all our standard combinators, we want to extend them by
introducing continuations. Here we use the simplest continuation type possible.

type K a = a -> a

We redefine our parser type to accommodate the new parameter.

type Parser a = String -> K a -> Maybe (String , a)

Now our GLL parser combinators are almost done, we just need to think about mem-
oization. First, we need a data structure, where to store continuations and parser results.

type MemoTable a = Map Args ([K a], [a])

Our memo data structure is a Map, where each entry is indexed by a set of parser
arguments Args. Each entry in MemoTable is composed of a pair. The first element of the
pair is a list of all the continuations passed to a certain parser. The second element is
the Set of values computed by this parser. The only thing missing is the memoization
procedure, we call it memo.

1 memo :: Parser a -> Parser a

2 memo p = do

3 let table = Map.empty

4 \Args k -> case Map.lookup Args table of

5 Just (ks, as) -> do -- p has been called with Args before

6 let ks ' = k:ks

7 Map.insert Args (ks ', as) table

8 fmap k as

9 _ -> do

10 let (ks, as) = ([], [])

11 let ks ' = k:ks

12 Map.insert Args (ks ', as) table

13 p Args $ \a ->

14 if a `elem ` as then

15 applyKs ks ' a

16 else do

17 let as ' = a:as

18 Map.insert Args (ks ', as ') table

19 applyKs ks ' a

The implementations of memo that we show, are not valid Haskell code, they are an
attempt to emulate Johnson’s memoization procedure in Haskell, as close as possible to
his work. We elaborate on the setbacks we encounter when trying to adapt it to this work.

Chapter 3. On the Implementation of GLL Combinators 53

Starting at Line 3, we define our memo table, which may be updated at Lines 7, 12
and 18. Well, Haskell does not support mutable data, every data “modification” actually
corresponds to the creation of a new data structure representing the updated state of a
computation. Line 3 is the representation of what happens in many other mostly functional
implementations: the definition of a local, mutable “persistent” data structure, which is
consulted and updated at each call to a parser. This allows a much more convenient
implementation of the combinators, which are almost not affected by the introduction of
memoization.

Spiewack (21) observes in his work: “If we were implementing GLL in Haskell we
would likely return a modified Trampoline [. . .] rather than modifying its data structures
in-place”8. This is how one would implement stateful computations in a pure FL, we must
explicitly thread the computation state around.

Again we need to modify the Parser type.

Parser a = String -> MemoTable a -> K a -> (MemoTable a, [(String , a)])

Parser now takes a MemoTable as argument, but also returns a MemoTable, and has a
non-deterministic behavior, indicated by the return of a list of results instead of a Maybe.
We modify memo to accommodate these changes.

1 memo :: Parser a -> Parser a

2 memo p = \Args table k ->

3 case Map.lookup Args table of

4 Just (ks, as) -> -- p has been called with Args before

5 let ks ' = k:ks

6 table ' = Map.insert Args (ks ', as) table

7 in (table ', fmap k as)

8 _ ->

9 let (ks, as) = ([], [])

10 ks ' = k:ks

11 table ' = Map.insert Args (ks ', as) table

12 in p Args table ' $ \a ->

13 if a `elem ` as then

14 (table ', applyKs ks ' a)

15 else

16 let as ' = a:as

17 table '' = Map.insert Args (ks ', as ') table '

18 in (table '', applyKs ks ' a)

It looks like we solved our problems regarding mutable state, it seems Spiewak’s ob-
servation on the matter was correct.
8 Trampoline is Spiewak’s implementation of label L0. Is a class that defines important control data

structures, and is responsible for the dispatch of parsing procedures. In a way, this is where memoiza-
tion happens.

Chapter 3. On the Implementation of GLL Combinators 54

However, if we look carefully at the latter memo code we can notice some type related
issues. Remember the definition of the continuation type. It is an identity type function
a -> a. Now consider Lines 7, 14, and 18, where we return the parsing result. In the
second element of those pairs, we either apply a continuation to a list of values of type a,
or apply a list of continuations to a value of type a, in both cases returning [a]. But this
is not the expected type (MemoTable a, [(String, a]). We modify the continuation
type to fix this problem.

type K a = a -> [(String , a)]

This is not quite right as expected. Let us first talk about function applyKs, which
can be found at Lines 14 and 18. Function applyKs, as its name implies, applies each
continuation from list ks’ to value a. Now that a continuation returns a list, applyKs
returns [[(String, a)]]. A simple fix would be concat $ applyKs ks’ a, which would
“flatten” the return of applyKs into a single list of results, the expected return type.

Another problem, this with greater implications, can be observed at Line 12. The
parser p application takes advantage of the fact that a parser takes a continuation, passing
p a continuation responsible for memoizing result a (the lambda expression after the ‘$’

operator) and propagate it to the continuations that where arguments of p before. The
problem has to do with the return type of both parser p and continuation argument, they
must match, but they do not.

We could try and make the types of p and continuations “work out” in a couple of
ways. Changing the return type of the continuation to match the parser return would not
work, since the return pair would have type.

(MemoTable a, [(MemoTable a, [(String , a)])])

Trying to make the parser type match this would only lead to a circular issue.
Maybe we could try to implement the last six lines of memo in a different way.

1 let (table'', rs) = p Args table' c

2 a = snd $ head rs

3 as' = a:as

4 table''' = Map.insert Args (ks', as') table''

5 in (table''', applyKs ks' a)

This solution assumes a continuation c :: a -> (MemoTable a, [(String, a)])

exists. Not only that, it also assumes the head (first) element of the list of results rs to
be the appropriate pair to extract value a from, and still the problem remains. We could
extract a result r from an arbitrarily chosen element from those returned applyKs, like
we did for a, but we have no guarantees that the chosen r is the correct return of the
memoized version of parser p.

Chapter 3. On the Implementation of GLL Combinators 55

After all we discussed so far, we only addressed issues in the implementation of mem-
oization. Assuming the solutions proposed previously implemented a reliable version of
memo. Now consider the implementation of the alternative combinator, which was imple-
mented in Section 3.1 as a simple concatenation of the results of its parameters parsers
p and q. Imagine then the implementation of the alternative combinator for the memo-
ized parser type we just developed, remember, we have to “combine” two results of type
(MemoTable a, [(String, a)]).

Starting with the second element of the pair, it seems really simple, we can just apply
(++), as we did for the standard combinator. What about the first element of the results,
how can we combine or choose one MemoTable? What if our parser type is just wrong?
What if Parser returned something like [(MemoTable a, String, a)]? This type of
result implies that each parser procedure would carry its own instance of a memo table.
If we consider the example of the implementation of alt, this seems promising, we could
simply apply (++) without having to worry about MemoTable. Still, the type issue of
memoization would remain, happening again at the last element of the result tuple. If we
try to apply the continuations stored in the memo table we end up with some type [[a]].
What about type [MemoTable a, (String, a)]? Here we loose track of the appropriate
value a to pass to applyKs, can we choose one arbitrarily? We stop here, going through
all imaginable “solutions” is simply unviable.

Another very impactful feature from imperative and hybrid languages is represented
in the code of memo by the keyword Args. Memoization implemented in some dialects of
Scheme takes advantage of the ability to index data structures by a list of parameters9,
which is key to avoid left-recursion, allowing the memoization procedure to identify each
parser uniquely, avoiding calls to parsers already encountered. Spiewack relies on the fact
that Scala functions are objects and can be identified by their references, also to avoid
left-recursion.

Afroozeh et al. avoid indexing the memo table with references to parsers by having
each “parser” implement their own internal memoization. Again, this is only possible
because of mutable data structures, combined with the ability to extend types and define
continuations as functions of type Unit.

Haskell also has a type unit, which is normally used in monadic contexts to indicate
that a function produces side effects, and that its return is disposable or that we are not
interested in it. The State monad is the “default” mechanism for the representation of
stateful computations.

Remember, the State monad is only a tool for abstraction of the explicit threading of
a computation state. If anything, it makes it harder to accommodate continuations. Also,
the original motivation leading us to consider a solution using State was the possibility
9 We are not sure of the inner workings of such PLs, but is reasonable to believe this is possible via

some sort of memory reference.

Chapter 3. On the Implementation of GLL Combinators 56

of abstracting the problematic return type of continuation K with Haskell unit type ().
However, in the scenery where we would use State as a solution, the memoization of a

parser state would return something like State . . . [a], whilst the return of a side effect
continuation wold be State . . . (). This represents the idea that we are interested in
the values returned by a parser, at the same time that we are only interested in the side
effects of continuations, and this is conflicting. Another interesting phenomenon that may
arise from a solution based on State has to do with the storage of states in the memo
table, in other words, a State may store instances of itself.

After all these struggles, we could not find a solution for the type mismatches between
the many combinators and memoization components. Some GLL implementations do
not face this sort of type issue, since their supporting languages are Scheme (33) and
Racket (29). For the works of Spiewack and Afroozeh et al., which are implemented in
Scala, we argue that being able to utilize shared, mutable, data structures associated with
some other features, is not only a convenience, but is core to allow the implementation of
this sort of memoization.

57

4 A COMBINATOR BASED PARSER GENERATOR

“ No amount of source-level verification or scrutiny will protect you from
using untrusted code. ”

Ken Thompson, 1984

In Chapter 3, we showed the implementation of a set of parser combinators for the
ISO EBNF standard, and provided insight about pitfalls in the naive implementation of
GLL combinators in a purely functional setup.

We dedicate this chapter to the discussion of the contributions related to the parser
generator and its reliability. In Section 4.1 we discuss how the generator implementation is
organized, and why we believe this implementation is not only intuitively reliable, but also
suitable for formal verification. Section 4.2 show results produced by the parser generator,
as well as evidence of its reliability.

4.1 PARSER GENERATOR

Since one of the objectives we have is to provide an easily verifiable parser generator, we
deliberately tried to organize and implement the components of our parsing solution in a
systematic way.

The implementation of combinators, as mentioned in Chapter 3, is separated in two
levels. The first level defines instances of monad and parser related type classes, where
combinators are polymorphic according to those type classes specification. The second
level is where we mostly define aliases, or utilize operators defined in the first level, to
implement the combinators necessary to represent the ISO EBNF set of operators.

This separation has two main benefits. First, combinators defined in the first level can
be utilized independently, for example, as a library for writing parsers via combinators, and
can be extended without affecting components in the second level. Second, this flexibility
contributes for the reliability goal, once this base is verified as reliable, changes to the
second level or any sort of extension, will not affect it.

The set of combinators defined at level two is very small, only the few necessary to
establish a one-to-one correspondence with the operators defined by the EBNF standard.
Working with an exact one-to-one correspondence helps to provide reliability, establishing
what we call a principle of reliability, which we discuss towards the end of this section.
Alas, this small set of combinators has its down side, which we discuss later in this section.

The set of combinators utilized by the parser generator produces as output a parse
tree that represents the syntax of a language, which is read from an EBNF input file.
The parser that processes these inputs is designed to closely resemble what is specified in

Chapter 4. A Combinator Based Parser Generator 58

the ISO standard. This way one could effectively assert its reliability consulting the ISO
documentation.

We use this opportunity to make some notes on where it was not possible, or we have
chosen not, to be compliant to the standard. First, the EBNF standard defines a very
small set of characters, any character not specified by the standard cannot be used as
part of the input for the generator. It should be obvious that this is very limiting. Luckily
Haskell provides a way around this limitation. Any Unicode character can be specified as
part of a language lexical, if it is defined as a Haskell hexadecimal escaped char, \xHHHH,
where H is a hexadecimal digit. An example of this feature is given is Section 4.2

While the host language may provide advantages it may also be the cause of limita-
tions. If any character in the syntax of a language is also one of the characters Haskell
expects to be escaped within a string, then this character must be escaped in the input
file. For example, a backslash must be defined as the escaped character ‘\\’. The parser
will fail, or produce an erroneous combinator, otherwise1.

The ISO EBNF defines what is called a special sequence, which allows the arbitrary
specification of syntactical elements. Say we wanted to define a language based on the
works of Tolkien, we could define a special sequence like this ?Any Tengwar script Tengwö

found in the books of Tolkien?. Although it is possible to support a limited set of
special sequences, we cannot allow this sort of looseness in the input of the generator.

Another feature we do not support is the definition by exception or difference. For
example, a variable could be defined as identifier - keyword. This feature could actually
be implemented as a binary combinator that only succeeds if its first argument succeeds
and the second fails, but for now it is not supported.

The removal of special sequences and set differences has an important consequence, ev-
ery rule has to explicitly specify its alternatives. One illustration of this limitation is given
by rules {first,second}TerminalCharacter in the sources listed in Section 4.2, the only
difference between these two rules is the swapping of the non-terminals *QuoteSymbol.
However, since the definition by exception is not allowed, they must redundantly define
each of their alternatives.

One last note on the EBNF standard support: since the underlying language of the
parser and parser generator is Haskell, the meta-identifiers defined in the input must also
be valid Haskell identifiers. This is further commented in Section 4.2.

Now, continuing with the implementation of the EBNF parser, and parser generator.
The ISO standard divides the introduction of the EBNF meta syntax in three parts, each
step closer to the actual syntax. We do something similar with the definition of the input
parser. The first module defines the basic character set of the EBNF, next the remainder
of the lexical is defined, and finally the syntax rules.

We have the same organization for the parser generator, and the relation between
1 The double quote character is an exception, since it is internally treated as an special case.

Chapter 4. A Combinator Based Parser Generator 59

parser and generator is similar to the relation between grammars and action objects from
Perl 62. What this means is, for each parser rule defined in a parser module, there is a
corresponding generator function in a generator module.

This organization of parser and generator gives us a one-to-one relation. The structure
of the generator code reproduces, almost exactly, the structure of the parser, a property
assured by pattern matching over the structure of a parse tree. This should guarantee an
indirect one-to-one relation between the input EBNF and its respective generated parser.

Although not formally verified, at least for now, we can establish a principle of relia-
bility to build upon. For a complete reference, the following code illustrates the generator
definition and the properties mentioned above, the source can be compared with the
corresponding parser code in Section 4.2.

1 gDefinitionsList (Rule "DefinitionsList" t) = case t of

2 (Seq l r) -> gSingleDefinition l ++ gStar list r

3 where

4 list (Seq _ d) = cAltOp ++ gSingleDefinition d

The pattern matching at the first line of gDefinitionList guarantees that we will fail
to generate anything except the specified rule. This pattern matching happens for all of the
generator functions. Such pattern matching also allows us to match the inner alternatives
according to their expected structure, exactly as specified by the EBNF parser.

There is only one pattern for gDefinitionList to match internally (at Line 2), since
the EBNF rule definitionList has only one alternative. The body of the case equation
(Seq l r) corresponds exactly to the structure of definitionList right-hand side, which
is defined as follows.

singleDefinition, {alternativeSymbol, singleDefinition};

The function gSingleDefinition corresponds to the non-terminal singleDefinition,
which is followed by the unbound repetition (gStar) of the sub-sequence list. The sub-
sequence represented by list in the generator (at Line 4) corresponds to the sub-sequence
within curly braces in the grammar above. The function gStar is responsible for the gen-
eration of many occurrences of the pattern described by list, for as long as it occurs in
the sub-tree r, if at all. The generator gStar is also defined by patter matching corre-
sponding to the structure defined by combinator star (or closure). In the body of list,
the function cAltOp stands for (c)ombinator (Alt)ernative (Op)erator, which is an alias
for combinator (<|>).
2 More information is available at <https://docs.perl6.org/language/grammars>.

https://docs.perl6.org/language/grammars

Chapter 4. A Combinator Based Parser Generator 60

4.2 VALIDATION

To provide a proof of concept, and what we dare to call evidence of reliability for the
implemented parser generator, we propose a simple experiment3.

As exposed in Section 4.1, our parser generator takes an EBNF specification and
outputs the corresponding parser, which is composed of a series of combinators. We parse
the input EBNF file with a parser defined utilizing the same set of combinators generated
as output. It was also argued that this property is important to establish a principle of
reliability for the parser generator.

From the arguments presented in Section 4.1, it is reasonable to presume that, if we
feed the parser generator with an specification of the EBNF standard, the generated parser
should greatly resemble the EBNF parser we defined by hand, since the later ought to be
as close of a transcript of the standard as possible, within the limitations of the parser
combinators.

The remaining of this section presents the results obtained from this experiment,
as well as comments on some particular differences between generated and manually
defined parsers. We split the presentation of the source in the same way we organized
our implementation, for better readability. We have also formated the generated code for
presentation as well as readability4.

Starting with the EBNF characters set specification. We first list the EBNF input,
followed by the generated code, then the manually written code. Commentary is spread
between these elements, whenever needed.

1 letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k'

2 | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v'

3 | 'w' | 'x' | 'y' | 'z'

4 | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K'

5 | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V'

6 | 'W' | 'X' | 'Y' | 'Z';

7

8 decimalDigit = '0' | '1' | '2' | '3' | '4'

9 | '5' | '6' | '7' | '8' | '9';

10

11 concatenateSymbol = ',';

12 definingSymbol = '=';

13 alternativeSymbol = '|' | '/' | '!';

14 endGroupSymbol = ')';

15 endOptionSymbol = ']' | '/)';

16 endRepeatSymbol = '}' | ':)';

17 firstQuoteSymbol = "'";

18 repetitionSymbol = '*';

3 For the sake of simplicity, no further considerations on the meaning and connotation of the term
experiment were maid.

4 No other alteration was made to the generated code.

Chapter 4. A Combinator Based Parser Generator 61

19 secondQuoteSymbol = '"';

20 exceptSymbol = '-';

21 specialSequenceSymbol = '?';

22 startGroupSymbol = '(';

23 startOptionSymbol = '[' | '(/';

24 startRepeatSymbol = '{' | '(:';

25 terminatorSymbol = ';' | '.';

26

27 otherCharacter = spaceCharacter

28 | ':' | '+' | '_' | '%' | '@' | '&' | '#'

29 | '$' | '<' | '>' | '\\' | '^' | "" | '~';

30

31 spaceCharacter = '\x0020';

32

33 horizontalTabulationCharacter = '\t';

34 verticalTabulationCharacter = '\v';

35

36 formFeed = '\f';

37 carriageReturn = '\r';

38

39 newLine = {carriageReturn}, '\n', {carriageReturn};

Here the definitions of rules letter (Line 1) and decimalDigit (Line 8) illustrate the
necessity for explicit specification of characters sets, since there is no support for elaborate
RegExs, built-in sets of characters, or special sequences.

At Line 29 we observe an example of the necessity for escaping certain characters, due
to how Haskell strings work. If a character being defined in the EBNF must be escaped in a
Haskell string, then it must be escaped in the EBNF as well. Lines 31 and 33 illustrate the
ability to define Unicode characters and non-printable “control” characters, respectively.
Again, within Haskell capabilities.

1 letter = "letter" =|>

2 t "a" <|> t "b" <|> t "c" <|> t "d" <|> t "e" <|> t "f"

3 <|> t "g" <|> t "h" <|> t "i" <|> t "j" <|> t "k" <|> t "l"

4 <|> t "m" <|> t "n" <|> t "o" <|> t "p" <|> t "q" <|> t "r"

5 <|> t "s" <|> t "t" <|> t "u" <|> t "v" <|> t "w" <|> t "x"

6 <|> t "y" <|> t "z"

7 <|> t "A" <|> t "B" <|> t "C" <|> t "D" <|> t "E" <|> t "F"

8 <|> t "G" <|> t "H" <|> t "I" <|> t "J" <|> t "K" <|> t "L"

9 <|> t "M" <|> t "N" <|> t "O" <|> t "P" <|> t "Q" <|> t "R"

10 <|> t "S" <|> t "T" <|> t "U" <|> t "V" <|> t "W" <|> t "X"

11 <|> t "Y" <|> t "Z"

12

13 decimalDigit = "decimalDigit" =|>

14 t "0" <|> t "1" <|> t "2" <|> t "3" <|> t "4"

15 <|> t "5" <|> t "6" <|> t "7" <|> t "8" <|> t "9"

Chapter 4. A Combinator Based Parser Generator 62

16

17 concatenateSymbol = "concatenateSymbol" =|> t ","

18 definingSymbol = "definingSymbol" =|> t "="

19 endGroupSymbol = "endGroupSymbol" =|> t ")"

20 endOptionSymbol = "endOptionSymbol" =|> t "]" <|> t "/)"

21 endRepeatSymbol = "endRepeatSymbol" =|> t "}" <|> t ":)"

22 firstQuoteSymbol = "firstQuoteSymbol" =|> t "'"

23 repetitionSymbol = "repetitionSymbol" =|> t "*"

24 secondQuoteSymbol = "secondQuoteSymbol" =|> t "\""

25 exceptSymbol = "exceptSymbol" =|> t "-"

26 specialSequenceSymbol = "specialSequenceSymbol" =|> t "?"

27 startGroupSymbol = "startGroupSymbol" =|> t "("

28 startOptionSymbol = "startOptionSymbol" =|> t "[" <|> t "(/"

29 startRepeatSymbol = "startRepeatSymbol" =|> t "{" <|> t "(:"

30 terminatorSymbol = "terminatorSymbol" =|> t ";" <|> t "."

31 alternativeSymbol = "alternativeSymbol" =|>

32 t "|" <|> t "/" <|> t "!"

33

34 otherCharacter = "otherCharacter" =|>

35 spaceCharacter

36 <|> t ":" <|> t "+" <|> t "_" <|> t "%" <|> t "@"

37 <|> t "&" <|> t "#" <|> t "$" <|> t "<" <|> t ">"

38 <|> t "\\" <|> t "^" <|> t "" <|> t "~"

39

40 spaceCharacter = "spaceCharacter" =|> t "\x0020"

41

42 horizontalTabulationCharacter = "horizontalTabulationCharacter" =|>

43 t "\t"

44 verticalTabulationCharacter = "verticalTabulationCharacter" =|>

45 t "\v"

46

47 formFeed = "formFeed" =|> t "\f"

48 carriageReturn = "carriageReturn" =|> t "\r"

49

50 newLine = "newLine" =|>

51 closure (carriageReturn) # t "\n" # closure (carriageReturn)

A note on a redundant pattern we can observe on the generated parser. Each function
definition is followed by a labeled rule with the exact same name of that function, what
may cause some strangeness. Those labels are a flexible way to allow secure pattern
matching. Notice that they are used in the handwritten parser as well.

1 letter = "Letter" =!>

2 t "a" <|> t "b" <|> t "c" <|> t "d" <|> t "e" <|> t "f"

3 <|> t "g" <|> t "h" <|> t "i" <|> t "j" <|> t "k" <|> t "l"

4 <|> t "m" <|> t "n" <|> t "o" <|> t "p" <|> t "q" <|> t "r"

5 <|> t "s" <|> t "t" <|> t "u" <|> t "v" <|> t "w" <|> t "x"

Chapter 4. A Combinator Based Parser Generator 63

6 <|> t "y" <|> t "z"

7 <|> t "A" <|> t "B" <|> t "C" <|> t "D" <|> t "E" <|> t "F"

8 <|> t "G" <|> t "H" <|> t "I" <|> t "J" <|> t "K" <|> t "L"

9 <|> t "M" <|> t "N" <|> t "O" <|> t "P" <|> t "Q" <|> t "R"

10 <|> t "S" <|> t "T" <|> t "U" <|> t "V" <|> t "W" <|> t "X"

11 <|> t "Y" <|> t "Z"

12

13 decimalDigit = "DecimalDigit" =!>

14 t "0" <|> t "1" <|> t "2" <|> t "3" <|> t "4"

15 <|> t "5" <|> t "6" <|> t "7" <|> t "8" <|> t "9"

16

17 concatenateSymbol = "ConcatenateSymbol" =!> t ","

18 definingSymbol = "DefiningSymbol" =!> t "="

19 endGroupSymbol = "EndGroupSymbol" =!> t ")"

20 endOptionSymbol = "EndOptionSymbol" =!> t "]" <|> t "/)"

21 endRepeatSymbol = "EndRepeatSymbol" =!> t "}" <|> t ":)"

22 exceptSymbol = "ExceptSymbol" =!> t "-"

23 firstQuoteSymbol = "FirstQuoteSymbol" =!> t "'"

24 repetitionSymbol = "RepetitionSymbol" =!> t "*"

25 secondQuoteSymbol = "SecondQuoteSymbol" =!> t "\""

26 specialSequenceSymbol = "SpecialSequenceSymbol" =!> t "?"

27 startGroupSymbol = "StartGroupSymbol" =!> t "("

28 startOptionSymbol = "StartOptionSymbol" =!> t "[" <|> t "(/"

29 startRepeatSymbol = "StartRepeatSymbol" =!> t "{" <|> t "(:"

30 terminatorSymbol = "TerminatorSymbol" =!> t ";" <|> t "."

31 alternativeSymbol = "AlternativeSymbol" =!>

32 t "|" <|> t "/" <|> t "!"

33

34 otherCharacter = "OtherCharacter" =!>

35 spaceCharacter

36 <|> t ":" <|> t "+" <|> t "_" <|> t "%" <|> t "@"

37 <|> t "&" <|> t "#" <|> t "$" <|> t "<" <|> t ">"

38 <|> t "\\" <|> t "^" <|> t "" <|> t "~"

39

40 spaceCharacter = "SpaceCharacter" =!> t " "

41

42 newLine = "NewLine" =!>

43 star carriageReturn # t "\n" # star carriageReturn

44

45 horizontalTabulationCharacter = "HorizontalTabulationCharacter" =!>

46 t "\t"

47 verticalTabulationCharacter = "VerticalTabulationCharacter" =!>

48 t "\v"

49

50 formFeed = "FormFeed" =!> t "\f"

51 carriageReturn = "CarriageReturn" =!> t "\r"

Chapter 4. A Combinator Based Parser Generator 64

Looking at the machine generated (starting at Page 61) and handwritten (starting at
Page 62) sources, barely no difference can be noticed. For the differences that do exist we
provide clarification.

We start with the difference on the rule operators. A closer look reveals that the
generate code defines non-deterministic rules, via operator (=|>), while the manual im-
plementation uses its deterministic variant (=!>). For the parser generation to work we
need a deterministic parse of the input, whilst we aim to generate a non-deterministic
parser as output, therefore, the difference.

Another difference related to the definition of rules has to do with their labels. Labels
from handwritten rules start with an upper-case character, instead of a lower-case, they
are otherwise identical. This happens because labels are generated from the rule meta-
identifier defined in the input file, which must be a valid Haskell identifier, the same is
true for the generated Haskell function. Extra steps could be added to the generation
process to fix this issue.

Notice that the rule newLine is located at different points of the Haskell sources,
this is not at all an issue. The generated newLine function occurs in the exact relative
location where newLine is specified by the EBNF. Another difference can be observed in
the newLine rule, but we leave the discussion for later in this section.

One last note, the spaceCharacter rules are different, they define different termi-
nals. Actually, the hexadecimal sequence \x0020 is the Unicode codification of the space
character, so both rules define the same terminal. Again, the generated code corresponds
exactly to what is specified by the input, in this case, a hexadecimal codification.

1 terminalString = firstQuoteSymbol, firstTerminalCharacter

2 , {firstTerminalCharacter}, firstQuoteSymbol

3 | secondQuoteSymbol, secondTerminalCharacter

4 , {secondTerminalCharacter}, secondQuoteSymbol;

5

6 firstTerminalCharacter = letter

7 | decimalDigit

8 | concatenateSymbol

9 | definingSymbol

10 | alternativeSymbol

11 | endGroupSymbol

12 | endOptionSymbol

13 | endRepeatSymbol

14 | exceptSymbol

15 | repetitionSymbol

16 | secondQuoteSymbol

17 | specialSequenceSymbol

18 | startGroupSymbol

19 | startOptionSymbol

20 | startRepeatSymbol

Chapter 4. A Combinator Based Parser Generator 65

21 | terminatorSymbol

22 | otherCharacter;

23

24 secondTerminalCharacter = letter

25 | decimalDigit

26 | concatenateSymbol

27 | definingSymbol

28 | alternativeSymbol

29 | endGroupSymbol

30 | endOptionSymbol

31 | endRepeatSymbol

32 | exceptSymbol

33 | firstQuoteSymbol

34 | repetitionSymbol

35 | specialSequenceSymbol

36 | startGroupSymbol

37 | startOptionSymbol

38 | startRepeatSymbol

39 | terminatorSymbol

40 | otherCharacter;

41

42 integer = decimalDigit, {decimalDigit};

43 metaIdentifier = letter, {metaIdentifierCharacter};

44 metaIdentifierCharacter = letter | decimalDigit;

The corresponding generated code.

1 terminalString = "terminalString" =|>

2 firstQuoteSymbol # firstTerminalCharacter

3 # closure (firstTerminalCharacter)

4 # firstQuoteSymbol

5 <|> secondQuoteSymbol # secondTerminalCharacter

6 # closure (secondTerminalCharacter)

7 # secondQuoteSymbol

8

9 firstTerminalCharacter = "firstTerminalCharacter" =|>

10 letter

11 <|> decimalDigit

12 <|> concatenateSymbol

13 <|> definingSymbol

14 <|> alternativeSymbol

15 <|> endGroupSymbol

16 <|> endOptionSymbol

17 <|> endRepeatSymbol

18 <|> exceptSymbol

19 <|> repetitionSymbol

20 <|> secondQuoteSymbol

21 <|> specialSequenceSymbol

Chapter 4. A Combinator Based Parser Generator 66

22 <|> startGroupSymbol

23 <|> startOptionSymbol

24 <|> startRepeatSymbol

25 <|> terminatorSymbol

26 <|> otherCharacter

27

28 secondTerminalCharacter = "secondTerminalCharacter" =|>

29 letter

30 <|> decimalDigit

31 <|> concatenateSymbol

32 <|> definingSymbol

33 <|> alternativeSymbol

34 <|> endGroupSymbol

35 <|> endOptionSymbol

36 <|> endRepeatSymbol

37 <|> exceptSymbol

38 <|> firstQuoteSymbol

39 <|> repetitionSymbol

40 <|> specialSequenceSymbol

41 <|> startGroupSymbol

42 <|> startOptionSymbol

43 <|> startRepeatSymbol

44 <|> terminatorSymbol

45 <|> otherCharacter

46

47 integer = "integer" =|> decimalDigit # closure (decimalDigit)

48

49 metaIdentifier = "metaIdentifier" =|>

50 letter # closure (metaIdentifierCharacter)

51

52 metaIdentifierCharacter = "metaIdentifierCharacter" =|>

53 letter

54 <|> decimalDigit

The generated code shown above corresponds to the remainder of the EBNF lexical
specification. It is quite long due to rules *TerminalCharacter, because of that, and
because we want to provide some mechanized evidence of the similarity between generated
and written parsers, instead of showing the code of the handwritten parser we show the
output of the sources differences for both parsers5.

1 1c1

2 < terminalString = "terminalString" =|>

3 ---

4 > terminalString = "TerminalString" =!>

5 The difference check was performed with the command diff, provided by GNU package diffutils
<https://gnu.org/software/diffutils>.

https://gnu.org/software/diffutils

Chapter 4. A Combinator Based Parser Generator 67

5 3c3

6 < # closure (firstTerminalCharacter)

7 ---

8 > # star firstTerminalCharacter

9 6c6

10 < # closure (secondTerminalCharacter)

11 ---

12 > # star secondTerminalCharacter

13 9c9

14 < firstTerminalCharacter = "firstTerminalCharacter" =|>

15 ---

16 > firstTerminalCharacter = "FirstTerminalCharacter" =!>

17 28c28

18 < secondTerminalCharacter = "secondTerminalCharacter" =|>

19 ---

20 > secondTerminalCharacter = "SecondTerminalCharacter" =!>

21 47c47

22 < integer = "integer" =|> decimalDigit # closure (decimalDigit)

23 ---

24 > metaIdentifier = "MetaIdentifier" =!> letter # star metaIdentifierCharacter

25 49,52c49

26 < metaIdentifier = "metaIdentifier" =|>

27 < letter # closure (metaIdentifierCharacter)

28 <

29 < metaIdentifierCharacter = "metaIdentifierCharacter" =|>

30 ---

31 > metaIdentifierCharacter = "MetaIdentifierCharacter" =!>

32 54a52,53

33 >

34 > integer = "Integer" =!> decimalDigit # star decimalDigit

This might look like a lot of more differences than expected, but this output is mislead-
ing. From Line 1 down to Line 20, all the indicated differences are related to characters
case, deterministic versus non-deterministic operators, and aliases, all of which were pre-
viously clarified. The remaining differences regard the formating of rule metaIdentifier,
and the swapping of positions in source, between rules integer and metaIdentifier.

The next sources are listed one immediately after the other, with no interruptions.

1 syntax = syntaxRule, {syntaxRule};

2

3 syntaxRule =

4 metaIdentifier, definingSymbol, definitionsList, terminatorSymbol;

5

6 definitionsList =

7 singleDefinition, {alternativeSymbol, singleDefinition};

8

9 singleDefinition =

Chapter 4. A Combinator Based Parser Generator 68

10 syntacticFactor, {concatenateSymbol, syntacticFactor};

11

12 syntacticFactor = [integer, repetitionSymbol], syntacticPrimary;

13

14 syntacticPrimary = optionalSequence

15 | repeatedSequence

16 | groupedSequence

17 | metaIdentifier

18 | terminalString

19 | emptySequence;

20

21 optionalSequence = startOptionSymbol, definitionsList, endOptionSymbol;

22 repeatedSequence = startRepeatSymbol, definitionsList, endRepeatSymbol;

23 groupedSequence = startGroupSymbol, definitionsList, endGroupSymbol;

24 emptySequence = eps;

1 syntax = "syntax" =|> syntaxRule # closure (syntaxRule)

2 syntaxRule = "syntaxRule" =|>

3 metaIdentifier # definingSymbol # definitionsList # terminatorSymbol

4

5 definitionsList = "definitionsList" =|>

6 singleDefinition # closure (alternativeSymbol # singleDefinition)

7

8 singleDefinition = "singleDefinition" =|>

9 syntacticFactor # closure (concatenateSymbol # syntacticFactor)

10

11 syntacticFactor = "syntacticFactor" =|>

12 opt (integer # repetitionSymbol) # syntacticPrimary

13

14 syntacticPrimary = "syntacticPrimary" =|>

15 optionalSequence

16 <|> repeatedSequence

17 <|> groupedSequence

18 <|> metaIdentifier

19 <|> terminalString

20 <|> emptySequence

21

22 optionalSequence = "optionalSequence" =|>

23 startOptionSymbol # definitionsList # endOptionSymbol

24

25 repeatedSequence = "repeatedSequence" =|>

26 startRepeatSymbol # definitionsList # endRepeatSymbol

27

28 groupedSequence = "groupedSequence" =|>

29 startGroupSymbol # definitionsList # endGroupSymbol

30

31 emptySequence = "emptySequence" =|> eps

Chapter 4. A Combinator Based Parser Generator 69

1 syntax = "Syntax" =!> syntaxRule # star syntaxRule

2 syntaxRule = "SyntaxRule" =!>

3 metaIdentifier # definingSymbol # definitionsList # terminatorSymbol

4

5 definitionsList = "DefinitionsList" =!>

6 singleDefinition # star (alternativeSymbol # singleDefinition)

7

8 singleDefinition = "SingleDefinition" =!>

9 syntacticFactor # star (concatenateSymbol # syntacticFactor)

10

11 syntacticFactor = "SyntacticFactor" =!>

12 opt (integer # repetitionSymbol) # syntacticPrimary

13

14 syntacticPrimary = "SyntacticPrimary" =!>

15 optionalSequence

16 <|> repeatedSequence

17 <|> groupedSequence

18 <|> emptySequence

19 <|> metaIdentifier

20 <|> terminalString

21

22 optionalSequence = "OptionalSequence" =!>

23 startOptionSymbol # definitionsList # endOptionSymbol

24

25 repeatedSequence = "RepeatedSequence" =!>

26 startRepeatSymbol # definitionsList # endRepeatSymbol

27

28 groupedSequence = "GroupedSequence" =!>

29 startGroupSymbol # definitionsList # endGroupSymbol

30

31 emptySequence = "EmptySequence" =!> t "eps"

The differences between generated and written code we can observe on both sources
above are the same we observed along this section, but we have two differences left
to cover. Both instances of generated code, for the first two components of this work
EBNF definition, have single non-terminals occurring between parentheses, for example
(decimalDigit), while hand written code has no parentheses for the same productions.

The reason for the surrounding parentheses is the same reason why the sequence
(integer # repetitionSymbol), and others, occur within parentheses in the generated
and manually written codes above. Such sub-rules are preceded by a function implement-
ing optional or repetition operators. The generator guarantees the correct application of
these functions by grouping the argument sub-rule within parentheses.

Another note regarding the grouped sub-rules and the function preceding them in the
code. Notice that the unbound repetition operator has different names from generated to
manually written code; the former uses closure, whereas the latter uses star. Both are

Chapter 4. A Combinator Based Parser Generator 70

equivalent; star being an alias of closure.
Finally, we believe that multiple evidences and arguments are provided in this section

as means to support the argument about reliability made in Section 4.1. There are dif-
ferences between the EBNF parser generated and the one written for this work, but they
are few and harmless in regards to the parser semantics. Also, the similarity between the
input grammar and its corresponding generated parser is remarkable, which is another
indicator of reliability.

This work includes a series of appendixes where more examples of grammars and their
respective generated parsers can be found, they are too long and no further benefit would
come from listing them here. Nevertheless, these specifications and their corresponding
parsers, are useful to validate the developed parser generator.

71

5 CONCLUSIONS

“ Life gets boring, someone invents another necessity, and once again we
turn the crank on the screwjack of progress hoping that nobody gets
screwed. ”

Larry Wall, 1997

In this work we developed a reliable parser generator based on combinators. We took
steps in the direction of standardization of the generator input, enforcing the use of an
actual standard, and by doing so, we avoid introducing yet another particular syntaxes.
Our generated code is actually human readable, a desirable property that is hard to find
when considering parser generators. The generated parser closely resembles the input
grammar, with combinators corresponding to the set of operators defined by the ISO
EBNF standard.

We also provided a small core of basic monadic combinators compatible with most
of what is already established in the area of functional parsing. This basic set can be
extended, and utilized for manual specification of parsers, without affecting the parser
generator reliability.

Although we have failed to achieve an implementation of combinators capable of pars-
ing the full set of CFGs, namely the left-recursive ones, this failure lead us to a different
type of contribution, exposing the pitfalls of the implementation of Johnson’s memoized
combinators in a pure FL. This might be useful as a reference for future works considering
a purely functional implementation of GLL, and to motivate a better understanding of
a technique we believe, due to its simplicity, is ideal for the implementation of general
combinators, preserving their code from modification and consequent complexity increase.

5.1 RELATED WORK

Parser combinators have a long ongoing research history. Even before the introduction
of the GLL technique much has been done to improve their efficiency, extend the set of
supported grammars, provide better error handling, and so on. In this section we focus on
works close to the method and techniques we succeeded or failed to apply, mostly, recent
works influenced by the introduction of GLL.

We start by pointing the reader to Section 3.3, where a lengthy discussion on the
characteristics of other, GLL-based, implementations of parser combinators can be found.
Those are recent works that surged since the introduction of GLL, which will not be
discussed any further, but their nature have another aspect worth mentioning.

Most of the recent implementations of GLL combinators, achieve their goal of gen-
erality by adapting Johnson’s memoization procedure (33). A recent work from the the

Chapter 5. Conclusions 72

original GLL authors acknowledges the relation between both techniques (35). We men-
tioned this interesting relation between techniques separated by fifteen years of research
in Section 3.3.

With that in mind, it seems strange that no implementation of memoized general
combinators has been accomplished in Haskell. It is true that parser combinators that
support left recursion do exist in Haskell (35, 36), but to the best of our knowledge, none
that applies Johnson’s technique. As an example of this claim, we take a look at Frost et
al. memoized combinators, and the recent work of Binsbergen et al.

The work of Frost et al. (36) develops a set of combinators capable of parsing am-
biguous and left-recursive grammars. The combinators do not incorporate continuations,
and use memoization as a tool to reduce complexity alone. The memoization applied by
Frost et al. requires the input of the combinators to be a numeric index of the input.
The support to left recursion is achieved by the addition of extra context in the form
of a counter. The number of calls to each parser at a certain input position is counted
and if the number of calls goes out of bound their execution is interrupted. Direct and
indirect recursion are treated differently, each solution adds complexity not only to types
and memoization, but to the code of some of the combinators as well.

As a late discovery in the development of this work, we came upon the work of Bins-
bergen, Scott, and Johnstone, the last two the authors of the original work on GLL.
The work of Binsbergen et al. is the first GLL implementation in Haskell, and it uses a
completely different approach from other functional implementations.

The work of Binsbergen et al. is based on the principle that a grammar can be extracted
from combinator expressions and then be given a stand alone parser (35). They define a
parser procedure equipped with GLL machinery, similar to what is described in Section
2.3.3, to parse the generated grammars. A set of what is called “BNF combinators”, which
as reinforced by the authors are not the same as parser combinators, is provided as an
“embedded DSL for describing syntax” (35). All the extra machinery used by this strategy
is something we are trying to avoid, in order to preserve reliability and reduce the effort
necessary for a possible verification.

In regards to functional parser generators. Most of the effort on improving parsing
technology in functional programming seems to revolve around combinators alone; we say
that from a Haskell perspective, but it is a reasonable assumption to extrapolate. There
are a few Haskell parser generators such as Happy and Peggy. Both generators work
with an embedded DSL approach, with different syntaxes; Peggy being based on Parsing
Expression Grammars (PEGs). Happy and Peggy provide limited support to bigger sets
of grammars via GLR and elimination of left-recursion, respectively (37, 38).

Parser generators like Happy and Peggy not only do not push for any sort of com-
patibility in their input format, they also produce code difficult to comprehend or argue
about and that is specific to a certain PL, or a small set of languages. To support code

Chapter 5. Conclusions 73

generation for more languages also adds complexity. Not to mention the greater complex-
ity of their implementations, which makes it harder to establish any sort of reliability.
Although the parsers generated by this work generator produces Haskell code, one can
easily interface with the output of the generated parsers, since it is a simple to process
data format, which can even be parametrized. See Section 5.2 for future work.

5.2 FUTURE WORK

With some improvements we believe this work can become a solid alternative for the cur-
rent available parsing tools. Although we are not sure if the originally chosen technique for
coping with left-recursion is actually appropriate for a purely functional implementation,
other general techniques are available, and as long as they do not affect the combinators
complexity in any harmful way, we intend to support the complete set of CFGs.

To provide better evidence of the generator reliability we have a couple of options, from
a manual proof of some of the generator properties, to the application of a mechanized
solution such as QuickCheck, which would also facilitate later verification of possible
extensions.

Other branch of future work regards the consolidation of the generator as a production
tool. Most of the parser generator limitations, discussed in Chapter 4, are solvable and we
believe can be implemented without any major setbacks. We also want the generator to
be a tool with a broader reach, by providing some parametrization of the parser output.
One could for example configure the generator to synthesize parsers which would format
their output as a JSON, which could be easily glued to projects, possibly, written in other
programming languages.

74

REFERENCES

1 D’SILVA, V.; KROENING, D.; WEISSENBACHER, G. A survey of automated
techniques for formal software verification. Transactions on Computer-Aided Design and
Systems, IEEE, v. 27, n. 7, p. 1165–1178, June 2008.

2 MALECHA, G.; RICKETTS, D.; ALVAREZ, M. M.; LERNER, S. Towards
foundational verification of cyber-physical systems. In: Science of Security for
Cyber-Physical Systems Workshop. Wien, AT: IEEE, 2016.

3 YANG, X.; CHEN, Y.; EIDE, E.; REGEHR, J. Finding and understanding bugs in C
compilers. In: Conference on Programming Language Design and Implementation. New
York, NY, US: ACM, 2011. p. 283–294.

4 BODIN, M.; CHARGUERAUD, A.; FILARETTI, D.; GARDNER, P.; MAFFEIS,
S.; NAUDZIUNIENE, D.; SCHMITT, A.; SMITH, G. A trusted mechanised JavaScript
specification. In: Symposium on Principles of Programming Languages. New York, NY,
US: ACM, 2014. p. 87–100.

5 LEROY, X. Formal verification of a realistic compiler. Commun. ACM, ACM, New
York, NY, US, v. 52, n. 7, p. 107–115, July 2009.

6 WANG, F.; SONG, F.; ZHANG, M.; ZHU, X.; ZHANG, J. Krust: A formal executable
semantics of Rust. CoRR, abs/1804.10806, April 2018.

7 MAFFEIS, S.; MITCHELL, J. C.; TALY, A. An operational semantics for JavaScript.
In: Asian Symposium on Programming Languages and Systems. Berlin, Heidelberg, DE:
Springer, 2008. p. 307–325.

8 PARR, T.; FISHER, K. S. LL(*): The foundation of the ANTLR parser generator.
In: Conference on Programming Language Design and Implementation. New York, NY,
US: ACM, 2011. p. 425–436.

9 AFROOZEH, A.; IZMAYLOVA, A. One parser to rule them all. In: International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. New York, NY, US: ACM, 2015. p. 151–170.

10 AFROOZEH, A.; IZMAYLOVA, A. Iguana: A practical data-dependent parsing
framework. In: Proceedings of the 25th International Conference on Compiler
Construction. New York, NY, US: ACM, 2016. p. 267–268.

11 SCHRÖER, F. W. ACCENT, A Compiler Compiler for the Entire Class of
Context-Free Grammars. 2006. On the internet: <http://accent.compilertools.net>.
(Technical Report). Accessed: 08, jul. 2019.

12 LEUNG, A.; SARRACINO, J.; LERNER, S. Interactive parser synthesis by example.
In: Conference on Programming Language Design and Implementation. New York, NY,
US: ACM, 2015. p. 565–574.

13 SCOTT, E.; JOHNSTONE, A. GLL parsing. Eletronic Notes in Theoretical
Computer Science, v. 253, n. 7, p. 177–189, July 2010.

http://accent.compilertools.net

References 75

14 HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. Introduction to Automata
Theory, Languages, and Computation. 3. ed. Boston, MA, US: Addison-Wesley, 2007.

15 LINZ, P. An Introduction to Formal Languages and Automata. 5. ed. Sudbury, MA,
US: Jones & Barlett, 2012.

16 AHO, A. V.; ULLMAN, J. D. The Theory of Parsing, Translation, and Compiling.
5. ed. Englewood Cliffs, NJ, US: Prentice-Hall, 1972. v. 1.

17 MOGENSEN, T. Æ. Basics of Compiler Design. Copenhagen, DK: Department of
Computer Science, University of Copenhagen, 2009.

18 LOUDEN, K. C. Compiler Construction Principles and Practice. 1. ed. Boston, MA,
US: Cengage Learning US, 1997.

19 TOMITA, M. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. 1. ed. Norwell, MA, US: Kluwer Academic Publishers, 1986.

20 FICSHER, C. N.; CYTRON, R. K.; LEBLANC, R. J. Crafting a Compiler. 1. ed.
Boston, MA, US: Addison-Wesley, 2010.

21 SPIEWAK, D. Generalized Parser Combinators. 2010. On the internet:
<https://dinhe.net/~aredridel/.notmine/PDFs/Parsing/>. Accessed: 12, aug. 2019.

22 ISO/IEC 14977:1996(E). Information Technology – Syntactic Metalanguage –
Extended BNF. Genève, CH, 1996.

23 THOMPSON, S. Haskell the craft of functional programming. 3. ed. Harlow, Essex,
GB: Pearson, 2011.

24 SABRY, A. What is a purely functional language? Journal of Functional
Programming, Cambridge University Press, v. 8, n. 1, p. 1–22, January 1998.

25 HUDAK, P. The Haskell School of Expression. 1. ed. Cambridge, GB: Cambridge
University Press, 2000.

26 BIRD, R. Introduction to Functional Programming using Haskell. 2. ed. Hertfordshire,
GB: Prentice Hall, 1998.

27 HUTTON, G. Programming in Haskell. 1. ed. Cambridge, GB: Cambridge University
Press, 2007.

28 FISCHER, S. Reinventing Haskell Bactracking. Christian-Albrechts Univerity of
Kiel, 2009.

29 ØYE, V. General Parser Combinators in Racket. 2012. On the internet:
<https://epsil.github.io/gll>. Accessed: 12, aug. 2019.

30 HUTTON, G. High-order function for parsing. Journal of Functional Programming,
Cambridge University Press, v. 2, n. 3, p. 323–343, July 1992.

31 HUTTON, G.; MEIJER, E. Monadic Parser Combinators. School of Computer
Science and IT, University of Nottingham, 1996.

https://dinhe.net/~aredridel/.notmine/PDFs/Parsing/
https://epsil.github.io/gll

References 76

32 LJUNGLÖF, P. Pure Functional Parsing an Advanced Tutorial. Licentiate Thesis —
Departament of Computer Science, Chalmers University of Technology and Göttenborg
University, 2002.

33 JOHNSON, M. Memoization in top-down parsing. Association for Computational
Linguistics, Providence, RI, US, v. 21, n. 3, p. 405–417, September 1995.

34 AFROOZEH, A.; IZMAYLOVA, A.; STORM, T. van der. Practical, general parser
combinators. In: Workshop on Partial Evaluation and Program Manipulation. New York,
NY, US: ACM, 2016. p. 1–12.

35 BINSBERGEN, L. T. van; SCOTT, E.; JOHNSTONE, A. GLL parsing with flexible
combinators. In: Proceedings of ACM Conference. New York, NY, US: ACM, 2018.

36 FROST, R. A.; HAFIZ, R.; CALLAGHAN, P. Parser combinators for ambiguous
left-recursive grammars. In: Practical Aspects of Declarative Languages. Berlin,
Heidelberg, DE: Springer, 2008. p. 167–181.

37 MARLOW, S.; GILL, A. The Parser Generator for Haskell. 2011. On the internet:
<https://www.haskell.org/happy>. Accessed: 08, jul. 2019.

38 TANAKA, H. The Parser Generator for Haskell. 2011. On the internet:
<https://tanakh.github.io/Peggy>. Accessed: 08, jul. 2019.

https://www.haskell.org/happy
https://tanakh.github.io/Peggy

77

APPENDIX A – JSON EBNF

1 json = element;

2

3 value = object

4 | array

5 | string

6 | number

7 | 'true'

8 | 'false'

9 | 'null';

10

11 object = '{', members, '}'

12 | '{', ws, '}';

13

14 members = member, ',', members

15 | member;

16

17 member = ws, string, ws, ':', element;

18

19 array = '[', elements, ']'

20 | '[', ws, ']';

21

22 elements = element, ',', elements

23 | element;

24

25 element = ws, value, ws;

26

27 string = '"', characters, '"';

28

29 characters = character, characters

30 | eps;

31

32 character = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k'

33 | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v'

34 | 'w' | 'x' | 'y' | 'z'

35 | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K'

36 | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V'

37 | 'W' | 'X' | 'Y' | 'Z'

38 | digit

39 | '\x0020'

40 | '!' | '#' | '$' | '%' | '&' | "'" | '(' | ')' | '*' | '+' | ','

41 | '-' | '.' | '/' | ':' | ';' | '<' | '=' | '>' | '?' | '@' | '['

42 | ']' | '{' | '}' | '|' | '~'

43 | '\x007f'

44 | '\\', escape;

APPENDIX A. JSON EBNF 78

45

46 escape = '"' | '\\' | '/' | 'b' | 'f' | 'n' | 'r' | 't'

47 | 'u', hex, hex, hex;

48

49 hex = digit

50 | 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

51 | 'A' | 'B' | 'C' | 'D' | 'E' | 'F';

52

53 number = integer, fraction, exponent;

54

55 integer = '-', onenine, digits

56 | onenine, digits

57 | '-', digit

58 | digit;

59

60 digits = digit, digits

61 | digit;

62

63 digit = '0' | onenine;

64

65 onenine = '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

66

67 fraction = '.', digits | eps;

68

69 exponent = 'e', sign, digits

70 | 'E', sign, digits

71 | eps;

72

73 sign = '+' | '-' | eps;

74

75 ws = '\x0020', ws

76 | '\n', ws

77 | '\r', ws

78 | '\t', ws

79 | eps;

79

APPENDIX B – GENERATED JSON PARSER

1 json = "json" =|> element

2

3 value = "value" =|>

4 object

5 <|> array

6 <|> string

7 <|> number

8 <|> t "true"

9 <|> t "false"

10 <|> t "null"

11

12 object = "object" =|>

13 t "{" # members # t "}"

14 <|> t "{" # ws # t "}"

15

16 members = "members" =|>

17 member # t "," # members

18 <|> member

19

20 member = "member" =|> ws # string # ws # t ":" # element

21

22 array = "array" =|>

23 t "[" # elements # t "]"

24 <|> t "[" # ws # t "]"

25

26 elements = "elements" =|>

27 element # t "," # elements

28 <|> element

29

30 element = "element" =|> ws # value # ws

31

32 string = "string" =|> t "\"" # characters # t "\""

33

34 characters = "characters" =|>

35 character # characters

36 <|> eps

37

38 character = "character" =|>

39 t "a" <|> t "b" <|> t "c" <|> t "d" <|> t "e" <|> t "f"

40 <|> t "g" <|> t "h" <|> t "i" <|> t "j" <|> t "k" <|> t "l"

41 <|> t "m" <|> t "n" <|> t "o" <|> t "p" <|> t "q" <|> t "r"

42 <|> t "s" <|> t "t" <|> t "u" <|> t "v" <|> t "w" <|> t "x"

43 <|> t "y" <|> t "z"

44 <|> t "A" <|> t "B" <|> t "C" <|> t "D" <|> t "E" <|> t "F"

APPENDIX B. Generated JSON Parser 80

45 <|> t "G" <|> t "H" <|> t "I" <|> t "J" <|> t "K" <|> t "L"

46 <|> t "M" <|> t "N" <|> t "O" <|> t "P" <|> t "Q" <|> t "R"

47 <|> t "S" <|> t "T" <|> t "U" <|> t "V" <|> t "W" <|> t "X"

48 <|> t "Y" <|> t "Z"

49 <|> digit

50 <|> t "\x0020"

51 <|> t "!" <|> t "#" <|> t "$" <|> t "%" <|> t "&" <|> t "'"

52 <|> t "(" <|> t ")" <|> t "*" <|> t "+" <|> t "," <|> t "-"

53 <|> t "." <|> t "/" <|> t ":" <|> t ";" <|> t "<" <|> t "="

54 <|> t ">" <|> t "?" <|> t "@" <|> t "[" <|> t "]" <|> t "{"

55 <|> t "}" <|> t "|" <|> t "~"

56 <|> t "\x007f"

57 <|> t "\\" # escape

58

59 escape = "escape" =|>

60 t "\"" <|> t "\\" <|> t "/" <|> t "b"

61 <|> t "f" <|> t "n" <|> t "r" <|> t "t"

62 <|> t "u" # hex # hex # hex

63

64 hex = "hex" =|>

65 digit

66 <|> t "a" <|> t "b" <|> t "c" <|> t "d" <|> t "e" <|> t "f"

67 <|> t "A" <|> t "B" <|> t "C" <|> t "D" <|> t "E" <|> t "F"

68

69 number = "number" =|> integer # fraction # exponent

70

71 integer = "integer" =|>

72 t "-" # onenine # digits

73 <|> onenine # digits

74 <|> t "-" # digit

75 <|> digit

76

77 digits = "digits" =|>

78 digit # digits

79 <|> digit

80

81 digit = "digit" =|> t "0" <|> onenine

82

83 onenine = "onenine" =|>

84 t "1" <|> t "2" <|> t "3" <|> t "4" <|> t "5"

85 <|> t "6" <|> t "7" <|> t "8" <|> t "9"

86

87 fraction = "fraction" =|>

88 t "." # digits

89 <|> eps

90

91 exponent = "exponent" =|>

APPENDIX B. Generated JSON Parser 81

92 t "e" # sign # digits

93 <|> t "E" # sign # digits

94 <|> eps

95

96 sign = "sign" =|> t "+" <|> t "-" <|> eps

97

98 ws = "ws" =|>

99 t "\x0020" # ws

100 <|> t "\n" # ws

101 <|> t "\r" # ws

102 <|> t "\t" # ws

103 <|> eps

82

APPENDIX C – JAVA 1.7 SYNTACTICAL EBNF

1 qualifiedIdentifier = identifier, {'.', identifier};

2 qualifiedIdentifierList = qualifiedIdentifier, {',', qualifiedIdentifier};

3

4

5 compilationUnit = [[anotations], 'package', qualifiedIdentifier, ';']

6 , {importDeclaration}, {typeDeclaration};

7

8 importDeclaration = 'import', ['static'], qualifiedIdentifier, ['.*'];

9

10 typeDeclaration = classOrInterfaceDeclaration | ';';

11

12 classOrInterfaceDeclaration =

13 {modifier}, (classDeclaration | interfaceDeclaration);

14

15 classDeclaration = normalClassDeclaration | enumDeclaration;

16

17 interfaceDeclaration = normalInterfaceDeclaration | annotationTypeDeclaration;

18

19

20 normalClassDeclaration = 'class', identifier, [typeParameters]

21 , ['extends', ttype], ['implements', typeList]

22 , classBody;

23

24 enumDeclaration = 'enum', identifier, ['implements', typeList], enumBody;

25

26 normalInterfaceDeclaration = 'interface', identifier, [typeParameters]

27 , ['extends', typeList], interfaceBody;

28

29 annotationTypeDeclaration = '@', 'interface', identifier, annotationTypeBody;

30

31

32 ttype = (basicType | referenceType), {'[', ']'};

33

34 basicType = 'byte'

35 | 'short'

36 | 'char'

37 | 'int'

38 | 'long'

39 | 'float'

40 | 'double'

41 | 'boolean';

42

43 referenceType =

44 identifier, [typeArguments], {'.', identifier, [typeArguments]};

APPENDIX C. Java 1.7 Syntactical EBNF 83

45

46 typeArguments = '<', typeArgument, {',', typeArgument }, '>';

47 typeArgument = referenceType

48 | '?', [('extends' | 'super'), referenceType];

49

50

51 nonWildcardTypeArguments = '<', typeList, '>';

52

53 typeList = referenceType, {',', referenceType};

54

55 typeArgumentsOrDiamond = typeArguments | '<', '>';

56

57 nonWildcardTypeArgumentsOrDiamond = nonWildcardTypeArguments | '<', '>';

58

59 typeParameters = '<', typeParameter, {',', typeParameter}, '>';

60 typeParameter = identifier, ['extends', bound];

61

62 bound = referenceType, {'&', referenceType};

63

64

65 modifier = annotation

66 | 'public'

67 | 'protected'

68 | 'private'

69 | 'static'

70 | 'abstract'

71 | 'final'

72 | 'native'

73 | 'synchronized'

74 | 'transient'

75 | 'volatile'

76 | 'strictfp';

77

78 annotations = annotation, {annotation};

79 annotation = '@', qualifiedIdentifier, ['(', [annotationElement], ')'];

80

81 annotationElement = elementValuePairs | elementValue;

82

83 elementValuePairs = elementValuePair, {',', elementValuePair};

84 elementValuePair = identifier, '=', elementValue;

85 elementValue = annotation

86 | expression1

87 | elementValueArrayInitializer;

88

89 elementValueArrayInitializer = '{', [elementValues], [','], '}';

90

91 elementValues = elementValue, {',', elementValue};

APPENDIX C. Java 1.7 Syntactical EBNF 84

92

93

94 classBody = '{', {classBodyDeclaration}, '}';

95

96 classBodyDeclaration = ['static'], block

97 | {modifier}, memberDecl

98 | ';';

99

100 memberDecl = methodOrFieldDecl

101 | 'void', identifier, voidMethodDeclaratorRest

102 | identifier, constructorDeclaratorRest

103 | genericMethodOrConstructorDecl

104 | classDeclaration

105 | interfaceDeclaration;

106

107 methodOrFieldDecl = ttype, identifier, methodOrFieldRest;

108 methodOrFieldRest = fieldDeclaratorsRest, ';'

109 | methodDeclaratorRest;

110

111 fieldDeclaratorsRest = variableDeclaratorRest, {',', variableDeclarator};

112

113 methodDeclaratorRest = formalParameters, {'[', ']'}

114 , ['throws', qualifiedIdentifierList], (block | ';');

115 voidMethodDeclaratorRest =

116 formalParameters, ['throws', qualifiedIdentifierList], (block | ';');

117

118 constructorDeclaratorRest =

119 formalParameters, ['throws', qualifiedIdentifierList], block;

120

121 genericMethodOrConstructorDecl =

122 typeParameters, genericMethodOrConstructorRest;

123 genericMethodOrConstructorRest =

124 (ttype | 'void'), identifier, methodDeclaratorRest

125 | identifier, constructorDeclaratorRest;

126

127

128 interfaceBody = '{', {interfaceBodyDeclaration}, '}';

129

130 interfaceBodyDeclaration = {modifier}, interfaceMemberDecl

131 | ';';

132

133 interfaceMemberDecl = interfaceMethodOrFieldDecl

134 | 'void', identifier, voidInterfaceMethodDeclaratorRest

135 | interfaceGenericMethodDecl

136 | classDeclaration

137 | interfaceDeclaration;

138

APPENDIX C. Java 1.7 Syntactical EBNF 85

139 interfaceMethodOrFieldDecl = ttype, identifier, interfaceMethodOrFieldRest;

140 interfaceMethodOrFieldRest = constantDeclaratorsRest, ';'

141 | interfaceMethodDeclaratorRest;

142

143 constantDeclaratorsRest = constantDeclaratorRest, {',', constantDeclarator};

144 constantDeclaratorRest = {'[', ']'}, '=', variableInitializer;

145

146 constantDeclarator = identifier, constantDeclaratorRest;

147

148 interfaceMethodDeclaratorRest =

149 formalParameters, {'[', ']'}, ['throws', qualifiedIdentifierList];

150

151 voidInterfaceMethodDeclaratorRest =

152 formalParameters, ['throws', qualifiedIdentifierList];

153

154 interfaceGenericMethodDecl =

155 typeParameters, (ttype | 'void'), identifier, interfaceMethodDeclaratorRest;

156

157

158 formalParameters = '(', [formalParameterDecls], ')';

159

160 formalParameterDecls = {variableModifier}, ttype, formalParameterDeclsRest;

161

162 variableModifier = 'final' | annotation;

163

164 formalParameterDeclsRest = variableDeclaratorId, [',', formalParameterDecls]

165 | '...', variableDeclaratorId;

166

167

168 variableDeclaratorId = identifier, {'[', ']'};

169

170

171 variableDeclarators = variableDeclarator, {',', variableDeclarator};

172 variableDeclarator = identifier, variableDeclaratorRest;

173

174 variableDeclaratorRest = {'[', ']'}, ['=', variableInitializer];

175

176 variableInitializer = arrayInitializer | expression;

177

178 arrayInitializer =

179 '{', [variableInitializer, {',', variableInitializer}, [',']], '}';

180

181

182 block = '{', {blockStatement}, '}';

183

184 blockStatement = localVariableDeclarationStatement

185 | classOrInterfaceDeclaration

APPENDIX C. Java 1.7 Syntactical EBNF 86

186 | [identifier, ':'], statement;

187

188 localVariableDeclarationStatement = localVariableDeclaration, ';';

189

190 localVariableDeclaration = {variableModifier}, ttype, variableDeclarators;

191

192 statement = block

193 | ';'

194 | identifier, ':', statement

195 | statementExpression, ';'

196 | 'if', parExpression, statement, ['else', statement]

197 | 'assert', expression, [':', expression], ';'

198 | 'switch', parExpression, '{', switchBlockStatementGroups, '}'

199 | 'while', parExpression, statement

200 | 'do', statement, 'while', parExpression, ';'

201 | for, '(', forControl, ')', statement

202 | 'break', [identifier], ';'

203 | 'continue', [identifier], ';'

204 | 'return', [expression], ';'

205 | 'throw', expression, ';'

206 | 'synchronized', parExpression, block

207 | 'try', block, (catches | [catches], finally)

208 | 'try', resourceSpecification, block, [catches], [finally];

209

210 statementExpression = expression;

211

212

213 catches = catchClause, {catchClause};

214

215 catchClause =

216 'catch', '(', {variableModifier}, catchType, identifier, ')', block;

217

218 catchType = qualifiedIdentifier, {'|', qualifiedIdentifier};

219

220 finally = 'finally', block;

221

222 resourceSpecification = '(', resources, [';'], ')';

223

224 resources = resource, {';', resource};

225 resource =

226 {variableModifier}, referenceType, variableDeclaratorId, '=', expression;

227

228

229 switchBlockStatementGroups = {switchBlockStatementGroup};

230 switchBlockStatementGroup = switchLabels, blockStatements;

231

232 switchLabels = switchLabel, {switchLabel};

APPENDIX C. Java 1.7 Syntactical EBNF 87

233 switchLabel = 'case', (expression | enumConstantName), ':'

234 | 'default', ':';

235

236 enumConstantName = identifier;

237

238

239 forControl = forVarControl

240 | forInit, ';', [expression], ';', [forUpdate];

241

242 forVarControl =

243 {variableModifier}, ttype, variableDeclaratorId, forVarControlRest;

244

245 forVarControlRest =

246 forVariableDeclaratorsRest, ';', [expression], ';', [forUpdate]

247 | ':', expression;

248

249 forVariableDeclaratorsRest =

250 ['=', variableInitializer], {',', variableDeclarator};

251

252 forInit = forUpdate;

253 forUpdate = statementExpressions;

254

255 statementExpressions = statementExpression, {',', statementExpression};

256

257

258 expression = expression1, [assignmentOperator, expression1];

259

260 assignmentOperator = '='

261 | '+=' | '-=' | '*=' | '\='

262 | '&=' | '|='

263 | '^=' | '%='

264 | '<<=' | '>>=' | '>>>=';

265

266 expression1 = expression2, [expression1Rest];

267

268 expression1Rest = '?', expression, ':', expression1;

269

270 expression2 = expression3, [expression2Rest];

271

272 expression2Rest = {infixOp, expression3}

273 | 'instanceof', ttype;

274

275

276 infixOp = '||' | '&&' | '|' | '&'

277 | '==' | '!='

278 | '<' | '>' | '<=' | '>='

279 | '<<' | '>>' | '>>>'

APPENDIX C. Java 1.7 Syntactical EBNF 88

280 | '+' | '-' | '*' | '/' | '%' | '^';

281

282 expression3 = prefixOp, expression3

283 | '(', (expression | ttype), ')', expression3

284 | primary, {selector}, {postfixOp};

285

286 prefixOp = '++' | '--'

287 | '!' | '~'

288 | '+' | '-';

289

290 postfixOp = '++' | '--';

291

292

293 primary = literal

294 | parExpression

295 | 'this', [arguments]

296 | 'super', superSiffix

297 | 'new', creator

298 | nonWildcardTypeArguments

299 , (explicitGenericInvocationSuffix | 'this', arguments)

300 | qualifiedIdentifier, [identifierSuffix]

301 | basicType, {'[', ']'}, '.', 'class'

302 | 'void', '.', 'class';

303

304

305 parExpression = '(', expression, ')';

306

307 arguments = '(', [expression, {',', expression}], ')';

308

309 superSiffix = arguments

310 | '.', identifier, [arguments];

311

312 explicitGenericInvocationSuffix = 'super', superSiffix

313 | identifier, arguments;

314

315

316 creator = nonWildcardTypeArguments, createdName, classCreatorRest

317 | createdName, (classCreatorRest | arrayCreatorRest);

318

319 createdName = identifier, [typeArgumentsOrDiamond]

320 , {'.', identifier, [typeArgumentsOrDiamond]};

321

322 classCreatorRest = arguments, [classBody];

323

324 arrayCreatorRest =

325 '[', (']', {'[', ']'}, arrayInitializer

326 | expression, ']', {'[', expression, ']'}, {'[', ']'});

APPENDIX C. Java 1.7 Syntactical EBNF 89

327

328

329 identifierSuffix = '[', ({'[', ']'}, '.', 'class' | expression), ']'

330 | arguments

331 | '.', ('class'

332 | explicitGenericInvocation

333 | 'this'

334 | 'super', arguments

335 | 'new', [nonWildcardTypeArguments], innerCreator)

336 ;

337

338 explicitGenericInvocation =

339 nonWildcardTypeArguments, explicitGenericInvocationSuffix;

340

341 innerCreator =

342 identifier, [nonWildcardTypeArgumentsOrDiamond], classCreatorRest;

343

344

345 selector = '.', (identifier

346 | explicitGenericInvocation

347 | 'this'

348 | 'super', superSiffix

349 | 'new', [nonWildcardTypeArguments], innerCreator)

350 | '[', expression, ']';

351

352

353 enumBody = '{', [enumConstants], [','], [enumBodyDeclarations], '}';

354

355 enumConstants = enumConstant, {',', enumConstant};

356 enumConstant = [annotations], identifier, [arguments], [classBody];

357

358 enumBodyDeclarations = ';', {classBodyDeclaration};

359

360 annotationTypeBody = '{', {annotationTypeElementDeclaration}, '}';

361

362 annotationTypeElementDeclaration = {modifier}, annotationTypeElementRest;

363

364 annotationTypeElementRest = ttype, identifier, annotationMethodOrConstantRest

365 | classDeclaration

366 | interfaceDeclaration

367 | enumDeclaration

368 | annotationTypeDeclaration;

369

370 annotationMethodOrConstantRest = annotationMethodRest

371 | constantDeclaratorsRest;

372

373 annotationMethodRest = '(', ')', ['[', ']'], ['default', elementValue];

90

APPENDIX D – GENERATED JAVA 1.7 PARSER

1 qualifiedIdentifier = "qualifiedIdentifier" =|>

2 identifier # closure (t "." # identifier)

3 qualifiedIdentifierList = "qualifiedIdentifierList" =|>

4 qualifiedIdentifier # closure (t "," # qualifiedIdentifier)

5

6

7 compilationUnit = "compilationUnit" =|>

8 opt (opt (anotations) # t "package" # qualifiedIdentifier # t ";")

9 # closure (importDeclaration) # closure (typeDeclaration)

10

11 importDeclaration = "importDeclaration" =|>

12 t "import" # opt (t "static") # qualifiedIdentifier # opt (t ".*")

13

14 typeDeclaration = "typeDeclaration" =|> classOrInterfaceDeclaration <|> t ";"

15

16 classOrInterfaceDeclaration = "classOrInterfaceDeclaration" =|>

17 closure (modifier) # (classDeclaration <|> interfaceDeclaration)

18

19 classDeclaration = "classDeclaration" =|>

20 normalClassDeclaration <|> enumDeclaration

21

22 interfaceDeclaration = "interfaceDeclaration" =|>

23 normalInterfaceDeclaration <|> annotationTypeDeclaration

24

25 normalClassDeclaration = "normalClassDeclaration" =|>

26 t "class" # identifier # opt (typeParameters) # opt (t "extends" # ttype)

27 # opt (t "implements" # typeList) # classBody

28

29 enumDeclaration = "enumDeclaration" =|>

30 t "enum" # identifier # opt (t "implements" # typeList) # enumBody

31 normalInterfaceDeclaration = "normalInterfaceDeclaration" =|>

32 t "interface" # identifier # opt (typeParameters)

33 # opt (t "extends" # typeList) # interfaceBody

34

35 annotationTypeDeclaration = "annotationTypeDeclaration" =|>

36 t "@" # t "interface" # identifier # annotationTypeBody

37

38

39 ttype = "ttype" =|> (basicType <|> referenceType) # closure (t "[" # t "]")

40

41 basicType = "basicType" =|>

42 t "byte"

43 <|> t "short"

44 <|> t "char"

APPENDIX D. Generated Java 1.7 Parser 91

45 <|> t "int"

46 <|> t "long"

47 <|> t "float"

48 <|> t "double"

49 <|> t "boolean"

50

51 referenceType = "referenceType" =|>

52 identifier # opt (typeArguments) # closure (t "." # identifier

53 # opt (typeArguments))

54

55 typeArguments = "typeArguments" =|>

56 t "<" # typeArgument # closure (t "," # typeArgument) # t ">"

57 typeArgument = "typeArgument" =|>

58 referenceType

59 <|> t "?" # opt ((t "extends" <|> t "super") # referenceType)

60

61 nonWildcardTypeArguments = "nonWildcardTypeArguments" =|>

62 t "<" # typeList # t ">"

63

64 typeList = "typeList" =|> referenceType # closure (t "," # referenceType)

65

66 typeArgumentsOrDiamond = "typeArgumentsOrDiamond" =|>

67 typeArguments <|> t "<" # t ">"

68

69 nonWildcardTypeArgumentsOrDiamond = "nonWildcardTypeArgumentsOrDiamond" =|>

70 nonWildcardTypeArguments <|> t "<" # t ">"

71

72 typeParameters = "typeParameters" =|>

73 t "<" # typeParameter # closure (t "," # typeParameter) # t ">"

74 typeParameter = "typeParameter" =|> identifier # opt (t "extends" # bound)

75

76 bound = "bound" =|> referenceType # closure (t "&" # referenceType)

77

78

79 modifier = "modifier" =|>

80 annotation

81 <|> t "public"

82 <|> t "protected"

83 <|> t "private"

84 <|> t "static"

85 <|> t "abstract"

86 <|> t "final"

87 <|> t "native"

88 <|> t "synchronized"

89 <|> t "transient"

90 <|> t "volatile"

91 <|> t "strictfp"

APPENDIX D. Generated Java 1.7 Parser 92

92

93 annotations = "annotations" =|> annotation # closure (annotation)

94 annotation = "annotation" =|>

95 t "@" # qualifiedIdentifier # opt (t "(" # opt (annotationElement) # t ")")

96

97 annotationElement = "annotationElement" =|> elementValuePairs <|> elementValue

98

99 elementValuePairs = "elementValuePairs" =|>

100 elementValuePair # closure (t "," # elementValuePair)

101 elementValuePair = "elementValuePair" =|> identifier # t "=" # elementValue

102

103 elementValue = "elementValue" =|>

104 annotation

105 <|> expression1

106 <|> elementValueArrayInitializer

107

108 elementValueArrayInitializer = "elementValueArrayInitializer" =|>

109 t "{" # opt (elementValues) # opt (t ",") # t "}"

110

111 elementValues = "elementValues" =|>

112 elementValue # closure (t "," # elementValue)

113

114

115 classBody = "classBody" =|> t "{" # closure (classBodyDeclaration) # t "}"

116

117 classBodyDeclaration = "classBodyDeclaration" =|>

118 opt (t "static") # block

119 <|> closure (modifier) # memberDecl

120 <|> t ";"

121

122 memberDecl = "memberDecl" =|>

123 methodOrFieldDecl

124 <|> t "void" # identifier # voidMethodDeclaratorRest

125 <|> identifier # constructorDeclaratorRest

126 <|> genericMethodOrConstructorDecl

127 <|> classDeclaration

128 <|> interfaceDeclaration

129

130 methodOrFieldDecl = "methodOrFieldDecl" =|>

131 ttype # identifier # methodOrFieldRest

132 methodOrFieldRest = "methodOrFieldRest" =|>

133 fieldDeclaratorsRest # t ";"

134 <|> methodDeclaratorRest

135

136 fieldDeclaratorsRest = "fieldDeclaratorsRest" =|>

137 variableDeclaratorRest # closure (t "," # variableDeclarator)

138

APPENDIX D. Generated Java 1.7 Parser 93

139 methodDeclaratorRest = "methodDeclaratorRest" =|>

140 formalParameters # closure (t "[" # t "]")

141 # opt (t "throws" # qualifiedIdentifierList) # (block <|> t ";")

142

143 voidMethodDeclaratorRest = "voidMethodDeclaratorRest" =|>

144 formalParameters # opt (t "throws" # qualifiedIdentifierList)

145 # (block <|> t ";")

146

147 constructorDeclaratorRest = "constructorDeclaratorRest" =|>

148 formalParameters # opt (t "throws" # qualifiedIdentifierList) # block

149

150 genericMethodOrConstructorDecl = "genericMethodOrConstructorDecl" =|>

151 typeParameters # genericMethodOrConstructorRest

152 genericMethodOrConstructorRest = "genericMethodOrConstructorRest" =|>

153 (ttype <|> t "void") # identifier # methodDeclaratorRest

154 <|> identifier # constructorDeclaratorRest

155

156

157 interfaceBody = "interfaceBody" =|>

158 t "{" # closure (interfaceBodyDeclaration) # t "}"

159

160 interfaceBodyDeclaration = "interfaceBodyDeclaration" =|>

161 closure (modifier) # interfaceMemberDecl

162 <|> t ";"

163

164 interfaceMemberDecl = "interfaceMemberDecl" =|>

165 interfaceMethodOrFieldDecl

166 <|> t "void" # identifier # voidInterfaceMethodDeclaratorRest

167 <|> interfaceGenericMethodDecl

168 <|> classDeclaration <|> interfaceDeclaration

169

170 interfaceMethodOrFieldDecl = "interfaceMethodOrFieldDecl" =|>

171 ttype # identifier # interfaceMethodOrFieldRest

172 interfaceMethodOrFieldRest = "interfaceMethodOrFieldRest" =|>

173 constantDeclaratorsRest # t ";"

174 <|> interfaceMethodDeclaratorRest

175

176 constantDeclaratorsRest = "constantDeclaratorsRest" =|>

177 constantDeclaratorRest # closure (t "," # constantDeclarator)

178 constantDeclaratorRest = "constantDeclaratorRest" =|>

179 closure (t "[" # t "]") # t "=" # variableInitializer

180

181 constantDeclarator = "constantDeclarator" =|>

182 identifier # constantDeclaratorRest

183

184 interfaceMethodDeclaratorRest = "interfaceMethodDeclaratorRest" =|>

185 formalParameters # closure (t "[" # t "]")

APPENDIX D. Generated Java 1.7 Parser 94

186 # opt (t "throws" # qualifiedIdentifierList)

187

188 voidInterfaceMethodDeclaratorRest = "voidInterfaceMethodDeclaratorRest" =|>

189 formalParameters # opt (t "throws" # qualifiedIdentifierList)

190 interfaceGenericMethodDecl = "interfaceGenericMethodDecl" =|>

191 typeParameters # (ttype <|> t "void") # identifier

192 # interfaceMethodDeclaratorRest

193

194

195 formalParameters = "formalParameters" =|>

196 t "(" # opt (formalParameterDecls) # t ")"

197

198 formalParameterDecls = "formalParameterDecls" =|>

199 closure (variableModifier) # ttype # formalParameterDeclsRest

200

201 variableModifier = "variableModifier" =|> t "final" <|> annotation

202

203 formalParameterDeclsRest = "formalParameterDeclsRest" =|>

204 variableDeclaratorId # opt (t "," # formalParameterDecls)

205 <|> t "..." # variableDeclaratorId

206

207

208 variableDeclaratorId = "variableDeclaratorId" =|>

209 identifier # closure (t "[" # t "]")

210

211

212 variableDeclarators = "variableDeclarators" =|>

213 variableDeclarator # closure (t "," # variableDeclarator)

214 variableDeclarator = "variableDeclarator" =|>

215 identifier # variableDeclaratorRest

216

217 variableDeclaratorRest = "variableDeclaratorRest" =|>

218 closure (t "[" # t "]") # opt (t "=" # variableInitializer)

219

220 variableInitializer = "variableInitializer" =|> arrayInitializer <|> expression

221

222 arrayInitializer = "arrayInitializer" =|>

223 t "{" # opt (variableInitializer # closure (t "," # variableInitializer)

224 # opt (t ",")) # t "}"

225

226

227 block = "block" =|> t "{" # closure (blockStatement) # t "}"

228

229 blockStatement = "blockStatement" =|>

230 localVariableDeclarationStatement

231 <|> classOrInterfaceDeclaration

232 <|> opt (identifier # t ":") # statement

APPENDIX D. Generated Java 1.7 Parser 95

233

234 localVariableDeclarationStatement = "localVariableDeclarationStatement" =|>

235 localVariableDeclaration # t ";"

236

237 localVariableDeclaration = "localVariableDeclaration" =|>

238 closure (variableModifier) # ttype # variableDeclarators

239

240 statement = "statement" =|>

241 block

242 <|> t ";"

243 <|> identifier # t ":" # statement

244 <|> statementExpression # t ";"

245 <|> t "if" # parExpression # statement # opt (t "else" # statement)

246 <|> t "assert" # expression # opt (t ":" # expression) # t ";"

247 <|> t "switch" # parExpression # t "{" # switchBlockStatementGroups # t "}"

248 <|> t "while" # parExpression # statement

249 <|> t "do" # statement # t "while" # parExpression # t ";"

250 <|> for # t "(" # forControl # t ")" # statement

251 <|> t "break" # opt (identifier) # t ";"

252 <|> t "continue" # opt (identifier) # t ";"

253 <|> t "return" # opt (expression) # t ";"

254 <|> t "throw" # expression # t ";"

255 <|> t "synchronized" # parExpression # block

256 <|> t "try" # block # (catches <|> opt (catches) # finally)

257 <|> t "try" # resourceSpecification # block # opt (catches) # opt (finally)

258

259 statementExpression = "statementExpression" =|> expression

260

261

262 catches = "catches" =|> catchClause # closure (catchClause)

263 catchClause = "catchClause" =|>

264 t "catch" # t "(" # closure (variableModifier) # catchType # identifier

265 # t ")"

266 # block

267

268 catchType = "catchType" =|>

269 qualifiedIdentifier # closure (t "|" # qualifiedIdentifier)

270

271 finally = "finally" =|> t "finally" # block

272

273 resourceSpecification = "resourceSpecification" =|>

274 t "(" # resources # opt (t ";") # t ")"

275

276 resources = "resources" =|> resource # closure (t ";" # resource)

277 resource = "resource" =|>

278 closure (variableModifier) # referenceType # variableDeclaratorId

279 # t "=" # expression

APPENDIX D. Generated Java 1.7 Parser 96

280

281 switchBlockStatementGroups = "switchBlockStatementGroups" =|>

282 closure (switchBlockStatementGroup)

283 switchBlockStatementGroup = "switchBlockStatementGroup" =|>

284 switchLabels # blockStatements

285

286 switchLabels = "switchLabels" =|> switchLabel # closure (switchLabel)

287 switchLabel = "switchLabel" =|>

288 t "case" # (expression <|> enumConstantName) # t ":"

289 <|> t "default" # t ":"

290

291 enumConstantName = "enumConstantName" =|> identifier

292

293

294 forControl = "forControl" =|>

295 forVarControl

296 <|> forInit # t ";" # opt (expression) # t ";" # opt (forUpdate)

297

298 forVarControl = "forVarControl" =|>

299 closure (variableModifier) # ttype # variableDeclaratorId

300 # forVarControlRest

301

302 forVarControlRest = "forVarControlRest" =|>

303 forVariableDeclaratorsRest # t ";" # opt (expression) # t ";"

304 # opt (forUpdate)

305 <|> t ":" # expression

306

307 forVariableDeclaratorsRest = "forVariableDeclaratorsRest" =|>

308 opt (t "=" # variableInitializer) # closure (t "," # variableDeclarator)

309

310 forInit = "forInit" =|> forUpdate

311 forUpdate = "forUpdate" =|> statementExpressions

312

313 statementExpressions = "statementExpressions" =|>

314 statementExpression # closure (t "," # statementExpression)

315

316

317 expression = "expression" =|>

318 expression1 # opt (assignmentOperator # expression1)

319

320 assignmentOperator = "assignmentOperator" =|>

321 t "=" <|> t "+=" <|> t "-=" <|> t "*=" <|> t "\="

322 <|> t "&=" <|> t "|="

323 <|> t "^=" <|> t "%="

324 <|> t "<<=" <|> t ">>=" <|> t ">>>="

325

326 expression1 = "expression1" =|> expression2 # opt (expression1Rest)

APPENDIX D. Generated Java 1.7 Parser 97

327

328 expression1Rest = "expression1Rest" =|>

329 t "?" # expression # t ":" # expression1

330

331 expression2 = "expression2" =|> expression3 # opt (expression2Rest)

332

333 expression2Rest = "expression2Rest" =|>

334 closure (infixOp # expression3)

335 <|> t "instanceof" # ttype

336

337

338 infixOp = "infixOp" =|>

339 t "||" <|> t "&&" <|> t "|" <|> t "&"

340 <|> t "==" <|> t "!="

341 <|> t "<" <|> t ">" <|> t "<=" <|> t ">="

342 <|> t "<<" <|> t ">>" <|> t ">>>"

343 <|> t "+" <|> t "-" <|> t "*" <|> t "/" <|> t "%" <|> t "^"

344

345 expression3 = "expression3" =|>

346 prefixOp # expression3

347 <|> t "(" # (expression <|> ttype) # t ")" # expression3

348 <|> primary # closure (selector) # closure (postfixOp)

349

350 prefixOp = "prefixOp" =|>

351 t "++" <|> t "--"

352 <|> t "!" <|> t "~"

353 <|> t "+" <|> t "-"

354

355 postfixOp = "postfixOp" =|> t "++" <|> t "--"

356

357

358 primary = "primary" =|>

359 literal

360 <|> parExpression

361 <|> t "this" # opt (arguments)

362 <|> t "super" # superSiffix

363 <|> t "new" # creator

364 <|> nonWildcardTypeArguments

365 # (explicitGenericInvocationSuffix <|> t "this" # arguments)

366 <|> qualifiedIdentifier # opt (identifierSuffix)

367 <|> basicType # closure (t "[" # t "]") # t "." # t "class"

368 <|> t "void" # t "." # t "class"

369

370

371 parExpression = "parExpression" =|> t "(" # expression # t ")"

372

373 arguments = "arguments" =|>

APPENDIX D. Generated Java 1.7 Parser 98

374 t "(" # opt (expression # closure (t "," # expression)) # t ")"

375

376 superSiffix = "superSiffix" =|>

377 arguments

378 <|> t "." # identifier # opt (arguments)

379

380 explicitGenericInvocationSuffix = "explicitGenericInvocationSuffix" =|>

381 t "super" # superSiffix

382 <|> identifier # arguments

383

384

385 creator = "creator" =|>

386 nonWildcardTypeArguments # createdName # classCreatorRest

387 <|> createdName # (classCreatorRest <|> arrayCreatorRest)

388

389 createdName = "createdName" =|>

390 identifier # opt (typeArgumentsOrDiamond)

391 # closure (t "." # identifier # opt (typeArgumentsOrDiamond))

392

393 classCreatorRest = "classCreatorRest" =|> arguments # opt (classBody)

394

395 arrayCreatorRest = "arrayCreatorRest" =|>

396 t "[" # (t "]" # closure (t "[" # t "]") # arrayInitializer

397 <|> expression # t "]"

398 # closure (t "[" # expression # t "]") # closure (t "[" # t "]"))

399

400 identifierSuffix = "identifierSuffix" =|>

401 t "[" # (closure (t "[" # t "]") # t "." # t "class" <|> expression)

402 # t "]"

403 <|> arguments

404 <|> t "." # (t "class"

405 <|> explicitGenericInvocation

406 <|> t "this"

407 <|> t "super" # arguments

408 <|> t "new" # opt (nonWildcardTypeArguments) # innerCreator)

409

410 explicitGenericInvocation = "explicitGenericInvocation" =|>

411 nonWildcardTypeArguments # explicitGenericInvocationSuffix

412

413 innerCreator = "innerCreator" =|>

414 identifier # opt (nonWildcardTypeArgumentsOrDiamond) # classCreatorRest

415

416 selector = "selector" =|>

417 t "." # (identifier

418 <|> explicitGenericInvocation

419 <|> t "this"

420 <|> t "super" # superSiffix

APPENDIX D. Generated Java 1.7 Parser 99

421 <|> t "new" # opt (nonWildcardTypeArguments) # innerCreator)

422 <|> t "[" # expression # t "]"

423

424

425 enumBody = "enumBody" =|>

426 t "{" # opt (enumConstants) # opt (t ",") # opt (enumBodyDeclarations)

427 # t "}"

428

429 enumConstants = "enumConstants" =|>

430 enumConstant # closure (t "," # enumConstant)

431 enumConstant = "enumConstant" =|>

432 opt (annotations) # identifier # opt (arguments) # opt (classBody)

433

434 enumBodyDeclarations = "enumBodyDeclarations" =|>

435 t ";" # closure (classBodyDeclaration)

436

437 annotationTypeBody = "annotationTypeBody" =|>

438 t "{" # closure (annotationTypeElementDeclaration) # t "}"

439

440 annotationTypeElementDeclaration = "annotationTypeElementDeclaration" =|>

441 closure (modifier) # annotationTypeElementRest

442

443 annotationTypeElementRest = "annotationTypeElementRest" =|>

444 ttype # identifier # annotationMethodOrConstantRest

445 <|> classDeclaration

446 <|> interfaceDeclaration

447 <|> enumDeclaration

448 <|> annotationTypeDeclaration

449

450 annotationMethodOrConstantRest = "annotationMethodOrConstantRest" =|>

451 annotationMethodRest

452 <|> constantDeclaratorsRest

453

454 annotationMethodRest = "annotationMethodRest" =|>

455 t "(" # t ")" # opt (t "[" # t "]") # opt (t "default" # elementValue)

	Title page
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Contributions
	Outline

	Languages, Parsing, and Tools
	Regular Languages
	Regular Expressions
	Regular Grammars

	Context-Free Languages
	Derivation Trees

	Parsing
	Recursive Descent Parsing
	Drawbacks of RD Parsers
	GLL Parsing

	Extended Backus-Naur Form
	Haskell
	Expressions and Types
	Definitions
	Type Classes and Monads

	On the Implementation of GLL Combinators
	Standard Parser Combinators
	CPS Combinators
	Memoized Combinators

	A Combinator Based Parser Generator
	Parser Generator
	Validation

	Conclusions
	Related Work
	Future Work

	References
	JSON EBNF
	Generated JSON Parser
	Java 1.7 Syntactical EBNF
	Generated Java 1.7 Parser

