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ABSTRACT

Knowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence
concerned with the extraction of useful information and insights from a given dataset.
Among the distinct extraction methodologies, an important subclass of KDD tasks, called
Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data.
Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discov-
ery task with considerable success in low dimensional datasets. Some of these, however,
have been shown to perform poorly in high dimensional problems. The currently best
performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets,
SSDP, has a peculiar way of initializing its populations, limiting the individuals to the
smallest possible size. As with most population-based techniques, the outcome of an Evo-
lutionary Algorithm is usually dependent on the initial set of solutions, which are typically
generated at random. The impact of choosing one initialization technique over another in
the final presented solution has been the topic of many published works in the broad area
of evolutionary computation. Despite this, there is still a lack of studies which approach
this topic in the specific scenario of Subgroup Discovery tasks, especially when considering
high dimensional datasets. The ultimate goal of this research project is to evaluate the
impact of initial population generation in the end result of the overall Evolutionary Algo-
rithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we
provide new initialization methods, designed for the specific characteristics of Subgroup
Discovery tasks, which can be used in virtually any EA. Our conducted experiments show
that, by just changing the initialization method, state of the art Evolutionary Algorithms

have their performance increased in high dimensional datasets.

Keywords: Data Mining. Knowledge Discovery. Subgroup Discovery. Evolutionary Al-

gorithms.



RESUMO

Descoberta de Conhecimento em Bases de Dados (KDD) é uma érea ampla em In-
teligéncia Artificial que se preocupa com a extracdo de informacoes e insights uteis a
partir de um conjunto de dados. Dentre as diferentes metodologias de extracao, uma
importante subclasse de tarefas de KDD, chamada de Descoberta de Subgrupos (SD),
lida com a descoberta de subconjuntos interessantes dentro dos dados. Varios Algorit-
mos Evolucionarios (EAs) foram propostos para resolver a tarefa de descobrir subgrupos
com sucesso consideravel em bases de dados de baixa dimensionalidade. A literatura ja
mostrou, no entanto, que alguns desses tem uma performance baixa em problemas de alta
dimensionalidade. O algoritmo evolucionario para descoberta de subgrupos com, atual-
mente, a melhor performance em bases de alta dimensionalidade, SSDP, possui uma forma
peculiar de inicializar sua populacao, limitando os individuos ao menor tamanho possivel.
Assim como na maioria das técnicas baseadas em populagao, o resultado de um algoritmo
evolucionario é, em geral, dependente do conjunto de solugdes inicial, que é tipicamente
gerado de forma aleatéria. Escolher uma técnica de inicializacao sob outra tem grande
impacto na solucao final apresentada, e este ja foi o tépico de trabalhos publicados na area
de computacao evolucionaria. Apesar disso, faltam trabalhos que estudem este topico no
caso especifico de descoberta de subgrupos, especialmente quando sao consideradas bases
de alta dimensionalidade. O objetivo final desta pesquisa ¢é avaliar o impacto da geracao
da populagao inicial no resultado final de um algoritmo evolucionario no contexto de uma
tarefa de descoberta de subgrupos em dados de alta dimensionalidade. Especificamente,
sao apresentados novos métodos de inicializacao, projetados para as caracteristicas especi-
ficas de tarefas de descoberta de subgrupos, que podem ser utilizadas em praticamente
qualquer algoritmo evolucionario. Os experimentos conduzidos mostram que mudar o
método de inicializagao é o suficiente para aumentar a performance de algoritmos evolu-

cionarios do estado da arte em bases de dados de alta dimensionalidade.

Palavras-chaves: Data Mining. Knowledge Discovery. Subgroup Discovery. Evolutionary

Algorithms.
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1 INTRODUCTION

Data Mining is a broad area in Artificial Intelligence concerned with the extraction of
novel, useful, and interesting patterns from potentially large datasets. Also known as
[KDD] its techniques can be divided into predictive and descriptive induction. The first
is about extracting knowledge in order to predict the class label of unseen data, whereas
the second is concerned with the search for interesting relationships between features of
data.

(WROBEL, |1997) is a subclass of Knowledge Discovery tasks classified as a descrip-
tive data mining technique based on supervised learning. As the name suggests, its main
objective is the search for statistically interesting subgroups in the dataset. A subgroup
is a subset of objects in the dataset, and it is considered “interesting” if it is as large
as possible and has unusual distributional characteristics with respect to a certain target
property.

Subgroups must be described in explicit symbolic form and be humanly interpretable
in order to guide the decision making process of some domain expert, e.g., doctors and
software engineers (LAVRAC, [2005)). To that end, subgroups are typically represented
as propositional rules, and their quality is assessed using measures from predictive rule
learning (such as accuracy, sensitivity and specificity) and association rule learning (such
as coverage and support) (LAVRAC; FLACH; ZUPAN, [1999).

The first algorithms proposed to mine these subgroups were EXPLORA (KLOSGEN,
1996) and MIDOS (WROBEL, 1997). These are known as exhaustive methods, meaning
that they would go through the entire search space in order to find the exact optimal
solution. As the datasets grew in number of attributes and objects, it became increas-
ingly infeasible to search the complete space of solutions, and so researchers turned their
attention to heuristic approaches.

It is possible to reduce subgroup discovery to a general search or optimization task,
where a single rule is a valid solution, the set of all possible rules is the search space and
the quality of any given solution can be calculated using one (or more) of the previously
mentioned measures. That way, any general purpose search or optimization algorithm can
be applied to solve [SD]

Therefore, many heuristic search based approaches have been proposed to solve [SD]
The most common approaches can be divided into two categories: the ones based on
beam search, and [EAg| In the first category, we find algorithms such as SubgroupMiner
(KLOSGEN; MAY], 2002) and SD (GAMBERGER; LAVRAC] [2002). In the second category,
the focus of this research project, there are algorithms such as Non-dominated Multi-
objective Evolutionary Algorithm Based on the Extraction of Fuzzy Rules for Subgroup
Discovery (NMEEF-SD) (CARMONA et al., [2009), Multi-objective Evolutionary Subgroup



14

Discovery Fuzzy rules (MESDIF) (JESUS; GONZALEZ; HERRERA| 2007) and Simple Search
Discriminative Patterns (SSDP) (PONTES; VIMIEIRO; LUDERMIR, [2016)).

have been frequently applied to solve (CARMONA et al) 2014). However, even
though they have had success in low dimensional problems, most of these have poor
performance in high dimensionality (LUCAS et al., [2017)).

One of the common steps in all is the creation of the starting population. This
step provides an initial set of “guess” solutions, which will be iteratively improved dur-
ing the optimization process. Good initial guesses can help the [EA] locate the optima,
whereas bad initial guesses may even prevent from finding it. There have been many
discussions on the effect of population initialization in the outcome of general [EA] solu-
tions (KAZIMIPOUR; LI; QIN| 2013} [KAZIMIPOUR; LI; QIN, 2014b; KAZIMIPOUR; LI; QIN,
2014al). However, to the best of our knowledge, there still lacks a work on such effects in
the specific scenario of high dimensional [SD| problems.

The algorithm with the best results in high dimensional [SD] problems, SSDP, has a
very peculiar way to initialize its population. This raises the question as whether it is
possible to improve the performance of state of the art which perform poorly in
high dimensionality, by just changing their initialization strategies.

Therefore, this study aims at starting the discussion about the impacts of selected pop-
ulation initialization strategies over the effectiveness of an [EA] for solving [SD] problems,
especially in high dimensional datasets. In the scope of this dissertation, by “high dimen-
sional”, we mean to include datasets ranging from a few thousand, to tens of thousands

of features.

1.1 MOTIVATION

[Subgroup Discovery| is a general and broadly applicable technique for descriptive and

exploratory data mining. As such, it possesses a wide range of real world applications.

Lavrac| (2005]) used in two case studies. In the medical domain, can be used
to detect and describe Coronary Heart Disease risk groups. The available data collected
includes physical examination and laboratory tests. In most cases with significant patho-
logical symptoms, it is easy to detect the disease. To help prevent the disease, however, it
is essential to be able to find endangered individuals with slightly abnormal symptoms.
[SD] can help detect important risk factors and groups in the population.

The case study involved gene expression data, which is obtained through DNA microar-
rays, and help understand many biological processes. This DNA chip-based technology
is able to measure the expression levels of thousands of genes, which produces a large
amount of valuable high-dimensional data. Here, [SD| can be used to uncover interest-
ing patterns which can help experts achieve a better understanding of the dependencies

between diseases and gene expression values in a person’s tissues (LIU et al., [2014)).
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Li e Wong (2002) have shown that the identification of groups of genes that are
constrained to certain intervals of expression levels, in a way that these patterns only occur
in a certain class of cells, but not in others, can help identify the best pharmacological
intervention to treat a disease. For instance, [SD| could help assign patients with Acute
Lymphoblastic Leukemia to specific risk groups, which is critical to tailor the intensity of
the chemotherapy to treat them (YEOH et al., 2002).

Outside the bioinformatics and medical domains, Rodriguez et al.| (2012) approached
the problem of detecting defective software modules through a descriptive induction pro-
cess using[SD] The authors used an[EA]to generate understandable and useful rules, which
could help project managers and quality assurance professionals to guide the testing effort
and, ultimately, improve software quality.

Jesus et al.| (2007), on the other hand, proposed their own genetic algorithm for
to extract relevant and interesting information to help improve planning polices for trade
fairs, which are basic instruments in industrial marketing.

As one can see, the varied possible applications of [SD|in real world problems make this
data mining technique relevant. The most common approaches to solving [SD| problems
are based on exhaustive or beam search. But because of these methods’ performance in

large-scale datasets, other methods based in soft computing techniques were investigated

and applied. Among these, a common trend is to use [Evolutionary Algorithms| When
applied to high dimensional [SD| problems, however, the state of the art for [SD|
have been shown to either perform poorly or not at all (LUCAS et al, 2017). Such a

poor performance raises the question of whether this behavior is due to the initialization
procedure adopted in those heuristics, since most of the state of the art algorithms are

straightforward adaptations of well-known optimization methods.

1.2 PROBLEM STATEMENT

Usually, generate the starting population completely at random. For low dimensional
problems that is, generally, not a problem, but for high dimensional datasets, those strate-
gies generate very long propositional rules, which inevitably have poor (and very often
zero) coverage and support. In contrast, the currently best performing in high dimen-
sional datasets, designed specifically for that characteristic, (PONTES; VIMIEIRO;
LUDERMIR|, 2016), uses a very peculiar initialization method which restraints the starting
population to rules of size 1. This raises the question as to whether other could be
led to perform better, in such high dimensional [SD] tasks, if their initialization operators
were changed to, for example, prioritize rules of small sizes.

Based on this context, the main research question investigated by this dissertation is:

Research question Is it possible to improve the performance of state of the art [EA44,

which thrive in low dimensional problems, but struggle in high dimensional ones, by
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just changing their initialization operators?

Aiming to answer the above question, this dissertation presents new ways to initialize
the starting population of for [SD] problems, modifies the already existing state of
the art to use those operators and shows, through experiments, that these modified

versions have superior performance in high dimensional [SD] problems.

1.3 ORGANIZATION OF THE DISSERTATION

Chapter 2 reviews [SD| by giving a set theoretic definition of the problem. It also provides a
description of many quality measures which can be used to evaluate subgroups. It finishes
by reviewing many of the published approaches to discover subgroups, giving special
attention to the evolutionary algorithms.

Chapter [3| describes in details the evolutionary algorithms used throughout the ex-
periments conducted to test the hypothesis. In particular, it reviews how each algorithm
initializes the population in order to motivate our proposed technique.

Chapter [ presents the empirical tests designed to test our hypothesis in terms of
convergence. We present each algorithm’s convergence rate and then compare it with a
new version where their initializations have been replaced by our proposed approach.

Chapter [5| focuses on comparing the algorithms in terms of the quality of output
rules. It also presents new ways to initialize the population in an attempt to improve the
results. The chapter finishes with a comparison of the various presented ways to initialize
the population.

Finally, this document presents its final conclusions and results in Chapter [0} It is also
in that chapter where we present some research questions that were left unanswered and

will be addressed in our future works.
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2 BACKGROUND

This chapter reviews the specialized literature for Subgroup Discovery by first reviewing
its definition, then the measures used to assert a subgroup’s quality and finally describing
existing approaches for discovering subgroups found in the literature.

Data mining is an area in Artificial Intelligence which includes many techniques, meth-
ods, technologies and systems. In particular, an important subclass of knowledge discovery
tasks is the automated discovery of interesting subgroups in populations, also known as,
ISubgroup Discovery (SD)| It was first defined by Klosgen! (1996)) and [Wrobel (1997) as:

given a population of objects, described by a set of properties, and a specific property

which we are interested in, the task is to discover subgroups of the population that are
statistically most interesting with respect to that property of interest.

More formally, let D = {E, A} be a dataset consisting of E, which is the set of
objects, and A, the set of attributes. Then, we say the dataset has n = | E| objects, each
described by m = | A| attributes, and so D is said to be a m-dimensional dataset.

Each attribute, a; € A (for j € {1,...,m}), is also a set: a; = {v{, vy vij}, consisting
of k; = |a;| possible values. Each object e; € E (fori € {1,...,n}), is a set of m attribute-
value pairs of the form: e; = {(1, v;>, -, {m,v7") }, where the first element of each pair is
the index of an attribute (ay, ..., @,,), and the second element is one of the possible values
of that attribute, i.e., vll, € ay, where p € {1,..., k1 } and v" € a,,, where ¢ € {1, ...,k }.

This definition of a dataset does not contemplate continuous attributes, but it is simple
and sufficient enough to formally define the task of [SD] and to mathematically describe
the quality measures presented in Section [2.1]

Given a target attribute, ar € A, and one of its values in which we are interested in,
vI' € ar, possibly a class label, we can draw a subgroup Sg C E induced by a rule, R,

of the form:

R: Cond — v’ (2.1)

The antecedent part of (2.1), Cond, can be any boolean expression involving any
number of attribute-value pairs. An object in the dataset, e;, is said to be covered by R
if the expression in C'ond is true for that object. An object covered by R is an element
of the subgroup Sg. As mentioned above, the consequent part of , v! is some value
for the target attribute in which we are interested in. Usually, examples satisfying this
target value are called “positive examples”, while the remaining are known as “negative
examples”, since ar is often a class label.

If C'ond is true for that dataset object and the value in e; for the target attribute is
vl then e; is called a “true positive”. Whereas if it is any other value, then e; is called a

“false positive”. We can subdivide Sg in terms of v!: let S5 = {e; € Sg | (T,v]) € e;}
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be the set of true positives and Sy = Sg \ Si be the set of false positives. True and
false positives will be used to calculate measures for the quality of subgroups, which are
presented in the next section.

It is also possible to subdivide E in a similar fashion: let EX = {e; € E | (T, v!) € e;}
be the set of positive objects in the dataset and E; = E \ EI be the set of negative
objects in the dataset.

To illustrate our definitions, we now present an example. Suppose we want to discover
subgroups in the toy dataset provided in Table [I, which was adapted from [Lucas et al.
(2017).

Table 1 — A toy example. In this dataset, the objective is to identify the characteristics
which render a medical treatment a success or a failure.

Example Gender Age  Medicine Label

e1 M Senior B Success
€9 F Senior B Success
e3 M Senior A Success
e M Adult A Success
es F Child A Success
€ F Child A Failure
er M Child B Failure
e F Child B Failure
€g M Adult A Failure
€10 F Adult A Failure

We want to find subgroups in the dataset which describe successful medical treatments
for some disease. Following our established notation, E = {ey, ..., e1p} is the set of ob-
jects. A, the set of attributes is {@gender; Gages Amedicine,; Qiabet }» Where @geger = {M, F},
Qqge = {Senior, Adult, Child}, @medicine = {A, B} and ajaper = {Success, Failure}. So
D, represented in our table, is { E, A}. Moreover, the set of positive objects, EJ; is

success)’

given by {ey, ..., es}, while the set of negative objects, E,, ..ss» 1S given by {es, ..., €10}.

In this scenario, an example of a rule, R1, might be:

R1 = {{age, v, } — vlsbe! (2.2)

senior Success

So the subgroup Sg; = {e1, ez, ez}, induced by rule R1, is an interesting subgroup,
since the set of true positives is SE; = {e1, es, es}, while the set of false positives is
7 = 0. That is, the frequency of the target class value in the subgroup is 100%, while

the frequency of other class values is 0%.
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The expression Cond can be built using any boolean operator, but conjunctions are

more commonly used. See the example below:

R2 = {{(gender, vy A (medicine, vpedicne)} — ylabel (2.3)

From R2, we induce the following subgroup: Sgo = {e1, er}, which is not an inter-
esting subgroup, because the frequency of objects in the target class value is the same as
the other target class values: Si, = {e1} and Sg, = {er}.

That way, it is possible to arbitrarily define subgroups for any given dataset simply by
concatenating attribute-value pairs using some boolean operator. However, the [SD| task
is concerned not with just any subgroup, but with “interesting” ones. To calculate the
interestingness of a subgroup, it is common to use evaluation measures applied over the
rules that define them.

2.1 EVALUATION MEASURES

There are many ways to evaluate the subgroups. These measures are used both by [SD]
strategies, to refine the final set of returned subgroups, and by [SD|researchers to compare
different approaches. Typically, measures are applied locally over the rules which induce
the subgroups, but some global measures evaluate an entire set of rules returned by a
strategy’s execution.

In the case of local measures, it is possible to obtain an evaluation of a strategy’s
entire execution by averaging the results of specific rules.

This section is aimed at reviewing the most used evaluation measures found in the

N«

literature. To that end, measures are grouped into “measures of complexity”, “measures
PO RN14

of generality”, “measures of precision” and “hybrid measures”, following the definition of
Herrera et al.| (2011)).

2.1.1 Measures of Complexity

The first set of measures that we review regard the understandability of the knowledge
extracted from a successful execution of some [SD] approach. These are called measures of
complexity.

The first is the Number of Subgroups discovered by a single execution of some [SD|
algorithm. In particular, many approaches to [SD] are called top-k methods, which will
always return a number of subgroups specified by the end user beforehand.

The second measure of complexity is applied to each individual rule. The Length of the
Rule is simply the number of attribute-value pairs contained in it. The higher the number,
the more complex a rule is. Rules with too many attribute-value pairs are typically harder

to read even by domain experts.
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2.1.2 Measures of Generality

Measures of generality are used to quantify how general a rule is in terms of how many
examples of interest are covered. The two most noticeable measures in this category are
Coverage and Support (LAVRAC; FLACH; ZUPAN, 1999).

Coverage measures the fraction of examples in the dataset covered by the antecedent

part of the rule. As such, it is calculated as:

_ ISkl
E|
The Support of a rule is the fraction of examples covered by both the antecedent and

Cov(R) (2.4)

consequent parts of the rule. It can be calculated by:

Supp() = ' (25

2.1.3 Measures of Precision

The confidence (LAVRAC; FLACH; ZUPAN, [1999)) of a rule is the relative frequency of true

positive objects in the subgroup induced by it, which can be mathematically defined as:

ISk
| S|
Another measure of precision is the (), metric (GAMBERGER; LAVRAC, 2002), which

Cnf(R) (2.6)

measures the trade-off between the number of true positive examples and the unusualness

of their distribution. It can be computed as:

S+
Qy(R,g) = I‘S'll}llﬂg

Where ¢ is a generalization parameter and is usually configured to a value between
0.5 and 100.

Another possible way to measure the precision of a rule is to calculate a straightforward

(2.7)

difference between the number of true positives and false positives:
SUB(R) = |Sg| — |Sg| (2.8)

2.1.4 Measures of Interest

This category includes measures aimed at selecting and ranking rules according to their
potential interest to the user. Such measures are: Novelty and Significance.

Novelty (LAVRAC; FLACH; ZUPAN, 1999) is a measure able to detect how unusual a
subgroup is. It can be computed by:

IS8l 1B7
B " IE]

Nov(R) = Supp(R) (2.9)
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Another measure of interest is Significance (LAVRAC et al., 2004)), which indicates how
significant a finding is compared to the null hypothesis of statistical independence. To
calculate Significance, we first need to extend our framework.

For a given rule R : Cond — v!, the actual subgroup is induced by applying the
boolean expression, C'ond, to the objects in the dataset. The consequent part does not
affect the induced subgroup, but is essential to calculate the quality, as it contains the
target class of the task. Therefore, we can write R, : Cond — vl for u € {1,..., kr},
as rules with the same antecedent as R, but with a different value for the target attribute
in the consequent.

With that, the Significance is given by:

1Sk, |
|E| x Cov(Ry)

kT
Sig(R) =2 x Y |Sk | x log (2.10)
u=1

2.1.5 Hybrid Measures

When searching for subgroups in [SD] we typically face a trade-off between complexity,
generality, precision and interest. Because of that, evaluation measures that blend these
qualities are included in this hybrid category.
The first hybrid measure is the Sensitivity of a rule, defined as the proportion of
examples correctly covered. It can be computed as:
S+
Sen(R) = ’|E?|‘ (2.11)

Another hybrid measure is Specificity, which is the proportion of examples correctly

not covered. It is calculated by the following expression:

|E; \ Sr|

Spec(R) = ——=——
E|

Finally, we have the Unusualness evaluation metric, also known as|Weighted Relative]

lAccuracy (WRAcc)| (LAVRAC; FLACH; ZUPAN, |1999), which is the balance between rule

coverage and its accuracy gain. It can be computed as:

(2.12)

W RAcc(R) = Cov(R) X (‘;};: — |‘lg‘|> (2.13)

It is important to note that is perhaps the most fundamental of all the pre-
sented rule evaluation measures and that is due to two main reasons demonstrated by
Lavra¢, Flach e Zupan| (1999)). First, and Novelty are equivalent, i.e., rules with
high also have high novelty, and vice versa. Second, it also provides a trade-off
between accuracy and other predictive measures shown above, namely, Sensitivity and

Specificity.
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In Table 2, we present a summary of the quality measures presented in this chapter

for the reader’s convenience.

Table 2 — A summary of the quality measures for SD.

Name Equation Category Characteristics

Coverage (2.4) Complexity Fraction of instances covered by the an-
tecedent

Support Complexity Fraction of true positives covered by the an-
tecedent

Confidence  ([2.6) Precision Frequency of true positives among the covered
set

Qq Precision Trade-off between true positives and the un-
usualness of their distribution

SUB Precision Straightforward difference between true posi-
tives and false positives

Novelty (2.9) Interest Measures how unusual the subgroup is regard-
ing the target value of the class

Significance Interest Measures how unusual the subgroup is regard-
ing all values of the class

Sensitivity Hybrid The true positive rate of a rule

Specificity Hybrid The true negative rate of a rule

WRACcc (12.13)) Hybrid Trade-off between accuracy and Sensitivi-

ty /Specificity. Equivalent to novelty

2.2 EXISTING APPROACHES

Now that we have reviewed what [Subgroup Discovery|is, as well as how to evaluate the

subgroups found by its algorithms, this section reviews the existing strategies for discov-
ering subgroups found in the literature. We subdivide them into: exhaustive approaches,
beam search based strategies, adapted from classification rule learning and evolutionary

algorithms.

2.2.1 Exhaustive approaches

The first published approach for [Subgroup Discovery, EXPLORA (KLOSGEN, [1996), is a

search algorithm for multidimensional spaces. It explores the space of target subgroups,

which are represented as conjunctions of taxonomical values for target variables. The
search starts in more general subgroups and moves towards more specific ones. Further-

more, the search is constrained by redundancy filters, pruning successor subgroups off of
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the search space. The ordering of the exploration can be changed, allowing EXPLORA
to follow a breadth-first, depth-first, best-first or even heuristic search strategies.

Following that, the MIDOS (WROBEL, [1997)) algorithm is an adaptation of EXPLORA
designed to work with multi-relational datasets. As such, it performs a top-down, general-
to-specific search which can use breath-first, depth-first or best-first strategies just by
changing the selection ordering of hypotheses. During its execution, MIDOS considers
the size of the subgroups and their unusualness as evaluation metrics.

SD-MAP (ATZMUELLER; PUPPE, 2006) is an algorithm for which adapts the well-
known FP-growth method for mining association rules. It is an exhaustive method which
implements depth-first search for candidate solution generation and, as such, is guaranteed
to find the best subgroups for the given dataset, according to the chosen evaluation metric,

which the user can select from a wide variety of options.

2.2.2 Beam search based strategies

SubgroupMiner (KLOSGEN; MAY/,|2002) is an extension of the previous subgroup discovery
systems EXPLORA and MIDOS. It uses interactive beam search in the space of possible
solutions and uses the same approach as EXPLORA to eliminate redundant subgroups.
As for evaluation measures, SubgroupMiner uses the classical binomial test to verify if the
frequency of the target class in the subgroup is significantly different than in the entire
population.

SD (GAMBERGER; LAVRAC), 2002)) is a heuristic [Subgroup Discovery| algorithm based

on beam search. Instead of using an evaluation metric to automatically select the final set
of subgroups to be returned to the user, the objective of SD is to guide a domain expert
in making effective searches on a variety of solutions. During its search step, however, it
uses the (), metric to evaluate partial solutions. The search is performed by keeping a
fixed width beam of subgroups and, in each iteration, a conjunction is added to every
subgroup. Each new solution generated that way is kept for the next iteration if they
are better in terms of the @), metric and their relevance. A new subgroup is irrelevant if
there exists another subgroup in the new beam such that the true positives of the new
subgroup are a subset of the true positives of the old one and false positives of the new

are a superset of the false positives in the old.

2.2.3 Approaches adapted from classification rule learning

APRIORI-SD (KAVSEK; LAVRAC; JOVANOSKI, 2003) is an adaptation of the classification
rule learning algorithm called APRIORI-C. APRIORI-C induces rules such that they are
above a established minimal confidence and minimal support. It is often the case that the
number of induced rules is too large, so a post-processing step is necessary to find only
the best rules. APRIORI-SD uses a modified version of the [WRAcd evaluation metric

for this step. The weights of each instance decreases each time a rule is found to cover
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it. When an instance’s weight drops below a given threshold, the instance is removed.
APRIORI-SD keeps inducing rules until all instances in the dataset have been covered or
until it can’t induce any more rules.

Another algorithm for [SD| obtained from the adaptation of a classification rule learn-
ing is CN2-SD (LAVRAC et al,, 2004), which adapts the classical algorithm CN2. The
later originally uses the covering algorithm for constructing the set of rules, where the
first constructed rules are induced from the entire set of instances from the dataset, but
subsequent ones are induced from a biased example subset, which includes only the pos-
itive examples in the dataset that were not covered by the first rules. CN2-SD modifies
this approach by instead lowering the probability of covering non-positive, already cov-
ered examples instead of excluding them. It also uses the modified version of as
evaluation measures.

Most of the algorithms presented in the three subsections above perform either an
exhaustive or heuristic search for mining rules and the subgroups they represent. These
category of methods have been shown in past works to perform poorly in high dimen-
sional datasets (SANTOS; VIMIEIRO, 2017)). For this reason, many strategies applying soft-

computing techniques have been studied. Among these, the literature has given much

attention to [Evolutionary Algorithms (EAs)| Below we will review these categories of
techniques. In particular, we give special attention to the state of the art for the [SD|
task.

2.2.4 Evolutionary algorithms

In this subsection we will review designed to solve [SD] These are the focus of this
project, as we are studying the impact of population initialization in their outcome. Al-
though some of these are relatively old algorithms, they are still widely regarded as the
best representatives for this category of algorithms (HERRERA et al., 2011; HELAL, [2016;
CARMONA; JESUS; HERRERA), [2018)).

SDIGA (JESUS et al., [2007) is a mono-objective evolutionary algorithm for inducing
fuzzy rules. The disjunctive normal form is used to implement these fuzzy rules and serve
as a description language to represent subgroups. The algorithm evaluates the quality of
subgroups by means of weighted average of many possible measures chosen by the user.
The search for the fuzzy rules is carried by a genetic algorithm, but a post-processing step
is done afterwards which applies local search to find one simple and interpretable fuzzy
rule as the algorithm’s output.

After each run of SDIGA’s genetic algorithm, a rule is obtained and a post-processing
step performs a hill climb to try to improve the rule. This step makes the algorithm run
significantly slower than the others presented in this subsection. Even though SDIGA
allows the user to configure multiple evaluation measures, it is not a real multi-objective

algorithm, it just performs a weighted average of the configured measures in order to
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obtain the final fitness of each individual, so the user also has to select the weights of each
measure.

MESDIF (JESUS; GONZALEZ; HERRERA|, 2007) is a multi-objective genetic algorithm
for inducing fuzzy rules based on the SPEA2 and many evaluation measures can be com-
bined to evaluate the generated subgroups. During its search, MESDIF keeps a separate
elite population, the size of which is determined by the user. By the end of the algorithm’s
execution, the user can retrieve this elite population and use it as the set of returned sub-
groups. MESDIF provides an objective based on novelty to avoid redundancy in the elite
population.

NMEEF-SD (CARMONA et al., [2009)) is also a multi-objective genetic algorithm de-
signed to induce fuzzy or crisp rules for the [SD|task. Therefore, it can also be used with a
wide variety of evaluation measures. Different from the MESDIF, NMEEF-SD is based on
the NSGA-II. Another difference is that NMEEF-SD performs a reinitialization based on
coverage after a full iteration of the genetic algorithm is over. This behavior is designed
to increase the diversity in the population.

Both MESDIF and NMEEF-SD are adaptations of general-purpose [EAs| namely
SPEA2 and NSGA-II. As such, they were not designed from the group up to solve [SD|
This is reflected in their initialization operators, which will often generate individuals
with too many attribute-value pairs, representing rules which are too specific and that
will most likely have poor quality. One advantage they have when compared to SDIGA
is that they are true multi-objective algorithms, so the user can configure which quality
measures are desired and leave for the algorithms to balance them during the search.

Finally, SSDP (LUCAS et al|, 2017) is a mono-objective designed specifically for
solving [SD| tasks in high dimensional datasets. One of the most discerning characteristics
of the algorithm, when compared to other [EAg is that it only has one parameter which
needs to be set by the user: the number of rules to be returned. This is due to its particular
way to initialize the population: SSDP generates a starting population with every possible
rule with a single attribute-value pair. As the algorithm is designed to return the top-k
rules found during the search, it records the most relevant individuals found in a separate,
elite, population. Individuals are only inserted in this elite population in case they are
relevant, and SSDP uses the same concept of relevance as the SD algorithm.

Although SSDP has been shown by its authors to work well in both low and high
dimensional [SD] tasks, it has two limitations. The first is the fact that it does not support
continuous attributes. So any dataset must have its attributes transformed to discrete
intervals before [SSDP| can be executed. The second lies in its initialization technique.
Because it generates all possible individuals with exactly one attribute-value pair, and it
is designed for high dimensional datasets, it is common to initialize [SSDP| with tens of
thousands of individuals. This may quickly drain the computational resources available.

Now that the existing approaches to solve [SD] have been described and the state of the
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art have been listed, the next chapter will discuss each of these last three algorithms
in detail. Because SDIGA runs significantly slower, and we could not spare the time or
computational resources, we decided to leave it out of our list of algorithms selected to
study and answer this project’s research question. After MESDIF, NMEEF-SD and SSDP
are discussed in detail, Chapter [4] will describe how their initializations were modified to

test and verify the hypothesis.
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3 EVOLUTIONARY ALGORITHMS FOR SUBGROUP DISCOVERY

In this chapter, we will cover some of the state of the art [Evolutionary Algorithms (EAs)|
for [Subgroup Discovery (SD)|in detail. The first two, MESDIF and NMEEF-SD were
designed for low dimensional [SD| problems and have been shown to perform poorly in
high dimensional ones (LUCAS et al},|2017). The last one, called SSDP, on the other hand,

was specifically designed for high dimensional problems. These details will prepare for the

next chapter, where we will review our hypothesis, explain the intuition behind it and

how we will go about testing it.

3.1 MESDIF

This section describes the data mining algorithm called [Multi-objective Evolutionaryl
[Subgroup Discovery Fuzzy rules (MESDIF)| (JESUS et al., [2007)). It is a multi-objective
|Genetic Algorithm (GA)| for the extraction of rules which describe subgroups. It works

for discrete target variables, and also supports both continuous and nominal attributes.

When extracting the rules, the algorithm keeps the consequent of the rule fixed in
some value of the target variable and the search is done for the antecedent part only. In
practice this means that, to extract knowledge in all possible classes of the problem, the
algorithm needs to be run once for each class.

The rules extracted can be crisp and represented in canonical form or fuzzy and

described in the [Disjunctive Normal Form (DNF)| The first is a conjunction of attribute-

value pairs, such as the ones described in Chapter[2] while the second is used as description
language to specify subgroups, which permits a disjunction for the values of any variable
present in the antecedent of a rule.

IMESDIF] is based on the SPEA-2 strategy and, as such, it applies the concept of
elitism in its search for rules, keeping an elite population of non-dominated individuals.
In the end of its execution, MESDIF|returns the rules present in this elite population, the
size of which is predetermined by the user.

The outline of the algorithm is shown in Figure[I] Next, we explain the most important

components of its design in more detail.

3.1.1 Individual Representation

The choice of how to represent the solutions being searched for by the algorithm is perhaps
the most important step in [GA] design. The encoding approach used in [MESDIF] is the
“Chromosome = Rule”; in which each individual encodes a single rule (instead of, for

instance, representing a set of rules).
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Figure 1 — Scheme of the MESDIF| algorithm.

Step 1. Initialization:
Generate an initial population Py and create an empty elite population Pj = (). Set
t=0.
Repeat
Step 2. Fitness assignment:
calculate fitness values of the individuals in P, and F;.
Step 3. Environmental selection:
copy all non-dominated individuals in P, and P/ to F;, ;. As the size of P/ ;
must be exactly the number of individuals to store (N), we may have to use truncation
or a filling function.
Step 4. Mating selection:
perform binary tournament selection with replacement on P/, applying later
crossover and mutation operators in order to fill the mating pool (obtaining P, y1).
Step 5. Increment generation counter:
(t=t+1)
While stop condition is not verified.
Step 6.
Return the non-dominated individuals in P/, ;.
Source: adapted from (JESUS et al., [2007)

Because the consequent of the rule is kept to a fixed value during the algorithm’s
execution, the individual only represents the antecedent part of the rule. Each individual
has a chromosome, which, in [MESDIF] is implemented using an array of integers. Each
position in the array represents an attribute (excluding the target) in the dataset. The i-th
position in the array contains the value paired with the i-th attribute. So each position
in the array encodes an attribute-value pair and the rule is obtained by the conjunction
of each element in the array. If the value in the i-th position is higher than the number
of possible values for the dataset’s i-th attribute, then it means, the i-th attribute is not

a part of the rule represented by that array.

3.1.2 Population Initialization

initializes its starting population at random. For each attribute available in the
dataset, a random value will be drawn in a uniform manner to pair with that attribute.
That way, if the dataset has m attributes, then every rule in the starting population will
have m attribute-value pairs. This means the initial rules will be very specific, i.e., they
will be a conjunction of so many attribute-value pairs, that the rule ends up covering few
examples in the dataset, if any at all.

For datasets with a small number of attributes, this might not be a problem. The
evolutionary operators might tweak the individuals into covering more examples. For high
dimensional datasets, however, the individuals in the starting population will often cover

zero examples, and the tweaks made by the mutation and crossover operators may not be
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enough to lead the population to better individuals, since both old and new generations
of individuals will have similarly low values for quality measures, and the evolutionary
process stagnates.

After we present how the other algorithms initialize their starting population, we will
discuss the different approaches to population initialization in more depth and present

our own strategies.

3.1.3 Objectives optimized

Being a multi-objective [EA] [MESDIF|can be configured to optimize any number of evalua-
tion metrics. However, the main implementation of the algorithm, made by its authors and
available in the software package KEEL (ALCALA-FDEZ et al., [2009), provides as default

the Sensitivity, [Weighted Relative Accuracy (WRAcc)| and Fuzzy Confidence measures.

The first two were introduced in Section [2.I]and the later is a fuzzy version of Confidence

introduced by the authors.

3.1.4 Reproduction Model

The way [MESDIF|moves from one generation to the next is the following: first, the original
population and the elite population are joined together and the non-dominated individuals
of the joined population are determined. Domination is defined in terms of Pareto fronts.
Second, binary tournament selection is applied to the non-dominated individuals. Last,
recombination is applied to the resulting population by two-point crossover and biased
mutation, where half of the mutations carried out have the effect of eliminating one of

the attribute-value pairs in the rule, to increase its generality.

3.2 NMEEF-SD

This section describes the data mining algorithm called [Non-dominated Multi-objective]

[Evolutionary Algorithm Based on the Extraction of Fuzzy Rules for Subgroup Discovery|
[[NMEEF-SD)| (CARMONA et all [2009). Similarly to [MESDIF, NMEEF-SD| is a multi-
objective [GA] for the extraction of rules which describe subgroups, however, it is based
on the NSGA-II strategy.

It is designed to work with discrete target attributes, but supports both continuous
and discrete descriptive features. When working with continuous variables,
uses fuzzy rules. For discrete attributes, however, the algorithm uses crisp rules. Like
[MESDIF] it can work with DNF]or canonical representations.

Its search is performed by means of evolving the population of individuals based on the

non-dominated sort in fronts of dominance. The first front contains the non-dominated

solutions in the population (also called the Pareto front). The second contains solutions
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dominated by one solution, while the solutions in the third front are dominated by two,
and so on.
The pseudo-code for the algorithm is reproduced in Figure [2]and, we now describe the

important elements of its design in detail.

Figure 2 — The NMEEF-SD| algorithm.

BEGIN
Create P, with biased initialization
REPEAT
Q<0
Tournament Selection (F;)
Qe < Multi-point Crossover (P;)
Qim < Biased Mutation (Qy.)

Qt — th + th
Q; < Q;+ descendants

R, + Join(P,,Q¢)
Fast-non-dominated-sort(Ry)
IF F} evolves

Introduce fronts in P4
ELSE

Re-initialization based on coverage P;q
WHILE (num__eval < maz__eval)
END
Source: adapted from (CARMONA et al., [2009))

3.2.1 Individual Representation

The individuals in NMEEF-SD] are encoded according to the “Chromosome = Rule” ap-
proach, just as[MESDIF|does. As such, only the antecedent part of the rule is represented
in the individual. In each execution of the algorithm, a value of the target attribute is

fixed and the entire search process must be performed once for each of the desired values.

3.2.2 Population Initialization

[NMEEF-SDJs population initialization technique is less random than [MESDIEF]s. It gen-
erates 75% of the individuals in the population using only 25% of the available attributes

in the database. The remaining 25% of the starting population is randomly generated the
same way as in [MESDIF]|

According to the authors, the intent behind this technique is to obtain a set of rules
with high generality, because most of the generated rules have a short antecedent ex-
pression, in terms of the number of attribute-value pairs. Though the technique might
have achieved its purpose in low dimensional [SD| problems, this is not the case for high

dimensionality.
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Indeed, if the dataset has a high enough number of attributes, this restriction to 25%
of the available attributes will not achieve the objective of generating starting individuals
with high generality, as 25% of the available attributes will still be too many, and this
initialization technique will suffer from the same problems as [MESDIE]s. We discuss this
further in Section [3.4]

3.2.3 Objectives Optimized

Being a multi-objective algorithm, NMEEF-SD| can be configured to use many differ-
ent evaluation metrics. However, the implementation provided by its authors, as part of
the software package KEEL (ALCALA-FDEZ et al., |2009)), uses as default objectives the
Sensitivity and metrics, which were introduced in Section [2.1

3.2.4 Reproduction Model

As outlined in Figure , NMEEF-SD| obtains a descendant population (called @, in the
outline), with the same size as the original one, through its genetic operators. Namely,

the algorithm uses Tournament Selection, multi-point crossover and biased mutation.

The mutation is applied to a given gene according to a configured probability. If
mutation is to be carried out, then the operator can work in one of two ways: the first
eliminates an attribute-value pair from the individual, aiming to create a more general
rule; the second randomly mutates the value paired with a given attribute. Both the
first and second ways to mutate a gene can be applied in each mutation with the same
probability.

After a new population is obtained through the genetic operators, both the parent
and descendant populations are joined in a new population, called R; in the outline.
Subsequently, the non-dominated sort is applied to this resulting population in order to
classify each individual in fronts of dominance.

Lastly, may re-initialize its population before moving on to the next
generation. First, the Pareto front of the new population (P, in the outline) is checked
to see whether or not it evolves. It is considered to evolve if it covers at least one more
instance of the dataset than the Pareto front of the previous population (P,). Then, if the
Pareto front does not evolve during more than 5% of the evolutionary process (measured
by the number of individual evaluations), the population is re-initialized.

The re-initialization is based on coverage. The individuals in the Pareto front which
cover the same instances of the dataset are considered repeated and are replaced by new

individuals generated to cover previously uncovered instances.
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3.3 SSDP

[Simple Search Discriminative Patterns (SSDP)| (LUCAS et al) [2017)) is a mono-objective

evolutionary approach for [SD] [SSDP|stands out especially due to two of its characteristics:
being designed for high dimensional data, and having few parameters to adjust. Another
important characteristic of [SSDP]is its lack of support for continuous attributes.

ISSDP)| does not allow its user to set parameters commonly tuned in traditional
such as mutation and crossover rate and the population size. Instead, the algorithm has
only two parameters: the number of returned subgroups (represented as rules), and the
evaluation metric to be used as fitness function. In theory, [SSDP] allows the use of any of
the already presented evaluation measures as the fitness function.

The outline for the [SSDP)] algorithm is depicted in Figure [3] In the next subsections,
we describe the important elements of [SSDP]in detail.

Figure 3 — [SSDP| pseudo-code.

Require: k, evaluationMetric
Initialize P with every possible individual of size 1.
Py < kBestRelevantes(P)
reinitializationCount <« 0
mutationRate <— 0.4
crossOverRate < 0.6
while reinitializationCount < 2 do
generations < 0
while P; does not improve after 3 consecutive generations with mutationRate = 1
do
if generations == 1 then
Prew < crossover AN D(P)
else
Pew < evolutionaryOperator(P, mutationRate, crossOverRate, evaluation-
Metric)
end if
P* < best(P, Ppew)
Py, < kBestRelevants( Py, P*)
update(mutationRate, crossOverRate)
P <« P*
generations <— generations +1
end while
reinitializationCount < reinitializationCount +1
Restart P
end while
return P,
Source: adapted from (LUCAS et al., [2017))

Like MESDIF], [SSDP] keeps a separate population for the best individuals found during

the search step. The size of it is one of the two necessary parameters, named k in Figure
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Furthermore, when there is no change to the top-k individuals in this elite population for
three consecutive generations and the mutation rate has already been updated to its
maximum value, 1, then [SSDP] performs a reinitialization of the population. After the
population has been reinitialized twice, the algorithm stops.

The mutation and crossover rates start at 0.4 and 0.6, respectively, and are updated
every generation depending on how the search process affected the elite population Pj. If,
at the end of an evolutionary step, the new generation improved Py, then the crossover rate
is increased by 0.2 and the mutation rate is decreased by 0.2, making the search process
more exploitative. In case there was no improvement to Py, however, the mutation rate
is increased by 0.2 and the crossover rate is decreased by 0.2, thus making the search a
more exploratory process. Regardless of how the rates are updated, they always sum to
1.

The elite population Py is only updated by means of inserting the best, in terms of
fitness, and relevant individuals from either the starting population or the descendants.
Relevance is measured as follows: an individual outside P, is considered irrelevant with
respect to the population P, if there is an individual, in Py, that covers more examples

of the target class and less examples of the other classes than the outsider.

3.3.1 Individual Representation

Similarly to [MESDIF| and [NMEEF-SD], [SSDP| encodes its individuals according to the

“Chromosome = Rule” approach. Therefore, only the antecedent part of the rule is en-

coded in the individual representing it, and so an entire execution of [SSDP]is required for

each different target value.

3.3.2 Population Initialization

[SSDP)] generates its population with every possible individual of size 1, i.e. individuals
representing rules with just one attribute-value pair. As mentioned before, this means the
user need not to provide the algorithm with a population size parameter as it is automat-
ically determined. It also means that, for high dimensional problems, it is not uncommon
to have a starting population with tens or hundreds of thousands of individuals.

Although appearing to be very limiting, this deterministic initialization scheme guar-
antees the starting population will be somewhat evenly spread around the search space,
leaving the task of expanding the population to individuals of greater sizes to the evolu-
tionary step. This strategy also makes sure that every attribute-value pair is considered
in the search, granting that not all combinations of pairs will be considered.

Initializing the search from all possible one-dimensional solutions was a novelty among
evolutionary strategies, even though it was already widely used by many algorithms based

on Beam Search.
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Because the number of possible attribute-value pairs will be very high, for high dimen-
sional datasets, it is expected that [SSDP[s population will consume a lot of computational
resources. Therefore, it is important to test whether it is really necessary to have such
an enormous initial population, or just decreasing the average size of each individual

generated is enough to operate an [EA]in high dimensional [SD] problems.

3.3.3 Objectives Optimized

As a mono-objective algorithm, [SSDP] can only use one evaluation metric at a time for
discovering subgroups. As mentioned before, it can be used with any of the evaluation

metrics found in the literature. The default implementation, provided by its authors (LU-
CAS et al, 2017), however, includes three metrics: @, and SUB.

3.3.4 Reproduction Model

Because [SSDP]starts with individuals of size 1, it is the responsibility of the evolutionary
operators to move the search towards individuals of greater sizes. For that end, [SSDP]uses
binary tournament as a way to select individuals for breeding, has two different crossover
and one mutation operators which are described next.

The first crossover operator, called crossOver AN D (see Figure |3)), is used only in the
first generation, in which all individuals have just one attribute-value pair. It generates a
new individual from the union of the two attribute-value pairs of its parents.

In the crossOverUni form,[SSDPJs second crossover operator, two parent individuals
generate two new children by combining their attribute-value pairs uniformly with a 50%
mixing ratio. That is, for each attribute-value pair in a parent individual, that pair can be
inherited by the first or second individuals with equal probability, but only one of them
will inherit that particular attribute-value pair. The crossover finishes once all attribute-
value pairs in both parents have been inherited by exactly one of the children.

Lastly, the mutation operator for [SSDP] has equal probability of doing either one of
three possible operations: (1) a random attribute-value pair is added to the individual;
(2) a random attribute-value pair is replaced by another; (3) a random attribute-value
pair is removed from the individual.

Now that we reviewed three state of the art for [SD] the next section will dis-
cuss how population initialization has a significant impact on the performance of these

algorithms.

3.4 INITIALIZING POPULATIONS FOR HIGH DIMENSIONAL SD

Generating a starting population is the first algorithmic step in most population-based

search (or optimization) strategies. In , this first step is responsible for creating the
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first estimates of the solutions to the problem. It stands to reason that good initial so-
lutions may provide a head start for an algorithm and improve its overall performance
while saving computational resources. Conversely, a bad set of estimates could get the
algorithms “stuck” on poor regions of the search space, causing the output of bad-quality
answers.

Therefore, selecting a proper population initialization technique is an important part
of [EA] design. If there is not enough information about the problem, however, it is almost
impossible for an algorithm designer to identify which are good estimates for building
the initial population before evaluating the whole optimization process. Consequently, it
has become a trend between researchers to use uniformly distributed random numbers
as a tool for building the initial population (KAZIMIPOUR; LI; QIN, 2014a)). The intuition
behind this technique is that, by generating a starting population which is uniformly
distributed, the chance of missing a considerable portion of the search space during the
optimization phase of the algorithm is decreased.

The popularity of uniform random initialization techniques can also be justified by its

simplicity. Fast [Pseudo-Random Number Generator (PRNG)| tools are available in the

standard library of almost all modern programming languages and there is no restriction
in the number of points to be drawn (in our case, population size) nor in the dimension
size (in our case, number of attributes in the database). Therefore, these techniques can
be easily applied to a large number of problems.

Both [MESDIF[s and NMEEF-SDJ's population initialization techniques revolve around
generating uniformly distributed random individuals. MESDIF] randomly selects a value

to pair with each of the available attributes from an uniform distribution. This technique

is represented in Algorithm [I}

Algorithm 1 MESDIF’s initialization technique (reuses the notation set in Chapter .
Require: A: set of attributes
1: function MESDIF-INITIALIZE(popSize, A)

2: P+ 0 > Population
3: for i < 1 to popSize do

4: P < P U { MESDIF-GENERATE(A) }

5: end for

6: return P

7: end function

8: function MESDIF-GENERATE(A)

9: I+ > Individual
10 for attr < 1 to |A| do

11: val <— UNIFORM-RANDOM(1, |@qsir|)

12: I «+ I U {{(attr, v}

13: end for

14: return 1

15: end function
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does the same for 25% of its population. For the other 75%, however, only
25% of the attributes (chosen at random) are paired with randomly selected values. Both
use the uniform distribution to draw its random numbers. This technique is represented
in Algorithm 2]

Both algorithm’s initialization techniques suffer from two drawbacks. The first lies on

the fact that, due to the deterministic nature of computers, [Random Number Genera-|
cannot produce a perfect uniform distribution of points, hence why

algorithms are called [Pseudo-Random Number Generators,

Algorithm 2 NMEEF-SD’s initialization technique (reuses the notation set in Chap-
ter [2)).
Require: A: set of attributes
1: function NMEEF-INITIALIZE(popSize, A)
2 P+ 0 > Population
3 for i < 1 to popSize do
4: if i < 0.25 x popSize then
5: P < P U { MESDIF-GENERATE(A) }
6
7
8
9

else
P < P U { NMEEF-GENERATE(A) }
end if
end for
10: return P
11: end function
12: function NMEEF-GENERATE(A)

13: I+ 0 > Individual
14: n <« 0.25 x |A| > number of attribute-value pairs for this individual
15: while |I| < n do

16: attr < UNIFORM-RANDOM(1, |A])

17: val < UNIFORM-RANDOM(1, |@qsir|)

18: I« I U {{attr, v¥)}

19: end while

20: return 1

21: end function

Furthermore, they suffer from the Curse of Dimensionality. That is, when the dimen-
sion of the problem is not very high and the population size is high enough,
can provide initial populations with satisfactory level of uniformity (MA; VANDENBOSCH,
2012). As the dimensionality of the problem grows, however, cannot produce
perfect, evenly distributed points.

The second drawback regards a characteristic of the problem at hand. As we men-
tioned, initializing the population uniformly distributed across the search space is gen-
erally a good guess when there is scarce information about the problem. In [SD| we are
mining the database for rules which describe subpopulations in the data. As mentioned,

it is of high importance that these rules be comprehensible for a human expert user. It
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stands to reason, then, that the rules which we are looking for need to be simple, and so,
contain few attribute-value pairs.

IMESDIE]s initialization starts every individual with one pair for each possible at-
tribute. So we know that these starting individuals represent rules with too many attribute-
value pairs and are bad starting points for the optimization step. Furthermore, the tweaks
made by the crossover and mutation operators may not be enough to lead the search pro-
cess away from these enormous, useless rules and the convergence of the evolutionary
process is questionable. Knowing this characteristic of [SD| problems, we could accelerate
and improve the search process by starting from shorter rules.

INMEEF-SDJs initialization represents a step in that direction, as 75% of the ini-
tial population consists of individuals representing rules with just 25% of the number
of attribute-value pairs that the [MESDIFTs initial population would have. This remedies
the second drawback to a certain degree. If given a database with tens of thousands
of attributes, however, 25% of that may still be too high a number of attribute-value
pairs. Therefore, for a high enough number of available attributes, NMEEF-SDJs initial
population is still expected to suffer the same problem as [MESDIETs.

[SSDP] uses, instead, a deterministic initialization of its starting population. That is,
every time [SSDP]initializes the population for a given database, it generates the same in-
dividuals. Each individual has exactly one attribute-value pair and there is one individual

for every possible pair. This strategy is illustrated in Algorithm 3]

Algorithm 3 [SSDPJs initialization technique (reuses the notation set in Chapter [2]).
Require: A: set of attributes

1: function SSDP-INITIALIZE(A)

2: P+ 0 > Population
3: for attr < 1 to |A| do

4: for val < 1 to |agu,| do

5: SSDP-GENERATE(attr, val)

6: end for

7: end for

8: return P

9: end function

10: function SSDP-GENERATE(attr, val)

11: I + {{attr, vy} > Individual
12: return 1

13: end function

This initialization technique avoids both drawbacks mentioned above. First, the initial
individuals are evenly spread around the search space. Second, because every individual
has size 1, they are easily interpretable. It stands to reason, however, that many of these
individuals will have poor quality, because they are too general, i.e. it is likely that the
rules represented by these individuals will cover too many instances in the database, both

from the target class and not. To remedy that, [SSDP] also makes sure that the second
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generation of individuals are only created by combining the individuals from the first
generation, through its crossover operator.

Although [SSDP)| has been shown to perform very well in high dimensional databases
(LUCAS et all, 2017)), this initialization technique forces the algorithm to require a rather
large amount of computational resources as its population size is a function of the number
of available attributes in the database. Since it was designed for high dimensionality,
it is not uncommon to initialize the population containing hundreds of thousands of

individuals.

This scenario raised the following hypothesis to be verified in this work: the
state of the art[EAq designed to work in low dimensional databases do not work
well in high dimensional problems, because their initialization scheme creates
rules with too many attribute-value pairs, that is, the rules are too specific. By
decreasing the average rule size in the starting population, these algorithms

can be made to work in high dimensional SD problems.

To test this hypothesis, we need to replace the initialization technique of these algo-
rithms and verify the impact of that change in the outcome of the algorithm. In the next
chapter, we propose new population initialization operators and demonstrate, through
empirical tests, what was the impact in the convergence of  MESDIF| and NMEEF-SD|
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4 ON THE CONVERGENCE OF EVOLUTIONARY ALGORITHMS FOR HIGH
DIMENSIONAL SUBGROUP DISCOVERY

This chapter aims at demonstrating, through empirical tests, that decreasing the average
number of attribute-value pairs in rules represented by individuals in the starting popu-
lation, increases the convergence rate for the state of the art [EAd described in the last

chapter, when solving high dimensional [SD| problems. This chapter is a textual exten-

sion of what was published in the seventh |Brazilian Conference on Intelligent Systems|
(BRACIS)| (TORREAO; VIMIEIRO), 2018)).

As we mentioned in the last chapter, the first requirement to make such a demon-

stration is an initialization technique to replace the ones from the presented [EAg This
new strategy must be designed in such a way as to allow us to tune the average number
of attribute-value pairs in the generated individuals, so that we can observe the effect of
reducing or increasing it in the outcome of the algorithms.

This new initialization technique will require the user to input the number of individ-
uals the starting population must have. With that information provided, the technique
will loop through the following procedure, generating one individual at a time, until the
population is complete. First, a random number, z, is drawn from some [PRNG|] z must
be any real number between 1 and 100 (both inclusive). Then, the technique randomly
selects attributes and values to be paired and added to the new individual until it reaches
a number of pairs equal to 2% of the total available attributes. Finally, the new individual
is appended to the population.

This approach is very similar to how [NMEEF-SD)| initializes its starting population,
except that instead of fixing the number of attribute-value pairs to 25% of the available
attributes, a different proportion is randomly selected for each new individual. Also, be-
cause we want to keep control over the average number of attribute-value pairs in the
population, instead of using the uniform distribution, we are drawing random numbers
from Beta Distributions (WEISSTEIN, 2003), from which we also borrow the name for our
initialization technique. The final difference from NMEEF-SDJ's strategy is that our tech-
nique generates all of the starting population individuals the same way, while[NMEEF-SD|
generates 25% of the population in the same way as .

It is important to note that we are using Beta Distributions for determining the
proportion of attribute-value pairs only. That is, for choosing the attribute and value to
pair together, we are still using the uniform distribution, as can be observed in Algorithm
[], which contains the pseudo-code for the proposed technique.

The use of the beta distribution provides the technique with flexibility, as it has two
parameters: o and (. By changing these values, it is possible to obtain many different
[Probability Density Functions (PDFs)l For instance, with « = 1 and 8 = 1, we get the
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Algorithm 4 The proposed beta initialization technique (reuses the notation set in Chap-
ter [2)).
Require: A: set of attributes
Require: a: the a parameter for the beta distribution
Require: [: the [ parameter for the beta distribution
1: function BETA-INITIALIZE(popSize, A, «, [3)

2: P+ 0 > Population
3: for i < 1 to popSize do

4: P < P U { BETA-GENERATE(A, a, ) }

5: end for

6: return P

7: end function

8: function BETA-GENERATE(A, «, [3)

9: I+ 0 > Individual
10 rand <— BETA-RANDOM(«, f3)

11: n < rand x |A| > number of attribute-value pairs for this individual
12: while |I| < n do

13: attr < UNIFORM-RANDOM(1, |A])

14: val <~ UNIFORM-RANDOM(1, |@qsr|)

15: I + I U {{attr, v2)}

16: end while

17: return 1

18: end function

uniform distribution.

Figure[d] depict five different[PDFs obtained from varying the values of 3, while keeping
a fixed at 1. It is interesting to observe how just changing the values of 5 can already
cause significant differences in the resulting [PDEF]

In our initialization technique, we do not fix the number of attribute-value pairs an
individual will have like MESDIF| and NMEEF-SD| do (|A| and 0.25 x |A], respectively).

The Beta initialization will generate the individuals with a random proportion of the

available attributes in the dataset. Each time a new individual must be generated, we
first randomly pick a number, w, between 0 and 1, from a beta distribution obtained with
the given v and f parameters. Then, we build an individual with w x | A| attribute-value
pairs. The attributes and values are randomly picked from a uniform distribution.

Therefore, the obtained distribution has a high impact in the generated individuals.
The average number of attribute-value pairs will depend on three parameters: «, 5 and
the set of attributes in the dataset, A. o and 8 control the average proportion between
the number of attribute-value pairs in a generated individual and the number of attributes
available in the dataset. This means that |A| is the maximum number of attribute-value
pairs a Beta initialization generated individual could have, while the minimum is 1.

For example, if we set « = 8 = 1, we get the uniform distribution. Hence, on aver-

age, a generated individual will have a number of attribute-value pairs equal to 50% of
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Figure 4 — A few examples of PDFs for the Beta Distribution. « is always 1, while 3 varies

from 1 to 81.
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the available attributes in the dataset (0.5 x |A|), because the mean value of the Beta
distribution with a = 8 =1 is 0.5.

In this chapter, we aim at evaluating the outcome of the selected [EAg, in high di-
mensional [SD] tasks when the average number of attribute-value pairs contained in the
generated individuals for the starting population is decreased. In the context of our initial-
ization technique, decreasing the average number of attribute-value pairs means changing
a and f in such a way that the mean value for the resulting distribution is decreased.

With an initialization technique suitable for checking our hypothesis, the next section

presents the methodology for the empirical tests executed to that end.

41 METHODOLOGY

In order to check the hypothesis, all three described in Chapter |3/ (MESDIF| INMEEF-
and [SSDP)) were modified to initialize the population using the technique described

above. Henceforth, the algorithms as they were originally proposed will be referenced as

“original” or “original version”, to differentiate from the case when the initialization step

was modified by replacing their original initialization step with the technique proposed
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in this chapter, which will be referenced as “modified version” or yet “beta initialization
version”.

For this experiment, the beta initialization technique was instanced with the following
values forc and 5: (1) a=1,8=1;2)a=1,=3;3)a=1,8=9;, (4) a =1,
B =27; (5) a =1, p = 81. Figure |4 depicts the for the distributions obtained with
these parameters, while Table [3] contains the statistics of each. We could have selected
more values for the o and  parameters, but as we discuss later in this section, each new
value for these parameters required many thousand executions of our experiments. We

did not have the computational or time resources for that.

Table 3 — Statistics for the five different beta distributions

Parameters Mean Mode Std. Dev. Variance
a=10, =10 05 - 0.2886 0.0833
a=10,=30 0.25 0 0.1936 0.0375
a=10,=9.0 0.1 0 0.0904 0.0081
a=1.0, =270 0.0357 0 0.0344 0.0011
a=1.0,=81.0 0.0121 0 0.0120 0.0001

As the reader can see from Table [3| keeping the value of « fixed at 1 causes the
probability of generating an individual representing a rule with a high number of attribute-
value pairs to decrease, as the value of 5 increases. In fact, the average number of attribute-
value pairs in the generated individuals should be approximately the mean value of the
obtained distribution, which means: 50% of the total number of attributes in the dataset
when 5 =1, 25% for 8 = 3, 10% in case 8 = 9, about 3% when 3 = 27 and approximately
1% for B = 81. If we varied the value of o, we would obtain severely different shapes for
the and would loose this effect, which is essential for testing how our initialization
technique affects the algorithms as the average number of attribute-value pair decrease.

Having a way to decrease the average number of attribute-value pairs in the individ-
uals forming the starting population, the second requirement to test our hypothesis are
datasets to run the algorithms in and measure the outcome. Because we are interested in
high dimensional [SD| problems, the experiment was conducted in 10 microarray datasets
available in the package called datamicroarray from R software, which are described in
detail in Table [l

For each dataset, the majority class was considered the target value, and thus labeled
“positive”, whereas the other class values were labeled “negative”. This was done due to
fact that each of the can only consider one target value per execution, so considering
only one of the values considerably simplifies our measurements.

In addition to that, because [SSDP| does not support continuous attributes, all at-

tributes in the datasets were discretized. Discussions on discretization techniques are
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Table 4 — Detailed information of the microarray datasets.

Name # Examples # Attributes # Labels
alon 62 2,000 2
burczynski 127 22,283 3
chiaretti 111 12,625 2
chin 118 22215 2
christensen 217 1,413 3
gravier 168 2,905 2
nakayama 105 22,283 10
sun 180 54,613 4
tian 173 12,625 2
yeoh 248 12,625

outside the scope of this work, so we used the two most simple techniques available.
From each dataset, two new were generated: one using the equal frequency discretization
method and another using equal width, for a total of 20 available datasets. In both cases,
the attributes were discretized into two possible values.

These datasets alone are not enough to test the hypothesis, as we need some way
to increase the dimensionality to observe the outcome of the algorithms as it grows. To
achieve that, for each of the 20 datasets, eight new ones were generated by randomly
selecting a subset of features. Datasets with 1%, 2%, 5%, 10%, 15%, 25%, 50% and 100%
of the original number of features were generated for this experiment. Each algorithm was
executed 30 times on each of these 160 datasets.

As the last requirement to test our hypothesis, we need a way to measure the number
of times each algorithm’s execution converged. We have considered that an algorithm’s
execution converged if the average support among the resulting subgroups is greater than

zero, i.e., if at least one of the subgroups cover at least one of the dataset instances.

4.2 ALGORITHM PARAMETERS

In this section, we go through the parameters with which each were configured during
this experiment.

[SSDP] has only two parameters to configure: the number of rules to be returned at the
end of execution and the objective being optimized. In these experiments, the configured
number of rules to be returned was 10 and the selected objective was the @), evaluation
metric, with generalization parameter g = 1, as these are the default values in [SSDPJs im-
plementation provided by the authors. Because, unlike the original initialization method,
our proposed technique generates individuals with varying sizes, we have included the

population size as a configurable parameter for the modified versions of [SSDP| In our
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experiments, the population size for these modified versions of [SSDP] was reduced to
100, which is also the value used for this parameter in the other algorithms, both in the
modified and original versions.

Both NMEEF-SD] and [MESDIF| had its parameters configured to the following values,

which are defaults in their implementations provided by their authors:

o The canonical representation for rules was used instead of the [DNF}
e The population size was set to 100;

o The crossover and mutation probabilities were configured to 0.6 and 0.1 respectively.

Since both are multi-objective [EAd the objectives configured in this experiment for
[MESDIF]| were confidence, support and original support. was configured with
'WRAcc and support measures. These are the objectives specified in the documents where

each algorithm was originally published.

4.3 RESULTS

In this section, we examine how well the algorithms fared in terms of convergence. It is
important to remember we consider that an algorithm’s execution converged if at least
one of the returned rules cover at least one of the instances in the dataset.

As mentioned, we obtained 160 datasets by randomly selecting attributes, in 8 dif-
ferent proportions, from the 20 datasets we had after applying discretization. Here, we
break down this set of datasets into 8 different “buckets” according to the proportion of
attributes selected. The x axis of the charts in Figure [5| depict these “buckets”. Since each
algorithm was executed 30 times on each dataset, we have a total of 600 executions in
each “bucket” So, the y axis of Figure 5| depicts the number of executions in which the
algorithm converged.

As one can see from the first chart in Figure[5] the original algorithm quickly
becomes ineffective as we select more attributes. In fact, as soon as the proportion of se-
lected attributes hits 5%, the algorithm stops converging. The beta initialization versions,
however, have better results. The uniform beta initialization version (o« = 1 and § = 1)
already presents a significant gain in terms of number of converging executions. And as we
reduce the average number of attribute-value pairs further (by increasing ), the results
improve proportionately. Indeed, the modified version with § = 81, where the average
number of attribute-value pairs in the generated rules is only 1% of the total of attributes
in the dataset, converged in more than 500 out of the 600 executions in the datasets
containing all attributes.

As expected, the original version of had a considerably better performance

in terms of convergence, when compared to [MESDIF]s original version. Its limitation of
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rule sizes to 25% of the total number of attributes seems to be the determining factor,
since the algorithm’s original version had a remarkably similar performance to that of
the modified version of with @ = 1 and g = 3. In fact, the mean for the beta
distribution with those parameters is 0.25.

With @ = 1 and § = 1, the modified initialization version of [NMEEF-SD| had a
performance worse than that of the original version. Indeed, for NMEEF-SD] we can
also observe from Figure [5| that, the smaller the number of attribute-value pairs in the
generated individuals, the more the algorithm’s executions converged.

[SSDP], the algorithm with the lowest starting rule size among the three original ver-
sions, converged in 100% of the executions. When the average number of attribute-value
pairs in the generated rules was increased, however, the number of times it could not
converge increased as well, to the point where the beta version with @ = § = 1 led the
algorithm to converge in less than 100 out of the 600 executions in datasets with 100% of

the available attributes.
Figure 5 — Number of times the state of the art converged in high dimensional
problems.
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In addition to those conclusions, Figure 5| also suggests that the convergence numbers
for MESDIF| and NMEEF-SD], are remarkably similar when using the same initialization
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technique, other than their respective originals. Although [SSDP] modified versions’ lines
have the same shape as [MESDIFs and NMEEF-SDJs, the convergence number for [SSDP)]

are always higher than the other two, when using the same initialization technique.

As the reader can observe, the lower the average number of attribute-value pairs in
the generated individuals, the greater the number of times all three algorithms converged,
in their modified initialization versions. The curves presented in Figure |5| suggest that,
had we increased the value of beta even further, beyond 81, the modified initialization
versions of the algorithms would have converged in even more executions.

These findings corroborate our hypothesis that, by reducing the average number of
attribute-value pairs of the generated rules for the initial population, one can adapt the

[MESDIF] and [NMEEF-SD)] algorithms to work on high dimensional [SD] problems.
Having showed that by applying our knowledge of [SD] to the design of initialization

techniques, we have improved the convergence of in high dimensional [SD] problems,
in the next chapter, we analyze how changing the initialization technique impacts the

quality of resulting rules.
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5 ON THE RESULT QUALITY OF EVOLUTIONARY ALGORITHMS FOR HIGH
DIMENSIONAL SUBGROUP DISCOVERY

The first step of this research project, described in the previous chapter, was concerned
with the impact of initialization techniques in the frequency of convergence for in
high dimensional [SD] problems. The next step, described in this chapter, is concerned with
the impact of such techniques in the quality of rules returned by in high dimensional
[SD] problems. To that end, we set a new methodology and new empirical tests, both
presented below.

Similarly to how we proceeded in Chapter [ we will replace the initialization tech-
niques for the [MESDIF| and NMEEF-SD] algorithms and observe the consequences in

the quality of the resulting rules. Therefore, in order to run our experiments, we need

replacement initialization techniques and a quality measure from the list presented in
Chapter

For the initialization technique, we cannot start with the original ones from the [MES]
[DIF| and [NMEEF-SD| algorithms, since they have a very low convergence rate in high
dimensional problems. Therefore, we will start with the one presented in Chapter [4]

which we call “Beta Initialization”. We will modify both [MESDIF| and to
use that technique and compare them with one another and with [SSDP)] in terms of the

quality of rules returned. Then, we will work from that initialization technique and try to
improve the results by imbuing more knowledge of the problem in the way we initialize
the populations.

Among the possible choices of rule evaluation measures, WRAcd is perhaps the most
fundamental one in the context of knowledge discovery. High means a rule has
high accuracy, which is desirable in predictive tasks. For descriptive tasks, such as [SD]
accuracy alone is not enough, as we also need the rules to be as general as possible. |Lavrac,
Flach e Zupan! (1999) have shown that provides this trade-off between generality
and rule accuracy. They also demonstrated that incorporates other measures,
such as Sensitivity and Specificity. For these reasons, we have decided to use |[WRAcd as

our evaluation measure when observing the quality of rules obtained.

5.1 METHODOLOGY

With an initialization technique and a quality measure selected, we now present the
methodology used in this new set of experiments.

Since we are still interested in high dimensional [SD], we use the same 10 datasets pre-
sented in Table [4l Because each algorithm selected for the experiments can only consider

one target value at a time, for each dataset, the majority class was considered the target
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value, and thus labeled “positive”, while the instances in the remaining classes were all
interpreted as belonging to a single “negative” class.

Because [SSDP] does not support datasets with continuous attributes, we need to con-
vert every attribute in these datasets from continuous to discrete values. For this set of
experiments, we used a single discretization technique based on quartiles. Therefore, for
each attribute in each dataset, the values were broken down in 3 bins: the values lower
than the first quartile, )1, were placed in the first bin, the ones between ()1 and ()3 were
placed in the second and, finally, the values higher than ()3 were placed in the third bin.

We subdivided the empirical testing into two phases. In the first phase, we run many
different configurations of the algorithms in order to tune their parameters. Then, we
execute each one again, with the best parameters found, and actually compare one another
to analyze the impact of the initialization technique in the outcome of the algorithms.
These two phases are explained in more detail below.

For each pair of evolutionary algorithm and initialization technique involved in the
experiments, we first tune the algorithm’s parameters in the hope that our quality anal-
ysis of each algorithm’s output will not be affected by a bad choice of parameters. The
parameters tuned were: mutation and crossover probabilities, number of evaluations (the
stopping criteria for MESDIF|and [NMEEF-SD)) and, finally, population length. This tun-

ing phase was not applied to [SSDP|since it does not expose those parameters to the user.

For this tuning phase, a grid search is performed with the following variations for each

parameter:

the mutation probability varied between 0.01, 0.05, 0.1 and 0.2;
» the crossover probability varied between 0.6, 0.7, 0.8 and 0.9;

o the number of evaluations varied between 10000, 40000, 70000 and 100000;

the population length varied between 100, 500, 1000 and 2000.

Consequently, there are 4 x 4 x 4 x 4 = 256 different configurations to test in our
grid search. In addition to that, each configuration is executed 30 times in each dataset.
Therefore, there is a total of 256 x 30 x 10 = 76800 executions for each pair of algorithm
and initialization technique.

Due to the limited computational resources available during this research, we reduced
the number of attributes in the datasets for this tuning phase in order to decrease the
running time of each algorithm’s execution. From a dataset’s list of attributes, 1000 were
selected according to their mutual information regarding the class attribute. This was done
using the Python package scikit-learn’s SelectkBest and mutual_info_classif functions
(PEDREGOSA et al., 2011]).
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After executing each configuration 30 times on each of the 10 datasets, we used the
300 samples to calculate the average ranking of each configuration, and decided for the
one with the best average rank.

Then, having found the best configuration for each pair of algorithm and initialization
technique, we execute that configuration again in the complete versions of the datasets
(with all the attributes) for our comparison phase, which is explained next.

For comparing the pairs of algorithms and initialization techniques with one another,
we run each 30 times in each dataset and compute the forming a sample of 300
observations. Then, following the suggestions in [Demsar| (2006), we execute a Friedman
statistical test (FRIEDMAN, |1937)) to determine if there is statistically significant difference
between the considered pairs and if so, execute a Nemenyi post-doc test (NEMENYT, [1963])
to determine which ones are statistically different. In both tests, we use significance level
of a = 5%.

In addition to the Nemenyi post-doc test, we also analyze the data obtained from
our experiments. To that end, we take the average of the returned set of rules.
With that, we have a value for each of the 300 executions (30 in each of the 10
datasets). Then, we also present the average and standard deviation of the 30

scores each algorithm obtained in each dataset to illustrate our analysis.

5.1.1 Non-tuned algorithm parameters

Because we did not have enough computational resources to search for the best configu-
ration of every parameter in each algorithm, in this subsection, we go through the values
with which we configured the remaining parameters in each algorithm.

As [SSDP] has only two parameters to configure, namely, the number of rules to be
returned and the fitness measure. We did not tune any of those parameters. Instead, we
set the number of rules to 10 and the fitness measure as the ), metric with g = 1, as
that is the default configuration in [SSDPJs implementation provided by the authors.

Both NMEEF-SD| and [MESDIF| have a default implementation provided by their au-
thors available in the KEEL software package. We use the default configuration, provided
by KEEL, for the non-tuned parameters. Specifically, for NMEEF-SD| we set the rule
representation to “canonical” and the fitness measures as sensitivity and [WRAcd For
[MESDIF] we also set the rule representation to “canonical” and the fitness measures to
sensitivity, and fuzzy confidence.

It is important to note that does not have a configurable number of
returned rules: it returns the Pareto front of the last generation. [MESDIF] on the other

hand, has an elite population whose length was configured to 10.

Every time a Beta distribution was needed by an initialization technique, we used the

parameters &« = 1 and 8 = 81 obtained in the previous chapter.
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5.2 THE BETA INITIALIZATION

In this section we explore the quality of the results obtained by the MESDIF|and NMEEF]
algorithms with the Beta initialization (TORREAO; VIMIEIRO, [2018]) presented in
Chapter [4]

First, we need to find the best parameter configuration for each algorithm. Following

our methodology, we found the parameters described in the first two rows of Table
The remaining rows of Table [5| describe the best parameters found for other initialization
techniques presented later in this chapter. We will refer the reader back to this table as

we present them.

Table 5 — Configured parameters found by grid search.

Technique # evaluations pop. length mutation crossover
MESDIF| Beta 100,000 2,000 0.2 0.6
NMEEF-SD| Beta 70,000 2,000 0.01 0.7
MESDIF| Pos. Cov. 100,000 2,000 0.2 0.6
NMEEF-SD| Pos. Cov. 100,000 2,000 0.01 0.9
MESDIF| Roulette 100,000 2,000 0.2 0.6
NMEEF-SD| Roulette 70,000 2,000 0.05 0.9

As the reader can see, for both algorithms, the best value for population length is 2000.
This is expected, as one way of dealing with high dimensional problems is to increase the
population length (KAZIMIPOUR; LI; QIN, 2013). However, it is not possible to increase the
population length indefinitely, as that will eventually exhaust the available computational
and time resources.

From the obtained number of evaluations, the reader can see that both algorithms
needed large numbers. This is also expected as that gives the algorithms more generations
to search for the optimal rules.

Finally, from the mutation and crossover probability results, it is interesting to ob-
serve that the algorithms had fairly opposite configurations: MESDIF| was configured to a
more exploratory behavior (from a higher mutation probability), while was
configured to a more exploitative behavior (even though the crossover probabilities are
similar).

Following our methodology, now that we have tuned values for the algorithm’s pa-
rameters, we move to comparing the results in terms of WRAcd Since we executed each
algorithm 30 times in each of the 10 datasets, we now have 300 samples for each. We also
execute [SSDP| with the parameters configured as explained in Section [5.1.1] We proceed
with a Friedman test to see if there is significant difference between the three techniques.

The obtained p-value was 5.157E 102, We are using significance level of o = 5%, so we can
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Figure 6 — Nemenyi critical difference graph comparing the |MESDIF| and |NMEEF—SD|
techniques modified with the Beta initialization along with the unmodified
[SSDP] technique. The quality measure used is the WRAcc

wracc CD
—

1 2 3

SSDP L NMEEF-SD Beta
MESDIF Beta

conclude that there is indeed significant difference between the average quality of rules
returned by the three techniques.

Then, we must run a Nemenyi post-doc test to verify which techniques are differ-
ent from one another. For that, we plot the critical difference graph, which is shown in
Figure [6]

The reader can observe in Figure [0] that all three techniques are different. Also, [SSDP]
was the best ranking technique, followed by [MESDIF|and NMEEF-SD| This is an interest-
ing result as[NMEEF-SD|had been reported to have better performance than MESDIF|on
low dimensional (CARMONA et al., [2009) and also high dimensional (TORREAO; VIMIEIRO)
2018) problems. This contradiction could be due to the difference in the datasets used,

discretization techniques, as well as the configuration of parameters. To investigate this,

it would be necessary to experiment further with these techniques.

Table [6] complements our analysis. The reader can see from the first four columns in
the table that [MESDIF] using the Beta initialization technique, obtained results close to
[SSDP] in some datasets, having a higher average score in the Alon and Gravier
datasets. This is significant, as we have taken an algorithm that did not even converge
on high dimensional [SD] problems and, by simply changing the way it initializes the
population, we have brought its results close to an algorithm designed specifically for
such high dimensional [SD| instances.

Furthermore, the fact that [SSDP] initializes its population with the lowest possible
number of attribute-value pairs and it achieved the best overall results in our experiments,
further corroborates our hypothesis. Indeed, our results suggest that by lowering the
average number of attribute-value pairs in the initial population we can, in fact, improve
the results of in high dimensional [SD] problems.

We established in Chapter [2] that good solutions to [SD] are simple rules that must
be humanly comprehensible, and as such, must be made out of few attribute-value pairs.
Through the Beta initialization technique, we used that knowledge of [SD]to bias the initial

population to regions of the search space which we considered to have high potential. The
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next section follows this idea further by creating a new initialization technique with more

knowledge of the problem at hand to see if we can get better results still.

5.3 POSITIVE COVERAGE-BASED BETA INITIALIZATION

Following the trend set by the Beta initialization, in this section we present an initializa-
tion technique which incorporates more knowledge about [SD| problems.

In addition to being simple and humanly comprehensible, it is also desired that the
instances in a subgroup have an unusual statistical distribution with regards to a particular
target variable in which we are interested in, so good subgroups will have higher frequency
of instances belonging to the positive class.

Therefore, for the next initialization technique, in addition to lowering the average
number of attribute-value pairs in the generated individuals, the technique will also make
sure that every individual in the starting population will cover at least one of the instances
belonging to the positive class.

Algorithm [5] illustrates the pseudo-code for this approach which is called “Positive
coverage-based Beta initialization”. The technique is fairly similar to the Beta initial-
ization. It also generates individuals with a number of attribute-value pairs drawn from
a Beta distribution. It also selects attributes randomly (in uniform fashion) to build the
pairs. However, instead of randomly selecting a value to pair with each attribute, it instead
will always copy the value from one of the instances belonging to the positive class.

In case there are enough individuals to go through all of the instances with a positive
class label, it will do so to guarantee all positive instances will be covered by the initial
population. If there is more instances than individuals, the technique selects instances
randomly.

Following the steps in the methodology, we replaced the initialization technique in both
MESDIF| and NMEEF-SD| with this new one. Then, we tuned the parameters using the
datasets with 1000 attributes. The resulting configuration is shown in the third and fourth
rows of Table[5] This time we see more clearly that [MESDIF|relies more on exploring the
search space, while requires a higher probability of crossover, presenting a

more exploitative behavior.

Finally, we moved to the comparison phase of our methodology, where we first executed
a Friedman test to see if there is any significant difference between the positive coverage-
based Beta initialization version of [MESDIF| and [NMEEF-SD| when compared to one
another, to the Beta initialization versions of each and to the [SSDP] algorithm.

The Friedman test’s p-value was 6.94E %1 so there was significant difference between

the 5 methods. Thus, we needed to run a Nemenyi post-doc test. Figure [7]illustrates those
results.
As the reader can see in Figure [7] there was no significant difference between the

positive coverage-based Beta initialization and the former technique. There was, however,
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Algorithm 5 The proposed positive coverage-based beta initialization technique
Require: E: set of instances
Require: A: set of attributes
Require: «: the a parameter for the beta distribution
Require: [: the § parameter for the beta distribution
1: function Pos-Cov-BETA-INITIALIZE(popSize, E, A, «, ()

2: P+ 0 > Population
3: while (popSize — |P|) > |E*| do

4: for e € ET do

5: P < P U { Cov-BETA-GENERATE(e, A, «, () }

6: end for

7 end while

8: for i < | P| to popSize do

9: e < UNIFORM-RANDOM-SELECT(E™') > select random element from E
10: P <+ P U { Cov-BETA-GENERATE(e, A, «, () }

11: end for

12: return P

13: end function

14: function COv-BETA-GENERATE(e, A, a, [3)

15: I+ > Individual
16: rand <— BETA-RANDOM(«, f3)

17: n < rand x |A| > number of attribute-value pairs for this individual
18: while |I| <n do

19: attr < UNIFORM-RANDOM(1, |A|)
20: VT ¢ T € @y | (attr, v97) € e > value of attribute @gyy in instance e
21: I + I U {{(attr, v}
22: end while
23: return 1

24: end function

Figure 7 — Nemenyi critical difference graph comparing the |MESDIF| and |NMEEF—SD|
techniques modified with the Beta and positive coverage-based initialization

techniques along with the unmodified [SSDP] algorithm. The quality measure
used is the WRAcc

wracc |C_D|
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SSbp —— NMEEF-SD Beta
MESDIF Beta NMEEF-SD Pos. Cov.
MESDIF Pos. Cov.
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significant differences between each [EA] with the best ranking algorithm being [SSDP}
Therefore, we can conclude that by biasing the initial population individuals to cover the
positive labeled instances in the dataset, we obtained no significant improvement from
just reducing the average number of attribute-value pairs in the starting individuals.

As shown in Table [6] we can see that the average scores obtained by both
MESDIF| and [NMEEF-SD] configured with the positive coverage-based Beta initialization

are indeed very similar to the ones obtained by those algorithms configured with the Beta

initialization.
54 ROULETTE SELECTION WITH POSITIVE COVERAGE BETA INITIALIZATION

Following up with the idea of introducing more knowledge about the [SD|problem in order
to bias the initial population and, hopefully, increase the quality of the resulting rules, in
this section, we start biasing the initial population towards the attribute-value pairs with
higher scores.

This new initialization technique builds upon our last strategies. Therefore, it will use
a Beta distribution to bias the average number of attribute-value pairs to lower values,
and also make sure that every individual in the starting population covers at least one
instance belonging to the positive class. Instead of selecting the attributes from a uni-
form distribution, just as the positive coverage-based Beta initialization approach, this
time we will use the as fitness function and choose the attributes using Fitness
Proportionate Selection, also known as Roulette selection (LUKE, |2013)).

Just like the previous initialization technique, this approach will try to generate indi-
viduals covering all instances belonging to the positive class, if there are enough individ-
uals in the population. If the number of positive instances is greater than the population
length, then the technique will pick positive instances at random. Once a number of
attribute-value pairs has been obtained from a Beta distribution and we have selected a
positive instance to be covered, the technique will use Roulette selection to pick one of the
attribute-value pairs in the positive instance until we have reached the desired number of
pairs for this individual. The technique generates individuals this way until the population
has reached the desired length. This technique is illustrated in Algorithm [6

Following our methodology, we once again replaced the initialization technique in the
MESDIF|and NMEEF-SD] algorithms. The first step, then, is to tune the parameters. The

resulting configuration is shown in the last two rows of Table[5] The configured parameters

are very similar to the ones obtained by the other initialization techniques.

Next, in the comparison phase, we executed the Friedman test to see if there was any
significant difference between the quality of the rules returned by [MESDIF| and NMEEF
[SD] modified to use this new technique when compared to the [SSDP] algorithm and the
previously modified versions of [MESDIF| and [NMEEF-SD| The p-value obtained was
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Algorithm 6 The proposed positive coverage-based beta initialization with Roulette
selection.
Require: E: set of instances
Require: A: set of attributes
Require: a: the a parameter for the beta distribution
Require: [: the § parameter for the beta distribution
1: function ROULETTE-BETA-INITIALIZE(popSize, E, A, «, ()

2: P+ 0 > Population

3. while (popSize — |P|) > |E™| do

4: for e € E* do

5: r < BUILD-ROULETTE(e) > Builds a Roulette with the attribute-value
pairs in e

6: P < P U { ROULETTE-BETA-GENERATE(", A, «, () }

7: end for

8: end while

9: for i < |P| to popSize do

10: e < UNIFORM-RANDOM-SELECT(E™) > select random element from E¥

11: r <— BUILD-ROULETTE(e) > Builds a Roulette with the attribute-value pairs
ine

12: P < P U { ROULETTE-BETA-GENERATE(r, A, «, () }

13: end for

14: return P
15: end function
16: function ROULETTE-BETA-GENERATE(r, A, «, [3)

17: I+ > Individual
18:  rand < BETA-RANDOM(«, f3)

19: n < rand x |A| > number of attribute-value pairs for this individual
20: while |I| <n do

21: (attr, vy +— ROULETTE-SELECT(r)

22: I + I U {{(attr, v}

23: end while

24: return I

25: end function

4.04E-%7. So there is indeed significant difference between the 7 approaches. Therefore,
we move to the Nemenyi test results presented in Figure [8]

As the reader can see from the figure, the difference in the average scores ob-
tained by the MESDIF|and NMEEF-SD]algorithms using the new initialization technique

was not significantly different from the ones obtained by each algorithm with the previ-

ous initialization techniques. Therefore, we can conclude that further biasing the initial
population towards the best attribute-value pairs did not result in any improvement in
terms of output rule quality.

Table [0] reinforces that conclusion. The average scores for using the
initialization technique with roulette selection had very close results when compared to

either positive coverage-based initialization or plain Beta initialization techniques. For

NMEEF-SD] although the average scores for this new initialization technique
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Figure 8 — Nemenyi critical difference graph comparing the |MESDIF| and |NMEEF—SD|
techniques modified with each initialization technique presented in this text,
along with the unmodified [SSDP)] algorithm. The quality measure used is the

WRACcc
CD
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SSDP —— L——— NMEEF-SD Beta
MESDIF Beta L——— NMEEF-SD Pos. Cov.
MESDIF Pos. Cov. L NMEEF-SD Roulette
MESDIF Roulette

were higher than the previous two in all but the last two datasets, we can see they are
still very close and the Nemenyi statistical test has confirmed that the difference is not

statistically significant.

5.5 FINAL REMARKS

In this chapter, we have analyzed the quality, in terms of scores, of the rules
obtained by the  MESDIF|and NMEEF-SD] algorithms when their respective initialization

techniques were replaced by our proposed Beta technique. We have also presented new

ways to bias the population initialization in different ways in an attempt to improve the
quality of the resulting rules.

The results of our empirical tests show that there was no improvement on the quality
of the obtained rules after biasing the initial population further than simply lowering the
average number of attribute-value pairs in the generated individuals, as was proposed
initially in Chapter

The fact that the unmodified version of the algorithm obtained the best quality
results does not rule out our hypothesis, but actually further reinforces it, as its initial-
ization technique generates all individuals with just one attribute-value pair.

Therefore, it stands to reason that, indeed, biasing the initial population to individ-
uals containing few attribute-value pairs can lead to higher quality results in high
dimensional [SD| problems. Moreover, further biasing the initial population has proven to

be fruitless.
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6 CONCLUSION

[Subgroup Discovery| (KLOSGEN, 1996; WROBEL, 1997) is a descriptive data mining tech-

nique, based on supervised learning. It has many real world applications ranging from
describing risk groups for the Coronary Heart Disease (LAVRAC, 2005)), using gene expres-
sion data, to detecting defective software modules (RODRIGUEZ et al., 2012)) and improving
policies for trade fairs in industrial marketing (JESUS et al., 2007)).

[SDJ's objective is to search for statistically interesting subsets of instances in the
dataset. By “interesting”, it is meant being as large as possible and having an unusual
statistical distribution regarding a certain property of interest.

Because subgroups must be described in explicit symbolic form and be humanly inter-
pretable, they are usually represented as propositional rules, and their quality is assessed
using measures borrowed from predictive and association rule learning (LAVRAC, 2005)).

These characteristics have lead researchers to use general purpose optimization algo-
rithms for [SD] In particular, the research community has given special attention to
for this task (CARMONA et al., [2014)).

Among the state of the art for [SD] (JESUS; GONZALEZ; HERRERA,
2007) and (CARMONA et al,, 2009) have been shown to work well in low
dimensional problems. However, when introducing [SSDP]| an [EA] designed specifically for
high dimensional problems, |Pontes, Vimieiro e Ludermir| (2016) reported that these
algorithms performed very poorly in high dimensional datasets.

Observing the three algorithms, it stands out that though having very similar muta-
tion and crossover operators, these algorithms have very distinct initialization techniques.
[MESDIEF] generates an individual by appending an attribute-value pair for each possible
attribute in the dataset, while limits that to 25% of the available attributes
for 75% of the generated individuals in the starting population. [SSDP} on the other hand,
initializes its population with every possible individual containing only a single attribute-
value pair.

This distinction, together with the knowledge that the rules discovered by these algo-
rithms must be simple enough for a human to read, raised the research question for this
work: since rules with too many attribute-value pairs are too complicated for a human
reader and, therefore, inappropriate for [SD| could changing to use an initialization
technique which bias the initial population towards individuals with a small number of
attribute-value pairs increase the performance of said algorithms in high dimensional [SD|
problems?

To answer that question, we first broke down “performance” in terms of convergence
frequency and output rule quality, using the (LAVRAC; FLACH; ZUPAN| (1999)
evaluation measure for the former. Then, we selected two of the state of the art with
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source code readily available online, allowing us to just modify the initialization technique.
Next, we introduced a new initialization technique that did not necessarily restrict the
initial population to individuals with few attribute-value pairs, but biased the population
towards that characteristic using random numbers drawn from specific Beta distributions.
Subsequently, we selected high dimensional datasets on which to make empirical tests.
Finally, we analyzed the results obtained from a convergence frequency and rule quality
perspective.

Throughout our experiments we observed that, indeed, with the replacement initial-
ization technique both algorithms were able to achieve higher convergence frequencies. In
fact, the original version of converged in 0% of the executions in the tested high
dimensional datasets, while ’s original version converged in less than 25% of
its executions. By simply replacing their initialization techniques for our proposed “Beta
initialization”, not only did both algorithms converge in most executions, but both mod-
ified algorithms had a remarkably similar convergence frequency when configured to the
same initialization technique. This further corroborates our conclusion that it was in fact
the initialization technique that was responsible for this improvement.

In terms of rule quality we observed that, for both [MESDIF| and [NMEEF-SD] the
modified versions achieve positive scores of [WRAcd [MESDIF] in particular, had results
very similar to that of [SSDP] and better average scores in two of the tested

high dimensional datasets. This is significant, as we started from an algorithm that did

not even converge in high dimensional datasets, and were able to bring its results close
to an algorithm designed specifically for these conditions, by simply biasing the initial
population towards individuals with small numbers of attribute-value pairs.

Furthermore, the fact that [SSDP|still had the better overall results in terms of
only corroborates our hypothesis since it is the algorithm that restricts the initial popu-
lation to individuals with the lowest possible number of attribute-value pairs.

In fact, because the observed results seemed to suggest that incorporating more knowl-
edge about the specifics of [SD|into the initialization technique could result in even better
results, we tested the algorithms with two other proposed initialization techniques. In
our second technique, the initial population was biased towards covering the instances
belonging to the positive class. In addition to covering positive instances, the third also
biased the initial population towards the attribute-value pairs with higher scores.

The obtained results, however, showed that, for both algorithms, there was no signif-
icant difference in the output rule quality when replacing their initialization techniques
with either one of the three techniques proposed. Therefore, we can conclude that bias-
ing the initial population further than just towards individuals with a small number of
attribute-value pairs yielded no significant improvement to the output rule quality.

Finally, we confirmed, through the empirical tests described in this document, our

hypothesis that, by biasing the initial population towards individuals with a small number
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of attribute-value pairs, we can improve the performance of in high dimensional [SD]
problems.

Because our initialization technique does not restrict the generated individuals to
having few attribute-value pairs, but rather bias them in that direction, we intend to
explore, in future works, the impact of using this initialization technique equipped with
distributions other than Beta, such as Chaotic distributions.

It is also our intention to investigate whether or not it is possible to further improve
the performance of in high dimensional [SD] problems by replacing the mutation
and crossover operators. Once we apply the Beta initialization technique, we know the
general region in the search space where the population starts, so perhaps we can build
crossover and mutation operators which leverage this knowledge. Many mutation oper-
ators, for instance, allow the individual to grow in the number of attribute-value pairs,
which might be counter-productive since we are starting the population with a small

number of attribute-value pairs per individual on purpose.
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