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RESUMO

Esta tese tem o objetivo de propor soluções para a mineração de subgrupos no contexto
de bases de dados de alta dimensionalidade. A mineração de subgrupos (do inglês subgroup

discovery) representa uma poderosa ferramenta para análise exploratória de dados, uma vez que
apresenta informações normalmente não detectadas pela estatística tradicional. O objetivo da
mineração de subgrupos é identificar conjuntos de características que discriminem um grupo
alvo dos demais (ex. tratamentos médicos de sucesso dos fracassados). Existem diversas
heurísticas para mineração de subgrupos, mas nenhuma delas com foco em bases de alta
dimensionalidade. Isso representa uma importante lacuna na área, uma vez que se torna mais
natural a necessidade de se extrair informações de conjuntos de dados de alta dimensionalidade.
Nas áreas de bioinformática e classificação de documentos, por exemplo, é comum a extração de
conhecimento a partir de bases com número de atributos na ordem de 104. É comum também
nos algoritmos de mineração de subgrupos o uso de muitos parâmetros de ajuste não trivial. Isso
dificulta o uso de tais técnicas, principalmente por usuários de áreas não relacionadas à mineração

de dados. Nesse contexto, nós propomos a primeira heurística para mineração de subgrupos
com foco em bases de dados de alta dimensionalidade que utiliza apenas dois parâmetros. Outro
problema da área é assegurar que os subgrupos retornados não sejam redundantes entre si e
que representem de forma ampla os dados do alvo da investigação. No entanto, subgrupos
considerados redundantes podem representar soluções mais fáceis de serem aplicadas num
problema. Assim, nós propomos uma forma inovadora de controlar a redundância, minimizando
o risco do descarte prematuro de subgrupos relevantes e gerando mais informações para o usuário.
Por fim, nós desenvolvemos um modelo baseado em mineração de subgrupos para o problema
de descrição do perfil de comunidades (do inglês group profiling), que consiste no processo
de construção de perfis descritivos para comunidades em redes sociais. A proposta teve como
principais diferenciais gerar descrições multivariadas e com alta cobertura global.

Palavras-chave: Mineração de subgrupos. Computação evolucionária. Descoberta de conheci-
mento. Bases de dados de alta dimensionalidade.



ABSTRACT

This doctoral aims to propose solutions for subgroup discovery problems focusing on
high dimensional data sets. Subgroup discovery represents a powerful tool for exploratory data
analysis as it presents information normally not detected by traditional statistical methods. The
purpose of subgroup discovery is to identify sets of characteristics that discriminate one target
group from the other (e.g. successful medical treatments of failures). There are several heuristics
for subgroup discovery, but none of them focuses on high dimensional data sets. This represents
an important gap in the area as it becomes more natural to extract information from high
dimensional data sets. In the bioinformatics and document classification realms, for example, it
is common to have knowledge extraction from data sets with number of attributes on the order
of 104. The use many non-trivial adjustment parameters is also common in subgroup discovery

algorithms. In this context, we propose the first heuristic for subgroup mining focusing on high
dimensional data sets that use only two parameters. Another problem in this area is to ensure
that the returned subgroups are not redundant with each other and that they represent broadly the
data of the research. However, subgroups considered redundant may represent easier solutions
to a problem. Thus, we propose an innovative way of controlling redundancy, minimizing the
risk of premature discarding of relevant subgroups and generating more information for the user.
Finally, we have developed a subgroup mining model for the group profiling problem, which is
the process of constructing descriptive profiles for communities in social networks. The distinct
aspect of the research was the proposal to generate multivariate descriptions with high global
coverage.

Keywords: Subgroup discovery. Evolutionary computing. Knowledge discovery. High
dimensional data sets.
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1 INTRODUÇÃO

Minerar conhecimento a partir de base de dados de alta dimensionalidade é um desafio
cada vez mais comum para empresas, governos e pesquisadores. Na área de bioinformática,
por exemplo, diversas bases são geradas com o objetivo de encontrar relações entre expressões
gênicas e doenças como o câncer (Gravier, Eleonore et al., 2010; Nakayama et al., 2007; Chin
et al., 2006). No entanto, tais bases possuem comumente número de atributos na ordem de 104 e
número de exemplos na ordem de 102. Já na área de classificação de documentos, não é raro o
uso de bases de dados com número de atributos e exemplos na ordem de 104 (Madani et al., 2013;
Kotzias et al., 2015). Por fim, pesquisas e questionários realizados por governos também levam
frequentemente à necessidade de se investigar bases com número de atributos próximos de 103.
No Brasil, por exemplo, o portal transparência dados.gov.br disponibiliza mais de 6 mil
conjuntos de dados do governo em diversas áreas, sendo parte deles de alta dimensionalidade.

Dentre os tipos de informações investigadas a partir de dados, encontrar as características
que diferenciam dois ou mais grupos é uma das tarefas mais importantes na mineração de dados

(Liu et al., 2015). Na área de educação, por exemplo, identificar o que diferencia as melhores
escolas das piores pode indicar políticas para tornar as escolas mais atrativas. Já na saúde,
identificar o que diferencia os tratamentos bem-sucedidos dos fracassados, por exemplo, pode
resultar em melhorias nas condutas médicas. Dessa forma, entender o que diferencia um grupo
alvo dos demais pode ser o ponto de partida para a solução de problemas relevantes em diversas
áreas.

A mineração de subgrupos (do inglês subgroup discovery) é uma área da mineração de

dados que tem o objetivo de identificar os conjuntos de características que melhor diferenciam
um grupo alvo dos demais (ex. escolas de referência das demais) (Helal, 2016; Atzmueller,
2015; Herrera et al., 2011). Na prática, tal área representa uma ferramenta capaz de mostrar,
de forma legível, informações não acessíveis por métodos tradicionais de análise exploratória
de dados. Dessa forma, a mineração de subgrupos foi utilizada na descoberta de conhecimento
em problemas de diferentes áreas, como bioinformática (Li & Wong, 2002; Quackenbush,
2001), medicina (Carmona et al., 2013, 2011), marketing (Carmona et al., 2012; del Jesus et al.,
2007b), e-learning (Romero et al., 2009) e acidentes de trânsito (Kavšek & Lavrac, 2004; Kavšek
et al., 2002). A mineração de subgrupos é também pesquisada sob diferentes terminologias na

dados.gov.br
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literatura, como Subgroup Discovery (Herrera et al., 2011), Discriminative Pattern (Liu et al.,
2015), Emerging Patterns (Dong & Li, 1999; Vimieiro & Moscato, 2014) e Contrast Sets (Bay
& Pazzani, 2001; Azevedo, 2010). No entanto, tais terminologias foram definidas como sendo o
mesmo problema por Novak et al. (2009).

Na mineração de subgrupos, cada subgrupo pode ser representado por uma regra
no formato cond → targetlabel , onde cond é uma combinação de características/itens (ex.
salarioPro f essor = alto,estrutura = excelente) e targetlabel é o alvo da investigação (ex.
avaliacaoEscola = alta). Dessa forma, a mineração de subgrupos pode ser considerada uma
área intermediária entre os problemas clássicos de Classificação e Descrição baseadas em regras,
uma vez que seu objetivo é descrever dados utilizando regras, como na área de Descrição, mas
considerando as que melhor discriminam uma classe alvo das demais (Herrera et al., 2011).

A análise manual de todos os subgrupos para um dado problema é uma tarefa inviável,
dado o grande número de possibilidades. Dessa forma, diversos algoritmos foram propostos
com o objetivo de extrair os subgrupos considerados mais relevantes para um dado problema.
Assim, numa segunda etapa, o especialista no domínio do problema pode se dedicar à análise
dos subgrupos retornados e decidir quais são realmente relevantes para o seu problema.

Dentre as heurísticas de mineração de subgrupos propostas, têm se destacado as baseadas
em pesquisa de feixe (do inglês beam search) (Gamberger & Lavrac, 2002; Lavrač et al., 2004;
Van Leeuwen & Knobbe, 2012) e computação evolucionária (Carmona et al., 2014, 2015; Martín
et al., 2016). Alguns trabalhos mostram uma superioridade das abordagens evolucionárias em
relação às baseadas em pesquisa de feixe (Carmona et al., 2010; Luna et al., 2014), mas tais
tipos de abordagens ainda não foram comparadas de forma ampla no contexto de bases de dados
de alta dimensionalidade. Além disso, ainda não foi proposta uma heurística com foco em bases
de dados de alta dimensionalidade, sendo esse um importante problema em aberto na área de
mineração de subgrupos (Atzmueller, 2015; Carmona et al., 2014). No contexto desta pesquisa
consideramos bases de alta dimensionalidade aquelas com pelo menos 100 atributos, embora o
trabalho lide frequentemente com bases com número de atribtuos na ordem de 103 e 104.

Outra caracterísca comum nas atuais heurísticas de mineração de subgrupos é a grande
quantidade de parâmetros e a complexidade de ajuste destes. Parâmetros comumente utilizados,
como suporte mínimo, são complexos de serem definidos. Se o valor for muito pequeno, pode
não representar uma limitação relevante no espaço de busca, se muito grande, pode restringir
de forma exagerada as opções do algoritmo. Além disso, o valor adequado para esse tipo de
parâmetro varia de acordo com o problema. As abordagens evolucionárias costumam possuir
ainda diversos outros parâmetros, tais como tamanho da população, taxas de cruzamento e
mutação, número máximo de avaliações e número máximo de gerações (Carmona et al., 2014,
2015). No contexto de bases de alta dimensionalidade o ajuste de tais parâmetros é ainda
mais desafiador, devido ao custo computacional associado a cada teste realizado. Tudo isso
pode representar uma barreira relevante para a mineração de subgrupos , principalmente para
pesquisadores de áreas não relacionadas à mineração de dados.
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Nesse contexto, seria possível desenvolver um algoritmo de mineração de subgrupos

baseado em computação evolucionária eficiente no contexto de bases de dados de alta dimen-

sionalidade e com poucos parâmetros facilmente ajustáveis?

Por fim, um terceiro desafio na área de mineração de subgrupos é a redundância entre os
subgrupos retornados pelos algoritmos (Bosc et al., 2017; Van Leeuwen & Knobbe, 2012). A
forma mais comum de combate à redundância para um conjunto de subgrupos é atribuindo pesos
aos exemplos das bases de dados, de forma a desvalorizar subgrupos que tenham exemplos em
comum. No entanto, essa estratégia pode acarretar um alto custo computacional no contexto de
bases de dados de alta dimensionalidade com muitos exemplos. Além disso, a punição dada
à redundância de cobertura dos exemplos pode não ser suficiente para evitar a existência de
dois ou mais subgrupos cobrindo exatamente os mesmos exemplos. Outro aspecto importante é
que subgrupos considerados redundantes podem representar informações relevantes, como uma
forma mais viável de resolver um problema ou um conhecimento inédito na área de aplicação.
Assim, a diferença entre redundância e informação relevante pode estar associada ao domínio da
aplicação, o que torna o problema complexo de resolver.

Assim, seria possível desenvolver um novo caminho para combate à redundância viável

no contexto de bases de alta dimensionalidade, reduzindo o risco de descarte prematuro de

subgrupos relevantes e gerando mais informações para o usuário?

A mineração de subgrupos também pode ser utilizada como ferramenta em outros
problemas de mineração de dados de alta dimensionalidade. Um deles é a descrição do perfil

de comunidades (do inglês Group Profiling), cujo objetivo é descrever um grupo de pessoas
que compartilha valores pessoais e/ou interesses comuns (Tang et al., 2008). Existem várias
aplicações relacionadas à descrição do perfil de comunidades, como entender estruturas sociais,
visualização e navegação de redes, identificação de mudanças em temas de grupo e marketing

direto (Tang et al., 2011).
Os atuais métodos para descrever comunidades comumente resultam em descrições uni-

variadas (Gomes et al., 2018; Tang et al., 2011; Gomes et al., 2016, 2013). No entanto, métodos
univariados negligenciam interações interessantes entre características, o que poderia melhorar
a descrição geral de uma comunidade. Outra questão atualmente não abordada pelos atuais
métodos diz respeito à cobertura das descrições. Isso pode representar uma limitação relevante,
uma vez que descrições com baixa cobertura representam apenas um pequeno subconjunto dos
membros de uma comunidade.

Nesse contexto, seria a mineração de subgrupos um caminho promissor para a geração

de descrições abrangentes e mais informativas para o problema de descrição do perfil de

comunidades?

Dessa forma, considerando a relevância da mineração de subgrupos na descoberta de
conhecimento discriminante, o potencial de aplicação em outras áreas da mineração de dados,
bem como as limitações dos atuais algoritmos, segue a descrição dos objetivos dessa pesquisa.
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1.1 OBJETIVOS

Esta tese tem o objetivo de propor soluções para a mineração de subgrupos no contexto
de bases de dados de alta dimensionalidade. Os avanços na área foram realizados em três frentes:

1. Propor algoritmo de mineração de subgrupos com foco em base de dados de alta
dimensionalidade e na simplicidade de uso.

2. Propor método de combate à redundância de forma a reduzir o risco de descarte
prematuro de subgrupos relevantes e gerar mais informações para o usuário no
contexto de bases de dados de alta dimensionalidade.

3. Propor modelo de descrição de comunidades abrangente e multivariado com base no
uso de mineração de subgrupos.

1.2 PRODUÇÃO BIBLIOGRÁFICA

Essa seção lista a produção bibliográfica desenvolvida neste doutorado. Dessa forma,
foram publicados dois artigos em congressos e um em periódico. Existe ainda um terceiro
trabalho submtido e um quarto que foi publicado, mas não relacionado ao tema da tese.

1.2.1 Publicação em periódico

� LUCAS, T. D. P.; SILVA, T. C.; VIMIEIRO, R.; LUDERMIR, T. B. A new evolu-
tionary algorithm for mining top-k discriminative patterns in high dimensional data.
APPLIED SOFT COMPUTING, v. 59, p. 487-499, 2017.

1.2.2 Publicação em congressos

� LUCAS, T. D. P.; VIMIEIRO, R.; LUDERMIR, T. B. SSDP: A Simple Evolutionary
Approach for Top-K Discriminative Patterns in High Dimensional Databases. In:
2016 5th BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS),
2016, Recife. p. 361-366.

� LUCAS, T. D. P.; VIMIEIRO, R.; LUDERMIR, T. B. SSDP+: a Diverse and More
Informative Subgroup Discovery Approach for High Dimensional Data. In: IEEE
CONGRESS ON EVOLUTIONARY COMPUTATION (IEEE CEC), 2018, Rio de
Janeiro. p. 1-8.

� LUCAS, T. D. P.; GOMES, J. E. A.; VIMIEIRO, R.; LUDERMIR, T. B.; PRUDÊN-
CIO, R. B. C. A multivariate method for Group Profiling using Subgroup Discovery.
(submetido).
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1.2.3 Publicação não relacionada à tese

� BEZERRA, C. ; SCHOLZ, R. ; ADEODATO, P. ; LUCAS, T. D. P. ; ATAIDE, I.
Evasão Escolar: Aplicando Mineração de Dados para Identificar Variáveis Relevantes.
In: XXVII SIMPÓSIO BRASILEIRO DE INFORMÁTICA NA EDUCAÇÃO, 2016,
Uberlandia. p. 1096-1105.

1.3 ORGANIZAÇÃO DO DOCUMENTO

Esta tese está organizada em formato de artigos. Assim, os três capítulos seguintes são
os principais artigos desenvolvidos na pesquisa. No Capítulo 2 nós propomos o algoritmo SSDP

(do inglês Simple Search Discriminative Pattern) (Lucas et al., 2017), a primeira abordagem
evolucionária para mineração de subgrupos com foco em bases de dados de alta dimensionalidade.
O modelo proposto possui apenas dois parâmetros facilmente ajustáveis. Já no Capítulo 3 nós
apresentamos o SSDP+ (Lucas et al., 2018), uma evolução do SSDP que trouxe uma forma
inovadora de lidar com o problema de redundância, gerando mais informações para o usuário.
No Capítulo 4 nós nós propomos o MGP-SD (do inglês Multivariate Group Profiling - Subgroup

Discovery), o primeiro modelo multivariado para descrição do perfil de comunidades com
controle de cobertura global. O MGP-SD é baseado no algoritmo SSDP+. Já no Capítulo 5 nós
apresentamos as nossas conclusões e trabalhos futuros. Por fim, no Anexo A nós disponibilizamos
o artigo que apresentou o protótipo que deu origem a versão final do SSDP (Pontes et al., 2016).
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2 SSDP: SIMPLE SEARCH DISCRIMINATIVE PATTERNS

Este capítulo é uma reprodução completa do artigo A new evolutionary algorithm for

mining top-k discriminative patterns in high dimensional data, publicado em 2017 na revista
Applied Soft Computing, volume 59, p. 487-499 (Lucas et al., 2017).

2.1 ABSTRACT

This paper presents an evolutionary algorithm for Discriminative Pattern (DP) mining
that focuses on high dimensional data sets. DPs aims to identify the sets of characteristics that
better differentiate a target group from the others (e.g. successful vs. unsuccessful medical
treatments). It becomes more natural to extract information from high dimensionality data sets
with the increase in the volume of data stored in the world (30GB/s only in the internet). There
are several evolutionary approaches for DP mining, but none focusing on high-dimensional data.
We propose an evolutionary approach attributing features that reduce the cost of memory and
processing in the context of high-dimensional data. The new algorithm thus seeks the best (top-k)
patterns and hides from the user many common parameters in other evolutionary heuristics such
as population size, mutation and crossover rates, and the number of evaluations. We carried
out experiments with real-world high-dimensional and traditional low dimensional data. The
results showed that the proposed algorithm was superior to other approaches of the literature in
high-dimensional data sets and competitive in the traditional data sets.

2.2 INTRODUCTION

This paper presents an evolutionary algorithm for Discriminative Pattern (DP) mining
that focuses on high dimensional data sets. Discriminative pattern mining is a data mining task
that has the objective of identifying sets of items that distinguish a target group from the others,
for example: successful from unsuccessful treatments, unhealthy from healthy cells, spam from
other emails, or even positive from negative sentiments in sentiment analysis. The necessity to
investigate new methods, especially heuristics methods mining these patterns, comes from the
fact that data generated/collected from many domains have different characteristics from those
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of last decade. The vast amount and high dimensionality of data sets in this so-called Era of Big

Data render the application of existing methods infeasible.
Studies estimate that in the internet alone around 30GB of data, including texts, images

and videos, are produced each second. Another important source of data is the biomedical
sciences, particularly the Omics (genomics, proteomics, transcriptomics, ...), since the price for
sequencing samples has dramatically dropped in the last years. These areas have two things in
common: (1) they are major contributors to today’s massive amount of available data (big data);
(2) data from these domains is usually very high dimensional with tens of thousands to millions
of attributes. In this sense they present new challenges to data mining and machine learning
researchers. Among these challenges is the need for new tools for exploratory data analysis.

Discriminative patterns are an important tool for exploratory data analysis, since recurring
patterns in the data are summarized in a simple way (Liu et al., 2015). This is particularly
suitable to explaining/describing differences among groups of samples in the data. Discri-
minative pattern mining has simultaneously evolved with different terminologies, Subgroups

Discovery (Atzmueller, 2015; Herrera et al., 2011); Emerging Patterns (Dong & Li, 1999; Blinova
et al., 2003); and Contrast Sets (Bay & Pazzani, 2001), until they were unified by (Novak et al.,
2009). There are many applications reported in the literature in different domains such as:
medicine (Carmona et al., 2013, 2011), bioinformatics (Li & Wong, 2002; Quackenbush, 2001),
marketing (Carmona et al., 2012; del Jesus et al., 2007b), e-learning (Romero et al., 2009) and
traffic accidents (Kavšek & Lavrac, 2004; Kavšek et al., 2002).

Little attention has been given to mining discriminative patterns in high dimensional
domains in spite of the great number of applications in the literature. High dimensionality
of data sets is an intricate problem for current methods for discriminative pattern mining. It
represents a computationally difficult problem for most of existing methods because of their
combinatorial nature. Most of the exact methods, e.g. (Kavšek et al., 2006; Vimieiro & Moscato,
2014), enumerate subsets of attributes, avoiding and discarding paths in the search space that
exclusively yield uninteresting patterns. In fact Vimieiro (2012) already discussed in 2012 the
issues related to exact methods for mining discriminative patterns. He argues that the feasibility
of such methods is not only limited by computational aspects (time and memory usage), but also
by the number of returned patterns. In many occasions the problem is just shifted from analyzing
raw data to analyzing a huge number of patterns. This motivates the investigation of heuristics
for mining discriminative patterns.

There are plenty of heuristics for mining discriminative patterns, including many based
on evolutionary computing (del Jesus et al., 2007b,a; Carmona et al., 2010; Pachón et al., 2011;
Rodríguez et al., 2012; Luna et al., 2014; Carmona et al., 2015; Pulgar-Rubio et al., 2016).
The vast majority of these methods target traditional, low-dimensional data sets. As their exact
counterparts, they also use interestingness measures to guide the search. These constraints
are mostly related to the frequency (support) and discriminative power of patterns. Thus, they
explicitly deal with the computational issues associated to exact methods, but might not solve the
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second issue related to the number of patterns. The algorithms for mining discriminative patterns
usually return the best patterns in one of two ways: (1) based on constraints, which return
patterns that satisfy some constraint, as minimum support; and (2) based on top-k, which return
the k best patterns. Both options have their relevance depending on the analysts’ goals, but the
top-k approach provides more flexibility (Atzmueller, 2015). Notwithstanding, an evolutionary
top-k DPs mining approach has not been proposed yet.

This context motivates us to pose the following research question: is it possible to devise

a new evolutionary heuristic that tackles both the combinatorial issues and huge amount of

patterns associated with high dimensional data? To address this question, we present a new
evolutionary heuristic SSDP (Simple Search Discriminative Patterns). We aim at providing
end-users a viable and easy to use tool for analyzing high dimensional data. Our approach allows
the user to choose the most appropriate interestingness measure and requires only the number of
patterns that she intends to analyze. The algorithm then seeks the best (top-k) patterns, hiding
from the user many common parameters in other evolutionary heuristics such as population size,
mutation and crossover rates, and the number of evaluations.

SSDP was first presented as a preliminary work at the 5th Brazilian Conference on
Intelligent Systems (BRACIS 2016) (Pontes et al., 2016). However, we made additional progress
as following. We improved our experiments to assess the performance of our approach with both
real-world high-dimensional and traditional low dimensional data. We compared the results from
our algorithm with other traditional evolutionary methods, which had not been previously done.
The aim of these new experiments was to evaluate both the effectiveness of SSDP on mining
high-dimensional data, which it has been designed for, and its suitability to different contexts
(low dimensional data, which it has not been designed for). Since we omit many common
parameters as discussed above, we also conducted experiments to investigate different settings
of these parameters and their impact on our method. Such an analysis had not been done in the
previous conference paper, despite being extremely important to confirm whether the choices
made indeed return relevant patterns compared to other settings. Finally, we also revised the
entire manuscript and made significant changes to improve its readability.

The remainder of this manuscript is organized as follows. We formalize the problem of
mining discriminative patterns in section 2.3. We formally define the concept of a discriminative
pattern and the interestingness measures to assess its relevance. In section 2.4, we review the
literature, providing a critical analysis of the state of the art. We identify the issues related to
the current methods for mining discriminative patterns. We present our algorithm in section 2.5.
Then we discuss the experiments conducted to assess the performance of our algorithm and
compare the results with other algorithms in section 2.6. We conclude the manuscript with some
final remarks in section 2.7.
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Table 1: A toy example of a data set. In this simulated data, the target is to identify the differences
between successful and unsuccessful medical treatments for a given disease.

example genre age medicine label
e1 M senior B success
e2 F senior B success
e3 M senior A success
e4 M adult A success
e5 F child A success
e6 F child A failure
e7 M child B failure
e8 F child B failure
e9 M adult A failure

e10 F adult A failure

2.3 DISCRIMINATIVE PATTERNS

Let D be a labeled data set with a set A of categorical/discrete attributes. According to
the class label, the set of samples from D can be partitioned into D+ = {e+1 ,e+2 , ...,e+|D+|} and
D− = {e−1 ,e−2 , ...,e−|D−|}, respectively the positive (target) examples and the remaining (negative
examples). Let dom(Ai) be the domain of values for attribute Ai ∈ A. We call features or items
the set of all pairs (attribute,value), that is I =

⋃
Ai×dom(Ai) = {i1, i2, ..., i|I|}. We say that an

example d has an item x = (Ai,v) ∈ I if d has value v for the attribute Ai.
We call a discriminative pattern a set d p ⊆ I. The size of a discriminative pattern

d p is the number of items in d p, that is size(d p) = |d p|. Every d p might be associated
(cover) a set of positive and negative examples, which we formally define as c+(d p) = {d ∈
D+ | d has all items in d p} , and c−(d p) = {d ∈ D− | d has all items in d p}. The size of these
two sets define the positive and negative support of a discriminative pattern, i.e. its frequency
among positive and negative examples, and their sum defines the overall support of the patterns.

Table 1 contains a toy example of data set, for which the aim is to identify the differences
between successful and unsuccessful medical treatments for a given disease. In this example,
Table 1 represents the data set D and label = success is the target of investigation . Thus, D+ =

{e1,e2,e3,e4,e5} are the positive examples (where label = success) and D−= {e6,e7,e8,e9,e10}
are the negative examples (where label 6= success). Meanwhile Table 2 represents the universe of
items I = {i1, i2, i3, i4, i5, i6, i7} and the respective positive and negative covered examples. In this
context, d p = {i5} is an interesting discriminative pattern, once c+(d p) = |{e1e2,e3}|= 3 and
c−(d p) = | /0|= 0. On the other hand, d p = {i1, i7} is not an interesting pattern as it is equally
frequent among positive and negative samples (c+(d p) = |{e1}|= 1 and c−(d p) = |{e7}|= 1).

The definition of the relevance/interestingness of a discriminative pattern is given by a
measure (Flach et al., 1999). Flach et al. (1999) present a thorough review on several types of
evaluation/interestingness measures for discriminative patterns. They discuss how the measures
relate to each other, often describing the same, while, in spite of it, there is still no consensus
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interference. Table 3 summarizes the characteristics of the algorithms reviewed here.

Table 2: Universe of items I and respective covered examples for the data presented in Table 1.
In this table, items are in rows and examples in columns. There is a cross if an example has the
corresponding item.

I (attribute, value) D+ D−

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
i1 (genre, M) × × × × ×
i2 (genre, F) × × × × ×
i3 (age, child) × × × ×
i4 (age, adult) × × ×
i5 (age, senior) × × ×
i6 (medicine, A) × × × × × ×
i7 (medicine, B) × × × ×

about the best one. This choice often depends on the problem or specialist’s convictions. In this
way, it is important for discriminative pattern mining algorithms to accept different options of
evaluation metrics to meet user needs.

One of the most used evaluation metric is the weighted relative accuracy (WRAcc), given
by Equation 2.1:

WRAcc(d p) =
T P+FP
|D|

(
T P

T P+FP
− |D

+|
|D|

)
,

�
 �	2.1

where T P = |c+(d p)| (the positive support) and FP = |c−(d p)| (the negative support).
As described by Flach et al. (1999), the WRAcc is a trade-off between generality and

accuracy. The first part of the equation (outside parethesis) accounts for the generality of the
pattern. Patterns covering more samples, i.e. more general, are, at first, preferred to more specific
patterns. The second part (inside parenthesis) corresponds to the relative accuracy of the pattern.
Patterns showing a gain relative to the fixed rule assigning/describing all samples to/from the
positive class are preferred. WRAcc values range from −0.25 to +0.25, or from −1 to +1 in its
normalized form (WRAccnormalized = 4×WRAcc) (Flach, 2003). In this case +1 represents a
totally pure pattern, describing all the positive examples and none of negative examples, while
−1 represents a pattern describing all the negative examples and none of the positive, and 0
indicates that there is no gain relative to the fixed rule describing all examples of the base as
positive.

Another well-known metric is the Qg (Gamberger & Lavrac, 2002), given by Equation 2.2,
where g is a generalization parameter, which defaults to 1. The value of g represents the tolerance
to negative examples in relation to positives covered by a DP. The higher the g value, the more
generic DPs will be. On the other hand, the closer to zero the value of g, the more specific and
intolerant to FP the best DPs will be (Gamberger & Lavrac, 2002).

Qg =
T P

FP+g
,

�
 �	2.2
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Qg can be used as an alternative to the evaluation metric GrowthRate = T P
|D+|/

FP
|D−| (Dong

& Li, 1999), often used in works mining DPs from bioinformatics data (Li & Wong, 2002; Yu
et al., 2004; Vimieiro & Moscato, 2014) without the disadvantage of division by zero, though.
Qg can assume values between 0 and +∞. A complete survey on many evaluation metrics can be
found in (Liu et al., 2015; Herrera et al., 2011).

There are also some global metrics, whose purpose is to evaluate a DP set. One of them is
the overall support SUPP+ (Helal, 2016), witch measures the percentage of target examples D+

covered by a DP set (Equation 2.3). This metric is important to evaluate if a DP set significantly
covers D+ or if it is restricted to a small subset of them. SUPP+ can assume values between 0
and 1, where 1 means that a DP set completely cover D+.

SUPP+ =
|c+(d p1)∪ ...∪ c+(d pk)|

|D+| ,
�
 �	2.3

One of the challenges in discriminative patterns is the redundancy in a DP set. Two
of the most common type are coverage and description redundancy (Van Leeuwen & Knobbe,
2012). Coverage redundancy occurs when a DP set has many positive examples in common (e.g.
d p1 = {i2} and d p2 = {i3} in Table 2, where c+(d p1) = c+(d p2) = {e2,e5}). A DP set with
high coverage redundancy usually has low SUPP+. On the other hand, description redundancy
occurs when a DP set has one or more items in common. The DPs d p1 = {i1}, d p2 = {i1, i3}
and d p3 = {i1, i3, i6} in Table 2, for example, describes only male patients (i1→ (genre,M)).
Both can result in poor information for end user.

2.4 RELATED WORK

The area of discriminative pattern mining evolved in parallel from three different areas:
Subgroup Discovery (Atzmueller, 2015; Herrera et al., 2011), Emerging Patterns (Dong &
Li, 1999) and Contrast Sets (Bay & Pazzani, 2001). Subgroup Discovery is the extraction of
subgroups of interest related to the value of label (Herrera et al., 2011). Emerging Patterns

are groups where the difference of frequency with respect to two classes diverges to a rate
of gain (Dong & Li, 1999). At last, Contrast Set are conjunctions of attributes and values
that significantly differ in their distributions (Bay & Pazzani, 2001). In 2009, Novak et al.

(2009) discussed how these areas related to each and classified them as being the same problem.
However, one of the first works to use the term discriminative pattern were the articles by Gao &
Wang (2010) and Pandey et al. (2010). Liu et al. (2015) were the first to survey the area from the
perspective of bioinformatics.

Discriminative pattern mining algorithms usually return the best patterns in one of two
ways. The most popular way is constraint-based searching, where the algorithm traverse the
search space keeping patterns that satisfy a given constraint while avoiding paths with unpromi-
sing patterns. This technique was borrowed from association rule mining algorithms (Agrawal
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& Srikant, 1994) and, hence, often uses as constraints measures such as minimum support and
confidence. Nevertheless, setting the thresholds for those constraints might not be a simple
task. If it is too large, the algorithm may not return any results (Han et al., 2002). On the
other hand, if it is small, it does not effectively filter uninteresting patterns. This is particularly
critical when dealing with high dimensional data sets as a huge number of patterns may satisfy
a constraint (Vimieiro, 2012; Vimieiro & Moscato, 2014). In other words the longer patterns
found in high dimensional data may yield an exponential number of sub-patterns that also satisfy
the constraint; this turns out to be always true if the interestingness measure is anti-monotonic.
An alternative to the constraint-based approach is to find patterns based on (implicit) rankings.
The aim of this second approach is to find the top-k patterns with the highest values for a given
interestingness measure. In this scenario the user provides the number k of patterns to be found
and the algorithm searches for the best ones accordingly.

There are several exact and heuristic data mining algorithms (Herrera et al., 2011; Liu
et al., 2015; Carmona et al., 2014; Helal, 2016). Among the heuristic algorithms, the ones based
on beam search (Gamberger & Lavrac, 2002; Lavrač et al., 2004; Van Leeuwen & Knobbe,
2012) and evolutionary computing (del Jesus et al., 2007b,a; Carmona et al., 2010; Pachón et al.,
2011; Rodríguez et al., 2012; Luna et al., 2014; Carmona et al., 2015; Pulgar-Rubio et al., 2016;
Carmona et al., 2014) are most important ones.

The algorithms based on beam search are initialized from a predefined number of DPs
determined by a beamSize parameter. New patterns are generated from the beamSize ones from
the previous iteration. Therefore, approaches based on beam search restrict memory usage by
exploring only part of the search space. One of the first and most prominent algorithm for mining
discriminative patterns based on beam search is SD (Gamberger & Lavrac, 2002). The algorithm
starts the search by taking the highest quality (according to Qg and minimal support) items as
singleton discriminative patterns. After that, the algorithm replaces the least relevant patterns by
the most relevant ones with larger sizes. The SD stops the search when there is no change in list
of relevant patterns over one iteration.

One of the greatest disadvantage of beam search algorithms is the lack of diversity.
The algorithms usually target only individually good items, which, by the point of view of
domain experts, might already be a well-known pattern (Fang et al., 2011; Garriga et al., 2008).
In this scenario, evolutionary algorithms represent a perfect fit, having many methods been
proposed in the literature. We now review some of the most important evolutionary algorithms
for discriminative pattern mining, and refer the reader to the work of Carmona et al. (2014),
which provides a thorough survey of the area.

SDIGA is a mono-objective approach that uses a global search followed by a local search
for each iteration. The global search is performed by the genetic algorithm and the local search,
via Hill Climbing. Two other algorithms are MESDIF and NMEEF. These algorithms are multi-
objective, the first being based on the SPEA2 (Zitzler et al., 2001) algorithm and the second one
on the NSGA-II (Deb et al., 2002). MESDIF uses elitism and the concept of Pareto Front in its
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Table 3: Summary of the characteristics of the main evolutionary algorithms for mining discrimi-
native patterns.

Algorithm Objective Size of Initial top-k Number of
individuals population parameters

SDIGA Mono |I| ? NO 7
MESDIF Multi |I| ? NO 7
NMEEF Multi |I| 75% of individuals with

up to 25% of of items i ∈
I

NO 7

EDER Mono |A| Based on examples NO 4
CGBA Mono size(d p) Random until all individ-

uals are valid
NO 4

FuGePSD Mono size(d p) 1% to 50% of items i ∈
I, until all individuals are
valid

NO 14

MEFASD Multi |I′| where I′ ⊂ I ? NO 8

search strategy, and NMEEF uses an operator to reset the population. NMEEF has been one of the
most competitive approaches when compared with other algorithms (Luna et al., 2014; Carmona
et al., 2015; Helal, 2016). FuGePSD (Carmona et al., 2015) uses genetic programming (Koza,
1992) and represents individuals with trees. In addition, FuGePSD performs both local and global
search while attempting to cover all positive examples of the D+ database. Finally, MEFASD-BD

is an approach focused on big data in relation to the number of examples. MEFASD-BD uses
the MapReduce paradigm to partition the data set, and concepts of NMEEF to mine the DPs.
These algorithms use fuzzy logic to deal with numeric attributes. There are, however, other
evolutionary approaches for mining DPs that do not use the Genetic Fuzzy System (Herrera, 2008).
EDER (Rodríguez et al., 2012) is a mono-objective approach based on HIDER (Aguilar-Ruiz
et al., 2001) (HIerarchical DEcision Rules). EDER focuses on issues with minority classes in
unbalanced databases. CGBA (Luna et al., 2014), on the other hand, is an approach that uses
evolutionary programming as a search strategy and context-free grammar to represent DPs in
a readable and flexible way. In addition, CGBA dynamically defines crossover and mutation
rates while searching without user interference. Table 3 summarizes the characteristics of the
algorithms reviewed here.

Despite the large number of evolutionary approaches, none of them was developed with
focus on high dimensionality and most of the performance tests considered data sets with less
than 40 attributes. In addition, some features of such models can be problematic in the context of
high dimensionality. The representation of individuals using one gene per item (or attributes), for
example, can bring high cost of memory in the context of high dimensionality. At the same time,
limiting the size of individuals in the initial population to percentages of |I| tends to generate
large random DPs that do not cover any example of D, which may restrain the convergence of
the algorithm. Finally, such models usually have some non-trivial configuration parameters and
none of them is top-k.
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More recently, researchers are also reconsidering sampling algorithms as an alternative
to exact/enumerative methods (Bendimerad et al., 2016; Boley et al., 2011; Moens & Boley,
2014; Kaytoue et al., 2017). Sampling algorithms most often use Monte Carlo Markov Chain
methods to find patterns via the distribution of their support or a quality measure based on it.
These algorithms are particularly useful for interactive exploratory analysis as samples may be
drawn sequentially from the given distribution (Scholz, 2005). Nevertheless, most of the works
in this area are still focusing on low dimensional data. Boley et al. (2011), for instance, restricted
their experiments to UCI data with less than 300 dimensions (and 4000 samples). Since our
focus is on batch analysis of very high dimensional data sets, such as those from unstructured
textual or biomedical data, we do not consider these approaches in our experiments.

2.5 SSDP: SIMPLE SEARCH DISCRIMINATIVE PATTERNS

SSDP is a mono-objective evolutionary approach for discriminative pattern mining. Its
main characteristics are: (1) being adapted to high dimensional data and (2) having few easily
adjustable parameters.

In SSDP, individuals represent only the items used in the DP. The rationale for using
such a representation lies on the fact that the best patterns usually contain less than 1% of the
items. Therefore, each individual of the population is represented by one or more integers. Each
integer (or index) corresponds to the position of an item i in I (assuming any total ordering of
items). A two-dimensional discriminative pattern d p = {2043,213}, for example, represents the
set formed by items in positions 2043 and 213 of I. However, when representing individuals as
sets of integers, it is necessary to ensure that there is no duplicity (eg. d p = {2043,2043,213}).
We implemented individuals using hash tables to avoid duplicity and maintain the performance
of the algorithm.

SSDP initializes the searches with patterns of size one and evolves to higher dimensions
through its evolutionary operators. The initial population is composed of all one dimensional
possible DPs (an individual for each i ∈ I). Such an initialization allows the population size to be
determined automatically according to the problem (populationSize = |I|). Besides, it ensures
that all items i ∈ I are considered in the search. Initializing the search from one-dimensional
solutions is a novelty among evolutionary approaches for mining DPs. However, it is widely used
in algorithms based on Beam Search (Gamberger & Lavrac, 2002; Kavšek et al., 2006; Mueller
et al., 2009). In addition, in high dimensional bases, initializing a search by randomly generated
individuals may restrain the convergence of the algorithm, as we discuss in subsection 2.6.1.

After the initial population is generated, SSDP uses the following genetic operators to
generate new candidates. The selection is made by binary tournament. In mutation there are
three possibilities with the same probability: (1) a random item is added to the individual (e.g.
i= {a,b,c}→ i′= {a,b,c,d}); (2) a random item is replaced by another (e.g. i= {a,b,c}→ i′=

{a,b,d}); and (3) a random item is removed from the individual (e.g. i={a,b,c}→ i′ = {a,b}).
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Therefore, in the mutation, an individual with size d randomly evolves to dimension d, d−1
or d +1. It is common that just one item changes in evolutionary approaches for DP mining.
That happens because the change in a single item represents a significant transformation in the
individual.

With respect to crossover method, there are two possibilities: crossOverAND and
crossOverUniform. The first one generates an individual from the union of the two individuals’
items (e.g. i1 = {a} and i2 = {b}→ i′ = {a,b}). This type of crossing is used only in the initial
population, in which all individuals have size=1. While in crossOverUniform crossing, two
individuals generate two new by uniform crossover with 50% mixing ratio (e.g. i1 = {a,b} and
i2 = {c,d}→ i′1 = {a,d} and i′2 = {b,c}).

Crossover and mutation rates initialize at 0.6 and 0.4, respectively, and are adapted
according to the search. If, at the end of a generation, there is improvement in the top-k DPs, the
algorithm increases the crossover rate at 0.2 and reduces mutation rate at the same value. When
there is no improvement in the top-k DPs, the mutation rate increases by 0.2 and the crossover
rate decreases by the same value. Thus, the algorithm tends to intensify the search in depth when
it is in a promising region, otherwise, it tends to intensify the search in breadth. The mutation
and crossover rates always sum to one. This methodology is an adaptation of the one proposed
by Luna et al. (2014) for CGBA (described in section 2.4).

The SSDP uses as stopping criterion the stabilization of the group of the k best DPs
after the population has been reset twice. A population is reset when there is no change in top-k
DPs for three consecutive generations and the mutation rate is equal to one. In this process the
algorithm randomly generates individuals of fixed size between two and the average size of the
top-k DPs. Moreover, 10% of individuals are generated using exclusively items present in top-k
DPs.

SSDP does not allow the user to tune some common parameters, such as mutation
and crossover rate, population size and minimal support. The algorithm has only two input
parameters: the number of DPs (k) and evaluation metric (fitness). SSDP theoretically allows the
use of any interestingness measure as fitness. Currently, SSDP implementation includes three
evaluation metrics: Qg, WRAcc and SUB = T P−FP.

Algorithm 1 contains the pseudocode of SSDP. In the algorithm, the population Pk keeps
the best k individuals that are relevant. An individual d pi is considered irrelevant in relation
to population Pk if ∃d p ∈ Pk|c+(d pi)⊂ c+(d p)∧ c−(d p)⊂ c−(d pi). The other populations (P,
Pnew and P∗) allow the presence of duplicated individuals. The control over the individuals
is made only in the population Pk in an attempt to minimize the computational costs of the
algorithm and at the same time return only non-redundant DPs (Pk) to the end-user. The
algorithm was implemented in Java and is available from our supporting website (https:
//github.com/tarcisiodpl/ssdp).

https://github.com/tarcisiodpl/ssdp
https://github.com/tarcisiodpl/ssdp
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Algorithm 1 SSDP pseudocode
Require: k, metricEvaluation

P←{{i1},{i2}, ...,{i|I|}}
Pk← kBestRelevants(P)
reinializationCount← 0
mutationRate← 0.4
crossoverRate← 0.6
while reinializationCount < 2 do

while Pk not improve three consecutive generations keeping mutationRate == 1.0 do
if generation == 1 then

Pnew← crossoverAND(P)
else {generation > 1}

Pnew← evolutionaryOperator(P,mutationRate,crossoverRate)
end if
P∗← best(P,Pnew)
Pk← kBestRelevants(Pk,P∗)
update(mutationRate,crossoverRate)
P← P∗

end while
reinializationCount ++
P← restart

end while
return Pk

2.6 EXPERIMENTS

The experiments were performed in two groups of data sets, one with high dimensionality
and another one traditional. The high dimensionality group (Table 4) consists of 21 microarray
bases, available in the package datamicroarray (Ramey, 2016) from R software. The bases have
between 456 and 54,613 numerical attributes, and between 31 and 248 examples. For each data
set, the majority class was considered the target (positive) and the remaining were labeled as
negative. The attributes were discretized prior to applying the algorithm. Since it is not our goal
to discuss the implications of the discretization method on the discriminative pattern mining
algorithms, we used the simplest methods based on equal frequency and width with 2 , 4 and
8, bins. Such a preprocessing step resulted in a total of 126 data sets composed exclusively of
binary (interval based) attributes (items).

The traditional group (of low dimensionality) is formed by 20 data sets extracted from
the UCI repository (Lichman, 2013). The bases have between 10 and 12,960 examples, between
6 and 69 attributes, and are made exclusively by discrete attributes. Table 5 describes the bases
with more details, where |D|, |D+| and |D−| are, respectively, the amount of examples, positive
examples and negative examples of databases. The columns attributes and |I| are, respectively,
the number of attributes and items i ∈ I.

Figure 1 graphically summarizes all (the 20 UCI and the 126 high dimensional) data sets
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Table 5: Summary of the 20 UCI data sets used in our experiments to assess the performance of
SSDP. The columns |D|, |D+| and |D−| contains the total number of examples, and the number
of positve and negative examples after mapping the most frequent label in the data to positive
and the remaining to negative. The column Attributes contains the number of attributes in the
data, while |I| is the number of items (attribute,value) pairs.

Name |D| |D+| |D−| Atributtes |I|
audiology 226 57 169 69 154
kr-vs-kp 3196 1669 1527 36 73
lung-cancer 32 13 19 56 157
molecular-biology_promoters 106 53 53 58 334
soybean 683 92 591 35 99
trains 10 5 5 32 77
splice 3190 1655 1535 61 3465
breast-cancer 289 201 85 9 41
bridges_version2 105 44 61 12 191
car 1728 1210 518 6 21
monks-problems-1_train 124 62 62 6 17
postoperative-patient-data 90 64 26 8 23
primary-tumor 339 84 255 17 37
shuttle-landing-control 15 9 6 6 16
solar-flare_2 1,066 331 735 12 42
spect_test 187 172 15 22 44
tic-tac-toe 958 626 332 9 27
vote 435 267 168 16 32
mushroom 8124 4208 3916 22 116
nursery 12960 4320 8640 8 27
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Figure 1: Visual summary of data sets used in experiments to assess the performance of SSDP.
Data sets in the high dimensional group (Table 4) are represented by bullets, while UCI (Table 5)
representatives are marked by triangles. The color of the points represent the proportional
difference between the number of positive and negative examples in the data. Red represents data
set with proportionally more positive examples than negative, while blue represents the opposite.

used in our experiments. As we can notice, the data sets are well distributed in the item-example
space. The high dimensionality bases have a wide variation in the number of items, but all of
them have a small number of examples. On the other hand, the UCI bases show higher variation
in the number of examples, but a small number of items. We can also notice that the majority
of bases have proportionally the same amount of positive and negative examples, with a slight
tendency to have more positive than negative examples. However, we also see some bases where
there is an imbalance between the number of positive and negative examples; this occurs for both
the UCI and high dimensional bases.

We conducted four types of experiments in this work to assess the performance of SSDP
from different perspectives. In our first batch of experiments (subsection 2.6.1), we evaluated
different parameter settings for SSDP. We tested the algorithm with different crossover and
mutation rates (sometimes fixed during the entire execution, opposite to the original version,
which auto-adjust these parameters) and two different stopping criteria. These experiments will
help us elucidate whether the choices made for the original version (section 2.5) are indeed good
ones. Defined the best parameters for SSDP, we compared the effectiveness of the algorithm
against SD and random search (subsection 2.6.2), and also against the state of the art evolutionary
algorithms (subsection 2.6.3). Finally, in subsection 2.6.4 we evaluated the SSDP in relation to
D+ coverage and in the redundancy among the returned DPs.

Statistical analysis of the results was performed by using the hypothesis tests Wilcoxon

and Friedman. The Wilcoxon is a non-parametric test that has been indicated and used for
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performance analysis between two algorithms. Friedman test (Friedman, 1940) is commonly
indicated to assess whether there is statistical difference between more than two algorithms
(Demšar, 2006).

When the Friedman test rejected the null hypothesis, the next step is to perform another
hypothesis test to validate which one or which algorithms are standing out from the others.
One of the options is the test with controller. Controller is the baseline algorithm that will be
compared to all the others. This method is commonly used when a new algorithm is proposed
and researchers needs to compare its performance with other existing methods in the literature
(Demšar, 2006). The Friedman test statistic with controller is given by:

z =
(Ri−R j)√

k(k+1)
6N

,

where Ri-R j is the mean ranking difference between two algorithms, N is the number of databases
and k is the number of algorithms.

The value of z is calculated between the control algorithm and the other algorithms
generating k−1 values. The respective p-values are calculated from the values of z. The null
hypothesis is rejected when p < α . However, the α must be adjusted for multiple comparisons.
We adjusted the significance values with the Holm (Holm, 1979) methodology, where the value
of α is adapted by the equation α

k−1 , k being the number of algorithms. Hypothesis tests were
done using the implementation available in (of Granada Research Group, 2016).

As discussed above, we divided the experiments in four sections. Section 2.6.1 aims
to test variations of the SSDP and experimentally validate some characteristics of the model
in the approach of high dimensional bases. Furthermore, Section 2.6.1 shows the convergence
and behavior of the SSDP in each generation for the largest database used in our experiments.
Section 2.6.2 confronts SSDP with an approach based on beam search, a random search approach
and another one based on a trivial search in high dimensionality bases. Next, Section 2.6.3
confronts the SSDP with three evolutionary approaches in traditional and high dimensional
databases. Finally, in Section 2.6.4 we confront SSDP with three evolutionary approaches in
relation to D+ coverage and redundancy.

2.6.1 Assessing the impact of different parameter settings on SSDP’s per-
formance

In this section we first tested different configurations of the SSDP algorithm. We tried
different mutation and crossover rates: 100-100, 10-90, 50-50 and Auto (section 2.5). We also
attempted to use different stopping criteria: (1) stop when there is no change in the top-k patterns
for 3 generations, referred to as (3x); and (2) reset the population when the algorithm stops
because of the first criterion, and halt the execution when it reaches the first criterion for the third
time, referred to as (3x3). Thus, eight different versions/configurations of SSDP were tested,
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Table 6: Summary of the eight SSDP versions tested.

Version Crossover rate Mutation rate Stop criterion
SSDP_Auto_3x3 Auto Auto 3x3

(or just SSDP)
SSDP_90x10_3x3 90% 10% 3x3
SSDP_50x50_3x3 50% 50% 3x3

SSDP_100x100_3x3 100% 100% 3x3
SSDP_90x10 90% 10% 3x
SSDP_50x50 50% 50% 3x

SSDP_100x100 100% 100% 3x
SSDP_Auto Auto Auto 3x

which are summarized in Table 6. The SSDP(3x3)_Auto (Table 6) version corresponds to the
final version of the SSDP, described in section 2.5. Each experiment was repeated ten times,
with the metric evaluation Qg (g = 1) and k = {5,10,20,50}.

Figure 2 presents the average Qg and time for the eight SSDP versions for k= {5,10,20,50}.
We notice that the versions with stopping criterion (3x3) stood out from the others with respect
to the average Qg. The improvement in quality is even more noticeable for higher values of
k. We see that for k = 50 the use of the second stopping criterion yields an improvement
of near 10%. We also notice that the original version of SSDP discussed in section 2.5 and
SSDP_100x100_3x3 present similar performances for all values of k. Nevertheless, we also
observe in the figure that the latter has the highest average time for all values of k. In terms of
time, we observe that the choice of the second stopping criterion roughly doubles computing
time of all algorithms.

In order to evaluate whether the visual difference observed in Figure 2 was statistically
significant, we applied the Friedman test with a null hypothesis that there is no variation in
the mean Qg between the various configurations. Table 7 displays the average rankings of the
different settings for the different values of k and their respective p-values. We observe that in all
cases there was a statistical difference in the performance of the configurations. We also note
that the SSDP_100x100_3x3 and SSDP_Auto_3x3 presented very similar performances, and
there were no significant discrepancies between them with different values of k. This leads us to
carry out a second test, in which we will evaluate if there is statistical difference between the
best ranked and the other configurations.

This second hypothesis test confronted the configuration of best average rank in the
Friedman test (Table 7 in bold) with the other configurations for each value of k (α = 0.05).
Table 8 summarizes the p-value and the significance level required by the Holm method to reject
the null hypothesis. We notice that SSDP_Auto_3x3 and SSDP_100x100_3x3 versions were
statistically at least as good as the others for all value of k. However, from the perspective of ave-
rage quality of the patterns, there is no difference between the best two configurations. Therefore,
SSDP_Auto_3x3 configuration was chosen the best because it had the lowest computing time in
all experiments.
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Figure 2: This figure graphically displays the average Qg (left) and time in seconds (right) for
the eight different configurations of SSDP. The algorithms were tested with the 126 microarray
databases for k = {5,10,20,50}. In both charts, the algorithms were grouped according to the
choice of crossover and mutation rates. Dark-shaded colors represent the configurations for
which population was reset twice, before the algorithm was halt. The numbers in both charts
represent the increase in quality and time because of the choice to reset the population.

Table 7: Friedman test comparing eight versions of SSDP for k = {5,10,20,50} (α = 0.05).

Version Ranking
k=5 k=10 k=20 k=50

SSDP_100x100 4.85 5.07 5.25 5.24
SSDP_100x100_3x3 3.04 2.95 2.80 2.56

SSDP_Auto 4.82 4.98 5.19 5.70
SSDP_Auto_3x3 2.95 2.91 2.81 2.91

SSDP_90x10 5.81 5.75 5.89 6.04
SSDP_90x10_3x3 3.88 3.61 3.68 3.45

SSDP_50x50 6.33 6.38 6.32 6.40
SSDP_50x50_3x3 4.33 4.33 4.07 3.69

p-value 1.44E-10 1.48E-10 1.40E-10 1.81E-10
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Table 8: Friedman hypothesis test with control algorithm for k = {5,10,20,50}, α = 0.05
(adapted by the Holm method).

k=5
Rank Version p-value α (Holm)

7 SSDP_50x50 0.0000 0.0071
6 SSDP_90x10 0.0000 0.0083
5 SSDP_100x100 0.0000 0.0100
4 SSDP_Auto 0.0000 0.0125
3 SSDP_50x50_3x3 0.0000 0.0166
2 SSDP_90x10_3x3 0.0025 0.0250
1 SSDP_100x100_3x3 0.7772 0.0500

Control SSDP_Auto_3x3 - -
k=10

Rank Version p-value α (Holm)
7 SSDP_50x50 0.0000 0.0071
6 SSDP_90x10 0.0000 0.0083
5 SSDP_100x100 0.0000 0.0100
4 SSDP_Auto 0.0000 0.0125
3 SSDP_50x50_3x3 0.0000 0.0166
2 SSDP_90x10_3x3 0.0236 0.0250
1 SSDP_100x100_3x3 0.8976 0.0500

Control SSDP_Auto_3x3 - -
k=20

Rank Version p-value α (Holm)
7 SSDP_50x50 0.0000 0.0071
6 SSDP_90x10 0.0000 0.0083
5 SSDP_100x100 0.0000 0.0100
4 SSDP_Auto 0.0000 0.0125
3 SSDP_50x50_3x3 0.0000 0.0166
2 SSDP_90x10_3x3 0.0043 0.0250
1 SSDP_Auto_3x3 0.9692 0.0500

Control SSDP_100x100_3x3 - -
k=50

Rank Version p-value α (Holm)
7 SSDP_50x50 0.0000 0.0071
6 SSDP_90x10 0.0000 0.0083
5 SSDP_Auto 0.0000 0.0100
4 SSDP_100x100 0.0000 0.0125
3 SSDP_50x50_3x3 0.0002 0.0166
2 SSDP_90x10_3x3 0.0038 0.0250
1 SSDP_Auto_3x3 0.2578 0.0500

Control SSDP_100x100_3x3 - -
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Table 9: Average Qg obtained by SSDP using different initialization alternatives, where zero
means that the algorithm did not return any valid solution, and “–” means there was a memory
exhaustion (12GB limit).

Base |I| original 0.1% 1% 5% 10%
alon 4,000 24.1 24.1 0 0 0

gravier 5,860 46.6 45.9 0 0 0
tian 25,250 56.2 54.1 0 0 –

yeoh 25,300 76.2 75.6 0 0 –
sun 109,226 57.2 0 – – –

Regarding the initial population, we conducted experiments to compare the method used
in SSDP and populations randomly generated with individuals of predetermined sizes equal to
0.1%, 1%, 5% and 10% of |I|. Table 9 presents the average Qg obtained by using the different
population sizes for five discretized data sets with two intervals. In this table original represents
the method used by the SSDP, zero means that the algorithm did not return any valid solution,
and “–” means there was a memory exhaustion (12GB limit). As we can see, the larger the size
of the randomly generated initial population, the more difficult it is for SSDP to converge to
valid solutions. This happens because large individuals randomly generated tend to not represent
a valid solution as they do not cover any example. Besides, in an index representation such
as SSDP, the average size of individuals has a strong impact on memory consumption. In this
context, the strategy of initializing searches with one dimension individuals, besides helping
in the convergence of the model, reduces memory consumption compared to the other tested
options.

Finally, we ran experiments to evaluate SSDP’s convergence. Figure 3a shows the values
of average fitness of populations P and Pk for each generation of the model, applied to the sun

database, for k = 50. The accentuated evolution of the fitness shows the SSDP’s capacity to
quickly converge. The points of strong fall in the average fitness of P are the moments in which
the population is reset. We see that, for this example, the first reset of P was successful, since
the algorithm continued to improve the population Pk for several times in sequence. We also
observed that, at some moments, the average fitness of the population P is above the population
Pk. This indicates that P has many duplicated high quality individuals. This duplicated is tackled
in SSDP principal by mutation and reset operator, when the population P is recreated.

Figure 3b shows the evolution of DPs average size in populations P and Pk. In the first
generation P and Pk are composed strictly by singletons (DPs of size one). After that, poor
quality patterns are replaced by better quality ones. We can observe from the average size of P

that SSDP tends to initially direct the searches towards larger dimensions but it may also change
direction to smaller dimensions if required.
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Figure 3: This figure depicts the evolution of fitness (left) and average size (right) of the
populations P and Pk for each generation of SSDP for k = 50 with the data set sun.

2.6.2 Comparing SSDP to beam search

This section aims to confront SSDP with a heuristic approach based on beam search and
validate it as a heuristic for discriminative pattern mining from high dimensional data. SSDP
was compared with the approaches described below, all implemented in Java. Each experiment
was repeated 10 times, with the objective function Qg (g = 1) and k = {5,10,20,50}.

� Random3M: three million DPs up to four dimensions randomly generated. The
objective of this experiment is to compare SSDP to a random search.

� Trivial: DPs with highest fitness among all combinations of up to four dimensions,
but using only the best k items. The purpose of this comparison is to validate SSDP’s
ability to find non-trivial DPs.

� SD: The aim is to confront SSDP with a competitive beam search heuristic. SD

used the following parameters: beamWidth = k and minimumSupport =
√
|D+|
|D| (this

parameter was set according to the recommendations of Gamberger & Lavrac (2002)).

Figure 4 shows the mean Qg and time of the SSDP, SD, Trivial and Random3M ap-
proaches for k = {5,10,20,50}. We notice that, while the beam search heuristic SD is very
similar to random search, our evolutionary heuristic SSDP found higher quality patterns for all
values of k. In fact, we notice that SSDP achieved roughly 50% higher quality than the random
search (Trivial and Random3M) and 30% higher than SD. On the other hand, SD achieved only
15% improvement compared to random search. In terms of time, we observe a linear growth
in computing time for SD and a sub-linear growth for SSDP. Interestingly, despite requiring
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Figure 4: This figure graphically displays the average Qg (left) and time in seconds (right)
for SSDP, SD, Trivial and Random3M. The algorithms were tested with the 126 microarray
databases for k = {5,10,20,50}. The numbers in both charts represent the Qg and time of the
algorithm.

15% more computing time to find the top 50 patterns than SSDP, SD did not find higher quality
patterns.

We applied the Wilcoxon test to verify whether the difference of performances between
SSDP and SD was statistically significant. The null hypotheses that SSDP performs equally
well to SD for the different k values were all rejected for a level of significance α = 0.01. The
p-values obtained for k = {5,10,20,50} were respectively 6.17E-16, 4.59E-16, 5.67E-16 and
9.50E-14. Thus, SSDP was statistically superior to SD in the context of high dimensionality for
k = {5,10,20,50}. Furthermore, the SSDP’s superiority over Random3M and Trivial approaches
validate the proposed model in relation to random search and the ability to find non-trivial
patterns.

The exact algorithm based on Beam Search SDMap (Atzmueller & Puppe, 2006) has
been tested as well, using the available implementation on software KEEL (Alcalá-Fdez et al.,
2009) with default parameters. However, the algorithm had problems with memory exhaustion
(12G limit) and processing time (2 hours time limit) in the tested high-dimensional databases
(Table 4). With respect to traditional databases (Table 5), SDMap converged to valid results on
only four of the 20 bases tested.

2.6.3 Comparing SSDP to other evolutionary approaches

This section compares SSDP to other evolutionary approaches using both traditional
and high dimensional data sets. SSDP was confronted with SDIGA (del Jesus et al., 2007b),
MESDIF (del Jesus et al., 2007a) and NMEEF (Carmona et al., 2010), algorithms available in
the KEEL machine learning suite (Alcalá-Fdez et al., 2009). Default parameters in KEEL were
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Table 10: WRAccnormalized , time, number of DPs (k), average size and rank obtained by MESDIF,
NMEEF, SDIGA and SSDP algorithms with 20 UCI data sets.

Algorithm WRAccnormalized time(s) k size Avg. Rank
MESDIF 0.080 2.85 3 15.06 3.4
NMEEF 0.412 2.55 8.1 3.02 1.775
SDIGA 0.188 5.70 2.6 1.28 3.025

SSDP 0.376 0.17 5 2.25 1.8
p-value for the Friedman test 1.39E-05

Table 11: Friedman hypothesis test with control algorithm for MESDIF, SDIGA, NMEEF and
SSDP algorithms (α = 0.05)

Rank Algorithm p Holm (α = 0.05)
3 MESDIF 0.00006 0.016
2 SDIGA 0.0021 0.025
1 SSDP 0.9511 0.05

Control NMEEF – –

used for the algorithms, and k = 5 and WRAcc as fitness function for the SSDP. We changed the
choice of the fitness function for SSDP because all other algorithms use WRAcc as their fitness
function.

Table 10 shows the mean WRAccnormalized (section 2.3), time, number of DPs (k) and
size for the algorithms tested with the 20 UCI data sets (Table 5). We notice that NMEEF and
SSDP were the best performing algorithms regarding the average WRAccnormalized . Regarding
computing time, SSDP proved to be faster than the others (it takes only a tenth of the time required
by NMEEF). The table also shows the result for the Friedman hypothesis test considering the
WRAccnormalized . The test showed that there was a statistical difference between the algorithms
(p-value=1.39E−05), with NMEEF as the best ranked algorithm, followed closely by SSDP.
Then, Table 11 shows the result of the multiple Friedman using the NMEEF as control and Holm

method for correcting the significance levels (α). The test showed that NMEEF was statistically
better than MESDIF and SDIGA, but there is no evidence regarding SSDP. This confirms SSDP
as a competitive approach also for traditional data without the need to adjust any parameters.

On the other hand, the experiments in high dimensional bases were limited to 10 of
the bases described in Table 4 due to the high computational cost of the simulations. Table 12
presents the average WRAccnormalized , time, number of DPs and size obtained by the evolutionary
algorithms. In initial experiments SDIGA had difficult to converging in less than three hours
with several databases and was excluded from the comparison. We notice however that the other
two algorithms, NMEEF and MESDIF, did not converge to valid solutions, despite using more
computational resources than SSDP.

We performed a last experiment to compare NMEEF to SSDP. In this experiment we
set a population of 1,000 individuals and 1,000,000 evaluations (NMEEF-1k-1M). Table 13
shows the WRAccnormalized , number of DPs (k), time and number of tests did by the SSDP and
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Table 12: WRAccnormalized , time, number of DPs (k) and average size obtained by the MESDIF,
NMEEF and SSDP algorithms in ten microarray databases.

Algorithm WRAccnormalized time(s) k size
MESDIF 0.0039 1,241.4 3 16,458.03
NMEEF 0.0115 2,069.2 10.1 56.87

SSDP 0.6304 7.7 5 2.42

Table 13: WRAcc, k, time, number of tests and patterns obtained by SSDP and NMEEF-1k-1M
algorithms in ten microarray databases.

Base Algorithm
NMEEF-1k-1M SSDP

WRAccnorm k Time(s) Tests (106) WRAccnorm k Time(s) Tests (106)
alon 0.26 3 1,984 1 0.572 5 0.422 0.116

burczynski 0 0 63,697 1 0.684 5 8.254 1.247
chiaretti 0 0 36,882 1 0.584 5 4.789 0.808

chin 0.388 1 31,301 1 0.624 5 5.928 0.799
christensen 0.592 1 3,408 1 0.896 5 0.297 0.056

gravier 0.232 1 5,745 1 0.440 5 0.905 0.185
nakayama 0 0 58,419 1 0.600 5 7.893 1.515

tian 0 0 43,218 1 0.296 5 4.072 0.505
yeoh 0 0 104,533 1 0.848 5 8.798 0.782

sun – – – – 0.186 5 36.315 3.386

NMEEF-1k-1M for the tested databases, where “–” means that the algorithm did not finish in
less than 48 hours. We observe that NMEEF (the best performing evolutionary algorithm for
traditional data) still did not return any valid discriminative pattern in six of the ten tested data
sets. On the other bases, the average WRAccnormalized was lower than those obtained by SSDP.
In addition, NMEEF’s computing time was considerably higher than SSDP’s for all bases.

We conclude from these experiments that the evolutionary models NMEEF, MESDIF
and SDIGA are not suitable to high dimensionality, even if the parameters are tuned (in the case
of NMEEF). Moreover, these algorithms proved to be costly in terms of processing time and
returned poor results. SSDP, on the other hand, obtained valid DPs for all high dimensional data
sets using considerably lower processing time.

2.6.4 Redundancy and coverage in SSDP

This section aims to evaluate SSDP in relation to D+ coverage and in redundancy between
top-k DP set. The experiments were made in UCI data sets (Table 5), for k = 5 and WRAcc as
metric evaluation. SSDP was confronted with the evolutionary algorithms NMEEF, MESDIF
and SDIGA using default parameters.

The coverage in relation to D+ was evaluated by overall support (SUPP+, Equation 2.3).
The algorithms SSDP, NMEEF, SDIGA and MESDIF obtained respectively 86.2%, 89.1%,
86.6% and 37.6% as mean SUPP+ (Table 14). In this way, SSDP was competitive in relation to
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Table 14: Local mean support (supp+mean) and mean overall support (SUPP+, Equation 2.3)
for algorithms SSDP, NMEEF, MESDIF and SDIGA for 20 UCI databases (Table 5), where
supp+mean =

1
k ∑supp+(d p), supp+(d p) = |c+(d p)|

|D+| and SUPP+ = |c+(d p1)∪...∪c+(d pk)|
|D+| .

Algorithm mean SUPP+ mean supp+mean mean SUPP+ - mean supp+mean

SSDP 0.862 0.582 0.28
NMEEF 0.891 0.766 0.125
MESDIF 0.376 0.222 0.154
SDIGA 0.866 0.676 0.19

NMEEF and SDIGA and superior to MESDIF.
Already the coverage redundancy was evaluated by difference between the mean of

overall support SUPP+ and mean local support (supp+mean), where supp+mean =
1
k ∑supp+(d p),

supp+(d p) = |c+(d p)|
|D+| and SUPP+ = |c+(d p1)∪...∪c+(d pk)|

|D+| . In this way, supp+mean ≈ SUPP+ indi-
cates that a DP set was restricted to describing approximately the same examples of D+. Thus,
Table 14 shows that SSDP generated less average coverage redundancy than NMEEF, MESDIF
and SDIGA.

Table 15 shows the mean local support (supp+mean) and the overall support (SUPP+) of
top-5 DPs returned by SSDP in each UCI database. In this way, Table 15 shows that SSDP
covered more than 60% of D+ in 19 of 20 databases and more than 90% in seven of them. The
difference between SUPP+ e supp+mean also shows that DP set returned by SSDP usually were
not restricted to cover the same examples of D+.

Finally, description redundancy was analyzed by counting the number of databases where
all returned DPs have a common item. This kind of redundancy occurred in SSDP, NMEEF,
SDIGA and MESDIF in respectively 6, 8, 12 and 17 of 20 databases. Thus, all algorithms
presented significant description redundancy, but with less frequency in SSDP.

So, in these experiments we conclude that the SSDP was more efficient than the NMEEF,
MESDIF and SDIGA using default parameters in relation to redundancy between returned DP
set. But the proposed model presented some difficulties. The covered in relation to D+ was
unstable, ranging between 100% and 58.4%. Although the description redundancy was more
critical, presenting in 6 out of 20 databases. Thus, we believe that the proposed model still deals
a little inefficiently with the redundancy problem.

Some contents like SSDP implementation, some high dimensionality databases used
in the tests, tables with the results of each experiment of this paper, including other evaluation
metrics such as support, confidence level, TP (true positive), FP (false positive) and p-value are
available on this website (https://github.com/tarcisiodpl/ssdp).

2.7 CONCLUSION

This paper presents SSDP, the first evolutionary approach for mining top-k discriminative
patterns in high dimensional data sets. Extraction of discriminating information from high

https://github.com/tarcisiodpl/ssdp
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Table 15: Mean local support (supp+mean) and the overall support (SUPP+) obtained by the SSDP
in 20 UCI databases (Table 5), for k = 5 and WRAcc as metric evaluation, where supp+mean =
1
k ∑supp+(d p), supp+(d p) = |c+(d p)|

|D+| and SUPP+ = |c+(d p1)∪...∪c+(d pk)|
|D+| .

Database supp+mean SUPP+ SUPP+− supp+mean
audiology 0.947 0.94 0.007
breast-cancer 0.86 0.767 0.093
bridges-version2 0.977 0.7 0.277
car 0.99 0.383 0.607
kr-vs-kp 0.715 0.715 0
lung-cancer 0.846 0.615 0.231
molecular-biology-promoters 0.924 0.339 0.585
monks-problems-1-train 0.661 0.316 0.345
mushroom 0.977 0.779 0.198
nursery 1 0.44 0.56
postoperative-patient-data 0.609 0.281 0.328
primary-tumor 0.619 0.59 0.029
shuttle-landing-control 1 0.666 0.334
solar-flare-2 1 0.721 0.279
soybean 0.978 0.939 0.039
spect-test 0.738 0.454 0.284
splice 0.807 0.249 0.558
tic-tac-toe 0.584 0.3 0.284
trains 1 0.56 0.44
vote 0.947 0.847 0.1

dimensional data is a common challenge in areas such as bioinformatics and text mining.
Evolutionary approaches have been shown to be an efficient option for mining discriminative
patterns in traditional data sets. However, none of them were developed with a focus on high
dimensionality.

SSDP has been designed from the beginning to the context of high dimensionality bases.
The representation of individuals, for example, only considers the items used by DPs as a way to
reduce the computational cost of memory. Our approach for generating the initial population
seeks to increase the convergence of the algorithm and ensure that all items are considered in the
search. At last, SSDP controls redundant individuals in the top-k DPs as a way to reduce the
computational cost and increase the relevance of patterns.

The proposed model also seeks to hide some parameters from the user to become
a simpler approach to apply and consequently help in the popularization of discriminative
knowledge extraction. Population size, mutation and crossover rates are automatically defined
by the algorithm. The stopping criteria is not defined by the number of tests or generations and
has been developed to be kept clear for the final user.

The SSDP had some of its characteristics experimentally validated, such as mutation,
stopping criteria and initial population. Its performance was assessed using high dimensional
and traditional data sets. The algorithm was also compared with other approaches: random,
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trivial, based on beam search and based on evolutionary computing. In the context of high
dimensionality, SSDP obtained statistically better results than all the others algorithms, in
relation to the quality of DPs. In traditional databases, SSDP was shown to be a competitive
approach without the necessity to make any adjustments in parameters. Finally, in relation to
redundancy in DP set, SSDP was better than other evolutionary approaches, but it presented
some problems.

Therefore, we concluded that SSDP is an efficient, flexible and simple alternative for the
extraction of discriminant knowledge in high dimensional data sets. However, SSDP is the only
evolutionary approach that deals exclusively with discrete data. Besides that, the model has few
resources to deal with redundancy in top-k DPs, restricting itself to eliminating DPs equal or
dominated by others. This opens new pathways in the direction of evolving SSDP to deal with
numerical data and to find more efficient alternatives to eliminate redundancy.
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3 SSDP+: SIMPLE SEARCH DISCRIMINATIVE PATTERNS PLUS

Este capítulo é uma reprodução completa do artigo SSDP+: a Diverse and More In-

formative Subgroup Discovery Approach for High Dimensional Data, publicado em 2018 no
congresso internacional IEEE Congress on Evolutionary Computation (Lucas et al., 2018).

3.1 ABSTRACT

This paper presents an evolutionary approach for mining diverse and more informative
subgroups focused on high dimensional data sets. Subgroup Discovery (SD) is an important
tool for knowledge discovery that aims to identify sets of features that distinguish a target group
from the others (e.g. successful from unsuccessful treatments). At the same time, to extract
information from high dimensional data sets becomes more natural. One of the first and most
efficient SD heuristics focused on high dimensional data is the SSDP. However, this model deals
superficially with diverse/redundancy in top-k subgroups, which can result in poor information
for users. This work presents SSDP+, an extension of the SSDP model to provide diversity in
a way that explore the relation between subgroups order to generate a more informative set of
patterns.

3.2 INTRODUCTION

We introduce in this paper a new evolutionary approach for mining diverse and more
informative subgroups on high dimensional data sets. Subgroup Discovery (SD) is a data mining
task that has the objective of identifying sets of items (or features) that distinguish a target
group from the others, for example: successful from unsuccessful treatments, unhealthy from
healthy cells, or even positive from negative sentiments in sentiment analysis (Herrera et al.,
2011). There are many SD applications reported in the literature in different domains such as:
medicine (Carmona et al., 2013, 2011), bioinformatics (Li & Wong, 2002; Quackenbush, 2001),
marketing (Carmona et al., 2012; del Jesus et al., 2007b), e-learning (Romero et al., 2009) and
traffic accidents (Kavšek & Lavrac, 2004; Kavšek et al., 2002).
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At the same time, with the increasing volume of information stored in the world (30G/s

only on the internet), it becomes more common to extract knowledge from high dimensionality
data sets. Some important areas, such as bioinformatics and text mining, usually deal with data
sets with tens of thousands of attributes (Kotzias et al., 2015; Ramey, 2016).

There are many heuristic for mining subgroups (Liu et al., 2015; Helal, 2016; Atzmueller,
2015; Herrera et al., 2011). Although these algorithms have good performance with low
dimensional data, Lucas et al. (Lucas et al., 2017) showed that they do not hold the same
performance with high dimensional data. Thus, they introduced SSDP, one of the most efficient
and simple to use heuristic for mining subgroups in high dimensional data. SSDP, though, only
deals superficially with diversity/redundancy in top-k subgroups (Lucas et al., 2017). This is a
critical limitation because little diversity can result in poor information for users (Bosc et al.,
2017; Van Leeuwen & Knobbe, 2012).

There are different approaches to increase diversity of subgroups. The most common
way for promoting diversity in subgroups is by assigning weights to the examples in order to
penalize similar subgroups in relation to covered examples (Carmona et al., 2010; Gamberger
& Lavrac, 2002; Van Leeuwen & Knobbe, 2012; Lavrač et al., 2004; Rodríguez et al., 2012).
However, this penalty may not be sufficient to avoid the existence of two or more subgroups
covering the same examples and the user do not know which subgroups are similar to each other.
Besides that, subgroups considered redundant may represent relevant information, as a more
feasible way to solve a problem or an new knowledge. So, the difference between redundancy
and relevant information can be associated with the problem domain. Thus, the diversification
process usually can result in the discard of relevant information.

This work presents the SSDP+, an improved version of the SSDP algorithm that tackles
the problem of redundancy/diversity problem in a flexible way, reducing the risk of loss of
relevant information and generating a more informative set of rules for users. We assess the
performance of SSDP+ by comparing it with other competitive algorithms. We use in our
experiments real-world high dimensional data sets that come from three different domains
(bioinformatics, text mining and the humanities/social sciences). We also conducted experiments
to highlight SSDP’s limitation regarding diversity, and show how SSDP+ solves this issue.

The remainder of this manuscript is organized as follows. We formalize the problem
of Subgroup Discovery in Section 3.3. In Section 3.4 we present the proposed model. Next,
Section 3.5 shows the experiments and Section 3.6 the conclusions.

3.3 SUBGROUP DISCOVERY PROBLEM FOR DISCRETE DATA SETS

Let D be a labeled data set with a set A of categorical/discrete attributes. According to
the class label, the set of samples from D can be partitioned into D+ = {e+1 ,e+2 , ...,e+|D+|} and
D− = {e−1 ,e−2 , ...,e−|D−|}, respectively the positive (target) examples and the remaining (negative
examples). Let dom(A j) be the domain of values for attribute A j ∈ A. We call features or items
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the set of all pairs (attribute,value), that is I =
⋃

A j×dom(A j) = {i1, i2, ..., i|I|}. We say that
an example d has an item i = (A j,v) ∈ I if d has value v for the attribute A j.

We call a subgroup a set s ⊆ I. The size of a subgroup s is the number of items in
s, that is size(s) = |s|. Every s might be associated (cover) a set of positive and negative
examples, which we formally define as c+(s) = {d ∈ D+ | d has all items in s}, and c−(s) =

{d ∈ D− | d has all items in s}. The size of these two sets define the positive and negative

support of a subgroup, i.e. its frequency among positive and negative examples.
Table 16 contains a toy example of data set, for which the aim is to identify the differences

between successful and unsuccessful medical treatments for a given disease. In this example,
Table 16 represents the data set D and label = success is the target of investigation. Thus, D+ =

{e1,e2,e3,e4,e5} are the positive examples (where label = success) and D−= {e6,e7,e8,e9,e10}
are the negative examples (where label 6= success).

Meanwhile Table 17 represents the universe of items I = {i1, i2, i3, i4, i5, i6, i7} and the
respective positive and negative covered examples. In this context, s = {i5} is an interesting
subgroup, once c+(s) = |{e1e2,e3}| = 3 and c−(s) = | /0| = 0. On the other hand, s′ = {i1, i7}
is not an interesting subgroup as it is equally frequent among positive and negative samples
(c+(s′) = |{e1}|= 1 and c−(s′) = |{e7}|= 1).

Table 16: A toy example data set. In this simulated data, the target is to identify the differences
between successful and unsuccessful medical treatments for a given disease.

example genre age medicine label
e1 M senior B success
e2 F senior B success
e3 M senior A success
e4 M adult A success
e5 F child A success
e6 F child A failure
e7 M child B failure
e8 F child B failure
e9 M adult A failure

e10 F adult A failure

The definition of the relevance/interestingness of a subgroup is given by evaluation
metrics (Flach et al., 1999). One of the most used metric is the weighted relative accuracy
(WRAcc), given by Equation

�
 �	3.1 :

WRAcc(s) =
T P+FP
|D|

(
T P

T P+FP
− |D

+|
|D|

)
,

�
 �	3.1

where T P = |c+(s)| (the positive support) and FP = |c−(s)| (the negative support).
This evaluation metric is a trade-off between coverage (T P+FP

|D| ) and relative accuracy

( T P
T P+FP −

|D+|
|D| ). WRAcc values range from −0.25 to +0.25, where +0.25 represents a totally
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Table 17: Universe of items I and respective covered examples for the data presented in Table 16.
In this table, items are in rows and examples in columns. There is a cross if an example has the
corresponding item.

I (attribute, value) D+ D−

i1 (genre, M) e1,e3, e4 e7,e9
i2 (genre, F) e2,e5 e6,e8,e10
i3 (age, child) e2,e5 e6,e8
i4 (age, adult) e4 e9,e10
i5 (age, senior) e1,e2,e3
i6 (medicine, A) e3,e4,e5 e6,e9,e10
i7 (medicine, B) e1,e2 e7,e8

pure subgroup, or from−1 to +1 in its normalized form (WRAccnormalized = 4×WRAcc) (Flach,
2003). In this case +1 represents a totally pure subgroup, describing all the positive examples and
none of negative examples, while −1 represents a pattern describing all the negative examples
and none of the positive, and 0 indicates that there is no gain relative to the fixed rule describing
all examples of the base as positive.

Another well-known evaluation metric is the Qg (Gamberger & Lavrac, 2002), given by
Equation

�
 �	3.2 , where g is a generalization parameter (Gamberger & Lavrac, 2002). In this way,
high values of g usually return subgroups more general with less precision and low values of
g often return specific subgroups with high precision. The g default value is 1 (Gamberger &
Lavrac, 2002).

Qg(s) =
T P

FP+g

�
 �	3.2

There are many other evaluation metrics for subgroups (Liu et al., 2015; Herrera et al.,
2011). Choosing the best metric often depends on the problem or specialist’s convictions. So, it
is important that the proposed algorithms accept different options of evaluation metrics.

One of the challenges in Subgroup Discovery is the diversity/redundancy in top-k sub-
groups (Bosc et al., 2017; Van Leeuwen & Knobbe, 2012). The most common kind of redun-
dancy are in relation to coverage and description. The coverage redundancy is when there is
an overlap between positive examples covered by two or more subgroups ([c+(s1)∩ c+(s2)]≈
[c+(s1)∪ c+(s2)]). The subgroups s1 = {i2} and s2 = {i3} in Table 17, for example, are redun-
dant in relation to coverage, given that c+(s1) = c+(s2) = {e2,e5}. In this context, the subgroups
describe only a small part of the positive examples, generating little information about the data.

A way to evaluate coverage redundancy is by global positive support metric, that measures
the percentage of positive examples D+ covered for top-k subgroups Sk. The Equation

�
 �	3.3
formalizes the metric.

SUPP+(Sk) =
|c+(s1)∪ ...∪ c+(sk)|

|D+| ,
�
 �	3.3
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Thus, SUPP+ metric can assume values between 0 and 1, where 1 means that a Sk set
completely cover D+. In this context, the lower the redundancy among the top-k subgroups Sk,
the larger tends to be SUPP+ value.

On the other hand, description redundancy occurs when a set of subgroups has one or
more items in common. The subgroups s1 = {i1}, s2 = {i1, i3} and s3 = {i1, i3, i6} in Table 17,
for example, describe only male patients (i1→ (genre,M)). A simple way to evaluate description
redundancy is given by the frequency of the most common item in the top-k subgroups. The
Equation

�
 �	3.4 formalizes the item dominator metric.

itemdom(Sk) =
|imore_ f requenty|

k
,

�
 �	3.4

where |imore_ f requenty| is the number of occurrences of the most frequent item in Sk. So,
itemdom can assume values between 1

k and 1, where the lower its value, the less description
redundancy in top-k subgroups.

3.4 SSDP+: SIMPLE SEARCH DISCRIMINATIVE PATTERNS PLUS

SSDP+ is a top-k mono-objective subgroup mining model focused on high dimensional
data sets. SSDP+ improves SSDP by: (1) dealing with redundancy problem in a flexible way; (2)
reducing the risk of loss of relevant information; and (3) generating a more informative subgroup
set for users.

The main difference between SSDP and SSDP+ is how the top-k subgroups are organized
and stored in the search. SSDP stores the top-k best evaluated subgroups that are distinct and
non-dominated. A subgroup s is considered dominated by another subgroup s′ if c+(s)⊆ c+(s′)

and c−(s′)⊆ c−(s). So, in SSDP the users do not interfere in the diversification process and all
subgroups considered redundant are neglected by the algorithm.

In SSDP+, part of subgroups considered redundant is stored to provide more information
for the users. So, each subgroup s in top-k has a cache s.cache. The size of s.cache is defined
for the user by the parameter kc. In this way, s.cache stores the kc best subgroups considered
redundant in relation to s. In SSDP+, two subgroups s and s′ ∈ s.cache are considered redundant if
sim(s,s′)>minsimilarity , where sim is a similarity function measure and minsimilarity is a threshold
defined by the user. The default similarity measure in SSDP+ is the Jaccard index (Choi & Cha,
2010), given by Equation

�
 �	3.5 . Finally, the similarity level between s and each s′ ∈ s.cache are
showed for the users in order to provide more information.

simJ(s,s′) =
|c+(s)∩ c+(s′)|
|c+(s)∪ c+(s′)| ,

�
 �	3.5

where |c+(s)∩ c+(s′)| is the number of positive examples covered by s and s′ at the same time
and |c+(s)∪ c+(s′)| is the number of positive examples covered by s or s′.

In this way, the cache in SSDP+ is responsible for minimizing the risk of discarding
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relevant information and, at the same time, providing more information for the user. In practice,
a subgroup s′ ∈ s.cache can present an alternative solution in relation to s when they are tightly
similar (simJ(s,s′)≈ 1). In this way, an alternative solution can represent, for example, other way
to impact the same target audience in a company or a different group of features that influence
almost the same students to abandon a school. A cache s.cache also can present subgroups
weakly similar in relation to s when the minsimilarity between s and s.cache is small, but they
also can represent relevant information that would be discard as consequence of diversification
process.

The diversity in SSDP+ is generated as follows. Let be Pk be the vector that stores
the top-k subgroups and P be a population of candidates to Pk, where P and Pk are sorted by
evaluation metric (0 index as the best one). So, Pk starts with subgroups without items sφ = {}
where c+(sφ ) = D+ and c−(sφ ) = D−. Then, the best subgroup of P is stored in the first position
of Pk. After that, the second position of Pk will only be occupied by a subgroup that is not
considered similar to Pk[0]. Next, the third position of Pk will only be occupied by a subgroup
that is neither similar to Pk[0] or Pk[1], and so on, until Pk is filled up. Thus, the smaller the value
of minsimilarity the greater the diversity between top-k subgroups.

Algorithm 2 describes in details how a candidate subgroup sc update Pk for a given
minsimilarity value. This algorithm assumes that sc is better evaluated than the worst subgroup
of Pk, that is sorted with Pk[0] as the best evaluated subgroup. So, let Pk[i] be the best evaluated
subgroups of Pk where sim(sc,Pk[i])> minsimilarity (lines 1-2). If sc is better evaluated than Pk[i]

(or equal with small size), it subscribes Pk[i] and Pk[i].cache is again considered candidates to
Pk (lines 3-13). Otherwise, sc can be included in Pk[i].cache or discard (lines 14-15). The sc

is discard when Pk[i].cache is complete filled with subgroups better evaluated than sc or if it is
replayed. Finally, if sc was not similar to any subgroup in Pk, it subscribes the worst evaluated
subgroup of Pk (lines 17-20).

The others SSDP+ features are similar to the original SSDP algorithm. Each individual
of the genetic algorithm contains only the items that compose a subgroup. The initial popula-
tion consists of all possible subgroups of one dimension and the selection is made by binary
tournament.

The mutation have three possibilities with the same probability: (1) a random item is
added to the subgroup (e.g. s = {a,b,c} → s′ = {a,b,c,d}); (2) a random item is replaced by
another (e.g. s = {a,b,c}→ s′ = {a,b,d}); and (3) a random item is removed from the subgroup
(e.g. s={a,b,c} → s′ = {a,b}). In crossover two individuals generate two new by uniform
crossover with 50% mixing ratio (e.g. s1 = {a,b} and s2 = {c,d}→ s′1 = {a,d} and s′2 = {b,c}).
However, since the initial population consists of individuals with only one item, the crossover
in the first generation is done by joining the parent items in a single child (e.g. s1 = {a} and
s2 = {b}→ s′ = {a,b}).

The mutation and crossover rates are defined dynamically. The mutation rate increases
and crossover rate decreases when there are no improvements in top-k subgroups. Otherwise the
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Algorithm 2 updateTopK(sc,Pk,minsimilarity)

1: for i← 0 to k−1 do
2: if sim(sc,Pk[i])> minsimilarity then
3: if [evaluation(sc) > evaluation(Pk[i])] ∨ [evaluation(sc) == evaluation(Pk[i]) ∧

size(sc)< size(Pk[i])] then
4: cachetemporary← Pk[i].cache
5: snew← sc
6: snew.cache.ADD(Pk[i])
7: Pk[i]← snew
8: sort(Pk), where Pk[0] is the best one
9: for all s ∈ cachetemorary do

10: updateTopK(s,Pk,minsimilarity)
11: end for
12: break
13: else
14: Pk[i].cache.ADD(sc)
15: break
16: end if
17: else if i == k−1 then
18: Pk[k−1]← sc
19: Pk[k−1].cache←{}
20: sort(Pk), where Pk[0] is the best one
21: end if
22: end for
23: return Pk
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crossover increases and mutation decreases. The objective is to deepen the search (by crossover)
when the algorithm is in a promising region (improvement in the top-k subgroups) and widen it
(by mutation) otherwise. The changes in the rates are 0.2. The initial values are 0.6 for crossover
and 0.4 for mutation. The sum of mutation and crossover rates is 1 and both can assume values
between 0 and 1. This methodology is an adaptation of the methodology proposed by (Luna
et al., 2014).

The SSDP+ uses as stopping criterion the stabilization of the group of top-k subgroup
after the population has been reset twice. A population is reset when there is no change in the
caches of top-k subgroups for three consecutive generations and the mutation rate is equal to
one. In this process the algorithm randomly generates individuals of fixed size between two
and the average size of the top-k subgroup. Moreover, 10% of individuals are generated using
exclusively items present in top-k subgroup.

Algorithm 3 contains the pseudocode of SSDP+. The algorithm starts by generating
the initial population with all possible subgroups s ∈ I|size(s) == 1 (line 1). Then, the top-k
subgroups and respective caches are filled with empty subgroups (lines 2-7). In lines 8 to 10 the
candidate subgroups of P are assigned to Pk using the function updateTopK(Pk,P[i],minsimirarity),
described in Algorithm 2. Lines 11 to 13 initialize the variable that controls the number of
restarts and mutation and crossover rates. Next, between lines 15 and 22, the genetic algorithm
performs the search by generating new subgroups candidates to Pk and updating Pk in each
generation. The genetic algorithm converges when there is no change in Pk and the respective
caches for three consecutive generations having mutationRate == 1.0. Population P restarts
twice (lines 14,23-25). Finally, in the line 26 the top-k subgroups and respective caches are
returned to the user.

The algorithm was implemented in Java and is available at https://github.com/
tarcisiodpl/ssdp_plus. The implementation allows the user to filter attributes, values,
or items in a simple way. It allows users, for example, discard non-determined values (NA) or
some irrelevant attributes or items without modifying the data set.

3.5 EXPERIMENTS

We use in our experiments real-world high dimensional data sets that come from three
different domains, described in Table 18. The first group started from 20 bioinformatics data
sets, available in the package datamicroarray (Ramey, 2016) from R software. In this group,
the majority class was considered the target and 50% of attributes with lowest variance were
removed. Table 18 describes the bioinformatics data sets after this process. Finally, each data
set was discretized in relation to frequency and width with 2, 4 and 8 bins, and with respect
to quartiles, with three bins (less than Q2, between Q2 and Q3 and greater than Q3). So, seven
versions of each bioinformatics data were generated, totaling 140 data sets.

The second group consists of six text mining data sets, three about sentiment analy-

https://github.com/tarcisiodpl/ssdp_plus
https://github.com/tarcisiodpl/ssdp_plus
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Algorithm 3 SSDP+ pseudocode
Require: k, metricEvaluation, kc, minsimilarity

1: P←{{i1},{i2}, ...,{i|I|}}
2: for i← 0 to k do
3: Pk[i]←{}
4: for j← 0 to kc do
5: Pk[i].cache.ADD({})
6: end for
7: end for
8: for all P[i] ∈ P|evaluation(P[i])> evaluation(Pk[k−1]) do
9: updateTopK(Pk,P[i],minsimilarity)

10: end for
11: reinializationCount← 0
12: mutationRate← 0.4
13: crossoverRate← 0.6
14: while reinializationCount < 2 do
15: while Pk not improve three consecutive generations keeping mutationRate == 1.0 do
16: Pnew← evolutionaryOperator (P,mutationRate,crossoverRate)
17: P← best(P,Pnew)
18: for all P[i] ∈ P|evaluation(Pi)> evaluation(Pk[k−1]) do
19: updateTopK(Pk,P[i],minsimilarity)
20: end for
21: update(mutationRate,crossoverRate)
22: end while
23: reinializationCount ++
24: P← restart(P)
25: end while
26: return Pk
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sis (Kotzias et al., 2015) (target as positive sentiment) and three about scientific communi-
ties(Gomes et al., 2018) (target as majority class). In this group of data, each line represents a
text and each column a word, when attribute values are 1 when the word is part of the text and 0
otherwise. Besides that, these data sets are sparse (most of the values are zero) and have many
attributes and examples.

Finally, the third group consists of eight humanities/social sciences data sets, two about
education and six about health. These data sets have many examples and attributes, but they
are not sparse as text mining data sets. All of humanities/social sciences data sets represent
important real problems in Brazil, such as school dropout and lifestyle of people with chronic
diseases. The Dropout data was generated in (Bezerra et al., 2016). The others are available in
the Brazilian Open Data Portal (de Tecnologia da Informação et al., 2018).

The experiments were distributed as follows. In Section 3.5.1 we compare the results of
SSDP+ with different minsimilarity in order to evaluated the efficiency of minsimilarity parameter
for diversity of top-k subgroups. Also in Section 3.5.1, we analyzed a top-k returned by SSDP+
in order to show how it can reduce the risk of despise relevant information and generating a
more informative top-k. Finally, in Section 3.5.2 we assess the performance of SSDP+ and other
algorithms in three groups of real-world high dimensional data sets in order to evaluated the
competitive of proposed method in different kind of problems.

Some contents like SSDP+ implementation, some high dimensionality databases used
in the tests, tables with the results of each experiment of this paper, including other evaluation
metrics such as support, confidence level, TP (true positive), FP (false positive) and p-value are
available on this website (https://github.com/tarcisiodpl/ssdp_plus).

3.5.1 Diversity and top-k in SSDP+

Figure 5 shows the average values of Qg, SUPP+ and itemdom obtained by SSDP+ with
three similarity values (minsimilarity = {0.9,0.5,0.1}) and SSDP for all data sets (Table 18). In
this way, the Figure 5 shows that as the minsimilarity parameter decreases (0.9 to 0.1), the diversity
metrics improve, with the increase of global positive support SUPP+ and decrease of description
redundancy itemdom. Thus, it shows that the user can control the level of diversity in SSDP+ by
minsimilarity parameter. In the original SSDP the user does not have control of diverse process.
Thus, in some application, the original SSDP can returned poor information for user without the
possibility of improving the results.

Figure 5 also shows that the improvement of diversity (SUPP+ and itemdom) usually
are associated with the decrease of quality in a subgroup set (Qg). Thus, it shows that the
diversification process usually remove from top-k well evaluation subgroups. However, sub-
groups considered redundant can represent, for example, an easier way to solve a problem or
a new knowledge. So, it is important to provide some way to the algorithms to deal with the
diversification problem reducing the risk of loss of relevant information.

https://github.com/tarcisiodpl/ssdp_plus


565656

Table 18: Summary of the three groups of data sets utilized in the experiments, where the
columns |D|, |D+| and |D−| contains the total number of examples, and the number of positive
and negative examples and the columns |D+|

|D| and |A| contains the percentage of positive examples
and the number of attributes in each data set.

Name |D| |D+| |D−| |D+|
|D| |A|

Bioinformatics
alon 62 40 22 0.65 1000
burczynski 127 59 68 0.46 11142
chiaretti 128 74 54 0.58 6313
chin 118 75 43 0.64 11108
chowdary 104 62 42 0.60 11142
christensen 217 113 104 0.52 707
golub 72 47 25 0.65 3565
gordon 181 150 31 0.83 6267
gravier 168 111 57 0.66 1453
khan 63 23 40 0.37 1154
nakayama 105 21 84 0.20 11142
pomeory 60 39 21 0.65 3564
shipp 77 58 19 0.75 3565
singh 102 52 50 0.51 6300
sorlie 85 32 53 0.38 228
subramanian 50 33 17 0.66 5050
sun 180 81 99 0.45 27307
tian 173 137 36 0.26 6313
west 49 25 24 0.51 3565
yeoh 248 79 169 0.32 6313

Text mining
yelp 1000 500 500 0.5 1923
imdb 1000 500 500 0.5 2973
amazon 1000 500 500 0.5 1712
sc_100 372 68 304 0.18 521
sc_1000 372 68 304 0.18 7794
sc_ALL 372 68 304 0.18 59730

Humanities/social sciences
ENEM 100000 25104 74896 0.25 114
Dropout 118755 18528 100227 0.16 177
Life exp. 11619 4969 6650 0.43 908
Depression 34704 2800 31904 0.08 112
Diabetes 31023 1666 29357 0.05 112
Cancer 34704 452 34252 0.01 112
Heart 34704 988 33716 0.03 112
AVC 34704 380 34324 0.01 112

SSDP+ was applied in Life exp. data set (Table 18) to show how cache subgroups can
be useful in real applications. The data set Life exp. confront the best and the worst Brazilian
state in relation to life expectancy using the year 2013 as reference. So, the SSDP+ was applied
for k = 10, WRAcc as evaluation metric, minsimilarity = 0.1 and ks = 5. Following there are three
subgroups returned by the model and the first subgroup of the respective caches:
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Figure 5: Distribution of Qg, SUPP+ and itemdom obtained by the SSDP+ (minsimilarity =
{0.9,0.5,0.1}) and SSDP in all data sets (Table 18).

� s1: people who live at home with less than five people, can read, never got sick of
Dengue fever, usually use the same health service.

� s1.1(sim = 0.89): people who s1∧ and did not receive any application
interest or unemployment insurance.

� s2 : people who earn more than one minimum salary and usually use the same health
service.

� s2.1(sim = 0.10): people who earn more than one minimum salary and
never driven a motorcycle.

� s3 : people who eat salad more than 5 times a week and usually use the same health
service.

� s3.1(sim = 0.58): people who eat salad more than 5 times a week and
never driven a motorcycle.
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So, this example shows some interesting information stored in the caches. The subgroup
s1.1, for example, represents an alternative for subgroup s1 with 89% of similarity. Following
another way, the subgroups s2.1 and s3.1 are not tightly similar to s2 and s3, but they could
represent relevant information for the problem. Deaths from motorcycle accidents in Brazil, for
example, tripled between 2001 and 2011 (da Saúde do Brasil, 2018). All this cache information
would be discarded in a traditional top-k. Besides that, the knowledge about the similarity
between groups aggregates more information that can provide more insights about the problem.

3.5.2 Comparing SSDP+ to other competitive approaches

We compared the SSDP+ performance with the following algorithms: SSDP (Lucas
et al., 2017), SD (Gamberger & Lavrac, 2002), SD-RSS (Gamberger & Lavrac, 2002) and
DSSD (Van Leeuwen & Knobbe, 2012). SD-RSS is a variation of SD approach that uses the
diversity operator RSS (Gamberger & Lavrac, 2002). The algorithms SSDP and SD showed to
be competitive on high dimensionality data sets (Lucas et al., 2017). The DSSD is an approach
focused on returning a diverse top-k subgroup. Others algorithms such as NMEEF (Carmona
et al., 2010), SDIGA (del Jesus et al., 2007b) and MESDIF (del Jesus et al., 2007a) were not
considered because they were inefficient in previous experiments with high dimensionality data
sets (Lucas et al., 2017).

The confrontation was made considering the trade-off between quality and diversity,
besides time cost. Diversity was evaluated in relation to coverage, through positive global
support (SUPP+), and description, through the presence of the dominator item (Itemdom). The
experiments were done for k = 20 and 10 repetitions with non-deterministic algorithms.

SSDP+ was compared with SSDP, SD and SD-RSS algorithms for all data sets (Table 18)
with one hour as time limit. So, after that time, the algorithm was interrupted and the top-k
subgroups were collected. The evaluation metric used was Qg. SSDP+ was tested for three simi-
larity values minsimilarity = {0.1,0.5,0.9}. SD and SD-RSS used default parameters (Gamberger

& Lavrac, 2002): beamWidth = 2∗ k and minSupport =
√
|D+|
|D| .

Table 19 shows the average values of Qg, SUPP+, itemdom and time of SSDP+, SSDP,
SD and SD-RSS for each group of data sets tested. The results show that it is common an
algorithm to be better in quality (Qg) and worse in diversity (SUPP+ and itemdom). In relation
to processing time, SSDP+ was more expensive than the SSDP. This was expected, since the
generation of top-k in SSDP+ is more elaborate than in SSDP. Other observation is that the
difference between SD and SD-RSS could indicate that the operator RSS may not generate to
much diversity.

The algorithms SD and SD-RSS are similar in relation to the search method and the
same with SSDP and SSDP+. Thus, the hypothesis tests were focused on comparing SSDP+
and SD-RSS. Table 20 summarizes the results of the Wilcoxon tests (α = 0.05) between SSDP+
and SD-RSS in relation to the metrics Qg, SUPP+, itemdom and time, where the values in bold
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Table 19: Average Qg, itemdom, SUPP+ and time for algorithm SSDP+ (minsimilarity =
{0.1,0.5,0.9}), SSDP, SD and SD-RSS for each group of data sets tested (Table 18).

Algorithm Qg itemdom SUPP+ time
Bioinformatics

SSDP+s10 9.63 0.11 0.99 8.80
SSDP+s50 25.92 0.19 0.97 8.79
SSDP+s90 32.29 0.42 0.92 9.52
SSDP 32.07 0.38 0.93 6.61
SD 27.33 0.38 0.90 9.16
SD-RSS 27.06 0.29 0.92 9.04

Text mining
SSDP+s10 7.09 0.10 0.65 26.24
SSDP+s50 8.55 0.16 0.61 25.19
SSDP+s90 12.42 0.46 0.39 30.06
SSDP 11.10 0.27 0.31 12.36
SD 18.02 0.65 0.36 55.77
SD-RSS 16.70 0.51 0.42 56.71

Humanities/social sciences
SSDP+s10 15.463 0.37 0.05 536.62
SSDP+s50 21.355 0.46 0.04 541.76
SSDP+s90 29.268 0.59 0.02 516.16
SSDP 28.286 0.48 0.03 381.82
SD 17.842 0.99 0.03 716.78
SD-RSS 17.131 0.96 0.04 752.98

represent the tests where the null hypothesis was rejected. For each data set group, we utilized
the minsimilarity value that promote competition in quality and diversity at the same time. In this
way, one algorithm was considered better than another when it was statistically better in one
criterion (quality or diversity) and not worse in the other. The processing time was analyzed
separately.

Table 20 shows that SSDP+ was better than SD-RSS in bioinformatics and humani-

ties/social sciences data sets groups. In both, SSDP+ and SD-RSS were equivalent in relation to
Qg and SSDP+ was statistically better than SD-RSS in diversity metrics (SUPP+ or itemdom). In
text mining data sets there were no statistical superiority between the models. This may indicate
that, in sparse high dimensionality data sets, SSDP+ is less competitive. Finally, in relation to
time cost, SSDP+ was statistically better than SD-RSS for all groups of data sets.

Then, SSDP+ was confronted with DSSD in 19 bioinformatics data sets, with three
hours as maximum simulation time, WRAcc as evaluation metric and k = 20. SSDP+ was
tested for minsimilarity = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and DSSD with the following
parameters: beamWidth= 20, b= 10000, coverBeamMultiplier = 0.90, beamStrategy= cover,
maxDepth = 4 and minCoverage = 0. Table 21 shows the mean values of WRAcc, SUPP+,
itemdom and time of SSDP+ and DSSD. So, there is not an apparent superiority between SSDP+
and DSSD in relation to trade-off between quality and diversity, but in processing time, DSSD
spent much more than SSDP+.
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Table 20: The Wilcoxon hypothesis test summary comparing the SSDP + and SD-RSS for the
metrics Qg, SUPP+, itemdom and time, where bold values represent the tests where the null
hypothesis were rejected.

Metric Best mean p-value
Bioinformatics: SSDP+s50 vs. SD-RSS

Qg SD-RSS 0.0565
itemdom SSDP+s50 0.0000
SUPP+ SSDP+s50 0.0000
time SSDP+s50 0.0031

Text mining: SSDP+s90 vs. SD-RSS
Qg SD-RSS 0.1563
itemdom SSDP+s90 0.8438
SUPP+ SD-RSS 0.4375
time SSDP+s90 0.0312
Humanities/social sciences: SSDP+s50 vs. SD-RSS
Qg SSDP+s50 0.1484
itemdom SSDP+s50 0.0141
SUPP+ the same 0.1953
time SSDP+s50 0.0078

Table 21: Average Qg, itemdom, SUPP+ and time for algorithm SSDP+ (minsimilarity =
{0.1, ...,0.9})and DSSD for 19 bioinformatics data sets from Table 18.

Algorithm WRAcc itemdom SUPP+ time
SSDP+s10 0.0333 0.1025 0.9988 8.04
SSDP+s20 0.0557 0.1026 0.9996 8.06
SSDP+s30 0.0809 0.1284 0.9995 8.09
SSDP+s40 0.1024 0.1700 0.9994 8.38
SSDP+s50 0.1216 0.2378 0.9965 8.66
SSDP+s60 0.1417 0.3510 0.9918 9.03
SSDP+s70 0.1611 0.4863 0.9913 9.68
SSDP+s80 0.1752 0.6515 0.9907 10.80
SSDP+s90 0.1856 0.8034 0.9827 11.82
DSSD 0.1725 0.6131 1 3921.94

Table 22 shows the Wilcoxon test (α = 0.05) confronting SSDP+ (minsimilarity = {0.7,0.8,0.9})
and DSSD. So, Table 22 shows that when one algorithm dominates the other in relation to quality
it is dominated in diversity. Thus, there was no superiority between SSDP+ and DSSD, in
relation to trade-off between quality and diversity.

The experiments showed that the SSDP was statistically better or equivalent to the other
algorithms tested in relation to trade-off between quality and diversity. In relation to processing
time, SSDP+ was statistically better than all other approaches.
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Table 22: Summary of Wilcoxon test comparing SSDP+ and DSSD for the metric WRAcc,
SUPP+, itemdom and time, where bold values represent the tests where the null hypothesis was
rejected.

Confrontation Metric Best mean p-value
SSDP+s70 vs. DSSD WRAcc DSSD 0.0071

itemdom SSDP+s70 0.0463
SUPP+ DSSD 0,1814

SSDP+s80 vs. DSSD WRAcc SSDP+s80 0.3320
itemdom DSSD 0.2683
SUPP+ DSSD 0.0590

SSDP+s90 vs. DSSD WRAcc SSDP+s90 0.0005
itemdom DSSD 0.0045
SUPP+ DSSD 0.0224

3.6 CONCLUSION

This paper presents the SSDP+, an evolutionary approach for mining subgroups focused
on high dimensional data sets. SSDP+ was an evolution of SSDP model, that have limitations in
relation to diversity in top-k subgroups.

In this way, SSDP+ solves the limitations of the original model with respect to diversity
in top-k subgroups. The proposed model allows the user to choose the degree of diversity of
the subgroups through the minsimilariry parameter. Besides that, SSDP+ reduces the risk of loss
of relevant information as consequence of diversification process, through the use of caches.
Finally, the proposed model still uses the similarity values between subgroups to generate more
information for user.

The proposed model was also confronted with other competitive approaches in three
groups of high dimensionality data sets. In this way, the experiments showed that in all group of
data set, the proposed model returned top-k subgroups with quality and diversity statistical better
or equivalent to the other algorithms using less processing time.

One of the main limitation of SSDP+ is not to work with numerical attributes. The
configuration of minimum similarity parameter and cache size are also not trivial, it is depending
on some manual testing. Finally, SSDP+ did not show superiority to other approach in sparse
data sets (text mining data). Thus, an investigation in this way can points some improvements in
SSDP+ performance.
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4 MGP-SD: MULTIVARIATE METHOD FOR GROUP 
PROFILING USING SUBGROUP DISCOVERY

Este capítulo é uma reprodução completa do artigo A Multivariate Method for Group

Profiling Using Subgroup Discovery, a ser submetido para revista ou congresso.

4.1 ABSTRACT

We propose in this paper a new method for Group Profiling based on Subgroup Discovery.
Group Profiling is the process of constructing descriptive profiles for communities in social
networks. Traditional methods for Group Profiling often return a set of univariate descriptors.
By searching for the best univariate descriptors, these methods neglect possible interactions
between them that could enhance the overall community description. Moreover, these methods
do not control for coverage of descriptions. This imposes a severe limitation on the significance
of results since a description may represent only a small fraction of a community. Here we
investigate how the problem of Group Profiling can be modeled as a Subgroup Discovery (SD)
task. We propose a new method based on SD for finding multivariate community descriptions
with high coverage. We assess the quality of our proposal by finding descriptions for communities
found in a real-world co-authorship network of scientific articles from Arxiv. Our experiments
highlight that there is a compromise between the quality and coverage of descriptions. The
experiments also show that our method improves on traditional univariate approaches, returning
better descriptions both in terms of quality and coverage.

4.2 INTRODUCTION

Recent advances in information and communication technologies have caused significant
changes in society, especially in the way people interact with each other. In this context, virtual
social networks have become a global phenomenon with great influence on human social life.
The increasing adoption of these networks enabled a continuous production of networked data
that can be analyzed and mined for different purposes (Getoor & Diehl, 2005). This paper is
focused on the challenging task of Group Profiling in social networks (Tang et al., 2008), which
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aims to extract descriptive features from a group of people organized in communities. The
derived descriptions can reveal personal values and interests that are shared by the members in a
community (Tang et al., 2011; Gomes et al., 2013, 2016, 2018). There are several applications
of Group Profiling, such as understanding social structures, visualization and navigation of
networks, identification of changes in group themes and direct marketing (Tang et al., 2011).

Traditional univariate methods for Group Profiling usually rely on a relevance function,
which is applied to score the importance of each feature to distinguish the members of the
community (Tang et al., 2011; Gomes et al., 2013, 2016, 2018). The features are then ranked
according to the relevance function and the k highest ranked (top-k) are returned as the community
description. As features are independently evaluated, univariate methods neglect possible
interesting interactions among features that would enhance the overall description of a community.
We thus postulate our first hypothesis in this work that Group Profiling would benefit from a
multivariate approach, which accounts for such interactions and returns the best subsets of
features describing a community.

Another issue currently not addressed by the state of the art methods for Group Profiling

concerns the coverage of descriptions. The coverage of a description is the fraction of members
of a given community that satisfies it. This issue is directly related to the significance of the
descriptions. Descriptions with low coverage represent only a small subset of the members of a
community. In the worst case, the community might be described by a pattern that occurred only
by chance, or in the best case, the description would be incomplete and would not describe the
entire community. This is the second research problem that we consider in this work.

This context motivates us to pose the following research question: would Subgroup

Discovery yield more expressive and comprehensive descriptions that allow for a better under-

standing of groups as a whole? By that, we mean descriptions that enable analysts to grasp the
characteristics of the entire group. To address this question, we propose the method MGP-SD
(Multivariate Group Profiling - Subgroup Discovery). Our method searches for multivariate
descriptions accounting for their coverage to retrieve the most relevant. For that, we model
the problem of Group Profiling as a Subgroup Discovery task and, thus, make full use of the
vast ecosystem for solving this task. To the best of our knowledge, this is the first time Group

Profiling is modeled as a Subgroup Discovery task.
The suitability of such an approach lies on the fact that Subgroup Discovery may be

presented as the task of identifying sets of features that distinguish a target group from the
others in a data set (Liu et al., 2015; Helal, 2016; Atzmueller, 2015; Herrera et al., 2011). It has
been extensively used for describing labeled data in different domains, such as medicine (Car-
mona et al., 2013), bioinformatics (Park et al., 2019), marketing (Carmona et al., 2012) and
e-learning (Romero et al., 2009). In terms of algorithmic solutions for finding subgroups we
notice different approaches in the literature (Helal, 2016). We employ in our method a recently
proposed algorithm, SSDP+(Lucas et al., 2018), developed for mining non-redundant subgroups
in high dimensional data sets. Given the excessive amount of features in text data, we strongly
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believe this the best candidate for the task.
We assess the performance of our proposal on a real-world data set of scientific articles

from Arxiv. In our experiments we employ our method to obtain descriptions for communities
of authors in the co-authorship network of the articles. We evaluate its performance compared to
the traditional univariate strategy for Group Profiling and verify the compromise between quality
and coverage of descriptions.

The remaining of the manuscript is organized as follows. First, we introduce the Subgroup

Discovery problem (section 4.3) and review the related literature in section 4.4. Next, we present
the proposed method in section 4.5. Then, the results and discussions are presented in section 4.6.
We conclude the article presenting our final remarks in section 4.7.

4.3 SUBGROUP DISCOVERY

Subgroup Discovery (SD) is a data mining task that aims to identify subgroups where
the presence of a target label is exaggerated in relation to others (e.g., best clients vs. others,
best school vs. others, cancer vs. healthy cells). In SD, each subgroup can be described by a
rule cond→ labeltarget , where cond is a set of conditions on the attributes, and labeltarget is the
target of investigation (ex. best clients).

The primary inputs in the SD process is a labeled data set D and a target label labeltarget .
The target partitions the examples of D into positive D+ and negative D− examples, where
D+ = {e ∈ D | label(e) = target}, and D− = {e ∈ D | label(e) 6= target}. The examples in D

are described by a set of attributes A. Each attribute ai ∈ A has a set of values associated with
it, called dom(ai). We call features the set of all pairs (attribute,value) in a data set D, that is
F =

⋃
ai×dom(ai) = { f1, f2, ..., f|F |}. Then, we say a feature f = (a,v) ∈ F covers an example

e ∈ D if a(e) = v. Similarly, we define the cover of f = (a,v) as c( f ) = {e ∈ D | a(e) = v}, and
its positive and negative covers respectively as c+( f ) = c( f )∩D+, c−( f ) = c( f )∩D−.

The generalization of coverage for sets of features F ′ ⊆ F might be interpreted in two
different ways. The conjunctive cover of F ′ is defined as the intersection of the individual
covers of each of its features, that is c(F ′) =

⋂
c( f ) for f ∈ F ′. The second interpretation is the

disjunctive cover, which is defined as the union of individual covers, c(F ′) =
⋃

c( f ).
We call the cover of F ′ ⊆ F a subgroup of D. A subgroup is interesting if it has an

unusual distribution of the target feature compared to the entire data. Generally, that means a
subgroup is interesting if it has many more positive examples than negatives. The goal of SD
algorithms is to identify such subgroups along with their descriptions. Since subgroups and set
of features are intrinsically related, we abuse the notation and refer to F ′ ⊆ F both as a subgroup
and a set of features for the sake of simplicity. The context will make it clear whether we are
referring to the set of features or examples.

The definition of interestingness/relevance of a subgroup is formalized by a metric
(Atzmueller, 2015). A well-known metric is the Qg (Gamberger & Lavrac, 2002) (Equation 4.1),
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where s is a subgroup and g is a generalization parameter. The value of g represents the tolerance
to negative examples in relation to positives in a subgroup. The higher the value of g, the more
generic subgroups (descriptions) will be (Gamberger & Lavrac, 2002).

Qg(s) =
|c+(s)|
|c−(s)|+g

,
�
 �	4.1

There are also global metrics that evaluate the interestingness of the whole set of sub-
groups. One such global metric is global (positive) support, which is the proportion of positive
examples covered by a set of subgroups. Let Sk be a set of k subgroups, the global support
SUPP+ is given by Equation 4.2. SUPP+ can assume values between 0 and 1, where 1 means
that Sk completely covers D+ and small values of SUPP+ implies that Sk describes just a tiny
fraction of the target examples. In this way, it is essential to take into account the SUPP+ to
find a set of subgroups with high coverage. The concept of SUPP+ is similar to recall in the
Information Retrieval area.

SUPP+(Sk) =
|c+(s1)∪ ...∪ c+(sk)|

|D+| ,
�
 �	4.2

Figure 6 summarizes the general idea of the Subgroup Discovery task. In this hypothetical
example the goal is to identify subgroups that contain an over-representation of documents of a
scientific community. In the example’s data set each line represents a document, each column a
word present in the vocabulary, and the label is the ID of a community that a document belongs
to. We observe the following distribution of documents in each community: C1 : 40%, C2 : 30%
and C3 : 30%.

Now, assume that we want to identify subgroups (and their descriptions) where docu-
ments from community C1 are over-represented; that is we want to find subgroups considering
labeltarget =C1. We show in Figure 6 two examples of subgroups (s1 and s2), where the fraction
of documents of community C1 is greater than the others. The analysis of the subgroup descrip-
tions unveils that community C1 is mainly composed of two areas: Fuzzy Systems and Neural

Networks.

4.4 A BRIEF REVIEW ON GROUP PROFILING METHODS

The group profiling problem can be formally stated as follows. Consider a network of
interest represented as a graph G = (V,E) with vertices V = {v1,v2, ...,vn} and edges E ⊆V ×V .
Each vertex is associated to a d-dimensional vector of attributes, a ∈ Ad,a = (a1,a2, ...,ad),
where dom(a j) comprises the attribute domain (e.g., {0,1}). A community is represented by
a subgraph Pi = (VPi,EPi), where VPi ⊆ V , EPi ⊆ VPi×VPi , EPi ⊆ E. For simplicity, we assume
that communities are disjoint: (G =

⋃
i Pi)∧ (Pi ∩Pj = /0). The objective in Group Profiling

is to select the best k descriptive attributes for each community from the original d candidate
attributes. For such, one can define a quality measure f (a j,Pi) in order to assign the importance
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Figure 6: Example of Subgroup Discovery application in order to describe feature sets that
concentrate the documents of community C1 in relation to C2 and C3.

(i.e., descriptive score) for each attribute in a given partition, and then select the top-k scored
attributes.

There are two main strategies in Group Profiling (Tang et al., 2008): Aggregation-based
Group Profiling (AGP), and Differentiation-based Group Profiling (DGP). In the former strategy
descriptions consist of attributes that are most likely to occur within the community, without
taking into account the rest of the network. An example of an AGP quality measure is the
Term Frequency (TF), which indicates the number of occurrences of an attribute. On the other
hand, DGP approaches select labels for communities by comparing the distribution of attributes
in a community to their distribution in the remaining communities. Thus, the objective of
DGP approaches is to discover the main (top-k) discriminative characteristics that represent the
group, differentiating it from the rest of the network. Examples of DGP methods are: the Term

Frequency - Inverse Document Frequency (TF-IDF) (Treeratpituk & Callan, 2006), Wilcoxon

Rank Sum Test (WRS)(Gomes et al., 2013), Bi-standard separation (BNS) (Tang et al., 2011)
and Chi-Squared Test (χ2) (Gomes et al., 2016). Details of the adaptations made on the methods
for the group profiling problem in (Gomes et al., 2018).

As already mentioned in section 4.2, traditional methods for Group Profiling present
some flaws mainly due to their restriction to univariate descriptions (top-k features). Univariate
methods do not exploit possible interactions between attributes to generate more comprehensive
descriptions. Another relevant aspect neglected by traditional methods is the coverage of
descriptions. It can represent a severe limitation, mainly because descriptions with low coverage
do not fully represent the community and might have occurred by chance.

We illustrate the severity of the issue regarding coverage in Figure 7. The figure shows
two sets of descriptions for communities C1, C2 and C3 On the left, we observe a set of low
coverage descriptions. We notice that features are highly redundant and cover almost the
same instances of each community, leaving behind many instances that are not described at all.
Oppositely, the figure on the right-hand side shows examples of descriptions with high coverage.
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In this case, descriptions cover the majority of the members of each community, being, thus,
more relevant than their counterpart in the first figure.

Low coverage description 

C 1 C 2

C 3

C 1 C 2

C 3

High coverage description 

f1 f2f3 f1

f2

f3

f7

f4

f5

f6

f6

f5

f4

f8
f9 f9

f7

f8

Figure 7: Example of descriptions with low and high coverage. C1, C2 and C3 are the communities
and f1, f2, f3, ..., f9 are the features that cover members of the communities.

Computing time is also an important issue in Group Profiling, especially for large commu-
nities. Egocentric Differentiation-based Group Profiling (EDGP) that reduces the computational
cost by selecting only the community neighbors in the differentiation process (Tang et al., 2011).
More recently, Gomes et al. (Gomes et al., 2018) proposed a Centrality-based Group Profiling

(CGP) approach. In this approach the most relevant nodes are first filtered out according to their
centrality (relative importance) in the observed community before descriptions are found.

4.5 MULTIVARIATE GROUP PROFILING BASED ON SUBGROUP DIS-

COVERY

We present in this section our method Multivariate Group Profiling based on Subgroup

Discovery (MGP-SD). MGP-SD is a multivariate DGP approach that uses the framework of
Subgroup Discovery for identifying descriptions. Figure 8 schematically presents the general
methodology we propose.

We start the process by collecting a repository of documents previously acquired through
a crawling process. In step 1, we generate a graph, in which nodes represent authors and
two nodes are connected if they have co-authored at least one paper in our corpus. In step
2 we remove all nodes without connection (singletons) and apply the algorithm Multi-level

Aggregation Method (MAM) (Blondel et al., 2008) for detecting the communities. MAM is one
of the best community detection approaches for non-directed and unweighted networks, such as
co-authorship networks (Fortunato & Lancichinetti, 2009). In step 3, we remove less relevant
communities based on their size and density.

We then proceed to describing communities by analyzing the articles written by their
members (step 4). For this, we work with raw texts of the documents. We pre-process the
documents to extract the features required for describing communities in step 5. We apply
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Figure 8: MGP-SD methodology scheme for Group Profiling task.



696969

stemming, remove stop words and discard the 10% most and least frequent terms from the texts.
The reason for discarding the terms is that they are either non-discriminative or relatively rare to
be considered a significant descriptor for a community.

The next step aims at reformatting the data set to be used as input for the SD algorithm.
Step 6 involves two sub-tasks. The first involves obtaining a term-document matrix from the
pre-processed texts. The second involves the discretization of such matrix to obtain the input
for the SD algorithm. The term-document matrix is generated using the TF-IDFs of the terms,
bigrams, and trigrams. We then discretize the values into low, medium, and high using the first
and third quartiles as thresholds.

At last, in step 7, we use an SD algorithm with the results of step 6 to obtain the
descriptions. The algorithm we chose for this task is the Simple Search Discriminative Patterns

Plus (Lucas et al., 2018, 2017). This algorithm is the state of the art method for Subgroup
Discovery in high dimensional data. We set the SSDP+ heuristic to use disjunctive covers

(section 4.3) with the following parameters: k = 10, ks = 5, similarity = 0.1 and Qg (g = 5)
as the quality measure. The similarity parameter controls the coverage of top-k subgroups in
SSDP+. It can assume values between 0 and 1; where low values tend to yield descriptions with
higher coverage.

Since we are interested in improving the descriptions of the communities, we restrict our
attention to features related to frequent terms or n-grams (value( f ) = high). This is an important
choice because, if infrequent terms were left in the data set, the algorithm would focus on these,
finding descriptions of what a community is not, rather than on what it is. Nevertheless, this
process may be tuned to accommodate variations in other scenarios. This is the default setting of
the proposed method, but some variation must be done according to each application.

Table 23 puts MGP-SD in perspective to other works in the literature. MGP-SD uses the
DGP strategy and Subgroup Discovery to generate descriptions. Our proposal is the first in the
literature that provides multivariate descriptions and coverage control.

Table 23: State of the Art Comparative Table.

work strategy method description Coverage
model Control

Tang at al. AGP, DGP TF and BNS Univariate No
(Tang et al., 2011) and EDGP

Gomes at al. DGP Wilcoxon Rank Univariate No
(Gomes et al., 2013) Sun (WRS)

Gomes at al. DGP WRS Text, BNS, Univariate No
(Gomes et al., 2016) TF-IDF, χ2

Gomes at al. CGP and WRS Text, BNS, Univariate No
(Gomes et al., 2018) DGP TF-IDF, χ2

MGP-SD DGP Subgroup Multivariate Yes
Discovery
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4.6 RESULTS AND DISCUSSIONS

This section aims to validate the proposed method MGP-SD as a multivariate approach for
Group Profiling with coverage control. We also show how MGP-SD generates better community
descriptions. We divide our experiments in two parts. First, in subsection 4.6.1, we describe a
case study in which we demonstrate how the method can be applied to a real problem. Then, in
subsection 4.6.2, we compare MGP-SD to traditional univariate strategies. We also analyze the
compromise between quality and coverage of descriptions in Group Profiling.

4.6.1 Application of the proposed method

We use a corpus of articles in the Artificial Intelligence field to demonstrate how our
method shall be applied. The articles were collected from the online repository Arxiv. These
articles were first uploaded to the repository between 2012 and 2014 years.

Having the corpus at hand, we follow the methodology described in the previous section.
In step 1 we generated a graph with 1850 authors and 2560 relationships. Next, in step 2 we
detected 439 communities in the graph. Then, in step 3 we reduced the graph to the 10 most
relevant communities, as recommended by previous works (Gomes et al., 2016, 2018).

In step 4 we extract the raw texts from the articles’ PDF files. Next, we pre-process
the texts and remove less discriminating words. Then, as the result of step 6, we obtained a
term-document matrix with 568 documents, 4264 terms and 10 labels. Finally, in step 7, we
applied SSDP+ heuristic to generate a high coverage multivariate community description.

Table 24 shows three examples of community descriptions returned by the proposed
method. We notice that, at first, descriptions were dominated by the name of authors, departments
and other affiliation related features. In community 6, for example, the features freita and univers

british columbia refer us to Prof. Nando de Freitas at the time, affiliated to the University of

British Columbia, Canada. We observed in the communities that a few authors stand out from
others in the number of published papers. This information is interesting since it corroborates
the hypothesis that the principal authors of communities are enough to represent them, utilized
in CGP strategy (Gomes et al., 2018).

Although influential authors and their affiliations may be useful to describe communities,
this is a trivial information that can be extracted directly from the documents’ metadata. Here
we are interested in finding descriptions that are rather topic related. So, we excluded from the
searches any feature related to names of authors or their affiliations, as well as the name of venues
where articles were published (conferences, journals, etc.). Table 25 shows the descriptions of
the same communities after this process.

The description of community 6 now contains features related to belief function and
neural networks. The community 116 is characterized by features related to fuzzy systems and
community 156 by features related to causal models. The global positive support of descriptions
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Table 24: Examples of MGP-SD community description by top-5 features sets.

community 6
subgroup description

1 freita, lang, univers british columbia
2 freita
3 lang, optimist
4 centr, colleg, council, littman
5 belief function, centr, defin new

community 116
subgroup description

1 duboi, fuzzi
2 max min, ordin
3 citi, follow proposit, inform retriev
4 note comput
5 point view

community 156
subgroup description

1 california los angel, intervent
2 comput scienc engin, verma pearl
3 comput scienc engin, edg node
4 graph structur
5 schein causat predict, weiss

SUPP+ were 82.75%, 94.28% and 82.14 for communities 6, 116 and 156, respectively.
We noticed that, in general, descriptions were composed of three types of features. The

first and most important in this application were the features that represent a core area of Artificial

Intelligence, such as fuzzy set, neural networks and bayesian network. The second type were
features that are often used together with terms of a core area but do not directly represent it.
The feature belong, for example, is frequently used in articles related to fuzzy systems to indicate
the membership of an element to a fuzzy set. Nevertheless, such term does not represent the
fuzzy area by itself. Finally, the third type of features are ordinary terms that are not directly or
indirectly related to Artificial Intelligence. Some of them could be, for example, related to the
vocabulary of the most influential authors, thus reflecting their personal writing style.

4.6.2 Multivariate vs. univariate strategy and the coverage control in
MGP-SD

In this experiment, the univariate strategy is represented by the top-k features method,
which returns the best k features. On the other hand, the multivariate strategy is represented by
top-k features sets method, that is the descriptions of subgroups returned by the SSDP+ algorithm.
Both strategies used Qg(g= 5) as the quality measure and were applied to the discretized TF-IDF

term-document matrix.
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Table 25: Examples of MGP-SD community description by top-5 subgroups after removing
features related to names of authors, university, congress and journals.

community 6
subgroup description

1 belief function, optimist,sampler, want comput
2 global optim, gradual, sampler
3 belief function, function sinc, particl
4 global optim, neural network,white
5 belief function, global optim

community 116
subgroup description

1 fuzzi, fuzzi set
2 max min, ordin
3 max min
4 capac, follow proposit, order set
5 point view

community 156
subgroup description

1 causal model reason, intervent
2 model reason infer, predict search
3 approxim margin, graph structur
4 hypothet, inform theori
5 approxim margin, howev result

Figure 9 shows the mean Qg of descriptions using top-k features and top-k features sets

for simularity = 0.9. Thus, the top-k features sets were considerably better in terms of quality
measure than top-k features in all communities. In relation to the coverage of descriptions, the
methods top-k features and top-k features sets were relatively similar, with mean SUPP+ of
65.96% for the former and 69.04% for the latter. However, in relation to processing time, the
top-k features sets spent on average 15.07s while the top-k features spent just 0.18s.

We now analyze the compromise between quality and coverage of descriptions. Figure 10
shows the mean Qg (x-axis) and SUPP+ (y-axis) of descriptions returned by top-k features and
top-k features sets for similarity = {0.1,0.2, ...,0.9}. The reader can notice a trend in the results:
the lower the support, the higher the quality. This happens because high quality patterns are
often redundant and cover the same set of examples, which culminates in lower global support.
This trend is fomented here by the similarity parameter in SSDP+. This parameter controls
how SSDP+ deals with redundancy in its result. As discussed by Lucas et al. (Lucas et al.,
2018), lower values of this parameter increases diversity at the cost of quality; often high-quality
subgroups are discarded. Nevertheless, the parameter exposes to the user the possibility to fine
tune the trade-off between coverage and quality. Finally, we also notice in the figure that, in spite
of the possibility of tuning coverage and quality, the multivariate approach returned better results
than the univariate in both aspects in eight of nine settings.
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Figure 9: Mean Qg of descriptions returned by univariate and multivariate strategies, when
applied to the discretized TF-IDF term-document matrix.
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Figure 10: Mean individual quality (Qg) and the coverage (SUPP+) of descriptions returned by
top-k features sets for similarity = {0.1,0.2, ...,0.9} and the top-k features.

4.7 CONCLUSION

Traditional methods for Group Profiling usually return univariate descriptions, which are
limited in relation to multivariate ones. Additionally, they also do not control the coverage of
descriptions, which may result in either incomplete or insignificant information. So, the primary
motivation of this work was to present MGP-SD, a new method for Group Profiling that result in
multivariate descriptions with coverage control.

We validated the proposed model applying it to a co-authorship network to generate a
high coverage multivariate description for 10 scientific communities in Artificial Intelligence.
In general, even with the presence of terms not related to the purpose of the application, it was
possible to clearly identify the content of communities.

We compared the use of multivariate and univariate strategies under the same conditions
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(data set and quality measure). Multivariate descriptions were better than univariate in relation to
mean individual quality and global coverage at the same time in almost all experiments. The
univariate method, however, spent less than one second to return the descriptions, while the
multivariate spent around 15 seconds. We also showed that the proposed method could control
the coverage of the description by an external parameter. This possibility is not presented in
traditional Group Profiling methods.

Knowing that this work is an initial study, we aim at extending it in future works by: (1)
modifying the MGP-SD to use the Centrality-based Group Profiling (CGP) approach, to reduce
its computational requirements; and (2) conduct a qualitative study to verify the relevance of the
obtained descriptions.



757575

5 CONCLUSÃO

Esta tese propôs e aplicou soluções para a mineração de subgrupos com foco em bases
de dados de alta dimensionalidade. O primeiro modelo proposto foi o SSDP, um algoritmo
mono-objetivo top-k baseado em computação evolucionária que utiliza apenas dois parâmetros.
Em seguida, foi proposto o SSDP+, uma extensão do SSDP que lida de uma forma inovadora com
o problema de redundância gerando mais informações e minimizando o descarte de subgrupos
relevantes de forma prematura. Por fim, este trabalho propôs um novo modelo para o problema
de descrição do perfil de comunidades baseado no SSDP+.

O algoritmo SSDP foi proposto como o estado da arte entre as heurísticas de mineração
de subgrupos no contexto de alta dimensionalidade. O modelo foi estatisticamente melhor
ou equivalente a outros da literatura em bases de alta dimensionalidade e competitivo mesmo
em bases de dados tradicionais, com relação à qualidade dos subgrupos retornados. Além
disso, possui apenas dois parâmetros, sendo também simples de ajustar. No entanto, o SSDP
mostrou ser um pouco limitado com relação ao combate à redundância entre os top-k subgrupos,
resultando no empobrecimento das informações retornadas em algumas aplicações.

Em seguida, SSDP+ lançou um novo caminho para combate à redundância, reduzindo
o risco de descarte prematuro de subgrupos relevantes e gerando mais informações para o
usuário. A estratégia básica utilizada foi reter parte dos subgrupos considerados redundantes e
os apresentar como soluções alternativas ao final da busca. Os subgrupos retidos nos testes reali-
zados representaram informações relevantes em algumas ocasiões. Além disso, os experimentos
mostraram que o SSDP+ permitiu a flexibilização do controle da diversidade entre os top-k sub-
grupos sem comprometer a competitividade do modelo com relação à qualidade dos subgrupos.
O SSDP+ foi testado com diferentes grupos de bases de dados de alta dimensionalidade e foi
estatisticamente melhor ou equivalente a outros algoritmos competitivos da literatura.

No entanto, existem limitações relevantes nos algoritmos propostos. A primeira delas
é que eles não lidam com dados numéricos. Isso exige que o usuário discretize os valores
numéricos da base de dados, o que nem sempre é uma tarefa simples e normalmente limita
de forma significativa o espaço de busca do problema. A ausência de implementação dos
modelos num ambiente paralelo também representa uma limitação. Isso porque, embora exista
um potencial para paralelização nos algoritmos propostos, não foi possível avaliar de forma
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experimental o quanto isso pode ser revertido em eficiência.
Por fim, o modelo proposto para o problema de descrição do perfil de comunidades

com base no algoritmo SSDP+ mostrou ser uma alternativa promissora. O modelo conseguiu
identificar o conteúdo de comunidades científicas na área de Inteligência Artificial durante a
aplicação realizada. Já no confronto entre a caracterização de comunidades via top-k caracterís-

ticas (estratégia tradicional) versus top-k subgrupos (estratégia proposta), o uso de subgrupos
obteve caracterizações com melhor qualidade individual média e maior suporte global. Por outro
lado, a caracterização via subgrupos utilizou em média pouco mais de 15 segundos para gerar as
descrições enquanto que uso das top-k características utilizou menos de 1 segundo.

5.1 TRABALHOS FUTUROS

Os trabalhos futuros possuem duas frentes: uma com objetivo de propor novos mo-
de-los de mineração de subgrupos e outra com o objetivo de aplicar os modelos propostos na
descoberta de conhecimento em problemas relevantes, ambos no contexto de bases de dados de
alta dimensionalidade.

Com relação ao desenvolvimento de novos modelos, existem três linhas com objetivos
diferentes. A primeira delas tem o objetivo de encontrar algoritmos mais eficientes com relação
à capacidade de encontrar os melhores subgrupos no menor espaço de tempo. Uma primeira
opção é o algoritmo SD+, uma adaptação do algoritmo SD (Gamberger & Lavrac, 2002) com o
objetivo de gerar diversidade entre os top-k subgrupos na mesma direção do algoritmo SSDP+.
O SD é um algoritmo competitivo em bases de dados de alta dimensionalidade e possui alto
poder de convergência. No entanto, tal algoritmo tende a cair em mínimos locais (Lucas et al.,
2017; Pontes et al., 2016) e é pouco flexível com relação à diversidade entre os top-k subgrupos.
Dessa forma, acreditamos que o método de diversificação do SSDP+ tornará o SD mais robusto
ao problema de mínimos locais e mais flexível com relação ao controle de diversidade entre os
subgrupos retornados.

Outra opção promissora para gerar algoritmos mais eficientes é o uso de abordagens
híbridas. Uma primeira estratégia é combinar os algoritmos SD e SSDP+ na tarefa de busca.
A primeira opção é rodar o SSDP+ e utilizar os itens dos top-k subgrupos como entrada do
algoritmo SD. Assim, o SSDP+ funcionará como um seletor de itens de qualidade e diversificados
para o SD, que tem alto poder de convergência e busca em profundidade. Outra opção é mesclar
o uso dos algoritmos SSDP+ e SD durante a busca.

Um segundo caminho de hibridização consiste em combinar o uso de algoritmos exatos e
heurísticos. Os algoritmos exatos de mineração de subgrupos garantem o melhor resultado dentro
de algumas limitações dadas pelo usuário, como o suporte mínimo e confiança. No entanto,
a escolha desse tipo de parâmetro não é uma tarefa simples. Se o suporte mínimo for muito
baixo, por exemplo, pode não representar uma limitação útil para o algoritmo. Já se o suporte
mínimo for muito alto, pode reduzir de forma exagerada o espaço de busca. Já os algoritmos
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heurísticos não garantem o melhor resultado, mas viabilizam as buscas, principalmente na alta
dimensionalidade. Nesse contexto, a combinação desses dois tipos de algoritmos pode minimizar
suas falhas e potencializar suas qualidades.

Os algoritmos heurísticos, por exemplo, podem rodar previamente numa base de dados
com o objetivo de prover informações para algoritmos exatos, como valor adequado de suporte
mínimo, tamanho máximo de subgrupos ou mesmo restringir o espaço de busca aos itens contidos
nos subgrupos retornados pela heurística. Outra opção é que um algoritmo exato realize a busca
até uma dimensão d e uma heurístia continue a busca nas dimensões seguintes. Com isso,
seria possível garantir uma busca exata para os subgrupos de tamanho menor ou igual a d e
as informações obtidas até então poderiam potencializar a busca realizada a posteriori pela
heurística nas dimensões superiores a d.

Já a segunda linha de proposta de novos algoritmos tem o objetivo de adaptar os modelos
propostos para lidar com bases grandes com relação ao número de exemplos. Nesse sentido,
vamos estudar tecnologias de paralelização comumente utilizadas em big data, como MapReduce,
bem como algoritmos da área que as utilizam. Em seguida vamos testar algumas possibilidades
de adaptação do SSDP+ e outros modelos no caminho de gerar um algoritmo eficiente para bases
de alta dimensionalidade e com grande número de exemplos.

Por fim, a terceira linha de algoritmos propostos terá como objetivo a proposição de
modelos para mineração de subgrupos não restritos a dados categóricos. Nesse caminho, vamos
analisar os algoritmos de mineração de subgrupos que trabalham com dados numéricos, bem
como estudar técnicas clássicas de busca em dados numéricos, como o PSO (do inglês Particle

Swarm Optimization), e combinar tais conceitos de forma a propor modelos com o perfil desejado.
Já a frente de pesquisa de aplicações tem como objetivo a descoberta de conhecimento

através da mineração de subgrupos em problemas sociais relevantes, como saúde, violência
e educação. Nesse caminho, a primeira aplicação está relacionada ao projeto de pesquisa O

IMPACTO INTERGERACIONAL DE TRANSFERÊNCIAS DE RENDA CONDICIONAIS NA

SAÚDE DOS RECÉM-NASCIDOS. O projeto possui mais três pesquisadoras da área de economia,
tem duração de 18 meses e está sendo fincanciado pelo CNPq, Ministério da Saúde e Fundação

Bill § Melinda Gates. Entre outras atividades, o projeto prevê a aplicação dos algoritmos
propostos nesta tese com o objetivo de identificar os grupos de características que diferenciam os
recém-nascidos com bom estado de saúde dos demais a partir de grandes bases de dados que
serão disponibilizadas pelo governo brasileiro.
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Abstract—It is a great challenge to companies, governments
and researchers to extract knowledge in high dimensional
databases. Discriminative Patterns (DPs) is an area of data
mining that aims to extract relevant and readable information in
databases with target attribute. Among the algorithms developed
for search DPs, it has highlighted the use of evolutionary
computing. However, the evolutionary approaches typically (1)
are not adapted for high dimensional problems and (2) have many
nontrivial parameters. This paper presents SSDP (Simple Search
Discriminative Patterns), an evolutionary approach to search the
top-k DPs adapted to high dimensional databases that use only
two easily adjustable external parameters.

I. INTRODUCTION

Knowledge discovery in high dimensional databases is a
challenge for companies, governments and researchers. Mi-
croarray databases are an important example of high dimen-
sional problem. Microarray is a technology that allows mea-
suring the expression thousands of genes in one experiment.
Finding some combination of genes whose expression levels
can distinguish some groups of patients (cancer vs. healthy,
for example). Since microarray technology has developed
databases for several important studies in Bioinformatics [1]–
[5]. Microarray databases is having a revolutionary impact on
molecular biology [2].

Discriminative Patterns (DPs) aims to find humanly inter-
pretable subgroups where the presence of a label vs. others is
exaggerated. From this, is possible to generate insights about
a problem or just explain it in a simple way [5]. DPs have
evolved rapidly with different terminologies (Subgroups Dis-
covery [6], [7], Emerging Patterns [8] and Contrast Sets [9]).

However, mining best DPs in high dimensional databases
is often computationally infeasible. In this way it highlights
the development of heuristic algorithms based on Evolutionary
Computing [10]–[16] and Beam Search [17]–[20]. But none
of evolutionary approach has been developed with focus on
very high dimensional problem. Besides that, they use complex
parameters and the user has no control over the amount of
returned DPs.

This paper presents the SSDP (Simple Search Discrimi-
native Patterns), a DPs mining approach focused on high

dimensional problem based on Evolutionary Computing and
Beam Search. SSDP uses simple parameters and returns the
top-k DPs, where k is chosen by user. SSDP was developed
in special for microarray databases, but it is a general solution
for high dimensional problem.

Thus, we hope this work contributes to knowledge discovery
task in Bioinformatics and other high dimensional problems.
This paper is organized as follows. Section II summarizes the
main DPs concepts. The Section III presents some related
work, followed by Section IV, where the SSDP approach
is described in detail. Section V shows the experiments and
Section VI the results. Finally, Section VII presents the con-
clusion.

II. DISCRIMINATIVE PATTERNS (DPS)

The DPs problem can be defined as follows. Let D be a
database where D+ are positive examples (research target)
and D− the negative (other examples). DPs aim to find groups
where the presence of positive examples is disproportionate in
relation to negative. A DP is formed by one or more items
(features). Each item consists of a pair (attribute, value).
The universe of all possible items of D is given by I =
{i1, i2, ..., i|I|}. A three dimensionality DP, for example, can
be represented as follows: dp3 = {ia, ib, ic}, where dp3 ⊆ I .

The analysis of all possible DPs for a given problem is
usually an infeasible task. Thus, during the search process, the
DPs are evaluated automatically (using one or more evaluation
metrics). There are several types of evaluation metrics, but
there is no consensus about the best one. This choice often
depends on the problem or specialist convictions. In this way,
it is important that the DPs search algorithms accept different
options of evaluation metrics to meet user needs.

The metrics used to evaluate this work are described in
Table I, where TP and FP are true positives and false
positives DPs, k is the number of returned DPs and |D|,
|D+| and |D−| are number of the total, positive and negative
examples. Several other evaluation metrics can be found in [5]
and [7].
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TABLE I
DISCRIMINATIVE PATTERNS EVALUATE MEASURES.

Equation Description
Qg = TP

FP−g
, default g = 1 Trade off between TP and FP

[18]

WRAcc = TP+FP
|D| ( TP

TP+FP
− |D

+|
|D| ) Relative DP accuracy

[21]
DiffSup = | TP

|D+| −
FP
|D−| | Difference between positive

and negative support [9]
supp = TP

|D+| Average positive
support [12]

conf = TP
TP+FP

Confidence [7]

SUPP = 1
k

∑k

i=1
supp∗ Positive support by

set of DPs (D+ covered
percentage) [12]

size Average size of top-k DPs

The DPs search algorithm usually return the best DPs in
one of two ways: (1) based on constraints, where it returned
DPs with some constraint, as minimum support and minimum
confidence and (2) based on top-k, where it returned the k best
DPs determined according to a given quality function. Both
options have their relevance depending on the analysis goals,
but the top-k approach provides more flexibility for users [6].

There are several algorithms for DPs mining [5] [7]. The
use of thresholds parameters are often in these approaches.
However, setting values as minimum support and confidence
is not a simple task. If it is too large, the algorithm can not
return any results, if it is small can not represent a useful
constraint.

III. RELATED WORK

There are several DPs mining approaches based on Evo-
lutionary Computing [10]–[16]. However, most of the per-
formance tests on evolutionary approaches were directed to
problems with less than 40 attributes and none of them was
validated to thousand dimensionality order.

Some important features, as initial population, show that
some evolutionary approaches would have difficulty in high
dimensional databases. In [10]–[12] 75% of individuals are
generated up to 25% of items i ∈ I . Already [16] uses
between 1% to 50% of the attributes. This type of initialization
can be problematic in high dimensional databases. A problem
where |I| = 10000, for example, an individual using 5%
of I possibilities represent a DP with 500 dimensions. This
hardly represents a valid solution and may hinder the algorithm
convergence.

The individual representation is another example. In evolu-
tionary approach it is often the use of fixed size individuals
equal to |I| [10]–[12], [14]. But in high dimension problems
the items that are not used by best DPs is often more than 99%,
the most genes is zero. Other approaches using dynamic size
tree generated by grammars [15], [16], but to build grammars
can not be a simple process.

Another feature present in some evolutionary approaches is
the number and complexity of the parameters. Table II sum-

marizes some of the parameters required by six evolutionary
approach. The definition of such parameters is not a trivial
task and may hinder the use of these algorithms. It is also
common in current evolutionary approaches the user has no
control over the amount of DPs returned.

TABLE II
SUMMARY OF PARAMETERS USED BY 6 EVOLUTIONARY TECHNIQUES TO

SEARCH DISCRIMINATIVE PATTERNS.

Parameter SDIGA MESDF NMEEF EDER GP3 FuGeP
[10] [11] [12] [14] [15] [16]

Fitness X X X X X X
Linguistic X X X X

labels
Crossover X X X
Mutation X X X X

Population X X X X X X
Elite size X

Evaluations X X X
Generations X X X
Confidence X X X X

Support X
Sensitivity X

Total 6 7 7 4 4 8

Finally, few studies have considered the efficiency of evo-
lutionary methods with respect to processing time. In high
dimensional databases context, time is often critical. In the
next section is explained in detail SSDP algorithm, an evo-
lutionary approach that has as main features: (1) focused on
high dimensional problems, (2) uses only k and the metric
evaluation as external parameters and (3) it allows the user to
choose the number of DPs want to receive.

IV. SSDP: SIMPLE SEARCH DISCRIMINATIVE PATTERNS

SSDP uses important concepts of different search algo-
rithms, they are:
• In [22] was presented an evolutionary algorithm to

search Diverse-Frequent Pattern (a type of patterns si-
milar to DPs) in high dimensional databases. The al-
gorithm includes to the next generation the best in-
dividuals from old population Pold and others newly
created by genetic operators (Pc ← crossOver(Pold) and
Pm ← mutation(Pold)), where the size of populations
are equal (|Pold| = |Pc| = |Pm|). That is, Pnew

best(Pold, Pc, Pm). SSDP uses this process to generate
new populations.

• Beam Search is an efficient search strategy used in some
DPs algorithms, like Subgroup Miner [17], SD [18], CN2-
SD [19] and RSD [20]. There are two important features
in Beam Search algorithm. One is to initialize the search
from all one dimension DPs. This ensures that all items
i ∈ I are considered in the search. The other feature is
that the searches in the dimension d are made from the
best DPs smaller than d. In SSDP the initial population
is formed by all one dimension DPs and the genetic
operators expand the search to other dimensions.

• SD [18] is an algorithm that ensures that all DPs stored
along the search are relevant. A solution dpa is considered
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irrelevant to a set DP if there is dpb ∈ DP that
dpa covers a subset of the positive samples and all
the negative examples of dpb. With this concept the
algorithm eliminate redundancies among the top-k DPs.
SSDP algorithm uses this concept only for k best DPs.

The most important parts of the SSDP algorithm are de-
scribed below:

A. Representation
The individuals have variable size and represent only items

used by DP. Thus, each individual is represented by integers
(or index) that is the item position i in I . For example, dp =
{2043, 213} is a dp2 composed by items at position 2043 and
203 from I .

B. Initialization and population size
The initial population is composed of all one dimentional

possible DPs. That is, for each i ∈ I an individual is created
(dp1), where I is all possible items (attribute value pairs) in
the database. It represents a new way for initial population in
evolutionary approach for DP problem.

C. Genetic operators

• Crossover: there are two possibilities: (1) crossOverAND,
when two individuals unite their genes creating a new
individual (used only in the first generation) or (2)
crossOverUniform, where two individuals generate two
new by uniform crossover with 50% mixing ratio.

• Mutation: there are two possibilities: (1) a new item is
selected and added to the individual or (2) an old gene is
replaced by new item. Both options with 50% probability.

• Selection: by binary tournament.
In each generation n new individuos are generated ex-

clusively by crossover and other n exclusively by mutation.
That is, SSDP considers the same importance to mutation
and crossover operators. This is because, besides providing
diversity, mutation is used to find unlikely DPs.

D. Stopping criterion
The algorithm stops when there are no changes in the top-k

DPs for three consecutive generation.

E. Parameters and fitness
SSDP does not use some common parameters of other evo-

lutionary DPs mining approaches, as mutation and crossover
rate, population size and minimal support. It uses only two
easily adjustable external parameters, they are:
• k: number of DPs returned to the end of the process.

The k allows the user to have control over the amount of
information that he wants to receive. It is also an intuitive
parameter and does not require technical knowledge.

• Evaluating measure: function to evaluate DPs quality. The
more functions, the more the algorithm becomes flexible
for the user. SSDP theoretically allows the use of any
objective function. Currently SSDP implementation has
the following possibilities: Qg , WRAcc and DiffSup.
The genetic algorithm uses the evaluating measure as
fitness.

F. Algorithm

SSDP works with five population, where P , Pc, Pm and P∗
size are |I| and Pk size is k. They are:
• P : current population.
• Pc: generated from P by crossover.
• Pm: generated from P by mutation.
• P∗: generated by best individuals of P , Pm e Pc. It does

not require that individuals are unique.
• Pk: keeps the best k individuals that are relevant. An

individual is considered irrelevant in relation to Pk if it
is a subset of positive and superset of negative examples
for any dp ∈ Pk.

SSDP algorithm starts for all dp1 possibilities and the ge-
netic operators expand the search to larger dimensions. Thus,
at first, the searches tend to be directed to larger dimension
as best fitness individuals are found. In a second moment the
individuals are becoming very specific, then, the fitness tends
to worsen and the algorithm can return the searches for smaller
dimension or converge.

The Algorithm 1 describes the SSDP approach. In it, the
kBestRelevants function returns the best relevant individuals.
Already the best function accepts repeated and not relevant
individuals as a way to reduce the computational cost.

Algorithm 1 SSDP pseudocode
Require: k, ObjectiveFunction
P all dp1 possibilits (i ∈ I)
Pk kBestRelevants(P )
while Pk not improve three times in a row do

if generation == 1 then
Pc crossOverAND(P )
P∗ best(P, Pc)

else {generation > 1}
Pc crossOverUniform(P )
Pm mutation(P )
P∗ best(P, Pc, Pm)

end if
update(Pk, P∗)
P P∗

end while
return Pk

V. EXPERIMENTS

The experiments start from 21 original microarray
databases, described in Table III. Such databases are available
in the package datamicroarray [4] from R software [23]. For
each database the majority class was considered the target of
searches (p) and other examples were labeled as negative (n).
The attributes of databases are all numeric. They have been
discretized using methods based on frequency and width by
2, 4 and 8, totaling 126 discretized databases.

Each experiment was repeated 30 times, with the objective
function Qg (g = 1) and K = {5, 10, 20, 50}. SSDP perfor-
mance was compared to the following algorithms:
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TABLE III
MICROARRAY DATABASES DESCRIPTION

Name No Examples No Attributes No Labels
alon 62 2,000 2
borovecki 31 22,283 2
burczynski 127 22,283 3
chiaretti 111 12,625 2
chin 118 22,215 2
chowdary 104 22,283 2
christensen 217 1,413 3
golub 72 7,129 3
gordon 181 12,533 2
gravier 168 2,905 2
khan 63 2,308 4
nakayama 105 22,283 10
pomeroy 60 7,128 2
shipp 58 6,817 2
singh 102 12,600 2
sorlie 85 456 5
subramanian 50 10,100 2
sun 180 54,613 4
tian 173 12,625 2
west 49 7,129 2
yeoh 248 12,625 6

• Random1M e Random2M: one and two million DPs
randomly generated. The purpose of this comparison is
to validate SSDP heuristic.

• ExaustiveK: DPs with highest fitness among all combi-
nations of up to four dimensions, but using only the k
best items. The purpose of this comparison is to validate
the SSDP ability to find non-trivial DPs.

• SD-adapted: SD algorithm was adapted to search the
same types of rules of SSDP approach. The SD is based
on Beam Search. The aim is to confront SSDP with
a competitive classical SD mining approach. SD used
the following parameters: beamWidth = 2 ∗ k and

minimumSupport =

√
|Dp|
|D| , as indicate by author [18].

VI. RESULTS

The results were divided into two parts. In first part the aim
is to evaluate the SSDP search strategy. In the second the aim
is to evaluate SSDP performance.

A. Validation SSDP search strategy

SSDP starts the search considering all items possibilities
i ∈ I . Table IV shows the average size frequency of top-50
DPs from 126 databases. In 18 of them the top-50 DPs were
found exclusively in the first dimension. At the same time, in
15 of them the average size was above 3. This shows that is
unpredictable to know what dimensions are the best DPs. In
this context, boot searches by the size of d = 1 and evolve
into other dimensions d prioritizing the well evaluated DPs
seems to be an effective strategy.

Figure 1 shows the evolution of DPs average size in popula-
tions P and Pk, for k = 50 from West database. So, in the first
generation P and Pk are just dp1. After that poorer quality dp1
are replaced by higher best quality DPs. The P behavior shows
that SSDP tends to evolve searches for larger dimensions but it
can change the direction to smaller dimensions when required.

TABLE IV
AVERAGE SIZE FREQUENCY OF TOP-50 DPS IN 126 microarray DATABASES

Average size Frequency
[1;1] 18
(1;2] 54
(2;3] 39
(3;4] 14
(4;5] 1

Fig. 1. DPs average size evolution in populations P and Pk , for k = 50
from West database.

B. Performance Analysis

Figure 2 and Figure 3 show respectively the average Qg and
time from SSDP, SD, Random1M, Random2M and ExaustiveK
for K = {5, 10, 20, 50} in 126 microarray databases. SSDP
and SD obtained better average Qg then random approach for
all k values. The SSDP processing time is close to Ramdom2M
for all k value, while SD used more time them Ramdom2M
for k = {20, 50}. So, at first analysis it is possible to validate
the heuristic SSDP. SSDP obtained better results than random
approaches with closed time processing.

At second analysis it is possible to validate the SSDP
regarding the ability to find nontrivial relevant DPs. Figure 2
shows that SSDP obtained better average Qg then ExaustiveK
for all k value. This feature also applies to the SD algorithm.

Finally, the comparison with the SD approach shows that
SSDP is a promising approach in the context of top-k DPs
for high dimensional databases. This is because the SSDP got
considerably better DPs for all k values with time process
slightly higher to k = {5, 10} and a bit less for k = {20, 50}.

It is still applied the Wilcoxon test to evaluate if the per-
formance between SSDP and SD was statistically significant.
The Wilcoxon is a non-parametric test that has been indicated
and used for performance analysis between two algorithm [24]
[16]. Table V shows the result. In this way the null-hypothesis
that SSDP perform equally well as SD are rejected for all k
values for level of significance α = 0.01.

An important differential of heuristics in DPs mining pro-
blem is the search capability in larger dimensions. Figure 4
shows the average size of top-k DPs for k = {5, 10, 20, 50}
from all algorithms. It shows the more successful of SSDP in
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Fig. 2. Qg average for SSDP, SD, ExaustiveK, Random1M and Random2M
in 126 microarray databases for different k values.

Fig. 3. Time average for SSDP, SD, ExaustiveK, Random1M and Random2M
in 126 microarray databases for different k values.

larger dimension search for all k values. That is the probably
explanation for more SSDP superiority over other algorithms.

Finally, Figure 5 shows the percentage of samples covered
by top-k DPs for different values k. The tested approaches is
not intended to cover all the positive examples, four of them
obtained SUPP > 80% for k = 5 and SUPP > 90% for
k ≥ 10.

The exact values of Qg , time, size, SUPP average
and other metrics as support and confidence average in
all databases for K = {5, 10, 20, 50} can be seen in Ta-
bles VI,VII,VIII and IX, respectively. It can be seen that SSDP
also obtained DPs with greater confidence and support for all
k values.

TABLE V
RESULTS OF THE WILCOXON TEST BETWEEN SSDP AND SD

K p-value Hypothesis
5 1.67E-13 Rejected by SSDP

10 5.42E-12 Rejected by SSDP
20 4.29E-10 Rejected by SSDP
50 0.0005933 Rejected by SSDP

Fig. 4. Average size for SSDP, SD, ExaustiveK, Random1M and Random2M
DPs in 126 microarray databases for different k values.

Fig. 5. Positive support by set of top-k DPs returned by ExaustiveK,
Random1M and Random2M DPs in 126 microarray databases for different
k values.

TABLE VI
Qg , time, size, supp, conf AND SUPP AVERAGE FOR 126

MICROARRAY DATABASES FOR k = 5.

K = 5
Algorithm Qg time size conf supp SUPP

SSDP 33.12 9.40 2.04 1.00 0.53 0.83
SD 26.73 3.34 1.40 1.00 0.45 0.79

ExaustiveK 22.57 0.14 1.35 0.99 0.42 0.78
Random1M 24.49 4.87 1.64 1.00 0.42 0.82
Random2M 25.16 11.32 1.67 1.00 0.43 0.83

TABLE VII
Qg , time, size, supp, conf AND SUPP AVERAGE FOR 126

MICROARRAY DATABASES FOR k = 10.

K = 10
Algorithm Qg time size conf supp SUPP

SSDP 32.82 11.06 2.18 1.00 0.53 0.90
SD 26.71 7.25 1.51 1.00 0.44 0.86

ExaustiveK 22.74 0.14 1.44 1.00 0.41 0.87
Random1M 22.88 4.81 1.68 1.00 0.39 0.91
Random2M 23.61 11.23 1.71 1.00 0.41 0.92

VII. CONCLUSION

Microarray databases are having a revolutionary impact
on molecular biology. But microarray databases are an high
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TABLE VIII
Qg , time, size, supp, conf AND SUPP AVERAGE FOR 126

MICROARRAY DATABASES FOR k = 20.

K = 20
Algorithm Qg time size conf supp SUPP

SSDP 31.89 13.33 2.27 1.00 0.52 0.94
SD 27.03 16.97 1.65 1.00 0.45 0.90

ExaustiveK 22.31 0.17 1.54 1.00 0.39 0.92
Random1M 21.07 5.29 1.72 0.99 0.37 0.96
Random2M 21.71 12.53 1.74 0.99 0.38 0.97

TABLE IX
Qg , time, size, supp, conf AND SUPP AVERAGE FOR 126

MICROARRAY DATABASES FOR k = 50.

K = 50
Algorithm Qg time size conf supp SUPP

SSDP 30.30 14.55 2.31 1.00 0.49 0.96
SD 27.62 51.81 1.79 1.00 0.45 0.93

ExaustiveK 21.79 0.81 1.73 1.00 0.38 0.95
Random1M 18.77 5.36 1.80 0.99 0.33 0.99
Random2M 19.52 12.46 1.81 0.99 0.35 0.99

dimension problem. Discriminative Patterns (DPs) aims to find
humanly interpretable subgroups where the presence of a label
vs. others is exaggerated. However, mining best DPs in high
dimensional databases is often computationally infeasible. In
this context, several evolutionary approaches were developed,
but with little focus on high dimensional databases. They
also often use many complex parameters and the user has no
control over the amount of returned DPs.

This paper presented the SSDP, an evolutionary approach to
search the top-k DPs adapted to high dimensional databases
that use only two easily adjustable external parameters and
the user can control the number of DPs returned. SSDP has
as main concepts features: (1) the evolutionary strategy using
concepts of Beam Search and (2) the simple and efficient way
to represent individuals.

SSDP was validated as heuristic and the ability to find
nontrivial DPs. The proposed approach also is superior to SD,
a classical and competitive algorithm based on Beam Search.
This work also showed the SSDP ability to change the focus
of the search for larger or smaller as needed.

Finally, this study is being expanded to: (1) evaluate SSDP
in other types of problems, (2) compare performance with
newer approaches and (3) further experiments with statistical
tests.
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