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ABSTRACT

The Internet of Things has the potential of transforming health systems through
the collection and analysis of patient physiological data via wearable devices and sensor
networks. Such systems can offer assisted living services in real-time and offer a range
of multimedia-based health services. However, service downtime, particularly in the case
of emergencies, can lead to adverse outcomes and in the worst case, to death. In this
dissertation, we propose an e-health monitoring architecture based on sensors that relies
on cloud and fog infrastructures to handle and store patient data. Furthermore, we pro-
pose stochastic models to analyze availability and performance of such systems including
models to understand how failures across the Cloud-to-Thing continuum impact on e-
health system availability and to identify potential bottlenecks. To feed our models with
real data, we designed and built a prototype and executed performance experiments. Our
results identify that the sensors and fog devices are the components that have the most
significant impact on the availability of the e-health monitoring system, as a whole, in the
scenarios analyzed. Our findings suggest that in order to identify the best architecture to
host the e-health monitoring system, there is a trade-off between performance and delays
that must be resolved.

Keywords: Cloud computing. Edge computing. Fog computing. Availability and perfor-
mance evaluation. E-health systems.



RESUMO

A Internet das Coisas tem o potencial de transformar sistemas e-health através da
coleta e análise de dados fisiológicos do paciente através de dispositivos vestíveis e redes
de sensores. Tais sistemas podem oferecer serviços de monitoramento em tempo real e
oferecer serviços de saúde baseados em multimídia. No entanto, o tempo de inatividade
do serviço, particularmente no caso de emergências, pode levar a resultados adversos e,
no pior dos casos, à morte. Nesta dissertação, foi proposta uma arquitetura de moni-
toramento de e-health baseada em sensores que dependem de infra-estruturas de cloud
e fog para manipular e armazenar dados de pacientes. Além disso, modelos estocásti-
cos foram propostos para analisar a disponibilidade e o desempenho de tais sistemas,
incluindo modelos para entender como as falhas desde os dispositivos edge até a nuvem
afetam a disponibilidade do sistema e-health e para identificar possíveis gargalos. Para
alimentar os modelos com dados reais, um protótipo foi projetado e construído com o
intuito de executar experimentos acerca do desempenho do sistema e-health. A partir dos
resultados, é possível identificar que os sensores e dispositivos fog são, de maneira geral,
os componentes que mais impactam na disponibilidade do sistema e-health nos cenários
analisados. Além disso, é possível concluir que para identificar a melhor arquitetura para
hospedar um sistema e-health, é necessário encontrar um equilíbrio entre o desempenho e
a latência.

Palavras-chaves: Computação em Nuvem. Computação nas Bordas. Computação em
Névoa. Avaliação de disponibilidade e desempenho. Sistemas de Saúde.
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1 INTRODUCTION

Over recent years, the Internet of Things (IoT) has changed the way we interact with
objects around us. The idea of the “connected world”, where simple things may sense,
actuate, and interact with others automatically is now possible in the emerging context
of IoT (WORTMANN; FLÜCHTER, 2015). The consolidation of IoT leverages the low cost
of microprocessors and other hardware that are embedded into things, and the possibility
of connecting them to the Internet (AL-FUQAHA et al., 2015). Thus, these objects can
potentially send and receive information to devices located anywhere in the world.

This paradigm allows the utilization of smart objects (with communication and pro-
cessing capacities) in several scenarios, and consequently new applications and business
models can emerge. For example, IoT is intrinsically related with smart cities (RAMIREZ et

al., 2017). Here, a set of different sensors are scattered across a city collecting information
about several of its aspects including for example temperature, humidity levels, traffic
density, air quality, among others. Such information can be used for decision making and
management improvement, in order to ensure the quality of the services offered for the
city population (ZANELLA et al., 2014). Another application is in the e-health sector (IS-

LAM et al., 2015), where sensors can be used in a hospital to monitor, collect and process
vital patient data more efficiently. In addition, placing sensors inside the home, on per-
sonal items, allows the monitoring of relevant aspects about patients health condition and
could be used to trigger alarms or prompt for remote actions by appropriate assistance
procedures (AMENDOLA et al., 2014). IoT can be also applied in a smart home context,
where it can be used from locking and security systems for residences (HO et al., 2016)
to more sophisticated residential automation systems (JACOBSSON; BOLDT; CARLSSON,
2016).

However, as IoT is generally characterized by small devices (things), its applications
suffer from limited computational (storage, network, and processing) capacity, and conse-
quential issues regarding reliability, performance, and security (BOTTA et al., 2014). The
integration between IoT infrastructure with cloud computing data centers is proposed to
mitigate these IoT weaknesses and also to expand the IoT coverage. According to (MARI-

NESCU, 2017), cloud computing provides “unlimited” computing resources on demand,
such as networks, servers, storage, applications, and services, where the customer will pay
according to usage. Thus, the sensors and objects present in smart environment can send
data to cloud infrastructures with the purpose of processing and storage, freeing the IoT
devices from this task.

Note that the integration between IoT and cloud computing may lead to problems
for delay sensitive applications. For instance, in traffic monitoring and e-health systems,
where data need to be analyzed and is streamed uninterruptedly, a high delay to receive
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data can compromise performance and availability of associated applications. A case in
the point where this problem emerges is when the IoT devices send data to the cloud
data center (via the Internet), which is often geographically distant. In this context, Edge
computing was proposed to cope with this limitation. Edge computing gives smart end-
devices local computing capability, through gateways and devices with limited computing
capacity (M. FELDMAN R. et al., 2017). Thus, not all data needs to be sent to the cloud,
and can be stored and processed temporarily by devices at the edge.

Although edge computing provides computational capability to the final user devices,
this computational power is limited to more robust applications, which require greater
computational power. Examples of such demanding applications include medical analysis
based on machine learning algorithms, where classifiers are used to categorize patient
data. Another example can be found in the smart cities context where large amounts of
data are continuously generated and require further processing and storage (ZANELLA et

al., 2014). In summary, the fog computing paradigm brings cloud characteristics to the
edge of the network. Fog computing provides virtualized computational resources; such
as storage, processing, and network, to the edge of the network, and consequently, more
closer to edge devices (TSAI et al., 2017). The fog layer is located between the edge devices
(sensors, gateways, and micro-controllers) and the cloud (offering“unlimited” resources of
distributed data centers) (M. FELDMAN R. et al., 2017).

As a result, cloud computing appears as a mature technology capable of offering en-
hanced processing and storage power, while also benefiting IoT applications from scalabil-
ity, high performance, and availability; while fog computing extends the cloud paradigm
to the edge of the network, enabling a new breed of applications and services (VAQUERO;

RODERO-MERINO, 2014; BONOMI et al., 2012). Figure 1 shows an illustrative scenario in-
tegrating edge and fog devices with a cloud computing infrastructure.

This integration improves the performance, integrity, and the availability of the IoT
applications, and provides a complete and robust environment for these applications. The
integrated cloud and fog infrastructures can truly act as an unlimited and optimized
computational platform for IoT applications. As such the availability of cloud services
and fog devices becomes more crucial in this scenario. Now, IoT applications’ availability
can be impacted by several additional factors, such as failures of the own IoT and fog
devices, and also by interruptions on cloud data center infrastructure (including outages
on Information Technologies (IT) components, and those related to cooling and power
infrastructures). The impact of these failures can be exacerbated by the complexity, in-
terdependencies and interconnectivity of the overall integrated system.

Moreover, depending on the nature of an IoT application, unavailability (even if it
only lasts few seconds) can lead to great misfortunes. Let’s consider the adoption of
IoT systems in the e-health application to facilitate the daily monitoring of people with
chronic medical conditions. IoT systems can bring many new opportunities to medical IT,
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Figure 1 – IoT system integrated with edge,fog and cloud applied in a smart city scenario

allowing the collection of patients’ vital data via wearable devices and sensor networks,
offering multimedia-based health services, and providing assisted-living services in real-
time (BOTTA et al., 2016). However, as it is considered a critical application, if the service
is unavailable when a patient suffers a sudden health emergency, this could lead to a loss
of life; for this type of application, every second is precious to save a life.

Despite the ease of integration between cloud and fog computing systems (usually
as they use the same resources types, such as networking and computing, and share
same mechanisms, such as virtualization), the integration/extension is a non-trivial one
in that there exist some fundamental differences between the two. Fog paradigm has been
conceived to address applications and services that do not fit well the cloud computing
paradigm (BONOMI et al., 2014). For instance, authors in (BONOMI et al., 2014) state that
fog computing better suits applications that require very low and predictable latency,
geo-distributed applications, fast mobile applications, and large-scale distributed control
systems. Due to the complexity of the integration between IoT, fog and cloud computing
devices, a number of problems can arise and impact the performance and availability of
services hosted on such infrastructures. Thus, mechanisms that aim to evaluate metrics
of interest about IoT applications are relevant.

In this context, mathematical models are needed to evaluate some relevant metrics
regarding the integration between edge, fog, and cloud; and the applications running in
infrastructure. Models can be created to evaluate, for instance, the availability of appli-
cations, in a scalable way and at a low cost. In addition, they should identify failure
causability, and identify the most critical infrastructure components used by an applica-
tion (ENDO et al., 2017).
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1.1 MOTIVATIONS

Although the integration between edge, fog, and cloud computing provides a complete
and more robust architecture for IoT applications, several problems may emerge. Taking
into account the security (YI; QIN; LI, 2015), replicating application data across multiple
layers can represent a risk as more attack points are added for possible misuse (MOHSIN

et al., 2017). Another aspect that deserves attention is application performance(YANG; LI;

CHENG, 2014). The current architecture contains three separate layers where the data
can be processed: edge, fog, and cloud. Depending on the type of application, edge nodes
can send the data to be processed in the fog, and stored in the cloud (BORTHAKUR et

al., 2017). Another possibility is that fog nodes may act as gateways that store a set of
data to be sent to the cloud. In summary, there are several possibilities that have to be
analyzed carefully by the application designer (RAHMANI et al., 2018).

Other issues may arise regarding the availability of the IoT application being deployed.
Despite fog and cloud computing offering greater availability and resilience (BAKER et al.,
2013) (LINDSTRÖM et al., 2014), they can also be viewed as vulnerabilities or potential
points of failure. Thus, in addition to device/end point failure, we now also need to pay
attention to fog node and cloud infrastructure failures. While cloud and fog integration
is relatively well known and shares common technologies, the integration/extension with
IoT is a non-trivial task, mostly due to massive device heterogeneity and service require-
ments. Furthermore, the availability has a direct impact on the performance of these
applications, once requests cannot be processed during applications downtime. In other
words, attempting to increase the availability of IoT applications by exploring and un-
derstanding the cause of failures, can result in the improvement of performance of their
applications.

Modeling techniques can be used to represent states and behaviors of complex systems.
Such models can be solved analytically or by simulations in order to analyze metrics of
interest without the need to consider the complete system (ARDAGNA et al., 2014). In
addition, it is possible to vary model parameters and configurations in a simple way and
to see the impact on their output. Thus, it is possible to create models that represent
IoT applications, which rely on edge, fog and cloud computing infrastructures, in order
to evaluate their availability and performance.

Hence, taking into account the scenario proposed, we have the research problem: “How
can we evaluate questions about the availability and performance of e-health systems that
rely on edge, fog, and cloud computing infrastructures?”. Therefore, this dissertation pro-
poses a set of models to analyze IoT applications, with focus on their availability and
performance. These models take into account the integration of edge, fog, and cloud ar-
chitecture. The interest metrics which will be evaluated in the models are availability and
metrics related to performance of the applications, that are relevant aspects to the final
user of these applications.
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In addition, a simple prototype is proposed in order to execute some experiments with
the purpose of obtaining real data to feed the stochastic models.

1.2 OBJECTIVES

Considering the motivations described previously, the main objective of this dissertations
is to propose a set of models to represent IoT applications that rely on edge, fog, and
cloud applications. The models proposed can cover several domain applications and can
be adapted for a specific scenario according to the necessities. We propose models to
evaluate the availability and performance of cloud data centers, fog, and edge devices;
and integrate them. In addition, the models can be used to identify bottlenecks of IoT
applications. The e-health application scenario is evaluated as case study. The specific
goals of this dissertation are:

• Define an architecture to represent IoT applications in edge, fog, and cloud context;

• Propose models to evaluate the availability of IoT applications, based on edge, fog,
and cloud infrastructures;

• Perform sensitivity analysis to find the critical components that influence the avail-
ability of IoT applications;

• Build a prototype with the purpose of measuring real data to feed the performance
models; and

• Propose performance models and integrate them with availability models in order
to evaluate the impact of downtime in performance of IoT applications.

1.3 ORGANIZATION OF THE DISSERTATION

The reminder of this document is organized as follow:
Chapter 2 describes some basic concepts about edge, fog, and cloud computing in-

tegration. The overall architecture presents a number of technologies where each one
complements the weaknesses of others. This chapter also describes the basic concepts
about each of the three related technology, namely, edge, fog and cloud. Next, some main
concepts about availability are explored and a brief description of modeling techniques
is given, with the focus on techniques used in this dissertation. Finally, we present the
concepts relevant to sensitivity analysis.

Chapter 3 first presents the scenario explored in this dissertation. As a result, the
models about availability of cloud data centers are presented. Next, the integration be-
tween edge, fog, and cloud models is detailed. As a result, the performance model to
represent IoT applications is described. Finally, this chapter presents the prototype built
to measure data from our models.
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Chapter 4 shows the results obtained from cloud availability models. Results about
availability and sensitivity analysis are presented. Some related works are discussed as
well. Finally, some considerations are made regarding these results.

Chapter 5 describes the results obtained for the integrated scenario. First, the results
obtained from our prototype are presented. In other words, the availability and sensitivity
analysis results from integrated model are shown. After feeding the performance model
with results obtained from the prototype, the performance results are explained. Finally,
related works and some considerations about results are offered.

Chapter 6 shows the conclusions of this dissertation, the main contributions, and
future works.
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2 BACKGROUND

This chapter describes some basics concepts needed to understand the models proposed in
this dissertation and their evaluations. Here, we present some IoT, fog and cloud comput-
ing definitions, the role of each one in a scenario, and how they can be integrated. Next, we
introduce some concepts about availability of systems. In addition, some modeling tech-
niques that can be used to represent complex systems are explained. Finally, sensitivity
analysis techniques applied to identify critical components in systems are presented.

2.1 EDGE, FOG, AND CLOUD COMPUTING INTEGRATION

2.1.1 Internet of Things (IoT)

The first IoT definition was mentioned in 1999, by Kevin Ashton, relating it with Radio-
Frequency Identification (RFID) systems. In summary, IoT was associated to identifica-
tion systems where objects are identifiable uniquely using RFID (LI; XU; ZHAO, 2015).
However, this concept has evolved over the years, new technologies and communication
protocols have been incorporated into IoT; new types of objects have been connected,
and new scenarios and business models emerged. Currently, IoT is capable of intercon-
necting billions or trillions of heterogeneous objects through the Internet (AL-FUQAHA et

al., 2015). Authors in (BUYYA; DASTJERDI, 2016) define that the IoT paradigm

“promises to make “things” including consumer electronic devices or
home appliances, such as medical devices, fridge, cameras, and sensors,
part of the Internet environment. This paradigm opens the doors to new
innovations that will build novel type of interactions among things and
humans, and enables the realization of smart cities, infrastructures, and
services, for enhancing the quality of life and utilization of resources.”

Therefore, IoT gives to simple objects capacity of see, hear, think, and perform tasks
by having them “talk” together, with the purpose to share relevant information and take
coordinated decisions (AL-FUQAHA et al., 2015). These capabilities allow the emergence
of sizable IoT scenarios and applications. IoT supports situated sensing, i.e. the ability
to collect information about natural phenomena, or user habits and offer these as a high
level tailored service. These applications can be classified in three major domains (BORGIA,
2014):

• Industrial domain: monitoring industrial plants, farm registration management,
shopping operation, real-time vehicle diagnostic, etc.

• Smart city domain: road condition monitoring, traffic management, energy man-
agement, sustainable mobility, comfortable living, etc.
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• Health well-being domain: medical equipment tracking, smart hospital services,
elderly assistance, (remote) monitoring medical parameters, etc.

Nevertheless, the IoT utilization may suffer some limitations and problems. Over the
years, several hardware platforms were developed to connect sensors (including Arduino,
WiSense, BeagleBone, etc). There is clearly the presence of a wide range of heterogeneous
devices. Consequently, many software platforms are utilized to provide IoT functionality.
This heterogeneity (both software and hardware) makes it difficult to seamlessly imple-
ment IoT in several scenarios (AL-FUQAHA et al., 2015). In addition, the hardware used
by these objects is very limited in terms of the supported computational resources (CPU,
memory, and storage). This is understandable as such devices need to be inexpensive to
be used on a large scale. According to Cisco, as many as 20 billion objects are expected
to see global deployment by the end of 2020 (EVANS, 2011). This clearly will generate
huge amounts of data which cannot be processed or stored on IoT devices because of
their limiting capabilities. In this context, cloud computing provides the computational
capacity required for IoT devices.

2.1.2 Cloud computing

Currently, essential services (such as water, energy, gas and telephony) are provided in
“unlimited” form such that customers can easily gain access to these utilities and pay
according to their usage. Under the cloud computing paradigm, computing has become a
similar utility service. Cloud computing provides simple access to computational resources
from anywhere in the internet (BUYYA et al., 2009). According to National Institute of
Standards and Technology (NIST) (MELL; GRANCE et al., 2011),

“cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction.”

For the cloud clients, this paradigm is very attractive because it delivers “unlimited”
computing resources under a pay-as-you-go business model. Thus, customers benefit from
reduced costs associated with infrastructure and the management of equipment and are
free to concentrate on their business (BUYYA et al., 2009) (TOOSI; CALHEIROS; BUYYA,
2014).

Cloud computing and IoT can be seen as two complementary technologies, where cloud
provides to IoT applications the computational resources (e.g., processing and storage)
needed to devices (BOTTA et al., 2014). For instance, in smart city scenarios that generate a
huge data quantity, this data can be sent to a cloud infrastructure for storage for posterior
analysis using sufficient computational power.



23

The cloud computing essential characteristics are defined in (MELL; GRANCE et al.,
2011):

• On-demand self-service: the computational resources are provided according
with customer demand, without the need for human interaction and automatically.

• Broad network access: the resources are available over the network and can be
accessed by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets,
laptops, and workstations).

• Resource pooling: a provider’s computing resources are made available in the form
of a pool, where these resources (physical or virtual) are allocated and reallocated
among customers according to demand.

• Rapid elasticity: the capabilities can be released elastically and provisioned, ac-
cording to demand. For customers, resources appear to be unlimited and can be
appropriated any time and in any quantity.

• Measured service: The utilization of resources can be monitored, controlled, and
reported by the customers, maintaining the transparency of for both the provider
and consumer of the utilized service.

Overall, the infrastructure of cloud computing is formed by geo-distributed data cen-
ters (TOOSI; CALHEIROS; BUYYA, 2014). A common data center can be composed into
three main subsystems: power subsystem, cooling subsystem, and IT subsystem. The
power subsystem is made up of equipment needed to power the other data center equip-
ment in an uninterrupted manner. The cooling subsystem is responsible for removing the
heat generated by the data center equipment in order to avoid damages of IT equipment.
Finally, IT equipment is made up of servers, storage units and network equipment, where
applications and cloud services execute (BARROSO; CLIDARAS; HÖLZLE, 2013). Figure
2 illustrates the relationship of these subsystems. In this dissertation we focus on the
TI! (TI!) infrastructure, since it is the main subsystem of the data center and where
applications and services are executed.

Currently, there are some standards that define the fundamental aspects, recommenda-
tions, and best practices to plan and build data centers, taking into account their availabil-
ity. The ANSI/BICSI-002 (DESIGN, 2011), defined by the Building Industry Consulting
Service International (BICSI), and the TIA-942 (ASSOCIATION et al., 2006), elaborated
by the Telecommunications Industry Association (TIA), are the main existing data cen-
ter standards. Both standards classify data centers according to a number of levels with
increasing availability: TIA-942 refers to them as tiers (from I to IV), while BICSI-002
defines these as classes (ranging from 0 to 5). As the two first classes of BICSI-002 are
compatible with the first tier of TIA-942, reaching similar availability, in this dissertation
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Figure 2 – Subsystems of a generic data center

we will follow the architecture based on TIA’s tiers, from I to IV. In this dissertation, we
consider the TIA-942 to standard the cloud data centers.

Basically under the TIA-942 standard, a tier is different from another one due to
the number of used redundant components (i.e., 𝑁 means no redundancy; and 𝑁 + 1
means component redundancy) and distribution paths (i.e. single or multiple paths that
may be active or passive). Tier classification ranges from 𝐼 to 𝐼𝑉 . Higher tiers inherit
requirements from lower ones and are less susceptible to system disruptions (Tier II),
may avoid system disruptions (Tier III), or are fault tolerant (Tier IV). Higher tiers
provide greater availability, which results in higher costs and operational complexities.
Therefore, the tier selection depends on the business requirements, such as minimum
service availability, deployment costs, and downtime financial consequences.

Even though cloud computing provides the computational resources needed to IoT
application, this integration is not trivial, and some problems may emerge. Problems
related to security, privacy, legal and social aspects, and data generation are the most
critical challenges in this integration (BOTTA et al., 2016).

Another important point that is also impacted the hosted applications performance.
Applications with low latency requirements (e.g., online games, streaming applications,
augmented reality applications) may have performance affected by the delay caused by
the communication with the data center through the Internet (since data centers are,
eventually, geographically distant from IoT devices) (BONOMI et al., 2012; BOTTA et al.,
2016). This led to the emergence of the of the idea of bringing more computational capa-
bilities to devices located closer to user devices. As a result, the edge computing paradigm
was born to bridge this gap between IoT devices and cloud data centers.
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2.1.3 Edge computing

With the proliferation of IoT applications, a huge amount of data is generated at the
network edge. Not all data can be sent to the cloud especially in the case of applica-
tions sensitive to delay. As a result, local processing is necessary. For example, in the
autonomous vehicles scenario, around a gigabit data will be generated by a car every
second, and such data needs to be processed in real-time to make correct decisions (SHI

et al., 2016). Cloud computing cannot support bandwidth demanding IoT application as
it becomes a bottleneck over existing internet wide area network links. With the edge
computing paradigm, data processing occurs in part at the network edge, rather than
completely in the cloud (SHI; DUSTDAR, 2016).

According to NIST (M. FELDMAN R. et al., 2017), “edge is the network layer encom-
passing the smart end devices and their users to provide, for example, local computing
capability on a sensor, metering or some other devices that are network-accessible”. In
this dissertation, we are concerned with IoT devices located at the edge of the network
(for instance, sensors connected to microcontrollers) as end devices taking part in edge
computing.

Although edge devices offer a computing capability to local edge devices, normally
these devices are individually very limited. Edge devices have limited computational ca-
pabilities (e.g., CPU, memory), and when these devices are mobile, the battery factor
may limit further these (MAO; ZHANG; LETAIEF, 2016) (LUAN et al., 2015). While some
works aim to optimize resources of edge networks (SARDELLITTI; SCUTARI; BARBAROSSA,
2015) (YOU et al., 2017), a new paradigm emerges with the purpose of bringing the cloud
computing characteristics to the edge network: fog computing.

2.1.4 Fog computing

With the development of smart homes, smart cities, connected vehicular, smart agricul-
ture, among others, the IoT has received a lot of attention in the last years, and is consid-
ered a pillar of the future of the Internet. IoT applications relies on the support of cloud
computing, providing the infrastructure (hardware and software) needed by smart/edge
devices. However, IoT applications usually require geo-distribution, location-awareness
and low latency (YI; LI; LI, 2015). To solve this problem, fog computing has emerged as a
practical solution to enable the smooth convergence between cloud and edge devices for
content delivery and real-time data processing (LUAN et al., 2015).

According to NIST (IORGA et al., 2018):

Fog computing is a layered model for enabling ubiquitous access to a
shared continuum of scalable computing resources. The model facilitates
the deployment of distributed, latency-aware applications and services,
and consists of fog nodes (physical or virtual), residing between smart
end-devices and centralized (cloud) services. The fog nodes are context



26

aware and support a common data management and communication sys-
tem. They can be organized in clusters - either vertically (to support
isolation), horizontally (to support federation), or relative to fog nodes’
latency-distance to the smart end-devices.

Similarly to cloud computing, fog computing is a virtualized platform that provides
computation services, both hardware and software, between smart devices and traditional
cloud data centers (YI; LI; LI, 2015) (BONOMI et al., 2012).

The fog nodes are intermediate compute elements situated between smart end-devices
and cloud. These nodes may be either physical or virtual elements. Though fog is an ex-
tension of cloud, not all nodes are resource-rich. Some of these objects have limited com-
putation power, memory, and storage (e.g., smart TVs/set-top-boxes, gateways, switches,
routers, notebooks, and end-devices) (M. FELDMAN R. et al., 2017) (YI et al., 2015).

Frequently, fog and edge computing are considered interchangeable in some works.
However, there are key differences between them. Edge computing focus is towards the
things side and is defined by the exclusion of fog and cloud. While fog works closely with
the cloud, and focuses more on the infrastructure side. In addition, fog devices tend to
be limited devices, while at the same time it also addresses storage, networking, and data
processing (M. FELDMAN R. et al., 2017) (SHI et al., 2016).

Despite fog and cloud computing offer greater availability and resilience, once the
architecture becomes more complex, the number of vulnerability points and points of
failures increases. The availability aspect of the application can be impacted. Some IoT
applications are highly sensitive to downtime. For example, medical applications, where
vital data of patients are evaluated, need to work in an uninterrupted manner. A single
failure that can be translated into a downtime, even if for a few seconds, may have serious
consequences.

Therefore, the availability study of the architecture is necessary to understand how to
keep these IoT applications working as well correctly as possible.

2.2 AVAILABILITY CONCEPTS

To evaluate the availability of systems is an important aspect for those who offer ser-
vices. There is a need to improve this constantly (ENDO et al., 2017). A study of which
factors impact availability, and understanding how to mitigate such factors is important
to increase availability at a low cost.

However, it is worth emphasizing that availability is a concept that is part of a larger
one: that of the dependability. The dependability of a system is the ability of that system
to reliably provide a given service (ANDRADE et al., 2017). Dependability is a concept that
encompasses six mains non-functional requirements (AVIZIENIS et al., 2001):

• Reliability: the probability that a system will be provided a service without inter-
ruption, until a certain moment;
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• Availability: the capacity of the system readiness for provide correct service;

• Safety: is the absence of catastrophic consequences for end users and the environ-
ment in which the system is running;

• Confidentiality: is the absence of unauthorized disclosure or information leakage;

• Integrity: capacity of the system does not undergo improper changes in its working;

• Maintainability: capacity to undergo repairs and modifications.

In this dissertation, we focus only on availability analysis. The availability can be
defined as a measure of delivery of a correct service over time, even if the system does not
achieve its full capacity (ANDRADE et al., 2017) (FRANCO; BARBOSA; ZENHA-RELA, 2014).
Unlike reliability, which evaluates the probability of having a system working until a first
failure, availability takes into account the repair of system (maintainability concept). The
calculation of availability is given by Equation 2.1. Service uptime means that the system
is running and providing the service normally. Service total time represents the service
uptime plus the downtime of service. This downtime can represent time to detect a failure
and the repair time (ENDO et al., 2017).

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑈𝑝𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒
(2.1)

The time that the system works normally (uptime service) also is called time to failure.
So, given a period of time, e.g., one day, one week, one year; it is possible to calculate the
Mean Time to Failure (MTTF). This value is equivalent to uptime service in Equation
2.1. In addition, the total service can be defined as the sum between MTTF and the
Mean Time to Repair (MTTR). MTTR is a average of the time to repair the system,
and consequently, the time that the system is inoperable (ENDO et al., 2017) (MELO et al.,
2017). Equation 2.2 shows the calculus of availability using MTTF and MTTR concepts.

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑈𝑝𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒
= 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
(2.2)

Thus, the value of availability is given by a probability value, ranging between zero
and one. This value can be expressed as number of nines (calculated through Equation
2.3). For example, if in a period of one year, a system presents 0.9994% of availability, this
system has 3.2218 nines of availability, and was available 0.9994% of time and unavailable
the remaining 0.0006 of the time.

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑁𝑖𝑛𝑒𝑠 = 2 − log(1 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (2.3)
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To estimate the availability of a system is a hard task, due to the complexity it can
present. A system can be composed of several components, and estimate its availability
can take a long time in terms of processing. In addition, changes to its configuration or
adding more components onto a system can be hard to manually to track their effect on
availability (SIEWIOREK; SWARZ, 2017). Thus, several modeling techniques have arisen to
assist in assessing the availability of various types of systems.

2.3 MODELING TECHNIQUES

Understanding the behavior of given aspects of complex systems has always been of inter-
est to researchers. Several areas require mechanisms for easy representation and evaluation
to under-stand and verify their various aspects. In such situations, it is possible to build
a model representation of the real systems, which receives as input some basic system
parameters and calculates the behavior of the system under given conditions. Since the
model represents the behavior of the real system, it is possible to observe how the modifi-
cation of input parameters changes the state of the real system (KOROLYUK; KOROLYUK,
2012). Therefore, theses analytical models are a powerful tool for analyzing the behavior
of complex systems.

Many of the existing modeling techniques have their foundations in probability the-
ory. For example, in the analysis of the execution of an algorithm, under some input
parameters, the algorithm may take longer to run, while under other conditions, it may
be quicker to execute. For many problems, probabilistic analysis of the algorithm is likely
to be more useful (TRIVEDI, 2008).

In this dissertation, we use modelling approaches to evaluate IoT applications. Met-
rics, such as availability or those related to performance, can be estimated with theses
modelling techniques. These approaches can be classified as: non-combinatorial or state-
space models, and combinatorial or non-state-space models (TRIVEDI; SATHAYE; RAMANI,
2005). These approaches differ according to their modelling power, ease of use, and system
complexity, and will be explained below.

• Non-combinatorial or state space models: these models create the state space
structure that represents all states that a system can reach in its operation (e.g., fail-
ures and repair operations). They are efficient for representing and analyzing system
operations. Markov chains, markov regenerative processes, semi-markov processes,
petri nets, Stochastic Petri nets (SPN), and stochastic reward nets are examples
of state space models (DANTAS et al., 2012). However, when the system has a large
number of states, these approaches face a problem called state explosion, making
the built model difficult to solve. State explosion happens when a system has a very
large number of states, and their model becomes more complex to evaluate, taking
a long of time to solve (KUNTZ, 2006).
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• Combinatorial or non-state-space models: These techniques allow the repre-
sentation of the relationship between components of systems and subsystems. As
they are not based on the states of the system, they do not suffer from the prob-
lem of state explosion, and can represent systems with hundreds to thousands of
components. Fault tree, Reliability Block Diagrams (RBD), and reliability graphs
are examples of combinatorial models. Their disadvantage is that they do not allow
the modeling of complex system behaviors (e.g., concurrent processes, simultaneous
faults, etc) (TRIVEDI; SATHAYE; RAMANI, 2005) (ENDO et al., 2017).

In this dissertation, we use RBD and SPN to represent and analyze our scenarios.
Their combination captures the inter-dependencies of components and complex behaviors
of our system, and will be explained next.

2.3.1 Reliability diagram blocks (RBD)

RBD is a graphical representation of a system’s success logic using block structures
(VERMA; SRIVIDYA; KARANKI, 2010). RBD can be evaluated using analytical methods
to obtain system reliability and availability.

Figure 3 – RBD configurations

When all components of the system are strictly required for its operation, a failure of
one of them causes the overall system to fail. In this case, the components are arranged in
series, as shown in Figure 3.a. On the other hand, if the isolated failure of one component
does not interrupt or shut down the system (i.e., the component is redundant), the blocks
are disposed in parallel, as shown in Figure 3.b.

The availability can be defined as service uptime over total service time, where total
time is described as the sum of service uptime and service downtime. These concepts
can be associated with the average behavior of the system for the purpose of availability
calculation.

As shown in Section 2.2, the availability of each component, 𝐴𝑥, is calculated by
division of the MTTF and the Mean Time Between Failures (MTBF) of each component
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(Equation 2.4). The MTBF also is defined as the sum of MTTF and MTTR, indicating
the time between the detection of a failure and the detection of the next failure.

𝐴𝑥 = 𝑀𝑇𝑇𝐹𝑥

𝑀𝑇𝐵𝐹𝑥

= 𝑀𝑇𝑇𝐹𝑥

𝑀𝑇𝑇𝐹𝑥 + 𝑀𝑇𝑇𝑅𝑥

(2.4)

In this way, the availability of the overall system, in case of series combination, 𝐴𝑠,
can be calculated via Equation 2.5.

𝐴𝑠 =
𝑁∏︁

𝑥=0
𝐴𝑥 (2.5)

While the availability of overall system with components arranged in parallel can be
calculated using the Equation 2.6.

𝐴𝑝 = 1 −
𝑁∏︁

𝑥=0
𝐴𝑥 (2.6)

Considering that reliability, 𝑅(𝑡), is defined by Eq. 2.7, the reliability of the overall sys-
tem where the component are arranged in series, 𝑅𝑠(𝑡), can be calculated using Equation
2.8. Nonetheless, when the components of system are arranged in parallel, the reliability,
𝑅𝑝(𝑡), can be calculated using Equation 2.9.

𝑅𝑥(𝑡) = e−𝜆𝑥𝑡 (2.7)

Where, 𝜆 depicts the failure rate.

𝑅𝑠(𝑡) =
𝑁∏︁

𝑥=0
𝑅𝑥(𝑡) =

𝑁∏︁
𝑥=1

e−𝜆𝑥𝑡 (2.8)

𝑅𝑝(𝑡) = 1 −
𝑁∏︁

𝑥=0
(𝑅𝑥(𝑡)) = 1 −

𝑁∏︁
𝑥=1

(e−𝜆𝑥𝑡) (2.9)

Once the reliability is calculated, it is possible to obtain the MTTF of the system until
a given instant t using the follow equation (HØYLAND; RAUSAND, 2009):

𝑀𝑇𝑇𝐹 =
∫︁ ∞

0
𝑅(𝑡)𝑑𝑡 (2.10)

Finally, the MTTR of the overall system can be calculated by placing estimated avail-
ability and MTTF in the Eq. 2.4.

RBDs are commonly used due to their simplicity, but they are not suitable to model
behavioral aspects of a system (DANTAS et al., 2015). Therefore, Petri Nets can be used in
conjunction with RBDs in order to have a set of comprehensive models addressing aspects
of complex systems.
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2.3.2 Petri nets

Petri nets are a tool to model dynamic systems with features such as concurrency, syn-
chronization, communication mechanisms, deterministic, mutual exclusion, and conflict
(ANDRADE et al., 2017).

Formally, a Petri net N can be defined as a 5-tuple 𝑁 = (𝑃, 𝑇, 𝐼, 𝑂, 𝑀0), where
(MARSAN, 1988)(STOJIC, 2017):

• P is a finite, nonempty set of places 𝑃 = (𝑝1, 𝑝2, ..., 𝑝𝑚),

• T is a finite, nonempty set of transitions 𝑇 = (𝑡1, 𝑡1, ..., 𝑡𝑚),

• I a set of input arcs 𝐼 ⊂ 𝑃 × 𝑇 ,

• O a set of input arcs 𝑂 ⊂ 𝑃 × 𝑇 ,

• 𝑀0 is a initial marking (set of tokes assigned to places) (𝑚01, 𝑚02, ..., 𝑚0𝑛) of Petri
net.

A set of tokens assigned to places is called markup, and a markup represents a state
of the system. Transitions represent actions, which change from one state of the system
to another. The arcs connect the places to the transitions and vice versa, and they have
weights (GUIMARAES; MACIEL; JUNIOR, 2015). Petri nets also can have a weight function
w that assigns a positive integer into arcs of the net (ZUBEREK, 1991).

Considering a place 𝑃1 connected to a transition 𝑇1 by an arc with weight 𝑤, the
transition 𝑇1 will be enabled if the number of tokens in 𝑃1 is equal to 𝑤. Transitions
may have guard functions, which are additional conditions for triggering transitions. In
original Petri nets, there are only immediate transitions, that are represented by black
rectangles. This type of transition fires at the moment they are enabled.

A variation of the traditional Petri net was proposed with aim to introduce “tempo-
ral specifications such that the future evolution of the model, given the present marking,
is independent of the marking history”(MARSAN, 1988). For this, the sojourn times in
markings must be random variables. Now, the an array Λ = (𝜆1, 𝜆𝑛, ..., 𝜆𝑛) is added into
the 6-tuple with firing rates associated with the stochastic transitions. A variation of
SPN, called Generalized stochastic Petri nets (GSPN) was proposed adding the concept
of immediate transition, where it fires immediately after being enabled (STOJIC, 2017).
However, in most cases, the analysis of GSPN models involves this reduction to a SPN
model, then only the SPN gained importance, and we will use this term until the end of
the dissertation.

The stochastic transitions can have two different firing semantics: single server and
infinite server. In a single-server semantic, the firing of a transition are sequential and after
each firing, a new delay is sampled in the case of the same transition activated again. In
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infinite server semantics, a set of tokens present in one place is processed in parallel, each
with its own delay (BALSAMO; MARIN; STOJIC, 2015).

These SPN components are illustrated in Figure 4. A SPN can be converted to a
Continuous Time Markov Chain (CTMC) and resolved using numerical or analytic meth-
ods, or through simulation. For more information on SPN see (BAUSE; KRITZINGER, 1996).

Figure 4 – SPN components (a)Places, (b) sthocastic transtions, (c) immediate transi-
tions, (d) directed arcs, (e) inhibitor arcs, (f) token

We use RBD to model some dependencies present in servers hosted on cloud and
in the fog devices due to their simplicity and efficiency of computation (DANTAS et al.,
2015). However, it can not be used to represent systems with more complex behavior.
Thus, we use SPN to represent cloud, fog, and edge infrastructures in order to evaluate
aspects as performance and availability of IoT applications due to its modeling power to
represent dynamic systems with complex behaviors such as concurrency, synchronization,
and randomness (XIE et al., 2016).

2.3.3 Sensitivity Analysis

Numerical models are used in many fields to predict the response of complex systems.
However, as computer power increases the complexity of the models increases as well.
Generally, as the complexity of models increases the models output uncertainty increases
also due to randomness present in input parameters (VU-BAC et al., 2016). Therefore,
sensitivity analysis is a technique used to investigate how the variation of input parameters
can influence the output of numerical models (PIANOSI et al., 2016).

The sensitivity analysis techniques can be divided into two main categories: qualitative
and quantitative (PIANOSI et al., 2016). Qualitative methods provide a visual inspection of
the model predictions, for example through plots or representations of further distributions
of input parameters. On the other hand, sensitivity analysis via quantitative methods
associates input factors to a reproducible and numerical evaluation of its relative influence,
through a set of sensitivity indices.

There are many different quantitative methods such as differential sensitivity analysis,
factorial design, importance factors, or percentage difference (HAMBY, 1994). Differential
analysis can be used for several analytical methods such as Markov Reward Models,



33

Stochastic Petri Nets, and Queuing Networks. However, this technique may not properly
evaluate the sensitivity either in non-continuous domains or to methods for which is not
possible to derive closed-form equations. In these scenarios, the application of percentage
difference approach can overcome the problems (ANDRADE et al., 2017).

Percentage difference technique calculates the sensitive index for each input parameter
of a model from its minimum value to its maximum value, utilizing the entire parame-
ter range of possible values. Equation 2.11 shows the calculus of the index 𝑆, where
𝑚𝑖𝑛{𝑌 (𝜃)} and 𝑚𝑎𝑥{𝑌 (𝜃)} are, respectively, the minimum and maximum output values
that are computed when varying the input parameter 𝜃 over the range of the values of
interest (ANDRADE et al., 2017).

𝑆𝜃(𝑌 ) = 𝑚𝑎𝑥{𝑌 (𝜃)} − 𝑚𝑖𝑛{𝑌 (𝜃)}
𝑚𝑎𝑥{𝑌 (𝜃)} (2.11)

2.4 CONCLUDING REMARKS

We present in this chapter a set of concepts needed to understand the models proposed
in this dissertation. We present the concepts about the IoT and how applications can
benefit from the edge, fog and cloud infrastructures. Our e-health system architecture
used as base to create the models are based on these technologies. After, dependability
concepts are presented since we are concerned to evaluate the availability of e-health
systems. Afterwards, we present the theoretical explanation of the modeling techniques
that we used in this dissertation. Finally, we present the concept of sensitivity analysis
and its importance to evaluate parameters of models.



34

3 PROPOSAL

In this chapter we describe the proposed models. First, we present the IoT application
that we chose to model. We focus on e-health system context due its requirements such
as reliability, interoperability, and low-latency response (RAHMANI et al., 2018). However,
our models can be applied to other IoT scenarios with similar requirements.

We start with a description of the modeled architecture in this dissertation. This ar-
chitecture represents a generic e-health system that relies on edge, fog, and cloud infras-
tructures. Afterwards we describe the cloud models, while focusing on the IT subsystem,
where the applications will be hosted. We will explain the IT infrastructures variation
suggested to increase availability. Then we show how to integrate the cloud models with
the availability edge and fog infrastructures. Next, we detail the performance model pro-
posed to assess the performance metrics about the system. Finally, we will describe the
prototype that will be used to measured data from feed the performance model.

3.1 E-HEALTH MONITORING SYSTEM

The popularization of smart end devices, coupled with the advances in information and
network technologies in recent years, have made possible the development of cheaper and
more affordable health systems. IoT has played an important role in the evolution of
these systems, providing low cost sensors to monitor many aspects of a patient´s life
(CHIUCHISAN; COSTIN; GEMAN, 2014).

As stated previously, edge devices can use cloud computing to improve the availability
and performance of medical applications. For instance, Sierra wireless1 enables the connec-
tion between IoT devices and cloud computing infrastructure to collect and analyze real
time data from hospitals and home health monitoring devices (CHIUCHISAN; COSTIN; GE-

MAN, 2014). As an e-health monitoring system monitors a patient continuously, it collects
vast amounts of data that needs to be analyzed in relative real-time without interruption.
Significant delays in receipt of data can compromise the efficacy of an e-health application
and impact the patient’s well-being and health. In this case, according to (MELL; GRANCE

et al., 2011), fog is positioned to play a significant role in the ingestion and processing of
the data close to the source as it is being produced.

In this dissertation, we propose an architecture to represent the behavior of an e-health
monitoring system that relies on sensors, fog devices (such as Raspberry Pi2) and cloud
infrastructure (public or private cloud services) to process and store patients’ vital signs
data. Figure 5 presents our proposed architecture. We assume that patients have sensors
that collect the relevant vital data and these sensors are coupled to a microcontroller (such
1 https://www.sierrawireless.com
2 https://www.raspberrypi.org/
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as an Arduino3). In this case, use assume a microcontroller as a device which aggregate
the data of sensors and has connectivity to send them to be processed in most powerful
devices (cloud or fog infrastructures) (LIMAYE; ADEGBIJA, 2018). We also assume that
we have two different applications that consume collected data: (a) a fog application, and
(b) a cloud application. We refer to these applications as web applications.
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...

Patients

Microcontroller

Fog devices

Cloud provider
Cloud application

Fog application

Figure 5 – An e-health monitoring system architecture

The fog application checks the normality of the data and, in the case of an anomaly,
it may instigate an action, e.g., generate a call to an emergency service. Physiological
data may be sent to the cloud application for further processing, e.g., to train a machine
learning algorithm to examine a patient’s condition over time and to compare one patient
against a larger population to help doctors to provide better treatment4.

Given the architecture showed in Figure 5, we consider three different availability
scenarios (see Figure 6) in which our e-health monitoring system is implemented:

• Scenario 1: The e-health monitoring system availability depends on all compo-
nents of the system, i.e., a failure in any of them results in a system failure. This
scenario does not present redundancy and the two applications are complementary,
i.e., when one of them fails, the system becomes unavailable. Data is sent to fog
devices to perform some pre-processing that does not require large computational
capacity. Later, the data is sent from the fog device to a cloud server to complete
the processing and stored. A similar scenario is presented in (LI; OTA; DONG, 2018);

3 https://www.arduino.cc/
4 http://www.nvidia.com/object/deep-learning-in-medicine.html
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• Scenario 2: The e-health monitoring system relies only on the cloud application
and infrastructure to send patient vital signs data. As such, the system availability
estimation does not take in account the fog application and fog device; and

• Scenario 3: This scenario is similar to Scenario 2 but here the system relies only
on the fog application and infrastructure to receive the patient data; the e-health
monitoring system availability estimation does not consider the cloud application
and cloud infrastructure.
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Figure 6 – E-health monitoring system scenarios

We will model these different scenarios through SPN and RBD. First, we will model
the cloud data center with different configurations, with the purpose of increasing the
availability of services hosted in the cloud. Next we will integrate the cloud with fog and
edge devices using simplified building blocks in SPN.

These models can be used for hospitals to design new services and improve the patient
experience. For example, the hospital may provide a ambient assisted living service for
the patients, where a set of sensors in the patient house collect the data about the patient
health, thus the doctor can evaluate these data that is stored in the cloud computing
infrastructures. Another possible scenario is to automatically monitor (through cloud-
hosted services) several patients in a hospital, without the need for a professional to be
accompanied by each patient in person (RAHMANI et al., 2018). However, these applications
must the be designed carefully to provide the service properly in order to avoid critical
problems for the patients. “E-health system providers” need to evaluate the architecture
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of the service in a thorough manner, preferably even before the service is operational,
to avoid possible complications about its operation. For this purpose, stochastic models
can be used to evaluate different e-health system architectures and plan the greatest
configuration for meet the e-health system providers requirements.

3.2 AVAILABILITY MODELS

3.2.1 Cloud models

In this dissertation, we are considering an application running on top of the IT infrastruc-
ture in the data center. We focus on the IT infrastructure, once it is the main subsystem
of the data center and our models are based on the TIA-942 classification. As explained
in Subsection 2.1.2, this standard classifies the data centers in tiers, according with avail-
ability level.

Figures 7 and 8, depict a Tier I and Tier IV data center IT subsystem, respectively.
A data center IT subsystem is basically composed of servers, storage, and network compo-
nents. The storage is illustrated as Network Attached Storage (NAS) Disk Array. Network
is represented by Edge, Core, Aggregation routers, and Access switch. The Storage Area
Network (SAN) is a network component used in Tier IV to connect array disks to servers.
As one may note, the Tier I IT subsystem does not consider any component redundancy,
being susceptible to system disruptions from planned and unplanned failures. On the
other hand, Tier IV is a fully redundant architecture (2𝑁).

To model the applications running in a server, we used a RBD to represent dependency
between its components. The IT infrastructure is comprised by network components, stor-
age, and servers. However, the behavior of the IT infrastructure components are modeled
using SPN. These models are described next.

3.2.1.1 RBD model of service

Figure 9 shows the RBD that represent a server with the application instance running.
This RBD model is composed of : hardware (HW), operating system (OS), virtual machine
(VM) and the application (APP) instance that is running on this server. Each block has
the MTTF and MTTR values respective to its component. It is worth mentioning that
any application can be modeled, once the MTTF and MTTR values are known.

Solving the RBD ((VERMA; SRIVIDYA; KARANKI, 2010)), we obtain the MTTF and
MTTR values of the entire service running in a server. These values will be added in
transitions referring to the server in our SPN model (Figure 11), described next.

3.2.1.2 IT Subsystem Tier I

In this dissertation, we disregarded some components of the infrastructure illustrated in
Figure 7. The Edge router Wide Area Network (WAN) was disregarded because is used
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Figure 7 – IT architecture - Tier I Figure 8 – IT architecture - Tier IV

Figure 9 – RBD model of service, based on (ARAUJO et al., 2014a)

for corporate networks, and does not affect the availability of applications hosted in cloud
data center. We also disregard the large frame processing and disk array attached to it,
because is used for backup, and does not impact the availability of applications.

Each network component is modeled in SPN using a building block with two places
and two transitions. Places means the state of components (UP or DOWN ) and transi-
tions represent actions of these components (fail and repair). For example, the Core router
is modeled as shown in figure 10. The place 𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝑈𝑃 represents when the Core
router is UP, while the place 𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝐷𝑂𝑊𝑁 represents when this component is
down. The failure of this component is modeled by transition 𝐼𝑇_𝐸𝑇_3, that consumes a
token in place 𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝑈𝑃 and produces a token in place 𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝐷𝑂𝑊𝑁 .
Core router repair is modeled by transition 𝐼𝑇_𝐸𝑇_4, and follows the inverse path of the
failure transition. The other network components are similarly modeled, each one with
own building block, as shown in Figure 10.
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Figure 10 – SPN network components tier I

NAS and servers differ from network components due to the addition of more places
and transitions, as shown in Figure 11. This is due to the fact that when one network
component fails, servers and NAS become unavailable. Thus, we used an additional place
and two immediate transitions to model this behavior.

For example, servers are modeled using a building block with places up/down and tran-
sitions failure/repair, like network components. When any network device fails, the imme-
diate transition 𝐼𝑇_𝐼𝑇_1 fires making the servers unavailable (consuming one token from
the place 𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑃 and producing one token in the place 𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑁 .
When the network devices is repaired, the immediate transition 𝐼𝑇_𝐼𝑇_2 fires, and the
server become available again (consuming one token from the place 𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑁

and producing one token in the place 𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑃 . NAS is modeled in a sim-
ilar way, but disregards the access switch, since the NAS is connected directly to the
aggregation switch (Figures 7 and 8).

Figure 11 – Storage and server tier I

Figure 12 – Building block regarding IT
infrastructure status

The behavior mentioned above is assured by guard functions, described in Table 1.
As can be seen in Figure 7, only Edge router, Core router, Aggregation router, and
Access Switch are connected to servers. So, if one these components fails, servers will
become unavailable. This behavior is modeled by guard function associated with transition
𝐼𝑇_𝐼𝑇_1.
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On the other hand, if all components are running, the servers are available, and this be-
havior is ensured by guard function associated with transition 𝐼𝑇_𝐼𝑇_2. Guard functions
present in immediate transition associated with transition 𝐼𝑇_𝐼𝑇_3 and associated with
transition 𝐼𝑇_𝐼𝑇_4 are similar, but only Edge router, Core router, Aggregation router
are connected to NAS, therefore the failure of one of these components will make the NAS
unavailable. This behavior is modeled by the guard function associated with transition
𝐼𝑇_𝐼𝑇_3. The guard function present in transition 𝐼𝑇_𝐼𝑇_4 models these components’
repair, allowing NAS to become available again.

Table 1 – Guard functions of IT subsystem - tiers I to IV

Transition Guard Function

𝐼𝑇_𝐼𝑇_1 ((#𝐼𝑇_𝐸𝐷_1_𝑈𝑃 = 0)𝑂𝑅(#𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝑈𝑃 = 0)
𝑂𝑅(#𝐼𝑇_𝐴𝐺_1_𝑈𝑃 = 0)𝑂𝑅(#𝐼𝑇_𝐴𝐶_1_𝑈𝑃 = 0))

𝐼𝑇_𝐼𝑇_2 ((#𝐼𝑇_𝐸𝐷_1_𝑈𝑃 > 0)𝐴𝑁𝐷(#𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝑈𝑃 > 0)
𝐴𝑁𝐷(#𝐼𝑇_𝐴𝐺_1_𝑈𝑃 > 0)𝐴𝑁𝐷(#𝐼𝑇_𝐴𝐶_1_𝑈𝑃 > 0))

𝐼𝑇_𝐼𝑇_3 ((#𝐼𝑇_𝐸𝐷_1_𝑈𝑃 = 0)𝑂𝑅(#𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝑈𝑃 = 0)
𝑂𝑅(#𝐼𝑇_𝐴𝐺_1_𝑈𝑃 = 0))

𝐼𝑇_𝐼𝑇_4 ((#𝐼𝑇_𝐸𝐷_1_𝑈𝑃 > 0)𝐴𝑁𝐷(#𝐼𝑇_𝐶𝑂𝑅𝐸_1_𝑈𝑃 > 0)
𝐴𝑁𝐷(#𝐼𝑇_𝐴𝐺_1_𝑈𝑃 > 0))

𝐼𝑇_𝐼𝑇_5
(𝑡𝑖𝑒𝑟 𝐼 𝑎𝑛𝑑 𝐼𝐼)

((#𝐼𝑇_𝑁𝐴𝑆_1_𝑈𝑃 > 0)𝐴𝑁𝐷(#𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑃 > 0))

𝐼𝑇_𝐼𝑇_6
(𝑡𝑖𝑒𝑟 𝐼 𝑎𝑛𝑑 𝐼𝐼)

((#𝐼𝑇_𝑁𝐴𝑆_1_𝑈𝑃 = 0)𝑂𝑅(#𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑃 = 0))

Figure 12 shows the building block that represents the status of the IT infrastructure.
When the IT infrastructure is working (token in place 𝐼𝑇_𝑆𝑆_1_𝑈𝑃 ), if servers or
storage fails, the immediate transition 𝐼𝑇_𝐼𝑇_6 fires, making the system unavailable
(token in place 𝐼𝑇_𝑆𝑆_1_𝐷𝑂𝑊𝑁). When server and storage become running again,
the immediate transition 𝐼𝑇_𝐼𝑇_5 fires, making IT infrastructure available again. The
guard functions of these transitions are described in Table 1.

3.2.1.3 IT Subsystem Tier II

According with TIA-942 standard, the main difference between tier I and II is the dual
Internet access link of Edge router. If one link fails, the second one will still keep the data
center Internet connection. To represent this redundancy in our model, we just added
a token in place 𝐼𝑇_𝐼𝑇_𝐸𝐷_1_𝑈𝑃 . So, if one link fails, one token will go to place
𝐼𝑇_𝐼𝑇_𝐸𝐷_1_𝐷𝑂𝑊𝑁 but there will still be another token in the UP place.

3.2.1.4 IT Subsystem Tier III and IV

According TIA-942 specification, the differences between tiers III and IV are about low-
level components such as cabling redundancy and component location. However, since we
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are modeling components at a higher level, we disregard these differences. Therefore, tiers
III and IV are modeled in a similar way.

As can see in Figure 8, in tiers III and IV, all components are redundant in order to
keep the data center available, in case of unplanned outages. In addition, in tier III and
IV there are more components compared to tier I. Two SAN switches connect servers to
disk arrays to provide an additional storage. Similarly to previous tiers, in tiers III and IV
large frame processing and edge router are disregarded. To model redundant components,
there are two tokens in UP places and infinite server policy is used in the transitions. The
SPN model of tiers III and IV is presented in Figure 13.

Figure 13 – SPN model of IT infrastructure - tiers III and IV

As the model is very similar to tier I, all stochastic and immediate transitions of
tier I are also used in tier III and IV models. SAN switch is represented by a build-
ing block with two places 𝐼𝑇_𝑆𝐴𝑁_1_𝑈𝑃 and 𝐼𝑇_𝑆𝐴𝑁_1_𝐷𝑂𝑊𝑁 , and repair/-
failure transitions 𝐼𝑇_𝐸𝑇_14 and 𝐼𝑇_𝐸𝑇_13, like other components. The compo-
nent that represents new array disk is similar to server and NAS components. The
place 𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑃 represents when new disk array is UP, while place
𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝐷𝑂𝑊𝑁 represents when it is DOWN.

Stochastic transitions 𝐼𝑇_𝐸𝑇_15 and 𝐼𝑇_𝐸𝑇_16 model repair and failure of new
disk array, respectively. However, when both SAN switches fail, the second array disks will
be unavailable (𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑁), and this behavior is assured by the guard
function presents in immediate transition 𝐼𝑇_𝐼𝑇_7. This transition consumes tokens of
place 𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑃 and produces a token in place 𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1
_𝑈𝑁 . When a single SAN switch is repaired, the second array disk become available again,
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as modeled in guard function present in immediate transition 𝐼𝑇_𝐼𝑇_8. This transition
consumes all tokens present in place 𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑁 and produces a token
in place 𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑃 . These guard functions and respective transitions
are presented in Table 2.

As tier III and IV have an addition array disks to storage, guard functions presents
in immediate transitions 𝐼𝑇_𝐼𝑇_5 and 𝐼𝑇_𝐼𝑇_6 change. Now, when at least one of
the storage way is working and servers are working, system is available. On the other
hand, when servers are not working or both storage way are not working, system becomes
unavailable. These guard functions are described in Table 2.

Table 2 – Guard functions of immediate transitions - tier III and IV
Transition Guard Function

𝐼𝑇_𝐼𝑇_5 (#𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑃 > 0)𝐴𝑁𝐷

((#𝐼𝑇_𝑁𝐴𝑆_1_𝑈𝑃 > 0) 𝑂𝑅(#𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑃 > 0))

𝐼𝑇_𝐼𝑇_6 (#𝐼𝑇_𝑆𝐸𝑅𝑉 _1_𝑈𝑃 = 0)𝑂𝑅

((#𝐼𝑇_𝑁𝐴𝑆_1_𝑈𝑃 = 0) 𝐴𝑁𝐷(#𝐼𝑇_𝐷𝐼𝑆𝐾_𝐴𝑅𝑅𝐴𝑌 _1_𝑈𝑃 = 0))

𝐼𝑇_𝐼𝑇_7 (#𝐼𝑇_𝑆𝐴𝑁_1_𝑈𝑃 = 0)

𝐼𝑇_𝐼𝑇_8 (#𝐼𝑇_𝑆𝐴𝑁_1_𝑈𝑃 > 0)

Using these models, it is possible to evaluate the availability of cloud infrastructure,
and calculate the MTTF and MTTR values that will be used to integrate with fog and
edge devices.

3.2.2 Integrating cloud models with edge and fog models

Figure 14 shows our SPN model representing the whole e-health monitoring system. We
consider an architecture with the following components: the sensor, the microcontroller (in
this dissertation, the sensor and the microcontroller are represented in an edge device), fog
device, and cloud data center. To represent these components, we utilize building blocks
composed of two places (one to represent when the component is working (ON) and
another to represent the failure (DOWN)), and two stochastic transitions (that represent
(i) the failure and (ii) the repair of a specific component).

By way of illustration, in the cloud building block, the place Cloud_ON represents
that the cloud provider is running, and the place Cloud_OFF that it has failed or un-
available. The transition Cloud_Fail represents the cloud failure event (MTTF value),
while Cloud_Repair signals the time taken to repair the cloud infrastructure (MTTR
value). In this dissertation, we consider that all failure and repair times are exponentially
distributed (MATOS et al., 2015; MATOS et al., 2017). The other three components (sensors,
microcontroller, and fog) follow the same operating logic.

Moreover, there are other three building blocks with immediate transitions (see the top
of the Figure 14) that represent the system status in different scenarios. From left to right,
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Figure 14 – E-health monitoring system model

those building blocks represent Scenarios 1, 2 and 3 respectively (described in subsection
3.1). Each scenario has a building block composed of ON and DOWN places and two
immediate transitions. These places offer the same semantic meaning as the previous
ones, as well as the transitions. The difference is that each transition is activated through a
guard function instead of MTTF or MTTR values. These functions are presented in Table
3. For example, considering Scenario 1, where all components must be working (sensors,
microcontrollers, fog devices, and cloud infrastructures), if one of these components fails,
the transition Fail_System_1 will fire, i.e., if there are no tokens in the respective places.
Thus, the system becomes unavailable. On the other hand, when at least one of these
components is working, i.e., there is one token in the respective places, the transition
Repair_System_1 will fire, making the system available again.

Table 3 – Guard functions of e-health system model

Transition Guard Function

Fail_System_1 (#Sensors_ON=0)OR(#Microcontroller_ON=0)OR (#Fog_ON=0)OR(#Cloud_ON=0)
Repair_System_1 (#Sensors_ON=1)AND(#Microcontroller_ON=1)AND (#Fog_ON=1)AND(#Cloud_ON=1)
Fail_System_2 (#Sensors_ON=0)OR(#Microcontroller_ON=0)OR (#Cloud_ON=0)
Repair_System_2 (#Sensors_ON=1)AND(#Microcontroller_ON=1)AND (#Cloud_ON=1)
Fail_System_3 (#Sensors_ON=0)OR(#Microcontroller_ON=0)OR (#Fog_ON=0)
Repair_System_3 (#Sensors_ON=1)AND(#Microcontroller_ON=1)AND (#Fog_ON=1)

To provide more details about the fog device and cloud server that host an application,
we modeled them as an RBD. To represent the fog device (Figure 15), we consider it is
composed of hardware (HW), an operating system (OS), and the application (APP) that
consumes the vital signs data from the patients. If any of these components fails, we
consider that the fog device becomes unavailable and then the RBD is configured in a
serial chain. The MTTF and MTTR values of cloud computing (that are assigned in
transitions 𝐶𝑙𝑜𝑢𝑑_𝐹𝑎𝑖𝑙 and 𝐶𝑙𝑜𝑢𝑑_𝑅𝑒𝑝𝑎𝑖𝑟) are extracted from cloud availability models
showed in Subsection 3.2.1.
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BEGIN END

HW_FOG OS APP

Figure 15 – Fog device model

The availability of each of the three scenarios is the probability of having a token in
the place that represents the state ON of the respective building block (see Figure 14).
To model the availability metric in our SPN, we utilize the following expression:

𝑃{𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑥_𝑂𝑁} > 0 (3.1)

where x is the number of the scenario (from 1 to 3), as described previously.
These models allow performing experiments to evaluate the availability of IoT ap-

plications that rely on cloud, fog, and edge infrastructures. In addition, it is possible
to integrate with performance models in order to assess the impact of availability and
performance of IoT applications.

3.3 PERFORMANCE MODEL

In this dissertation, we consider a selection of performance metrics based on (JAIN, 1990).
To represent the clients requesting a service, we consider a queuing system 𝑀/𝑀/1/𝐾,
meaning that the arrival process is a Poisson process with rate 𝜆 (M ), the service time is
independent and exponentially distributed with parameter µ (M ), there is only a single
server to process the requests (1 ), and the capacity of the system is limited (K ). This
queue configuration allows the evaluation of relevant aspects of the system, such as the
impact of different arrival times and different queue capacities (RAHMATI et al., 2014); it
is commonly used to represent cloud requests ((VILAPLANA et al., 2014; PHAM et al., 2015;
AL-HAIDARI; SQALLI; SALAH, 2015; ADHIKARY et al., 2017; GOLDSZTAJN et al., 2018)).

In order to illustrate how these performance metrics were modeled using an SPN ap-
proach, consider the simple queue model shown in Figure 16. The transition 𝑇1 represents
the arrival of requests while transition 𝑇2 represents the service time. We consider that
both Arrival Time (AT) and Service Time (ST) are exponentially distributed (YANG et

al., 2009; KHAZAEI; MISIC; MISIC, 2012). The Place 𝑃1 represents requests that are in
service. The Place 𝑃2 represents when the system resource (e.g. a web server) is running,
while 𝑃3 represents when a resource is in failure. Transitions 𝑇_𝑓𝑎𝑖𝑙𝑢𝑟𝑒 and 𝑇_𝑟𝑒𝑝𝑎𝑖𝑟

represent the failure and the repair of the resource, respectively. 𝑇2 only fires when there
is a token in place 𝑃2, i.e., when the resource is running and this behavior is assured by
guard function #𝑃2 > 0. The place 𝑃4 represents the total capacity 𝐾 that the system
can withstand. In other words, it is the number of requests that can be queued in system.

In this dissertation, we consider the following performance metrics5:
5 The metric descriptions follow the Mercury tool syntax.
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Figure 16 – SPN model to represent a simple queue

• Throughput (TP): can be defined as the rate of requests that can be serviced
by the system. Generally, the TP of a system increases as the load on the system
increases. However, after a certain load level, the TP stops increasing, and, in most
cases, even starts decreasing. In our system, the TP represents the number of re-
quests the web applications (fog or cloud applications) can process. Taking into
account the queue presented in Figure 16, TP can be calculated as the probability
of having tokens in place 𝑃1 (requests in queue) and in place 𝑃2 (system working)
multiplied by the service rate:

𝑇𝑃 = 𝑃{(#𝑃1 > 0)𝐴𝑁𝐷(#𝑃2 > 0)} × (1/𝑆𝑇 ) (3.2)

• Service Time ST: is, in a simplified way, the interval between a user’s request and
the system response. In our system, we can define the interval between the Hypertext
Transfer Protocol (HTTP) request from the microcontroller and the response time
of the web application (hosted either in the fog or cloud). Service time can be
calculated as the number of tokens expected in place 𝑃1 divided by TP:

𝑆𝑇 = 𝐸{#𝑃1}/(𝑃{#𝑃1 > 0} × (1/𝑆𝑇 )) (3.3)

In this way and considering the proposed metrics to represent the e-health monitoring
system performance, we propose the SPN model presented in Figure 17.

This model is composed of three queues with each one representing a different sce-
nario. The Place 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝐴𝑟𝑟𝑖𝑣𝑎𝑙 indicates that there is data from the sensor to be
sent to the web application (in the fog device or the cloud server). The stochastic transi-



46

Requests_Arrival Requests_Queue 

ET1 

1_Fog_Capacity 

1_Cloud_Requests 

2_Cloud_Capacity 

2_Cloud_Requests 

3_Fog_Capacity 

3_Fog_Requests 

ET2 

ET3 

ET4 

IT1 

IT2 

IT3 

Scenario 

Figure 17 – Performance model of e-health monitoring system

tion 𝐸𝑇1 indicates the arrival time of requests; it only fires when the sensor is working.
Place 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑄𝑢𝑒𝑢𝑒 stores tokens that represent requests that will be sent to a web
application. The immediate transitions 𝐼𝑇1, 𝐼𝑇2, and 𝐼𝑇3 will fire in accordance with
the number of tokens present in Place 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 indicating the evaluated scenario.

Scenario 3 is an example where queue behavior is described in the model. The imme-
diate transition 𝐼𝑇3 will fire only when the microcontroller is working and there are three
tokens in Place 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 as in Scenario 3. The Place 3_𝐹𝑜𝑔_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 represents the
capacity of a fog device, i.e., how many requests a fog device can process simultaneously,
through number of tokens in this place. The Place 3_𝐹𝑜𝑔_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 represents the num-
ber of requests being processed by a fog device. When 𝐼𝑇3 fires, one token is consumed
from Place 1_𝐹𝑜𝑔_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 and one token is produced in Place 1_𝐹𝑜𝑔_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and in
Place 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝐴𝑟𝑟𝑖𝑣𝑎𝑙, enabling new requests to arrive to the fog device. The stochastic
transition 𝐸𝑇4 represents the mean time for a fog application to process a request. When
𝐸𝑇4 fires, one token is consumed from Place 3_𝐹𝑜𝑔_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and one token is produced
in Place 3_𝐹𝑜𝑔_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 again (retrieving the capacity that was being consumed). Sce-
nario 2 is modeled in a similar way but it is represented by Places 2_𝐶𝑙𝑜𝑢𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

and 2_𝐶𝑙𝑜𝑢𝑑_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, and transitions 𝐸𝑇3 and 𝐼𝑇2.
Scenario 1 behaves similarly to the others, with only one difference: the immediate

transition 𝐼𝑇1 will fire when there is one token in Place 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and when the micro-
controller and fog device are working, because these devices are responsible for sending
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data to the cloud instance. We assume that this scenario is limited only by the capac-
ity of the fog device once all requests to the cloud are sent by the fog device, and that
the cloud has superior capacity than the fog device. So, the number of tokens in Place
1_𝐹𝑜𝑔_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 represents the capacity of a fog device while Place 1_𝐶𝑙𝑜𝑢𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

represents the number of requests being processed in the cloud instance in Scenario 1.
The stochastic transition 𝐸𝑇2 represents the time to process a request in Scenario 1.

All of this behavior is assured by guard functions presented in Table 4. Some of these
guard functions connect the performance model with our availability model (Figure 14) in
order to evaluate failure impact on system performance metrics. The equations to compute
the performance metrics (TP and ST) are presented in Table 5 and follow the same logic
presented previously.

Table 4 – Guard functions of performance model

Transition Guard function

𝐸𝑇1 #Sensor_up>0
𝐸𝑇2 #Cloud_up>0
𝐸𝑇3 #Cloud_up>0
𝐸𝑇4 #Fog_up>0
𝐼𝑇1 (#scenario=1)AND(#Microcontroller_ON>0)AND(#Fog_ON>0)
𝐼𝑇2 (#scenario=2)AND(#Microcontroller_ON>0)
𝐼𝑇3 (#scenario=3)AND(#Microcontroller_ON>0)

Table 5 – Equations for performance metrics

Scenario Metric Equation (Mercury tool sintaxe)

1
throughput P{(#1_Cloud_Requests>0)AND(#Cloud_ON>0)}*(1/ST_Fog_Cloud)
service time E{#1_Cloud_Requests}/(P{#1_Cloud_Requests>0}*(1/ST_Fog_Cloud))

2
throughput P{(#2_Cloud_Requests>0)AND(#Cloud_ON>0)}*(1/ST_Cloud)
service time E{#2_Cloud_Requests}/(P{#2_Cloud_Requests>0}*(1/ST_Cloud))

3
throughput P{(#3_Fog_Requests>0))AND(#Fog_ON>0)}*(1/ST_Fog)
service time E{#3_Fog_Requests}/(P{#3_Fog_Requests>0}*(1/Fog_Cloud))

3.4 PROTOTYPING A E-HEALTH MONITORING SYSTEM

Our main goal behind building and performing experiments in a prototype is to acquire
real data to feed our analytical models. This prototype represents a simplified version of
the architecture illustrated in Figure 5. With this prototype we measure the time to send
data from the sensor to both the fog device and the cloud infrastructure.
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3.4.1 Prototype infrastructure description

The prototype infrastructure is composed of two edge devices, two fog devices, and a cloud
with four different geo-locations. Depending on the scenario, the amount of devices can
vary. Figure 6 describes the scenarios considered in this dissertation. Table 6 describes
the hardware specifications of the edge and fog devices, and the geo-locations of cloud
instances.

Table 6 – Prototype infrastructure components

Device Type Specification

Edge device Heart rate sensor Operate from 3 V to 5 V
Edge device Arduino UNO Clock speed 16 MHz, SRAM 2 KB, Flash Memory 32 KB

Fog device Raspberry Pi 3 Quad Core 1.2GHz CPU, 1GB RAM and 802.11n wireless
Fog device Netbook Intel Atom processor 1.6GHz, 2GB RAM and 802.11b/g/n wireless

Cloud Elastic Compute Cloud (EC2)
Four different geographic locations:
(a) Sao Paulo/Brazil, (b) California/USA,
(c) London/England, and (d) Tokyo/Japan.

Considering all the components described in Table 6, we obtain different configurations
for each scenario. For instance, Table 7 shows all possible combinations of component
configurations related to Scenario 1. Scenario 1 has 16 combinations while Scenarios 2
and 3 both have four combinations.

Table 7 – Component configurations of Scenario 1

Scenario Configuration Edge device Edge device Fog device Fog device network Cloud location

1 1 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet Sao Paulo/Brazil
2 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet California/USA
3 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet London/England
4 Heart rate sensor Arduino UNO Raspberry Pi 3 Ethernet Tokyo/Japan
5 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 Sao Paulo/Brazil
6 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 California/USA
7 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 London/England
8 Heart rate sensor Arduino UNO Raspberry Pi 3 IEEE 802.11 Tokyo/Japan
9 Heart rate sensor Arduino UNO Netbook Ethernet Sao Paulo/Brazil
10 Heart rate sensor Arduino UNO Netbook Ethernet California/USA
11 Heart rate sensor Arduino UNO Netbook Ethernet London/England
12 Heart rate sensor Arduino UNO Netbook Ethernet Tokyo/Japan
13 Heart rate sensor Arduino UNO Netbook IEEE 802.11 Sao Paulo/Brazil
14 Heart rate sensor Arduino UNO Netbook IEEE 802.11 California/USA
15 Heart rate sensor Arduino UNO Netbook IEEE 802.11 London/England
16 Heart rate sensor Arduino UNO Netbook IEEE 802.11 Tokyo/Japan

In Scenario 1, we use a heart rate sensor as the edge device 6. This sensor reads the
heart beats using an amplified optical sensor to estimate the heart beat per minute Beat
6 https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino
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per Minute (BPM), the signal, and the interval between beats (IBB) of the patient. This
sensor is attached to the Arduino platform, UNO7, that acts as a microcontroller.

To send the vital signs data generated from the sensor to equipment with better
computational capacity, for example a fog or cloud device, we use an Ethernet shield 8

module to enable the Arduino to send data to higher layers. A software was developed
that reads data from the heart rate sensor and periodically sends the data (through HTTP
requests) to a web application hosted in the fog and cloud layers.

Currently, a number of specialized IoT communication protocols have been developed
such as Message Queuing Telemetry Transport (MQTT) 9 and Constrained Application
Protocol (CoAP) (SHELBY; HARTKE; BORMANN, 2014) in order to provide a lightweight
communication protocol to support IoT device communication. However, it is still use-
ful to implement a HTTP-based application, since HTTP is the most common protocol
used for Internet communication, and according to (SHANG et al., 2016), IoT applications
usually adopt HTTP as the messaging protocol in order to support Representational
State Transfer (Rest) interfaces. In this way, we implemented our prototype following a
Restful architecture using HTTP to send data from sensors to a fog device and to a cloud
infrastructure.

To represent the fog device in our prototype, we use two different devices: (a) Rasp-
berry Pi 3 10, with Quad Core 1.2GHz CPU and 1GB RAM; and (b) Netbook CCE with
Intel Atom processor 1.6GHz with 2GB RAM. Both devices were connected to the Ar-
duino by using the same network (Ethernet and IEEE 802.11), also located in Recife,
Brazil.

The public cloud environment used was the Elastic Compute Cloud (EC2) from
Amazon Web Services (AWS)11. EC2 allows users to easily create, launch, stop, or termi-
nate one or multiple instances as well as selecting the operating system and applications
(CHEN et al., 2017a). Also, it is possible to select the geographic region in which the
instance will be hosted. As such, in order to measure the impact of location on each in-
stance, we created instances in four different geographic regions: (a) São Paulo/Brazil,
(b) California/USA, (c) London/England, and (d) Tokyo/Japan.

3.4.2 Prototype applications description

On the fog and cloud computing side, we configured a web application that receives and
processes data from the edge device. This web application was implemented using Python
and Flask12. In addition, we use Apache as a container for both applications. Figure 18
7 https://www.arduino.cc/
8 https://www.arduino.cc/en/Guide/ArduinoEthernetShield
9 http://mqtt.org/
10 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
11 www.aws.amazon.com/ec2
12 Flask is a microframework for building web applications using the Python language. See

http://flask.pocoo.org/docs/0.12/
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shows an example considering the Scenario 1. The Scenario 2 is similar, but it disregards
the fog devices, while the Scenario 3 disregards the cloud infrastructure (see the Figure
6).

Cloud

Scenario 1

Sensor Arduino UNO
Raspberry + Web

application (Python +
Flask) + Apache server 

Amazon instance + Web
application (Python +

Flask) + Apache server 

Figure 18 – Example of prototype configuration in scenario 1

We use the same web application in Scenarios 2 and 3, however the cloud and fog
applications differ from Scenario 1. In Scenario 1, the fog application receives data from
the Arduino and sends the data to the cloud application. After it receives a cloud response,
the fog device returns a response to the Arduino. In Scenarios 2 and 3, the cloud and fog
applications receive and process requests directly from the Arduino and send back a
confirmation response to the Arduino platform.
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4 AVAILABILITY ANALYSIS OF DATA CENTER MODELS

We separated the results of the stochastic models in two chapters. In this chapter, we
present the results for the individual cloud models presented in the Section 3.2, some
related works, and discuss the obtained results. In the next chapter, we present the results
for the integrated models, that jointly consider the edge, fog, and cloud infrastructure.

4.1 CLOUD RESULTS

We performed stationary analysis using the Mercury tool1 in order to calculate the avail-
ability of cloud models previously described. In this method, an underlying CTMC defined
by the SPN model can be solved in order to obtain a analytic solution (STOJIC, 2017)
and we use this method to solve all models proposed in this dissertation.

Regarding the RBD model of server (see Figure 9), the MTTF and MTTR values are
presented in Table 8. We are considering a web application (APP), but we can easily
use other type of applications here instead2. Based on this RBD model, we calculate the
MTTF and MTTR of the server, and these values are used in our SPN (specifically in
transitions 𝐼𝑇_𝐸𝑇_9 and 𝐼𝑇_𝐸𝑇_10, respectively), in order to estimate the overall
data center availability. We consider evaluating only the most basic and fully-redundant
tiers (tier I and IV) of the TIA-942 standard, in order to see the impact of redundancy
in data center cloud availability. It is worth to mention that all stochastic transitions of
the models proposed in this dissertation are exponentially distributed (ANDRADE et al.,
2017).

Table 8 – RBD parameters obtained from (ARAUJO et al., 2014a)

Components MTTF (in hours) MTTR (in hours)

HW 8,760 1.667
OS 1,440 1
VM 2,880 0.17
APP 6,865.3 0.167

Table 9 presents all MTTF and MTTR values of the stochastic transitions we used in
our SPN models, including MTTF and MTTR obtained from our RBD model.

Table 10 shows the availability level and the downtime of both Tier I and IV. Tier
IV presents approximately 99.90% of availability, corresponding to around 8.58 hours of
downtime in a year, while the Tier I is only 99.76%, meaning 20.96 hour of downtime.
1 http://www.modcs.org/?page_id=1397
2 We taken the MTTF and MTTR values of a web application from the literature, but as future works

we plan develop our application and measure its parameters.
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Table 9 – Parameters of stochastic transitions obtained from (GUIMARAES; MACIEL; JU-
NIOR, 2015), (YUE et al., 2016), and (SCHROEDER; GIBSON, 2007)

Transition Meaning Value (in hours)

𝐼𝑇_𝐸𝑇_1 Edge Router MTTF 796
𝐼𝑇_𝐸𝑇_2 Edge Router MTTR 1
𝐼𝑇_𝐸𝑇_3 Core Router MTTF 16243
𝐼𝑇_𝐸𝑇_4 Core Router MTTR 0.78
𝐼𝑇_𝐸𝑇_5 Aggregation Router MTTF 8247
𝐼𝑇_𝐸𝑇_6 Aggregation Router MTTR 0.63
𝐼𝑇_𝐸𝑇_7 Access Switch MTTF 13043.48
𝐼𝑇_𝐸𝑇_8 Access Switch MTTR 0.35
𝐼𝑇_𝐸𝑇_9 Server MTTF 768.35
𝐼𝑇_𝐸𝑇_10 Server MTTR 0.7533
𝐼𝑇_𝐸𝑇_11 NAS MTTF 1200000
𝐼𝑇_𝐸𝑇_12 NAS MTTR 12
𝐼𝑇_𝐸𝑇_13 SAN MTTF 255358
𝐼𝑇_𝐸𝑇_14 SAN MTTR 7.66
𝐼𝑇_𝐸𝑇_15 Disk Array MTTF 1200000
𝐼𝑇_𝐸𝑇_16 Disk Array MTTR 12

Table 10 – Availability data center evaluation

Tier Availability (in %) Downtime (in hours/year)

I 99.7606835 20.9641
IV 99.9020543 8.5800

The formula used to calculate the downtime, 𝐷, in hours/year, takes into account the
availability, A, and is shown in Eq. 4.1.

𝐷 = (1 − 𝐴) × 8760 (4.1)

We also performed sensitivity analysis to verify which parameters affect more the
overall data center availability.

4.1.1 Sensitivity Analysis - Tier I

Table 11 shows the sensitivity result of our Tier I SPN containing the three higher and
lower indices. Parameters with values equal to zero are not considered.

Results indicate that the edge router MTTF (𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝐹 ) has the greatest im-
pact in the data center availability in case of the Tier I. In other words, a variation
in this value has a higher impact on the service availability. The second and third pa-
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Table 11 – Sensitivity ranking of Tier I

Parameter Sensitivity Index

𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝐹 2.53 × 10−4

𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝑅 2.51 × 10−4

𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝐹 1.96 × 10−4

𝑎𝑐𝑐𝑒𝑠𝑠_𝑀𝑇𝑇𝑅 4.02 × 10−6

𝑁𝐴𝑆_𝑀𝑇𝑇𝐹 2.02 × 10−6

𝑁𝐴𝑆_𝑀𝑇𝑇𝑅 1.98 × 10−6
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Figure 19 – Impact on Tier I availability varying (a) Edge Router MTTF, (b) Edge router
MTTR and (c), Server MTTF.

rameters that have more impact are the edge router MTTR (𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝑅) and server
MTTF (𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝐹 ), respectively. The metric with the smallest index was NAS MTTR
(𝑁𝐴𝑆_𝑀𝑇𝑇𝑅). When the value of this metric was changed from 12h to 14h (increase
of 20%), a small availability variation (99.760649% to 99.760449%) was registered.

Figure 19(a) shows the Tier I data center availability when we varied the 𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝐹

value. A variation of 20% in the 𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝐹 results in an availability increase from
99.76065% to 99.78151%, that means a downtime decrease from 20.96706h to 19.139724h.
Figure 19(b) shows that the availability decreasing from 99.76065% to 99.73563%, when
𝑒𝑑𝑔𝑒_𝑀𝑇𝑇𝑅 increases from 1h to 1.2h. And Figure 19(c) shows the impact of the increase
in 𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝐹 parameters; which leads to the improvement of the overall availability.

4.1.2 Sensitivity Analysis - Tier IV

Table 12 presents the results of sensitivity analysis regarding Tier IV architecture with
the three higher and lower indices. The result is different from Tier I because all ar-
chitectural components are duplicated; has an influence on which components are most
critical for availability. The server MTTF (𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝐹 ) has the greatest impact on
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Figure 20 – Impact on Tier IV availability varying (a) Server MTTF, (b) Server MTTR
and (c), Access switch MTTR.

data center availability; and the second and third values that have the most impact
are server MTTR (𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝑅) and access switch MTTR (𝑎𝑐𝑐𝑒𝑠𝑠_𝑀𝑇𝑇𝑅), respec-
tively. The metric with the smallest sensitivity analysis index was disk array MTTR
(𝑑𝑖𝑠𝑘_𝑎𝑟𝑟𝑎𝑦_𝑀𝑇𝑇𝑅). When disk array MTTR value varied in 20% resulted in an im-
pact on availability only in the seventh decimal place.

Table 12 – Sensitivity ranking of Tier IV

Parameter Sensitivity Index

𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝐹 1.98 × 10−4

𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝑅 1.96 × 10−4

𝑎𝑐𝑐𝑒𝑠𝑠_𝑀𝑇𝑇𝑅 1.76 × 10−6

𝑁𝐴𝑆_𝑀𝑇𝑇𝑅 7.20 × 10−11

𝑑𝑖𝑠𝑘_𝑎𝑟𝑟𝑎𝑦_𝑀𝑇𝑇𝐹 6.78 × 10−11

𝑑𝑖𝑠𝑘_𝑎𝑟𝑟𝑎𝑦_𝑀𝑇𝑇𝑅 3.17 × 10−11

As presented in Figure 20(a), a variation of 20% in 𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝐹 resulted in an avail-
ability increase from 99.90202% to 99.91834%. On the other hand, an increase of 20% in
𝑠𝑒𝑟𝑣_𝑀𝑇𝑇𝑅 resulted in an availability increase from 99.90202% to 99.88245% (see Fig-
ure 20(b)). Figure 20(c) depicts the impact of the access switch MTTR (𝑎𝑐𝑐𝑒𝑠𝑠_𝑀𝑇𝑇𝑅)
on a data center availability. The availability declines with the increase of this parameter.

4.2 RELATED WORKS

The authors in (ANDRADE; NOGUEIRA, 2018) propose an SPN model to evaluate several
metrics about cloud data centers in the disaster recovery context. The scenario considered
is composed of two data centers. The first one there are six VMs run a service that requires
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high-performance like scientific computing. The second data center acts as failover site,
and when the primary data center fails, the service is replicated for the second data center.
There is a disaster monitor to check if the primary data center fails, and configure the
load balance to redirect the requests for the second data center. Using the SPN model
proposed, the authors carried out experiments evaluating performability metrics such as
availability, downtime, virtual machines utilization, and average number of busy VMs.
The authors also evaluate how the number of active VMs influences the service time:
as the number of VMs increases the services times decreases because there are VMs to
handle the requests.

In (MELO et al., 2015), authors propose an availability model of a Eucalyptus cloud
environment that runs a video streaming application. To estimate availability, authors
use RBD and Markov Chains. The RBD models the components of the Eucalyptus ar-
chitecture, while the Markov Chain models the behavior of the streaming service. The
results of sensitivity analysis show that the repair rate of the front-end module is the most
important parameter with respect to the availability.

A model for evaluating availability of private clouds is proposed by (MATOS et al., 2016)
where RBD and Markov Chains are used. The architecture is based on Eucalyptus, and
employs warm-standby in the main components. RBD is used to model the dependency
between components, while Markov Chains model the redundant behavior of cloud com-
ponents. Authors evaluate three architectures with one, two and three clusters, achieving
availability of 99.9938749%, 99.9969376% and 99.9969377%, respectively.

The authors in (CHEN et al., 2017b) present a CTMC model to assess the survivability
of cloud services. Survivability is a interesting aspect that have direct impact on the
availability services, once this metric is related to the recuperation of services after its
fails. The model considers an architecture composed of two data centers. In the first one
there are two servers: the first one has two active service running in virtual machines, and
the last one is standby. The second data center has a server in standby too with a virtual
machine. The both data centers have NAS as storage unit. Finally the two data centers
are connected into a backup server. The CTMC model consider the migration of virtual
machine in case of failure of the servers which the service is running with the purpose
keep the service available. The authors evaluate the probability of the service is recovery
at the different timestamps, which increases and remains constant after a time.

In (JAMMAL et al., 2016), the authors proposed an SPN model to evaluate the avail-
ability of cloud services. Their consider three main components in the model: virtual
machines which run in server operating in a data center. The model also consider the
arrival of requests, and the failures of the components may impacts the processing of this
requests. The authors evaluate the percentage of requests processed in the data center
varying the MTTF and MTTR values of the components and the processing time. The
results showed that the decrease of the MTTR value results in a great impact on the
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number of requests processed.
Our work differs from the literature because we consider a more detailed and scalable

IT subsystem model (other works are focused only on the software level and the hardware
level is not detailed), and we also take into account data center standard to create our
models.

4.3 CONSIDERATIONS ABOUT CLOUD MODELS RESULTS

For the stationary analysis results, we noted that availability increased considerably, from
99.7607% for Tier I to 99.9021% for Tier IV. This increase represents a downtime decrease
from 20.96h to 8.58h per year, which can greatly improve the application performance.
Therefore, an application with high availability requirements (e.g. critical applications),
needs to be run on architectures with redundant components that provides a highest
availability level, such as the Tier IV.

About the sensitivity analysis performed in this chapter, the components with highest
impact on availability were the edge router for Tier I, and the server for Tier IV. The
changes in the critical fault point in these two scenarios, is related to the different level
of components redundancy. In order to improve the architectures’ availability, an invest-
ment can be made in these components, either by adding redundancy or purchasing new
equipment with better reliability.
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5 RESULTS OF INTEGRATED SCENARIO MODELS

This chapter shows the performance results of the integration scenario of edge, fog, and
cloud computing components. Firstly, we will show the results obtained from the exper-
imental prototype. These results will be used in the performance models. Next, we will
show the availability results of the integrated infrastructure models, in addition to the
results regarding sensitivity analysis. Finally, the performance results will be explained,
related works will be presented, and considerations about results will be made.

5.1 PROTOTYPE MEASUREMENT METHODOLOGY AND RESULTS

In summary, we have now defined three different scenarios (Figure 6), and have two
different fog devices, two different network connections, and four different cloud geo-
locations. Furthermore, for each scenario we have multiple configurations.

Figure 21 shows the steps used to setup the devices according to each scenario used in
our experiments, while Figure 22 shows the steps used to perform the experiments. Note
that the interval between requests was set up to two seconds, totaling 102 requests for
each experiment.

Figure 21 – Methodology for configuring devices according to each scenario

Table 13 depicts the average time (and the standard deviation) obtained from our mea-
surements. In Scenario 1, one can see that the geographic location of the cloud instances
impacts performance. For example, the Netbook connected to the São Paulo instance us-
ing the Ethernet option had a mean delay of 197.84 ms, while the mean service time for
the Tokyo instance was 586.02 ms. In this case, there is an increase of 196.20% due to ge-
ographical distance. As expected, the connection type also impacted delay. For example,
with the Netbook connected to the cloud instance located in São Paulo, the delay in-
creases 31.83% when we changed the Ethernet connection to IEEE 802.11 (corresponding
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Figure 22 – Methodology for performing measurements with the prototype

to a change from 197.84 ms to 260.81 ms respectively). However, when the Raspberry Pi
was used as a fog device, the impact of the network connection diminished. Delay from the
Raspberry Pi using the Ethernet to a cloud instance located in São Paulo was 207.15 ms,
while using IEEE 802.11 was 215.61 ms, an increase of only 3.92%. The largest impacts
recorded related to the Netbook can be explained by the network card.

In Scenario 2, the same geographic impact is noted. However, once there is a direct
connection between the microcontroller (Arduino) and the cloud instances, the delay is
lower than in Scenario 1 since there is an intermediary fog node. As expected, the greater
the distance from the microcontroller to the cloud instance, the longer the delay. From
an instance located in São Paulo to an instance located in Tokyo, the delay increased
215.45% from 179.76 ms to 567.06 ms.

Scenario 3 behaves similarly to Scenario 1 regarding network connection impact. The
mean delay from the microcontroller to the Netbook through an Ethernet connection was
66.14 ms, while through IEEE 802.11 was, on average, 76.37 ms, experiencing an increase
of 15.46%. The Raspberry Pi mean delay increase was similar, going from 67.77 ms to
75.50 ms (increase of 11.40%) using the Ethernet and IEEE 802.11 network connection
respectively.

In general, it is possible to note that the Netbook has a superior performance than the
Raspberry Pi. In both Scenarios 1 and 3, considering both types of network connection,
the service time for the Netbook was lower than that of the Raspberry Pi. This is due
to the fact that the computational capacity of the Netbook is superior to that of the
Raspberry Pi. In addition, IEEE 802.11 had a high standard deviation average service
time when compared to the Ethernet connection. This can be explained by the dynamic
interference with physical objects, high packet loss, and the overhead of the collision
avoidance mechanism present in wireless connections (SAGARI; SESKAR; RAYCHAUDHURI,
2015).
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Table 13 – Results from prototype experiments

Scenario configuration Average time (in ms) Standard deviation

Scenario 1 : Netbook (Ethernet) → São Paulo 197.84 4.6487
Scenario 1 : Netbook (Ethernet) → California 432.04 10.4320
Scenario 1 : Netbook (Ethernet) → London 455.98 98.8941
Scenario 1 : Netbook (Ethernet) → Tokyo 586.02 13.39002
Scenario 1 : Netbook (IEEE 802.11) → São Paulo 260.81 194.4324
Scenario 1 : Netbook (IEEE 802.11) → California 547.54 316.4965
Scenario 1 : Netbook (IEEE 802.11) → London 574.57 269.2531
Scenario 1 : Netbook (IEEE 802.11) → Tokyo 667.97 332.1957
Scenario 1 : Raspberry Pi (Ethernet) → São Paulo 207.15 105.0747
Scenario 1 : Raspberry Pi (Ethernet) → California 440.33 70.7183
Scenario 1 : Raspberry Pi (Ethernet) → London 446.88 6.5417
Scenario 1 : Raspberry Pi (Ethernet) → Tokyo 588.56 12.4967
Scenario 1 : Raspberry Pi (IEEE 802.11) → São Paulo 215.61 24.5928
Scenario 1 : Raspberry Pi (IEEE 802.11) → California 456.57 17.9215
Scenario 1 : Raspberry Pi (IEEE 802.11) → London 471.14 17.5994
Scenario 1 : Raspberry Pi (IEEE 802.11) → Tokyo 611.72 20.2465

Scenario 2 : São Paulo 179.76 11.9883
Scenario 2 : California 414.38 14.9591
Scenario 2 : London 426.85 8.6601
Scenario 2 : Tokyo 567.06 15.1969

Scenario 3 : Netbook (Ethernet) 66.14 0.8167
Scenario 3 : Netbook (IEEE 802.11) 76.37 15.7349
Scenario 3 : Raspberry Pi (Ethernet) 67.77 1.4624
Scenario 3 : Raspberry Pi (IEEE 802.11) 75.5 4.0961

5.2 AVAILABILITY RESULTS

To analyse our models, we aligned each component’s MTTF and MTTR values in line with
existant literature. The MTTF and MTTR values of fog device hardware (HW_Fog) were
estimated through an average of hardware values found in (ARAUJO et al., 2014a; MATOS et

al., 2017; SILVA et al., 2013; TANG et al., 2004; KIM; MACHIDA; TRIVEDI, 2009), because the
values for the specific hardware used were not available. All the values we used to set our
models are described in Table 14. The cloud MTTF and MTTR values are obtained from
the cloud models previously described in Subsection 3.2.1. This time we used only the
Tier IV of cloud data center because this configuration achieves the highest availability
value.

The availability and downtime results for each scenario are presented in Figure 23.
Scenario 2 presents the best availability level (0.9992%) in comparison with Scenarios 1
(0.9978%) and 3 (0.9983%). This corresponds to Scenario 2 having 7.008 hours/year of
downtime, while Scenario 3 experiences 14.892 hours/year, and Scenario 1 suffers 19.272
hours/year. Scenario 1 presents the lowest availability because all the components are in
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Table 14 – MTTF and MTTR of components in hours (values obtained from (ARAUJO et
al., 2014a), (SILVA et al., 2013),(TANG et al., 2004), (KIM; MACHIDA; TRIVEDI,
2009) (NOVACEK, ), (BALC et al., 2017))

Component MTTF (h) MTTR (h)

HW_Cloud 1177.32 0.59
HW_Fog 4765.79 3.47
OS 1440 1
VM 2880 0.17
Microcontroller 44957 5
Sensor 28011 5
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Figure 23 – (a) Availability levels and (b) downtime regarding the e-health monitoring
system considering the three scenarios proposed.

series; all components are essential to e-health monitoring system operation.

5.3 SENSITIVITY ANALYSIS

For the sensitivity analysis, we followed a similar methodology presented in (MATOS et

al., 2015). We used the MTTF and MTTR values from our system’s components as pa-
rameters, varying them in ten values within a range defined by maximum and minimum
values (10% plus and minus the default value). Table 15 shows the top three components
(and their respective sensitivity index) that most impact system availability.

Figure 24 depicts the availability variation of those three parameters. As expected,
when we increase the MTTF value (see Figures 24.a and 24.c), the availability also in-
creases, but in this case, the fog device MTTF has more impact than the cloud MTTF.
An increase of 20% in fog device MTTF results in a reduction of 2.1051 hours in an-
nual downtime, while the same increase in cloud MTTF results in a smaller decrease in
downtime, i.e., only 1.4088 hours.
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Table 15 – Indexes of the three paramaters that affect more the metric of each scenario

Scenario 1 Scenario 2 Scenario 3

Parameter Index Parameter Index Parameter Index

MTTF_Fog 2.64 × 10−4 MTTF_Cloud 1.95 × 10−4 MTTF_Fog 2.65 × 10−4

MTTR_Fog 2.57 × 10−4 MTTR_Cloud 1.93 × 10−4 MTTR_Fog 2.57 × 10−4

MTTF_Cloud 1.95 × 10−4 MTTR_Sensors 3.57 × 10−5 MTTR_Sensors 3.57 × 10−5
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Figure 24 – Availability results for scenario 1 varying (a) the fog device MTTF, (b) the
fog device MTTR and (c), the cloud MTTF.

Scenarios 2 and 3 (Figures 25 and 26, respectively) behave similarly due to their relies
on only one application instance; scenario 2 considers only the cloud while scenario 3
only considers fog presence. In scenario 2, the three parameters that have the greatest
impact on system availability are the MTTF and MTTR of Cloud and the MTTR of
the sensors. A variation in MTTF of cloud results in a reduction in annual downtime of
1.4108 hours, while the same variation in MTTR of sensors results in a minor reduction
in annual downtime, 0.3123 hours to be precise. In scenario 3 the MTTF and MTTR of
fog are those with greater impact on system availability. An increase of 20% in the MTTF
of the fog devices results in a decrease of 2.1071 hours, while the same increase in the
sensor’s MTTR results in a decrease of 0.0312 hours.

Downtime in e-health systems may vary between few minutes and 16 hours (WANG

et al., 2016), but unplanned downtime greater than eight hours are more commons (SIT-

TIG; GONZALEZ; SINGH, 2014). Several incidents happens due to these downtime, e.g.,
“a hospital-wide system breakdown delayed post-surgery treatment leading to a permanent
musculoskeletal disability. In another case, a patient died when a network problem delayed
transmission of images for diagnosis” (WANG et al., 2016). Thus, any reduction in the
downtime is important to avoid complications on the patients health.
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Figure 25 – Availability results of scenario 2 varying (a) the cloud MTTF, (b) the cloud
MTTR and (c), the sensor MTTR.
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Figure 26 – Availability results of scenario 3 varying (a) the fog MTTF, (b) the fog MTTR
and (c), the sensor MTTR.

5.4 PERFORMANCE RESULTS

We perform stationary analysis on our performance model. The service time used in the
analysis was set up with delays measured through our prototype experiments (Table 13),
while the time of requests arrival was set to two seconds. We use two seconds to ensure
the stability of the queue system, the time between arrival must be greater than the time
service (BOLCH et al., 2006), thus we used a time greater than all services times measured
using the prototype.

Table 16 presents the performance results obtained from the analysis of our model.
One can note that changing the geographic location of the cloud instance impacts the
performance metrics evaluated. For example, let’s consider the Netbook sending data using
the Ethernet. To send data to the cloud instance located in São Paulo, the throughput was
15,738,614.69 requests/year. To send to the instance located in Tokyo was 15,737,248.83
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requests/year. Under this same configuration, the service time increases from 699.43 ms
to 1,352.76 ms.

Table 16 – Performance results of scenario 1
Fog device → Network connection → Cloud geo-location Throughput (requests/year) Service Time (ms)

Netbook → Ethernet → São Paulo 15,738,614.69 699.43
Netbook → Ethernet → California 15,737,730.46 1,057.48
Netbook → Ethernet → London 15,737,656.95 1,099.75
Netbook → Ethernet → Tokyo 15,737,248.83 1,352.76
Netbook → IEEE 802.11 → São Paulo 15,738,343.99 787.10
Netbook → IEEE 802.11 → California 15,737,365.47 1,273.35
Netbook → IEEE 802.11 → London 15,737,283.05 1,328.70
Netbook → IEEE 802.11 → Tokyo 15,737,003.76 1,536.62
Raspberry Pi → Ethernet → São Paulo 15,738,571.75 712.02
Raspberry Pi → Ethernet → California 15,737,708.86 1,071.99
Raspberry Pi → Ethernet → London 15,737,681.55 1,083.50
Raspberry Pi → Ethernet → Tokyo 15,737,240.85 1,358.17
Raspberry Pi → IEEE 802.11→ São Paulo 15,738,524.82 723.57
Raspberry Pi → IEEE 802.11 → California 15,737,651.90 1,100.75
Raspberry Pi → IEEE 802.11 → London 15,737,605.94 1,127.11
Raspberry Pi → IEEE 802.11 → Tokyo 15,737,172.70 1,408.16

The change of connection type had a low impact on the metrics evaluated. For in-
stance, for messages sent from the Netbook to the instance located in São Paulo, the
throughput values using the Ethernet and IEEE 802.11 were 15,738,614.69 requests/year
and 15,738,343.99 requests/year respectively; the service times were 699.43 ms and 787.10
ms respectively. In general and as expected, the Netbook had a superior performance than
the Raspberry Pi due to its superior hardware configuration.

Figure 27 and Table 17 present the results of scenario 2. As in scenario 1, the geographic
locations of cloud instances also impacted the performance metrics. The throughput for
the instance located in São Paulo was 15,759,141.76 requests/year and decreased as the
distance of the instance location increased, reaching 15,759,139.90 requests/year for the
instance located in Tokyo. The service time was also impacted, from 864.74 ms for the
instance located in São Paulo and 1,535.22 ms for instance located in Tokyo.

Table 17 – Performance results of scenario 2

Cloud geo-location Throughput (requests/year) Service Time (ms)

São Paulo 15,759,141.76 864.74
California 15,759,140.74 1,231.80
London 15,759,140.68 1,254.37
Tokyo 15,759,139.90 1,535.22

Finally, Figure 28 and Table 18 present the performance results for scenario 3. In this
scenario, a significant impact was identified related to the type of network connection. For
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Figure 27 – Scenario 2 performance results: (a) throughput, and (b) service time.
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Figure 28 – Scenario 3 performance results: (a) throughput, and (b) service time.

example, the throughput of the Netbook using the Ethernet was 15,744,289.36 request-
s/year, while through IEEE 802.11 was 15,744,289.27 requests/year. A similar impact was
identified with the service time, i.e., 1,616.93 ms and 1,628.92 ms. The Netbook and Rasp-
berry Pi display similar behaviors as they both experienced a close delay in prototype
experiments.

Table 18 – Performance results of scenario 3

Fog device → Network connection Throughput (requests/year) Service Time (ms)

Netbook → Ethernet (N-E) 15,744,289.36 1,616.93
Netbook → IEEE 802.11 (N-I) 15,744,289.27 1,628.92
Raspberry Pi → Ethernet (R-E) 15,744,289.34 1,618.83
Raspberry Pi → IEEE 802.11 (R-I) 15,744,289.28 1,627.89

The processing capacity of the fog device (place 3_𝐹𝑜𝑔_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and cloud server
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(place 3_𝐶𝑙𝑜𝑢𝑑_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) was limited in our models (600 and 1000, respectively) to
avoid state explosion when solving the model analytically. Nonetheless, we noted that
increasing the capacity to process simultaneous requests substantially neither affects the
throughput nor the service time metrics. For values greater than 600 and 1000, the impact
on analyzed metrics was almost insignificant.

For instance in scenario 2, when we set fog and cloud capacity as 600 and 1000 respec-
tively, the Markov chain was composed of 24,032 states and the result was 1799.3254 re-
quests/hour and 1,269.2155 ms for throughput and service time respectively. When we use
1,200 and 2,000, the Markov chain was composed of 48,032 states resulting in 1799.4367
requests/hour and 1,412.8086 ms for throughput and service time respectively).

5.5 RELATED WORKS

Some works have proposed solutions to deal with IoT applications integrated with fog
and cloud computing. For instance, an analytic model is used in (LI et al., 2017) to decide
where to process the data obtained from the IoT devices considering renewable energy
consumption and Quality of Service (QoS) of the application. To validate their model,
authors presented a video streaming analysis application, where cars in a road have cam-
eras that capture data from the road and send this to the edge/cloud and one of those
returns to the driver the conditions of the road.

In (SOUZA et al., 2016), authors propose a resource allocation strategy in the IoT con-
text taking into account the offered services of fog and cloud, the energy consumption
balance between them, and delay; and they modeled a strategy to analyze those param-
eters.

Further, a number of studies presented models to represent applications in health use
case scenarios. Authors in (ZENG; KOUTNY; WATSON, 2015) proposed a model to represent
and evaluate the security of information flow in IoT systems integrated with cloud, using
a medical application as an example. They analyzed how the availability of the service
providers affects the security of the information flow.

Authors in (ZENG; KOUTNY; WATSON, 2015) use a medical application as a case study
for their proposed model that analyzes the security of the information flow in IoT systems
integrated with cloud infrastructures. In (COLOM et al., 2017), authors propose a frame-
work that enables multiple applications to share IoT computational devices for health
monitoring. The use case scenario in (LOMOTEY; PRY; SRIRAMOJU, 2017) is one with a
wearable IoT architecture for health care systems. In (ARAUJO et al., 2014b), authors pro-
posed stochastic models to represent a health service relying on mobile cloud computing
infrastructure (i.e., cloud infrastructure, wireless communication and mobile device). They
made experiments considering scenarios with different wireless communication channels
(Wi-Fi and 4G), different battery discharge rates, and different timeouts.
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The work presented in this dissertation differs from the literature because we con-
sidered an integrated system (with IoT, fog and cloud) and modeled it to evaluate the
availability and performance of an e-health monitoring system and analyzing it under
three different scenarios. We provided a sensitivity analysis to understand how different
values of MTTF and MTTR impact the availability of the whole system, and we also
carried out performance analysis to obtain real data to use as input to our models.

5.6 CONSIDERATIONS ABOUT INTEGRATED RESULTS

From the stationary analysis, we evaluated availability in each scenario. We noted that
the best availability level (0.9987%) was achieved in scenario 2 (where only the cloud
application is considered) and the worst one (0.9973%) was scenario 1 (using both fog
and cloud). It is an interesting result since in scenario 1 we have more computational
layers and consequently more devices can fail (and thereby decreasing the availability of
the whole system). Thus, despite the extension of fog node capability by the cloud, this
integrated scenario is more complex and as a result has more points of failures despite
the hypothesized performance benefits. The Scenario 2 presents the highest availability
level because the cloud data center environment presents a higher availability level than
the fog infrastructure.

Regarding the sensitivity analysis results, there is greater variability in the components
that impact the availability of e-health monitoring system in the scenarios examined. In
Scenario 1, the most critical component is the fog device whereas in Scenarios 2 and 3, the
fog device and cloud infrastructure impact the system respectively. An increase of 20% in
MTTF value of fog device (Scenario 1) results in a reduction of 2.1051 hours in annual
downtime. An increase of 20% in MTTF of cloud infrastructure results in reduction of
1.4108 hours of annual downtime (Scenario 2). And in Scenario 3, an increase of 20% in
MTTF of fog devices results in reduction of 2.1071 hours of annual downtime. Depending
on the configuration chosen for the e-health monitoring system, investments can be made
to increase availability, or by adding more redundant equipment provide greater reliability.

Within the prototype experiments, we noted an increase of delay as the distance
from microcontroller/fog devices to cloud instance increases both in Scenario 1 and 2, as
expected. The delay in Scenario 1 was slightly higher than Scenario 2 once the fog devices
are added. However, the addition of fog devices (Scenario 1) enables the pre-analysis of
data collected by sensors before sending to the cloud. Thus, simple decisions, such as
calling an ambulance, can be made quicker.

We also observed that the delay to send data from microcontroller to fog devices is
significantly lower than when sending data to the cloud. Considering the closer proximity
of the the cloud instance to the microcontroller (São Paulo), the mean delay was 179.76
ms, while the higher mean delay to send to the cloud was 76.37 ms (Netbook with IEEE
802.11). For delay-sensitive systems (e.g. e-health monitoring systems, augmented reality,
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real-time video analytics, and content delivery (YI; LI; LI, 2015)), fog devices can greatly
reduce the delay and increase the performance of these systems. However, one should not
disregard the limited computing capacity of these devices.

These experiment results were used to feed the performance model. For Scenarios 1
and 2, as the geographic distance of the cloud instance increases, the throughput decreases
(see Tables 16 and 17). Once the time to process a request increases, fewer requests will
be processed because they will remain in the queue for longer (see Figure 16). In addition,
service time is directly impacted by the geographic location of an instance i.e. the longer
it takes to send the request, the longer it will take to process the request and to receive a
response. For an e-health monitoring application, where some decisions need to be made
quickly, hosting the cloud instance in a remote geographic region may have a significant
impact on service time and associated QoS levels.

Scenario 1 had the lowest availability level and the worst performance results. This
can be explained as follows. The e-health system is considered operational only when all
components of the scenario are working and this reduces the availability of the system as
a whole. Relatively poor performance results are due to the high delay in sending data
from the microcontroller to the cloud passing through a fog device. Notwithstanding this,
this scenario can take advantage of the computing capacity and virtually unlimited data
storage that cloud computing offers.

Scenario 2 presented the best availability level and better performance results than
others. The improvement in performance is due to the decrease in delay because the data is
sent directly from the microcontroller to the cloud (without fog devices). Notwithstanding
this, the delay in Scenario 2 can compromise systems that are delay-sensitive.

Scenario 3 had lower availability results than Scenario 2, because the availability of
fog devices is lower than cloud infrastructure. Similar to Scenario 1, the availability has
an impact in throughput, decreasing the number of requests processed when compared
to Scenario 2. The service time is lower than other scenarios, since delay to send data to
fog devices is lower. However, fog devices have lower computational capacity than cloud
devices, so this scenario may not be the most appropriate for systems that handle large
amounts of data.



68

6 CONCLUSION AND FUTURE WORKS

Fog and cloud computing address a number of problems encountered in IoT however they
also increase management complexity. Despite fog and cloud computing offering greater
availability and resilience, they can also be viewed as vulnerabilities or potential points
of failure. As such, in addition to edge device failure, attention must be paid to fog node
and cloud infrastructure failures. While cloud and fog integration is relatively well known
and shares common technologies, the integration/extension with IoT is a non-trivial task,
mostly due to massive device heterogeneity and service requirements.

Some applications have high criticality and any downtime can lead in extreme cases to
loss of life, as in the case of an e-health monitoring system, the focus of this dissertation.
The data collected by these applications are very critical, once that are related to vital
conditions of patients. Therefore, any downtime of application (that have different roots,
such as hardware or software failures) may compromise the operation of the application.

In this dissertation, we proposed a set of stochastic models to evaluate IoT applica-
tions that rely on edge, fog, and cloud infrastructures. We consider the e-health scenario
due him sensitivity to availability. This service was evaluated regarding its availability
and performance. We proposed stochastic models by using SPN and RBD approaches.
To use realistic data as an input to our models, we also developed and implemented a
prototype with different types of fog device, network connection, and cloud instance geo-
graphic location configurations. Firstly we propose a set of models to evaluate the cloud
data center infrastructure where the applications be hosted. After we propose models
that integrate edge, fog, and cloud infrastructures to perform analyses about availability.
Finally we propose models to asses the performance applications.

Cloud results showed that availability increases from Tier I to Tier IV. With sensitivity
analysis were evaluated the components that most impact the availability, and how a
variation in parameters of components impact the availability of data center. The Tier
I model achieved approximately 99.76% of availability, while Tier IV achieved 99.90%.
Sensitivity analysis showed that the component that most impacts on the availability was
the edge router for Tier I architecture, and servers for Tier IV. Thus, to improve the
availability, one can make an investment in these components, whether buying from more
reliable equipment or adding redundancy. Experiments showed a great variation of data
center availability when the values of these metrics were changed.

From integrated results, it is clear that there is a trade-off between performance and
service time. In this way, it is necessary to prioritize the consideration of the application
requirements before deciding on the best architecture. This is illustrated by the results
from the various scenarios. For example, the scenario that relies only on cloud infras-
tructure (Scenario 2) presents the best availability level since cloud providers can offer
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a better service as measured by reliability than fog devices. On the other hand, Sce-
nario 1, which relies on fog devices and cloud infrastructure, may be more appropriate
to host e-health monitoring systems due to the technological limitations of end-devices.
Other configurations may be more appropriate depending on the use scenario e.g. big
data services.

The main contributions of this dissertation are:

• stochastic models to evaluate cloud data center infrastructures based on TIA-942
standard. It is possible analyze these models to identify most critical components
through sensitivity analysis;

• stochastic models to understand how failures in edge devices, fog devices, and/or
cloud infrastructure impacts e-health monitoring system availability. These mod-
els will also be used to perform sensitivity analysis to understand which compo-
nents have a significant impact on the e-health monitoring system availability;

• a prototype to conduct performance evaluations in order to feed the stochastic
models with real data. This prototype is composed of two different configurations of
fog devices, two different network connections to access the cloud instance, and four
different geo-locations of cloud instance in order to characterize the heterogeneity
of I2C-based systems; and

• stochastic performance models integrated with the availability models, and real
data outputted from the prototype in order to understand how different capacity of
fog devices and also different geo-location of cloud instances impact on performance
metrics, such as throughput and service time.

6.1 DIFFICULTIES FOUND

Several difficulties were found in the realization of this study. It is difficult to obtain data
related equipment specification (more precisely MTTF and MTTR values). These data
are very scarce in the literature, mainly for hardware devices, for example the MTTF
and MTTR of fog devices. Another difficulty is related to scaling our prototype. We use
instances in Amazon AWS, and, as any cloud payment model, you pay as you use. So,
the more instances we use, the more expensive our prototype will be. In addition, buying
the devices used in prototype on a large scale may be impractical. Another difficulty is
related to availability model validation. The validation of such models could be done by
creating a prototype and exposing this prototype and model to the same considerations
in order to verify if they behave similarly.
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6.2 LIMITATIONS OF WORK

This dissertation has some limitations regarding the solutions presented. In cloud data
center models, we disregard some components that we consider that not affect the avail-
ability, such as the large frame processing, with the purpose of simplifying our models.
Another limiting aspect is about the modeled servers. We assume that they are similar.
In others words, we consider that all servers present in cloud infrastructure have the same
hardware and software configurations. This aspect can be observed too in our integrated
model. We consider that all fog nodes and edge devices are similar. It is important to
mention that is possible to consider heterogeneous devices in our models, but they will
become more complex, once it is necessary to include more places and transitions in our
SPN models to represent them. Consequently, we made that assumption in order to sim-
plify our models. A third limitation has to do with our prototype. We consider a web
application that may be hosted in cloud or fog devices to process the data collected by
sensors (e.g. data mining, neural networks, machine learning algorithms). However, build-
ing the actual application is considered outside of scope of this dissertation. We consider
only the web application that receive the data. So, the service time for this application is
only the time to receive and respond to a request.

6.3 PUBLICATIONS

The Table 19 presents the scientific papers produced in scope of this dissertations, includ-
ing papers published and submitted. The Table 20 shows others publications produced
during the dissertation production.
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Table 19 – Scientific papers produced
# Reference Type Status Qualis

1

Santos, G. L., Endo, P. T., Gonçalves, G., Rosendo, D., Gomes, D., Kelner,
J., ... & Mahloo, M. (2017, July). Analyzing the IT subsystem failure impact
on availability of cloud services. In Computers and Communications (ISCC),
2017 IEEE Symposium on (pp. 717-723).

Conference Published A2

2

Rosendo, D., Leoni, G., Gomes, D., Moreira, A., Gonçalves, G., Endo, P., ...
& Mahloo, M. (2018, January). How to Improve Cloud Services Availability?
Investigating the Impact of Power and It Subsystems Failures. In Proceedings
of the 51st Hawaii International Conference on System Sciences.

Conference Published A1

3

Tigre, M.F.F.L.S, Santos, G. L., Lynn, T. Sadok, D., Kelner, J., & Endo,
P. T. (2018, June). Modeling the availability of an e-health system integrated
with edge, fog and cloud infrastructures. In Computers and Communications
(ISCC), 2018 IEEE Symposium on (pp. 717-723).

Conference Published A2

4
Endo, P. T., Santos, G. L., Rosendo, D., Gomes, D. M., Moreira, A., Kel-
ner, J., ... & Mahloo, M. (2017). Minimizing and Managing Cloud Failures.
Computer, 50(11), 86-90.

Journal Published A1

5

Santos, G.L., Endo, P. T., Tigre, M.F.F.L.S, Ferreira, L., Sadok, D., Kelner,
J., Lynn, T. (2018). Analyzing the availability and performance of an e-health
system integrated with edge, fog and cloud infrastructures. Journal of Cloud
Computing 7.1 (2018): 16.

Journal Published B2

6

Endo, P. T., Gonçalves, G. E., Rosendo, D., Gomes, D., Santos, G. L.,
Moreira, A. L. C., ... & Mahloo, M. (2017). Highly Available Clouds: Sys-
tem Modeling, Evaluations, and Open Challenges. In Research Advances in
Cloud Computing (pp. 21-53). Springer, Singapore.

Chapter book Published -

7

Santos, G. L., Ferreira, M., Ferreira, L., Kelner, J., Sadok, D., Albuquerque,
E., Lynn & T., Endo, P. T (2018). Integrating IoT + fog + cloud infrastruc-
tures: System modeling and research challenges. In : Fog and Edge Computing:
Principles and Paradigms. Springer.

Chapter book Published -

Table 20 – Other related publications
# Reference Type Status Qualis

1

Rocha, É., Endo, P. T., Leoni, G., Braga, J., & Lynn, T. (2017, October).
Analyzing the impact of power infrastructure failures on cloud application
availability. In Systems, Man, and Cybernetics (SMC), 2017 IEEE Interna-
tional Conference on (pp. 1746-1751). IEEE.

Conference Published A2

2

Santos, G.L., Gomes, D., Sadok, D., Kelner, J., Rocha, E., & Endo, P. T.
(2018). How Do Checkpoint Mechanisms and Power Infrastructure Failures
Impact on Cloud Applications? International Journal of Grid and Utility Com-
puting (IJGUC).

Journal Accepted B2

3
Rocha, E. S. Santos, G.L., & Endo, P. T. (2018). Analyzing the impact of
power subsystem failures and checkpoint mechanisms on availability of cloud
applications. Revista do IEEE América Latina.

Journal Under Review B4

4

Santos, G.L., Gomes, D., Sadok D., Kelner, J., Silva, J. A., Endo, P. T. &
Lynn T. (2018). The Internet of Medical Things: Optimizing e-health system
availability based on edge, fog and cloud infrastructures. International Journal
of Computational Science and Engineering.

Journal Under Review B1

5

Santos, G.L., Gomes, D., Kelner, J., Sadok D., Silva, J. A., Endo, P. T.
& Lynn T. (2018). Maximizing System Availability with BudgetConstraints
in the Internet of Medical ThingsThrough Nature-Inspired Approaches. IEEE
Internet of things journal.

Journal Under Review B2

6.4 FUTURE WORKS

As future works, we plan to analyze the impact of redundancy and understand how we
can improve the availability of the system by adding more cloud servers or fog devices. We
also plan increase the complexity of model to consider more elements, such as different
sensors, fog devices, and the connectivity between the devices. We can also increases the
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complexity of the cloud data center models, considering the power and cooling subsystems,
and how they impact the availability of the cloud service hosted.

We also plan to evolve the prototype system with different types of smart-end devices,
fog devices, and analytical techniques, including the use of machine learning to treat
the data collected by edge devices, for example deep learning. With the prototype, new
experiments can be performed, considering the complete service time to evaluate and store
the patient data. We can also evaluate different communication protocols, such s MQTT
and CoAP, and different technologies, such as Bluetooth Low Energy, ZigBee, Lora, and
so on. We also plan evaluate the cost of the prototype as we increase the number of
components with the intention of verifying the feasibility of implanting the system, since
it would be interesting a solution of low cost.

Finally, we plan use optimization algorithms to maximize the e-health system avail-
ability taking into account some constraints such as a limited budget and the cost of
components.
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