
Luana Martins dos Santos

A Study of JavaScript Error Handling

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Luana Martins dos Santos

A Study of JavaScript Error Handling

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Per-
nambuco como requisito parcial para obtenção do
grau de Mestre em Ciência da Computação.

Área de Concentração: engenharia de software
e linguagens de programação
Orientador: Fernando José Castor de Lima
Filho

Recife
2019

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S237s Santos, Luana Martins dos

A study of JavaScript error handling / Luana Martins dos Santos. – 2019.
 72 f.: il., tab.

 Orientador: Fernando José Castor de Lima Filho.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2019.
 Inclui referências.

 1. Engenharia de software. 2. Tratamento de erros. I. Lima Filho, Fernando
José Castor de (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2019-058

Luana Martins dos Santos

“A Study of JavaScript Error Handling”

 Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 14/02/2019.

BANCA EXAMINADORA

__
Profa. Dra. Carla Taciana Lima Lourenço Silva Schuenemann  

Centro de Informática/UFPE  

Profa. Dra. Roberta de Souza Coelho  
Departamento de Informática e Matemática Aplicada / UFRN  

Prof. Dr. Fernando José Castor de Lima Filho  
Centro de Informática/UFPE

(Orientador)  

Dedico este trabalho a minha família e aos meus amigos que me lembraram que eu
preciso cuidar de mim, apesar de eu mesma esquecer disso.

ACKNOWLEDGEMENTS

I would like to thank and dedicate this work to the following people:

To my advisor Fernando Castor, for being such a great professor, advisor and patient at
my endless questions and doubts.

To Everton Lacerda, Erico Teixeira, and Felipe Ebert for our discussions for this disser-
tation.

To my friends, specially Luiz and Jeff, for help me to not forget that challenges may
build a person, but it is important to reserve a moment to drink coffee.

To my family, for supporting me through this academical life.

ABSTRACT

JavaScript is in widespread use for both Web-based and Standalone software devel-
opment. A large number of production quality, robust software systems are currently built
using it. Because of its popularity, JavaScript has been the subject of a several empirical
studies in the last few years. Previous research has analyzed uses of the eval function, how
callbacks are employed, and other aspects of the language. In this work, we contribute to
the existing body of knowledge by studying how developers employ error handling mech-
anisms in JavaScript systems. JavaScript provides two different mechanisms for handling
errors, try-catch blocks and callback functions. These mechanisms are employed along
with a number of abstractions that have not been previously studied in the context of
error handling, namely: promises, events, and asynchronous functions. In addition, we
evaluated the usage of global event handlers, which is applicable for scenarios where an
error occurred and no handler was found. We analyzed 192 popular JavaScript reposito-
ries from Github, comprising more than 60 thousand files and 11 million lines of code.
We also classified them as Web-based or Standalone, depending on Node.js framework
usage. We analyzed how the error handling mechanisms of the language are employed,
what error handling strategies are typically used, and how Web-based and Standalone
systems differ regarding the error handling. Errors impact differently in Web-based and
Standalone systems. Users may not concern about the errors in Web-based as it generally
occurs in the console. Standalone systems deal differently with errors, once the system
finds an error, it crashes and does not allow any further operation. Our findings indi-
cate that pure callbacks are the predominant error handling mechanism in JavaScript
systems (64.500 callback functions in our dataset), although try-catch blocks are also
frequently used (51.200 try-catch blocks). We found 22.44% of the try-catch blocks
are empty, 15.48% of the error handlers ignore the error parameter (from catch clause).
In callback functions, 8.66% ignore any error parameter it receives, and 5.54% reassign
an error parameter. Web-based systems have a greater number of try-catch blocks than
callback functions for error handling compared to standalone systems. Web-based systems
have a greater number of handlers that ignore error parameters than standalone systems.
In summary, our analysis shows that error-handling strategies are generally simplistic,
mostly ignoring the error (11.5%) or leaving it empty (8.22%).

Keywords: Error handling. Exception Handling. Empirical Study. JavaScript.

RESUMO

JavaScript é amplamente usado para desenvolvimento de software tanto em sistemas
Web-based quanto Standalone. Existe uma grande quantidade de sistemas desenvolvi-
dos nessa linguagem. Devido à sua popularidade, o JavaScript tem sido objeto de vários
estudos empíricos nos últimos anos. Pesquisas anteriores analisaram o uso da função
eval, assim como callback functions e outros aspectos da linguagem. Neste trabalho,
estudamos como os desenvolvedores empregam mecanismos de tratamento de erros em
sistemas JavaScript. JavaScript fornece dois mecanismos diferentes para tratar erros: blo-
cos try-catch e callback functions. Esses mecanismos são empregados em conjunto com
um número de abstrações que não foram estudadas anteriormente no contexto do trata-
mento de erros, a saber: promises, eventos e funções asíncronas. Além disso, avaliamos
o uso de tratadores de eventos globais, que é aplicável a cenários nos quais ocorreu um
erro para o qual nenhum tratador foi encontrado. Analisamos 192 repositórios populares
de JavaScript do Github, com mais de 60 mil arquivos e 11 milhões de linhas de código.
Também os classificamos como Web-based ou Standalone, dependendo do uso do frame-
work Node.js. Analisamos como os mecanismos de tratamento de erros da linguagem são
empregados, quais estratégias de tratamento de erros são normalmente usadas e como os
sistemas Web-based e Standalone diferem em relação ao tratamento de erros. Erros im-
pactam diferentemente em sistemas Web-based e Standalone. Os usuários não percebem
imediatamente erros ocorridos em sistemas Web-based, por geralmente aparecerem no
console. Sistemas Standalone lidam de maneira diferente com erros, pois uma vez que o
sistema encontra um erro, ele falha, não permitindo qualquer operação adicional. Nossas
descobertas indicam que callbacks functions são o mecanismo predominante de tratamento
de erros de sistemas JavaScript (existem 64,500 callbacks functions em nosso conjunto de
dados), embora blocos try-catch também sejam usados com frequência (51,200 blocos
try-catch). Encontramos que 22.44% dos blocos try-catch estão vazios, 15.48% dos
tratadores de erro ignoram o parâmetro de erro (catch clause). Em callback functions,
8.66% ignoram qualquer parâmetro de erro que a função recebe, e 5.54% reatribuem um
parâmetro de erro (como o argumento de erro de uma catch clause ou o argumento de
uma callback function) a algum outro valor. Os sistemas Web-based possuem um maior
número de blocos try-catch do que callback functions para tratamento de erros, em
comparação com os sistemas Standalone. Os sistemas Web-based apresentam um maior
número de tratadores que ignoram os parâmetros de erro do que sistemas Standalone. Em
resumo, nossa análise mostra que as estratégias de tratamento de erros geralmente são
simplistas, envolvendo principalmente ignorar o erro (11.5%) ou deixá-lo vazio (8.22%).

Palavras-chaves: Tratamento de erros. Exceções. Estudo Empírico. JavaScript.

LIST OF ABBREVIATIONS AND ACRONYMS

AST Abstract Syntax Tree

JS JavaScript

CONTENTS

1 INTRODUCTION . 11
1.1 RESEARCH OBJECTIVES . 12
1.2 CONTRIBUTIONS . 13
1.3 STRUCTURE OF THE DISSERTATION 13

2 THEORICAL FOUNDATION . 15
2.1 ERROR HANDLING TERMINOLOGY . 16
2.2 EXCEPTION HANDLING MECHANISMS 16
2.2.1 Try-catch blocks . 18
2.2.1.1 Async functions . 18
2.2.2 Callback functions . 19
2.2.2.1 Events . 21
2.2.2.2 Promises . 23
2.3 GLOBAL EVENT HANDLERS . 24
2.3.1 JavaScript Global event handlers . 25
2.3.2 Node Global event handlers . 25
2.4 WEB-BASED AND STANDALONE SYSTEMS 26
2.5 RELATED WORK . 26
2.5.1 JavaScript . 26
2.5.2 Exceptions . 27

3 METHODOLOGY . 28
3.1 OVERVIEW . 28
3.2 PROJECT SELECTION . 29
3.2.1 Classification of Web-based and Standalone systems 29
3.3 IDENTIFYING ERROR HANDLING CODE IN JAVASCRIPT 30
3.3.1 Dynamic typing in JavaScript . 30
3.3.2 Single-use callbacks . 31
3.3.3 Tackling error handling code . 32
3.4 CODE IN ERROR HANDLERS . 33
3.5 DATA COLLECTION AND PROCESSING 36
3.6 RECOMMENDATIONS AND ANTIPATTERNS IN JAVASCRIPT ERROR

HANDLING . 37
3.7 THREATS TO VALIDITY . 39
3.7.1 Internal validity . 39
3.7.2 External validity . 39

3.7.3 Construct validity . 39

4 RESULTS . 40
4.1 OVERVIEW . 40
4.2 ERROR HANDLING IN JAVASCRIPT APPLICATIONS 42
4.2.1 Error handling abstractions . 42
4.2.2 Error handling strategies . 45
4.3 WEB-BASED AND STANDALONE SYSTEMS 47

5 DISCUSSIONS . 54
5.1 USAGE OF ERROR HANDLING MECHANISMS 54
5.2 RECOMMENDATIONS . 55
5.2.1 Error Object Usage . 56
5.2.2 Error-first protocol . 57
5.2.3 Log error . 58
5.2.4 Return error . 58
5.3 ANTIPATTERNS . 59
5.3.1 Empty Handler . 60
5.3.2 Ignore error . 61
5.3.3 Reassign error . 62
5.3.4 Throw error . 63

6 CONCLUSIONS . 65
6.1 IMPLICATIONS . 66
6.2 FUTURE WORK . 66

REFERENCES . 69

11

1 INTRODUCTION

Modern Web-based applications make extensive use of JavaScript (Gallaba et al. (2017)).
A survey from StackOverflow 1, in 2018, presents JavaScript as the most widely used
programming language. This result has been consistent throughout the last six editions of
the survey. Besides that, the three most often cited frameworks and libraries by survey re-
spondents are Node.js, Angular, and React, all of them based on JavaScript. In particular,
Node.js, a framework and runtime system for the construction of standalone JavaScript
applications, is used by almost 50% of the respondents. Furthermore, JavaScript appears
in the first place of the January 2018 Redmonk programming languages ranking2, which
measures popularity based on the number of questions on StackOverflow and repositories
on Github. These numbers highlight the relevance of JavaScript, in general, and Node.js,
in particular.

Exception handling mechanisms are designed to detect an occurrence and recover from
errors. Poor quality in the design of exception-handling (the developers approaches to deal
with errors) can impact on system robustness. Exception handling is an important quality
attribute of software, however, it is one of the less understood and neglected parts of
software development (Chen et al. (2009)). Mikkonen and Taivalsaari (2007) claimed that
this design decision make tracing and debugging JavaScript systems even harder. They
presented examples of error-tolerance of JavaScript: misspell a variable name results in
the creation of the variable, the developers can access to non-existent properties in the
objects, the developer may omit the return statement in a function which will turn the
value undefined. Any of those scenarios may lead to unexpected behavior in the system.
Equivalently, syntax errors, as using square brackets instead of parentheses, in a function
call is not reported and can bring problems to trace the occurrence of the error.

Due to the widespread adoption of JavaScript, several empirical studies have been con-
ducted to analyze different aspects of the language and its usage. For instance, Richards et
al. (2011) analyzed more than 500,000 calls to the eval function. They found out that most
of the popular websites use this function and, in up to 2/3 of the cases, these are actually
misuses. Gallaba, Mesbah and Beschastnikh (2015) studied 138 JavaScript programs to
understand how they use callbacks. They discovered that one in ten function definitions
take a callback function as an argument, most of those callbacks are nested, and more
than half are asynchronous. In the work of Gallaba, Mesbah and Beschastnikh (2015),
an asynchronous callback is a callback that is eventually passed to an asynchronous API
call. More recently, Wang et al. (2017) analyzed 57 concurrency bugs in Node applica-
tions and discovered that 2/3 of those bugs are caused by atomicity violations. According

1https://insights.stackoverflow.com/survey/2018
2http://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/

12

to Hong, Park and Kim (2014), an atomicity violation is an unintended race condition
that an operation may be scheduled between two operations that should be executed
consecutively.

Previous work analyzed the usage of error handling constructs is JS programs. Jakobus
et al. (2015) have focused exclusively on exception handling. They did not study the
potential differences between Web-based and Standalone systems. In addition to error
handling in JavaScript applications, Jakobus et al. (2015) have analyzed 50 software
projects written in C++, PHP, Java and C#. They analyzed 9 million lines of code and
over 20,000 error handlers. In addition, they analyzed both exception scopes and handlers,
which are code that may raise exceptions and handlers for those exceptions, respectively.
We did not study error scopes as Jakobus et al. (2015) did, but we did a more in-depth
study of error handlers, mainly because in the Jakobus’ study, although comprehensive
in relation to the programming languages analyzed, only considers try-catch blocks.

In face of the high popularity of Node, we aim to identify not only the error handling
approach of JavaScript community as a whole, but also the differences between the appli-
cations that use Node and those that do not use it. Thus, we classified them as Web-based
and Standalone, considering the Node usage.

1.1 RESEARCH OBJECTIVES

In this work, we contribute to the existing body of knowledge by studying how JavaScript
projects use the error handling mechanisms of the language (try-catch blocks and call-
back functions). Additionally, we also analyzed the employment of other abstractions
that uses the error handling mechanisms namely: promises, events, and asynchronous
functions. Previous work of Jakobus et al. (2015) on error handling, analyzed five pro-
gramming languages (including JavaScript). They focused solely on the try-catch blocks
without regarding callback functions. However, callback functions are a commonplace in
real-world JavaScript applications and an integral part of software development on Node.js
(Gallaba, Mesbah and Beschastnikh (2015)).

We organize this master dissertation through two lines of investigation. Firstly, we
explore how the developers commonly employ error handling mechanisms on JavaScript
projects (thus, we analyzed the error handlers and the strategies they employed). Sec-
ondly, we compare both mechanisms and strategies for handling errors in Web-based and
Standalone projects, particularly considering the Node usage.

The main objectives of this empirical study are:

• Gaining an understanding of JavaScript error handling in practice. Characterize
the error handling mechanisms (and their abstractions: try-catch blocks, callback
functions, promises, events and async-await), which error handling mechanism are
more employed, how often they are employed, and the error handling strategies are

13

being employed considering the repositories in Github from the dataset that we
analyzed;

• Understand and compare the differences between Web-based and Standalone sys-
tems, regarding the error handling mechanisms (and their abstractions: try-catch
blocks, callback functions, promises, events and async-await) and the error handling
strategies they employ.

1.2 CONTRIBUTIONS

In this work, we analyzed error handling mechanisms and strategies of JavaScript, and the
differences between Web-based and Standalone JavaScript systems. To the best of own
knowledge, this is the first attempt to analyze error handling in JavaScript considering the
error handling mechanisms besides try-catch blocks, and also regarding another ways to
apply error handling mechanism (like callback functions, promises, events and async-await
functions). This work makes the succeeding contributions:

• An understanding of error handling of JavaScript projects. We conduct an
analysis of the error handlers in JavaScript systems, and compare to what JavaScript
community expects errors to be handled. In order to make this comparison we
used Google to retrieve guides about error handling for both JavaScript and Node
projects;

• A tool for extracting error handling strategies. We use Esprima and Es-
traverse libraries to create Abstract Syntax Tree (AST) for the files of JavaScript
applications. The objective of this tool is to extract information about the error
handlers (mechanisms and strategies employ) to construct the dataset.

• A dataset of error handlers extracted of JavaScript applications from
GitHub. We retrieve error handling mechanisms (and abstractions) and error han-
dling strategies from Github that may be used for further research in the academic
community;

1.3 STRUCTURE OF THE DISSERTATION

The remainder of this dissertation is organized as:

Chapter 2 reviews the literature and documentation of the JavaScript programming
language, regarding the mechanisms and abstractions used to handle errors. Firstly,
we present the error handling concepts and the mechanisms used in JavaScript. In
this chapter, we also explain the syntax of the mechanisms and abstractions, and
the intrinsic relation between asynchronicity and error handling in JavaScript.

14

Chapter 3 reports the methodology adopted in this thesis. It introduces the target
systems of the study, the premises we have assumed for the extraction of software
metrics from these systems, and the rationale for those premises. In this section, we
explains the statistical analyses we performed.

Chapter 4 presents the results of the analysis of the study. The chapter presents an
overview of the data analysis concepts applied and the results obtained by this
analysis.

Chapter 5 provides a discussion about our findings presented in Chapter 4 and the
implications they have in the JavaScript community.

Chapter 6 presents the conclusions of this dissertation, and indicates several paths for
future work.

15

2 THEORICAL FOUNDATION

In this chapter, we introduce the main concepts of error handling and the mechanisms
used in JavaScript. Those mechanisms allow developers to signal the occurrence of errors
and to change the program control flow in order to handle those errors when they occur
(Garcia et al. (2001)), ideally separating error signaling code from error handling code
(Lee and Anderson (1990)).

Error handling constructs define two parts of the behaviour program: error scope and
error handler. We consider the definition presented by Lee and Anderson (1990), error
scope is the normal behavior of the system, and error handler deals with exceptional
situations, is the the code that handles with errors. The terms used by Lee and Anderson
(1990) to categorize systems for exception handling is normal part and abnormal part.
They claim that the most of the refactorings is done aiming to improve the software
belonging to normal part. The robustness of the system is enhanced by changing the
exceptional behaviour without changing the normal system behaviour.

Furthermore, by knowing that systems have normal part and abnormal part, the pro-
gramming languages should provide mechanisms to change the flow appropriately between
these two categories. JavaScript provides two mechanisms to recover from errors: an excep-
tion handling mechanism (try-catch blocks) and callback functions, which is a function
designed to be invoked later with a result currently unavailable (Brodu, Frénot and Oblé
(2015)). The decision of using one or another is mainly based on the nature of functions
inside the error handling scope. Callback functions are employed mainly to handle errors
in potentially asynchronous code. Whereas, try-catch blocks are used in either async
and sync code, through async-await functions.

This chapter is organized as follows. Section 2.1 presents the terminology required to
understand error handling in general. Section 2.2 introduces JavaScript error handling
mechanisms and, in the subsections, presents the concepts and examples of the error
handling abstractions using the error handling mechanism. Section 2.3 presents how global
event handlers works. Although, global event handlers employ callback functions to handle
errors, they are different from the error handlers presented in the earlier sections, as the
goal of a global event handler is to deal with any errors that appears in the application in
the lack of any other error handler. In Section 2.4, we present the concepts of Web-based
and Standalone applications, and in Section 2.5, we present previous research works in
error handling and JavaScript that are related to this work.

16

2.1 ERROR HANDLING TERMINOLOGY

In this section, we present the terminology used throughout this master dissertation. The
concepts presented here are the foundation to understand error handling approaches used
by JavaScript developers to recover from errors.

Error: is a part of an erroneous state which compose a difference from a valid state
according to Lee and Anderson (1990).

Stack trace: consists of a runtime exception and a function call sequence at the
moment of the crash (Gu et al. (2019)).

Handle type: JavaScript is weakly typed, and does not apply any restrictions on the
types the variables can refer to (Ocariza, Pattabiraman and Zorn (2011)). Thus, developers
are not forced to define specific types of errors, any type even a string, number, or NaN
(not a number), may be used for signaling an error. Although a native class Error was
created for this propose, developers might define their own error classes.

Error handling strategy: is the set of statements created to recover from an error
raised on the application Sena et al. (2016). This concept involves actions like printing
a message on the console, throwing (or re-throwing) an error, executing a more complex
set of actions in order to maintain the application working properly, available (crucial for
web applications), and in a consistent state.

Employed mechanism: has the goal of generalizing operations of an object and
make them able to handle errors (Miller and Tripathi (1997)). In this study, we analyzed
try-catch blocks and callback functions of JavaScript applications.

Error recovery: involves changing the program flow in order to execute actions to
handle the error and putting the program back into the expected execution path.

Asynchronous functions: A function that uses an asynchronous callback is defined
by having one of its parameters as the callback argument (Gallaba et al. (2017)). Although
it is not directly related to error handling, it plays a key role on the decision of which
mechanism a developer should use in JavaScript.

2.2 EXCEPTION HANDLING MECHANISMS

According to the Mozilla’s documentation1, JavaScript has a compact set of statements
to define the control flow of the application. These statements allows developers to handle
interaction users usually do towards the interface of the system in the web.

Considering error handling, whenever an error occurred, the programming language
should provide ways to change the flow in order to execute a different set of statements
from the expected path. The representation of an error are commonly an object, as in
Java or C# (Ben-Assuli and Jacobi (2012)). The documentation explains that strings
and numbers are often thrown as errors, although there is a recommendation to use one

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Control_flow_and_error_handling

17

of the objects designed for this purpose, e.g., Error object2. A list of error objects is
available in ECMAScript and two interfaces designed for this purpose: DOMException
and DOMError.

Although the above is also valid to Node.js3, the framework presents different objects
to signal an error and applications may present the errors objects:

1. Standard JavaScript errors such as EvalError, SyntaxError, RangeError, ReferenceError,
TypeError, and URIError.

2. System errors triggered by underlying operating system constraints such as attempt-
ing to open a file that does not exist, or to send data over a closed socket.

3. User-specified errors triggered by application code.

4. AssertionErrors are a special class of error that can be triggered when Node.js
detects an exceptional logic violation that should never occur. These are raised
typically by the assert module.

All error types in Node.js are inherited from JavaScript Error object, and have all the
properties of this object. The documentation also states that all errors raised by throw

statement should be handled by try-catch constructions, otherwise the process will stop
immediately. This is also are valid for synchronous processing.

For asynchronous processing, in agreement with Node.js documentation4, there are
three approaches for handling errors:

• the definition of a method that accept callback functions and the first argument is an
Error object. This approach is also called “first-error callback” (Gallaba, Mesbah
and Beschastnikh (2015)), where the first argument stores the error object, if it
exists. Otherwise it receives the null value. This allows the developer to check the
existence of such an error by employing an if statement.

• An asynchronous method may be called from an object inherited from EventEmitter,
such errors are routed to error events.

• Some other methods in the Node.js API, although asynchronous, may still use the
throw mechanism and therefore should be handled by try-catch mechanism.

The first two approaches are callback functions being used to handle errors in two
different ways. The last approach uses async-await abstraction which will be presented
in the next sections.

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
3https://nodejs.org/api/errors.html#errors_class_error
4https://nodejs.org/api/errors.html#errors_error_propagation_and_interception

18

In this section, we discuss how those error handling mechanisms are structured, how
they work, and finally, we present an example. We also introduce additional error han-
dling abstractions that are build upon these mechanisms, namely promises, events and
async-await constructions.

2.2.1 Try-catch blocks

Try-catch block separates the code that may throw an error from the code that handles
the error. In the try block, resides the code that may throw errors, and in the catch block
resides the code responsible for bringing the system back to a consistent state. An error
is an object that is signaled through a throw statement. When an exception is thrown,
JavaScript looks for an appropriate handler for the error, first within the current method.
When none is found, the error is propagated up through the call stack until a handler is
found. Only exceptions thrown from within a try block will be handled by the associated
catch block.

Code 1 presents an example of a try-catch block. Line 2 invokes the eval function,
which receives a text string and interprets it as JavaScript code. That line has a parse
error due to a missing quote (") and thus throws an exception. At that moment, the
control will jump to the catch block, which will handle the error by printing an error
message to the console.

Listing 1 – Synchronous code in JavaScript using try-catch

1 try {

2 eval('alert("Hello world)');

3 // prints SyntaxError: Invalid or unexpected token

4 } catch(error) {

5 console.log(error);

6 }

2.2.1.1 Async functions

Async functions were introduced into Node.js 8 and are part of ECMAScript 2017. Async
function performs error handling like promises, through the try-catch mechanism Wilson
(2018). It is basically syntactic sugar for the promises. However, all promises declared
inside an asynchronous function must be preceded by the await keyword. Whenever await
appears during the execution of a program. Execution is paused until the expression is
completed by resolution or rejection of the promise5. A return of async-await is an
AsyncFunction object which represents the asynchronous function.

5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

19

Code 2 shows an example extracted from Stackoverflow6. It presents the getProcessedData
method which is an async-await function that downloads some data and returns a
promise through processDataInWorker method. Any error occurred in the try block
is recovered by catch scope. Code 3 shows a version of getProcessedData method using
promises, implemented by the author in Stackoverflow.

Listing 2 – Processing data from URL using async-await abstraction

1 async function getProcessedData(url) {

2 let v;

3 try {

4 v = await downloadData(url);

5 } catch(e) {

6 v = await downloadFallbackData(url);

7 }

8 return processDataInWorker(v);

9 }

Listing 3 – Processing data from URL using promise

1 function getProcessedData(url) {

2 return downloadData(url) // returns a promise

3 .catch(e => {

4 return downloadFallbackData(url) // returns a promise

5 })

6 .then(v => {

7 return processDataInWorker(v); // returns a promise

8 });

9 }

2.2.2 Callback functions

A callback is a function passed as an argument to another function to be invoked some
time later (Gallaba, Mesbah and Beschastnikh (2015)). Callbacks are usually employed
in scenarios where a function is expected to have long execution time, e.g., to access an
external resource. Whenever a caller 𝑓 calls a function 𝑔, it passes a callback function to
be invoked by 𝑔 upon its completion. Most importantly, 𝑓 does not stay blocked waiting
for 𝑔 to complete, i.e., 𝑔 may be executed asynchronously. Callback functions often take
two parameters, one is an error indicating that 𝑔 could not successfully complete and the
other one is the result of a successful execution of function 𝑔.

6https://stackoverflow.com/questions/44029927/how-can-i-use-aync-await-in-javascript

20

Callbacks can be synchronous (when executed after the invoked function returned)
or asynchronous (when deferred to execute some time later after the invoked function
returned). The JavaScript community employs a code practice called “error-first protocol”
Gallaba, Mesbah and Beschastnikh (2015), reserving the first parameter of a callback
function for errors and the second argument is reserved for any successful request data.
In this practice, an error occurs when the first parameter is not null. Code 4 shows an
example of “error-first protocol”. In this example, a product is removed from a database
by calling the remove function. This function receives an anonymous callback function
whose parameters are err and removedProd (Line 1). If an error occurs, the callback will
be invoked with a non-null argument corresponding to err (as define by the error-first
protocol). Thus, the condition of the if statement of Line 2 will be true and the error
will be handled by function handleError. Otherwise, if err is null, the id of the removed
product will be printed to the console. In this example, the if statement of Line 2 acts
as the error handler.

Listing 4 – An example of callback usage to handle an error
1 product.remove(function (err , removedProd) {

2 if (err) return handleError(err);

3 console.log(removedProd._id + " removed.")

4 })

Callback functions, as any function definition in JavaScript, may be defined using
one of three approaches available for this purpose. The first approach consists of using
the function keyword to declare a named function7. The argument function passed to
remove in Code 4 is an example of a function expression. When the function name is
omitted, they are called anonymous functions or “function expressions”8. Lastly, it is
possible to define “arrow functions”9, a more compact version of function expressions.
Line 6 of Code 5 exhibits an example of arrow function through the assignment of variable
getRectArea that receives an arrow function. This function receives two parameters, width
and height10, and return the area of the rectangle.

Listing 5 – A function declaration and an arrow function
1 // A named function declaration

2 function calcRectArea(width , height) {

3 return width * height;

4 }

5 // An arrow function

6 var getRectArea = (width , height) => width * height;

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function
8https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/function
9https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

10http://mongoosejs.com/docs/api.html#Query

21

Callbacks can also be employed in event handlers and in promise objects. We discuss
them in detail in the remainder of this section.

2.2.2.1 Events

Events use the publisher/subscriber paradigm to perform asynchronous execution. This
paradigm relies on publishers and subscribers that interact to each other by sending and
receiving a notification of an occurrence of a event. Publishers publish a notification of an
event (like a click in a button), and this event is asynchronously notified to all subscribers
registered to be notified in face of that event. Eugster et al. (2003) present the concept of
“event service”, which represents the mediator between publishers and subscribers. They
also declare that the dissociation between publishers and subscribers provided by “event
service” is composed by the following concepts:

Space decoupling: publishers and subscribers do not need to hold references for each
other, and do not even need to know how many entities (either publishers or sub-
scribers) are involved in the system.

Time decoupling: the interaction between publishers and subscribers does not have to
happen at the same time. This is a basic premise for asynchronous execution.

Synchronization decoupling: publishers and subscribers are not blocked while pub-
lishing or being notified of the occurrence of an event. Thus, the interaction occurs
asynchronously.

To understand how the event parties are defined in JavaScript, we list important
concepts about events and how developers may publish or notify events:

Event type is the object that represents the event itself and defines what type of error
has occurred. For instance, an event that represents the mouse is moving towards
to a specific component is called “mouse-move”.

Event target is the object the event is associated to. On the example of a button click,
the event target is the button itself where the click happened.

Event handler is the function called when an event occur.

Event registers is a function designed to register an event and associate event handler
and event target. Through this function, an event target is able to subscribe to an
event, or to unsubscribe depending on the function called.

Event triggering is the process of executing all event handlers to an event in a first-in
first-out (FIFO) order of subscription.

22

In this style of programming, an event is propagated in the system to indicate the
completion of a task or an user interaction. Although the events are usually of string
type, there is no restriction made of the language for another type to be used for that
purpose, that is, any object can be used as an event.

It was also stated that both Web-based and Standalone applications use an event-
driven model11,12. There are natively predefined events, both by Node.js and by EC-
MAScript Flanagan (1998). In Node.js, all objects that emit events are instances of
EventEmitter class. They can subscribe to an event by calling methods on or once.
The on method receives two parameters: an event (usually a string defined which event is
related to) and an event handler (a function that should be called whenever the event oc-
curs), and the second method once do exactly the same, however after the first occurrence
of the event, the handler is automatically unsubscribed. To publish an event, in Node.js,
the developer should call emit method which receives an arbitrary number of parameters,
those are the events.

Code 6 shows an example of the events usage of on method. The object http is created
in line 3, through reference of the library. Then, the get method is called to execute the
request, receiving an object representing the request parameters as the first parameter
and a callback function to handle the response. While the response is being received, an
event called data, triggers the function defined on line 14. On the conclusion of sending
the response, an event called end triggers the function defined on line 18.

Listing 6 – A GET request is created using http library in Node

1 'use strict '

2

3 const http = require('http');

4

5 http.get({

6 hostname: 'localhost ',

7 path: '/user?name=jv&jovem=true&agr=19',

8 port: 3000,

9 agent: false

10 }, function(response) {

11 let body = "";

12 console.log(response.statusCode);

13 console.log(response.headers);

14 response.on('data', function (data) {

15 body += data;

16 });

11https://nodejs.org/api/events.html
12https://developer.mozilla.org/en-US/docs/Web/API/Event

23

17

18 response.on('end', function () {

19 console.log('Resposta:', body);

20 });

21 });

Mozilla’s documentation presents methods for handling events13, however the meth-
ods present are not designed directly to handle errors. Some of those methods are cur-
rently deprecated (Event.createEvent and Event.initEvent), and others are available to
use: Event.composedPath, Event.preventDefault, Event.stopImmediatePropagation,
and Event.stopPropagation. These methods do not necessarily handle errors. Libraries
design their own API methods, events, variables, including the name of the functions that
handle events. We were not able to accurately identify the specificities of each library used
in each one of the projects. For this reason, we consider only the three methods defined
by Node.js for listening and handling events, the methods: on and once.

2.2.2.2 Promises

Promises are an extension of JavaScript and first appeared on ECMAScript 6. They are
objects that represent a future result, whenever is successfully computed, the promise is
called resolved, if any errors emerge, the promise is called rejected14. Brodu, Frénot and
Oblé (2015) declare that promises also combines synchronous and asynchronous execu-
tion, allowing the sequentially of control flow, while providing use of continuations. Code
7 presents an example of a promise creation using the new keyword. It receives two pa-
rameters: resolve and reject callbacks functions employed to handle the promise state.
Whenever a promise completes the operation successfully, it should call resolve function
passing the result, otherwise, reject callback is called passing the error.

Listing 7 – A Promise object creation

1 let promise = new Promise(function(resolve , reject){

2 // do a thing , possibly async , t h e n

3 if(/* everything turned out fine */){

4 resolve("Successfully completed!");

5 }else{

6 reject(Error("Error occurred!"));

7 }

8 });

Through the exposure of the method then, developers may nest callback functions,
and perform a conglomerate of functions executing one after the other by passing the

13https://developer.mozilla.org/en-US/docs/Web/API/Event
14http://documentup.com/kriskowal/q/

24

result of the previous promises in the order defined in the chain. Another term used to
refer to promises are the “thenable” objects for supporting developers to attach callbacks
on a promise chain (Kambona, Boix and Meuter (2013)).

Errors may occur in any of the callbacks involved in the chain. Legibility is negatively
impacted when more callback functions are nested into the chain. The creation of the con-
cept “promise”, is highly due to “callback hell”15. For nesting callback functions, promises
uses the then method. It receives two arguments, the first is the callback that is called
whenever a result is successfully computed. The second argument, which is optional, is a
callback function call when a failure occurred in the execution of a promise chain. There
is also a syntax sugar for then(null, failureCallback), it is the method catch. When
a promise chain fails, the following step is to search for a promise in the chain that the
second parameter is not undefined, or catch calling. Code 8 shows both method signa-
tures, using the second parameter to pass the callback function to handle errors (line 10),
and omitting the handler function on method then (line 12), using the method catch for
error handling.

Listing 8 – Method signature then for promises
1 function onSuccess(result){

2 // "Successfully completed !"

3 console.log(result);

4 }

5

6 function onError(err){

7 console.log(err);

8 }

9

10 promise.then(onSucess , onError);

11

12 promise.then(onSuccess)

13 .catch(onError);

2.3 GLOBAL EVENT HANDLERS

The mechanisms we presented are Functions objects, in fact, all JavaScript function is
actually a Function object16. This allow developers to create their own objects, such as
definitions of promises (Promise object17, and creation of new async functions (Async-
Function18).

15http://callbackhell.com/
16https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
17https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises)
18https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

25

Global event handlers are mixins, which is an interface that some or all its methods
and/or properties are unimplemented19. Global event handlers describe event handlers
for specific interfaces such as HTMLElement, Document, or Window. There are several event
handlers natively defined in JavaScript, categorized as Global event handler according to
Mozilla’s documentation20.

For error handling, global event handlers may be used for trackle situations such as
shutdown of server or failing to load data, also useful for automated collection of error
reports. There are two ways to fire an error event21: (i) a JavaScript runtime error (such
syntax errors thrown in the handlers), (ii) a resource failed to load.

2.3.1 JavaScript Global event handlers

For JavaScript applications, developers may define global event handlers through the
window and element objects. We present the code signature of the error event handlers
in Code 9.

Listing 9 – Global event handlers signature for JavaScript
1 // MDN web docs

2 window.onerror = function(message , source ,

3 lineno , colno , error) { ... }

4

5 window.addEventListener('error ', function(event) { ... });

6

7 element.onerror = function(event) { ... }

2.3.2 Node Global event handlers

In Node, there is an event listener method named on called by the process object to handle
events in a global way. Code 10 shows the code syntax for globally handle errors in Node.
The “uncaughtException” event is emitted whenever an uncaught JavaScript exception
bubbles up to the event loop. By default, Node prints the stack trace to stderr and exits
with code 1, overriding any previously set process.exitCodeNode. Any exception thrown
inside this global event handler is not caught. The Node documentation22 recommends to
not resume the application after an “uncaughtException” event.

Listing 10 – Global event handlers signature for Node
1 // Node.js documentation

2 process.on('uncaughtException ', function(event) { ... });

19https://developer.mozilla.org/en-US/docs/Glossary/Mixin
20https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers
21https://developer.mozilla.org/en-US/docs/Web/API/GlobalEventHandlers/onerror
22https://nodejs.org/api/process.html#process_event_uncaughtexception

26

2.4 WEB-BASED AND STANDALONE SYSTEMS

Besides the error handling mechanisms and their abstractions, to deal with errors in
JavaScript applications, we present two concepts directly related to the interaction of the
applications to other applications. Applications may use a browser as an environment even
if they never actually perform a request to a server. In this work, we consider that Web-
based applications are applications that do not connect to another application (server)
and otherwise, we classified the application as Standalone.

We believe that these two classes may have to deal with different types of errors.
Standalone applications have to deal with errors that happens in the browser indepen-
dently of an outside server. In Standalone applications, in general, when an error is not
handled, it is printed in the console. Web-based applications may send information to
a server, and errors may occur in different parts of this system. Web-based applications
rely on servers to retrieve and store information. Once they are needed, Web-based appli-
cations must send a request to the server. Similarly, when the applications need to save
an information, it must send it to the server. In this case, Web-based applications may
deal with errors like the server is down. Node applications crash without any notice in a
lack of a global handler (in the Node applications, in specifically, through the calling of
process.on(’uncaughtException’, callbackFunction)). The details in how we classi-
fied the applications considering the concepts presented here, are described in the next
chapter.

2.5 RELATED WORK

In this section, we present a short description of the research which has been conducted
in areas related to our work.

2.5.1 JavaScript

Gallaba, Mesbah and Beschastnikh (2015) studied JavaScript callback functions through
138 JavaScript applications, with over 5 million lines of JavaScript code. They claimed
that developers are often frustrated by “callback hell” problem, which refers to nested
and anonymous callback functions and asynchronous callback scheduling. They found
that one in ten function definitions takes a callback argument, and that over 43% of all
callback-accepting function callsites are anonymous. They analyze the adoption of first-
error callbacks in the JavaScript programs, and found that one in five callback functions
adheres to the error-first protocol. Besides that, they compared client and server applica-
tions, and server-side code employ first-error callbacks twice as often than client-side code.
In this work, we did not explore callback functions in their general usage, but in their
usage for handling errors, although they investigate the error-first protocol. They also
divided the client-side and server-side code in sub-categories (DataViz, Engines, Frame-

27

works, Games, Webapps, NPM), which is an idea that we could investigate in our dataset
in the future.

Ocariza, Pattabiraman and Zorn (2011) provide an analysis of the error messages
printed by JavaScript code in web applications, and investigate the root causes. They
found that approximately 93% of the errors are categorized as such: Permission Denied
(52%), Undefined Symbol (28%), Null Exception (9%), and Syntax Errors (4%), and
about 72% of the errors are non-deterministic (i.e., vary across executions). They also
analyzed the source of the errors, through the correlation of applications’ static and dy-
namic characteristics (such as number of calls to eval). We conceive that our work may
be enhanced whether we consider the nature (dynamic or static) of the target systems we
analyzed.

2.5.2 Exceptions

Cabral and Marques (2007) investigated error handling mechanisms employed in 32 dif-
ferent applications in Java and C# systems. They noticed that error handlers are usually
not specialized enough, programmers usually do one of the following approaches: logging
an error message, notify the error to the user, and application termination. Although
they found that the exception objects of these error handlers are very specific types and
bound to the system logic. Besides error handling, they also evaluate finally clauses in
try-catch blocks. We do not investigate finally clauses in our work, however it may be
interesting investigate them in the future.

Jakobus et al. (2015) examined commonalities and differences of both exception scopes
and handlers, through of analysis of 50 software projects, containing code developed in
C++, JavaScript, PHP, Java and C#. They evaluated over 20,000 exception scopes and
handlers. Their results reinforced the current belief that developer are used to employ a
simplistic approach in exceptions handlers, regardless of programming language used. In
our work, we took a deeper analysis in error handlers for JavaScript, as we evaluated call-
back functions for handling errors besides catch blocks. We do not analyze the strategies
in the error scope (code inside try blocks, in the method then of promises and inside
functions that raise error events) that may be an interest idea. However, it needs more
investigation.

Kery, Goues and Myers (2016) analyzed 11 million try-catch blocks in Java from
Github applications. They found 1,515,523 catch empty handlers, 12.4% of the total.
They found that exception are mostly handled locally in catch blocks, instead of being
propagated by throwing an Exception. They also found that the handlers use mostly
actions like Log, Print, Return, or Throw in catch blocks. They claimed that bad practices
like empty catch blocks or catching Exception are widely spread.

28

3 METHODOLOGY

In this chapter, we report our methodology for this empirical study. This includes how
we build the dataset, the assumptions we present due to specificities of the JavaScript
language, and how we elicited the software metrics to analyze the error handling usage
on the applications.

In Section 3.1, we present our research questions. Section 3.2 explains how we selected
the repositories we study in this work. In Section, 3.3, we discuss some of the obstacles
to automatically extracting information about error handling from JavaScript projects
and how we identified error handling code. In Section 3.4 presents how we elicit the error
handling strategies, and in Section 3.5 how we perform the extraction of those strategies
from the JavaScript projects. In Section 3.6, we compose a set of recommendations and
antipatterns for error handling in JavaScript systems we extracted from guides in the grey
literature (Auger (1975)). And, finally, Section 3.7 presents the threats to validity.

3.1 OVERVIEW

In this work, we aim to get a deeper understand on error handling in JavaScript through
an analysis of the mechanisms and the strategies used to deal with errors. In this study,
we address the following research questions:

• RQ1. How do developers handle errors in JavaScript applications?

• RQ1.1. Which error handling mechanisms do developers employ?

• RQ1.2. Which error handling strategies do developers employ?

• RQ2. Are there any differences regarding error handling in Web-based and Stan-
dalone JavaScript applications?

RQ1 is broken into two different and complementary questions. To answer RQ1.1, we
elicited software metrics that the systems may employ, based on previous research studies.
Then, we collected the software metrics pertaining to the use of the two mechanisms from
192 projects comprising both Web-based and standalone JavaScript systems. Furthermore,
we measure the extent to which different abstractions (details in Section 2.2) are employed
in these projects. For RQ1.2, we measure the prevalence of well-known error handling
patterns and anti-patterns (Cabral and Marques (2007)) in these systems. Finally, to
answer RQ2. we compare the mechanisms and strategies usage by both Web-based and
Standalone applications for handling errors.

29

3.2 PROJECT SELECTION

To build the dataset of projects to be analyzed, we collected a sample that aims to repre-
sent a population of engineered, non-trivial, popular open-source JavaScript systems from
the Github. We followed recommendations presented by Kalliamvakou et al. (2014) for
mining repositories on Github. The authors indicate perils in mining repositories. Among
the recommendations and perils, the ones relevant to this study are: some projects may
be not very active, have a small number of commits, or be personal projects. Bearing
those recommendations in mind, we used the Github web page to query repositories, by
using the “advanced search” page1. We select repositories with at least 1,000 stars, 500
forks, and whose last commit occurred less than a year ago (between November 2017 and
November 2017). We also selected repositories from2, a curated list of JavaScript systems
which describes itself as a “collection of awesome browser-side JavaScript libraries, re-
sources and shiny things”. The projects we selected from this list also meet the previously
mentioned criteria. We disregard forks in our analysis. As a result, our dataset comprises
192 repositories.

3.2.1 Classification of Web-based and Standalone systems

We manually classified each repository as Web-based or Standalone since there is no
reliable automatable approach to perform this classification. We aimed at classifying the
repositories without the need to execute all of them. Thus, we examine the package.json
file of each project, which is a manifest file of JavaScript projects, and analyzed meta
information such as the project name, dependencies (and their versions), commands,
version, etc3. Among those properties, only name and version are mandatory. The full
list of properties a package.json file may have is publicly available4. We highlight the
properties scripts and engines. The first one is a dictionary which stores script commands
that are recurrently executed during the application life cycle. The key is the life cycle
event and the value is the command. An example of usage of the property scripts is
presented in Code 11 in Line 8. The engines property is also a dictionary to specify Node
and other commands the package/app work on. An example of the engines property is
shown in Code 12. To enhance the classification method, we also manually checked the
README.md file on the repositories searching for the project’s purpose (either Web-
based or Standalone). Finally, we found 86 repositories classified as Web-based and 106
classified as Standalone projects.

1https://github.com/search/advanced
2https://github.com/sorrycc/awesome-javascript
3https://docs.npmjs.com/creating-a-package-json-file
4https://docs.npmjs.com/files/package.json

30

3.3 IDENTIFYING ERROR HANDLING CODE IN JAVASCRIPT

After the classification of the repositories, we analyzed the mechanisms for error handling
available in JavaScript. Similarly to other languages such as Java, C++, and Python;
JavaScript also employs try-catch blocks for exception handling. In this case, identifying
exception handling code is straightforward, as try-catch blocks explicitly separate error
handling scope, we only need to retrieve the statements in catch blocks. Try-catch blocks
explicitly separates code responsible for the normal activity of the system from the error
handling code, differently from callback functions. In the subsections 3.3.1 and 3.3.2, we
discuss the main obstacles to identify error handling callbacks. In the subsection 3.3.3,
we present our approach to overcome these obstacles.

Listing 11 – Example of package.json for scripts property

1 {

2 "name": "ethopia -waza",

3 "description": "a delightfully fruity coffee varietal",

4 "version": "1.2.3",

5 "devDependencies": {

6 "coffee -script": "~1.6.3"

7 },

8 "scripts": {

9 "prepare": "coffee -o lib/ -c src/waza.coffee"

10 },

11 "main": "lib/waza.js"

12 }

Listing 12 – Example of package.json for engines property

1 {

2 "engines" : {

3 "node" : " >=0.10.3 <0.12"

4 }

5 }

3.3.1 Dynamic typing in JavaScript

JavaScript is a prototype-based, multi-paradigm (object-oriented, imperative, and declar-
ative), dynamic language5. As a dynamic programming language, variables are not directly
related to a specific type and can be re-assigned to another type at runtime. There are
seven native types available: boolean, null, undefined, number, string, Symbol and Object.

5https://developer.mozilla.org/en-US/docs/Web/JavaScript

31

Developers can create their own types by deriving from objects. Although JavaScript has
included an Error object constructor6 for this purpose, in practice any object, no matter
its type, can be used to define an error. As a consequence, it is not possible to reliably
verify if a complex object stores an error without executing the program.

The problem of determining which parameters were defined to store the error infor-
mation directly impacts the identification of callback functions for error handling. As
mentioned in Section 2.2.2, a callback function is a function 𝑓 passed to another function
𝑔 as an argument, which is then invoked within 𝑔 to perform some type of task or action.
Due to the lack of typification, this imposes an obstacle for identifying error handling in
callback functions.

3.3.2 Single-use callbacks

JavaScript, similarly to other programming languages, defines functions or methods so
that the developers may improve modularization to their systems. In a Web environment,
there is a tag <script>, used to bind a JavaScript file to an HTML file. In order to
reuse functions defined in different script files, those functions must be exported by this
script. In order to import a script file, there are a variety of syntactic approaches7. In
Node.js, the only way to import functions from other scripts is through the require

method. This method may receive a string representing the name of the module (when
importing a module directly from npm) or the path of a local script from the current
project. There are some libraries such as RequireJS8, Neuter9, Browserify10 and others
that import modules likewise Node.js applications even if they may not be using Node.js
at all. There are also some differences on importing script files when the project uses
an transpiler (like Babel.js). After importing, module functions are now visible for each
other. There is also the problem of determining that a symbol used within a function
actually refers to a function even if is locally declared. Doing that with precision would
require type information, which is unavailable in JavaScript. This is the reason why we
also do not account for locally-declared functions used as callbacks.

Due to the dependency on libraries used on the projects, we are unable to ensure how a
function was imported, and we cannot properly retrieve the function body to evaluate how
errors are handled. As this obstacle directly impacts the retrieval of callback functions,
we decided to disregard this case and only consider functions passed to the callback as
lambda or arrow functions. Using this approach, we gain in precision but lose cases of
callback usage.

6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
8https://requirejs.org/docs/start.html
9https://www.npmjs.com/package/grunt-neuter

10http://browserify.org/

32

3.3.3 Tackling error handling code

In order to undertake the problem of error handling callbacks, we adopted an approach
similar to the one employed by Gallaba, Mesbah and Beschastnikh (2015), searching for
conventions in variable naming, although with some adaptations. They considered that an
error parameter name should match the regular expression e|err |error to consider that
a callback function follows the error-first protocol (Gallaba, Mesbah and Beschastnikh
(2015)).

We extend this assumption to classify any callback function (not to adheres to the
error-first protocol). We also extend the regular expression used by Gallaba, Mesbah
and Beschastnikh (2015) by performing a manual analysis of a sample of our dataset to
check which words could be interesting to be used to identify callback functions for error
handling. We randomly selected three repositories and retrieved a hundred functions.
Then, we manually checked the callback function for error handling, and searched for
naming patterns on the parameters passed to these functions.

We compile a list of the most often used words for naming parameters, object con-
structors, functions, or events (such as uncaughtException). The list consists of the words
reject, error, exception, reason, err, er, and e. The words reject and reason usually refer
to errors during the execution of a promise, i.e. the promise was rejected for a specific
reason. We consider that a function is handling an error whenever at least one of its
parameters name is included in the aforementioned list (ignoring capitalization). We also
consider whether the function parameter name partially matches to at least one of the
list of error parameter names that we build. To mitigate false positives, for the last two
error parameters of our list (er and e), we require the currently function parameter we
evaluate to be strictly equal. For the other words, we checked whether the keyword is
part of the parameter name. For instance, a parameter named connectionError, er, or
rejected would be assumed to refer to errors but marker would not.

We took a different approach for event handlers. As presented in Chapter 2, devel-
opers must register callback functions as listeners for events and they may not receive
any parameters. Thus, for identifying handlers for error events we must complement the
parameter name-based approach. Events are uniquely identified by either a string or
a Symbol. A Symbol is “... a unique and immutable primitive value and may be used as
the key of an Object property...”11. Moreover, according to the Node documentation12,
events that represent the occurrence of an error should have string type and be named
’error’. In this work, we consider that any event whose name includes one of the defined
keywords, represents an error. As a consequence, handlers for such events are considered
to be error handling callbacks. In addition, for events, we only consider events defined
through strings, since we have not found a single example of a Symbol event representing

11https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#Symbol_type
12https://nodejs.org/api/events.html

33

an error. Code 13 shows an example of a callback that works as both an event handler
and an error handler. The callback itself has no parameters, but it is identified as an error
handler because of the name of the event it handles, the reconnect_error.

Listing 13 – Event listener creation for reconnect errors

1 socket.on('reconnect_error ', function () {

2 console.log('attempt to reconnect has failed ')

3 });

3.4 CODE IN ERROR HANDLERS

Besides analyzing the mechanisms employed in JavaScript, to answer RQ1.2, we need
to elicit the actions developers can take for error handling. Cabral and Marques (2007)
studied error handling in Java and .NET systems. They collected a number of static soft-
ware metrics for actions that may be performed for error recovery in the aforementioned
programming languages. They named the software metrics (the approaches of the error
handlers) by actions. Table 1 presents the name and description of the action categories
used in the work of Cabral and Marques (2007). They found that 60% to 75% of the error
handlers relies on three categories: Empty, Log and Alternative/Static Configuration. The
first category refers to the error handlers that have no statements, the second category
refers to error handlers that log a message only, and the last category refers to an event of
an error or in the execution of a finally block some kind of pre-determined (alternative)
object state configuration is used.

In this study, we renamed the action categories for strategies, and partially consider
the actions categories of the work of Cabral and Marques (2007). Their actions categories
were defined for Java and .NET applications. JavaScript presents different challenges
which make some of those metrics not applicable for this study or demand a deeper
analysis inside each code handler. From the actions categories considered by Cabral and
Marques (2007), we regard in our study Empty, Log, Throw, Continue, Return. We also
consider the action category Others that correspond to any other actions that do not relies
into the previous categories defined by Cabral and Marques (2007).

We disconsider the following actions categories in this study: (i) Alternative/Static
Configuration, (ii) Rollback, (iii) Close, (iv) Assert and (v) Delegates (only for .NET). The
action categories (i) to (iv) are intrinsically bind to the different libraries that the projects
may use. Libraries in JavaScript design their classes, objects and methods using different
nomenclature, so that we could not properly determine their objectives only by their
names, and JavaScript do not define typification. Thus, we could not properly classify the
JavaScript error handlers in those categories. And, the action category (v) is exclusively
of .NET.

34

Table 2 shows the strategies that we also consider to analyze the error handlers, based
on the actions categories of the work of Cabral and Marques (2007) and in the rules of
ESLint13. The first category (Single statement) consider if the error handler has only one
statement. Break is a strategy that was defined by Cabral and Marques (2007) inside the
action category Return. Differently from the work of Cabral and Marques (2007), that add
break statements inside the action category Return, we decided to separate Return and
Break in two different strategies. There is a specifically rule in ESLint to oblige developers
to use return statement inside callbacks14. The strategy No usage of error parameters
is referent to the rule no-unused-vars, more specifically to caughtErrors15, with regard
to not usage of any error parameter. Finally, the strategy Reassign parameters refers to
the reassignment of an error parameter, losing the error information. Additionally, we
retrieve the abstraction employed for each error handler, the number of lines, the number
of statements, the number of statements, and the file we found the error handler.

13https://eslint.org
14https://eslint.org/docs/rules/callback-return
15https://eslint.org/docs/rules/no-unused-vars#caughterrors

35

Table 1 – Description of the Handler’s actions categories

Category Description

Empty The handler is empty, is has no code and does nothing
more than cleaning the stack

Log Some kind of error logging or user notification is carried
out

Alternative/Static Configu-
ration

In the event of an error or in the execution of a finally
block some kind of pre-determined (alternative) object
state configuration is used

Throw A new object is created and thrown or the existing ex-
ception is re-thrown

Continue The protected block is inside a loop and the handler
forces it to abandon the current iteration and start a
new one

Return The handler forces the method in execution to return or
the application to exit. If the handler is inside a loop, a
break action is also assumed to belong to this category

Rollback The handler performs a rollback of the modifications
performed inside the protected block or resets the state
of all/some objects (e.g. recreating a database connec-
tion)

Close The code ensures that an open connection or data
stream is closed. Another action that belongs to this
category is the release of a lock over some resource

Assert The handler performs some kind of assert operation.
This category is separated because it happens quite a
lot. Note that in many cases, when the assertion is not
successful, this results in a new exception being thrown
possibly terminating the application

Delegates(only for .NET) A new delegate is added
Others Any kind of action that does not correspond to the pre-

vious ones

Source: Cabral and Marques (2007)

Table 2 – Description of code handlers strategies

Category Description

Single statement The handler has only one statement
Break There is a break inside the handler
No usage of error parameters The handler does not use any error parameters
Reassign parameters The handler reassign an error parameter to another value

Source: Made by the author

36

3.5 DATA COLLECTION AND PROCESSING

We developed an extractor tool16 using Node.js and libraries Esprima17 and Estraverse18.
Esprima was used to build the Abstract Syntax Tree (AST) for each file of the repositories
and Estraverse is employed to visit the nodes of the AST.

The extractor tool clones the repositories from Github and performs various analysis
on the source code. To ensure the files follow the same indentation rules, we perform some
static code transformations using using Babel19 and Uglify.js20. The changes we perform
in the code of the applications are: i) remove the blank lines, ii) reformat the code so the
indentation rules are the same throughout the files of the dataset, iii) transform function
declarations into arrow functions (both function declarations and arrow functions are
syntaxes of callback functions and are presented in the subsection 2.2.2), and iv) add
brackets whenever an if, for, do, while, or with statement has only one line. We retrieved
the number of try-catch blocks, async-await functions, promises, error event handlers,
callback functions, and the previously specified action categories presented in Table 1 and
Table 2.

The extractor creates an AST for each JavaScript file on the project. We do not
consider files whose extension is .min.js, since those files are automatically generated by
a process known as minification21. The purpose of minification is to obscure the code or
to make the source code smaller, and hence, transfer a smaller amount of data over the
network. We are not considering code that resides on HTML files. JavaScript code may
be included inside HTML files, between the tags <script>. And, we also do not analyzed
files under the node_modules directory, which is used by npm package manager22 to store
libraries code.

We recorded the results on spreadsheet files and performed statistical analysis using
Python (libraries: numpy 23, scipy 24 and pandas 25) for descriptive and inferential statis-
tics. To compare the classes Web-based and Standalone applications, in both the error
handling abstraction usage and the strategies employed by the classes, to increase the
statistical power of the tests, we applied T-Student (Senn and Richardson (1994)) tests
whenever the samples followed normal distributions, otherwise we applied statistical test
defined by Mann and Whitney (1946).

16https://github.com/luanamartins/project-analysis/tree/master/extract-metrics
17http://esprima.org/
18https://github.com/estools/estraverse
19https://babeljs.io/
20https://www.npmjs.com/package/uglify-js
21https://en.wikipedia.org/wiki/Minification_(programming)
22https://www.npmjs.com/
23http://www.numpy.org/
24https://www.scipy.org/
25https://pandas.pydata.org/

37

3.6 RECOMMENDATIONS AND ANTIPATTERNS IN JAVASCRIPT ERROR HANDLING

To answer the research question RQ1, we believe that we need to compare the “how”
developers handle errors with the way they (as a community) expect the errors to be
handled. Besides that, referring to the RQ2, this analysis is also useful to identify the
differences between Web-based and Standalone systems.

To analyze which programming practices the community expect errors to be handled,
we adopt the methodology employed by Cassee et al. (2018) to elicit recommendations and
antipatterns for error handling. We start by querying Google using the strings “javascript
node.js error handling best practices” and “javascript node.js error handling anti-patterns”
(both without the quotes). We then select the first 20 items of each query. We only se-
lected documents that are directly related to error handling, disregarding questions from
Q&A sites, and recommendations for clean code (related to best practices of software de-
velopment). Barbosa et al. (2016) presents the following description of error propagation:
“it specifies the specific places in the source code where specific exceptions are raised and
handled, and also which specific exception types may flow between these places”. We are
unable to properly identify the places where an error has been thrown and where it is
caught, thus we decided to leave out any recommendations or antipatterns pertaining to
exception flow. In overall, we analyze 8 guides: Goldberg (2018), Joyent (2019), Nemeth
(2017), Schardt (2018), Ershov (2018), Soares (2017), Notna (2017), Syed (2018).

Next, we study the selected guides to identify recommendations of practices that
should be followed and that should be avoided pertaining to JavaScript error handling. We
also retrieve these rules of ESLint26 about error handling: Empty Handler27, Ignore error28,
and Reassign error29. Table 3 shows the recommendations and antipatterns retrieved from
the guides and from ESLint. Returning from within a callback do not appear in the
previous works related to error handling as it is very specific to JavaScript. The rationale
for the latter is that a problem may arise whenever the execution inside a callback function
is not interrupted in face an error. Even if the developer uses an if statement, the callback
function will continue the execution without a return statement after the identification of
the error. The guide Nemeth (2017) declares that such behaviour may lead to unexpected
scenarios, and recommends to always return inside callback functions.

Some of the recommendations and antipatterns such as Empty Handler and Log error
appear before in the context of other programming languages (Cassee et al. (2018), Cabral
and Marques (2007)), but others such as Ignore errors, Async-await/Promise usage have not
appear in the other studies. The most cited recommendation is Async-await/Promise usage,
endorsed by these guides: Goldberg (2018), Schardt (2018), Ershov (2018), Soares (2017),

26https://eslint.org/
27https://eslint.org/docs/rules/no-empty
28https://eslint.org/docs/rules/no-unused-vars
29https://eslint.org/docs/2.0.0/rules/no-param-reassign

38

Table 3 – Recommendations and anti-patterns

Recommendations

Name Guides

Async-await/Promise usage Use Async-Await or promises for async error handling.
Error object usage Use Error objects (or subclasses) for all errors.
Error-first protocol Functions should expose an error-first callback interface.
Log error Log the error — and do nothing else.
Return error Return inside a callback function.

Antipatterns

Name Description

Empty Handler Empty catch block.
Ignore error Ignore errors in callbacks.
Reassign error Reassignment of error parameter.
Throw error Throw an error inside a callback function.

Source: Made by the author

Table 4 – Recommendations and anti-patterns

Recommendations

Name Guides

Async-await/Promise usage Goldberg (2018), Schardt (2018), Ershov (2018),
Soares (2017), Notna (2017)

Error object usage Goldberg (2018), Joyent (2019)
Error-first protocol Nemeth (2017), Syed (2018)
Log error Joyent (2019)
Return error Nemeth (2017), Ershov (2018)

Antipatterns

Name Guides

Empty Handler ESLint (2019a)
Ignore error Nemeth (2017), ESLint (2019c)
Reassign error ESLint (2019b)
Throw error Ershov (2018)

Source: Made by the author

39

Notna (2017). Error object usage is recommended by the guides: Goldberg (2018), Joyent
(2019). Error-first protocol appears in guides Goldberg (2018), Syed (2018), and Log error
is recommended only by Joyent (2019). The last recommendation is Return error, appears
in Nemeth (2017), Ershov (2018). In the antipatterns, Empty Handler appears in ESLint
(2019a), Ignore error is appears in Nemeth (2017), ESLint (2019c), and Reassign error
appears in ESLint (2019b). In Throw error appears in Ershov (2018).

3.7 THREATS TO VALIDITY

Our work is subject to a number of threats to validity. We identified three kinds of threats
to its validity: internal, external and construct, all of which are discussed below.

3.7.1 Internal validity

The threats to internal validity concern external factors we did not consider that could
affect the variables and the relations being investigated. The main threat we faced is
whether the repositories from our dataset are representative of real applications. A large
number of Github projects are personal, not very active, or serve as storage purposes. We
tried to avoid this threat by following the guidelines from Kalliamvakou et al. (2014) by
selecting repositories based on metrics as forks, number of commits, watchers, the date
of last commit. The repositories from our dataset have almost 600 watchers, at least 908
stars and more than a thousand closed issues in Github, showing a high interaction of the
community.

3.7.2 External validity

The threats to external validity are related to the generalizability of the study results. Our
results only apply to JavaScript projects on Github. It does not cover software projects in
other source code hosting websites. Furthermore, our results are limited by our selection
of repositories, hence, we used a set of guidelines proposed by Kalliamvakou et al. (2014)
to query them.

3.7.3 Construct validity

The threats to construct validity are related to how properly a measurement actually
measures the concept being studied. As JavaScript is a prototype-based language, we
cannot properly retrieve information of attributes on objects, by checking if they really
are related to errors. In order to mitigate this threat, we performed a manual analysis of
a subset, to elicit the naming pattern used for error handling.

Another threat to validity is that we do not analyzed the JS code inside HTML
documents, and the impact of them on the results are unknown.

40

4 RESULTS

In this chapter, we present the results of this study. We focus on the 179 projects that show
at least one error handler. Bearing in mind the research questions presented in Chapter
3, we present the data analysis considering each research question in the next sections.
Section 4.1 provides an overview of the repositories analyzed based on the methodology
presented in Chapter 3. Section 4.2 presents the results of analysis for RQ1, on how
developers deal with errors in JavaScript, first in terms of the error handler abstractions,
and then by discussing the strategies employed by these error handlers. Section 4.3 shows
the results of data analysis for RQ2, considering both error handler abstractions and
strategies taken for handling errors on Web-based and Standalone systems.

4.1 OVERVIEW

In this section, we provide an overview of the analyzed repositories. Table 5 summarizes
the projects that we analyze, and classified into Web-based or Standalone. Our tool for
metrics’ collection was unable to process 226 files due to Esprima library limitations.
Errors may happen whenever an invalid program is parsed by Esprima, thus during pro-
cessing we found: unexpected tokens (such as usage of export statement), the strict mode
code may not include a specific statement used (e.g., the usage of the with statement is
forbidden by strict mode rules). Esprima provides a mode called “tolerant” that may
handle better these invalid programs. We decide not to use it, as this approach may still
leave out some files, as the Esprima’s documentation claims that the library is unable
to robustly handle every possible invalid program1. Furthermore, 13 repositories (6.77%
of our sample) do not employ any mechanism to handle errors. These repositories are
very small in number of JavaScript files. We calculate the number of files with extension
.js and not ending with .min.js for those repositories considering the criteria to analyze
JavaScript code. In total, we found one repository with no js file, eight repositories with
only one or two js files, two repositories with three files, one with four js files and one
with 14 js files. Table 6 shows a summary of the 192 repositories. It presents the total and
median numbers of stars, forks, watchers, open issues, closed issues, open pull-requests,
and closed pull-requests of each class (Web-based and Standalone) and the entire dataset.
The projects in the dataset we built are popular, having a median of 9,367 stars and 1,035
forks. The repositories in the dataset have an overall of 11,576,639 LoC, 6,097,966 LoC
in Web-based systems, and 5,478,673 LoC in Standalone ones.

1https://media.readthedocs.org/pdf/esprima/4.0/esprima.pdf

41

Table 5 – Summary of the repositories

Metrics Web-based Standalone Overall

Overall Repositories 86 106 192
Analyzed repositories 81 98 179
Overall files 60,090 55,722 115,812
Analyzed files 59,972 55,614 115,586
Median of files per project 82 93 175
Overall LoC 6,097,966 5,478,673 11,576,639

Source: Made by the author

Table 6 – Statistics about the repositories in the dataset

Metrics Web-based Standalone Overall

of stars 1,211,116 1,428,911 2,684,414
of stars (median) 8,593 9,501 9,367
of forks 267,252 192,539 468,419
of forks (median) 1,031 1,020 1,035
of watchers 54,361 53,810 109,460
of watchers (median) 307 311.5 309.5
open issues 20,530 17,682 38,369
open issues (median) 91 108 99.5
closed issues 129,324 173,489 305,165
closed issues (median) 580 881 777
open pull requests 2172 2392 4670
open pull requests (median) 11 13.5 12
closed pull requests 66,739 97,629 165,847
closed pull requests (median) 272 429 348.5

Source: Made by the author

42

4.2 ERROR HANDLING IN JAVASCRIPT APPLICATIONS

In this section, we describe the analysis aimed to answer RQ1 and RQ2.

4.2.1 Error handling abstractions

We investigate the mechanisms and abstractions have been used by the JavaScript com-
munity. The previous work focusing on Java and .NET of Cabral and Marques (2007) has
considered the amount of source code by comparing the number of lines of code inside
error handlers to the total number of lines of the program. We adopt this approach and
complement it by also comparing the total number of lines for handling errors in each
abstraction with the total number of lines for handling errors. The results are shown in
Table 7. Developers reserve a small code percentage for handling errors. We found that
10.42% of LoC resides in callback functions that receive one or more error parameters. We
need to highlight that those callback functions are not totally dedicated to error handling
and may have statements inside the scope that aim to do something else besides error
handling. In the other abstractions, we found only 1% of code residing in catch blocks
(on try-catch mechanisms) and less than 1% residing in events handlers and promises.
In these abstractions, we have a clear distinction of error handler and error scope.

Table 7 presents the result of this analysis in the column “% of handlers”. We found that
callback functions are used to handle errors in 60.2% of the handlers, and the second most
employed abstraction is the try-catch blocks, which comprise 36.63% of the handlers.
Promises, events, and async-await functions comprise less than 4% of the error handlers.

We also compare the amount of error handling code for each abstraction considering
the total LoC of error handling. Callback functions comprise 93.16% of LoC in the error
handlers. We reason this to the association of the code of error scope and the code error
handler in the same block. Thus, this percentage includes code related to error scope,
which is not intended to error handling. In order to check the existing of an error, de-
velopers can use an if statement. We can not ensure the intention behind the callback
functions defined, the callback function may receive an error handling to both handle the

Table 7 – Percentage of EH abstractions by number of structures and number of handlers

EH abstraction % by LoC % by EH LoC % of handlers # of instances

pure callbacks 10.42% 93.16% 60,2% 61,678
pure try-catch blocks 0.69% 6.17% 36.63% 37,528
promises 0.045% 0.40% 1.92% 1,971
events 0.028% 0.25% 1.2% 1,230
async-await functions 0.0013% 0.012% 0.04% 49

Source: Made by the author

43

error and do something else, or the callback function may be defined intentionally for
error handling only. Considering the other abstractions, which have a clear separation
between the error scope and the error handler, we found only 0.69% of the error handling
code, in number of lines, consists of try-catch blocks.

Figure 1 – Frequency of error handlers by number of statements within the handlers

Source: Made by the author

Table 7 also shows the percentage of LoC of the analyzed projects that appear within
error handlers. For all the abstractions, the percentage of LoC pertaining to error handling
is less than 1% of the overall LoC of these projects, except for callback functions, which
comprise more than 93.16%. Callback functions have an expressive percentage compared
to the other abstractions because they usually have only part of their LoC dedicated to
error handling. However, it is not possible to gauge the intention of the developers in an
automated, and precise manner. Thus, we consider that, whenever a callback includes an
error parameter, it is an error handling callback and accounted for it. About 10% of the
LoC inside callbacks receive at least one error parameter.

We also compare the number of statements that reside in the error handlers. The
results are presented in Figure 1. Here, we highlight that most of the error handlers
are very small (i.e., with a small number of statements), regardless of the employed
abstraction. More specifically, 51.64% of the error handlers (52,913 out of 102,456) have
zero or one statement only. The third quartile is 111 and 90 percentile is 154. The largest
error handler we identified has 380 statements. We also analyzed if this trend still maintain
considering the abstractions. Figure 2 shows a comparison between the number of error
handlers and the number of statements considering the abstraction. Regardless of the
abstraction employed, the majority of the error handlers are small with regards to the
number of statements. As the number of statements of callback functions are not totally
dedicated to error handling, we also present in Figure 3 the frequency of error handlers
and their respective number of statements removing the data related to error handlers in

44

callback functions. A higher number of error handlers among the abstractions varies into
1 to 2 statements, even if we disregard callback functions in this analysis, error handlers
are generic with regards to the number of statements.

Figure 2 – Frequency number of statements by abstraction

Source: Made by the author

Figure 3 – Frequency number of statements by abstraction removing error handlers from
callback functions

Source: Made by the author

Besides measuring the number of lines within error handlers, we compared the usage
of error handling abstractions in the analyzed projects. We calculate the total number
of handlers by error handling abstraction. This information is presented in the rightmost
column of Table 7. Approximately 60% of all the error handlers are pure callbacks (not
promises nor events). In the analyzed projects, there were on average 31 callbacks for
each promise and 50 callbacks for each event. Overall, 36.62% of the error handlers are

45

try-catch blocks. Almost all the usages of try-catch blocks employ the synchronous
variety. The async-await abstraction is rarely used and so are try-catch blocks in that
asynchronous context; only 0.1% of the try-catch blocks are associated with async-await

and only 12 projects use this abstraction. We highlight that async-await has been added
to Node.js only recently, in the 8th edition of ECMAScript, released in June 20172. We
believe this is the main reason for the low frequency of its usage.

4.2.2 Error handling strategies

Developers may use different strategies to handle errors. By strategies we mean the actions
performed by the handlers in order to address the error. A handler may employ more than
one strategy, for instance, logging an error and returning a literal value, such as an error
code. We accounted for a number of different error handling strategies and also analyzed
combinations of strategies as separate categories. We calculated the percentage of each
combination of strategies. As the number of combinations of strategies is very large,
and some of them do not comprehend a significant part of the handlers, we reported
the percentages of combinations of strategies that comprehend more than 1% of the
error handlers, shown in Figure 4. In overall, 11.5% of the handlers do not use the error
arguments, 8.2% are empty, and 6.9% assign some other value to an error argument.
When a handler does not use the error argument, it implements a generic combination
of error handling strategies that ignores the type of the error caught. Finally, almost half
the usages of error handling strategies, approximately 48%, employ other combinations
of strategies.

Figure 4 – Error handling combination of strategies among the error handler abstractions

Source: Made by the author

2http://www.ecma-international.org/ecma-262/8.0/index.html

46

We also analyzed which strategies developers use when leveraging each error handling
abstraction. We present the combination of strategies separated by error handling abstrac-
tion in Figure 5. We found a small number of error handlers, there are only 49 instances
of error handlers that employ async-await abstraction in our dataset. Error handlers in
callback functions present a percentage of almost 67% of other combination of strategies
not foreseen. Furthermore, 8.66% of those callback functions completely ignore any error
received as parameter, and 5.54% reassign an error parameter. Error handlers that use
event abstractions present a scenario similar to promises. Among the 1,230 event error
handlers, 582 (47.31%) exhibit varied combinations of strategies, 249 (20.24%) of them
do not use the error argument, 64 (5.2%) just re-throw an error, and 53 (4.31%) print a
message on the console. For error handlers defined through promise objects, the majority
is more complex and use other combinations of strategies to handle errors (46.68%), 378
of them (19.17%) do not use the error argument, 148 (7.5%) re-throw an error, and 63
(3.19%) only print the the error on console. In try-catch blocks, most of them are either
empty (22.44%), employ a generic error handling strategy that ignores the error argument
(15.49%), or reassign an error from catch clause (9.67%). In general, the strategies are
simplistic, i.e., 8.22% are empty, 11.5% do not use error arguments, and 6.89% reassign
an error parameter. Although, we found a high percentage (47.73%) of a complex strategy
usage, which falls into “Others” category, this happens due to the statements found into
error handlers defined by callback functions.

Figure 5 – Percentage of combination of strategies in error handlers

Source: Made by the author

47

4.3 WEB-BASED AND STANDALONE SYSTEMS

In this section, we answer RQ2 by identifying the main differences between two classes of
javascript systems: Web-based and Standalone. We performed an analysis similar to the
one presented in Section 4.2.

Firstly, we analyzed the error handling code for each class (Web-based or Standalone)
based on the number of statements inside the error handlers. Figure 6 shows the frequency
of error handlers and number of statements for each class. We do not differentiate the error
handling abstraction for plotting this line plot. We found a higher number of handlers
in the Standalone class. We calculate one sample for Web-based and one for Standalone
project, based on the division of number of statements by number of error handlers. Then,
we perform a Kolmogorov-Smirnov test for the null hypothesis that 2 independent samples
are drawn from the same continuous distribution. We found a p-value of 1, 57×10−4, thus
we should reject the hypothesis that both samples were drawn from the same distribution.

Boxplots for percentage of anonymous callback-accepting function callsites per cate-
gory, across client/server, and in total.

Figure 6 – Line plots for the number of statements and the number of handlers by class
(Web-based or Standalone)

Source: Made by the author

To analyze error handling mechanism usage among the systems, we aggregate the
error handlers by mechanism (or abstraction), class, and project, and then calculate the
percentage of each error handling abstraction per repository. Figure 7 presents violin plots
for each abstraction and class analyzed. The sample used to plot the violin plots are the
percentage of error handlers of each abstraction per project. There is a prevalence of
pure callback functions over try-catch blocks for error handling in projects classified as
Standalone. Standalone systems present approximately two error handling callbacks for
each try-catch blocks. Web-based systems make more balanced use of both abstractions,

48

even though they also use callbacks more often. This result is consistent with the asyn-
chronous, preferably non-blocking nature of operations in Standalone systems3. Although
both numbers are small, the usage of events is more frequent than in Standalone systems.
As for promises, it is well balanced.

Figure 7 – Violinplots for percentage of error handler in the repositories. Each data point
corresponds to percentage of error handler in a project

Source: Made by the author

Additionally to identify which abstractions are most often employed in the projects, we
analyze the strategies employed by the developers in those systems. Firstly, we measure
the number of occurrences of each strategy within the error handlers. As aforementioned,
an error handler may employed more than one strategy, for instance, it may log an error
message, call a method to put the system into a consistent state, or throw the error.
Therefore, this handler includes instances of three categories: Log, Others, and Throw.
Previous work of Sena et al. (2016) considers the concept of handler action as the state-
ments in the catch clauses responsible for performing any recovery action. Some of those
handler actions were classified as a combination of actions that a handler may have. We
classified the error handlers strategies in the same manner.

In order to increase the power of statistical test, we first analyze the data distribution
to check if the data follows normal distribution. We perform a test based on the works
D’Agostino (1971) and D’Agostino and Pearson (1973) that combines skew and kurtosis
to produce an omnibus test of normality. Based on the results of this test, we perform a
T-Student’s test 4 when both samples follow a gaussian distribution and Mann-Whitney’s
test otherwise. Mann-Whitney5 is a non-parametric statistical test for comparing two
samples of different populations which do not need to follow a specific distribution. Be-

3https://nodejs.org/en/about/
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
5https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.mannwhitneyu.html

49

sides the normality test, we perform homogeneity variance tests for equality of variances,
whenever the samples follow a normal distribution. We used Bartlett’s test6 when the
samples follow a normal distribution and Levene test7 otherwise to test variance. In case
the variance is different, instead of performing T-Student’s test, we performed Welch’s
t-test.

Considering the strategies presented in Chapter 3, we calculate the existence of a
specific strategy for each error handler. Then, we group the error handler strategies,
and count the number of error handlers are found employing a combination of strategies
in files and in projects. We perform the statistical tests twice, first keeping the zeroes
observations and re-performed the tests removing the zeroes observations from the sample.
These blank data are relative to files or projects that do not employ any error handler
or do not employ the strategy. In all hypothesis tests, we consider a significance level of
5%. When we compared Web-based and Standalone projects, for empty try-catch blocks
(p-value = 9.315×10−5), which means Standalone projects present a higher trend to have
error handlers empty, re-throwing an error (p-value = 0.0026), and for reassignment of
an error (p-value = 1.337 × 10−6). We found that Web-based projects tend to throw
error objects, compared with Standalone projects, with p-value 8.6 × 10−3. On callback
functions, we found that Web-based projects tend to reassign an error compared with
Standalone projects with probability value of 0.0245. For callback functions, we found
the p-value of 0.02296 for a higher adoption of Web-based applications handlers rather
than Standalone error handlers into ignore an error parameter. For promises, we found
a similar result on probability value of 0.03377 that Web-based error handlers tend to
ignore error parameters when compared with Standalone projects.

Figure 8 shows the combinations of strategies in the error handlers for each class
present in try-catch blocks, per class (Web-based and Standalone). One of most repre-
sentative combination of strategies of the try-catch blocks are empty for both classes
(21.18% of the handlers for Web-based systems, and 23.3% for Standalone systems). Stan-
dalone systems are more likely to reassign an error parameter than Web-based systems.
We found that 13.7% of Standalone systems change error parameters to other values,
while only 3.8% of the error handlers in Web-based systems apply this strategy.

Async-await functions have not been widely adopted in the JavaScript community.
This abstraction has a low number of error handler in both classes, and approximately
four out of every five async-await handlers appear in Standalone systems. We believe
that it may still be too early to study error handling strategies for this abstraction in
more depth.

Differently from async-await functions, callback functions are pervasive to JavaScript
systems. Figure 9 shows the percentage of the combination of strategies of the classes in

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html
7https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.levene.html

50

Figure 8 – Percentage of handlers that implement some type of handler action combina-
tion in try-catch blocks

Source: Made by the author

callback functions. Although callbacks are used more often in Standalone systems, there
is not much difference between Standalone and Web-based systems regarding how often
they employ each error handling strategy. Besides employing a strategy that is outside of
the ones listed before, Standalone systems has more error handlers (9.36%) that ignore an
error than Web-based systems (7.93%). Similarly to what we observed for try-catch han-
dlers, the greatest difference can be observed for handlers that reassign error parameters.
However, conversely to what try-catch error handlers present, for callback functions,
Web-based systems reassign error parameters more often: 7.2% of error handlers whereas
3.94% of the handlers do the same in Standalone systems. This trend can still be ob-
served when also accounting for instances of the Reassign error (p-value: 0.0245) and break
(p-value: 0.032) strategies combined.

We found that error handlers implemented as event handlers are more common in
Standalone systems (996 handlers) than in Web-based systems (234 handlers). Figure 10
shows the barplots of combination of strategies for event handlers. Despite of this dif-
ference, the distribution of the strategies across the handlers follow similar trends. For
example, 25.64% of the handlers in Web-based systems do not even use any error param-
eter and 18.98% of Standalone systems ignore the error parameter too (this result do not
include parameterless error handlers). We also found that 6.41% of the handlers of Web-
based systems just re-throw an error whereas 4.92% of handlers in Standalone systems do
the same. Throwing an error from an error event handler triggers the publication of the
uncaughtException, which, if not captured, causes the system to crash.

Figure 11 shows the percentages for strategies in promises. For those error handlers
we found that 274 out of 1,007 (27.2%) handlers in Web-based systems and 104 out of
964 (10.79%) handlers in Standalone systems just ignore the error parameter. This is a

51

Figure 9 – Percentage of handlers that implement some type of handler action combina-
tion in callback functions

Source: Made by the author

Figure 10 – Percentage of handlers that implement some type of handler action combina-
tion in events

Source: Made by the author

considerable difference and suggests that promises in Web-based systems are more generic:
developers are worried about the occurrence of an error but not about what kind of error
occurred. We also found that 6.95% of error handlers in Web-based systems and 8.09%
of error handlers in Standalone systems rethrow an error from a catch method inside a
promise. This means that the next promise in the chain will be in a rejected state, thus,
precluding it from executing. Further investigation is necessary to understand the reasons
why developers throw the error instead of calling the reject method.

Error-first callbacks8 are callbacks whose first parameter is an object representing an
8http://callbackhell.com

52

Figure 11 – Percentage of handlers that implement some type of handler action combina-
tion in promises

Source: Made by the author

Table 8 – Dispersion of error handling abstractions among the projects

EH abstraction # of projects # of handlers

callbacks 171 61,678
try-catch 161 37,528
promises 82 1,971
events 90 1,230
async-await 10 49

Source: Made by the author

error. This is an important convention because it encourages developers to think about er-
ror signaling and handling whenever they write callbacks. In our analysis of the JavaScript
projects, we found that 50,806 out of the 57,293 (88.7%) callback functions that have an
error parameter follow the error-first protocol. They are predominantly employed in Stan-
dalone systems, the percentage of error handlers among the systems are 81.8% in mean,
while the percentage in Web-based systems are 68.15% in mean.

We investigate the dispersion of the error handling considering the error handling
abstraction and the projects. Table 8 shows the number of projects which error handling
abstractions appears and the number of error handlers in the error handling abstractions.
We notice that the number of callback functions and try-catch is the highest among the
error handling abstractions, they are also scattered in the 179 projects. Callback functions
and try-catch are employed in 171 and 161 projects respectively. Promises and events
are employed in almost half of the projects and async-await appears in only 10 projects.
Table 9 also presents the dispersion of the errors handlers among the projects, however

53

Table 9 – Dispersion of error handling abstractions among the projects per class.

EH abstraction # of projects
(Web-based)

of projects
(Standalone)

of handlers
(Web-based)

of handlers
(Standalone)

callbacks 75 96 30,200 31,478
try-catch 76 85 15,289 22,239
promises 35 47 1,007 964
events 30 60 234 996
async-await 4 6 8 41

Source: Made by the author.

considering which class they were pertain. We found that error handlers appear in more
frequently in Standalone projects.

54

5 DISCUSSIONS

In this chapter, we discuss the results presented in this dissertation. In the Section 5.1, we
discuss error handling mechanisms usage. In the next two sections, we discuss about how
the projects in the dataset adhere to the recommendations (Section 5.2) and antipatterns
(Section 5.3), presented in in the Chapter 3 (Section 3.6).

5.1 USAGE OF ERROR HANDLING MECHANISMS

In this section, we discuss about the error handling mechanisms (more specifically, about
the mechanisms and their abstractions). We analyze the proportions of LoC and state-
ments against the number of error handlers for each of the abstractions (pure callback
functions, pure try-catch blocks, async-await functions, promises and events). Table 10
shows the proportions of both LoC and statements per error handler. The proportions
are much smaller for try-catch blocks (1.706 and 0.939) than for the other abstractions,
e.g., for promises, these proportions are 2.433 and 1.605 and for events 2.455 and 1.723.
We notice that pure try-catch blocks seem to be second-class citizens among the error
handling abstractions, although they are available in JavaScript since its initial version.

The JavaScript programming culture is highly reliant on callback functions, where er-
rors are often not signaled by means of exceptions and thus, cannot be handled with pure
try-catch blocks. This applies to both Web-based and Standalone applications. Notwith-
standing, 42.53% of the handlers are pure try-catch blocks, which means that they are
commonly employed. Furthermore, as mentioned before, try-catch blocks are part of the
language since its inception. Thus, developers are used to employ this abstraction and it
is not a matter of lack of familiarity.

Among the guides we analyzed, five recommended the use of promises of async-await
functions instead of pure callbacks, in particular in the cases where errors may occur. This
recommendation enforces a stronger separation between the error scope and the handler
scope, since promises have a specific function for handling errors (catch) and async-await
functions employ try-catch blocks. Arguably, this leads to better separation of concerns
(Lee and Anderson (1990), Parnas and Würges (1976)) and improved readability. Pure
callback functions do not delimit error scope and handler scope, i.e., the handler scope
statements are generally blended within the scope of the callback function. This forces
developers to adopt an ad-hoc solution, such as the error-first idiom or even not deal with
the error at all.

In spite of this recommendation and its potential benefits, we found only moderate
adoption among the analyzed systems. Promises amount to 0.4% of all the error han-
dling lines of code of the analyzed systems (Section 4.2.1, Table 7), whereas try-catch

55

Table 10 – Number of LoC and statement per error handler

EH abstraction LoC per handler Statements per handler

pure callback - -
pure try-catch 1.706 0.939
promise 2.433 1.605
event 2.455 1.723
async-await - -

Source: Made by the author

Table 11 – Number of handlers by abstraction per project

EH abstraction Min Max Mean Median % by EH LoC

pure callback 1 13059 360.69 47 93.16%
pure try-catch 1 11709 233.09 38 6.17%
promise 1 306 24.037 6 0.40%
event 1 231 13.66 6 0.25%
async-await 1 26 4.9 2 0.012%

Source: Made by the author

blocks within async-await functions comprise only 0.001%. For the sake of comparison,
try-catch blocks not appearing in async-await functions account for 6.17% of all the
error handling lines of code. It can be argued that these features are not in widespread use
because they were introduced in JavaScript only a few years ago, i.e., promises only be-
came part of JavaScript in 2015 (ECMAScript 6) and async-await in 2017 (ECMAScript
8). However, the former has seen wider adoption than events, which are available in
Node.js since 2011 (version 0.1.26).

Table 11 shows statistics about the error handlers by abstraction per project. We ana-
lyze the mean of percentage of error handling abstractions per project. Callback functions
and try-catch blocks are the most employed abstractions. The projects present a mean of
360.69 pure callback functions, and a mean of 233.09 pure try-catch blocks. The number
of callback functions and try-catch blocks are not higher considering the median of both
samples for those error handling abstractions.

5.2 RECOMMENDATIONS

In this section, we analyze how error handlers practices adheres to recommendations that
we describe in Section 3.6.

56

Table 12 – Percentage of handlers throwing error as error object

EH abstraction Error object
usage (%)

Error object usage
ignoring error (%)

pure callback 0.56% 0.07%
pure try-catch 0.02% 0.28%
promise 0.20% 0.1%
event 0% 0.33%
async-await 0% 28.57%

Source: Made by the author.

5.2.1 Error Object Usage

In this strategy, we evaluate the usage of throwing errors. Whenever a developer decides
to throw1 an error, the execution is suspended for the current function, and the control
flow changes for the next handler. The program will terminate if a handler is not found.
The syntax of JavaScript for throwing an error is “throw expression”, such expression may
be any type (as claimed by Mozilla documentation 2), like a string, an integer, object or
even the built-in Error object. However, it should be avoided to use any other type besides
Error object, as the result will not include information about the call stack, neither the
property “name” and other properties that describe the error. Throwing an error inside
a callback function is considered a “mistake” as this mechanism is asynchronous. It was
designed to be called in a point in the future and, thus, even if a developer wraps a snippet
code using try-catch blocks, it is unable to handle any errors that occur on it.

Firstly, we analyze handlers not rethrowing any error parameter. We find 659 out
of 61.678 callback functions that throw only an error object or apply another strategy
together, representing 1.07% of callback functions that handle errors. Among those 659
handlers, 348 of them throws an error object only. This may lead the system to a unstable
state. We need to study even further the impact those handlers may have in the systems.
In general, a small percentage of handlers throws errors objects for all abstractions. Table
12 presents the percentage of handlers that throws error, and less than 1% of the handlers
in all EH abstractions employ this strategy. The only deviation of this scenario is async-
await, which we found 28.57% of the handlers throw errors ignoring any error parameter.
This means the callback functions do not generally throw errors.

Handlers could also re-throw an error after caught it, propagating it up to another
handler to treat it. We found 10.4% of try-catch blocks that only re-throws an error in
Web-based applications, and 6.23% on Standalone applications.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/throw

57

5.2.2 Error-first protocol

Error-first protocol is defined by the work of Gallaba, Mesbah and Beschastnikh (2015)
as callback functions which their first argument represents the occurrence of an error, if
it is non-null or the absence thereof in case it is null. They analyzed callback functions
in 138 JavaScript systems, and they found 20% of callback functions adopt the error-first
protocol. They also claim that error-first callbacks are not widely employed.

Gallaba, Mesbah and Beschastnikh (2015) also claimed that the error-first protocol is
similar to the solutions employed in languages that do not include dedicated error handling
mechanisms, such as C. According to Bruntink, Deursen and Tourwé (2006), some of the
disadvantages of C’s approach for error signaling and handling are the following: (i) when a
function needs to return a value, it must be through a parameter, instead of the function’s
exit point; (ii) there is no clear convention for what it means to be successful or not, e.g.,
sometimes 0 means success, sometimes it is a failure; (iii) it is necessary to check what the
method returns for every call, which may lead to chained checks when there are multiple
calls; (iv) since an error is an integer, little information about the error is available for
error handlers.

For JavaScript, however, one could argue that the problems are not the same. In (i),
both errors and correct results are reported through parameters in callback functions. The
(ii) is arguably a problem, as both kinds of results are reported in the same manner, unlike
of what usually happens in C. Furthermore, the error-first protocol is widely known, even
if not widely used (Gallaba, Mesbah and Beschastnikh (2015)). For example, the official
Node.js documentation for the Error object starts out by discussing error-first callbacks3.
In (iii), it can actually occur in JavaScript and stems from the well-known “callback hell”
problem Alimadadi, Mesbah and Pattabiraman (2016). Callback hell occurs when requests
rely on the result of previous requests turning these callbacks profoundly nested Philips et
al. (2016). Empirical studies considered the impact of callback hell in JavaScript applica-
tions in different contexts Kambona, Boix and Meuter (2013), Fukuda and Leger (2015).
Nonetheless, the language includes mechanisms to avoid this problem, namely, promises
and async-await functions, and, as pointed out in Section 4.2.1, guides on JavaScript
error handling actively recommend the use of these approaches. Finally, in (iv), an error
in JavaScript is an object and, as a consequence, can convey more information than a
single integer.

Although Gallaba, Mesbah and Beschastnikh (2015) has not analyzed Node projects
specifically, and used a different classification in the JavaScript systems, we present their
results, to introduce the reader to this topic. In our work, 30% of all the callback functions
in Standalone systems employed this approach, whereas only 16% of the Web-based sys-
tems did so. We observed that error-first protocol is highly employed in callback functions
to handle error. We calculate the percentage of error-first callbacks for each project in

3https://nodejs.org/api/errors.html

58

Web-based and Standalone. The percentage in Web-based systems are 68.14% and 81.77%
in Standalone systems. Thus, there is a trend for Standalone systems adopt more often
this protocol comparing to Web-based systems.

The bottom line of this discussion is that tools for analyzing problems in JavaScript
error handling cannot start from the assumption raised by previous work in error handling
that the problems of the error-first protocol are the same as those found in C. Further-
more, regardless of the aforementioned issues, the use of pure callback for error handling,
whether employing the error-first protocol or not, incurs in the problem of not promot-
ing separation of concerns between error scope and handler scope. This negates one of
the fundamental benefits of using an error handling mechanism (LEE; ANDERSON, 1990;
PARNAS; WÜRGES, 1976).

5.2.3 Log error

Log error information is useful during the system lifetime, specially for software instru-
mentation. For this reason, there are some libraries with this purpose such as: morgan
(1.212.616 weekly downloads on NPM), loglevel (2.370.906 weekly downloads on NPM),
winston (2.472.945 weekly downloads on NPM), and others. This strategy allows devel-
opers to code trace and debug major events in the execution of the application.

Kery, Goues and Myers (2016) analyzed Java projects and found that print statements
and log methods represent 10% each of the error handlers. Cabral and Marques (2007)
claimed that logging is one of the most common actions (in our work called strategies).
It suggests that programmers do not have a specific approach for error handling, just
registering the error, and notifying the user.

Table 13 shows the percentage of Log error strategy for the error handling abstrac-
tions that we analyzed. In our analysis, considering the usage of “console.log” method in
JavaScript applications on among the abstractions evaluated, the usage is not common
as in Object-oriented programming languages as Java and C#, presented by Cabral and
Marques (2007) and Kery, Goues and Myers (2016). Async-await functions presented the
highest percentage (8.16%) for logging a message and rethrowing an error parameter, that
represents only 4 catch blocks of 49, which makes difficult to generalize this as a trend
for the abstraction, once it is not representative. Event handlers and promises present a
keen percentage for logging errors, 4.3% and 3.2%, respectively.

We found that less than 1% of try-catch blocks and callback functions call “con-
sole.log” method only.

5.2.4 Return error

One of the practices recommended by the tutorials is to return an error through a callback.
The lack of this strategy in callback functions, it leads to an error to be swallowed for the

59

Table 13 – Percentage of error handlers using log error as strategy

EH abstraction Log error (%)

pure callback 0.78%
pure try-catch 0.76%
promise 3.12%
event 4.3%
async-await 0%

Source: Made by the author

Table 14 – Percentage of error handlers using Return error as strategy

EH abstraction Return error (%) Return literal (%)

pure callback 0.79% 0.24%
pure try-catch 0.76% 7.39%
promise 3.2% 1.01%
event 4.31% 0.08%
async-await 0% 2.04%

Source: Made by the author

application, preventing the developers on identifying the error occurred due to the lack
of indication of its occurrence.

Table 14 shows the percentage of error handlers that return an error parameter and
return an literal (like string, number, undefined or null values). We found only 448 out of
30,200 callback functions, which represents approximately 1.5% of the callbacks. When we
analyze error handlers that return an error parameter or an literal, we notice an approx-
imately 1% of the pure callback functions employs these strategy only. This indicates a
small adoption in returning inside callback functions. Try-catch block is the abstraction
that most uses the strategy of return inside error handler scope. On 2,772 try-catch

blocks, 7.39% of them return a literal, and 378 try-catch blocks (1.7%) return null. The
adoption of returning on callback functions is low for Web-based compared to Standalone
projects.

5.3 ANTIPATTERNS

In this section, we discuss how error handlers adheres into the antipatterns presented in
Chapter 3 (Section 3.6).

60

5.3.1 Empty Handler

Empty handlers means that an error is caught in the application and there is no code
to handle it. For callback functions, we consider that a callback function is empty when
follows one of the scenarios: (i) it was declared as an empty block through a function
declaration using this structure (i.e., function(){}); (ii) it was not defined at all, when a
function whose a parameter is a callback function may omit this callback functions leave
this value to “undefined”, and (iii) it calls a function inside the callback function (proposed
to handle an error) and the scope of that function is empty. Recalling our methodology,
we retrieve the callback functions that dwell in (i). In order to leave a callback function
empty, a developer must deliberately define a callback function, and leave it empty. We
were not able to detect the cases (ii) and (iii).

Table 15 shows the percentage of error handlers that are empty by error handling
abstraction. We found a high number of empty try-catch blocks (approximately 22.44%).
We found a number of empty catch blocks in async-await functions (6.12%), and did
not find any callback function that were empty (either pure callbacks, event handlers,
or promise objects), since these error handlers would hardly be created. Arguably, the
absence of empty callback functions arise from the nonexistence of syntactic separation
between error handling and non-error handling code within a callback. Even if the callback
does not handle errors, it is expected to do something else besides error handling.

Try-catch blocks are more often empty, reassign error and rethrow in Web-based
projects than in Standalone projects, p-values: 9, 3 × 10−5, 1, 34 × 10−6 and 2, 6 × 10−3

respectively.
The study of Cabral and Marques (2007) found a lower number of empty handlers in

Java rather than C#. They suggested that checked exceptions may impact less on the
decision of leave a handler empty, and the developers may leave empty handlers due to use
error handling mechanisms for control/execution flow besides error handling. They also
stated that sometimes Java API forces this when a detection of EOF (end of file) must be
done through throwing an exception. JavaScript do not enforce any type of error handling
usage as in Java and C#. Kery, Goues and Myers (2016) claimed that there are situations
that empty catches are applicable to the program logic, however they acknowledge this is
considered a bad practice.

In JavaScript applications, we found that 8,424 error handlers (8.22% of all error
handlers regardless of the error abstraction employed) are empty and all of them are inside
try-catch blocks or async-await functions. We found 3,238 empty handlers on try-catch

(21.17%) exists in Web-based systems and 5,183 empty handlers on try-catch (23.31%)
exists in Standalone systems. In async-await functions, we found approximately 4.88% of
error handlers are empty in Standalone systems and 12.5% in Web-based systems, they
are not statistically significant as they represent only 3 handlers out of 49 error handlers.

61

Table 15 – Percentage of empty error handlers

EH abstraction Empty error (%)

pure callback 0%
pure try-catch 22.44%
promise 0%
event 0%
async-await 6.12%

Source: Made by the author

We found that less than 1% of try-catch blocks and callback functions call “con-
sole.log” method only.

5.3.2 Ignore error

Developers may completely ignore the error information. The consequences for this ap-
proach interfere directly on the state of the system. Wherever an error occurs in a point
of the system, the developers cannot ensure the remaining of the execution is stable. Ad-
ditionally, this specific error will not be added into the stack trace, possibly making the
identification of the problem in a debugging process more difficult.

We found a high percentage of handlers that just ignore an error in all abstractions.
Specifically, approximately 11.5% of all handlers (regardless the abstraction employed)
neglect error parameters and take a generic strategy in occurrence of the error. By generic
strategy, we consider the definition of the work of Cassee et al. (2018): error handler that
“capture any kind of error”. When we took the abstraction employed into account, at
least 5% of the handlers ignore error information for each abstraction. Table 16 shows
the percentage of error handlers by error handling abstraction. Pure callback functions
exhibit 8.66% of handlers ignoring errors, and promises present about 19.18% of the catch
methods ignore errors. Nearly 20.24% event handlers employed for error handling ignore
error parameters. We found more than 4% of handlers of the async-await functions that
neglect errors, however this represents only 2 handlers out of 49.

We also compared the usage of Ignore errors strategy between try-catch blocks and
callback functions. Aggregating data by file in the repositories, we found that at 5% of
confidence interval, developers are less likely to ignore errors in pure callbacks than when
using try-catch blocks (p-value = 1.382 × 10−21). Even if we consider the other abstrac-
tions (events and promises as they also apply callback functions as an error handling
mechanism) and async-await functions, we found that at 5% of confidence interval, call-
backs are less likely to neglect errors than in try-catch blocks (p-value of 2.513 × 10−28).

62

Table 16 – Percentage of Ignore error on error handlers

EH abstraction Ignore error (%)

pure callback 8.66%
pure try-catch 15.48%
promise 19.18%
event 20.24%
async-await 4.08%

Source: Made by the author

Although we are calling ignoring errors as a strategy, it is not directly attached to a
specific structure or statement (as throw statement for instance). We claimed that based
on error handlers that although are not empty, do not use any of the error parameters (ei-
ther parameters of the catch clauses or of the callback functions). We found 2,394 callback
functions (on 30,200 handlers) that ignore errors in Web-based projects, and 2,946 (on
31,478 handlers) in Standalone projects. They represent 7.93% and 9.36% respectively.
Even though try-catch blocks presents a less number of handlers in any class, the per-
centage of handlers that neglect the error parameter are higher. We found 3,090 in 15289
handlers (20.21%) in Web-based, and 2,719 in 22,239 handlers (12.23%) in Standalone
projects.

By default, ESLint has a rule that disallow the definition of empty block statements4.
To make clear this behaviour is intentionally, the tool recommends to leave a comment.
JSLint5 introduces a new reserved word: ignore. Whenever catch clause receives a param-
eter called “ignore”, it indicates that a catch block may be empty without raise warnings.

5.3.3 Reassign error

Error parameters could be passed to code handlers directly by developers or detected by
the engine or the library. Reassign an error parameter may lead the system to a prob-
lematic behaviour by changing the error raised. In JavaScript applications, a built-in
variable called arguments is an array-like object which stores function parameters. Re-
assigning parameters also changes directly the behaviour of arguments variable. ESLint
has two rules that fall into in this category: no-param-reassign6 and no-global-assign7.
The first rule aims at checking when a function parameter is assigned, and according to
its documentation, this assignment is unintended and indicates a mistake or a program-
mer error. Side effects on parameters are counterintuitive and could make detection of
errors more difficult. The second rule is more specific, and is also related to reassign of

4https://eslint.org/docs/rules/no-empty
5http://www.jslint.com/help.html
6https://eslint.org/docs/rules/no-param-reassign
7https://eslint.org/docs/rules/no-global-assign

63

Table 17 – Percentage of Reassign error on error handlers

EH abstraction Reassign error (%)

pure callback 5.54%
pure try-catch 9.67%
promise 0.96%
event 0%
async-await 2.04%

Source: Made by the author

variables, it is related to assignment of JavaScript built-in environment variables, for ex-
ample window in browsers, and process in Node.js applications. Loss of some functionally
happens when those type of variables are reassigned and there is no native mechanism to
prevent reassignment of these variables environment. We would like to highlight that even
the possibility of handling unforeseen errors raised in the application through window or
process object is not empowered by the reassignment of those objects.

Table 17 shows the percentage of error handlers by abstraction that reassign an error
parameter. We found 9.67% of try-catch blocks reassigning at least one of the catch block
parameters, and 5.54% of callback functions reassigning a parameter. Promises and async-
await functions apply this strategy in a less percentage of 0.96% and 2.04% respectively.
We did not find a single error handler using event abstraction that reassign a variable.
This suggests a high usage of this strategy by try-catch blocks, and non-representative
adoption of this strategy in asynchronous abstractions.

5.3.4 Throw error

Sometimes an error may bubble up to the stack and there is no handler to deal with it.
Throw an error can crash the Node.js process due to asynchrony of callback functions.
According to Node.js documentation, a common mistake of new developers is the em-
ployment of throw inside an error-first callback. Try-catch mechanism cannot properly
intercept errors in asynchronous APIs, besides it relies inside an async-function8. Global
event handlers are applied either for Web-based and Standalone systems to intercept these
errors in JavaScript applications. For Node applications, there are two options available:
a domain can be created (which is currently deprecated) or to register an event handler
for uncaughtException through method on. In JavaScript applications, there are three
options: (i) on object window by calling methods onerror, (ii) still on object window,
calling addEventListener method, and (iii) on object element by calling onerror.

In our dataset, we found 32.81% of the projects (63 out of 192 repositories) that do
not employ any global handler at all and present at least one callback functions that

8https://nodejs.org/api/errors.html

64

throws an exception. Any unhandled error in the project will not be caught, and the
error is printed into the console (when an application is running in a web browser) or
shutdown the Node.js project. The projects that may fail to recover from errors, as do
not employ any global handler, consists in mean of almost 70k lines (minimum number of
lines is 200 and maximum of 900711), and 388.2 files in mean (minimum number of files
is 1 and maximum of 7782). From the 63 projects, 23 projects are Web-based classified
and 40 projects are Standalone. The number of projects that neglect the usage of global
event handlers in Standalone projects is higher that the number of Web-based projects,
we calculate the number of projects that neglect the usage of global event handlers by the
number of projects in a specific class. We found the value of 0.267 for Web-based projects
and 0.377 for Standalone. Therefore, Standalone applications tend to neglect the global
event handlers usage.

As definition of a global handler, it does not need to be created twice, however we
found 23 projects that create a global event handler more than once. The majority of
the projects has less than ten global event handlers, and the highest numbers of global
event handlers found are 16, 32 and 51, corresponding to the projects with the highest
number of lines (172138, 1137763, 932438 lines, respectively) and files (691, 6483, 9201
files, respectively). We reason this to the projects in Github may include more than one
module in the same repository, and this need further investigation, as this approach may
represent software engineering practices in specific projects.

According to the Node.js documentation9, uncaughtException handlers were designed
to perform asynchronous tasks for deallocate resources, such as file descriptors, handlers,
etc, and shutdown the system afterwards. It is not recommended to resume normal oper-
ation after “uncaughtException” event.

We calculate the number of projects that do not correspond to the event global han-
dler from its class. We find 127 projects that has at least one event handler, and have
no global event handler specific for their class. That means the possibility of finding an
uncaughtException handler in Web-based projects, and handlers from window object on
Standalone projects. In total, we found nine projects in this situation, six projects are
Web-based and three are Standalone. Although uncaughtException handlers are used by
Standalone applications, we found six Web-based projects that have uncaughtException
handler, and nine Standalone projects that use global event handler instead of uncaugh-
tException handlers. In fact, there are six repositories in Web-based applications which
have only process.on(‘uncaughtException’) handlers and three repositories in Standalone
applications which do not have a single handler to uncaughtException event.

9https://nodejs.org/api/process.html#process_event_uncaughtexception

65

6 CONCLUSIONS

This chapter concludes the investigation of JavaScript error handling and approaches
employed by developers to cope with errors. We perform an empirical study of popular
JavaScript repositories from Github comprising of more than 60 thousand files and 11
million LoC. To the best of our knowledge, this is the first investigation of error handling
mechanisms in JavaScript.

We found out that callbacks are the predominant error handling mechanism of JS
systems (64.5k callback functions in our dataset), although try-catch blocks are also
frequently used (51.2k try-catch blocks). Some well-known error handling anti-patterns
observed in other languages (Cabral and Marques (2007), Cassee et al. (2018)) are com-
monplace in JavaScript error handling. Among the try-catch blocks, 22.44% are empty
and 49.7% have a single line of code. Moreover, JavaScript is a dynamic programming
language, error parameters are not forced to be of a specific type, leading catch blocks
to be generic, in terms of the typification of error objects applied on error handling.
Generic catch blocks can lead to errors being captured accidentally (Robillard and Mur-
phy (2003)). In callback functions, only 0.88% are empty and 1.7% of the error handlers
employed for error handling just ignore the error argument at all. These results highlight
an opportunity to improve existing static analysis tools for JavaScript since, to the best of
our knowledge, none of the more well-known static analysis tools for JavaScript1 include
rules to detect these anti-patterns.

Our results bring us to the conclusion that the error handling is a topic generally
neglected by developers and JavaScript community (considering the dataset we analyze)
as most of the errors handlers are empty (details in Section 5.3.1), ignore (details in
Section 5.3.2) or reassign an error parameter (details in Section 5.3.3). A large proportion
(22.44%) of the try-catch blocks is empty. For async-await functions, the percentage
is 6.12%. On the other hand, no error handler implemented in pure callbacks, promises,
and event handlers was empty. When we consider cases where the handler ignores its
error parameter, something akin to an empty catch block in the context of pure callbacks,
the percentages are 8.66% for pure callbacks, 19.18% for promises, and 20.24% for event
handlers. In contrast, 15.8% of the try-catch blocks make no use of their error parameter.
For error handlers that deal with asynchronism, those who ignore some error parameter
appear frequently in Standalone projects than in Web-based projects, with the exception
of promises, which in Standalone projects show a difference of 16.41%.

We highlight a high adoption of callback functions for asynchronous execution (Section
5.1), although we found a high number of guides (details in Section 3.4) that recommend
the employment of promises and async-await functions in these cases.

1https://hackernoon.com/the-ultimate-list-of-javascript-tools-e0a5351b98e3

66

6.1 IMPLICATIONS

The results of this study present that developers employ, in general, mechanisms and
simplistic strategies for error handling that are not recommended by the own JavaScript
community.

Developers: we believe that our findings could function as guidelines. As we present in
Chapter 5 (Section 5.1), we found that callback functions, even though is a construct
of the language (not specifically designed to error handling) is often employed instead
of try-catch blocks. One of the recommendations (of the own community) is to
employ async-await or promises to handle errors. We also found that try-catch

blocks are more often empty, reassign error and rethrow in Web-based projects
than in Standalone projects. It suggests that developers should aware about the
error handling strategies they are employing to a specific type of system they are
developing.

Researchers: we think that this work motivates researchers to have a better under-
standing of the employment of error handling mechanisms on JavaScript systems.
We believe that this work starts research studies in a deeper way on JavaScript
error handling, as it considers other constructs of the language (callback functions),
going further the try-catch blocks, as the current research studies do. An example
of the usage of different constructions for error handling in JavaScript is the usage
of generators2 and observable objects3. Specially because these two concepts are be-
ing used in popular frameworks as Angular, React.js, Vue and others (Voutilainen
(2017)).

Tool Developers: our study will inform the design of future JavaScript analysis and
code comprehension on static analysis tools. We believe the results of our study
may help on the construction of better tools for development of JavaScript programs.
Besides the ESLint rules that we have analyzed, developers could add new rules to
static analysis tools the recommend (or even force the developers of the applications)
as the Async-await/Promise usage, Error object usage Log error and Return error for
callback functions.

6.2 FUTURE WORK

We list our future work intentions as follows:

• Apply improvements in the extraction tool:
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
3https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch09s05.html

67

Callback functions: we considered a limitation on the retrieval of the callback
functions designed to handle errors, only if it is directly defined on the callee
function. This may mean that we miss some of the callback functions designed
to handle errors, but we were currently unable to retrieve callback functions
defined in another place of the application. In Code 14, we present a version
of the Code 4. The function named removeAnProduct could be defined in the
same script as the calling of product.remove or in any other JS files of the
system. We plan to investigate how to identify such cases, to reach the callback
functions not covered by the methodology we used.

Listing 14 – An example of callback usage to handle an error
1 product.remove(removeAnProduct);

2

3 function removeAnProduct(err , removedProd) {

4 if (err) return handleError(err);

5 console.log(removedProd._id + " removed.")

6 }

Event handlers: we also plan to investigate how to identify the event handlers
more precisely. In this work, we have a limitation in identify error event han-
dlers, and we decide adopt only the nomenclature of event handlers in Node.
As JavaScript libraries define the API, with no common interface, to properly
identify error events handlers. This impacts directly on the total number of
error handlers and the strategies error handlers that uses events employs. We
aim to investigate how to retrieve event handlers more properly, considering
the specificities of the API of the libraries of the applications of our dataset.

• Extend the study regarding the impacts of the current approach for error handling
of JavaScript community:

Analysis of JS code inside HTML files: Some JavaScript code may be found
inside HTML files, as firstly we did not analyzed those source code, we plan
to investigate the impact of those code in the results we presented in this
dissertation in the future.

Error handling bugs: another future work derived from this study is in how the
usage of specific error handling mechanisms might impact systems with re-
gards to bugs, due to existence of antipatterns employed in the error handlers.
Additionally, another investigation is about software bugs impacts the classes
Web-based and Standalone.

Web-based and Standalone strategies: Although the use of strategies consid-
ered as antipatterns for both classes (Web-based and Standalone) is high, we

68

highlight that the motivation of the systems may impact on how applications
handle errors (as Gallaba et al. (2017) did categorizing the error handlers), but
it is need more investigation.

Async-await usage: we noticed a high recommendation from the guides to adopt
the async-await abstraction to solve both asynchrony and error handling issues
in one structure. We found a very small adoption of async-await functions from
developers of either async-await functions and promises in the systems. We plan
to investigate the reasons behind this trend.

69

REFERENCES

ALIMADADI, S.; MESBAH, A.; PATTABIRAMAN, K. Understanding asynchronous
interactions in full-stack javascript. In: Proceedings of the 38th International Conference
on Software Engineering. New York, NY, USA: ACM, 2016. (ICSE ’16), p. 1169–1180.
ISBN 978-1-4503-3900-1. Available at: <http://doi.acm.org/10.1145/2884781.2884864>.

AUGER, C. Use of Reports Literature. Archon Books, 1975. (Butterworths
guides to information sources). ISBN 9780208015068. Available at: <https:
//books.google.com.br/books?id=gfa3AAAAIAAJ>.

BARBOSA, E. A.; GARCIA, A.; ROBILLARD, M. P.; JAKOBUS, B. Enforcing
exception handling policies with a domain-specific language. IEEE Transactions on
Software Engineering, v. 42, n. 6, p. 559–584, June 2016. ISSN 0098-5589.

BEN-ASSULI, O.; JACOBI, A. Improving robustness of scale-free networks to message
distortion. In: Knowledge and Technologies in Innovative Information Systems -
7th Mediterranean Conference on Information Systems, MCIS 2012, Guimarães,
Portugal, September 8-10, 2012. Proceedings. [s.n.], 2012. p. 185–199. Available at:
<https://doi.org/10.1007/978-3-642-33244-9_13>.

BRODU, E.; FRÉNOT, S.; OBLÉ, F. Toward automatic update from callbacks to
promises. In: Proceedings of the 1st Workshop on All-Web Real-Time Systems. New
York, NY, USA: ACM, 2015. (AWeS ’15), p. 1:1–1:8. ISBN 978-1-4503-3477-8. Available
at: <http://doi.acm.org/10.1145/2749215.2749216>.

BRUNTINK, M.; DEURSEN, A. van; TOURWÉ, T. Discovering faults in idiom-based
exception handling. In: Proceedings of the 28th International Conference on Software
Engineering. [S.l.: s.n.], 2006. p. 242–251.

CABRAL, B.; MARQUES, P. Exception handling: A field study in java and .net. In:
ERNST, E. (Ed.). ECOOP 2007 – Object-Oriented Programming. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007. p. 151–175. ISBN 978-3-540-73589-2.

CASSEE, N.; PINTO, G.; CASTOR, F.; SEREBRENIK, A. How swift developers
handle errors. In: Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. [s.n.], 2018. p. 292–302.
Available at: <https://doi.org/10.1145/3196398.3196428>.

CHEN, C.-T.; CHENG, Y. C.; HSIEH, C.-Y.; WU, I.-L. Exception handling refactorings:
Directed by goals and driven by bug fixing. J. Syst. Softw., Elsevier Science Inc., New
York, NY, USA, v. 82, n. 2, p. 333–345, Feb. 2009. ISSN 0164-1212. Available at:
<http://dx.doi.org/10.1016/j.jss.2008.06.035>.

D’AGOSTINO, R.; PEARSON, E. S. Tests for departure from normality. Empirical
results for the distributions of b2 and b1. Biometrika, v. 60, n. 3, p. 613–622, 12 1973.
ISSN 0006-3444. Available at: <https://dx.doi.org/10.1093/biomet/60.3.613>.

D’AGOSTINO, R. B. An omnibus test of normality for moderate and large size
samples. Biometrika, v. 58, n. 2, p. 341–348, 08 1971. ISSN 0006-3444. Available at:
<https://dx.doi.org/10.1093/biomet/58.2.341>.

http://doi.acm.org/10.1145/2884781.2884864
https://books.google.com.br/books?id=gfa3AAAAIAAJ
https://books.google.com.br/books?id=gfa3AAAAIAAJ
https://doi.org/10.1007/978-3-642-33244-9_13
http://doi.acm.org/10.1145/2749215.2749216
https://doi.org/10.1145/3196398.3196428
http://dx.doi.org/10.1016/j.jss.2008.06.035
https://dx.doi.org/10.1093/biomet/60.3.613
https://dx.doi.org/10.1093/biomet/58.2.341

70

ERSHOV, A. Node.js Error Handling Patterns Demystified (with examples). 2018.
<https://dev.to/aershov24/nodejs-error-handling-demystified-2nbo>. Online; accessed
15 November 2018.

ESLINT. disallow empty block statements (no-empty). 2019. <https://eslint.org/docs/
rules/no-empty>. Online; accessed 15 January 2019.

ESLINT. disallow reassigning exceptions in catch clauses (no-ex-assign). 2019.
<https://eslint.org/docs/rules/no-ex-assign>. Online; accessed 15 January 2019.

ESLINT. Enforce Callback Error Handling (handle-callback-err). 2019. <https:
//eslint.org/docs/rules/handle-callback-err>. Online; accessed 15 January 2019.

EUGSTER, P. T.; FELBER, P. A.; GUERRAOUI, R.; KERMARREC, A.-M.
The many faces of publish/subscribe. ACM Comput. Surv., ACM, New York,
NY, USA, v. 35, n. 2, p. 114–131, Jun. 2003. ISSN 0360-0300. Available at:
<http://doi.acm.org/10.1145/857076.857078>.

FLANAGAN, D. JavaScript: The Definitive Guide. 3rd. ed. Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 1998. ISBN 1565923928.

FUKUDA, H.; LEGER, P. A library to modularly control asynchronous executions. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing. New York,
NY, USA: ACM, 2015. (SAC ’15), p. 1648–1650. ISBN 978-1-4503-3196-8. Available at:
<http://doi.acm.org/10.1145/2695664.2696034>.

GALLABA, K.; HANAM, Q.; MESBAH, A.; BESCHASTNIKH, I. Refactoring
asynchrony in javascript. In: IEEE International Conference on Software Maintenance
and Evolution (ICSME). [S.l.: s.n.], 2017. p. 353–363.

GALLABA, K.; MESBAH, A.; BESCHASTNIKH, I. Don’t call us, we’ll call you:
Characterizing callbacks in javascript. In: ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). [S.l.: s.n.], 2015. p. 247–256.

GARCIA, A. F.; RUBIRA, C. M. F.; ROMANOVSKY, A. B.; XU, J. A comparative
study of exception handling mechanisms for building dependable object-oriented
software. In: Journal of Systems and Software 59(2). [S.l.: s.n.], 2001. p. 197–222.

GOLDBERG, Y. Checklist: Best Practices of Node.JS Error Handling (2018). 2018.
<https://goldbergyoni.com/checklist-best-practices-of-node-js-error-handling/>.
Online; accessed 15 November 2018.

GU, Y.; XUAN, J.; ZHANG, H.; ZHANG, L.; FAN, Q.; XIE, X.; QIAN, T. Does the
fault reside in a stack trace? assisting crash localization by predicting crashing fault
residence. Journal of Systems and Software, v. 148, p. 88–104, 2019. Available at:
<https://doi.org/10.1016/j.jss.2018.11.004>.

HONG, S.; PARK, Y.; KIM, M. Detecting concurrency errors in client-side java
script web applications. In: Proceedings of the 2014 IEEE International Conference
on Software Testing, Verification, and Validation. Washington, DC, USA: IEEE
Computer Society, 2014. (ICST ’14), p. 61–70. ISBN 978-1-4799-2255-0. Available at:
<http://dx.doi.org/10.1109/ICST.2014.17>.

https://dev.to/aershov24/nodejs-error-handling-demystified-2nbo
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-empty
https://eslint.org/docs/rules/no-ex-assign
https://eslint.org/docs/rules/handle-callback-err
https://eslint.org/docs/rules/handle-callback-err
http://doi.acm.org/10.1145/857076.857078
http://doi.acm.org/10.1145/2695664.2696034
https://goldbergyoni.com/checklist-best-practices-of-node-js-error-handling/
https://doi.org/10.1016/j.jss.2018.11.004
http://dx.doi.org/10.1109/ICST.2014.17

71

JAKOBUS, B.; BARBOSA, E. A.; GARCIA, A. F.; LUCENA, C. José Pereira de.
Contrasting exception handling code across languages: An experience report involving
50 open source projects. In: 26th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2015, Gaithersbury, MD, USA, November 2-5, 2015. [S.l.: s.n.],
2015. p. 183–193.

JOYENT. Production Practices. 2019. <https://www.joyent.com/node-js/production/
design/errors>. Online; accessed 15 November 2018.

KALLIAMVAKOU, E.; GOUSIOS, G.; BLINCOE, K.; SINGER, L.; GERMAN, D. M.;
DAMIAN, D. The promises and perils of mining github. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. New York, NY, USA: ACM, 2014.
(MSR 2014), p. 92–101. ISBN 978-1-4503-2863-0.

KAMBONA, K.; BOIX, E. G.; MEUTER, W. D. An evaluation of reactive
programming and promises for structuring collaborative web applications. In: Proceedings
of the 7th Workshop on Dynamic Languages and Applications. New York, NY,
USA: ACM, 2013. (DYLA ’13), p. 3:1–3:9. ISBN 978-1-4503-2041-2. Available at:
<http://doi.acm.org/10.1145/2489798.2489802>.

KERY, M. B.; GOUES, C. L.; MYERS, B. A. Examining programmer practices for
locally handling exceptions. In: Proceedings of the 13th International Conference on
Mining Software Repositories. New York, NY, USA: ACM, 2016. (MSR ’16), p. 484–487.
ISBN 978-1-4503-4186-8. Available at: <http://doi.acm.org/10.1145/2901739.2903497>.

LEE, P. A.; ANDERSON, T. Fault Tolerance: Principles and Practice. 2nd. ed. Berlin,
Heidelberg: Springer-Verlag, 1990. ISBN 0387820779.

MANN, H. B.; WHITNEY, D. R. On a test of whether one of two random variables is
stochastically larger than the other. Annals of Mathematical Statistics, v. 18, 11 1946.

MIKKONEN, T.; TAIVALSAARI, A. Using JavaScript As a Real Programming
Language. Mountain View, CA, USA, 2007.

MILLER, R.; TRIPATHI, A. Issues with exception handling in object-oriented systems.
ECOOP97 — Object-Oriented Programming Lecture Notes in Computer Science, p.
85–103, 1997.

NEMETH, G. Node.js Best Practices | RisingStack. [S.l.]: RisingStack Engi-
neering - Node.js Tutorials Resources, 2017. <https://blog.risingstack.com/
node-js-best-practices/>. Online; accessed 15 November 2018.

NOTNA, A. Async patterns in Node.js: only 5 different ways to do it! 2017. <https:
//codeburst.io/async-patterns-in-node-js-only-4-different-ways-to-do-it-70186ee83250>.
Online; accessed 15 November 2018.

OCARIZA, F. S.; PATTABIRAMAN, K.; ZORN, B. G. Javascript errors in the wild:
An empirical study. 2011 IEEE 22nd International Symposium on Software Reliability
Engineering, p. 100–109, 2011.

PARNAS, D. L.; WÜRGES, H. Response to undesired events in software systems. In:
Proceedings of the 2nd International Conference on Software Engineering. [S.l.: s.n.],
1976. p. 437–446.

https://www.joyent.com/node-js/production/design/errors
https://www.joyent.com/node-js/production/design/errors
http://doi.acm.org/10.1145/2489798.2489802
http://doi.acm.org/10.1145/2901739.2903497
https://blog.risingstack.com/node-js-best-practices/
https://blog.risingstack.com/node-js-best-practices/
https://codeburst.io/async-patterns-in-node-js-only-4-different-ways-to-do-it-70186ee83250
https://codeburst.io/async-patterns-in-node-js-only-4-different-ways-to-do-it-70186ee83250

72

PHILIPS, L.; KOSTER, J. D.; MEUTER, W. D.; ROOVER, C. D. Dependence-driven
delimited cps transformation for javascript. In: Proceedings of the 2016 ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences. New
York, NY, USA: ACM, 2016. (GPCE 2016), p. 59–69. ISBN 978-1-4503-4446-3. Available
at: <http://doi.acm.org/10.1145/2993236.2993243>.

RICHARDS, G.; HAMMER, C.; BURG, B.; VITEK, J. The eval that men do a
large-scale study of the use of eval in javascript applications. In: ECOOP 2011 –
Object-Oriented Programming. [S.l.: s.n.], 2011. p. 52–78.

ROBILLARD; MURPHY. Static analysis to support the evolution of exception structure
in object-oriented systems. ACM Trans. Softw. Eng. Methodol., ACM, New York, NY,
USA, p. 191–221, Apr. 2003. ISSN 1049-331X.

SCHARDT, B. Error Handling In Node/Javascript Sucks. Unless
You Know this. 2018. 2018. <https://medium.com/front-end-hacking/
error-handling-in-node-javascript-suck-unless-you-know-this-2018-aa0a14cfdd9d>.
Online; accessed 15 November 2018.

SENA, D.; COELHO, R.; KULESZA, U.; BONIFáCIO, R. Understanding the
exception handling strategies of java libraries: An empirical study. In: Proceedings
of the 13th International Conference on Mining Software Repositories. New York,
NY, USA: ACM, 2016. (MSR ’16), p. 212–222. ISBN 978-1-4503-4186-8. Available at:
<http://doi.acm.org/10.1145/2901739.2901757>.

SENN, S.; RICHARDSON, W. The first t-test. Statistics in Medicine, v. 13, n. 8, p.
785–803, 1994. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.
4780130802>.

SOARES, W. 9 Ways To Avoid Pitfalls Using Node.js. 2017. <http://blog.avenuecode.
com/9-ways-to-avoid-pitfalls-using-nodejs>. Online; accessed 15 November 2018.

SYED, B. Exception Handling. 2018. <https://basarat.gitbooks.io/typescript/docs/
types/exceptions.html>. Online; accessed 15 November 2018.

VOUTILAINEN, J. Evaluation of Front-end JavaScript Frameworks for Master Data
Management Application Development. Master’s Thesis (Master’s Thesis) — Metropolia
University of Applied Sciences, The address of the publisher, 12 2017. An optional note.

WANG, J.; DOU, W.; GAO, Y.; GAO, C.; QIN, F.; YIN, K.; WEI, J. A comprehensive
study on real world concurrency bugs in node.js. In: IEEE/ACM International
Conference on Automated Software Engineering (ASE). [S.l.: s.n.], 2017. p. 52–78.

WILSON. Node.Js 8 the Right Way: Practical, Server-Side JavaScript That Scales. 1st.
ed. [S.l.]: Pragmatic Bookshelf, 2018. ISBN 168050195X, 9781680501957.

http://doi.acm.org/10.1145/2993236.2993243
https://medium.com/front-end-hacking/error-handling-in-node-javascript-suck-unless-you-know-this-2018-aa0a14cfdd9d
https://medium.com/front-end-hacking/error-handling-in-node-javascript-suck-unless-you-know-this-2018-aa0a14cfdd9d
http://doi.acm.org/10.1145/2901739.2901757
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780130802
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780130802
http://blog.avenuecode.com/9-ways-to-avoid-pitfalls-using-nodejs
http://blog.avenuecode.com/9-ways-to-avoid-pitfalls-using-nodejs
https://basarat.gitbooks.io/typescript/docs/types/exceptions.html
https://basarat.gitbooks.io/typescript/docs/types/exceptions.html

	ba0103faf8a0257574afcfdab4363300eec9458b8e7e5addccc84beeaab7b76a.pdf
	ba0103faf8a0257574afcfdab4363300eec9458b8e7e5addccc84beeaab7b76a.pdf
	ba0103faf8a0257574afcfdab4363300eec9458b8e7e5addccc84beeaab7b76a.pdf

