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ABSTRACT 

 

Oil refineries process hazardous substances at extreme operational conditions to 

produce valuable products. The necessary and required risk assessment is generally rather time-

consuming and involves a multidisciplinary group of experts to identify potential accidental 

hypotheses, and compute their frequency and severity. With respect to this context, in this work, 

we present a machine learning method to mine out useful knowledge and information from 

available data of past risk assessments. The aim is at automatically classifying possible accident 

scenarios that may occur in oil refinery processing units by using SVM (support vector 

machines). Data from a previous qualitative risk assessment of an ADU (atmospheric 

distillation unit) of a real oil refinery is used to demonstrate the applicability of the SVM-based 

approach. The test classification was made with an F1 score of 89.95%. In this way, the results 

obtained showed that the proposed method is promising for efficiently performing automated 

risk assessment of oil refineries. 

 

Keywords: Risk assessment. Machine learning. Support vector machines. Oil refineries. 

 

  



 
 

    

RESUMO 

 

 

Refinarias de petróleo processam substâncias perigosas em condições operacionais 

extremas para produzir produtos valiosos. A execução da necessária e exigida avaliação de 

riscos é geralmente bastante demorada e envolve um grupo multidisciplinar de especialistas 

para identificar possíveis hipóteses acidentais e calcular suas frequências e a severidade de suas 

consequências. Com relação a este contexto, neste trabalho, apresenta-se um método de 

aprendizagem de máquina para extrair conhecimento e informações úteis a partir de avaliações 

anteriores de riscos. O objetivo é classificar automaticamente os possíveis cenários acidentais 

que possam ocorrer em unidades de processamento de refinaria de petróleo usando máquina de 

vetores de suporte. Os dados de uma avaliação de risco qualitativa previamente elaborada de 

uma ADU (unidade de destilação atmosférica) de uma refinaria de petróleo real são usados para 

demonstrar a aplicabilidade da abordagem baseada em SVM. A classificação dos dados de teste 

foi feita com um escore F1 de 89,95%. Os resultados obtidos demonstraram que o método 

proposto é promissor para realizar eficientemente avaliações automáticas de risco de refinarias 

de petróleo. 

 

Palavras-chave: Avaliação de risco. Aprendizagem de ráquina. Máquina de vetores de suporte. 

Refinarias de petróleo. 
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1 INTRODUCTION 

 

 
Petroleum has an impressive value to society. It is widely used as raw material to produce 

cosmetics, fuels, clothes, chemical for industry, and other useful materials. However, in its raw 

state, the crude oil does not have many useful applications. For this reason, it is essential to 

convert the crude oil into its products to explore all of its potential.  

In this context, oil refineries are complex (and expensive) industrial systems whose main 

purpose is to separate the petroleum into more valuable and useful fractions to meet society 

needs (DEMIRBAS; BAMUFLEH, 2017). Three basic activities characterize the operation of 

petroleum refineries: separation, conversion and treatment. These activities involve handling 

hazardous materials, characterized by their explosiveness, flammability, and toxicity, which 

may cause catastrophic accidents.  

Major accidents with severe effects to either humans or environment can be generated 

from the release of large amounts of energy or hazardous materials over a short lapse of time. 

In particular, they concern the occurrence of fires, explosions and atmospheric dispersion of 

toxic products. The consequences of these undesirable scenarios, then, depend on the nature of 

the released material and its physical state, and the conditions of the environment (CASAL, 

2017; EL-HARBAWI et al., 2008; GEORGIADOU et al., 2010).  

On one hand , the concern with human safety and the increasing complexity of industrial 

systems on the other, make indispensable the assessment of the risks of catastrophic accidents 

from industrial facilities. As a matter of fact, nowadays, national and international regulatory 

standards exist, that require organizations to adopt procedures to manage and minimize the 

potential risk related to the operation of industrial facilities (COX, 2009; HU et al., 2018; 

MURAKAMI, 2016). 

Different techniques of risk analysis have been developed and applied, and they can be 

classified as qualitative, quantitative or semi-quantitative (KHAN; HASHEMI, 2017). Usually, 

qualitative methods are elaborated by means of good engineering judgement and know-how. In 

general, they are easy to apply, even though they can be very time-consuming (CCPS, 1992; 

SILVA et al., 2014). Amundrud and Aven (2015) pointed out that knowledge gain on risk takes 

time, but it is absolutely necessary to their prevention and mitigation. Besides, it composes the 

basis for the elaboration of emergency and safety measures. 

In fact, to perform a qualitative risk analysis, a large number of documents should be 

consider, such as equipment and material lists, with the objective of characterizing the analyzed 



11 

    

system (CARRASQUILLA; MELKO, 2017). Next, it is necessary to identify the potential 

hazards, which is usually done through the application of some qualitative techniques by a 

multidisciplinary team. Then, the risks are categorized by analyzing the likelihood of causes 

and severity of consequences of the possible accidental scenarios (TNO, 2005a). This approach 

is often used to prioritize the risks, which allows efforts to be directed more effectively.  

Silva and Jacinto (2012) pointed at the growing quantity of available data and information 

about industrial accidents and the need to explore novel techniques and statistical tools for 

mining knowledge from these data and information, with the aim at finding hidden details that 

could assist to understand the phenomena of interest. Ale (2016) also argued that the processing 

and analysis of the increasingly available information help predict accidents and allow for more 

founded decision making.  

In this context, ML (machine learning) techniques have been successfully used to mine 

knowledge from information and data in different fields, such as, computer-vision, medicine, 

cyber security and so on (SINGH; ROY; MOHAN, 2017). For instance, Pang, Lee and 

Vaithyanathan (2002) analyzed the efficiency of different ML models to perform a sentiment 

classification, which usually involves intuition of experts, and thus pointed out that SVM 

(support vector machines) is effective to text categorization. Furthermore, Jiang and Chen 

(2014) indicated that there are well-established methods for chemical process risk management, 

such as HazOp, that can be adapted to supply chain networks, and then proposed an approach 

based on SVM to evaluate the supply chain’s risk, transforming it into a risk rating problem. 

More recently, Liu et al. (2018) utilized and compared different ML methods for fault diagnosis 

of rotating machinery. 

Indeed, the ability of ML to deal with large volumes of data, and to successfully identify 

and classify information makes the application of these techniques attractive to the risk 

assessment context in order to reduce necessary efforts to perform it. Therefore, this Master’s 

dissertation proposes an SVM-based model for automated classification of risks. The proposed 

model is tailored for oil refining processes, which begin at the ADU (atmospheric distillation 

unit), where the crude oil is converted into more valuable products. 

ADU contains different dangerous chemical products, such as fuels and residues from the 

process. Moreover, the separation that takes place in ADU requires the application of heat and 

involves a series of evaporation and condensation of the liquid mixture (KINSARA; 

DEMIRBAS, 2016). Thus, this dissertation presents a practical example, in order to illustrate 

the applicability of the developed SVM model to an ADU of an oil refinery, which contains 
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hazardous materials and is characterized by propitious conditions that may lead to catastrophic 

accidents. 

 

 

1.1 JUSTIFICATION  

 

 

Although the increasing efforts to prevent major accidents, they are far from being 

eradicate. Thus, it is indispensable to develop new methods to support risk studies. The 

framework showed in Figure 1 summarizes the general steps necessary to execute a qualitative 

risk assessment, which starts with the delimitation of the scope of the system to be analyzed.  

Initially, the facility is partitioned into smaller systems, whose boundaries are defined 

according to specific characteristics of the chemical products to be processed and the 

operational conditions. Then, a large number of documents (e.g. process and operational 

flowcharts, equipment lists, material safety data sheets, etc.) are considered in order to gather 

relevant information to postulate possible leakages. Next, the hazards and their possible causes 

and consequences are identified, which can be accomplished through different techniques such 

as PHA (preliminary hazard analysis). Finally, the risks are evaluated and classified.  

 

Figure 1 – Framework with the general steps to execute a risk assessment 

 
Source: This research (2018) 

 

The process described in Figure 1 can be very time-consuming in practice, mainly 

depending on the complexity of the system analyzed and on the diverse backgrounds of the 

experts in the team that execute the risk assessment. In this context, the method here developed 
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aims at reducing the efforts required to perform risk assessments. Information about the 

potential accidents, which can be extracted from documents is provided to an ML model. Then, 

it learns the relationships among the operating conditions, potential accidents, their causes and 

consequences, and finally the identified risks could be automatically assessed by using the ML 

classifier. This procedure can be illustrated in Figure 2. 

 

Figure 2 – Steps to perform a qualitative risk assessment through the proposed model 

 
Source: This research (2018) 

 

Comparing Figure 2 to Figure 1, the proposed model may reduce the time and manpower 

required to perform risk assessment. However, it is important to emphasize that the critical 

judgment of the risk analyst would still be necessary to evaluate the coherence of classifications 

obtained, the proposed model is not intended to replace the risk analyst, but to ease this process 

of risk assessment. Therefore, this dissertation proposes a method based on SVM to classify 

automatically the risks associated with an ADU from an oil refinery, which contains hazardous 

materials and is characterized by propitious conditions that may lead to fatal accidents. 

 

 

1.2 OBJECTIVES 

 

 

In this section the main objective of this dissertation is described and specific objectives 

related with this work are presented in the following sections. 
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1.2.1 General Objective 

 

 

The main purpose of this study is to develop a method able to classify automatically risks 

related to an ADU, by means of the implementation of an SVM classifier model, which will be 

fed with information collected through the evaluation of previous elaborated PHA documents. 

 

 

1.2.2 Specific Objectives 

 

 

- Data collection: Previously prepared PHAs documents for the ADU were provided to 

this study. They were evaluated in order to extract information essential for the learning 

process; 

- Characterization of the potential accidents: Identification of features relative to the 

potential accidents to build the set of input-output pairs to feed the SVM model; 

- Algorithm implementation: Implementation of SVM classifiers; 

- Hyper-parameters optimization: Attainment of the hyper-parameters that lead to the 

model with best accuracy; 

- Risk classification: Provide test data as input to the classifier to obtain the related risk 

classification. 

 

 

1.3 DISSERTATION STRUCTURE 

 

 

The remainder of this research is organized as follows:  

- Chapter 2 describes the process involved in the ADU, introduces important concepts 

used in risk analysis, and explains the theory that backs up SVM;  

- Chapter 3 presents the SVM-based proposed methodology to classify automatically 

risks;  

- Chapter 4 applies the proposed method to an ADU; 

- Chapter 5 provides some concluding remarks.
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

 

In this chapter, we present the definitions and explanation about the key topics and 

concepts of this dissertation. Furthermore, a review of the current researches in the area is 

presented. 

 

 

2.1 OIL AND GAS REFINERIES 

 

 

Petroleum is a complex liquid mixture, whose composition varies according to its origin, 

but it consists basically of different hydrocarbons (over 80% of its composition), and a lower 

portion of contaminants, such as ammonia, sulfur, and some of their derivatives. Given that, the 

separation of the crude oil into pure compounds, or even into a mixture with exactly known 

composition, is almost impossible (SPEIGHT, 2015). 

These products are more useful, and their value is higher than the value of the oil in its 

original state (AL-MUSLIM; DINCER, 2005). Table 1 shows these fractions and summarizes 

their composition, in terms of number of carbon atoms that represent the group of hydrocarbons, 

and typical boiling range, and the general applications of each fraction.  

 

Table 1 - Petroleum fractions uses and characterization 

Fraction Boiling Point (°C) Composition Main Uses 

Residual gas - C1 – C2 fuel 

Liquefied petroleum gas < 40 C3 – C4 bottled gas 

Gasoline 40 – 175 C5 – C10 automobile fuel 

Kerosene 175 – 235 C11 – C12 lamp oil, jet fuel 

Light fuel oil 235 – 305 C13 - C17 diesel fuel 

Heavy fuel oil 305 – 400 C18 - C25 fuel, lubricants production 

Mineral oil 400 – 510 C26 - C38 lubricants 

Residue > 510 C38 + asphalt, tar 

Source: THOMAS et al. (2004) 

 

The refining process initiates in the ADU, which represents the main process in oil and 

gas refineries, where the raw oil is heated and transferred to distillation columns. Then, the 
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crude oil is converted into different fractions. Therefore, the products obtained in the ADU may 

be either treated as final products or they may be conducted to feed downstream units. Each 

fraction corresponds to a group composed of hydrocarbons, which are organic compounds 

consisting of carbon and hydrogen, with similar molecular weight and boiling points 

(OSUOLALE; ZHANG, 2017; SZKLO; ULLER; BONFÁ, 2012). 

 

 

2.1.1 Atmospheric Distillation Unit (ADU) 

 

 

The separation that takes place in the ADU, illustrated in Figure 3, involves petroleum’s 

heating, vaporization, fractionation, condensation and cooling. Distillation is a physical 

separation process that involves heat and mass transfer, and it is based on the equilibrium 

between the liquid and vapor phases, which are obtained when a liquid mixture is heated, due 

to partial vaporization. The distillation towers usually work continuously, and it can be operated 

under hazardous conditions, i.e. very high/low temperature and/or pressure (SPEIGHT, 2015; 

AL-SAHHAF, ELKILANI; FAHIM, 2011). 

 

Figure 3 - Generic process flow diagram from a distillation unit 

 
Source: adapted from Al-sahhaf, Elkilani and Fahim (2011) 

Part of the load vaporizes, and thus the light vapors move to the top of the column while 

the liquid content moves to the bottom. The liquid arrives by a downcomer in the tray and comes 
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in contact with the vapor that passes through holes, bubblers, or valves, that exist in the trays 

producing a foam. Then, the foam spread through the plate until it reaches another downcomer, 

where it coalesces and the liquid, without air, passes into the lower tray and the vapor remains 

on the tray. Thus, the distilled products are removed from the side of the column at different 

points, known as sidecuts, which are related to a boiling range. After the collection of fractions, 

they are condensed at different temperatures and, subsequently, processed in downstream units 

(AL-MUSLIM; DINCER, 2005; WAHEED et al., 2014). 

 

 

2.2 BRIEF HISTORY OF ACCIDENTS IN OIL REFINERIES 

 

 

Over the years there has been a growing demand of petroleum derivative products and a 

consequent increase of the amount of hazardous components stored, transported and processed, 

with also an increase in the risk of major accidents. (AMYOTTE et al., 2016; KHAN; 

HASHEMI, 2017). In the last years, diverse catastrophic industrial accidents have been 

occurred. In 1972, at REDUC (Duque de Caxias Refinery) occurred the explosion of three LPG 

(liquefied petroleum gas) storage tanks killing 42 people. These tanks contain valves to remove 

the liquid that forms inside. When the liquid is completely removed, the LPG starts to escape 

and the valve must be closed. The accident was caused by a worker that had opened the valve 

of one of the tanks and had gone for a break. When he returned, he could not close the valve 

because it was frozen. The gas spread quickly and, then, a fire started. As result, the LPG tanks 

exploded (COSTA, 2011).  

In 1984, in Cubatão, Brazil, an operational failure caused the rupture of an oil pipeline 

spreading over 700,000 liters of gasoline through the mangrove. Then, a fire broke out a few 

hours later, leading to the death of 93 people (PORTO, 2016). In August 2012, an accident, 

involving an oil pipeline from ADU at Chevron Refinery, USA/California, occurred. As 

consequence of the high operating temperatures, the pipe suffered corrosion, leading to the 

leakage of diesel. A series of errors were committed in the attempt to stop the leakage without 

interrupting the production process, due to the lack of blocking valves between the leak and the 

valve. These mistakes led to the pipeline rupture. Then, a hydrocarbon vapor cloud was formed 

and rapidly expanded. Next, the cloud reached an ignition source. Although the accident did 
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not cause fatalities, more than 15,000 people went to the near hospitals with respiratory 

problems (LUSCHEK, 2012). 

Early 2018, an explosion of tanks of the distillation column at Bayernoil Refinery, in 

Bavaria, Germany, injured 8 people and more than 1,800 had to be evacuated. After the 

explosions, a large fire erupted and the overpressure provoked by the explosions damaged the 

roofs and the windows of the houses in the residential area near the refinery (HÜSER; STARK, 

2018). In addition,  Table 2 lists a few more cases of recent fatal accidents that occurred in 

oil and gas refineries, their causes and number of deaths.  

 

 Table 2 – Fatal accidents in oil and gas industry  

Deaths Cause Company Year 

1 Air compressor failure PFB Energy 2015 

2 Reboiler failure CVR Refining 2013 

2 Heat exchanger failure ExxonMobil 2013 

1 Furnace failure Valero Energy Corp. 2013 

7 Heat exchanger failure Tesoro 2010 

2 Welder failure within a tank HollyFrontier 2010 

2 Pipeline rupture  Delek Refining Ltd. 2008 

Source: Malewitz et al. (2015) 

 

 

2.3 RISK ANALYSIS 

 

 

Khakzad, Khan and Paltrinieri (2014) described major accident as critical events that can 

lead to various fatalities and catastrophic impacts to people and environment or severe property 

damage. In the process industries, they can be defined as large-scale leakages, fires and 

explosions that may provoke multiple deaths and/or structural losses (AMYOTTE et al., 2016). 

The consequences and impacts of major accidents are directly related to the nature of the 

released material. 

Indeed, when a flammable material gets in contact with an oxidant, they may react 

producing thermal energy and, then, a combustion process can result in either fire or explosion, 

where the latter occurs when there is a mixture of oxygen with the fuel gas in a certain 

proportion. This value is defined by the LFL (lower flammable limits) and UFL (upper 

flammable limits), where LFL represents the concentration value of the substance below which 
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the mixture is still not able to ignite, whereas above the UFL the mixture is excessively rich 

with the substance to lead to a combustion (HAUPTMANNS, 2015; DOBASHI, 2017).  

Moreover, toxic emissions may also spread as clouds in the air, and the severity and extent 

of these clouds depend on the physicochemical and toxicological properties of the released 

substance, and on the atmospheric and geographical conditions. Then, there are possible 

different consequences of major accidents. Some of them are described as follows, according 

to Casal (2017), TNO (2005b) and CCPS (2010a, 2010b): 

- Pool fire: Stable combustion of a vapor from a layer of flammable liquid; 

- Vapor cloud explosion: Takes place when a flammable vapor cloud reaches an ignition 

source and the flames accelerate to sufficiently high velocities. Flame acceleration 

only occurs in the presence of congestion, a high-momentum release, or a combination 

of both; 

- Flash fire: Combustion of a flammable vapor cloud in which there is no increase in 

combustion rate, i.e. the flame propagation occurs under near-laminar conditions and, 

thus, the flame speeds are not sufficient to produce significant blast effects; 

- Toxic vapor cloud: Results from the release of toxic products into the atmosphere. 

International and national regulatory standards, which demand the execution of RA (risk 

analysis) for hazardous facilities, such as oil and gas industry, have been required by several 

governments to prevent the aforementioned undesirable accidents (CAMERON et al., 2017; 

HAIMES, 2015).  

Regulatory standards are established to provide information and develop scientific 

knowledge for decision-making, despite the uncertainties inherent in the risk assessment. 

Furthermore, these standards determine acceptance levels according to the tolerance for specific 

hazards (MURAKAMI, 2016; WILLIS, 2007). Then, the main purpose of the analysis consists 

in providing knowledge and information that aid to make decisions on layout changes, 

operation, maintenance, emergency preparation and risk management. 

According to Aven (2012), risk assessment is the operative process of RA, where the 

accidental scenarios are characterized, through the methodical use of data and knowledge for 

describing and identifying accidents causes, probabilities and consequences, and the risk 

evaluation follows, where the risks are compared against given risk criteria. Weber et al. (2012) 

emphasized that risk assessment requires systematic research of accidental scenarios, and, in 

general, can be classified as qualitative, quantitative or semi-quantitative. 
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Generally, safety studies initiate with the detection of the possible hazards, and its main 

purpose can be achieved through a PHA (preliminary hazard analysis). This step is considered 

fundamental to risk assessment and risk management, for establishing effective safeguards 

(CAMERON et al., 2017; SILVA et al., 2014). PHA is applied early in the system life cycle, 

generally focusing on the hazardous materials present in the plant. This technique requires 

documents such as plant design, equipment and/or material specifications, and other sources of 

information (CCPS, 1992). 

Generally, the final results of a PHA are given in the form of risk matrices, which are a 

methodical approach frequently used in qualitative risk assessment to categorize the different 

hazardous situations. The consideration of pre-defined categories of consequence and 

likelihood provides the risk ranking of a hazard (MARHAVILAS; KOULOURIOTIS; 

GEMENI, 2011). Thus, risk matrices are widely used to prioritize accidental scenarios in order 

to develop efficient measures to reduce or mitigate the risk. Also, the most critical scenarios 

can be further analyzed in detail by a quantitative method (BENEKOS; DIAMANTIDIS, 2017; 

Mannan et al., 2016).  

However, the identification of hazards and their evaluation involves the analysis of 

numerous documents and the judgment of experts from different disciplines (TNO, 2005). This 

step usually represents an exhausting task in risk assessment studies. In fact, Cameron et al. 

(2017), Weber et al., (2012) and Pasman (2015) pointed at different methods that have been 

developed to automate the process of hazard identification and assessment, in an effort to reduce 

the time-consumption and labor required to perform PHA. For instance, Suokas, Heino and 

Karvonen (1990) developed a rule-based expert system, HAZOPEX, to support safety analysis. 

Srinivasan and Venkatasubramanian (1998) presented a method, which uses digraph-based 

models, dynamic mathematical approaches and fault tree methods to automate the processes 

during the execution of PHA for continuous processing in chemical industries. Then, the 

method was extended to batch processes (VISWANATHAN; SHAH; 

VENKATASUBRAMANIAN, 2002).  

Lavasani et al. (2011) applied fuzzy risk assessment to quantify the risks levels related to 

hazardous events in offshore wells. Furthermore, Ifelebuegu et al. (2018) utilized generic data 

from different sources for a subsea gas compression system to improve the estimation of risk 

frequency through a Bayesian logic methodology. Markowski and Mannan (2008) developed a 

fuzzy logic approach to reduce the uncertainty and imprecision related with the application of 

risk matrices. Their methodology uses the estimated risk and efficacy indices (related to the 
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protective level of the system) as input data, which are mapped into a risk index through a fuzzy 

logic system. This methodology was applied to a distillation column unit aiming to obtain a 

more reliable result, compared to traditional risk assessment matrix. Further, Markowski and 

Siuta (2017) adopted the same methodology to select the representative accidental scenarios 

from a liquid petroleum gas (LPG) storage facility. However, these authors focused on 

eliminating the vagueness and subjectivity of the analysis, but did not take into account the 

efforts and the time consumption involved in the process. Tan, Ortiz-Gallardo and Perrons 

(2016) pointed at the fact that data analytics tools could help overcome persistent fatality and 

injury rates in the oil and gas industry, by revealing hidden patterns and trends that could lead 

to accidental scenarios.  

In this context, the application of Artificial Intelligence (AI) techniques seems attractive 

to simplify and improve the process of risk assessment. As argued by Jordan and Mitchell 

(2015), developers of AI systems for diverse applications, it is simpler to train a system by 

providing it a set of instances that represent the desired behavior, and then, program it by 

predicting the response to new input, rather than building physical models. To that end, different 

Machine Learning (ML) techniques are applied, supervised learning methods being the most 

widely used, where instances are given with known labels (KOTSIANTIS; ZAHARAKIS; 

PINTELAS, 2006). 

The ability of Support Vector Machine (SVM) to successfully solve classification 

problems makes this learning method interesting for risk analysis (HUANG et al., 2012). In 

fact, recent researches have already applied computer vision and ML techniques in this context 

to provide new tools to identify potential hazards through images extracted from webcams and 

surveillance cameras (MAIOR et al., 2017; MAIOR et al., 2018). However, these works were 

not focused in the efforts required to perform risk analysis. In this work, SVM is applied to 

replicate the process of qualitative risk assessment, aiming to reduce the efforts and time 

consumption involved. Thus, SVM will act as an aiding tool for decision-making purposes. 

However, at the best of the authors’ knowledge, there is a lack of works related to the 

application of ML to decrease the efforts involved in performing RA. Considering this, the 

development of an SVM-based model may provide a useful tool to support risk analysis, 

reducing the manpower and time required to execute the studies. Then, to next section 

introduces important definitions and concepts on SVM to provide essential knowledge for 

understanding the model proposed in this dissertation. 
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2.4 MACHINE LEARNING (ML) 

 

 

Kumar (2017) mentioned that AI techniques have been developed to reproduce human 

abilities as perception, analysis, reasoning, learning, exchange information, and decision-

making. (LI; ZHANG, 2017). According to Jordan and Mitchell (2015), these techniques aim 

at improving a performance measure (e.g. the accuracy of a classifier) by means of any kind of 

training practice. In other words, ML detects and obtains knowledge from the real world 

through computers to reproduce the learning ability (PORTUGAL; ALENCAR; COWAN, 

2018). 

ML methods apply inductive inference to obtain knowledge from the environment from 

a set of examples, in general, they are classified as supervised or unsupervised learning. The 

first, uses set of 𝑛 training examples, 𝐷 = {(𝒙𝟏, 𝑦1), (𝒙𝟐, 𝑦2), … , (𝒙𝒏, 𝑦𝑛)}, to infer a function 

𝑓, through the mapping of the input values into the output value. Each example (or instance) is 

a pair consisting of an input, usually a vector of 𝑚 features, 𝒙, and an output value, 𝑦. 

(CHAPELLE et al., 2002; LINS et al., 2013). Moreover, the learning problem can be defined 

based on the type of the output 𝑦: 

- Regression problems: 𝑦 assumes real values. 

- Classification problems: 𝑦 assumes discrete values that represent categories. 

Moreover, they can be binary problems, where there are only two classes, or multi-

classification cases.  

In classification problems the supervised leaning algorithm extracts a classifier from a 

given set of examples, the inference process described and the concepts mentioned are 

illustrated in Figure 4.  

 

Figure 4 – Inference of a classifier at supervised learning 

 
Source: adapted from Lorena and Carvalho (2007) 
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SVM is a supervised learning method trained with an algorithm of Mathematical 

Optimization and that implement a limit derived from Statistical Learning Theory (VAPNIK; 

IZMAILOV, 2017; VAPNIK, 1999). Thus, we have developed a method based on SVM 

classifiers to perform the automated qualitative risk assessment. 

 

 

2.4.1 Support Vector Machines (SVM) 

 

 

It is widely used to solve both classification and regression problems, as the proposed 

model in this dissertation uses support vector classifiers (SVC), this section describes the theory 

with an emphasis on classification problems.  

As illustrated in Figure 5, the objective of the learning process is to find a classifier 

(decision surface) able to separate the different data classes, which are indicated by different 

symbols. It is possible to draw numerous lines to separate the two classes, this fact leads to an 

optimization problem that consists in determining which is the best line. The first classifier 

(Figure 5a) is not able adjust to fit the training data, thus it does not accurately separate the two 

classes. The second (Figure 5b), has an intermediate complexity and correctly classifies the 

most part of the training examples. The last (Figure 5c), does not make errors, however, it may 

not be able to correctly classify new (unseen) data due its high specificity. 

 

Figure 5 – Three different classifiers trained with a data set with two classes 

 
Source: adapted from Lorena and Carvalho (2007) 

 

The Statistical Learning Theory (SLT) is a mathematical formulation of the general 

concept of learning, as defined by Steinwart and Christmann (2008), it establishes mathematical 



24 

    

conditions that support the selection of a particular classifier from a set of training data. It is not 

the aim of this research to go into details over SLT, for more information check Vapnik (2013).  

In particular, SVM training involves the optimization of a quadratic convex function, 

which main purpose is to find a hyperplane able to separate different data classes by maximizing 

the distance between the hyperplane and the instances on both sides.  

Figure 6 illustrates important concepts to define a linear classifier. Considering set of 𝑛 

training examples 𝐷 = {(𝒙𝟏, 𝑦1), (𝒙𝟐, 𝑦2), … , (𝒙𝒏, 𝑦𝑛)},  each 𝑥𝑖 belongs to one of the two 

classes, thus providing a label 𝑦𝑖 ∈ {−1,1}. It is assumed that there is a hyperplane able to 

separate positive from negative instances. A hyperplane is defined by the set of 𝒙 that satisfies 

𝒘𝑇𝒙 + 𝑏 = 0, these points are perpendicular to 𝒘 and pass through the origin. Where 𝒘 is the 

weight vector and |𝑏|/‖𝑤‖ is the perpendicular distance from the hyperplane to the origin 

(JIANG; CHEN, 2014; KOTSIANTIS; ZAHARAKIS; PINTELAS, 2006). 

 

Figure 6 – Separation hyperplane for linearly separable data   

 
Source: adapted from Lorena and Carvalho (2007) 

 

The decision boundary of the classifier is the boundary between the two regions separated 

by the hyperplane. To extend this idea to generate nonlinear decision boundaries, a nonlinear 

function 𝜙 in used to map 𝒙 into a vector of feature space, 𝐹, of higher dimension. Thus, the 

discriminant function in 𝐹 is defined as in Equation 2.3.1.  

𝑓(𝒙) = 𝒘𝑇∅(𝒙) + 𝑏                                                                                                           (2.3.1) 

However, the determination of the adequate mapping can be difficult. Moreover, the 

increase of dimensionality may be computationally demanding. This problem is solved by 

Kernel methods, which avoid the explicit mapping of the data to 𝐹. Firstly, assume that the 

weight vector can be expressed by linear combination of the training examples (Equation 2.3.2), 

where α is the dual representation of the decision boundary.  



25 

    

𝑤 = ∑ 𝛼𝑖𝑥𝑖
𝑛
𝑖=1                                                                                                                     (2.3.2) 

Then, considering the kernel function (Equation 2.3.3), which is defined in the input 

space, the inner product in feature space is calculated directly through 𝑘(𝑥𝑖 , 𝑥𝑗) and, thus, it can 

be efficiently computed. 

𝑘(𝑥𝑖 , 𝑥𝑗) = ∅(𝑥𝑖)
𝑇∅(𝑥𝑗)                                                                                                             (2.3.3) 

Finally, 𝑓 can be written in terms of the kernel function as 

𝑓(𝒙) = ∑ 𝛼𝑖𝑘(𝑥𝑖, 𝑥𝑗) + 𝑏𝑛
𝑖,𝑗=1                                                                                                     (2.3.4) 

The maximum margin is determined by solving the dual Lagrangian problem formulated 

as follows in Equations 2.3.7, subject to the constrains represented in Equations 2.3.5 and 2.3.7 

(AL-YASEEN; OTHMAN; NAZRI, 2017): 

𝑚𝑎𝑥 𝐿𝐷(𝛼) =  ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1 𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)                                                    (2.3.5) 

subject to 

∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0,                                                                                                                                   (2.3.6) 

0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖                                                                                                                                 (2.3.7) 

where 𝛼 is the dual variable, 𝐶 is the soft margin parameter, 𝑛 is the number of training 

instances, and ),( x jxik  is the kernel function, responsible for separating the data’s instances 

into different classes. The RBF (radial basis function) kernel is given as Equation 2.3.8: 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 [−𝛾(𝑥𝑖 − 𝑥𝑗)
2

]                                                                                                      (2.3.8) 

where 𝛾 > 0 is the kernel parameter. According to Kotsiantis, Zaharakis, and Pintelas (2006), 

the selection of the adequate kernel function and the tuning of its parameters are fundamental, 

since they determine the feature space, where the training data instance will be classified.  

To automatically classify the risks associated with an ADU two different SVM classifiers 

were developed, SVC1 and SVC2. The input, 𝒙, contain useful information to characterize the 

hazards. Indeed, each instance registered in the input vector contains the operational conditions, 

besides features to characterize a hypothetical accidental scenario. Both SVC1 and SVC2, were 

feed with the same input vector. While the output for SVC1, 𝑦1, is the likelihood rating, and for 

SVC2, 𝑦2, is the consequence level. Then, the predictions were combined to provide the risk 

classification according to a risk matrix (that is further described under Chapter 3). 
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2.4.2 Model Selection 

 

 

It is widely known that the hyper-parameters, 𝐶 and 𝛾, represent a key factor to the SVM 

performance (CHAPELLE, 2002). A common problem, considering these models, is that they 

can present satisfactory results on training set, at the same time they might also not classify 

unseen data correctly. The tuning of SVM hyper-parameters is known as model selection 

problem, as Lins (2009) stated. Then, it is essential to select 𝐶 and 𝛾 meticulously.  

The most common and reliable procedure is to perform an exhaustive GS (grid search) 

over the entire search space. However, it can be unpractical and time consuming if there are 

several parameters and/or possible combinations. To execute GS, it is necessary to select a finite 

set of values for 𝐶 and 𝛾, considering the fact they are continuous. Next, an SVM is trained 

with all pairs that resulted from the combination of both parameters and, then, GS returns the 

set relative to the highest scores obtained during the validation (WITTEN et al., 2016). 

Usually, CV (cross-validation) is used to estimate the performance of the model, aiming 

to find the best approach appropriate for the available data. There are different methods to 

achieve this purpose. For instance, k-fold CV consists in splitting the data into k equal parts 

and, then, the training is proceeded on k-1 parts and the test is done in the part that is left out. 

Next, this process is repeated alternating the testing portion until all k parts has been tested 

(YADAV; SHUKLA, 2016). In this research, we applied a 10-fold-cross-validation method to 

select the best pair of hyper-parameters for each SVC model. Next Chapter describes the details 

of the proposed method.
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3 METHODOLOGY 

 

 

The aim of the classification model is to reduce the efforts made by the multidisciplinary 

teams during the development of PHAs. To that end, a method based on the supervised machine 

learning technique, SVM, has been developed by using information obtained through previous 

PHAs.  

Generally, during the elaboration of PHA, the potential risks are classified according to a 

risk matrix based on ISO 31000 (2018) (Table 3) as moderate (M), tolerable (T) and non-

tolerable (NT). The risk category of a possible accident is determined by combining its 

consequence level (Table 4) with its likelihood rating (Table 5), which respectively represent 

the expected severity of the effects related to a respective scenario and the expected frequency 

of occurrence of the causes of the accident. 

 

Table 3 - Risk matrix used in the preliminary risk assessment 

Risk Matrix 

Consequence level Likelihood rating 

A B C D 

IV T M M NT 

III T M M M 

II T T T M 

I T T T T 
Source: ISO 31000 (2018) 

 

Table 4 - Description of the consequence level in terms of the effects to human life 

Consequence level 

Category Effects 

I low without injuries or first aid cases 

II significant serious injuries inside or mild injuries outside the facility 

III high fatality inside or serious injuries outside the facility 

IV very high multiple deaths inside or outside the facility 
Source: ISO 31000 (2018) 

 
Table 5 - Description of the likelihood categories 

Likelihood rating 

Category Description 

A very rare conceptually possible, but there are no records in the literature 

B rare unlikely to occur in normal conditions 

C possible may occur sometime 

D likely expected to occur 
Source: ISO 31000 (2018) 
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Firstly, as depicts in Figure 7, information about the accidental scenarios, such as the 

material released and operating conditions, are extracted from PHAs elaborated for an ADU of 

an oil refinery and analyzed in order to define a set of input-output data, where each pair is 

related to a potential accident. Then, this information is provided to two different SVM models 

that are implemented to classify both the likelihood rating (SVC1) and the consequence level 

(SVC2). Next, the categories are combined and the risk is classified as T, M or NT according 

to Table 3. In this way, the proposed model represents a shorter path to perform risk assessment. 

Thus, the SVM-based models are able to perform the classification of the risks associated to 

potential accidents in a more efficient way. 

 

Figure 7 - General view of the developed model 

 
Source: This research (2018) 

 

Next, Section 3.1 describes the process executed to collect information for the SVM 

models construction. Then, Section 3.2 defines how these data are organized and provided as 

input to the SVM. Finally, Section 3.3 explains the implementation of the SVM classifier to 

assign the risk categories to the identified hazards. 
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3.1 DATA COLLETION  

 

 

The SVM learning process requires a reasonable quantity of good quality input data to 

comprehend the reasoning adopted to classify the risks during PHA by the multidisciplinary 

group, composed by engineers and technicians from different fields. Thus, PHA documents of 

an ADU of petroleum refinery were evaluated to extracted information to build the data set used 

in this study. For example, Table 6 contains the description of potential accidents, associated to 

the release of petroleum from a pipeline, which were taken into account by the experts during 

PHA. The pipe is located on the exit of the desalters and a mass flow rate of 760,000 𝑘𝑔. ℎ−1 

passes through it at 160°𝐶 and 5.0 𝑘𝑔𝑓. 𝑐𝑚−2 under normal conditions. 

Small and large leakages were considered to occur and their causes were either human 

failure, abnormal operating conditions or corrosion, where the former is expected to occur (D) 

and the latter is very rare (A); see Table 5. In this case, each failure mode might lead to three 

potential accidents (pool fire, flash fire or toxic vapor cloud), which have different impacts to 

human life. For example, in these operating conditions, the severity of the consequences of a 

pool fire caused by a small leakage was categorized as significant (II), while the ones associated 

to a large leakage as high (III); see Table 4. Finally, the risk of these possible accidents were 

respectively classified as M and T according to Table 3. 

 

Table 6 - Example of PHA representing the data that is used to feed the SVM model 

Subsystem Petroleum pipeline on the exit of the desalters 

Operating 

Conditions 

Temperature Pressure Flow Rate 

160 °𝐶 5.0 𝑘𝑔𝑓. 𝑐𝑚−2 760,000 𝑘𝑔. ℎ−1 

Chemical 

Product 

Failure 

Mode 

Possible 

Causes 

Potential 

Accidents 

Likelihood 

rating 

Consequence 

level to human 

Risk 

category 

Petroleum Small 

leakage 

- Human failure 

- Abnormal 

operating 

conditions 

- Corrosion 

Pool fire D II M 

Flash fire D II M 

Toxic vapor  D I T 

Large 

leakage 
Pool fire A III T 

Flash fire A IV T 

Toxic vapor  A IV T 

Source: This research (2018) 

 

Taking into account the given example, PHA allowed for extracting important 

information related to the events of interest. Then, it is necessary to select which information 
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to use as the SVM model input variables. Next Section describes these variables and the 

relations among them. 

 

 

3.2 FEATURE SELECTION  

 

 

In this study, four hypothetical accidental scenarios (AS) were considered: pool fire, flash 

fire, vapor cloud explosion and toxic vapor cloud. For each one, there is a respective 

combination of likelihood rating (LR) and consequence level (CL), which are dependent on 

different variables, such as chemical materials and/or thermodynamic parameters. These 

conditions are considered by the experts for classifying LR and CL, and for this reason, are also 

included in the SVM models. 

We have analyzed two initiating events (IE): 1) when a small amount of chemical product 

leaks, e.g. through a hole in the pipeline, valves, etc., and, 2) the other IE contemplates 

situations where a large quantity escapes, such as due to rupture of a pipeline. These 

assumptions were represented by including in the input data a binary variable (IE), where 0 

means small holes and 1 indicates ruptures. Thus, IE qualitatively represents the amount of the 

material that escapes. This characteristic directly affects the surface area of the leaked product, 

which in turn determines the rate of evaporation. The assessment of two different IE for the 

same subsystem implies diverse accidental scenarios and, consequently, different risk classes. 

For instance, when a material is released through a small hole, if the release rate is lower than 

the rate of evaporation, it would not result in a pool fire.  

The effects of an uncontrollable leakage depend on the nature of the material and its 

physical state, determined by the operational conditions and the presence of adverse situations, 

e.g. ignition sources and contaminants. In this context, it is important to have in mind the 

influence of some variables, such as temperature (T), pressure (P) and mass flow rate (FR) on 

the physical effects produced by major accidents. In fact, T and P play an important role to 

determine if the chemical product (CP) is liquid or gaseous. Additionally, combined with FR, 

they are necessary to determine the vaporizing rate and the pool area or vapor cloud (TNO, 

2005; TNO, 2005b). Moreover, T and P determine the UFL and LFL values, which are 

fundamental to characterize fires and explosions (TNO, 2005).  
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Thus, these variables are necessary to evaluate which accidental scenarios may occur and, 

thus, to classify the potential risks. For this reason, T, P and FR were included as continuous 

variables in the input data. In addition, it was also considered contamination (CT), a binary 

variable associated with CP (e.g. diesel contaminated with H2S, which is a toxic substance) that 

represents the presence of toxic substances (in small amount) in the sub-system analyzed. 

Yet, the release of a material that is both flammable and toxic could lead to different 

scenarios. Thus, the risk analysts can assume that if the product reaches an ignition source, this 

leads to an accident in the fire category; otherwise, if the released material evaporates, it would 

disperse as a toxic cloud. Due to this fact, providing information about operational conditions 

is not sufficient to classify risks. Thus, the proposed model also considers a categorical variable, 

PA, to distinguish the potential accidents: pool fire, flash fire, vapor cloud explosion and toxic 

cloud.  

Finally, integrating the features with the different accidental scenarios considered in the 

PHA the associated risk can be categorized through the combination of the LR and CL, which 

are respectively here provided by two different SVM classifiers, SVC1 and SVC2. All variables 

considered in the model, and their possible values and types are summarized in Table 7. 

Table 7 - Variables considered in the proposed model 

Variables Range/Categories Type 

Input Variables (𝒙) 

Temperature (T) 25 – 300 °C Continuous 

Pressure (P) 1 – 35 atm Continuous 

Mass Flow Rate (FR) 79 – 765,000 kg/h Continuous 

Chemical Product (CP) 

Petroleum 

Categorical 

Natural gas 

Atmospheric residue 

Diesel 

Naphtha 

Kerosene 

LPG 

Contamination (CT) 
0 

Binary 
1 

Failure Mode (FM) 
0 

Binary 
1 

PA 

Pool fire 

Categorical 
Flash fire 

Toxic cloud 

Vapor cloud explosion 

SVC1 (𝑦) LR 

A 

Categorical 
B 

C 

D 

SVC2 (𝑦) CL 

I 

Categorical 
II 

III 

IV 

Source: This research (2018) 
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3.3 MODELING PROCESS 

 

 

For the implementation of both SVCs, a free machine learning library, scikit-learn 

(PEDREGOSA et al., 2011), was adopted. Both SVC1 and SVC2 take the same 7-order vector 

as input 𝒙 and return 𝑦 (either LR for SVC1 or CL for SVC2) as output. Both 𝒙 and 𝑦 are 𝑛-

sized, where 𝑛 represents the number of training samples. Then, the information extracted from 

previous PHA was used to train both classifiers, and an example of how these data were 

structured to feed the models is presented in Table 8, which shows the codification of the PHA 

contained in Table 6. 

 

Table 8 - An example of the data provided to the model 

Input Output 

CP CT T P FR IE AS 
SVC1 SVC2 

LR CL 

1 0 0.30569 0.170787 1 0 1 D II 

1 0 0.30569 0.170787 1 0 2 D II 

1 0 0.30569 0.170787 1 0 3 D I 

1 0 0.30569 0.170787 1 1 1 A III 

1 0 0.30569 0.170787 1 1 2 A IV 

1 0 0.30569 0.170787 1 1 3 A IV 
Source: This research (2018) 

 

The SVM functions require that categorical variables are transformed into dummies. To 

that end, CP and AS were respectively converted to 5 and 3 dummy variables, where the 

resulting number of dummies is related to the number of categories of each variable minus 1. 

Notice that we have normalized the real-valued variables T and P.  

RBF was adopted as the non-linear SVM kernel. Next, a 10-fold cross-validation was 

performed to select the hyper-parameters of the SVM models. The idea is to partition the data 

in order to train the model with one portion of the data and, then, test the model on the remaining 

part of the data set. In the 10-fold cross-validation, the data is equally divided into 10 parts, 

where 9 are used for training and 1 for validation purposes. Then, this process is executed 10 

times, changing the validation portion, until all data has been used (YADAV; SHUKLA, 2016). 

Thus, the  metrics provided by this method are the averages of the values over 10 runs 

and the hyper-parameters that lead to the highest mean score were selected. In this work, the 

performance of the model on the test set was evaluated through the F1 score (Equation 3.3.1), 

which is the harmonic average between two other measures (precision and recall), calculated, 
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respectively, by Equations 3.3.2, that take into account false negative rate, and Equations 3.3.3, 

that consider the false (see FLACH; KULL, 2015): 

𝐹1  =  2 × {(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)}                                             (3.3.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐶𝐶𝑗

𝑃𝑗
, ∀𝑗                                                                                                              (3.3.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝐶𝐶𝑗

𝑂𝑗
, ∀𝑗                                                                                                                             (3.3.3) 

where 𝐶𝐶𝑗, 𝑃𝑗 and 𝑂𝑗 are the number of correct classifications, the total number of predictions 

and the number of observed instances with label 𝑗 respectively.  

Thus, the F1 score represents how precise and robust the model is (Pedregosa et al., 2011). 

by measuring both how many instances are correctly classified and how many classifications 

the model does not miss. The accuracy, Equation 3.3.4, which represents the percentage of 

correct classification, was also used to compare the results obtained during the training and test 

in order to detect possible overfitting. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝐶𝐶𝑗

∑ 𝑂𝑗
× 100, ∀𝑗                                                                                                                      (3.3.4) 

After the selection of the hyper-parameters, 80% of the samples were used for learning 

purposes, while the rest was adopted for testing evaluation. Then, the trained SVC functions 

were used to give the risk label for the remaining samples. This classification is performed by 

both methods, SVC1 and SVC2, and thus the risk label is obtained through the risk matrix given 

in Table 3. The results are discussed in next Chapter. 
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4 RESULTS AND DISCUSSION 

 

 

Firstly, we divided ADU into subsystems, which are characterized by different chemical 

products and operating conditions and, thus, they might lead to different accidental scenarios. 

Each sample extracted from previous PHA is composed by a pair input-output that represents 

an accidental scenario with respective LR and CL. Then, a data set composed of 151 samples 

was provided to the model, and it is presented in Appendix A. To achieve a good performance, 

SVM hyper-parameters 𝐶 and 𝛿 were obtained by adopting a 10-fold cross-validation and using 

80% of the data set (PEDREGOSA et al., 2011). 

Tables 9 and 10 present F1 scores achieved by SVC1 and SVC2 with different pairs of 𝐶 

and 𝛿. Other values were also tested, but we here present only some of them for sake of 

illustration. Then, we selected the hyper-parameters that yield the best results (the highest F1 

score), which are highlighted in the tables. 

 

Table 9 - Mean F1 score achieved by SVC1 

 𝐶 

𝛿 

 100 1,000 10,000 100,000 

0.1 0.720 0.720 0.720 0.720 

0.01 0.843 0.785 0.785 0.785 

0.001 0.755 0.808 0.867 0.805 

0.0001 0.735 0.780 0.808 0.794 
Source: This research (2018) 

 

Table 10 - Mean F1 score achieved by SVC2 

 𝐶 

𝛿 

 100 1,000 10,000 100,000 

0.1 0.688 0.679 0.679 0.653 

0.01 0.679 0.691 0.680 0.666 

0.001 0.610 0.588 0.689 0.700 

0.0001 0.570 0.610 0.638 0.605 
Source: This research (2018) 

 

For SVC1 the test predictions were obtained with an accuracy of 83.87%, while the 

training accuracy was 96.67%. As expected, the training score was higher, but the results for 

testing are still considered satisfactory. The performance of the SVC1 on test data was evaluated 

trough F1 score, precision and recall, the results are presented in Table 11. Note that the average 

F1 score was influenced by the lower recall for categories A and D, and the lower precision to 

predict C. Despite that, the model presented better scores to predict B, which alone made up 
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42.38% of all instances. Thus, as expected, the higher number of samples provided to the model 

clearly benefited the learning process of that respective category. 

 

Table 11 - Classification report for SVC1 

 Number of Observations Precision 

(%) 

Recall 

(%) 

F1 score 

(%) Training Set Test Set 

A 15 7 100.00  71.43  83.33  

B 54 10 83.33  100.00  90.91  

C 20 7 70.00  100.00  82.36  

D 31 7 100.00  57.14  72.72  

Total/Average 120 31 88.33  82.14  82.33  
Source: This research (2018) 

 

Figure 8 shows the SVC1 confusion matrix for prediction of test samples, where the rows 

and columns indicate the actual and predicted likelihood categories respectively. Then, the 

number of correct predictions is shown in the main diagonal. It is clear that SVC1 have made 

mistakes between classes A and B, and between C and D, which is acceptable considering the 

subtle difference of meaning of these categories (Table 5), that makes it difficult even in 

traditional evaluation to make a distinction between these classes. Despite that, the model did 

not classify very rare/rare scenarios as possible/likely and vice versa.  

 

Figure 8 - Confusion matrix relative to SVC1 for test samples prediction 

 
Source: This research (2018) 
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SVC2, in turn, presented an accuracy of 95.00% and 74.19% for training and test, 

respectively. The classification report is given in Table 12 and the confusion matrix for SVC2 

is shown in  

 

Figure 9. It is possible to notice that SVC2 presented difficulties to distinguish class III, 

among II and IV, which in fact represent subtle differences of meaning (Table 4). The scores 

were lower for classes II and III, which may indicate the necessity of adding other pieces of 

information (attributes and/or instances) to improve the learning process for the consequence 

level. SVC2 also showed consistency in the predictions, there were no accidental scenarios 

associated with consequence level II (injuries without deaths) classified as IV (multiple deaths) 

and vice versa. Moreover, there were no instances containing severity level I and, thus, SVC2 

was not able to predict class I during the test phase. 

 

Table 12 - Classification report for SVC2 

 Number of Observations Precision 

(%) 

Recall 

(%) 

F1 score 

(%) Training Set Test Set 

I 0 0 - - - 

II 44 11 69.23  81.82  75.00 

III 57 15 76.92  66.67  71.43 

IV 19 5 80.00  80.00  80.00 

Total/Average 120 31 75.38  76.16  75.48 
Source: This research (2018) 

 

 

Figure 9 - Confusion matrix relative to SVC2 for test samples prediction 

 
Source: This research (2018) 
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Finally, the combination of the outputs of SVC1 and SVC2 provided the risk label 

following the rules presented in Table 3. Then, Table 13 shows the predictions achieved through 

this method as compared with the actual risk labels for the test data. The estimated F1 scores 

were 88.00% for T and 91.9% for M. Given that, a mean F1 score of 89.95% was obtained. 

There were neither training nor test instances containing the risk label NT and expectedly the 

model never classified risks as NT, which yields a precision of 100% for this class, once the 

combination of the predictions obtained with SVC1 and SVC2 could lead to this class label. The 

values for precision and recall are also reported in Table 13. 

 

Table 13 - Test scores of the method using SVC1 and SVC2 to classify risk categories 

Label 
Observed 

Risk Labels 
Predictions 

Correct 

Predictions 

Precision 

(%) 

Recall 

(%) 

F1 score 

(%) 

T 11 14 11 78.57 100.00 88.00 

M 20 17 17 100.00 85.00 91.90 

NT 0 0 0 100.00 - - 

Total/Average 31 31 28 92.86 92.50 89.95 
Source: This research (2018) 

 

We also considered a third model, SVC3, which aims at directly predicting the risk label 

instead of using SVC1 and SVC2 for the intermediate evaluation of likelihood and 

consequences. In other words, the output vector, 𝑦, for SVC3 is the risk label, while 𝒙 is the 

same as that of SVC1 and SVC2. The hyper-parameters, 𝐶 and 𝛿, were selected with the same 

procedure as SVC1 and SVC2, and the values adopted were 1,000 and 0.1 respectively. The 

results are shown in Table 14. The F1 score relative to each risk label was 80% for T and 90.47% 

for M. 

Table 14 - Accuracy of the method using SVC3 to classify the risk labels 

Label 
Observed 

Risk Labels 
Predictions 

Correct 

Predictions 

Precision 

(%) 

Recall 

(%) 

F1 score 

(%) 

T 11 9 8 88.89 71.73 80.00 

M 20 22 19 86.36 95.00 90.47 

NT 0 0 0 - - - 

Total/Average 31 31 25 87.62 83.36 85.23 
Source: This research (2018) 

The mean F1 score of SVC3 was 85.23%, which is lower than the results obtained by using 

both SVC1 and SVC2. This performance decrease indicates that SVC3 model is not fed with 

enough information to learn the subtleties of the risk evaluation and, thus, the prediction of 

likelihood and severity categories through SVC1 and SVC2 are essential. Moreover, apart from 
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the lower precision and recall to classify some categories through SVC1 and SVC2, the joint 

model replicates, with satisfactory scores, the same reasoning executed during PHAs by the risk 

experts, who postulate the likelihood and consequence categories, and not directly the risk 

category as SVC3 does.
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5 CONCLUSIONS  

 

 

Risk studies are fundamental and, thus, required to prevent catastrophic accidents and 

avoid economic losses and fatalities that could result from their occurrence. However, it is a 

rather resource-expensive and time-consuming activity that requires multidisciplinary expertise 

and the application of different tools and methodologies. In this context, there are different AI 

techniques that could be allied to these objectives and would help to create a solution to perform 

effectively the assessment. 

In this research, we have developed an SVM model based on data related to hypothetical 

accidents postulated in previous PRA. ML methods can, thus, learn the attributes of potential 

accidental scenarios of an industrial system for performing a risk assessment, with reduced 

efforts. However, we emphasize that the utilization of these methods can never completely 

replace the reasoning of risk experts, since it will always be necessary to analyze and review 

the results obtained by the automated approaches. Indeed, the idea is that the ML models can 

be a practical tool to support risk analysts, providing a starting point for more elaborated studies.  

Information on the process, such as the operational conditions and chemical products, 

were considered as inputs to characterize the potential accident scenarios. The selected features 

allowed for feeding the SVM model with knowledge about the identified hazards, and then 

evaluate their consequences and likelihood, providing as output the classification of the risk as 

tolerable, moderate or non-tolerable. In further studies different ML models can be applied in 

order to compare with the performance obtained with the proposed model. 

The approach was applied for the automated classification of the potential accidental 

scenarios of a complex industrial system, known as ADU, where different hazardous chemical 

products are manipulated and processed. In the application, we combined two SVM models to 

classify likelihood and severity categories, and then map them into risk labels, according to a 

risk matrix rule.  

The information was extracted manually and exclusively from PRA related to a particular 

ADU, but different documents can be analyzed to provide additional information to the SVM, 

increasing the dimension of the data set. Moreover, the addition of information related to 

different processing units may be useful to generalize the proposed method for the whole oil 

refinery. In this situation, deep learning methods could be applied to avoid manual feature 
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extraction, allowing computer to automatically build complex features (GOODFELLOW, 

2016). Thus, the learning process can be improved in further studies. 

To conclude, ML methods can, thus, learn the attributes of potential accidental scenarios 

related to an industrial system for performing a risk assessment, with reduced efforts. However, 

we emphasize that the utilization of these methods can never completely replace the reasoning 

of risk experts, since it will always be necessary to analyze and review the results obtained by 

the automated approaches. Indeed, the idea is that the ML models can be a practical tool to 

support risk analysts, providing a starting point for more elaborated studies. 
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APPENDIX A – DADOS UTILIZADOS NO MODELO 

CP CT T P FR FM PA LR CL Risk Label 

1 0 0.687204 0.208825 0.380134 0 1 II D M 

1 0 0.687204 0.208825 0.380134 1 1 III B M 

1 0 0.687204 0.208825 0.380134 1 2 III B M 

1 0 1 0.452263 0.087715 0 1 II D M 

1 0 1 0.452263 0.087715 1 1 III B M 

1 0 1 0.452263 0.087715 1 2 III B M 

1 0 0.57109 0.433245 0.108821 0 1 II D M 

1 0 0.57109 0.433245 0.108821 1 1 III B M 

1 0 0.57109 0.433245 0.108821 1 2 III B M 

1 0 0.57109 0.463674 0.337486 0 1 II D M 

1 0 0.57109 0.463674 0.337486 1 1 III B M 

1 0 0.57109 0.463674 0.337486 1 2 III B M 

2 0 0.412322 0.395207 0.043317 0 1 II D M 

2 0 0.412322 0.395207 0.043317 1 1 III B M 

2 0 0.412322 0.395207 0.043317 1 2 III B M 

2 0 0.436019 0.018638 0.037788 0 1 II C T 

2 0 0.436019 0.018638 0.037788 1 1 III A T 

3 1 0 0.817421 0.003884 0 2 II C T 

3 1 0 0.817421 0.003884 0 3 II C T 

3 1 0 0.817421 0.003884 1 2 IV B M 

3 1 0 0.817421 0.003884 1 3 III B M 

3 1 0 0.817421 0.003884 1 4 III B M 

3 1 0.028436 0.383796 0.004388 0 2 II C T 

3 1 0.028436 0.383796 0.004388 0 3 II C T 

3 1 0.028436 0.383796 0.004388 1 2 IV B M 

3 1 0.028436 0.383796 0.004388 1 3 III B M 

3 1 0.028436 0.383796 0.004388 1 4 III B M 

3 1 0 0.832636 0.000395 0 2 II C T 

3 1 0 0.832636 0.000395 1 2 IV B T 

3 1 0 0.832636 0.000395 1 3 III B T 
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CP CT T P FR FM PA LR CL Risk Label 

3 1 0 0.832636 0.000395 1 4 III B M 

4 0 0.331754 0.303918 0.605058 0 1 II D M 

4 0 0.331754 0.303918 0.605058 0 2 II D M 

4 0 0.331754 0.303918 0.605058 1 1 III B M 

4 0 0.331754 0.303918 0.605058 1 2 III B M 

4 0 0.331754 0.303918 0.605058 1 4 IV B M 

4 1 0.28673 0.011031 0.1709 0 2 III C M 

4 1 0.28673 0.011031 0.1709 0 3 III C M 

4 1 0.28673 0.011031 0.1709 1 3 IV B M 

4 1 0.28673 0.011031 0.1709 1 2 III B M 

4 1 0.28673 0.011031 0.1709 1 4 III B M 

4 1 0.182464 0.231647 0.074088 0 2 II D M 

4 1 0.182464 0.231647 0.07409 0 3 II D M 

4 1 0.182464 0.231647 0.074091 1 4 III B M 

4 1 0.182464 0.231647 0.074092 1 3 III B M 

4 1 0.182464 0 0.096463 0 2 III C M 

4 1 0.182464 0 0.096463 0 3 III C M 

4 1 0.182464 0 0.096463 1 4 IV B M 

4 1 0.182464 0 0.096463 1 3 III B M 

4 1 0.182464 0 0.096463 1 2 III B M 

4 1 0.028436 0.61202 0.053753 0 2 II D M 

4 1 0.028436 0.61202 0.053755 0 3 II D M 

4 1 0.028436 0.61202 0.053756 1 2 III B M 

4 1 0.028436 0.61202 0.053757 1 3 III B M 

4 1 0.028436 0.61202 0.053759 1 4 IV B M 

4 0 0.481043 0.391404 0.076133 0 2 II C T 

4 0 0.481043 0.391404 0.076133 1 2 III B M 

4 0 0.481043 0.391404 0.076133 1 4 III B M 

4 0 0.481043 0.391404 0.052528 0 2 II C T 

4 0 0.481043 0.391404 0.052528 1 2 III B M 

4 0 0.481043 0.391404 0.052528 1 4 III B M 

5 1 0.274882 0.011031 0.186277 0 1 II C T 

5 1 0.274882 0.011031 0.186277 0 2 II C T 
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5 1 0.274882 0.011031 0.186277 0 3 III C M 

5 1 0.274882 0.011031 0.186277 1 1 III B M 

5 1 0.274882 0.011031 0.186277 1 2 III B M 

5 1 0.274882 0.011031 0.186277 1 3 III B M 

5 1 0.274882 0.011031 0.186277 1 4 IV B M 

5 1 0.13981 0.075694 0.002135 0 2 II C T 

5 1 0.13981 0.075694 0.002135 0 3 III C M 

5 1 0.13981 0.075694 0.002135 1 2 III B M 

5 1 0.13981 0.075694 0.002135 1 3 III B M 

5 1 0.13981 0.075694 0.002135 1 4 IV B M 

5 1 0.274882 0.011031 0.186277 0 2 II D M 

5 1 0.274882 0.011031 0.186277 0 1 II D M 

5 1 0.274882 0.011031 0.186277 0 3 III D M 

5 1 0.274882 0.011031 0.186277 1 2 III B M 

5 1 0.274882 0.011031 0.186277 1 1 III B M 

5 1 0.274882 0.011031 0.186277 1 3 III B M 

5 1 0.274882 0.011031 0.186277 1 4 IV B M 

5 1 0.13981 0.075694 0.002181 0 2 III C M 

5 1 0.13981 0.075694 0.002181 0 3 III C M 

5 1 0.13981 0.075694 0.002181 1 2 IV B M 

5 1 0.13981 0.075694 0.002181 1 3 IV B M 

5 1 0.13981 0.075694 0.002181 1 4 IV B M 

5 1 0 0.368581 0 0 2 II C T 

5 1 0 0.368581 0 0 3 II C T 

5 1 0 0.368581 0 1 2 IV B M 

5 1 0 0.368581 0 1 3 III B M 

5 1 0 0.368581 0 1 4 III B M 

5 0 0.253555 1 1 0 1 II D M 

5 0 0.253555 1 1 0 3 II D M 

5 0 0.253555 1 1 1 1 III A T 

5 0 0.253555 1 1 1 3 III A T 

5 0 0.305687 0.136554 1 0 1 II D M 

5 0 0.305687 0.136554 1 0 2 II D M 
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5 0 0.305687 0.136554 1 0 3 II D M 

5 0 0.305687 0.136554 1 1 1 III A T 

5 0 0.305687 0.136554 1 1 2 IV A T 

5 0 0.305687 0.136554 1 1 3 IV A T 

5 0 0.305687 0.151769 1 0 1 II D M 

5 0 0.305687 0.151769 1 0 2 II D M 

5 0 0.305687 0.151769 1 0 3 II D M 

5 0 0.305687 0.151769 1 1 1 III A T 

5 0 0.305687 0.151769 1 1 2 IV A T 

5 0 0.305687 0.151769 1 1 3 IV A T 

5 0 0.632701 0.562571 1 0 1 II D M 

5 0 0.632701 0.562571 1 0 2 II D M 

5 0 0.632701 0.562571 1 0 3 II D M 

5 0 0.632701 0.562571 1 1 1 III A T 

5 0 0.632701 0.562571 1 1 2 IV A T 

5 0 0.632701 0.562571 1 1 3 IV A T 

5 0 0.222749 0.003423 0.186277 0 1 II D M 

5 0 0.222749 0.003423 0.186279 0 3 II D M 

5 0 0.222749 0.003423 0.18628 1 1 III A T 

5 0 0.222749 0.003423 0.186281 1 3 III A T 

5 0 0.305687 0.170787 0.95449 0 1 II D M 

5 0 0.305687 0.170787 0.95449 1 1 III A T 

5 1 0.317536 0.121339 0.011538 0 1 II D M 

5 1 0.317536 0.121339 0.011538 0 2 II D M 

5 1 0.317536 0.121339 0.011538 0 3 II D M 

5 1 0.317536 0.121339 0.011538 1 1 III B M 

5 1 0.317536 0.121339 0.011538 1 2 IV B M 

5 1 0.317536 0.121339 0.011538 1 3 III B M 

5 0 0.632701 0.790795 0.939593 0 1 II D M 

5 0 0.632701 0.790795 0.939593 0 2 II D M 

5 0 0.632701 0.790795 0.939593 1 1 III B M 

5 0 0.632701 0.790795 0.939593 1 2 III B M 

5 0 0.632701 0.790795 0.939593 1 4 IV B M 



51 

    

CP CT T P FR FM PA LR CL Risk Label 

5 1 0.819905 0.052872 0.951504 0 1 II C T 

5 1 0.819905 0.052872 0.951504 0 2 III C M 

5 1 0.819905 0.052872 0.951504 0 3 II C T 

5 1 0.819905 0.052872 0.951504 1 1 III A T 

5 1 0.819905 0.052872 0.951504 1 4 III A T 

5 1 0.819905 0.052872 0.951504 1 3 III A T 

5 0 0.751185 0.144161 0.073429 0 1 II D M 

5 0 0.751185 0.144161 0.073429 1 1 III A T 

6 0 0.765403 0.532141 0.654075 0 2 II D M 

6 0 0.765403 0.532141 0.654075 0 1 II D M 

6 0 0.765403 0.532141 0.654075 0 3 II D M 

6 0 0.765403 0.532141 0.654075 1 2 IV B M 

6 0 0.765403 0.532141 0.654075 1 1 III B M 

6 0 0.765403 0.532141 0.654075 1 3 III B M 

6 0 0.549763 0.170787 0.654075 0 2 II C T 

6 0 0.549763 0.170787 0.654075 0 1 II C T 

6 0 0.549763 0.170787 0.654075 0 3 II C T 

6 0 0.549763 0.170787 0.654075 1 2 IV A T 

6 0 0.549763 0.170787 0.654075 1 1 III A T 

6 0 0.549763 0.170787 0.654075 1 3 III A T 

6 0 0.765403 0.657665 0.653995 0 1 II D M 

6 0 0.765403 0.657665 0.653995 1 1 III B M 

 

 


