

Pós-Graduação em Ciência da Computação

THAÍS MELISE LOPES PINA

AUTO TEST GENERATOR: a framework to generate test cases from requirements in

natural language

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife
2019

Thaís Melise Lopes Pina

AUTO TEST GENERATOR: a framework to generate test cases from requirements in
natural language

Este trabalho foi apresentado à Pós-graduação em
Ciência da Computação do Centro de Informática da
Universidade Federal de Pernambuco como requisito
parcial para obtenção do grau de Mestre Profissional
em Ciência da Computação.

Área de concentração: Engenharia de Software

Orientador: Prof. Dr. Augusto Cezar Alves Sampaio
Coorientador: Prof. Dra. Flávia de Almeida Barros

Recife
2019

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

P645a Pina, Thaís Melise Lopes

Auto test generator: a framework to generate test cases from requirements
in natural language / Thaís Melise Lopes Pina. – 2019.

 81 f.: il., fig., tab.

 Orientador: Augusto Cezar Alves Sampaio.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2019.
 Inclui referências e apêndices

 1. Engenharia de software. 2. Especificação de requisitos. 3. Linguagem
natural controlada. I. Sampaio, Augusto Cezar Alves (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2019-037

Thaís Melise Lopes Pina

Auto Test Generator: a Framework to Generate Test Cases from Requirements in

Natural Language

Dissertação de Mestrado apresentada ao Programa de

Pós Graduação em Ciência da Computação da

Universidade Federal de Pernambuco, como requisito

parcial para a obtenção do título de Mestre em Ciência

da Computação

Aprovado em: 19 de fevereiro de 2019

BANCA EXAMINADORA

Prof. Dr. Alexandre Cabral Mota

Centro de Informática / UFPE

__

Prof. Dr. Eduardo Henrique da Silva Aranha

Departamento de Informática e Matemática Aplicada / UFRN

Prof. Dr. Augusto Cezar Alves Sampaio

Centro de Informática / UFPE

(Orientador)

Dedico este trabalho a minha família, aos amigos e aos professores

que me deram o suporte necessário para chegar até aqui.

AGRADECIMENTOS

Primeiramente quero agradecer a Deus, pois foi Ele que me guiou até aqui, finalizando

meu curso de pós-graduação.

Depois quero agradecer a minha mãe e meu pai, Socorro e Antônio, duas pessoas que

continuamente lutaram pela minha educação e me ensinaram os valores necessários para a vida.

Sempre também apoiaram minhas decisões e realizações, vibram com elas e nunca me deixaram

desanimar (mesmo quando eu não acreditava mais ser possível). Além do imensurável amor e

carinho.

Agradeço também a minha irmã, Evelyn, por sempre me perguntar sobre o andamento do

projeto e fazer uma revisão deste trabalho. Sou grata também por ela colocar em minha vida

Renato (Cunhado!), seu marido, com o qual me divirto, mesmo sem ele querer.

Há mais de doze anos, tenho a meu lado um amigo e companheiro para todas as horas, meu

marido, André. Além de gostar de mim, obrigada pela força, apoio, compreensão nos meus dias

de estresse (que não foram poucos!) e acompanhamento em todos os projetos da faculdade,

desde a graduação até agora.

Aos meus demais familiares agradeço pela presença na minha vida, carinho, amor, e

compreensão por minha ausência, em certos momentos familiares. Existem aqueles que não

estão mais presentes de modo físico em minha vida, mas sempre me ensinaram a ser uma pessoa

ética e responsável, minhas avós, Carminha e Lourdes, e meus tios, Tia Fafá e Tio Dinho.

Saudades eternas.

Aos amigos! Amigos da Motorola – em especial, Ana, Chaina, Claudio, Daniel, Filipe,

Jacinto, João, Lucas, Marlom e Rodolfo – agradeço a vocês também por serem minhas fontes de

distração durante a semana. Mesmo sem perceber, vocês foram de grande importância para mim,

obrigada pela companhia, amizade e por escutar minhas reclamações e solucionaram, na maioria

das vezes, as minhas dúvidas no projeto. Agradeço também às ―amigas da academia‖ Alline,

Kalyne e Thuany, que apesar do meu ―sumiço‖ e outros percalços da vida estão sempre

procurando se encontrar comigo e estão sempre presentes virtualmente. Obrigada aos amigos

Jeaninne, Jéssica, Halles, Valentina e Vitória que estavam sempre ao meu lado nos dias de luta e

nos dias de glória.

Ao projeto CIn-Motorola pelo apoio financeiro e pela infraestrutura física e pessoal. Em

especial agradeço a Alexandre, Virgínia, Alice, Danila, Momenté, Fernanda, Bazante e Denis,

pelo feedback constante e apoio na realização dos experimentos.

Obrigada ao professor Gustavo Carvalho pelo apoio constante em diversos aspectos do

meu projeto, principalmente na construção e validação da minha CNL. Gostaria de agradecer

também a Eudis Teixeira e aos professores Sérgio Soares e Liliane Fonseca pelo auxílio na

descrição da minha avaliação experimental.

Agradeço aos meus orientadores, Augusto e Flávia, pelos conselhos, pelos ensinamentos,

pela paciência e pela confiança para comigo na realização deste trabalho.

E, por fim, um muito obrigado a todos que diretamente ou indiretamente contribuíram para

que eu chegasse até aqui.

 Muito Obrigada!

“A tarefa de viver é dura, mas fascinante.” [1]
(SUASSUNA, Ariano. 2013)

ABSTRACT

Testing is essential in the software engineering development process. However, it is also

one of the most costly tasks. Thus, test automation has become the goal of many researches.

Since design, implementation, and execution phases depend substantially on the system

requirements, it is of the utmost importance that requirements text is standardized and clear.

However, most companies use free natural language to write these documents, which entails the

phenomenon of (lexical and structural) ambiguity, giving rise to different interpretations. An

option to mitigate this problem is via the use of a Controlled Natural Language (CNL), aiming at

standardization and accuracy of texts. A CNL is a subset of a natural language that uses a restrict

lexicon to a particular domain, and follow grammatical rules which guide the elaboration of

sentences, thus reducing ambiguity and allowing mechanized processing, like the automatic

generation of test cases from CNL requirements. This work, in the software testing area, presents

the Auto Test Generator (ATG), a tool to assist the writing of requirements and the automatic

generation of test cases written in English, which are then automatically translated in test scripts

using an automation framework. From a requirement written in CNL, the ATG creates a Use

Case (UC). Due to the standardization of the language, it is possible to perform a consistency

and dependency analysis, for each UC step, through a graph of associations (dependencies and

cancellations) between test actions. Test cases are generated automatically in a transparent way

from UCs to the user. ATG was developed and evaluated in partnership with Motorola Mobility.

Experimental evaluations were performed. From the seven requirements analyzed, it was

possible to create 34 test cases in total. The generated test cases resulted in 151 steps, which

were passed to the Zygon (a proprietary automated tool for testing) in order to be automated. As

a result, 131 test steps were correctly automated (86% of the total given as input).

Keywords: Requirements Specification. Controlled Natural Language. Automatic Generation of

Test Cases. Automation of Tests.

RESUMO

Testes são essenciais nos processos de desenvolvimento de software. Contudo, esta é

também uma das tarefas mais custosas. Assim sendo, a automação de testes tornou-se objetivo

de diversas pesquisas. Visto que as fases de projeto, implementação e execução de testes

dependem essencialmente dos requisitos do sistema, é de suma importância que eles sejam textos

padronizados e de qualidade. Todavia, a maioria das empresas utiliza linguagem natural livre

para escrever essa documentação, podendo assim produzir textos com ambiguidade (léxica ou

estrutural), dando margem a diferentes interpretações. Uma opção para mitigar esse problema é o

uso de uma Linguagem Natural Controlada – CNL, do inglês Controlled Natural Language –

visando padronização e precisão dos textos. Uma CNL é um subconjunto de uma dada língua

natural, que usa um léxico restrito a um domínio particular e regras gramaticais que orientam a

elaboração de sentenças, com redução de ambiguidade e permite mecanizar o processo, como a

geração automática de casos de testes a partir de requisitos escritos na CNL. Este trabalho, na

área de testes de software, apresenta o Auto Test Generator (ATG), uma ferramenta para auxiliar

a escrita de requisitos usados na geração automática de casos de testes escritos em inglês, que

são automaticamente traduzidos em scripts de testes usando um framework de automação. A

partir de um requisito escrito na CNL, o ATG cria um caso de uso – UC, do inglês Use Case.

Devido à padronização da linguagem, em cada passo do UC, foi possível fazer uma análise de

consistência e dependência, através de um grafo de associações (dependências e cancelamentos)

entre ações de teste. Os casos de teste são gerados automaticamente de modo transparente para o

usuário a partir dos UCs. O ATG foi desenvolvido e avaliado em parceria com a Motorola

Mobility. Foram feitas avaliações experimentais e, a partir de sete requisitos analisados, foi

possível criar 34 casos de testes no total. Os casos de teste gerados resultaram em 151 passos,

que foram passados para a ferramenta Zygon (uma ferramenta proprietária de automação de

testes), a fim de serem automatizados. Como resultado, 131 passos de teste foram corretamente

automatizados (86% do total dado como entrada).

Palavras-chave: Especificação de Requisitos. Linguagem Natural Controlada. Geração

Automática de Casos de Testes. Automação de Testes.

LIST OF FIGURES

Figure 1 – ATG overview ... 18

Figure 2 – SysReq-CNL .. 22

Figure 3 – Cucumber feature ... 23

Figure 4 – Cucumber match .. 23

Figure 5 – Zygon capturing process by using BPMN ... 25

Figure 6 – Android UIAutomator accesibility events .. 26

Figure 7 – Add pre-registered action ... 26

Figure 8 – Execute test on search screen ... 27

Figure 9 – Execute test on capture screen .. 28

Figure 10 – Association between frames ... 29

Figure 11 – Test process ... 30

Figure 12 – Grammar .. 34

Figure 13 – Database structure ... 37

Figure 14 – Database example .. 39

Figure 15 – Consistency and dependency analysis ... 40

Figure 16 – TaRGeT's Feature Model ... 40

Figure 17 – Reusing action by matching similar descriptions .. 41

Figure 18 – Capture screen ... 41

Figure 19 – Choose value to variable .. 42

Figure 20 – XLS file ... 42

Figure 21 – ATG Architecture .. 43

Figure 22 – ATG tool ... 44

Figure 23 – ATG process... 44

Figure 24 – TestCase structure ... 46

Figure 25 – Sentences well-formed ... 47

Figure 26 – Runtime Parser analysis ... 47

Figure 27 – How create aliases ... 48

Figure 28 - Use Cases screen ... 49

Figure 29 – Created slots .. 50

Figure 30 – Created frames ... 50

Figure 31 – Associations ... 50

Figure 32 – Add a dependency .. 51

Figure 33 – Input TaRGeT ... 52

Figure 34 – Test cases screen .. 53

LIST OF TABLES

Table 1 – Comparison of related work ... 24

Table 2 – Zygon GUI Functions ... 26

Table 3 – Frame example .. 28

Table 4 – Mapping between ATG and Kaki ... 39

Table 5 – Components details ... 45

Table 6 – Experimental evaluation I - Computer configuration 56

Table 7 – Experimental evaluation II - Computer configuration 57

Table 8 – Original input TaRGeT - Word ... 66

Table 9 – Original input TaRGeT - XML .. 69

Table 10 – Original output TaRGeT - HTML .. 75

LIST OF ALGORITHMS

Algorithm 1 – Extraction algorithm ... 36

LIST OF CHARTS

Chart 1 – Specialist consultations .. 57

Chart 2 – ATG tool has a friendly user interface .. 58

Chart 3 – ATG interface helps the user to write requirements 58

Chart 4 – ATG interface helps the user to reduce the automation effort 59

LIST OF ACRONYMS

ATC Auto Test Coverage

ATG Auto Test Generator

ATP Auto Test Plan

BPMN Business Process Model and Notation

CFG Context Free Grammar

CNF Conjunctive Normal Form

CNL Controlled Natural Language

CPU Central Processing Unit

C&R Capture and Replay

DFRS Data-Flow Reactive Systems

DOM Document Object Model

EBNF Extended Backus-Naur Form

GLR Generalized LR

GQM Goal, Question and Metric

GUI Guide User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

MBT Model-Based Testing

NLP Natural Language Processing

POS Parts of Speech

SUT System Under Test

TaRGeT Test and Requirements Generation Tool

TC Test Case

UC Use Case

XML Extensible Markup Language

CONTENTS

1 INTRODUCTION .. 16

1.1 PROBLEM STATEMENT ... 17

1.2 CONTRIBUTIONS .. 17

1.3 DOCUMENT ORGANIZATION ... 18

2 BACKGROUND & RELATED WORK .. 20

2.1 NATURAL-LANGUAGE PROCESSING ... 20

2.2 TOOLS ... 24

2.2.1 TaRGeT .. 24

2.2.2 Zygon .. 25

2.2.3 Kaki ... 28

3 STRATEGY .. 30

3.1 CONTROLLED NATURAL LANGUAGE ... 31

3.1.1 Lexicon ... 31

3.1.2 Grammar .. 33

3.2 EXTRACTION ALGORITHM .. 36

3.3 CONSISTENCY AND DEPENDENCY ANALYSIS 39

3.4 AUTOMATIC TEST CASE GENERATION ... 40

3.5 TEST AUTOMATION .. 41

3.6 JIRA INTEGRATION .. 42

4 TOOL SUPPORT ... 43

4.1 PARSER ... 46

4.2 USE CASES ... 48

4.3 KAKI INTEGRATION .. 49

4.4 TARGET INTEGRATION .. 51

4.5 TEST CASES ... 52

5 EXPERIMENTAL EVALUATION ... 54

5.1 PLANNING ... 54

5.1.1 Definition ... 54

5.1.2 Ethical Concerns ... 54

5.1.3 Research questions .. 55

5.1.4 Participants ... 55

5.1.5 Procedures and data collection... 55

5.2 EXECUTION AND RESULTS ... 56

5.2.1 Experimental evaluation – stage I ... 56

5.2.2 Experimental evaluation – stage II .. 57

5.2.3 Results .. 57

5.3 THREATS TO VALIDITY .. 59

6 CONCLUSIONS ... 61

6.1 FUTURE WORK ... 61

 REFERENCES ... 63

 APPENDIX A – TARGET EXAMPLE ... 66

 APPENDIX B – EBFN NOTATION .. 78

 APPENDIX C – PARTICIPANT CONSENT FORM 79

 APPENDIX D – ATG SURVEY ... 81

16

1 INTRODUCTION

The design and implementation of a software system are based on a survey of the

capacities or conditions to be met [2]. This list is usually called requirements specification and

consists of statements in natural language and/or diagrams, elicited by clients and users, on the

functions the system must provide and the constraints under which it must operate [3].

The Use Cases (UCs) [4] are created from the requirements analysis and serve as a guide

for developers, testers and analysts to conduct their respective activities and give customers an

idea of what to expect from the system [5]. In order to guarantee the software quality, the system

under development must go through different testing phases (e.g., exploratory tests, regression

testing, among others), aiming to anticipate errors that could take place when the software is

released to the users. Thus, testing is a crucial activity to verify the correct implementation of the

system requirements [6].

Faced with the high competitiveness in the information technology area nowadays, one of

the main concerns in the software market is the product quality and, thus, an increase in interest

and investment in defect prevention techniques is noticed. Since this task requires much effort,

reaching half the total cost of software development [7] and, if performed casually, time is

wasted and, even worse, errors pass through undetected [3].

Testing activities involve the creation of test cases (TCs), which simulate the user

interaction with the system. Usually, test cases consist of a set of steps, described in natural

language, to be executed against the system. TCs may be manually or automatically executed.

Despite the consolidation of the testing area as an essential verification activity, it is not

always feasible to complete a testing campaign due to deadlines and/or financial limitations [8].

This explains the growing demand for automation and optimization of the quality assurance

process, from the generation to the execution of TCs. Automation seeks to improve the testing

process, making it more agile, less susceptible to errors, less dependent on human interaction,

and with higher coverage.

Note that the cost of the testing process is proportional to the amount of TCs to run and to

maintain and test automation requires a specialized professional to create test scripts, to define

input values for the variables, analyze eventual associations between the tests, and also run them

[9].

Automation tools can also aid this process, but the language used in the descriptions of the

requirements (natural and unstructured language) makes it challenging to derive TCs directly

from requirements, through such tools. Because the ease of writing, derived from the use of

natural language, this can cause software implementation defects such as ambiguity,

incompleteness and requirements inconsistency [3].

However, the work reported in [10] indicates, with hands-on testing experiences, that

forcing programmers to learn new notations and specific tools is not the best option, reinforcing

the use of well-known notations and environments. In other words, requiring testers to develop a

representation from a model or formal specification, which describes the expected behavior for

17

the software being tested in order to allow the efficient automatic transformation, it is not

indicated.

1.1 PROBLEM STATEMENT

Testing tasks tend to be repetitive. For example, in regression test campaigns to detect

errors that may have been introduced to the modified code, each new version of the software

must be tested in its entirety, to verify the correctness of the system [11]. However, because of

cost constraints, alternative approaches select and execute only a subset of the set of tests [12].

Such problems are magnified when we consider mobile development because scripting for

these applications has a higher level of complexity when compared to traditional systems. In

mobile applications, more test cases are needed to increase coverage, since there are different

execution environments in which the conditions are even more uncontrollable, such as dynamic

localization, different hardware platforms, networks, and sensors [13].

Therefore, automation of code-based scripting tests can mitigate efforts to run a whole test

suite manually, but also gives rise to some problems: (I) it requires the hiring of specialized

people to automate TCs; (II) tests code (scripts) maintenance is not an easy task and is usually

necessary, mainly when it is based on user interface; (III) each new test case must be created

from scratch by a specialized professional, even when it is similar to another previously created

script.

Another way to automate test execution is to use Capture and Replay (C&R) tools, which

does not require programming skills and can be used during the test campaign while testing is

performed manually. However, the problem of item III remains, since current C & R tools allow

little reuse of TCs [14] and require testers to run all TCs at least once.

However, the first step to perform the tests is to create the TCs, and usually, it is a hard job

because the automatic test generation tools have different focuses or behaviors [15]. When we

analyze these tools, the following criteria should be observed: (I) input quality (is it complete? –

does it provide sufficient, clear, unambiguous information?); (II) the quality of the internal

process of generation? (is it systematic and deterministic?); and (III) the coverage and

representation of the suites generated (does the generated test suite cover all the functionalities?

Is the formalism of the output representation clear to the testers who will manually perform the

tests?)

The present work is focused on the first criterion presented above, but it does not exclude

the others. Generally, the test-generation tools receive as input or requirements or more detailed

use-case specifications from which the tests are derived. As stated earlier, this entry must be

complete and unambiguous to preserve the quality of the entire testing process.

1.2 CONTRIBUTIONS

The main problem we tackle in this work is an integrated approach to generate automatic

test cases from requirements written in a controlled natural language. Considering this scenario,

the primary goal of the Auto Test Generator (ATG) is to create a strategy to generate automated

test cases, from requirements written in natural language, combining the development of new

components with some existing tools: TaRGeT (Test and Requirements Generation Tool) [16],

18

Kaki and Zygon [17] – all developed in partnership with Motorola Mobility. The most specific

contributions of the present work are as follows:

 Assist in writing the requirements (through a graphical interface which indicates

the next grammatical classes or reserved words expected in the sentence);

 Mechanize the adherence to the adopted Controlled Natural Language (CNL);

 Insert associations (cancellations and dependencies) between the tests, through

integration with the Kaki tool;

 Automatically generate textual test cases (according to the proposed CNL) with the

aid of TaRGeT;

 Encoding of the textual test cases test scripts using an automation framework

(Zygon).

Figure 1 presents the project overview.

Figure 1 – ATG overview

It is possible to subdivide the ATG into four processing modules: parsing, extraction,

creation, and integration. The parsing is the module responsible for the suggestion of the

subsequent grammatical classes or reserved words expected, as well as for the interpretation of

the requirement for the generation of the syntactic tree. The extraction module is responsible for

extracting information from the syntax tree, transforming the requirement sentences into test

actions in the Kaki language and grouping them into use cases, which in turn will serve as input

to TaRGeT (Test and Requirements Generation Tool). The creation of the TaRGeT's input –

XML (Extensible Markup Language) file – and the entire graphical interface are treated in the

creation module. The communications between the external tools (TaRGeT and Dalek) are

considered in the integration module. Due to the use of the Kaki language, the tests generated by

ATG are consistent and can be directly automated in a framework like Zygon.

1.3 DOCUMENT ORGANIZATION

The remainder of this work is structured within the following chapters.

 Chapter 2 discusses related work and basic concepts. Notably, we describe

alternatives to test automation, as well as to the natural language processing. Besides,

we present the tools used with our approach to generate/automate test cases.

 Chapter 3 explains our proposed strategy: requirement writing by using the

controlled natural language; the syntax tree generation through parsing; details of the

extraction algorithm; the approach to integrate TaRGeT, Kaki, Zygon and Dalek; and

the the test automation process.

 Chapter 4 describes the implemented tool (ATG)

19

 Chapter 5 explains the conducted evaluations with the achieved results.

 Chapter 6 presents our conclusions and discusses future work.

20

2 BACKGROUND & RELATED WORK

In this chapter, we contextualize our work by introducing fundamental concepts, and we

discuss the related approaches concerning the main scientific contributions of this research. In

Section 2.1, we highlight the problem of directly generating TCs from natural language

requirements. We also expose some alternative approaches that use a controlled natural language

to verify errors beforehand and try to ease the burden of mapping ambiguous specifications to

tests. Then, in Section 2.2, we introduce the accessory tools that we used integrated with ATG.

2.1 NATURAL-LANGUAGE PROCESSING

As noted earlier, forcing users to adopt unknown notations is time-consuming and

inefficient. This, together with the lack of readability, makes the use of natural language

processing (NLP) an excellent alternative to the task since it is a language of general knowledge,

except for the specificities of controlled grammar. However, because of its ambiguous nature, it

is difficult to verify the consistency and accuracy of a mapping between requirements and a test

automation framework without human intervention. The search for an optimal mapping between

natural language, descriptions and executable tests has been an active research area.

Due to the vast literature on natural-language processing, we focus here on approaches that

are closely related to ATG. PENG
1
 (Processable English) is a computer-processable CNL for

writing unambiguous [18]. PENG requirements are a subset of English and are defined by a

restricted vocabulary and grammar. Such a vocabulary consists of words of specific domain

content that can be described by the author instantly and predefined function words that form the

skeleton of the language [18]. PENG can be deterministically analyzed and translated into

structures of representation of the discourse and also interpreted into first-order predicate logic.

However, there are no correlations of the work with the automatic generation of tests.

The work reported in [19] presents RETNA, a requirements analysis tool. It receives

natural language requirements as input and, with human interaction, it transforms them into a

logical notation. From this, RETNA generates test cases. This dependence on human interaction

to create the requirements in the particular logical notation for RETNA creates an overhead of

both time and specialized people.

The work present in [20] addresses the generation of tests case from natural language

specifications, but it is necessary massive intervention from the user to generate TCs. To use the

methodology presented in [20], one needs three types of effort: (I) to deal with a complex

dictionary: identifying and partitioning inputs and outputs, as well as defining mapping

functions; (II) to translate abstract test cases manually to executable ones; (III) to define scenario

by using combinatorial designs. Approaches like ours facilitate the automation of the tests

because it uses a CNL that limits the possibilities of writing. On the other hand, there is a

restriction on the structure of CNL.

1
 http://web.science.mq.edu.au/~rolfs/peng/

21

The requirements written in [21] are represented in a strict if-then sentence template, and is

based on three elements: initial condition (if), consequence (then) and final condition (until). It is

a very restricted grammar for our purposes because expressiveness is an essential feature.

Furthermore, it does not specify which kind of execution from TCs generated.

Processing NL requirements seems more common than UCs. However, the approaches

presented in [16], [22] and [23] receive UCs described in natural language as input, unlike our

work, which it receives requirements. These works have another similarity between them

because all these works generate TCs for manual execution. Furthermore, in contrast to those

works, our method considers dependency injection between statements from generated TCs (i.e.,

there is a verification of consistency in the sequence of steps, thus the addition of new steps may

be also suggested).

DASE (Document-Assisted Symbolic Execution) is an approach to improve the creation of

automatic tests and the detection of bugs [24]. DASE performs a natural language processing

along with heuristics to parse the text of the program documentation and then extracts input

constraints automatically to guide a symbolic execution. Fortunately, information about input

constraints usually exists in software documents such as program man pages (for example, an

output from man rm) and comments from header files (e.g., elf.h) [24].

The work reported in [25] uses natural language as input to its automated test generation

strategy: NAT2TEST. It was developed to generate test cases for timed reactive systems,

considering examples provided by Embraer
2
 and Daimler

3
. First, a syntactic analysis of

requirements is performed, based on the CNL called SysReq-CNL, among others. Defined as a

CFG (Context-Free Grammar), as shown in Figure 2, SysReq-CNL is used to provide structure

to the text, aiming at automation of test case generation, besides mitigating ambiguity. This

grammar follows some lexical divisions, such as: determiners (DETER); nouns (NSING for

singular and NPLUR for plural); adjectives (ADJ); adverbs (ADV); verbs (VBASE / VPRE3RD

/ VTOBE_PRE3 / VTOBE_PRE / VTOBE_PAST3 / VTOBE_PAST); conjunctions (CONJ);

prepositions (PREP); numbers (NUMBER); and comparisons symbols (COMP).

The results of syntactic analysis are syntactic trees that serve as input to a semantic

analysis. Through the mapping of words into semantic representations (requirement frames,

based on the case grammar theory [26]), an intermediate formalism (models of Data-Flow

Reactive Systems – DFRSs) is generated. Then, TCs can be derived with the aid of more

concrete formalisms such as Software Cost Reduction [27], Internal Model Representation [28],

and Communicating Sequential Processes [29], among others. This work is particularly relevant

to us, as we base our grammar in that defined in, there is no mention of dependency injection

between the test actions in the TCs generated.

2
 Empresa Brasileira de Aeronáutica – http://www.embraer.com/en-us/pages/home.aspx

3
 https://www.daimler.com/en/

22

Figure 2 – SysReq-CNL

Source: [27]

Below, there are some valid requirements in compliance with the SysReq grammar

(Source: [27]):

 When the system mode is idle, and the coin sensor changes to true, the coffee

machine system shall: reset the request timer, assign choice to the system mode.

Vending machine

 When the left priority button is not pressed, and the right priority button is not

pressed, and the left command is on neutral position, and the right command is on

neutral position, the Priority Logic Function shall assign 0 to the Command-In-

Control.

Priority Control

 When the water pressure becomes higher than or equal to 900, and the pressure

mode is low, the Safety Injection System shall assign permitted to the pressure

mode.

Nuclear Power Plant

In [30], the authors introduce a command-line tool: Cucumber. In other words, one must

have minimum computer knowledge to use it. It is possible to apply this tool to automate new

tests or tests that developers have already done. Cucumber is integrated with some approaches

like QTP
4
 and Selenium IDE

5
, so, one can get automatable tests, but needs to learn external

tools.

Firstly, the tool reads some given features (some text files written in a structure natural

language). Then, the tool examines them for scenarios (list of steps) to test, and runs this against

4
 https://www.tutorialspoint.com/qtp/

5
 https://www.seleniumhq.org/projects/ide/

23

the system under test (SUT), like our work. For all this to happen, these feature files are

standardized according to some basic syntax rules (Gherkin is the name for this set of rules). A

concrete example of feature is described in Figure 3.

Figure 3 – Cucumber feature

Source: [30]

Gherkin avoids vague requirements due giving real examples of how the system should be

run. Similarly to our strategy, also there exists a concern with the language being readable by

stakeholders as well as interpreted by computers. Each step of a scenario should be mapped into

code, as illustrated by Figure 4.

Figure 4 – Cucumber match

Source: [30]

However, in addition to being developer-centric automation, detailed reuse and

consistency/dependency checking are outside the scope of the tool, as our work.

Table 1 summarizes our analyses of related work considering these perspectives. Here, we

analyze work from six different perspectives: (I) domain: whether the modeling approach is

tailored to a specific area; (II) input: how the system requirements are documented; (III) specific

notation: whether the notation is trivial for non-experts; (IV) tests: if the tool generates TCs and

whether it is for manual or automatic execution; (V) human: analyzes whether user intervention

is required for the generation of test cases; (VI) dependency injection: we consider the

consistency and associations between the TC statements.

24

Table 1 – Comparison of related work

Domain Input

Specific

notation
Tests Human

Dependency

Injection

ATG General NL requirements No Automatic No Yes

[16] General UCs Yes Manual No No

[18] General NL requirements No No - -

[19] General NL requirements Yes Automatic Yes No

[20] General NL requirements Yes

Yes, but it does

not specify

which type

Yes No

[21] General NL requirements Yes

Yes, but it does

not specify

which type

No No

[22] General UCs No Manual No No

[23] Mobile UCs Yes Manual No No

[24] General NL requirements Yes Manual No No

[27] Embedded NL requirements No Automatic No No

[30] General NL requirements Yes Automatic No No

2.2 TOOLS

In this section, we detail each one of three tools that are integrated into our strategy:

TaRGeT [16], Kaki and Zygon [17]. All of them were developed in partnership with Motorola

Mobility. ATG combined the automatic test generation from TaRGeT, test automation with

reuse from Zygon, and the consistency and dependency analysis from Kaki. Examples to

illustrate the use of all these tools are presented in Chapter 4.

2.2.1 TaRGeT6

The main purpose of TaRGeT is, in an integrated and systematic way, to deal with

requirements and test artifacts. With the approach used, the test cases can be generated

automatically from scenarios of use cases written in natural language [16]. The tool was

developed as a line of software products due to the need for different profiles, identified through

customer requests.

The input for TaRGeT (as we show in Appendix 0)are UC written following an XML

schema, which is designed to contain the information necessary to generate the procedure,

description, initial conditions and related requirements, among other information associated with

a test case. Also, the tool can generate traceability matrices between test cases, use cases and

requirements.

This tool was developed according to the Model-Based Testing (MBT) approach.

Typically, MBT involves the creation of formal models. Using TaRGeT, however, this is

completely hidden from the user. A formal model (either a labelled transition system or a process

6
 https://twiki.cin.ufpe.br/twiki/bin/view/TestProductLines/TaRGeTProductLine

25

algebraic model) is generated from the textual use cases; these models are internally used by the

tool to generate (textual) test cases for manual execution.

2.2.2 Zygon

Zygon was created with the primary aim of being a tool with which users without

programming knowledge could automate tests in the mobile context, as well as reuse the already

automated tests. Besides, it is framework independent and, today, is part of Motorola's testing

operation [17].

A test action is the base unit of Zygon. It is text-based, recursive, and framework-free. The

implemented C&R strategy means that everything that is done on the screen of the cell phone is

mapped to the test actions.

These test actions have been modeled so that they can refer to others using the composite

pattern. Thus, in applying word-processing algorithms, it is possible to identify a correspondence

between the new natural language TC descriptions to previously registered test actions, reusing

them to automate the TCs.

Figure 5 illustrates the complete process of how the tool operates.

Figure 5 – Zygon capturing process by using BPMN

Source: [17]

A distinctive feature of this tool when contrasted to others similar approaches is reuse and

the fact that captured events are stored at a high-level. For example, instead of capturing events

such as clicking on (x, y), the tool captures ―click on button with description "Apps"‖ according

to Android accessibility events. In this way the tool mitigates some compatibility issues on

devices (due to different screen sizes, for example), moreover giving a more readable way to

present information to the user. There is a listener that processes the Android accessibility log

event, among others. An example is illustrated in Figure 6.

26

Figure 6 – Android UIAutomator accesibility events

However, listening only to high-level events of single-touch is not enough to cover more

complex interactions, such as swipe or hard key events. Thus, the tool includes a preprocessing

module to interpret low-level events.

With so many events happening at the same time, an overlap is possible to happen, due to

the various streams of input to interpret. So the tool prioritizes actions, by considering defining a

hierarchy of priorities between different event sources, and when two or more events overlap,

given a short time, the one with the highest priority is chosen.

Zygon GUI allows the user to enter some predefined test steps, reuse test actions or even

an entire test and add checks to the graphical interface, as shown in Figure 7.

Figure 7 – Add pre-registered action

Table 2 summarizes each feature.

Table 2 – Zygon GUI Functions

Command Function

Wait Add some time to begins the next step

Add OR action Represents a logic choice

Inject code For specific/advanced API commands or checks.

Press delete Delete some text

Press back Click on back button

Press home Click on home button

Press button Click on some text

Reuse Action Search a previously stored action

Add Check Check on user interface if content is/has some text

27

Each step might contain the following types of actions associated with it: (I) create

variable; (II) undo variable; (III) execute; (IV) duplicate; (V) settings; (VI) delete. These actions

are described below.

 Create variable (): Create a variable instead of a fixed value. All variables are

listed to the left of the sequence of steps and are very useful for speeding up the

reuse of test actions;

 Undo variable (): Removes the variable and maintains a fixed value;

 Execute (): Perform step individually;

 Duplicate (): Duplicate step;

 Settings (): Opens the step settings. It serves, for example, to modify the waiting

time;

 Delete (): Remove step.

After capturing a sequence of steps, the user must provide a representative description to

store in the database. The database used by Zygon is Neo4J
7
 because it is a graph-oriented

database and allows one to find similar subgraphs and analyze transitive connections between

test actions.

There are two possibilities to run the test: in the search screen, look for the test and click

on the Execute button (Figure 8) or click on the play button (Figure 9).

Figure 8 – Execute test on search screen

7
 https://neo4j.com/

28

Figure 9 – Execute test on capture screen

2.2.3 Kaki

Observing a large number of test cases and their test steps, in the context of the

cooperation with Motorola, it was possible to identify a typical pattern: it is always an operation

on a patient, the passive object for the respective operation.

From this pattern, Kaki, a text editor, was built based on the concept of frames to represent

knowledge [31]. Each frame consists of slots, each with a specific purpose. There are two fixed

slots (operation and patient) and extra slots dynamically created. Thus, the tool can be check if a

sentence is well-formed.

For instance, a frame which represents a scenario to send an e-mail, it needs action,

receiver, message, title, among others as slots (see Table 3).

Table 3 – Frame example

Required (static) Extra (dynamic)

Operation Patient Sender Receiver Title Body ...

Send Email Message tmlp@cin.ufpe.br acas@cin.ufpe.br SBMF
The article has

been accepted

…

Besides, Kaki allows establishing associations (dependencies and cancellations) between

test steps (actions). From these user-informed associations, the tool generates a model to verify

consistency, as well as suggesting the insertion of missing steps to make test cases consistent

[17]. Without Kaki the consistency of performing a sequence of actions would depend solely on

the experience of the tester or test engineer and the individual knowledge about the domain

provided.

Figure 10 exemplifies the consistency notion. In the example, sending a message requires

that a connection is enabled. It is noticed that both test actions are valid individually, but the

execution of the first fails if the second one is not previously. As another kind of association, one

action can cancel the effect of another – "Activate airplane mode" cancels the "Activate

Connection" action.

29

Figure 10 – Association between frames

Source: [17]

In the Kaki graphical interface it is possible to define the dependencies and behaviors

between test actions, and thus it is possible to provide a coherent (and possibly optimal) order of

execution. The valid actions and their dependencies are represented as a domain model that is

translated into Alloy [17]. In summary, the tool can detect inconsistent sequences as well as

suggest the insertion of actions to automatically make it consistent.

30

3 STRATEGY

A typical process of creating automated tests begins with the requirements made by the

stakeholders. Then the project manager receives these specifications and creates the

requirements and their respective use cases. From the UCs the test engineer examines them and

creates test cases. Finally, the developer creates test scripts to automate the TCs, which is

executed by the tester. Figure 11 exemplifies this process.

Figure 11 – Test process

The requirements and use cases are mostly written in free natural language, being

vulnerable to the problems of free language: ambiguity, and imprecision. Such problems can

affect the development process because it is known that the requirements are the basis for the

entire development process since they must represent precisely what the client wants the system

to do. From the requirements, the use cases are elaborated, and these, in turn, also written in

natural language, are the basis for analysis and design and test cases.

The impact of problems introduced by the use of free natural languages can go beyond the

development phase, also reflected in the testing phase, considering that the test cases are

projected from the use case specifications. As illustrated in Figure 11, this process is a chain that,

if at any time is misinterpreted, can compromise the system as a whole. In order to ensure the

quality of the input specifications in the software development process, some companies use

CNLs specially designed to meet their particular needs, as well as impose standardization on the

requirements without losing the naturalness.

One of the main contributions of our work is the definition of a complete grammar for

writing the requirements, as well as a lexicon for the domain of tests of mobile devices. Once the

knowledge bases are ready, they are parsed to check for adherence to the structure of the CNL.

However, only the CNL does not supply the demand to create test cases to make the

consistency analysis between them and to automate the TCs. So to support these tasks, we

integrate TaRGeT, Kaki, and Zygon, respectively, into our solution. It is worth mentioning that

we refer to ATG as a single tool, considering its integration with all these tools.

To support all these tasks in an automated way, we have to deal with the following

challenges:

I. Create a CNL easy to use, and to provide structure to the text, besides mitigating

ambiguity;

31

II. Supply consistency and dependency analysis for the CNL semantics to check the

individual instances and their relationships;

III. Generate a comprehensive suite of tests for the various possible scenarios;

IV. Automate the generated test cases;

V. Import the test suite to the usual Motorola Mobility platform, Jira
8
;

A summary of the overall approach was already presented in Figure 11. In the next section

we detail our strategy; we start with the syntactic analysis from requirements (Section 3.1). In

Section 3.2 we describe how we implement the extraction algorithm, and in Section 3.3 how we

use the consistency and dependency analysis from Kaki. Section 3.4 presents our strategy to

generate test cases automatically and Section 3.5 explains the test automation. Finally, the Jira

integration is shown in Section 3.6.

3.1 CONTROLLED NATURAL LANGUAGE

The syntactic analysis of the ATG strategy verifies whether the system requirements are

written according to a particular CNL, which is precisely defined in terms of grammar

production rules.

The CNL is based on the English language. The vocabulary and syntactic structures

commonly encountered in a mobile device environment have been taken into account in order to

stimulate the CNL adoption.

However, we have designed a more formal CNL, with a lexicon of words and types with

pre-defined terms and grammar, used to restrict the buildings sentences for specifying

requirements. In the future, this grammar will be used as the basis for the mapping of sentences

to Kaki, as we detail in Section 4.3.

However, users can find it challenging to write with the syntactic constraints of a CNL.

Thus, to facilitate the work to write requirements with a restricted language, we implemented a

predictive and guided approach, as suggested by [32]. The on-the-fly parser analyses each word

and then suggests which are the next accepted grammar classes or keywords. With this, we

accomplish our first challenge.

3.1.1 Lexicon

The ATG Lexicon was built based on the context of testing engineering for mobile

devices, thus encompassing special terms for the applications of these devices. As already

mentioned, the terms of the lexicon are in English, which is the standard language in writing

tests at Motorola Mobility.

These terms were classified according to their grammatical class, also known as Parts of

Speech (POS) [33], such as determinant, name, verb, adjective, adverb, preposition and

conjunction. In order to simplify the grammar, in addition to these classes, we created a category

for numbers, one for comparisons and other for generic terms, which all words must necessarily

be enclosed in double quotation marks.

8
 https://br.atlassian.com/software/jira

32

 determiners (DETER) are used to identify a noun or a set of them (e.g., a number,

an article or a personal pronoun)

 nouns (NSING for singular and NPLUR for plural) represents the domain entity;

 verbs with inflections:

 VBASE – base form;

 VPAST – past indicative;

 VPRE – present indicative

 VPRE3RD – past indicative for the 3
rd

 person;

 VTOBE_PRE – verb to be in present indicative;

 VTOBE_PRE3 – verb to be in present indicative for the 3
rd

 person;

 VTOBE_PAST – verb to be in past indicative;

 VTOBE_PAST3 – verb to be in past indicative for the 3
rd

 person;

 VPHRASAL – phrasal verb.

 adjective (ADJ);

 adverbs (ADV);

 prepositions (PREP);

 conjunctions (CONJ);

 numbers (NUMBER);

 comparisons (e.g., greater than)

 generic (GENERIC) represents domain specific terms (e.g., ―AUDIO_MP3‖).

Yet, we have special entries to identify keywords that are used in the grammar definition:

―and‖ (AND), ―or‖ (OR), ―not‖ (NOT), ―do not‖ (DO NOT), ―may‖ (MAY), ―must‖ (MUST),

―case‖ (CASE), ―if‖ (IF), ―then‖ (THEN), ―end‖ (END) ―:‖ (COLON), and ―,‖ (COMMA), ―;‖

(SEMICOLON) and QUOTATION_MARKS for quotation marks.

This CNL does not allow personal and deictic pronouns (e.g., this, those), thus eliminating

the occurrence of anaphora, that is, expressions that refer to names of the same sentence. Not

allowing the occurrence of pronouns in the language is another way to limit the complexity of

sentences and reduce ambiguity.

Finally, we emphasize that since the lexicon is domain dependent, it must be created and

maintained manually considering the current domain of the system. Despite the initial effort,

vocabulary tends to become stable, which minimizes maintenance effort. This is a natural

assumption for Natural Language Processing (NLP) systems that rely on a predefined set of

lexical entries. However, it is possible to reuse part of an existing lexicon for a new application

domain (for instance, prepositions and conjunctions).

Also there are some recommendations to be followed in the insertion of new terms, such

as:

 Avoid abbreviations: abbreviations may not be consensual within a company. In

this way, a user can add a new term in the lexicon whose abbreviation has already

been added, allowing a single object to be referenced by more than one symbol.

However, it is often unavoidable to deal with abbreviations, for the sake of

simplicity, ease and even by the custom of the environment, e.g., SIM card, SMS.

33

 Treat each generic term as a name: abbreviations, symbols, or another sequence of

characters that do not represent a domain entity must be enclosed in double

quotation marks and treated as a name to avoid lexical pollution. For example, in

the Click on label statement "Join the Moto community", the term quoted is treated

as a name.

 Do not separate compound terms that represent a specific entity in the

domain. For example, the term "IP address".

3.1.2 Grammar

The syntax determines how the words will be combined in the formation of grammatical

sentences, specifying their internal structure and functioning. This work is based on the

Grammar of Immediate Constituents approach, according to which the sentence can be divided

into other constituents, until reaching fundamental constituents, such as names and verbs [34]. A

constituent can be a word or a group of words that occur as a unit in the rules of grammar

rewriting. Note that these constituents will be nodes in the syntax tree.

The grammar used in this work was based on SysReq-CNL from [25] with a few

modifications. It has been defined as a CFG, represented by the Extended Backus-Naur Form

(EBNF) notation – capitalized words indicate terminal symbols and the other symbols of the

EBNF notation used are explained in Appendix 0. In this work, the terminal symbols correspond

to predefined lexical categories or special terms, as described above; see Figure 12.

The process of knowledge acquisition was done by analyzing the behavior of real data, in

this case, the requirements and test cases available in the domain. First, we tried to follow the

theory of the phrase structure grammar, initially introduced by Noam Chomsky [35], which

assumes a binary division of the clause into a noun phrase and a verb phrase. However, after

analyzing some cases, we saw that not always an action was associated with a condition. So we

allow both possibilities.

The grammar start symbol is Requirement, which consists of a list of actions (ActionList).

ActionList may have one or more Action; to separate an action from another, we use COMMA

and the AND keyword. An Action can be a ConditionalAction or an ImperativeAction. A

ConditionalAction comprises an IFConditionalAction (we use an if-then-else clause) or a

CaseConditionalAction (we included a case structure to avoid nested if statements).

An IFConditionalAction term is composed of a conjunction IF, a list of conditions

(ConditionalActionList), it followed by terminal symbol THEN, and a list of action

(ImperativeActionList) which must be executed in case the conditions are true. Specifying which

actions must be executed in case the conditions are false is optional, and must be done using the

special ELSE symbol followed by another list of actions (ImperativeActionList). Finally, one

needs to write END to end the statement.

The structure of ConditionalActionList and ImperativeActionList is similar to a

Conjunctive Normal Form (CNF) – conjunction of disjunctions. The conjunctions are delimited

by a COMMA and the AND keyword, whereas the disjunctions are delimited by the OR keyword.

The elementary condition (ConditionalClause) comprises a NounPhrase (one or more

nouns, including generic words, eventually preceded by a determiner and adjectives) and a

VerbPhraseCondition (VerbComparative term followed by VerbComplement).

34

Requirement → ActionList;

ActionList → Action COMMA AND ActionList | Action;

Action → (ConditionalAction | ImperativeAction);

ConditionalAction → (IFConditionalAction | CaseConditionalAction);

CaseConditionalAction → CASE NounPhrase VerbComparative COLON
(CaseClause)+

END;
CaseClause → VerbComplement THEN ImperativeActionList SEMICOLON;

IFConditionalAction → IF ConditionalActionList
THEN ImperativeActionList
(ELSE ImperativeActionList)?

END;
ConditionalActionList → ConditionalActionList COMMA AND ConditionalOrClause |

ConditionalOrClause;
ConditionalOrClause → ConditionalClause OR ConditionalOrClause | ConditionalClause;

ConditionalClause → NounPhrase VerbPhraseCondition;

VerbPhraseCondition → VerbComparative VerbComplement;

VerbComparative → VerbCondition NOT? ComparativeTerm?

VerbCondition → VerbCondition? (VPRE | VPRE3RD | VTOBE_PRE3 |
VTOBE_PRE | VTOBE_PAST | VTOBE_PAST3 | VPAST |
VPHRASAL PREP);

ComparativeTerm → (COMP (OR NOT? COMP)?);

ImperativeActionList → ImperativeAction COMMA AND ImperativeActionList |
ImperativeAction;

ImperativeAction → ImperativeOrClause;

ImperativeOrClause → ImperativeClause OR ImperativeOrClause | ImperativeClause;

ImperativeClause → ((NounPhrase ModalVerb NOT?) | (DO NOT))?
ImperativeVerbPhrase;

ImperativeVerbPhrase → VerbImperative VerbComplement;

ModalVerb → MAY | MUST;

VerbImperative → VBASE;

VerbComplement → VariableState? PrepositionalPhrase*;

VariableState → (ADV | ADJ | NUMBER | NounPhrase);

PrepositionalPhrase → PREP VariableState;

NounPhrase → DETER? ADJ* (Noun | QUOTATION_MARKS GENERIC
QUOTATION_MARKS)+;

Noun → NSING | NPLUR;

Figure 12 – Grammar

The elementary condition (ConditionalClause) comprises a NounPhrase (one or more

nouns, including generic words, eventually preceded by a determiner and adjectives) and a

VerbPhraseCondition (VerbComparative term followed by VerbComplement).

A VerbComparative term is a VerbCondition (at least one verb: to be or any other in the

present or past tense, including phrasal verbs) followed by an optional NOT, which negates the

meaning of the next term, an optional ComparativeTerm. A VerbComplement is an optional

VariableState (an adjective, an adverb, a number or a NounPhrase) followed by zero or more

PrepositionalPhrase (a preposition and a VariableState).

The elementary action (ImperativeClause) begins with an option: it starts with a

NounPhrase followed by a ModalVerb (MAY, to indicate possibility, and MUST, mandatory),

and an optional NOT or it begins with DO NOT keyword. Both are proceeding by an

35

ImperativeVerbPhrase term, which is a VerbImperative (base form) followed by one

VerbComplement.

A CaseConditionalAction begins with the CASE keyword, to signal this type of instruction,

and a NounPhrase followed by a VerbComparative and a COLON, to indicate the phrase to be

checked at next sentences (CaseClause). VerbComparative begins with a VerbCondition, and is

followed by an optional NOT, which negates the meaning of the next term, an optional

ComparativeTerm.

A CaseClause can be one or more occurrences. Each CaseClause has a VerbComplement,

THEN keyword, followed by an ImperativeActionList. Each CaseClause is terminated with a

SEMICOLON, and a CaseConditionalAction, with the END keyword.

Thus, we can write requirements using several different sentence formations. Below, we

present a typical requirement rewritten to adhere to our CNL and its respective original form as it

was written by the Motorola requirements team.

 Original: This feature is to extend the functionality of Settings - Sound &

notification in order to allow user to set different ringtones for each SIM in Dual

SIM devices.

 Rewritten: Open the Settings, AND

 CASE the phone has:

one SIM card THEN set a ringtone to ―SIM 1‖, and make a call to

―SIM 1‖;

two SIM cards THEN set a ringtone to ―SIM 1‖, and set a ringtone

to ―SIM 2‖, and make a call to ―SIM 1‖, and make a call to

"SIM 2";

no SIM card THEN the system must not show two options, and set

a ringtone, and make a call;

END.

As can be seen, the rewritten requirement needs more information than the original

version, consequently demanding more effort from the project manager. However, from this,

ATG is able to generate UCs and a comprehensive test suite automatically.

As another interesting facility, the proposed CNL allows reuse of terms using aliases. The

usage of aliases can be an alternative to avoid abbreviations, as we suggested previously.

To exemplify this, we create an alias (e.g., CALL_SIM1) to refer an action, which appears

repetitively in the above requirement. To use the alias one just needs to refer to the alias name

within the requirement, as shown below.

Kaki user interface allows inserting an alias, as we explain in Section 4.1. Let CALL_SIM1

refer to and make a call to “SIM 1”, then the requirement can be rewritten as follows.

 Open the Settings, AND

CASE the phone has:

one SIM card THEN set a ringtone to ―SIM 1‖, CALL_SIM1;

two SIM cards THEN set a ringtone to ―SIM 1‖, and set a ringtone to ―SIM

2‖, CALL_SIM1, and make a call to "SIM 2";

no SIM card THEN the system must not show two options, and set a ringtone,

and make a call;

36

END.

Despite the reuse benefits, this feature is optional. Also, our parser is not aware of aliases;

there is a pre-processing of the input and the parser receives the requirements without this.

3.2 EXTRACTION ALGORITHM

The result of parsing the requirements in the CNL is a syntactic tree, which is the input to

the extraction algorithm. We are using the visitor design pattern [36] to analyze the syntax tree.

Algorithm 1 is introduced as a pseudo-code to explain how we extract the information. Basically,

we need to automatically create use cases with their respective main and alternative flows

because the TaRGeT input are use cases. Each flow has fromStep and toStep fields, indicating in

which step the flow begins and finishes, respectively. For the main flow, it is always START and

END. For alternative flows, they are calculated at runtime.

The first command from the extraction algorithm is finding all actions from syntax tree.

Next, there is a verification for each action to identify the particular type of action:

ImperativeAction or ConditionalAction.

Besides, the algorithm extracts the predecessor operator from this action. This serve to

decide whether the action belongs to the main flow or the alternative flow.

For any action we need to transform the verb to its base form, if the verb is not in infinitive

mode. So, we create a step in active voice (to fill up Kaki’s slots, operation, and patient) and

passive voice.

The algorithm is slightly different for ConditionalAction. When a ConditionalAction is an

IFConditionalAction the step has a condition. We consider the steps in THENClause as Main

Flow actions, except those actions which have OR as a predecessor operator. As we explained in

the previous section, the ELSEClause is optional. Thus, if ELSEClause exists, we consider the

resulting steps as Alternative Flow. The resulting steps, we create a blank Alternative Flow with

the negation of the condition, but with empty user action and system response.

Algorithm 1 – Extraction algorithm

1. find all actions from syntactic tree

2. if the action is an ImperativeAction

a. verify verbal forms

b. create the step with their respective active and passive voice. Store the predecessor

operator

i. if the operator is different of OR → Main Flow

ii. else → Secondary Flow

 calculate fromStep and toStep fields

37

3. if the action is a ConditionalAction

a. verify which type of ConditionalAction it is

i. IFConditionalAction

 select the condition

 verify verbal forms from THEN clause

 create the step with their respective active and passive voice. Store the

predecessor operator

o if the operator is different of OR → Main Flow

o else → Alternative Flow

 calculate fromStep and toStep fields

 if ELSE clause exists

o verify verbal forms from ELSE clause

o create the step with their respective active and passive voice with the

condition → Alternative Flow

 else → create a blank Alternative Flow with condition denial

ii. CaseConditionalAction

 for each CaseClause

o mounted the full condition

o create the step with their respective active and passive voice with the

condition

 if isFirst → Main Flow

 else → Alternative Flow

 calculate fromStep and toStep fields

When deadling with a CaseConditionalAction, we must complete the condition because it

concatenates itself with the beginning of each CaseClause. Moreover, we consider the first

CaseClause as Main Flow, and, the others, as Alternative Flows. Figure 13 shows the database

structure.

Figure 13 – Database structure

38

A UseCase has an id (to identify each instance) and a list of Flows. Each Flow has an id,

with the same purpose previously mentioned, a type to indicate which type of flow it is: main or

alternative. Also, it has fromStep and toStep fields, and a list of Steps. In turn, a step has an id,

stepDescription to indicate the action, an initialSetup for conditions, and expectedResults which

is the system response.

Using the same example we can see how the information is stored in the database, as

shown in Figure 14.

"UseCase":
{
 "id": 0,
 "flows": [
 {
 "id": 0,
 "type": "main",
 "fromStep": "START",
 "toStep": "END",
 "steps": [
 {
 "index": 0,
 "stepDescription": "Open the settings.",
 "initialSetup": "The phone has one SIM card",
 "expectedResults": "the settings was opened."
 },
 {
 "index": 1,
 "stepDescription": "set a ringtone to "SIM 1".",
 "initialSetup": "The phone has one SIM card",
 "expectedResults": "the ringtone was set."
 },
 {
 "index": 2,
 "stepDescription": "make a call to "SIM 1".",
 "initialSetup": "The phone has one SIM card",
 "expectedResults": "a call was made."
 }
]
 },
 {
 "id": 1,
 "type": "alternative",
 "fromStep": "1A",
 "toStep": "END",
 "steps": [
 {
 "index": 0,
 "stepDescription": "set a ringtone to "SIM 1".",
 "initialSetup": "The phone has two SIM cards",
 "expectedResults": "the ringtone was set."
 },
 {
 "index": 1,
 "stepDescription": "set a ringtone to "SIM 2".",
 "initialSetup": "The phone has two SIM cards",
 "expectedResults": "the ringtone was set."
 },
 {
 "index": 2,
 "stepDescription": "make a call to "SIM 1".",
 "initialSetup": "The phone has two SIM cards",
 "expectedResults": "a call was made."
 },
 {
 "index": 3,

39

 "stepDescription": "make a call to "SIM 2".",
 "initialSetup": "The phone has two SIM cards",
 "expectedResults": "a call was made."
 }
]
 },
 {
 "id": 2,
 "type": "alternative",
 "fromStep": "1A",
 "toStep": "END",
 "steps": [
 {
 "index": 0,
 "stepDescription": "Do not show two options.",
 "initialSetup": "The phone has no SIM card",
 "expectedResults": "two options was not shown."
 },
 {
 "index": 1,
 "stepDescription": "set a ringtone.",
 "initialSetup": "The phone has no SIM card",
 "expectedResults": "the ringtone was set."
 },
 {
 "index": 2,
 "stepDescription": "make a call to the tested phone.",
 "initialSetup": "The phone has no SIM card",
 "expectedResults": "a call was made."
 }
]
 }
]
}

Figure 14 – Database example

3.3 CONSISTENCY AND DEPENDENCY ANALYSIS

In order to ensure that a sequence of test actions can be correctly executed, we integrate

our work with Kaki’s strategy. As we have previously mentioned in Section 2.2.3, an elementary

test action has an operation and a patient. And, from the information extraction we can map

Kaki’s slots to use it, as shown in Table 4.

Table 4 – Mapping between ATG and Kaki

Syntax Tree from ATG Kaki’ slots

Verb in base form Operation

NounPhrase, without DETER Patient

VariableState into a PrepositionalPhrase

or

GENERIC associated with the noun

Extra

With this in mind, the algorithm verifies whether these slots still do not exist in the

database, and enter as new Kaki slots. Following this, it defines that frame is valid. Also, if a

noun has a generic associated term, a new slot is created, named generic. It is worth mentioning

that the user can rename the extra slot.

40

 ATG requirement: Set a Ringtone to ―SIM 1‖

 ATG Use Case: Set a Ringtone with ―SIM 1‖ as generic.

 Operation: Set

 Patient: Ringtone

 Extra (Generic): SIM 1

If the association between the actions (dependencies or cancellations) does not exist in the

database, it is necessary to use the Kaki graphical interface to store them once we were not able

to infer this from the requirements. In Section 4.1, we will show, step-by-step at how to do this.

Figure 15 illustrates how consistency and dependency analysis happen. In this example, the

user forgets the action Open the Settings from requirement, and the system shows the correct

sequence. The user decides whether to accept or ignore the suggestion. Then, we accomplish our

second challenge: to supply consistency and dependency analysis for the CNL semantics in order

to check individual instances and their relationships.

Figure 15 – Consistency and dependency analysis

3.4 AUTOMATIC TEST CASE GENERATION

TaRGeT is a powerful tool for test case generation from natural language, but it requires a

constrained from of use cases described in a tabular form. In the current context of Motorola

Mobility, instead of use cases, more abstract requirements are more commonly available. To

mitigate the user's effort to follow the TaRGeT input model, the ATG automatically creates the

input according to the information extracted by the extraction algorithm. TaRGeT has so many

features, but we use only two main features, as shown in Figure 16.

Figure 16 – TaRGeT's Feature Model

Source: [37]

41

Thus, TaRGeT can generate possible scenarios for that requirement, automatically, and we

reach our third challenge. We show an example in Appendix 0 with input formats both in Word

and in XML, besides the respective output.

3.5 TEST AUTOMATION

The integration with Zygon provides two benefits: test automation with potential reuse,

corresponding to the challenge 4.

Due to the imposed standard to write requirements in the CNL, the TCs created

automatically by TaRGeT are capable of automation using Zygon. If the test case step to be

automated has similarity with existing ones in the database, then the implementation us reused

using NLP techniques to combine natural language test steps with already automated test actions

in the database.

According to [38] the tool can achieve a reuse rate of up to 70%. Figure 17 shows the

corresponding test actions (on the right) for the test steps entered in the tool (left), for example.

Figure 17 – Reusing action by matching similar descriptions

Source: [17]

If the test step does not exist in the database, it is possible to capture its execution,

including using parameterization, as shown in Figure 18 and Figure 19. More details on how to

use the tool can be found in [17].

Figure 18 – Capture screen

42

Figure 19 – Choose value to variable

3.6 JIRA INTEGRATION

Motorola Mobility projects are managed by the Jira platform, a modified instance called

Dalek. In order not to introduce another tool to Motorola employees, we have created a strategy

for integrating our project with this platform. In Dalek, it is common to develop a test suite from

an XLS file. So we took the output of TaRGeT and generated an XLS file compatible with Jira.

Figure 20 illustrates an example of this file. Finally, we have reached our last challenge.

Figure 20 – XLS file

43

4 TOOL SUPPORT

In this chapter we discuss how the strategy described in the previous chapter was designed

and implemented. Our tool is developed as a Kaki’s plugin; therefore, it uses the same

architecture, as shown in Figure 21. We highlight the components which we need to implement

new code. Other components we reuse from Kaki; more details on how they are implemented

can be found in [39].

The ATG tool is written in JavaScript
9
 (it is multi-platform), using Node.js

10
, an open

source server environment. The GUI was built using a progressive framework, Vue.js
11

, which

provides a declaratively render data to the DOM (acronym for Document Object Model, a

standard for accessing valid HTML documents), i. e., the data and the DOM are now linked, and

everything is now reactive.

To optimize the communication between client application and server application, we

chose to use NGINX
12

, high-performance HTTP (HyperText Transfer Protocol) server and

reverse proxy, and Express JS
13

, which provides a thin layer of fundamental web application

features, without obscuring Node.js features. We use mongoDB
14

 as database to store the data.

RabbitMQ
15

 enables one to handle messaging traffic quickly and reliably, as well as being

compatible with various programming languages, native administration interface and cross-

platform.

The module responsible for doing the semantic analysis was implemented in Alloy [40],

which receives instances according to the notation used to represent the processed syntax tree

and maps it into an intermediate formalism to reason about its properties.

Figure 21 – ATG Architecture

Figure 22 shows the tool interface. In the upcoming subsections, we present how ATG

works according to an example show previously, step by step.

9
 https://www.javascript.com/

10
 https://nodejs.org

11
 https://vuejs.org/v2/guide/

12
 https://www.nginx.com/

13
 https://expressjs.com/

14
 https://www.mongodb.com/

15
 https://www.rabbitmq.com/

44

Figure 22 – ATG tool

Each phase of the ATG strategy, presented in Section 3, is realized by a different

component, which was modeled on a high-level process diagram using Business Process Model

and Notation (BPMN) (see Figure 23).

Figure 23 – ATG process

To guide the explanation of the tool operation, we detail each component at the user

interface level, as well as its implementation/architecture options, as shown in Table 5.

45

Table 5 – Components details
A

T
G

Write requirements in ATG’s CNL In this step the test engineer needs to write

requirements in the CNL, as discussed in Section 3.1.

Generate test suit It is the core of our strategy, explained in Section 3.4. Only with a

written standardized requirement, the tool can generate test suits automatically.

Export to Dalek The tool allows exporting an XLS file that can be imported into Dalek,

see further details in Section 3.6.

K
A

K
I

Consistence and dependency analysis As each step of the test suite generated by the

ATG is already compatible with Kaki, the tool can automatically check for

consistency and derive the dependencies required to run without any human

interference. Further details on how the mapping between the ATG and Kaki is

done, as well as the process for checking the consistency and verifying the

dependencies, are described in Section 3.3.

Z
Y

G
O

N

Match test step with an action already stored It is necessary that texts similar to test

actions already stored in the database be replaced by them since Kaki CNL was

built on the concept of frames, which is a structure to store data about a previously

known situation [31]. These frames contain prefixed slots that represent an

instance of a specific action. Thus, we will be able to automatically, if they are

finite and well defined, in pre-established commands or responses.

Reuse Action As one of the objectives of our strategy is the reuse, when searching for a

test step, there is processing in the text to verify similarity, as described in Section

3.5.

Capture new action When the test step is not stored, or there is no similarity between

other test steps already stored, we have adopted the C&R strategy to perform the

automation of the test step. It is an advantageous automation technique especially

for people who do not know how to program.

Store step At the end of the capture, the user can save the test step and can be reused

later.

Store test case A TC is composed of several actions, which in turn can be an elementary

action or composed of other actions (see Figure 24). Each action/test step can be

stored, as well as the whole case test can too. It is excellent, especially in a mobile

context, since there is a diversity of devices to be tested, i.e., the same TC runs

several times.

46

Z
Y

G
O

N

Figure 24 – TestCase structure

Execute test case The last component refers to the execution of the case test. This

execution can be done soon after the capture of the test steps or a posteriori.

4.1 PARSER

The Parser used in this work was the same one used by Gustavo Carvalho for NAT2TEST

[25], with a few modifications. It was possible because a version of the Generalized LR (GLR)

parsing algorithm [41] was implemented, which allows adapting the grammar and generation of

an appropriate parser automatically, without any extra changes required in the code. Unlike the

other modules, it was written in Java.

It is a context-free parser, which is responsible for parsing the list of requirements

according to the grammar defined and explained in Section 3.1.2. However, before this analysis,

it is necessary that each word is inserted in the dictionary, along with its grammatical class.

Thus, it can be said that there is also a morphological analysis.

In linguistics, the result of the morphosyntactic analysis defines the POS categories.

Similar to this, but in the area of natural language processing, a customization of the POS-Tagger

algorithm was implemented in the parser [25]. For each possibility of a match with the rules, a

syntax tree is constructed. For this reason, we cannot say that the language is entirely free of

ambiguity since the generation of all possible trees allows for lexical ambiguity. For example, up

can be a preposition, an adverb, an adjective or a verb. This is the big difference of the parser for

a programming language compiler, where for each input only one output is generated, that is, it

is deterministic.

In ATG, we use the parser so that as long as the requirement is not parsed correctly, there

is no generation of syntax trees. When there is a change in the coloring of the text box and in the

text itself (green), the user knows that the sentence is spelled correctly and can proceed, as

shown in Figure 25. The user can also create multiple entries with requirements for the same

feature, which are processed separately, but, in the end, the generated tests are unified. The

Feature Id and Feature Title fields are required.

47

Figure 25 – Sentences well-formed

When entering a word and giving space, the parser analyzes the text written so far and

indicates the grammatical classes and/or special words of the expected grammar (see Figure 26),

shown just below the input box.

Figure 26 – Runtime Parser analysis

If a word is not in the dictionary, the following error message is displayed: The word „test‟

is not defined in the lexicon. This message appears in the same suggestions field.

48

As mentioned in Section 3.1.2, the user can create aliases or refer to them in the ALIAS tab

(see Figure 27). It is a straightforward procedure: click on the New button, fill in the fields with a

key and a value. Finally, click the Save button.

Figure 27 – How create aliases

4.2 USE CASES

Once the requirements are green, one can press the Transform button. The following

screen (see Figure 28) shows all automatically generated use cases with their respective test

steps. Each step contains three fields: initial setup, test step description, and expected results.

The initial setup field indicates the conditions that step is conditioned to. If it is empty, there are

no conditions. The test step description field is the test action itself. The expected results field is

generated automatically, so the tool transforms the test action to passive voice. Any of these

fields can be edited, and the test action can be deleted.

49

Figure 28 - Use Cases screen

Alternative flows contain the from step and to step fields that are computed at runtime,

based on the connectives of the input requirement, as mentioned in Section 3.2. The value in

fromStep indicates until which step the main flow will be executed to begin its alternative flow.

When the value is START, it means that the test run will begin from the alternative flow. The

value in toStep indicates to which main flow’s step the alternative flow will return when it

finishes. When the value is END, the execution of the test will not return to the main flow.

4.3 KAKI INTEGRATION

The test actions are extracted from the requirement(s) and mapped into the Kaki slots

(Figure 29), and the respective frames are also created (Figure 30 – Created framesFigure 30).

50

Figure 29 – Created slots

Figure 30 – Created frames

However, the associations (dependencies and cancellations) are not automatically

registered. The following is a step-by-step guide on how to do this last step. It is worth noting

that once the association is registered, it will serve for future interactions (see Figure 31).

Figure 31 – Associations

51

When one clicks the Add button, a new screen will appear, and the user can choose

whether to register a dependency (Figure 32) or a cancellation.

Figure 32 – Add a dependency

Once this is done in the Use Cases screen, the user can see all the use cases and, clicking

on the Save button, besides saving the information in the database, it also activates the

consistency and dependency analysis. If there is any inconsistency, a box with the tool

suggestions below the test step will be shown, as already mentioned in Figure 15.

4.4 TARGET INTEGRATION

At the bottom (right) of the Use Cases screen (see Figure 33), there is also the

Generate Test Cases button. When clicked, the stored information of the UCs is used to

create the entry of TaRGeT, transparently to the user. An example of the automatic created

input to TaRGeT (XML file) is given in Figure 33 – Input TaRGeT

.

<?xml version="1.0" encoding="UTF-8"?>

<phone xmlns="user-view.target.v20071129">

 <feature>

 <featureId>5204</featureId>

 <name>Support different ringtones for each SIM in Dual SIM devices</name>

 <useCase>

 <id>UC_01</id>

 <name></name>

 <description></description>

 <setup></setup>

 <flow>

 <description></description>

 <fromSteps>START</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1A</stepId>

 <action>Open the Settings.</action>

 <condition></condition>

 <response>the settings was opened.</response>

 </step>

 <step>

52

 <stepId>2A</stepId>

 <action>set a ringtone to "SIM 1"</action>

 <condition>the phone has one SIM card</condition>

 <response>the ringtone was set.</response>

 </step>

 [...]

 </flow>

 <flow>

 <description></description>

 <fromSteps>1A</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1B</stepId>

 <action>set a ringtone to "SIM 1".</action>

 <condition>the phone has two SIM cards</condition>

 <response>the ringtone was set.</response>

 </step>

 <step>

 <stepId>2B</stepId>

 <action>set a ringtone to "SIM 2".</action>

 <condition>the phone has two SIM cards</condition>

 <response>the ringtone was set.</response>

 </step>

 [...]

 </flow>

 <flow>

 <description></description>

 <fromSteps>1A</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1C</stepId>

 <action>Do not show two options.</action>

 <condition>the phone has no SIM card</condition>

 <response>two option was not shown.</response>

 </step>

 [...]

 </flow>

 </useCase>

 </feature>

</phone>

Figure 33 – Input TaRGeT

ATG runs TaRGeT in background TaRGeT with this input, and the TCs are generated. The

output of TaRGeT was modified to a JavaScript Object Notation (JSON) to facilitate processing

of the data as well as its display since the project was written in JavaScript.

4.5 TEST CASES

Finally, the test cases are displayed on the screen (see Figure 34). From there it is possible

to do two activities: (I) export an XLS file, which is to export to Dalek; (II) automate the TCs

using Zygon.

53

Figure 34 – Test cases screen

Underneath each case test there is a Type a label field. It can be filled with new labels or

reuse old ones and serves to signal which areas belong to that test and filters future searches.

54

5 EXPERIMENTAL EVALUATION

This chapter presents how we conducted the planning of an experimental evaluation to

measure the feasibility and effectiveness of using our strategy to generate test cases from

requirements written in natural language (Section 5.1) as well as the results obtained (Section

5.1.4). Section 5.3 shows the threats to the validity of our experimental study.

5.1 PLANNING

We followed the planning model described in [42] to evaluate our work. Some

experimental evaluations were conducted with the purpose of validating whether it is possible to

write requirements using the CNL proposed by us and if the generated test cases cover those

manually generated, and, finally, whether it is possible to automate these test cases using Zygon.

In this way, we compare the use of ATG with our particular scenario (Motorola project).

Besides, we performed a tool usability analysis with Motorola Mobility employees. After

discussing the objectives of the ATG’s evaluation, we present some research questions with their

respective metrics.

5.1.1 Definition

The objective of this evaluation was structured according to the GQM (Goal, Question and

Metric) approach [43], described below:

The main purpose is to analyze the practical use of ATG to generate test cases from

requirements, comparing the manual creation of test cases and the automatic creation using the

tool, concerning the impact on the process of automation of tests. From the point of view of the

test engineers, the evaluation also involves analysis respect to the ease of use of the tool, as well

as the ability to generate test cases automatically in the Motorola Mobility context.

5.1.2 Ethical Concerns

It is important to report that this research take care of the ethical issues, guaranteeing the

rights of the participants, always being guided by Resolution 466/12 of the Conselho Nacional

de Saúde (CNS, Brazilian National Health Council).

General and specific information are on the Consent Form (Appendix 0), which deals with

permission and use of captured data, formalization of study participation, study objectives,

investigators, procedures, data collection, confidentiality of records, risks and/or discomforts,

costs and declaration of consent.

The evaluation has been carried out by collaborators of the CIn-UFPE/Motorola

cooperation project. Participation in the experimental evaluation is voluntary and participants

and may request that their data not be used for analysis.

55

5.1.3 Research questions

The research questions that the present paper tries to answer are the following:

[Q1] Is it feasible to write requirements using the CNL defined by us using the GUI?

 Metric I: Number of questions to specialist consultations after

training.

 Metric II: Rate acceptance of interface usability.

[Q2] Does our approach generate test steps that are automatable?

 Metric III: Rate of automated test steps using Zygon.

[Q3] Is there a reduction in time for generating test cases?

 Metric IV: Average of time spent to create a set of TCs disregarding

the execution and preparation time.

[Q4] Is the strategy able to automatically generate the manually designed test cases?

 Metric V: Percentage of generated tests with respect to the total

number of manually designed tests.

5.1.4 Participants

Fifteen (15) Motorola collaborators from the CIn-UFPE/Motorola project and a

collaborator from Motorola de Jaguariúna participated in this study. The evaluations were carried

out in person in the technical areas of the project, and remotely (from Jaguariúna), from

December 2018 to January 2019.

5.1.5 Procedures and data collection

To carry out this evaluation, the participants underwent training (slide show and tool

demo) to use the Auto Test Generator tool, in person in Recife and remotely for the Jaguariúna

collaborator.

The experimental evaluation occurred in one of the technical areas of Motorola of the

Center of Informatics (CIn) of the Federal University of Pernambuco (UFPE) and in Motorola

Mobility of the city of Jaguariúna. Each participant used a computer, with ATG installed. As a

guideline for the accomplishment of the experiment, each participant has: (I) a script describing

the experimental aspects to be understood and the scenario of the tool to be explored and (II) the

slides used in training. A period of 30 minutes was stipulated to read the roadmap and its

specification before beginning the execution of the evaluations and then responding to the

questionnaire. The application of the experimental evaluation was monitored and guided by a

researcher.

The data of the analyzed variables are collected through the questionnaire and notes during

the execution of the experimental evaluations. Also, Jira information (requirements and test

cases) are summarized.

56

5.2 EXECUTION AND RESULTS

To obtain metrics associated with the research questions, we present a description of how

each stage on experimental evaluation was performed and the respective results are detailed as

follows. In the first stage on experimental evaluation, a Motorola test engineer rewrote two

requirements to become adherent to our CNL. In the second stage, in addition to these two

requirements, we considered five others.

5.2.1 Experimental evaluation – stage I

The first experimental evaluation was conducted to verify whether using the CNL by test

engineers to write requirements would be feasible. Also, with this experimental evaluation, we

were able to compare the time spent by the software engineer to write the test suite using the tool

with the time spent by the engineer to create the same suite without the ATG. These

requirements were chosen according to the following criteria:

 They must be real requirements;

 They had to have previously created test cases;

 They had to be related to features to run in any environment, such as not being

specific to the US carrier or needing to use some Bluetooth accessory. Just to make

test execution easier.

The (original) requirements chosen to be rewritten were:

 [RQ001]: This feature is to extend the functionality of Settings – Sound &

notification in order to allow user to set different ringtones for each SIM in Dual

SIM devices.

 [RQ002]: Enable user to directly attach an audio file to a message through the

AOSP messaging app. Must support MP3, MP4, 3gp, and .aac formats.

Right after the choice of requirements, we perform a training with a Motorola test engineer

on how to use the ATG. This had to be done remotely, because the person available to help us

works in São Paulo. The training begins with the explanation of the purpose of the tool, and then

we perform a straightforward example to demonstrate how to use the graphical interface. This

training lasts approximately 30 minutes.

After this step, we requested that he recorded the time to rewrite the requirements. From

this we were able to collect the metrics I and IV because we counted how many times, after the

training, we were asked for some explanation about the CNL during the rewrite of the

requirements. This experimental evaluation also contributes data to metrics III and V.

In addition, we describe the settings of the computer with which the experimental

evaluation was performed, as shown in Table 6.

Table 6 – Experimental evaluation I - Computer configuration

Operating system Windows 10

Processor Intel i7-6500U 2.5GHz

Memory (RAM) 8GB

57

5.2.2 Experimental evaluation – stage II

Feedback on the usability of the graphical interface of our tool was essential for us. So, for

the primary purpose of evaluating the graphical interface, we set up an environment (see Table

7) and requested that fifteen Motorola employees (CIn/UFPE) use the tool, nine from these

professionals have used a tool to automate test.

Table 7 – Experimental evaluation II - Computer configuration

Operating system Fedora 28

Processor Intel i7-6500U 2.5GHz

Memory (RAM) 8GB

To obtain metric II, after the use of the tool, each participant was asked to complete a

questionnaire. A template similar to this questionnaire is in Appendix 0 and available at this link.

5.2.3 Results

Conducting these experimental evaluations, we have achieved some favorable and

unfavorable results in our strategy.

The first experimental evaluation provides us with information for measuring metrics I and

IV. First, the test engineer rewrites RQ001, and he made us three queries to be able to do it.

Already for RQ0002, only one was made. The engineer told us that he felt more comfortable

writing the second requirement. Chart 1 below illustrates the metric I.

Chart 1 – Specialist consultations

As reported in the previous section, we asked the test engineer to record the time he needed

to rewrite RQ001 and RQ002, with similar complexity. Besides, we analyze the number of test

cases generated. Thus, it is possible to obtain the average of time spent to create a set of TCs

disregarding the execution and preparation time (metric IV).

The rewritting of RQ001 and RQ002 (which produced 11 test cases using ATG) has taken

approximately 10 hours. From this information, we can calculate the average of creating each

test case (AATG) which is approximately 0,9h.

The Motorola test team has provided us with a spreadsheet containing all test cases created

by the team from May 2018 to January 2019, as well as the time it takes to create them. The

creation of this worksheet with 215 test cases has taken 172,5h and from this information, we

can calculate the average (Amanual) that is approximately 0,8h.

0

1

2

3

4

RQ001 RQ002

Specialist consultations

https://docs.google.com/forms/d/e/1FAIpQLSd0jW_WJKNvs8lpYbxQBKrSi-Kmv5qbIkqULJIavmq9iGpGuQ/viewform?vc=0&c=0&w=1&usp=mail_form_link

58

Comparing Amanual with AATG, we perceive that they are quite close. That is, the difference

is not significant because it is only 6 minutes. It should be noted that the initial effort may be

similar, but our strategy standardizes the requirements as well as generates automated test cases.

With metric II we evaluated the graphical interface of the tool and got good feedback, as

can be seen in Chart 2. There were no negative responses about the tool's interface and more than

80% of the collaborators strongly agreed that the user interface is friendly.

Chart 2 – ATG tool has a friendly user interface

Another good feedback on the usability of the tool is that 75% agree that the ATG interface

helps the user to write requirements through the suggestions of the next grammatical classes

and/or expected special words, as shown in Chart 3.

Chart 3 – ATG interface helps the user to write requirements

One contributor who disagreed with the statement suggested that a step-by-step tutorial is

done. Two others whom both answered the statement with Neutral suggested that words be

added to the dictionary through the graphical interface. Only half the contributors said there was

a reduction in the effort made for automation (see Chart 4). We assume that this is because the

initial effort to write the requirement following in a standardized way is similar to the effort to

write the test cases associated with this requirement and could be confirmed by the metric IV

analysis.

59

Chart 4 – ATG interface helps the user to reduce the automation effort

However, in general, the graphical interface of the ATG has had positive feedback,

needing improvements that we will take into account in our future work.

One of the most important metrics, metric III, validates the number of generated test steps

that are automated. Seven requirements were analyzed with 34 test cases in total. From these

TCs we counted 151 test steps and only 20 steps could not be using Zygon, i.e., about 86% of the

steps were automated. An example of a step that one cannot do is Resize the widget because

high-complexity gestures are required to perform this type of action. Even a person with little

skill feels he may feel difficulty performing this action with his own hands.

Finally, with the metric V, we evaluate if the test cases generated by the tool covered the

cases of manual tests previously created. All test cases have been covered, and two additional

test cases were generated by ATG, not foreseen by test engineers.

5.3 THREATS TO VALIDITY

A concern in any experiment is whether its results are valid. The results are considered to be

adequately validated if they apply to the population they want to generalize. The subsections

below detail the different types of threats to validity applied to the proposed experimental

evaluation and ways to mitigate them.

Regarding the rewriting time of the requirements and the number of queries made to the

expert can vary greatly, since previous experiences (learning effect) can interfere in the

experiment. Soon, a more experienced test engineer can shorten the rewrite time of the

requirements, much like a less experienced test engineer can increase it. Thus, the average

TCs/hour and the number of queries may be different. However, we believe that such values will

be similar if the level of experience is also similar. In subsequent experiments, we intend to

involve more participants and divide them by trial time with tests, in order to evaluate a more

realistic scenario composed of results of a larger group.

We perform the analysis with artifacts and personnel of a real project. However, the number

of test cases associated with each requirement may vary from project to project. All requirements

evaluated could be rewritten, but it might be the case that this is not possible. To mitigate this

type of threat, in subsequent experiments, we will increase the number of requirements analyzed.

60

It is worth mentioning, however, that we only consider tests for the Android
16

 platform that

could be automated only by interactions on the screen and visually visible.

The conclusion validity is related to the existing challenges to generate a valid conclusion

from the relationship between treatment and experiment results. Among other factors, the

conclusion validity involves a correct analysis and statistical interpretation of the results, the

reliability of the measurements, the heterogeneity of the subjects, among others. We made our

evaluation of the usability of the tool with professionals who belong to the same context (all

work and/or research in the field of computing), so this can interfere with most of the

information. However, the tool was developed for use by test engineers, that is, they are also in

the field of computer science.

Threats related to construct validity arise due to human factors, such as incorrect behaviors

on the side of participants in general. Timing of the process is a crucial factor in this study. Some

guidelines are passed on to the participants, such as moments to start, pause and stop the

stopwatch. If the timer is not activated/deactivated the whole experiment will be repeated.

During the execution of this experimental evaluation there may be a malfunction both by the

installed software and by the machines, which will compromise the end of the experiment. There

were no reports of these types of threats at the time of the execution of the experimental

evaluations so they did not need to be repeated.

16

 https://www.android.com/

61

6 CONCLUSIONS

In this dissertation, we presented the Auto Test Generator strategy and tool to

automatically generate test cases from requirements written in natural language, dispensing the

need to learn specific notations. Yet, the strategy is based on a controlled natural language, thus

reducing ambiguity and standardizing the text. The primary goal of this work was to improve the

testing process as a whole, from the requirements writing by test designers to test scripts

encoding by developers.

It is known that quality is an increasing core issue in companies, including software

industry. These companies maintain specific teams in charge of executing processes that

guarantee software quality, among which we highlight software testing. The testing processes

and the related artifacts (e.g., test cases) are central to verify the products quality. Test cases are

guides in the software verification process, being more critical than other technical documents,

since incorrect interpretations may entail risks for the testing process and for the users.

Therefore, well-written test cases are essential artifacts in the products quality assurance process.

In this light, ATG offers a strategy for the generation of clear and unambiguous test cases,

which are derived from the CNL based requirements. Users are be able to write requirements

using a CNL specially designed for requirements, counting on a restricted vocabulary and pre-

defined grammar formations. Use cases are then automatically derived based on the syntactically

correct requirements. Following, these use cases are given as input to the TaRGeT tool, which

automatically generates test cases for a variety of scenarios. Note that the test case generation

process is transparent to the user, who does not need to get involved with more complex formal

specifications.

Unlike other test automation tools, ATG provides dependency and consistency analysis

between steps of a test case, and suggests consistent user sequences. Since no other approach

mentions similar functionality, we could not compare ATG with other tools with respect to this

aspect.

It is worth mentioning that the generated test cases may be automated using Zygon tool.

We evaluated our proposal regarding automated test steps considering real examples from our

industrial partner Motorola Mobility. As expected, from the selected input requirements, we

were able to create TCs with more than 90% of automated test steps using Zygon.

In summary, our contributions include conceptual and design results, software

implementation, and empirical assessments. As such, we believe that this research has succeeded

in achieving its goal by providing an answer to its primary research question: how to

automatically generate test cases from natural language requirements and, in particular,

consistent and automated test cases. Following, we point out possible future work.

6.1 FUTURE WORK

Our work creates opportunity for several future research directions and improvements.

62

Improve integration with TaRGeT As mentioned in Section 3.4, TaRGeT has several features,

among which, we highlight the parameterization. This functionality would be helpful to

increase the reuse of the text of the requirements. For example, if the requirement states

that a specific functionality should work with a list of applications, the name of those

applications could be parametrized. Another exciting feature of TaRGeT is the use of

filters for generating test cases. Those filters allow the user to select the test cases

according to different criteria, such as requirements, use cases, the purpose of the test and

similarity of the test cases. Those filters are very useful since, due to time or budget

constraints, it is often not possible to run all the generated tests. More information about

TaRGeT can be found in [44].

Provide integration to other existing tools Auto Test Plan (ATP) and Auto Test Coverage

(ATC) [45] are tools developed within the in Motorola Mobility partnership as well. The

ATP determines weights and criteria that are relevant for prioritizing the test cases for a

regression campaign through the use of the Z3 solver, based on the historical data of the

test cases. ATC is a tool to obtain code coverage on Android devices, without the use of

source code instrumentation, through CPU profilers. Promoting the integration of these

tools with the ATG would promote several benefits, such as providing guided exploratory

tests a guided and more elaborate approach.

Improve user interfaces Some improvements to the current ATG user interface are listed

below: (I) allow the insertion of words in the dictionary on the home screen; (II) allow

insertion or exclusion of alternative flows in Use Cases screen; (III) provide an option to

undo the exclusion of test steps; (IV) implement an autocomplete for aliases; (V)

persistence of use cases.

Agreement and regency analysis Our grammar is not capable of performing an agreement and

regency analysis between words, which would be beneficial to identify whether the

regency of a given verb requires preposition or not, and in the former case, which

prepositions can follow the verb. The dependency between article and noun involves the

choice between a and an, depending on the first letter of the noun that follows the article.

In turn, the regency analysis would help to identify which prepositions can follow a given

transitive verb.

Perform more experiments We intend to consider more requirements, particularly involving

Motorola’s test engineers and design a controlled experiment to compare the current

Motorola practice with. This is an important step towards effectively deploying the tool.

63

REFERENCES

1. Globo Cultura. Disponivel em: <https://oglobo.globo.com/cultura/ariano-suassuna-tarefa-

de-viver-dura-mas-fascinante-9343371>. Acesso em: 31 Março 2019.

2. SCANNIELLO, G. et al. On the Effect of Using SysML Requirement Diagrams to

Comprehend Requirements: Results from Two Controlled Experiments. Proceedings of the

18th International Conference on Evaluation and Assessment in Software Engineering

(EASE '14), 2014.

3. SOMMERVILLE, I. Engenharia de Software. 6ª. ed. [S.l.]: Addison Wesley, 2003. ISBN

85-88639-07-6.

4. OMG - Object Management Group. Disponivel em: <https://www.omg.org/>. Acesso em:

fevereiro 2019.

5. BITTNER. Use Case Modeling. Boston, MA, USA.: Addison-Wesley Longman Publishing

Co., Inc., 2002.

6. HEUMANN. Generating test cases from use cases. The rational edge, v. 6, n. 1, 2001.

7. RAMLER, R.; WOLFMAIER, K. Economic perspectives in test automation - balancing

automated and manual testing with opportunity cost. Proceedings of the 2006

International workshop on Automation of Software Test (AST). New York, NY, USA:

ACM. 2006. p. 85-91.

8. BURNSTEIN, I. Practical software testing: a process-oriented approach. Springer Science

& Business Media, 2003.

9. BALCER, M.; HASLING, W.; OSTRAND, T. Automatic Generation of Test Scripts from

Formal Test Specifications. ACM, New York, NY, USA, v. 14, n. 8, p. 210–218, 1989.

10. BERTOLINO. Software testing research: Achievements, challenges, dreams. 2007 Future

of Software Engineering (FOSE'07). [S.l.]: IEEE Computer Society. 2007. p. 85–103.

11. LEUNG, H. K.; WHITE, L. Insights into regression testing [software testing]. Software

Maintenance, 1989., Proceedings., Conference on. [S.l.]: IEEE. 1989. p. 60–69.

12. GRAVES, T. L. et al. An empirical study of regression test selection techniques. ACM

Transactions on Software Engineering and Methodology (TOSEM), v. 10, n. 2, p. 184–

208, 2001.

13. CHANDRA, R. et al. Towards Scalable Automated Mobile App Testing. Technical

Report MSR-TR-2014-44. 2014.

14. LEOTTA, M. et al. Capture-replay vs. programmable web testing: An empirical assessment

during test case evolution. 20th Working Conference on Reverse Engineering (WCRE),

Koblenz, Germany, October 2013. 272–281.

15. HARTMAN, A. Model based test generation tools survey, AGEDIS Consortium, Tech. Rep.,

2002.

16. BORBA, P. et al. TaRGeT - Test and Requirements Generation Tool. Motorola’s 2007

Innovation Conference (IC’2007), Software Expo Session, Lombard, Illinois, USA,

October 2007.

17. ARRUDA, F. M. C. Test Automation from Natural Language with Reusable Capture &

Replay and Consistency Analysis. MA Thesis. Computer Science: UFPE. 2017.

18. SCHWITTER, R. English as a Formal Specification Language. Proceedings of the 13th

International Workshop on Database and Expert Systems Applications, 2002.

19. BODDU, R. et al. RETNA: from Requirements to Testing in a Natural Way. Proceedings of

the RE, p. 262-271, 2004.

20. SANTIAGO JUNIOR, V.; VIJAYKUMAR, N. L. Generating Model-based Test Cases from

64

Natural Language Requirements for Space Application Software. Software Quality

Journal, v. 20, p. 77-143, 2012.

21. ESSER, M.; STRUSS, P. Obtaining Models for Test Generation from Natural-Language like

Functional Speci. International Workshop on Principles of Diagnosis, p. 75-82, 2007.

22. BARROS, F. A. et al. The ucsCNL Tool: A Controlled Natural Language for Use Case

Specifications. Proceedings of the 23rd International Conference on Software

Engineering & Knowledge Engineering (SEKE'2011), p. 250-253, 2011.

23. NOGUEIRA, S.; SAMPAIO, A.; MOTA, A. Test generation from state based use case

models. Formal Aspects of Computing. [S.l.]: n.3. 2014. p. 441–490.

24. WONG, E. et al. Dase: Document-Assisted Symbolic Execution for Improving Automated

Software Testing. IEEE/ACM 37TH IEEE INTERNATIONAL CONFERENCE ON

SOFTWARE ENGINEERING, v. 1, p. 620–631, 2015.

25. CARVALHO, G. et al. NAT2TEST Tool: From Natural Language Requirements to Test

Cases Based on CSP. Software Engineering and Formal Methods. [S.l.]: [s.n.]. 2015. p. 283-

290.

26. FILLMORE, C. J. The Case for Case. In: BACH; HARMS (Ed.). Universals in Linguistic

Theory. New York: Holt, Rinehart, and Winston. 1968. p. 1–88.

27. CARVALHO, G. et al. NAT2TESTSCR: test case generation from natural language

requirements based on scr specifications. Science of Computer Programming, v. 95, p.

275–297, 2014.

28. CARVALHO, G. et al. Model-Based Testing from Controlled Natural Language

Requirements. In: Artho, C., Ölveczky, P.C. (eds.) Formal Techniques for Safety-Critical

Systems, Communications in Computer and Information Science. Madrid: Springer. 2014. p.

19–35.

29. CARVALHO, G.; SAMPAIO, A.; MOTA, A. A CSP Timed Input-Output Relation and a

Strategy for Mechanised Conformance Verification. In: Formal Methods and Software

Engineering. In: Formal Methods and Software Engineering, LNCS. [S.l.]: Springer Berlin

Heidelberg. 2013. p. 148–164.

30. WYNNE, M.; HELLESOY, A. The cucumber book: behaviour-driven development for

testers and developers. [S.l.]: Pragmatic Bookshelf, 2012.

31. MINSKY, M. A framework for representing knowledge. The Psychology of Computer

Vision, 1975.

32. KUHN, T. A principled approach to grammars for controlled natural languages and

predictive editors. Journal of Logic, Language and Information, v. 22, n. 1, p. 33–70,

2013.

33. ALLEN, J. Natural Language Understanding. California: Benjamin/Cummings, 1995.

34. CRYSTAL, D. A Dictionary of Linguistics and Phonetics. 6th. ed. [S.l.]: Wiley-Blackwell,

2008.

35. CHOMSKY, N. Aspects of the Theory of Syntax. Cambridge, Massachusetts: MIT Press,

1965.

36. FREEMAN, E. et al. Head First Design Patterns: A Brain-Friendly Guide. [S.l.]: O'Reilly

Media, 2009.

37. TARGET Product Line. Disponivel em:

<https://twiki.cin.ufpe.br/twiki/bin/view/TestProductLines/TaRGeTProductLine>. Acesso

em: 10 jan. 2019.

38. ARRUDA, F.; SAMPAIO, A.; BARROS, F. Capture & Replay with Text-Based Reuse and

Framework Agnosticism. Software Engineering and Knowledge Engineering (SEKE),

65

San Francisco, California, USA, 2016. 420-425.

39. SAMPAIO, A.; ARRUDA, F. Formal Testing from Natural Language in an Industrial

Context. Brazilian Symposium on Formal Methods (SBMF). Salvador: [s.n.]. 2016. p. 21-

38.

40. JACKSON, D. Software Abstractions: logic, language, and analysis. [S.l.]: MIT press,

2012.

41. TOMITA, M. Efficient Parsing for Natural Language. Kluwer Academic Publishers, 1986.

42. JURISTO, N.; MORENO, A. M. Basics of Software Engineering Experimentation.

Norwell, MA, USA: Kluwer Academic Publishers, 2001.

43. BASILI, V. R.; CALDEIRA, G.; ROMBACH, H. D. The Goal Question Metric Approach.

Encyclopedia of Software Engineering, 1994. 528– 532.

44. FERREIRA, F. et al. TaRGeT: a Model Based Product Line Testing Tool. Congresso

Brasileiro de Software (CBSOFT), Salvador, Bahia, Brasil, 2010.

45. MAGALHÃES, C. et al. Evaluating an Automatic Text-based Test Case Selection using a

Non-Instrumented Code Coverage Analysis. Proceedings of the 2Nd Brazilian Symposium

on Systematic and Automated Software Testing, Fortaleza, 2017.

66

APPENDIX A – TARGET EXAMPLE

Table 8 – Original input TaRGeT - Word

Feature 1111 – My Phonebook
OBS.: The information presented here does not

correspond to a real Motorola application. These use

cases were only created in order to test the TaRGeT

tool.

Use Cases

UC_01 – Creating a New Contact

Description

This use case describes the creation of a new contact in the contact

list.

This is the use case main setup.

Main Flow

Description: Create a new contact.

From Step: START

To Step: END

Step Id User Action System State System Response
1M Start My

Phonebook

application.

My Phonebook

application is

installed in the

phone.

My Phonebook

application menu

is displayed.

2M Select the

New Contact

option.

 The New Contact

form is

displayed.
3M Type the

contact name

and the phone

number.

 The new contact

form is filled.

4M Confirm the

contact

creation.

[TRS_11111_10

1]

There is enough

phone memory to

insert a new

contact.

A new contact is

created in My

Phonebook

application.

Alternative Flows

Description: Insert extended information to the contact.

From Step: 3M

To Step: 4M

67

Step Id User Action System State System Response
1A Go to context

menu and

select

Extended

Information.

 The extended

information form

is displayed.

[TRS_111166_102]

2A Fill some of

the extended

information

fields.

 Some of the

extended

information form

is filled.
3A Press OK

softkey.

 The phone goes

back to New

Contact form. It

is filled with

the extended

information.

Description: Cancel the new contact creation.

From Step: 2M, 3M

To Step: END

Step Id User Action System State System Response
1B Press Cancel

softkey.

 The phone goes

back to My

Phonebook

application menu.

Description: Cancel the insertion of extended information

From Step: 3A

To Step: END

Step Id User Action System State System Response
1C Press Cancel

softkey.

 The phone goes

back to My

Phonebook

application menu.

Exception Flows

Description: There is no enough memory.

From Step: 3M, 3A

To Step: END

Step Id User Action System State System Response
1D Confirm the

contact

creation.

There is no

enough phone

memory.

A dialog is

displayed

informing that

there is no

enough memory.

[TRS_111166_103]

68

2D Select OK

softkey.

 The phone goes

back to My

Phonebook

application menu.

UC_02 – Searching a Contact

Description

This use case describes the searching of a previously created contact.

This is the use case main setup.

Main Flow

Description: Searching for a contact.

From Step: START

To Step: END

Step Id User Action System State System Response
1M Start My

Phonebook

application.

My Phonebook

application is

installed in the

phone.

My Phonebook

application menu

is displayed.

2M Select the

Search

Contact

option.

 The Search

Contact form is

displayed.

3M Type a string

of a

previously

inserted

contact.

There is at least

one contact in

the My Phonebook

application.

The Search

Contact form is

filled.

4M Select Search

softkey.

There is enough

phone memory to

insert a new

contact.

The list of

matched contacts

is displayed.

[TRS_11111_104]
5M Select Back

softkey.

 The phone goes

back to My

Phonebook

application menu.

Alternative Flows

Description: Open contact details.

From Step: 4M

69

To Step: 5M

Step Id User Action System State System Response
1A Select a

searched

contact.

 A searched

contact is

selected.

[TRS_111166_105]
2A Go to context

menu and

select Detail

Contact.

 A form containing

all information

related to the

selected contact

is displayed.
3A Select back

softkey.

 The phone goes

back to the list

of matched

contacts.

Description: There is no contact in the My Phonebook application.

From Step: 2M

To Step: END

Step Id User Action System State System Response
1B Type a string

to search for

any contact.

There is no

contact in the My

Phonebook

application.

The Search

Contact form is

filled.

2B Select Search

softkey.

 A dialog is

displayed

informing that no

contact was

found.

[TRS_11111_106]
3B Select Back

softkey.

 The phone goes

back to the

Search Contact

form.

Table 9 – Original input TaRGeT - XML

<?xml version="1.0" encoding="UTF-8"?>

<phone xmlns="user-view.target.v20071129">

 <feature>

 <featureId>1111</featureId>

 <name>My Phonebook</name>

 <useCase>

 <id>UC_01</id>

 <name>Creating a New Contact</name>

 <description>This use case describes the creation of a new contact in

the contact list.</description>

70

 <setup>This is the use case main setup.</setup>

 <flow>

 <description>Create a new contact.</description>

 <fromSteps>START</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1M</stepId>

 <action>Start My Phonebook application.</action>

 <condition>My Phonebook application is installed in the

phone.</condition>

 <response>My Phonebook application menu is displayed.</response>

 </step>

 <step>

 <stepId>2M</stepId>

 <action>Select the New Contact option.</action>

 <condition />

 <response>The New Contact form is displayed.</response>

 </step>

 <step>

 <stepId>3M</stepId>

 <action>Type the contact name and the phone number.</action>

 <condition />

 <response>The new contact form is filled.</response>

 </step>

 <step>

 <stepId>4M</stepId>

 <action>Confirm the contact creation. [TRS_11111_101]</action>

 <condition>There is enough phone memory to insert a new

contact.</condition>

 <response>A new contact is created in My Phonebook

application.</response>

 </step>

 </flow>

 <flow>

 <description>Insert extended information to the

contact.</description>

 <fromSteps>3M</fromSteps>

 <toSteps>4M</toSteps>

 <step>

 <stepId>1A</stepId>

 <action>Go to context menu and select Extended

Information.</action>

 <condition />

 <response>The extended information form is displayed.

[TRS_111166_102]</response>

 </step>

 <step>

 <stepId>2A</stepId>

 <action>Fill some of the extended information fields.</action>

 <condition />

71

 <response>Some of the extended information form is

filled.</response>

 </step>

 <step>

 <stepId>3A</stepId>

 <action>Press OK softkey.</action>

 <condition />

 <response>The phone goes back to New Contact form. It is filled

with the extended information.</response>

 </step>

 </flow>

 <flow>

 <description>Cancel the new contact creation.</description>

 <fromSteps>2M, 3M</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1B</stepId>

 <action>Press Cancel softkey.</action>

 <condition />

 <response>The phone goes back to My Phonebook application

menu.</response>

 </step>

 </flow>

 <flow>

 <description>Cancel the insertion of extended

information</description>

 <fromSteps>3A</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1C</stepId>

 <action>Press Cancel softkey.</action>

 <condition />

 <response>The phone goes back to My Phonebook application

menu.</response>

 </step>

 </flow>

 <flow>

 <description>There is no enough memory.</description>

 <fromSteps>3M, 3A</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1D</stepId>

 <action>Confirm the contact creation.</action>

 <condition>There is no enough phone memory.</condition>

 <response>A dialog is displayed informing that there is no enough

memory. [TRS_111166_103]</response>

 </step>

 <step>

 <stepId>2D</stepId>

 <action>Select OK softkey.</action>

72

 <condition />

 <response>The phone goes back to My Phonebook application

menu.</response>

 </step>

 </flow>

 </useCase>

 <useCase>

 <id>UC_02</id>

 <name>Searching a Contact</name>

 <description>This use case describes the searching of a previously

created contact.</description>

 <setup>This is the use case main setup.</setup>

 <flow>

 <description>Searching for a contact.</description>

 <fromSteps>START</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1M</stepId>

 <action>Start My Phonebook application.</action>

 <condition>My Phonebook application is installed in the

phone.</condition>

 <response>My Phonebook application menu is displayed.</response>

 </step>

 <step>

 <stepId>2M</stepId>

 <action>Select the Search Contact option.</action>

 <condition />

 <response>The Search Contact form is displayed.</response>

 </step>

 <step>

 <stepId>3M</stepId>

 <action>Type a string of a previously inserted contact.</action>

 <condition>There is at least one contact in the My Phonebook

application.</condition>

 <response>The Search Contact form is filled.</response>

 </step>

 <step>

 <stepId>4M</stepId>

 <action>Select Search softkey.</action>

 <condition>There is enough phone memory to insert a new

contact.</condition>

 <response>The list of matched contacts is displayed.

[TRS_11111_104]</response>

 </step>

 <step>

 <stepId>5M</stepId>

 <action>Select Back softkey.</action>

 <condition />

 <response>The phone goes back to My Phonebook application

menu.</response>

73

 </step>

 </flow>

 <flow>

 <description>Open contact details.</description>

 <fromSteps>4M</fromSteps>

 <toSteps>5M</toSteps>

 <step>

 <stepId>1A</stepId>

 <action>Select a searched contact.</action>

 <condition />

 <response>A searched contact is selected.

[TRS_111166_105]</response>

 </step>

 <step>

 <stepId>2A</stepId>

 <action>Go to context menu and select Detail Contact.</action>

 <condition />

 <response>A form containing all information related to the

selected contact is displayed.</response>

 </step>

 <step>

 <stepId>3A</stepId>

 <action>Select back softkey.</action>

 <condition />

 <response>The phone goes back to the list of matched

contacts.</response>

 </step>

 </flow>

 <flow>

 <description>There is no contact in the My Phonebook

application.</description>

 <fromSteps>2M</fromSteps>

 <toSteps>END</toSteps>

 <step>

 <stepId>1B</stepId>

 <action>Type a string to search for any contact.</action>

 <condition>There is no contact in the My Phonebook

application.</condition>

 <response>The Search Contact form is filled.</response>

 </step>

 <step>

 <stepId>2B</stepId>

 <action>Select Search softkey.</action>

 <condition />

 <response>A dialog is displayed informing that no contact was

found. [TRS_11111_106]</response>

 </step>

 <step>

 <stepId>3B</stepId>

 <action>Select Back softkey.</action>

74

 <condition />

 <response>The phone goes back to the Search Contact

form.</response>

 </step>

 </flow>

 </useCase>

 </feature>

</phone>

75

Table 10 – Original output TaRGeT - HTML

76

77

78

APPENDIX B – EBFN NOTATION

Symbol Symbol name Purpose

→ arrow Term definition

| pipe Or operator

+ cross operator One or more occurrences

* star operator Zero or more occurrences

? interrogation operator Zero or one occurrences

; semicolon End of production

() left and right parentheses It delimits a list of options

79

APPENDIX C – PARTICIPANT CONSENT FORM

Study title

Comparative evaluation between manual TCs generation x automatic generation of TCs using

the ATG, evaluation of TCs automation, and evaluation of the usability of the ATG tool.

General instructions

It is important that you carefully read the information on this form. This consent form provides

you with all study information, such as purpose, procedure, data collection, privacy, costs, risks

and additional information. Once you have understood the study, you will be asked to sign and

date this form. If you need further clarification on any of the items mentioned here, or need

information that has not been included, please ask the experimenters. Before being informed

about the study, it is important that you become aware of the following:

1. Their participation is due to the fact that this study / experiment is a partial requirement

of the evaluation of the master's thesis of Thaís Melise Lopes Pina;

2. You may request to leave the study at any time for any reason, and also that all data

provided by you must be discarded.

You must clearly understand the nature of your participation and give your written consent. Your

signature will indicate that you have understood all of the information regarding your

participation and that you agree to participate.

Study Purpose

Comparative evaluation between manual TCs generation x automatic generation of TCs using

the ATG, an analysis of the possibility to automate TCs with Zygon tool, and an analysis of the

usability of the ATG tool.

Researches

Thaís Melise Lopes Pina is a master's student of the computer science center (CIn) of the Federal

University of Pernambuco (UFPE), and this study is part of his research for the conclusion of the

master's degree. Its advisor and co-advisor are respectively the teachers Augusto Cezar Alves

Sampaio and Flávia de Almeida Barros.

Procedures

Participants will be subject to a training of the tool the Auto Test Generator and soon after will

answer a questionnaire on the usability of the tool.

Data collection

The data will be collected through specific surveys and from JIRA (requirements and test cases).

Confidential Records Character

The information obtained from participating in this study will be kept strictly confidential, since

any material will be referenced only by an identifier. All results presented in the MSc thesis or in

80

scientific publications will be anonymous. However, to safeguard the researches who are

conducting this study, all participants must provide their name and sign this consent form.

Risks and/or discomforts

There is no possibility of risks or discomforts associated with the collaboration of any study

participant.

Costs

No participant will be charged or payed to participate in this study with their collaboration in the

study.

Declaration of consent

I declare that I have had sufficient time to read and understand the information contained in this

consent form before signing it. The objectives and procedure have been explained, as well as

what will be required of me as a participant. I also received answers to all my questions. I

understand that I am free to request that my data not be used for analysis, without the application

of any penalty. I also confirm that I have received a copy of this consent form. I give my consent

to participate in this study.

__ ________________

 Participant Date

I attest that I have carefully explained the nature and purpose of this study. I believe that the

participant received all the necessary information, which was described in a suitable and

understandable language.

__ ________________

 Thaís Melise Lopes Pina Date

81

APPENDIX D – ATG SURVEY

The required fields are flagged with an asterisk (*)
Name:*

Age:*

What your function at Motorola Mobility?*

How long time you work with test automation?*

 0 - 1 year 1 - 2 years 2 - 3 years more than 3 years

Do you use any tool to automate test?*

 Yes No
If yes, what? ________________________

Next, you are answer your agreement level with the sentences
ATG tool has a friendly user interface.*
Strongly disagree () Disagree () Undecided () Agree () Strongly Agree ()

ATG interface helps the user to write requirements.*
Strongly disagree () Disagree () Undecided () Agree () Strongly Agree ()

ATG interface helps the user to reduce the automation effort.*
Strongly disagree () Disagree () Undecided () Agree () Strongly Agree ()

What do you think needs to change/improve? ___
