‘Centro

~dﬂlnf-nrmética

Pos-Graduacao em Ciéncia da Computacao

Karine Galdino Maia Gomes

CHARACTERIZING SAFE AND PARTIALLY SAFE EVOLUTION SCENARIOS
IN PRODUCT LINES: An Empirical Study

V1=

¢

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br /~posgraduacao

L=

|

5

Karine Galdino Maia Gomes

CHARACTERIZING SAFE AND PARTIALLY SAFE EVOLUTION
SCENARIOS IN PRODUCT LINES: An Empirical Study

Dissertagdo de Mestrado apresentada ao
Programa de Pés-graduacdo em Ciéncia da
Computacdo do Centro de Informaética da
Universidade Federal de Pernambuco como
requisito parcial para obtencdo do grau de
Mestre em Ciéncia da Computacéo.

Area de Concentraco: Engenharia de Software

Orientador(a): Leopoldo Motta Teixeira

Recife
2019

Catalogacdo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

G633c Gomes, Karine Galdino Maia

Characterizing safe and partially safe evolution scenarios in product lines:
an empirical study / Karine Galdino Maia Gomes. — 2019.
68 f.. il., fig., tab.

Orientador: Leopoldo Motta Teixeira.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Clin,
Ciéncia da Computacdao, Recife, 2019.
Inclui referéncias e apéndices.

1. Engenharia de software. 2. Linha de produto de software. I. Teixeira,
Leopoldo Motta (orientador). Il. Titulo.

005.1 CDD (23. ed.) UFPE- MEI 2019-049

Karine Galdino Maia Gomes

“‘Characterizing safe and partially safe evolution scenarios in product
lines: An Empirical Study”

Dissertacdo de Mestrado apresentada ao
Programa de Po6s-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencdo do titulo de Mestre em Ciéncia da
Computacao.

Aprovado em: 28/02/2019.

BANCA EXAMINADORA

Prof. Dr. Paulo Henrique Monteiro Borba
Centro de Informética / UFPE

Prof. Dr. Mércio de Medeiros Ribeiro
Instituto de Computacéo / UFAL

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informatica / UFPE
(Orientador)

To my family

ACKNOWLEDGEMENTS

A Deus, que sempre demonstra Sua graga e Seu amor em minha vida, nas vitérias ou nas
adversidades, e que esta sempre guiando meus caminhos, me ajudando a combater o bom
combate.

Aos meus avés e as minhas irmas, por todo apoio e torcida. Um agradecimento especial
a Kathi, que sempre esteve tao entusiasmada com meus sucessos, paciente nos momentos
em que a paciéncia me faltava (ndo foram poucos haha), além de ser uma 6tima companhia
diaria.

A minha familia, que sempre me apoia, vibra e torce por mim. Em especial, gostaria
de agradecer a Tia Selma, que sempre me deu suporte para que eu pudesse me dedicar
aos estudos. Além dos bons principios e valores, com ela também aprendi que estudos e
livros sdo mais importantes que futilidades. Serei eternamente grata!

Agradecgo ao meu Professor e orientador, Leopoldo Teixeira, pelos ensinamentos, pacién-
cia e confianga. Sempre muito presente e disponivel para me ajudar em todas as etapas
do programa. Aqui deixo meu muito obrigada e minha admiragao pelo grande profissional
que ele ja é, apesar do pouco tempo de caminhada.

Além disso, sou muito grata pela oportunidade de ter cursado o mestrado no Centro
de Informéatica da UFPE, um lugar cheio de profissionais com um amor visceral por ensino
e pesquisa que sao fonte de inspiracao para mim.

Aos meus amigos (Klissiomara, Leuson e Neto) e irmaos de pesquisa (Alex e Thay-
onara), agradego imensamente pela parceria no dia a dia académico.

Também agradego aos meus amigos da igreja e do colégio, que foram o equilibrio
perfeito entre momentos de descontragdo e apoio nos periodos de foco. Vocés sdo demais!

Por fim, pego a Deus para enxergar beleza e gratidao nos préximos desafios, frustragoes

e conquistas.

ABSTRACT

Software Product Line (SPL) is a family of software products that share common and
distinct assets providing, through reuse, a systematic way to generate similar products.
In SPL, each one of their characteristics is represented as feature, and the set of those
features and its dependencies are expressed as Feature Model. Feature Model (FM) with
both Configuration Knowledge (CK) and Asset Mapping (AM) spaces represent a SPL.
Each one of those spaces play a key role to provide reuse in SPL. In the same way as
regular software systems, product lines often need to evolve, such as adding new features,
improving the quality of existing products, or even fixing bugs. Previous works have
classified product line evolution scenarios into safe or partially safe, depending on the
number of products that have their behavior preserved after evolution. Both notions rely
on refinement theories that enable us to derive transformation templates that abstract
common evolution scenarios. However, most of the works related to such templates are
focused on either safe or partially safe templates. Therefore, in this work we aim to
characterize product line evolution as a whole, measuring to what extent the evolution
history in safe compared to partially safe, to better understand how product lines evolve
from their conception. We measure how often these templates happen using 2,300 commits
from the Soletta Project, an open-source framework for Internet of Things. Through our
analysis, we observe that most of the commits were categorized as templates (78.3%).
Further we make an evaluation for remaining one commits which were not categorized
as templates (21.7%). Thus, we extract certain information for each evolution scenario,
such as spaces affect, kind of modification (change/add/removed), amount of files and so
on. In Soletta, we observe that several commits classified as templates are represented by
change asset. Further, for the remaining commits, we observe that most of the commits
modifies both CK and AM spaces. In other hand, fewest evolution scenarios modifies FM
and AM spaces at the same time. Further, we distribute changes through the contribution
time (timeline) from all 2,300 commits. Finally, after classify some commits manually and
others automatically as safe and partially safe evolution, we obtain that in Soletta 91.8%
of changes is categorized as partially safe, and the 8.2% remaining ones are safe evolution

scenarios.

Keywords: Software Product Line. Product Line Evolution. Refinement. Safe Evolution.

Partially Safe Evolution.

RESUMO

Linha de Produto de Software (LPS) é uma familia de softwares relacionados que
compartilham caracteristicas em comuns, e outras distintas, visando gerar produtos semel-
hantes de forma automatica através do reuso. Em LPS, cada caracteristica é conceituada
como feature, e o conjunto dessas features e suas dependéncias sdo expressas em um mod-
elo, conhecido como Feature Model (FM). De maneira geral, FM associado com os espagos
Configuration Knowledge (CK) e Asset Mapping (AM) representam uma LPS, e cada um
desempenha um papel para geragao de produtos através do reuso. Da mesma forma que
sistemas tradicionais precisam de manutencao, correcao de bugs, ou até mesmo adicao de
novas funcionalidades, LPS também evolui. Contudo, evoluir LPS é um trabalho que ex-
ige cautela, pois até mesmo pequenas mudancgas podem impactar varios produtos. Diante
disso, alguns trabalhos investigaram evolugao de LPS, visando entender e dar suporte aos
desenvolvedores durante as mudancas. Dentre os trabalhos anteriores, surgiu a teoria de
evolugdo segura (com base na teoria do Refinamento), que afirma que determinadas
mudancas preservam o comportamento da LPS anterior. Portanto, renomear um arquivo,
ou adicionar novas funcionalidades opcionais sdo exemplos de cenarios de evolugao segura.
Entretanto, nem todas as mudangas se encaixam nesse conceito, entao, surgiu a teoria de
evolugao parcialmente segura, que afirma que existe um subconjunto dos produtos
manterd seu comportamento preservado. Com base nas teorias de evolucdo segura e par-
cialmente segura, trabalhos anteriores derivaram templates que sao modelos que abstraem
scenarios de evolugao com o objetivo de dar suporte aos desenvolvedores. Na literatura,
existem trabalhos que focam apenas em evolugao segura ou parcialmente segura, mas nao
em ambos casos. Portanto, esse trabalho tem como objetivo caracterizar evolugdo de LPS
de forma geral, classificando mudancgas como seguras ou parcialmente seguras, visando en-
tender o processo de evolucao de uma LPS desde a sua concepgao. Para isso, analisamos
2300 commits do projeto Soletta, um framework que facilita a criagdo de sistemas volta-
dos para Internet das Coisas. Como resultado, observamos que a maioria dos commits
foi classificado como template (78.3%). Para os commits restantes, fizemos uma catego-
rizagdo de acordo com o tipo de mudanga e o espagos afetados (FM, CK ou AM). 24%
dos commits restantes apresentam mudancas no CK e AM simultaneamente, e apenas 3%
apresentam mudangas que s6 alteram o FM. Ao final, nossos resultados mostraram que
cerca de 91% dos das evolugoes sao classificadas como parcialmente seguras, e o restante

como cenarios de evolugao segura.

Palavras-chaves: Linha de Produto de Software. Evolucao de Linha de Produto. Refi-

namento. Evolugao Segura. Evolucao Parcialmente Segura.

LIST OF FIGURES

Figure 1 — Three Spaces of a Software Product Line 13
Figure 2 — Feature Notations 17
Figure 3 — Example of a Feature Model, 17
Figure 4 — Example - Asset Mapping 19
Figure 5 — Example - Configuration Knowledge 20
Figure 6 — Example of the 3 spaces from Soletta 21
Figure 7 — Example - Evolving a SPL adding a new optional feature 22
Figure 8 — Example - Products refined after add a new optional feature 22
Figure 9 — ADD NEW OPTIONAL FEATURE template. 23
Figure 10 — Example - Evolving a SPL removing some feature 24
Figure 11 — Example - Products partially refined after remove feature 24
Figure 12 — REMOVE FEATURE template. 25
Figure 13 — Overview of the design study 28

Figure 14 — Graph representation of nodes, relations, and properties in FEVER

dataset 29
Figure 15 — Template not expressed in query - Refine Asset 32
Figure 16 — Change in Kconfig file - hash commit: 2d39b630bf 34
Figure 17 — Change in Makefile file - hash commit: 4dc76a75¢6 35
Figure 18 — Change in Asset file - hash commit: 3c6aa6d205 36
Figure 19 — Timeline Templates - without change asset 39
Figure 20 — Modified Spaces in Remaining Commits 39
Figure 21 — Timeline of FM Tags in Remaining Commits 42
Figure 22 — Timeline of CK Tags in Remaining Commits 42
Figure 23 — Timeline of AM Tags in Remaining Commits 42
Figure 24 — 1,896 Remaining Commits of Linux v3.12-3.13 47
Figure 25 — Timeline of Linux Templates without CHANGE ASSET 48
Figure 26 — Timeline Safe vs Partially Safe Evolution from 2,300 Soletta commits . 49
Figure 27 — Add new Optional Feature 60
Figure 28 — Add any Feature without change CK and AM 60
Figure 29 — Add unused Assets 61
Figure 30 — Remove unused Assets 61
Figure 31 — Change Asset 62
Figure 32 — Add Assets 62
Figure 33 — Remove Feature 63
Figure 34 — Merge Assets 64

Figure 35 — Split Assets 64

Figure 36 — Feature Renaming 65
Figure 37 — Asset Name Renaming 65
Figure 38 — Replace Feature Expression 66
Figure 39 — Simplify Feature Expression using the FM 66

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

Table 9

LIST OF TABLES

Partially Safe and Safe Templates used in our study
Changed Spaces by Template
Tags to Categorize the commits not covered by templates
Amount commits returned by queries
Summary of tags from remaining commits which modify AM space . . .
Summary of tags from remaining commits which modify CK space . . .
Summary of tags from remaining commits which modify FM space . . .
Existing Safe Templates identified in Remaining Commits and its re-

spective modified spaces

Final results of commits classified as templates in Soletta history

Table 10 — Automatic Results in Linux v3.12-v3.13

Table 11 — Commits returned by queries derived from templates in Linux v3.12-v3.13 47

44
46
46

2.1
2.1.1
2.1.1.1
2.1.2
2.1.3
2.1.3.1
2.2
221
2.2.2

3.1
3.2
3.3
3.3.1
3.3.2

4.1
41.1
4.1.2
4.1.2.1
4.2

4.3
43.1

4.3.2
4.4

441
442
443
444

CONTENTS

INTRODUCTION e e e e e 13
BACKGROUND e e et e e e e 16
SOFTWARE PRODUCT LINE 16
Feature Model 16
Keonfig o 18
Assets - Asset Mapping 18
Configuration Knowledge 19
Makefile 20
PRODUCT LINE EVOLUTION 21
Safe Evolution 21
Partially Safe Evolution 23
EMPIRICAL STUDY OF SPL EVOLUTION SCENARIOS 26
RESEARCH QUESTIONS, 26
SAMPLE 27
METHODOLOGY e 27
Capturing commits categorized by Templates 29
Analysis of commits not captured by Templates 33
EVALUATION e e e e e e e e e e e 37
SOLETTA RESULTS 37
Commits captured by templates 37
Commits not covered by templates 39
Existing Safe Templates in Remaining Commits 43
LINUX ANALYSIS 46
DISCUSSION 48
RQ1: How changes are distributed in terms of safe and partially

safe during the history of a software product line? 48
RQ2: How often templates cover these real scenarios? 49
THREATS TO VALIDITY 50
Construct Validity 50
Internal Validity 50
External Validity o 51
Reliability 51
CONCLUSIONS e e e e e e e e e e e 52

5.1
5.2
5.3

CONTRIBUTIONS 53

RELATED WORK o 54
FUTUREWORK 55
REFERENCES e e 57

APPENDIX A — SAFE AND PARTIALLY SAFE TEMPLATES USED
AUTOMATICALLY THROUGH QUERIES IN OUR
EMPIRICAL STUDY 60

APPENDIX B - SAFE TEMPLATES CAPTURED THROUGH MAN-
UAL ANALYSIS IN OUR EMPIRICAL STUDY . 64

APPENDIX C - QUERIES DERIVED FROM TEMPLATES TO
CAPTURE EVOLUTION SCENARIOS 67

13

1 INTRODUCTION

Developing personalized software often implies in high costs and efforts, but in other hand
yields customization. Since software products share characteristics, rather than developing
each one from scratch, it is more convenient to reuse components. However, the notion
of reuse only reduces effort, but does not generate personalized products. In the context
of software families, their products also share of a common set of characteristics, varying
only in some aspects. This variation of some points enables customized products according
to the customers needs.

Based on these issues, the Software Product Line (SPL) approach arises. SPL provides
reuse and customization for generating a set of similar products in a systematic way. The
notions of reuse and customization brings many advantages such as reduced costs, time
to market, and quality improvements (POHL; B6CKLE; LINDEN, 2005).

SPL is usually represented as 3 spaces: Feature Model (FM), Asset Mapping (AM),
and Configuration Knowledge (CK), and each one of these spaces play a key role to
provide the reuse in SPL. In SPL, we use features to represent what might be variable
or common among products. The set of all features and its dependencies are expressed
in the FM (KANG et al., 1990). The FM is often expressed as a tree and contains a set of
features names, and also documents variability, dependencies and its constraints (APEL et
al., 2016). The constraints and dependencies among features allow generate a set of several
valid products. Due to the FM being an abstraction of SPL domain, it is necessary to
implement the features. Assets implement features and can be code, tests, documentation,
or even images. Thus, the AM space constitutes a mapping from asset names to the actual
assets. Finally, it is necessary to map features to their respective assets. Therefore, the
CK plays a role in making this mapping, associating the features expressions with assets

names. All of the three spaces are illustrated in Figure 1.

(FEATURE MODEL “(CONFIGURATION \(* ASSET MAPPING)

KNOWLEDGE

echo_client_sample echo-client

echo_server_sample | echo-server echo-server —Pecho-server.c
(name) (content)

| network_samples |

I echo_server_sample II echo_client_sample |)

g I\

Figure 1 — Three Spaces of a Software Product Line

In the same way as regular software systems, SPL often need to evolve. So, adding new

features, improving quality of existing products, or fixing bugs are common changes during

Chapter 1. Introduction 14

development. However, evolution in SPL differs from single software products. Since a SPL
consists of a set of reusable characteristics, one single feature could be present across a
range of valid products. Therefore, evolution in SPL can be error-prone because a simple
change can impact several products. Moreover, we need to take into account changes in the
three spaces. Due to these error-prone changes, some research studies focus on evolution
of product lines aiming to help developers during development to minimize the impact
yielded by changes (LOTUFO et al., 2010; PASSOS; CZARNECKI; WASOWSKI, 2012; HEIDER
et al., 2012).

The product line refinement theory (BORBA; TEIXEIRA; GHEYI, 2012) formalizes the
notion of safe evolution, characterizing changes applied to SPLs that preserve the behavior
of the existing products. Several changes performed by developers can be supported by this
notion. For example, it is common to add an new optional feature, clean code removing
unused assets, or even to refine some asset.

In fact, making safe changes is useful in SPL evolution, but there are also common
changes not covered by this notion, since it requires behavior preservation of the entire set
of existing products. For instance, during the life cycle of a project, it is common to remove
some feature, fix bugs, or even change the implementation. However, these kind of changes
may affect the behavior of some of the existing SPL products. Thus, the refinement theory
was extended to introduce the notion of Partially Safe Evolution (SAMPAIO; BORBA;
TEIXEIRA, 2016). This notion considers changes that preserve the behavior of only a
subset of the existing products.

The theories that establish the notions of safe and partially safe evolution allow the
derivation of transformation templates (BORBA; TEIXEIRA; GHEYI, 2012; NEVES et al.,
2015a; BENBASSAT; BORBA; TEIXEIRA, 2016; SAMPAIO; BORBA; TEIXEIRA, 2016), that
abstract a common evolution task, such as adding an optional feature. They also establish
the necessary conditions for ensuring that the change is considered safe, or in the case of
partially safe changes, the set of products whose behavior is unaffected by the change.

Existing studies only consider either safe (NEVES et al., 2015a; BENBASSAT; BORBA;
TEIXEIRA, 2016) or partially safe evolution (SAMPAIO; BORBA; TEIXEIRA, 2016) scenarios,
and do not examine the interplay between those two notions. Moreover, some studies only
consider evolution of a single SPL space, such as variability model, for instance (KRUGER
et al., 2018; PASSOS; CZARNECKI, 2014). We aim to go beyond and analyze the SPL as a
whole.

Therefore, this work improves the understanding about SPL evolution during its life
cycle. This work aims to characterize product line evolution as a whole, measuring to
which extent the evolution history is safe compared to partially safe. Our goal is to
achieve a better understanding of SPL evolution, that might result in developing tools to
assist developers on performing their changes.

This study then tackles two questions. First, how are changes distributed in terms

Chapter 1. Introduction 15

of safe and partially safe evolution during the SPL evolution history? This might lead to
patterns, such as performing safe changes more often during the project initial phases, and
later mostly performing partially safe changes. Second, how often do existing templates in
the literature cover these evolution scenarios? This question might serve as an assessment
of previously proposed templates, and can also lead to deriving new templates.

In order to answer these questions, we realized an empirical study for analyzing a
period of almost one year (between jun-2015 into apr-2016) of the Soletta project, total-
izing 2,300 commits. Soletta is a real world and open-source development framework that
makes writing software for Internet of Things devices easier. Our analysis consists in mea-
suring if the proposed templates are consistent with the changes performed in practical
scenarios. Therefore, we automatically analyze how many commits contains evolution sce-
narios categorized as templates. As expected, not all commits are classified as templates,
thus we also investigate the changes occurred on the remaining commits, categorizing
them according to the modifications in each SPL space: FM, CK, and AM, to improve
our knowledge about SPL evolution. We define some tags and manually classify these
remaining commits according to the changes in evolution scenarios. Moreover, we also
make preliminary automatic analysis in 13,288 commits of the Linux Kernel, between the
releases 3.12 and 3.13. Such as Soletta, not all commits of Linux were classified as tem-
plates (around 14%). In summary, this work provides the following contributions: (i) an
empirical study to better characterize SPL evolution, measuring to which extent evolution
is safe compared to partially safe; (ii) a methodology for manually analyzing changes that
might reveal novel templates for expressing evolution scenarios.

The remainder of this work is organized as follows:

e Chapter 2 presents the main concepts about SPL and its structure, aiming to sup-

port the understanding about our study.

o Chapter 3 explains how we evaluate the SPL evolution and our methodology trough

our empirical study with Soletta.

e Chapter 4 contains the evaluation of our results, research questions and threats to

validity.

o Chapter 5 shows the conclusion of our work. Finally, we present our contributions,

related studies and future work.

16

2 BACKGROUND

In this chapter, we present an overview of some important concepts to improve the under-
standing about our work. In Section 2.1, we introduce SPL and its structure. Moreover,
Section 2.2 present a overview of product line evolution, and details safe and partially

safe evolution theories.

2.1 SOFTWARE PRODUCT LINE

In general, creating a single product from scratch is often massive and expensive. Mass
production is a way to produce products in large scale through reuse. This approach
improves productivity, reducing costs and time-to-market, however, it does not create
personalized products. So, taking into account that different customers have distinct needs
and wishes, it is important to increase the portfolio of products. Reuse is still used, but
there are extra parts combined with the core to generate personalized products according
to customers’ needs. This is the basic intuition behind the idea of a production line: a
set, of products from a same portfolio that share a core of characteristics, and are created
from reusable parts (CLEMENTS; NORTHROP, 2002).

Considering the software context, the software product line approach arises. It consists
of a family of software products that share common and distinct assets providing a system-
atic way to generate similar products (POHL; B6CKLE; LINDEN, 2005). So, instead of gener-
ating each product from scratch, they should be developed from reusable parts. Therefore,
the SPL strategy yields gains in productivity, quality, and time-to-market (CLEMENTS;
NORTHROP, 2002).

A Software Product Line is usually organized into 3 high-level spaces (BORBA; TEIX-
EIRA; GHEYT, 2012; PASSOS et al., 2016), which we refer to as Feature Model (Section 2.1.1),
Asset Mapping (Section 2.1.2), and Configuration Knowledge (Section 2.1.3). Each of these

spaces plays a key role to generate products in a systematic way.

2.1.1 Feature Model

In SPL, the concept of each characteristic which is reused to generate products is known as
feature. Features are used to specify and communicate the commonalities and differences
of the products (APEL et al., 2016). According Feature-Oriented Domain Analysis (FODA),
these features are organized into a Feature Model that establishes common and variable
features, allowing variability management (KANG et al., 1990). The FM is usually displayed
as a tree and establishes which products can be derived through hierarchy, dependencies,

and constraints.

Chapter 2. Background 17

Figure 2 shows the typical diagram notation of FMs. Each feature can be optional

(empty circle), mandatory (filled circle), or (filled triangle), and alternative (empty trian-

gle).

optional mandatory or alternative

Figure 2 — Feature Notations

Optional: features which can be present or not in the SPL products;
Mandatory: features which are present in all SPL products that contain its parent;
Or: features which can be present alone or with its siblings in SPL products;

Alternative: features which are can be present in SPL products, without the simulta-

neous presence of its sibling (exclusive or).

Each SPL product is described as a set of features selected according to the constraints
and dependencies in the FM. Figure 3 illustrates an example of FM based on features

names from Soletta. The model shows these features, and its dependencies and constraints.

network

network_samples

N

echo_server_sample echo_client_sample

Figure 3 — Example of a Feature Model

According to the example in Figure 3, it is possible to generate the set of valid products:

1 [NETWORK, NETWORK__SAMPLES]

Chapter 2. Background 18

2 [NETWORK, NETWORK__SAMPLES, ECHO__SERVER__SAMPLE]
3 [NETWORK, NETWORK__SAMPLES, ECHO__CLIENT__SAMPLE]

4 [NETWORK, NETWORK__SAMPLES, ECHO__SERVER__SAMPLE, ECHO__CLIENT__SAMPLE]

Mandatory features should be present in all valid products, where their parent is
also present. Thus, in the previous example, the NETWORK__SAMPLES feature (filed
circle) is present in all valid configurations, since its parent is NETWORK. On the
other hand, optional features could be present or absent in valid products, such as

ECHO__SERVER__SAMPLE feature (empty circle), which is only present in some products.

2.1.1.1 Kconfig

It is important to provide a way to declare features and dependencies. Kconfig is a common
tool and language used to express variability in SPL, used in projects, such as the Linux
Kernel (KERNEL, 2018 (accessed August, 2018)). A FM could be spread in many different
Kconfig files depending on its size, aiming to improve the organization of features. More-
over, Kconfig has been studied largely (SHE et al., 2010). The code in Listing 2.1 expresses
an example of feature declaration based on the model expressed in Figure 3 captured from

Soletta.

Listing 2.1 — Feature declaration in Kconfig

config ECHO_SERVER_SAMPLE

bool "Echo server”

depends on NETWORK_SAMPLE && NETWORK

select HTTP

default y

The config keyword (line 1) followed by a name starts a new feature configuration.
Other arguments follow: A feature can be classified into types, such as tristate or string. A
depends on (line 3) clause expresses the feature dependencies which must be satisfied so the
feature can be selected. The select clause enforces the selection of others configs. Finally,
default establishes the default value for the feature. Moreover, there are other keywords

used in the language, such as menu, which could be classified as abstract features.

2.1.2 Assets - Asset Mapping

In Software Product Line, beyond models and features, there are also assets, usually re-
lated to implementation. Assets make these features concrete by implementing them, and
can be of various forms, such as source code, documentation, or even images. Listing 2.2
shows the code associated with the echo-server.c file which we get from the Soletta

repository.

11

13

15

17

19

Chapter 2. Background 19

Listing 2.2 — echo-server.c file code example
/*x*
* @file
* @brief Basic echo server
*/

#include <errno.h>
#include <getopt.h>
#include <limits.h>

#ifdef SAMPLES
struct queue_item {
struct sol_buffer buf;
struct sol_network_link_addr addr;
3
#endif

static struct sol_socket *sock;
static struct sol_vector queue;

Thus, the Asset Mapping (AM) consists of a mapping of asset names to the actual
assets that might be used in the SPL. The representation of an asset mapping can be seen
in Figure 4, which ECHO-SERVER asset name is referring into the ECHO-SERVER.C source
code. However, there are other ways to associate features into source code. Listing 2.2
presents an #ifdef macro (line 11), which expresses that if the feature SAMPLES is selected,

the code between lines 11 and 16 will be included in the product.

siruct queue_item {
struct sol_buffer buf;
struct
s0l_network_link_addr
addr:

]sLanc siruct sol_socket
*sock:
Static sructsol_vectar
queue;

echo-server ——p» echo-server.c

(hame) (content)

Figure 4 — Example - Asset Mapping

2.1.3 Configuration Knowledge

As aforementioned, Feature Model deals with features and its constraints and dependen-
cies. Assets implement these features. However, we need to associate features with assets.
We refer to this mapping as the Configuration Knowledge (CK). The CK plays a role on
mapping features to their implementation, and the representation of this model is shown

in Figure 5.

Chapter 2. Background 20

echo_client_sample Jecho-client

echo_server_sample |echo-server

Figure 5 — Example - Configuration Knowledge

2.1.3.1 Makefile

As with the FM, there are different ways to specify the CK. In Kconfig-based systems,
these are usually implemented as makefiles, configuration files written using the make
language.! Makefiles are used in many projects, such as Linux Kernel, and also in Soletta.
Listing 2.3 shows the mapping of the ECHO_SERVER_SAMPLE feature to the echo-server.c

asset name, which in turn, refers to the actual asset.
Listing 2.3 — Mapping feature to asset in Makefile

sample-$(ECHO_SERVER_SAMPLE) += echo-server
sample-echo-server-$(ECHO_SERVER_SAMPLE) := echo-server.c

Apart from mapping features and assets, Makefile also could contains rules to specify
how to build the systems, for instance, defining compilation rules and flags. Listing 2.4
shows a Makefile snippet extracted from Soletta project which contains some build rules.
For instance, in line 3, the path $(top_srcdir)src/modules/flow/ is a flow-dir var
value. Therefore, changes in makefiles could vary further than mapping between features

and assets.

Listing 2.4 — Build rules in Makefile

vars to distinguish the modules types
flow-dir := $(top_srcdir)src/modules/flow/
linux=-micro=dir := $(top_srcdir)src/modules/linux-micro/
pin-mux-dir := $(top_srcdir)src/modules/pin-mux/

Figure 6 presents the three spaces of Soletta and how they are related. In Kconfig box
is shown the ECHO_SERVER_SAMPLE feature declaration followed by its constraints. The
Asset box represents the echo-server.c asset. And finally, the Makefile box shows the

mapping between ECHO_SERVER_SAMPLE feature name and the echo-server.c asset name.

L <http://www.gnu.org/software/make/manual /make.html>

Chapter 2. Background 21

Kconfig

config ECHO_SERVER_SAMPLE
bool "Echo server"
depends on NETWORK |SAMPLE && NETWORK
default y

Makefile

sample-3(ECHO_SERVER_SAMPLE) += echo-server
sample-echo-server-$(ECHO_SERVER_SAMPLE) := echo-server.c

Asset box (echo-server.c)

struct queue_item {
struet sol_buffer buf;
struct sol_network link addr addr;

}:

static struct sol_socket *sock;
static struet sol_vector queue;

Figure 6 — Example of the 3 spaces from Soletta

2.2 PRODUCT LINE EVOLUTION

SPLs evolve over time. Since features might be spread throughout many products, it is
reasonable to affirm that modifications in SPLs could be error-prone, since a simple change
might impact several products. Thus, research effort has focused on understanding SPL
evolution aiming to help developers minimize the impact yielded during changes (LOTUFO
et al., 2010; PASSOS; CZARNECKI; WASOWSKI, 2012; HEIDER et al., 2012).

2.2.1 Safe Evolution

The concept of safe evolution (BORBA; TEIXEIRA; GHEYT, 2012; NEVES et al., 2015a) aims
to support developers on performing behavior-preserving changes. That is, all existing
products should maintain their observable behavior after the change. Examples of such
changes include code refactorings and adding optional features without changing existing
code.

If we suppose an evolution scenario that performs an addition of an optional feature
which is represented in Figure 7. It contains 2 sides, left and right, represented by L
and L, in which L refers to the initial SPL (before the change), and L’ referring to the
resulting SPL (after the change). This change can be considered safe if and only if the

behaviour of the existing set of valid products is preserved. The C symbol represents the

Chapter 2. Background 22

refinement notation, therefore, L’ refines L (in other words, L is refined by L’). Figure
8 shows that the new set of valid products from L’ maintain the same behaviour of the

previous products from the initial SPL L.

L L
I

l Add Optional Feature

——

| network_samples I

network_samples

vl Sy e S

| e ke ® s | I echo_client_sample I | echo_server_sample | I echo_client_sample I

netctl_sample |

Figure 7 — Example - Evolving a SPL adding a new optional feature

L C L’
C
[network, et ples] E b [network, network_samples] v
[network, network_samples, echo_server._ E P [network, network_samples, echo_server_sample] v
[network, network_samples, echo_cllent_. le] — > [network, network_samples, echo_cllent_sample]

[network, network_samples, echo_server_sample, echo,clleanample]——_—» [network, network_samples, echo_server_sample, echo_cllent_sample]

[network, network_samples, echo_server_sample, netctl_sample]

K, k_: ples, echo_cllent_sample, netctl_sample]

b
Figure 8 — Example - Products refined after add a new optional feature

A refinement theory formalizes this concept (BORBA; TEIXEIRA; GHEYI, 2012), al-
lowing the derivation of transformation templates (NEVES et al., 2015a; TEIXEIRA et al.,
2015; BENBASSAT; BORBA; TEIXEIRA, 2016). These templates abstract common changes,
capturing properties of the initial and evolved SPLs so developers only need to reason
over templates, instead of the formal definitions. For instance, Figure 9 shows the ADD
NEW OPTIONAL FEATURE template, which depicts adding an optional feature to an
SPL. A template has a left-hand side (LHS) pattern and a right-hand side (RHS) pat-
tern, establishing syntactic and semantic conditions for applying a transformation. We
use meta-variables to represent SPL elements. If the same meta-variable appears in both
sides, the element is unchanged. Therefore, we see that we add a new optional feature O,
together with its corresponding asset (a’) and a new mapping from an arbitrary formula
e’ to the new asset.

Besides syntactic conditions, we also need to fulfill semantic conditions expressed in
the lower part. For this template, we can use any arbitrary expression e¢’, provided that it

is true when O is selected in a product. Both the O feature and the asset name n’ must

v

Chapter 2. Background 23

be new elements. Finally, the new products resulting from adding O must be well-formed.
According to the template, after adding the new feature, all existing products are refined,

since we only introduce new products, and do not change the existing ones.

Vs ~ { \
: i s | N
, ! ' : n'—a
: : ol]t) e
P |
1 | | !
I | I ' L
| / | | :
| I |
I\ ______ /I e n : () : er nr
| 0 !
| | e n
N o e /
e ——

e'=0
O and n' are new
resulting SPL is well-formed

Figure 9 — AbDD NEW OPTIONAL FEATURE template.

2.2.2 Partially Safe Evolution

During the SPL evolution history, some changes are not consistent with the safe evolu-
tion notion. Many useful changes do intend to change the behavior of at least some of
the existing products, such as bug fixes, or removing features. To provide support for
developers on these types of evolution scenarios, the concept of partially safe evolution
was proposed (SAMPAIO; BORBA; TEIXEIRA, 2016), formalized through an extension of
the SPL refinement theory. The intuition for this notion is that even though a change
might not preserve the behavior of all products, it might preserve the behavior of a subset
of the existing products. In the extreme scenario, a change might affect the behavior of
all products, and thus there is no support provided by the theories, might be c¢. However,
this scenario might be classified as unsafe.

Figure 10 shows a partially safe evolution scenario example, which consists in remove
the netctl _sample feature. The LHS of the figure 11 exhibits the valid products from the
previous SPL, which contained the netctl _sample feature, and the RHS shows the valid
products after the feature removal. In fact, not all previous valid products from the initial
PL are refined after the change, thus, only a subset of the products are refined. In other
words, this evolution scenario partially refined the SPL. More specifically, in this case, all
previous products do not contain the removed feature have their behavior preserved.

Sampaio et al. (SAMPAIO; BORBA; TEIXEIRA, 2016) also suggested partially safe tem-

plates from some common scenarios which impact existing SPL products. These templates

Chapter 2. Background 24

L L
o

Remove Feature 1
| network_samples ; | network_samples |
/ \ Qetctl_sample / \
I echo_server_sample I I echo_client_sample I I echo_server_sample | I echo_client_sample |

Figure 10 — Example - Evolving a SPL removing some feature

L, C L’
S
L,
k, network_ les] — .- L k, 13 k_! les] l
C v
k, k_ 1 echo_server_ = .- [{ k, 13 k_ echo_server_sample]
[network, network_samples, echo_cllent_: le] — - [k, network_samples, echo_cllent_sample]
K, 1 k_ echo_server_sample, echo;cllent_sample]_g—-’- [network, network_samples, echo_server_sample, echo_cllent_sample] v
[{ Kk, network_ echo_server._! le, netctl_t] .»
[network, network_samples, echo_cllent_ le, netctl_: le] 4.-x

Figure 11 — Example - Products partially refined after remove feature

also establish some requisites to precisely define the products that have their behavior
preserved. For instance, Figure 12 represents the REMOVE FEATURE template, which
abstracts the previous partially safe evolution scenario shown in Figure 10. By following
the established syntactic and semantic rules, refinement holds for a specified subset of
products S. We observe that we remove the O feature from the initial FM (F'), result-
ing in F’. We also remove mappings referencing O from the CK. We also remove assets
associated with O from the AM.

There are also semantic conditions, such as ensuring that the expressions in the map-
ping are related to O (¢/ = O), and that no other mappings refer to O in the CK. The
template also defines the set of products (S) that have the behavior preserved after the
change. We use the operator to establish that any valid configuration from F' that does
not include O has its behavior preserved. Finally, we also need a well-formedness condi-
tion. Since we assume that assets are removed, we cannot guarantee that existing products

remain well-formed, except those in S.

Chapter 2. Background

=
R

——— — ————

\
/

t . | n'ea S
| I |

nea | ne-a
| I |
| P ' : P ;
| I I:)

N e
: : e' n' — e n
| I n
| 0 I
\ﬁ———‘,
e'=0
S=F1I0

O appears only in e’
Resulting products not in the scope of S are well-formed

Figure 12 — REMOVE FEATURE template.

26

3 EMPIRICAL STUDY OF SPL EVOLUTION SCENARIOS

This chapter details the setup of our Empirical Study, aiming to categorize SPL evolution
scenarios into safe or partially safe. Therefore, this chapter presents the research questions
which guide our study (Section 3.1), a description of the project used as object of our

analysis (Section 3.2), and further describes our methodology (Section 3.3).

3.1 RESEARCH QUESTIONS

Likewise single software systems, Software Product Lines often need to evolve. Improve
code or add new functionality are common changes during products development. Adding
a new feature could increase exponentially the amount of valid configurations in SPL, and
a single feature is often spread in several products. Therefore, making changes in SPL is
error-prone, because a simple change can impact a range of valid products. Hence, this
context motivate researchers studies SPL evolution. Some works suggested patterns evolu-
tion and formalizes templates aiming understanding and support development. However,
existing works that evaluate templates focus only on evaluating occurrences of either safe
or partially safe evolution, but not both. Therefore, we believe it is important to collect
empirical evidence over how such scenarios happen, so we can better understand how
to support developers. So, these issues motivate us to perform our study. To guide our
research, we use the GQM approach, such as follow (BASILI, 1992).

Goal: Our goal is to characterize SPL evolution as a whole, measuring to what extent
the evolution history is safe compared to partially safe. To guide our study, we established

the following research questions:

« RQ1: How are changes distributed in terms of safe and partially safe during the

history of a software product line?

« RQ2: How often templates cover these real scenarios?

Metrics: To answer RQ1, we mined 2,300 commits from an existing SPL (each com-
mit is considered as an evolution scenario) and classified each one as safe or partially safe,
observing the distribution of evolution type over time. To answer RQ2, we automatically
measure the occurrence of nine templates from the existing template catalogue (GROUP,
2018 (accessed november, 2018)). For the remaining commits, first we automatically di-
vide changes according to the modified spaces (FM, AM, and CK), and then we manually

characterize them using tags, whose frequency might reveal potential novel templates.

Chapter 3. Empirical Study of SPL Evolution Scenarios 27

3.2 SAMPLE

As our object of study, we mine Soletta, a development framework with the goal of easing
software development for IoT devices. Its GitHub repository currently contains 3,086
commits. We choose this project since it is structured similarly to Linux (a project studied
largely), using Kconfig to manage variability, C as the main programming language, and
Makefiles to map features into their implementation. Soletta is also smaller than Linux,
which makes it amenable to manual analysis. Moreover, we investigate changes from the
beginning of the project into the first release, aiming to understand the evolution scenarios
during this lifecycle, since its conception into the first version. Thus, we analyze 2,300
commits from the evolution history, ranging from June/2015 to April/2016.

Furthermore, we have conducted a preliminary study with commits from the Linux
Kernel through our automatic analysis. Then, we analyze an available graph dataset
with 13,288 commits between releases 3.12 and 3.13, ranging from February/2013 to
December /2013.

3.3 METHODOLOGY

Figure 13 presents the methodology we used in our study. In the top side, we illustrate
how we extracted information from the repository, while in the bottom side we show how
we analyzed such data. We used three tools (see Steps 1.2, 1.3, and 2.5) in our evaluation:
Feature EVolution ExtractoR (FEVER) (DINTZNER; DEURSEN; PINZGER, 2016), Neo4j,’
and Repodriller.?

FEVER (DINTZNER; DEURSEN; PINZGER, 2016) is a tool for mining git repositories
in a feature-oriented way. Although FEVER has been developed based on the Linux
structure, Soletta is a project that follows a similar structure, which makes the tool to
work as expected (Step 1.1). So, we use FEVER to mine Soletta and Linux (Step 1.2)
and extract certain information from commits, resulting in an output stored in a neo4j
dataset (Step 1.3). This graph dataset contains nodes (entities), edges (relations), and
properties (attributes) for each commit extracted. Changes to the Feature Model, Config-
uration Knowledge, and Asset Mapping are defined as FeatureEdit, MappingEdit, and
Sourcekdit entities, respectively. In FEVER, the three SPL spaces can also be expressed
as ArtefactEdit entity that contains an attribute type which range among: vm, build or
source.

Figure 14 shows the nodes, relations, and properties of the FEVER dataset that we
used to derive our queries. Commit entity contains some properties (hash, for exam-
ple), and could be connected with some entities, such as FeatureEdit, MappingEdit, and
ArtefactEdit.

<https://neodj.com>

2 <https://github.com/mauricioaniche /repodriller>

Chapter 3. Empirical Study of SPL Evolution Scenarios

28

(@ MINING REPOSITORY
i Soletta’ Project @
FEVER tool
) GitHub

Neo4j database

ANALYSIS

@neOQJCYPHER
(a) -[:LIKES]->(b)

e S
| =

* commits not commits
categorized as categorized as

Repodriller templates templates

-

templates

metadata from commits
FM/AM/CK |— manual analysis

Figure 13 — Overview of the design study

Listing 3.1 — example of query which captures commits that changes VM

match (c:commit)-->(a:ArtefactEdit)

where a.type = "vm”
return distinct c, a

To access this data we use the neodj platform and perform queries in the cypher

language (Step 2.2). For illustrate an query example, suppose some way to capture all
commits which modify the Feature Model. For that, the query should specify that commit

entity must have be connected with some ArtefactEdit entity with type value vm (see

listing 3.1).

Chapter 3. Empirical Study of SPL Evolution Scenarios 29

feature

mapping
_change

change

optionality

Figure 14 — Graph representation of nodes, relations, and properties in FEVER dataset

3.3.1 Capturing commits categorized by Templates

As mentioned in Chapter 2, there are safe and partially safe evolution notions which
characterize evolution scenarios in SPLs. Previous works based on these theories sug-
gested templates to avoid errors and supports development (NEVES et al., 2015b; SAM-
PAIO; BORBA; TEIXEIRA, 2016; BENBASSAT:; BORBA: TEIXEIRA, 2016). Aiming to inves-
tigate how often these templates occurs in practical scenarios, we use queries to encode
nine existing templates (Step 2.2). Table 1 shows these nine templates that we choose
(four safe and five partially safe) to make our analysis (Step 2.1). We express the safe
templates in queries created from scratch according its constraints and specification. On
the other hand, for partially safe templates we reuse existent queries based on previous
work (SAMPAIO; BORBA; TEIXEIRA, 2016).

All templates used through our research are available on Appendix A. We describe

each one of them below:

Add new Optional Feature This template expresses an evolution scenario in which is
added a new optional feature, and a new asset which implements this feature, and
also a new association between the feature and the asset. So, the evolution should
change: FM, adding a new feature in Kconfig file; CK: adding a new mapping in
Makefile file; AM: adding a new asset related to the mapped file added in Makefile.

Chapter 3. Empirical Study of SPL Evolution Scenarios 30

Safe Templates Partially Safe Templates
ADD NEW OPTIONAL FEATURE CHANGE ASSET
ADD ANY FEATURE WITHOUT CHANGE CK AND AM | REMOVE FEATURE

REMOVE UNUSED ASSETS CHANGE CK LINES

ADD ASSETS
ADD UNUSED ASSETS

REMOVE ASSETS

Table 1 — Partially Safe and Safe Templates used in our study

Add any Feature without change AM and CK (safe) This templates represents a
change which only added some feature, modifying the FM without changing the AM
or CK. This kind of change occurs to add some abstract feature, aiming to improve

the variability model.

Remove unused assets (safe) This template represents removal assets scenarios, how-
ever, these assets should be unused. Moreover, the change should not modify CK

and FM spaces.

Add unused assets (safe) This template expresses the addition of some asset without

any mapping in the CK. The change should also not modify the FM.

Change asset (partially) This template specifies a scenario of some modifying an as-
set. As constraint, the change should not contain added nor removed of assets.
Furthermore, the change should be only in the AM, so CK and FM remain un-
changed.

Remove feature (partially) To express the scenario of a removal feature it is neces-
sary to modify the three SPL spaces. So, this change modify FM removing the
feature, change CK deleting the mapping, and also remove the related asset which

implements the feature removed.

Change, Add, Remove CK lines (partially) This template represents changes that
affect only the CK. So, the evolution scenario should not alter FM or AM spaces.

Add assets (partially) This template characterizes an addition of a new mapping in
CK and also an addition of the new related asset. Therefore, this pattern modifies
the CK and AM spaces, preserving the FM.

Remove assets (partially) This template is the opposite of ADD ASSETS, thus charac-
terizing the removal of both the existing mapping in CK and also the related asset.
As ADD ASSETS template, REMOVE ASSETS modifies the CK and AM spaces, pre-
serving the FM.

Chapter 3. Empirical Study of SPL Evolution Scenarios 31

Templates FM CK AM
ADD NEW OPTIONAL FEATURE X X X
ADD ANY FEATURE WITHOUT CHANGE CK AND AM | x

REMOVE UNUSED ASSETS

ADD UNUSED ASSETS
CHANGE ASSET

I e R

REMOVE FEATURE X
CHANGE CK LINES
ADD ASSETS

Sl e

REMOVE ASSETS

Table 2 — Changed Spaces by Template

The summary of the modified spaces according to each template is shown in Table 2.

First, it is important to understand the templates to generate queries. For instance,
Figure 9 shows the ADD NEW OPTIONAL FEATURE template, which depicts adding an
optional feature to an SPL. So, as previously explained, ADD NEW OPTIONAL FEATURE
represents a evolution scenario which modifies the three SPL spaces: FM, CK, and AM.

Then, after understanding the templates and the spaces affected by the changes, we can
derive queries. Listing 3.2 illustrates an example of query used in our work which expresses
the ADD NEW OPTIONAL FEATURE template. So, this query returns all hash commits that
present an addition of optional feature in its evolution scenario. For that, the query must
have a commit entity connected with FeatureEdit entity which contains change property
with value Add (line 2). This commit should also be connected with some MappingEdit
entity which contains feature property value equal to the FeatureEdit name property
(line 4), to guarantee that the feature and the mapping are related. Further, the commit
must be connected with some ArtefactEdit with source type value and add (line 1)
change value properties. This commit should not modify nor remove some asset (lines 6
and 7). All these constraints returns the commits which contain changes in FM, CK and

AM in a way that categorize an ADD NEW OPTIONAL FEATURE template.

Listing 3.2 — query - Add new optional Feature
match (ae:ArtefactEdit {change: "ADDED"3})<--(c:commit)
-[1->(f:FeatureEdit {change:"Add"”3})-[]->(fd:FeatureDesc {optionality:"optional”})
WHERE
(c)-->(:MappingEdit {feature:f.name}) and

(c)-->(:ArtefactEdit {type: "source” , change: "ADDED"3}) and not
(c)-->(:ArtefactEdit {type: "source” , change: "MODIFIED"}) and not
(c)-->(:ArtefactEdit {type: "source” , change: "REMOVED"})

return distinct c.hash

Then, we repeat this process to express templates in queries for each selected safe
evolution templates. The queries used to capture the partially safe scenarios were based

on previous works (SAMPAIO; BORBA; TEIXEIRA, 2016), as we mentioned before. CHANGE

Chapter 3. Empirical Study of SPL Evolution Scenarios 32

ASSET is one of the partially safe templates used in our study, and Listing 3.3 represents

the query to capture scenarios that match this template.

Listing 3.3 — query - Change Asset
match (c:commit)-->(a: ArtefactEdit {change:"MODIFIED"})
where
not (c)-->(:ArtefactEdit{change:"”ADDED"}) and
not (c)-->(:ArtefactEdit{change:"REMOVED"})and
not (c)-->(:ArtefactEdit{type:"vm"3})and
not (c)-->(:ArtefactEdit{type:"build”})
return distinct c.hash

This query returns all commits which only modify an ArtefactEdit entity (line 1,
with change value as MODIFIED). Furthermore, the commits should not affect some
ArtefactEdit with type property with vm (FM) nor build (CK) values (lines 5 and 6).
In other words, this query only returns changes related to source (AM).

In fact, not all available templates can be expressed in queries and capture precisely
the scenarios. For instance, suppose hypothetically some query to capture REFINE ASSET
template (showed in Figure 15). According to the template, one evolution scenario must
modify some asset in a way that preserves the behavior. So, the changed asset should
be refined (BORBA; TEIXEIRA; GHEYI, 2012). Then, to express this pattern in query, it
is necessary to specify that some commit affects the AM space modifying some asset,
without changing FM and CK. Therefore, the query would be the same as CHANGE
ASSET template. Although the query returns commits which contain modified assets,
there is no guarantee that those changes refine them. All queries used through our research

are available on Appendix C.

K K

!

al a
Figure 15 — Template not expressed in query - Refine Asset

After these steps, we collect the commits which were classified in templates. To check
that queries were correctly created, avoiding wrong results, we manually checked the
results for all queries, to assess their accuracy. Furthermore, aiming to mitigate the bias

of only the first author developing and confirming the precision of the queries, another

Chapter 3. Empirical Study of SPL Evolution Scenarios 33

researcher also blindly reviewed the results of each query, checking if the commits were
correctly classified by the query. After both authors reviewed all of the classified commits,
the classifications were merged and revised. In cases of doubt or disagreement, a third

researcher acted to reach consensus.

3.3.2 Analysis of commits not captured by Templates

After identifying the commits captured by queries, we make an approach to analyze the
remaining commits not covered by templates. First of all, we divide the commits in groups
according the changes in the three spaces of a SPL, and their arrangement: [AM], [CK],
[FM], [FM, CK], [FM, AM], [CK, AM], [FM, CK, AM]. For each combination we use
scripts in Repodriller (Step 2.5) to automatically mine the commits aiming to obtain
certain information, such as path name, file name, date, amount of files added, lines
modified, lines removed, and so on. The output of the mined commits was stored in a
CSV file.

The list below represents the fields of our dataset which were manually filled (Step
2.7).

e change_ fm: the type of change performed in Kconfig file;

« Kconfig__tags: tags to categorize the changes in Kconfig (see table 4);
« change__ck: the type of change performed in Makefile file;

o Makefile__tags: tags to categorize the changes in Makefile (see table 4);
e chage__am: the type of change performed in assets;

» assets__tags: tags to categorize the changes in assets (see table 4);

evolution: classify the evolution scenario as safe or partially safe.

The rest of the data was captured automatically through scripts, as we explained
before (Steps 2.5 and 2.6). We categorize each commit with tags according to the changes
for each space: AM, CK and FM (representing assets, Makefile, and Kconfig, respectively).
Table 3 contains the tags which we defined to make our manual analysis. Furthermore,
aiming to thoroughly classify the evolution scenario, we also use change type to represent

the type of modification for each tag. The change type varies among:

e« New: when there is a new instance of some tag change;
e Add: if there is, at least, one instance of some tag change and a new is added;

« Remove: if there is some removal tag change instance;

Chapter 3. Empirical Study of SPL Evolution Scenarios 34

Space | Tags Description
ifdef if the change in AM modifies ifdef directive
include if the change in AM modifies include expression

AM addAsset if the change contains an addition of new asset
changeAsset | if the change modifies some asset
removeAsset | if the change contains removal of some asset
mappingA if the change is related to all mapping: LHS and RHS
mappingL. if the change modifies only LHS (feature expression)

CK mappingR

if the change

modifies only RHS (assets mapped)

ifdef if the change in Makefile contains some ifeq directive
build if the change in Makefile contains build rules specifying
how the asset files must be built

feature if the change in Kconfig modifies some config expression
menu if the change in Kconfig modifies menu expression

FM depends if the change in Kconfig presents some depends on clause
default if the change in Kconfig presents some default expression
select if the change in Kconfig presents some select expression

Table 3 — Tags to Categorize the commits not covered by templates

o Change: if there is some change in an already existent tag change;

e« Move: when there is some instance removed in a specific local to be placed in

another one;

« Rename: rename of some artefact (file name, variable, path).

We illustrate an example in Figure 16 to show how we tagged each evolution scenario

according to changes in commits.

6 mmmm src/test/Kconfig
L
config TEST_MAINLOOP_THREADS
bool "mainloop threads™

depends on PTHREAD
default y

config TEST_MAINLOOP_THREADS_SOL_RUN

depends on PTHREAD
default n

config TEST_MONITORS
bool "monitors"

bool "mainloop threads sol run™

config TEST_MAINLOOP_THREADS
bool "mainloop threads"
depends on PTHREAD && MAINLOOP_POSIX
default y

config TEST_MAINLOOP_THREADS_SOL_RUN
bool "mainloop threads sol run®
depends on PTHREAD && MAINLOOP_POSIX
default y

config TEST_MONITORS

bool "monitors"

Figure 16 — Change in Kconfig file - hash commit: 2d390630bf

Chapter 3. Empirical Study of SPL Evolution Scenarios 35

First, we can observe that previously (LHS) the features TEST_MAINLOOP_THREADS and
TEST_MAINLOOP_THREADS_SOL_RUN already contains depends on clause (feature PTHREAD
in lines 45 and 50) and default with n value. After the change, in the RHS, there is an
added feature as dependency (MAINLOOP_POSIX in lines 45 and 50), and the default clause
was changed to y value. In this way, we classify this commit as: add as change_fm, and
depends as Kconfig_tag; and also change as change_fm, and default as Kconfig_tag.

We show another evolution scenario in Figure 17, which presents changes in the Make-
file. According to the image, after the change (in RHS), there is a new (more one) mapping
between the feature PTHRIEAD and sol-worker-thread.h asset. Therefore, we classi-

fied this evolution scenario as: add as change_ck, and mappingA as Makefile_tag.

3 mEm src/lib/common/Makefile

] -75,3 +75,6 eaders-y :=

headers-$(HAVE_PIN_MUX) += \ ———» headers-5(HAVE_PIN_MUX) += %
include/sol-pin-mux-modules.h include/sol-pin-mux-modules.h

£

+ headers-$(PTHREAD) += \

+ include/sol-worker-thread.h

Figure 17 — Change in Makefile file - hash commit: 4dc76a75e6

Likewise other spaces, we also classify AM according the characteristics of each commit
analyzed. Figure 18 also presents an evolution scenario (hash commit: 3c6aa6d205) which
modifies a source file. Before the change, in the LHS, there were include and ifdef
directives, and after the changes, there are removed instances of ifdef and include.
Hence, we classify this commit as: remove as change type, and include and ifdef as AM
tags.

Regarding the evolution type, we adopt a conservative stance, and anytime we cannot
fully guarantee that the behavior for all SPL products is preserved, we categorize the
change as partially safe evolution. Therefore, we classified these commits (/dc76a75¢6
and 2d39b630bf) as partially safe.

Similar to the manual query analysis, two researchers also make manual analysis over
the remaining commits, aiming to ensure consistency over the results and avoid bias.
However, in this phase there were no disagreement scenarios. All our data and scripts are
available online (GOMES, 2019 (accessed february, 2019)).

Chapter 3. Empirical Study of SPL Evolution Scenarios 36

#pragma once #pragma once
- #ifcluge "sol-log.h" + #include <unicode/uchar,h>
+
#include "sol-flow.h" #include "sol-flow.h"
- #include "sol-Tlow-internal.h” -

- #include "sol-util.h"

- #ifdeT HAVE_ICU

UChar *string_replace(struct sol flow node *node, UChar *value, UChar Uchar *string replace(struct sol flow node *node, UChar *value, UChar

Figure 18 — Change in Asset file - hash commit: 3c6aa6d205

37

4 EVALUATION

This chapter presents the results of our study in Soletta project, evaluating the commits
classified as templates (Section 4.1.1) and also the commits not classified (Section 4.1.2).
Further, we present our preliminary results from automatic analysis on Linux Kernel (Sec-
tion 4.2). Moreover, we answer the research questions which motivates the development of

this work (Section 4.3). Finally, we show the threats of validity of our study (Section 4.4).

4.1 SOLETTA RESULTS

In this section we present the results of our empirical study, evaluating the commits

captured by templates (Section 4.1.1), and the remaining ones (Section 4.1.2).

4.1.1 Commits captured by templates

After encoding templates into queries to automatically classify commits, we obtained
the following results. From the 2,300 commits which we analyzed, 1,810 of those were
automatically classified by the queries. After analyze manually the commits captured by
queries, there were doubts over 23 commits. A senior researcher analyzed those cases, and
we ended up discarding 10 commits out of these 1,810, since they did not exactly match
the templates: six from ADD NEW OPTIONAL FEATURE, three from REMOVE FEATURE,
and one from ADD ANY FEATURE WITHOUT CHANGING CK AND AM. For example,
there are two instances of commits consisting of feature renaming. FEVER captures those
as instances of the REMOVE FEATURE template, since the feature being renamed shows

up in the commit diff as being removed and a supposedly new feature is added. Moreover,

Commits Commits
Evolution | Template returned Excluded | classified as
by queries templates
REMOVE ASSETS 0 0 0 (0%)
ADD ASSETS 0 0 0 (0%)
partially | CHANGE ASSET 1,662 0 1,662 (72.26%)
CHANGE CK LINES 35 0 35 (1.52%)
REMOVE FEATURE 5 3 2 (0.09%)
ADD NEW OPTIONAL FEATURE 62 6 56 (2.44%)
safe ADD FEATURE (NO CK AND AM) | 6 1 5 (0.21%)
REMOVE UNUSED ASSETS 6 0 6 (0.26%)
ADD UNUSED ASSETS 34 0 34 (1.48%)

Table 4 — Amount commits returned by queries

Chapter 4. FEvaluation 38

the ADD ANY FEATURE WITHOUT CHANGE CK AND AM scenario which we excluded
(d74314d174) presents a moved feature (removed in any file, and replaced in other), so
FEVER captured this commit as an added feature. Further, between the six commits
excluded with ADD NEW OPTIONAL FEATURE classification, we removed three of those
due the same reason, presenting a mapping in CK which relate the new feature added
with some already existing asset. We also excluded two others commits which modify CK
mapping a feature into assets, however, this feature is different than the feature added in
FM. Finally, we excluded the remaining one because the asset added was mapped to an
existing mapping in CK. In other hand, CHANGE ASSET, CHANGE CK LINES, REMOVE
UNUSED ASSETS, and ADD UNUSED ASSETS do not present commits excluded during
manual checking.

We ended up with 1,800 commits automatically classified into templates, representing
78.3% of the entire sample. Table 4 shows the amount of commits yielded for each of
the templates, after performing the manual analysis of the query precision. The results
presented in Table 4 show that the CHANGE ASSET template is the most frequent template
throughout the history of Soletta. This template consists of arbitrary changes to assets,
without modifying the FM and CK. In contrast, the queries for the partially safe templates
ADD ASSETS and REMOVE ASSETS did not yield any commits. These templates represent
adding (or removing) a mapping in CK, together with an added (or removed) asset. We
believe this is due because it is more frequent that changes occur in assets already mapped
in the Makefile rather than adding or excluding both mapping and asset files together.
Such as the evolution scenario in this commit: c065eebc42.' In this case, a new asset
SOL-LIB-LOADER.O was added in an already existing mapping in Makefile which refers to
feature PLATFFORM__LINUX.

Figure 19 represents a timeline of the number of commits per month for each tem-
plate used in our work, except for CHANGE ASSET, which due to its high occurrence,
would difficult the visualization of the other commits. So, according to the plot, we can
observe that although ADD NEwW OPTIONAL FEATURE is spread throughout the period
considered in this evaluation, there are more instances of the template in the beginning
of the project. There are few instances of the REMOVE UNUSED ASSETS template, and
surprisingly, most of them occur on the beginning of the project. All of these commits
present a commit message expressing that the deleted assets were stale. The low number
of occurrences allow us check each one manually, however, this task could be automated
using a text search engine library. In our sample there are only two instances of the RE-
MOVE FEATURE template. The query actually yields five commits, but there were three
false-positives which we manually excluded, such as renaming cases, as previously men-
tioned. We argue this low occurrences due to Soletta being a recent project, and removal

features scenarios happens as they become obsolete. The ADD UNUSED ASSETS template

L https://github.com/solettaproject /soletta/commit /a54f22ebce

Chapter 4. FEvaluation 39

had 34 occurrences. In fact, adding some asset without associating it with some feature
preserves behavior. However, these assets might be mapped to some feature later in the
evolution history. In this case, it might be the case that this later change does not preserve
the behavior for some of the products. According to the plot exhibited in Figure 19, the

CHANGE CK LINES template had more instances in beginning and the end of project.

201

template

154 Add feature without change AMand CK

Add new Optional Feature
. Add unuscd Asscts
. Change CK Lines

. Remove Feature
. l . . o
. = - —

2015-06 2015-07 2015-08 2015-09 2015-10 2015-11 2015-12 2016-01 2016-02 201603 2016-04
months

commit

o

=

Figure 19 — Timeline Templates - without change asset

4.1.2 Commits not covered by templates

After classifying 1800 commits with templates, we perform analysis on the 500 remaining
commits (RC) not covered. As we mention in Chapter 3, we use some scripts in Repo-
driller to automatically collect commits aiming to obtain certain information, such as
date, lines added, lines removed, amount of files, among others, from all spaces and its
combinations. Figure 20 shows a quantitative illustration from remaining commits for

each space combination.

- . AM && CK
122 137 o
24.4% 27.4%
: AM && CK && FM
B AM
15 M FM
3% CK && FM
L 26 AM && FM
5.2%

Figure 20 — Modified Spaces in Remaining Commits

Chapter 4. FEvaluation 40

This section presents our manual analysis of the remaining commits, that is, all com-
mits that are not automatically categorized as templates. First of all, we divide the com-
mits in groups according to changes in the SPL spaces, and their combination: [AM],
[CK], [FM], [FM, CK], [FM, AM], [CK, AM], [FM, CK, AM]. Figure 20 shows a quantita-
tive illustration from remaining commits for each space combination. We observe that the
most frequent change pattern is that of modifying the CK and AM, resulting in 137 com-
mits from an amount of 500, representing 27.4% of the remaining commits. The second
most representative pattern considers changes performed solely into the CK, consisting
of 24.4% of the commits. The combination with the fewest number of commits is the one
that modifies both AM and FM spaces at the same time, representing 3%.

We then classify each commit according to the change type and tags specified in
Chapter 3.3.2. Recall that each modified space (AM, CK, or FM) in the commit could be
classified with more than one change type and tags, as we mentioned before according to
Figure 16. In what follows, we present some results.

AM changes (5.5% safe vs 94.5% partially safe). Among the changes performed
only in assets, 83% modify and add assets in the same commit. From all commits, only
5.5% present ifdef directives. On the other hand, the include tag is present in 35.6%
of the commits. To precisely determine if a change in an asset affects the behavior of an
existing product, we would have to run tests or use some verification technique. There-
fore, similar to the CHANGE ASSET template, we conservatively establish that arbitrary
changes to assets are partially safe. Therefore, there could be more instances of safe evo-
lution scenarios than those we have classified.

CK changes (19.7% safe vs 80.3% partially safe). In evolution scenarios that
only modify the Makefile, several commits present changes related to build rules (about
65%). Fewer are related to mapping features and assets (around 12.3%). Moreover, only
4.9% commits were classified with the ifeq tag. We argue that the high occurrence of
build compared to the low number of mapping and ifeq tags are due to changes in CK
being followed by changes in other SPL spaces.

FM changes (8.2% safe vs 91.8% partially safe). Most of the changes which
modify the Kconfig only are related to the depends on clause (60.41%). From all of those
instances, 32% insert the first dependency related to a feature (new change type). The
default and select tags are present in 14.6% of the commits. Only three commits modify
features, where two move features and one removes a feature (classified according to each
respective change type).

AM and CK changes (21.2% safe vs 78.8% partially safe). Considering this
subset of commits, only 24.8% of changes to the code (AM) are related to ifdef direc-
tives, and 40.8% present include tags. On the other hand, around 16% of CK changes
present ifdef directives. Considering only the AM space, changes add assets in 43% of

the commits, while if we consider only the CK, changes modify the mapping in 57%

Chapter 4. FEvaluation 41

of the commits. Otherwise, 36.5% of the commits perform both changes at the same
time: changing the mapping and adding a new asset. As we mentioned before, there are
more mapping instances in AM and CK group than commits which only modify CK. We
also tagged 41.6% commits as changes involving build rules. Moreover, we found three
safe evolution scenarios that are consistent with the SPLIT ASSET safe evolution tem-
plate (BORBA; TEIXEIRA; GHEYT, 2012).

CK and FM changes (38.5% safe vs 61.5% partially safe). Considering the
changes to the FM, we observe that 42.3% commits change feature dependencies. Most of
those changes increase the number of dependencies (add change type). Analyzing changes
to the CK, we observe that 65.4% of commits were classified with the mapping tag. In
contrast with the CK group, only 19.3% from all commits present changes related to build
rules. Moreover, 23% of all commits from this group involve an addition of depends on
clause in the Kconfig together with changes to mapping in the Makefile.

AM and FM changes (33.3% safe vs 66.7% partially safe). Among the AM
changes, there are no additions nor removals, only changed assets. In the FM, few commits
add features (around 26%), but in contrast, 40% modify the depends on clause. Evaluating
the AM space separately, 26.6% and 13.3% from all commits were classified, respectively,
with the include and ifdef tags.

AM, CK and FM changes (23% safe vs 77% partially safe). Around 13%
of the evolution scenarios that simultaneously modify the three SPL spaces contain an
instance of the ADD NEw OPTIONAL FEATURE template together with some other type
of change in the commit, such as changes to ifdef directives. Among those instances there
are three commits (hashes: 3556363e0f, 7edb9d26bf, ecf696de10) which only contain ADD
NEW OPTIONAL FEATURE template (three false-negatives), which were not captured
by FEVER. We believe that this is due to the fact that certain kinds of assets from
Soletta were not properly captured by the FEVER tool (for instance, .json or .fbp sources,
and some documentation files). Observing each space individually, FM presents 19.2% of
depends on changes, less than evolution scenarios which only modify the FM. In contrast,
modifications over the config expression account for 64% of changes. Regarding the CK,
79.5% of changes are categorized with the mapping tag, and only 11% change build rules.
Around 36% of the changes to the AM are associated to the ifdef tags, while 37%
are related to include tags. Moreover, 52% of commits present an added asset, but in
contrast, only two commits remove assets.

We plot one timeline for each SPL space separately. Then, Figure 21 shows a timeline
with the tags used to classify commits which changes at least the FM in Remaining
Commits ([FM], [AM and FM], [CK and FM], and [AM, CK, and FM]). Figure 22 presents
a timeline with CK tags through groups in Remaining Commits which modify at least the
Makefiles ([CK], [AM and CK], [CK and FM], and [AM, CK, and FM)]). Finally, Figure 23

also shows a timeline with tags which classify commits modifying the AM space, in other

Chapter 4. FEvaluation

40+
ta
304 g8
default
= depends
=
= 204 feature
. menu
. rename
| . . -
2015-06 2015-07 2015-08 2015-09 2015-10 2015-11 201512 2016-01 2016-02 2016-03 2016-04
months
Figure 21 — Timeline of FM Tags in Remaining Commits
125
1001
tags
— build
=
£ ifdef
§ B oo
mapping
8 ol
. rename
. var
25 | _
2016-06 2015-07 201508 2015-09 2015-10 2015-11 2015-12 2016-01 2016:02 2016-03 2016-04
maonths

Figure 22 — Timeline of CK Tags in Remaining Commits

words, groups which modify assets ([AM], [AM and CK], [AM and FM], and [AM, CK,
and FM]).

In summary, Table 5 presents the results of AM tags from all remaining commits which

modify assets. As expected, most of these commits were classified with changeAsset tag.

50 4
tags
addAsset

= changeAsset
E
(= ifdef
8 . include

304

. removeAsset

... .

2015-06 2015-07 201508 201508 201510 201511 201512 201601 201602 2016-03
maonths

2016-04

Figure 23 — Timeline of AM Tags in Remaining Commits

Chapter 4. FEvaluation 43

AM

include ifdef changeAsset addAsset remAsset
GROUPS
AM 26 (35.62%) 4 (5.48%) 70 (95.9%) 66 (90.4%) 6 (8.2%)
CK — — — — —
FM — — — — —
AM CK 55 (40.1%) 34 (24.8%) 89 (65%) 59 (43.1%) 8 (5.8%)
AM FM 4(26.7%) 2 (13.4%) 10 (66.7%) 0 (0%) 0 (0%)
CK FM — — — — —

AM CK FM 36 (46.2%) 28 (35.9%) 49 (62.8%) 41 (52.6%) 2 (2.6%)

Table 5 — Summary of tags from remaining commits which modify AM space

In the same way, several commits present addAsset tags. On the other hand, few commits
contains changes related to ifdef directives. Table 6 shows the rating for each CK tag
according the groups which modify makefiles. To illustrate an example in Table 6, we
highlighted one value with blue and bold style, and according to this value we can assume
that 65% of commits from CK group have changes related to build rules. The highlighted
red value shows that changes which modify the three SPL spaces ([AM, CK, and FM]
group) presents few changes related to build. Furthermore, we can observe that there
is few instances of mapping tags in commits from CK group, nearly 12%. In contrast,
commits modifying CK from the remaining groups ([AM, CK], [CK, FM], [AM, CK, and
FM]) have at least 50% of changes related to mapping. Moreover, looking towards FM
space, Table 7 presents tags in commits that change Kconfig file. According our results
shown in Table 7, we can observe that 50 commits modifying all SPL spaces (AM CK
FM group) present feature tag, representing 64%. Among these 50 commits, 45 add a
feature declaration in Kconfig. On the other hand, between commits which modify only
FM, few present feature declaration, around 8%. Furthermore, depends tags have the
most occurrences in the follow groups: [FM], [AM and FM], and [CK and FM], except for
the [AM, CK, and FM] group.

4.1.2.1 Existing Safe Templates in Remaining Commits

Through our manual analysis, we identify evolution scenarios in Remaining Commits
which could be expressed in some already existing templates available on catalogue on-
line (GROUP, 2018 (accessed november, 2018)). These templates and its SPL spaces mod-
ified are exhibited in Table 8.

In the group which only modifies CK, we found one commit renaming the feature

expression (mappingR), and hence, could be categorized as REPLACE FEATURE [EX-

Chapter 4. FEvaluation 44

CK

ifdef mapping build
GROUPS
AM — — —
CK 6 (4.9%) 15 (12.3%) 80 (65.6%)
FM — — —
AM CK 23 (16.8%) 70 (51.1%) 53 (38.7%)
AM FM — — —
CK FM 9 (34.6%) 16 (61.5%) 5 (19.2%)

AM CK FM 20 (25.7%) 62 (79.5%) 9 (11.5%)

Table 6 — Summary of tags from remaining commits which modify CK space

FM

select feature menu depends default
GROUPS
AM — — — — —
CK — — — — —
FM 7 (14.3%) 4 (8.2%) 2 (4.1%) 31 (63.3%) 7 (14.3%)
AM CK — — — — —
AM FM 2 (13.4%) 4 (26.7%) 0 (0%) 6 (40%) 0 (0%)
CK FM 2 (7.7%) 14 (54%) 0 (0%) 13 (50%) 0 (0%)
AM CK FM 11 (14%) 50 (64%) 7 (9%) 15 (19.2%) 3 (3.8%)

Table 7 — Summary of tags from remaining commits which modify FM space

Templates FM CK AM
Merge Assets X X
Split Asset X X
Feature Renaming X
Asset Name Renaming X
Replace Feature Expression
Simplify Feature Expression using the FM

Table 8 — Existing Safe Templates identified in Remaining Commits and its respective
modified spaces

Chapter 4. FEvaluation 45

PRESSION template (hash aeff3ff468).? Further, in groups which modifies CK and AM,
we identify 3 instances of SPLIT ASSET template, supporting scenarios which split some
asset and create a new mapping in CK (hashes: 627a606550, 8f007e0b74, 627a606550).
Additionally, we also found 1 evolution scenario which match with MERGE ASSETS tem-
plate (hash: 16a4edf4fd), which is like a inverse way of SPLIT ASSET template.® Fur-
thermore, we categorize some commits with ASSET NAME RENAMING template (hashes:
1e6ad8b904, 8c¢73c¢Thb12, ca032af983, 8240e4cabd).’

In fact, it is not easy to assure that queries capture more than one template for each
commit, correctly. However, our manual analysis identified some evolution scenarios with
templates combination. In AM, CK, and FM changes group, we observe one evolution
scenario with a sequence of SPLIT ASSET, and ADD NEW FEATURE FROM EXISTING
ARTIFACTS templates (hash 5d828031aa) (BENBASSAT; BORBA; TEIXEIRA, 2016). This
commit presents added assets derived from code extracted from other source files, fur-
ther, a new feature is added with a mapping relating this feature with the extracted
assets. There are commits (hash: aca3b23d5¢c, c1d5b0f4a9, b29fad7082) which should be
categorized as three templates: FEATURE RENAMING, SIMPLIFY FEATURE EXPRESSION
USING THE FM, and REFINE ASSET. These commits present scenarios with renamed
config names (FEATURE RENAMING template), update of the feature expression in CK
mapping (SIMPLIFY F'EATURE [EXPRESSION USING THE I'M template), and then, the as-
sets are refined due to its modification being related with the renaming feature expression
in code.

Table 9 summarizes the results of the Soletta commits classification in templates.
In automatic analysis phase, we classified commits through the queries in dataset. As
results, from 2300 commits analyzed, 1800 was automatically classified as templates. On
the other hand, manual analysis was performed in the 500 remaining commits, resulting

in 13 commits classified as templates.

https://github.com /solettaproject /soletta/commit /aeff3{f468

https://github.com /solettaproject/soletta/commit /6272606550
https://github.com /solettaproject/soletta/commit /16aded44fd
https://github.com/solettaproject /soletta/commit/1e6ad8b904

= W N

ot

Chapter 4. Evaluation 46
Commits
Phase Evolution | Template classified
as templates
REMOVE ASSETS 0 (0%)
ADD ASSETS 0 (0%)
partially CHANGE ASSET 1,662 (72.26%)
. CHANGE CK LINES 35 (1.52%)
automatic
. REMOVE FEATURE 2 (0.09%)
analysis
ADD NEW OPTIONAL FEATURE 56 (2.44%)
safo ADD FEATURE (NO CK AND AM) 5 (0.21%)
REMOVE UNUSED ASSETS 6 (0.26%)
ADD UNUSED ASSETS 34 (1.48%)
REPLACE FEATURE EXPRESSION 1 (0.04%)
SPLIT ASSET 3 (0.13%)
manual safo MERGE ASSET 1 (0.04%)
analysis ASSET NAME RENAMING 4 (0.17%)
SPLIT ASSET and ADD NEW FEATURE 1 (0.04%)
FROM EXISTING ARTIFACTS
FEATURE RENAMING, SIMPLIFY FEATURE 3 (0.13%)

EXPRESSION USING THE FM, and REFINE ASSET

Table 9 — Final results of commits classified as templates in Soletta history

4.2 LINUX ANALYSIS

In the same way as Soletta, we also use FEVER to make automatic analysis over 13,288

commits of Linux Kernel, between versions 3.12 and 3.13, ranging from February /2013 to

December/2013. Table 10 shows the summary of results of the Linux dataset extracted

from Neodj queries. As result, from all commits, 11,377 (85.62%) were captured by queries.

On the following, we show the amount of commits captured for each query based on safe

and partially safe templates:

Likewise Soletta, in our sample of Linux there is no instance of the REMOVE As-

SETS template. In the same way, in Linux, CHANGE ASSET template also has the most

Linux v3.12-3.13 Commits %
Total 13,288 100%
Templates 11,377 | 85.62%
Not captured as Template | 1,911 14.38%
Excluded 15 0.11%
Remaining Commits 1,896 | 14.27%

Table 10 — Automatic Results in Linux v3.12-v3.13

Chapter 4. FEvaluation

47

Evolution

Template

Commits

REMOVE ASSETS
ADD ASSETS

0 (0%
4 (0.03%

)

)

partially | CHANGE ASSET 11,211 (84.36%)
CHANGE CK LINES 17 (0.13%)

REMOVE FEATURE 12 (0.09%)

ADD NEW OPTIONAL FEATURE 78 (0.59%)

sofe ADD FEATURE WITHOUT CHANGE CK AND AM 9 (0.07%)
REMOVE UNUSED ASSETS 8 (0.06%)

ADD UNUSED ASSETS 38 (0.29%)

Table 11 — Commits returned by queries derived from templates in Linux v3.12-v3.13

frequency between commits, around 84%.

283

AM

AM && CK

AM && CK && FM
AM && FM

FM

CK

CK && FM

Figure 24 — 1,896 Remaining Commits of Linux v3.12-3.13

From the 1,911 remaining commits, we excluded 15 instances not correctly mined

by Repodriller. Between the excluded commits, 13 present several changes, such as the

5d43889c07 evolution scenario.® We guess that Repodriller does not mine correctly com-

mits with more than 5k modified files. In other hand, the two remaining commits present
no files modified (hashes: 9fbeace?3c, 1¢5054d9¢3). Thus, we analyzed 1,896 remaining

commits and extracted information about the modified spaces, which we plot in Figure 24.

Differently from Soletta, Linux presents almost half of the remaining commits with evo-

lution scenarios which only modify AM. The fewest occurrences are related to evolution

scenarios which modify both CK and FM. Similar to Soletta results, in Linux also there

are many changes which modify CK and AM at the same commit. Finally, we also plot a

5 https://github.com /torvalds/linux/commit /5d43889c07

Chapter 4. FEvaluation 48

timeline of Linux templates, without CHANGE ASSET, exhibited in Figure 25. According
to Figure 25, ADD NEW OPTIONAL FEATURE template instances occurs more in the
latest months of the release, different from Soletta. Moreover, REMOVE UNUSED ASSETS
template also presents more instances in the end of the release. Furthermore, such as in

Soletta, the messages of these commits express that deleted files were useless.

604
template

add assets
add feature without change CK and AM
Add new Optional Feature

! Add unused Assets

. Change CK Lines

. Aemove Feature

= l . Remaove unused assets
o — - —

2013-02 2013-03 2013-04 2015-05 2013-06 2013-07 2013-08 201508 2013-10 2013-11 2013-12
months

Figure 25 — Timeline of Linux Templates without CHANGE ASSET

4.3 DISCUSSION

After classifying the entire sample of the Soletta commits, we also establish the evolution
type for each one of them. For the 1,800 commits classified as templates, the evolution
type only depends on the template specification. For instance, commits classified as ADD
NEW OPTIONAL FEATURE are safe, while commits classified as REMOVE FEATURE are
partially safe. For the remaining ones we classified according to our manual analysis.

Finally, we report our results to our research questions:

4.3.1 RQ1: How changes are distributed in terms of safe and partially safe during
the history of a software product line?

Figure 26 illustrates a timeline from our sample of 2,300 commits according to the evo-
lution type, safe or partially safe. As a result, partially safe changes are more expressive
during the entire Soletta history which we evaluated, representing 91.3% of the commits,
while safe changes account for 8.7% only. These partially safe scenarios are mostly occur-
rences of the CHANGE ASSET template. Since we consider all instances of this template
as partially safe, there might be instances where assets are changed in a safe way, which
would be consistent with the REFINE ASSET safe evolution template. Thus, it could be
the case that there are more safe evolution scenarios in such commits. Nonetheless, we do
not believe that this would drastically change the numbers. Some scenarios are trivially
safe, even through manual analysis, such as rename cases, for example. However, most of

the changes are not easy to classify, so in such cases, we classified the change as partially

Chapter 4. FEvaluation 49

evolution
partially
safe

commit

1004

2015-06 2015-07 2015-08 201509 2015-10 201511 2015-12 201501 2016-02 2016-03 2016-04
months

Figure 26 — Timeline Safe vs Partially Safe Evolution from 2,300 Soletta commits

safe evolution. Regarding the Linux analysis, from 11,377 commits captured by queries,
around 85% represent partially safe evolution scenarios. Furthermore, most of those par-
tially safe evolution scenarios were classified as CHANGE ASSET template. In contrast,
only 0.59% of commits present ADD NEW OPTIONAL FEATURE. We believe that this low
rate is due to the maturity of Linux Kernel. Changes tend to improve the code rather
than add new functionality.

Can we observe patterns on how evolution happen?

In terms of evolution patterns for the remaining commits from Soletta, as aforemen-
tioned, commits with both AM and CK changes present the highest occurrence rate. After
classifying the remaining commits in terms of change type and tags, we observe some pat-
terns according to the modified spaces. For instance, in evolution scenarios which only
modify the CK, the most common change is related to build. In contrast, evolution sce-
narios which modify both CK and AM present more changes related to mapping than
build changes. This indicates the need for deriving templates to support these kinds of
changes. With respect to the Linux Kernel analysis, we can observe that at least 30%
of the remaining commits modify the CK. Likewise Soletta, there are several commits

modifying both AM and CK among remaining commits.

4.3.2 RQ2: How often templates cover these real scenarios?

As we mentioned before, existing templates and their respective queries cover 78% of
commits from Soletta sample. In fact, we did not use all of the available templates to
perform queries. Through our manual analysis, we identify that some of the remaining
cominits are also classified as an already existing template. For instance, there were some
evolution scenarios in the AM and CK changes group which we classified using existing
templates, which were not feasible to express in queries, such as SPLIT ASSET and MERGE
ASSETS. These templates include asset refinement as one of the preconditions, which

is an information that cannot be queried against the database. On Linux, 85.62% of

Chapter 4. FEvaluation 50

commits were covered by existing templates, and the remaining one are not covered by
any template.

Do we need to derive new templates?

Despite most evolution scenarios being classified as templates, a reasonable number
were still unclassified. In fact, most of the existing templates in the catalog (GROUP, 2018
(accessed november, 2018)) focus on changes solely to the FM, or co-evolution of FM and
other spaces. However, when evaluating the remaining commits from Soletta and Linux,
we observe that some recurrent scenarios can be deeper analyzed to further derive new
templates. Soletta results show that there is a lack of templates considering changes to FM
and CK, such as adding feature dependencies in Kconfig, and simultaneously, changing
the mapping in the Makefile. Also, there is a reasonable number of evolution scenarios

that change the mapping in the Makefile and add some assets (AM).

4.4 THREATS TO VALIDITY

As any case study, our exploratory work also presents threats to validity. This section
discusses some of those threats in what follows, according to guidelines from Runeson et
al. (RUNESON et al., 2012).

4.4.1 Construct Validity

Evolution scenarios consists in changes made by developers. In our study, we consider
each commit as a evolution scenario, due this type of contribution commonly represents an
instance of change in which the developer goals perform. This type of concept of evolution
could result bias in our analysis, so we define that as a construct threat. In other hand,
our results shows that our metric, which each commit is one evolution scenario, works well
in the SPL analyzed, because our results shows that most of those commits are covered
by templates. However, we dispose our methodology, aiming to make the analysis with
SPL with other metric of contributions, such as a sequence of commits, for example.
The knowledge about safe templates also can be a construct threat. Thus, if some
developer were aware about the use of the evolution patterns, this could bias the results
about the safe templates. We intend to check this issues with the Soletta developers in

future works.

4.4.2 Internal Validity

We define as a first internal threat the tools used in our study. The FEVER tool was
developed based on the Linux structure, and Soletta is a project that follows a similar
structure, which makes the tool to work as expected. To analyze that the queries that

we created based on this structure are not biased, we manually checked each one of the

Chapter 4. FEvaluation 51

commits yielded by the queries. Nevertheless, a single-person analysis could also introduce
bias in the results. This way, we consider the manual analysis as a second internal threat.

Aiming to mitigate this threat, we had another author reviewing the results to increase
the confidence of our analysis. Thus, all results were checked and analyzed in pair. To
solve doubts in the consensus phase, for some of the analyzed commits, we discussed with
a third researcher that supervised the consensus phase. There was no strong disagreement.
We also make available in our online appendix (GOMES, 2019 (accessed february, 2019))
the study package, including the commits covered by templates and also the dataset with

the remaining commits tagged by keywords and change types.

4.4.3 External Validity

Our study analyzed only one project, and we consider this as an external threat. However,
the Soletta structure is similar to other SPL projects which use Kconfig to manage vari-
ability and the C language for implementation. We have conducted a preliminary study
with commits from the Linux kernel and the automated classification reveals similar num-
bers. We also make available our methodology, allowing future analysis in other projects

to confirm our results.

4.4.4 Reliability

Runeson et al. (RUNESON et al., 2012) presents the Reliability concept that concerns to
what extent the dependency of the work results by the research authors. To mitigate the
bias, we make available our methodology to yield further analysis from other researchers’
perspectives. Furthermore, the study materials are available in the online appendix, aim-

ing to further reproducibility and replicability of our work.

5 CONCLUSIONS

In Software Engineering, Software Product Line is a technique to provide reuse and cus-
tomization in a systematic way. SPL is often represented as set of features which can be
reused, and according to their constraints, forming distinct valid product. This approach
brings many advantages, such as reduced time-to-market, reduced costs, and quality im-
provement. An SPL is usually structured in three spaces: Feature Model, Configuration
Knowledge and Asset Mapping.

Due to the reusable structure of SPL, one single feature can be spread across a range of
valid configurations. So, performing changes in SPL might be error-prone, because a simple
modification can impact several products. Hence, these questions induce previous works
to investigate SPL evolution, introducing theories that allow reasoning about safe and
partially safe evolution, formalized through the refinement theory (). Later, researchers
suggested templates based on these theories to support developers during evolution sce-
narios. However, there is no evidence about the interplay of both safe and partially safe
evolution templates in the context of real world SPLs. Therefore, these issues motivated
us perform an empirical study about safe and partially safe evolution in SPL. For that, we
use a real-world project: Soletta, a framework to support writing devices for Internet of
Things. We analyze 2,300 commits, in a range of 1 year of project (jun/2015 to apr/2016).

First, we use the FEVER tool to extract information for each commit (or evolution
scenario) from Soletta repository. The FEVER output is stored in a Neo4j graph dataset.
After mining the repository we choose some safe and partially safe templates to express
in queries to capture the commits which matches with these patterns. However, neither
all templates could be precisely captured by queries, so we choose nine templates (four
safe, and five partially safe). We obtain as results that 78.3% (1,800 occurrences) of
commits are covered by templates, and the remaining 21.7% (500 occurrences) were not
automatically classified. From 1,800 commits classified as templates, we verify that most
of the occurrences is referring to CHANGE ASSET template, as expected, representing
around 72% of evolution scenarios. Surprisingly, there are only two instances of REMOVE
FEATURE template. Moreover, there is no instances of both AbDD ASSETS and REMOVE
ASSETS partially safe templates.

Later, we analyzed the 500 commits not covered by templates. Initially we group
these remaining commits according the changed SPL spaces in seven distinct groups:
[AM], [CK], [FM], [FM, CK], [FM, AM], [CK, AM], and [FM, CK, AM]. Between these
groups, commits which modifies both CK and AM occurs more frequently, around 27.4%.
As a unexpected result, commits which change only the CK are the second most common
occurrence, representing 24.4% from all remaining commits. In contrast, commits which

present changes in both FM and AM at same time have the fewest instances, around 3%.

Chapter 5. Conclusions 53

We define some tags based on characteristics of each space (FM: Kconfig; CK: Makefile;
AM: assets) aiming to categorize the changes presented in commits. Furthermore, we also
categorize the type of change which varies between modify, add, remove, move, rename, to
relate them with the tags. As result, commits which only modify the FM present changes
related to depends on clause. In other hand, in CK group commits, most of evolution
scenarios referring to build changes. However, several scenarios which change CK with AM
or FM spaces at same time, present modification in mapping. Through our manual analysis
in remaining commits, we also identify some existing templates different from those we
used to capture by queries: SPLIT ASSET, MERGE ASSETS, ASSET NAME RENAMING,
REFINE ASSET, FEATURE RENAMING, and SIMPLIFY FEATURE EXPRESSION USING
THE F'M.

Finally, we classify the commits analyzed from Soletta as safe or partially safe. Com-
mits captured by queries were classified according the specification of each template, for
instance, Change Assets instances were classified as partially safe. We classify manually
remaining commits in conservative approach, so, simple scenarios such as rename cases,
we classify as safe evolution, and remaining ones as partially safe. As result, most of the
evolution scenarios, around 91% of commits, do not preserve the behavior of previous
SPL (partially safe evolution scenarios), and the remaining (around 9%) are classified as
safe evolution scenarios.

As a preliminary study, we also make automatic analysis in 13,288 commits from
Linux Kernel, between versions 3.12 and 3.13. Such as Soletta, most of the commits were
captured by queries; and therefore referred to some existing template (11,377 instances,
around 85% from all commits). In the 1,911 Remaining Commits, most of changes only
modify the AM, around 45% (864 commits). In contrast, there are few instances which
modify both CK and FM, 0.58% (11 commits). Moreover, evolution scenarios with changes

to all SPL spaces represent 14.9% of remaining commits (282 commits).

5.1 CONTRIBUTIONS

This section presents the contributions from our empirical study, and we list them as

follows:

o Improve understanding about safe evolution and partially safe evolution during the
SPL life-cycle;

e Derive new queries representing safe evolution templates which capture real evolu-

tion scenarios during the SPL history;

¢ A methodology for manually analyzing changes that might reveal novel templates

for expressing evolution scenarios;

Chapter 5. Conclusions 54

o Availability of our data, tools and scripts used in our study for further replication

and deeper analysis;

 Insights about evolution in SPL yielding future development of tools which could

supports SPL developers to perform their changes;

5.2 RELATED WORK

The work reported here is based on existing studies over SPL refactoring and evolu-
tion (ALVES et al, 2006; BORBA, 2011; BORBA; TEIXEIRA; GHEYI, 2012; NEVES et al.,
2015b; BENBASSAT; BORBA; TEIXEIRA, 2016: SAMPAIO; BORBA; TEIXEIRA, 2016). Alves
et al. (ALVES et al., 2006) extend refactoring concepts to the SPL context, proposing a
catalogue of FM refactorings.

The notion of Safe FEvolution discussed here first appeared with a refactoring fo-
cus (BORBA, 2011), illustrating different kinds of refactoring transformation templates
that can be useful for deriving and evolving product lines. Borba et al. (BORBA; TEIXEIRA;
GHEYI, 2012) mechanized and generalized the initial proposal into a refinement theory,
introducing and proving soundness for a number of SPL transformation templates. Based
on this theory, with the goal of guiding developers in possible refinement scenarios, Neves
et al. (NEVES et al., 2015b) and Benbassat et al. (BENBASSAT; BORBA; TEIXEIRA, 2016)
propose template catalogues to abstract Safe Evolution scenarios.

Sampaio et al. (SAMPAIO; BORBA; TEIXEIRA, 2016) extends the refinement theory
with the concept of partial refinement, establishing the concept of Partially Safe Evolution.
This concept, as discussed, allows supporting changes that only preserve the behavior of a
subset of the existing products. Our study differs from these previous studies by focusing
on both safe and partially safe evolution templates, to understand the distribution of
such changes throughout the evolution history of an SPL. Sampaio also goes beyond our
analysis of change assets, by considering the commit messages to further classify such
scenarios as refactorings or not. We plan to follow a similar strategy in future works.

Montalvillo et al. perform a mapping study (MONTALVILLO; DiAZ, 2016) which clas-
sified studies related to evolution in SPLs, and their results shows that few studies focus
on identifying changes in SPLs. Our work categorizes changes performed during the SPL
evolution history life-cycle, measuring how often templates cover changes in real projects,
and also characterizing changes not mapped to existing templates using change types and
tags.

Dintzner et al. (DINTZNER; DEURSEN; PINZGER, 2013) present a tool named FMDiff
to automatically analyze differences in Linux Kconfig models. The change categories are
specific to structures found in Kconfig specifications, such as feature dependency changes.
This tool could be used to cross-check our manual tag analysis of changes to the FM.
Dintzner et al. (DINTZNER; DEURSEN; PINZGER, 2018) also developed the FEVER tool,

(@3]
(&3]

Chapter 5. Conclusions

which we use in our evaluation, that enables the commit analysis of Kconfig-based systems,
extracting feature-oriented changes from the commits. In our work, we go beyond what
FEVER is able to extract, since we also want to classify commits as safe and partially
safe.

Passos et al. (PASSOS et al., 2016) perform a study analyzing how evolution occurs
on the Linux kernel. Their study is focused on changes that involve feature addition or
removal. As a result, they also provide a pattern catalogue, similar to the templates we
discuss here. However, their focus is not on categorizing such patterns as safe or partially
safe. In contrast, our study analyzed all of the commits, regardless of specific changes to
a particular SPL space such as the FM.

Biirdek et al. (BURDEK et al., 2016) propose an approach to document and classify
changes in feature diagrams using a logic-based formal framework. They provide a cata-
logue describing structural changes in feature models. Different from this study, our work
analyze evolution scenarios and how those changes affect the three SPL spaces, not only
focusing in the FM. Moreover, our intention is also on classifying scenarios into safe or
partially safe, according to the kind of change.

Kroher et al. (KRSHER; GERLING; SCHMID, 2018) perform a study to understand the in-
tensity of variability-related changes to the Linux kernel. They measure how often changes
occur in FM, AM, and CK, and how often do those changes are related to variability in-
formation inside these artifacts. Our work also investigate the intensity of changes for the
remaining commits, going into detail of what has been changed in the tag classification.
However, our focus is on classifying evolution scenarios into safe or partially safe and to
use the tags as a way to derive new templates in the future. Nonetheless, their tool could
be a complementary tool to our analysis, and we could cross-check our results to see if

the same patterns that occur in Linux also hold for Soletta.

5.3 FUTURE WORK

Our work consists in an empirical study to characterize evolution of Software Product
Lines, in terms of safe and partially safe. Through our study, we identify if templates
are being used in practical scenarios. As expected, not all commits is expressed as tem-
plate. So, we also categorize the type of change of the evolution scenarios which are not
correspondent with templates. Furthermore, we make available our data, scripts, and
methodology used to perform this work and classify the evolution scenarios. Although we
make an classification of a SPL evolution as a whole and its characteristics, we identify

some possibilities to improve our study which are described below:

e From all 2300 commits analyzed, 1662 instances only modify assets, in other words,
there are 1662 commits classified as change asset template. So, this motivates us to

perform a deeper analysis about the changes occurred in assets and its impacts;

Chapter 5. Conclusions 56

Moreover, we intend to explore our classification of change type and tags to derive

new templates;

As expected, most of commits are classified as partially safe evolution. Therefore,
we intend to investigate thoroughly such evolution scenarios, aiming to define the

subset of products affected by the changes;

We also intend to analyze whether existing templates for individually changing FM

and CK can be leveraged to improve the classification of remaining commits;

Finally, from the previous issues and improvement of our work specified above, we

aim to provide some tool to support developers to execute their changes in the SPL.

REFERENCES

ALVES, V.; GHEYI, R.; MASSONI, T.; KULESZA, U.; BORBA, P.; LUCENA,
C. Refactoring product lines. In: Proceedings of the 5th International Conference
on Generative Programming and Component Engineering. New York, NY, USA:
ACM, 2006. (GPCE ’06), p. 201-210. ISBN 1-59593-237-2. Disponivel em:
<http://doi.acm.org/10.1145/1173706.1173737>.

APEL, S.; BATORY, D.; KSTNER, C.; SAAKE, G. Feature-Oriented Software Product
Lines: Concepts and Implementation. 1st. ed. [S.1.]: Springer Publishing Company,
Incorporated, 2016. ISBN 3662513005, 9783662513002.

BASILI, V. R. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. College Park, MD, USA, 1992.

BENBASSAT, F.; BORBA, P.; TEIXEIRA, L. Safe evolution of software product lines:
Feature extraction scenarios. In: 2016 X Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS). [S.1.: s.n.], 2016. p. 11-20.

BORBA, P. An introduction to software product line refactoring. In: Proceedings of
the 3rd International Summer School Conference on Generative and Transformational
Techniques in Software Engineering I1I. Berlin, Heidelberg: Springer-Verlag, 2011.
(GTTSE’09), p. 1-26. ISBN 3-642-18022-1, 978-3-642-18022-4. Disponivel em:
<http://dl.acm.org/citation.cfin?id=1949925.1949927>.

BORBA, P.; TEIXEIRA, L.; GHEYI, R. A theory of software product line
refinement. Theoretical Computer Science, v. 455, p. 2 — 30, 2012. ISSN 0304-3975.
International Colloquium on Theoretical Aspects of Computing 2010. Disponivel em:
<http://www.sciencedirect.com/science/article/pii/S0304397512000679>.

BURDEK, J.; KEHRER, T.; LOCHAU, M.; REULING, D.; KELTER, U.; SCHURR,
A. Reasoning about product-line evolution using complex feature model differences.
Automated Software Engineering, v. 23, n. 4, p. 687733, Dec 2016. ISSN 1573-7535.
Disponivel em: <https://doi.org/10.1007/s10515-015-0185-3>.

CLEMENTS, P.; NORTHROP, L. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002. (SEI series in software engineering). ISBN 9780201703320.
Disponivel em: <https://books.google.com.br/books?id=tHGFQgAACAAJ>.

DINTZNER, N.; DEURSEN, A. V.; PINZGER, M. Extracting feature model changes
from the linux kernel using fmdiff. In: Proceedings of the Fighth International
Workshop on Variability Modelling of Software-Intensive Systems. New York, NY,
USA: ACM, 2013. (VaMoS ’14), p. 22:1-22:8. ISBN 978-1-4503-2556-1. Disponivel em:
<http://doi.acm.org/10.1145/2556624.2556631> .

DINTZNER, N.; DEURSEN, A. van; PINZGER, M. Fever: Extracting feature-oriented
changes from commits. In: Proceedings of the 13th International Conference on Mining
Software Repositories. New York, NY, USA: ACM, 2016. (MSR ’16), p. 85-96. ISBN
978-1-4503-4186-8. Disponivel em: <http://doi.acm.org/10.1145/2901739.2901755>.

References 58

DINTZNER, N.; DEURSEN, A. van; PINZGER, M. Fever: An approach to analyze
feature-oriented changes and artefact co-evolution in highly configurable systems.
Empirical Software Engineering, v. 23, n. 2, p. 905-952, Apr 2018. ISSN 1573-7616.
Disponivel em: <https://doi.org/10.1007/s10664-017-9557-6>.

GOMES, K. Vamos 2019 - Characterizing safe and partially safe evolution scenarios
in product lines: An Empirical Study. [S.1.], 2019 (accessed february, 2019).
<http://www.cin.ufpe.br /~kgmg/msc>.

GROUP, S. Templates for Software Product Line Evolution. [S.l.], 2018 (accessed
november, 2018). <https://github.com/spgroup/pl-refinement-templates-catalog/blob/
master/templatescatalog.pdf>.

HEIDER, W.; VIERHAUSER, M.; LETTNER, D.; GRiNBACHER, P. A case study on
the evolution of a component-based product line. In: 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software Architecture.
[S.l.: s.n.], 2012. p. 1-10.

KANG, K. C.; COHEN, S. G.: HESS, J. A.; NOVAK, W. E.;: PETERSON, A. S.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. [S.1.], 1990.

KERNEL. Kconfig Language. [S.1.], 2018 (accessed August, 2018). Disponivel em:
<https://www.kernel.org/doc/Documentation/kbuild /kconfig-language.txt>.

KR6HER, C.; GERLING, L.; SCHMID, K. Identifying the intensity of variability
changes in software product line evolution. In: Proceedings of the 22Nd International
Systems and Software Product Line Conference - Volume 1. New York, NY,

USA: ACM, 2018. (SPLC ’18), p. 54—64. ISBN 978-1-4503-6464-5. Disponivel em:
<http://doi.acm.org/10.1145/3233027.3233032>.

KRUGER, J.; GU, W.; SHEN, H.; MUKELABAI, M.; HEBIG, R.; BERGER, T.
Towards a better understanding of software features and their characteristics: A case
study of marlin. In: VaMoS. [S.1.: s.n.], 2018.

LOTUFO, R.; SHE, S.; BERGER, T.; CZARNECKI, K.; WaSOWSKI, A. Evolution of
the linux kernel variability model. In: Proceedings of the 14th International Conference
on Software Product Lines: Going Beyond. Berlin, Heidelberg: Springer-Verlag, 2010.
(SPLC’10), p. 136-150. ISBN 3-642-15578-2, 978-3-642-15578-9. Disponivel em:
<http://dl.acm.org/citation.cfm?id=1885639.1885653> .

MONTALVILLO, L.; DiAZ, O. Requirement-driven evolution in software product lines:
A systematic mapping study. Journal of Systems and Software, v. 122, p. 110 — 143,
2016. ISSN 0164-1212. Disponivel em: <http://www.sciencedirect.com/science/article/
pii/S0164121216301510>.

NEVES, L.; BORBA, P.; ALVES, V.;: TURNES, L.; TEIXEIRA, L.; SENA, D.;
KULESZA, U. Safe evolution templates for software product lines. J. Syst. Softw.,
Elsevier Science Inc., New York, NY, USA, v. 106, n. C, p. 42-58, ago. 2015. ISSN
0164-1212. Disponivel em: <http://dx.doi.org/10.1016/j.jss.2015.04.024>.

NEVES, L.; BORBA, P.; ALVES, V.; TURNES, L.; TEIXEIRA, L.; SENA, D.;
KULESZA, U. Safe evolution templates for software product lines. Journal of

References 59

Systems and Software, v. 106, p. 42 — 58, 2015. ISSN 0164-1212. Disponivel em:
<http://www.sciencedirect.com/science/article/pii/S0164121215000801>.

PASSOS, L.; CZARNECKI, K. A dataset of feature additions and feature removals
from the linux kernel. In: Proceedings of the 11th Working Conference on Mining
Software Repositories. New York, NY, USA: ACM, 2014. (MSR 2014), p. 376-379. ISBN
978-1-4503-2863-0. Disponivel em: <http://doi.acm.org/10.1145/2597073.2597124>.

PASSOS, L.; CZARNECKI, K.; WASOWSKI, A. Towards a catalog of variability
evolution patterns: The linux kernel case. In: Proceedings of the 4th International
Workshop on Feature-Oriented Software Development. New York, NY, USA:
ACM, 2012. (FOSD ’12), p. 62-69. ISBN 978-1-4503-1309-4. Disponivel em:
<http://doi.acm.org/10.1145/2377816.2377825>.

PASSOS, L.; TEIXEIRA, L.; DINTZNER, N.; APEL, S.; WASOWSKI, A_;
CZARNECKI, K.; BORBA, P.; GUO, J. Coevolution of variability models and related
software artifacts. Empirical Software Engineering, v. 21, n. 4, p. 1744-1793, Aug 2016.
ISSN 1573-7616. Disponivel em: <https://doi.org/10.1007/s10664-015-9364-x>.

POHL, K.; BoCKLE, G.; LINDEN, F. J. v. d. Software Product Line Engineering:
Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2005. ISBN 3540243720.

RUNESON, P.; HOST, M.; RAINER, A.; REGNELL, B. Case Study Research in
Software Engineering: Guidelines and Ezamples. 1st. ed. [S.l.]: Wiley Publishing, 2012.
ISBN 1118104358, 9781118104354.

SAMPAIO, G.; BORBA, P.; TEIXEIRA, L. Partially safe evolution of software
product lines. In: Proceedings of the 20th International Systems and Software Product
Line Conference. New York, NY, USA: ACM, 2016. (SPLC ’16), p. 124-133. ISBN
978-1-4503-4050-2. Disponivel em: <http://doi.acm.org/10.1145/2934466.2934482>.

SHE, S.; LOTUFO, R.; BERGER, T.; WASOWSKI, A.; CZARNECKI, K. The
variability model of the linux kernel. In: . [S.1.: s.n.], 2010. Null ; Conference date:
27-01-2010 Through 29-01-2010.

TEIXEIRA, L.; ALVES, V.; BORBA, P.; GHEYI, R. A product line of theories
for reasoning about safe evolution of product lines. In: Proceedings of the 19th
International Conference on Software Product Line. New York, NY, USA: ACM,
2015. (SPLC '15), p. 161-170. ISBN 978-1-4503-3613-0. Disponivel em: <http:
//doi.acm.org/10.1145/2791060.2791105>.

APPENDIX A - SAFE AND PARTIALLY SAFE TEMPLATES USED
AUTOMATICALLY THROUGH QUERIES IN OUR EMPIRICAL STUDY

A.1 SAFE TEMPLATES

'/ ______ \' I', _______ \I
RN R
| : g : P : 7 n—a
I P I | |
1 l | |
| | I 1
I / I I 4) !
|\ /! e n | : er n'
—————— : 0 I
| /' e n
e'=0
O and n' are new
resulting SPL is well-formed
Figure 27 — Add new Optional Feature
F'
F e~ T N
______ [|
e Y ! :
: | : A : P | A
I
I I !
il K
e I I
N Se— /
C & features(F)

Figure 28 — Add any Feature without change CK and AM

APPENDIX A. Safe and Partially Safe Templates used automatically through queries in our Empirical
Study 61

F F
A C A®Dm
K K

Y n € dom(m) * n does not appear in K

Figure 29 — Add unused Assets

F F
A" ®m C A’

K

Y n & dom(m) * n does not appear in K

Figure 30 — Remove unused Assets

A.2 PARTIALLY SAFE TEMPLATES

APPENDIX A. Safe and Partially Safe Templates used automatically through queries in our Empirical
Study 62

s

A A
S=(F,AK) ! {n}

Resulting products containing a’ are well-formed

Figure 31 — Change Asset

PL PL'
| e =i T | i'_ _____ _':
o P
i A i g iz’-’i@m:
|
i K | |KUEI5J

S = Flexps(its)
Vn € dom(m) - n is not resultant from K evaluation

PL products not in the scope of § are well — formed

Figure 32 — Add Assets

APPENDIX A. Safe and Partially Safe Templates used automatically through queries in our Empirical
Study 63

gp i e J ' e S
I | | ne=a : | \
| I 1
nea i nea

| I |
’ 2 : { VL |
1 I [
| [T Tw] Es - [T
| o | z
\‘___’}

&'=5{)

S=F10O

O appears only in e’
Resulting products not in the scope of S are well-formed

Figure 33 — Remove Feature

APPENDIX B - SAFE TEMPLATES CAPTURED THROUGH MANUAL
ANALYSIS IN OUR EMPIRICAL STUDY

F F
{n—a'n'-a"}® m C {n—a}® m
e |nn'|Uifs e | n |Uits
a'a"C a

n and »' do not appear 1in its

Figure 34 — Merge Assets

I 3

{nmat@®@m [{mea'n'=a’t @ m

| e | n |Uils e |nn'|U its

al_a'q”
n and n' do not appear 1n ifs

Figure 35 — Split Assets

64

APPENDIX B. Safe Templates captured through manual analysis in our Empirical Study

F A B A

— g —_—

' ¥

K [7] kPP

I

A
c[P/P]

—

|
£

i ks~ i bl

P' & features(F)

Figure 36 — Feature Renaming

A { ??Hn} JAI{ H'H-E'!}

K K/n'/n]

n' et dom(A)

Figure 37 — Asset Name Renaming

APPENDIX B. Safe Templates captured through manual analysis in our Empirical Study

& i, i’ — e' non'

Fre=p¢g'

names(e’) © names(F)

Figure 38 — Replace Feature Expression

Feature Expression Assets Feature Expression Assets

exp at _ﬁn exp' al

Jin - (exp < exp')

Figure 39 — Simplify Feature Expression using the FM

10

11

13

APPENDIX C - QUERIES DERIVED FROM TEMPLATES TO CAPTURE
EVOLUTION SCENARIOS

Listing C.1 — (Partially safe) Change Asset Query

match (c: commit)

-->(a: ArtefactEdit {change: "MODIFIED"3})

where

not (c)-->(:ArtefactEdit{change: "ADDED"}) and
not (c)-->(:ArtefactEdit{change: "REMOVED"}) and
not (c)-->(:ArtefactEdit{type: "vm"}) and

not (c)-->(:ArtefactEdit{type: "build”})

return distinct c.hash

Listing C.2 — (Partially safe) Remove Feature Query

match (file: ArtefactEdit)<-[:TOUCHES]-(c:commit)
-[:CHANGES_BUILD]J]->(mapping: MappingEdit)

where

(c)-->(:FeatureEdit{change: "Remove”, name: mapping.feature}) AND
file.change = "REMOVED" AND

mapping.target_change = "REMOVED"” AND

mapping.target_type = "COMPILATION_UNIT" AND

not (c)-->(:ArtefactEdit {type: "source"”, change: "ADDED"3}) AND

file.name =~

(".x" + substring (mapping.target, @, length (mapping.target) =-2) + ".x"))
return distinct c.hash

Listing C.3 — (Partially safe) Change CK Lines Query

match (c: commit) -[:CHANGES_BUILD]1->(:MappingEdit)
where

not (c) -->(:ArtefactEdit{type: "source"}) and

not (c) -->(:FeatureEdit)

return distinct c.hash

Listing C.4 — (Partially safe) Add Assets Query

match (file: ArtefactEdit)<--(c: commit)

-->(mapping: MappingEdit)

where

not (c)-->(:FeatureEdit) AND

not (c)-->(:MappingEdit {mapping_change: "MODIFIED"3}) AND
not (c)-->(:MappingEdit {mapping_change: "REMOVED"}) AND

file.change = "ADDED" AND
mapping.target_change = "ADDED" AND
mapping.target_type = "COMPILATION_UNIT" AND

not (c)-->(:ArtefactEdit {type: "source"”, change: "MODIFIED"}) AND

not (c)-->(:ArtefactEdit {type: "source”, change: "REMOVED"”3}) AND
file.name =~

(".*" + substring (mapping.target, 0, size(mapping.target) - 2) + ".*")
return distinct c.hash

67

10

12

APPENDIX C. Queries derived from templates to capture evolution scenarios 68

Listing C.5 — (Partially safe) Remove Assets Query

match (file: ArtefactEdit)<-[:TOUCHES]-(c: commit)

-[: CHANGES_BUILDJ]->(mapping: MappingEdit)

where

not (c)-->(:FeatureEdit) AND

not (c)-->(:MappingEdit {mapping_change: "MODIFIED"3}) AND

not (c)-->(:MappingEdit {mapping_change: "ADDED"})

AND file.change = "REMOVED" AND mapping.target_change = "REMOVED" AND
mapping.target_type = "COMPILATION_UNIT" AND

not (c)-->(:ArtefactEdit {type: "source”, change: "MODIFIED"3}) AND

not (c)-->(:ArtefactEdit {type: "source"”, change: "ADDED"3}) AND
file.name =~

(".*"+ substring (mapping.target, 0, length (mapping.target) - 2) + ".x")
return distinct c.hash

Listing C.6 — (Safe) Add new Optional Feature Query

match (ae:ArtefactEdit {change: "ADDED"})<--(c:commit)
-[1->(f:FeatureEdit{change:"Add"3})
-[]1->(fd:FeatureDesc{optionality:"optional”})

where

(c)-->(:MappingEdit {feature: f.name}) and

(c)-->(:ArtefactEdit {type: "source”, change: "ADDED"3}) and not
(c)-->(:ArtefactEdit {type: "source”, change: "MODIFIED"”3}) and not
(c)-->(:ArtefactEdit {type: "source”, change: "REMOVED"})

or ae.name =~ ".x.jbp.*" or ae.name =~ ".%x. json.x"

return distinct c.hash

Listing C.7 — (Safe) Add any Feature without change the CK and AM Query

match (c: commit) -->(f: FeatureEdit)

where

f.change =~ "Add” and

not (c)-->(:ArtefactEdit {type: "build”}) and
not (c)-->(:ArtefactEdit {type: "source”"})
return distinct c.hash

Listing C.8 — (Safe) Remove unused Assets Query

match (c: commit)--> (a: ArtefactEdit {change: "REMOVED"})

where

not (c)-->(:ArtefactEdit {change: "MODIFIED"3}) and

not (c)-->(:ArtefactEdit {change: "ADDED"3}) and

not (:FeatureEdit) <--(c) and not (:MappingEdit) <--(c) and

not (c)-->(:ArtefactEdit {type: "build”}) AND not (c)-->(:ArtefactEdit {type: "vm"})
return distinct c.hash

Listing C.9 — (Safe) Add unused Assets Query
match (c: commit) --> (a: ArtefactEdit {change: "ADDED"})
where
not (c)-->(:ArtefactEdit {change: "MODIFIED"”3}) and
not (c)-->(:ArtefactEdit {change: "REMOVED"}) and
not (:FeatureEdit) <--(c) and not (:MappingEdit) <--(c) and
not (c)-->(:ArtefactEdit {type: "build”}) AND
not (c)-->(:ArtefactEdit {type: "vm"})
return distinct c.hash

