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ABSTRACT

In a collaborative development environment, programmers often work on simultane-
ous tasks which involve common software artifacts. As a consequence, when developers
merge independent code contributions from different tasks, one might have to deal with
conflicting changes, hampering the productivity of such collaborative development. The
industry widely uses unstructured merge tools, that rely on textual analysis, to detect and
resolve conflicts between developers’ code contributions. On the other hand, semistruc-
tured merge tools go further by partially analyzing the syntactic structure and semantics
of the code artifacts involved in a conflict. Previous studies compared these merge ap-
proaches, showing that semistructured merge is superior to unstructured one with respect
to the number of reported conflicts, reducing the integration effort spent by developers,
but, also, possibly negatively impacting the correctness of the merging process. However,
these studies are based on semistructured merge tools, built on top of the FSTMerge
architecture, that support different languages such as Java and C#, but not JavaScript,
the most popular programming language for the Web. JavaScript has distinctive features
when compared to those languages, which potentially lead to different results of effective-
ness in solving conflicts by using the semistructured merge approach. In this work, we
implement different versions of semistructured tools— based on FSTMerge— that work
with JavaScript, and we conduct a study to compare them to an unstructured tool in order
to better understand how semistructured merge works across different languages. During
the implementation of tools for JavaScript, we found that the FSTMerge approach is
not fully generalizable for programming languages that share similar characteristics with
JavaScript; in particular, languages that allow statements at the same syntactic level as
commutative and associative declarations. For those languages, further adaptations to the
FSTMerge architecture are necessary. Nevertheless, we found evidences that semistruc-
tured merge approach for JavaScript reports fewer spurious conflicts than unstructured
merge, without significantly impacting the integration correctness. Even though the re-
duction of reported conflicts is lower than that reported in previous studies for Java
and C#, semistructured merge still seems to be a promising alternative to traditional

unstructured merge when working with JavaScript.

Keywords: Collaborative development. Software merging. Semistructured merge. Version

control systems. JavaScript.



RESUMO

Em um ambiente de desenvolvimento colaborativo, programadores frequentemente
trabalham de forma paralela em tarefas de desenvolvimento que envolvem artefatos de
software em comum. Como consequéncia, durante a integracdo de contribuig¢oes de codigo
resultantes de diferentes tarefas, programadores podem ter que lidar com alteragoes con-
flitantes, o que afeta a sua produtividade. A industria usa, em sua maior parte, ferra-
mentas de integragao nao-estruturadas, que se baseiam somente em uma analise textual,
para resolver conflitos entre as contribuicoes dos programadores. Por sua vez, ferramen-
tas de integragao semi-estruturadas tentam ir além, explorando a estrutura sintatica do
codigo envolvido em um conflito. Estudos anteriores compararam essas duas abordagens
de integracao de codigo e eles obtiveram resultados que mostraram que a integracao semi-
estruturada é superior a nao-estruturada no que diz respeito a quantidade de conflitos
reportados, o que reduz o esfor¢co de desenvolvedores na integracao de cédigo, mas, ao
mesmo tempo, também mostraram que a integracao semi-estruturada pode ter um im-
pacto negativo na corretude do codigo produzido. No entanto, esses estudos sdo baseados
em ferramentas de merge semi-estruturada, construidas a partir de uma arquitetura con-
hecida como FSTMerge, que suportam diferentes linguagens de programacao, tais como
Java e C#, mas nao JavaScript, que ¢é a linguagem de programac¢ao mais popular para
a Web. JavaScript possui caracteristicas distintas quando comparada com essas outras
linguagens, o que leva a integracao semi-estruturada a apresentar resultados diferentes de
efetividade na resolugao de conflitos. Neste trabalho, nés implementamos diferentes ver-
soes de ferramentas semi-estruturadas, baseadas no FSTMerge, para JavaScript e conduz-
imos um estudo para comparé-las com uma ferramenta nao estruturada, com o objetivo de
entender melhor como a abordagem semi-estruturada se comporta em diferentes lingua-
gens. Durante a implementacao dessas ferramentas para JavaScript, nds observamos que
a abordagem proposta pelo FSTMerge nao é totalmente generalizavel para JavaScript e
outras linguagens que compartilham caracteristicas similares; em especial, linguagens que
permitem comandos no mesmo nivel sintatico que declaragoes comutativas e associativas.
Para tais linguagens, ¢ necessario realizar adaptagoes na arquitetura do FSTMerge. Nao
obstante, nés obtivemos resultados que indicam que a abordagem semi-estruturada para
JavaScript reporta menos conflitos espirios que a abordagem nao-estruturada, sem afe-
tar negativamente a corretude da integracao de cdédigo. Embora essa redugao no ntimero
de conflitos reportados seja menor que a obtida em estudos baseados em Java e C#, a
abordagem semi-estruturada, ao considerar programas escritos em JavaScript, ainda se

mostra uma alternativa promissora as tradicionais ferramentas nao-estruturadas.

Palavras-chave: Desenvolvimento colaborativo. Integracao de software. Integracao semi-

estruturada. Sistemas de controle de versao. JavaScript.
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1 INTRODUCTION

As software projects become ever larger, both in terms of number of development team
members and source code size, coordination of changes to a system without causing harm
or unnecessarily hindering productivity turns out to be a challenge (BIRD; ZIMMERMANN|
2012)). In a collaborative development setting, programmers often work on simultaneous
tasks that involve common project artifacts (e.g., source code, build files, etc). Conse-
quently, when integrating code changes from independent tasks, programmers might have
to deal with conflicting changes, impairing development productivity. These conflicts may
arise when different programmers introduce changes to the same project artifacts, or even
when parallel changes are made to different artifacts, but leading to build or test errors
(BRUN et al., [2011; [KAST; SARMA/ 2013)). Such conflicts are costly, once they delay the
software project while developers dedicate substantial effort to understand and resolve
each conflict (HORWITZ; PRINS; REPS, [1989; [GRINTER), [1995; [PERRY; SIY; VOTTA| 2001}
ESTUBLIER; GARCIA| 2005 ZIMMERMANN|, 2007).

Version control systems (VCSs), such as Git (GIT, 2018), support the coordination
of multiple programmers, allowing them to work on their own workplaces and provide
revision of their code in parallel (O’SULLIVAN, 2009). One of the capabilities of VCSs
is merging software artifact revisions, which might involve conflicting changes. VCSs can
employ distinct merge tools to mitigate and resolve conflicts. These tools implement merge
approaches which mainly differ on how software artifacts are represented. The industry
widely uses unstructured merge approach to detect and resolve merge conflicts. How-
ever, unstructured tools rely purely on textual analysis, identifying conflicts via textual
similarity (KHANNA; KUNAL; PIERCE, 2007, which leads to the report of spurious con-
flicts that require effort from developers to manually resolve them. On the other hand,
semistructured merge approach goes further by leveraging structural information about
the underlying code artifacts involved in a conflict (APEL et al., 2011)).

Previous studies compare these merge approaches, showing that semistructured merge
is superior to unstructured one with respect to the number of detected conflicts. Apel et
al.| (2011) report an average reduction of 34% compared to unstructured merge. |Caval-
canti, Accioly and Borba (2015|) conducted a replication of this study, finding an average
reduction of 21% of reported conflicts by semistructured merge. In contrast, |(Cavalcanti,
Accioly and Borba, (2017)) found that, while still reducing the number of reported conflicts
(a reduction of 24%), semistructured merge introduces false negatives, i.e., actual inter-
ferences between developers not reported as conflicts, which compromises integration cor-
rectness. To evaluate the semistructured approach, these studies used tools built on top of
a semistructured merge engine implemented by Apel et al.| (2011)), called FSTMerge, having

support for different programming languages such as Java and C#, but not JavaScript.
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1.1 MOTIVATION AND PROBLEM

The industrial adoption of semistructured merge depends on many factors, including,
for example, usability of a tool (FAVRE; ESTUBLIER; SANLAVILLE, 2003)). Other relevant

factors that could justify the usage of semistructured merge in practice are evidences that

it reduces the integration effort without risking the correctness of the merging process,

when compared to the unstructured approach. Cavalcanti, Accioly and Borbal (2017)), in

their research, investigate the impact of semistructured merge usage on integration effort
and correctness, but they focus on Java systems. While their results may be generalized
to other programming languages that share similar characteristics (e.g., C# and C++),
little could be said with respect to scripting languages that are more dynamic and loosely
typed, such as JavaScript, PHP, and Python. The latter languages have a more flexible
syntax that allows top-level statements in a program, which might affect the effectiveness

of semistructured merge approach.

Figure 1 — Percentage of monthly active users per programming language on GitHub
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The support for programming languages that are often used in industry is another
important factor regarding adoption of semistructured merge. And there was still no
implementation of a semistructured tool for the most popular language for the Web:

JavaScript. JavaScript was initially created to extend Web pages with small portions of

code, but since then, its popularity and relevance have only grown (NEDERLOF; MESBAH;
DEURSEN], 2014} STLVA et al, 2017)). JavaScript is now the most popular programming
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language on GitHub, being used by 34.2% of the top-2,500 most popular systems on the
platform (BORGES; HORA; VALENTE, [2016). Figure 1| presents, for different languages,
the percentage of monthly active users (MAU) on GitHub, showing JavaScript as the
most used language. The number of MAU was calculated by [Frederickson (2018)]), using
GHTorrent (GOUSIOS, 2013) as data source, based on how often users have pushed code,
forked or starred a repository, or opened an issue. Even though the most common runtime
environment for JavaScript is the Web browser, the language has started to be employed
on the server-side of applications by means of a framework called Node.js. Node.js became
one of the main components of the “JavaScript everywhere” paradigm, enabling Web
development around a single programming language (PEREIRA, [2012)).

Considering the importance of JavaScript for software development, especially Web
applications, and the evidence, reported by previous studies, that semistructured merge
can provide better results for other programming languages, it becomes quite relevant to
investigate how semistructured merge would behave for JavaScript. It is important not
only to evaluate whether the semistructured approach can be a better alternative to the
unstructured one when targeting JavaScript systems, but also to better understand how
semistructured merge can be effectively implemented for other programming languages;
in particular, scripting languages that have similar features to JavaScript (e.g., PHP and
Python).

1.2 OBJECTIVES

In order to address the lack of implementation and evaluation of a semistructured merge
tool for JavaScript, the major objectives of this thesis are to propose and implement such
tool, by leveraging the FSTMerge architecture, and to evaluate its effectiveness when used

in practice. In particular, we want to investigate the following main research questions:

o RQ1: Is the FSTMerge semistructured approach generalizable for JavaScript?

o« RQ2: Could semistructured merge for JavaScript be effective in practice?

For answering RQ1, we investigate whether FSTMerge semistructured approach, as
proposed by |Apel et al. (2011)), is generic enough to support the implementation of an
effective merge tool for JavaScript. In an attempt to answer RQ2, we conduct an empiri-
cal study based on a research led by Cavalcanti, Accioly and Borba| (2017)), which focuses
on Java, to compare unstructured and semistructured merge approaches for JavaScript
in terms of 1) frequency in which spurious conflicts are reported (false positives), which
affects integration effort, and 2) frequency in which actual interferences between develop-
ment tasks are not reported (false negatives), which affects integration correctness. We

reproduce 10,526 merge scenarios (sets consisting of a common ancestor revision and its
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derived revisions) from 50 JavaScript projects for collecting data to enable this compari-
son. The research questions investigated by (Cavalcanti, Accioly and Borba, (2017)) become

sub-questions of RQ2 in our study:

e RQ2.1: When compared to unstructured merge, does semistructured merge reduce

unnecessary integration effort by reporting fewer spurious conflicts?

« RQ2.2: When compared to unstructured merge, does semistructured merge compro-

mise integration correctness by missing more non spurious conflicts?

1.3 THESIS OUTLINE
The remainder of this thesis is structured as follows:

o Chapter 2 presents background information on version control systems, merge ap-

proaches and JavaScript; the main concepts used to understand this thesis.

o Chapter 3 describes our proposed approach to implement semistructured merge
tools for JavaScript. We also document different types of conflicts unstructured and

semistructured tools are able to detect or not when merging JavaScript artifacts.

o Chapter 4 presents an analytical evaluation of the generalizability of FSTMerge as
a framework to create semistructured tools for JavaScript and other programming
languages. We also present an empirical evaluation of semistructured merge tools
developed in this work, comparing them to an unstructured merge tool, with respect

to integration effort and correctness.

o Chapter 5 sums up our conclusions and contributions, and discusses related and

future work.
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2 BACKGROUND

In this chapter, we present background information related to our work. First, we discuss
central concepts of version control systems (VCSs), and how they support collaborative
software development (Section. In this context, we explain how VCSs perform software
merging, and how they can be empowered to detect and resolve merge conflicts automat-
ically, highlighting unstructured and semistructured merge tools (Section . Finally, in
Section [2.3] we present the fundamentals of the JavaScript language, discussing character-
istics, including lexical grammar and semantics, that are relevant for the implementation

of a semistructured merge tool.

2.1 VERSION CONTROL SYSTEMS

Version control systems arise in the context of software configuration management (SCM).
SCM is a software engineering discipline used by organizations to manage the evolution
of large and complex systems (TICHY], 1988)), including techniques to assist developers in
carrying out parallel changes to software artifacts. These techniques include version con-
trol mechanisms to track the composition of programs evolved into parallel versions from
which new versions can be derived by means of software merging (CONRADI; WESTFECH-
TEL, [1998; MENS, 2002). The fundamental idea of VCSs, from the first systems developed
in the early 70s to modern ones, is tracking files in such a manner that for each time a
file is significantly changed, a revision is created. As a result, a file evolves as a sequence
of revisions. From any revision, a branch can be created, which is a new line of devel-
opment that leads to a revision tree. One of the key ideas of VCSs is storing only the
differences between successive revisions, vastly reducing the amount of required memory

(ESTUBLIER, [2000).

Figure 2 — Revision branching and merging

" "2 ¥3 Ty (r5 merged with r, ,)
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Figure [2] illustrates a succession of revisions created from an initial one referred by
ri: o and 73 From rs, a branch is issued, generating the revision rs ;, which starts an
independent line of development. Such mechanism allows developers to work completely

separate from time to time. On the other hand, there is a need to integrate parallel code
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contributions, and this can be done via merging. In that example, the revisions ry and
T9.2 are merged into a new shared revision: r,. The section that follows explains in more
detail different approaches to deal with merge of revisions, and with conflicts between
concurrent changes that need to be resolved (Section [2.2)).

In a practical context, VCSs provide, in order to enable developers to work on revi-
sions, repositories to store software artifacts, as well access and modification support to
these artifacts (PRUDENCIO et al., 2012). There are two different approaches to determine
how such repositories are disposed, and how their access is made available: 1) the central-
ized model, implemented by Centralized Version Control Systems (CVCSs), and 2) the
distributed model, implemented by Distributed Version Control Systems (DVCSs).

The centralized model has long dominated the design of version control systems. In
CVCSs, there is a single canonical source repository, from which all the developers work
against, and synchronize their local working area. These centralized systems rely on a
client-server architecture, having developers communicate their changes through a central
server (ALWIS; SILLITO |2009; RIGBY et al., 2009). Examples of CVCSs include Subversion
(SUBVERSION, 2018), CVS (CVs, [2018)), and RCS (RCS, [2018]). However, that centralized
model started to fail in enabling a development process based on a large number of
possibly geographically-distributed programmers. One of the main limitations of CVCSs
is the dependence on a main server, which is a single point of failure and may not be
always accessible, e.g., requiring internet connection to save code revisions.

DVCSs have emerged to address some of the limitations of the centralized model,
introducing a peer-to-peer architecture that allows the propagation of changes between
repositories, and no longer requiring, even though it may still be employed, a central
server. Each developer, now, has their own local repository, a copy that includes the
full commit history, and that can be synchronized with other distributed repositories
(RIGBY et al., [2009). In general, DVCSs provide more flexible merge capabilities due to the
information they maintain in local repositories across different branches, better supporting
decentralized workflows. Furthermore, a local repository enables developers to work on
revisions completely offline, and, also, most of the operations (e.g., diff between revisions)
are much faster because the files are available locally. Among open-source projects, Git
(GIT, 2018) and Mercurial (MERCURIAL, 2018)) are examples of distributed version control
systems.

Particularly in the open-source community, but also in the industry, the number of
software projects using DVCSs, rather than traditional CVCSs, has rapidly increased
(BIRD et al., 2009; BRINDESCU et al., [2014). At the end of 2018, GitHub (GITHUB, [2018),
the most popular collaborative hosting site built on top of Git (KALLIAMVAKOU et al.,
2014), hosted over 100M repositories, whereas SourceForge (SOURCEFORGE, 2018), the

main hosting site for Subversion, had only 430K repositories.
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2.2 MERGE APPROACHES

A large-scale— and potentially distributed— software development, where independent
lines of development are implemented by different programmers, requires support for
merging of artifact revisions (PERRY; STY; VOTTA| 2001)). Different merge techniques have
been proposed over the last decades, and they can be categorized according to a number
of orthogonal dimensions. One of the dimensions concerns how the differences between
two revisions are extracted and compared when they are merged. Two-way merge tries
to merge two revisions of a software artifact without using any additional information
from the branching history. Conversely, three-way merge leverages the information in the
common ancestor from which the revisions originated (MENS| 2002)). A three-way merge
scenario is a set that consists of a common ancestor revision and its derived revisions.

To illustrate the difference between two-way and three-way merge, let us revisit the
scenario introduced in Figure [2| where 7, is created from 75 » and rs. In the two-way merge,
only the content of the version of artifacts provided by 75, and 73 are used during the
merge process (see Figure [3|(a)). This information is insufficient to determine if differences
between 75, and rg are caused by a line addition, modification or removal in either one
of the evolved revisions or by a simultaneous change in both of them. With three-way
merge, the information in the common ancestor, the revision ry, is used to decide where
a change came from, and whether a conflict should be reported or not (see Figure [3(b)).
This makes three-way merge more powerful, and, as a consequence, the vast majority of
modern merge tools avail themselves of three-way merge instead of its two-way variant
(PERRY; SIY; VOTTA} 2001; MENS, [2002; O’SULLIVAN} 2009).

Figure 3 — Two-way merge and three-way merge
'rz. ©  common ancestor
7'2.2\ T3 T22 T3
Ty Ty

(a) Two-way merge (b) Three-way merge

Another dimension to which merge techniques can be classified is on how software
artifacts are represented. Over the last years, two classes of version control systems have
emerged: 1) VCSs that perform merge based on plain text, and 2) VCSs that operate on
more abstract and structured representations (ESTUBLIER et al., 2005; APEL et al., [2011)).
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2.2.1 Unstructured Merge

V(CSs that are in the aforementioned first class use unstructured merge tools, which repre-
sent program as text files. The most popular approach is to make use of text-line merging,
where lines of a text are treated as indivisible units (HUNT; MCILROY |1975)). Textual, line-
based merge tools have been widely used in commercially available VCSs. The main reason
is that such tools are typically language-independent, since any software artifact can be
considered as a piece of text, making them very flexible. Besides generality, performance
is another strength of unstructured merge, once it applies the same algorithm to any
non-binary file, regardless of the programming language used. Examples of VCSs that,
by default, use unstructured merge tools include CVS, Subversion, and Git (MENS, 2002;
APEL et al., |2011)).

In general, when merging two revisions, textual, line-based, three-way merge tools
compare their files in relation to their common ancestor, and express their differences as
a minimum list of line changes (HUNT; MCILROY, (1975). For each set of differing lines,
called chunks, the merge algorithm checks if there are subsets that are common to the
three revisions, splitting the content of the chunk into two different areas. If two revisions
change or extend text in the same area, the tool reports a conflict. (KHANNA; KUNAL;
PIERCE, [2007). Conflicts are usually marked by a <<<<<<< line, followed by the first
developer’s version, then ======= followed by second developer’s version, then a >>>>>>>
line.

Figure {] presents an example of three-way merge performed by an unstructured tool.
Initially, we have a simple program, written in JavaScript, with a single function called
redirectToUrl. The revision of that initial version of the program is referred by 7p.se-
Then, a programmer creates a branch (ryp) from 7y to add a new function, called
getCurrentUrl. In parallel, another developer also creates a new development line (7gn:)
from the same base program, adding another function, getCurrentHost, but also changing
the body of the function redirectToUrl. At some point, the two branches are merged
in order to combine both contributions. Regarding the change on the redirectToUrl’s
body introduced by the second developer, the thee-way merge is able to detect that it
was a change made only by that developer, while the other one kept the implementation
from the base revision, so no conflict is reported for that chunk, which would happen if
a two-merge were used. However, since the revisions 7,5 and 7,4, add functions to the
same text area, a conflict is reported, as shown in Figure [4 The output of the merge is an
indication for the developers that they need to manually resolve the conflict, and decide
which fragments (zero, one or both functions) should be in the merged version.

That example illustrates a limitation of the conflict resolution employed by unstruc-
tured merge. The tool identifies that two different text fragments are added to the same
area of the program, but it does not know that those fragments are actually JavaScript

functions, and that a merge of them should be straightforward because their order in
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the program can be permuted without changing its behaviour, as explained in the next
section (Section . As a result of unstructured merge not using knowledge about the
structure of the program and the syntax of languages in which they are written, it might
report spurious conflict, miss relevant conflicts, and generate syntactically or semantically
incorrect output (HORWITZ; PRINS; REPS| [1989; BUFFENBARGER), [1995)).

Figure 4 — Example of unstructured merge

rhase

1 function redirectToUrl(url) {
2 window. location.replace(url);
3

}

branching

Tle ft rright

function redirectToUrl(url) { function redirectToUrl (url) {

window.location.replace(url); window.location.replace(url);

function getCurrentUrl() { function getCurrentHost() {

return window.location.href; return window.location.host;

1
2
3
4
5
6
7

merging
merg: e(rle ftr Tbaser rhase)
function redirectToUrl(url) {

window. location.replace(url);

<< LEFT

function getCurrentUrl() {

N O U W N

return window.location.href;

[oe]

9 function getCurrentHost() {
10 return window.location.host;
11 >>>>>>> RIGHT

12 3}

2.2.2 Structured and Semistructured Merge

In contrast to unstructured merge, many tools have been proposed that leverage informa-
tion on the language a program was written in to automatically resolve as many conflicts
as possible (MENS, 2002)). Among the first ones, |Westfechtel (1991) and Buffenbarger
(1995) created tools that use structured information of a program, such as the context-
free and context-sensitive syntax when performing merge and resolving conflicts. Then,
several other tools have been developed that are tailored to a particular programming
language, implementing a structured merge. For example, (Grass (1992) proposed a merge

tool specific to C++, whereas |Apiwattanapong, Orso and Harrold| (2007) created a tool
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specific to Java. The lack of generality of structured version control systems, since they are
specially built to deal with a particular language, is pointed out as one of the limitations
of structured merge. An additional limitation of structured merge concerns performance,
which is affected by the complexity of handling full syntax trees.

To find a suitable balance between structured and unstructured merge, Apel et al.
(2011)) proposed an approach called semistructured merge. The idea is to partially repre-
sent programs as trees, and to provide information on how nodes of specific types (e.g.,
functions or classes) and their subtrees are merged. These trees, in which software ar-
tifacts are represented, are called program structure trees. Figure [5| illustrates simplified
program structure trees that represent the programs shown in Figure [} including the
base, left, and right revisions. Such trees include some, but not all structural information
of the programs. For instance, there are no nodes that represent expressions or statements
from the body of the functions; they are contained as plain text in the leaves. For Java,
one of the programming languages that were initially supported by semistructured merge
tool implementations, only classes, methods, and fields are represented as nodes in the
program structure trees. Concerning JavaScript, functions can be represented as nodes,
as shown in Figure [5 but the inclusion of additional nodes depends on implementation

decisions, which are discussed in the next chapter (Chapter |3)).

Figure 5 — Example of simplified program structure trees from semistructured merge

Program Program
redirectToUrl redirectToUrl getCurrentUrl
@) T base (b) rleft
Program Program
redirectToUrl getCurrenHost redirectToUrl getCurrentUrl getCurrenHost
© rright (d) merge (rleft' Voaser rright)

The decision of which types of structural element are represented by a node depends
on the expressiveness we want to to have with semistructured merge. With FSTMerge,
the prototype implemented by |Apel et al| (2011), the specification of elements that
should be either represented as nodes or as plain text in leaves is given by an anno-
tated grammar of the language we want to support. Production rules can be annotated
with @FSTNonTerminal and @FSTTerminal. Both annotations define, in common, that the

annotated element is 1) represented as a node in the corresponding program structure tree,
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and 2) that the order of such node is arbitrary. The difference between @FSTNonTerminal
and @FSTTerminal comes in the definition on how to represent subelements of the anno-
tated element. @FSTNonTerminal specifies that subelements are represented as subnodes.
For example, in Java, class declarations can be annotated with @FSTNonTerminal because
the order of class declarations in a file does not matter, and it may contain further classes,
methods, etc. In turn, an element annotated with @FSTTerminal has its subelements rep-
resented as plain text. The idea of the proposed architecture is making it relatively easy
to include new languages by providing specific annotated grammars, but using a single
generic engine (APEL et al., [2011)).

Elements annotated as non-terminal (@FSTNonTerminal) are merged via a process
called superimposition (APEL; LENGAUER) [2008), which merges two trees by composing
their corresponding nodes, starting from the root, and proceeding with subtrees in a re-
cursive fashion. In that recursion, two subnodes are composed to form a new node only
when they have the same name and type. If a node does not have a matching element to
be composed with, it is added as a new child to the composed parent node. When reach-
ing elements annotated as terminal ones (@FSTTerminal), they are, by default, merged
by a traditional textual, line-based merge algorithm, as used in unstructured merge. Al-
ternatively, dedicated conflict handlers can be added to define further merge and conflict
resolution strategies (APEL et al), [2011)). In Figure [5d), we have the tree obtained via
superimposition of the base, left, and right revisions, having the function redirectToUrl
from the base revision, with the change the second developer made (not seen in the tree),
along with the functions added by both developers. In that case, no conflicts are reported,
differently from unstructured merge, because of the ability of the semistructured merge
to resolve the so-called ordering conflicts. Semistructured merge can automatically solve
such conflicts based on the observation that the order of some elements, in a given pro-
gramming language, does not matter. Because of that, superimposition simply adds the
newly introduced functions next to each other in the merged tree in any possible order
(see Figure [5(d)).

In summary, the proposal of semistructured merge is to leverage information from
program structure trees to merge revisions with fewer conflicts than unstructured merge,
while not having to handle the merge of expressions and statements from function (as in
JavaScript) or method (as in Java) bodies, decreasing the complexity of the merging al-
gorithm, as well as positively affecting its performance, when compared to full structured
merge tools (APEL; LESSENICH; LENGAUER, 2012)). This balance, between unstructured
and structured merge, allows semistructured merge to support a greater number of pro-
gramming languages than structured merge systems, and to provide a more effective
conflict resolution, in most cases, when compared to unstructured merge tools (APEL et
al., | 2011; |CAVALCANTT; ACCIOLY; BORBA, 2015).
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2.3 JAVASCRIPT OVERVIEW

JavaScript is one of the core technologies of the World Wide Web, along with HTML
and CSS. HTML is used to specify the content of Web pages, CSS is used to specify
their presentation, and JavaScript is used to specify their behaviour (FLANAGAN, 2011)).
JavaScript is a programming language that was originally created in 1995, by Brendan
Eich, to be released with the Web browser Netscape Navigator 2.0. In 1996, Netscape
submitted JavaScript to ECMA Internationals, an European standards organization, in
order to create a standard specification of the language, which led to the release of the
first edition of the ECMAScript standard. The next major version of the language was
ECMAScript edition 5 (ES5), first published in 2009, and, then, updated in 2011 (ECMA)
2011). In 2015, the ECMAScript edition 6 (ES6) was published (ECMA, 2015, which is
the latest version to bring major changes to the language, and that is fully supported by
modern browsers.

One of the main characteristics of JavaScript is that it is a dynamically typed and
object-based scripting language (MARTINSEN et al., 2011). An object, in JavaScript, is a
set of properties that behaves similarly to an associate array, mapping strings to values,
which may be data or functions (RICHARDS et al., [2011). However, unlike Java and C#,
JavaScript does not have native support for classes, but it provides inheritance by means
of prototypes, that allow objects to inherit properties directly from other objects. Another
characteristic of JavaScript is that functions are first-class objects, making JavaScript a
multi-paradigm language, that supports object-oriented, imperative, and functional pro-
gramming styles (STEFANOV}, 2010)).

A JavaScript program needs a runtime environment to be executed. The most com-
mon environment, which was the only one for a long time, is the Web browser, where
JavaScript can be run by means of scripts to provide dynamic behaviour to HTML pages.
Besides dynamic interaction on Web pages with users, the language is capable of in-
teracting asynchronously with servers (POWELL, [2008). JavaScript code can be embed-
ded in HTML pages in four different ways (SILVA et al., 2017): 1) directly in an HTML
file, within a <script> tag, 2) from an external file specified in the src attribute of a
<script> tag, 3) in an HTML event handler attribute (e.g., onclick), and 4) in a URL
that specifies the javascript protocol. Recently, JavaScript started to be used in a new
environment: servers. This became possible thanks to Node.js, a framework, based on
the Google Chrome engine, that provides a complete server-side environment for creating

high-performance and scalable programs written in JavaScript (TTLKOV; VINOSKI, 2010).

2.3.1 Grammar Summary and Basic Syntax

The core of the current specification of JavaScript is defined in the 5th edition of EC-
MAScript, ES5, which is a fully compatible subset of ES6 (ECMA, 2015)). Understanding
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the basics of ESH syntax is a gateway to understand how JavaScript programs are struc-
tured. Figure [6] presents a summary of the grammar of ES5. Essentially, considering that
edition of ECMAScript, a program in JavaScript is simply a sequence of SourceElements,
which can be either a Statement or a FunctionDeclaration (ECMA [2011)). This is an
important distinction of JavaScript from many other object-oriented languages, because
we can have statements at the top level of a program, without being wrapped in a dec-
laration, such as a method. A programmer can declare a function, and invoke it right
after in a statement; actually, it is possible to call a function that was defined from a

FunctionDeclaration even before its declaration, as we explain later in this section.

Figure 6 — Grammar summary for a program in ES5

Program : Statement :
SourceElements Block
VariableStatement
SourceElements :
EmptyStatement
SourceElement .
ExpressionStatement
SourceElements SourceElement
IfStatement
SourceElement : IterationStatement
Statement ContinueStatement
FunctionDeclaration BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement

Source: [ ECMA| (2011)

Listing [2.1] shows an example of a JavaScript program with a function declaration,
defining the function redirectToGooglePage, and two statements, one declaring a variable
(VariableStatement), and another one invoking that function (ExpressionStatement).
JavaScript, up to ES5, uses functions to manage scope. A variable declared in a function
is local to that function, being not available from outside. For example, the variables
googleHost and url cannot be used outside of redirectToGooglePage. In turn, variables
declared outside of any function (e.g., mapsPath), or that are simply used without being
declared (when not using the keyword var), are considered to be global, and, thus, can be
used anywhere in the program (even before their declaration, with the caveat that their
value will be undefined at that point). In every JavaScript environment, there is a global
object that is accessible from any point of a program. When a global variable is created,

it becomes a property of that global object. In case of Web browsers, just for convenience,
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there is an extra property of the global object called window, that points to the global
object itself (STEFANOV, 2010). In our example, window is referred to access the Location

API (line 6), which allows page redirections, provided by browsers as a global variable.

Listing 2.1 — Example of JavaScript program with function declaration and statements

// Function declaration

function redirectToGooglePage(path) {
var googleHost = 'https://www.google.com';
var url = googleHost + '/' + path;

window. location.replace(url);

// Statement
var mapsPath = 'maps';

// Statement
redirectToGooglePage (mapsPath);

Figure 7 — Grammar for function definition in ES5

FunctionDeclaration :
function Identifier ( FormalParameterListopt ) { FunctionBody 1}

FunctionExpression :
function [dentifierop, ( FormalParameterListy, ) { FunctionBody '}

FormalParameterList
Identifier
FormalParameterList , Identifier

FunctionBody :
SourceElements o

Source: ECMA| (2011))

Functions, in JavaScript, can be defined in two different ways: 1) by means of a
FunctionDeclaration, as seen previously, and 2) in a FunctionExpression. Part of the
ES5 grammar specification of function definition is shown in Figure[7] A function expres-
sion is quite similar to, and has almost the same syntax, a function declaration, but it is
defined inside an expression. In syntactic terms, the main difference between a function
declaration and a function expression is where they can appear in a program. Since the
latter is an expression, it can appear, for instance, as a value assigned to a variable or as

an argument of a function, whereas a function declaration cannot. Moreover, while a func-
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tion declaration always has a name, function expression may be named, when an identifier
is provided, or not. Unnamed function expressions are commonly known as anonymous
functions (STEFANOV, 2010). As indicated in the grammar, both function declaration and
expression have a body that can include one or more SourceElements. It means that func-
tions can have further nested functions, either by having nested function declarations or
function expressions defined in inner statements. Similarly to what happens to variables,
a nested declared function also has a scope local to the parent function.

In Listing [2.2] we have a function (generateGoogleUrl) that is declared inside of
another function (redirectToGooglePage). Due to function scoping, generateGoogleUrl,
as well as url, are visible only from the body of redirectToGooglePage. It is important
to note that if url were used in line 8 without the keyword var, it would be a global
variable and, thus, visible outside of redirectToGooglePage. An example of unnamed
function expression is provided by Listing [2.3] where a function is created at runtime, and
assigned to a variable (redirectToUrl). The variable, from that point, can be used to
invoke a function as if it had been created by a function declaration, passing arguments

within parenthesis (line 6).

Listing 2.2 — Example of nested function declaration

// Outer function declaration
function redirectToGooglePage(path) {
// Inner function declaration
function generateGoogleUrl (path) {
return 'https://www.google.com/' + path;

var url = generateGoogleUrl(path);
window.location.replace(url);

redirectToGooglePage ('maps');

Listing 2.3 — Example of unnamed function expression assigned to a variable

// Function expression assigned to a variable
var redirectToUrl = function(url) {

window.location.replace(url);

3
redirectToUrl('https://www.google.com');
Regardless of the mechanism from which functions are created, either from a decla-

ration or an expression, they are objects, and, then, can be assigned to variables, can

be passed as argument to other functions, and can also be returned by other functions.
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In particular, a function that is passed as an argument to another function, which is
expected to invoke it either immediately or after some time, is a pattern in JavaScript
called callback (GALLABA; MESBAH; BESCHASTNIKH, 2015).

The syntax of ES5 presented in this subsection has been kept in ES6, which just
extended the grammar with new elements, but the specification introduced changes on
how variables can be scoped. In ES5, a variable can only be declared using the var
keyword, as seen in previous examples. ES6 introduced the let and const keywords that
allow the programmer to declare a variable that exists only within a block (similarly to
what happens in Java and C#). Function scope, however, is still employed when using var,
so the semantics of such declaration was preserved. Among other syntactic additions to
the language, ES6 provides a support to classes, but that are, actually, just syntactic sugar
over an existing prototype-based pattern, which uses functions, from ES5 and previous
versions (ECMA, [2015; ZAKAS, 2016} SILVA et al., [2017)).

2.3.2 Function Declarations vs. Function Expressions

JavaScript developers often have to decide whether they should use a function declaration
or a function expression. There are scenarios in which syntactically we cannot use declara-
tions. For example, when specifying directly a function object as an argument (a callback)
or when defining directly a function as a value of an object property. In such scenarios,
only a function expression is allowed. But, when creating a function to be referred by
a name, programmers tend to use interchangeably between a function declaration and a
function expression assigned to a variable (as in Listing , being, in many cases, just a
matter of style to use one over the other. Nevertheless, there is a fundamental difference
between a function declaration and a variable that holds a function expression, and it lies
in the hoisting behaviour (STEFANOV, [2010).

Hoisting is a JavaScript mechanism that loads variable and function declarations into
the memory prior to a program execution. In terms of behaviour, variables and function
declarations are moved to the top of the function to which they are scoped to, or to the top
of the program in case they are not in a function (MOZILLA/ 2018)). For variables, it means
that they can be referred before its declaration, but their value is, until an assignment
is reached, undefined. For functions, on the other hand, there is no separation between
declaration and a corresponding function definition, so the definition of the function also
gets hoisted. That means that a function can be used before we declare it. Listing
illustrates how hoisting works for both function declaration and expression. We try to
use two functions, each one created by one of the methods, before their definitions. The
function created by a declaration (getProtocoll) returns the expected value when invoked
in line 3. In line 5, we can see that the variable created to hold a function expression
(getProtocol2) can be referred without any ReferenceError (which is thrown when

trying to access a variable that does not exist), but it has undefined as value, which
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causes a TypeError when trying to invoke it in line 6.

In general, function declarations behave similarly to methods in object-oriented lan-
guages, such as Java and C+#, where the order of them does not matter to the execution of
the program. Function expressions stored in variables, in turn, are similar to functions in C
and Python, which can typically be used only after their definition. When considering the
implementation of a semistructured merge tool, where we need to specify elements whose
order may be arbitrary, without changing the behaviour of the program, it is important
to take that difference, between functions created either by declarations or expressions,

into consideration.

Listing 2.4 — Invocation of function before its definition

var url = 'https://www.google.com.br';
console.log(getProtocoll(url)); // "https"”

console.log(getProtocol2); // undefined
console.log(getProtocol2(url));// TypeError: getProtocol2 is not a function

// Function declaration
function getProtocoll (url) {
return url.split('://"')[0];

// Function expression
var getProtocol2 = function(url) {
return url.split('://')[0];

An additional scenario in which a function expression is commonly used is in a pat-
tern called Immediately Invoked Function Expression (IIFE). IIFE is simply a function
expression, either named or anonymous, which is executed immediately right after its
creation. This pattern is useful to avoid polluting the global scope, once that any variable
created in the function expression will not be available outside of it, as long as the key-
word var is employed (STEFANOV, 2010; MOZILLA| 2018]). Listing shows an example
of an IIFE that is used to clear a text field in an HTML page, and the variable created

in it (usernameField) is no longer available after the function execution (line 6).

Listing 2.5 — Example of Immediately Invoked Function Expression

(function () {
var usernameField = document.getElementById('username');

userNameField.value = ;

HO;

console.log(usernameField); // undefined
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When taking the implementation of a semistructured merge tool based on FSTMerge
into account, the interchangeable usage of function declaration and a function expres-
sion assigned to a variable might affect the effectiveness of this tool. In particular, the
decision of which grammar elements (Statement, FunctionDeclaration, etc.) are repre-
sented as nodes in program structure trees has an impact on how a semistructured merge
behaves. For example, if a Statement is not represented as node— being represented as
plain text in a leaf instead—, while FunctionDeclaration is, an implication is that a
function expression assigned to a variable will not exploit superimposition in the same
manner as a function declaration will do. Additionally, if a Statement is represented as
plain text in a terminal node, having a function declaration wrapped into an I[IFE make
this function not visible as a node in a program structure tree, despite of a definition
of FunctionDeclaration element as a non-terminal node. Further discussion about the
implications of using function declarations or function expressions, according to a given

semistructured merge tool implementation, is presented in Chapter [
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3 SEMISTRUCTURED MERGE TOOL FOR JAVASCRIPT

In this chapter, we explain our approach to implement a semistructured merge tool for
JavaScript, which enables us to evaluate how the semistructured approach works with a
language that is quite relevant for the industry and has not been investigated in previous
studies. Section describes different versions of semistructured tools which were imple-
mented in this work. Initially, we present a version that simply instantiates the FSTMerge
architecture by annotating an off-the-shelf grammar for a specific version of JavaScript,
and, then, we discuss limitations in that architecture when dealing with individual state-
ments (Subsection. To overcome such limitations, we implemented two new versions
of the tool— which are further detailed, respectively, in the Subsections [3.1.2]and [3.1.3}—,

based on adaptations made on the original grammar and FSTMerge merge algorithm. We

conclude this chapter by describing different types of conflicts that semistructured, con-
sidering implementations proposed in this work, and unstructured merge tools are able

to detect or not when merging JavaScript software artifacts (Section |3.2)).

3.1 DESIGN AND IMPLEMENTATION

The architecture of FSTMerge takes advantage of a tool infrastructure called FeatureHouse
(APEL; KiSTNER; LENGAUER), [2009)), as illustrated in Figure [§|

Figure 8 — FSTMerge architecture

|Java|| c# || C|| Haskell | | JavacC | [ Python|| -]  FeatureBNF

Generator j FSTGenerator

( Merge ) (Pretty Printer)

... :> D/DEEDEEDE [> D;iﬁ :> . FSTMerge

base program program : program merged
and revisions structure trees . structure tree revisions

special conflict handlers
and line-based merge

Source: Apel et al.| (2011)

One of the FeatureHouse tools, FSTGenerator, takes a Backus—Naur form (BNF)

grammar written in a specific format called FeatureBNF to generate an LL(k) parser, which
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is responsible to produce program structure trees, and a corresponding pretty printer
(APEL et al) [2011). A new semistructured tool, for a given language, can be created by
using the generated parser to obtain trees for revision programs, the FSTMerge merge
engine to perform semistructured merge, and, finally, the generated pretty printer to
write files for merged revisions to disk.

By integrating the parser and pretty printer generated by FSTGenerator, and the (pos-
sibly modified) FSTMerge merge engine, we implemented different versions of a semistruc-
tured tool for JavaScript, called jsFSTMerge. The differences among such versions re-
sult from modifications we made to the FeatureBNF grammar used as input for the
FSTGenerator, and to the semistructured merge algorithm itself. Each version of the
tool is referred by a number (e.g., jsFSTMerge v2).

In this work, we have decided to focus on the 5th edition of ECMAScript (ES5) as
an initial effort to have a semistructured merge tool for the language. The decision of
implementing a tool that supports only ES5 was made mainly for the following reasons:
1) ES5 is still the latest specification of JavaScript that is supported by essentially all
Web browsers that are currently in use (ECMA| 2015; ZAKAS, 2016), 2) ES5 provides a
grammar that is less complex than the ones from newer specifications, simplifying the
scope of this first implementation of semistructured merge for JavaScript, and 3) since
newer versions of the language, ES6 in particular, are fully backwards compatible with
ES5, it would already be necessary to properly support ES5 syntax when targeting those
more recent specifications. Furthermore, the implementation of a semistructured merge
tool that supports ES6, or newer versions of ECMAScript, is purely an extension of one

that supports ES5, which can be accomplished as a continuation of this work.

3.1.1 jsFSTMerge v0: Annotating an Off-the-shelf Grammar

Our first approach to implement a semistructured merge tool for JavaScript was working
on the original grammar specification of ES5 as published in ECMA (2011)). The first step
was writing the grammar, including lexical definition, in the FeatureBNF format. The next
step was deciding on how to annotate production rules, which basically involves selecting
elements to be represented as nodes in program structure trees, considering restrictions
and assumptions set by the FSTMerge engine.

Listing[3.1]shows an excerpt of the annotated grammaif'] in the FeatureBNF format, for
the first version of a semistructured tool denominated jsFSTMerge v@. We annotate the
rule for function declarations with @FSTNonTerminal (lines 9-10) because, as discussed in
the previous chapter, the order of function declarations, within their parent node (either
Program or another FunctionDeclaration), does not matter as a result of hoisting, and,

more importantly, because function declarations may contain further functions, and so

L https://github.com/AlbertoTrindade/jsFSTMerge /blob /version-0/grammars /javascript_ merge fst.

gcide
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on. The annotation parameter name is used to assign a name to the corresponding nodes
in the program structure tree, so that they can be exploited by matching during the
merge process; an identifier is used as a name for function declarations. For statements,
to keep the semistructured approach of not having a full representation of the program in
the tree, we initially annotate their rules with @FSTTerminal (lines 6-7). The annotation
parameter merge defines that the content of statements is merged by a textual, line-based
unstructured merge. The @FSTInline annotation is used (line 12) to simplify the grammar
writing, replacing an element with its composition (APEL; KiSTNER; LENGAUER, 2009).

Listing 3.1 — Excerpt of annotated grammar for jsFSTMerge v@

@FSTNonTerminal ()
Program: ( SourceElement )* <EOF>;

SourceElement:
@FSTTerminal (merge="LineBased")
Statement
I
@FSTNonTerminal (name="{Identifier}")
FunctionDeclaration;

@FSTInline
FunctionDeclaration:
Function
Identifier
"(" [ FormalParameterList ] ")"
"{" FunctionBody @! "3}";

@FSTTerminal (merge="LineBased")
Function: "function"<NONE>;

@FSTTerminal (name="{<IDENTIFIER_NAME>}")
Identifier: <IDENTIFIER_NAME >;

@FSTTerminal (merge="LineBased")

n on

FormalParameterList: Identifier ( "," Identifier )=*;

@FSTNonTerminal ()
FunctionBody: ( SourceElement )=*;

However, annotating individual statements as terminal nodes has implications that
jeopardize the correctness of merged revisions produced by superimposition (see Sub-
section . The following issues come up when having statements annotated with
@FSTTerminal:
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e Superimposition of trees requires that every element must have a name (APEL;
LENGAUER, 2008). While function declarations naturally have a name (an identifier
defined after function keyword), statements do not (APEL; HUTCHINS| 2010; APEL
et al, | 2010). In general, it is difficult to uniquely identify statements. For instance,
there is no way, by means of grammar annotation, to properly name an IfStatement
in such a way that the same element from a different revision, with potential few
differences, can be matched via superimposition. In fact, by default, all nodes are
named with a constant “-” when not defined otherwise; so, from the grammar defined
in Listing all statements have the same name, which causes superimposition to
mistakenly match nodes that do not refer to the same statement. The consequences
of using jsFSTMerge v@, the tool built on top of the parser generated from that
grammar, may include 1) reporting spurious conflicts, and 2) unsoundly discarding
statements from revisions. An example of the former is shown in Figure [0 that
presents a merge scenario in which the revision 75 edits the first statement from
Thase (line 1), whereas the revision 7y, adds a new statement (line 4). Several
spurious conflicts are reported by jsFSTMerge v@ because, when performing a three-
way merge, each statement from the revision rpg, is matched against the same
statement of the resulting merge of 7345, and 7. This happens because there are
multiple Statement nodes with the same default name, so, instead of returning
the desired statement when looking up nodes by name and type, superimposition
returns the first Statement node that has the default name. Moreover, as a result
of the same problem of having multiple statements with the same default name,
the discard of statements introduced by the left revision would happen if it did
not change the first Statement node (line 1). The outcome, in this case, is that
superimposition would match all statement nodes from 7,4, against this unaltered
node, causing the final merge to have the same statements as 7, thus unsoundly

discarding changes introduced by 7., while not reporting conflicts.

« For a parent node marked as non-terminal, FSTMerge engine considers that not only
child elements whose production rules are annotated with @FSTNonTerminal, but
also the ones annotated with @FSTTerminal have an order that does not matter.
The order of child nodes of a common parent is assumed to be arbitrary, that is,
it may change without affecting the semantics of the program. But, according to
the semantics of JavaScript, the order of statements does matter, once they may
cause side effects. For example, if, during superimposition, an IfStatement that
refers a certain variable is moved after an ExpressionStatament that contains an
assignment to that same variable, the behaviour of the program could have been
changed. The order of statements needs to be preserved in order to ensure that
the program semantics is preserved; and it is not guaranteed by the generic merge

engine from FSTMerge when relying purely on @FSTTerminal annotation.
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Figure 9 — Example of spurious conflicts reported by jsFSTMerge vo

rhuse

var googleHost = 'http://www.google.com';
var url = googleHost + '/maps';

window. location.replace(url);

branching

Tieft
o var googleHost = 'http://www.google.com';

var url = googleHost + '/maps';

var url = googleHost + ;/maps';

o W N

window.location.replace(url);

merging
merge (rle ft/ Thaser rbuse)
1 var googleHost = 'https://www.google.com';

2 <<<<<<< LEFT

3 var googleHost = 'https://www.google.com';
4 =======

5 var url = googleHost + '/maps';

6 >>>>>>> RIGHT

7 <<<<<<< LEFT

8 var googleHost = 'https://www.google.com';
9 =======

10 console.log('Redirecting to Google Maps');
11 >>>>>>> RIGHT

12

13 <<<<<<< LEFT

14 var googleHost = 'https://www.google.com';
15 =======

16 window.location.replace(url);

17 >>>>>>> RIGHT

To try to solve the first aforementioned issue, which comes from the lack of unique and
unambiguous names for statements, one could propose using the annotation parameter
name, supported by FeatureBNF, to specify the name of statements as TOSTRING, instead of
using the default “-”. When using this value as name, the annotated elements are named
after their textual content, i.e., two elements that have the same type are matched if they
have exactly the same textual content (APEL; KiSTNER; LENGAUER) 2009). A similar, but

possibly more efficient, approach is obtaining a hash from the textual content of such
elements, and using this hash as a name, which would be shorter than the actual full
content. However, using textual content to match nodes makes the merge too sensitive to
minor changes, potentially generating duplicated statements. For example, if a developer
edits a statement, changing the value used in the initialization of a variable, this statement
will be seen, by semistructured merge, as a new node in the program structure tree, once

its textual content becomes different, causing the program to have duplicated variables.
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To try to solve both naming and ordering issues, a possible solution is modifying
the semistructured merge algorithm to— before starting the superimposition— assign
names to statement elements based on their position as children of a parent node (and,
actually, a similar solution is implemented for the versions of jsFSTMerge we discuss in the
next subsections), but there are, at least, two problems with that approach to deal with
statements. The first one concerns granularity. Keeping the representation of individual
statements as terminal nodes in program structure trees implies a granularity that is
too fine, which leads to more complex trees and a worse performance, behaving similarly
to structured merge (APEL et al., 2011)). Additionally, matching individual statements in
the superimposition makes the merge less resilient to addition or removal of statements.
For instance, if a developer adds a variable assignment at the same position as another
statement, it might cause that assignment to be matched against a different type of
statement from a different revision, either introducing duplicated statements or generating
spurious conflicts that would not be reported by unstructured merge.

Considering those issues and implications, we have decided to not include jsFSTMerge
v@ in the empirical study that is presented in the next chapter (Chapter , because that
tool is too far from being reliable enough to be used as a replacement for commercial
unstructured tools. Instead, we decided to create a new version of the tool by first in-
troducing changes to the grammar to better handle statements, already diverting from a
“pure” implementation of support for a new programming language on top of FSTMerge,
in which we are supposed to simply annotate existing grammars in a plug-in fashion
(APEL et al}, [2011)). In fact, directly annotating an off-the-shelf grammar and instantiating

FSTMerge does not lead to an effective semistructured merge tool for JavaScript.

3.1.2 jsFSTMerge v1: Annotating an Adapted Grammar and Renaming Nodes

To provide a reasonable level of granularity as well as to overcome some of the problems
that have arisen in jsFSTMerge v@, we have decided to group consecutive statements
into a StatementList element, which is already defined in the original specification of
ES5, but only used in a few production rules (e.g., rule for Block element) (ECMA| 2011)).
StatementList is annotated as a terminal node, so the statements are no longer individ-
ually represented as nodes in the program structure tree. Instead, there is only a single
node, for each sequence of statements separated by function declarations, that is a opaque
leaf with statements as textual content. The implementation of that change can be seen
in lines 7-13 from Listing . This new grammalﬂ is used to generate a parser for two new
versions of our semistructured merge tool: jsFSTMerge v1 and jsFSTMerge v2. The dif-
ference between these versions come from further adaptions made to the FSTMerge merge

algorithm, which are detailed later on this text.

2 https://github.com/AlbertoTrindade/jsFSTMerge /blob /master /grammars /javascript_ merge_ fst.

gcide
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Listing 3.2 — Excerpt of annotated grammar for jsFSTMerge v1 and jsFSTMerge v2

@FSTNonTerminal ()
Program: ( SourceElement )* <EOF>;

@FSTNonTerminal ()
SourceElement:
StatementList

I
@FSTNonTerminal (name="{Identifier}")
FunctionDeclaration;

@FSTTerminal (merge="LineBased")
StatementList: ( LOOK_AHEAD(2) Statement )+;

Figure presents two program structure trees that are produced from the same
program, but using parsers generated by different grammars. In Figure (a), we have the
tree generated by the grammar that was written for jsFSTMerge v@, with statements—
highlighted in blue— represented as nodes. In Figure (b), we can see that the statements
that appear in sequence, both at the top level of the program and within the function
body, are wrapped into a StatementList node. It is important to note that for each node,
we have name : type as a label. For nodes whose type occur only once across children
of a given parent, there is no problem in making use of the default name (“-”), since it
will be the only option for matching. Issues, as mentioned before, come up when having
multiple children with the same default name, as it happens to StatementList. Besides
naming, another recurrent problem is that those statement lists are also sensitive to order.
Permuting statement lists, among function declarations, may change program semantics
due to side effects. This means that we need to preserve the order of statement lists when
performing semistructured merge to not change the behaviour of revisions.

The modification of the FeatureBNF grammar to group together consecutive state-
ments in a terminal node solves some of the issues we discussed before, e.g., the highly
fine granularity for having one node for each statement. However, there is still a need
of having, during superimposition, proper matching of statement lists among revisions,
respecting the order that they appear in a program.

A first effort to ensure statement lists are properly handled in the superimposition was
changing the merge implementation from FSTMerge to assign new names to statement
lists, replacing the default one (“-”), according to their position as child nodes. These
new names must be unique for each statement list among children of the same parent,
but they do not need to be unique across the full program structure tree. Our strategy to

generate such names is to use incremental counts for each parent node. Before performing
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Figure 10 — program structure trees generated by different versions of grammar
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- : Program

- : StatementList redirectToGoogle : FunctionDeclaration - : StatementList

\

- : Function redirectToGoogle : Identifier - : FormalParameterList - : FunctionBody

- : StatementList

(b) Program structure tree from grammar for jSFSTMerge v1/v2

the superimposition on three revisions (base, left, and right), we take each revision and

execute a recursive operation that traverses their trees to assign names to StatementList
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nodes based on a numeric count for a given common parent. For a parent node, its
N children that are statement lists are named, respectively, StmtList1, StmtList2, ...,
StmtListN. And the process proceeds recursively, performing the same operation on the
other children that are non-terminal nodes (in this case, FunctionDeclaration ones).
Figure [L1] illustrates how the name assignment for statement list works. We have the
same program structure tree shown in Figure [L0[b), in which all StatementList nodes
have default names (- : StatementList as label), but now the statement lists have names
according to their position, across nodes of the same type, within their parent. The result
of applying that naming strategy is that now the superimposition, given two revisions and
two matched nodes, say A and B, will compose the first statement list from A with the
first one from B, the second statement list from A with the second one from B, and so on
and so forth. In case there is no conflict, the composition of two statement lists generates
a new node, in the merged revision, whose content is produced by the unstructured merge

of the statement lists, once they are terminal nodes.

Figure 11 — program structure trees after assigning names to statement lists

- : Program
StmtListl : StatementList redirectToGoogle : FunctionDeclaration StmtList2 : StatementList
- : Function redirectToGoogle : Identifier - : FormalParameterList - : FunctionBody

StmitListl : StatementList

With that change in the merge algorithm to name statement lists, we specified a new
version of our tool: jsFSTMerge v1, which is the first one that works in a consistent
manner, producing merged revisions which are often semantically correct. A drawback
of that version, however, is that it relies on the maintenance of one-to-one relationships
between statement lists from two revisions. When one of the new revisions introduces
changes that add or remove a StatementList node from the respective program structure
tree, the tool might report spurious conflicts. Such conflicts are considered to be a case
of false positive of semistructured merge when analyzing that version of the tool.

Figure [12] presents an example of merge scenario in which an one-to-one mapping
between statement lists from a base revision no longer exists in one of the new revisions.
In the base revision, 7., there are two statement lists at the top level of the program.
Then, 7, removes the unused variable financePath and function redirectToGoogle.
The deletion of that function makes statements, which were in different statement lists in
Thase; 1O be in a sequence, composing a single StatementList node. On the other hand,

Tright keeps the number of statement lists at the top level of the program, just changing
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Figure 12 — Merge scenario with false positive added by jsFSTMerge v1
T base
1 ‘var mapsPath = ‘maps'; .
2 ‘var financePath = 'finance'; StmtList1
3
4 function getCurrentUrl() {
5 return window. location.host;
6 3}
7
8 ‘redirectToGoogle (mapsPath); StmitList2
9
10 function redirectToGoogle(path) {
11 var googleHost = 'https://www.google.com';
12 var url = googleHost + '/' + path;
13
14 window.location.replace(url);
15 3
branching
rleft rright
1 ‘var mapsPath = "maps’; 1 ‘var me.msPath = 'marlls'l: ' StmtListl
2 StmtListl 2 ‘var financePath = 'finance';
3 :redirectToGoogle(mapsPath); 3
4 4 function getCurrentUrl() {
5 function redirectToGoogle(path) { 5 return window.location.host;
6 var googleHost = 'https://www.google.com'; 6 1}
7 var url = googleHost + '/' + path; 7 StmtList2
8 8 'console.log('Redirecting to Google Maps');
9 window.location.replace(url); 9 ‘redirectToGoogle(mapsPath);
10 3} 10
11 function redirectToGoogle(path) {
12 var googleHost = 'https://www.google.com';
13 var url = googleHost + '/' + path;
14
15 window.location.replace(url);
16 3}

the content of StmtList2. As a result, when merging 7. and 74, superimposition does

not understand that the statement from StmtList2 in base revision (line 8) is now, in ry.,

within StmtList1. The algorithm simply interprets that r.p removed StmtlList2, while

Tright edited it, which causes jsFSTMerge v1 to report a conflict:

var mapsPath = 'maps';

redirectToGoogle (mapsPath);

<< LEFT

console.log('Redirecting to Google Maps');

redirectToGoogle (mapsPath);
>>>>>>> RIGHT

function redirectToGoogle(path) {
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In turn, an unstructured merge tool is able to merge 7, and 7,4, without reporting

any conflicts, and producing a valid program:

var mapsPath = 'maps';

console.log('Redirecting to Google Maps');
redirectToGoogle(mapsPath);

function redirectToGoogle(path) {
var googleHost = 'https://www.google.com';
var url = googleHost + '/' + path;

window.location.replace(url);

3.1.3 jsFSTMerge v2: Annotating an Adapted Grammar and Joining Nodes

In order to avoid that type of false positive in the semistructured merge, we created a
new version of the tool, denominated jsFSTMerge v2, that handles matching and order
maintenance of statement lists by using a different approach, in place of naming based on
position. This version, as in jsFSTMerge v1, uses the parser generated from the adapted
grammar that groups consecutive statements into statement lists (Listing . The rele-
vance in working on a new version of a semistructured merge tool solely to avoid those
false positives depends on how often they happen. This is discussed in the next chapter
(Chapter , that presents a study in which both jsFSTMerge v1 and jsFSTMerge v2 are
evaluated, and analyzes the frequency of this type of false positive in real-world software
projects.

The strategy used by jsFSTMerge v2 to deal with statement lists is also based on a
recursive operation performed on revision trees prior to superimposition. This operation
takes, for a given parent node, sibling statement list nodes and joins them into a single
StatementList node, keeping their order. The idea behind that strategy comes from the
observation that, as long as we keep the statements in order, it does not matter the
order of them with respect to function declarations, because of their hoisting behaviour.
This allows us to freely rearrange group of statements in relation to function declarations
without changing the semantics of the program. Figure|l3|illustrates the transformation of
programs that is applied on revisions as part of the merge process when using jsFSTMerge
v2. The program A’ is obtained from A by joining its statement lists into a single one.
Likewise, The program B is transformed into B’. The joining operation is able to rearrange
statements to make them appear in a sequence while preserving the behaviour of the

program. In fact, all four programs (A, A’, B, and B’) are semantically equivalent.
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Figure 13 — Transformation of programs by joining statement lists

‘var mapsPath = 'maps’'; : 1 :var mapsPath = 'maps';
‘var financePath = 'finance'; :  StatementList 2 :var financePath = 'finance';
3 StatementList
function getCurrentUrl() { 1 ‘redirectToGoogle (mapsPath);
return window.location.host; 5
T 6 function getCurrentUrl() {
lllllllllllllllllllllllllllllllllllllll 7 return window.location.host;
redirectToGoogle(mapsPath); :  StatementList — ___5, ; }
function redirectToGoogle(path) { 10 function redirectToGoogle(path) {
var googleHost = 'https://www.google.com'; 11 var googleHost = 'https://www.google.com';
var url = googleHost + '/' + path; 12 var url = googleHost + '/' + path;
13
window. location.replace(url); 14 window. location.replace(url);
I 15}
(a) Program A (b) Program A’
function getCurrentUrl() { 1 function getCurrentUrl() {
return window.location.host; 2 return window.location.host;
} 3}
4
‘var mapsPath = 'maps'; : 5 ‘var mapsPath = 'maps';
‘var financePath = 'finance';i StatementList 6 :var financePath = 'finance'; q
------------------------------------------ 7 StatementList
UL G L LRGSR LA QL T > 8 redirectToGoogle (mapsPath);
var googleHost = 'https://www.google.com'; 9
var url = googleHost + '/' + path; 10 function redirectToGoogle(path) {
11 var googleHost = 'https://www.google.com';
window.location.replace(url); 12 var url = googleHost + '/' + path;
3 13
.......................................... 14 window. location.replace(url);
redirectToGoogle(mapsPath); :  StatementList 15 3
(c) Program B (d) Program B’

The joining of statement lists is an operation that is executed on program structure
trees which are produced by the generated parser. So, basically, what happens is a trans-
formation of program structure trees as a pre-processing step for the superimposition.
For example, Figure [14] shows the tree that is obtained from the one presented in Figure
10[(b). Now there is, at most, one StatementList node among child ones, which elimi-
nates issues with matching of statements that continue to be direct children of the same
parent across revisions. Nonetheless, there are cases in which statements are moved into
a function declaration, as discussed later in this section, that might cause false positives
due to the inability of semistructured merge to match statements when they are not kept
at the same structural level in the tree.

It is worth noting that, by joining statement lists, the property of having an arbi-
trary order that any node (either generated by @FSTNonTerminal or @FSTTerminal) in a
program structure tree should respect becomes valid, since function declarations and a
single statement list can be safely permuted, preserving the behaviour of the program.

Moreover, it is no longer necessary to assign names to statement lists. The matching by
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Figure 14 — program structure trees after joining statement lists

- : Program
- : StatementList redirectToGoogle : FunctionDeclaration
\
- : Function redirectToGoogle : Identifier - : FormalParameterList - : FunctionBody
- : StatementList
name— using the default “-"— and type works properly, because there is never more than

one StatementList node as children.

A drawback of jsFSTMerge v2 is that it potentially changes the format of the code by
rearranging groups of statements, differently from jsFSTMerge v1, which keeps original
order of elements. As we can see in Figure[I3], only the first statement list, given a parent
node, maintains its position. All the other statement lists are moved to after the end of
the first one. The trade-off between additional false positives introduced by jsFSTMerge
v1 and code reformatting introduced by jsFSTMerge v2 is discussed in Chapter [

3.2 COMPARING MERGE APPROACHES

To compare unstructured merge implemented by traditional tools with semistructured
merge implemented by jsFSTMerge v1 and jsFSTMerge v2, a relevant metric concerns
how often each merge tool is able to detect interference between development tasks, so
that it reports interfering changes as conflicts, and automatically integrates non-interfering
ones (HORWITZ; PRINS; REPS, 1989; PERRY; SIY; VOTTA 2001)). A change introduced by

a developer is considered to be non-interfering with respect to a second developer when
that change has no effect on what the latter expects (GOGUEN; MESEGUER, (1982). In

that context, merge tools might report conflicts that do not represent interference between

development tasks, i.e., spurious conflicts (false positives), and they might also miss actual
interference between revisions (false negatives) (CAVALCANTI; ACCIOLY; BORBA| 2017)).

For a developer, it is important for a merge tool to not only minimize false positives,

reducing unnecessary effort in resolving spurious conflicts, but also to minimize false neg-
atives, avoiding the possibility of missing conflicts that could appear in other integration
phases, such as building and testing, or even as errors during runtime. The challenge is
establishing ground truth for interference between developers’ changes, in particular, false
positives and false negatives. Determining interference, on the contrary, is not computable
(BERZINS|, [1986)), even though it could be possible with the assistance of experts who have
knowledge about the involved artifacts, while still being error-prone. Instead,
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Accioly and Borba/(2017)) recommend to relatively compare the merge approaches in terms
of added occurrence of false positives and false negatives. To compare the approaches, we
analyze when they report different results for the same three-way merge scenario.

With the purpose of guiding our relative comparison, we manually identified, consider-
ing programs written in JavaScript, cases of spurious conflicts reported by one approach,
but not by the other (false positives), and cases of actual interference reported as conflicts
by one approach, but missed by the other (false negatives). As semistructured merge tool,
we take both jsFSTMerge v1 and jsFSTMerge v2 into accountﬂ but not jsFSTMerge v0,
which is disregarded in this analysis of false positives and negatives. As unstructured
merge tool, in the same manner as |Cavalcanti, Accioly and Borba, (2017) proceeded in
their study, we use KDiff3, one of several unstructured merge tools available, which is a
representative implementation of the diff3 algorithm (KDIFF3,[2018). For both approaches,
we empirically assess a sample of JavaScript scenarios to analyze where the tools behave
differently, and how such differences can lead to false positives and false negatives. For
each conflict reported by one of the tools, we checked if it was reported by the other tool
as well. In case the conflict is reported by only one of the tools, we assess whether it is a
false positive or a false negative, ignoring cases in which conflicts reported by both tools
are, basically, the same one, but with slight textual differences.

In the following subsections, we describe the observed types of added false positives and
false negatives for each merge tool. It is important to mention that, as our objective is to
relatively compare the unstructured approach with the semistructured one, we disregard
common cases of false positives and negatives across both approaches. The approaches
may behave identically, for instance, when superimposition composes two StatementList
nodes, launching unstructured merge. Also, when a semistructured merge tool is used with
revisions which contain software artifacts not written in JavaScript— it is fairly common
to have HTML and CSS files in projects that primarily use JavaScript—, unstructured

merge is called, making both approaches provide common false positives and negatives.

3.2.1 False Positives Added by Unstructured Merge

As discussed in Subsection a shortcoming of unstructured merge is its inability
to identify commutative and associative elements. Generally for JavaScript, the latter
include only function declarations, due to their hosting behaviour, but, in the context
of our semistructured merge tool, statement lists can also be rearranged with respect to
function declarations; particularly for jsFSTMerge v2, a joined statement list node can
be freely permuted among its node siblings. All this is ignored by unstructured tools that
rely on textual analysis, leading to ordering conflicts, which are the only kind of false

positives added by unstructured merge.

3 Throughout this section, for the purpose of analyzing false positives and false negatives, we refer to

both versions of jsFSTMerge as semistructured merge tool, unless a specific version is mentioned.
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Figure 15 — Merge scenario with false positive added by unstructured merge (ordering
Thase

1 var uuid = require('node-uuid');

branching

rleff
var uuid = require('node-uuid'); 1 var uuid = require('node-uuid');
.................................................................... 2
function sendText(req, res, next) { 3 :function sendJson(req, res, next) {
res.send(req.params.name || uuid()); 4 res.send({ name: req.params.name || uuid() });
next () ; : 5 next();
) 63

Figure|15shows a merge scenario, adapted from a real case in the node-restify projectlﬂ,
in which an ordering conflict can be observed. An unstructured merge tool reports a
conflict, because two developers added two different functions (sendText and sendJson)

to the same text area:

var uuid = require('node-uuid');

<<<<K<<< LEFT
function sendText(req, res, next) {
res.send(req.params.name || uuid());

function sendJson(req, res, next) {

res.send({ name: req.params.name || uuid() 1});
>>>>>>> RIGHT

next ();

Differently, semistructured merge identifies that each function is a distinct element,
and can produce the desired output without any conflicts, only by superimposing program

structure trees:

var uuid = require('node-uuid"');

function sendText(req, res, next) {
res.send(req.params.name || uuid());
next();

function sendJson(req, res, next) {
res.send({ name: req.params.name || uuid() });
next();

4 |https://github.com/restify /node-restify

rright
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Ordering conflicts, from unstructured merge, do not always happen between function
declarations. It can also happen between a statement list and a function declaration.
For instance, when a developer adds a function declaration to the same text area where
another developers adds one or more statements, unstructured merge reports a conflict,
while semistructured merge is able to automatically merge the revisions. Ordering conflicts
were also the only false positives added by unstructured merge tools, when considering
Java systems, identified by (Cavalcanti, Accioly and Borba, (2017) in their study. In the
context of Java, classes and methods are the declarations most often involved in ordering

conflicts.

3.2.2 False Positives Added by Semistructured Merge

The subsections that follow describe cases in which semistructured merge tool adds false

positives when compared to the textual, line-based unstructured approach.

3.2.2.1 Function Renaming Conflict

As previously noted by |Apel et al.| (2011) and Cavalcanti, Accioly and Borba| (2017)),
renaming is a challenge for semistructured merge. When an element is renamed in one
revision, the semistructured merge algorithm is not aware of this renaming, and it cannot
map the renamed element to its version from the base revision. Figure [16] illustrates a
merge scenario, based on a case from Less. jsﬂ where this happens. A developer (revision
Tiest) renames a function from xhr to doXHR, while a second developer (revision 7,4 edits
its body.

Figure 16 — Merge scenario with false positive added by semistructured merge (function
renaming conflict)

Tpase

1 function xhr(url, type, callback, errback) {
2 var xmlRequest = getXMLHttpRequest();

3 log ("XHR: Getting '" + url + "'");
4
5

}

branching

Tleft

function doXHR(url, type, callback, errback) { . 1 function xhr(url, type, callback, errback) {
var xmlRequest = getXMLHttpRequest(); 2 var xmlRequest = getXMLHttpRequest();
log ("XHR: Getting '” + url + "'"); 3 log("XHR: Getting
. § oRCINEL BEITINE LML L R

} 5 )

> https://github.com/less/less.js/

rright
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Unstructured merge does not report conflicts, because the changes introduced by revi-
sions 7ep and 7495 occur in distinct text areas, having a statement as separator of chunks
(line 2), and it generates a program that combines contributions from both developers,
with a new name and a new body:
function doXHR(url, type, callback, errback) {

var xmlRequest = getXMLHttpRequest();
log("XHR: Getting '" + url + "'" 2);

Semistructured merge, on the other hand, does not understand that 7.4 renamed xhr.
Instead, the algorithm interprets the function renaming as a deletion, and assumes that
Tt deleted a function modified by 7,44, which supposedly represents an interference
between development tasks. Therefore, semistructured merge reports a conflict:

function xhr(url, type, callback, errback) {
<< LEFT

var xmlRequest = getXMLHttpRequest();
log("XHR: Getting '" + url + "'" 2);

>>>>>>> RIGHT

3

function doXHR(url, type, callback, errback) {
var xmlRequest = getXMLHttpRequest();
log ("XHR: Getting '" + url + "'");

It is interesting to observe that the renamed function (doXHR) is not surrounded by
conflict markers, because it is actually just seen, by semistructured merge, as a newly
added function. The merge algorithm’s assumption is that, instead of renaming a function,
Tiese deleted xhr and added doXHR. Barros| (2018) discusses solutions for a semistructured
merge tool to deal with renaming conflicts.

Renaming conflicts are often semistructured merge false positives, but they might
indeed represent actual interference between development tasks. For instance, consider a
scenario where a developer renames a function, and the other one not only edits its body,
but also adds new calls to it. Unstructured merge leads to an invalid program, with calls
to an undefined function, whereas semistructured merge soundly does not perform the

merge, and reports a conflict.
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3.2.2.2 Function Conversion Conflict

Another case of false positive added by semistructured merge comes from the conversion
of a function expression assigned to a variable into a function declaration, and vice-versa.
Subsection discussed the difference between those two means of creating a function.
False positives might occur when one developer converts a function from a form to the
other, and another developer changes that function. This type of conflict is referred in
this work as a function conversion conflict. In Figure [I7] there is an example of merge
scenario, extracted from a project called Bz’tcoz’nJSﬂ that shows such case. The revision
Tee converts the variable processTx, that holds a function expression, into a function
declaration, whereas 7+ modifies the function expression body.

Once again, unstructured merge does not report conflicts due to the fact that the
changes occur in different text areas, having a variable assignment as a separator (line 2),
and it produces a valid merge:
function processTx(tx) {

tx.outs.forEach(function(txOut, i) {
var address = Address.fromOutputScript(tx.script);

3¢

Semistructured merge, however, reports a conflict for a similar reason as in function
renaming described earlier. The merge algorithm— relying on unstructured merge to
compose the StatementList nodes that contain the function expression assigned to a
variable as plain text— understands that textual content of a StatementList node was

removed by 7.4, while part of the textual content of the same node was edited by 7y

<< LEFT
var processTx = function(tx) {
tx.outs.forEach(function(txOut, i) {
var address = Address.fromOutputScript(tx.script);
s
i
>>>>>>> RIGHT
function processTx(tx) {
tx.outs.forEach(function(txOut, i) {
var address = Address.fromScriptPubKey(tx.script);
s
}

6 |https://github.com/bitcoinjs/bitcoinjs-lib
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Figure 17 — Merge scenario with false positive added by semistructured merge (function
conversion conflict)

Tpase

var processTx = function(tx) {
tx.outs.forEach(function(txOut, i) {
var address = Address.fromScriptPubKey(tx.script);

18
b

branching
T

left

1
2
3
4
5
6

var processTx = function(tx) {
tx.outs.forEach(function(txOut, i) {

nction processTx(tx) {
tx.outs.forEach(function(txOut, i) {
var address = Address.fromScriptPubKey(tx.script);

1
};

1
2
3
4
s 5
6

The other way around, having a developer migrating a function declaration into a func-
tion expression, whereas another developer changes its body, is also reported as a conflict
by semistructured merge, but for a slightly different reason. Semistructured merge reports
a conflict because it interprets such conversion as a deletion of function declaration, and
assumes that a developer removed a function that was edited by the other one. Conversely,
this case might also be a semistructured merge true positive, when the latter developer
adds a reference to the function (e.g., in a call) before its declaration. If a function decla-
ration were kept, the program would still work, since a function declaration gets hoisted,
but having a function expression assigned to a variable leads to a program that throws
an error during runtime. While semistructured tool would soundly not perform the merge
and report a conflict, unstructured merge would erroneously merge the contributions,
generating an invalid program. An example of such case is provided, as a false negative

for unstructured merge, in the next subsection.

3.2.2.3 Function Declaration Displacement Conflict

An additional case of false positive introduced by semistructured merge might arise when
a developer moves a function declaration into a sibling node (e.g., a StatementList),
which causes the semistructured merge algorithm to interpret such change as a deletion
of the moved function. A so-called function declaration displacement conflict happens
when a function declaration is moved in that way by one developer, while it is modified
by another one. Usually, such conflict takes place when a developer moves a function
declaration into an Immediately Invoked Function Ezpression (IIFE) with the purpose of

not polluting the global scope.

i ight

'var address = Address.fromOutputScript(tx.script);
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Figure 18 — Merge scenario with false positive added by semistructured merge (function
declaration displacement conflict)

Thase
1 function Context(path, state) {
2 this.path = path || '/';
3 this.state = state || {};
4 3}
5
6 Context.prototype.pushState = function(title) {
7 history.pushState(this.state, title);
8 3}
9

10 page.Context = Context;

branching

7‘left rright

(function() { : 1 function Context(path, state) {
function Context(path, state) { 2 ‘this.path = path.tolLowerCase() || '/';
this.path = path || '/'; 3 S énéféfé.Ti”fj; ____________________
this.state = state || {3}; 4 3
} 5
6 Context.prototype.pushState = function(title) {
Context.prototype.pushState = function(title) { 7 history.pushState(this.state, title);
history.pushState(this.state, title); 8 };
} 9
10 page.Context = Context;
_____ pggg.Context = Context;
HO;

Figure (18| presents an example of this, based on a real case from the page.js projectﬂ
The revision 7,z moves the function Context, which is emulating a class by means of
prototype (SILVA et al., [2017), along with statements, into an IIFE. And, in parallel, r,gn,
edits the body of Context. As in previous scenarios, unstructured merge performs the
merge without reporting a conflict, once the changes are made to different text areas
(whitespace changes are ignored in the present analysis):

(function() {
function Context(path, state) {
this.path = path.tolLowerCase() || '/';
this.state = state || {};
}
Context.prototype.pushState = function(title)({
history.pushState(this.state, title);
};
page.Context = Context;
»O;
7

https://github.com/visionmedia/page.js
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With our semistructured merge tool, we have a recurring behaviour. When moving
Context, and further statements, into an anonymous function expression (contained in
a StatementList node), the function declaration is no longer a node represented in the
program structure tree, being just part of textual content of a statement list node. As a
consequence, the algorithm understands that 7. removes Context, whereas 7, edits it,
thus raising a conflict:

function Context(path, state) {
<<<<<<< LEFT

this.path = path.toLowerCase() || '/';
this.state = state || {3};
>>>>>>> RIGHT

b

(function() {
function Context(path, state) {
this.path = path || '/"';
this.state = state || {};

Context.prototype.pushState = function(title){
history.pushState(this.state, title);
b

page.Context = Context;

HO;

The other way around, having a developer moving a function declaration from a state-
ment list out of it (e.g., when eliminating the usage of an I[IFE), while another developer
edits part of the textual content of the statement list node that refers to the function
body, also is reported as a conflict by semistructured merge. When moving a function
declaration out of a statement list, there will be a new non-terminal node for that func-
tion, and the statement list node’s textual content will be changed to remove the function
declaration. So, when that happens followed by an edition of other developer on the same
function (i.e., the same area in the statement list node’s textual content), there is a textual

conflict in the statement list node.

3.2.2.4 No Longer Existing One-to-one Mapping Conflict

All the aforementioned cases of semistructured merge false positives are added by both
jsFSTMerge v1 and jsFSTMerge v2. However, as described and exemplified in the Subsec-
tion [3.1.2] there is an extra type of false positive that is exclusively added by jsFSTMerge

v1, which occurs when one-to-one mappings between StatementList nodes are not kept.
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3.2.3 False Negatives Added by Unstructured Merge

The subsections that follow present scenarios where unstructured merge tools miss actual

interference between development tasks, differently from semistructured merge.

3.2.3.1 Adding Duplicated Function Declaration

Similarly to the findings obtained by |Cavalcanti, Accioly and Borba| (2017)) for Java sys-
tems, the false negatives added by unstructured merge for JavaScript are mostly caused
by not detecting when revisions add duplicated function declarations. As long as function
declarations with a common name are added to different areas of the program, an un-
structured merge tool reports no conflict. In JavaScript, there is no function overloading;
when there are two function declarations with the same name within the same scope, even
if they have different formal parameters, the last function defined will override the previ-
ously defined one (STEFANOV, 2010). And it does not cause a compilation error, differently
from languages such as Java, that does not allow two class methods with same signature.
When comparing the impact of duplicated declaration for both JavaScript and Java sys-
tems, we observe that not reporting conflicts for JavaScript artifacts potentially cause
more trouble, since duplicated function declarations are semantic errors that typically do
not raise any warning during a build phase, thus being harder to be detected.

Figure shows an example of merge scenario, inspired on the Mochd| codebase,
where two revisions (75.p and r4,:) add functions with same name (error) to different

text areas.

Figure 19 — Merge scenario with false negative added by unstructured merge (duplicated
function declaration)

rbase
1 function makeUrl(s) {
2 return window.location.pathname + 'grep=' + s;
3}
Tleft Tright

function makeUrl(s) { function error(msg) {

return window.location.pathname + 'grep=' + s; window.alert(msg);

1

2

3}

T
.......................................... s
6
7

:function error(msg) { i function makeUrl(s) {

console.error(msg); return window.location.pathname + 'grep=' + s;

}

Unstructured merge does not raise a conflict, and it generates a program with two

functions called error. This program does not cause a build error, but it represents

8 |https://github.com/mochajs/mocha
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an interference between development tasks, once the developer who introduced the first
function will rely on its implementation, and not the overriding one (line 9):

function error(msg) {
window.alert(msg);

function makeUrl(s) {
return window.location.pathname + 'grep=' + s;

function error(msg) { // Overrides function "error”

console.error(msg);

In turn, semistructured merge is able to match the functions by name and type via
superimposition. Then, it tries to merge their bodies, and correctly identifies a conflict:

function error(msg) {
<K<K LEFT

console.error(msg);

window.alert(msg);
>>>>>>> RIGHT

}

function makeUrl(s) {
return window.location.pathname + 'grep=' + s;

3.2.3.2 Adding Call to Renamed Function

Function renaming, as previously explained, can also be a case of false negative added
by unstructured merge. This happens when a developer renames a function, and another
developer, in addition to changing its body, adds a call to it by referring to the old name.
Unstructured merge only detects such conflict, by accident, when changes occur in the
same text area. Otherwise, it unsoundly performs the merge, and generates a program
that throws an error during runtime. Once again, this case was also observed in Java
systems (CAVALCANTI, ACCIOLY; BORBA, 2017)), but trying to invoke a method that no
longer exists, in Java, causes a compilation error, which makes this false negative easier
to be identified than in JavaScript.

Figure presents an example of such case, where revision 7, renames makeUrl to
makeURL, and 7, besides making changes to the function body, adds a statement with

a call to the function using the old name (makeUrl).



Chapter 3. Semistructured Merge Tool for JavaScript 53

Figure 20 — Merge scenario with false negative added by unstructured merge (function
renaming conflict)

Thase
1 function makeUrl(s)
2 {
3 var url = window.location.pathname + 'grep=' + s;
4 return url;
5 3}

branching

Tleft Tright

1 :function makeURL(s) : 1 function makeUrl(s)
2 { 2 {
3 var url = window.location.pathname + 'grep=' + s; 3 var url = window.location.pathname + '&grep=' + s;
Y return url; i return ur1, ...............................................................
5 } 5 %

6

oo oo s ey

var url = makeUrl('test');

Since changes are made to different areas, having the opening curling brace (“{”) as a
separator, unstructured merge unsoundly does not report any conflict, and performs the

merge. In the merged program, the call to the function causes a ReferenceError (line 7):

1 function makeURL (s)

2 {

3 var url = window.location.pathname + '&grep=' + s;

4 return url;

5 %}

6

7 var url = makeUrl('test'); // ReferenceError: makeUrl is not defined

When using semistructured merge, the renaming of makeUr1 is interpreted as a deletion

of that function and the addition of a function called makeURL. At the same time, 7,4
edits makeUrl body, which causes semistructured merge to report a conflict. Therefore,
semistructured merge ends up preventing an error, which would result from a call to a no
longer existing function, from being escaped to users:
function makeUrl(s) {

2 <<<<<L<< LEFT

3 ===

4 var url = window.location.pathname + '&grep=' + s;

5 return url;

6 >>>>>>> RIGHT

7%

8

9 function makeURL (s) {

10

11 3}

12

13 var url = makeUrl('test');
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3.2.3.3 Adding Early Call to No Longer Hoisted Function

Converting a function declaration into a function expression assigned to a variable can
also be a false negative added by unstructured merge. As previously noted, when the
developer who is still relying on the hoisting property of a function declaration adds
new references before the declaration, semistructured merge soundly reports a conflict,
and this is not detected by unstructured merge. Unless new references occur in the same
text area, unstructured merge incorrectly merges the contributions, yielding a program
that throws errors during runtime. In Figure 2I] there is an example of a scenario that
illustrates this case. The revision 7. converts makeUrl into a function expression assigned
to a variable, whereas 1,4, modifies the function body, and, also, adds a call to makeUrl

at the beginning of the program.

Figure 21 — Merge scenario with false negative added by unstructured merge (function
conversion conflict)
Tbase

var date = global.Date;

function makeUrl(s)
{
var url = window.location.pathname + 'grep=' + s;

return url;

N O Ot R W N =

branching

Tleft

e P e T P 1.§a}IQEi”£ ..........................
_______________________________________ | 2 var date = global.Date;
‘var makeUrl = function(s) 3
{ ......................................... , [RU

var url = window.location.pathname + 'grep=' + s; 5 {

return url; 6 var url = window.location.pathname + '&grep=' + s;
;}i” ; e
; 8 3

0 g O Ut = W N

Unstructured merge does not raise conflicts, because changes are made in different text
chunks, but the generated program leads to a TypeError when trying to invoke makeUrl:

var url = makeUrl('test'); // TypeError: makeUrl is not a function
var date = global.Date;

var makeUrl = function(s)

{
var url = window.location.pathname + '&grep=' + s;

return url;

¥s

Once more, semistructured merge avoids that runtime error by reporting a conflict,
due to the fact that the algorithm understands that r.p removed a function that was

edited by 7Tygns

T ight
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var makeUrl = function(s)

{

Ts

function makeUrl(s) {
<<<<<<< LEFT

var url = window.location.pathname + '&grep=' + s;
return url;
>>>>>>> RIGHT

3

3.2.4 False Negatives Added by Semistructured Merge

We were not able to find general cases of false negatives added by semistructured merge
that conform to a set of recurring syntactic patterns. All the cases are from unstructured
merge accidentally detecting semantic conflicts that would otherwise not be reported if
changes were made in different text areas. Usually, this happens when a developer adds
a new element that references an existing one, and, in parallel, another developer edits
the referenced element in a manner that both changes occur in the same area. The first
developer might not be expecting the changes introduced by the second one, potentially
leading to behavioral errors; especially when the second developer is not simply refactoring
or optimizing code. Since changes are made to different elements (i.e., different nodes in
the generated program structure tree), no conflict is reported by semistructured merge.
An example of merge scenario, adapted from a real case observed in the jQuery projectﬂ
is shown in Figure 22| In this scenario, the 7.4 adds the function selectorConvert, which
uses the existing variable rdelimiter, while 7., changed the value of this variable.
This time, there is no textual separator between changes introduced by the revisions;
they are made in consecutive lines. As a result, unstructured merge reports a conflict:
var rspace = / /g;
<<<<<<< LEFT
var rdelimiter = /\,/g;
function selectorConvert(selector) {

return selector.replace(rspace, "&")
.replace(rdelimiter, "*");

var rdelimiter = /\;/g;
>>>>>>> RIGHT

9 https://github.com /jquery/jquery
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Figure 22 — Merge scenario with false negative added by semistructured merge (accidental
conflict)

Tpase

var rspace = / /g;
var rdelimiter = /\,/g;

branching

7/left rright
var rspace = / /g; 1 var rspace = / /g;
wvar rdelimiter = /\,/g; ... 2 ivar rdelimiter = /\;/g;
;function selectorConvert(selector) { 3
return selector.replace(rspace, "&") 4
.replace(rdelimiter, "“");:

On the other hand, from semistructured merge’s perspective, the changes are made
in different nodes in the program structure tree (7. adding a FunctionDeclaration
node and 7, editing a StatementList node), so it does not report any conflict, but
the merged revision might lead to a semantic error instead. In the generated program,
the function selectorConvert now uses a value for rdelimiter that is different from
what the first developer expects (a semicolon instead of a comma), possibly affecting the
program correctness:
var rspace = / /g;
var rdelimiter = /\;/g;
function selectorConvert(selector) {

return selector.replace(rspace, "&")

.replace(rdelimiter, "*");
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4 EVALUATION

Motivated by the lack of prior investigation of semistructured merge for JavaScript, as well
as by encouraging results obtained in previous studies for other languages, we proposed
and implemented different versions of semistructured tools for JavaScript as described
in the previous chapter. In the present chapter, we analytically evaluate the approach
proposed by |Apel et al. (2011) to implement a semistructured merge tool for a certain
programming language by instantiating the FSTMerge architecture. Furthermore, we em-
pirically evaluate our merge tools created on top of FSTMerge for JavaScript, comparing
them to unstructured merge tools, which are still widely used by industry. In particular,

we investigate the following main research questions:

o RQ1: Is the FSTMerge semistructured approach generalizable for JavaScript?

o RQ2: Could semistructured merge for JavaScript be effective in practice?

For answering RQ1, Section discusses implementation decisions that were made,
as described in the previous chapter, in order to conceive a well-functioning tool for
JavaScript based on the FSTMerge infrastructure. In this context, we investigate the gen-
eralizability of the FSTMerge approach to support an additional programming language
by providing annotated grammars, comparing JavaScript to other languages. Moreover,
Section 4.1 indicates improvements that can be made to the FSTMerge framework to make
it more generalizable for JavaScript and other languages that have similar characteristics.

To answer RQ2, in turn, Section presents an empirical study— based on the
research conducted by |Cavalcanti, Accioly and Borba (2017)— that assesses whether
semistructured merge approach for JavaScript, considering jsFSTMerge v1 (Subsection
and jsFSTMerge v2 (Subsection tools, reduces integration effort (productiv-
ity), without negatively impacting the correctness of the merging process (quality), when
compared to unstructured merge. This evaluation is performed by reproducing merges
from the development history of different GitHub projects that primarily use JavaScript,
and analyzing evidences of incidence of false positives and false negatives described in
the previous chapter. Although this empirical study is based on a prior research, it is
not a replication study in a strict sense, as different tools, code samples, and methods to

compute metrics are employed, as explained later on this text.

4.1 IS THE FSTMERGE SEMISTRUCTURED APPROACH GENERALIZABLE FOR
JAVASCRIPT?

As described in Section [3.1] the FSTMerge architecture consists of two main parts (APEL

et al, 2011): 1) a generic merge engine that is capable of identifying and resolving cer-
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tain conflicts and 2) an abstract specification, for each supported language, of program
elements whose order does not matter and of how they should be merged. This abstract
specification is given by an annotated grammar in the FeatureBNF format. The assump-
tion made by |Apel et al. (2011)), upon instantiating FSTMerge with a few programming
languages, such as Java and C#, is that the semistructured approach implemented by
this architecture is generic enough to be applied for other languages. To support a new
language, |Apel et al| (2011) explain that it is only necessary to annotate an off-the-shelf
grammar, based on some publicly available grammar for the language. Additionally, spe-
cial conflict handlers can be implemented for providing further merging logic for terminal
nodes. FSTMerge merge engine is supposed to be sufficiently generic, thus not requiring any
modification, to provide support for semistructured merge for any language, depending
solely on a grammar enriched with information for conflict resolution.

On the contrary of the procedure Apel et al.| (2011)) carried out to instantiate FSTMerge
for Java and C#, simply providing an annotated off-the-shelf grammar, we had to in-
troduce adaptations to both grammar and FSTMerge merge engine to have an effective

semistructured merge tool for JavaScript:

o Modification of grammar. The implementation of jsFSTMerge v@ used a parser
generated from an annotated grammar for JavaScript written according to the spec-
ification of ES5 (ECMA| 2015). Using this off-the-shelf grammar, however, led to the
problems discussed in Subsection [3.1.1], which mainly concern the definition of indi-
vidual statements at the same level as function declarations. A solution to solve some
of these problems, including erroneous matching of single statements, was modifying

the grammar to group consecutive statements into a new element: StatementList.

o Modification of merge engine. With a new version of the grammar that uses
StatementList to group statements, there is no matching and ordering issues with
superimposition when there is only one child node of its type (i.e., statements in
a continuous sequence, without being separated by function declarations), because
the matching, in this case, is trivial and permuting a single StatementList node
with function declarations does not change program semantics. On the other hand,
when there is more than one StatementList subnode, which is a far more often
case, semistructured merge, from the original FSTMerge engine implementation, is
not able to neither properly match statement lists nor guarantee that their order
is preserved. To overcome those issues, changes were made to the merge engine to
first assign identifiers (their position relative to other statement lists within a given
scope) to statement lists (jsFSTMerge v1; see Subsection , and then to join
statement lists node into a single one (jsFSTMerge v2; see Subsection .

Once it was not feasible to obtain a well-functioning semistructured merge tool for

JavaScript without having to introduce changes to the ES5 grammar and the FSTMerge
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merge engine, we claim that the FSTMerge semistructured approach is not effectively
generalizable for JavaScript[[] As a whole, FSTMerge semistructured approach can be con-
sidered generic in the sense that a tool for any programming language can be created
by annotating its off-the-shelf grammar, but the resulting tool may not produce correct
merges, not being an effective merge tool that could be used in practice.

It is noteworthy to remember that FSTMerge architecture allows conflict handlers to
deal with particular cases of terminal node merging (e.g., merge of implements list in
Java), which were not used in any version of jsFSTMerge explored in this thesis. Never-
theless, such handlers are not able to deal with issues concerning matching and ordering
of statements, which were only solved by modifying input grammar and merge engine, so
the lack of generalizability still persists regardless of the availability of conflict handlers.

In general, the main characteristics of JavaScript that prevent the FSTMerge semistruc-
tured approach, in its pure form (i.e., without requiring modifications of grammar or merge

engine), from working in an effective manner are the following:

1. having a syntax that allows elements whose order matters (statements) at the same

level as elements whose order is arbitrary (function declarations); and
2. not having unique names for elements whose order matters (statements).

These same characteristics, or slight variations of them, can be found in other pro-
gramming languages, making FSTMerge semistructured approach not completely suitable
for them as well, unless adaptations are made.

An example of programming language that shares such characteristics is PHP. In this
language, as well as in JavaScript, statements, which cannot get a proper unique name
from grammar annotation, appear at the same level as function declarations and, also,
class declarations. Function (and class) declarations are commutative and associative,
whereas statements are not, so the same matching and ordering problems would arise
when implementing a semistructured merge tool for the language by following a pure
approach to instantiate FSTMerge. Listing shows an example of a program written in
PHP, which has statements, a variable declaration (line 3) and call expressions (lines 9-10),
at the same level as function declarations (lines 5-7, 12-14). As in JavaScript, functions,
in PHP, can also be invoked before its definition, as we can see in line 10.

Python is another programming language that has similar features to JavaScript. The
language syntax allows statements at the same level as function and class declarations.
Listing shows a program written in Python that is quite similar to the one shown
in Listing 4.1} with variable declaration and function calls along with function declara-
tions. However, differently from JavaScript and PHP, functions can be called only after
its definition. When trying to invoke a not yet defined function in line 7, an error is

raised. This makes function declarations (and the same goes for classes) not completely

L This claim applies to ES5, as well as newer versions of JavaScript, due to their backward compatibility.
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commutative and associated with respect to statements. While function declarations can
be safely permuted among themselves, they cannot be permuted with statements without
possibly introducing runtime errors. Nonetheless, decisions made in this work could still
be leveraged to have a semistructured merge tool for Python based on FSTMerge with

adaptations on grammar and merge engine, as discussed later in this section.

Listing 4.1 — Example of program in PHP with statements and function declarations at
the same level

$x = 'test';

function f1($val) {
echo 'f1: ' . $val;

f1($x); // "f1: test”
f2($x); // "f2: test”

function f2($val) {
echo 'f2: ' . $val;

Listing 4.2 — Example of program in Python with statements and function declarations
at the same level

x = "test”

def f1(val):
print("f1: " + val)

f1(x) # "f1: test”
f2(x) # NameError: name 'f2' is not defined

def f2(val):
print("f2: " + val)

There are programming languages for which a semistructured merge tool based on
a pure FSTMerge approach—simply with an off-the-shelf annotated grammar and pos-
sible conflict handlers— often produces semantically correct programs and has proven
to present better results than unstructured merge; we have Java as an example (APEL
et al., 2011} |CAVALCANTI; ACCIOLY; BORBA| [2017)). This happens, mainly, because those
languages do not allow statements at the same level as commutative and associative
declarations (in the case of Java, class and method declarations). In spite of that, such
languages can still share, for specific program elements, the previously mentioned charac-

teristics which lead a pure FSTMerge approach to not work well for JavaScript. Considering



© 00 J O Ut = W N

N NN NN~ P P B B B B = = =
=W NN RO O 00O Ut ReWwWw Ny RO

Chapter 4. Evaluation 61

Java, for example, a class can have blocks of code, called static blocks, that are executed
at the time of loading their respective class for use (ARNOLD; GOSLING; HOLMES, 2005).
Interestingly, static blocks, in Java, are similar to top-level statements in JavaScript, once
the order of them in a class, with respect to other static blocks, may be relevant for a

program execution and they do not have a unique name.

Listing 4.3 — Example of class in Java with static blocks

class Test {
public static String x = "test”;

public static void f1(String val) {

System.out.println(”"f1: " + val);

static {
f1(x); // "f1: test”
f2(x); // "f2: test”

public static void f2(String val) {

System.out.println(”"f2: " + val);
}
static {
x = "test2";
}
static {
f1(x); // "f1: test2”
3

Listing illustrates this better by providing an example of a Java class, similar to
other examples, with three static blocks. From the moment Test class (line 1) is loaded,
the three static blocks are executed in sequence. The first static block (lines 8-11) invokes
two static methods defined, respectively, before and after the block, which shows that the
order of methods can be rearranged without affecting the static block’s code execution.
The second static block (lines 17-19) changes the value of a static variable, and then the
third block (lines 21-23) calls a method that reads its new value. If the last two static
blocks were swapped, which could happen during superimposition process, the third block
would generate a different result, since it would read a variable not yet changed by the
second block. This indicates that, differently from what happens to methods, the order
of static blocks does matter. As a consequence, the same problems identified in this work

when instantiating FSTMerge approach for JavaScript can happen to a semistructured tool
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for Java, when it comes to static blocks. The tool may not be able to properly match static
blocks, because they do not have proper unique names from grammar annotation, and
the superimposition might change the order of static blocks, thus possibly changing the
behaviour of a program. But, in general, most Java classes have at most one static block, so
these issues tend to be rare (CAVALCANTI; ACCIOLY; BORBA, 2017)). JavaScript programs,
in turn, often have more than one group of statements among function declarations.

In these three programming languages— PHP, Python, and Java—, there are non-
uniquely named elements that are sensitive to order (statements for PHP and Python,
and static blocks for Java) at the same level as elements that are not sensitive (class and
function declarations for PHP and Python, and method declarations for Java). Not only
for these languages, but also for others that have similar characteristics, the decisions made
in this work, when designing jsFSTMerge v1 and jsFSTMerge v2 to deal with matching and
ordering issues, can inspire adaptations to semistructured merge implementations based
on FSTMerge. First, for PHP, consecutive statements could also be grouped into statement
lists, and they could either be renamed (if following the approach for jsFSTMerge v1) or,
to avoid further matching issues, joined into a single one (if following the approach for
jsFSTMerge v2). Second, for Python, similar steps could be taken, but there is a need
to deal with the fact that functions (and classes) are allowed to be used only after their
definition. A simple solution for this, based on what was done for jsFSTMerge v2, is
joining sibling statement lists into a single node, and then modifying superimposition
to guarantee that this node is always the last one among its siblings, appearing after
all declaration nodes. Finally, for Java, differently from previous cases, there is no need
of adapting the annotated grammar; a static block is already an element that groups
consecutive statements. The only modification that could be made is one to the FSTMerge
merge engine to either assign sequential names to static blocks (as in jsFSTMerge v1) or
join them into a single static block (as in jsFSTMerge v2). The latter avoids additional
false positives as mentioned in Subsection [3.1.3]

Even though modifications to grammar and merge engine can solve semistructured
merging issues for JavaScript and other languages, making FSTMerge approach more gen-
eralizable for them is relevant for semistructured merge adoption, as long as support for
additional languages would be more easily plugged in. Improvements can be made to
FSTMerge architecture to better handle program elements that need to be represented as
a node in the program structure tree, but that also need to have their order preserved with
respect to siblings of the same type. A suggestion is to make grammar annotation more
flexible to not only define which elements will be represented as non-terminal and terminal
nodes, but also to define which elements are sensitive to order and which ones are not. In
the current architecture, both aspects are tangled, as it simply assumes that any element
represented as a node (whose production rule is either annotated with @ STNonTerminal

or @FSTTerminal) have an arbitrary order. For instance, a new parameter (in addition to
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name and merge) could be integrated into FeatureBNF format to indicate whether a node
should have its order preserved or not. FSTMerge engine, then, should use this information
to perform a merge respecting this property. As a result, FSTMerge would have a better
generality by more effectively supporting many programming languages, which was the

original intention of |Apel et al.|(2011)) when designing this architecture.

FSTMerge semistructured merge approach, in its pure form, is not effectively gen-
eralizable for JavaScript, because of its limitation in representing nodes whose order
matters and which do not have unique names as siblings of other nodes whose order
is arbitrary. This lack of effective generalizability is also expected to happen to other
programming languages, in which statements occur at the same level as commutative

and associative declarations.

4.2 COULD SEMISTRUCTURED MERGE FOR JAVASCRIPT BE EFFECTIVE IN
PRACTICE?

Currently, industry mainly employs unstructured merge tools to integrate code contribu-
tions when using version control systems (KHANNA; KUNAL; PIERCE, 2007). And, more
specifically, Git has become the standard system for version control in software devel-
opment, due to a number of reasons, such as flexibility of distributed repositories and
rising popularity of GitHub (BIRD et al., 2009)), as discussed in Section . Git uses, by
default, an unstructured tool, based on the diff3 algorithm, to perform three-way merge.
When analyzing the feasibility of a semistructured merge tool to be adopted by indus-
try, replacing unstructured ones, many factors should be taken into account, including
usability. Usability can be a major barrier to adoption of any software engineering tool,
once programmers will not use a tool if they cannot easily get the result they need from
it (FAVRE; ESTUBLIER; SANLAVILLE, 2003)).

The different versions of jsFSTMerge developed in this work can be executed in a
standalone fashion, by just running an executable file, but they can also be automatically
integrated with Git, without requiring further configuration. With this integration, a
semistructured merge tool is run every time the user invokes a git merge command.
Additionally, jsFSTMerge produces merged revisions with conflict markers in the same
format as in the ones generated by a native merge tool from Git. Hence, programmers
can continue using Git and, when merging JavaScript revisions, our tool is used in a
transparent manner behind Git, while unstructured merge is still employed for programs
written in other languages. Usability of jsFSTMerge, therefore, is as smooth as possible
due to this seamless integration with Git, allowing programmers to keep their typical

usage of the version control system.
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Besides usability, other factors play critical roles in making a semistructured tool for
JavaScript a competitive alternative to traditional textual, line-based tools. This work,
in an effort to answer RQ2 (Could semistructured merge for JavaScript be effective in
practice?), focuses on two of such factors: 1) integration effort reduction, which leads to
an improvement of productivity for developers, and 2) correctness of the merging process,
which is associated with the quality of software produced by a merge tool. To evaluate
these aspects, we conducted an empirical study, based on a different study conducted by
Cavalcanti, Accioly and Borba, (2017)), which focus on Java systems. We want to investigate
their original research questions, which are sub-questions of RQ2 in our study that targets

JavaScript systems instead:

« RQ2.1: When compared to unstructured merge, does semistructured merge reduce

unnecessary integration effort by reporting fewer spurious conflicts?

e RQ2.2: When compared to unstructured merge, does semistructured merge compro-

mise integration correctness by missing more non spurious conflicts?

As in the study conducted by |Cavalcanti, Accioly and Borba, (2017), we tackle those
two research questions by first reproducing merges from the development history of a
number of projects from GitHub. Then, we compute added false positives and added false
negatives by unstructured (considering KDiff3) and semistructured (considering both
jsFSTMerge v1 and jsFSTMerge v2), metrics that were presented in Subsection 3.2] as
means of relatively comparing merge tools with respect to development productivity and
software quality from their use. In particular, we use added false positives by the analyzed
merge tools as a metric to try to answer RQ2.1, whereas we use added false negatives to
try to answer RQ2.2.

There is a methodological difference, which is important to highlight, between this
work and the original study with respect to the manner added false positives and false
negatives are computed. In (Cavalcanti, Accioly and Borba| (2017), these metrics are, in
fact, approximations of the actual values, because the number of merge scenarios and
conflicts analyzed in their work is high enough to impair a manual verification of every
conflict that was added either by unstructured or semistructured merge. In our study, on
the other hand, the volume of conflicts to be analized is considerably smaller, enabling
manual analysis and classification of false positives and false negatives, so we managed to
obtain exact values instead of approximations. Further discussion about the differences
in the method from which these metrics are computed is presented in Subsection

4.2.1 Evaluation Design

In this empirical study, to compute metrics from real-world JavaScript projects for answer-
ing RQ2.1 and RQ2.2, we use a setup based on the one designed by |Cavalcanti, Accioly
and Borba/ (2017) with three steps:
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o Mining step. First, we select GitHub projects that use JavaScript, and then we

employ tools to mine their repositories, collecting a number of merge scenarios.

o Execution step. Second, we use unstructured and semistructured merge tools to

merge collected scenarios, finding candidates of false positives and false negatives.

« Analysis step. Finally, we process the list of candidates of false positives and false
negatives, filtering part of the conflicts out and manually classifying the remaining

list as false positive or negative for each merge tool.

The subsections that follow explain in more detail the steps of this empirical study.

4.2.1.1 Mining Step

With the goal of selecting relevant JavaScript projects, we applied different strategies
to find meaningful and diverse projects on GitHub. Initially, similarly to the method
Cavalcanti, Accioly and Borba (2017) used to find Java projects, we searched for the top
100 projects that primarily use JavaScript with the highest number of stars on GitHub,
which is a metric of project activity and relevance (BORGES; VALENTE, 2018)). In addition
to this list of 100 projects, we considered other JavaScript projects that got traction in
the last years in terms of popularity among developers (GRIEF; RAMBEAU, 2018)). From
this new list of projects, we discarded the ones that are primarily using ES6 and newer
versions of JavaScript, otherwise jsFSTMerge v1 and jsFSTMerge v2 would produce the
same result as unstructured merge, since an ES6 program would not be properly parsed
and a textual merge for the entire artifact would be invoked as a fallback. Subsequently, we
selected 50 projects— the same number of projects selected in the study led by |Cavalcanti,
Accioly and Borbal (2017)— from the resulting list of projects, considering number of lines
of code, number of developers, and number of commits in order to obtain a diverse range
of projects.

Table [1| presents the list of 50 JavaScript projects which are analyzed in this study.
We have not systematically selected projects to achieve representativeness (NAGAPPAN;
ZIMMERMANN; BIRD) 2013)), but we believe that our sample presents a reasonable degree
of diversity with respect to, at least, source code size, number of collaborators, number
of commits and, also, domain. For example, our sample contains projects that range from
Web frameworks to database drivers. Most of them have a focus on Web development,
due to the nature of JavaScript, but still covering different aspects of it (e.g., template
engines, CSS pre-processors, asynchronous request libraries, etc). Moreover, our sample
has varying source sizes and number of developers contributing to the project. For in-
stance, impress. js has only 817 lines of code (LOC)— albeit of its small size, it is not a
toy project—, whereas faker. js has 989,523 LOC. Likewise, whistle has only 9 collab-
orators, while AngularJS has 1,599 developers who have contributed to the project.
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Table 1 — List of JavaScript projects used as subject systems
Name URL LOC Collaborators Commits Merge Analysed
Commits Merge Scenarios
Ace https://github.com/ajaxorg/ace 212,097 341 7,439 199 195
AngularJS https://github.com/angular /angular.js 116,483 1,599 8,951 34 34
Async https://github.com/caolan/async 12,878 216 1,707 372 372
BitcoinJS https://github.com/bitcoinjs/bitcoinjs-lib 6,812 60 2,403 375 375
Bluebird https://github.com/petkaantonov/bluebird 39,097 201 2,055 216 216
Bower https://github.com/bower/bower 9,951 210 2,712 427 427
Bowser https://github.com/lancedikson/bowser 1,853 65 625 129 129
Brackets https://github.com/adobe/brackets 382,360 356 17,702 88 88
Chance https://github.com/chancejs/chancejs 3,800 100 841 195 194
d3 https://github.com/d3/d3 40,633 123 4,157 198 159
director https://github.com/flatiron/director 5,027 53 47 7 7
Dox https://github.com/tj/dox 2,418 34 469 55 55
faker.js https://github.com/Marak /faker.js 989,523 149 984 179 178
fetch https://github.com/github/fetch 1,706 51 587 117 117
Flux https://github.com/facebook /flux 2,314 111 388 114 114
GitBook https://github.com/GitbookIO/gitbook 4,246 85 2,377 207 205
i18next https://github.com/il8next /il8next 1,995 115 1,284 247 229
impress.js https://github.com/impress/impress.js 1,144 59 362 59 59
Intro.js https://github.com/usablica/intro.js 817 74 629 169 169
Istanbul https://github.com/gotwarlost /istanbul 4,953 78 572 126 126
Jasmine https://github.com/jasmine/jasmine 24,743 181 1,915 285 285
jQuery https://github.com/jquery/jquery 38,069 273 6,362 248 245
jquery-pjax https://github.com/defunkt/jquery-pjax 13,483 62 508 98 98
JSHint https://github.com/jshint/jshint 46,360 235 2,081 337 337
Konva https://github.com/konvajs/konva 43,073 107 2,459 262 257
Less.js https://github.com/less/less.js 126,312 217 2,871 458 443
Mocha https://github.com/mochajs/mocha 15,727 397 3,072 187 186
Mousetrap https://github.com/ccampbell /mousetrap 16,137 22 370 36 36
mustache.js https://github.com/janl/mustache.js 1,295 90 731 134 134
Nightmare https://github.com/segmentio/nightmare 3,719 111 987 267 267
node_ redis https://github.com/NodeRedis/node_redis 5,551 131 1,251 200 187
node-restify https://github.com/restify /node-restify 2,999 186 1,610 305 294
numbers.js https://github.com/numbers/numbers.js 3,241 26 392 92 92
page.js https://github.com/visionmedia/page.js 2,305 82 628 142 128
Paper.js https://github.com/paperjs/paper.js 13,658 64 7177 412 411
Phaser https://github.com/photonstorm/phaser 396,498 400 12,123 199 198
PM2 https://github.com/Unitech/pm2 21,977 205 4,483 197 193
Pug https://github.com/pugjs/pug 13,358 208 2,526 459 451
Q https://github.com/kriskowal /q 8,333 70 894 152 148
Request https:/ /github.com/request/request 2,791 284 2,263 200 185
RequireJS https://github.com/requirejs/requirejs 25,068 101 1,405 157 157
reveal.js https://github.com/hakimel /reveal.js 9,004 227 2,202 389 389
socket.io https://github.com/socketio/socket.io 1,806 155 1,714 309 290
StatsD https://github.com/etsy /statsd 2,936 170 934 287 287
Stylus https://github.com/stylus/stylus 3,501 156 3,908 189 188
three.js https://github.com/mrdoob/three.js 190,818 1,031 26,208 93 92
Underscore.js https://github.com/jashkenas/underscore 9,126 258 2,439 238 238
WebTorrent https://github.com/webtorrent /webtorrent 4,493 116 2,392 306 306
whistle https://github.com/avwo/whistle 3,022 9 7,498 63 63
Zepto.js https://github.com/madrobby /zepto 1,594 183 1,516 242 242
Total 2,891,104 9,837 161,910 10,526 10,345

Mean 57,822 197 3,238 211 207
Standard Deviation 158,984 256 4,665 112 111

The next move, after selecting JavaScript projects used as subject systems in the

study, is using a tool to mine their corresponding GitHub repositories and extract three-

way merge scenarios (see Section [2.2]) from the entire history of each repository. In this
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study, we adopted GitMergesMinerf] as a tool for this. GitMergesMiner first clones each
project locally and, then, converts their development history into a graph database. This
graph database represents commits as nodes, and each merge commit (i.e., a commit
that was created by a git merge command and has two parents) has an attribute called
isMerge with a true value (CAVALCANTIL; ACCIOLY; BORBA, [2017). Therefore, to identify
merge scenarios, we simply query the ID of all merge commits, checking commits with
isMerge set as a true. For each merge commit, we copy revisions involved in the three-way
merge scenario: the common ancestor revision (base) and the two parent revisions of the
merge commit (left and right).

In total, we extracted 10,526 merge scenarios from the 50 selected JavaScript projects.
In the execution and analysis steps, we consider only the JavaScript files from these merge
scenarios. A JavaScript project, specially when it is targeted to a Web browser as runtime
environment, typically includes files in other formats (e.g., HTML and CSS). Nonetheless,
we process only JavaScript files when measuring integration effort and correctness of the
merging process. Also, during the execution and analysis steps, we discard merge scenarios
that involve JavaScript files with elements not supported by our ES5 grammar (e.g., class
declaration). Although we targeted only projects that use the ES5 version of JavaScript,
we included a few projects that use, in specific revisions, constructs available only in ES6,
which leads to semistructured parsing errors. As can be observed in Table [T} the number
of merge scenarios that were analyzed was actually 10,345, meaning that we discarded

191 merge scenarios, which represents only 1.8% of the total number of merge scenarios.

4.2.1.2 Execution and Analysis Steps

After collecting sample projects and merge scenarios as described in the previous step,
in the execution step, we run unstructured and semistructured merge tools to reproduce
merges of the collected scenarios. These tools take three revisions from each merge sce-
nario (base, left, and right) as input and attempt to merge their files. We used KDiff3,
mentioned in Subsection as unstructured merge tool to be evaluated in this study. As
semistructured merge tools, we evaluate jsFSTMerge v1 and jsFSTMerge v2. This way,
we are able to compare these two implementations of semistructured merge approach for
JavaScript between themselves and compare them to the unstructured merge approach.

The analysis step consists of identifying and computing occurrences of the added false
positives and false negatives described in Subsection [3.2] For this, we collect all conflicts
reported by the merge tools from execution step and we initially categorize them, by
using scripts to automate this process, into three classes: 1) conflict reported by both
unstructured and semistructured merge, 2) conflict reported only by unstructured merge,
and 3) conflict reported only by semistructured merge (jsFSTMerge v1 or jsFSTMerge

v2). To determine if two conflicts, reported by two different merge approaches, are the

2 https://git.io/fhHha
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same, we check if both revision files and textual content surrounded by conflict markers
match. To complement this step, we manually verify whether pairs of conflicts that are,
respectively, in the second and third groups (conflicts reported by only one of the tools)
refer to the same conflict, but with slight textual differences. In this case, they are moved
into the first group. The remaining conflicts in the second and third groups are marked
as candidates of added false positives and false negatives.

Before manually classifying conflicts as added false positives or false negatives for
each merge approach, we filter the list of candidates to discard conflicts that are not in
JavaScript files (e.g., conflicts in a HTML file), and conflicts that happen due to textual
differences in spacing or comments which are reported by unstructured merge, but not by
our semistructured merge tools. We decided to not consider the latter, which were man-
ually identified, because such conflicts are not inherently related to the semistructured
merge approach, but related to how the unstructured merge is invoked from the semistruc-
tured merge to handle composition of terminal nodes. In the case of our semistructured
tools, for instance, the unstructured merge that is performed on terminal nodes ignores
spacing changes, differently from the default behavior from KDiff3, therefore, to avoid
bias on the results due to these types of conflicts, they are discarded from this analysis.
After filtering out conflicts from the list of candidates of false positives and false nega-
tives, we finally proceed to manually classify them into specific types of false positive and
false negative according to the characteristics described in Subsection [3.2] thus precisely
computing the occurrence of each type. Table [2| shows the types of false positives and
false negatives that can arise when comparing unstructured and semistructured tools for
JavaScript.

In |Cavalcanti, Accioly and Borba| (2017)), as mentioned earlier, differently from this
work, the metrics to compute added false positives and added false negatives for each
approach are approximations of the actual values. They compute the underestimated
number of false positives and false negatives added by unstructured merge and the over-
estimated number of false positives and false negatives added by semistructured merge.
This approximation is relevant for their work due to infeasibility of manually analyzing
each potential false positive or false negative, which was possible in this work because the
obtained number of conflicts added only by unstructured or semistructured merge was
considerably lower.

The different types of false positives and false negatives identified by [Cavalcanti, Ac-
cioly and Borba| (2017), when comparing unstructured and semistructured merge ap-
proaches for Java systems, are mostly equivalent to the types we identified in this work
for JavaScript. Table [2| presents the identified types conflicts for Java (CAVALCANTT; AC-
CIOLY; BORBA, 2017)) along with the ones for JavaScript. Ordering conflicts are false
positives for unstructured merge in both programming languages. Renaming conflicts can

be either false positives for semistructured merge or false negative for unstructured merge
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in the same manner in JavaScript and Java, with the fundamental difference that, in
Java, this renaming conflict can happen to different elements (e.g., methods and classes),
while for JavaScript (ES5), it is restricted to functions. Furthermore, additional JavaScript
cases of false positives for semistructured merge can be seen as special cases of renam-
ing conflicts, because they are all caused by the same root problem: transformation of
function declarations that triggers deletion of nodes— while they are edited by another
developer— in program structure trees. A JavaScript false positive for semistructured
merge which is an exception for this, not being related to renaming conflict, is the one
that occurs only in jsFSTMerge v1: the conflicts due to no longer existing one-to-one
mapping between statement list nodes (see Subsection . Regarding false negatives
for semistructured merge, accidental conflicts happen in both Java and JavaScript for the
same reason (changes in consecutive lines that cause unstructured tool to report a con-
flict, which happens to avoid a semantic error to escape), but in Java, there are additional
cases that are specific to the language. One of these cases, the usage of static blocks, is
discussed in Section Once static blocks do not have unique names, they might cause

matching problems during superimposition, leading to extra false negatives.

Table 2 — Types of false positives and negatives identified for JavaScript and Java

Merge JavaScript Java

Approach False Positives False Negatives False Positives False Negatives

1. Duplicated function declaration
Unstructured 1. Ordering conflict 2. Call to renamed function 1. Ordering conflict
3. Early call to no longer hoisted function

1. Duplicated declaration
2. Reference to renamed declaration

1. Function renaming conflict

9. Function conversio fict 1. Accidental conflict
. . Function conversion conflict . . . . L
Semistructured . . . . 1. Accidental conflict 1. Renaming conflict 2. Type ambiguity error
3. Function declaration displacement conflict PR v
3. Duplicated static block

4. No longer existing one-to-one mapping conflict

4.2.2 Evaluation Results

In this empirical study, we analyzed a total of 10,345 merge scenarios obtained from
50 JavaScript projects. Table [3| presents overall results, for each one of the three merge
tools considered in this work, about the number of reported conflicts, merge scenarios
with conflicts, added false positives and added false negatives. As we can see in this table,
jsFSTMerge v1 reported 884 conflicts, compared to 918 reported by KDiff3 (unstructured
tool), representing a reduction of 3.85% in the total number of conflicts. jsFSTMerge v2,
in turn, shows a greater reduction of reported conflicts when compared to unstructured
merge, reporting 866 conflicts, a reduction of 6%. In the study carried out by |Cavalcanti,
Accioly and Borba/ (2017), it was observed a reduction of 24% of reported conflicts when
using a semistructured merge tool based on FSTMerge for Java; it is worth noting that
this tool leveraged special conflict handlers to solve specific cases.

Concerning merge scenarios with conflicts, jsFSTMerge v1 and jsFSTMerge v2 also
presented a reduction when compared to unstructured merge, but at a lower rate, which

means that a number of different conflicts occur in the same merge scenario, impairing
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development productivity in a smaller degree than if they were reported in different merge
scenarios. Moreover, we can see that the the number of added false positives decreases from
unstructured merge to semistructured merge, being the lowest when using jsFSTMerge
v2. Detailed results of added false positives and false negatives, for each conflict type and

sample project, are available in Appendix [A]

Table 3 — Comparing results of unstructured and semistructured merge tools

KDiff3 jsFSTMerge v1 jsFSTMerge v2

Reported Conflicts 918 884 (-3.85%) 866 (-6%)
Merge Scenarios with Conflicts 582 566 (-2.75%) 557 (-4.3%)
Added False Positives 58 25 7
Added False Negatives 0 1 1

In this study, we rely on the same general assumption made by (Cavalcanti, Accioly
and Borba| (2017)) in their research that the higher the number of added false positives,
the greater the integration effort, since developers have to spend more time in resolv-
ing spurious conflicts. At the same time, we also generally assume that the higher the
number of added false negatives, the weaker the guarantee of correctness on the merging
process, since more actual interferences are not detected. However, as different conflicts
might demand different resolution effort (MENS, 2002; PRUDENCIO et al., 2012; SANTOS;
MURTA, 2012), we conduct a qualitative analysis of conflicts to better understand the
effort required to resolve each type of conflict, as discussed later in this section.

Regarding performance, we observed a similar execution time relation between un-
structured and semistructured merge tools as the one reported by (Cavalcanti, Accioly
and Borba, (2017), who observed that semistructured merge for Java is, on average, 30
times slower than unstructured one. In general, semistructured merge for JavaScript, con-
sidering both jsFSTMerge v1 and jsFSTMerge v2, is also slower than unstructured merge,
but not prohibitive slower. For example, to reproduce 294 merge scenarios from the node-
restify project, jsFSTMerge v1 took 42.16 seconds, jsFSTMerge v2 took 36.66 seconds,
and KDiff3 took 1.98 seconds. These large differences can be explained by the complexity
of superimposing program structure trees, but they certainly can be reduced by means of
an industrial strength implementation of our tools, as there are many ways to optimize
them (e.g., by exploring parallelization). However, in practice, this difference is often non
prohibitive. In the example of node-restify, the slowest semistructured merge tool spent,
on average, less than 1 second per merge scenario.

In the subsections that follow, we present descriptive statistics related to the re-
search questions RQ2.1 and RQ2.2, which investigate in more detail the impact of using
semistructured merge tools, as an alternative to unstructured ones, on the development
productivity and merge correctness. We analyze the frequency of added false positives

and added false negatives by each merge approach.
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4.2.2.1 When compared to unstructured merge, does semistructured merge reduce unneces-

sary integration effort by reporting fewer spurious conflicts?

For answering RQ2.1, we need to compare the number of false positives added by un-
structured merge tool (KDiff3) and semistructured merge tools (jsFSTMerge v1 and
jsFSTMerge v2). When using unstructured merge (KDiff3), our results show that, in our
aggregated sample, 0.25% =+ 0.56% (average + standard deviation) of the merge scenarios
have at least one added false positive, and that 7.51% 4 16.59% of the reported conflicts
are added false positives. When using jsFSTMerge v1, we observe that 0.18% =+ 0.57% of
its merge scenarios have at least one added false positive, and that 5.47% 4= 13.94% of the
reported conflicts are added false positives. And, finally, when using jsFSTMerge v2, we
have that 0.05% £ 0.23% of its merge scenarios have at least one added false positive, and
that 1.61% + 5.7% of the reported conflicts are added false positives.

For a per project view, Figure [23| presents a violin plot that indicates that semistruc-
tured merge, considering both jsFSTMerge v1 and jsFSTMerge v2 tools, tends to have
fewer merge scenarios with added false positives than unstructured merge. In particular,
we can see that the 3rd quartile (upper bound of the black box) of the unstructured tool
is higher than zero, meaning that at least 25% of projects of our sample had one or more
merge scenarios with added false positive when using KDiff3, while the 3rd quartile for
semistructured merge tools is zero (no black box visible). When comparing jsFSTMerge

vl and jsFSTMerge v2, we can observe that the latter adds far fewer false positives.

Figure 23 — Per project distribution of percentage of added false positives in terms of
merge scenarios
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Figure shows a violin plot similar to the previous one, but illustrating the distri-
bution of rate for added false positives in terms of conflicts. A recurring distribution can
be observed, with semistructured merge tools having a lower rate of reported conflicts
accounted as added false positive than unstructured merge. The maximum percentage
for KDiff3 is 100% and it comes from impress.js, as it presented only one conflict which

happens to be an ordering conflict.

Figure 24 — Per project distribution of percentage of added false positives in terms of

conflicts
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Both plots, shown in Figure and Figure suggest that there is no significant
difference between the rate of false positives added by KDiff3 and the ones added by
jsFSTMerge v1, whereas we can see a difference between KDiff3 and jsFSTMerge v2 that
seems to be more significant.

To better investigate the statistical significance of differences in added false positives
among the evaluated merge tools, we conducted Wilcoxon Signed-Rank tests given that
our data are paired, deviate from normality, and come from the same sample (WILCOXON;
WILCOX, 1964)). First, comparing jsFSTMerge v1 and jsFSTMerge v2, our test shows that
there is statistically significant difference, both in terms of merge scenarios and in terms
of conflicts (p-value equals to, respectively, 0.0295 and 0.00296 < 0.05). Conversely, when
comparing KDiff3 and jsFSTMerge v1, a Wilcoxon Signed-Rank test shows, as the plots
indicated, that there is no significant difference in percentages of merge scenarios with

added false positives (p-value equals to 0.204 > 0.05) and reported conflicts accounted
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as added false positives (p-value equals to 0.275 > 0.05). And, finally, comparing KDiff3
and jsFSTMerge v2, our test shows that there is indeed statistically significant difference,
in favour of the semistructured merge tool, both in terms of merge scenarios and conflicts
(p-value equals to, respectively, 0.019 and 0.003 < 0.05).

Given we are performing three pairwise comparisons (jsFSTMerge v1 vs. jsFSTMerge
v2, KDiff3 vs. jsFSTMerge v1 and KDiff3 vs. jsFSTMerge v2), corrections to control for
inflation of type-1 error probability become necessary to have a confidence level for the
entire family of simultaneous tests (KUTNER; NACHTSHEIM; NETER, 2005). One way of
doing that is by applying a Bonferroni correction, which consists of dividing the p-value by
the total number of paired comparisons performed (MILLER, [1966)); in our case, we have
p-value = 0.05/3 = 0.0166. Considering this corrected p-value, the only differences that
remain strongly significant are the ones regarding number of conflicts between jsFSTMerge
v1 and jsFSTMerge v2 (p-value equals to 0.00296 < 0.0166), and KDiff3 and jsFSTMerge
v2 (p-value equals to 0.003 < 0.0166). Nevertheless, Bonferroni corrections are overly
conservative, so the once significant differences with respect to merge scenarios might still
have statistical power.

An additional statistical analysis carried out was a Mann-Whitney’s U test (MANN;
WHITNEY), 1947) to evaluate differences in added false positives in terms of conflicts which
were reported as significant from the previous tests. We found a significant large effect
size for the difference between KDiff3 and jsFSTMerge v2 (U equals to 199.5, Z equals to
3.24, p-value < 0.05, and r equals to 0.46). Furthermore, we found a significant medium
effect size for the difference between jsFSTMerge v1 and jsFSTMerge v2 (U equals to 55,
Z equals to 1.85, p-value < 0.05, and r equals to 0.26).

4.2.2.2 When compared to unstructured merge, does semistructured merge compromise in-

tegration correctness by missing more non spurious conflicts?

As shown in Table [3] no false negative was identified when using unstructured merge,
whereas only one false negative was identified, from our sample, for the semistructured
merge tools. This single case is an accidental conflict detected in a merge scenario from
the jQuery project, as seen in Tables [12] [13] [14] and [15] (Appendix [A]). This conflict was
reported by unstructured merge because developers made changes on consecutive lines in
which one developer changed the value of a variable accessed by a function; this is the
real case that inspired the example presented in Subsection [3.2.4]

Regarding false negatives for unstructured merge, we have identified different cases
which might occur when merging JavaScript programs, as presented in Subsection [3.2.3]
Nevertheless, the lack of detected false negatives when performing unstructured merge on
our sample is an evidence that such cases might not often occur in real-world projects.
The same applies to false negatives added by semistructured merge, once we detected only

one occurrence. As a result, considering our sample, there is no statistically significant
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difference between unstructured and semistructured merge for JavaScript when it comes

to compromising integration correctness.

4.2.3 Discussion

In this subsection, we provide an interpretation for the results obtained in this empirical
study to try to answer our research questions, and we also present practical insights about

semistructured merge for JavaScript, which can be transferred to other languages.

4.2.3.1 Integration Effort

Both of the semistructured merge tools evaluated in this work, jsFSTMerge v1 and
jsFSTMerge v2, reduced the overall number of reported conflicts, when compared to
unstructured merge (KDIff3), but only jsFSTMerge v2 introduced fewer false positives
with statistical significance. With respect to the number of spurious conflicts that are
reported, which cause unnecessary integration effort, jsFSTMerge v2 effectively presents
better results than unstructured merge. And we can also argue that jsFSTMerge v1, at
least, does not present worse ones. However, in order to properly measure the integration
effort reduction caused by the use of a merge tool over another one, we need to analyze
the nature of the false positives added by each tool.

Considering an unstructured merge tool, the only case of added false positive, as shown
in Table [2] are ordering conflicts. When an ordering conflict involves two function decla-
rations that are added to the same text area, it is usually easy to analyze and resolve it,
since the developer just needs to choose one of the functions, or decide to keep both of
them (by simply removing conflict markers). The main productivity loss that unstructured
merge tools cause, in this case, is the disruption of the development workflow, because
the programmer responsible for doing the code integration still needs to shift focus to the
conflict resolution, although the conflict itself is simple. As noted by Bird and Zimmer-
mann (2012)), regardless of the conflict nature, conflicts still hamper productivity because
resolving conflicts might be a time-consuming and error prone activity. And, conversely,
ordering conflicts are not always simple to resolve. We also identified what Cavalcanti,
Accioly and Borba, (2017)) called crosscutting conflicts, which are ordering conflicts that
do not respect boundaries of syntactic structures, mixing parts of different elements. In
the context of JavaScript programs, such conflicts are typically reported by unstructured
merge when statements are added to the same text area as another function declaration,
and, from our sample, they appear to be more often than the simpler conflicts involving
only function declarations. Listing presents an example of crosscutting conflict ob-
served in a merge scenario from the stylus project. We believe that this type of conflict is
more difficult to understand and resolve, because it involves different syntactic structures,

which might demand more effort from developers.
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Listing 4.4 — Example of crosscutting ordering conflict

<<<<<<< LEFT
// JS API

describe ('JS API', function(){
it('define a variable with object as hash',

DN

function readDir(dir, ext)({
ext = ext || '.styl';
return fs.readdirSync(dir).filter (function(file){
return ~file.indexOf (ext);
}) .map(function(file){
return file.replace(ext, '');

DN

>>>>>>> RIGHT

Regarding semistructured merge, let us only consider the false positives added both by
jsFSTMerge v1 and jsFSTMerge v2. These false positives behave similarly because they are
all caused by transformation of function declaration that triggers a deletion of an edited
node. When such conflict is reported, it may be initially hard to understand it, because
it involves duplicated elements, as we can seen in the examples provided in Subsection
3.2.2] Usually, there is a conflict in an old element (e.g., function declaration) that has a
new implementation along with a new element that has an old implementation, whereas
there should be only one element. To better illustrate this, see the example of function
renaming conflict shown in Subsection [3.2.2.1] In this example, the merge produced by
semistructured merge contains a conflict in a function that has the old name along with
a function that has the new name and the old body. Even though this type of conflict
might cause some confusion to programmers, they tend to be quite easy to resolve, once
the combination of contributions from both revisions is straightforward, apart of possible
differences in indentation. In the case of function conflict renaming, for instance, it is
simply necessary to select the new name from a revision and the new body from another

revision. Similar conflict resolutions can be applied for the other types of false positive.
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In our sample, semistructured merge, considering both jsFSTMerge v1 and
jsFSTMerge v2, reduced the overall number of reported conflicts, and introduced
fewer false positives than unstructured merge. Therefore, semistructured merge for
JavaScript, specially when using jsFSTMerge v2, reduces unnecessary integration ef-
fort by reporting fewer spurious conflicts. And, although false positives added by both
unstructured and semistructured merge may be hard to understand, the ones added

by semistructured merge tend to be easier to resolve.

4.2.3.2 Correctness

We were not able to obtain statistically significant results with respect to false negatives
from our empirical study. In our sample, there is minor difference between the number
of false negatives introduced exclusively by one of the merge tools, i.e., unstructured and
semistructured merge, in practical terms, present the same false negatives. Considering
our sample, it is safe to say that semistructured merge does not compromise integration
correctness, but, due to lack of statistical significance and potential external validity issues,
we cannot guarantee that this holds for other systems.

Despite the frequency of false negatives added by unstructured and semistructured
merge approaches seeming to be quite low, we still can analyze how much effort they
demand. The false negatives added by unstructured merge, described in Subsection [3.2.3]
are issues that do not cause compilation errors, possibly escaping errors to users. We
consider that such errors are hard to detect during code integration (in Java, differently,
such false negatives are easier to detect as compilation errors guide developers toward
the location of the problem (CAVALCANTI; ACCIOLY; BORBA, 2017)). Likewise, the false
negatives added by semistructured merge, accidental conflicts as discussed in Subsection
[3.2.4] are also hard to detect because they involve behavioural errors that might not be
detected during build and testing phases. The dynamic nature of JavaScript (e.g., allowing
multiple functions with the same name, but the last ones overriding the first ones) imposes

additional challenges when handling behavioural errors.

In our sample, the number of merges leading to false negatives added by unstruc-
tured and semistructured merge tools are insignificant. As a result, we have, for our
sample, that semistructured merge does not compromise integration correctness, but
we cannot guarantee the same for other systems. Nevertheless, we believe that false
negatives that can be added by both unstructured and semistructured merge are hard

to detect and resolve.
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4.2.3.3 jsFSTMerge v1 or jsFSTMerge v27

The only difference between the results from jsFSTMerge v1 and jsFSTMerge v2 comes
from the incidence of a type of false positive that occurred only in the former version of the
tool. This false positive originates from the lack of maintenance of one-to-one mapping of
StatementList nodes, as explained in Subsection All the other metrics and cases,
for all sample projects and merge scenarios, are exactly the same for both tools.

In summary, jsFSTMerge v2 significantly reduced the number of reported conflicts and
added false positives, when compared to jsFSTMerge v1, thus reducing the integration
effort by reporting fewer spurious conflicts. And, at the same time, jsFSTMerge v2 has the
same correctness result as jsFSTMerge v1. Consequently, we argue that jsFSTMerge v2 is
far superior to jsFSTMerge v1 when considering both metrics of development integration
effort and correctness of the merging process.

On the other hand, jsFSTMerge v2 has a drawback when compared to jsFSTMerge
v1, because it rearranges statement lists, grouping them together, for a certain syntactic
level, thus modifying the original format of the code. If keeping the order of statements
with respect to function declarations is a requirement from a development point of view,
jsFSTMerge v2 becomes a less interesting and competitive alternative. Reformatting the
code, though, might be considered beneficial— in case developers do not already adopt
some tool for similar purpose— because it enforces a consistent and organized code struc-
ture, having, for example, a group of function declarations followed by a group of state-
ments. In fact, we observed that many JavaScript programs already follow a format which
consists of statements at the top of the program that import needed dependencies (similar
to import declarations in Java), followed by function declarations, and, then, followed by
the remaining statements. For example, consider this program:

// "Import statements”

var uuid = require('node-uuid');

// Function declarations
function sendText(req, res) {

res.send(req.params.name || uuid());

function sendJson(req, res) {
res.send({ name: req.params.name || uuid() 3});

// Remaining statements

modules.exports = {
sendText: sendText,
sendJson: sendJson

IE
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An improvement that can be made to jsFSTMerge v2 to combine the best of both
worlds, minimizing integration effort while enforcing a good code structure, is introducing
changes to the grammar and merge engine to identify these types of statements that use
the require function (or import when targeting ES6). This way, the semistructured merge
could be able to produce revisions according to this format, while still avoiding matching
issues between StatementList nodes.

Alternatively, to completely preserve the original format of the revisions, another idea
of improvement— which is more generic than the aforementioned one— for jsFSTMerge
v2 is introducing special markers around statement lists that are joined before super-
imposition. These markers can indicate the original position of each statement list, by
using information such line number in the revision file. An extra step can be added to
the merge engine to leverage these positional metadata after finishing the merging pro-
cess. The merged program structure tree could be processed to split joined statement lists
back into individual statement lists, and, then, to move them to their original positions.
The result is that the semistructured merge would be able to keep the original format of
the revisions, while still avoiding spurious conflicts that happen as a result of one-to-one

statement list relationships not being maintained.

4.2.3.4 Unstructured or Semistructured Merge?

Considering the quantitative metrics we used to relatively compare integration effort and
correctness of merging process, the number of false positives and false negatives indicate
that the semistructured merge, particularly when taking jsFSTMerge v2 into account, is a
better merge approach than unstructured merge. When also analyzing the ease of dealing
with cases of false positive and negatives added by each approach, semistructured merge
might have some advantage for having false positives that are easier to be solved.

However, there are other factors that influence the adoption of a merge tool in an in-
dustrial context. For example, the code reformatting introduced by jsFSTMerge v2 can be
seen, by developers, as a negative aspect for choosing semistructured merge. Additionally,
the development phase of a project is also important in this decision, because whether
there are too many function conversions, function renaming and other types of refactoring,
the developers would have to deal with too many false positives if using semistructured
merge.

Performance might also be taken into account when deciding which merge tool to
use. As previously mentioned, semistructured merge, due to the complexity of merging
trees and possible usage of conflict handlers, is slower than unstructured merge, but
generally not prohibitive slower. For instance, the difference between a execution time of
0.05 seconds and 1 second to operate on a merge scenario is often irrelevant for developers
in their daily routines, especially because the number of merges performed by a developer

tend do be just a few during a day of work.



Chapter 4. Evaluation 79

Another factor to consider is the adoption of JavaScript idioms, which involve the usage
of function expressions, that make semistructured merge to provide better or worse results,
as discussed in the next subsection. In any case, semistructured merge surely has potential
to be a more effective merge tool than unstructured tools. Code formatting, for instance,
can be improved as modifications, such as the ones discussed in the previous subsection,
are integrated to the tool. Moreover, even though performance does not seem to be an
actual barrier for adoption, there is still room for improvement. For example, among many
optimizations that could be employed, our approach could explore parallelization, instead

of merging files sequentially.

4.2.35 When Is Semistructured Merge Better for JavaScript?

The effectiveness of semistructured merge for JavaScript depends mainly on the usage of
function declarations in such a manner that they are represented as nodes in a program
structure tree. This basically happens when a function declaration does not appear inside
a statement, to avoid being represented as textual content of a terminal node. The more
a JavaScript program uses function declarations to organize its logic, the more effective
the semistructured merge approach is in solving ordering conflicts. If a revision contains
JavaScript programs written entirely outside of functions, only by means of statements,
semistructured merge would behave exactly as unstructured merge.

In this context, an important discussion is the usage of function expressions assigned
to variables as an alternative to function declarations (see Subsection [2.3.2). If a program
is written only by using function expressions, in the end, the program structure tree would
have only one StatementList node, not leveraging the potential of semistructured merge.
To better exploit semistructured merge approach, a program needs to use function dec-
larations over function expressions assigned to variables when defining functions. Besides
having a better reduction of integration effort, the hoisting of function declarations can
avoid runtime errors that arise when using function expressions.

Moreover, there are JavaScript idioms that involve wrapping parts of a program, or
even an entire program, into a function expression. For example, a pattern that is used to
avoid polluting global scope, as discussed in Subsection [2.3.2] is the usage of an Immedi-
ately Invoked Function Expression (IIFE) that might wrap an entire program. Listing
presents an example of a JavaScript program that consists of an IIFE that contains func-
tion declarations. Although there are function declarations in this program (sendText and
sendJson), they are inside a statement. As a consequence, when parsing this program with
a semistructured merge tool, they are not represented as nodes; instead, they are just part
of an opaque leaf. If two revisions are created from this program, with each one adding a
new function declaration below sendJson, the merge of such revisions by jsFSTMerge v1
or jsFSTMerge v2 would result in a conflict in the same way a unstructured merge tool

would.
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Listing 4.5 — Example of Function Declarations Inside an Immediately Invoked Function
Expression

(function () ¢

var uuid = require('node-uuid');

function sendText(req, res) {

res.send(req.params.name || uuid());

function sendJson(req, res) {

res.send({ name: req.params.name || uuid() });

modules.exports = {
sendText: sendText,
sendJson: sendJson
35
»O;

It is important to remember, as discussed in Subsection [2.3.1], that ECMAScript edi-
tion 6 (ES6) introduced support for classes, which are, in fact, syntactic sugar over an
existing prototype-based pattern that uses functions (ECMA, 2015). Nonetheless, the us-
age of classes and methods might imply, depending on how an input grammar is annotated
when implementing a semistructured merge tool, in more elements represented as nodes
in program structure trees, possibly leading to more effective reduction of reported spu-
rious conflicts. Considering a future version of jsFSTMerge, with a suitable support for
ES6, programs that adopt classes likely will exploit semistructured merge in a more ben-
eficial manner than the ones that neither use classes nor function declarations outside of

statements.

4.2.4 Threats to Validity

In this subsection, we discuss the limitations and threats that affect the validity of our

empirical study, according to guidelines proposed by Wohlin et al.| (2012).

4.2.4.1 Construct Validity

In this study, we measure integration effort mainly based on the amount of false positives
added by each merge approach. A quantitative analysis, however, may fail in capturing the
actual effort necessary to resolve conflicts. For example, an ordering conflict that involves
different types of elements, as discussed in Subsection [4.2.3.1] might require more effort
than resolving several function renaming conflicts. To alleviate this concern, in addition

to quantitative comparison, we have manually analyzed every added false positive and



Chapter 4. Evaluation 81

false negative, from our sample, to have a better understanding of their impact on the

effort in resolving conflicts.

4.2.4.2 Internal Validity

Our approach to collect merge scenarios, based on mining public Git repositories, might
represent a threat to the internal validity of our study. Since we analyzed repositories
cloned from GitHub, which support commands to rewrite development history, such as
rebase and cherry-pick, we may have lost merge scenarios in which developers had to
resolve conflicts. This can explain why the number of conflicts obtained from the mining
step in this work was considerably small when compared to the number of collected merge
scenarios.

An additional internal validity threat lies in the manual analysis of conflicts that
was performed by the authors not only to classify conflicts as false positives or false
negatives, but also to discard conflicts that occurred as a result of changes in spaces or
comments. This manual analysis is laborious and potentially error-prone, but, in order to
avoid classification mistakes, the authors carefully double-checked each analyzed conflict
in order to determine whether the given classification were correct or whether the conflict
were soundly discarded.

Finally, the fact that we discarded merge scenarios that involve JavaScript files not
supported by our semistructured merge implementations could also be considered a threat
to the internal validity of the study, because we could be biasing the results in favour of
semistructured merge approach. But, in fact, these discarded scenarios represent only

1.8% of the total scenarios, so this portion would not significantly affect our the results.

4.2.4.3 External Validity

Given that the semistructured merge tools developed in this work only support the ES5
version of JavaScript, we ended up restricting the selection of projects to be evaluated,
which may be a threat to external validity of this work, once we try to scope JavaScript
systems in general. However, most, if not all, false positives and false negatives identified
and analyzed in this work are also likely to occur in projects written in newer versions of
JavaScript and, going further, in other languages that share similar characteristics with
JavaScript, such as Python and PHP.

Moreover, even when considering only projects that use ES5, one could argue that
our results may not be generalized for enterprise projects because we used open-source
projects in the evaluation. To mitigate this threat, we applied methods, as explained
in Subsection [£.2.1.1] to select projects with a good degree of diversity with respect to
number of programmers, source code size, and domain. This way, we believe that our
results can be applied to other systems, enterprise or not, that use the ES5 version of

JavaScript.
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5 CONCLUSIONS

In this chapter, we draw our conclusions regarding semistructured merge for JavaScript
and FSTMerge semistructured approach in general. We summarize the outcome of this
thesis in Section [5.1} and we highlight our main contributions in Section [5.2] Section
presents works that are related to the context of this thesis. Finally, we outline some ideas

for future work in Section .41

51 SUMMARY

Version control systems support collaborative software development by allowing develop-
ers to work on the same project in parallel. However, the integration of independent code
contributions might involve conflicting changes, which may demand a substantial effort
from programmers for their resolution. In order to reduce such effort, unstructured merge
tools, which are the current state of practice in software merging, try to automatically
solve conflicts by relying on textual similarity. Conversely, semistructured approach tries
to go further by exploiting the syntactic structure of elements involved in a conflict, rep-
resenting some elements of a software artifact as nodes in a program structure tree, and
performing a recursive operation to merge these trees.

Previous studies (APEL et al., 2011; |CAVALCANTIL; ACCIOLY; BORBA| 2015; (CAVAL-
CANTI; ACCIOLY; BORBA, 2017) suggest that semistructured merge might indeed reduce
integration effort when compared to unstructured approach, but the industry still heavily
relies on the latter. These studies focus mostly on Java, one of the programming languages
supported by available tools built on top of FSTMerge, a semistructured merge engine de-
veloped by |Apel et al| (2011)). FSTMerge requires, as input, an annotated grammar for
each supported language. Although the results of such studies can be transferred to other
programming languages (e.g., C# and C++), it was uncertain whether semistructured
merge would be similarly effective for scripting languages (often used by developers),
particularly JavaScript, due to their dynamic and flexible nature. The lack of effective
semistructured merge tools for popular languages is a barrier for adoption of semistruc-
tured merge in practice, and JavaScript is the most popular programming language for
Web applications, also gaining popularity in server-side development since the release of
Node.js.

Given that no prior research has been conducted to investigate how effective semistruc-
tured merge can be for JavaScript, and considering the relevance of this language for the
industry, this thesis proposes and implements three versions of a semistructured merge
tool, using the FSTMerge architecture as a framework: jsFSTMerge v@, jsFSTMerge v1,
and jsFSTMerge v2; all of them supporting the ECMAScript edition 5 (ES5) version of
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JavaScript.

The first version, jsFSTMerge v0, was an attempt to conceive a well-functioning merge
tool by instantiating the FSTMerge semistructured approach in a pure fashion, by sim-
ply annotating an off-the-shelf grammar. But, since JavaScript syntax allows individual
statements at the top-level of a program along with function declarations, the resulting
tool based on FSTMerge often incorrectly merges programs, reporting too many spuri-
ous conflicts, and missing actual conflicts. This failed attempt shed light on the lack of
generalizability of the FSTMerge approach not only for JavaScript, but also for similar
programming languages, such as PHP and Python. We found that, unless adaptations
are made to the input grammar and merge engine, FSTMerge approach is not able
to generate an effective merge tool for languages that allow statements at the
same level as commutative and associative declarations (e.g., function declara-
tions in JavaScript). This happens because FSTMerge has limitations in representing nodes
whose order matters and which do not have unique identifiers as siblings of nodes whose
order is arbitrary.

To overcome matching and ordering issues that are present in jsFSTMerge v@, pre-
venting it from producing correct merges, we first adapted the JavaScript input grammar
to group consecutive statements into a single node, and, then, we introduced, separately,
two different changes to the merge engine. The first one, generating jsFSTMerge v1, con-
sisted of assigning identifiers to statement lists according to their position with respect
to other statement lists within a given scope. This tool can consistently produce valid
merges, but it presents an extra type of false positive due to the fact it relies on the
maintenance of one-to-one mapping between statement lists. To avoid this type of false
positive, while still solving matching and ordering issues, we tried a second improvement
in the FSTMerge engine, which produced jsFSTMerge v2. With this version, statement
lists, in a given scope, are joined into a single node, assuring that the matching between
statement lists always works as expected. A drawback of jsFSTMerge v2 is that it might
change the original format of the code, since it rearranges group of statements to be in a
sequence.

We conducted an empirical study to compare jsFSTMerge v1 and jsFSTMerge v2 be-
tween themselves and, more importantly, compare them to an unstructured merge tool.
By reproducing 10,526 merge scenarios from 50 JavaScript projects, we compared these
tools with respect to the occurrence of false positives and false negatives added exclusively
by each tool, carrying out a relative comparison. The incidence of false positives is associ-
ated with the integration effort demanded by developers when using the respective merge
tool, while the incidence of false negatives represents a negative impact to the correctness
of the merging process.

We observed that jsFSTMerge v2 significantly reduced, in our sample, the number of

added false positives when compared to jsFSTMerge v1, entirely as a result of avoiding
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mapping issues between statement lists. Furthermore, jsFSTMerge v1 and jsFSTMerge
v2 presented exactly the same false negatives, so we can say that the latter, in general, is
superior to the former with regards to integration effort reduction and integration correct-
ness. When comparing jsFSTMerge v2 to an unstructured merge tool, we observed that
the semistructured merge tool reduced the total number of reported conflicts
by 6%, significantly reducing the number of added false positives, while not
significantly compromising integration correctness.

Even though the reduction of reported conflicts when using jsFSTMerge v2, compared
to unstructured merge, is lower than that reported in previous studies for Java and C#,
this reduction is still significant and might represent a valuable gain in productivity for
developers. Also, this reduction might be higher when software artifacts often use function
declarations outside of statements. It is noteworthy to mention that the merge tools used
in these other studies avail themselves of special conflict handlers, which were not exploited
in this thesis, and they could help to improve the effectiveness of our tools. Nevertheless,
semistructured merge seems to be a promising alternative to traditional unstructured

merge when working with JavaScript, and it has a considerable room for improvement.

5.2 CONTRIBUTIONS
We summarize our contributions as follows:

o Implementation of different versions of jsFSTMerge, a semistructured merge

tool for JavaScript built on top of FSTMerge architecture.

« Identification of different types of false positives and false negatives that

can be added by unstructured and semistructured merge tools for JavaScript.

o Analytic evaluation of FSTMerge generalizability for implementing effective
semistructured merge tools, for a given programming language, that can be used in

practice.

o Empirical evaluation of jsFSTMerge v1 and jsFSTMerge v2, comparing them
to unstructured merge with respect to how often each tool reports a conflict, and

how often each tool misses an actual interference between development tasks.

5.3 RELATED WORK

As mentioned in Section 2.2, a number of studies propose different development tools and
strategies to automatically resolve conflicts that arise during merging of revisions, better
supporting collaborative development. An example, which was the main research topic of
this study, is the semistructured merge approach, proposed by Apel et al. (2011). In this

thesis, we evaluate the semistructured approach for JavaScript, and we show evidence
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that it can reduce the number of reported conflicts, as previously reported for other
programming languages. On the other hand, structured and semantic merge approaches
have been proposed to also use information on the language a program is written in to
solve conflicts.

Examples of structured merge tools, which incorporate full structural information
about a program, include Westfechtel (1991), Buffenbarger| (1995), Grass (1992)), and
Apiwattanapong, Orso and Harrold| (2007) (see Subsection [2.2.2). By adopting a hybrid
approach, |Apel, Lessenich and Lengauer| (2012)) propose a semistructured merge tool that
tunes that the merging process by switching between unstructured and structured merge,
according to the presence of certain conflicts. Other tools leverage additional semantic
information of the language, such as [Binkley, Horwitz and Reps| (1995]), which propose a
merge algorithm based on program dependence graphs. In a similar direction, Niu, Fast-
erbrook and Sabetzadeh| (2005]) propose a domain-independent approach for merging that
captures relationships between the structural elements of the programs by also exploiting
program dependence graphs. Finally, some merge approaches require that the software
artifacts to be merged include a formal semantics (BERZINS|, [1994)).

These studies have a strong emphasis on the number of reported conflicts. In our work,
in turn, we are worried about false positives and false negatives added by different merge
approaches not only quantitatively, but also qualitatively. Regarding added false positives,
Prudencio et al.| (2012)) suggest that integration effort can be measured as the number of
extra steps (creation, deletion or modification of software artifacts) that a developer needs
to carry out in order to soundly integrate changes from independent code contributions. In
this context, [Santos and Murta| (2012)) indicate a correlation between this number of steps
and the amount of conflicts, suggesting that conflict reduction might lead to integration
effort reduction. In a different direction, Kasi and Sarma, (2013) measure integration effort
based on how many days a conflict was kept in the repository of a project, assuming that,
during this period, the programmers worked solely to resolve this conflict, which may not
always be the case.

Lastly, there are studies which conduct empirical evaluations that provide evidences on
the frequency and impact of conflicts. For instance, |Brun et al.| (2011) and (KASI; SARMA,
2013)), similarly to what was performed in our work, reproduced merge scenarios from
different GitHub repositories to measure the frequency in which merge scenarios result in
conflicts. Likewise, Zimmermann| (2007) reproduces merge scenarios from projects using
CVS. These works indicate that conflicts, in fact, occur frequently. (Cavalcanti, Accioly
and Borba| (2017)) and our study complement such studies by collecting evidences about
how often conflicts that demand unnecessary integration occur, as well as how often
actual interferences are undetected by different merge tools; in our context, considering
JavaScript programs. Regarding added false negatives, Brun et al|(2011) and Kasi and

Sarma (2013) investigate the frequency of merge scenarios that presented build or test
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failures, which can be seen as consequence of undetected interferences introduced in the
merging process. We identified false negatives for JavaScript added by unstructured merge
tools, relatively comparing to jsFSTMerge, that might not cause build errors, because of
the flexibility of the language (e.g., by allowing two functions with the same name), but
that might trigger test errors, since behavioural errors introduced by false negatives might

cause test assertions to fail.

54 FUTURE WORK

There are many opportunities to improve semistructured merge for JavaScript and the
FSTMerge semistructured approach in general. Possible ideas for future work include the

following;:

e Support for ECMAScript 6 (ES6). In this work, we decided to focus on ES5
both because it is still the latest version of JavaScript that is supported by all
available Web browsers, and because it is a fully compatible subset of newer versions
of the JavaScript, while providing a grammar that is less complex and easier to
work with. However, it is crucial, considering the rising adoption of ES6 and newer
versions of JavaScript, to extend jsFSTMerge to support them. ES6, in particular,
introduced classes that can make semistructured merge more effective, once more
program elements might be represented as nodes in program structure trees, better

leveraging semistructured approach.

o Improvement of code formatting. The code reformatting that jsFSTMerge v2
causes, by rearranging statement lists, can be considered as a barrier of adoption for
some developers. Further changes can be added to the input grammar and merge
engine to identify special types of statements (e.g., statements that import depen-
dencies), to make the tool generate a merged revision that is as similar as possible
to the original revisions. Alternatively, changes can be added to the merge engine to
introduce markers around statement lists before joining them, annotating positional
information which enables a recovery of the original format of the code. Moreover,
improvements can be added to the tool to better handle changes to indentation and
comments, as they are important elements for code appearance— this is a general

issue concerning FSTMerge approach.

o Improvement of conflict resolution. First, dedicated handlers can be employed
to deal with specific cases of conflicts that occur in terminal nodes. For exam-
ple, conflicts in statements that import dependencies could be solved by a conflict
handler, instead of simply applying unstructured merge, possibly avoiding spurious
conflicts. Additionally, |Cavalcanti, Accioly and Borba| (2017)) proposes an improved

semistructured tool that employs conflict handlers to use unstructured merge as a
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sort of oracle to reduce false positives and false negatives of semistructured merge.

Similar approach can be applied to jsFSTMerge.

o Improvement of FSTMerge architecture. As an alternative to modifications to
FSTMerge engine, to properly handle elements whose order does not matter and that
do not have unique names, we could extend the FeatureBNF annotation system to
allow identification of nodes that are sensitive to order changes among siblings of
the same type. Not only jsFSTMerge would benefit from this, no longer requiring
custom changes to the engine, but, more importantly, other programming languages
could benefit as well. Adaptations to input grammar may still be necessary when
the granularity of certain elements is too fine (e.g., statements in JavaScript, PHP,
and Python). Nonetheless, such support for specification of ordering information,
during grammar annotation, would make FSTMerge approach more generalizable
for additional programming languages, potentially fostering industrial adoption of

semistructured merge.
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APPENDIX A - DETAILED RESULTS OF INTEGRATION EFFORT AND
CORRECTNESS STUDY

Chapter [4] describes an empirical study to compare integration effort and correctness of
unstructured and semistructured merge approaches for JavaScript systems. As unstruc-
tured tool, we used KDiff3 in this study. As semistructured merge tools, we evaluated
two versions of jsFSTMerge developed in this work. Online links to source code, available

on GitHub, of both unstructured and semistructured tools are provided below:

« KDiff3: https://github.com/KDE /kdiff3
o jsFSTMerge v1: https://github.com/AlbertoTrindade/jsESTMerge/tree/version-1

« jsFSTMerge v2: https://github.com/AlbertoTrindade/jsFSTMerge

In this appendix, we present detailed results of integration effort (in terms of added
false positives) and correctness (in terms of added false negatives) for each selected

JavaScript project and three merge tools considered in this work.


https://github.com/KDE/kdiff3
https://github.com/AlbertoTrindade/jsFSTMerge/tree/version-1
https://github.com/AlbertoTrindade/jsFSTMerge
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Table 4 — False positives added by unstructured merge with respect to merge scenarios

Merge Scenarios with

Project Merge Scenarios Ordering Conflicts (%)
Ace 195 1 0.51
AngularJS 34 0 0
Async 372 2 0.54
BitcoinJS 375 0 0
Bluebird 216 0 0
Bower 427 0 0
Bowser 129 0 0
Brackets 88 0 0
Chance 194 0 0
d3 159 0 0
director 7 0 0
Dox 55 0 0
faker.js 178 5 2.81
fetch 117 0 0
Flux 114 0 0
GitBook 205 0 0
i18next 229 1 0.44
impress.js 59 1 1.69
Intro.js 169 0 0
Istanbul 126 0 0
Jasmine 285 0 0
jQuery 245 1 0.41
jquery-pjax 98 0 0
JSHint 337 0 0
Konva 257 0 0
Less.js 443 3 0.68
Mocha 186 0 0
Mousetrap 36 0 0
mustache.js 134 0 0
Nightmare 267 0 0
node redis 187 1 0.53
node-restify 294 1 0.34
numbers.js 92 0 0
page.js 128 0 0
Paper.js 411 1 0.24
Phaser 198 0 0
PM2 193 0 0
Pug 451 0 0
Q 148 0 0
Request 185 0 0
RequireJS 157 2 1.27
reveal.js 389 6 1.54
socket.io 290 0 0
StatsD 287 4 1.39
Stylus 188 1 0.53
three.js 92 0 0
Underscore.js 238 0 0
WebTorrent 306 0 0
whistle 63 0 0
Zepto.js 242 0 0
Total 10,345 30 0.29
Mean 0.26

Standard Deviation 0.56
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Table 5 — False positives added by unstructured merge with respect to conflicts

Project Conflicts Ordering Conflicts (%)
Ace 16 3 18.75
AngularJS 17 1 5.88
Async 26 2 7.69
BitcoinJS 7 0 0
Bluebird 8 0 0
Bower 22 0 0
Bowser 22 0 0
Brackets 11 0 0
Chance 25 5 20
d3 81 0 0
director 14 0 0
Dox 6 0 0
faker.js 54 9 16.67
fetch 6 0 0
Flux 8 0 0
GitBook 5 0 0
i18next 28 1 3.57
impress.js 1 1 100
Intro.js 23 0 0
Istanbul 2 0 0
Jasmine 58 0 0
jQuery 31 0 0
jquery-pjax 6 0 0
JSHint 37 6 16.22
Konva 58 4 6.90
Less.js 62 4 6.45
Mocha 2 0 0
Mousetrap 1 0 0
mustache.js 8 0 0
Nightmare 21 1 4.76
node redis 2 1 50
node-restify 7 1 14.29
numbers.js 19 1 5.26
page.js 12 1 8.33
Paper.js 55 1 1.82
Phaser 4 0 0
PM2 2 0 0
Pug 4 0 0
Q 23 0 0
Request 2 0 0
RequireJS 8 2 25.00
reveal.js 39 9 23.08
socket.io 9 0 0
StatsD 19 4 21.05
Stylus 5 1 20
three.js 8 0 0
Underscore.js 5 0 0
WebTorrent 4 0 0
whistle 7 0 0
Zepto.js 18 0 0
Total 918 58 6.32
Mean 7.51
Standard Deviation 16.59
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Table 6 — False positives added by jsFSTMerge v1 with respect to merge scenarios

Merge Scenarios with Merge Scenarios with Merge Scenarios with Merge Scenarios with
Project Merge Scenarios  Function Renaming Function Conversion  Function Declaration No Longer Existing (%)
Conflicts Conflicts Displacement Conflicts One-to-one Mapping Conflicts
Ace 195 0 0 0 0 0
AngularJS 34 0 0 0 0 0
Async 372 0 0 0 0 0
BitcoinJS 375 0 1 0 0 0.27
Bluebird 216 0 0 0 0 0
Bower 427 0 0 0 0 0
Bowser 129 0 0 0 0 0
Brackets 88 0 0 0 0 0
Chance 194 0 0 0 0 0
d3 159 0 0 0 0 0
director s 0 0 0 2 2.60
Dox 55 0 0 0 0 0
faker.js 178 0 0 0 0 0
fetch 117 0 0 0 0 0
Flux 114 0 0 0 0 0
GitBook 205 0 0 0 1 0.49
i18next 229 0 0 0 0 0
impress.js 59 0 0 0 0 0
Intro.js 169 0 0 0 0 0
Istanbul 126 0 0 0 0 0
Jasmine 285 0 0 0 0 0
jQuery 245 0 0 1 2 1.22
jquery-pjax 98 0 0 0 0 0
JSHint 337 0 0 0 1 0.30
Konva 257 0 0 0 0 0
Less.js 443 1 0 0 2 0.68
Mocha 186 0 0 0 0 0
Mousetrap 36 0 0 0 0 0
mustache.js 134 0 0 0 0 0
Nightmare 267 0 0 0 1 0.37
node_redis 187 0 0 0 4 2.14
node-restify 294 1 0 0 0 0.34
numbers.js 92 0 0 0 0 0
page.js 128 0 0 2 1 2.34
Paper.js 411 0 0 0 0 0
Phaser 198 0 0 0 0 0
PM2 193 0 0 0 1 0.52
Pug 451 0 0 0 0 0
Q 148 0 0 0 0 0
Request 185 0 1 0 0 0.54
RequireJS 157 0 0 0 0 0
reveal.js 389 0 0 0 0 0
socket.io 290 0 0 0 0 0
StatsD 287 0 0 0 0 0
Stylus 188 0 0 0 0 0
three.js 92 0 0 0 0 0
Underscore.js 238 0 0 0 0 0
WebTorrent 306 0 0 0 1 0.33
whistle 63 0 0 0 0 0
Zepto.js 242 0 0 0 0 0
Total 10,345 2 2 3 16 0.22
Mean 0.24

Standard Deviation 0.59
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Table 7 — False positives added by jsFSTMerge v1 with respect to conflicts

Function Renaming Function Conversion

Function Declaration

No Longer Existing

Project Conflicts R X R X R . (%)
Conflicts Conflicts Displacement Conflicts One-to-one Mapping Conflicts
Ace 13 0 0 0 0 0
AngularJS 16 0 0 0 0 0
Async 24 0 0 0 0 0
BitcoinJS 8 0 1 0 0 12.50
Bluebird 8 0 0 0 0 0
Bower 22 0 0 0 0 0
Bowser 22 0 0 0 0 0
Brackets 11 0 0 0 0 0
Chance 20 0 0 0 0 0
d3 81 0 0 0 0 0
director 16 0 0 0 2 12.50
Dox 6 0 0 0 0 0
faker.js 45 0 0 0 0 0
fetch 6 0 0 0 0 0
Flux 8 0 0 0 0 0
GitBook 6 0 0 0 1 16.67
i18next 27 0 0 0 0 0
impress.js 0 0 0 0 0 0
Intro.js 23 0 0 0 0 0
Istanbul 2 0 0 0 0 0
Jasmine 58 0 0 0 0 0
jQuery 33 0 0 1 2 9.09
jquery-pjax 6 0 0 0 0 0
JSHint 32 0 0 0 1 3.13
Konva 54 0 0 0 0 0
Less.js 61 1 0 0 2 4.92
Mocha 2 0 0 0 0 0
Mousetrap 1 0 0 0 0 0
mustache.js 8 0 0 0 0 0
Nightmare 22 0 0 0 2 9.09
node_redis 6 0 0 0 5 83.33
node-restify 7 1 0 0 0 14.29
numbers.js 18 0 0 0 0 0
page.js 14 0 0 2 1 21.43
Paper.js 54 0 0 0 0 0
Phaser 4 0 0 0 0 0
PM2 3 0 0 0 1 33.33
Pug 4 0 0 0 0 0
Q 23 0 0 0 0 0
Request 3 0 1 0 0 33.33
RequireJS 6 0 0 0 0 0
reveal.js 30 0 0 0 0 0
socket.io 9 0 0 0 0 0
StatsD 15 0 0 0 0 0
Stylus 4 0 0 0 0 0
three.js 8 0 0 0 0 0
Underscore.js 5 0 0 0 0 0
WebTorrent 5 0 0 0 1 20
whistle 7 0 0 0 0 0
Zepto.js 18 0 0 0 0 0
Total 884 2 2 3 18 2.83
Mean 5.47
Standard Deviation 13.94
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Table 8 — False positives added by jsFSTMerge v2 with respect to merge scenarios

Merge Scenarios with Merge Scenarios with Merge Scenarios with

Merge Scenarios with

Project Merge Scenarios  Function Renaming Function Conversion  Function Declaration No Longer Existing (%)
Conflicts Conflicts Displacement Conflicts One-to-one Mapping Conflicts
Ace 195 0 0 0 0 0
AngularJS 34 0 0 0 0 0
Async 372 0 0 0 0 0
BitcoinJS 375 0 1 0 0 0.27
Bluebird 216 0 0 0 0 0
Bower 427 0 0 0 0 0
Bowser 129 0 0 0 0 0
Brackets 88 0 0 0 0 0
Chance 194 0 0 0 0 0
d3 159 0 0 0 0 0
director s 0 0 0 0 0
Dox 55 0 0 0 0 0
faker.js 178 0 0 0 0 0
fetch 117 0 0 0 0 0
Flux 114 0 0 0 0 0
GitBook 205 0 0 0 0 0
i18next 229 0 0 0 0 0
impress.js 59 0 0 0 0 0
Intro.js 169 0 0 0 0 0
Istanbul 126 0 0 0 0 0
Jasmine 285 0 0 0 0 0
jQuery 245 0 0 1 0 0.41
jquery-pjax 98 0 0 0 0 0
JSHint 337 0 0 0 0 0
Konva 257 0 0 0 0 0
Less.js 443 1 0 0 0 0.23
Mocha 186 0 0 0 0 0
Mousetrap 36 0 0 0 0 0
mustache.js 134 0 0 0 0 0
Nightmare 267 0 0 0 0 0
node_redis 187 0 0 0 0 0
node-restify 294 1 0 0 0 0.34
numbers.js 92 0 0 0 0 0
page.js 128 0 0 2 0 1.56
Paper.js 411 0 0 0 0 0
Phaser 198 0 0 0 0 0
PM2 193 0 0 0 0 0
Pug 451 0 0 0 0 0
Q 148 0 0 0 0 0
Request 185 0 1 0 0 0.54
RequireJS 157 0 0 0 0 0
reveal.js 389 0 0 0 0 0
socket.io 290 0 0 0 0 0
StatsD 287 0 0 0 0 0
Stylus 188 0 0 0 0 0
three.js 92 0 0 0 0 0
Underscore.js 238 0 0 0 0 0
WebTorrent 306 0 0 0 0 0
whistle 63 0 0 0 0 0
Zepto.js 242 0 0 0 0 0
Total 10,345 2 2 3 1] 0.07
Mean 0.07
Standard Deviation 0.24
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Table 9 — False positives added by jsFSTMerge v2 with respect to conflicts

. A Function Renaming Function Conversion Function Declaration No Longer Existing
Project Conflicts . . . . . . (%)
Conflicts Conflicts Displacement Conflicts One-to-one Mapping Conflicts
Ace 13 0 0 0 0 0
AngularJS 16 0 0 0 0 0
Async 24 0 0 0 0 0
BitcoinJS 8 0 1 0 0 12.50
Bluebird 8 0 0 0 0 0
Bower 22 0 0 0 0 0
Bowser 22 0 0 0 0 0
Brackets 11 0 0 0 0 0
Chance 20 0 0 0 0 0
d3 81 0 0 0 0 0
director 14 0 0 0 0 0
Dox 6 0 0 0 0 0
faker.js 45 0 0 0 0 0
fetch 6 0 0 0 0 0
Flux 8 0 0 0 0 0
GitBook 5 0 0 0 0 0
i18next 27 0 0 0 0 0
impress.js 0 0 0 0 0 0
Intro.js 23 0 0 0 0 0
Istanbul 2 0 0 0 0 0
Jasmine 58 0 0 0 0 0
jQuery 31 0 0 1 0 3.23
jquery-pjax 6 0 0 0 0 0
JSHint 31 0 0 0 0 0
Konva 54 0 0 0 0 0
Less.js 59 1 0 0 0 1.69
Mocha 2 0 0 0 0 0
Mousetrap 0 0 0 0 0
mustache.js 8 0 0 0 0 0
Nightmare 20 0 0 0 0 0
node_ redis 0 0 0 0 0
node-restify 7 1 0 0 0 14.29
numbers.js 18 0 0 0 0 0
page.js 13 0 0 2 0 15.38
Paper.js 54 0 0 0 0 0
Phaser 0 0 0 0 0
PM2 2 0 0 0 0 0
Pug 4 0 0 0 0 0
Q 23 0 0 0 0 0
Request 3 0 1 0 0 33.33
RequireJS 6 0 0 0 0 0
reveal.js 30 0 0 0 0 0
socket.io 9 0 0 0 0 0
StatsD 15 0 0 0 0 0
Stylus 4 0 0 0 0 0
three.js 8 0 0 0 0 0
Underscore.js 5 0 0 0 0 0
WebTorrent 4 0 0 0 0 0
whistle 7 0 0 0 0 0
Zepto.js 18 0 0 0 0 0
Total 866 2 2 3 0 0.81
Mean 1.61

Standard Deviation 5.7
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Table 10 — False negatives added by unstructured merge with respect to merge scenarios

. . Merge Scenarios with Merge Scenarios with
Merge Scenarios with

Project Merge Scenarios . . . Call to Early Call to No (%)
Duplicated Function Declaration . . A
Renamed Function  Longer Hoisted Function

Ace 195 0 0 0 0
Angular]JS 34 0 0 0 0
Async 372 0 0 0 0
BitcoinJS 375 0 0 0 0
Bluebird 216 0 0 0 0
Bower 427 0 0 0 0
Bowser 129 0 0 0 0
Brackets 88 0 0 0 0
Chance 194 0 0 0 0
d3 159 0 0 0 0
director 7 0 0 0 0
Dox 55 0 0 0 0
faker.js 178 0 0 0 0
fetch 117 0 0 0 0
Flux 114 0 0 0 0
GitBook 205 0 0 0 0
i18next 229 0 0 0 0
impress.js 59 0 0 0 0
Intro.js 169 0 0 0 0
Istanbul 126 0 0 0 0
Jasmine 285 0 0 0 0
jQuery 245 0 0 0 0
jquery-pjax 98 0 0 0 0
JSHint 337 0 0 0 0
Konva 257 0 0 0 0
Less.js 443 0 0 0 0
Mocha 186 0 0 0 0
Mousetrap 36 0 0 0 0
mustache.js 134 0 0 0 0
Nightmare 267 0 0 0 0
node_redis 187 0 0 0 0
node-restify 294 0 0 0 0
numbers.js 92 0 0 0 0
page.js 128 0 0 0 0
Paper.js 411 0 0 0 0
Phaser 198 0 0 0 0
PM2 193 0 0 0 0
Pug 451 0 0 0 0
Q 148 0 0 0 0
Request 185 0 0 0 0
RequireJS 157 0 0 0 0
reveal.js 389 0 0 0 0
socket.io 290 0 0 0 0
StatsD 287 0 0 0 0
Stylus 188 0 0 0 0
three.js 92 0 0 0 0
Underscore.js 238 0 0 0 0
WebTorrent 306 0 0 0 0
whistle 63 0 0 0 0
Zepto.js 242 0 0 0 0
Total 10,345 0 0 0 0
Mean 0
Standard Deviation 0
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Table 11 — False negatives added by unstructured merge with respect to conflicts

. . . . X Call to Early Call to No
Project Merge Scenarios Duplicated Function Declaration . . . (%)
Renamed Function Longer Hoisted Function
Ace 195 0 0 0 0
AngularJS 34 0 0 0 0
Async 372 0 0 0 0
BitcoinJS 375 0 0 0 0
Bluebird 216 0 0 0 0
Bower 427 0 0 0 0
Bowser 129 0 0 0 0
Brackets 88 0 0 0 0
Chance 194 0 0 0 0
d3 159 0 0 0 0
director i 0 0 0 0
Dox 55 0 0 0 0
faker.js 178 0 0 0 0
fetch 117 0 0 0 0
Flux 114 0 0 0 0
GitBook 205 0 0 0 0
i18next 229 0 0 0 0
impress.js 59 0 0 0 0
Intro.js 169 0 0 0 0
Istanbul 126 0 0 0 0
Jasmine 285 0 0 0 0
jQuery 245 0 0 0 0
jquery-pjax 98 0 0 0 0
JSHint 337 0 0 0 0
Konva 257 0 0 0 0
Less.js 443 0 0 0 0
Mocha 186 0 0 0 0
Mousetrap 36 0 0 0 0
mustache.js 134 0 0 0 0
Nightmare 267 0 0 0 0
node redis 187 0 0 0 0
node-restify 294 0 0 0 0
numbers.js 92 0 0 0 0
page.js 128 0 0 0 0
Paper.js 411 0 0 0 0
Phaser 198 0 0 0 0
PM2 193 0 0 0 0
Pug 451 0 0 0 0
Q 148 0 0 0 0
Request 185 0 0 0 0
RequireJS 157 0 0 0 0
reveal.js 389 0 0 0 0
socket.io 290 0 0 0 0
StatsD 287 0 0 0 0
Stylus 188 0 0 0 0
three.js 92 0 0 0 0
Underscore.js 238 0 0 0 0
WebTorrent 306 0 0 0 0
whistle 63 0 0 0
Zepto.js 242 0 0 0 0
Total 918 0 0 0 0
Mean 0
Standard Deviation 0
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Table 12 — False positives added by jsFSTMerge v1 with respect to merge scenarios

Merge Scenarios with

Project Merge Scenarios Accidental Conflicts (%)
Ace 195 0 0
AngularJS 34 0 0
Async 372 0 0
BitcoinJS 375 0 0
Bluebird 216 0 0
Bower 427 0 0
Bowser 129 0 0
Brackets 88 0 0
Chance 194 0 0
d3 159 0 0
director 7 0 0
Dox 55 0 0
faker.js 178 0 0
fetch 117 0 0
Flux 114 0 0
GitBook 205 0
i18next 229 0
impress.js 59 0 0
Intro.js 169 0 0
Istanbul 126 0 0
Jasmine 285 0 0
jQuery 245 1 0.41
jquery-pjax 98 0 0
JSHint 337 0 0
Konva 257 0 0
Less.js 443 0 0
Mocha 186 0 0
Mousetrap 36 0 0
mustache.js 134 0
Nightmare 267 0
node redis 187 0
node-restify 294 0 0
numbers.js 92 0 0
page.js 128 0 0
Paper.js 411 0 0
Phaser 198 0 0
PM2 193 0 0
Pug 451 0 0
Q 148 0 0
Request 185 0 0
RequireJS 157 0 0
reveal.js 389 0
socket.io 290 0
StatsD 287 0
Stylus 188 0 0
three.js 92 0 0
Underscore.js 238 0 0
WebTorrent 306 0 0
whistle 63 0 0
Zepto.js 242 0 0
Total 10,345 1 0.01
Mean 0.01

Standard Deviation 0.06
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Table 13 — False positives added by jsFSTMerge v1 with respect to conflicts

Project Conflicts Accidental Conflicts (%)
Ace 13 0 0
AngularJS 16 0 0
Async 24 0 0
BitcoinJS 8 0 0
Bluebird 8 0 0
Bower 22 0 0
Bowser 22 0 0
Brackets 11 0 0
Chance 20 0 0
d3 81 0 0
director 16 0 0
Dox 6 0 0
faker.js 45 0 0
fetch 0 0
Flux 0 0
GitBook 6 0 0
i18next 27 0 0
impress.js 0 0 0
Intro.js 23 0 0
Istanbul 2 0 0
Jasmine 58 0 0
jQuery 33 1 3.03
jquery-pjax 6 0 0
JSHint 32 0 0
Konva 54 0 0
Less.js 61 0 0
Mocha 2 0 0
Mousetrap 0 0
mustache.js 8 0 0
Nightmare 22 0 0
node_redis 6 0 0
node-restify 0 0
numbers.js 18 0 0
page.js 14 0 0
Paper.js 54 0 0
Phaser 4 0 0
PM2 3 0 0
Pug 4 0 0
Q 23 0 0
Request 3 0 0
RequireJS 0 0
reveal.js 30 0 0
socket.io 9 0 0
StatsD 15 0 0
Stylus 4 0 0
three.js 8 0 0
Underscore.js 5 0 0
WebTorrent 5 0 0
whistle 7 0 0
Zepto.js 18 0 0
Total 884 1 0.11
Mean 0.06

Standard Deviation 0.43
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Table 14 — False positives added by jsFSTMerge v2 with respect to merge scenarios

Merge Scenarios with

Project Merge Scenarios Accidental Conflicts (%)
Ace 195 0 0
AngularJS 34 0 0
Async 372 0 0
BitcoinJS 375 0 0
Bluebird 216 0 0
Bower 427 0 0
Bowser 129 0 0
Brackets 88 0 0
Chance 194 0 0
d3 159 0 0
director 7 0 0
Dox 55 0 0
faker.js 178 0 0
fetch 117 0 0
Flux 114 0 0
GitBook 205 0
i18next 229 0
impress.js 59 0 0
Intro.js 169 0 0
Istanbul 126 0 0
Jasmine 285 0 0
jQuery 245 1 0.41
jquery-pjax 98 0 0
JSHint 337 0 0
Konva 257 0 0
Less.js 443 0 0
Mocha 186 0 0
Mousetrap 36 0 0
mustache.js 134 0
Nightmare 267 0
node redis 187 0
node-restify 294 0 0
numbers.js 92 0 0
page.js 128 0 0
Paper.js 411 0 0
Phaser 198 0 0
PM2 193 0 0
Pug 451 0 0
Q 148 0 0
Request 185 0 0
RequireJS 157 0 0
reveal.js 389 0
socket.io 290 0
StatsD 287 0
Stylus 188 0 0
three.js 92 0 0
Underscore.js 238 0 0
WebTorrent 306 0 0
whistle 63 0 0
Zepto.js 242 0 0
Total 10,345 1 0.01
Mean 0.01

Standard Deviation 0.06
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Table 15 — False positives added by jsFSTMerge v2 with respect to conflicts

Project Conflicts Accidental Conflicts (%)
Ace 13 0 0
AngularJS 16 0 0
Async 24 0 0
BitcoinJS 8 0 0
Bluebird 8 0 0
Bower 22 0 0
Bowser 22 0 0
Brackets 11 0 0
Chance 20 0 0
d3 81 0 0
director 14 0 0
Dox 6 0 0
faker.js 45 0 0
fetch 0 0
Flux 0 0
GitBook 5 0 0
i18next 27 0 0
impress.js 0 0 0
Intro.js 23 0 0
Istanbul 2 0 0
Jasmine 58 0 0
jQuery 31 1 3.23
jquery-pjax 6 0 0
JSHint 31 0 0
Konva 54 0 0
Less.js 59 0 0
Mocha 2 0 0
Mousetrap 0 0
mustache.js 8 0 0
Nightmare 20 0 0
node_redis 0 0
node-restify 7 0 0
numbers.js 18 0 0
page.js 13 0 0
Paper.js 54 0 0
Phaser 4 0 0
PM2 2 0 0
Pug 4 0 0
Q 23 0 0
Request 3 0 0
RequireJS 0 0
reveal.js 30 0 0
socket.io 9 0 0
StatsD 15 0 0
Stylus 4 0 0
three.js 8 0 0
Underscore.js 5 0 0
WebTorrent 4 0 0
whistle 7 0 0
Zepto.js 18 0 0
Total 884 1 0.11
Mean 0.06

Standard Deviation 0.43
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