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ABSTRACT

Conformal mappings are important mathematical tools in some applied contexts,
e.g. electrostatics and classical fluid dynamics. In order to construct a conformal mapping
from a canonical simply connected region to the interior of a circular arc polygon with
more than three vertices, the accessory parameter problem arises: In general, the mapping
is a solution of a differential equation with unknown parameters which hinder its direct
integration. Such parameters can be obtained through approximation techniques with
relative small computational effort unless the target domain has an elongated aspect,
causing the well known difficulty – the ‘crowding’ phenomenon – to emerge. In this thesis,
in the pursuit of calculating the accessory parameters as a Riemann-Hilbert problem, we
determine them in terms of isomonodromic tau functions and show how to extract the
monodromy information from the geometry of the target domain. We also verify that the
tau functions satisfy Toda equations, and this leads to the determination that pre-images
of vertex positions are zeros of associated tau functions. We investigate the special case
of circular arc quadrilaterals first and in more detail. The isomonodromic tau function
then is related to the Painlevé VI transcendent and to certain correlation functions in
conformal field theory, yielding asymptotic expansions for the tau function in terms of
the monodromy data. We use these expansions to present explicit examples and discuss
why the ‘crowding’ phenomenon is not a hindrance for the new framework. In addition,
since Schwarz-Christoffel mappings to polygons emerge as a limit when the curvature of
the circular arcs goes to zero, we reproduce the well known result for the aspect ratio
of rectangles as a function of the accessory parameter. Here, the tau function assumes a
closed form in terms of Jacobi theta functions – the Picard solution. Moreover, we use tau
function asymptotic expansions to calculate the conformal modules of some trapezoids and
find perfect agreement with the literature. We conclude with the investigation of mappings
to circular arc polygons with any number of sides, and we comment on the numerical
implementation for these cases.

Keywords: Conformal Mapping. Accessory Parameter Problem. Isomonodromic Defor-
mations. Riemann-Hilbert Problem. Isomonodromic Tau-Function. Painlevé VI.



RESUMO

Mapas conformes são ferramentas matemáticas importantes em alguns contextos
aplicados, e.g. eletrostática e dinâmica de fluidos clássicos. Ao se tentar construir um mapa
conforme de uma região simplesmente conexa canônica para o interior de um polígono de
arcos circulares com mais de três vértices, surge o problema dos parâmetros acessórios: Em
geral, o mapa é uma solução de uma equação diferencial com parâmetros desconhecidos que
dificultam a integração da equação, mas podem ser obtidos por técnicas de aproximação.
Nesta tese, em busca de calcular os parâmetros acessórios como um problema de Riemann-
Hilbert, nós os determinamos em termos de funções tau isomonodrômicas e mostramos
como extrair informações sobre a monodromia a partir da geometria do domínio alvo.
Também verificamos que as funções tau satisfazem equações de Toda, e isto permite a
determinação de que as pré-imagens das posições dos vértices são zeros de funções tau
associadas. Nós investigamos o caso especial dos quadriláteros de arcos de círculo primeiro e
mais detalhadamente. Nesta situação, a função tau isomonodrômica é relacionada ao sexto
transcendente de Painlevé e a certas funções de correlação em teoria de campos conformes,
produzindo expansões assintóticas para a função tau em termos dos dados de monodromia.
Nós usamos essas expansões para apresentar exemplos explícitos e discutir por que o
fenômeno da aglomeração, que é uma dificuldade para outros métodos e ocorre quando o
domínio alvo apresenta um aspecto alongado, não é um empecilho para a nova abordagem.
Adicionalmente, como mapas de Schwarz-Christoffel emergem como um limite em que a
curvatura dos arcos de círculo vai para zero, nós reproduzimos o resultado conhecido para
a razão de aspecto de retângulos em função do parâmetro acessório. Aqui, a função tau
assume uma forma fechada em termos de funções theta de Jacobi – a solução de Picard.
Além disso, usamos expansões assintóticas da função tau para calcular módulos conformes
de trapezóides e encontramos uma concordância perfeita com a literatura. Concluímos
com a investigação dos mapas para polígonos de arcos circulares com qualquer número de
lados, e comentamos a respeito da implementação numérica para estes casos.

Palavras-chave: Mapa Conforme. Parâmetros Acessórios. Deformação Isomonodrômica.
Problema de Riemann-Hilbert. Função Tau Isomonodrômica. Painlevé VI.
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1 INTRODUCTION

A large number of physical problems can be mathematically described in terms
of Laplace’s equation, which, in the presence of enough symmetry in the system under
investigation, effectively becomes a differential equation in two spatial dimensions, with
boundary conditions naturally imposed by the geometry of the physical region where
the phenomenon takes place. Applications of Laplace’s equation such as fluid mechanics
(BATCHELOR, 2000; VASCONCELOS, 2015), electrostatics (GRIFFITHS, 2017; ZANG-
WILL, 2012), and time-independent diffusion problems (BOYCE; DIPRIMA, 2012) readily
come to mind given that they often appear in undergraduate programs in the Physical
Sciences and Engineering. In fact, the study of solutions of Laplace’s equation – a field
known as Potential Theory (KELLOG, 1996; HELMS, 2014; BLAKELY, 1996) – stands
on its own right as an area of study also in Pure and Applied Mathematics.

However, depending on the boundary conditions, many two-dimensional Laplacian
problems can be easily solved while others rely heavily on numerical methods. When the
region of interest is modelled by either a circle or the upper half Cartesian plane, these
problems are usually simplified. In other instances, such as when the region of interest is
relatively elongated, the problem often becomes more difficult to solve. This thesis presents
a method that is specially suited to deal with physical domains of the latter type, although
it is expected to be applicable to other sorts of domains as well.

Another field of perennial interest both for applications and on its own merits is
the study of functions of a complex variable. In this context, both differentiable functions –
also known as analytic functions – and functions with isolated singular points in (particular
regions of) the complex plane receive special attention. A very important feature of analytic
functions is they can be used to map two different simply-connected subsets of the complex
plane while preserving angles, as long as none of the subsets is the whole plane and the
derivatives of the analytic function does not vanish in the pre-image domain. The existence
of these so called conformal mappings is guaranteed by the Riemann mapping theorem
(NEHARI, 1952; COHN, 2014) and they are the uniformizing maps in the sense of the
classical uniformization theorem (DONALDSON, 2011). However, this theorem does not
provide a means of calculating the mappings.
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r = 1

h = 2

Figure 1 – Streamlines of a uniform flow in a channel with a half-disc barrier

To see how solutions of Laplace’s equation, which are called harmonic functions,
and analytic functions are mathematically connected, it is enough to remember that an
analytic function

z = f(w) = u(x, y) + iv(x, y) (1.1)

of a complex variable w = x+yi, with real u(x, y) and v(x, y), satisfy the Cauchy-Riemann
equations:

∂u

∂x
= ∂v

∂y
,

∂v

∂x
= −∂v

∂y
(1.2)

hence, because of the equations above, it is straightforward to verify that both u(x, y) and
v(x, y) are harmonic functions:

∇2u(x, y) = ∇2v(x, y) = 0, ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 (1.3)

thus one can think of solutions to Laplace’s equation in two dimensions as the real (or
imaginary) part of an analytic function of a complex variable.

A particular problem motivated the research presented in this thesis: the study
point vortex dynamics (MOURA, 2012; VASCONCELOS; MOURA; SCHAKEL, 2011;
VASCONCELOS; MOURA, 2017) in the presence of an inviscid, incompressible, and
irrotational flow, in a channel with a half-disc obstacle. The full solution of the problem
stands as an ongoing investigation, but an intermediate step – the obtention of the
conformal mapping – was reached and is illustrated by Figure 1 where we plot streamlines
of a uniform flow in the channel. More details about this mapping will be presented in
section 4.3.3.

Inviscid, incompressible fluids satisfy the continuity equation ~∇ · ~V = 0, where
~V is the velocity field, while irrotational flow means ~∇× ~V = 0 which implies that the
velocity can be obtained as the gradient of a potential φ in the form ~V = ~∇φ. Hence,
the relevant equation for the potential becomes ∇2φ = 0. This allows the construction of
the analytic function Ω(w) = φ(x, y) + iψ(x, y) where the harmonic (conjugate) function
ψ(x, y) corresponds to the stream function – level curves of ψ(x, y) describe streamlines
of the flow. Laplace’s equation for ψ(x, y) changes by a conformal transformation of the
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form 1.1 according to(
∂2

∂x2 + ∂2

∂y2

)
ψ(x, y) =

(
∂2

∂u2 + ∂2

∂v2

)
ψ(u(x, y), v(x, y)) = 0 (1.4)

where we used 1.2 and that |∂f(w)/∂w| is non-vanishing in the preimage domain. So, in
the particular case of streamlines of a uniform flow illustrated by Figure 1, we can simply
analyze the uniform flow in a simpler region, such as an infinite strip where the streamlines
are curves with constant imaginary part, and then just use f(w) to map the streamlines to
the interior of the channel with the half-disc barrier where ψ(u, v) automatically satisfies
Laplace’s equation because of 1.4.

Therefore the power of conformal mapping theory to applications is justified: we
can solve easier corresponding problems in a standard (simply connected) region on the
complex plane and then use the solution and a conformal mapping to solve the original
problem in a more complicated domain. However, even though such mappings exist, there
is no general method to calculate them (NEHARI, 1952).

The particular case of mappings to the interior of polygonal regions, which are often
used to approximate more general simply connected domains, is given by the Schwarz-
Christoffel formula (ABLOWITZ; FOKAS, 2003; NEHARI, 1952). For polygons with
four or more edges some of the relevant parameters in the differential equation are not
determined – a set of so-called accessory parameters must be found. This, in general, can
not be accomplished in a simple way and defines the called Schwarz-Christoffel accessory
parameter problem which has a long history – see (DRISCOLL; TREFETHEN, 2002)
for details. Figure 2 shows the first plot of a Schwarz-Christoffel mapping. It was drawn
by Schwarz himself in 1869. Since then, many decades passed until algorithms were
developed to calculate the accessory parameters relevant for other polygonal domains. The
improvements of such algorithms followed the increase in computational power available
to tackle the task of determining the accessory parameters1. In fact, the numerical method
that is hold as the state of the art in this field is the SCToolbox (MATLAB) which can be
seen as an evolution of SCPACK, a Fortran package developed by Trefethen in the early
1980’s. See (DRISCOLL; TREFETHEN, 2002) for a discussion.

Beyond ordinary polygons, there is just one more class of non-trivial regions to
which conformal mappings can be calculated as solutions differential equations: mappings
from a standard domain, such as the UHP or the interior of the unit disk, to the interior
of a domain whose boundary is composed of straight line segments and circular arcs.
Such domains are called polycircular arc domains or circular arc polygons and known
to satisfy Schwarzian (third order nonlinear differential) equations (SCHWARZ, 1890;
1 The existence of the accessory parameters was reported by Schwarz to be proven by Weierstrass

(DRISCOLL; TREFETHEN, 2002)
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Figure 2 – First plot of a Schwarz-Christoffel conformal mapping. Reproduced from
(SCHWARZ, 1869).

SCHWARZ, 1869). However, in order to solve these differential equations, we face an
accessory parameter problem analogous to the one we find in the case of Schwarz-Christoffel
mappings since the Schwarzian equation also has indeterminate parameters, and thus,
in general, the calculation of the conformal mapping is not a straightforward matter.
Rather, the calculation of the Schwarzian accessory parameters was long hold as a “difficult
problem” (DRISCOLL; TREFETHEN, 2002).

The accessory parameter problem for mappings to polycircular arc domains was
explored in the context of free boundary (Polubarinova-Kochina, 1991; POLUBARINOVA-
KOCHINA, 1962) and sturm-Liouville problems (KRAVCHENKO; PORTER, 2011). See
also (BROWN; PORTER, 2011) for the the analysis of the accessory parameter problem
for some particular cases of symmetrical circular quadrilaterals and (CRASTER, 1996)
for cases with vertex angle equal to 2π. See (SCHINZINGER; LAURA, 2012) for an
introduction to conformal mapping theory focused on applications.

These accessory parameter problems usually can be solved with the help of numerical
approximation methods – one applies an algorithm to perform successive attempts on the
values of the parameters to approximate the desired circular arc or usual polygon by the
solution to the Schwarzian differential equation (up to a Möbius transformation). We will
talk more about one such numerical method in section 2.2.3. However, our aim here is
to solve the problem using a completely different approach. Before we describe it, it is
convenient to introduce a few concepts which will be described in more detail in the next
chapter where we review key ideas in the literature.

Both the Schwarz-Christoffel differential equation and the Schwarzian one can
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be related to differential equations of the Fuchsian class – these are linear homogenous
ordinary differential equations with regular singular points.

Moreover, there is an old problem in pure mathematics, known as the 21st Riemann-
Hilbert problem, or simply the Riemann-Hilbert problem, that can be stated as follows:
“to show that there always exists a linear differential equation of the Fuchsian class, with
given singular points and monodromic group” (HILBERT, 1900). Thus, in principle, the
idea of monodromy groups or, more vaguely, monodromy information can be used to
determine the Fuchsian equation – including the accessory parameters – and consequently
the corresponding differential equation whose solution is a conformal mapping of interest.

In the following chapters, we will talk in more detail about the all the concepts
involved in the determination of the accessory parameters, but a few introductory words
may be in order: The monodromy (or monodromic) group is a linear representation of the
homotopy group of a punctured Riemann sphere where the punctures are the positions
of the singular points of the Fuchsian equation. The homotopy group, in its turn, can be
thought of as a group of equivalence classes of loops on the punctured sphere, two loops
being equivalent whenever they can be continuously deformed into each other (IWASAKI
et al., 1991).

Other crucial ideas are isomonodromic deformations of Fuchsian equations and
(Jimbo-Miwa-Ueno) isomonodromic tau functions.

The concept of isomonodromic deformations of Fuchsian equations emerges because
it can be shown that such equations can be continuously deformed, by the inclusion of
extra parameters, without changing the associated monodromy group (SCHLESINGER,
1912). Indeed, the verification of this fact conveniently accomplished through the study of
the behaviour of associated first order Fuchsian systems.

The isomonodromic tau functions, on the other hand, are transcendental functions
which emerged in the the study of integrable properties of Fuchsian systems (JIMBO;
MIWA; UENO, 1981). These functions depend only on the monodromy data of the Fuchsian
system and the position of its singular points. One of the many remarkable facts about
such functions, which is shown by construction in this thesis, is that they can be used
to calculate the accessory parameters and thus the relevant differential equations which
determine the conformal mappings to polycircular arc domains. The simplest example of
the isomonodromic tau functions, which emerge in relation to deformations of Fuchsian
equations with four singular points – the Heun equation–, are intimately linked to the
Painlevé VI transcendent, just as isomonodromic deformations of confluent Heun equations
are associated with other tau functions which in turn are related to the remaining Painlevé
transcendents (GAMAYUN; IORGOV; LISOVYY, 2013).
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1.1 Main objectives and some comments
Given the importance of conformal mappings in applied contexts and, in a more

abstract setting, the attention that the determination of accessory parameters (of Fuch-
sian equations) also have received (TAKHTAJAN, 1989; ZOGRAF; TAKHTAJAN, 1988;
ZAMOLODCHIKOV; ZAMOLODCHIKOV, 1996; LITVINOV et al., 2014), our objectives
here are to understand the mathematical relationship between the geometry of polycircu-
lar arc domains and the accessory parameters of the associated Schwarzian differential
equations, and then to establish a method to actually calculate the accessory parameters.
Crucial to achieve the objectives is the path we take: We show how to gather the monodromy
information from the geometry of the target domain and, once we know have this informa-
tion, we determine the Fuchsian equations, including the accessory parameters – this is a
solution by construction of the Riemann-Hilbert problem of finding the Fuchsian equation
given that you know the monodromy data. Then, we relate the Fuchsian equations to the
associated Schwarzian equations. This will guarantee that the calculation of the conformal
mappings can be accomplished. Since usual polygons are the limiting case of polycircular
arc domains in which all sides are straight, we also investigate the determination of the
Schwarz-Christoffel accessory parameters.

In the particular case of polycircular arc domains with four vertices, we not only
establish the relationship between the geometry of the target domain and the monodromy
information – in terms of the Painlevé VI tau function – but we also use it to calculate
the accessory parameters explicitly. In the cases with higher number of vertices, we aim to
show that the parameters can be calculated in terms of other isomonodromic tau functions.

The analysis of the relationship between the accessory parameters and the mon-
odromy parameters, via Painlevé VI tau functions, was performed first in the context of
black hole physics (CARNEIRO DA CUNHA; NOVAES, 2015a; CARNEIRO DA CUNHA;
NOVAES, 2015b; NOVAES, 2014; NOVAES; CARNEIRO DA CUNHA, 2014). See also
(CARNEIRO DA CUNHA; CARVALHO DE ALMEIDA; RABELO DE QUEIROZ, 2016)
for the appearance of a related tau function in the context the Rabi model which has
applications in quantum optics. The accessory parameter problem was investigated also
via (semi-classical) Liouville theory (TAKHTAJAN, 1989; ZOGRAF; TAKHTAJAN, 1988;
ZAMOLODCHIKOV; ZAMOLODCHIKOV, 1996; LITVINOV et al., 2014). See, addition-
ally, (TESCHNER, 2017). None of these works produced exact results for the accessory
parameters beyond formality, but it seems like they can be used to deliver asymptotic
formulas for the parameters in some cases. Here, for the first time, a program for the
solution of the accessory parameter problem which can actually be used in practice is
presented.
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In the course of the research program, some of the discoveries had, at least at first,
experimental status, although they were motivated by theoretical reasoning. Such results
will be the subject of later chapters, but it may be interesting to mention some of them
here:

1. we can calculate a monodromy matrix associated to each regular singular point
independently, yet the monodromy matrices are automatically in the same basis,
and thus it is straightforward to write down the composite monodromy matrices
associated analytic continuations around two or more singular points.

2. The method is specially suited to deal with conformal mappings to relatively elongated
target domains, although it can be applied to other settings as well.

3. The relevant tau function in the case of Schwarz-Christoffel conformal mappings
is calculated as a limit process even though different aspect ratios of the polygons
correspond to taking the limit from polycircular arc domains to the usual polygons
following different trajectories in the space of monodromy parameters.

Besides, when we look at the problem of finding the accessory parameters of
Fuchsian differential equations in a broader perspective – englobing the problem of
calculating conformal mappings, but not restricted to this application –, we expect the
ideas and discussions presented in the following pages to be valuable in other situations
where Fuchsian equations or systems are present. Indeed, the method to associate linear
differential equations with monodromy information that we discuss here is expected to
have, at least in some contexts, an extension to cases involving also irregular singular
points.

Another striking line of thinking in regards to isomonodromic deformations and
the corresponding tau functions, which is not explicitly explored in this thesis but is worth
mentioning, is that the usual approach to study/construct solutions of Fuchsian equations
involve the Frobenius method and a connection problem (in order to patch the solutions
coming from asymptotic expansions around the different singular points together). Yet
the monodromy data of the solutions also offers information on the global structure of the
solutions. Therefore, the approach we present in this thesis – the use of isomonodromic
tau functions in particular – may contribute to solving connection problems of Fuchsian
(system of) equations.
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1.2 Structure of the thesis and original results
In chapter 2, we review the fundamental ideas we use in the thesis. For instance,

we talk about isomonodromic deformations of Fuchsian systems, the Riemann Hilbert
problem, Schlesinger systems, and isomonodromic tau functions.

In chapter 3, we start to present the results of the thesis. We describe how to use
the Schwarz function to extract the monodromy information from the geometry of the
target domain. We start with the discussion of a simple example – the channel with a
half disc barrier – in section 3.1 and then, in section 3.2, we discuss the general method
(ANSELMO et al., 2018a). The Schwarz function is a very important concept for this
chapter. A short review on the subject can be found in Appendix A.

In chapter 4, we analyse the special case of circular arc quadrilaterals (ANSELMO
et al., 2018a). The relation between the accessory parameters and the Painlevé VI tau
function is discussed, then we use the tau function expansion reviewed in subsection 2.5.1
to present explicit examples in section 4.3. We show that the new method is specially
suited to deal with relatively elongated target domains, which is the situation where the
older methods suffer the most due to ‘crowding’. The Painlevé VI tau function expansion
implementation on Mathematica used to calculate the accessory parameters can be found
in Appendix C where we also display some additional plots for some of the examples of
chapter 4.

In chapter 5, we investigate in more detail the limiting case of Schwarz-Christoffel
mappings (ANSELMO et al., 2018b)2. In the particular case of mappings to rectangles,
which we deal with in section 5.2, the tau function has a closed form in terms of Jacobi
theta functions. We use this closed form to explicitly reproduce the well known result
for the aspect ratio of the rectangle as a function of the accessory parameter. We also
investigate the applicability of the method to calculate conformal modules of trapezoids in
section 5.3.

In chapter 6, we examine the generalization of the method to deal with polycircular
arc domains with any number of vertices. The relevant calculations are presented in
detail. We show that the accessory parameters βk are determined essentially as logarithmic
derivatives of isomonodromic tau functions.

In chapter 7, the accessory parameters tk – the preimage of vertices positions – are
shown to be zeros of associated tau functions. This last result is accomplished through
the use of Toda equations3 whose validity we verify by construction in chapter 7. The
2 The title may change before publication.
3 Isomonodromic tau functions satisfy Toda equations (TODA, 1989) – for the isomonodromic tau

functions–, also known as Toda lattice or Toda chain equations (in the unidimensional case). These
equations appear in the context of completely integrable nonlinear wave and soliton mathematics. See
(Gerald Teschl, 2001) for a review.
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approach we use and the Toda equations we find are not known to be found, at least
explicitly, in the literature.

The results presented in chapters 6 and 7 are intended to be the main subject of
another publication in the future.

We conclude the thesis in chapter 8 where we also comment on the perspective of
future work.
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2 ACCESSORY PARAMETERS, THE
RIEMANN-HILBERT PROBLEM, AND
ISOMONODROMY

The main achievements presented in this thesis result from an effort to combine
relatively old mathematical ideas such as the monodromy information (and isomonodromic
deformations) of Fuchsian equations, the Riemann-Hilbert problem, isomonodronodromic
tau functions, and accessory parameters of Schwarzian differential equations whose solu-
tions are conformal mappings from canonical simply connected domains to the interior of
polycircular arc domains. In this chapter, we present a review on these ideas. In particular,
we exhibit a short description of the Painlevé VI tau function expansion which will allow
us to explicitly calculate the accessory parameters associated with conformal mappings to
quadrangular polycircular arc domains.

2.1 Roadmap of this chapter
This chapter is organised in the following manner. With the objective of making

this thesis as self contained as possible, in section 2.2 we review the derivations of the
Schwarz-Christoffel equation and the Schwarzian equation, and we talk about their respec-
tive accessory parameter problems. We then discuss the linearisation of the Schwarzian
equation leading to Fuchsian equations and present, after that, the main ideas regarding a
numerical method to determine the accessory parameters (HOWELL, 1993). In section 2.3,
we review the concept of monodromy group. Then, in section 2.4, we talk about the (21st)
Riemann-Hilbert problem and isomonodromic deformations of Fuchsian systems. This
leads to the idea of isomonodromic tau functions in section 2.5. The particular case of tau
functions related to Fuchsian systems with four singularities have asymptotic expansions
which are explored in some detail in the literature. A formula to obtain this particular
expansion is fundamental for this work and is a relatively new result in the literature. It is
reviewed in subsection 2.5.1.

The reader may prefer to skip this chapter and come back to it whenever there is a
need to do so.
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Figure 3 – Transformation z = γwθ with γ ∈ R

2.2 Conformal mappings and the accessory parameter problem
In this section, we summarise the derivation of the differential equation satisfied

by a conformal mapping from the UHP to the interior of a polycircular arc domain and
comment on the simplest case, where the domain is triangular and the internal angles
are enough to determine the Schwarzian differential equation completely and discuss the
accessory parameter problem for circular arc polygons. With these goals in mind, it is
convenient to consider first the derivation of Schwarz-Christoffel differential equation and
its corresponding accessory parameter problem. More details can be found in (ABLOWITZ;
FOKAS, 2003; NEHARI, 1952).

2.2.1 Schwarz-Christoffel mappings

The first thing to notice is that the UHP is mapped to an open triangle, or a
“corner”, of internal angle πθ by

z = u+ vi = γwθ, γ ∈ R (2.1)

To see this, one can write w = reiα, z = ρeiφ and then verify that the rays α = 0 and α = π

are mapped to the rays φ = 0 and φ = πθ of the z-plane. The mapping z = f(w) = γwθ,
illustrated by figure 3, does not preserve the conformal property at w = 0 when θ 6= 1
as can be seen from the image. One can alternatively verify that f(w) is not analytic
at w = 0; f ′(w) does not even exist at w = 0. If γ is a complex number, eq. (2.1) still
describes an open triangle, but it can a rotation of the one we had before.

By the previous analysis, it is natural to expect that, in the case of more general
SC mappings, near the points w = wi, corresponding to the vertices of the polygon, the
mapping has the form

z − zi = f(w)− f(wi) = (w − wi)θi
[
c

(0)
i + c

(1)
i (w − wi) + c

(2)
i (w − wi)2 + · · ·

]
(2.2)

where the part inside square brackets in the r.h.s. of the equation above is analytic near
w = wi. By the same token, the intersection between the upper half w-plane and a small
disc centered at wi is mapped by f(w) to a corner-like region of angle πθi in the z-plane.
Nevertheless, this says little about f(w) since we do not know the coefficients c(n)

i .
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Figure 4 – Continuation of D

Further, there is another issue – we are looking for an f(w) that is actually a single
branch of an infinitely branched function: a reflection of a polygon D in the z-plane across
a straight line segment of its boundary corresponds to an analytic continuation of f(w)
across the corresponding segment of the real line in the w-plane. We thus obtain a function
f1(w) in an adjacent polygon D1. See figure 4. Every point z ∈ D corresponds to a point
in the upper half w-plane while to each z ∈ D1 there is a corresponding w in the lower
half w-plane. We can do this again along a side of D1 to obtain f2(w) in the polygon D2.
Then we see that each w in the upper half plane corresponds to a point f(w) ∈ D but
also another one f2(w) ∈ D2. Such analytic continuation by reflection can be repeated
over and over, and thus one can define f2n(w) and f2n+1(w) for any n > 0. Hence, f(w) is
single branch of a infinitely branched function. On the other hand, f(w) and f2n(w) are
related by a linear transformation: f2n(w) = Af(w) +B, with |A| = 1.

f ′′(w)
f ′(w) = f ′′2n(w)

f ′2n(w) (2.3)

on the upper half w-plane while, by a similar argument, there is a corresponding equation
on the lower half w-plane. Thus, f ′′(w)/f ′(w) is single valued and analytic on the extended
w-plane except for poles at wi, as can be verified from (2.2).

It is important to remember Liouville’s theorem: if u(w) is analytic in the (finite)
complex plane and bounded in the Riemann sphere, then u(w) is a constant. Hence,
because of this theorem and (2.2), we find that

f ′′(w)
f ′(w) −

n∑
i=1

θi − 1
w − wi

= c, c ∈ C (2.4)

Assuming no vertex is located at infinity, f(w) = f(∞) + b1/w + b2/w
2 + · · · is analytic

there. Thus, f
′′(w)
f ′(w) → 0 as w →∞, implying c = 0 in (2.4), which can be directly integrated

yielding the equation for Schwarz-Christoffel transformations:

f ′(w) = γ
n∏
i=1

(w − wi)θi−1 γ ∈ C (2.5)
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The accessory parameter problem for Schwarz-Christoffel mappings

When the polygon has four vertices or more, we can use Möbius transformations
fix three wi’s to be any points on the complex plane (See appendix B), but the other wi’s
are unknown and depend on the geometry of the polygon. This is the Schwarz-Christoffel
accessory parameter problem. The parameter γ in (2.5) is also unknown, a priori, but
since it affects the mapping only by a scaling and/or a rotation, its determination is usually
a simpler problem.

2.2.2 Mappings to polycircular arc domains

The main ideas in the derivation of the differential equation for Schwarz-Christoffel
mappings are present in the more general case of mappings to regions bounded by sides
that can also be circular. Near the pre-vertices at the real line on the w-plane, we have

f(w) = (w − wi)θig(w) + γ, γ ∈ C (2.6)

where g(w) is analytic near w = wi and γ only implements a translation. Again, the
mapping f(w) we are looking for is just a branch of an infinitely branched complex function,
but we can construct a function that is single valued and analytic in the whole w-plane
except for the poles at w = wi. In the previous subsection, we used, essentially, that f(w)
can be related to the other branches via a linear transformation. Here, since we assume
that at least one piece of the boundary is circular, the analytic continuation of f(w) will be
implemented via Möbius transformations, and thus we should look for a function of f(w)
and its derivatives that is invariant by such transformations. The Schwarzian derivative of
f(w)

{f(w), w} :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

(2.7)

can be checked to be invariant by Möbius transformations of f(w). So, we also verify that
near w = wi

{f(w), w} = 1− θ2
i

2(w − wi)2 + βi
w − wi

+ h(w), βi = 1− θ2
i

θi

∂

∂w
ln g(w)

∣∣∣∣∣
w=wi

(2.8)

with h(w) analytic there. Invoking Liouville’s theorem one more time, we find that

{f(w), w} =
n∑
i=1

[
1− θ2

i

2(w − wi)2 + βi
w − wi

]
+ c, c ∈ C (2.9)

If we assume that there is no wi at infinity, then f(w) is analytic there; that is f(w) =
f(∞) + b1/w + b2/w

2 + · · · near w =∞. Thus, {f(w), w} = k4/w
4 + k5/w

5 + · · · which
implies that, expanding the r.h.s. of (2.9), we should equate the coefficients of w0, w1, w2,
and w3 to zero. Therefore, we find the Schwarzian equation for conformal mappings
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to polycircular arc domains:

{f(w), w} =
n∑
i=1

[
1− θ2

i

2(w − wi)2 + βi
w − wi

]
(2.10)

and also the algebraic relations:
n∑
i=1

βi =
n∑
i=1

(2wiβi + 1− θ2
i ) =

n∑
i=1

(βiw2
i + wi(1− θ2

i )) = 0 (2.11)

Thus, if n = 3 we can use Möbius transformations to chose the positions of wi and the
relations above to determine all the so called accessory parameters βi in terms of wi.

Accessory parameter problem for circular arc polygons

While θi are defined according to the internal angles of the circular arc polygon
(see Figure 5), and we can use the relations (2.11), we still need to find (n− 3) accessory
parameters βi’s and (n−3) wi in order to use (2.10) to calculate f(w). This is the accessory
parameter problem. Notice also that in order to solve (2.10), we need three complex initial
conditions. However, once we have the correct values for all wi’s and βi’s, wrong initial
conditions yield f̃(w) that can be related to f(w) via a Möbius transformation – (2.10) is
invariant under the invertible transformation

f(w) = af̃(w) + b

cf̃(w) + d
(2.12)

Notice that the Möbius transformation above has three complex degrees of freedom.
Finding such a transformation relating f̃(w) to f(w) usually is considerably easier than
solving the accessory parameter problem.

Fuchsian equations and mappings to polycircular arc domains

The study of the uniformising map can be related to the theory of Fuchsian
equations1 by considering that a solution of (2.10) is written as f(w) = ỹ1(w)/ỹ2(w),
where ỹ1(w) and ỹ2(w) are two linearly independent solutions of the second order equation
(NEHARI, 1952)

ỹ′′(w) +
n∑
i=1

[
1− θ2

i

4(w − wi)2 + βi
2(w − wi)

]
ỹ(w) = 0 (2.13)

Conformal mappings to circular arc triangles, for instance, can be written as bilinear
combination of two linearly independent solutions of

y′′(w) + 1
4

[
1− θ2

0
w2 + 1− θ2

1
(w − 1)2 + θ2

0 + θ2
1 − θ2

∞ − 1
w(w − 1)

]
y(w) = 0 (2.14)

1 Given a second order linear homogeneous ODE y′′(w) + p(w)y′(w) + q(w)y(w) = 0, it has a regular
singular point at w = wi if p(w) has a pole of at most of first order at wi and q(w) has a pole of at
most second order at wi. The ODE is Fuchsian iff all of its singular points are regular.
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Figure 5 – Conformal mapping from the UHP to the interior of a polycircular arc domain,
with zi = f(wi).

In this particular case, f(w) is known as a “Schwarzian triangle function”. Notice that
{f(w), w} is completely fixed by the values of θi.

In the next subsection we review a numerical method to estimate the accessory
parameters associated with mappings to circular arc polygons. Then, we talk about the
relation between Fuchsian systems and monodromy transformations.

2.2.3 Howell’s method

In this section, we describe a numerical method to determine the accessory param-
eters. It builds on ideas from (BJøRSTAD; GROSSE, 1987) and will be referred to as
Howell’s method (HOWELL, 1993). We use this technique to verify the precision of the
new method in chapter 4.

In essence, Howell’s method works by successive iterations in the values of the
accessory parameters. An important part of the numerical integration has to do with
the singularity removal scheme. Since we know that the mapping behaves locally as
f(w) = (w−wi)θigi(w) near w = wi, we can derive a differential equations for gi(w) which
has no singularity at w = wi. Then we integrate gi(w) for w on a piece of the real line that
contains w = wi and use Möbius transformations to ‘glue’ the image of each piece by the
corresponding (w − wi)θigi(w). After this, we use a final Möbius transformation to map
the result of the ‘gluing’ process to a region that has a geometry that approximates the
desired target domain. See fig. 6 where we apply this numerical proceedure to generate
the accessory parameters and the mapping to a target domain that we will explore in
subsection 4.3.1. The latter Möbius transformation is used to guarantee that the bottom
part of the circular arc domain is correct even though we started with wrong accessory
parameters. In order to measure the success of the approximation, we define a real function
that measures a distance between the desired target domain and the outcome of the
approximation process. At each iteration, the values of the accessory parameters are
slightly changed and the distance function is evaluated. We only keep the newest values for
the accessory parameters if the distance function is less than in the predecessor iteration.
When the distance hits a chosen tolerance, the algorithm stops returning approximate
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Figure 6 – Application of Howell’s method. Credits to Dr. R. Nelson.

values for the accessory parameters. Notice that this method yields them provided that
the action of the conformal mapping itself is calculated.

The “crowding” phenomenon (GAIER, 1972), in which very small regions of
the preimage curve are mapped to extensive regions of the target curve, is a signifi-
cant source of numerical difficulty for most computational approaches, including the one
due to Howell. This issue happens when the target domain has a relatively elongated aspect.

2.3 Monodromy
In this section, we review the concept of monodromy (ZOLADEK, 2006).

Let CP1 = C ∪ {∞} represent the Riemann sphere. Given a set of points S =
{w1, w2, ..., wn}, the n-punctured Riemann sphere is defined as D = CP1\S. A loop γ in
D with base point x is a curve

γ : I = [0, 1] → D (2.15)
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Figure 7 – Monodromy matrices associated with loops on the 4-punctured Riemann sphere

starting and ending in x. Let L(D, x) be the set of all loops with base point x. Two loops
γ1 and γ2 are said to be (homotopy-)equivalent iff γ1 can be continuously deformed to
γ2 in D with x fixed. We represent this equivalence relation as γ1 ' γ2. Then, the set of
equivalence classes of loops in L(D, x) is called the fundamental group of D and is denoted
π1(D, x) = L(D, x)/ '. The monodromy group is a GL(2,C) matricial representation of
π1(D, x). See (IWASAKI et al., 1991).

We can study the concept of monodromy in connection with Fuchsian equations.
Suppose we want to solve the first order Fuchsian equation

dy

dw
− α

w − wi
y = 0, α, wi ∈ C (2.16)

Assume also that α /∈ Z. We soon find that the solution is given by

y = a(w − wi)α, a ∈ C (2.17)

Now, we calculate
y((w − wi)e2πi + wi) = e2παiy(w) (2.18)

Thus, the pole at w = wi in the coefficients of the differential equation corresponds to
a branch point in the solution. This is a common property of Fuchsian equations: the
presence of regular singularities in its coefficients induces the existence of branch points in
its solution (SLAVYANOV; LAY, 2000). In the case of a first order Fuchsian equation,
an analytic continuation around the singularity brings the solution to a trivial linear
combination of itself – a multiplication by a (complex) constant.

In general, we can rewrite linear homogeneous ODEs as systems of first order
differential equations. In particular, we can relate Fuchsian equations to Fuchsian systems
(IWASAKI et al., 1991; FOKAS et al., 2006). We will explicitly relate the Fuchsian equation
(2.14) to a Fuchsian system in chapter 6. In this context, we can analyze what happens to
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the solution Φ(w) of a Fuchsian system by an analytic continuation around its singular
points. Given a loop γi around a singularity wi, the analytic continuation of Φ(w) around
γi becomes

Φγi = Φ(w)Mγi (2.19)

whereMγi ∈ GL(2,C) is the monodromy matrix associated with γi. Since a loop encircling
all points in S is contractible to a point in D, we have

Mn · · ·M2M1 = 1 (2.20)

Figure 7 illustrates the case of a 4-punctured sphere with S = {0, t, 1,∞}. Here, it is
convenient to use the trace coordinates

pi = 2 cos πθi ≡ TrMi, pij = 2 cos πσij ≡ TrMiMj (2.21)

Following (ITS; LISOVYY; PROKHOROV, 2018) and taking care of the consistency in
the definition of the trace parameters, we can explicitly write the monodromy matrices:
choose a particular base M̃i = CMiC

−1 with diagonal M̃tM̃0 = (M̃∞M̃1)−1 = eπiG, where
we used (2.20) with n = 4 and G = diag(σ − σ). We find:

M̃0 = 1
i sin πσ

 eπiσ cos πθ0 − cos πθt si[cosπ(θt − σ)− cos πθ0]
s−1
i [cosπθ0 − cosπ(θt + σ)] cos πθt − e−πiσ cosπθ0

 (2.22)

where the parameter si arises from fact that if we conjugate the matrices M̃0, M̃t by the
unitary matrix diag(si s−1

i ), the product M̃tM̃0 remains fixed. Next, from M̃t = eπiGM̃0

we have that

M̃t = 1
i sin πσ

 eπiσ cosπθt − cosπθ0 sie
πiσ[cosπθ0 − cos π(θt − σ)]

s−1
i e−πiσ[cosπ(θt + σ)− cosπθ0] cos πθ0 − e−πiσ cosπθt


Analogously, we write parameterize M̃t and M̃∞:

M̃1 = 1
i sin πσ

 cos πθ∞ − e−πiσ cos πθ1 see
πiσ[cosπ(θ1 + σ)− cosπθ∞]

s−1
e eπiσ[cosπθ∞ − cos π(θ1 − σ)] eπiσ cosπθ1 − cosπθ∞


M̃∞ = 1

i sin πσ

 cosπθ1 − e−πiσ cosπθ∞ se[cosπθ∞ − cos π(θ1 + σ)]
s−1
e [cosπ(θ1 − σ)− cosπθ∞] eπiσ cosπθ∞ − cosπθ1


Since all matrices M̃i can be conjugated simultaneously by a diagonal matrix and preserve
M̃tM̃0 = (M̃∞M̃1)−1, we see that there is only one (true) degree of freedom that can be
written from si and se (instead of two). Let it be defined as

s ≡ si/se (2.23)
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From the above representations of M̃i, we can directly calculate the following expressions
relating the trace coordinates to s:

(4− p2
0t)pt1 =2(p0p∞ + ptp1)− p0t(p0p1 + ptp∞)+

−
∑
ε=±

(p∞ − 2 cosπ(θ1 − εσ))(p0 − 2 cosπ(θt − εσ))sε

(4− p2
0t)p01 =2(p0p1 + ptp∞)− p0t(p0p∞ + ptp1)+

+
∑
ε=±

(p∞ − 2 cosπ(θ1 − εσ))(p0 − 2 cosπ(θt − εσ))sεe−πiεσ

(2.24)

The traces coordinates generate an algebra (GOLDMAN, 1986) and satisfy also the so
called Fricke-Jimbo relation (JIMBO, 1982):

p0ptp1p∞ + p0tp1tp01 − (p0pt + p1p∞)p0t − (ptp1 + p0p∞)p1t − (p0p1 + ptp∞)p01

+ p2
0t + p2

1t + p2
01 + p2

0 + p2
t + p2

1 + p2
∞ = 4

In the case of Riemann sphere with more than four punctures, other traces coordi-
nates become relevant:

pijk ≡ TrMiMjMk, pijkl ≡ TrMiMjMkMl, · · · (2.25)

we will not explicitly need the above trace coordinates in this thesis.

2.4 Riemann-Hilbert problem and isomonodromic deformations
From the previous discussions, in general, the solution of a Fuchsian equations

is multivalued and this property is described by the monodromy representation of the
fundamental homotopy group π1(CP1\S, x), where S = w1, w2, ..., wn. This reasoning
motivates the so called direct monodromy problem:

Given a differential equation with n regular singular points, find an SL(2,C)
representation associated with an equivalence class of loops around its singular
points.

More important in this thesis, however, is the inverse monodromy problem, also known as
the (21st) Riemann-Hilbert problem (RHp):

Given an irreducible SL(2,C) representation ρ of the fundamental group of
the n-punctured Riemann sphere, find a Fuchsian differential equation which
has ρ as its monodromy representation.

An older version of this question, the original one: “To show that there always exists a linear
differential equation of the Fuchsian class, with given singular points and monodromic
group.” (HILBERT, 1900).
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A question arises: “Is the map between the space of Fuchsian equations and the
space of linear representations of π1(CP1\S, x) bijective?”. Let M(S) be the space of
conjugacy classes of irreducible linear representations of π(CP1\S, x) of rank 2, and E(S)
be the space of second order irreducible Fuchsian differential equations with singular points
at most in S. Then define:

m(S) ≡ dim(M(S)), e(S) ≡ dim(E(S))

where dim(X) means the complex dimension of X. It can be shown (IWASAKI et al.,
1991) that

m(S)− e(S) = n− 3 (2.26)

thus there is a unique correspondence only in the hypergeometric case – which is related to
the Schwarzian differential equation for mappings to circular arc triangles. When n > 3, the
map fromM(S) to E(S) is not bijective because dimM(S) > E(S), and this leaves room
for the idea of monodromy preserving deformations – or isomonodromic deformations – of
Fuchsian equations, which is best explored in the context of linear systems of differential
equations:

d

dw
Y (w) = A(w)Y (w) (2.27)

Let the poles of matrix A(w) be localized at the points wi, i = 1, . . . , n.

Definition 1. The system (2.27) is called Fuchsian at the point wi (and wi is a Fuchsian
singularity of the system) if A(w) has a simple pole at wi. The system (2.27) is Fuchsian
when all of its singularities are Fuchsian.

If (2.27) is Fuchsian, then we can write A(w) = ∑n
i=1 Ai/(w − wi).

Definition 2. Let
d

dw
Y (w) = A(w, a)Y (w) (2.28)

with a ∈ Cn. The system above is called a deformation of system (2.27).

We associate to each singular point wi a loop γi which encircles wi counterclockwise.
Thus, the monodromy matrices are calculated according to Yγi(w) = Y (w)Mi for a given
solution Y (w) of (2.27).

Definition 3. A deformation is isomonodromic if and only if it leaves all Mi invariant.

Schlesinger showed that a deformation of a Fuchsian system of the form (2.27), with
n singular points in S = {wi}, is isomonodromic if Y (w) satisfies a system of linear partial
differential equations or A(w) as a function of the same deformation parameters satisfies a
completely integrable nonlinear differential system. For a short review on isomonodromic
deformations, see (FILIPUK, 2012.)
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Theorem 1 (Schlesinger (SCHLESINGER, 1912)). The deformation equations of the
system of linear differential equations

∂

∂w
Y (w, S) =

n∑
i=1

Ai(S)
w − wi

Y (w, S), S = {wi}i=1,...,n (2.29)

are isomonodromic if and only if either Y (w, S) satisfies the following set of linear partial
differential equations

∂

∂wi
Y (w, S) = − Ai(S)

w − wi
Y (w, S) (2.30)

or the matrices Ai(S) satisfy the integrability conditions of (2.29) and (2.30) given by the
completely integrable set of nonlinear equations:

∂

∂wi
Aj(S) = [Ai, Aj]

wi − wj
, (i 6= j), ∂

∂wi
Ai(S) = −

n∑
i 6=j,i=1

[Ai, Aj]
wi − wj

(2.31)

which is known as the Schlesinger system.

2.5 Isomonodromic tau functions
Jimbo-Miwa-Ueno isomonodromic tau functions (JIMBO; MIWA, 1981a; JIMBO;

MIWA, 1981b; JIMBO; MIWA; UENO, 1981) are defined by

d ln τ =
∑
i<j

Tr(AiAj)d ln(wi − wj) (2.32)

We can fix the position of three wi’s at 0, 1,∞ and then write wi = 0, t0, t1, . . . , tn−4,∞.
Thus we conveniently write:

∂ ln τ
∂ti

=
∑
wj 6=ti

TrAiAj
ti − wj

(2.33)

The special case when n = 4 has been studied in more detail (JIMBO, 1982; OKAMOTO,
1986b). The tau function then is associated with the Painlevé VI transcendent – this will
be clearer in chapter 4 – and becomes:

(2.34)

In the next subsection, we present an expansion for this tau function. With this expansion,
we can explicitly relate the trace parameters θi, σij to the accessory parameters. See also
Appendix C for an implementation of the expansion on Mathematica.

2.5.1 Painlevé VI tau function expansion

Before we delve into the details regarding the Painlevé VI (PVI) tau function, a
comment is in order: Although in this section we will detail some aspects of the expansion
and its history, the reader should be warned that in the rest of the thesis we will make only
a pragmatic use of the expansion. This means that, in the next chapters, one can assume
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that the PVI expansion is known and is given by 2.35 where the elements appearing in it
are defined by equations 2.36, 2.38, and 2.39.

A formula for the PVI tau function expansion was proposed in (GAMAYUN; IOR-
GOV; LISOVYY, 2012; GAMAYUN; IORGOV; LISOVYY, 2013), building from the AGT
conjecture. In (IORGOV; LISOVYY; TESCHNER, 2015; BERSHTEIN; SHCHECHKIN,
2014) it was shown that the asymptotic formula does satisfy the PVI differential equation
(4.18). Whether every solution of (4.18) allows for such an expansion is still an open ques-
tion. The structure comes from equating the PVI tau function to an expansion in terms of
conformal blocks of a certain correlation function in conformal field theory (BELAVIN;
POLYAKOV; ZAMOLODCHIKOV, 1984; FRANCESCO; MATHIEU; SENECHAL, 1999;
KETOV, 1995; BLUMENHAGEN; PLAUSCHINN, 2009) :

τ(t) =
∑
n∈Z

C(θ0, θt, θ1, θ∞, σ0t + 2n)snt((σ0t+2n)2−θ2
0−θ

2
t )/4B(θ0, θt, θ1, θ∞, σ0t + 2n; t)

(2.35)
The details are outlined in (GAMAYUN; IORGOV; LISOVYY, 2012). Indeed, the equation
above expresses the tau function as an asymptotic expansion around t = 0. The action of
the braid group on the singular points in the Garnier system allows for similar expansions
around t = 1 and t = ∞ (JIMBO, 1982). The structure constants C in (2.35) can be
written as

C(θ0, θt, θ1, θ∞, σ) =
∏
α,β,=±G(1 + 1

2(θ1 + αθ∞ + βσ))G(1 + 1
2(θt + αθ0 + βσ))∏

α=±G(1 + ασ) (2.36)

where the classical Barnes function G(z) satisfies the functional equation G(1 + z) =
Γ(z)G(z) and can be defined according to2

G(1 + z) = (2π) z2 exp
∫ ∞

0

dt

t

[
1− e−zt

4 sinh2 t
2
− z

t
+ z2

2 e
−t
]
, Re z > −1 (2.37)

Moreover, s is the same as in (2.23) and can be calculated in terms of the monodromy
data as

s = (w1t − 2p1t − p0tp01)− (w01 − 2p01 − p0tp1t) exp(πiσ0t)
(2 cosπ(θt − σ0t)− p0)(2 cosπ(θ1 − σ0t)− p∞) (2.38)

where w1t = p1pt + p0p∞, and w01 = p0p1 + ptp∞

The last term in (2.35), B(θ0, θt, θ1, θ∞, σ0t; t), corresponds in conformal field theory
to the conformal block function Fc=1(1

4θ
2
0,

1
4θ

2
t ,

1
4θ

2
1,

1
4θ

2
∞,

1
4σ

2
0t; t) where 1

4θ
2
i represent the

conformal dimensions of the fields in a four-point correlation function, 1
4σ

2
0t stands for the

intermediate conformal dimension, and c = 1 is the central charge. By the AGT relation,
2 One can get rid of the dependence in the Barnes functions and use only gamma functions and

Porchhammer symbols (LANCSÉS; NOVAES, 2018). Although this approach may be important for
computational reasons, we will not explore it here.



Chapter 2. Accessory parameters, the Riemann-Hilbert problem, and isomonodromy 36

Figure 8 – A Young tableau representation for the partition λ = {7, 5, 2, 1}. λ2 is the
number of boxes in the second row, λ′2 is the number of boxes in the second
column, and the hook length of the box (2, 2) is the number of elements in the
second column bellow that box plus the number of boxes to the right of it, in
its row, plus one, to account for itself. |λ| is the size of the diagram.

conformal blocks can be expanded in terms of Nekrasov functions, which implies

B(θ0, θt, θ1, θ∞, σ; t) = (1− t)θtθ1/2 ∑
λ,µ∈Y

Bλ,µ(θ0, θt, θ1, θ∞, σ)t|λ|+|µ| (2.39)

where the sum is over Young tableaux λ and µ contained in Y, the set of all such diagrams
which represent ordered partitions of integers3. So, for instance, since 15=7+5+2+1, one
possible partition for the integer 15 can be represented as λ = {7, 5, 2, 1}, or by the Young
diagram in figure 8. The size of the diagram is given by the number of boxes in it, thus
|λ| = 15. Furthermore,

Bλ,µ(θ0, θt, θ1, θ∞, σ) =
∏

(i,j)∈λ

((θt + σ + 2(i− j))2 − θ2
0)((θ1 + σ + 2(i− j))2 − θ2

∞)
16h2

λ(i, j)(λ′j + µi − i− j + 1 + σ)2 ×

×
∏

(i,j)∈µ

((θt − σ + 2(i− j))2 − θ2
0)((θ1 − σ + 2(i− j))2 − θ2

∞)
16h2

µ(i, j)(λi + µ′j − i− j + 1− σ)2

(2.40)
where (i, j) denotes the coordinates of the boxes in the tableau, λi stands for the number
of boxes in the row i, from the top to the bottom of the diagram λ, λ′j is the number of
boxes in the column j, and hλ(i, j) = λi − i + λ′j − j + 1 is called the hook length. For
instance, suppose we want to calculate the first few contributions to B:

(1− t)−θtθ1/2B = B∅,∅t0 + (B ,∅ + B∅, ) t+
(
B ,∅ + B ,∅ + B , + B∅, + B∅,

)
t2 + . . .

(2.41)
We assign coordinates (i, j) to each box in the Young diagrams λ, µ in Bλ,µ according to
figure 8 and then calculate the coefficients in the series above by using (2.40). The symbol
∅ stands for ‘partition of zero’, and the product over the coordinates of ∅ in (2.40) equals
1, by convention, so that B∅,∅ = 1. In fact, the first few terms in this asymptotic expansion
3 the boxes in the diagrams we are interested in are indistinguishable from each other.



Chapter 2. Accessory parameters, the Riemann-Hilbert problem, and isomonodromy 37

were found by Jimbo (JIMBO, 1982) who also showed that asymptotic expansions around
the other critical points t = 1,∞ are analogous to the one around t = 0. To produce
accurate results more efficiently when t0 . 1, it may be convenient, although not strictly
necessary, to use the asymptotic expansion around t = 1 which is obtained when one
makes the following interchanges in (2.35):

t↔ 1− t, θ0 ↔ θ1, σ0t ↔ σ1t (2.42)

and, in definition of s, one must change the exponential term as exp(πiσ0t)→ exp(−πiσ1t).
Another approach to deal with the case with t0 . 1 is to make a cyclic change in the
association between the vertices and the pre-vertices until 0 < t0 ≤ 0.5.

A first order approximation to B in (2.35) then becomes

B(θ0, θt, θ1, θ∞, σ0t + 2n; t) ≈ 1 + ((σ0t + 2n)2 − θ2
0 + θ2

t )((σ0t + 2n)2 − θ2
∞ + θ2

1)
8(σ0t + 2n)2 t

(2.43)
The expression above can be used to produce approximate solutions for the accessory
parameters. We will see this in more detail in chapter 4.

In the next chapter, we show by construction that the knowledge of the image
of the real line by the conformal mapping f(w) to circular arc polygons is enough to
determine the monodromy matrices. Schwarz functions play an important role in this
construction – see Appendix A for a short review on the subject.
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3 MONODROMY DATA FROM THE GE-
OMETRY OF THE TARGET DOMAIN

As stated in the introduction, our main goal in this thesis is to solve the accessory
parameter problem as a Riemann-Hilbert problem – the full Fuchsian differential equation
is determined in terms of the monodromy information. The Fuchsian equation comes from
a linearization of the Schwarzian differential equation, and the monodromy matrices are
extracted from the geometry of the target domain.

In general, the monodromy information comes from the analysis of how the solutions
of the Fuchsian equation behave by an analytic continuation around one or more singular
points. In a few explanatory steps: (i) one can always find two linearly independent
solutions of a second order Fuchsian equation in the neighborhood of ordinary points; (ii)
The regular singular points of the Fuchsian equation are related to branch points of the
solutions; (iii) because of the branch points, the analytic continuation of one of the linearly
independent solutions around a singular point does not come back to itself, rather it can
only be written as a linear combination of the two independent solutions.

The nontrivial behavior of the solution emerges when we try to continue it from
inside the target domain to outside and vice-versa. Since the boundary is a composition of
circular arcs and straight line segments, and it is a classical result that analytic continua-
tions of this type are implemented by Schwarz reflections – realised by Schwarz functions
which are briefly reviewed in Appendix A –, the monodromy matrices turn out to be
compositions of matricial representations of such functions.

This chapter is organised as follows: In section 3.1, we use a simple example – the
conformal mapping to the interior of a channel with a semi-disc barrier – to introduce the
method to extract the monodromy matrices from the geometry of the target domain. Then,
in section 3.2, following to a great extent the presentation in (ANSELMO et al., 2018a),
we present a more general discussion about the method to determine the monodromy
matrices from the geometry of polycircular arc domains.

3.1 Example: Monodromy data for channel with a half-disc barrier
The conformal mapping from the upper-half w-plane to a target channel with a

semi-disc barrier is of special interest.1 Its importance in this chapter arises from the fact
1 Most of the ideas in this section come from (CROWDY, 2015).
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Figure 9 – Conformal mapping from the upper-half w-plane to a channel with a semi-disc
barrier in the z-plane

that the monodromy matrices associated with the geometry are very simple. Thus, in our
way towards extracting the monodromy information for this example, we will be able to
focus mostly on the main ideas of the method. There is a down side, however: since we use
some amount of mathematical modelling in the construction of the monodromy matrices,
there are some subtleties which we can only point to when we deal with the generic case
or some different examples.

We label the sides of the target domain according to the pre-image points in the
following way: side t0 is assigned to the straight line segment [−∞,−1], side 1 corresponds
to the only circular arc in boundary, side ∞ labels the segment [1,∞], and, finally, side 0
represents the straight side z = ih, where h is the width of the channel, with the radios of
the circular side scaled to 1. This particular choice of labels is convenient given also the
choice of association between the vertices and pre-vertices that we use here. See fig. 10.

In terms of the linearly independent solutions y1(w), y2(w) of the Heun equation –
which is the differential equation we find when the Schwarzian equation is linearized –,
the conformal mapping f(w) becomes (NEHARI, 1952):

z = f(w) = y1(w)
y2(w) (3.1)

In order to establish the relevant monodromy matrices, we need to understand in which
way the solutions yi(w) are linearly combined as we perform an analytic continuation
around the singular points wi = 0, t, 1,∞. We define row vector Y (w) = (y1(w) y2(w))
and look for Yγwi (w) which is the result of an analytic continuation along a closed curve
γwi around the singular point wi:

Yγwi (w) = Y (w)Mwi (3.2)

where the monodromy matrixMwi implements the linear combination between the elements
of Y (w).

Notice that, according to fig. 10, on the side t0, we have the Schwarz function

S(z(w)) := z(w) = z(w) (3.3)
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Figure 10 – The sides of the quadrangle are labeled according to the identification −∞ =
f(0), −1 = f(t0), 1 = f(1), and ∞ = f(∞).

Thus, an analytic extension for z near side t0 becomes f̃(w) = St0(f(w̄)) = f̄(w) := f(w̄),
where St0 refers to the Schwarz function of the curve defined by side t0 and f̄(w) is known
as the Schwarz conjugate of the analytic function f(w). We can represent 3.3 in matrix
form: (

y1(w) y2(w)
)

=
(
y1(w) y2(w)

)
St0 where St0 =

1 0
0 1

 (3.4)

f̄(w) is continued, from below side t0, until side 1, where we have

S1(w) = 1
z(w) (3.5)

that comes from the equation for the unit circle in complex coordinates zz̄ = zS(z) = 1.
Again, the analytic continuation of from outside of the target domain to inside of it is
implemented by the Schwarz function of the curve that describes side 1. We rewrite the
equation above in matrix form:

(
y1(w) y2(w)

)
=
(
y1(w) y2(w)

)
S1 where S1 = i

0 1
1 0

 (3.6)

The factor of i above was included in the definition of S1 because it ultimately enforces
unimodular monodromy matrices – detS1 = 1, now. Notice that since Si are matricial
representations of Schwarz functions S(z), the inclusion of an overall factor i, or any other,
in the matricial representation does not change the corresponding S(z).

On side ∞, we find essentially the same equations that appeared for side t0. Thus,
we define the matrix S∞ = 1 in analogy to St0 . Moreover, on side 0 we calculate:

z̄ = z − 2ih (3.7)

which can be represented in matrix form:

(
y1(w) y2(w)

)
=
(
y1(w) y2(w)

)
S0 where S0 =

 1 0
−2ih 1

 (3.8)

The matrices Si implement the analytic continuation of yi(w) as linear combinations
thereof as we cross the regular parts of the boundary. Now, let us talk more specifically
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about the analytic continuation around a singular point. For instance, suppose we want
to analytically continue f(w) along a very small circle around t0. Insofar as Im(w) ≥ 0,
f(w) is analytic and well defined to start with, thus we only need to worry about the
analytic continuation of f(w) to the lower half w-plane, where there will be a branch cut
because of the regular singular point at t0, which corresponds to a branch point in the
solution. From the discussion in the previous section, we understand that the analytic
continuation from the upper half w-plane to the lower half one is implemented by the
complex conjugate of the Schwarz function S(z) of the (regular parts of the) curve that
describes the boundary of the target domain.

On side t0, we have(
y1(w) y2(w)

)
=
(
ȳ1(w) ȳ2(w)

)
St0 (3.9)

notice that the pre-image of side t0 is a segment of the real axis, thus w̄ = w. Also, ȳi(w)
is defined as ȳi(w) = yi(w̄). Similarly, on side 1:

Y (w) = Ȳ (w)S̄1 (3.10)

Thus, the monodromy matrix is obtained when we write yi(w) as a linear combination of
ȳi(w) across side t0 and then write ȳi(w) as a linear combination of yi(w) back across side
0. Therefore we expect

Yγt0 (w) = Y (w)Mt0 , Mt0 = S1S̄t0 (3.11)

where we used Ȳ (w) = Y (w)S̄−1
1 = Y (w)S1 on side 1. By the same token, we calculate

M0 =
 1 0

2ih 1

 , Mt0 = i

0 1
1 0

 M1 = −i
0 1

1 0

 M∞ =
 1 0
−2ih 1

 (3.12)

In the following section, we deal with generic circular arcs, thus it will be clear why we
use a normalization for the matrices Si. It turns out this normalization will also have to
account for the radius of the circular arc in the boundary of the polycircular arc domain.
Basically, when the construction is correctly set up, we expect the cosine of the angle be-
tween the sides to be directly related to the trace of the corresponding monodromy matrices.

3.2 General determination of the monodromy matrices
Let us start with two linearly independent solutions y1(w) and y2(w) of 4.3, arranged

as a (row) vector Y (w) = (y1(w) y2(w)). Analytic continuation along a closed loop γi
around a singular point wi brings Y (w) to

Yγi(w) ≡ Y (e2πi(w − wi) + wi) = Y (w)Mi,
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where Mi, called a monodromy matrix, implements a linear combination between the
elements of Y (w) due to the existence of a branch point at wi as a consequence of wi being
a regular singular point of 4.3. The elements of Mj will depend both on the parameters
of the equation as well as the choice of solutions. By picking a different set of linearly
dependent solutions one constructs a new vector Ỹ (w) related to the previous one by
Ỹ (w) = Y (w)F , where F ∈ GL(2,C). This change implies the transformation in Mi:

M̃i = F−1MiF.

Since the particular form of M̃ depends on the choice of F , we see that the set of
monodromy matrices {Mi} is defined up to conjugation. A similar transformation happens
if we deform γi inside the same homotopy class, because then the difference between the
contours would be a closed path inside which both functions are analytic. Therefore, for our
particular example, Mi, i = 0, t, 1,∞, generate a conjugacy class which is a representation
of the fundamental homotopy group of P1/{0, 1, t,∞}. This is so because of composition:
the monodromy matrix associated to two independent contours γi and γj is MjMi.

Given that the contour encompassing all singular points is contractible, we have
the following relation for the set of monodromy matrices

M∞M1MtM0 = 1. (3.13)

Also, because of the equivalence of sets of monodromy matrices by overall conjugation
described above, it is desirable to associate to the set of monodromy matrices the invariant
parameters:

2 cosπαi = TrMi, 2 cosπσij = TrMiMj. (3.14)

In our problem, we are given the geometrical representation of the domain we
set out to uniformise, and this representation allows us to compute the parameters
defined above. Remember that the uniformising map is given by the ratio of two linearly
independent solutions of 2.13, f(w) = y1(w)/y2(w), which are analytic except at the
singular points of their defining equation. Hence, Mi is related to the manner in which
f(w) transforms under an analytic continuation around f(wi). For our application, the
singular points are located at the boundary of the domain, which is the image of the real
line z = f(w = w̄), z̄ = f̄(w = w̄). A convenient description of the boundary is given by the
Schwarz funcion z̄ = S(z) (DAVIS, 1974). We will deal with the case where the boundary
consists of a connected sequence of circular arcs or straight lines {Ci}, a polycircular arc
domain for short. On each arc Ci, we have:

Si(z) := z = zi + r2
i

z − zi
= ziz + r2

i − |zi|2

z − zi
, (3.15)

where zi is the center of circle to which Ci belongs, ri is its radius, and the Schwarz
function Si(z) and its inverse function are defined on a open set containing a point in
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the interior of Ci. One can use this fact to continue z = f(w) past the real line: for w in
the lower half plane, f(w) is defined and analytic near the real line and Si(z) = Si(f(w))
agrees with z for w = w. This is the Schwarz reflection principle.

For a circular arc domain, Si(z) is given locally as a Möbius transformation such as
3.15. Abusing notation and using the same Si now to denote a 2× 2 matrix representing
the action of this Möbius transformation, the action of the Schwarz reflection principle on
the vector Y of solutions is

Y (w) = Y (w)Si, Si = i

ri

 zi 1
r2
i − |zi|2 −zi

 , (3.16)

with the prefactor chosen so that Si is unimodular, and SiSi = 1. If γi is a sufficiently
small closed curve containing zi, the monodromy picked by Y (w) as one follows the curve
counterclockwise is

Yγi(w) = Y (w)Si+1Si (3.17)

as we compose the continuation through Ci and back through Ci+1. This establishes the
monodromy matrix Mi around zi explicitly.

The definition Mi = Si+1Si, with S̄iSi = 1, automatically satisfies 3.13. From

Mi = 1
riri+1

 zizi+1 + r2
i − |zi|2 zi+1 − zi

zi(r2
i+1 − |zi+1|2)− zi+1(r2

i − |zi|2) zizi+1 + r2
i+1 − |zi+1|2

 (3.18)

we have
2 cosπαi = TrMi = zizi+1 + r2

i − |zi|2 + zizi+1 + r2
i+1 − |zi+1|2

riri+1
(3.19)

which are related to the internal angles πθi between the two segments meeting at zi by
θi = 1− αi. This explicit representation of the monodromy matrices allows us to write all
monodromy parameters as

2 cosπθi = −TrMi, 2 cosπσij = TrMiMj, (3.20)

where θi and σij will be called simple and composite monodromies, respectively. Notice
that by this approach to the determination of the monodromy matrices, they are found
automatically to be represented in the same basis.

The Schwarzian differential equation is invariant by Möbius transformations on
f(w). Thus it is required that neither θi nor σij do change by the action of such trans-
formations. It is straightforward to verify that the r.h.s. of 3.19 does not change with
scaling transformations z → γz, rotations z → eαiz, translations z → z + a, with γ, α ∈ R
and a ∈ C. Notice that the radii are affected only by scaling transformations in the form
r → γr. Hence, as a simple verification of the equation for θi in 3.20, given two circular
arcs C0 and C1, we can use Möbius transformations to map C0 to lie on the unit circle
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and z1 to lie on the real axis in the form z1 = x. Therefore, we find

2 cosπθ0 = −1 + r2
1 − x2

r1
(3.21)

In order for C0 to intersect C1, the condition −1 + r1 ≤ x ≤ 1 + r1 must be satisfied. In
turn this implies that −1 ≤ cosπθ0 ≤ 1 as long as there is an intersection between the arcs.
That 3.21 is correct it can also be verified through other differential/geometric methods.

We can always think of a straight line segment as a circular arc with infinite radius.
However, we will assume for now that at least one radius ri is finite. A slight technical
complication for the method outlined here arises when one considers domains consisting
solely of straight lines. For this case, the polycircular arc domain degenerates to a polygon
and the uniformizing map is known to be given by the classical Schwarz-Christoffel (SC)
formula. As it turns out, however, we will see that we will be able to extend the results for
generic polycircular arcs to the polygon case by considering a small curvature – large ri –
limit of the formulas above.

Not all monodromy parameters are independent: one can write an explicit parame-
terization for the monodromy matrices (e.g. (ITS; LISOVYY; PROKHOROV, 2018)) and
verify the Fricke-Jimbo relation:

J(θi, σij) = p0tp1tp01 + p2
01 + p2

1t + p2
01 + p2

0 + p2
t + p2

1 + p2
∞ + p0ptp1p∞

− (p0pt + p1p∞)p0t − (p1pt + p0p∞)p1t − (p0p1 + ptp∞)p01 − 4 = 0, (3.22)

where pi = 2 cos πθi and pij = 2 cosπσij. Therefore, from the set of three composite
monodromy parameters σij = {σ0t, σ1t, σ01}, only two are independent. This is the same
number of independent accessory parameters in the differential equation 2.13. The way the
monodromy data determine the accessory parameters is best visualized when the Heun
equation is written as a Fuchsian system, which is the subject of the next chapter.
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4 SOLVING THE ACCESSORY PARAME-
TER PROBLEM FOR QUADRILATER-
ALS

In this chapter, we present the method to solve the accessory parameter problem
arising in constructing conformal maps from the UHP onto a circular arc quadrilateral. The
Schwarz-Christoffel accessory parameter problem, relevant when all sides have zero curva-
ture, is also captured within our approach. The method exploits the isomonodromic tau
function associated with the Painlevé VI equation which allows for the use of asymptotic
expansions for the tau function in terms of tuples of Young diagrams. Thus, we can use
the method presented in the last chapter to extract the monodromy parameters from the
geometry of the target domain, plug this information into the tau function expansion, and
from the formal solution for the accessory parameters in terms of the tau functions, which
is the main theme of this chapter, we solve the Riemann Hilbert problem of determining
the Fuchsian equation given that we know the monodromy data, and hence the Schwarzian
differential equation is completely fixed.

When n = 4, the Schwarzian equation becomes:

{f(w), w} =
4∑
i=1

[
1− θ2

i

2(w − wi)2 + βi
w − wi

]
(4.1)

Let the pre-vertices be located at wi = 0, t0, 1,∞ and the internal angles at the
corresponding vertices be θiπ, with θi ∈ {θ0, θt0 , θ1, θ∞0}, and D stand for the polycircular
arc domain. As reviewed in the Introduction, the conformal mapping can then be written
as a ratio of solutions in the SL-Form, in reference to the SL(2,C) group – see 2.13. When
the number of regular singular points is four, the differential equation receives the special
name of Heun equation and is written according to:

ỹ′′(w) +
3∑
i=1

[
1− θ2

i

4(w − wi)2 + βi
2(w − wi)

]
ỹ(w) = 0 (4.2)

For the purpose of embedding this equation in a Fuchsian-like system in section 4.1, it is
very convenient to use instead a Heun equation to its so-called canonical form:

y′′(w) +
(

1− θ0

w
+ 1− θt0
w − t0

+ 1− θ1

w − 1

)
y′(w) +

[
q+q−

w(w − 1) −
t0(t0 − 1)K0

w(w − 1)(w − t0)

]
y(w) = 0

(4.3)
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where q± = 1− 1
2(θ0 + θt0 + θ1 ± θ∞0) and

K0 = −1
2

βt0 +
∑
k 6=t0

(1− θt0)(1− θk)
t0 − wk

 (4.4)

We note that ỹ(w) and y(w) are related by a “s-holomorphic transformation”: ỹ(w) =
φ(w)y(w), for φ(w) = w−θ0/2(w − 1)−θ1/2(w − t0)−θt0/2, and hence f(w) = y1(w)/y2(w)
can be computed with a pair of solutions from either 4.3 or 2.13. Hereafter, we generically
refer to both t0 and K0 in equation 4.3 as accessory parameters.

Apart from minor changes, the text of this chapter follows sections 3, 4, and 5 of
(ANSELMO et al., 2018a). In the first section of this chapter, we show how to embed the
Fuchsian differential equation in a Fuchsian system and how the accessory parameters are
determined in terms of Painlevé VI tau functions. After some considerations in section 4.2,
The viability of this new method is demonstrated by explicit examples in section 4.3.

Some of the calculations that are important in this chapter will be more explicitly
presented in chapters 6 and 7.

4.1 The Fuchsian system: isomonodromy and the tau function
As stated in the introduction, the second order differential equation has in general

less free parameters than the corresponding monodromy group. These extra parameters
can be included in the differential equation if cast as a matricial equation – called a
Fuchsian system. For the Heun equation with four regular singular points we have

∂wΦ(w) = A(w)Φ(w), Φ(w) =
 y1(w) y2(w)
u1(w) u2(w)

 , A(w) = A0

w
+ A1

w − 1+ At
w − t

(4.5)

where the 2 × 2 matrix Ai does not depend on w and the residue of A(w) at infinity
implies that A0 +At +A1 = −A∞, which can be diagonalized by a suitable transformation
Φ(w)→ GΦ(w). When all Ai’s are traceless we will refer to 4.5 as a Fuchsian system. One
can now define the action of monodromy matrices: let Φγi(w) be the result of an analytic
continuation of Φ(w) along a closed loop γi around the singular point wi of the Fuchsian
equation, so that we start with Φ(w) at an ordinary point and come back to it. Hence,

Φγi(w) = Φ(w)Mi.

Choosing a different starting point amounts to picking a monodromy matrix M̃i = FMiF
−1,

for some F ∈ GL(2,C).

Using 4.5 a second order ODE for y1(w) of the form

y′′ − (TrA+ (logA12)′)y′ + (detA− A′11 + A11(logA12)′)y = 0 (4.6)
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is then derived where the subscript 1 in y1 has been dropped, and Aij corresponds to the
ij-entry of A(w). A similar equation can be found for any other element of Φ(w). One can
further show that y1(w) and y2(w) – as well as u1(w) and u2(w) – are linearly independent
when the matrix Φ(w) is invertible.

Requiring that 4.6 has the same form as 4.3 imposes constraints on the number
of free parameters of A(w). Enforcing that A∞ is diagonal leads to the assumption that
A12(w) vanishes like O(w−2) as w →∞. Given the partial fraction expansion of A(w) we
find

A12(w) = k(w − λ)
w(w − 1)(w − t) , k ∈ C

so that the off-diagonal element A12 has a single zero, which we call λ. Some algebra and
a comparison with 4.3 reveals that TrAi = θi and detAi = 0. Then, one finds that 4.6 can
be written as

y′′ +
(

1− θ0

w
+ 1− θt
w − t

+ 1− θ1

w − 1 −
1

w − λ

)
y′+

+
(
κ−(1 + κ+)
w(w − 1) −

t(t− 1)K
w(w − t)(w − 1) + λ(λ− 1)µ

w(w − λ)(w − 1)

)
y = 0 (4.7)

where µ is the residue of A11(w) at w = λ, we chose A∞ = diag(κ−, κ+), with κ± =
−1

2(θ0 + θt + θ1 ± θ∞), and K is given by

K(λ, µ, t) = λ(λ− t)(λ− 1)
t(t− 1)

[
µ2 −

(
θ0

λ
+ θ1

λ− 1 + θt − 1
λ− t

)
µ+ κ−(1 + κ+)

λ(λ− 1)

]
(4.8)

This relation between K, µ and λ allows us to show that the singularity of the equation
4.7 at w = λ is apparent: the indicial exponents at this point are integers (0, 2) and 4.8
guarantees that there is no logarithmic behavior. The monodromy associated to a circuit
around w = λ is therefore trivial and the corresponding matrix is the identity Mλ = 1.

The relation between K, λ and µ also allows us to interpret a change of the
singularity position w = t as inducing a change in the parameters of 4.7 according to the
Hamiltonian system due to Garnier (GARNIER, 1912; GARNIER, 1917):

dλ

dt
= {K,λ}, dµ

dt
= {K,µ}, {f, g} = ∂f

∂µ

∂g

∂λ
− ∂f

∂λ

∂g

∂µ
(4.9)

or equivalently,
λ̇ = ∂K

∂µ
, µ̇ = ∂K

∂λ
(4.10)

where it can be checked that the second order differential equation for λ(t) is the
Painlevé VI equation (PVI) (FUCHS, 1907):

λ̈ = 1
2

(1
λ

+ 1
λ− 1 + 1

λ− t

)
(λ′)2 −

(1
t

+ 1
t− 1 + 1

λ− t

)
λ̇+

+λ(λ− 1)(λ− t)
2t2(t− 1)2

[
(θ∞ − 1)2 − θ2

0t

λ2 + θ2
1(t− 1)

(λ− 1)2 −
(θ2
t − 1)t(t− 1)

(λ− t)2

] (4.11)
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Thus, we see a deep relationship between linear Fuchsian equations and nonlinear integrable
differential equations (OKAMOTO, 1986a). In fact, the deformation promoted by 4.9 does
not change the monodromy parameters by casting them in terms of the matricial system.
Let the traceless matrices

Â(w, t) = Â0

w
+ Ât
w − t

+ Â1

w − 1 , B̂(w, t) = − Ât
w − t

where Âi does not depend on w, satisfy a zero curvature condition

∂tÂ− ∂wB̂ + [Â, B̂] = 0

In terms of Âi, this zero curvature condition is equivalent to the Schlesinger equations:

∂Â0

∂t
= 1
t
[Ât, Â0], ∂Â1

∂t
= 1
t− 1[Ât, Â1], ∂Ât

∂t
= 1
t
[Â0, Ât] + 1

t− 1[Â1, Ât] (4.12)

Due to the zero curvature condition, and the analyticity of the system, one can prove that
the monodromy parameters are preserved by the change in t. In particular, the eigenvalues
of Âi, related to the parameters θi, are conserved under the (isomonodromic) deformation.

For any solution of the Schlesinger equations, the 1-form ω = ∑
i<j Tr ÂiÂjd log(wi−

wj) is closed (JIMBO; MIWA; UENO, 1981). This allows for the definition of a tau function
as ω = d log τ̂ . In simpler terms:

d

dt
log τ̂(t) = 1

t
Tr Â0Ât + 1

t− 1 Tr Â1Ât (4.13)

The tau function is related to the parameters of 4.7 by

d

dt
log τ̂(t) = K + θ0θt

t
+ θ1θt
t− 1 −

κ−(λ− t)
t(t− 1) −

λ(λ− 1)µ
t(t− 1) (4.14)

Utilizing the Schlesinger equations 4.12, one can show that d log τ̂ /dt obeys a
differential equation: consider the function ζ̂(t) below and its derivatives

ζ̂(t) := t(t− 1) d
dt

log τ̂(t), ζ̂ ′(t) = Tr Â0Ât + Tr ÂtÂ1, ζ̂ ′′(t) = Tr[Â0, Ât]Â1

t(1− t) (4.15)

Any triple of traceless 2× 2 matrices obeys:

(Tr[Â0, Ât]Â1)2 = −2 det


Tr Â2

0 Tr Â0Ât Tr Â0Â1

Tr ÂtÂ0 Tr Â2
t Tr ÂtÂ1

Tr Â1Â0 Tr Â1Ât Tr Â2
1

 (4.16)

The algebraic formula above can be used to determine a differential equation for ζ̂(t)
and its derivatives. Remember that, in 4.5, the matrices Ai are not traceless. Defining
τ(t) := t

θ0θt
2 (t− 1)

θtθ1
2 τ̂(t) it is straightforward to show that

t(t− 1) d
dt

log τ(t) = (t− 1) TrA0At + tTrAtA1 = ζ̂(t) + (t− 1)θ0θt/2 + tθ1θt/2 (4.17)
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Then, using A0 + At + A1 = −A∞, eq. 4.16, in terms of ζ̂(t), becomes

(t(t− 1)ζ̂ ′′(t))2 = −2 det


θ2

0/2 tζ̂ ′ − ζ̂ ζ̂ ′ + θ2
0+θ2

t+θ2
1−θ

2
∞

4

tζ̂ ′ − ζ̂ θ2
t /2 (t− 1)ζ̂ ′ − ζ̂

ζ̂ ′ + θ2
0+θ2

t+θ2
1−θ

2
∞

4 (t− 1)ζ̂ ′ − ζ̂ θ2
1/2

 (4.18)

Equation 4.18 is known as the σ-form of the Painlevé VI equation (σ-PVI). Thus one
can interpret the solution of 4.18, or, equivalently, of the Schlesinger equations 4.12, as
representing a class of differential equations of the form 4.5 – and therefore of 4.7 whose
solutions have the same monodromy parameters. The set is parametrized by the position
of the singularity at w = t, and we will call it the isomonodromic deformation of the Heun
equation.

The task is now to view the Heun equation 4.3 as an element of a family of an
isomonodromically deformed system. It is clear from 4.7 and 4.8 that choosing

λ(t0) = t0, µ(t0) = − K0

θt0 − 1 (4.19)

one can arrive at the Heun equation in the form 4.3 – i. e., the equation without the
extra singularity term at w = λ – as a smooth limit of the isomonodromic family. One
can then think of these conditions as initial conditions for the Schlesinger equations, or,
equivalently, for the Painlevé VI system. By adjusting the parameters so that θt = θt0 − 1
and θ∞ = θ∞0 + 1, which implies that q−q+ = κ−(1 + κ+) one recovers the exact form of
4.3 from 4.7.

When written in terms of the tau function, these conditions define a well-posed
initial value problem for 4.18:

t(t− 1) d
dt

log τ(θi, σij, t)
∣∣∣∣∣
t=t0

= t0
θtθ1

2 + (t0 − 1)θ0θt
2 + t0(t0 − 1)K0

d

dt

[
t(t− 1) d

dt
log τ(θi, σij, t)

]∣∣∣∣∣
t=t0

= (θ∞ − θt)
θt
2

(4.20)

where the hat symbol has been dropped. The conditions above allow us to solve for the
accessory parameters of 4.3 in terms of the monodromy data. These conditions, along with
the differential equation 4.18 guarantee at least one solution for the accessory parameters,
due to general existence theorems for solutions.

Casting the accessory problem in terms of the tau function has more advantages.
First, the tau function can be shown to be an analytic function of t except at the singular
points t = 0, 1,∞. It is a function of the invariant monodromy data, and its existence can
be seen from 4.20 by standard theorems of existence of solutions to ODEs such as 4.18.
The full set of arguments of τ , namely

θi ∈ {θ0, θ1, θt0 − 1, θ∞ + 1}, σij ∈ {σ0t0 − 1, σ1t0 − 1, σ01}
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can readily be computed for our problem using the method presented in §3. Equations
4.20 are indeed generic and can be used for relating the monodromy data to the accessory
parameters for any Heun differential equation. To our knowledge, the explicit relation 4.20
was cast for the first time in (NOVAES; CARNEIRO DA CUNHA, 2014; CARNEIRO DA
CUNHA; NOVAES, 2015a). See (PIATEK; PIETRYKOWSKI, 2017) for a more recent
discussion of the many different connections and applications.

Before delving into solutions to our particular conformal mapping problem, let
us digress and consider an interpretation of 4.20. The first equation establishes the tau
function as the generating function for the canonical transformation relating the accessory
parameters to the monodromy data. The second condition can be understood from the
Toda equation for tau functions (OKAMOTO, 1986b):

d

dt

[
t(t− 1) d

dt
log τ(t)

]
− (θ∞ − θt)θt

2 = c
τ+(t)τ−(t)
τ 2(t) (4.21)

where c ∈ C is a t-independent constant; this establishes t0 as a zero of either τ+(t)
or τ−(t) where τ±(t) are defined analogously to τ(t) but for systems with the modified
monodromies

θ±i = {θ0, θ1, θt ± 1, θ∞ ∓ 1}, σ±ij = {σ0t ± 1, σ1t ± 1, σ01} (4.22)

The Toda equation can be obtained by direct construction from the Fuchsian system by
acting on the solution Φ(w) of 4.5 with a Bäcklund or Schlesinger transformation. In
section 7.1 we will explicitly show that τ+(t) is zero at t = t0, because of the condition
λ(t0) = t0.

4.2 Determination of accessory parameters
In view of the foregoing discussion, we propose a determination of the accessory

parameters appearing in 4.3 from the equations:

τ+(t0) = 0, K0 = K(t0), K(t) := d

dt
log τ(θi, σij, t)−

(θt0 − 1)θ1

2(t− 1) −
(θt0 − 1)θ0

2t (4.23)

where explicit expansions for τ(t) near t = 0 and t = 1 are available from (GAMAYUN;
IORGOV; LISOVYY, 2013) and are recorded here in section 2.5.1.

It is pointed out that the arguments – i. e., the monodromy data ρ – used in the
tau function 4.23 are those used in the Fuchsian system:

ρ = {θ0, θt = θt0 − 1, θ1, θ∞ = θ∞0 + 1, σ0t = σ0t0 − 1, σ1t = σ1t0 − 1, σ01}

which in turn guarantees that the equation for the first line of Φ(w) 4.7 reduces to 4.3
when λ = t. On the other hand, the monodromy data used for τ+(t) is related to ρ by a
shift:

ρ+ = {θ0, θt0 , θ1, θ∞0 , σ0t0 , σ1t0 , σ01}
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being actually the monodromy parameters for the solutions of 4.3. For completeness we
list the monodromy data for τ−(t):

ρ− = {θ0, θt0 − 2, θ1, θ∞0 + 2, σ0t0 − 2, σ1t0 − 2, σ01}

From the numerical point of view, three ways of solving 4.23 are available:

1. Numerical integration of the differential equation 4.18 satisfied by the tau function.
The dependence of the solutions on monodromy data is computed from the asymptotic
expressions given by Jimbo (JIMBO, 1982).

2. Algebraic evaluation of the Nekrasov sums 2.35. This is the method chosen for the
article (ANSELMO et al., 2018a) and in this thesis. This is not always the most
computationally efficient way to calculate the tau function expansion, but by the
time this research was started, the Nekrazov sums were the best that one could
have. Even so, the method is found to give overall better results than Howell’s
method (HOWELL, 1993) and the convergence is fast for important examples. More
significantly, it can yield an approximate analytical expression for relations satisfied
by the required accessory parameters, as we show in §4.3.

3. Evaluation of the Fredholm determinant expression for the tau function given
in (GRAVYLENKO; LISOVYY, 2016). This method has the advantages of the
combinatorial expansion along with faster convergence. Examination of the efficacy
of this method, specially in the case of Fuchsian systems with more than four regular
singularities, is the subject of ongoing work.

4.3 Examples
We now illustrate the application of the isomonodromy method by presenting

explicit examples. For comparison, and verification, we also give values of the accessory
parameters obtained using Howell’s method (HOWELL, 1993).

4.3.1 A generic polycircular arc domain

The mapping from the upper half plane to the interior of the region displayed
in Figure 11 is now calculated. To implement the new method, we must first find the
monodromy data according to 3.20 and 3.18. Results are recorded in Table 1, reported
correct to 10 digits. As stated above, the monodromy data consists of 7 parameters J(θi, σij)
satisfying the Fricke-Jimbo relation 3.22, which should vanish up to numerical tolerance.
The parameters θi correspond to the internal angles divided by π in subsection 4.3.1. The
composite monodromy parameter between consecutive pre-vertices, say 0 and t, may also
be the angle between two arcs since 2 cos(πσ0t0) = TrS1S4S2S1 = TrS2S4, and therefore
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Figure 11 – A generic polycircular arc domainD formed as the region enclosed by the circles
centred at −1.1, −i, 1 + 0.1i, i with the respective radii 0.8, 0.75, 0.9, 0.7.

if the arcs C2 and C4 intersect, πσ0t0 is the angle between them at the intersection. If they
do not intersect, σ0t0 will be a generic complex number.

Table 1 – Monodromy data extracted from the geometry of D in fig. 11

θ0 0.1827991846 σ0t0 1− 0.4304546489i
θt0 0.2869823004 σ1t0 1− 0.5385684561i
θ1 0.3673544015 σ01 0.9631297769 + 0.7221017400i
θ∞0 0.0853271421 J(θi, σij) 0

Using the monodromy data presented in Table 1, the asymptotic expansion reviewed
in subsection 2.5.1 is used to generate all relevant expressions in terms of tau functions.
From the second equation of 4.20, it is clear that t0 is a zero of the following function

L(t) := d

dt

[
t(t− 1) d

dt
log τ(t)

]
− (θ∞ − θt)θt

2

In fact, the zeros of L(t) come in pairs, each one corresponding to a zero of either τ+ or
τ−, in agreement with the Toda equation 4.21. Figure 12 shows plots of these functions to
illustrate the ‘factorization of the zeros’ of L(t).

The tau functions used here were generated using asymptotic expansions about
t = 0 since t0 is found to be closer to 0 than to 1. Table 2 reports the accessory parameters
t0 and K0 obtained by the new method to 10 digits of accuracy, in the sense that, using
usual numerical procedures, we can ensure that the difference between truncated tau
function expansions and the true values of tau function at the relevant points are of
order O(10−11) . Accessory parameters obtained from an implementation of the numerical
scheme (based on a completely different construction) proposed by Howell (HOWELL,
1993) are also reported. (Note that results using Howell’s method are also reported to 10
digits for comparison but only 4-6 digits of accuracy were expected.)
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Figure 12 – Plots of τ+(t) (top left), L(t) (top right), τ−(t) (bottom left) andK(t) (bottom
right). The smallest zero of L(t) is a zero of τ+(t) while the larger one is a
zero of τ−(t).

Table 2 – Accessory parameters for example 4.3.1.

New method Howell’s method
K0 −0.4364792362 −0.4365168488
t0 0.2086468690 0.2086251630

It should be emphasized that we are determining only the differential equation 4.1
satisfied by the mapping f(w). To determine f(w) completely, we must supplement 4.1
with (complex) initial conditions. Alternatively we notice that if f̃(w) satisfies 4.1, then so
will the function f(w), related to f̃(w) by a Möbius transformation,

f(w) = af̃(w) + b

cf̃(w) + d
,

a b

c d

 ∈ SL(2,C) (4.24)

Hence one can simply guess initial conditions for the Schwarzian differential equation
and find a posteriori a Möbius transformation that takes that solution to the one with
the correct vertex positions and curvatures. This, as a rule, is the simplest part of the
implementation. One only needs to pick an association f̃(wi)→ f(wi) for three different
points wi to fix the transformation 4.24 and, therefore, determine f(w).
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The desired zero is at t0 ' 0.209. However there is actually more than one zero of
τ+ in the interval (0, 1): to within the accuracy of our numerical method, we identify a
second zero close to t = 0 at t0 ' 1.0706× 10−7. The t0 and K0 extracted from this zero
yield an “isomonodromic” region in which the image of the real line follows one of the
circles that make up the boundary of the region once before continuing on to the next
piece of the boundary. The zero of interest is the one that yields a boundary that is free of
self-intersections.

In our numerical tests we noticed a greater discrepancy between the results of
Howell’s numerical procedure and those generated by the new method when t0 is very
close to either 0 or 1. This is due to the well-known crowding phenomenon associated with
the traditional approaches to solving for the accessory parameters in conformal mapping
problems. In the new method introduced here, this problem is bypassed yielding more
accurate solutions easily. Indeed, since the tau function expansion converges faster in such
circumstances, it is even desirable (for our method) that t0 is near to one of the critical
points. We explore ramifications of this observation again in example 4.3.3 to follow.

4.3.2 A circular meniscus spanning a rectangular groove
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Figure 13 – Left: schematic of a meniscus on the top of a rectangular groove. × indicates
the origin. Geometric arguments show that C = R cosπε and R = csc πε.
Right: plot of the accessory parameters as functions of ε when h = 2 (right).

This example involves a circular meniscus forming the upper side of a rectangular
groove as shown in Figure 13. When h → ∞, so that the two lower vertices merge at
infinity, this geometry can be described by a conformal mapping that is a hypergeometric
function. Such a mapping has been found by Morris (MORRIS, 2003) and used by him in
a heat transfer problem involving an evaporating meniscus. The following construction
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of the mapping for h < ∞ should be of use in generalizing his analysis to finite-depth
grooves.

The Schwarz functions for the separate boundary portions shown in Figure 13 are
as follows. On the bottom straight line edge we have z = z+2ih; on the left and right hand
straight line edges we have z = ±2− z. For a given ε we find, from simple trigonometry,
that

1
R

= sin πε, C = R cos πε = cotπε

Hence the upper circular arc is given by |z − iC|2 = R2 or

z = −iC + R2

z − iC
= −i cotπε+ cosec2πε

z − i cotπε

From these Schwarz functions the monodromy matrices can easily be determined following
the prescription given in §3.

To calculate t0, we look for the zero of τ+(t) that is closest to the midpoint of the
interval (0,1). Depending on whether the zero is in the first half of the interval – just a few
terms is enough to determine that – we may, in general, choose to use the expansion about
0 or 1 to speed up the evaluation of the tau function: here we find t0 falls in the interval
(1/2,1) as can be seen from the plot on the right of Figure 13. However, it should be noted
that we are not able to make use of the expansion of the tau function 2.35 around t = 1,
due to fact that 2.35 presupposes that the monodromy parameters satisfy the “generic
conditions”1 (JIMBO, 1982; GRAVYLENKO; LISOVYY, 2016):

σ0t0 /∈ Z, θ0 ± θt0 ± σ0t0 /∈ 2Z, θ1 ± θ∞0 ± σ0t0 /∈ 2Z (4.25)

Where the ± signs above are independent from each other. The first condition in 4.25 seems
a technical point on the poles and zeros of the structure constants (see 2.36), whereas the
last two conditions are related to the reducibility of the monodromy group (MAZZOCCO,
2002), because their violation is implied by the commutativity between the corresponding
single-point monodromy matrices. If any of these is violated, the tau function has to be
computed through a limiting procedure2. In this particular example, when we make the
exchange 0↔ 1 in the indices of the monodromy parameters in the relations above, and
at least one of the conditions 4.25 is not satisfied, and thus the expansion around t = 1 is
not defined.

This leads to the following question: if only one tau function expansion is available
and t0 is far from the point about which the expansion is performed, what is the best way
1 As explained in subsection 2.5.1, we could obtain an expansion about t = 1 by permuting the vertices

and the pre-vertices. In this case, t0 would fall in the interval (0,1/2) and an expansion about t = 0
would then not be possible.

2 We will investigate this in more detail in the next chapter.
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to proceed? Three possibilities are as follows. (i) A large number of terms in the available
expansion can be computed to produce accessory parameters of the desired accuracy. This
can be computationally expensive. (ii) The first few terms of the expansion are used to
generate initial conditions for the differential equation 4.18 (close to the expansion point)
and then the differential equation is integrated until the condition L(t) = 0 is satisfied to
some numerical tolerance. Of course, some problems may arise since L(t) may in general
have more than one zero, but one can always use a truncated τ+(t) expansion to quickly
distinguish the correct t0. We have found that this approach, using the differential equation
in tandem with the tau function expansion, is faster for some configurations. (iii) We can
use a perturbative approach based on altering the curvature of one (or more) of the sides
and taking a limit. This is explored in detail in example 4.3.4 below.

4.3.3 Semi-circular obstacle in an infinite channel
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Figure 14 – Streamlines for potential flow over a semi-circular obstacle, of unit radius,
in a channel of height h = 2. The accessory parameters are found to be
t0 = 3.904625 × 10−4 and K0 = −2.725462 × 102. Graphs of the accessory
parameters as functions of channel height h are also shown (here K0(h) < 0
and |K0| is plotted).

Unbounded domains are also amenable to our approach. Consider the problem of
finding the streamlines of uniform potential flow over a semi-circular obstacle in an infinite
channel; see figure 14. This geometry is ubiquitous in applications, and several authors
have considered the matter of constructing a conformal mapping to this “disc-in-channel”
geometry (RICHMOND, 1923; PORITSKY, 1960; CROWDY, 2016). Given the relevant
uniformizing map, the complex potential, and hence the streamlines, follow immediately
on use of standard potential theory methods.

The simple and composite monodromy data associated with this domain are
θ0 = θ∞0 = 0, θt0 = θ1 = 0.5 with σ0t = π−1 cos−1(−h), σ1t = 0 and σ01 = π−1 cos−1(h).
Figure 14 shows t0 and K0 as functions of the channel width h (for fixed obstacle radius).
Again, we only have available a tau function expansion about t = 0, but, in contrast to the
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previous example, this presents no practical problem because t0 is close to zero. For the
same reason, just a few terms in the tau function expansion are enough to find accurate
approximations to t0 and K0.

It should be noted that direct methods of integration based on 2.10 in such
highly elongated regions are known to be subject to numerical inaccuracies (which can be
mitigated, for example, by introducing an intermediate transformation to a ‘strip’ domain
(HOWELL, 1993)). Such complications are avoided by our new approach. Moreover, if
t0 is close to one of the singular points at 0 or 1 this can be of great advantage in our
approach in that only a few terms (often only the first term) in the expansion of the tau
function are needed. For instance, let us fix h = 2. It turns out we can neglect all the
terms in the expansion for the tau function coming from the conformal blocks except for
the first B∅,∅ = 1, then use only the two most contributing terms in the expansion and still
produce good approximations. To lowest order in t0, the relevant terms of τ+(t) comprise
only the n = 0,−1 terms appearing in (2.35) and, for each n, only the coefficients in B
depending on Young diagrams of zero length. We then find the two term approximation:

τ+(t) '
∑

n=−1,0

G4
(

5
4 + 1

2(σ + 2n)
)

G(1 + (σ + 2n))
G4

(
5
4 −

1
2(σ + 2n)

)
G(1− (σ + 2n))

h2nt(4(σ+2n)2−1)/16(1− t)1/8

(sin(πσ)− 1)2n

(4.26)
where G(z) is the Barnes function, σ = σ0t0 and h is the height of the channel. τ+(t) = 0,
with t ∈ (0, 1), implies

G4
(
σ
2 + 5

4

)
G4

(
5
4 −

σ
2

)
G(1− σ)G(σ + 1) +

G4
(
σ
2 + 1

4

)
G4

(
9
4 −

σ
2

)
(sin(πσ)− 1)2t1−σ

h2G(3− σ)G(σ − 1) ' 0 (4.27)

Moreover, the use of relations G(1 + x) = Γ(x)G(x) and Γ(1 + x) = xΓ(x) yields:

t1−σ0 ' 1 + sin(πσ)
1− sin(πσ)

Γ4(1
4 + 1

2σ)
Γ4(5

4 −
1
2σ)

Γ2(1− σ)
Γ2(σ − 1) , h = − cos(πσ)

Using this approximation, the zero of τ+(t) for h = 2 is t0 ' 3.905353 × 10−4. To
approximate K0, it is sufficient to retain only one term in the expansion of τ(t) yielding

K0 = d

dt
log τ(θi, σij, t)

∣∣∣∣∣
t=t0
− (θt0 − 1)θ1

2(t0 − 1) −
(θt0 − 1)θ0

2t0
' (σ − 1)2 − (θ0 + θt0 − 1)2

4t0

For h = 2, K0 = −2.725292 × 102. See Appendix D for additional plots regarding this
example.

This is evidence that, for certain geometries, the new method can be very simple to
apply and allows the accessory parameters to be determined as zeros of simple analytical
expressions. Remarkably, these particular instances arise precisely when the usual numer-
ical conformal mapping constructions face difficulties due to the well-known crowding
phenomenon.
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A comment on the plot in Figure 14: Once we know the accessory parameters,
we should determine the Möbius transformation 4.24 that correctly maps pieces of the
real line to the segments of the boundary of the channel in Figure 14. Although it is
not necessary to use an intermediary plane to calculate the accessory parameters, it is
convenient to use one, as indicated by (HOWELL, 1993), to generate the plot. This
happens because we can easily map an infinite strip to the UHP with an exponential map.
Thus, we can map the upper boundary of the infinite strip to the upper boundary of the
channel; analogously, we map the lower boundary of the strip to the lower boundary of the
channel. This simplifies the determination of 4.24 and the streamlines inside the channel
become just the image of curves with constant imaginary part inside the strip since these
are the streamlines of a uniform flow inside an infinite strip.

4.3.4 The Schwarz-Christoffel mapping to a rectangle
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Figure 15 – A “deformed” rectangle where the sides are replaced by circular arcs making
angle πε with the undeformed straight sides. Also shown are graphs of t0(ε)
and K0(ε) for the “deformed” rectangle (with h = 1.3) as a function of ε.

All the examples so far have involved “circular-arc” polygons where at least one
side of the quadrilateral has non-zero curvature. A polygon, whose sides are all straight
lines (zero curvature), is a special case and the conformal mapping can be constructed
using the classical Schwarz-Christoffel (SC) formula (DRISCOLL; TREFETHEN, 2002;
CROWDY, 2005). In the theory of SC mapping it is not usual even to consider second
order Fuchsian differential equations. We now show, however, that there is significant
advantage in doing so by approaching the case of a polygon as a “zero curvature limit”.

Consider the conformal mapping to the interior of a rectangle. It can be shown
that the matrices Si associated to straight sides are lower triangular, which in turn implies
that all monodromy matrices have the same form. Moreover, the elements in the diagonal
of Mi, the only ones which contribute to the monodromy data in this case, do not depend
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on the aspect ratio of the rectangle. Thus, the association ρ→ {t0, K0} is spoiled since t0,
at least, must depend on the aspect ratio3. Therefore, in the case of polygons, the new
method can not be applied directly.

However, we have found that a small curvature perturbative approach can produce
the required values of the SC accessory parameters. The key idea of this small curvature
perturbation is illustrated in Figure 15. When we make ε = 1× 10−12, where ε measures
the deformation from zero curvature, the new method relates the aspect ratio h to t0
in excellent agreement with that produced using the usual SC theory (which leads to a
formula for the relationship between these parameters (ABLOWITZ; FOKAS, 2003) using
elliptic integrals).4 In addition, numerical investigations regarding the new method allowed
for the discovery of a special class of conformal mappings having the same accessory
parameters: t0 = 0.5 and K0 = 0. They represent quadrilaterals illustrated by Figure 15,
with h = 1 and 0 < ε ≤ 1/4. Notice that when ε = 1/4, all internal angles of the target
domain vanish.

This evidence also motivates the conjecture: the zero curvature limits of t0(ε) and
K0(ε) as ε→ 0 exist and precisely determine the accessory parameters associated to the
rectangle. A more general conjecture (for any polygon) is expected to hold.

It is important to point out that, in examples 4.3.2 and 4.3.3, slight deformations
of the straight sides could have been used to overcome the potential difficulty associated
with the lack of availability of an expansion of the tau function about one of the singular
points.

This novel determination of the accessory parameter for SC mappings deserves
more careful investigation. In terms of monodromy, SC domains are characterized by the
additive property of the monodromies σij = θi + θj, along with Fuchs relation ∑i θi = 0
(mod 2). The particular fact that σ0t = θ0 + θt means that i) the s parameter 2.38 involved
in the tau function expansion 2.35 diverges; and ii) there are poles in the Barnes function
in 2.36. A careful limit can be taken yielding a finite result for the tau function – see, for
instance, eq. (1.9)’ in (JIMBO, 1982). The limit can be compared with known results for
the case of rectangles, where it is established for some time that the accessory parameter
t0 is given in terms of a ratio of elliptic functions (NEHARI, 1952). This zero curvature
limit of the tau function is the subject of the next chapter.

3 K0 = 0 for any usual polygon with four sides. The corresponding tau function also yields this value as
the contributions from the conformal blocks in the case σij = θi + θj is zero (NOVAES, 2016).

4 See also Appendix D for extra plots of the functions τ±(t), K(t), and L(t).
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5 SCHWARZ-CHRISTOFFEL ACCESSORY
PARAMETER VIA ISOMONODROMY

In this chapter, we exploit monodromy features associated to conformal mappings
from the UHP to polycircular arc domains in order to determine, as a “zero curvature”
limit, the accessory parameter of Schwarz-Christoffel mappings to four-sided polygons.

We show that this new method generates the well known result for the aspect
ratio of rectangles as a function of the accessory parameter while the relevant tau func-
tion assumes a closed form in terms of classical special functions – the Picard solution
(MAZZOCCO, 2001; GAMAYUN; IORGOV; LISOVYY, 2012). We then use asymptotic
expansions to calculate – also through a “small curvature” procedure – the conformal
modules of trapezoids and compare the results with tabulated values. In the end, we show
how the method can be used in a systematic way to produce asymptotic formulas for the
conformal module of the trapezoids as a function of its aspect ratio.

As reviewed in section 2.2, the Schwarz-Christoffel mapping z = f(w) is calculated
as a solution of (CHRISTOFFEL, 1867):

df(w)
dw

= γ
n∏
i=1

(w − wi)θi−1 (5.1)

where γ is an unknown complex constant and wi is the position of the pre-vertex associated
to zi. Changing γ essentially alters f(w) by a rotation and a scaling transformation, thus
its determination is not usually difficult. However, while three wi’s can be chosen at will,
the other n − 3 wi’s depend on the geometry of the target domain in a nontrivial way.
Except for very special cases, e.g. the target domain is a rectangle, one cannot solve
5.1 in terms of generic wi’s. The determination of the unknown wi’s is the so called the
Schwarz-Christoffel accessory parameter problem.

Figure 16 – Scheme of a Schwarz-Christoffel conformal mapping from the UHP to the
interior of a polygon with n vertices.
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Of course, the other approach to calculate Schwarz-Christoffel mappings was already
explored in the last chapter: indeed, z = f(w) satisfies the Schwarzian differential equation

{f(w), w} :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
n∑
i=1

[
1− θ2

i

2(w − wi)2 + βi
w − wi

]
(5.2)

where θiπ are the interior angles at each vertex zi = f(wi) in the target domain D, wi are
the positions of the pre-vertices, and the accessory parameters βi are easily calculated,
in this case, as a function of wi. We just need to derive 5.1 with respect to w and insert
the result into 5.2 (NOVAES, 2016). The Schwarzian differential equation above is thus
related to the Heun equation:

y′′(w) +
(

1− θ0

w
+ 1− θt0
w − t0

+ 1− θ1

w − 1

)
y′(w)+[

q+q−
w(w − 1) −

t0(t0 − 1)K0

w(w − 1)(w − t0)

]
y(w) = 0 (5.3)

where q± = 1− 1
2(θ0 + θt0 + θ1 ± θ∞0) and

K0 = −1
2

βt0 +
4∑

k 6=t0

(1− θt0)(1− θk)
t0 − wk

 (5.4)

However, usually it is not necessary to talk about second order differential equa-
tions to deal with Schwarz-Christoffel mappings because both q+ and K0 vanish, and thus
the relevant differential equation reduces to 5.1, and t0 is the only unknown (accessory)
parameter. We intend to show that it is advantageous to rewrite the Schwarz-Christoffel
parameter problem as the problem of finding the accessory parameters K0 and t0 for a
polycircular arc quadrilateral with one or more circular sides, then use a limit procedure
to recover straight sides from the curved ones, and finally obtain the Schwarz-Christoffel
accessory parameter.

In the following sections, we discuss what makes Schwarz-Christoffel mappings
special from the monodromy perspective, we apply the isomonodromy method to obtain
the accessory parameter for some four-sided polygons. First, the well known closed formula
for the aspect ratio of a rectangle in terms of the position of the nontrivial pre-vertex is
reproduced. Then, we discuss the determination of conformal modules of trapezoids that
received some attention in the past (PAPAMICHAEL; STYLIANOPOULOS, 2010).

5.1 SC mappings: the isomonodromy framework
The method to calculate the accessory parameters of conformal mappings to

polycircular arc domains exposed in the last section cannot be directly applied in the case
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that all sides of the quadrilateral are straight because the monodromy data then do not
vary with the aspect ratio of the polygons. To show this, we first calculate the matricial
representation of the Schwarz functions associated with each straight side. They are given
by

Sk = ±
 e−παki 0

2i(xk sin(παk)− yk cos(παk)) eπαki

 (5.5)

where παk is the angle between the straight line and the positive real axis, with the
convention −1/2 ≤ αk ≤ 1/2, and zk = xk + yki is a point on the straight line of which a
segment is the side k of the polygon. Notice that if we choose a different point z̃k = x̃k+ ỹki
on the same curve, then , by the definition of the tangent of παk, we have:

sin(παk)
cos(παk)

= yk − ỹk
xk − x̃k

(5.6)

which implies that

xk sin(παk)− yk cos(παk) = x̃k sin(παk)− ỹk cos(παk) (5.7)

Therefore, 5.5 is invariant by the choice of zk on the straight line.

When using the Sk defined by 5.5, some care must be taken to ensure that the
internal angles do correspond to the simple monodromy parameters times π. This extra
care amounts to choosing the minus sign in front of the r.h.s of 5.5 for some values of k,
but always respecting 3.22.

Because of the form of the Si matrices, the monodromy matrices are lower triangular
– the monodromy group is then reducible (MAZZOCCO, 2002) – and the composite
monodromies are trivial:

σij = θi + θj (5.8)

Notice that a quick inspection of 3.16 indicates that Si is lower triangular when the radius
of the circular arc goes to infinity, however it is not straightforward to see from the same
equation that the lowermost off-diagonal term is finite as it is more clear to see from 5.5.

Therefore, the monodromy data associated to polygonal geometries are independent
of their aspect ratio. Remember that, for Schwarz-Christoffel mappings, the aspect ratio
is controlled solely by t0 since K0 = 0. Thus, we are not able to directly determine
t0 = t0(θi, σij) with the new method.

On the other hand, we also encounter problems to use the tau function expansion
when at least one of the conditions below is satisfied:

σ0t0 = 0,±1, θ0 ± θt0 − σ0t0 ∈ 2Z,

θ0 ± θt0 + σ0t0 ∈ 2Z, θ1 ± θ∞0 − σ0t0 ∈ 2Z, θ1 ± θ∞0 + σ0t0 ∈ 2Z (5.9)
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Figure 17 – The rectangle is deformed in such a way as to preserve the internal angles as
π/2 and perturbe only the composite monodromies. The angle between the
circular sides and the original straight sides of the rectangle is always πε.

Notice that we hit at least two of the conditions above (the second one on top and the
last one) because of 5.8 and ∑4

i=1 θi = 2. Hence we have one more reason to treat the case
of Schwarz-Christoffel mapping as a very special one.

Let ε be a parameter that controls the curvature of the circular sides, just as in
the last chapter. Since K0 = 0, the relevant equation according to 4.23 – the solution to
the Schwarz-Christoffel accessory parameter problem for quadrilaterals – becomes

lim
ε→0

τ+(t0, ε) = 0 (5.10)

In the following sections, we explore this limit in the case of conformal mappings to
rectangles and trapezoids.

5.2 Conformal mappings to rectangles and Picard solutions of PVI
The aspect ratio of the rectangle with vertices at 0, 1, 1 + ih, ih, illustrated by

figure 17 when ε = 0, is determined by the theory of Schwarz-Christoffel mappings as one
integrates the differential equation

dz

dw
= γw−1/2(w − t)−1/2(w − 1)−1/2 (5.11)

with the identification: z(0) = 0, z(t) = 1, z(1) = 1 + ih, z(∞) = ih. The aspect ratio is
found to be

h = K(1− t)
K(t) where K(t) ≡

∫ 1

0

dξ√
(1− ξ2)(1− tξ2)

(5.12)

In the paper (ANSELMO et al., 2018a) the authors introduced a “small curvature”
approach to calculate approximations for the accessory parameters associated with confor-
mal mappings to rectangles. The idea was to substitute the straight sides by curved ones
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with a fixed very small curvature, indeed producing good approximations for t0, K0 and
thus to the relation 5.12. To investigate further this kind of mapping, one notices that
the tau function expansion has a closed form for the particular set of monodromy data
involved.

Whenever all simple monodromies θi = 1/2, the the relevant PVI solutions are of
the Picard Type (GAMAYUN; IORGOV; LISOVYY, 2012). This happens because the
elements in the tau function expansion have closed forms as well: B becomes the conformal
block of the Ashkin-Teller model in conformal field theory (ZAMOLODCHIKOV, 1986):

B(θi, σ + 2n; t) = (24q)
(σ+2n)2

4

t
1
8 (1− t) 1

8ϑ3(0|τ ′)
(5.13)

where the Jacobi theta function ϑ3(z|τ ′), q, and τ ′ are respectively defined as

ϑ3(z|τ ′) =
∑
n∈Z

eiπn
2τ ′+2iπnz, q = eiπτ

′
, τ ′ = iK(1− t)

K(t) (5.14)

The Fricke-Jimbo relation 3.22 is used to show that cos(πσ01) = − cosπ(σ0t ∓ σ1t), which
in turn implies s = −e±πiσ1t in 2.38 Moreover, the structure constant in 2.36 can be cast
into

C(θ0, θt, θ1, θ∞, σ0t + 2n) = (−1)nπA3e−
1
4 2− 1

12

cos σπ
2

2−(σ+2n)2 (5.15)

where we used the duplication relations for both the Barnes function G(x) (VARDI, 1988)
and the gamma function (attributed to Legendre), respectively:

G(2x) = (Ae−1/12)−322x2−2x+5/12(2π)−x+1/2G2(x)G2(x+ 1/2)Γ(x),

Γ(2x) = π−1/222x−1Γ(x)Γ(x+ 1/2)
(5.16)

with the Glaisher-Kinkelin constant A defined as

A = 21/36e1/12

π1/6G
2
3 (1/2)

≈ 1.2824271291 (5.17)

When these pieces are put together, the tau function expansion becomes

τ+
Picard(t) = const · qσ

2
0t/4

t
1
8 (t− 1) 1

8

ϑ3 (σ0tτ
′/2± σ1t/2|τ ′)
ϑ3(0|τ ′) (5.18)

Notice that the tau function above is indeed a “tau-plus” because there is no shifted
monodromy parameter in its definition; θi is an internal angle divided by π. Hence, to
calculate t0, as a zero of τ+(t), the composite monodromies σ0t and σ1t are all we need.

The monodromy matrices are calculated from the Si matrices:

S0 =
sin(πε)− cos(πε)i 2 sin(πε)i/h

0 sin(πε) + cos(πε)i

 ,
St =

cos(πε) + sin(πε)i 2 sin(πε)
0 cos(πε)− sin(πε)i


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where S0 is associated with the leftmost circular arc in the boundary of the deformed
rectangle while St is assigned to the side at the bottom. See figure 17 (right). Thus,
M0 = StS̄0 and we associate the other Si to the remaining sides of the deformed rectangle
in the counterclockwise sense:

S1 =
sin(πε) + (cos(πε) + 2 sin(πε)/h)i 2 sin(πε)i/h

−2i(cos(πε) + sin(πε)/h) sin(πε)− (cos(πε) + 2 sin(πε)/h)i


S∞ =

− cos(πε) + (2h+ i) sin(πε) 2 sin(πε)i
2hi(cos(πε)− h sin(πε)) − cos(πε) + (2h− i) sin(πε)


From the monodromy matrices and the definition of the monodromy data 3.20, to

lowest order in ε, we find:

σ0t = 1− 2
√

2
πh

√
εi+O(ε3/2), σ1t = 1− 2

√
2h
π

√
ε+O(ε3/2) (5.19)

The calculation of the root of τ+
Picard(t), which determines the accessory parameter

t0, boils down to finding the root of the Jacobi theta function

ϑ3

(
σ0tτ

′ ± σ1t

2

∣∣∣∣∣ τ ′
)

= 0 (5.20)

Its roots are given by

z = τ ′

2 ±
1
2 +mτ ′ + n, where m,n ∈ Z (5.21)

To see this, one can first show that ϑ3 (z + τ ′/2 + 1/2| τ ′) is an odd function of z, implying
ϑ3 (τ ′/2 + 1/2| τ ′) = 0, and then show that ϑ3 (z +mτ ′ + n| τ ′) is proportional to ϑ3 (z| τ ′),
so that ϑ3 (τ ′/2 + 1/2 +mτ ′ + n| τ ′) = 0. Because of the integer n, we can actually
determine the roots of ϑ3 (z| τ ′) with any sign in the r.h.s. of 5.21.

Thus, in order to solve 5.20, we encounter z = τ ′

2 ±
1
2 + α, with

α =
√ 2

πh

√
εi+O

(
ε3/2

) iK(1− t)
K(t) ±

√2h
π

√
ε+O

(
ε3/2

) = 0 (5.22)

where we used the definition of τ ′ in 5.14 and that ε is very small, in which case the integers
m,n should equal zero. Further manipulations yield, in the limit ε→ 0, the relation

h = ±K(1− t)
K(t) (5.23)

It is usual, when using the Schwarz-Christoffel formulation, to choose a positive h. This
choice fixes the sign above and the one in 5.18. Therefore, we reproduce the formula 5.12
now using the isomonodromy method.
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5.3 Conformal modules of trapezoids
Papamichael and Stylianopoulos (PAPAMICHAEL; STYLIANOPOULOS, 2010)

present an overview of the theory of conformal modules of quadrilaterals and their
applications, such as the determination of resistance of conductors, capacitance, and the
solution of steady state diffusion problems, or Laplacian problems with mixed boundary
values (more broadly).

The conformal module of a rectangle is given by its height h whenever the size
of its basis is scaled to one. The conformal module m(Q) of a generic quadrilateral Q is
defined as the conformal module of a rectangle that can be conformally mapped to Q as
long as each side of the rectangle is mapped to a side of the quadrilateral.

Let ΩL(ε) stand for the deformed trapezoid in fig. 18, where πε is the angle between
the circular side and a straight one that in the undeformed trapezoid, and also define
ΩL = ΩL(0).

In general, to calculate m(ΩL), one maps the interior of the trapezoid to the UHP
while the vertices of the trapezoid are mapped to the points 0, tL, 1,∞, and then use the
Schwarz-Christoffel theory to map the UHP to a rectangle, with a particular association
between 0, tL, 1,∞ and the vertices of the rectangle. Hence, the conformal module becomes

m(ΩL) = K(1− tL)
K(tL) , where K(t) ≡

∫ 1

0

dξ√
(1− ξ2)(1− tξ2)

(5.24)

Thus, in order to find m(ΩL), the most important task is the determination of the pre-
vertex position tL – a task the new method accomplishes without the need to calculate
the image of other points by f(w).

In (PAPAMICHAEL; STYLIANOPOULOS, 2010), the authors present tables of
conformal modules of the trapezoids in figure 18 for different values of L and different
methods. These results are reproduced here in tables 3 and 4 below together with the
values provided by the isomonodromy method. We carry out such analysis as an exercise
to verify the robustness of the new method.

5.3.1 Small curvature approach

As it was indicated in section 5.1, when the quadrilateral has only straight sides,
the corresponding monodromy matrices do not depend on the aspect ratio of the polygon.
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Figure 18 – Deformed trapezoid with conformal module m(ΩL). z = f(w) maps the UHP
to the interior of ΩL and we assign the association 0 = f(0), 1 = f(tL),
1 + iL = f(1), and i(L− 1) = f(∞).

Specifically in the case of the deformed trapezoid in fig. 18, the monodromy matrices are

M0 =
−ie−πεi 2i sin(πε)

L−1

0 ieπεi

 , Mt =
−i 0

2i i

 , M1 =
√

2
 1+i

2 0
i− L −1−i

2

 , (5.25)

M∞ =
 (1−i)(cos(πε)−(2+i) sin(πε))√

2
(1+i)

√
2 sin(πε)

L−1

−
√

2(L− 1)e−πεi (1+i)(cos(πε)−i sin(πε))√
2

 (5.26)

Notice that when ε = 0, the monodromy matrices become lower triangular and neither
their traces nor the traces of the composite monodromies depend on L. Yet, if ε > 0 the
monodromy data becomes L-dependent: the new M0 is enough to produce L-dependent
composite monodromies σ0t and σ01.

When the “perturbation angle” επ = 10−8π, the isomonodromy method produces
m(ΩL) in good agreement with the standard results – which are regarded as “exact” values
in (PAPAMICHAEL; STYLIANOPOULOS, 2010). See table 3. Of course, to improve
the accuracy in the calculation of the conformal modules, we need to choose ε as close
to zero as possible, but attempts to use smaller perturbation angles fail to improve the
accuracy of m(ΩL). Rather, if we choose, for instance, ε = 1.0× 10−12, even the real part
of tL becomes completely wrong. As it will be clearer in the next subsection, this happens
because some terms in the tau function expansion depend on negative powers of ε. Hence,
if the curvature chosen is too small, it becomes hard to treat the expansion numerically.
However, if we do not fix the value of ε, then our investigations indicate that the negative
powers in ε cancel each other in the tau function expansion, as we discuss in the next
section.
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L Standard values small curvature approximation
2.0 1.279 261 571 171 1.279 261 584− 6.09× 10−7i
2.5 1.779 359 959 478 1.779 359 981− 4.53× 10−6i
3.0 2.279 364 207 968 2.279 364 254 + 1.20× 10−6i
4.0 3.279 364 399 489 3.279 364 483 + 2.08× 10−6i
5.0 4.279 364 399 847 4.279 364 573 + 6.95× 10−7i
6.0 5.279 364 399 85 5.279 364 638− 5.52× 10−6i
7.0 6.279 364 399 85 6.279 364 694 + 5.52× 10−6i
8.0 7.279 364 399 85 7.279 364 776
9.0 8.279 364 399 85 8.279 365 065
10.0 9.279 364 399 85 9.279 125 930
12.0 11.279 364 399 85 11.278 308 7290

Table 3 – Comparison between the standard values for the conformal modules (PA-
PAMICHAEL; STYLIANOPOULOS, 2010) and the ones produced by the
isomonodromy method in conjugation with a small curvature approximation

5.3.2 Zero curvature approach

Differently from the “small curvature” approach, the implementation of the zero
curvature limit depends on the help of a computer algebra system (such as Mathematica) to
calculate an expansion in ε for the tau function up to order O(ε0). The ε-independent tau
function expansion that emerges from this process is then used to calculate the accessory
parameters. The advantage of this approach is that it produces more accurate results. The
drawback here being that the implementation is slower than in the previous approach.1

To investigate how the tau function depends on ε, we can look at the first few
terms of its expansion. Let τn1,n2,...;m stand for the terms in the expansion that come from
n = ni (in the first summation in 2.35) with the sum over Young tableaux being up to
diagrams of size m. Furthermore, we use the O(ε) monodromy data:

θ0 = 1
2 − ε, θt = 1

2 , θ1 = 1
4 , θ∞ = 3

4 − ε

σ0t = 1− 2i√
π(L− 1)

√
ε, σ1t = 3

4 , σ01 = 3
4 + 3− (1− 2i)L

L− 1 ε (5.27)

The Schwarz-Christoffel accessory parameter is calculated in the limit ε→ 0. Thus, it is
interesting to expand the tau function in ε. Just to illustrate the procedure, we can verify
what happens to the first few terms of the tau function expansion:

τ+
−1;1 = −

4
√
eG

(
1
4

)
G
(

5
4

)
16
√

1− t 8
√
t(t+ 8)

8 211/12A3
√

1
π−πL
√
ε

+
4
√
eG

(
1
4

)
G
(

5
4

)
16
√

1− t 8
√
t

16 211/12A3

×(−π(4L− 1)(t+ 8)− 8t+ 10(t+ 8) log(2)− 2(t+ 8) log(t)) +O
(√

ε
)

1 There is another route of action: One can derive a tau function expansion valid only in this “zero
curvature” limit. We are currently investigating this possibility.
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where A stands for Glaisher-Kinkelin constant. Also:

τ+
0;1 =

4
√
eG

(
1
4

)
G
(

5
4

)
16
√

1− t 8
√
t(t+ 8)

8 211/12A3
√

1
π−πL
√
ε

+
4
√
eG

(
1
4

)
G
(

5
4

)
16
√

1− t 8
√
t

16 211/12A3

× (−8t+ π(t+ 8) + 10(t+ 8) log(2)− 2(t+ 8) log(t)) +O
(√

ε
)

Notice that the log t arises in the two expressions above because of the expansion in ε for
the following term in the tau function expansion:

t((σ0t+2n)2−θ2
0−θ

2
t )/4 =t

(
2n+1− 2√

π(1−L)

√
ε

)2
−( 1

2−ε)
2
− 1

4

=t4n2+4n+ 1
2

1− 4(2n+ 1) log(t)√
π(1− L)

√
ε

+O(ε)

In fact, Jimbo (JIMBO, 1982) showed that the PVI tau function asymptotics involves
terms proportional to log t when σ0t = 0.

Hence, from τ−1;1 and τ0;1 above, it is clear that τ−1,0;1 has no terms with negative
powers in ε. We calculate:

τ+
−1,0;1(t) =

4
√
eG

(
1
4

)
G
(

5
4

)
16
√

1− t 8
√
t

8 211/12A3 (−π(2L− 1)(t+ 8)

− 8t+ 10(t+ 8) log(2)− 2(t+ 8) log(t)) +O
(√

ε
) (5.28)

In fact, the cancelation of negative powers in ε is observed when we include more terms:
the truncated tau function expansion is well behaved in the limit ε→ 0 if the contributions
from different values of n come in pairs; whenever we include terms with n = ni in the
expansion, the terms with n = −ni − 1 must be included to cancel the negative powers in
ε.

L Standard values τ+
−1,0;0 τ+

−2,−1,0,1;5

2.0 1.279 261 571 171 1.227 134 848 2 1.279 254 238 618
2.5 1.779 359 959 478 1.769 614 213 1 1.779 359 958 525
3.0 2.279 364 207 968 2.277 377 245 7 2.279 364 207 968
4.0 3.279 364 399 489 3.279 278 942 8 3.279 364 399 489
5.0 4.279 364 399 847 4.279 360 707 6 4.279 364 399 847
6.0 5.279 364 399 85 5.279 364 250 9 5.279 364 410 355
7.0 6.279 364 399 85 6.279 364 392 7 6.279 364 400 05
8.0 7.279 364 399 85 7.279 364 399 3 7.279 364 399 36
9.0 8.279 364 399 85 8.279 368 125 5 8.279 368 125 49
10.0 9.279 364 399 85 9.279 368 444 2 9.279 368 444 25
12.0 11.279 364 399 85 11.289 286 019 8 11.289 286 019 8

Table 4 – Comparison between the Standard values for conformal modules (PA-
PAMICHAEL; STYLIANOPOULOS, 2010) and ones calculated from the zeros
of truncated expansions for the tau function in the zero curvature limit
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In order to calculate the conformal modules m(ΩL), first calculate L(t) by solving
τ+(t) = 0 for L, then numerically invert for particular values of L to find t(L), and finally
calculate m(ΩL) = K(1 − t)/K(t). See Table 4. Although, we correctly obtain all the
significant digits when L is small if we include enough terms in the expansion, when
L > 5.0 the method seems to produce incorrect values for m(ΩL).

We can verify whether the inaccuracies in the calculation of m(ΩL) for big values
of L are due to numerical errors or to conceptual limitations of the method. This is
accomplished by looking for an approximate formula for m(ΩL) as an explicit function of
L. This is done in the next subsection.

5.3.3 Conformal module asymptotics

We calculate the L(t) and m(ΩL) for large L (or, equivalently, small t). Notice that
ε plays just an auxiliary role in this subsection. It is not fixed to any value. Instead we
always expand the tau function in ε and look for the O(ε0) part of the tau function which
is expected to converge to limε→0 τ

+(t, ε).

Depending on the number of terms in the tau function expansion 2.35, L(t) becomes
a quotient of two complicated functions of t which can be expanded again in t, so that
we compare the expansion for L(t) with the one for m(ΩL). Below, we use a tau function
expansion with m = 2 and −2 ≤ n ≤ 1 (or any higher order expansion), solve τ+(t) = 0
for L, expand the result in t up to O(t2), and ask Mathematica to simplify the results,
yielding:

L(t) ≈1
2 + 5 log 2− log t

π
− t

2π −
t2

6144πG
(

1
4

)
G
(

5
4

)×
[
3
(

3G
(1

4

)
G
(5

4

)
+ 16G

(9
4

)
G
(
−3

4

))
(2 log(t) + π − 10 log(2))

+ 32
(

39G
(1

4

)
G
(5

4

)
+ 4G

(9
4

)
G
(
−3

4

))]
(5.29)

We can use the relations G(1 + x) = Γ(x)G(x) and Γ(1 + x) = xΓ(x) to further simplify
the terms inside the square brackets above. We find:

G
(9

4

)
G
(
−3

4

)
= − 3

16G
(1

4

)
G
(5

4

)
(5.30)

which cancels the terms in the second line in 5.29 and thus,

L(t) = 1
2 + log 2

π
+ 4 log 2− log t

π
− t

2π −
13t2
64π + t2

256π +O(t3) (5.31)

On the other hand, when t→ 0, we can also approximate the expression for the conformal
module

m(ΩL) = K(1− t)
K(t) ≈ 4 log 2− log t

π
− t

2π −
13t2
64π +O(t3) (5.32)
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Notice that the expressions for L(t) and the conformal module have terms in common
because as the height of the trapezoid increases, it resembles more and more the rectangle.
Apart from the last term in 5.31, it is easy to relate the conformal module to L. We
can approximate that particular term as a function of L by noticing that a “a first
approximation” to L(t) is obtained when we use only the first three terms in the r.h.s. of
5.31. L(t) then obtained is inverted to produce

t ≈ 32e−π/2e(1−L)π (5.33)

Hence, we find
m(ΩL) ≈ L− 1

2 −
log 2
π
− 4e−π

π
e2π(1−L) (5.34)

This asymptotic formula was found in the past by means of domain decomposition methods
– basically, asymptotic analysis of elliptic integrals. See p. 456 in (GAIER, 1979) (but
notice that the variable h in the paper is equal to L − 1 in our notation). The formula
above allows for the calculation of more accurate conformal modules. See Table 5.

In fact, we were able to reproduce also the values in the table regarded as exact
when L < 3.0. For such cases, though, we have to use many terms in the expansion. For
instance: When L = 2.0, t ≈ 0.25 which is a relatively big value; In order to find conformal
modules with 12 precision digits, we had to use an expansion with −2 ≤ n ≤ 3 and |Y| up
to 15 (Young diagrams with up to 15 boxes).

L Standard values m(ΩL)
2.0 1.279 261 571 171 1.279 261 650 030
2.5 1.779 359 959 478 1.779 359 959 625
3.0 2.279 364 207 968 2.279 364 207 968
4.0 3.279 364 399 489 3.279 364 399 489
5.0 4.279 364 399 847 4.279 364 399 846 6
6.0 5.279 364 399 85 5.279 364 399 847
7.0 6.279 364 399 85 6.279 364 399 847
8.0 7.279 364 399 85 7.279 364 399 847
9.0 8.279 364 399 85 8.279 364 399 847
10.0 9.279 364 399 85 9.279 364 399 847
11.0 10.279 364 399 85 10.279 364 399 847
12.0 11.279 364 399 85 11.279 364 399 847

Table 5 – Conformal modules m(ΩL) as a function of L according to 5.34

So, we see that for L ≥ 5.0 the increase by a real constant c in L implies, with
great accuracy, that the conformal module will increase by the same amount. Moreover,
we use 5.34 to formalize this relationship:

m(ΩL+c) ≈ m(ΩL) + c− 4e−π
π

(
e−2πc − 1

)
e2π(1−L) (5.35)
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when c = 1, we find

m(ΩL+1) ≈ m(ΩL) + 1 + 0.05492× e2π(1−L) (5.36)

Notice further that differences between the “exact” conformal modules in Table 5 indeed
can be approximated by the following values

m(Ω3)− (m(Ω2) + 1) ≈ 0.05492× e2π(1−2.0) ≈ 1.0256× 10−4

m(Ω4)− (m(Ω3) + 1) ≈ 0.05492× e2π(1−3.0) ≈ 1.9152× 10−7

m(Ω5)− (m(Ω4) + 1) ≈ 0.05492× e2π(1−4.0) ≈ 3.5765× 10−10

m(Ω6)− (m(Ω5) + 1) ≈ 0.05492× e2π(1−5.0) ≈ 6.6790× 10−13

Therefore, for very small t, m(ΩL) is prominently a linear function of L; for L ≥ 5.0 the
conformal module is determined by

m(ΩL) = L− 1
2 −

log 2
π

(5.37)

with at least 11 digits of precision, in agreement with (PAPAMICHAEL; STYLIANOPOU-
LOS, 2010).

A side note here is that, according to 5.27, when we take the zero curvature
approach using different aspect ratios for the target domain, we are actually taking limits
in the space of monodromy parameters using different paths in that space.

We conclude that the method correctly determines the conformal modules – the
errors in Table 4, for L > 5.0, are due to numerics. In fact, it is well known that if L
is very large, t is very small and the numerical calculation of the elliptic integrals K(t)
and K(1 − t) is also problematic (PAPAMICHAEL; STYLIANOPOULOS, 2010). The
method is believed to be able to generate, in a systematic way, asymptotic formulas for
the conformal modules of any four-sided polycircular arc domain.
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6 DOMAINS WITH HIGHER NUMBER OF
VERTICES

In this chapter, we are concerned with the general case where the simply-connected
polycircular arc domain has any number of vertices. We analytically determine the 2(n−3)
accessory parameters {βtk , tk} of the Schwarzian ODE associated to the problem of finding
the conformal mapping z = f(w) from the UHP to a simply connected domain whose
boundary is the union of n circular arcs. The accessory parameters are formally determined
in terms of isomonodromic tau functions for Fuchsian systems.

In fact, most of the concepts involved in the following sections were already
presented in the previous chapters; the main change here has to do with the size of the
calculations. In order for the reader to best keep track of the arguments, a summary of
this chapter’s main goals is described in the next subsection. Also, in the course of the
chapter, some calculations for the cases when n = 4 and n = 5 are shown before we present
the calculation for the general case. The advantage of this approach is it makes clearer
the steps taken for the generalization of the equations we used in the previous chapters.
Indeed, such calculations were avoided earlier so that the focus, in the first chapters, was
on the main ideas, instead of on the calculations.

6.1 Overview of the chapter’s content

• In section 6.2, we calculate the relation between the parameters in the Fuchsian
ODE in the SL form with n regular singular points, that naturally arises from the
linearization of the Schwarzian differential equation, to parameters of the Fuchsian
ODE in the canonical form. This is important because the tau functions of Fuchsian
systems are directly related to the accessory parameters that appear in the canonical
form of the Fuchsian equations. The results of this section can also be found in
(IWASAKI et al., 1991).

• In section 6.3, we analyze the method to find the accessory parameters when n = 4.
This is important to identify the hypotheses that are extended to the case with a
generic number of vertices.

• In section 6.4, the formal solution for βk in terms of tau functions of Fuchsian systems
is found. This is the main result of this chapter.

• In section 6.5, in order to determine the moduli parameters tk (which represent the
positions of the nontrivial pre-vertices), some initial conditions for the derivatives
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of the tau functions are determined . We analyze the cases with n = 4 and n = 5
in separate from the general one. This is the second most important section of this
chapter.

• In section 6.6, a system of PDEs for the tau function is calculated from the Schlesinger
equations. The system of diferencial equations is important because, even if we are
able to use an expansion for any tau function (or other representation thereof), its
computation may be very slow, in general. A plan to speed it up has to do with
using the tau function asymptotics near a critical point to generate initial conditions
for the system of PDEs which may allow us to generate the tau function far away
from the critical point faster. Further, the differential equation may be useful as an
extra test for the coherence of the formalism.

Since the equations for tk that are presented in section 6.5 are not expected to uniquely
determine the moduli parameters as it was seem in chapter 4, in the next chapter we work
out the generalizations of the Toda equation 4.21 that emerges when n = 4.

6.2 From the SL-form of the Fuchsian ODE to the canonical form
In order to find the dependence of the accessory parameters on the tau functions,

first we need to transform the Fuchsian ODE in the SL-form

y′′(w) + 1
2

n∑
i=1

[
δi

(w − wi)2 + βi
w − wi

]
y(w) = 0 (6.1)

with {wi} = {0, 1, w3 = t0, w4 = t1, . . . , wn−1 = tn−4, wn = ∞}, to the Fuchsian ODE in
the canonical form

g′′(w) +
n−1∑
i=1

1− θi
w − wi

g′(w) +
[

q+q−
w(w − 1) +

n−4∑
k=0

tk(tk − 1)Kk

w(w − 1)(w − tk)

]
g(w) = 0 (6.2)

By ‘transformation’ we merely mean a way to relate {Kk} to {βi}. In fact, y(w) and g(w)
do not have the same solutions in general, but we can express the conformal mapping
as f(w) = y1(w)/y2(w) or f(w) = g1(w)/g2(w), where y1(w) and y2(w) are linearly
independent solutions to 6.1 while g1(w) and g2(w) are linearly independent solutions to
6.2. In order to implement the transformation, we suppose that y(w) = φ(w)g(w), insert
this expression into 6.1, and compare the result with eq. (6.2). This procedure implies the
requirement

p(w) := 2φ′
φ

=
n∑
i=1

1− θi
w − wi

(6.3)

this in turn implies that

g′′ + p(w)g′ +
(
T (w) + 1

2p
′ + 1

4p
2
)
g = 0, T (w) = 1

2

n∑
i=1

[
δi

(w − wi)2 + βi
w − wi

]
(6.4)
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After some manipulation, we get

T (w) + 1
2p
′ + 1

4p
2 = 1

2

4∑
i=1

 βi
w − wi

+
∑
k 6=i

1− θi
w − wi

1− θk
w − wk

 (6.5)

We, then, deal with the terms in the r.h.s of the equation above separately. Suppose wn is
finite for the time being. The accessory parameters βi satisfy

n∑
i=1

βi = 0,
n∑
i=1

(wiβi + δi) = 0,
n∑
i=1

(βiw2
i + 2wiδi) = 0, δi := (1− θ2

i )
2 (6.6)

In the limit wn →∞, the last algebraic relation for βi above implies that wnβn = −δ∞ :=
−δn. This relation together with the other algebraic conditions above and w1 = 0, w2 = 1
yield

β1 = −β2 −
n−4∑
k=0

βtk , β2 = δ∞ −
n−1∑
i=1

δi −
n−4∑
k=0

tn−3βtk , βn = 0. (6.7)

Hence,

1
2

n∑
i=1

βi
w − wi

=− 1
2
−δ∞ +∑n−1

i=1 δi +∑n−4
k=0((w − 1)βtk + tkβtk)

w(w − 1) + 1
2

n−4∑
k=0

βtk
w − wtk

=1
2
δ∞ −

∑n−1
i=1 δi

w(w − 1) + 1
2

n−4∑
k=0

tk(tk − 1)βtk
w(w − 1)(w − wtk)

(6.8)

Now, we deal with the other terms in 6.5. We use the relations

a

w(w − b) = a

w(w − 1) + a(b− 1)
w(w − 1)(w − b) ,

a

(w − 1)(w − b) = a

w(w − 1) + ab

w(w − 1)(w − b)
a

(a− b)(a− c) = a

w(w − 1) + a

b− c

(
b(b− 1)

w(w − 1)(w − b) −
c(c− 1)

w(w − 1)(w − c)

) (6.9)

where neither b nor c equals 0 or 1, to find

1
2
∑
i 6=j

γij
(w − wi)(w − wj)

=
∑
i<j γij

w(w − 1) +
∑
i 6=1,2
j 6=i

wi(wi − 1)
w(w − 1)(w − wi)

γij
wi − wj

(6.10)

where the summations go through i, j = 1, . . . , n unless it is stated otherwise, for any γij
symetric in its indices. When γij = (1− θi)(1− θj)/2, we use the expressions above to find

1
2

n−1∑
i2=1

n−1∑
j 6=i

1
w − wi

(1− θi)(1− θj)
wi − wj

= 1
4

n−1∑
i=1

n−1∑
j 6=i

(1− θi)(1− θj)
w(w − 1)

+1
2

n−4∑
k=0

∑
wj 6=tk

tk(tk − 1)
w(w − 1)(w − tk)

(1− θtk)(1− θj)
tk − wj

(6.11)
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Thus,

T (w) + 1
2p
′ + 1

4p
2 =1

2
δ∞ −

∑n−1
i=1 δi + 1

2
∑n−1
i=1

∑n−1
j 6=i (1− θi)(1− θj)

w(w − 1)

+ 1
2

n−4∑
k=0

tk(tk − 1)
w(w − 1)(w − tk)

βtk +
∑
wj 6=tk

(1− θk)(1− θj)
tk − wj

 (6.12)

So, finally,

g′′(w) +
n−1∑
i=1

1− θi
w − wi

g′(w) +
[

q+q−
w(w − 1) +

n−4∑
k=0

tk(tk − 1)Kk

w(w − 1)(w − tk)

]
g(w) = 0, (6.13)

where

q± = 1
2

(
(n− 2)− (

n−1∑
i=1

θi ∓ θ∞)
)
, Kk = 1

2

βtk +
∑
wj 6=tk

(1− θtk)(1− θj)
tk − wj

 (6.14)

Notice that
n−1∑
i=1

θi + q− + q+ = n− 2, q+ − q− = θ∞. (6.15)

In fact, the expressions above not only resemble those found earlier for the case with n = 4
but also do reduce to them as a particular case.

Now that we know how to write Kk(βtk), we can use the Fuchsian system to relate
the tau function to βtk . This is accomplished in the following two sections.

6.3 Accessory parameters for the Heun equation
In this section, we basically embed the Heun equation

y′′(w) +
(

1− θ0

w
+ 1− θt0
w − t0

+ 1− θ1

w − 1

)
y′(w) +

[
q+q−

w(w − 1) −
t0(t0 − 1)K0

w(w − 1)(w − t0)

]
y(w) = 0

(6.16)
where q± = 1− 1

2(θ0 +θt0 +θ1±θ∞0), in a Fuchsian system 6.17 and then use the definition
of the tau function in terms of the Fuchsian system to relate the accessory parameter K0

to the tau function of Painlevé VI.

We isolate, say, y1(w), in the system of first order differential equations:

Φ′(w) = A(w)Φ(w), Φ =
 y1 y2

v1 v2

 and A(w) = A0

w
+ A1

w − 1 + At0
w − t0

, with A′i = 0

(6.17)
to obtain a second order differential equation:

y′′ − (TrA+ (logA12)′)y′ + (detA− A′11 + A11(logA12)′)y = 0 (6.18)
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where we dropped the subscript in y1 and Aij refers to the entry ij of the matrix A. Notice
that the ODE above is valid for any number of singular points. When n = 4, we pick

A12 = c(w − λ)
w(w − 1)(w − t) , c ∈ C (6.19)

We use detM = ((TrM)2 − TrM2)/2, valid for any 2× 2 matrix M , multiple times, and
find that 6.18 can be written as

y′′ + p(w, t)y′ + q(w, t)y = 0

p(w, t) = 1− TrA0

w
+ 1− TrA1

w − 1 + 1− TrAt
w − t

− 1
w − λ

q(w, t) = detA0

w2 + detA1

(w − 1)2 + detAt
(w − t)2 + κ

w(w − 1) −
t(t− 1)K

w(w − 1)(w − t) − A
′
11 + A11

A′12
A12

(6.20)
with

κ = detA∞ − detA0 − detA1 − detAt

K = −1
t

TrA0 TrAt −
1

t− 1 TrA1 TrAt + 1
t

TrA0At + 1
t− 1 TrA1At

(6.21)

where we use that the residue at infinity implies

3∑
i=1

Ai = −A∞. (6.22)

The terms (1− TrAi)/(w − wi) in 6.20 and comparison with 6.13 imply that we should
have TrAi = θi, i = 0, 1. Further, because we will take the limit λ → t, we also need
TrAt = θt = θt0 − 1. Moreover, since there is no second order pole in the expression for
q(w, t) in 6.20, we require that detAi = 0, i = 0, t, 1. Thus, κ = detA∞.

Now, we analyze the last terms in the expression for q(w, t) in 6.20. In terms of
the components of Ai(w), we find

− A′11 + A11
A′12
A12

= [A∞]11

w(w − 1) +
λ(λ− 1)

(
1
λ
[A0]11 + 1

λ−1 [A1]11 + 1
λ−t [At]11

)
w(w − 1)(w − λ)

−
t(t− 1)

(
1
t
([A0]11 + [At]11) + 1

t−1([A1]11 + [At]11) + 1
λ−t [At]11

)
w(w − 1)(w − t) (6.23)

Because we are particularly interested in the limit when λ→ t = t0, we need the above
formula to be finite at this point. This is achieved if [At]11 = 0. However, it is enough to
have the condition [At]11 = 0 met only at λ = t0. Notice also in the equation above that,
at λ = t, the terms proportional to [Ai]11, i = 0, 1 cancel, leaving

−A′11 + A11
A′12
A12

∣∣∣∣∣
λ=t

= [A∞]11

w(w − 1) (6.24)
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Hence, at λ = t = t0, and using A∞ = diag(κ−, κ+), with κ± = −1
2(θ0 + θt + θ1 ± θ∞), we

find

y′′(w) +
(

1− θ0

w
+ 1− θt0
w − t0

+ 1− θ1

w − 1

)
y′(w) +

[
κ−(1 + κ+)
w(w − 1)

−t0(t0 − 1)K(λ = t = t0)
w(w − 1)(w − t0)

]
y(w) = 0

(6.25)

which is exactly in the form 6.16. Moreover,

κ−(1 + κ+) = q−q+ (6.26)

when θt = θt0 − 1 and θ∞ = θ∞0 + 1, we identify K0 = K(λ = t = t0) in 6.21, and the PVI
tau function is defined as

d

dt
log τ(t) = 1

t
TrB0Bt + 1

t− 1 TrB1Bt (6.27)

where the traceless 2× 2 matrices Bi are related to Ai according to

Bi = Ai − 1TrAi/2 = Ai − 1θi/2 (6.28)

Therefore,

t(t− 1) d
dt

log τ(θi, σij, t)
∣∣∣∣∣
t=t0

= t0
θtθ1

2 + (t0 − 1)θ0θt
2 + t0(t0 − 1)K0 (6.29)

and, thus, we determine K0 as a function of the monodromy data and t0, through the tau
function for Painlevé VI.

So, to summarize, we achieve the goal of embedding the Heun equation 6.16 in
the Fuchsian system 6.17 when we assume (i) TrAi = θi, i = 0, 1, (ii) TrAt = θt − 1, (iii)
detAi = 0, and (iv) [At]11 = 0 if λ = t0 (but not in general). This allowed us to calculate
K0. In the next section, we carry out the same analysis for the case with any number of
vertices.

6.4 Accessory parameters for Fuchsian ODEs in terms of tau func-
tions
In this section, we find the formal solution for the accessory parameters Kk in

terms of tau functions for Fuchsian systems. In fact, the solution implies a simple relation
between βtk , that appear in the Schwarzian differential equation 4.1, and the tau functions.
In what follows, we often make use of the Schlesinger systems, which are defined as

∂Bi
∂wj

= [Bi,Bj ]
wi−wj , i 6= j = 1, . . . , n

∂Bi
∂wi

= −∑j 6=i
[Bi,Bj ]
wi−wj , i = 1, . . . , n

(6.30)
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where the 2× 2 matrices Bi are traceless and related to the matrices Ai, that appeared in
the Fuchsian system, according to

Bi = Ai − 1TrAi/2 = Ai − 1θi/2 (6.31)

where, in the last equality, we assumed that the choice of parameterization TrAi = θi

extends to the n-vertices case. The tau functions are defined through the expression:

∂tk ln τ =
∑
wi 6=tk

TrBtkBwi

tk − wi
, ∂tk := ∂

∂tk
(6.32)

We want to determine the parameterization of the Fuchsian system which implies that 6.18
becomes 6.13, so that we can compare Kk in terms of the matrices Ai with the definition
of the tau function 6.32. We suppose that

A12(w) = k
n−4∏
k=0

(w − λk)
n−1∏
i=1

(w − wi)−1, k ∈ C (6.33)

This supposition is merely an extension of what happens in the case with n = 4. It means
that we are allowing the Fuchsian system to possess apparent singular points at w = λk.
Hence, equation 6.18 becomes

y′′ +
(
n−1∑
i=1

1− θwi
w − wi

−
n−4∑
k=0

1
w − λk

)
y′ + (detA− A′11 + A11(logA12)′)y = 0 (6.34)

Now, we investigate what happens with the terms that multiply y(w) in the differential
equation above.

detA = 1
2

(n−1∑
i=1

TrAwi
w − wi

)2

− Tr
(
n−1∑
i=1

Awi
w − wi

)2

=
n−1∑
i=1

detAwi
(w − wi)2 + 1

2

n−1∑
i=1

n−1∑
j=1
j 6=i

TrAwi TrAwj − TrAwiAwj
(w − wi)(w − wj)


(6.35)

we suppose that detAi = 0, as it happens when n = 4, use equation 6.10 and also the
relation:

detA∞ = (−1)2(
∑

Awi)2 =
n−1∑
i=1

n−1∑
j=1
j<i

(TrAwi TrAwj − TrAwiAwj) (6.36)

to find

detA = detA∞
w(w − 1) +

∑
i 6=1,2
j 6=i

wi(wi − 1)
w(w − 1)(w − wi)

TrAwi TrAwj − TrAwiAwj
wi − wj

(6.37)
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Moreover, we use relations 6.9 to obtain

−A′11 + A11(logA12)′ = a∞
w(w − 1) −

n−4∑
k=0

tk(tk − 1)
w(w − 1)(w − tk)

 n−1∑
i=1
wi 6=tk

1
tk − wi

(atk + awi)

+
n−4∑
l=0

atk
tk − λl

]
+

n−4∑
k=0

λk(λk − 1)
w(w − 1)(w − λk)

[
n−4∑
i=1

awi
λk − wi

]
(6.38)

where awi := [Awi ]11. Therefore,

y′′+
(
n−1∑
i=1

1− θwi
w − wi

−
n−4∑
k=0

1
w − λk

)
y′+

+
[
κ−(1 + κ+)
w(w − 1) +

n−4∑
k=0

(
tk(tk − 1)Hk

w(w − 1)(w − tk)
+ λk(λk − 1)µk
w(w − 1)(w − λk)

)]
y = 0

(6.39)
where κ± come from A∞ = diag(κ− κ+). Also, µk is the residue of A11(w) at w = λk and

Hk =
∑
wi 6=tk

[
TrAtk TrAwi − TrAtkAwi

tk − wi
− 1
tk − wi

(atk + awi)
]
−

n−4∑
l=0

atk
tk − λl

(6.40)

Further, Hk can be seen as generating a Hamiltonian flux with the canonical conjugate
variables λk, µk (IWASAKI et al., 1991), but we will not explore this route here.

In the limit λk → tk, we assume atk → 0 in 6.38 and 6.39 to avoid divergences
coming from the terms atk/(λk − tk). Notice also the cancelation of the terms proportional
to awi . Thus, only the first term in the r.h.s. of 6.38 survive in this limit, and we get

y′′ +
(

1− θ0

w
+ 1− θ1

w − 1 +
n−4∑
k=0

−θtk
w − tk

)
y′ +

[
κ−(1 + κ+)
w(w − 1) +

n−4∑
k=0

tk(tk − 1)Kk

w(w − 1)(w − tk)

]
y = 0

(6.41)
where, as we use 6.31 and 6.32:

Kk =
∑
wi 6=tk

θtkθwi − TrAtkAwi
tk − wi

∣∣∣∣∣∣
λk=tk=t∗

k

=
∑
wi 6=tk

1
2
θtkθwi
tk − wi

− ∂tk ln τ (6.42)

Therefore, in light of 6.14, the nontrivial accessory parameter

βtk =
∑
wi 6=tk

θtk + θwi − 1
tk − wi

− 2∂tk ln τ (6.43)

Notice that the equations above for Kk and βtk depend on tk, but the value that tk,
k = 0, . . . , n − 4, assume are fixed by the roots of atk , which in turn depend on the
monodromy data and, thus, on the geometry of the target domain.

In the next section, we investigate how to fix the specific values of tk so that the
accessory parameters βtk correspond to a given monodromy data.
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6.5 Determination of the nontrivial prevertices
Here, we look for the conditions that fix the position of the nontrivial pre-vertices

w = tk. In order to gain some intuition about the equations, we work out separately the
cases with n = 4, n = 5, and a generic n.

6.5.1 Four-vertices case

In this case, with the use of the Schlesinger system, we can directly calculate

∂t(t(t− 1)∂t ln τ) = TrBtB0 + TrBtB1 = −TrBtB∞ − TrB2
t (6.44)

because B0 = −B∞ −B1 −Bt. We use

TrBiBj = TrAiAj − θiθj/2, i, j 6=∞ (6.45)

together with A∞ = diag(κ− κ+) and, at the solution t = t0, [At]11 = [At]12 = 0 whilst
[At]22 = θt, so that TrB2

t = θ2
t /2 and TrBtB∞ = θt(κ+ − κ−)/2 = −θtθ∞/2. Thus,

∂t(t(t− 1)∂t ln τ)|t=t0 = −θt(θt − θ∞)/2 (6.46)

After many attempts to find the initial conditions for a different number of vertices, this
approach seems to be the easiest one. However, the method using the Hamiltonian system
may be useful, perhaps, to understand other aspects of the problem.

6.5.2 Five-vertices case

Let t := t0 and u := t1. We calculate

∂t(t(t− 1)∂t ln τ) = (t− 1)
[

TrBtB0

t
+ TrBtB1

t− 1 + TrBtBu

t− u

]

+ t

[
TrBtB0

t
+ TrBtB1

t− 1 + TrBtBu

t− u

]

− t(t− 1)
[

TrBtB0

t2
+ TrBtB1

(t− 1)2 + TrBtBu

(t− u)2

] (6.47)

Some cancelations occur and the expression above can be cast into

∂t(t(t− 1)∂t ln τ) =
n−1∑
i=1
wi 6=t

TrBtBwi −
u(u− 1) TrBtBu

(t− u)2

= −TrBt(Bt +B∞)− u(u− 1) TrBtBu

(t− u)2

(6.48)

Where we used B∞ = −∑Bi. Now, we use 6.45 and, when t0 and t1 correspond to the
accessory parameters, [Atk ]11 = [Atk ]12 = 0 whilst [Atk ]22 = θtk , so that TrBtkB∞ =
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θtk(κ+ − κ−)/2 = θtkθ∞/2 and TrB2
tk

= θ2
tk
/2. Moreover, notice that if we implement

t↔ u another valid equation is found.

Therefore, when n = 5, the initial conditions (for the derivatives) can be written
as  ∂t(t(t− 1)∂t ln τ) = θt(θt − θ∞)/2− u(u−1)θtθu

2(t−u)2

∂u(u(u− 1)∂u ln τ) = θu(θu − θ∞)/2− t(t−1)θuθt
2(u−t)2

(6.49)

or, looking at this system of equations differently, we say that the position of the pre-
vertices t = t0, and u = t1 are found when we determine the root {t∗, u∗} of the system
above.

6.5.3 Any number of vertices

The recipe presented in the previous subsections is easily extended to the case with
any number of vertices. We calculate

∂k(tk(tk − 1)∂k ln τ) = (tk − 1)
TrBkB0

tk
+ TrBkB1

tk − 1 +
∑
tq 6=tk

TrBkBq

tk − tq


+ tk

TrBkB0

tk
+ TrBkB1

tk − 1 +
∑
tq 6=tk

TrBkBq

tk − tq


− tk(tk − 1)

TrBkB0

t2k
+ TrBkB1

(tk − 1)2 +
∑
tq 6=tk

TrBkBq

(tk − tq)2


(6.50)

with k ∈ {0, . . . , n− 4}, to find

∂k(tk(tk − 1)∂k ln τ) =
n−1∑
i=1
wi 6=tk

TrBtkBwi −
∑
tq 6=tk

tq(tq − 1) TrBkBq

(tk − tq)2 (6.51)

So, the initial conditions for a generic number of vertices are found when we
determine the roots {t∗k| k = 0, . . . , n − 4} of the system of coupled transcendental
equations

∂tk(tk(tk−1)∂tk ln τ) = θtk(θtk−θ∞)/2−
∑
tq 6=tk

tq(tq − 1)θtkθtq
2(tk − tq)2 , k, q = 0, 1, . . . , n−4 (6.52)

where we have system of equations for tk, an equation for each value of k.

Remember that in the case of conformal mappings to polycircular arc domains
with four vertices, the equation 6.52 has more than one solution – of course, we should first
hope that 6.52 has at least a solution. Nevertheless, the experience with 6.52 when n = 4
motivates the beliefs that, in general, (i) the solutions to 6.52 exist but do not provide
the the positions of the non-trivial prevertices in a unique way and thus (ii) we need a
generalization of the Toda equation, which is accomplished in the next chapter.
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6.6 System of PDEs for the tau functions
In the previous sections, we saw that the determination of the accessory parameters

is equivalent to determining initial conditions of differential equations. In chapter 4, we
used the ODE as a means to both verify the consistency of the method and calculate the
accessory parameters faster. Since we may also need this type of equations to deal with
domains with more than four vertices, we derivate such equations in this section.

For the the purpose of developing algorithms, we look for the most efficient way to
generate the differential equations. We start with the four vertices case.

6.6.1 Four vertices

Because B0 +Bt +B1 +B∞ = 0, the following equation:

Tr[(B0 +Bt +B1 +B∞)(B0 +Bt +B1 −B∞)] = 0 (6.53)

is trivially satisfied. Hence,

TrB0B1 =1
2(TrB2

∞ − TrB2
0 − TrB2

t − TrB2
1)− TrBtB0 − TrBtB1

=θ
2
∞ − θ2

0 − θ2
t − θ2

1
4 − ∂t(t(t− 1)∂t ln τ)

(6.54)

where we used TrB2
i = θ2

i /2 and also 6.44. Schlesinger’s equations imply that ∂t TrB0B1 =
Tr[B0, Bt]B1/t(t− 1). Then, we use

Tr[B0, Bt]B1 = ±

√√√√√√√√−2 det


TrB2

0 TrB0Bt TrB0B1

TrBtB0 TrB2
t TrBtB1

TrB1B0 TrB1Bt TrB2
1

 (6.55)

valid for traceless triples of 2× 2 matrices, to find the differential equation

Tr[B0, Bt]B1 = t(t− 1)∂2
t (t(t− 1)∂t ln τ) (6.56)

where the l.h.s. is calculated with the help of equations 6.32, 6.54, and 6.55, and the sign
in 6.55 is chosen according to the sign of the right hand side of 6.56 (remember that it is
always a real number up to numerical tolerance). So, this sign has to do with the concavity
of the curve ζ(t) = t(t− 1)∂t ln τ . Moreover, the differential equation becomes

(t(t− 1)ζ̂ ′′(t))2 = −2 det


θ2

0/2 tζ̂ ′ − ζ̂ θ2
∞−θ2

0−θ
2
t−θ2

1−4ζ̂′
4

tζ̂ ′ − ζ̂ θ2
t /2 −(t− 1)ζ̂ ′ + ζ̂

θ2
∞−θ2

0−θ
2
t−θ2

1−4ζ̂′
4 −(t− 1)ζ̂ ′ + ζ̂ θ2

1/2

 (6.57)

It’s important to mention that, when n = 4, the term inside the absolute value is always
positive in our experiments.
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6.6.2 Five vertices

We proceed similarly to find

TrB0B1 =TrB2
∞ − TrB2

0 − TrB2
t − TrB2

1 − TrB2
u

2 − TrBtB0 − TrBtB1

− TrBuB0 − TrBuB1 − TrBtBu − TrBtBu + TrBtBu

=θ
2
∞ − θ2

0 − θ2
t − θ2

1 − θ2
u

4 − ∂t(t(t− 1)∂t ln τ)− ∂u(u(u− 1)∂u ln τ)

− t(t− 1)∂tu ln τ − u(u− 1)∂2
ut ln τ + (t− u)2∂2

tu ln τ

=
θ2
∞ −

∑n−1
i=1 θ

2
wi

4 − ∂t(t(t− 1)∂t ln τ)

− ∂u(u(u− 1)∂u ln τ) + (t+ u− 2tu)∂2
tu ln τ

(6.58)

where in the second line we added and subtracted the term TrBtBu, in the third line we
used 6.51, and, in the forth one, the formula

∂2
tu ln τ = TrBtBu

(t− u)2 (6.59)

was used.

Now, we are ready to write the system of differential equations for ln τ when n = 5:


Tr[B0, Bt]B1 = t(t− 1)∂t[∂t(t(t− 1)∂t ln τ) + ∂u(u(u− 1)∂u ln τ)
−(t+ u− 2tu)∂2

tu ln τ ]
Tr[B0, Bu]B1 = u(u− 1)∂u[∂t(t(t− 1)∂t ln τ) + ∂u(u(u− 1)∂u ln τ)

−(t+ u− 2tu)∂2
tu ln τ ]

(6.60)

where the l.h.s. is found with the help of 6.55. The signs coming from Tr[B0, Bt]B1 and
Tr[B0, Bu]B1 are independent from each other, but depend on the sign of the r.h.s. of the
equation each of them belongs to in equation 6.60. Also, the terms TrBtkB0 TrBtkB1 are
determined by the Schlesinger equations while TrB0B1 is calculated according to equation
6.58.

6.6.3 The generic case

We use the formula

TrB0B1 = 1
2

(
TrB2

∞ −
n−1∑
i=1

TrB2
wi

)
−
∑
i<j
j 6=1

TrBwiBwj

−
n−4∑
k=0

n−4∑
q=0
tq<tk

TrBtkBtq +
n−4∑
k=0

n−4∑
q=0
tq<tk

TrBtkBtq

(6.61)
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where we added and subtracted the terms in the end of the r.h.s.. Then, we write 6.51 in
terms of ln τ :

∂k(tk(tk − 1)∂k ln τ) =
n−1∑
i=1
wi 6=tk

TrBtkBwi −
∑
tq 6=tk

tq(tq − 1) TrBkBq

(tk − tq)2

=
n−1∑
i=1
wi 6=tk

TrBtkBwi −
∑
tq 6=tk

tq(tq − 1)∂tqtk ln τ

according to
∂2
tktq

ln τ = TrBtkBtq

(tk − tq)2 , (6.62)

to find the system of PDEs for ln τ . One of its equations reads

Tr[B0, Btk ]B1

tk(tk − 1) =
n−4∑
q=0

∂tk

 ∂tq(tq(tq − 1)∂tq ln τ)

+
n−4∑
p=0
p<q

(
tq(tq − 1) + tp(tp − 1)− (tq − tp)2

)
∂tqtp ln τ


(6.63)

for a given k.

Therefore, the system of partial differential equations for the tau function is given
by

Tr[B0, Btk ]B1 = tk(tk − 1)
n−4∑
q=0

∂tk

∂tq(tq(tq − 1)∂tq ln τ)−
n−4∑
p=0
p<q

(tq + tp − 2tptq) ∂tqtp ln τ


(6.64)

as we vary k ∈ {0, . . . , n− 4}. Also,

Tr[B0, Btk ]B1 = ±

√√√√√√√√−2 det


TrB2

0 TrB0Btk TrB0B1

TrBtkB0 TrB2
tk

TrBtkB1

TrB1B0 TrB1Btk TrB2
1

 (6.65)

and we calculate TrBtkB0, TrBtkB1 in terms of the tau function by using

∂tk ln τ =
∑
wi 6=tk

TrBtkBwi

tk − wi
, ∂2

tk
ln τ = −

∑
wi 6=tk

TrBtkBwi

(tk − wi)2 , ∂
2
tktq

ln τ = TrBtkBtq

(tk − tq)
, tk 6= tq

(6.66)
while TrB0B1 is calculated according to 6.61, apart from those inoffensive terms in the
end of the r.h.s.. The sign on the r.h.s. of 6.65 is not fixed nor is free to choice, but depends
on the sign of the r.h.s. of 6.64, which should be real (up to numerical tolerance).



86

7 TODA EQUATIONS

In the last chapter, we stablished a necessary condition 6.52 for the determination of
tk, which represent the positions of pre-vertices of generic polycircular arc domains by the
action of the conformal mappings. However, the experience with the case of quadrangles
motivates the expectation that such condition is not sufficient: when n = 4, 6.52 has more
than one solution for t0, and the one that correctly corresponds to the position of the
nontrivial pre-vertex is given by the zero of τ+(t), where τ+(t) is related to τ(t) through a
Toda equation:

d

dt

[
t(t− 1) d

dt
log τ(t)

]
+ θt(θt − θ∞)

2 = C
τ+(t)τ−(t)
τ 2(t) , C ∈ C (7.1)

where the dependence of the tau functions on the monodromy data goes in the following
way:

τ(t) := τ(θ0, θt, θ1, θ∞, σ0t, σ1t, σ01, t)

τ±(t) := τ(θ0, θt ± 1, θ1, θ∞ ∓ 1, σ0t ± 1, σ1t ± 1, σ01, t)

and the tau function is defined according to
d

dt
log τ(t) = 1

t
TrB0Bt + 1

t− 1 TrB1Bt (7.2)

where the traceless 2× 2 matrices Bi are related to Ai as follows:

Bi = Ai − 1TrAi/2 = Ai − 1θi/2 (7.3)

In this chapter, we demonstrate 7.1, following the analysis in (CARNEIRO DA
CUNHA, 2017), and extend the demonstration to the case of polycircular arc domains
with any number of vertices. In fact, although we have conformal mapping applications in
mind when we investigate these ‘generalized Toda equations’, in essence they seem to be
valid irrespective of the application.

As a quick comment, notice that 7.1 changes a bit when, instead of traceless Bi,
we use Ai, with TrAi = θi, to define the tau function since τ(t) = t−

θ0θt
2 (t− 1)−

θtθ1
2 τ̂(t),

where
d

dt
log τ̂(t) = 1

t
TrA0At + 1

t− 1 TrA1At (7.4)

and thus
d

dt

[
t(t− 1) d

dt
log τ̂(t)

]
+ θt(θt − θ0 − θ1 − θ∞)

2 = C
τ̂+(t)τ̂−(t)
τ̂ 2(t) , C ∈ C (7.5)

Notice also that (θt − θ0 − θ1 − θ∞)/2 = θt + κ+, with κ+ = −(θ0 + θt + θ1 + θ∞)/2
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In the next section, we summarize the steps to obtain 7.5. Also, in subsection 7.1.1,
we demonstrate why the the nontrivial pre-vertex is the zero of τ+(t) = 0.

In section 7.2, we use a generic parameterization for the Fuchsian system to verify
Toda lattice equations for isomonodromic tau functions. Then, in section 7.2.1, we use
Jimbo’s parameterization to express the Toda equations in a desirable fashion.

7.1 A short story about the four-vertices case
In this section we verify the Toda equation 7.1 and show, as the main goal, that

the nontrivial prevertex position is found as a zero of an associated tau function, τ+(t).

The Fuchsian system ∂wΦ(w) = A(w)Φ(w) when n = 4 can be written as

A(w) = A0

w
+ A1

w − 1 + 1
w − t

 α 0
0 β

 (7.6)

where Ai are expressed in a basis that diagonalizes At, and β = −α + θt to enforce
TrAt = θt. Then, we use the transformation (possibly known by the Japanese School
(OKAMOTO, 1986b; JIMBO; MIWA, 1981a; JIMBO; MIWA; UENO, 1981)):

Φ+(w) ≡ L+(w)Φ(w), L+(w) ≡
 1 0
p+ 1

 w − t 0
0 1

 1 q+

0 1

 (7.7)

where p+ and q+ are auxiliary variables to be specified in a moment. The Fuchsian system
for Φ(w) implies that

∂Φ+

∂w
[Φ+]−1 = A+(w) := L+A(L+)−1 + ∂L+

∂w
(L+)−1 (7.8)

We can look for conditions on p+ and q+ defined in 7.7 to guarantee that the simple
monodromies at all finite singular points of the new system ∂wΦ+(w) = A+(w)Φ+(w)
remain fixed, except the monodromy at w = t. Rather, we want A+ in the form:

A+(w) = A+
0
w

+ A+
1

w − 1 + 1
w − t

α + 1 0
0 β

 (7.9)

We reserve the index i to assume the values 0 or 1. Define

Ai =
ai bi

ci di

 (7.10)

Comparison between rightmost side of 7.8 and 7.9 yields the conditions:

q+(α− β) =
∑
i

bi − (ai − di)q+ − ci(q+)2, (7.11)

p+(α + 1− β) = −
∑
i

ci
t− i

(7.12)
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which guarantee 7.9 in the sense that Ai and A+
i have the same eigenvalues, and A+

t has
the desired form 7.9. Then, one defines H+ and τ+(t) according to

H+ = d

dt
log τ̂+ = 1

t
TrA+

0 A
+
t + 1

t− 1 TrA+
1 A

+
t (7.13)

The calculation for decreasing the value of α is entirely analogous. Starting from
the original Fuchsian system, we define

Φ−(w) = 1
w − t

1 p−

0 1

1 0
0 w − t

 1 0
q− 1

Φ(w) (7.14)

which satisfies
∂Φ−
∂w

[Φ−]−1 = A−0
w

+ A−1
w − 1 + 1

w − t

α− 1 0
0 β

 (7.15)

with A−i = L−(wi)Ai[L−(wi)]−1 and

L−(wi) =
1 p−

0 1

(wi − t)−1 0
0 1

 1 0
q− 1

 (7.16)

The equation
A−0
w

+ A−1
w − 1 + 1

w − t
= L+A(L−)−1 + ∂L−

∂w
(L−)−1 (7.17)

implies the following relations on p− and q−:

q−(β − α) =
∑
i

ci + (ai − di)q− − bi(q−)2 (7.18)

p−(β + 1− α) = −
∑
i

bi
t− wi

(7.19)

Then, one defines:

H− = d

dt
log τ− = 1

t
TrA−0 A−t + 1

t− 1 TrA−1 A−t (7.20)

Notice that one of the terms of Toda equation is proportional to

exp(H+ +H− − 2H) = τ̂+τ̂−

τ̂ 2 (7.21)

In order to calculate H+ +H− − 2H in terms of the coefficients of Ai, the two equations
bellow are important:

(L+(wi))−1A+
t L

+(wi) =
α + 1 0

0 β


+ (α− β + 1)

0 q+

0 0

− p+(wi − t)
−q+ −(q+)2

1 q+

 (7.22)
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and

[L−(wi)]−1A−t L
−(wi) =

α− 1 0
0 β


− (α− 1− β)

 0 0
q− 0

− p−(wi − t)
 q− 1
−(q−)2 −q−

 (7.23)

Then, more algebraic manipulation yields:

H+ −H = a0

t
+ a1

t− 1 +
(
c0

t
+ c1

t− 1

)
q+ (7.24)

H− −H = −a0

t
− a1

t− 1 +
(
b0

t
+ b1

t− 1

)
q− (7.25)

Thus, the sum of the two equations above yields:

ln
(
τ̂+τ̂−

τ̂ 2

)
=
(
c0

t
+ c1

t− 1

)
q+ +

(
b0

t
+ b1

t− 1

)
q− (7.26)

Hence, in order to achieve the goal here, verifying how the r.h.s. of the equation above
relates to τ is all that is left to do.

Now, in order to continue, we need to know more about the parameters q±. Let us
define A∞ = −A0 − A1 − At. With our choice of basis it is written as

A∞ = −
a0 + a1 + α b0 + b1

c0 + c1 d0 + d1 + β

 (7.27)

but remember that detA∞ = κ+κ− and TrA∞ = κ+ + κ− in any basis. Now, let us
compare the secular equation satisfied by the eigenvalues κ± of A∞ to those equations
defining q±:

(b0 + b1)(q−)2 − (a0 − d0 + a1 − d1 + α− β)q− − (c0 + c1) = 0 (7.28)

(c0 + c1)(q+)2 + (a0 − d0 + a1 − d1 + α− β)q− − (b0 + b1) = 0 (7.29)

(κ±)2 + (a0 + d0 + a1 + d1 + α + β)κ± + detA∞ = 0 (7.30)

It can be checked that these three equations have the same discriminant, ∆ = κ+−κ− = θ∞.
We can thus isolate ∆ for each equation above and write:

q+ = κ+ + d0 + d1 + β

c0 + c1
, q− = −κ+ + d0 + d1 + β

b0 + b1
(7.31)

Thus 7.26 can be written as
d

dt
log τ̂

+τ̂−

τ̂ 2 = −κ+ + d0 + d1 + β

t(t− 1)
c0b1 − b1c0

(b0 + b1)(c0 + c1) (7.32)

We use the Schlesinger equations and the parameterization of the matrices Ai, At, to find:
d

dt
t(t− 1) d

dt
log τ̂ = Tr(A0 + A1)At = α(a0 + a1) + β(d0 + d1)

d2

dt2
t(t− 1) d

dt
log τ̂ = 1

t(t− 1) Tr(A0[A1, At]) = −(α− β)(c0b1 − b0c1)
t(t− 1) (7.33)
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Then, we use the relation A0 + At + A1 = −A∞ and manipulate the expression

(κ+ + d0 + β + d1) (κ− + d0 + β + d1) = detA∞ − TrA∞ (d0 + β + d1) + (d0 + β + d1)2

(7.34)
to obtain the equation

(α− β)(b0 + b1)(c0 + c1)
κ+ + d0 + d1 + β

= −(α− β)(κ− + d0 + d1 + β)

= d

dt
t(t− 1) d

dt
log τ̂ + α(α + κ+) + β(β + κ−)

(7.35)

where we used the first equation in 7.33 and κ+ + κ− = −∑(ai + di)− α− β. So, because
of 7.32 and the second equation in 7.33, we finally stabilish

d

dt
t(t− 1) d

dt
log τ̂ + α(α + κ+) + β(β + κ−) = C

τ̂+τ̂−

τ̂ 2 (7.36)

The equation above is invariant by a change of basis since the eigenvalues of the matrices
Ai, At do not change by such transformation.

Assume for a moment that we can rewrite 7.36 in the basis with α = θt and β = 0.
Hence, 7.36 becomes

d

dt
t(t− 1) d

dt
log τ̂ + θt(θt + κ+) = C

τ̂+τ̂−

τ̂ 2 (7.37)

and we demonstrate the Toda equation 7.5. Notice that because of

A±∞ = −(A±0 + A±t + A±1 ) (7.38)

that comes from the residue of A±(w) at infinity, we have TrA±∞ = TrA∞ ∓ 1 = θ∞ ∓ 1.

In the next subsection, we investigate the consistency of this particular choice of
basis and show that τ+(t0) = 0.

7.1.1 Jimbo and Miwa’s parameterization for the Fuchsian system

In the previous section it was convenient to parameterize the Fuchsian system in
such a way that At was diagonal. However this is not the most common parameterization
for such system, rather it is usual to use the following parameterization (JIMBO; MIWA,
1981a):

Ãi =
ãi b̃i

c̃i d̃i

 =
 pi + θi −qipi

1
qi

(pi + θi) −pi

 , i = 0, 1, t (7.39)

with

Ã∞ = −(Ã0 + Ã1 + Ãt) =
κ+ 0

0 κ−

 , θi = TrAi, θ2
i = TrA2

i (7.40)
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where the tilde reminds us that, in the basis used above, Ãt is not diagonal. In order to
diagonalize it, we use

At = G−1
t ÃtGt =

θt 0
0 0

 , Gt =
qt 1

1 pt+θt
qtpt

 (7.41)

Notice already that the existence of Gt – which is true by construction – completes the
demonstration of 7.5.

We use Gt to express all Ãi in the same basis (with diagonal At) so that 7.36 can
be expressed in terms of θi and, according to 7.1, the initial condition for the derivative of
the tau function can be determined as a zero of either τ+(t) or τ−(t). Notice that if τ(t)
goes to infinity at a certain 0 < t < 1, the r.h.s. of 7.1 is zero while the l.h.s. goes to ±∞,
which implies by contradiction that τ(t) is always finite in the interval t ∈ (0, 1). In fact,
τ(t) is holomorphic except at the fixed singular points 0, 1,∞ (MIWA, 1981).

Then, Ãi = GtAiG
−1
t and expressions 7.25 yield:

H− −H = − ã0

t
− ã1

t− 1 −
(
c̃0

t
+ c̃1

t− 1

)
ptqt
pt + θt

H+ −H = ã0

t
+ ã1

t− 1 +
(
b̃0

t
+ b̃1

t− 1

)
1
qt

(7.42)

From 7.39, we gather

1
qt

= pt
ptqt

= θt − ãt
b̃t

,
ptqt
pt + θt

= − d̃t
c̃t

(7.43)

and from the previous derivation of the initial conditions, we know that both ãt and b̃t go
to zero when λ→ t0, so that, according to 7.42, H+ goes to infinity at this point, and τ+

is zero there. On the other hand H− is well behaved in the same limit since

lim
λ→t0

pt = −θt while lim
λ→t0

c̃t (7.44)

exists and is nonzero. In order to see this, remember that ãt = 0 at λ = t0, thus pt = −θt
whilst, in principle, the second limit can be verified through the expression c̃t = (pt+θt)/qt,
but we take another road: because of the expression for K0 in terms of the traces of the
matrices Ai, equation 7.40, and the relation b̃0 = −b̃1 = k, with arbitrary k, that comes
from

A12(λ = t) = k(w − λ)
w(w − 1)(w − t)

∣∣∣∣∣
λ=t

= b0

w
+ b1

w − 1 = − k
w

+ k

w − 1 (7.45)

we can find an expression for c̃t in terms of K0, θi and t0. First, we find the following
relations (valid at λ = t = t0):

p0 + p1 = Θ := 1
2(θt − θ0 − θ1 − θ∞)

p0q0 = −p1q1 = −k := 1, c̃t = −p0 + θ0

q0
− p1 + θ1

q1

−t0θtΘ− c̃t + θtp0 = t0(t0 − 1)K0 + t0θtθ1 + (t0 − 1)θ0θt (7.46)
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Notice that in the second line, k was chosen to be equal to 1. A different choice would
provide different parameterizations for the entries of Ai but this means no harm for the
Fuchsian differential equation, leave alone the value of the tau functions at this point. The
freedom to choose the value of k only means that there is an extra degree of freedom when
we diagonalize, say, the matrix Ã∞ – this matrix can be conjugated by any non-vanishing
diagonal SL(2,C) matrix without punishment. We use 7.46 to find:

c̃t|λ=t0 = p0(θt + θ∞)−Θ2 − θ1Θ

p0 = −Θ(Θ + θ1 − t0θt)
θ∞

+ t0(t0 − 1)
θ∞

[
K0 + θ0θt

t0
+ θ1θt
t0 − 1

]
(7.47)

Thus, at λ = t0, c̃t is nonzero in general because if it is zero then K0 can be trivially
written in terms of θi and t0, which is not the case, in general. Furthermore, should t0 be
a zero of τ−(t) for some particular monodromy data, this does not invalidate the more
general statement that τ+(t0) = 0.

Therefore, with the choices α = θt, β = 0, we find equation 7.5. Also, in order to
find the position of the non-trivial pre-vertex, the analysis above implies that we should
look for the zero of τ+(t).

7.2 Toda multivariate equations
After a long short story, we delve into the accessory parameter problem for polycir-

cular arc domains with a higher number of vertices. In order to calculate the positions of
the non-trivial prevertices, we essentially follow the same ideas as before. We will verify
that Toda equation can be generalized in the following way:

d

dtk

[
tk(tk − 1) d

dtk
log τ(t0, . . . , tn−4)

]
+θtk(θtk − θ∞)

2 −
∑
tq 6=tk

tq(tq − 1) TrBkBq

(tk − tq)2

= Ck
τ+
k (t)τ−k (t)
τ 2(t) , Ck ∈ C

(7.48)

where k assume the values 0, . . . , n− 4 and

τ±k (t0, . . . , tn−4) = τ(θi, θtk ± 1, θ∞ ∓ 1, σ01, σij, σitk ± 1, t0, . . . , tn−4) (7.49)

In other words, as we use τ to define τ±k , all monodromy parameters associated to finite
pre-vertices remain the same except for θtk and σitk . θ∞ also changes according to the
rule 7.49. To avoid confusion, we reserve the index i = 0, 1, tq, with q 6= k. Notice that
the way we define θtk , σitk , and θ∞ for τ±k is analogous to what happened in the case with
four vertices. Notice that 7.48 describes a Toda multi-dimensional lattice, instead of the
Toda chain that appears when n = 4. Thus, we analogously expect that the non-trivial
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pre-vertices are determined as the zero of the system of equations

τ+
k (t0, . . . , tn−4) = 0, k = 0, . . . , tn−4 (7.50)

Let us verify that 7.48 and 7.50 are correct. Since the main line of argument is the same
as in the previous section, we focus on the main calculations to establish the results.

Again, we have ∂wΦ(w) = A(w)Φ(w) and want to define ∂wΦ±(w) = A±(w)Φ±(w),
but, this time

A(w) =
∑
i

Ai
w − i

+ 1
w − t

 α 0
0 β

 , A±(w) =
∑
i

A±i
w − i

+ 1
w − t

 α± 1 0
0 β

 (7.51)

with the simplification t := tk. In order to find A+
i in terms of the elements of Ai and

to determine p+, q+ we need a little algebra gymnastics. Just for the sake of more easily
keeping track of the terms in the calculations, define:

Ai =
1 q+

0 1

Ai
1 −q+

0 1

 =
ai bi

ci di

 (7.52)

in such a way thatai bi

ci di

 =
ai + q+ci bi − (ai − di)q+ − ci(q+)2

ci di − q+ci

 (7.53)

Now, L+(w) is the same as in 7.7, and we write:

1
w − i

L+Ai(L+)−1 =
 1 0
p+ 1

 1
w − i

 ai −(t− i)bi
−(t− i)−1ci di

+
0 bi

0 0

+ 1
z − t

 0 0
(t− i)−1ci 0

 1 0
−p+ 1

 (7.54)

or

1
w − i

L+Ai(L+)−1 = 1
w − i

A+
i − bi

 p+ −1
(p+)2 −p+

+ 1
w − t

 0 0
(t− i)−1ci 0

 (7.55)

where

A+
i =

 ai + p+(t− i)bi −(t− i)bi
−(t− i)−1ci + p+(ai − di) + (p+)2(t− i)bi di − p+(t− i)bi

 (7.56)

or, still, A+
i = L+(i)Ai(L+(i))−1, with

L+(i) =
 1 0
p+ 1

i− t 0
0 1

1 q+

0 1

 (7.57)
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According to equation 7.8, we need L+A(L+)−1 + ∂L+

∂w
(L+)−1 = A+(w) given by 7.51, so

that
∂Φ+

∂w
[Φ+]−1 = A+(w) =

∑
i

A+
i

w − i
+ 1
w − t

 α± 1 0
0 β

 (7.58)

but from 7.55 we see that the last two terms in the r.h.s. are in excess. They are required
to cancel with the last two terms below:

1
w − t

L+At(L+)−1 + ∂L+

∂w
(L+)−1 = 1

w − t

α + 1 0
0 β


+ 1
z − t

 0 0
p+(α + 1− β) 0

+ q+(α− β)
 p+ −1

(p+)2 −p+

 (7.59)

The vanishing of the extra terms implies the determination of the transformation L(w):

q+(α− β) =
∑
i

bi =
∑
i

[bi − (ai − di)q+ − ci(q+)2], (7.60)

p+(α + 1− β) = −
∑
i

ci
t− zi

= −
∑
i

ci
t− i

(7.61)

Moreover, we can compute the tau function of the new system:

H+
k = d

dt
log τ̂+ =

∑
i

TrA+
i A

+
t

t− i
(7.62)

and one notes that each term involves (L+(zi))−1A+
t L

+(zi), which is computed explictly
to:

(L+(zi))−1A+
t L

+(zi) =
α + 1 0

0 β


+ (α− β + 1)

0 q+

0 0

− p+(zi − t)
−q+ −(q+)2

1 q+

 (7.63)

The calculation for decreasing the value of α is entirely analogous. We use the equations
above, 7.61, and some algebra to find

H+
k −H =

∑
i

ai
t− i

+
(∑

i

ci
t− i

)
q+

H−k −H = −
∑
i

ai
t− i

+
(∑

i

bi
t− i

)
q− (7.64)

Now, in order to more precisely determine q±, let us compare the secular equation satisfied
by the eigenvalues κ± of A∞ to those equations defining q±:∑

i

bi(q−)2 −
∑
i

(ai − di + α− β)q− −
∑
i

ci = 0

∑
i

ci(q+)2 +
(∑

i

(ai − di) + α− β
)
q+ −

∑
i

bi = 0

(κ±)2 +
(∑

i

(ai + di) + α + β

)
κ± + detA∞ = 0 (7.65)
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Since the equations above have the same discriminant, ∆ = κ+ − κ−, we can write:

q+ = κ+ +∑
di + β∑
ci

, q− = −κ+ +∑
di + β∑
bi

(7.66)

Adding the two equations in 7.64 yields:

d

dt
ln
(
τ̂+
k τ̂
−
k

τ̂ 2

)
=
(∑

i

ci
t− i

)
κ+ +∑

di + β∑
ci

∑
k bk∑
k bk
−
(∑

i

bi
t− i

)
κ+ +∑

di + β∑
bi

∑
k ck∑
k ck

=
(∑

i

ci
t− i

∑
k

bk −
∑
i

bi
t− i

∑
k

ck

)
κ+ +∑

di + β∑
i bi
∑
k ck

(7.67)
However, notice that(

κ+ +
∑

di + β
) (
κ∓ +

∑
di + β

)
= detA∞ − TrA∞

(∑
di + β

)
+
(∑

di + β
)2

= −
∑

bi
∑

ci
(7.68)

besides, ∑
i,k

(
cibk
t− i

− ckbi
t− k

)
=
∑
i<k

(
cibk
t− i

+ ckbi
t− k

− ckbi
t− k

− cibk
t− i

)

=
∑
i<k

(i− k) cibk − bick
(t− i)(t− k)

(7.69)

We use Schlesinger equations and the parameterization of Ai and At to explicitly calculate

∂t
∑
i

TrAtAi =
∑
i<k

(α− β)(i− k) cibk − bick
(t− i)(t− k) . (7.70)

Then, we verify that, because β∑i di = TrAtAi−α
∑
i ai and

∑(ai+bi)+α+β = −κ+−κ−

−(α− β)(κ− +
∑
i

di + β) = α(α + κ+) + β(β + κ−) +
∑
i

TrAtAi (7.71)

hence, we use the last relations together with the fact that the eigenvalues of Ai, At, A∞
are preserved by the isomonodromic deformation to find

d

dt
ln
(
τ̂+
k τ̂
−
k

τ̂ 2

)
=
∑
i<k

(i− k) cibk − bick
(t− i)(t− k)

1
−(κ∓ +∑

di + β)
α− β
α− β

= d

dt
ln
(
α(α + κ±) + β(β + κ∓) +

∑
i

TrAtAi
) (7.72)

Remember the relation we obtained previously:

∂k(tk(tk − 1)∂k ln τ) =
n−1∑
i=1
wi 6=tk

TrBtkBwi −
∑
tq 6=tk

tq(tq − 1) TrBkBq

(tk − tq)2 (7.73)

which implies that

∂k(tk(tk − 1)∂k ln τ̂) =
n−1∑
i=1
wi 6=tk

TrAtkAwi −
∑
tq 6=tk

tq(tq − 1) TrBkBq

(tk − tq)2 (7.74)
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Therefore

α(α+κ±)+β(β+κ∓)+∂k(tk(tk−1)∂k ln τ̂)+
∑
tq 6=tk

tq(tq − 1) TrBkBq

(tk − tq)2 = Ck
τ̂+
k τ̂
−
k

τ̂ 2 , Ck ∈ C

(7.75)
And again, as we expect the l.h.s. of the equation above to be zero at λk = tk, the initial
conditions which determine the positions of the relevant pre-vertex positions are equivalent
to the vanishing of the products τ+

k τ
−
k for all possible values of k.

In the next subsection, we show that the positions of the pre-vertices are calculated
as the zero of the system of equations τ+

k = 0, with k = 0, . . . , n− 4.

7.2.1 Parameterizing the Fuchsian system

We use the same parameterization as before:

Ãi =
ãi b̃i

c̃i d̃i

 =
 pi + θi −qipi

1
qi

(pi + θi) −pi

 (7.76)

where i 6= k, and we use t := tk for a fixed value of k. We use the definitions of H± and H
in terms of the entries of Ai, At, A∞:

H+ −H =
∑
i

ai
t− i

+
(∑

i

ci
t− i

)
q+

H− −H = −
∑
i

ai
t− i

+
(∑

i

bi
t− i

)
q− (7.77)

and rewrite the same equations in the basis in which At is not diagonal. To that end, we
use

G−1
t ÃtGt =

θt 0
0 0

 , Gt =
qt 1

1 pt+θt
qtpt

 (7.78)

also 7.66, and find

H+
k −H =

∑
i

ãi
t− i

+
∑
i

b̃i
t− i

θt − ãt
b̃t

(7.79)

H−k −H = −
∑
i

ãi
t− i

+
∑
i

c̃i
t− i

d̃t
c̃t

Once again, it can be argued that only H+
k diverges at λk = t := tk since both ãt and b̃t go

to zero in this limit while both c̃t and d̃t are expected to be finite there, in general. More
explicitly, we have:

[Ã]12 =
∑
i

b̃i
w − i

+ b̃t
w − t

= k

w(w − 1)

n−4∏
l=0

w − λl
w − tl

(7.80)
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The pole structure of the equation above implies, via Cauchy’s integral formula, that

b̃0 = −k
n−4∏
l=0

λl
tl
, b̃1 = k

n−4∏
l=0

1− λl
1− tl

, b̃tm = k(tm − λm)
tm(tm − 1)

n−4∏
l=0
l 6=m

tm − λl
tm − tl

(7.81)

thus, if we make λl = tl (except for l = k), we find:

b̃0 = −kλk
tk
, b̃1 = k

1− λk
1− tk

, btq = 0, b̃tk = k(tk − λk)
tk(tk − 1) (7.82)

where q 6= k. Moreover

H+
k −H =

∑
i

ãi
tk − i

+
(
−λk(tk − 1)

tk
− tk(1− λk)

tk − 1

)
θt − ãt
tk − λk

(7.83)

Therefore, the r.h.s. of the equation above goes to infinity when λk → tk. Thus, in
order to determine the positions of the non-trivial pre-vertices we need to solve the system
of transcendental equations:

τ+
k (t0, . . . , tn−4) = 0, k = 0, . . . , n− 4, (7.84)

with

τ±k (t0, . . . , tn−4) = τ(θi, θtk ± 1, θ∞ ∓ 1, σ01, σtitl , σtitk ± 1, t0, . . . , tn−4), i, l 6= k (7.85)

This concludes the formal determination of the accessory parameters tk and βk in
terms of Jimbo-Miwa-Ueno isomonodromic tau functions initiated in the last chapter. Of
course, in order to use the isomonodromy method to calculate the accessory parameters
for any simply-connected polycircular arc domain, a very important step is still missing:
the calculation of the isomonodromic tau functions in terms of the monodromy data when
n > 4. We look forward to address this problem in the future.
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8 CONCLUSION AND PERSPECTIVES

The uniformisation map for circular arc triangles is known to be given in terms of
the so called “Schwarzian triangle functions”, which depend solely on the internal angles
of the uniformised region. On the other hand, the uniformisation map for other simply
connected polycircular arc domains with n > 3 sides is a quotient of solutions to Fuchsian
equations that depend not only on the internal angles but also on 2(n − 3) accessory
parameters tk and Kk, with k = 0, . . . , n− 4. The explicit mathematical dependence of
the accessory parameters on the geometry of the target region remained a mystery for
many years – this is known as the accessory parameter problem and such parameters used
to be calculated only via standard numerical techniques.

In this thesis we proposed that the Jimbo-Miwa-Ueno isomonodromic tau functions
(JIMBO, 1982; JIMBO; MIWA; UENO, 1981) can be used to solve the accessory parameter
problem. We considered the Riemann-Hilbert problem (RHp) of finding the Fuchsian ODE
associated with a function having prescribed singular behavior, and we showed how the
monodromy transformations, realised as SL(2,C) matrices, are obtained using properties
of the Schwarz functions associated with each boundary arc.

When dealing with the four-sided case, we associated the monodromy data with
the isomonodromic tau function for Painlevé VI. The accessory parameters t0 and K0 can
be calculated by imposing conditions 4.23. We then used the tau function asymptotic ex-
pansions proposed by Gamayun, Iorgov, and Lisovyy (GAMAYUN; IORGOV; LISOVYY,
2012) to extract the accessory parameters. We chose the pre-images of the vertices posi-
tions to lie on the real line at 0, t0, 1,∞. Relatively elongated target domains, where the
accessory parameter t0 comes close to the endpoints of the interval (0, 1), are particularly
well suited to the analytical approach presented here, due to the fast convergence of the
expansions and the absence of “crowding” issues that affect older approaches. We find
excellent numerical accuracy with relatively small computational effort for a variety of
quadrilaterals, including ones with straight-line edges well as unbounded domains. This
makes the new method specially useful in applications of conformal mapping theory to
engineering problems where the relevant target domain has an elongated aspect. Such
applications can be explored in the future.

In addition, Schwarz-Christoffel mappings to quadrilaterals motivated the study of
the tau function expansion in the limit when the monodromy group becomes reducible.
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We introduced a parameter ε which controls the curvature of at least one of the straight
line segments of the boundary and vanishes when all sides are straight. The analysis of
truncated Painlevé VI tau function expansions suggested that the limit

lim
ε→0

τ(t, ε) (8.1)

exists, correctly yields t0 as a zero, and can be extended in a natural way when n > 4.
Also, we used the Picard solution for the Painlevé VI tau function to show that the
new method reproduces the closed formula for the aspect ratio of rectangles in terms of
elliptic integrals. This indicates the solution of the Schwarz-Christoffel accessory parameter
problem as a byproduct of the isomonodromy method in the context of circular arc polygons.

We also found the generalization of equations 4.23, that solve the RHp when n = 4,
to deal with circular arc polygons with n > 3 sides. In particular we verified that the
isomonodromic tau functions satisfy a Toda multi-dimensional lattice equation, which led
to the discovery that {t0, . . . , tn−4} is a solution of the system of transcendental equations:

τ+
k (t0, . . . , tn−4) = 0, k = 0, . . . , tn−4. (8.2)

where

τ±k (t0, . . . , tn−4) = τ(θi, θtk ± 1, θ∞ ∓ 1, σ01, σij, σitk ± 1, t0, . . . , tn−4) (8.3)

Then, we should use the values tk calculated above to determine the other (n−3) accessory
parameters:

Kk =
∑
wi 6=tk

1
2
θtkθwi
tk − wi

− ∂tk ln τ. (8.4)

where wi are the position of the n − 1 pre-vertex positions that do not correspond to
tk. Isomonodromic tau functions exist for a generic number of monodromies and have a
representation in terms of Fredholm determinants (GRAVYLENKO; LISOVYY, 2016). The
particular case of Painlevé VI tau functions has been implemented in terms of Fredholm
determinants, also to deal with quasinormal modes of black holes (BARRAGÁN-AMADO;
CARNEIRO DA CUNHA; PALLANTE, 2018), yielding asymptotic expansions even faster
than in terms of sums over Young diagrams. Thus, the conclusion of the program to solve
the accessory parameter problem – delivering the numbers tk, βk – seems within reach.

Notice from 8.4 that, if we allow the parameters to vary in tk with fixed monodromy
parameters, we find

∂tiKk = ∂tkKi (8.5)

This symmetry property for accessory parameters was discovered in the context of semi-
classical Liouville theory (TAKHTAJAN, 1989).
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The method advocated here also furthers a deeper mathematical understanding of
the relation between the geometry of polycircular arc domains and the accessory parameters
of the Schwarzian differential equation. Integrable structures such as the Schlesinger and
Garnier systems naturally arise in this context and play important roles.

It should me mentioned that, in the past, conformal maps of simply connected
domains bounded by analytic curves were shown to yield solutions of dispersionless
2D Toda hierarchies, and this allowed the association between the analytic curves and
certain tau-functions which were known, by the time, to solve those integrable hierarchies
(MINEEV-WEINSTEIN; WIEGMANN; ZABRODIN, 2000). Dealing with mappings to
polycircular arc domains, we observe that different types of integrable structures and tau-
functions emerge, but the mathematical formulation of the problems involving polycircular
arc domains and analytic curves are really different and thus the integrable structures, in
each case, seem to be unrelated.

The case of target domains with boundaries composed of curved segments (not
necessarily circular) have been treated (in the literature) via polygonal approximations
(DRISCOLL; TREFETHEN, 2002). It may be the case that approximations by circular
arcs in tandem with the isomonodromy method can produce more accurate and faster
calculations of such conformal mappings. Depending on the amount of computational effort
to solve the accessory parameter problem for polycircular arc domains with many sides
using exclusively the new method, one could also think about a hybrid approach where
the isomonodromy method is used to generate good initial estimations for the accessory
parameters and then Howell’s method (or some variation thereof) is applied to increase
the accuracy of the results.

Although in this thesis we worked with Fuchsian equations whose bilinear com-
binations have a particular geometrical interpretation, the equations 8.2 and 8.4 seem
to be applicable in a wider sense. Thus, the questions of which/how Fuchsian equations
(or monodromy groups) have the RHp completely solved by 8.2 and 8.4 arises. Schwarz-
Christoffel accessory parameters, for instance, seems to be captured only through the zero
curvature limit. Moreover, 8.2 and 8.4 may have generalizations for the case of systems
with irregular singular points as well as regular ones – tau functions for Painlevé III and
V, which are related to isomonodromic deformations of Heun equations with irregular
singular points, have been studied (GAMAYUN; IORGOV; LISOVYY, 2013; LISOVYY;
NAGOYA; ROUSSILLON, 2018; ITS; LISOVYY; TYKHYY, 2014).

An interesting observation has to do with the fact that we solve the RHp at the
zeros of associated tau functions. However, the Malgrange divisor (MALGRANGE, 1983),
which is the set of zeros of the tau function, corresponds to points where the RHp does
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not have a solution (PALMER, 1999). See also (BERTOLA, 2016a; BERTOLA, 2016b).
This observation may stimulate new investigations.

Another compelling course of action is the study of mappings to polycircular
arc domains to higher genus Riemann surfaces (CROWDY; FOKAS, 2007; CROWDY;
FOKAS; GREEN, 2011). For the extension of the Schwarz-Christoffel formula to multiply
connected polygons, see (CROWDY, 2005; DELILLO; ELCRAT; PFALTZGRAFF, 2005).
These mappings have corresponding accessory parameter problems.
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APPENDIX A – SCHWARZ FUNCTIONS

An important object in the analysis of the analytic continuation around the singular
points is the so called Schwarz function of a curve (DAVIS, 1974). Suppose an arc C on
the complex plane is written in cartesian coordinates as

g̃(x, y) = 0 (A.1)

In conjugate coordinates, the equation for C becomes

g(z, z̄) ≡ g̃
(
z + z̄

2 ,
z − z̄

2i

)
= 0 (A.2)

Assume that g(z, z̄) is a differentiable function of z, z̄, and, at a particular point a ∈ C,
we have

∂

∂z̄
g(z, z̄)

∣∣∣∣∣
a

6= 0 (A.3)

hence, by the implicit function theorem, we may solve for z̄ in terms of z to find

z̄ = S(z) (A.4)

where S(z), so called Schwarz function of C, is an analytic function of z in some neighbor-
hood of a.

Now, for all that is important in this thesis, C represents a straight line segment
or a circular arc. Furthermore, should C be a straight line segment through the distinct
points z1 and z2, the Schwarz function is calculated to be

z̄ = S(z) = z̄1 − z̄2

z1 − z2
z + 2iIm(z1z̄2)

z1 − z2
(A.5)

And, if C is a circular arc with radius r, centered at z0, the Schwarz function of C becomes

S(z) = r2

z − z0
+ z̄0 (A.6)

because of the equation |z − z0|2 = r2. From equations (A.5) and (A.6) we see that even
though S(z) is defined for z ∈ C, we can naturally analytically extend it to a narrow
enough strip-like region U that contains C since (A.6) itself is analytic in U , and it assumes
the same values of S(z) on C.

Reflections by straight lines and circular arcs

A reflection in a straight line l passing through the distinct points z1 and z2: the
transformation

T (z) = |z1 − z2|
z1 − z2

(z − z2) (A.7)
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rigidly brings the straight line to lie on the real axis with T (z2) = 0. On the other hand,
the transformation R(z) = z̄ reflects the point z in the real axis. Hence, the reflection z∗
of the point z in l is computed according to

z∗ = T−1RT (z) = z1 − z2

z̄1 − z̄2
(z̄ − z̄2) + z2 (A.8)

which can be compared to the Schwarz function of the same straight line in (A.5) to yield

z∗ = S(z) (A.9)

Thus, given a point z on a strip-like region which contains the straight line l, we can
analytically continue the Schwarz function of l to that region and the reflection z∗ of the
same point is given by the complex conjugate of S(z).

A reflection (inversion) in the circle |z − z0| = r can be expressed by

z∗ = r2

z̄ − z̄0
+ z0 = S(z) (A.10)

where, now, S(z) stands for the Schwarz function of the corresponding circle. It is not
hard to convince oneself that, for instance, the reflection of a point z in the unit circle
centered at the origin is given by

z∗ = S(z) = 1
z̄

(A.11)

Notice that (i) for any z on the unit circle, z∗ = z; (ii) if z is inside (outside) the unit disc,
near the boundary, then z∗ is also located near the boundary, but outside the unit disc,
and both z and z∗ are on a straight line through the origin and z; and (iii) if z is near the
origin, then, according to (A.11), z∗ is located near infinity – again, z and z∗ belong to a
straight line through the origin and z.

In fact, for any arc C for which a Schwarz function S(z) exists, the complex
conjugate of it, S(z), yields the so called Schwarzian reflection of the point z in the that
arc (DAVIS, 1974).

Notice also that since the reflection of a reflection of a point in an arc is the original
point, we have the relation

S(S(z)) = z (A.12)

The equation above will play an important role in the determination of the monodromy
matrices below.

Analytic continuation of conformal mappings

In order to calculate the analytic continuation of the conformal mapping z = f(w),
which maps the the upper half w-plane to the interior of the target domain D, around
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singular points in the w-plane, we need to find f̃(w) which is the analytic extension of
f(w) and maps the LHP to the exterior of D.

Consider points w lying in the LHP and near the real line R. The Schwarz function
of the real line SR(w) = w is defined, and SR(w) clearly yields points in the UHP near R.
Thus, f(SR(w)) is defined yielding points inside D, near the boundary C. One can define:

f̃(w) = SC(f(SR(w))) (A.13)

yields points near C, outside D. Notice that f̃(w) is an analytic function because it is
continuous and its derivative with respect to w̄ is zero. Also, For w ∈ R, SR(w) = w and
f(w) ∈ C. Hence

f̃(w) = SC(f(SR(w))) = SC(f(w)) = f(w) for w ∈ R (A.14)

Therefore f̃(w) is the analytic continuation of f in the LHP. Thus, we are left with the
expression

f̃(w) = SC(f(w̄)) (A.15)

for w in the LHP since SR(w) = w̄. Notice that C needs to be a regular curve in order for
the above equation to be true. When C is the boundary of polycircular arc domains, the
curve is not regular at the vertices, however we can still talk about analytic continuations
along the regular parts of C, which by the foregoing discussion are implemented by Schwarz
reflections.
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APPENDIX B – MÖBIUS
TRANSFORMATION OF THE PRE-IMAGE

DOMAIN

In some circumstances, it may be convenient to change the pre-image domain
from the UHP with prevertices at wi = 0, 1,∞ to other regions For instance, when the
numerical integration of the boundary is performed, it is best for numerical reasons that
no prevertex is located at infinity since this point can not be reached by the computer.
Such a transformation can be performed as

w′ = w − 1
w + 1 (B.1)

where we assume the identifications w′(0) = −1, w′(1) = 0, and w′(∞) = 1 – all pre-vertices
positions are finite.

In addition, Möbius transformations can be used in another circunstance. It is often
desirable to visualize the action of the mapping on grid lines in the pre-image domain. For
this task, it is more convenient to use a bounded pre-image domain such as a unit circle.
In this case, we can use the transformation

w′ = i− w
i+ w

(B.2)

where we have the identifications w′(0) = 1, w′(1) = i, and w′(∞) = −1 – the real w-line
is mapped by (B.2) to the unit circle.

Now, we know that the conformal mapping f(w) satisfies the Schwarzian differential
equation

{f(w), w} :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
n∑
i=1

[
δi

(w − wi)2 + βi
w − wi

]
(B.3)

where

δi := (1− θ2
i )

2 ,
n−1∑
i

βi = 0,
n−1∑
i

(wiβi + δi) = 0,
∑

(βiw2
i + 2wiδi) = 0. (B.4)

The form of (B.3) is preserved by a Möbius transformation of w, but while δi remains
the same – it only depends on the internal angles of the polycircular arc domain –, the
accessory parameters change.

In the discussion below, we show how to relate the β′i, associated with the new
w′-domain, to βi associated with the w-domain. The domains are related by

w′ = h(w) = Aw +B

Cw +D
= aw + b

cw + d
, ad− bc = 1 (B.5)
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where we mean that, after we determine the Möbius transformation h(w), we can always
normalise all the constants A,B,C,D, by dividing them by

√
AD −BC, so that we get

new constants a, b, c, d obeying ad− bc = 1.

Eq. (B.3) transforms by z = h(w) according to

{f(w), w} = (h′(w))2
n∑
i=1

[
δi

(h(w)− h(wi))2 + βi
h(w)− h(wi)

]
(B.6)

We calculate
h′(w) = 1

(cw + d)2 . (B.7)

We investigate separately the terms involving δi and βi in (B.6). First the δi-dependent
terms:

1
(cw + d)4

δi

(aw+b
cw+d −

awi+b
cwi+d)2 = 1

(cw + d)2
δi(

(aw+b)(cwi+d)−(awi+b)(cw+d)
cwi+d

)2

=
(
cwi + d

cw + d

)2
δi

(w − wi)2

(B.8)

It can be verified – using Mathematica R©, for instance – that(
cwi + d

cw + d

)2 1
(w − wi)2 = c2

(cw + d)2 + 1
(w − wi)2 + 2c2

(cw + d)(cwi + d)

− 2c
(w − wi)(cwi + d)

(B.9)

On the other hand, we have the terms involving βi. Proceeding similarly, we find
1

(cw + d)4
βi

h(w)− h(wi)
= βi

(
1

(w − wi)(cwi + d)2 −
c

(cw + d)3

− c

(cw + d)(cwi + d)2 −
c

(cw + d)2(cwi + d)

) (B.10)

Hence, equation (B.6) becomes

{f(w), w} =
∑[

δi
(w − wi)2 −

2cδi
(w − wi)(cw + d) + βi

(w − wi)(cwi + d)2

+ βi
c

(cw + d)3

+ c2δi
(cw + d)2 −

cβi
(cw + d)2(cwi + d)

+ 2c2

(cwi + d)(cw + d) −
cβi

(cw + d)(cwi + d)2

]
(B.11)

The second and the third lines above cancel because of the algebraic relations in (B.4).
The last line vanishes as well. The new accessory parameters

β′i = βi
(cwi + d)2 −

2cδi
cwi + d

(B.12)

have passed numerical tests – we can generate the same quadrangle using {βi, wi} or
{β′i, w′i}, and {β′i, w′i} satisfy (B.4).
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APPENDIX C – TAU FUNCTION
EXPANSION ON MATHEMATICA

In this appendix, we present the code on Mathematica 11 to generate the Painlevé
VI tau function expansion around t = 0’. Also, in the next section, we present additional
plots of tau-functions along with K(t) and L(t) for the examples in chapter 4.

Due to some kind of internal conflict in Mathematica, sometimes it is important to
compile first the following line:

Then, we compile the code below to generate ‘tauf0’:
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Notice that one has to input the monodromy data {θ0, θt, θ1, θ∞, σ0t, σ1t, σ01} in
order to calculate t0 and K0. Moreover, the code above can certainly be optimized.
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APPENDIX D – ADDITIONAL PLOTS

We present some plots for K(t), L(t), τ+(t), and τ−(t) for the examples 4.3.3 and
4.3.4, where we treat the channel with width h = 2 and a rectangle with aspect ratio
h = 1.3, respectively.

Plots for the channel with a half-disc barrier

We use expansions around t = 0 and h = 2 to produce the plots below.
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Figure 19 – Plots for τ+(t).
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Figure 20 – Plots for τ+(t).
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Figure 21 – Plots of L(t). Notice the existence of a zero with t ≈ 0.8. The position of this
zero is sensitive to the order of the expansion. Notice also that the two zeros
near t = 0 correspond to zeros of τ+(t) and τ−(t).
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Figure 22 – Plot of K(t)

Plots for the rectangle

We use expansions around t = 1, h = 1.3, and ε = 1× 10−7 to produce the plots
below.
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Figure 23 – Plots for τ+(t). We calculate t0 ≈ 0.7637.
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Figure 24 – Plots for L(t) on the left and τ−(t) on the right hand side.

Again we see that the zeros of L(t) correspond to zeros of τ±(t). Finally, in seeking
for obtaining K0, we analise the plots of K(t):
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Figure 25 – Plots for K(t). Notice that K0 ≡ K(t0) ≈ 0.
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