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ABSTRACT

The Cauchy-Rayleigh (CR) distribution has been successfully used to describe
asymmetrical and heavy-tail events from radar imagery. Employing such model to describe
lifetime data may then seem attractive, but drawbacks arise: its probability density function
does not cover non-modal behavior as well as its hazard rate function (hrf) assumes only
one form. To outperform this difficulty, it is investigated the exponentiated Cauchy-
Rayleigh (ECR) distribution. This byparameteric model is flexible enough to accommodate
hrf with decreasing, decreasing-increasing-decreasing and upside-down bathtub forms.
Several closed-form mathematical expressions for the ECR model are obtained: median,
mode, some moments, (h,φ)-entropies and Fisher information matrix. Their non-existence
respective cases are also determined. It is proposed two estimators for the ECR parameters:
maximum likelihood (ML) and percentile-based methods. Both of this methods may be
biased for small and moderate sample sizes. To overcome it we furnish a expression for its
second-order bias according to Cox and Snell (1968) and propose a third bias-corrected
ML estimator. Further discussions about hypotheses-based inference and estimation
formulas on censored-data are furnished as well. A simulation study is done to assess the
estimators performance. The estimates existence and uniqueness are not guaranteed, thus
procedures to constrained estimation are developed to overcome this trouble. Notes about
hypothesis tests are given under censored and uncensored schemes. An application in a
survival dataset illustrates the proposed model usefulness. Results point out that the ECR
distribution may outperform classical lifetime biparametric models, such as the gamma,
Birnbaum-Saunders, Weibull and log-normal laws, before heavy-tail data. The likelihood
ratio test are compared against entropy-based tests as urban texture detector using a San
Francisco synthetic aperture radar imagery. This same image is also the final application
target which consist of compare segmentation algorithms based on CR and ECR entropies
densities finite mixture. It is recurred to a result due Pardo et al. (1997) which provides
the (h,φ)-entropies asymptotic distribution. The finite mixture log-likelihood function is
maximized using the Expectation-Maximization algorithm.

Keywords: Cauchy-Rayleigh. Heavy-tail Distributions. Hypotheses Test. (h,φ)-Entropies.
Synthetic aperture radar (SAR). Segmentation.



RESUMO

A distribuição de Cauchy-Rayleigh (CR) tem sido usada com sucesso para descrever dados

assimétricos e eventos com caudas pesadas de imagens de radar. Empregar tal modelo para

descrever dados de sobrevivência poder ser atrativo, mas inconvenientes surgem: sua função de

densidade de probabilidade não abriga comportamento amodal bem como sua função de taxa de

falha (hrf) assume apenas uma forma. Para superar essa dificuldade, é investigada a distribuição

Cauchy-Rayleigh exponencializada (ECR). Este modelo biparamétrico é flexivel o bastante para

acomodar hrf com formas decrescente, decrescente-crescente-decrescente e banheira invertida.

Várias expressões matemáticas em forma fechada para o modelo ECR são obtidas: mediana, moda,

alguns momentos, (h,φ)-entropias e matriz de informação de Fisher. Seus respectivos casos de não

existência também são determinados. São propostos dois estimadores para os parâmetros da ECR:

métodos de máxima verossimilhança (ML) e estimação quantílica. Ambos os métodos podem

ser viesados para tamanhos de amostra pequenos e moderados. Para superar isto, fornecemos

uma expressão para o viés de segunda ordem de acordo com Cox e Snell (1968) e propusemos um

estimador de máxima verossimilhança com viés de terceira ordem corrigido. Discussões adicionais

sobre inferência baseada em hipóteses e fórmulas de estimação em dados censurados são fornecidas.

Um estudo de simulação é feito para aferir a performance dos estimadores. A existência e unicidade

das estimativas não é garantida, assim procedimentos para estimação restrita são desenvolvidos

para superar esse problema. Notas sobre teste de hipótese são dadas considerando esquemas

censurados e não-censurados. Uma aplicação em dados de sobrevida ilustra a utilidade do modelo

proposto. Os resultados apontam que a distribuição ECR pode superar modelos biparamétricos de

sobrevivência clássicos como gama, Birnbaum-Saunders, Weibull e log-normal. O teste da razão

de verossimilhança é comparado com testes baseados em entropias como detector de texturas

urbanas em uma imagem synthetic aperture radar da cidade de São Francisco. Esta mesma

imagem é também alvo da aplicação final que consiste em comparar algorítmos de segmentação

baseados em misturas finitas das densidades das entropias dos modelos CR e ECR. Recorremos a

um resultado de Pardo et al. (1997) o qual nos dá distribuição assintótica das (h,φ)-entropias. A

função de log-verossimilhança das misturas finitas é maximizada usando o algorítmo EM.

Palavras-chave: Cauchy-Rayleigh. Distribuições de Cauda Pesada. Radar de Abertura
Sintética. Segmentação. Teste de Hipótese. (h,φ)-Entropias.
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1 INTRODUCTION

Synthetic aperture radar (SAR) systems have been indicated as important tools to
solve remote sensing issues. Among others, this fact may be justified by their capability
in operating on all weather conditions and in providing high resolution images. However,
SAR images are strongly contaminated by an interference pattern called speckle noise.
Thus, working with SAR imagery requires a suitable modeling. The Cauchy-Rayleigh
(CR)1 distribution has received great attention as descriptor of SAR features. In this work,
we propose a new distribution that extends the CR law as modeling for both lifetime data
and SAR features.

The reason of applying the CR law for describing lifetimes is firstly to accommodate
heavy-tail distributions. However, its probability density function (pdf) does not cover
non-modal behavior (as the exponential distribution does) as well as the CR hazard rate
function (hrf) assumes only one form, limiting its employment in practice. To that end,
we extend the CR distribution by using the exponentiated (Exp-G) class. We denote the
new model as exponentiated Cauchy-Rayleigh (ECR) distribution.

As a second goal we aim to combining the CR and ECR models with information
theory measures to construct both extractors of SAR features and segmenters of SAR
clusters. Kuruoglu and Zerubia (2004) presented evidence that the CR model may
outperform the Weibull, log-normal (LN) and K-Bessel (K) distributions in SAR imagery
analysis, which is expected because urban areas show impulsive characteristics that
correspond to underlying heavy-tailed distributions. Li and Ekman (2010), Li and Ekman
(2011) introduced the CR law as a model of scattering clusters in state space based on
simulation model for single and multiple polarization channels. Hill et al. (2014) produced
a novel bivariate shrinkage technique to provide a quantitative improvement in image
denoising using the CR model. Recently, Bibalan and Amindavar (2015) and Bibalan and
Amindavar (2016) furnished a mathematical treatment to the heavy-tailed Rayleigh (HTR)
distribution by means of mixtures of CR and Rayleigh models. Other papers that used the
CR in SAR modelling are Peng et al. (2017) and Pappas et al. (2017). Recently, texture
surfaces motivated many segmentation studies and algorithms like Jain and Farrokhnia
(1990), Oakley and Hancock (1994), Randen and Husoy (1999), Hsin (2000), Huan and
Hou (2008), Zhang et al. (2008), Karoui et al. (2010), Jyothirmayi et al. (2015), Kumar
et al. (2016) and Akbulut et al. (2018). Li and Ekman (2010), Li and Ekman (2011)
developed this approach for modeling amplitude of ultrasound images through the HTR
distribution.

Some recent works that use entropy-based tests (EBTs) in SAR and polarimetric
SAR (PolSAR) imagery are Frery et al. (2013) and Nascimento et al. (2014b). Frery et

1a.k.a. generalized Cauchy (BIBALAN; AMINDAVAR, 2016).
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al. (2013) and Nascimento et al. (2014b) have shown evidences that employing entropy
measures in order to understand SAR partner may be an efficient strategy, comparatively
to others such like those based on likelihood ratio test (LRT) statistics. An important
EBTs advantage is the smaller demand of computational effort than LRT alternatives.
The employment of some entropy measures on texture segmentation has been made with
success, some of the last studies are Nobre et al. (2016), Naidu et al. (2017), Abdel-Khalek
et al. (2017), Yin et al. (2017), Nguyen et al. (2018), Pham et al. (2018), Wang et al.
(2018), Wu et al. (2018) and Wang et al. (2018).

In this thesis, we have the following main objectives:

First goal: Extend the CR distribution by using the Exp-G class exploring flexibility,
structural properties, parameter estimators, asymptotic theory, hypothesis test and
confidence intervals of the new model.

Second goal: For urban SAR imagery understanding develop CR- and ECR- based
procedures to identify homogeneity EBTs and LRTs.

Third goal: Propose segmentation methods for SAR imagery by means of the k-means
and finite mixture (FM)-based algorithms using stochastic entropies.

1.1 SPECIFIC OBJECTIVES

This work performs contributions in various areas: inference, SAR imagery, infor-
mation theory, survival analysis and asymptotic theory. Figure 1.1 presents a diagram
illustrating this relationship. The following technical objectives are addressed in this work:

Obj. 1 Defining the ECR distribution from the CR model, employing the Exp-G class.

Obj. 2 Deriving closed-form expressions for some of ECR structural properties.

Obj. 3 Obtaining the ECR maximum likelihood (ML) and percentile-based (PB) estimates
under unconstrained and constrained estimation schemes.

Obj. 4 Getting the ML estimates for the ECR parameters under censored and uncensored
estimation schemes.

Obj. 5 Comparing numerically the ECR ML and PB estimators under uncensored and
unconstrained schemes focusing on convergence, bias, sample standard deviation
(SSD) and existence rate of their corresponding estimates.

Obj. 6 Using the Cox and Snell (1968) methodology to obtain expressions for the second
order bias of maximum likelihood estimators (MLEs) and employ them to obtain the
Cox-Snell corrected (CS)-MLEs.
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Obj. 7 Assessing the flexibility of the ECR distribution by comparing its goodness-of-fit
(GoF) measures to similar models in a real survival dataset.

Obj. 8 Developing the LRTs and EBTs supported by the ECR class.

Obj. 9 Evaluating the power and nominal level of the proposed tests by means of simulation
studies.

Obj. 10 Applying the proposed LRTs and EBTs as models for SAR urban imagery.

Obj. 11 Comparing the LRT and EBTs GoF measures (supported by the ECR class) in
urban SAR imagery.

Obj. 12 Measuring how able the LRT and EBTs (supported by the ECR class) are to
detect equivalence of SAR imagery textures.

Obj. 13 Quantifying how able the LRT and EBTs (supported by the ECR class) are to
detect redundancy of information in different SAR imagery channels.

Obj. 14 Employing the deduced ECR stochastic entropies to support feature vectors of
SAR imagery.

Obj. 15 Using these feature vectors to support k-means and FM-based clustering algo-
rithms.

Obj. 16 Presenting empirical evidences that the ECR new shape parameter improves
these clustering algorithms.

Obj. 17 Minimizing the miss-classification rate (MCR) of the FM-based methods opti-
mizing the order parameter of the q-entropies.

Obj. 18 Showing the main characteristics of the segmented images obtained by means of
each reasoned clustering algorithms.

Obj. 19 Determining what of the proposed FM-based clustering algorithms optimizes the
image segmentation performance (ISP) and GoF measures in segmenting the San
Francisco SAR image.

1.2 COMPUTATIONAL PLATFORM

The computer we used in this work was an Intel® Core™ i7-4500U CPU at 1.80
GHz processor with base x64, Ubuntu 16.04.5 operating system. The computational
platforms required to develop this work are

Plat. 1. R version 3.4.4 (R, 2018);
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Figure 1.1: Diagram of the thesis contributions.

Plat. 2. Wolfram Mathematica version 11.1.1 (WOLFRAM RESEARCH, 2018);

Plat. 3. Maple version 2015.0 (WATERLOO MAPLE, 2015).

Plat. 1. was used to fit the studied models in real datasets, to perform numerical
studies and to produce the graphics. All mathematical expressions deduced in this work
were obtained manually and, subsequently, confirmed by Plat. 2. and Plat. 3..

1.3 SCOPE AND ORGANIZATION OF THIS THESIS

The present chapter was a brief introduction of the main concepts and ideas that
will be developed in Chapters 3 to 5. This work is organized as follows. A useful review of
the main concepts, methods and techniques used in this work is presented in Chapter 2.
Chapter 3 presents the main structural properties of the ECR model, investigates the ML,
CS-ML and PB estimators under censored/constrained and uncensored/unconstrained
schemes and gives a comparison of the ECR model to similar and competitor models
achieving Obj. 1 to Obj. 7. A study of the CR and ECR (h,φ)-entropies is made in
Chapter 4. These entropies give support to develop the EBTs. These tests are compared
to the classical LRT. This chapter attends Obj. 1 and Obj. 8 to Obj. 13. Chapter 5 has
some segmentation methods based on FM models and ECR (h,φ)-entropies answering Obj.
14 to Obj. 19. The main conclusions of this text are summarized in Chapter 6.

The last pages are destined to some brief appendices. The first one, Appendix A, is
reserved to figures relative of the simulation studies carried out in Chapter 3. Appendix B
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bring tables corresponding to applications and simulations made in Chapters 4 and 5.
Some proofs of the main results presented in Chapters 3 and 4 can be found in Appendix C.
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2 LITERATURE REVIEW AND USEFUL REMARKS

Here we introduce the main concepts, methods and techniques which will be
explored in Chapters 3 to 5. This review unfolds as follow. Section 2.1 presents a brief
discussion about the origins and applications of the CR model obtained from the α-stable
(αS) distribution. The Exp-G class of distributions is the theme of Section 2.2 followed
by two possible applications of this class. Section 2.3 is dedicated to CS-MLEs. The
main information theory measures is introduced in Section 2.4. Section 2.5 uses these
measures to support two-sample LRTs and EBTs. Some SAR imagery and FM concepts
are explored in Sections 2.6 and 2.7. Section 2.8 introduces the Expectation-Maximization
(EM) algorithm and its particular configuration assuming multivariate normal components.
Finally, Section 2.9 defines the ISP measures adopted in the Chapter 5 applications.

2.1 THE α-STABLE AND CR MODELS

Lévy (1925) pioneered the αS distribution, which has been widely used in financial
time series (MANDELBROT, 1960; FAMA; SCHWERT, 1977; VOIT, 2005) and, recently,
applied in SAR image processing (PIERCE, 1996; WANG et al., 2008; PENG et al., 2011).
This law has not tractable pdf expression and is often represented by its characteristic
function (cf) given by: For −∞ < t <∞ and j =

√
−1,

ϕαS(t) =

exp
{
jζt− λ|t|α

[
1 + jρ sign(t) tan

(
απ
2

)]}
, if α 6= 1,

exp
{
jζt− λ|t|

[
1 + jρ sign(t) 2

π
log |t|

]}
, if α = 1,

where −∞ < ζ < ∞, λ > 0, 0 < α ≤ 2 and −1 ≤ ρ ≤ 1 are the location, scale,
characteristic and symmetry parameters, respectively.

Now consider the (zero-mean) symmetric α-stable (SαS) distribution having cf

ϕSαS(t) = exp(−λ|t|α). (2.1)

According to Kuruoglu and Zerubia (2004), we can define the bivariate isotropic α-stable
(IαS) distribution, which has cf as

ϕIαS(tR,tI) = exp(−λ|t|α), (2.2)

where tR and tI can be understood as outcomes of real and imaginary parts of a complex
random variable, say t, respectively, and |t| =

√
t2R + t2I represents the amplitude of t.
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From (2.1), the bivariate IαS pdf can be obtained by taking the Fourier transform of (2.2):

fα,λ(xR,xI) =
1

(2π)2

∫
tR

∫
tI

exp(−λ|t|α) exp[−j2π(xRtR + xItI)] dtI dtR.

Representing this integral into its polar form in terms of s = |t| and ω = arctan(tR/tI), one
has

fα,λ(xR,xI) =
1

(2π)2

∫ 2π

0

∫ ∞
0

s exp(−λsα)J0(s|x|) ds dω, (2.3)

where J0 is the zero order Bessel function of the first kind (ABRAMOWITZ; STEGUN,
1972) and |x| =

√
x2
R + x2

I . Since ω does not appear in the integrand of the (2.3), it
collapses in

fα,λ(xR,xI) =
1

2π

∫ ∞
0

s exp(−λsα)J0(s|x|) ds. (2.4)

Now consider to determine the pdf of the corresponding amplitude. Using polar coordinates
transformation (where r and φ indicate amplitude and phase of xR + jxI respectively),
the following joint pdf can be obtained, for r > 0 and 0 ≤ φ ≤ 2π,

f(r,φ) = rfα,λ(r cos(φ),r sin(φ)). (2.5)

Under the common assumption that φ is uniformly distributed on [0,2π] (KU-
RUOGLU; ZERUBIA, 2004), it is possible to determine an expression for the amplitude
distribution from replacing (2.4) in (2.5) and integrating over φ:

gα,λ(r) = r

∫ ∞
0

s exp(−λsα)J0(rs) ds. (2.6)

This expression is know as the HTR pdf (NIKIAS; SHAO, 1995).
When α = 1 in (2.6) and using the identity 6.623.2 given by Gradshteyn and Ryzhik

(2007), the CR pdf is obtained, for r > 0, as

gCR(r) =
λr

(λ2 + r2)3/2
,

where λ > 0 is the scale parameter. This pdf is associated with the amplitude of a coefficient
on which the components are jointly Cauchy distributed (KURUOGLU; ZERUBIA, 2004).
The CR cumulative distribution function (cdf) is

GCR(r) = 1− λ√
λ2 + r2

. (2.7)

The integral in (2.6) has closed-form only for α = 1 and α = 2. When α = 2, and using
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the identity 6.631.1 obtained by Gradshteyn and Ryzhik (2007), the integral results

g(α=2)(r) =
r

2λ
exp

(
− r

2

4λ

)
,

which correspond to the classical Rayleigh distribution.
Under a non-physical perspective, some remarks are important. The CR distribution

is a nested case in the compound Weibull (CW)1 distribution with cdf, for x > 0 is given
by

FCW(x) = 1− exp(−axc)
[
1 +

(x
λ

)c]−k
,

where c ≥ 0 and k ≥ 0 are shape parameters and a ≥ 0 and λ > 0 are scale parameters.
The CR distribution is obtained at c = 2, k = 1/2 and a = 0. At a = 0, the CW
distribution coincides with the Singh-Maddala (SM)2 model, which is another notable
CR generalization. The CR distribution is also a particular case of other models, like
the Feller-Pareto (FP) (FELLER, 1971; ARNOLD; LAGUNA, 1977) and transformed
beta (TB)3 (KLUGMAN et al., 2012) laws. However, although this uniparametric model
has been successfully employed as reviewed above, it does not seem to exist works about
mathematical properties of its biparametric extension the ECR law. In what follows, this
gap is covered, presenting several new closed-form properties of the ECR model. Some
ECR asymptotic theory results are also provided. It is hoped that the proposed analytical
developments are

• used to improve processing of images whose features of pixels are distributed ECR
data such like in (LI; EKMAN, 2011; HILL et al., 2014; PENG; ZHAO, 2014;
BIBALAN; AMINDAVAR, 2016; PENG et al., 2017);

• employed in the lifetime data context.

2.2 THE EXPONENTIATED CLASS OF DISTRIBUTIONS

The exponentiation method may be described briefly as: Let X be a random
variable with cdf G(x), its Exp-G version is a random variable with cdf and pdf given,
respectively, by

F (x) = G(x)β

1a.k.a. Weibull-gamma distribution (RINNE, 2009, p. 157).
2a.k.a. three-parameter Burr type-XII (BXII) distribution (MCDONALD, 1984), which is the Pareto

VI model with null location parameter. Dubey (1968) deduce the SM model as a compound with Weibull
and gamma distributions and also named it as compound Weibull. An important reparameterization of
this distribution is the q-Weibull (q-We) model (TSALLIS, 1988).

3a.k.a. beta prime, inverted beta, beta distribution of the second kind (JOHNSON et al., 1995) or
beta log-logistic (LEMONTE, 2014).
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and

f(x) = βg(x)G(x)β−1,

where β > 0 is an additional shape parameter and g(x) is the pdf of the baseline G(x).
The hrf and the reversed hrf can be expressed, respectively, as

h(x) = βg(x)
G(x)β−1

1−G(x)β

and

h∗(x) = β
g(x)

G(x)
. (2.8)

An interesting property of the Exp-G hrfs was deduced by Gupta et al. (1998):

• if β > 1 and G admits increasing hrf, then F admits increasing hrf;

• if β < 1 and G admits decreasing hrf, then F admits decreasing hrf.

The Exp-G class also presents β proportional reversed hrf, as evinced by Eq. (2.8). Clearly
the survival function (sf) of the Exp-G class can be written in the form

S(x) = 1−G(x)β. (2.9)

Al-Hussaini and Ahsanullah (2015, p. 17) presented several interesting properties
of the Exp-G class. Following their notes note that any (absolutely continuous) baseline sf
SG can be written in the form

SG(x) = exp[−u(x)], 0 ≤ a < x < b ≤ ∞, (2.10)

where
u(x) = − lnSG(x). (2.11)

Thus u(x) is a continuous, monotone increasing, differentiable function of x such that
lim
x→a+

u(x) = 0 and lim
x→b−

u(x) = ∞. Applying (2.10) in (2.9) we obtain that the Exp-G
hrfs can be written in the form

S(x) = 1− {1− exp[−u(x)]}β. (2.12)

Al-Hussaini and Ahsanullah (2015, p. 18) showed that rth moment of a random
variable X following the sf (2.12) is given by

E(Xr) = r

n∑
i=1

(−1)i−1

(
β

i

)∫ ∞
0

xr−1 exp[−iu(x)] dx. (2.13)
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Table 2.1: Recent Exp-G distributions.

Baseline model Works

Logistic Verhulst (1838), Ahuja and Nash (1967) and Ali et al. (2007)
Weibull Mudholkar and Srivastava (1993) and Nadarajah and Kotz (2006)
Gamma Gupta et al. (1998) and Nadarajah and Kotz (2006)
Exponential Gupta and Kundu (1999)
Generalized Pareto Adeyemi and Adebanji (2004)
Rayleigh1 Kundu and Raqab (2005) and Surles and Padgett (2005)
Pareto Nadarajah (2005) and Ali et al. (2007)
Fréchet2 Nadarajah and Kotz (2006) and Ali et al. (2007)
Gumbel Nadarajah and Kotz (2006)
Generalized uniform Ali et al. (2007)
Double Exponential Ali et al. (2007)
Double Weibull Ali et al. (2007)
Double Fréchet Ali et al. (2007)
Generalized Gamma Cordeiro et al. (2011)
Generalized Wald3 Lemonte and Cordeiro (2011)
Lindley Nadarajah et al. (2011)
Kumaraswamy Lemonte et al. (2013)
Nadarajah-Haghighi’s exponential (NH) Lemonte (2013)
Perks Singh and Choudhary (2016)

1 The exponentiated Rayleigh distribution matches the two-parameter Burr type-X (BX) model;
2 The Fréchet distribution matches the inverse Weibull model;
3 The Wald distribution matches the inverse normal model.

where

n =

β, if β ∈ Z+

∞ if β ∈ R+ − Z+

.

The expansion (2.13) can be used to obtain the expected value, variance, kurtosis and
asymmetry of the random variable X, but these quantities may not have closed-form
expressions or even do not exist for some baselines models.

The quantile function (qf) of a random variable X following the sf (2.12) is given
by

Q(p) = u−1(p)
[
− ln(1− p1/β)

]
,

where u−1(p) is the inverse function of (2.11).
A useful review of the Exp-G distributions was done by Al-Hussaini and Ahsanullah

(2015). This technique has triggered several models and some examples are the given in
Table 2.1. Gompertz (1825) and Verhulst (1838) pioneered this method. Ahuja and Nash
(1967) deduced the cumulants and moment generating functions of the Gompertz and
Verhulst distributions, some asymptotic properties were also studied.

2.2.1 Some possible applications of the ECR model

The theoretical mechanism of extension that we used can be understood as arisen
from one between two contexts. First, assuming β0 ∈ Z+, consider a device works based
on β0 independent components in a parallel system. Assume that the device fails if all β0
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components fail. Let X1, . . . ,Xβ0 denote the Xi ∼ CR(λ) for i = 1, . . . ,β0 and let X be
the device lifetime. Setting the event to fail as equivalent to [X ≤ x], the probability of
device fails is

Pr(X ≤ x) = Pr

(
β0⋂
i=1

Xi ≤ x

)
= [Pr(X1 ≤ x)]β0 .

So the device lifetime obeys the ECR(β0,λ) distribution. We can rewrite this motivation
considering X as the largest order statistic in a CR(λ) random sample of size β0. Note
that

Pr(X(β0) = max(X1, . . . ,Xβ0) ≤ x) = Pr

(
β0⋂
i=1

Xi ≤ x

)
= [Pr(X1 ≤ x)]β0 .

Then we have X(β0) ∼ ECR(β0,λ). Thus, from this approach, X may represent the
maximum lifetimes among β0 lifetime components which are structured in parallel system
and represent a random sample from Y ∼ CR(λ).

In SAR imagery the observed intensity is the sum of the contributions of the
different scatterers at an under-study surface (DELIGNON; PIECZYNSKI, 2002). In
the classical approach, the number of scatterers in each elementary cell is assumed to be
large enough and approximately constant. The reflect electrical field is then normal; the
observed intensity admits an exponential distribution, and the amplitude admits a Rayleigh
model. However, when the number of scatterers varies, the resulting field distribution
may be non-normal, and so the observed intensity may no longer be exponential. Let
X1, . . . ,Xβ0 be a sample of scatterer intensities in an elementary cell, where β0 is a Poisson
random variable. The intensity of the back-scattered field is the sum of the scatterer
intensities in an elementary cell X =

∑β0
i=1Xi. The distribution of X is hard to deduce

when Xi ∼ CR(λ), but as seen before X(β0) ∼ ECR(β0,λ). Then we can study the intensity
of the back-scattered field by means of the maximum intensity of its elementary cells.

A second motivation is based on Fα record (FαR) models. Arnold et al. (1998,
p. 187) introduced the FαR model as an infinite sequence {Yn,n ≥ 1} of independent
random variables, where the cdf of Yn has the form Fn(y) = [F (y)]αn , αn > 0, and
the associated record statistics, the cdf is assumed to be continuous and the αn’s are
not necessarily integer. The FαR models have been studied by Yang (1975), Nevzorov
(1986), Ballerini and Resnick (1987), Nevzorov (1990), Nagaraja (1994) and Hofmann
and Nagaraja (2000). If we assume αn = 1 for all n, we obtain the classical record model
(ARNOLD et al., 1998, p. 7). Yang (1975) assumed αn’s to be geometrically increasing,
αn = α1γ

n−1 and γ > 1, and proposed a model in which the increasing frequency of record
breaks in the Olympic games are attributed to the population size increase. Verhulst
(1847), as mentioned by Al-Hussaini and Ahsanullah (2015, p. 2), used exponentiated
distributions to represent population growth. Recently, the record models were used to
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support CS-MLEs (TEIMOURI; NADARAJAH, 2013).

2.3 COX-SNELL CORRECTED MAXIMUM LIKELIHOOD ESTIMATORS

Let θ = (θ1, . . . ,θp) and θ̂i, for i = 1, . . . ,p, be the MLE for θi obtained by
maximizing the log-likelihood function (llf):

`(θ) = `(θ|x) =
n∑
i=1

log[fX(xi|θ)].

The elements Fisher information matrix (FIM) is denoted by Ki,j = [K(θ)]i,j = −κθiθj
and the associated cumulants obey the notation:

Uθ1···θn =
∂`(θ)

∂θ1 · · · ∂θn
and κθ1···θn = E (U θ1···θn) .

We will assume the notation κ(θk)
θiθj

= ∂
∂θk

κθiθj for the derivatives of FIM components and
K-1

i,j = [K-1(θ)]i,j = −κθi,θj for the inverse FIM components.
Cox and Snell (1968) proposed a general formula for the second order bias of the

MLE of the vector θ in terms of the cumulants. This procedure was revisited by Cordeiro
and Klein (1994), which established that the bias of θ̂i assumes the following formulation:

Bias(θ̂i) = E(θ̂i)− θi =
∑
r,s,t

κθi,θrκθs,θt
(
κ

(θt)
θrθs
− 1

2
κθrθsθt

)
+
∞∑
r=2

O(n−r). (2.14)

Thus, the CS-MLE, θ̃i, is defined by

θ̃i = θ̂i − B̂ias(θ̂i), (2.15)

where B̂ias(θ̂i) represents the second order bias of θ̂i evaluated in θ̂i. Cox and Snell (1968)
showed that

1. E
[
B̂ias(θ̂i)

]
= O(n−2);

2. E(θ̂i) = O(n−1);

3. E(θ̃i) = θi +O(n−2).

Therefore, the bias of θ̃i has order of n−2. Thus, the CS-MLEs are expected to have
better asymptotic features than MLEs. Some recent works using this method are seen in
Table 2.2.
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Table 2.2: Recent CS-MLE works.

Distribution Works

Beta Cribari-Neto and Vasconcellos (2002)
Negative Binomial Saha and Paul (2005)
Birnbaum-Saunders Lemonte et al. (2007)
Gamma Giles and Feng (2009) and Singh et al. (2015)
Generalized Logistic Lagos-Álvarez et al. (2011)
Kumaraswamy Lemonte (2011)
Half-logistic Giles (2012)
Lomax Aguilar (2012) and Giles et al. (2013)
Nakagami Schwartz et al. (2013)
Weibull Teimouri and Nadarajah (2013)
Wishart complex Nascimento et al. (2014a)
Generalized Rayleigh Ling and Giles (2014)
Doubly-truncated Poisson Godwin (2016)
Zero-inflated Poisson Schwartz and Giles (2016)
Log-logistic Reath (2016)
Weighted Lindley Wang and Wang (2017)
Skew normal Zhang and Liu (2017)
Fréchet Mazucheli et al. (2018a)
Unit-gamma Mazucheli et al. (2018b)

2.4 INFORMATION THEORY MEASURES

Entropy can be defined as the uncertainty of a single random variable (COVER;
THOMAS, 2006, p. 6). From a historical perspective, the first entropy measure was
proposed by Shannon (1948). Subsequently, many entropy measures have been introduced
(PARDO, 2006, p. 6). In order to study the different entropy measures at a systematic
way, Burbea and Rao (1982a), Burbea and Rao (1982b), Burbea and Rao (1982c) and
Salicrú et al. (1993) considered the (h,φ)-entropies class by means of Definition 2.1.

Definition 2.1 (φ- and (h,φ)-entropies). An (h,φ)-entropy is any entropy measure in the
form

Hh
φ(X) ≡ Hh

φ(Pr) ≡ Hh
φ(θ) = h

(∫
Ω

φ (fθ(x)) dµ(x)

)
,

where h : R → R, φ : (0,∞) → R, h is differentiable and either φ is concave and h is
increasing and φ is convex and h is decreasing. If φ is a continuous concave function and
h(x) = x then this entropy is an φ-entropy.

Table 2.3 shows some elements of the class introduced by Definition 2.1. Note
that Shannon and Tsallis entropies assumes h as the identify function, then they can be
classified as φ-entropies while Rényi and Arimoto entropies have more elaborated h and φ
functions.
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Table 2.3: φ- and (h,φ)-entropies (q > 0,q 6= 1).

φ(x) h(x) Entropy

−x log x x Shannon (1948)
xq−x
1−q x Tsallis (1988)
xq log x

1−q Rényi (1961)
x1/q 1−xq

1−q Arimoto (1971)

A large value of the entropy indicates the greater uncertainty in the data. In terms
of interpretability, a large value of the entropy indicates the greater uncertainty in the
data. Deriving closed-form entropy measures is sought in various applications. Mahmoud
and El-Ghafour (2013) deduced the Shannon entropy for the generalized Feller-Pareto
(GFP) distribution and Gomes et al. (2015) obtained the Rényi and Shannon entropies
for McDonald Burr type-XII (McBXII) model, but these results do not have closed-form
expressions. In the following lines we show some results involving the ECR-based entropies
due to Shannon (1948), Rényi (1961), Tsallis (1988) and Arimoto (1971).

The Shannon entropy provides an absolute limit on the best possible average length
of lossless encoding of an information source and is closely related to the Boltzmann
constant and Gini entropy (DOUGHERTY, 1964). The Rényi and Shannon entropies are
important in ecology and statistics as indexes of diversity (HILL, 1973; JOST, 2006). As
pointed by Rathie and Silva (2008), the Tsallis entropy exactly matches the Havrda and
Charvât entropy (HAVRDA; CHARVÂT, 1967) introduced aiming to form a quantificatory
theory of classificatory processes. Tsallis (1988) used this entropy as a basis for generalizing
the standard statistical mechanics. Finally, the Arimoto entropy, as defined in Pardo
(2006, p. 20), is another generalization of the Shannon entropy. Arimoto (1971) proposed
it to investigate the finite-parameter estimation problem treating the error-probability of
decision and the other equivocation measures.

The class of q-entropies associated to a probability model with pdf f(x) can be
defined by means of the following integral:

I(q,θ) =

∫ ∞
0

[f(x)]q dx, q 6= 1. (2.16)

We named it q-integral. Once deduced the q-integral, Proposition 2.1 can be used to obtain
its associated q-entropies under any model. This result can also be used to define Rényi,
Tsallis and Arimoto q-entropies.

Proposition 2.1 (q-entropies). For a given q-integral I(q,θ) the correspondent Rényi,
Tsallis and Arimoto q-entropies can be expressed, respectively, by

HR(q,θ) =
1

1− q
log I(q,θ),
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HT (q,θ) =
1

1− q
[I(q,θ)− 1]

and

HA(q,θ) =
q

1− q

{
[I(q,θ)]

1/q − 1
}
.

The q-entropies gradients relative to distributions parameters are fundamental to
implement EBTs. These gradients can be easily obtained by means of the q-integral (2.16)
and Proposition 2.2.

Proposition 2.2. The ECR Rényi, Tsallis and Arimoto q-entropies gradients relative to
the parametric vector θ are

∇HR(q,θ) =
1

(1− q)I(q,θ)
∇I(q,θ),

∇HT (q,θ) =
1

1− q
∇I(q,θ)

and

∇HA(q,θ) =
[I(q,θ)](1−q)/q

1− q
∇I(q,θ).

A notable relation between all (h,φ-entropies are given by

lim
q→1
HR(q,θ) = lim

q→1
HT (q,θ) = lim

q→1
HA(q,θ) = HS(θ). (2.17)

Another useful concept is the cross entropy, which can be used to deduce the
Kullback-Leibler (KL) divergence and several others divergence measures. The cross
Shannon entropy is a measure of the average number of bits needed to identify an event
from a set of possibilities between two probability distributions. The cross Shannon entropy
of a continuous random variable X1 relative to a continuous random variable X2, with
pdfs given, respectively, by f1(x) and f2(x), is given by

Hc
S(θ1,θ2) = −

∫ ∞
−∞

f1(x) log f2(x) dx. (2.18)

2.5 SOME TWO-SAMPLE HYPOTHESIS TESTS

Let (Ω,B,Pr)θ∈Θ be the statistical space associated with the random variable X,
where B is the σ-field of the Borel subsets A ⊂ Ω and {Pr}θ∈Θ is a family of probability
distributions on the measurable space (Ω,B) with Θ an open subset of Rn, n ≥ 1. We
assume that the probability distributions Pr are absolutely continuous with respect to
a σ-finite measure µ on (Ω,B). For simplicity µ is either the Lebesque measure or a
counting measure. On the basis of two independent random samples X1 = X11, . . . ,X1n1

and X2 = X21, . . . ,X2n2 of sizes n1 and n2, respectively, from two populations having
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distribution belonging to
F = {f(x;θ) : θ ∈ Θ ⊂ Rp} (2.19)

a set of parametric model densities, with parameters θ1 and θ2, we can solve problems of
image pre- and post-processing by testing hypotheses of kind

H0 : θ1 = θ2 versus H1 : θ1 6= θ2. (2.20)

To carry out (2.20), we recur to the following test classes: LRTs and EBTs. A LRT
consists the ratio of the likelihood at the hypothesized parameter values to the likelihood
of the data at the maximum. A short review of the LRT theory can be seen in Bickel and
Doksum (2000, p. 255). On the other hand, an EBT is settled on weighted difference of
entropy measures at the hypothesized parameter values. A complete reference of this class
of test can be obtained in the work of Pardo et al. (1997).

2.5.1 Likelihood ratio test

This test statistic is the ratio of the likelihood at the hypothesized parameter values
to the likelihood of the data at the maximum. The joint likelihood function (lf) of the
pooled sample X = (X1,X2) can be written as

L(θ|x) = L(θ1|x1)L(θ2|x2),

where θ = (θ1,θ2) ∈ Θ×Θ. To test θ1 = θ2 versus θ1 6= θ2, the LRT statistic is

Λ(x) =
sup {L(θ|x) : θ ∈ Θ1}
sup {L(θ|x) : θ ∈ Θ0}

=
L(θ̂1|x1)L(θ̂2|x2)

L(θ̂0|x)
, (2.21)

where Θ0 = {θ : θ1 = θ2}, Θ1 = {θ : θ1 6= θ2}, θ̂0 is the constrained MLE, based on the
pooled sample and θ̂1 and θ̂2 are the unconstrained ones, based on each given sample.
Wilks (1938) proved that

2 log Λ(X)
d−→

n→∞
χ2
k,

where k is the difference between the number of free parameters specified by θ ∈ Θ1 and
the number of free parameters specified by θ ∈ Θ0.

2.5.2 Entropy-based tests

Pardo et al. (1997) used (h,φ)-entropy statistics to construct confidence intervals
and statistical hypotheses tests. Let θ̂ be the MLE of θ. Suppose that the standard
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regularity conditions assumptions as described in Pardo (2006, p. 58) hold. In these
conditions Pardo et al. (1997) deduced an (h,φ)-EBT for the equality of r populational
entropies. As given in Pardo et al. (1997, p. 498) to test the hypotheses that the (h,φ)-
entropy for r populations with pdfs f(x,θ1), . . . ,f(x,θr) and sizes n1, . . . ,nr is the same,
that is,

H0 : Hφ
h(θ1) = · · · = Hφ

h(θr)

we can use the statistic

Zr(x) =
r∑
j=1

nj

[
Hφ
h(θ̂j)−H

]2

σ̂2
j

,

which has approximately a chi-square distribution with r− 1 degrees of freedom under H0

where

H =

r∑
j=1

njHφ
h(θ̂j)

σ̂2
j

r∑
j=1

nj
σ̂2
j

,

σ̂2
i = T>K−1T|θ=θ̂i

, (i = 1, . . . ,r), (2.22)

T = ∇Hφ
h(θ) =

(
∂Hφ

h(θ)

∂θ1

, . . . ,
∂Hφ

h(θ)

∂θn

)>
, (2.23)

θ = (θ1, . . . ,θn).

and K−1 is the inverse FIM. It is possible to reduce with some algebra when r = 2 getting

Z(x) =

[
Hφ
h(θ̂1)−Hφ

h(θ̂2)
]2

σ̂2
1

n1

+
σ̂2

2

n2

. (2.24)

A nominal level α EBT rejects H0 in (2.20) if

Z(x) > c1,1−α,

where c1,1−α is the 1 − α quantile of χ2
1. Pardo (2006, p. 70) noticed that in situations

where the (h,φ)-entropy is one-to-one function of θ the test (2.20) is equivalent to the test

H0 : Hφ
h(θ1) = Hφ

h(θ2) versus H1 : Hφ
h(θ1) 6= Hφ

h(θ2). (2.25)
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2.6 SAR IMAGERY

Following the notes of Oliver and Quegan (2004) the operation of SAR consists of
sending electromagnetic pulses towards a target and analyzing the returning echo, whose
intensity depends on the physical properties of the target surface. Noise is inherent to
image acquisition. An important source of noise when coherent illumination is used is
due to the interference of the signal backscattering by the elements of the target surface.
The resulting effect is called speckle noise. Kuruoglu and Zerubia (2004) argues that the
presence of speckle noise degrade SAR image significantly and may hide some important
details of the image, leading to the loss of crucial information. Thus, working with SAR
imagery requires specialized modeling and post-processing techniques.

Several assumptions have been made for developing statistical models for speckled
data. Kuruoglu and Zerubia (2004) listed the following procedures: 1. the scatters are
statistically independent, 2. the number of scatterers is large, 3. the scattering amplitude
and the instantaneous phase are independent random variables, 4. the phase is uniformly
distributed over the range [0,2π], 5. the individual scatterer dominates the whole scene,
6. the reflection surface is large when compared to the size of individual reflectors.

Shapiro and Stockman (2001, p. 237) present two approaches for texture analysis:
structural and statistical. This work is focused on statistical approach which consider
texture as quantitative measure of the arrangement of intensities in a region. We opted to
use the (h,φ)-entropies and likelihoods under the ECR class as texture measures.

The SAR system illuminates the earth landscape and receives the scattered wave
reflected by the earth surface represented by the scattering matrix (LEE; POTTIER, 2009)[

SHH SHV

SV H SV V

]
.

The scattering matrix gives the backscattered response of earth landscape to an emitted
electromagnetic wave. This matrix is usually given in a linear polarization basis (H:
horizontal and V : vertical), defining the set of polarization channels C(H,V ):

C(H,V ) = {H,V } × {H,V }

= {HH,HV, V H, V V }.

Due to the reciprocity theorem (ULABY; ELACHI, 1990), the two cross-polarization
scattering coefficients are equal, thus it is possible to redefine C(H,V ) as

C(H,V ) = {HH,HV, V V }. (2.26)
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2.7 THE FINITE MIXTURE MODELS

The importance of FM models is supported by the increasing rate at which articles
on mixture applications appear in the literature. McLachlan and Peel (2000, p. xix) points
that, because of their flexibility, FM models have been increasing exploited as a convenient,
semiparametric way in which to model unknown distributional shapes. Some important
references for FM models are Everitt and Hand (1981), Titterington et al. (1985), Redner
and Walker (1984), McLachlan and Basford (1987), McLachlan and Peel (2000) and
McLachlan and Krishnan (2008). The book of Cornell (2002) brings a large number of
applications, experiments and techniques based on this class of models.

According to McLachlan and Peel (2000, ch. 1), let X1, . . . ,Xn denote a random
sample of size n, where Xj is a p-dimensional continuous random vector with pdf f(xj)

on Rp. A realization of a random vector X =
(
X>1 , . . . ,X

>
n

)> is denoted by

x =
(
x>1 , . . . ,x

>
n

)>
, (2.27)

where xj is the observed value of the random vector Xj and is called the feature vector.
The mixture density f(xj) is given by

f(xj;Ψ ) =

g∑
i=1

πif(xj;θi), (2.28)

where the vector Ψ containing all the unknown parameters in the FM can be written as

Ψ = (π1 . . . ,πg−1,ξ
>)>, (2.29)

where ξ is the vector containing all the parameters in θ1, . . . ,θg known a priori to be
distinct, the f(xj;θi) denotes a generic member of the parametric family

{f(xj;θ) : θ ∈ Θ},

the mixing proportions πi are non-negative quantities such that

g∑
i=1

πi = 1. (2.30)

From (2.30), πg is redundant (πg = 1−
∑g−1

i=1 πi), then we have arbitrarily omitted the gth

mixing proportion πg in defining Ψ in (2.29). The pdfs f(xj;θ1), . . . ,f(xj;θg) are called
the component mixtures. The expression (2.28) defines the pdf of a FM with g components.
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The llf for Ψ associated to the FM (2.28) is given by

`(Ψ ) =

g∑
i=1

n∑
j=1

{log πi + log f(xj;θi)} .

The FMs can be tackled from parametric or non-parametric statistical points of
view. Jordan and Xu (1995) regard (2.28) as non-parametric by allowing the number of
components g to grow and as parametric when g is fixed.

For FM models, the likelihood equations are almost certain to be nonlinear and
beyond hope of solution by analytic means and, as a consequence, one must resort to
seeking an approximate solution via some iterative procedure (REDNER; WALKER, 1984,
p. 203). The first publication relating to the FMs estimation problem appears to be that
of Pearson (1894). The standard procedure to solve this class of problems is known as EM
algorithm whose terminology is due to Dempster et al. (1977).

2.8 THE EM ALGORITHM AND INCOMPLETE-DATA STRUCTURE

The first papers which investigated algorithms to obtain the FM ML estimates
were Wolfe (1965), Wolfe (1967), Day (1969) and Wolfe (1970). The problem of maximize
directly the FM lf is typically a hard task. The EM algorithm is a more efficiency technique
to obtain the ML estimates. To fit the normal FMs using MLEs, we can use the recursive
formulas due to Dempster et al. (1977), which assumes the data can be viewed as being
incomplete. This approach was named EM algorithm and simplifies considerably the
estimation process introducing a component-label vector, but a number of issues like
multiple local maximum remain.

Rewriting McLachlan and Peel (2000, ch. 1-2), let Zj be a g-dimensional component-
label vector, where its ith element, Zij = (Zj)i, is defined to be one or zero, according to
whether the component of origin of Xj in the FM (2.28) is equal to i or not (i = 1, . . . ,g).
Thus Zj follows a multinomial distribution consisting of one draw on g categories with
probabilities π1, . . . ,πg; that is,

Pr(Zj = zj) = π
z1j
1 π

z2j
2 · · · πzgjg .

We write Zj ∼ Multg(1,π) and assume that they are distributed unconditionally as

Z1, . . . ,Zn
iid∼ Multg(1,π), (2.31)

where π = (π1, . . . ,πg)
> satisfying (2.30).

In the EM framework, the feature data x1, . . . ,xn are viewed as being incomplete
since their associated component-label vectors, z1, . . . ,zn, are not available. The complete-
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data vector is expressed by
xc = (x>,z>)>,

where x is the observed-data (incomplete-data vector) given by (2.27) and where

z =
(
z>1 , . . . ,z

>
n

)>
is the unobservable vector of component-indicator variables taken to be the realized values
of the random vectors Z1, . . . ,Zn distributed according (2.31).

The complete-data vector xc turns the FM estimation into a more straightforward
routine than on the basis of observed data x, assuming each component density fi(x) be
estimated directly from those feature data xj with zij = (zj)i = 1. This assumption means
that the distribution of the complete-data vector Xc implies the appropriate distribution
for the incomplete-data vector Y . The complete-data llf for Ψ , `c(Ψ ), is given by

`c(Ψ ) =

g∑
i=1

n∑
j=1

zij {log πi + log f i(xj;θi)} .

Still perusing McLachlan and Peel (2000, ch. 2-3), the EM algorithm treats zij as
missing data proceeding iteratively in two steps named E-step and M-step. These two
steps are alternated iteratively until

`(Ψ (k+1))− `(Ψ k) < ε,

for a given ε > 0. Dempster et al. (1977) showed that the (incomplete-data) llf value is
not decreased after an EM iteration; that is, for k ∈ Z+

`(Ψ (k+1)) ≥ `(Ψ k).

2.8.1 E-step

Let Ψ (0) be the value specified initially for Ψ . Then on the first iteration of the EM
algorithm, the E-step requires the computation of the conditional expectation of `c(Ψ)

given x, using Ψ (0) for Ψ , which can be written as

Q
(
Ψ ,Ψ (0)

)
= EΨ (0) [`c(Ψ )|x] .

It follows that on the (k + 1)th iteration in the E-step requires the calculation
Q
(
Ψ ,Ψ (k)

)
, where Ψ (k), is the value of Ψ the kth EM iteration. Note that, for i = 1, . . . ,g
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and j = 1, . . . ,n,

EΨ (k)(Zij|x) = PrΨ (k) (Zij = 1|x)

= τi
(
xj;Ψ

(k)
)
, (2.32)

where (2.32) corresponds to the posterior probability that the jth member of the sample
with observed value yi belongs to the ith component of the mixture. It is possible to
express

τi
(
xj;Ψ

(k)
)

=
π

(k)
i f

(
yj;θ

(k)
i

)
f (yj;Ψ (k))

=
π

(k)
i f

(
yj;θ

(k)
i

)
g∑

h=1

π
(k)
h f

(
yj;θ

(k)
h

) . (2.33)

By (2.32), it is possible to express

Q
(
Ψ ,Ψ (k)

)
=

g∑
i=1

n∑
j=1

τi(xj;Ψ
(k)) {log πi + log f (xj;θi)} .

2.8.2 M-step

If the zij were observable, then the complete-data MLE of πi would be given simply
by

π̂i =
1

n

n∑
j=1

zij (i = 1, . . . ,g). (2.34)

In the complete-data llf, the updated estimate of πi is given by replacing each zij
in (2.34) by

π
(k+1)
i =

1

n

n∑
j=1

τi
(
xj;Ψ

(k)
)

(i = 1, . . . ,g). (2.35)

The M-step on the (k + 1)th iteration updates the estimate ξ(k+1) maximizing
globally Q

(
Ψ ,Ψ (k)

)
with respect to Ψ over the entire parameter space. By (2.34), the

ξ(k+1) coincides as one root of

g∑
i=1

n∑
j=1

τi(xj;Ψ
(k))

∂ log f (xj;θi)

∂ξ
= 0.

Typically, it is not available explicit formulas for FM estimates.
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2.8.3 Multivariate normal finite mixture

We now specialize these results to the case of a FM with normal components. If
the mixture components in (2.28) follow multivariate normal distributions with pdf

f(xj;θi) = φ (xj;µi,Σi) ,

then a g-component multivariate normal FM distribution can be written as

f(xj;Ψ ) =

g∑
i=1

πiφ (xj;µi,Σi) , (2.36)

where φ (x;µ,Σ) is the multivariate normal random variable pdf with mean µ and
covariance matrix Σ given by

φ (x;µ,Σ) =
exp

[
−1

2
(x− µ)>Σ−1 (x− µ)

]
√

(2π)p|Σ|
,

where ξ in (2.29) contains the elements of the component means µi and covariance matrices
Σi (i = 1, . . . ,g).

For multivariate normal FMs the posterior probability given in (2.33) can be
rewritten as

τi
(
xj;Ψ

(k)
)

=
π

(k)
i φ

(
xj;µ

(k)
i ,Σ

(k)
i

)
g∑

h=1

π
(k)
h φ

(
xj;µ

(k)
h ,Σ

(k)
h

)
for i = 1, . . . ,g and j = 1, . . . ,n.

The M-step for normal components exists in closed-form and is given by

µ
(k+1)
i =

n∑
j=1

τ
(k)
ij xj

n∑
j=1

τ
(k)
ij

(2.37)

and

Σ
(k+1)
i =

n∑
j=1

τ
(k)
ij

(
xj − µ(k+1)

i

)(
xj − µ(k+1)

i

)>
n∑
j=1

τ
(k)
ij

(2.38)

for i = 1, . . . ,g and j = 1, . . . ,n, where

τ
(k+1)
ij = τi(xj;Ψ

(k)).
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The updated estimate of the ith mixing proportion πi is as given in (2.35). Several
alternative EM algorithms are explored by Gupta and Chen (2010).

2.9 IMAGE SEGMENTATION PERFORMANCE MEASURES

Clustering has become a increasingly popular part of data analysis, but is a relatively
young domain of research. Several distance measures were proposed to empirically assess
the performance of a clustering algorithm by comparing its output to a given reference
clustering. In this work we opted by the following measures MCR, variation of information
(VOI) (MEILĂ, 2007), global consistency error (GCE) (MARTIN et al., 2001), local
consistency error (LCE) (MARTIN et al., 2001) and adjusted rand index (ARI) (HUBERT;
ARABIE, 1985).

Following the notes of Meilă (2007), let C a partition of a set of points D into a
mutually disjoint subsets C1, . . . ,CK called clusters, i.e.,

C = {C1, . . . ,CK} such that Ck ∩ Cl = ∅ and
K⋃
k=1

Ck = D,

where K is the number of non-empty clusters. Let n and nk be the number of data points
respectively in D and in cluster Ck, thus

n =
K∑
k=1

nk, nk > 0 for i = 1, . . . ,K.

Let C ′ = {C ′1, . . . ,C ′K′} be another clustering of the same dataset D, with cluster sizes n′k′ .
The confusion matrix of the pair (C,C ′) can be defined as the K×K ′ matrix, whose

kk′th element is the number of points in the intersection of clusters Ck of C and C ′k′ of C ′,
thus

nkk′ = |Ck ∩ C ′k′ |.

The MCR computes the proportion of pixels which is miss-classified. This is one of
the most simple measures and can be defined from the confusion matrix as

MCR(C,C ′) =
1

n

∑
k 6=k′

nkk′ .

The ARI is a measure of agreement between the partition estimated independent
of the groups labeling and the true classification. Its expected value is zero for random
partitions, and it is bounded above by one, with higher values representing better partition
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accuracy. We can also define it from the confusion matrix as

ARI(C,C ′) =

K∑
k=1

K′∑
k′=1

(
nkk′

2

)
− 1(

n
2

) [ K∑
k=1

(
nk
2

)][ K′∑
k′=1

(
n′k′

2

)]
1

2

[
K∑
k=1

(
nk
2

)
+

K′∑
k′=1

(
n′k′

2

)]
− 1(

n
2

) [ K∑
k=1

(
nk
2

)][ K′∑
k′=1

(
n′k′

2

)] .

The VOI measures the amount of information lost and gained in changing from
clustering C to clustering C ′. This index can be defined as

VOI(C,C ′) = H(C) +H(C ′)− 2I(C,C ′),

where

H(C) = −
K∑
k=1

Pr(k) log Pr(k),

Pr(k) =
nk
n
,

I(C,C ′) = −
K∑
k=1

K′∑
k′=1

Pr(k,k′) log
Pr(k,k′)

Pr(k)Pr(k′)

and

Pr(k,k′) =
nkk′

n
.

Martin et al. (2001) combine the local refines error by means of the GCE, which forces
all local refinements to be in the same direction, and LCE, which allows refinements in
different directions and in different parts of the image. This indexes are defined by

GCE(C,C ′) =
1

n
min

{∑
i

E(C,C ′,pi),
∑
i

E(C ′,C,pi)

}
and

LCE(C,C ′) =
1

n

∑
i

min {E(C,C ′,pi),E(C ′,C,pi)} ,

where

E(C,C ′,pi) =
|R(C,pi)\R(C ′,pi)|
|R(C,pi)|

,

R(C,pi) is the set of pixels corresponding to the region in cluster C that contains the pixel
pi and \ denotes the difference set. The measures proposed by Martin et al. are such that
0 ≤ LCE ≤ GCE ≤ 1, where zero signifies no error.
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3 THE EXPONENTIATED CAUCHY-RAYLEIGH MODEL

3.1 INTRODUCTION

Here it is presented the main structural properties of the ECR distribution. We have
twofold goal. First using the original and a new two-parameter extended CR distributions
in the survival analysis context as alternatives to the gamma, Birnbaum-Saunders (BS),
Weibull, LN models and other lifetime ones. Several works have used FMs models to
describe heavy-tail lifetimes (HARRISON; MILLARD, 1991; MCCLEAN; MILLARD, 1993;
GARDINER et al., 2014). But this modeling scheme becomes the associated estimation
process hard.

The reason of applying the CR law for describing lifetimes is firstly to accommodate
heavy-tail distributions. However, its pdf does not cover non-modal behavior (as the
exponential does) as well as the CR hrf assumes only one form, limiting its employment
in practice. First, we extend the CR distribution by using the Exp-G class reviewed in
Section 2.2. This model has two parameters and is flexible enough to accommodates hrfs
with decreasing, decreasing-increasing-decreasing and upside-down bathtub forms. As
second goal, several closed-form mathematical expressions for the ECR model are proposed:
median, mode, probability weighted, log-, incomplete and order statistic moments and
FIM. There are several concepts for the term closed-form; as instance, one has the work of
Stover and Weisstein (2017). Here, we understand closed-form as

“all expressions in terms of a finite number of known (special) functions,
which have well-defined analytic properties.”

Some of these quantities do not exist for specific ECR parametric regions, as it will be
discussed in our presentation. Further, we propose two estimation procedures for the ECR
parameters: MLEs and percentile-based estimators (PBEs). It is known MLEs present a
bias of order O(n−1) for small and moderate sample sizes (n), where O(·) is the Landau
notation to represent order. To overcome it we furnish a expression for the CS-ECR,
proposing a second bias-corrected MLE. A simple scheme to obtain constrained estimates
are developed for the abML and PB methods. A Monte Carlo simulation study is made
to quantify the performance of proposed estimators, adopting bias and SSD as figures
of merit. An application to active repair times measured from airborne communication
transceiver is performed to illustrate the usefulness of the ECR model. Results point
out that the ECR distribution may outperform well-defined biparametric models; such
as-beyond other nineteen ones-the gamma, BS, Weibull and LN laws, before heavy-tail
data.

This chapter is outlined as follows. The proposed model is presented in Section 3.2
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and some of its descriptive properties and shape analysis are listed in Section 3.3. Section 3.4
discusses some ECR mathematical expressions. Section 3.5 addresses procedures to obtain
the MLEs, PBEs and CS-MLE. A simulation study tasting the convergence, consistency
and existence of these estimators is presented in Section 3.6. Two real data applications
are yielded in Section 3.7. Finally, Section 3.8 provides concluding remarks.

3.2 THE BROACHED MODEL

In this section, we aim to introduce a CR extension as alternative to classical
biparametric models (as the gamma and Weibull distributions), which we denote as the
ECR model. This distribution has cdf, for x > 0, given by

F (x) =

(
1− λ√

λ2 + x2

)β
, (3.1)

where λ > 0 is a scale parameter and β > 0 is an additional shape parameter and, as a
consequence, its pdf, for x > 0, is

f(x) = βλ
x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)β−1

. (3.2)

From (3.1) and (3.2), the ECR sf1 and hrf is expressed, respectively, as

S(x) = 1−
(

1− λ√
λ2 + x2

)β
and

h(x) = βλ
x

(λ2 + x2)
3/2

(
1− λ√

λ2 + x2

)β−1
[

1−
(

1− λ√
λ2 + x2

)β]−1

. (3.3)

In this chapter, an ECR random variable X with parameters β (shape) and λ (scale) will
be denoted by X ∼ ECR(β,λ).

The ECR law is a model nested in the exponentiated Burr type-XII (EBXII) (AL-
HUSSAINI; AHSANULLAH, 2015)2, Kumaraswamy log-logistic (KLL) (SANTANA, 2010),
GFP3 (ZANDONATTI, 2001), Kumaraswamy Burr type-XII (KBXII) (PARANAÍBA,
2012) and McBXII (MEAD, 2014; GOMES et al., 2015) distributions. In general, the
properties obtained for these models do not have closed-form expressions, which may imply
in computational difficulties and an awkward mathematical treatment (where divergence
cases may happen). As foregoing discussed, the ECR model can be very useful, but some

1a.k.a. tail function.
2a.k.a. exponentiated log-logistic (ELL) (LIMA; CORDEIRO, 2017).
3a.k.a. beta Burr type-XII (BBXII) (PARANAÍBA, 2012) and McDonald log-logistic (McLL) (TAHIR

et al., 2014).
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of its properties do not has closed-form expressions and, therefore, a specialized treatment
is required. We do it in the next sections.

The ECR qf is figured out by inverting (3.1), for 0 < p < 1,

Q(p) =
λ

1− p1/β

√
2p1/β − p2/β. (3.4)

The ECR median is then determined from using p = 1/2 in (3.4):

M̃ =
λ

21/β − 1

√
2
β+1
β − 1.

We can also use (3.4) for generating outcomes of an ECR random variable by the inverse
transform sampling method (ITSM) as follows:

• Generate u as an outcome of U ∼ U(0,1);

• Obtain x = Q(u) as an outcome from the ECR distribution.

The identifiability property is crucial in statistics (inference, regression, time series,
etc.) The Proposition 3.1 ensures the ECR identifiability. A parametric family of pdfs
is said to be identifiable if distinct parameter values determine distinct members of the
family.

Proposition 3.1. The ECR laws with parameters θ1 = (β1,λ1) and θ2 = (β2,λ2) are
distinct if θ1 6= θ2.

3.3 SOME ELEMENTARY PROPERTIES

In this section, we derive some ECR descriptive properties. Proposition 3.2 assures
that the ECR pdf and hrf asymptotes are more flexible than the CR law. The ECR pdf
and hrf limits assume three distinct values when x approaches zero (in terms of β), while
it is always null for the CR case.

Proposition 3.2. The ECR pdf and hrf have the following limiting behavior:

lim
x→0+

f(x) = lim
x→0+

h(x) =


∞, β < 1/2,
√

2
2λ
, β = 1/2,

0, β > 1/2,

(3.5)

and

lim
x→∞

h(x) = 0.

A random variable X is called regularly varying at infinity (RVI) with tail index
a > 0 if SX(cx) ∼ c−aSX(x) as x → ∞, where SX(x) = 1 − FX(x). Cooke et al. (2014,



46

b
e
ta

la
m

b
d
a

m
o
d
e

(a) mode

b
e
ta

la
m

b
d
a

m
e
d
ia

n

(b) median

b
e
ta

la
m

b
d
a

m
e
d
ia

n
−
m

o
d
e

(c) median - mode

Figure 3.1: Surfaces of the ECR mode and median and its differences.

p. 55), citing Chistyakov (1964), defined the subexponential distributions containing the
RVI class. Foss et al. (2011, Lemma 3.2), crediting Chistyakov (1964) again, pointed out
that any subexponential distribution with positive support is long-tailed and therefore
it is heavy-tailed too. Thus, the ECR model belongs to all these classes. Proposition 3.3
assigns the ECR distribution to the RVI class.

Proposition 3.3. The ECR distribution is RVI with tail index a = 1.

Proposition 3.4 shows a closed-form expression for the ECR mode. The ECR pdf
is non-modal for β ≤ 1/2 as induced from Proposition 3.2 and unimodal for β > 1/2.

Proposition 3.4. The ECR mode is

Mo =
λ

2
√

2

√
(β + 1)2 + (β − 1)

√
β2 + 6β + 17, β > 1/2. (3.6)

Corollary 3.4.1. The ECR mode has the following limiting behavior limβ→1/2+ Mo = 0.

Corollary 3.4.2. The CR mode is MoCR = λ/
√

2.

Figure 3.1 exhibits plots for the ECR mode and median and M̃−Mo. The difference
M̃ −Mo in Figure 3.1 indicates that our model has always positive skewness.

Proposition 3.5 shows the ECR distribution belongs to the scale family. Two
immediate consequences of this proposition are E(Xk) = λkE(Zk) and

E(logX) = log λ+ E(logZ). (3.7)

In the rest of this chapter, we denote Z ∼ ECR(β,1) as the standard ECR random variable.

Proposition 3.5. If Z is the standard ECR random variable, then X = λZ ∼ ECR(β,λ).

The following shape analysis is based on Propositions 3.2 and 3.4. Figure 3.2
summarizes the possible shapes of (3.2) and (3.3) and Figures 3.3(a) and 3.3(b) depict
some of them. The ECR pdf can assume three shapes:
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1. unimodal if β > 1/2;

2. non-modal (starting at
√

2/2λ) if β = 1/2;

3. non-modal (starting at the origin) if β < 1/2.

It is also noticeable that the ECR distribution may be more flexible than the CR model.
The ECR hrf has four shapes:

1. upside-down bathtub (starting at the origin) if β > 1/2;

2. upside-down bathtub (starting at
√

2/2λ) if β = 1/2;

3. decreasing-increasing-decreasing if 0.45259 < β < 1/2;

4. decreasing if β ≤ 0.45259.

The decreasing-increasing-decreasing and decreasing hrf shapes threshold are obtained
numerically based on the change of signal of the ECR hrf first derivative. For any value
0.45259 < β < 1/2 the ECR hrf first derivative change its signal when x → ∞. In
contrast, the CR hrf only assumes upside-down bathtub shape (starting at the origin). The
parameter λ only has scale effects in pdf and hrf shapes. It is notable that in Figure 3.3(b)
three different features of hrf may be obtained with the additional parameter assuming
values minors than 1. Figure 3.3(a) also sketches the histograms of simulated observations
using the ITSM described above. The pdfs came near to the corresponding histograms
midpoints. In other words, the additional shape parameter β allow for a degree of flexibility.
So, the new model can be very useful in many practical situations for modeling positive
real data.

As will be presented in Corollary 3.7.1 the ECR model does not admit integer
moments, then it is not possible to define the classical skewness and kurtosis measures, but
we can employ alternative (quantile based) measures like the Bowley skewness (KENNEY;
KEEPING, 1962), and the Moors kurtosis (MOORS, 1988), defined, respectively, by

SB =

3∑
k=1

(−1)k−1

(
2

k − 1

)
Q

(
k

4

)
2∑

k=1

(−1)kQ

(
2k − 1

4

) and KM =

4∑
k=1

(−1)kQ

(
2k − 1

8

)
2∑

k=1

(−1)kQ

(
2k − 1

4

) .

These measures are less sensitive to outliers and exist even for distributions without
moments. For symmetric unimodal distributions, positive kurtosis indicates heavy tails
and peakedness relative to the normal distribution, whereas negative kurtosis indicates
light tails and flatness. For the normal distribution, SB = KM = 0. In the ECR case these
measures only depends of the β parameter. In Figure 3.4, we plot the measures Bowley
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(a) pdf. (b) hrf.

Figure 3.2: Summaries of the ECR shapes.
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Figure 3.4: Curves of the ECR quantile measures.

skewness and Moors kurtosis curves for some β values. These plots indicate that both
measures are very sensitive on this shape parameter. It is possible obtain numerically
the minimum values of these measures. The minimum Bowley skewness is 0.38838 and
is obtained when β ≈ 0.396897 while the mininum Moors kurtosis is 1.78325 and is
achieved when β ≈ 0.218776. The Proposition 3.6 shows that the Moors kurtosis increases
indefinitely when β goes to zero and stabilizes around 2.14174 when β goes to infinity.
The behavior of the Bowley skewness is similar raising to 1 as β approximates of 0 and
stabilizing around 0.476281 as β increases.

Proposition 3.6. The Bowley skewness SB and the Moors kurtosis KM have the following
limiting behaviors:

1. limβ→0+ SB = 1;

2. limβ→0+ KM =∞;

3. limβ→∞ SB =
log(2) log(4)− log

(
4
3

)
log(8)

log(2) log(3)
≈ 0.476281 . . .;

4. limβ→∞KM = log
(

4
3

)
log(4)

[
1

log( 8
7) log(3)

+ 1

log( 8
3) log(8)

− 1

log( 8
5) log(3)

]
≈ 2.14174 . . ..

3.4 MOMENTS

Expressions for the r-moments, incomplete and order statistics moments of some
ECR extensions were explored by Paranaíba (2012), Mead (2014), Al-Hussaini and
Ahsanullah (2015), Silva et al. (2015), Gomes et al. (2015) and Cordeiro et al. (2016).
Unfortunately, these extended results do not have closed-form expressions. In general, they
were deduced from power series expansions. In this section, it is showed that the ECR
moments often do not exist and, therefore, it is required a detailed discussion about it.
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3.4.1 Probability weighted moments

The probability weighted moments (pwms) with order indexes r, s, t ∈ R, µ′r,s,t,
for a random variable X ∼ ECR(β,λ) are defined by µ′r,s,t = E (XrF (X)s[1− F (X)]t).
Proposition 3.7 presents a closed-form expression for the ECR pwms with t ∈ Z.

Proposition 3.7. Let X ∼ ECR(β,λ), for −2(s+ 1)β < r < 1 and t ∈ Z,

µ′r,s,t = β(λ
√

2)r
t∑
i=0

(−1)t
(
t

i

)
B
(

1− r,r
2

+ (s+ i+ 1)β
)

× 2F1

(
−r

2
,
r

2
+ (s+ i+ 1)β; 1− r

2
+ (s+ i+ 1)β;

1

2

)
,

where 2F1 is the Gauss’s hypergeometric function defined as

2F1(a,b; c;x) =
∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, (a)k =

Γ(a+ k)

Γ(a)
,

B(·,·) is the beta function and Γ(·) is the gamma function. The convergence is fulfilled
when c > b > 0, |x| < 1 and the branch of (1− tx)−a is chosen so that (1− tx)−a → 1 as
t→ 0.

Foss et al. (2011, p. 33) showed that in the RVI class with index a > 0 all moments
of order 0 < r < a are finite, while all moments with order r > a are infinite. This fact
occurs in the ECR distribution, and they will be presented in Corollary 3.7.1. Closed-form
expressions for the ECR moments consist in a simple product involving the beta and the
Gauss’s hypergeometric functions. Figure 3.5(a) depicts some ECR pwm curves. The pwm
values increase as s and t values decrease.

Corollary 3.7.1. Let X ∼ ECR(β,λ), for r ∈ (−2β,1),

E(Xr) = β(λ
√

2)r B
(

1− r,r
2

+ β
)

2F1

(
−r

2
,
r

2
+ β; 1− r

2
+ β;

1

2

)
. (3.8)

Corollary 3.7.2 presents the CR moments, derived from the Corollary 3.7.1. The
obtained result agrees with the known results for the SM distribution as presented by
Kleiber and Kotz (2003, eq. 6.46) (Assuming a = 2, b = λ and q = 1/2 in the BXII
parameterization adopted by the referred authors).

Corollary 3.7.2. Let Y ∼ CR(λ), for r ∈ (−2,1),

E(Y r) =
λr√
π

Γ

(
1− r

2

)
Γ
(

1 +
r

2

)
=
λr

2
B

(
1− r

2
,1 +

r

2

)
. (3.9)

In Table 3.1 we present a comparison between the sample and expected probability
weighted moments. We can note that the corresponding values difference increases as



51

Table 3.1: Some expected values of the standard ECR pwms and its corresponding sample moments.

β = 0.5 β = 1 β = 2
r s t µ′r,s,t Xr

s,t µ′r,s,t Xr
s,t µ′r,s,t Xr

s,t

0.75 0 0 2.249 1.999 3.778 3.368 6.282 5.545
0.50 0 0 1.297 1.282 1.854 1.832 2.597 2.540
0.25 0 0 1.041 1.041 1.259 1.258 1.493 1.484
0.50 1 0 0.927 0.915 1.299 1.276 1.814 1.752
0.50 0 1 0.370 0.368 0.555 0.555 0.784 0.788
0.50 1 1 0.173 0.172 0.246 0.246 0.342 0.341

the order index r nearing 1, this is normal because the expected probability weighted
moments go to infinity as the order index r approaches 1 while the sample probability
weighted moments are always finite. The corresponding sample moments are calculated
using random samples of size 10,000.

3.4.2 First log-moment and an induced regression model

Proposition 3.8 contains an useful result to define a log-linear regression model or a
location quantity (since the mean is infinite) for the ECR distribution.

Proposition 3.8. Let X ∼ ECR(β,λ), then

E(logX) = log λ+
1

2
Φ

(
1

2
; 1,β

)
+ Ψ(1 + β) + γ − 1

β
,

where Φ(·; ·,·) is the Lerch transcendental Phi function, Ψ(·) is the digamma function and
γ = 0.57721 . . . is the Euler-Mascheroni constant defined by, respectively:

Φ(x; s,a) =
∞∑
n=0

xn

(n+ a)s
, Ψ(x) =

d

dx
log Γ(x) and γ = lim

n→∞

(
− log n+

n∑
k=1

1

k

)
.

An outline of a possible ECR regression is given as follows. Let εi ∼ ECR(α,1) and
zi = (1, zi1, . . . , zip)

> be a vector of predict variables. Assuming that there is interest in
describing linearly the expected value of logarithm of a RVI positive variable, the following
result holds:

Yi = ez
>
i βεi ∼ ECR(α, exp(z>i β)) ⇐⇒ log(Yi) = z>i β + log(εi),

where β∗0 := β0 +E[− log(εi)] and β = (β∗0 , β1, . . . , βp)
> is a vector of regression coefficients.

In this case, notice that E(log Yi) = β0 +
∑p

k=1 βkzik and it is possible to proof that
Var(log Yi) = Var(log εi) <∞. We omit the expression of Var(log Yi) by simplicity, but it
may be obtained from author’s contact.
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3.4.3 Incomplete moments

Let X ∼ ECR(β,λ), its incomplete moments are presented by Proposition 3.9.
The incomplete moments are defined by mr(x0) =

∫ x0
0
xrf(x) dx. It is known incomplete

moments consist in the main part of important inequality tools in income applications
(BUTLER; MCDONALD, 1989) such as Lorenz curves (LORENZ, 1905) and Gini measure
(GINI, 1921). For future applications, users of the ECR law may employ the Proposition 3.9
to obtain these measures.

Proposition 3.9. Let X ∼ ECR(β,λ), for r > −2β

mr(x0) =
β2r/2+1λru

β+r/2
0

2β + r
F1

(r
2

+ β,r,− r

2
;
r

2
+ β + 1;u0,

u0

2

)
,

where u0 = 1− λ/
√
x20+λ2 and F1 is the first Appell’s hypergeometric function defined by

F1(a,b1,b2; c;x,y) =
∞∑

i,j=0

(a)i+j(b1)i(b2)j
(c)i+j

xi

i!

yj

j!
.

3.4.4 Order statistics

Moments of the order statistics play an important role in quality control and
reliability issues (AHSANULLAH et al., 2013), where researchers wish to predict the
future failure items based on recorded failure times. Let X1, . . . ,Xn be a random sample
from the ECR distribution and X(1) ≤ . . . ≤ X(n) denote the corresponding order statistics.
Let f(i) be the pdf of the ith order statistic X(i):

f(i)(x) =
f(x)F (x)i−1S(x)n−i

B(i,n− i+ 1)
,

where F (x) and f(x) are given in (3.1) and (3.2), respectively. Then we can express the
ECR order statistics pdf as

f(i)(x) =
βλ

B(i,n− i+ 1)

x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)iβ−1
[

1−
(

1− λ√
λ2 + x2

)β]n−i
.

In Proposition 3.10, we derive a closed-form expression for the ECR order statistics
moments.

Proposition 3.10. Let X(i) be the ith order statistic of a n-points random sample from
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Table 3.2: Some values of the corresponding sample and expected r-moments order statistics of a random
variable X ∼ ECR(1/2,1/2) of size n = 10.

i 1 2 3 4 5 6 7 8 9 10

E(X−2
(i) ) - - 87.050 27.086 12.135 6.200 3.285 1.682 0.757 0.237

X−2
(i) - - 81.931 28.488 12.794 6.183 3.281 1.679 0.765 0.239

E(X−1
(i) ) - 13.946 6.773 4.311 3.022 2.198 1.601 1.128 0.723 0.355

X−1
(i) - 14.056 6.824 4.334 3.031 2.201 1.604 1.129 0.726 0.356

E(X
1/4
(i) ) 0.462 0.582 0.661 0.727 0.789 0.853 0.926 1.021 1.173 1.562

X
1/4
(i) 0.463 0.583 0.660 0.726 0.790 0.852 0.925 1.019 1.168 1.570

E(X
1/2
(i) ) 0.230 0.350 0.447 0.538 0.632 0.739 0.873 1.068 1.435 2.857

X
1/2
(i) 0.232 0.351 0.448 0.540 0.633 0.740 0.874 1.068 1.444 2.836

E(X
3/4
(i) ) 0.121 0.216 0.308 0.405 0.514 0.650 0.839 1.148 1.850 7.319

X
3/4
(i) 0.120 0.216 0.310 0.406 0.517 0.654 0.845 1.146 1.835 7.487

X ∼ ECR(β,λ), for r ∈ (−2iβ,1),

E(Xr
(i)) =

β(λ
√

2)r

B(i,n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
B
(

1− r,r
2

+ (i+ j)β
)

× 2F1

(
−r
2
,
r

2
+ (i+ j)β; 1− r

2
+ (i+ j)β;

1

2

)
.

In Table 3.2 we present a comparison between sample X−n(i) and corresponding
expected r-moments order statistics E(X−n(i) ). The r-moments order statistics E(X−2

1 ) ,
E(X−2

2 ) and E(X−1
1 ) are omitted because the corresponding order statistics are not defined

by Proposition 3.10. The sample r-moments order statistics are calculated using 10,000

random samples of size n = 10.
Figure 3.5(b) depicts some ECR order statistics moments curves. As expected the

order statistics moments build up as the values of i increases.

3.5 INFERENCE AND SECOND-ORDER ASYMPTOTIC THEORY

In this section, we develop inference procedures under censored and uncensored
samples. Uncensored schemes are explored using ML and PB methods, while the censored
schemes are focused only on ML method. A simple scheme to obtain constrained estimates
are developed for the abML and PB methods. The MLEs are the background for developed
hypotheses tests. The first and second order bias of the MLE are also studied.
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Figure 3.5: Curves of the standard ECR moments for some parameter values and r = 0.5.

3.5.1 Estimators for uncensored samples

We develop two procedures to estimate the ECR parameters under the uncensored
samples. We consider the ML and PB methods. Let x1, . . . ,xn be an observed uncensored
sample obtained from the ECR distribution with vector parameter θ = (β,λ)> ∈ Θ =

R+ × R+.

Maximum likelihood estimators

Firstly, it is provided a procedure to find MLEs for the ECR parameters. The lf
evaluated at θ is

L(θ) =
n∏
i=1

βλ
xi

(λ2 + x2
i )

3/2

[
1− λ√

λ2 + x2
i

]β−1

and the corresponding llf is

`(θ) = n log(βλ) + T1(x) + 3T2(λ,x) + (β − 1)T3(λ,x), (3.10)

where θ is the parametric space and

T1(x) =
n∑
i=1

log xi,

T2(λ,x) =
n∑
i=1

log

(
1√

λ2 + x2
i

)
(3.11)

and

T3(λ,x) =
n∑
i=1

log

(
1− λ√

λ2 + x2
i

)
. (3.12)
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The ML estimate for θ is the pair that maximizes the llf (or, equivalently, the lf); that is,
θ̂ = arg maxθ∈Θ[`(θ)], where Θ is the parametric space. MLEs have not closed-form and,
therefore, it is required using iterative numerical methods such as Newton-Raphson and
BFGS, implemented in several computational platforms like that in Section 1.2.

Other fashion to find ML estimates is by llf derivatives, known as score functions.
The components of the score vector U = (Uβ(θ),Uλ(θ))> are

Uβ(θ) =
n

β
+ T3(λ,x),

and

Uλ(θ) =
n

λ
+ (1− β)T4(λ,x)− (β + 2)T5(λ,x),

where

T4(λ,x) =
n∑
i=1

1√
λ2 + x2

i

,

and

T5(λ,x) = λ
n∑
i=1

1

λ2 + x2
i

.

The ML estimates, θ̂ = (β̂,λ̂)>, can also be obtained numerically by solving the log-
likelihood equations (lles) system Uβ(θ) = 0

Uλ(θ) = 0.
(3.13)

From (3.13) it is possible to obtain a semi-closed MLE for β.

β̂(λ) = − n

T3(λ,x)
. (3.14)

It is clear by (3.14) that when λ is known the ML estimate, β̂, exist and is unique.
Proposition 3.11 is useful for constrained ML estimation processes. Suppose we need an
estimate for β constrained to (0,1), the following result shows how to find the corresponding
constrain for the λ parameter induced by (3.14).

Proposition 3.11. Let Θβ ⊂ R+ and Θβ
λ =

{
λ ∈ R+|β̂(λ) ∈ Θβ

}
then for a given sample

inf Θβ
λ =

arg min
λ

∣∣∣β̂(λ)− sup Θβ

∣∣∣ if ∃ sup Θβ

0 if @ sup Θβ

and

sup Θβ
λ =

arg min
λ

∣∣∣β̂(λ)− inf Θβ

∣∣∣ if inf Θβ > 0

∞ if inf Θβ = 0.
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Table 3.3: Simulated datasets.

DS1 0.0773 0.0844 0.1661 0.2780 0.4245 0.7309 0.7442 0.9227 0.9689 1.0
DS2 0.0053 0.0096 0.0115 0.0253 0.0266 0.0319 0.0462 0.1055 0.3072 1.0
DS3 0.0130 0.0314 0.0349 0.0354 0.0489 0.0912 0.1117 0.1162 0.1735 1.0
DS4 0.0177 0.0400 0.0484 0.0540 0.0709 0.0965 0.1279 0.1419 0.5060 1.0
DS5 0.0317 0.0446 0.0644 0.1165 0.1167 0.1654 0.1923 0.1958 0.4448 1.0
DS6 0.0421 0.0483 0.0991 0.1072 0.1224 0.1845 0.1879 0.2662 0.6115 1.0
DS7 0.0576 0.0581 0.0622 0.0815 0.1491 0.1947 0.2169 0.2637 0.5897 1.0

By replacing β by β̂(λ) in (3.10), the following profile log-likelihood function (pllf)
for λ is obtained:

`β(λ) = n

[
log

(
−nλ

T3(λ,x)

)
− 1

]
+ T1(x) + 3T2(λ,x)− T3(λ,x).

We can also obtain the ML estimates for λ by maximizing the pllf `β(λ) with respect to λ.
The profile score function (psf) is

Uλ|β=β̂(λ)(θ) =
n

λ
+

(
1 +

n

T3(λ,x)

)
T4(λ,x)−

(
2− n

T3(λ,x)

)
T5(λ,x).

The ML estimate for λ is always a root of the psf.
Corollary 3.11.1 shows how to find constrained ML estimates in a rectangular region

of the parametric space. The existence of constrained estimates is assured only when L is
a compact set (IZMAILOV; SOLODOV, 2009, p. 8).

Corollary 3.11.1. Let Θβ,Θλ ⊂ R+, Θβ
λ as given in Proposition 3.11, L = Θλ ∩Θβ

λ and
C be the set of all psf roots. For a given sample (β̂(λ∗),λ∗) are ML estimates, constrained
to Θβ ×Θλ, if

1. λ∗ ∈ C, λ∗ = inf L or λ∗ = supL;

2. λ∗ ∈ L;

3. `β(λ∗) ≥ `β(λ) ∀λ ∈ C;

4. `β(λ∗) ≥ lim
λ→(inf L)+

`β(λ);

5. `β(λ∗) ≥ lim
λ→(supL)−

`β(λ).

Table 3.3 contains seven simulated datasets for which the ML and PB estimation
process present problems like multiple local maximums of the estimation functions and
non-existence of the estimative.

Figure 3.6 depicts the pllfs and psfs of the simulated datasets DS1-DS4 in Table 3.3.
Figure 3.6(a) and Figure 3.6(b) present the corresponding plots of the DS1 dataset and



57

is clear the existence of a local maximum in the pllf, psf has two critical points, but it
is not possible to obtain a global maximum. Figure 3.6(c) and Figure 3.6(d) display the
associated plots of the DS2 dataset. The psf does not present any critical points and then
the pllf does not have a maximum again. The plots of the DS3 dataset are presented in
Figure 3.6(e) and Figure 3.6(f). This psf has three critical points and the pllf presents a
local and a global maximum. Figures 3.6(g) and 3.6(h) represent the DS4 dataset, the pllf
present two “numerically equal” maximums.

Percentile-based estimators

For data coming from a distribution having closed-form cdf, a natural way to
obtain unknown parameters is to determine the argument which minimizes the square
distance between theoretical and sample percentiles. The PBEs are similar to least squares
estimators (LSEs) both techniques are based on minimizing square distances between
expected values of order-statistics functions and their corresponding sample statistics.
While the PBE is based on the qf, the LSE method is based on the cdf. Murthy et al.
(2004) discussed this method for the Weibull distribution, while Gupta and Kundu (2001a)
studied the exponentiated exponential (EE) case.

Let x(1), . . . ,x(n) be the order statistics obtained from a set of n independent and
identically distributed (iid) random variables following the ECR distribution with vector
parameter θ = (β,λ)>, the percentile-based estimation function (pef) at θ is

p(θ) =
n∑
i=1

[
λ

1− p1/β
i

√(
2− p1/β

i

)
p
1/β
i − x(i)

]2

. (3.15)

In this case, pi is the cdf value at the ith order statistic, F (x(i)). Murthy et al. (2004,
p. 63) describe several ways to define sample pi. We employ the mean rank given by
pi = i/(n+ 1), which is an unbiased estimator of pi.

The pef partial derivatives4 are

Lβ(θ) =
2λ

β2
[λT6(β,x)− T7(β,x)]

and

Lλ(θ) = 2 [T8(β,x)− λT9(β,x)] ,

where

T6(β,x) =
n∑
i=1

p
1/β
i log pi(

1− p1/β
i

)3 ,

4These derivatives are analogous to the score functions of the ML estimation
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(a) DS1 pllf.
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(b) DS1 psf.
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(c) DS2 pllf.
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(d) DS2 psf.
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(e) DS3 pllf.
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(f) DS3 psf.

0.000 0.005 0.010 0.015

1
3

.3
0

1
3

.4
0

1
3

.5
0

1
3

.6
0

Non−Existence pllf

λ

p
llf

 v
a

lu
e

s

0.000 0.005 0.010 0.015

−
6

0
−

5
0

−
4

0
−

3
0

−
2

0
−

1
0

Non−Existence psf

λ

p
s
f 

v
a

lu
e

s

0.0 0.1 0.2 0.3 0.4

−
5

.3
5

−
5

.3
0

−
5

.2
5

−
5

.2
0

−
5

.1
5

Non−Existence pllf

λ

p
llf

 v
a

lu
e

s

0.0 0.1 0.2 0.3 0.4

−
4

−
3

−
2

−
1

0
1

Non−Existence psf

λ

p
s
f 

v
a

lu
e

s

0.000 0.005 0.010 0.015 0.020

1
1

.0
4

4
1

1
.0

4
8

1
1

.0
5

2

Multiple MLE

λ

p
llf

 v
a

lu
e

s

0.000 0.005 0.010 0.015 0.020

−
2

0
2

4
6

8
1

0

Multiple MLE

λ

p
s
f 

v
a

lu
e

s

0.005 0.010 0.015 0.020 0.025 0.030

7
.8

5
0

7
.8

5
2

7
.8

5
4

7
.8

5
6

Multiple MLE

λ

p
llf

 v
a

lu
e

s

0.005 0.010 0.015 0.020 0.025 0.030

−
2

−
1

0
1

2
3

4

Multiple MLE

λ

p
s
f 

va
lu

e
s

(g) DS4 pllf.
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Figure 3.6: Profile ML estimation plots for simulated datasets in Table 3.3.
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T7(β,x) =
n∑
i=1

x(i) log pi(
1− p1/β

i

)2

√√√√ p
1/β
i

2− p1/β
i

,

T8(β,x) = −
n∑
i=1

x(i)

√(
2− p1/β

i

)
p
1/β
i

1− p1/β
i

and

T9(β,x) = n−
n∑
i=1

1(
1− p1/β

i

)2 .

The PB estimates, θ̆ = (β̆,λ̆)>, can be obtained numerically by solving the nonlinear
equations system Lβ(θ) = 0

Lλ(θ) = 0.
(3.16)

In general, PBEs must be obtained numerically, similarly to MLEs. Note that, from (3.16),
it is possible to obtain two semi-closed PBEs for λ given by

λ̆(β) =
T8(β,x)

T9(β,x)
(3.17)

and

λ̆∗(β) =
T7(β,x)

T6(β,x)
.

By (3.17), when β is known the PB estimate, β̂, exist and is given by λ̆(β). Proposition 3.12
is useful for constrained PB estimation processes, it is analogous to Proposition 3.11.

Proposition 3.12. Let Θλ ⊂ R+ and Θλ
β =

{
β ∈ R+|λ̂(β) ∈ Θλ

}
then for a given sample

inf Θλ
β =

arg min
β

∣∣∣λ̆(β)− sup Θλ

∣∣∣ if ∃ sup Θλ

0 if @ sup Θλ

and

sup Θλ
β =

arg min
β

∣∣∣λ̆(β)− inf Θλ

∣∣∣ if inf Θλ > 0

∞ if inf Θλ = 0.

If we consider the ECR nested model where β = β0 the PB estimate for the
scale parameter λ can only be obtained using the first estimator and, consequently, the
estimative always exists and is unique. Thus, we can set the PB estimate for β as solution
the equation λ̆(β) = λ̆∗(β) or, equivalently,

T6(β,x)T8(β,x) = T7(β,x)T9(β,x).
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By replacing λ by λ̆(β) in (3.15), we obtain the profile percentile-based estimation function
(ppef):

pλ(β) =
n∑
i=1

 T8(β,x)

T9(β,x)
(

1− p1/β
i

)√(2− p1/β
i

)
p
1/β
i − x(i)

2

.

We can also obtain the PB estimates for β by minimizing one of the ppef with respect to
β.

The profile percentile-based score function (ppsf), psf analog, is defined by

Lβ|λ=λ̆(β)(β) =
2

β2

(
T8(β,x)

T9(β,x)

)[(
T8(β,x)

T9(β,x)

)
T6(β,x)− T7(β,x)

]
.

The ppsf frequently presents numerical errors when β → 0. To overcome this
trouble consider the critical percentile-based score function (cpsf) given by

L∗
β|λ=λ̆(β)

(β) = T6(β,x)T8(β,x)− T7(β,x)T9(β,x).

The Proposition 3.13 shows that cpsf can be used as a ppsf alternative to find
the ppef critical points with the advantage that it is less sensitive to numerical errors.
Obviously the PB estimate for β is a root of the cpsf. The cpsf limiting behavior is
presented in Proposition 3.14.

Proposition 3.13. β0 is a ppsf root if and only if it is a cpsf root and

sign
(
Lβ|λ=λ̆(β)(β)

)
= − sign

(
L∗
β|λ=λ̆(β)

(β)
)
∀β > 0.

Proposition 3.14. The cpsf has the following limit behavior

lim
β→0

L∗
β|λ=λ̆(β)

(β) = 0

and

lim
β→∞

∣∣∣L∗
β|λ=λ̆(β)

(β)
∣∣∣ =∞.

Figure 3.7 depicts the ppef and cpsf of the DS5, DS6 and DS7 datasets as given
Table 3.3 and shows that PBE has the same issues of the MLE. Figure 3.7(b) does not
have any root and consequently Figure 3.7(a) illustrate a ppef with no global minimum.
Figures 3.7(c) and 3.7(d) show that the DS6 dataset has ppef with three critical points,
two of them correspond to “numerically equal” minimums. CS7 dataset present local
minimums in its ppef as presented in Figures 3.7(e) and 3.7(f).

Corollary 3.14.1 shows how to find constrained PB estimates in a rectangular region
of the parametric space analogous to Corollary 3.11.1. The existence of PB estimates is
again assured only when L is a compact set (IZMAILOV; SOLODOV, 2009, p. 8).
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(a) DS5 ppef.
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(b) DS5 cpsf.
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(c) DS6 ppef.
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(d) DS6 cpsf.
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(e) DS7 ppef.
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(f) DS7 cpsf.

Figure 3.7: Profile PB estimation plots for simulated datasets in Table 3.3.



62

Corollary 3.14.1. Let Θβ,Θλ ⊂ R+, Θλ
β as given in Proposition 3.12, L = Θβ ∩Θλ

β and
C be the set of all cpsf roots. For a given sample (β∗,λ̆(β∗)) are PB estimates, constrained
to Θβ ×Θλ, if

1. β∗ ∈ C, β∗ = inf L or β∗ = supL;

2. β∗ ∈ L;

3. pλ(β
∗) ≤ pλ(β) ∀β ∈ C;

4. pλ(β
∗) ≤ lim

β→(inf L)+
pλ(β);

5. pλ(β
∗) ≤ lim

β→(supL)−
pλ(β).

3.5.2 Maximum likelihood estimators for censored samples

Here we briefly discuss the ECR MLEs under left, right or interval censored datasets.
Let D and D∗ denote the sets of the individuals whose lifetimes are uncensored and censored
respectively. Estimators under censored samples for exponentiated distributions were also
studied by Gupta and Kundu (2001b) and Al-Hussaini (2010).

Type I right censoring

Type I right censoring occurs when the event of interest is observed only if it occurs
prior to some prespecified time. Let Ti and Li represent, respectively, the ith individual
lifetime and the fixed censoring time in a random sample of n individuals. One observes
only xi = min {Ti,Li} and whether it is the lifetime or censored time. The type I right
censored (RC1) llf is

`RC1(θ) = m log(βλ) +D1(x) + 3D2(λ,x) + (β − 1)D3(λ,x) +R1(θ,x),

where θ is the parametric space and m denotes the number of uncensored individuals and

D1(x) =
∑
i∈D

T1(xi),

D2(λ,x) =
∑
i∈D

T2(λ,xi),

D3(λ,x) =
∑
i∈D

T3(λ,xi)

and

R1(θ,x) =
∑
i∈D∗

log

1−

(
1− λ√

λ2 + x2
i

)β
 .
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It is possible to obtain the RC1 ML estimates for θ maximizing the RC1 llf. The RC1 lles
system is 

m

β
+D3(λ,x)−R2(θ,x) = 0,

m

λ
+ (1− β)D4(λ,x)− (β + 2)D5(λ,x)− βR3(θ,x) = 0.

where

D4(λ,x) =
∑
i∈D

T4(λ,xi),

D5(λ,x) =
∑
i∈D

T5(λ,xi),

R2(θ,x) =
∑
i∈D∗

(
1− λ√

λ2+x2i

)β
log

(
1− λ√

λ2+x2i

)
1−

(
1− λ√

λ2+x2i

)β
and

R3(θ,x) =
∑
i∈D∗

[
λ2

(λ2+x2i )
3/2 − 1√

λ2+x2i

](
1− λ√

λ2+x2i

)β−1

1−
(

1− λ√
λ2+x2i

)β .

We can also obtain the RC1 ML estimates solving numerically the RC1 lles. This system
appears does not have a (semi-)closed solution.

Type II right censoring

Type II right censoring occurs when the study continues until the event of interest
is observed m times, where m is some predetermined integer (m < n). The type II right
censored (RC2) llf is

`RC2(θ) = log
n!

(n−m)!
+m log(βλ)+D(1)(x)+3D(2)(λ,x)+(β−1)D(3)(λ,x)+R(1)(θ,x),

where m denote the number of uncensored individuals and

D(1)(x) = T1(x(1), . . . ,x(m)),

D(k)(λ,x) = Tk(λ,x(1), . . . ,x(m)), k = 2, . . . ,5,

and

R(k)(θ,x) = (n−m)Rk(θ,x(m)), k = 1, . . . ,3.
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The RC2 ML estimates for θ can be obtained maximizing the RC2 llf. The RC2 lles is
m

β
+D(3)(λ,x)−R(2)(θ,x) = 0,

m

λ
+ (1− β)D(4)(λ,x)− (β + 2)D(5)(λ,x)− βR(3)(θ,x) = 0.

We can also obtain the RC2 ML estimates solving numerically the RC2 lles. This system
appears does not have a (semi-)closed solution.

Left censoring

Left censoring occurs when the event of interest is observed prior to a certain time
t, but the exact time of occurrence is unknown. Let x1, . . . ,xn be an observed sample
obtained from the ECR distribution with m uncensored observations and n − m left
censored (LC) ones. Note that for left censoring m > 0. The LC llf is

`LC(θ) = m log(βλ) +D1(x) + 3D2(λ,x)− D3(λ,x) + β T3(λ,x). (3.18)

The LC score functions is

ULC
β =

m

β
+ T3(λ,x), (3.19)

and

ULC
λ =

m

λ
+D4(λ,x)− 2D5(λ,x)− β [T4(λ,x) + T5(λ,x)] .

The LC ML estimates, θ̂ = (β̂,λ̂)>, can also be obtained numerically by solving
the nonlinear equations system

ULC
β = ULC

λ = 0.

From Eq. (3.19) it is possible to obtain a semi-closed LC MLE for β. For ULC
β = 0

the LC MLE for β, for a given λ, is

β̂LC(λ) = − m

T3(λ,x)
.

By replacing β by β̂LC(λ) in (3.18), the following left censored pllf for λ is obtained:

`LCβ (λ) = m

[
log

(
−mλ
T3(λ,x)

)
− 1

]
+D1(x) + 3D2(λ,x)−D3(λ,x).

We can also obtain the LC ML estimates for λ by maximizing the LC pllf `LCβ (λ) with
respect to λ. The LC psf is

ULC
λ|β=β̂LC(λ)

= m

[
1

λ
+
T4(λ,x) + T5(λ,x)

T3(λ,x)

]
+D4(λ,x)− 2D5(λ,x).
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The LC ML estimate for λ can also be defined as a root of the LC psf.

Interval censoring

Interval censoring occurs when it is only known that the event of interest occurred
between times a and b. Let x1, . . . ,xn be an observed sample obtained from the ECR
distribution. Assume that we only known that xi ∈ (ai,bi), ∀i ∈ {1, . . . ,n}. Then the
interval censored (IC) llf is

`IC(θ) =
n∑
i=1

log
[
T4(λ,bi)

β − T4(λ,ai)
β
]
.

We must employ some two dimensional maximization algorithm to obtain the IC ML
estimates using the IC llf. The IC lle system is

n∑
i=1

(
1− λ√

a2i+λ
2

)β
log

(
1− λ√

a2i+λ
2

)
−
(

1− λ√
b2i+λ

2

)β
log

(
1− λ√

b2i+λ
2

)
(

1− λ√
a2i+λ

2

)β
−
(

1− λ√
b2i+λ

2

)β = 0,

β
n∑
i=1

a2i

(a2i+λ2)
3/2

(
1− λ√

a2i+λ
2

)β−1

− b2i

(b2i+λ2)
3/2

(
1− λ√

b2i+λ
2

)β−1

(
1− λ√

b2i+λ
2

)β
−
(

1− λ√
a2i+λ

2

)β = 0.

This system also appears does not have a (semi-)closed solution, but we can also obtain
the IC MLEs solving numerically this system.

3.5.3 The Fisher information matrix

The FIM is defined by

K = K(θ) = − 1

n

[
κββ κβλ

κλβ κλλ

]
, (3.20)

where the entries of K obey the notation defined in Section 2.3. The FIM entries are
obtained in Proposition 3.15. In general, determining this matrix requires hard integrations,
but we provide solutions for all in the ECR case. Mahmoud and El-Ghafour (2015) obtained
the FIM for the GFP distribution and Gomes et al. (2015) for McBXII law it is also
possible to obtain the ECR FIM from their expressions.

Proposition 3.15. The ECR FIM elements in (3.20) are

κββ = − n

β2
, (3.21a)
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κβλ = κλβ =
n

λ

(
2

β + 2
− 3

β + 1

)
(3.21b)

and

κλλ =
n

λ2

(
18

β + 2
− 36

β + 3
+

16

β + 4
− 1

)
. (3.21c)

Corollary 3.15.1 assures that for any non-zero vector v ∈ R2 we have v>Kv > 0.

Corollary 3.15.1. The ECR FIM is a positive definite matrix.

Corollary 3.15.2 presents the inverse FIM, which is also useful for determining ana-
lytic expressions for the asymptotic standard errors of the MLEs and construct confidence
intervals.

Corollary 3.15.2. The inverse FIM is

K−1 = K−1(θ) = −n

[
κβ,β κβ,λ

κλ,β κλ,λ

]
,

where

κβ,β = −
($
n

)
β3(β + 1)

(
β2 + 11β + 36

)
,

κβ,λ = κλ,β =

(
λ$

n

)
β2(β + 3)(β + 4)2,

κλ,λ = −
(
λ2$

n

)
(β + 1)(β + 2)(β + 3)(β + 4)

and

$ =
(β + 1)(β + 2)

β(β3 − 7β2 + 10β + 72)
. (3.22)

3.5.4 Hypothesis tests and confidence intervals

The likelihood ratio, Wald and Rao score tests are classical procedures to verify if
a given sample provides evidence to reject or not a null hypothesis.

Likelihood ratio test

Suppose we need testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ − Θ0, where Θ0 is the
parametric space under the null hypothesis. The LRT statistic is

Λ(x) =
L(θ̂0|x)

L(θ̂|x)
,

where θ̂ is the unconstrained MLE and θ̂0 is the constrained one. (WILKS, 1938) proved
that

−2 log Λ(x)
d−→

n→∞
χ2
k,
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where k is the difference between the number of free parameters specified by θ ∈ Θ and
the number of free parameters specified by θ ∈ Θ0. In the ECR case we can express

log Λ(x) = n log

(
β̂0λ̂0

β̂λ̂

)
+ 3[T2(λ̂0,x)− T2(λ̂,x)] + (β̂0 − 1)T3(λ̂0,x)− (β̂ − 1)T3(λ̂,x).

For testing H0 : θ = θ0 versus H1 : θ 6= θ0 the nominal level α LRT rejects if

−2 log Λ(x) > ck,1−α,

where ck,1−α is the 1− α quantile of χ2
k.

Wald test

Among its potentialities, FIM allows to determine the asymptotic confidence interval
based on the following result (LEHMANN; ROMANO, 2005, p. 510)

√
n(θ̂ − θ)

d−→
n→∞
N (0,K−1(θ)),

which implies that
n(θ̂ − θ)>K(θ)(θ̂ − θ)

d−→
n→∞

χ2
k,

where k is the dimension of the parameter vector θ. Thus, the 1 − α Wald confidence
ellipsoid for θ is

{θ : n(θ̂ − θ)>K(θ)(θ̂ − θ) ≤ ck,1−α},

where ck,1−α is the 1− α quantile of χ2
k. For testing H0 : θ = θ0 versus H1 : θ 6= θ0 the

nominal level α Wald test rejects H0 if

W(x) = n(θ̂ − θ0)>K(θ̂)(θ̂ − θ0) > ck,1−α.

In the ECR case we can express

W(x) =

(
β̂ − β0

β̂

)2

− 2(λ̂− λ0)(β̂ − β0)

λ̂

(
2

β̂ + 2
− 3

β̂ + 1

)

−

(
λ̂− λ0

λ̂

)2(
18

β̂ + 2
− 36

β̂ + 3
+

16

β̂ + 4
− 1

)
.

Rao score test

As described by (BICKEL; DOKSUM, 2000, p. 399), for the simple hypothesis
H0 : θ = θ0 versus H1 : θ 6= θ0, Rao score test (RST) is based on the observation that, by
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the central limit theorem,
n−

1/2U(θ0)
d−→

n→∞
N (0,K(θ0)),

where U(θ0) is the likelihood score vector. The RST statistic is

R(x|θ0) = n−1U(θ0)>K−1(θ0)U(θ0)
d−→

n→∞
χ2
k.

The test rejects H0 if
R(x|θ0) > ck,1−α.

In the ECR case we can express

R(x|θ) = $
[
β3(β + 1)

(
β2 + 11β + 36

)
U2
β + 2λβ2(β + 3)(β + 4)UβUλ

+ λ2(β + 1)(β + 2)(β + 3)(β + 4)U2
λ

]
,

where $ is given by (3.22).

3.5.5 Cox-Snell corrected maximum likelihood estimators

Corollaries 3.15.2 and 3.15.3 and Proposition 3.16 are the fundamental results to
construct the CS-MLEs described in Section 2.3. The notation adopted is the same of
that section. Corollary 3.15.3 presents the first derivatives of the FIM components.

Corollary 3.15.3. The first derivatives of the FIM components are

κ
(β)
ββ =

2n

β3
,

κ
(λ)
ββ = 0,

κ
(β)
βλ =

n

λ

[
3

(β + 1)2
− 2

(β + 2)2

]
,

κ
(λ)
βλ =

n

λ2

(
3

β + 1
− 2

β + 2

)
,

κ
(β)
λλ =

2n

λ2

[
18

(β + 3)2
− 8

(β + 4)2
− 9

(β + 2)2

]
and

κ
(λ)
λλ =

2n

λ3

(
1− 18

β + 2
+

36

β + 3
− 16

β + 4

)
.

Proposition 3.16 presents the expected value of the third derivatives of the llf, which
can be obtained using essentially the same procedures employed in Proposition 3.15.

Proposition 3.16. The expected value of the third derivatives of the llf (third order
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cumulants of the llf) in (3.10) with respect to its parameters are

κβββ =
2n

β3
, (3.24a)

κββλ = 0, (3.24b)

κβλλ =
n

λ2

(
9

β + 1
− 28

β + 2
+

27

β + 3
− 8

β + 4

)
(3.24c)

and

κλλλ =
2n

λ3

(
1− 81

β + 2
+

378

β + 3
− 606

β + 4
+

405

β + 5
− 96

β + 6

)
. (3.24d)

The second order biases of the MLEs are listed in Proposition 3.17. As expressed
in (2.15), they are the key to obtain the CS-MLEs.

Proposition 3.17. Let X be an ECR random variable with vector parameter θ = (β,λ)>.
The second order biases of the ECR MLEs evaluated in θ̂ = (β̂,λ̂)> are

B̂ias(β̂) =
1

n

[
β̂3 + 13β̂2 + 122β̂ + 380− 699840

19321(β̂ + 5)
+

96000

361(β̂ + 6)

+
432

(
4085783β̂2 − 8192586β̂ − 40352456

)
2641

(
β̂3 − 7β̂2 + 10β̂ + 72

)2

−
12
(

70740551β̂2 + 3809213278β̂ − 35831044156
)

6974881
(
β̂3 − 7β̂2 + 10β̂ + 72

)


and

B̂ias(λ̂) =
λ̂

n

[
8β̂ + 86 +

49

270β̂
− 1679616

96605(β̂ + 5)
+

80000

1083(β̂ + 6)

−
8
(

84037561β̂2 + 21509105β̂ − 393761162
)

7923
(
β̂3 − 7β̂2 + 10β̂ + 72

)2

+
356431397749β̂2 − 158970444943β̂ − 4636191041858

376643574
(
β̂3 − 7β̂2 + 10β̂ + 72

)
 .

Unfortunately, for certain sample sizes and β̂ values, the ECR CS-MLE outcomes
can be outside of the parametric space. This problem also occurred in some models like
inverse Weibull (MAZUCHELI et al., 2018a). Thus, it is interesting to outline a map that
identifies correctable regions, on which an constrained optimization would be acceptable.
Figure 3.8 displays portions of the ECR CS-correctable region in terms of sample size and
β̂. It is noticeable that this region does not depend of λ̂, as indicated by the B̂ias(β̂).



70

Figure 3.8: CS-correctable region for ECR ML estimates.

The ECR CS-MLEs are obtained using the MLEs second order biases expressed in
(2.15). The ECR CS-MLEs when β or λ are known can be obtained by Proposition 3.18:

Proposition 3.18. Let an ECR random variable with parameters

1. β and λ = λ0. The second order bias of the β MLE evaluated in β̂ is

B̂ias(β̂|λ = λ0) =
β̂

n
.

2. β = β0 and λ. The second order bias of the λ MLE evaluated in λ̂ is

B̂ias(λ̂|β = β0) =
λ̂

n

(β0 + 2)(β0 + 3)(β0 + 4)

β0(β0 + 5)(β0 + 6)

[
β4

0 + 24β3
0 + 216β2

0 + 761β0 + 294

(β2
0 + 11β0 + 36)

2

]
.

The CR CS-MLE for λ is indicated in Corollary 3.18.1.

Corollary 3.18.1. Let a CR random variable with parameter λ. The second order bias
of the λ MLE evaluated in λ̂ is B̂iasCR(λ̂) = 45λ̂/56n.

3.6 SIMULATION STUDIES

In this section, we assess the performance of the proposed estimators by means
of three simulation studies, we investigate the convergence of the bias-corrected MLEs.
In particular, the asymptotic behavior of MLE (β̂,λ̂), CS-MLE (β̃,λ̃) and PBE (β̆,λ̆) is
quantified adopting relative biases and SSDs as comparison criteria. The final study is
focused on the issue of existence and non-existence of the ML and PB estimates for given
samples. To that end, we used the platform described in Section 1.2.
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3.6.1 Convergence study

The first study analyzed the convergence of the estimates as the sample size increases.
Define the following sets

N = {5, 10, . . . , 250}

and

P = {(0.5,0.3),(0.4,0.15),(1,0.25),(0.35,2.5),(0.47,0.6),(1,0.5),(5,5),(8,8),(5,0.1),(10,0.1)}.

For each element (θ,n) ∈ N×P, it was generated 1,000 ECR distributed samples with
parameters θ = (β,λ) and size n using the ITSM. For each Monte Carlo replica, it was
obtained both bias and SSD and, subsequently, the Monte Carlo averages are calculated
for each (θ,n).

Figures A.1–A.11 exhibits bias and SSD values for several sample sizes. It is
noticeable the β̂ bias outperforms that due to β̆ for smaller size samples. Under CS-
correctable region, β̃ presents the smallest bias for the majority of cases. With respect
to SSD, β̆ tends to assume the smallest value at small samples; while, β̃ has the best
asymptotic behavior.

In general, the λ̂ bias is the smallest, while the λ̆ one is the highest. In small values
of β, the λ̂ and λ̃ SSDs present similar values, while λ̆ is the highest one.

3.6.2 Relative bias and sample standard deviation studies

This study investigated the convergence of the relative biases and SSDs of the
parameter estimates in different regions of the parametric space. Let these sets

N = {10,100}

and

P = {0.1, 0.2, . . . ,6}.

For each element (β,λ,n) ∈ P2 ×N it was generated 1,000 ECR distributed samples with
parameters (β,λ) and size n using the ITSM. For each random sample, we calculated
both bias and SSD. Finally, we compute the average of biases and SSDs for each element
(β,λ,n). Results are depicted in Figures A.12–A.15.

In Figures A.12 and A.13 biases and SSDs do not appear to suffer influence of λ
value, that is, biases and SSDs seem to be only function of β values. Figures also reveal
that CS-MLEs are desirable for only small values of β.

In Figures A.14 and A.15, we can observe that the β̂ relative bias and SSD decrease
for when β increases, while the relative bias and SSD of β̃ and β̆ do not have this property.
Small values of β, the smallest relative biases and SSDs for β estimates are obtained by β̃
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Figure 3.9: Existence rates of the estimate of the standard ECR shape parameter.

and β̆. The smallest biases and SSDs for λ estimates are, typically, attained by λ̂ and λ̃.
In particular, for smallest values of β, the λ̃ has the smallest biases and SSDs.

3.6.3 Existence of estimates study

The last simulation study evaluated the proportion of non-existence of the ML and
PB estimates in different points of the parametric space. Consider the sets

N = {5,10, . . . ,200}

and

P = {0.05,0.10, . . . ,2}.

For each element (β,n) ∈ P×N, we generated 10,000 standard ECR distributed
samples and the proportion of them that had ML or PB estimates was registered.

Figure 3.9 summarizes the evaluated existence rates of estimates. Figure 3.9 reveals
that MLE presents its smallest existence rates when β < 0.2. When β > 0.2 the existence
rates build up as n increases. The region where 0.3 < β < 1 appears to be the highest
existence rates. Figure 3.9 unveils a different behavior for the PBE, the existence rates look
to be influenced only by the sample size. The lowest existence rates of the PB estimates
are found when 25 < n < 60.

3.7 APPLICATION

An application to real data is done to illustrate the ECR potentiality. To that end,
we use the uncensored real datasets previously discussed by Crowley and Hu (1977) and
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Table 3.4: Crowley and Hu’s dataset.

1 1 2 2 2 4 4 5 5 7 8
11 15 15 15 16 17 20 20 27 29 31
34 35 36 38 39 42 44 49 50 52 57
60 65 67 67 68 71 71 76 77 79 80
84 89 95 99 101 109 148 152 187 206 218
262 284 284 307 333 339 674 732 851 1031 1386

Table 3.5: Descriptive statistics.

Dataset Mean Q1/4 Q1/2 Q3/4 Variance Skew. Kurt. Min. Max.

Crowley and Hu 143.70 16.92 58.50 112.25 64506.42 3.104648 13.00242 1 1386

which consist of 66 patient survival days with respect to a Stanford heart transplant list.
We consider only patients that died in the followup time and were not submitted to prior
bypass surgery. The data are presented in Table 3.4.

Let Qi be the i% percentile of a sample obtained by means of the methodology
recommended by Hyndman and Fan (1996). Table 3.5 gives a descriptive summary, which
anticipates right-skewed data.

In many applications empirical hrf shape can indicate a particular model. The plot
of total time on test (TTT) (AARSET, 1987) can be useful in this sense. The TTT plot
is obtained by measuring G(r/n) = (

∑r
i=1 y(i)+(n−r)yr:n)/

∑n
i=1 y(i) versus r/n for r = 1, . . . ,n.

The under study TTT plots are presented in Figure 3.10. Results indicate a upside-down
bathtub-shaped hrf, pattern which is covered by the ECR hrf.

Beyond, Figure 3.11 presents the pllf and ppef curves in order to anticipate the
ECR optimization framework at under study data. The concavity of the pllf curve in
Figure 3.11(a) indicates a global maximum around λ0 = 80.5 and the convexity of the
ppef curve in Figure 3.11(b) indicates a global minimum around β0 = 0.175. We employed
these values as start points to obtain the ML and PB estimates using the Newton-Raphson
method.

We compare the fits of the ECR distribution defined in (2.7) with the CR pdf
and some other models namely generalized gamma (GG) (PRENTICE, 1974), LN, BS
(BIRNBAUM; SAUNDERS, 1969), log-logistic (LL)5, Weibull, Fréchet6, EE, inverse
gamma (IG)7, generalized half-normal (GHN) (COORAY; ANANDA, 2008), exponentiated
Lindley (ELi), Lindley exponential (LE), Chen (CHEN, 2000), Wald8, flexible Weibull
(FW) (BEBBINGTON et al., 2007), BX (SURLES; PADGETT, 2005) and log-Cauchy
(LCa). These models have sample space supported on R+.

5a.k.a. Fisk model (FISK, 1961).
6a.k.a. inverse Weibull (BURY, 1999).
7a.k.a. Vinci model (VINCI, 1921).
8a.k.a. inverse normal model (MICHAEL et al., 1976).
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Figure 3.10: TTT-plot of the Crowley and Hu’s dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
9

0
.5

−
9

0
.4

−
9

0
.3

−
9

0
.2

−
9

0
.1

−
9

0
.0

ECR MLE plot Lemont et al’s dataset

λ

p
llf

 v
a

lu
e

s

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
3

4
1

3
6

1
3

8
1

4
0

1
4

2

ECR PBE plot Lemonte et al’s dataset

β

p
p

e
f 

va
lu

e
s

78 79 80 81 82 83 84

−
3

8
0

.3
1

6
−

3
8

0
.3

1
2

−
3

8
0

.3
0

8

ECR MLE plot Crowley and Hu’s dataset

λ

p
llf

 v
a

lu
e

s

0.15 0.20 0.25

4
2

8
0

0
0

4
3

0
0

0
0

4
3

2
0

0
0

4
3

4
0

0
0

4
3

6
0

0
0

ECR PBE plot Crowley and Hu’s dataset

β

p
p

e
f 

va
lu

e
s

(a) pllf.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
9

0
.5

−
9

0
.4

−
9

0
.3

−
9

0
.2

−
9

0
.1

−
9

0
.0

ECR MLE plot Lemont et al’s dataset

λ

p
llf

 v
a

lu
e

s

0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
3

4
1

3
6

1
3

8
1

4
0

1
4

2

ECR PBE plot Lemonte et al’s dataset

β

p
p

e
f 

va
lu

e
s

78 79 80 81 82 83 84

−
3

8
0

.3
1

6
−

3
8

0
.3

1
2

−
3

8
0

.3
0

8

ECR MLE plot Crowley and Hu’s dataset

λ

p
llf

 v
a

lu
e

s

0.15 0.20 0.25

4
2

8
0

0
0

4
3

0
0

0
0

4
3

2
0

0
0

4
3

4
0

0
0

4
3

6
0

0
0

ECR PBE plot Crowley and Hu’s dataset

β

p
p

e
f 

va
lu

e
s

(b) ppef.

Figure 3.11: ECR estimation functions.
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• The GG model with shape parameters µ,q ∈ R and scale parameter σ > 0, can be
written y = µ+ σx where the error pdf is written

fGG(y) =


|q|(q

−2)
q−2

Γ(q−2)
exp

{
q−2 [qy − exp(qy)]

}
se q 6= 0,

1√
2π

exp

(
−1

2
y2

)
se q = 0.

Some special cases for t = exp(y) are Weibull(q = 1), exponential (Exp)(q = σ = 1),
log-normal(q = 0) and gamma(σ = 1,q > 0).

• The LN model with shape parameters µ > 0 and σ > 0 has pdf (for x > 0) given by

fLN(x) =
1

xσ
√

2π
exp

{
−1

2

[log(x)− µ]2

σ2

}
.

• The BS model with shape parameter α > 0 and scale parameter β > 0 has cdf (for
x > 0) given by

FBS(x) = Φ

(
1

α

[(
x

β

)0.5

−
(
β

x

)0.5
])

,

where Φ(x) is the cdf of the standard normal distribution defined as

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−t

2

2

)
dt.

• The LL model with shape parameter η > 0 and scale parameter ϕ > 0 has pdf (for
x > 0) given by

fLL(x) =
η

ϕ

(
x

ϕ

)η−1 [
1 +

(
x

ϕ

)η]−2

.

• The Weibull model with shape parameter p > 0 and scale parameter b > 0 has pdf
(for x > 0) given by

fWeibull(x) =
a

β

(
x

β

)a−1

exp

[
−
(
x

β

)a]
.

• The Fréchet model with shape parameter λ > 0 and scale parameter σ > 0 has pdf
(for x > 0) given by

fFrechet(x) =
λ

σ

(σ
x

)λ+1

exp

[
−
(σ
x

)λ]
.

• The EE model with shape parameter α > 0 and scale parameter λ > 0 has pdf (for
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x > 0) given by
fEE(x) = αλ e−λx

(
1− e−λx

)1−α
.

• The gamma model with shape parameter p > 0 and scale parameter b > 0 has pdf
(for x > 0) given by

fgamma(x) =
1

bΓ(p)

(x
b

)p−1

exp
(
−x
b

)
.

• The IG model with shape parameter α > 0 and scale parameter β > 0 has pdf (for
x > 0) given by

fIG(x) =
β

Γ(α)
(βx)−α−1 exp

(
− 1

βx

)
.

• The GHN model with shape parameter α > 0 and scale parameter θ > 0 has pdf
(for x > 0) given by

fGHN(x) =

√
2

π

(α
x

)(x
θ

)α
exp

[
−1

2

(x
θ

)2α
]
.

• The ELi model with shape parameters α > 0 and scale parameter λ > 0 has pdf (for
x > 0) given by

fELi(x) =
αλ2

1 + λ
(1 + x) e−λx

[
1− 1 + λ+ λx

1 + λ
e−λx

]α−1

.

• The LE model with shape parameters θ > 0 and scale parameter λ > 0 has pdf (for
x > 0) given by

fLE(x) =
θ2λ

1 + θ

[
1− e−λx

]θ−1 [
1− log

(
1− e−λx

)]
.

• The Chen model with shape parameters κ ≥ 0 and θ > 0 has pdf (for x > 0) given
by

fChen(x) = θκxκ−1 exp
[
θ
(
1− ex

κ)
+ xκ

]
.

• The Wald model with shape parameter µ ≥ 0 and scale parameter λ > 0 has pdf
(for x > 0) given by

fWald(x) =

√
λ

2πx3
exp

[
−λ(x− µ)2

2µ2x

]
.

• The FW model with shape parameter α > 0 and scale parameter β > 0 has cdf (for
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Figure 3.12: Some of the best fitted models.

x ≥ 0) given by

fFW (x) =

(
α +

β

x2

)
exp

(
αx− β

x

)
exp

[
− exp

(
αx− β

x

)]
.

• The BX model with shape parameter α ≥ 0 and scale parameter λ > 0 has pdf (for
x > 0) given by

fBX(x) = 2αλ2x exp[−(λx)2]{1− exp[−(λx)2)]α−1}.

• The LCa model with shape parameter µ ∈ R and scale parameter σ > 0 has pdf (for
x > 0) given by

fLCa(x) =
1

xπ

σ

(log x− µ)2 + σ2
.

Figure 3.12 displays fitted and empirical densities for the studied dataset. For
better exhibition, we regard only models which are to provide closer fits to the histogram.
The empirical and fitted cdfs of these models are displayed in Figure 3.12. The qq-plots
for some fitted models can be seen in Figure 3.13. From these plots, we note that the
ECR model provides a good fit.

Table 3.6 presents the ML estimates and their std. errors and asymptotic confidence
intervals for fitted models, indicating there is not non-significant fits from their respective
asymptotic confidence intervals. The PB and CS-MLE are also presented. Table 3.6
present the ML estimates and their std. errors and asymptotic confidence intervals for
fitted models, indicating there is not non-significant fits from their respective asymptotic
confidence intervals.

To compare quantitatively discussed models, Table 3.7 elects the GoF statistics of
the fitted models. We use the following GoF statistics:
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Figure 3.13: qq-plots of Crowley and Hu’s dataset for some models.
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Table 3.6: Estimates for Crowley and Hu’s dataset.

model estimates (std. err.)

GG(µ,σ,q) 4.1496 (0.3233) 1.5892 (0.1481) 0.3690 (0.1536)
(3.5160,4.7832) (1.2988,1.8795) (0.0687,0.6707)

SM(c,k,λ) 1.8953 (0.0565) 0.9110 (0.2660) 129.9019 (10.5690)
(1.7845,2.0060) (0.3879,1.4323) (109.1868,150.6171)

ECR(β,λ)ML 0.3867 (0.0400) 80.6840 (11.7096)
(0.3082,0.4651) (68.9744,92.3936)

ECR(β,λ)CS 0.3652 (0.0389) 80.2282 (10.8532)
(-,-) (-,-)

LL(a,b) 1.0806 (0.1122) 50.3379 (4.1945)
(0.8607,1.3006) (42.1168,58.5590)

LN(µ,σ) 3.8491 (0.2021) 1.6429 (0.1435)
(3.4529,4.2453) (1.3615,1.9242)

Weibull(a,β) 0.6692 (0.0585) 104.1081 (4.2048)
(0.5546,0.7839) (95.8666,112.3496)

LE(θ,λ) 0.7915 (0.0972) 0.0037 (0.0015)
(0.6010,0.9820) (0.0007,0.0067)

GHN(α,θ) 0.4964 (0.0421) 142.7885 (4.2051)
(0.4138,0.5790) (134.5464,151.0300)

Fréchet(λ,σ) 0.5846 (0.0511) 20.1116 (4.4516)
(0.4844,0.6847) (11.3865,28.8367)

Chen(β,λ) 0.2104 (0.0122) 0.0687 (0.0151)
(0.1864,0.2344) (0.03903,0.0983)

BS(α,β) 2.2664 (0.1982) 37.6227 (4.2131)
(1.8779,2.6548) (29.3649,45.8804)

gamma(p,b) 0.5583 (0.0410) 257.4058 (40.4295)
(0.4779,0.6387) (178.1640,336.6470)

EE(α,λ) 0.5503 (0.0822) 0.0045 (0.0011)
(0.3891,0.7114) (0.0023,0.0067)

ELi(α,λ) 0.2740 (0.0421) 0.0058 (0.0011)
(0.1914,0.3566) (0.0037,0.0008)

IG(α,β) 0.4539 (0.0661) 5.1499 (1.2391)
(0.3243,0.5836) (2.7212,7.5786)

ECR(β,λ)PB 0.1721 (0.0545) 147.4861 (10.2357)
(-,-) (-,-)

BX(β,λ) 0.1960 (0.0261) 0.0017 (0.0002)
(0.1448,0.2473) (0.0013,0.0022)

Wald(µ,λ) 143.7060 (4.8431) 12.3159 (2.4221)
(134.2134,153.1986) (7.5685,17.0633)

FW(α,β) 0.0015 (0.0006) 8.3432 (1.4112)
(0.0003,0.0025) (5.5773,11.1093)

BXII(c,k) 0.0153 (0.0012) 16.9950 (2.5626)
(0.0128,0.0177) (11.9723,22.0178)

CR(λ) 24.4910 (0.4479)
(23.6131,25.3689)
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Table 3.7: Goodness-of-fit tests for Crowley and Hu’s dataset.

model CvM AD KS AIC CAIC BIC HQIC

GG(µ,σ,q) 0.069 0.399 0.079 765.532 765.919 772.101 768.127
SM(c,k,λ) 0.052 0.327 0.072 766.012 766.399 772.581 768.608
ECR(β,λ)ML 0.039 0.286 0.057 764.612 764.803 768.992 766.343
ECR(β,λ)CS 0.038 0.285 0.063 764.612 764.803 768.992 766.343
LL(a,b) 0.074 0.454 0.063 765.481 765.672 769.861 767.212
LN(µ,σ) 0.102 0.579 0.089 764.915 765.105 769.294 766.645
Weibull(a,β) 0.114 0.689 0.118 767.444 767.635 771.824 769.175
LE(θ,λ) 0.140 0.838 0.139 768.735 768.926 773.115 770.466
GHN(α,θ) 0.191 1.150 0.142 773.212 773.403 777.592 774.943
Fréchet(λ,σ) 0.356 2.036 0.146 780.374 780.564 784.753 782.104
Chen(β,λ) 0.295 1.766 0.151 782.206 782.397 786.585 783.937
BS(α,β) 0.229 1.229 0.155 770.982 771.173 775.362 772.713
gamma(p,b) 0.195 1.172 0.159 772.658 772.849 777.037 774.389
EE(α,λ) 0.210 1.261 0.168 773.709 773.900 778.088 775.440
ELi(α,λ) 0.258 1.562 0.185 778.603 778.793 782.982 780.333
IG(α,β) 0.563 3.183 0.210 792.664 792.854 797.043 794.394
ECR(β,λ)PB 0.069 0.445 0.223 783.887 784.077 788.266 785.617
BX(β,λ) 0.386 2.274 0.238 788.552 788.742 792.931 790.282
Wald(µ,λ) 0.425 2.383 0.261 787.709 787.899 792.088 789.439
FW(α,β) 0.931 4.691 0.262 816.638 816.829 821.018 818.369
BXII(c,k) 0.676 3.828 0.323 824.816 825.007 829.196 826.547
CR(λ) 0.213 1.254 0.132 785.023 785.085 787.212 785.888

• Criteria under cdfs:

– Cramér-von Mises (CvM) (CRAMÉR, 1928);

– Anderson-Darling (AD) (ANDERSON; DARLING, 1952);

– Kolmogorov-Smirnov (KS) (SMIRNOV, 1948).

• Criteria under pdfs:

– Akaike information criterion (AIC) (AKAIKE, 1974);

– bayesian information criterion (BIC) (SCHWARZ, 1978);

– consistent Akaike information criterion (CAIC) (HURVICH; TSAI, 1989);

– Hannan-Quinn information criterion (HQIC) (HANNAN; QUINN, 1979).

Smaller GoF values are associated with better fits. The GoFs under pdf class may indicate
superiority relations in nested models while the criteria under cdf can be used to compare
nested and non-nested models.

Table 3.7 reveals that the new model presents smallest cdf based GoF values. To
test H0 : β = 1 (or FCR = FECR), we employ the likelihood ratio statistic, which yields a
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Table 3.8: Adjusted cdfs of the studied models evaluated in the sample quartiles.

model F
(
Q1/4

)
F
(
Q1/2

)
F
(
Q3/4

)
GG(µ,σ,q) 0.253 0.529 0.688
SM(c,k,λ) 0.240 0.526 0.696
ECR(β,λ)ML 0.226 0.527 0.713
ECR(β,λ)CS 0.246 0.547 0.728
LL(a,b) 0.235 0.541 0.704
LN(µ,σ) 0.267 0.553 0.702
Weibull(a,β) 0.257 0.493 0.651
LE(θ,λ) 0.244 0.472 0.629
GHN(α,θ) 0.271 0.479 0.625
Fréchet(λ,σ) 0.331 0.585 0.694
Chen(β,λ) 0.297 0.480 0.615
BS(α,β) 0.359 0.578 0.694
gamma(p,b) 0.240 0.454 0.610
EE(α,λ) 0.237 0.447 0.601
ELi(α,λ) 0.234 0.434 0.585
IG(α,β) 0.399 0.635 0.705
ECR(β,λ)PB 0.420 0.633 0.761
BX(β,λ) 0.249 0.404 0.521
Wald(µ,λ) 0.428 0.701 0.801
FW(α,β) 0.465 0.612 0.667
BXII(c,k) 0.521 0.653 0.707
CR(λ) 0.177 0.614 0.787

p-value < 10−5, indicating there is statistical difference between the ECR and CR models.
In summary, the ECR model may be a good alternative for describing heavy-tailed lifetime
(or positive real) data.

Table 3.8 shows the adjusted cdfs of the models previously listed evaluated in the
sample quartiles. In general, the CR and ECR distributions, under ML estimates, present
cdf values for the third quartile closer to its expected value of 3/4 in comparison to the
other models. The ECR PB estimate present the best approximation to the third quartile,
but this corresponding approximations to the first and second quartiles are poor. The
ECR CS-ML estimates obtained better approximations for the first and third quartiles
than ECR ML estimates. Thus, beside all mathematical and inferential we have presented
and discussed, these results reveal the ECR distribution may have better capacity to fit
tail probabilities than the remainder ones.

3.8 CONCLUDING REMARKS

We deepened a discussion about an extended Cauchy-Rayleigh distribution, partic-
ular case of some known models like heavy-tailed Rayleigh (NIKIAS; SHAO, 1995), gener-
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alized Feller-Pareto (ZANDONATTI, 2001), exponentiated Burr type-XII (AL-HUSSAINI;
AHSANULLAH, 2015), Kumaraswamy Burr type-XII (PARANAÍBA, 2012) and McDonald
Burr type-XII (GOMES et al., 2015). We referred to it as exponentiated Cauchy-Rayleigh
(ECR) distribution. Some of its mathematical properties were derived and discussed:
Closed-form expressions for mode and probability weighted, log-, incomplete and order
statistic moments. The ECR model obeyed the property of regularly varying at infinity
and can take decreasing, decreasing-increasing-decreasing and upside-down bathtub-shape
hazard rate functions, confirming its usefulness to describe lifetime data. We provided
procedures to estimate the ECR parameters through original and bias-corrected maximum
likelihood estimators and a percentile-based method. An important characteristic of this
new model was that the mode, median, moments, Fisher information components, its
inverse components and the second order bias can be decomposed in two factors where
the first factor is function of the scale parameter λ and the second one is function of the
new shape parameter β. A simulation study to assess proposed estimators was performed.
Each procedure revealed advantages over specific parameter points and sample sizes. The
ECR employment was illustrated through an application to real data. Results indicated
that our proposal can furnish better performance than classical lifetime models like gamma,
Birnbaum-Saunders, Weibull and log-normal. The formulae related with the new model
were manageable and may turned into adequate tools comprising the arsenal of applied
statistics. We hope that the broached model may attract wider applications for modeling
positive real data.
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4 STATISTICS-BASED IDENTIFIERS FOR ECRDISTRIBUTED

URBAN PATTERNS

4.1 INTRODUCTION

Nowadays, it is required up-to-date information about the urban areas because to
the fast growth of urbanization and population of the cities. Aghababaee et al. (2013)
noted that urban managers and decision makers use this information from any possible
data sources. One of the best source of information for urban area is the remote sensing.

Urban areas usually present a double-bounce scattering response. The double-bounce
scattering for the orthogonal illuminated building, according to the radar line of sight
is caused by right angle structure, consisting of building block walls and roads surfaces.
However there is a problem in the oblique urban areas where the buildings are not aligned
orthogonal to the radar line of sight (AZMEDROUB et al., 2016).

SAR and PolSAR remotely sensed data are widely used in urban analysis due to
their vast coverage, frequent observation and fair prices (XIANG et al., 2015; SIDDIQUE
et al., 2016; XU et al., 2017; JI et al., 2018; QUAN et al., 2018). SAR imagery has long
been used as an appropriate and effective data source for many applications (REN et al.,
2011; AUSHERMAN et al., 1984; WILEY, 1985; YANG et al., 2013; ZHOU et al., 2018).

The usage of optical remote sensing data is usually limited by lots of factors
such as cloud contamination, atmospheric effect, and presence of different materials in
complex urban areas. Consequently, they cannot have an acceptable performance. On
the other hand, radar sensors because of being independent of atmospheric and weather
conditions and not being affected by cloud have gained more attentions. SAR imaging is
a well-developed, coherent microwave remote sensing technique for providing large scale
two-dimensional high spatial resolution images of the Earth surface reflexivity. Lee and
Pottier (2009) shows that operating in microwave spectral region avoids effects of clouds,
fog, rain, and smoke.

These factors in addition to the high resolution SAR sensors make these sensors the
best choice for the urban analysis. Azmedroub et al. (2016) argued that urban areas are
very important both socially and environmentally. Their delineation and characterization
using remote sensing has attracted continuously researchers by use of different approaches
and methods.

Kuruoglu and Zerubia (2004) presented evidence that the CR model may outperform
the Weibull, LN and K distributions in SAR imagery analysis, which is expected because
urban areas show impulsive characteristics that correspond to underlying heavy-tailed
distributions. Li and Ekman (2010), Li and Ekman (2011) introduced the CR law as
a model of scattering clusters in state space based on simulation model for single and
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multiple polarization channels. Hill et al. (2014) produced a novel bivariate shrinkage
technique to provide a quantitative improvement in image denoising using the CR model.
Recently, Bibalan and Amindavar (2015), Bibalan and Amindavar (2016) furnished a
mathematical treatment to the HTR distribution by means of mixtures of CR and Rayleigh
models. Other papers that used the CR in SAR modelling are Peng et al. (2017) and
Pappas et al. (2017). This approach was developed for modeling amplitude of ultrasound
images through the HTR distribution.

It is known it is not possible to determine the existence of uniformly most powerful
tests for such a configuration hypotheses. Thus, this study depends of a reasonable
suggestions of hypothesis tests. In this chapter, we opt to use two: likelihood ratio and
entropy-based methodology.

Some recent works that use EBTs in SAR and PolSAR imagery are Frery et al.
(2013) and Nascimento et al. (2014b). An important advantage of the EBTs is that they
require a smaller computational effort that the LRT alternative. While the two-sample
LRT computes the lf three times, which folds several internal summations, the EBTs
require only the normalized squared difference between two stochastic entropies. Then the
EBTs can reduce the response time of SAR systems in comparison of the LRT option.

The aim of this chapter is to advance the techniques of SAR imagery analysis in
order to develop CR and ECR based procedures to test (2.20) from SAR point of view. To
accomplish this goal, some hypothesis tests based on likelihood ratio and entropy difference
principles are proposed and assessed. All hypothesis tests are based on the CR and ECR
models defined by (2.7) and (3.1) respectively. These combinations are not applied in
SAR imagery literature yet. We point the main characteristics of each ECR based tests
focusing on urban areas extraction. Simulation studies are done to access the nominal
level and power of the ECR based tests. In general, the nominal level is underestimated
for all tests and their powers are very close each other. An application was made in a San
Francisco SAR image and the ECR EBTs alternatives present best properties. identifying
urban patterns

This chapter unfolds as follows. Section 4.2 reveals some closed-form expressions
for the Shannon, Rényi, Tsallis and Arimoto entropy measures under the CR and ECR
models and discusses their relationships. The applied LRTs and EBTs are scrutinized in
Section 4.3. These tests performances are analyzed in Section 4.4 focusing on nominal level
and power. Section 4.5 contains an application of these methodologies in San Francisco
SAR image. Conclusions and future research fields are presented in Section 4.6.

4.2 ECR ENTROPY MEASURES

As pointed in Section 2.4 the q-integral is a key to define the q-entropies class.
Lemma 4.1 defined the ECR q-entropy in the parametric space θ = (β,λ)>. Proposition 4.1
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shows closed-form expressions for the ECR q-entropies settled in Proposition 2.1 obtained
simply applying Lemma 4.1.

Lemma 4.1 (The ECR q-integral). The ECR q-integral, as defined in (2.16), is given by
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where q > 1/2, q 6= 1 and if β < 1/2 then q < 1/(1−2β).

Proposition 4.1. The ECR Rényi, Tsallis and Arimoto q-entropies are
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where q > 1/2, q 6= 1 and if β < 1/2 then q < 1/(1−2β).

Figure 4.1 displays curves of the standard ECR q-entropies. One can observe the
next relation holds:

HR < HT < HA.

These plots also reveal that the deduced entropies respect, as expected, the property (2.17).
In later discussions, these quantities will be used like contrast measures and it is expected
those in terms of HA are more sensible to variations of the additional shape parameter.

The CR q-entropies can be deduced from Proposition 4.1 as shown in Corollary 4.1.1.
As expected these expressions are relatively simpler than corresponding ECR q-entropies.
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Figure 4.1: Standard ECR q-entropy curves.

Corollary 4.1.1. The CR Rényi, Tsallis and Arimoto q-entropies are
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where q > 1/2 and q 6= 1.

Lemma 4.2 presents a key result to obtain the q-entropies gradients relative to the
parametric vector θ.

Lemma 4.2. The ECR q-integral gradients relative to the parametric vector θ is

∇I(q,θ) =
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where q > 1/2, q 6= 1 and if β < 1/2 then q < 1/(1−2β) and

Υ(q,β) = βq
∫ 1

0

uq(β−1/2)−1/2 lnu

(2− u)(1−q)/2(1− u)2(1−q) du. (4.1)

Figure 4.2 presents the surface of the special function defined by (4.1). The gradients
of the ECR q-entropies can be obtained by means of the Proposition 2.2.

A particular case of the cross Shannon entropy (2.18) for the ECR model can be
seen in Proposition 4.2. Unfortunately, it was not so simple to obtain the most general
result assuming β1 6= β2 and λ1 6= λ2.

Proposition 4.2. Let fi be the pdf of the random variable Xi ∼ ECR(θi), where θi =
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(βi,λ)> for i = 1,2. The ECR cross Shannon entropy for X1 relative to X2 is

Hc
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The Shannon entropy in Corollary 4.2.1 can be obtained as a particular case of
the cross Shannon entropy in Proposition 4.2. It can also be obtained as a particular
case of the Rényi, Tsallis and Arimoto entropies as provided in Proposition 4.1 or using
Definition 2.1 supported by Table 2.3.

Corollary 4.2.1. The ECR Shannon entropy is
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Figure 4.3 shows when q = 3/4 the ECR entropies values increase as their parameters
increase. The CR Shannon entropy can be reckoned from Corollary 4.2.1 as shown in
Corollary 4.2.2 and the ECR Shannon entropy gradient are presented in Corollary 4.2.3.

Corollary 4.2.2. The CR Shannon entropy is HS(λ|β = 1) = log
(
λ
2

)
+ 3.

Corollary 4.2.3. The ECR Shannon entropy gradient are
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4.3 SOME TWO-SAMPLE HYPOTHESIS TESTS IN THE ECR MODEL

4.3.1 Likelihood ratio tests

Considering F in (2.19) as the class of ECR models, the LRT statistic (2.21) for
test (2.20) becomes

log Λ(x) =
2∑
i=1

[
ni log

(
β̂iλ̂i

β̂0λ̂0

)
+ 3T2(λ̂i,xi) + (β̂i − 1)T3(λ̂i,xi)

]
− 3T2(λ̂0,x)

− 3T2(λ̂0,x)− (β̂0 − 1)T3(λ̂0,x), (4.2)

where θ̂i = (β̂i,λ̂i) for i = 0, 1, 2. T2 and T3 are given, respectively, by Eqs. (3.11) and (3.12).
Given a nominal level α, the ECR LRT rejects H0 if

2 log Λ(x) > c2,1−α,

where c2,1−α is the 1− α quantile of χ2
2. In the CR LRT case the expression (4.2) reduces

to

log ΛCR(x) =
2∑
i=1

[
ni log

(
λ̂i

λ̂0

)
+ 3T2(λ̂i,xi)

]
− 3T2(λ̂0,x),

and the nominal level α CR LRT rejects H0 if

2 log ΛCR(x) > c1,1−α,

where c2,1−α is the 1− α quantile of χ2
2.

4.3.2 Entropy-based tests

Considering the notes in Section 2.5 the CR or ECR models the Shannon entropy
test (SET) can be implemented applying the Corollaries 4.2.1 and 4.2.3 in (2.24) while the
Rényi entropy test (RET), Tsallis entropy test (TET) and Arimoto entropy test (AET)
can be obtained using the Propositions 2.2 and 4.1. The ECR FIM are obtained from
Corollary 3.15.2.

The CR EBTs statistics are relatively simple to be deduced. Proposition 4.3 shows
these statistics. The CR SET and CR RET statistics are equivalent, then the order
parameter q has influence only in CR TET and CR AET. Another interesting property
of the CR EBTs statistics is that they not contain the gamma function instead of theirs
corresponding entropies in Corollary 4.1.1. Explicit expressions for the ECR EBTs statistics
are relatively complex and can be obtained by author contact.
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Proposition 4.3. The CR EBTs statistics are
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In what follows, we present some essays on which the performance of tests is both
computed and compared. Before, we anticipate some comparisons made in theoretical
terms:

1. LRT is more simple of being implemented because do not depend of integrations,
often hard. But, when analytically tractable, EBTs depend on data only through
MLEs, while LRT also consider the productions of densities;

2. In practical sense, entropies often bring behaviors associated with phenomenon, while
parameters reveal the same by a more confuse path.

4.4 NUMERICAL RESULTS

In this section, we assess the proposed tests performances by means of two simulation
studies under finite samples. The computations were done using the platform described in
Section 1.2. In the following studies consider the sets

N = {25,121,289},

L = {0.01,0.05,0.10}

and

T = {LRT, SET,RET,TET,AET}.

When required the entropy order parameter q was arbitrated as 3/4 and all the CR and
ECR estimates were obtained by means of the MLEs as described in Section 3.5.1.

4.4.1 Nominal level study

The first study was focused on obtaining numerically the test sizes or the probability
of type I error. Let the set

P1 = {0.15,0.3, . . . ,3}



91

and

S1 = N× L× T×P1.

For each element (n,α,t,β) ∈ S1 it was used the ITSM, as presented in Section 3.2, to
generate 10,000 pairs of standard ECR random samples with size n and shape parameter
β. It was applied the two-samples ECR based test t with nominal level α to compare these
samples and finally was associated to each element of S1 its correspondent rejection rate
computed under all 10,000 tests made.

Figure 4.4 shows a lattice plot of the computed values, we can see that the size of
the tests converge, as expected, to the nominal level as the sample size increases. The
tests tend to underestimate their sizes for smaller samples and grater values of β.

Tables B.8 and B.9 summarize the minimum and maximum distance between the
computed sizes and their corresponding nominal levels. Table B.2 shows the number of
times each test are ranked in these tables. Jointly LRT and SET appears 133 times in
Table B.8 while LRT and AET, jointly, appears 140 times in Table B.9. RET and TET
have the smallest number of times the extreme values in Figure 4.4.

4.4.2 Power study

The second study was formulated to compute the power of the tests. Define

P2 = {0.1,0.2, . . . ,2}

and

S2 = N× L× T×P2.

For each element (n,α,t,θ) ∈ S2 it was used the ITSM to generate a ordered set A1 of 10,000
ECR random samples with size n and both parameters equal to θ and a second ordered
set A2 of 10,000 ECR random samples with size n and unit parameters. It was applied the
two-samples ECR based test t with nominal level α to compare the corresponding samples
in A1 and A2 and finally was associated to each element of S2 its correspondent rejection
rate computed under all 10,000 tests made.

Note that the all the samples are generated under the line β = λ inside the
parametric space then, as depicted in Figure 4.3, under this path all entropies are increasing
functions of θ, the tests (2.20) and (2.25) are equivalent and therefore LRT and the EBTs
are comparable.

Figure 4.5 shows the estimated power curves of the tests. As expected the power of
the tests increase as the sample size increases.

Tables B.10 and B.11 summarize the maximum and minimum powers of the tests
in function of the θ. Table B.2 shows the number of times each test are ranked in these
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Figure 4.6: SAR intensities maps of the San Francisco image clipped at the 95th percentile grouped by
channels in C(H,V ).

tables. The LRT typically reaches the highest powers and the SET and AET present the
slowest ones.

4.5 EXPERIMENTAL RESULTS

In this section, we investigate the performance of the proposed scattering mechanism
identification scheme on real SAR data. Three studies are made to analyze data GoF,
urban texture identification and redundancy information between polarization channels.
As in Section 4.4, the entropy order parameter q was arbitrated as 3/4 when required. In
all of the following studies the CR and ECR estimates are obtained by means of the MLE
as described in Section 3.5.1.

4.5.1 The San Francisco image

We used a PolSAR image of San Francisco bay acquired in April 9, 2008 by
RADARSAT-2 system at C-band with dimensions of 150× 150 pixels. This image was
studied by Yang et al. (2013) and Azmedroub et al. (2016) using PolSAR techniques.

Figures 4.6 and 4.7 show, respectively, the collected SAR signal intensities maps
and histograms for its three polarization channels. The intensity histograms suggest the
employ of a heavy-tailed model to describe the San Francisco textures. In order to get a
better view the maps in Figure 4.6 were clipped at the 95th intensity percentile. Figure 4.8
shows its corresponding optical image.

There are three distinct regions in this image: sea, urban and forest. We did not
have access to the real nature of all pixels in this image, but it is possible to sampling
sea, urban or forest zones using Figure 4.8(a) as an optical reference. Figure 4.8(b)
presents a manual segmentation of the San Francisco image using this approach, which
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Figure 4.7: SAR intensities histograms of the San Francisco image grouped by channels in C(H,V ).

(a) Optical image obtained from Google earth©.
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Figure 4.8: Additional San Francisco images corresponding to SAR maps in Figure 4.6.

adds an additional messy texture including all pixels not classifiable by comparison with
Figure 4.8(a). The number of pixels in each samples can be verified in Table 4.1. Clearly
the urban texture compose the largest region in this figure presenting, in general, higher
intensities as disposed on Figure 4.6.

4.5.2 Goodness-of-fit study

Let the following set of windows associated to the San Francisco image in Sec-
tion 4.5.1:

W5×5 = {W(i,j) : (i,j) ∈ I2}, (4.3)
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Table 4.1: Number of pixels by main textures for the samples depicted in Figure 4.8(b).

texture forest sea messy urban

number of pixels 1990 4743 7638 8129

where W(i,j), defined by

W(i,j) =
{

(i∗,j∗) ∈ I2,max (|i− i∗|,|j − j∗|) ≤ 2
}
,

is the 5×5 window centered at the pixel of coordinates (i,j) and I = {1, . . . ,150}. Following
the recommendations given by Frery et al. (2004) and Rodrigues et al. (2016) we consider
the set W5×5 which slices the whole San Francisco image in 150×150 overlapping windows.
Frery et al. (2004) argues that larger the windows size, the smoother the analysis, which
implies that most sites corresponded to heterogeneous or extremely heterogeneous spots.
Smaller windows size have more heterogeneous areas.

Regard the sets

M = {CR ,ECR} (4.4)

and

S3 = W5×5 × C(H,V ) ×M.

For each element (W(i,j),c,P ) ∈ S3 it was found the probability model P ML estimates
for intensities in the window W(i,j) and SAR polarization channel c at the San Francisco
image. The AD test was applied to obtained estimates in order to check the probability
model P GoF.

The AD test places more weight on observations in the tails of the distribution
when compared to its KS and CvM alternatives (YAP; SIM, 2011). Then it is adequate
compare GoF of heavy-tailed distributions like the CR and ECR models as proved in
Proposition 3.3.

Figure 4.9 illustrates the obtained AD tests p-values and evinces that the greatest
ones, for both models, are concentrated inside urban area, which indicates the use of these
models to describe textures of urban SAR data.

The ECR model presents a relatively small number of windows where the ML
estimates do not exist, but this is expected due to what was observed in Section 3.6.3.
This problem does not occurs in the CR model.

Figure 4.10 depicts the p-values histograms of the applied GoF test considering now
only windows inside the urban region. The histograms modes are closed to the maximum
capitally in HH and VV polarization channels and for greater p-values the ECR histograms
present higher frequencies than the CR ones. Greater AD p-values correspond to smaller
values of the AD statistic and better GoF measures.
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Figure 4.10: AD p-value histograms based on the set of models M of all urban SAR intensity samples
corresponding to the windows in W5×5 grouped by the set of channels C(H,V ) and the same set of models.

Table 4.2: Percentages of urban SAR intensity samples corresponding to the windows in W5×5 rejected
by AD GoF test as drawn of the models in M grouped by the set of significance levels L and the same set
of models.

level CR ECR

1% 0.39% 0.03%
5% 1.39% 0.91%
10% 3.85% 3.30%

Finally Table 4.2 presents the proportions of urban windows that are rejected by
AD GoF test as drawn from the ECR or CR pdf considering the main nominal levels.
These rejection rates are smaller in the ECR law, therefore this CR extension presents
advantage over its baseline.

4.5.3 Texture identification study

In this second study we verified how able the CR and ECR based LRT and EBTs
to test if two SAR samples, obtained of the same polarization channel, provide or not of
urban areas.

Consider the set
S4 = C(H,V ) ×N×M× L× T.
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For each element (c,n,P,α,t) ∈ S4 it was collected 10,000 pairs of intensity samples
with size n in the channel c inside the urban region of the San Francisco SAR image, as
detached in Figure 4.8. For each element of S4 the seed to random collect the pairs of
samples was set to n. After this initial step it was applied the two-sample test t based on
the probability model P with nominal level α to each of these sample pairs. Finally the
rejection rate associate to each element of S4 are computed.

Tables B.1, B.3 and B.4 tabulate the obtained mean rejection rates. The CR LRTs
present higher rejection rates than their corresponding ECR LRTs in all polarization
channels. The EBTs assume opposite behavior achieving superior rejection rates in ECR
based tests. These facts provides empirical evidence that the additional ECR shape
parameter β improves only the EBTs.

The rejection rates are below their corresponding nominal levels and appears does
not reach them as window size increases, but it is important to note that larger windows
sizes are not recommended in signal processing literature (FRERY et al., 2004), furthermore
this behavior is expected due to Figure 4.4.

The VV polarization channel presents the rejection rates closer to the corresponding
nominal levels. Finally the ratio between the rejection rates corresponding to the nominal
level 10% and the expected value of 10% are the lowest when compared to other nominal
levels.

4.5.4 Information redundancy study

In this second study we verified the capacity of the LRT and the EBTs to detect if
two SAR textures provides or not of urban areas from the points of view of two different
channels.

Regard the set

S5 = P2

(
C(H,V )

)
×N×M× L× T,

where P2(A) is the set of all subsets of A with cardinality 2.
For each element ((c1,c2),n,P,α,t) ∈ S5 it was generated ordered sets A1 and A2 of

10,000 collected intensity samples of size n in the channels c1 and c2, respectively, inside
the urban zone of the San Francisco SAR image. The seed used to generate each of these
ordered sets was specified as n. After this initial phase it was applied the two-sample test
t based on the probability model P with nominal level α to the corresponding samples in
the ordered sets A1 and A2. Finally the rejection rate associate to each element of S5 are
computed.

Tables B.5 to B.7 tabulate the obtained mean rejection rates. When comparing
channels HH and VV its notable that the rejection rates are null for all sample sizes and
the CR based tests and practically null for the ECR ones. This indicates that HH and VV
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polarization channels presents the same texture information.
The highest rejection rates are achieved when comparing HH or VV polarization

channels with HV one, particularly when sample sizes are 121 and 289 the rejection rates
reaches 100% for these comparisons, therefore the HV polarization channel presents some
kind of texture information which is not present in HH or VV ones.

4.6 CONCLUDING REMARKS

This paper has proposed new strategies to quantify differences in synthetic aperture
radar (SAR) urban patterns by means of its intensities. The differences was detected by
means of the hypotheses tests. It was considered two classes of hypotheses tests: likelihood
ratio tests (LRTs) and entropy-based tests (EBTs). To support the main objective it was
deduced closed-form expressions for the exponentiated Cauchy-Rayleigh (ECR) Shannon,
Rényi, Tsallis and Arimoto entropies. The corresponding Cauchy-Rayleigh (CR) entropies
can be obtained from these previous expressions. The regarded ECR based tests, generally,
underestimated the corresponding nominal level for small sample sizes, but as long as
the sample size increases the corresponding nominal level are achieved as expected. The
power of all test has behaved similarly in the simulated samples, but this behavior is not
expected in all scenarios because the LRTs are focused on the distributions homogeneity
while EBTs on the entropies equality. The ECR model presented slightly smaller goodness-
of-fit measures than CR one in all polarization channels of urban areas of the studied
San Francisco SAR image. The texture identification study for the San Francisco urban
patterns showed that the CR LRTs and the ECR EBTs have rejection rates closer to
the expected nominal level. The final study attested that all tests are able to detect the
known information redundancy between the channels HH and VV, but the CR LRTs and
the ECR EBTs present the highest rejection rates when applied to detect information
redundancy between the channels pairs HH-HV and HV-VV. Many further analyses are
needed in future works to discriminate between the different types of urban areas using
SAR imagery. A natural sequence of this work is the use of ECR constrained maximum
likelihood estimators (MLEs) which can overcome the non-existence of maximum likelihood
estimates as reported in Section 4.5.2. The constrained MLEs also can make feasible the
use of the CS-MLEs as defined in Section 3.5.5.
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5 IMAGE SEGMENTATION USING CR AND ECR ENTROPY-

BASED MODELS

5.1 INTRODUCTION

Recently, texture surfaces motivated many segmentation studies and algorithms
like Jain and Farrokhnia (1990), Oakley and Hancock (1994), Randen and Husoy (1999),
Hsin (2000), Huan and Hou (2008), Zhang et al. (2008), Karoui et al. (2010), Jyothirmayi
et al. (2015), Kumar et al. (2016) and Akbulut et al. (2018). The employment of some
entropy measures on texture segmentation has been made with success, some of the last
studies are Nobre et al. (2016), Naidu et al. (2017), Abdel-Khalek et al. (2017), Yin et al.
(2017), Nguyen et al. (2018), Pham et al. (2018), Wang et al. (2018), Wu et al. (2018)
and Wang et al. (2018).

Understanding texture as quantitative measure of the arrangement of intensities
(not merely its distribution) in a image (SHAPIRO; STOCKMAN, 2001, p. 237), we can
define feature vectors to summary the texture of each image cropping. Thus, a crucial step
in a segmentation methodology is the extraction of these feature vectors. Some techniques
commonly used in feature vector extraction are principal component analysis (PCA)
(HOTELLING, 1936), singular value decomposition (SVD) (GOLUB; KAHAN, 1965),
latent semantic analysis (LSA) (DEERWESTER et al., 1990), partial least squares (PLS)
regression (LINDGREN et al., 1993), independent component analysis (ICA) (COMON,
1994), Kernel PCA (SCHÖLKOPF et al., 1998), Isomap (TENENBAUM et al., 2000),
multi-linear PCA (LATHAUWER et al., 2000) and multifactor dimensionality reduction
(MDR) (RITCHIE et al., 2001). In this chapter, it is suggested that to use the classes of
the CR and ECR information theory measures may consist in good strategy to segment
SAR imagery. The employed methods adopt the CR and ECR entropies, as defined in
Chapter 4, as feature vectors to model SAR imagery textures. We can not find any research
using CR or ECR entropies as feature vectors to describe SAR imagery textures.

In this chapter, it is compared the CR and ECR entropies as basis to obtaining
feature vectors for SAR image segmentation algorithms. First, the k-means algorithm is
used as a benchmark comparing to the proposed FM based algorithms. It is proposed
the CR and ECR versions for FM-based algorithms, assuming CR and ECR distributed
intensities inside considered windows. It is associated to each SAR image pixel the
parametric intensities entropy of the windows centered in the corresponding pixel regarding
the desired probability model and (h,φ)-entropy. In terms of methodology each pixel of
SAR image is associated with the parametric entropy. Let the following set

Hq = {HR,HT ,HA} × {0.55, . . . ,0.95}.



102

Each element (Hq,q) ∈ Hq personifies the Hq entropy as given in Proposition 2.1
with order parameter arbitrated to q. Finally, one defines the set H by adding the Shannon
entropy to the set Hq

H = {HS} ∪ Hq. (5.1)

Regarding a model P ∈ M, as defined in (4.4), and an (h,φ)-entropy H ∈ H

the studied techniques will be named (P,H)-segmentation based on mixture of stochastic
entropy distributions (SMED).

This chapter is organized as follows. Section 5.2 details the procedure to obtain
the class of feature vectors associated to each pixel of the studied image, while Section 5.3
presents the theoretical structure of the used mixture model. The initialization of model
parameters and the used algorithm is also show. The GoF and ISP measures are com-
puted and analyzed in Section 5.4, displaying useful figures and tables. Conclusions and
forthcoming investigations are presented in Section 5.5.

5.2 FEATURE VECTORS EXTRACTION

In the following, notes, it is considered the same San Francisco image displayed
in Section 4.5.1. To obtain feature vector, consider the sets of entropy channels C(H,V ),
windows W5×5 and probability models M as defined, respectively, in (2.26), (4.3) and
(4.4).

For element (Wj,P,H) ∈W5×5×M×H, it was found the ML estimates, regarding
the probability model P , for the Wj associated intensities and each SAR polarization
channel in C(H,V ). The values of the entropy H, for each polarization channel in C(H,V ),
are computed using these ML estimates. An assumption which is inherent in this last
step is that the window intensities follow the current probability model P . These entropy
values define the vector

x
(P,H)
j = (xj1,xj2,xj3)> (5.2)

=
(
H(θ̂HH),H(θ̂HV ),H(θ̂V V )

)>
(5.3)

which is the feature vector associated to the jth pixel regarding the entropy H under the
probability model P . Clearly, by Definition 2.1 and Table 2.3, x(P,H)

j ∈ R3. From now,
the entropy channels in C(H,V ) will be indexed as elicited by (5.2) and (5.3). Due to the
actual extraction of the feature vectors, it is expected a presence of spacial correlation
structure among the values of x(P,H)

j .
Unfortunately, as pointed in Section 3.6.3, some intensity samples were not ML

estimable under CR and ECR models. To overcome this trouble it is employed constrained
estimation. The ML estimates were obtained using Corollary 3.11.1 assuming Θβ = R+

and Θλ as the range of λ estimates.
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Figure 5.1: Segmentation obtained applying k-means directly on channel intensities.

It is possible to apply the k-means directly on polarization channel intensities
regarding the feature vector

xj = (xj1,xj2,xj3)>,

where xjc is the intensity of the jth pixel in cth channel, according indexes induced by (5.2)
and (5.3). This method results in a problematic segmentation as illustrated in Figure 5.1.
The high variability of the SAR intensities may be understood as one of the reasons for
this poor performance.

5.3 THE APPLIED SMED MODELS

Pardo et al. (1997) obtained the asymptotic distribution of Hφ
h(θ̂) where θ̂ is a

consistent asymptotically normal estimator of the parameter θ obtained from a random
sample of size n. This result can be expressed as

√
n
[
Hφ
h(θ̂)−Hφ

h(θ)
]

d−→
n→∞
N
(
0,σ2(θ)

)
, (5.4)

provided σ2(θ) = T>K−1T > 0 with T is the entropy gradient and K−1 is the inverse
FIM given, respectively, by (2.23) and Corollary 3.15.2.

Let the three-dimensional random vector X(P,H)
j , which realizes a feature vector

like (5.3). The applied model assumes that

• Supported by (5.4), the random vector X(P,H)
j follows a distribution in the three-
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variate normal class;

• The joint pdf of the feature vector associated with each individual texture, model
P and entropy H is given by (2.36) following a g-component three-variate normal
mixture distribution model.

These assumptions associate each pair (P,H) ∈ M × H with its corresponding
g-component mixture of stochastic entropy densities model, whose associated entropy H
was defined using the model P ML estimates. The estimation process can be supported by
the classical g-component normal mixtures as described by Hasselblad (1966), Day (1969),
Behboodian (1970), Johns (1970) and Redner and Walker (1984).

A serious estimation problem arises from these assumptions: there are p(p+1)/2 free
parameters for each component covariance matrix Σi in (2.36). Celeux and Govaert (1995)
introduced parsimony into the normal FM covariance matrices by means of decompositions
in the form Σi = αiDiAiD

>
i , where Di is the matrix of eigenvectors, Ai is a diagonal

matrix with entries proportional to the eigenvalues, and αi is the associated constant of
proportionality (BANFIELD; RAFTERY, 1993). The resulting models are known as the
normal parsimonious clustering (NPC) models; this family members have between one and
gp(p+1)/2 free covariance parameters (BROWNE; MCNICHOLAS, 2014). As commented
formerly, the entire NPC family was fitted and the models which optimize the ISP measures
assumes a diagonal covariance matrix.

In the modeling of feature vectors obtained in Section 5.2 it is assumed the diagonal
structure for the covariance-matrix motivated by the performance evaluation done in
Section 5.4.

Σi =

σ
2
i1 0 0

0 σ2
i2 0

0 0 σ2
i3

 . (5.5)

where σ2
ic is the variance associated to the intensity entropies in ith segment for cth

polarization entropy channel according indexes induced by (5.2) and (5.3). This diagonal
structure optimizes the ISP measures for all (P,H)-SMED models when compared to other
NPC class elements. Evidences will be present at final.

Let (Wj,P,H) ∈ W5×5 ×M × H, thus, the studied g-component (P,H)-SMED
model for the ith segment (i = 1, . . . ,g) has pdf

φ
(
x

(P,H)
j ;µi,Σi

)
≈ 1

(2π)3/2

(
3∏
c=1

σ2
ic

)−1/2 3∑
c=1

(
xjc − µic
σic

)2

,

where

µi = (µi1,µi2,µi3)
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and

x
(P,H)
j = (xj1,xj2,xj3).

As pointed in (5.4), for c = 1, 2, 3

√
n (Xjc − µjc)

d−→
n→∞
N
(
0,σ2

jc

)
⇔
√
n


xj1xj2

xj3

−
µi1µi2
µi3


 d−→

n→∞
N 3


0

0

0

 ,
σ

2
i1 0 0

0 σ2
i2 0

0 0 σ2
i3


 ,

σ2
jc = T>K−1T,

T = ∇Hφ
h(θ) =

(
∂Hφ

h(θ)

∂β
,
∂Hφ

h(θ)

∂λ

)>
,

where µjc is the expected value of the intensity stochastic entropy H regarding the
probability model P in the cth polarization channel according indexes induced by (5.2)
and (5.3) on window Wj. The inverse FIM K−1 can be obtained from Corollary 3.15.2.

5.3.1 Initialization of model parameters

The efficiency of the EM algorithm in estimating the parameters is strongly influ-
enced by the initial estimates of the model parameters. It was used the Hartigan and
Wong (1979) version of the k-means algorithm as an initialization technique for the EM
algorithm as implemented in R (2018). This specification of an initial parameter value is
suggested by McLachlan and Peel (2000, p. 54). The employed implementation of the EM
algorithm is due to Grün and Leisch (2008). The k-means is also used as a benchmark for
the SMED methods.

5.3.2 SMED algorithm

The entries for the (P,H)-SMED procedures are:

Entry 1 A SAR intensities map for each polarization channel in the set C(H,V ) as defined
in (2.26);

Entry 2 The number of segments to be found on the image in the previous entry;

Entry 3 An (h,φ)-entropy in the set H as defined in (5.1);

Entry 4 A probability model in the set M as defined in (4.4).

The (P,H)-SMED algorithm has the following steps:

Step 1 Obtain the feature vectors by means of the procedure described in Section 5.2
considering the previous entries;
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Step 2 Obtain the initial estimates of the model parameters using the classical k-means
algorithm as described in Section 5.3.1;

Step 3 Obtain the refined ML estimates π̂i, µ̂i and σ̂2
i of the corresponding model param-

eters πi, µi and σ2
i for i = 1, . . . ,g by means of the EM algorithm as described in

Section 2.8 and the recursive formulas (2.35), (2.37) and (2.38);

Step 4 Assign the jth pixel into the ith region (segment) which corresponding (P,H)-SMED
component lf, Lj(θ̂i), is maximized

Lj(θ̂i) = φ
(
x

(P,H)
j ; µ̂i,Σ̂i

)
.

Considering the probability models in M and the entropies in the set H this algorithm
incorporates eight segmentation methods named: 1. (CR ,HS)-SMED; 2. (CR ,HR)-SMED;
3. (CR ,HT )-SMED; 4. (CR ,HA)-SMED; 5. (ECR ,HS)-SMED; 6. (ECR ,HR)-SMED;
7. (ECR ,HT )-SMED; 8. (ECR ,HA)-SMED. This nomenclature make explicit the prob-
ability model P and entropy H which support the corresponding configuration of the
(P,H)-SMED algorithm. We will refer as (CR)-SMED and (ECR)-SMED to the SMEDs
algorithms based on the CR and ECR model, respectively.

5.4 PERFORMANCE EVALUATION AND COMPARATIVE STUDY

To demonstrate the ability of the suggested models, texture segmentation is to be
performed by using the same San Francisco SAR image described in Section 4.5. Some
entropy vectors (feature vectors) obtained using the previously described procedure in
Section 5.2 was depicted in Figures 5.2 and 5.3 considering disconnectedly the SAR
polarization channels. These figures consider the Rényi entropy with q = 0.55, the Tsallis
and Arimoto entropies with q = 0.95 and the Shannon entropy. The computations were
done using the platform described in Section 1.2.

The visual aspect of the entropy intensities is depicted in Figure 5.2 and corroborates
the existence of three textures as pointed in Figure 4.8 on Section 4.5.1. In general, the
smallest entropies occur on sea zones while the greatest appear in urban regions. Note that
this numerical aspect is aligned with the physical formation of SAR image. The energy
returned by the under study region (when it is illuminated) is smaller in homogeneous
targets (as ocean region) and larger in heterogeneous target (as urban and forest regions).

Figure 5.3 presents the corresponding intensity histograms of the entropy maps in
Figure 5.2. The three modes in channel HH of the feature data suggest the possibility that
the data have been drawn from a FM distribution with at least three components. HV and
VV channels present two modes each and then, considering all polarization channels, the
number of components can vary between three and twelve. However, the multi-modality
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Figure 5.2: ECR entropy maps assuming q = 0.55 for Rényi and q = 0.95 for Tsallis and Arimoto.
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Table 5.1: k-means based on the feature vectors centroids for q-optimized in H (k = 3).

model Shannon Rényi (q = 0.55) Tsallis (q = 0.95) Arimoto (q = 0.95)

µ>1 CR −(1.230,2.110,1.308) (1.687,0.804,1.610) −(1.078,1.880,1.150) −(1.076,1.870,1.147)
µ>2 CR −(0.083,1.360,0.193) (2.840,1.551,2.719) −(0.036,1.220,0.078) −(0.037,1.220,0.078)
µ>3 CR −(2.790,5.010,1.999) (0.136,− 2.081,0.927) −(2.507,4.340,1.817) −(2.497,4.310,1.813)
µ>1 ECR −(1.227,2.090,1.296) (1.631,0.770,1.561) −(1.083,1.870,1.148) −(1.079,1.860,1.140)
µ>2 ECR −(0.102,1.370,0.217) (2.756,1.480,2.641) −(0.006,1.240,0.111) −(0.008,1.240,0.110)
µ>3 ECR −(2.782,4.720,2.018) (0.076,− 1.870,0.839) −(2.505,4.120,1.839) −(2.495,4.100,1.830)

labels: 1=forest, 2=urban and 3=sea

Table 5.2: k-means based on feature vectors ISP measures for q optimized by corresponding (ECR ,H)-
SMED models under CR and ECR laws (k = 3).

entropy q model MCR GCE LCE VOI ARI

Shannon - CR 0.0690 0.0565 0.0225 0.4127 0.8287
Rényi 0.55 CR 0.0690 0.0565 0.0225 0.4127 0.8287
Tsallis 0.95 CR 0.0744 0.0590 0.0205 0.4291 0.8173

Arimoto 0.95 CR 0.0753 0.0597 0.0207 0.4328 0.8154
Shannon - ECR 0.0694 0.0553 0.0204 0.4057 0.8261

Rényi 0.55 ECR 0.0662 0.0533 0.0200 0.3940 0.8331
Tsallis 0.95 ECR 0.0771 0.0590 0.0187 0.4315 0.8097

Arimoto 0.95 ECR 0.0772 0.0591 0.0186 0.4319 0.8095

in histograms of the data does not always imply that the data are drawn from a FM
distribution.

Considering the Figures 4.8, 5.2 and 5.3 and previous notes it was assumed g = 3

in the following segmentations. Table 5.1 presents the centroids for the k-means algorithm
assuming k = 3 regarding the CR and ECR models. These centroids are used as EM
initial values for the corresponding FM models as declared previously.

The measures discussed in Section 2.9 were employed to evaluate the clustering
solutions. Table 5.2 summarizes the k-means ISP measures for (P,H)-SMED models,
which minimizes the MCR assuming three clusters. In general, a (P,H)-SMED model
which minimizes the MCR also presents optimum values for all ISP measures. The lowest
MCR value was achieved by the ECR Rényi entropy with q = 0.55, which also achieves
the minors GCE and VOI values and greater ARI value. It is interesting to note that the
higher GCE values are associated to lower LCE ones.

The estimates of the q-optimized (P,H)-SMED models can be checked in Table 5.3.
The mean vectors of the SMED models based on the Shannon, Tsallis and Arimoto
entropies are closer of each other than the correspondent Rényi entropy. This is expected
because Tsallis and Arimoto entropies converges to Shannon when q goes to one as pointed
in (2.17). The variance vectors of the Rényi-based mixture are, surprisingly, closer to
Shannon-based mixture than Tsallis and Arimoto ones.

Figure 5.4 shows the segmented textures for the San Francisco image using k-means
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Table 5.3: q-optimized parameter estimates of the (ECR ,H)-SMED models (g = 3).

Ψ Shannon Rényi (q = 0.55) Tsallis (q = 0.95) Arimoto (q = 0.95)

π1 0.273 0.276 0.273 0.273
π2 0.469 0.465 0.476 0.476
π3 0.258 0.259 0.251 0.251
µ>1 −(1.343,2.288,1.433) (1.584,0.651,1.498) −(1.231,2.116,1.315) −(1.230,2.112,1.313)
µ>2 −(0.188,1.409,0.288) (2.744,1.505,2.632) −(0.099,1.276,0.199) −(0.099,1.274,0.199)
µ>3 −(2.845,5.064,2.007) (0.091,− 2.126,0.920) −(2.588,4.417,1.827) −(2.579,4.390,1.822)
σ>1 (0.124,0.458,0.128) (0.127,0.429,0.129) (0.110,0.402,0.112) (0.110,0.399,0.111)
σ>2 (0.276,0.137,0.213) (0.264,0.136,0.202) (0.284,0.122,0.216) (0.284,0.121,0.216)
σ>3 (0.225,0.206,0.053) (0.227,0.210,0.054) (0.158,0.112,0.043) (0.155,0.109,0.043)

labels: 1=forest, 2=urban and 3=sea

and (P,H)-SMED models. The implementations of the EM algorithm due to Grün and
Leisch (2008) and Scrucca et al. (2016) obtained only two segments for all CR entropy
measures, even after it was tried several initialization methods, thus, it was omitted
in Figures 5.2 and 5.4 the plots relative to the CR model. This fact is an empirical
evidence that the additional shape parameter β of the ECR model is imperative to make
the entropy-based segmentation works using the EM algorithm. The k-means clusters
present a large number of misclassified sea and forest zones, respectively, inside forest and
urban regions than the corresponding FM-based segmentation models. On the other hand
models of FM-based segmentations misclassify more forest zones inside sea regions than
corresponding k-means clusters.

We used the AIC (AKAIKE, 1974), BIC (SCHWARZ, 1978; FRALEY; RAFTERY,
1998) and integrated completed likelihood (ICL) (BIERNACKI et al., 2000) as model
selection methods. Biernacki et al. (2000) showed that ICL appears to be more robust
than AIC and BIC to violation of some of the mixture model assumptions and it can select
a number of clusters leading to a sensible partitioning of the data. The ICL interpretation
is analogous of AIC and BIC one as described in Section 3.7.

Table 5.4 condenses GoF and ISP measures for the (ECR ,H)-SMED. The smaller
GoF measure values for Rényi-based FM segmentations are obtained when q = 0.55.
Tables 5.2 and 5.4 reveal that this same Rényi-based segmentation model also achieves
the smallest MCR, GCE and VOI and greatest ARI values among all regarded (ECR ,H)-
SMED algorithms. For ECR-SMED under Tsallis and Arimoto entropies, the smallest
GoF measures are obtained when q = 0.75, while the optimum ISP measures are obtained
in higher q values. On comparing the ISP measures of k-means and (ECR ,H)-SMED
models in Tables 5.2 and 5.4, it becomes clear that (ECR ,H)-SMED performance beats
k-means one.

The assumption of the diagonal structure for the covariance-matrix Σi in (5.5) was
motivated by the fact that the ISP measures for the San Francisco image achieve values
closer of the optimum using this structure for all (ECR ,H)-SMED methods than with any
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Table 5.4: GoF and ISP measures of the textured image based on (ECR ,H)-SMED models regarding
ECR entropies for various q values (g = 3).

entropy q AIC BIC ICL MCR GCE LCE VOI ARI

Shannon - 119412 119572 121472 0.0388 0.0382 0.0341 0.2845 0.8981
0.55 118568 118729 120596 0.0378 0.0372 0.0326 0.2805 0.9006
0.60 118721 118882 120753 0.0379 0.0373 0.0329 0.2808 0.9004
0.65 118861 119022 120897 0.0379 0.0373 0.0329 0.2801 0.9005
0.70 118986 119147 121026 0.0379 0.0374 0.0336 0.2805 0.9004

Rényi 0.75 119095 119256 121138 0.0380 0.0375 0.0336 0.2812 0.9000
0.80 119188 119349 121235 0.0383 0.0378 0.0337 0.2826 0.8993
0.85 119266 119427 121316 0.0383 0.0378 0.0338 0.2826 0.8994
0.90 119329 119489 121383 0.0384 0.0379 0.0342 0.2825 0.8991
0.95 119377 119538 121434 0.0386 0.0381 0.0343 0.2839 0.8985
0.55 206236 206396 208310 0.0421 0.0401 0.0308 0.3194 0.8933
0.60 138895 139055 140986 0.0413 0.0398 0.0323 0.3148 0.8949
0.65 109876 110036 111980 0.0410 0.0398 0.0340 0.3125 0.8957
0.70 96350 96510 98465 0.0408 0.0399 0.0357 0.3101 0.8959

Tsallis 0.75 91211 91372 93329 0.0394 0.0389 0.0353 0.3002 0.8989
0.80 91322 91483 93439 0.0393 0.0390 0.0356 0.2987 0.8989
0.85 95022 95183 97144 0.0391 0.0389 0.0357 0.2965 0.8992
0.90 101329 101489 103457 0.0388 0.0382 0.0360 0.2894 0.9003
0.95 109606 109766 111720 0.0384 0.0385 0.0365 0.2888 0.8986
0.55 285565 285726 287503 0.0684 0.0518 0.0158 0.4146 0.8274
0.60 156778 156938 158799 0.0521 0.0449 0.0220 0.3627 0.8675
0.65 107505 107666 109570 0.0453 0.0418 0.0276 0.3351 0.8850
0.70 87943 88104 90034 0.0421 0.0402 0.0310 0.3190 0.8928

Arimoto 0.75 82542 82702 84659 0.0407 0.0396 0.0338 0.3105 0.8962
0.80 84621 84781 86742 0.0398 0.0392 0.0357 0.3024 0.8978
0.85 90835 90995 92955 0.0392 0.0390 0.0356 0.2980 0.8990
0.90 99350 99510 101477 0.0387 0.0385 0.0361 0.2913 0.8997
0.95 109093 109254 111209 0.0386 0.0383 0.0365 0.2877 0.8991



113

other structure in the NPC class.

5.5 CONCLUDING REMARKS

This final chapter has been dedicated to the Cauchy-Rayleigh (CR) and expo-
nentiated Cauchy-Rayleigh (ECR) entropy-based segmentation techniques called (P,H)-
segmentation based on mixture of stochastic entropy distributions (SMED) methods. Gen-
erally, evidences have indicated that San Francisco synthetic aperture radar (SAR) imagery
segmentation by using channel intensities as input did not present satisfactory results,
thus, more sophisticated methodologies have been required. These reasons make plausible
to model the entropies associated to each SAR imagery pixel using the FM of multivariate
normal densities structures. The feature vectors required by the (P,H)-SMED method can
be also used by the standard k-means algorithm, thus, it was used as an image segmentation
performance (ISP) measures reference. The (ECR ,H)-SMEDs ISP measures indicated best
segmentations when compared to its corresponding k-means ones. It was not possible to fit
any (CR ,H)-SMEDs assuming three segments, which provides empirical evidence that the
ECR additional shape parameter β is imperative to make the (ECR ,H)-SMEDs method
works. The order parameter of q-entropies influenced in the segmentation performances,
the optimum ISP measure values were, in general, obtained assuming the Rényi with
q = 0.55 in the (ECR ,H)-SMED model. The order parameter of q-entropies presented
optimum GoF measures when q = 0.95 for Tsallis and Arimoto entropies and q = 0.55 for
the Rényi entropy.
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6 CONCLUSION

We deepened a discussion about an extended Cauchy-Rayleigh (CR) distribu-
tion, particular case of some known models like heavy-tailed Rayleigh (NIKIAS; SHAO,
1995), generalized Feller-Pareto (ZANDONATTI, 2001), exponentiated Burr type-XII (AL-
HUSSAINI; AHSANULLAH, 2015), Kumaraswamy Burr type-XII (PARANAÍBA, 2012)
and McDonald Burr type-XII (GOMES et al., 2015). We refereed to it as exponentiated
Cauchy-Rayleigh (ECR) distribution. Some of its mathematical properties was derived
and discussed: Closed-form expressions for its moments and Shannon, Rényi, Tsallis and
Arimoto entropies was found. The ECR model obeyed the property of regularly varying
at infinity and can take decreasing, decreasing-increasing-decreasing and upside-down
bathtub-shape hazard rate functions, confirming its usefulness to describe lifetime data. We
provided procedures to estimate the ECR parameters through original and bias-corrected
maximum likelihood estimators (MLEs) and a percentile-based method. An important
characteristic of this new model was that the mode, median, moments, Fisher information
components, its inverse components and the second order bias can be decomposed in two
factors where the first factor was function of the scale parameter λ and the second one was
function of the new shape parameter β. A simulation study to assess proposed estimators
was performed. Each procedure revealed advantages over specific parameter points and
sample sizes. The ECR usefulness was illustrated through an application to real data.
Results indicated that our proposal can furnish better performance than classical lifetime
models like gamma, Birnbaum-Saunders, Weibull and log-normal. The formulae related
with the new model was manageable and turned into adequate tools comprising the arsenal
of applied statistics.

It was proposed strategies to quantify differences in synthetic aperture radar (SAR)
urban patterns by means of its intensities using the CR and ECR models. These differences
were detected using the classes of hypotheses tests: likelihood ratio tests (LRTs) and entropy-
based tests (EBTs). In general, all regarded test underestimates the corresponding nominal
level for small sample sizes, but as long as the sample size increases these corresponding
nominal level are achieved as expected. The ECR model presented slightly smaller
goodness-of-fit (GoF) measures than CR one in all polarization channels of urban areas
of the studied San Francisco SAR image. The texture identification study for the San
Francisco urban patterns showed that the CR LRTs and the ECR EBTs had rejection
rates closer to the expected nominal level. The final study attested that all tests are able
to detect the known information redundancy between the channels HH and VV, but the
CR LRTs and the ECR EBTs presented the highest rejection rates when applied to detect
information redundancy between the channels pairs HH-HV and HV-VV.

The final study defined the segmentation based on mixture of stochastic entropy



115

distributions (SMED) methods which consist in CR and ECR entropies-based segmentation
techniques. Generally, evidences indicated that the studied San Francisco SAR imagery
segmentation supported directly by channel intensities did not present satisfactory results,
thus more sophisticated methodologies were required. The studied solution was based
on the classical finite mixture (FM) of multivariate normal densities (MCLACHLAN;
PEEL, 2000, ch. 3) and in the result of Pardo et al. (1997), which assured that (h,φ)-
entropies are asymptotically distributed. These motivations made plausible to model the
entropies associated to each SAR imagery pixel using the FM of multivariate normal
densities structures. The feature vectors required by the (P,H)-SMED method can be
also used by the standard k-means algorithm, thus it was used as an image segmentation
performance (ISP) measures reference. The (ECR ,H)-SMEDs ISP measures indicated best
segmentations when compared with its corresponding k-means ones. It was not possible to
fit any (CR ,H)-SMEDs assuming three segments, which provided empirical evidence that
the ECR additional shape parameter β was imperative to make the (ECR ,H)-SMEDs
method works. The q-entropies order parameter had influenced in the segmentation
performances and the optimum ISP measure values were, in general, obtained assuming
the ECR Rényi with q = 0.55.

6.1 FUTURE WORKS

We hope that the broached model may attract wider applications for modeling
positive real data. A natural sequence of this work is the use of ECR constrained MLEs
which can overcome the non-existence of maximum likelihood estimates as reported in
Section 4.5.2. The constrained MLEs also can make feasible the use of the Cox-Snell
corrected-MLEs as defined in Section 3.5.5. This thesis has also raised several points,
which require deeper studies. Some of them are:

1. Develop the log-ECR regression model;

2. Improve the notes of censored estimators using the ECR;

3. Explore other methods to obtain estimators;

4. Extend the CR/ECR aiming to describe non-urban SAR imagery;

5. Develop the ECR-FM models.
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APPENDIX A - SIMULATION STUDIES

In this appendix we show the plots produced in the two simulation studies described
in Section 3.6 of the Chapter 3 (The EXPONENTIATED CAUCHY-RAYLEIGH model).
The plots in Figures A.1–A.11 are analyzed in Section 3.6.1 (Convergence study) while
the plots in Figures A.12–A.15 are interpreted in Section 3.6.2 (Relative bias and sample
standard deviation studies).
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(d) SSD for λ = 0.30

Figure A.1: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(0.50,0.30).
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(c) SSD for β = 0.40
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(d) SSD for λ = 0.15

Figure A.2: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(0.40,0.15).
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(d) SSD for λ = 0.25

Figure A.3: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(1.00,0.25).
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(d) SSD for λ = 2.50

Figure A.4: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(0.35,2.50).
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(d) SSD for λ = 0.60

Figure A.5: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(0.47,0.60).
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(d) SSD for λ = 0.60

Figure A.6: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(0.50,0.60).
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Figure A.7: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(1.00,0.50).
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(c) SSD for β = 5.00
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(d) SSD for λ = 5.00

Figure A.8: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(5.00,5.00).
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(b) bias for λ = 8.00
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(c) SSD for β = 8.00
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(d) SSD for λ = 8.00

Figure A.9: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(8.00,8.00).
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(d) SSD for λ = 0.10

Figure A.10: ECR(5.00,0.10) mean bias and SSD for some sample sizes.
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(d) SSD for λ = 0.10

Figure A.11: ML, PB and ML-CS estimates mean biases and SSDs of a random sample following
ECR(10.00,0.10).
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Figure A.12: ECR relative bias of the estimates for sample size 100.
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Figure A.13: ECR relative SSDs of the estimates for sample size 100.
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Figure A.14: Comparison between relatives bias and SSD of ECR estimates (λ = 1 and n = 10).
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Figure A.15: Comparison between relatives bias and SSD of ECR estimates (λ = 1 and n = 100).
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APPENDIX B - APPLICATIONS IN SAR DATA

Table B.1: Rejection rates (%) obtained in texture identification study of urban areas considering sample
size 25.

HH HV VV
Test α CR ECR CR ECR CR ECR

1% 0.00 0.00 0.00 0.00 0.00 0.00
LRT 5% 0.90 0.00 0.00 0.00 1.05 0.00

10% 5.10 0.45 3.90 0.60 5.40 0.60
1% 0.00 0.00 0.00 0.00 0.00 0.00

SET 5% 0.00 0.30 0.00 0.45 0.00 0.90
10% 0.90 3.60 0.45 3.00 1.05 4.20
1% 0.00 0.00 0.00 0.00 0.00 0.00

RET 5% 0.00 0.30 0.00 0.60 0.00 1.05
10% 0.90 4.20 0.45 4.35 1.05 4.80
1% 0.00 0.00 0.00 0.00 0.00 0.00

TET 5% 0.00 0.30 0.00 0.60 0.00 1.05
10% 0.90 4.20 0.45 3.75 1.05 4.80
1% 0.00 0.00 0.00 0.00 0.00 0.00

AET 5% 0.00 0.30 0.00 0.60 0.00 1.05
10% 0.90 4.05 0.45 3.75 1.05 4.80

Table B.2: Number of times the tests appear in Tables B.8 to B.11

LRT SET RET TET AET

Table B.8 74 59 23 4 27
Table B.9 65 30 12 10 75
Table B.10 64 3 9 2 2
Table B.11 2 39 4 1 34
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Table B.3: Rejection rates (%) obtained in texture identification study of urban areas considering sample
size 121.

HH HV VV
Test α CR ECR CR ECR CR ECR

1% 0.00 0.00 0.00 0.00 0.00 0.00
LRT 5% 1.40 0.20 0.80 0.00 1.00 0.00

10% 8.40 0.40 4.80 0.40 5.80 0.60
1% 0.00 0.00 0.00 0.00 0.00 0.00

SET 5% 0.20 0.80 0.00 0.80 0.00 1.00
10% 1.20 5.80 0.80 4.20 1.60 6.40
1% 0.00 0.00 0.00 0.00 0.00 0.00

RET 5% 0.20 0.80 0.00 0.80 0.00 1.00
10% 1.20 6.40 0.80 6.00 1.60 7.80
1% 0.00 0.00 0.00 0.00 0.00 0.00

TET 5% 0.20 0.80 0.00 0.80 0.00 1.00
10% 1.00 6.40 0.80 5.80 1.20 7.60
1% 0.00 0.00 0.00 0.00 0.00 0.00

AET 5% 0.00 0.80 0.00 0.80 0.00 1.00
10% 1.00 6.40 0.80 5.60 1.20 7.00

Table B.4: Rejection rates (%) obtained in texture identification study of urban areas considering sample
size 289.

HH HV VV
Test α CR ECR CR ECR CR ECR

1% 0.00 0.00 0.00 0.00 0.00 0.00
LRT 5% 0.40 0.00 1.20 0.00 1.00 0.20

10% 6.00 0.60 3.40 1.00 8.80 1.00
1% 0.00 0.00 0.00 0.00 0.00 0.00

SET 5% 0.00 0.40 0.00 1.00 0.20 1.20
10% 1.60 4.80 0.60 3.20 2.60 7.80
1% 0.00 0.00 0.00 0.00 0.00 0.00

RET 5% 0.00 0.40 0.00 1.20 0.20 1.40
10% 1.60 5.20 0.60 4.60 2.60 8.60
1% 0.00 0.00 0.00 0.00 0.00 0.00

TET 5% 0.00 0.40 0.00 1.20 0.20 1.40
10% 1.60 5.20 0.60 4.40 2.20 8.40
1% 0.00 0.00 0.00 0.00 0.00 0.00

AET 5% 0.00 0.40 0.00 1.00 0.20 1.40
10% 1.60 5.00 0.60 4.40 2.00 8.20
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Table B.5: Rejection rates (%) obtained in information redundancy study considering sample size 25.

HH-HV HH-VV HV-VV
Test α CR ECR CR ECR CR ECR

1% 40.63 12.07 0.00 0.00 17.86 3.48
LRT 5% 95.34 68.79 0.00 0.00 78.49 38.71

10% 99.55 90.31 0.00 0.00 95.05 68.67
1% 5.15 33.75 0.00 0.00 1.35 13.13

SET 5% 74.17 91.51 0.00 0.00 43.90 69.60
10% 96.35 98.76 0.00 0.02 80.77 91.25
1% 5.15 40.15 0.00 0.00 1.35 16.62

RET 5% 74.17 93.37 0.00 0.00 43.90 73.75
10% 96.35 98.99 0.00 0.02 80.77 92.81
1% 4.41 38.63 0.00 0.00 1.13 15.63

TET 5% 72.99 93.14 0.00 0.00 42.58 73.15
10% 96.18 98.95 0.00 0.02 80.35 92.66
1% 3.92 37.00 0.00 0.00 0.94 14.91

AET 5% 72.05 92.98 0.00 0.00 41.58 72.66
10% 96.00 98.92 0.00 0.02 79.96 92.51

Table B.6: Rejection rates (%) obtained in information redundancy study considering sample size 121.

HH-HV HH-VV HV-VV
Test α CR ECR CR ECR CR ECR

1% 100.00 100.00 0.00 0.00 100.00 100.00
LRT 5% 100.00 100.00 0.00 0.00 100.00 100.00

10% 100.00 100.00 0.00 0.02 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

SET 5% 100.00 100.00 0.00 0.00 100.00 100.00
10% 100.00 100.00 0.00 0.30 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

RET 5% 100.00 100.00 0.00 0.00 100.00 100.00
10% 100.00 100.00 0.00 0.43 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

TET 5% 100.00 100.00 0.00 0.00 100.00 100.00
10% 100.00 100.00 0.00 0.43 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

AET 5% 100.00 100.00 0.00 0.00 100.00 100.00
10% 100.00 100.00 0.00 0.43 100.00 100.00
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Table B.7: Rejection rates (%) obtained in information redundancy study considering sample size 289.

HH-HV HH-VV HV-VV
Test α CR ECR CR ECR CR ECR

1% 100.00 100.00 0.00 0.00 100.00 100.00
LRT 5% 100.00 100.00 0.00 0.00 100.00 100.00

10% 100.00 100.00 0.00 0.36 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

SET 5% 100.00 100.00 0.00 0.27 100.00 100.00
10% 100.00 100.00 0.00 2.92 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

RET 5% 100.00 100.00 0.00 0.38 100.00 100.00
10% 100.00 100.00 0.00 3.72 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

TET 5% 100.00 100.00 0.00 0.38 100.00 100.00
10% 100.00 100.00 0.00 3.72 100.00 100.00
1% 100.00 100.00 0.00 0.00 100.00 100.00

AET 5% 100.00 100.00 0.00 0.38 100.00 100.00
10% 100.00 100.00 0.00 3.72 100.00 100.00
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APPENDIX C - PROPOSITIONS AND COROLLAR-

IES PROOFS

In this appendix we set up the proofs of the main results obtained in Chapter 3
and Chapter 4.

Proof of Proposition 3.1. Let θ1 = (β1,λ1) and θ2 = (β2,λ2) ECR equivalent parametric
points, i.e., θ1,θ2 ∈ Θ such that for all p ∈ (0,1)

Qθ1(p) = Qθ2(p)

⇐⇒ λ1

1− p1/β1

√
2p1/β1 − p2/β1 =

λ2

1− p1/β2

√
2p1/β2 − p2/β2

⇐⇒ 1

1− p1/β1

√
2p1/β1 − p2/β1 =

λ

1− p1/β2

√
2p1/β2 − p2/β2 where λ =

λ2

λ1

⇐⇒ 1

1− q
√

2q − q2 =
λ

1− q1/β
√

2q1/β − q2/β where β =
β2

β1

and q = p
1/β1 .

Then the existence of θ1 and θ2 implies the existence of a parametric point θ = (β,λ)

which is ECR equivalent to θ0 = (1,1), i.e., for all x > 0

F θ0(x) = F θ(x)

⇐⇒ 1− 1√
1 + x2

=

(
1− λ√

λ2 + x2

)β
⇐⇒ log

(
1− 1√

1 + x2

)
= β log

(
1− λ√

λ2 + x2

)
. (C.1)

In particular consider x = 1 and x = λ in Eq. (C.1). Then we obtain the following system:log
(

1− 1√
2

)
= β log

(
1− λ√

1+λ2

)
β log

(
1− 1√

2

)
= log

(
1− 1√

1+λ2

)
.

(C.2)

Applying the first in the second Eq. (C.2) we can obtain:

log

(
1− 1√

1 + λ2

)
log

(
1− λ√

1 + λ2

)
=

[
log

(
1− 1√

2

)]2

. (C.3)

Consider the following change of variables:

u = 1− 1√
1 + λ2

⇐⇒ λ =

√
u(2− u)

1− u
, u ∈ (0,1). (C.4)



149

Applying (C.4) in Eq. (C.3) we obtain:

log
[
1−

√
u(2− u)

]
log u =

[
log

(
1− 1√

2

)]2

.

This equation has only one solution u = 1−1/
√

2 which implies that θ = θ0 and θ1 = θ2.

Proof of Proposition 3.2. Note that

lim
x→0+

f(x) = βλ lim
x→0+

x

(λ2 + x2)
3
2

(
1− λ√

λ2 + x2

)β−1

= βλ lim
x→0+

x

(λ2 + x2)
3
2

(
1− λ√

λ2 + x2

)β−1

(
1 + λ√

λ2+x2

)β−1

(
1 + λ√

λ2+x2

)β−1

= βλ lim
x→0+

x2β−1

(λ2 + x2)
1
2

+β

(
1 +

λ√
λ2 + x2

)1−β

.

Now the result in (3.5) is obtained. About the hrf limit note that

lim
x→0+

h(x) = lim
x→0+

f(x)

1− F (x)
= lim

x→0+
f(x).

Consider the following change of variables

u = 1− λ√
λ2 + x2

⇐⇒ x = λ

√
u(2− u)

1− u
, (C.5)

Applying Eq. (C.5) we can set

lim
x→∞

h(x) = lim
u→1−

h(u)

=
β

λ
lim
u→1−

(2− u)1/2(u− 1)2uβ−1/2

1− uβ
.

If β ≥ 1/2 and applying the L’Hospital’s rule we obtain

lim
x→∞

h(x) =
1

λ
lim
u→1−

(2− u)
1/2u

1/2(u− 1)2

[
1

2(2− u)
+

2

u− 1
+
β − 1/2

u

]
= 0.

Otherwise if β < 1/2 and applying the L’Hospital’s rule we obtain

lim
x→∞

h(x) = −β
λ

lim
u→1−

(u− 1)(5u+ 9)(u1/2+β)

(2− u)1/2 [(1− uβ)− 2β]

= 0.
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Proof of Proposition 3.3. Let X be a ECR random variable and c > 0.

lim
x→∞

S(cx)

S(x)
= lim

x→∞

1−
(

1− λ√
λ2+(cx)2

)β
1−

(
1− λ√

λ2+x2

)β

= c2 lim
x→∞


[
λ2 + x2

λ2 + (cx)2

]3/2

(
1− λ√

λ2+(cx)2

)β−1

(
1− λ√

λ2+x2

)β−1

 (L’Hôpital’s rule)

= c2

(
1

c2

)3/2

=
1

c
.

Then the tail index is a = 1.

Proof of Proposition 3.4. Note that

d log [f(x)]

dx
=

1

x
− (β + 2)x

λ2 + x2
+

(β − 1)x(√
λ2 + x2 − λ

)√
λ2 + x2

=
(λ2 + x2)

(√
λ2 + x2 − λ

)
− (β + 2)x2

(√
λ2 + x2 − λ

)
+ (β − 1)x2

√
λ2 + x2

x (λ2 + x2)
(√

λ2 + x2 − λ
)

=
x2
[
(β + 1)λ− 2

√
λ2 + x2

]
+ λ2

(√
λ2 + x2 − λ

)
x (λ2 + x2)

(√
λ2 + x2 − λ

)
=
λ2
[
(β − 1)λ+ β

√
λ2 + x2

]
− x2

[
(1− β)λ+ 2

√
λ2 + x2

]
x (λ2 + x2)

3/2
. (C.6)

The mode of the ECR pdf is the solution of

d log[f(x)]

dx
= 0. (C.7)

By the Eq. (C.6) the solution of Eq. (C.7) is obtained solving

λ2
[
(β − 1)λ+ β

√
λ2 + x2

]
− x2

[
(1− β)λ+ 2

√
λ2 + x2

]
= 0.

After some manipulations we obtain

2x2 − λ2β√
λ2 + x2

= (β − 1)λ. (C.8)

For x0 to be a solution of Eq. (C.8) it needs to satisfy the following conditions:

β > 1 ⇐⇒ x0 > λ
√

β/2 (C.9a)
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and

0 < β < 1 ⇐⇒ 0 < x0 < λ
√

β/2, (C.9b)

the case β = 1 is trivial. Squaring both sides of Eq. (C.8) and simplifying we obtain a
bi-quadratic equation

4x4 − [(β + 1)λ]2 x2 + λ4(2β − 1) = 0. (C.10)

Assuming y = x2 the last expression became

4y2 − [(β + 1)λ]2 y + λ4(2β − 1) = 0. (C.11)

The discriminant of this quadratic equation is

∆ = (β − 1)2
(
β2 + 6β + 17

)
λ4,

which is always positive, then the two distinct real roots of Eq. (C.11) are

y1 =
λ2

8

[
(β + 1)2 +

√
(β − 1)2(β2 + 6β + 17)

]
and

y2 =
λ2

8

[
(β + 1)2 −

√
(β − 1)2(β2 + 6β + 17)

]
.

This solutions can be rewritten as

y?1 =
λ2

8

[
(β + 1)2 + (β − 1)

√
β2 + 6β + 17

]
and

y?2 =
λ2

8

[
(β + 1)2 − (β − 1)

√
β2 + 6β + 17

]
.

Note that for β > 1 we have y1 = y?1 and y2 = y?2, on the other hand if β < 1 we
obtain y1 = y?2 and y2 = y?1 and finally, when β = 1 all solutions are equivalent. It is
straightforward to prove that

y?1 ≥ 0 ⇐⇒ β ≥ 1/2

and

y?2 ≥ 0 ⇐⇒ β ≥ 0.

Then Eq. (C.10) has only two possible (real and non-negative) roots (for β ≥ 1/2)

x1 =
λ

2
√

2

√
(β + 1)2 + (β − 1)

√
β2 + 6β + 17, β ≥ 1/2 (C.12a)
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and

x2 =
λ

2
√

2

√
(β + 1)2 − (β − 1)

√
β2 + 6β + 17, β ≥ 0. (C.12b)

The Eq. (C.12b) do not satisfy any of the conditions in (C.9a) and (C.9b), then it is not a
solution of Eq. (C.8). On the contrary the solution in (C.12a) satisfy both Eq. (C.9a) and

1/2 ≤ β < 1 ⇐⇒ 0 ≤ x1 < λ
√

β/2,

which is (using Corollary 3.4.1) a restricted version of Eq. (C.9b). Then the unique solution
of Eq. (C.8) is Eq. (C.12a). Note that the ECR pdf is not defined in zero and hence the
ECR mode is given by Eq. (3.6).

Proof of Proposition 3.5. Note that

Pr(X < x) = Pr(λZ < x)

= Pr
(
Z <

x

λ

)
=

1− 1√
1−

(
x
λ

)2

β

=

(
1− λ√

λ2 + x2

)β
.

Proof of Proposition 3.7. Let X ∼ ECR(β,λ). Note that

µ′r,s,t = βλ

∫ ∞
0

xr
x

(λ2 + x2)
3/2

(
1− λ√

λ2 + x2

)(s+1)β−1
[

1−
(

1− λ√
λ2 + x2

)β]t
dx.

We apply change of variable given in Eq. (C.5) and after some algebras we obtain

µ′r,s,t = β(λ
√

2)r
∫ 1

0

ur/2+(s+1)β−1(1− u)−r

(1− u/2)−r/2
(1− uβ)t du.

Using simple binomial expansion we can write

(1− uβ)t =
t∑
i=0

(−1)i
(
t

i

)
iiβ.

Then we can express

µ′r,s,t = β(λ
√

2)r
t∑
i=0

(−1)i
(
t

i

)∫ 1

0

ur/2+(s+i+1)β−1(1− u)−r

(1− u/2)−r/2
du. (C.13)
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Consider the following result

2F1(a,b; c;x) =
1

B(b,c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tx)a
dt, (C.14)

showed in Bailey (1973, p. 4). The result is obtained applying Eq. (C.14) in (C.13).

Proof of Corollary 3.7.2. Let Z ∼ CR(1). Consider the following identity obtained by
Bailey (1973, p. 11)

2F1(a,1− a; c; 1/2) =
Γ
(
c
2

)
Γ
(

1+c
2

)
Γ
(
a+c

2

)
Γ
(

1+c−a
2

) . (C.15)

Assuming β = 1 in (3.8), applying Eq. (C.15) and after some algebras we can set

E(Zr) =
2r/2+1

√
π

Γ
(

1
2

(
2− r

2

))
Γ
(

1
2

(
3− r

2

))
Γ
(

2−r
2

) B
(

1− r,r
2

+ 1
)

=
Γ
(

1−r
2

)
Γ
(
1 + r

2

)
√
π

.

Then the results in (3.9) follows.

Proof of Proposition 3.8. Note that

E(logZ) = β

∫ ∞
0

log z
z

(1 + z2)3/2

{
1− 1√

1 + z2

}β−1

dz.

We apply a simple change of variable assuming

u = 1− 1√
1 + z2

⇐⇒ z =

√
u(2− u)

1− u
,

and after some algebras we can set

E(logZ) =
β

2

∫ 1

0

uβ−1 log u du+
β

2

∫ 1

0

uβ−1 log(2− u) du− β
∫ 1

0

uβ−1 log(1− u) du.

The first integral is determined transforming v = − log u. After this transform we obtain∫ 1

0

uβ−1 log u du = −
∫ ∞

0

v exp(−βv) dv = − 1

β2
. (C.16)

In order to determine the second integral we need to look upon the following known
expansion

log(2− u) = log 2−
∞∑
n=1

1

n

(u
2

)n
.
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Then we can express the second integral as∫ 1

0

uβ−1 log(2− u) du = (log 2)

∫ 1

0

uβ−1 du−
∞∑
n=1

1

n2n

∫ 1

0

uβ+n−1 du

=
log 2

β
−
∞∑
n=1

1

n(n+ β)2n

=
log 2

β
− 1

β

∞∑
n=1

[
1

n2n
− 1

(n+ β)2n

]

=
1

β

[
∞∑
n=0

1

(n+ β)2n
− 1

β

]

=
1

β

[
Φ

(
1

2
; 1,β

)
− 1

β

]
. (C.17)

Consider another well known expansion

log(1− u) = −
∞∑
n=1

un

n
,

then the last integral is∫ 1

0

uβ−1 log(1− u) du = −
∞∑
n=1

1

n

∫ 1

0

uβ+n−1 du

= −
∞∑
n=1

1

n(β + n)

= − 1

β
[Ψ(1 + β) + ] . (C.18)

In the last step we use the identity obtained from Abramowitz and Stegun (1972, eq. 6.3.16)

Ψ(1 + β) = −γ +
∞∑
n=1

β

n(β + n)
.

Then we can set
E(logZ) =

1

2
Φ

(
1

2
; 1,β

)
+ Ψ(1 + β) + γ − 1

β
,

and the result follows by applying Eq. (3.7).

Proof of Proposition 3.9. The incomplete moments for a random variable X ∼ ECR(β,λ)

are defined by

mr(x0) =

∫ x0

−∞
xrfX(x) dx.
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Then we need to determine

mr(x0) = βλ

∫ x0

0

xr
x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)β−1

dx.

Assuming the change of variable in (C.5) and after some algebras we can express

mr(x0) = β(λ
√

2)ru0

∫ u0

0

u
r/2+β−1(1− u)−r

(
1− u

2

)r/2
du,

where u0 = 1− λ/
√
x20+λ2. Now assuming t = u/u0 we obtain

mr(x0) = β(λ
√

2)ru
r/2+β
0

∫ 1

0

t
r/2+β−1(1− u0t)

−r
[
1−

(u0

2

)
t
]r/2

dt. (C.19)

Consider the following result

F1(a,b1,b2,c;x,y) =
1

B(a,c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt, (C.20)

due to (BAILEY, 1973, p. 77) where F1 is the first Appell’s hypergeometric function which
is defined by

F1(a,b1,b2; c;x,y) =
∞∑

i,j=0

(a)i+j(b1)i(b2)j
(c)i+j

xi

i!

yj

j!
.

The convergence is obtained when |x| < 1, |y| < 1 and c > a > 0. The result is obtained
by applying Eq. (C.20) in (C.19).

Proof of Proposition 3.10. We need to determine the following integral

E(Xr
i:n) =

βλ

B(i,n− i+ 1)

∫ ∞
0

xr
x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)iβ−1

×

×

[
1−

(
1− λ√

λ2 + x2

)β]n−i
dx.

Using the change of variable in (C.5) and after some algebras we can set

E(Xr
i:n) =

β(λ
√

2)r

B(i,n− i+ 1)

∫ 1

0

ur/2+iβ−1(1− u)−r

(1− u/2)−r/2
(1− uβ)n−i du. (C.21)

Note that we can express

(1− uβ)n−i =
n−i∑
j=0

(−1)j
(
n− i
j

)
ujβ. (C.22)
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Now applying Eq. (C.22) in (C.21) we obtain

E(Xr
i:n) =

β(λ
√

2)r

B(i,n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)∫ 1

0

ur/2+(i+j)β−1(1− u)−r

(1− u/2)−r/2
du.

Finally using the identity in (C.14) the result is obtained.

Proof of Proposition 3.11. Here we present a resumed proof of this result. Note that β̂(λ)

is a continuous decreasing function of λ and

lim
λ→0

β̂(λ) =∞

and

lim
λ→∞

β̂(λ) = 0.

Then for a given interval Θβ = [β1,β2] with 0 < β1 < β2 < ∞, there exists an interval
[λ2,λ1] such that β1 = β̂(λ2) and β2 = β̂(λ1). The interval Θβ is the image of the interval
[λ2,λ1] by the function β̂(λ). Finally

λ1 = arg min
λ

∣∣∣β̂(λ)− sup Θβ

∣∣∣
and

λ2 = arg minλ
∣∣∣β̂(λ)− inf Θβ

∣∣∣ .
The cases where Θβ = (β1,β2], Θβ = (β1,β2), Θβ = [β1,β2), Θβ = (0,β2], Θβ = (β1,∞) and
Θβ = [β1,∞) are analogous.

Proof of Proposition 3.12. Analogous to the proof of Proposition 3.11.

Proof of Proposition 3.15. Let U be the ECR llf hessian matrix (observed information).

U =

[
Uββ Uβλ

Uλβ Uλλ

]
.

Its components are given by

Uββ = − n

β2
, (C.23)

Uβλ = −
n∑
i=1

√
λ2 + xi2 + λ

λ2 + xi2

and

Uλλ = −
n∑
i=1

xi
4 + (β + 4)λ2xi

2 − λ3
[
(β + 1)λ+ (β − 1)

√
λ2 + xi2

]
λ2 (λ2 + xi2)2 .
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The result in (3.21a) is derived taking the expectation of the constant obtained in (C.23).
The second element in (3.21b) is obtained by the following integral.

κβλ = −nβλ
∫ ∞

0

x
(
λ+
√
λ2 + x2

)
(λ2 + x2) (λ2 + x2)

3/2

(
1− λ√

λ2 + x2

)β−1

dx.

Applying the transform in (C.5) and then after some algebras we obtain

κβλ = −nβ
λ

∫ 1

0

(u− 2)(u− 1)uβ−1 du,

which is a simple integral whose value is given by

κβλ = −n
λ

[
β + 4

(β + 1) (β + 2)

]
and after partial fractions decomposition we obtain (3.21b).

The third element in (3.21c) is provided by the following integral

κλλ = −nβλ
∫ ∞

0

x

{
x4 + (β + 4)λ2x2 − λ3

[
(β + 1)λ+ (β − 1)

√
λ2 + x2

]
λ2 (λ2 + x2)2 (λ2 + x2)

3/2

}
×

×
(

1− λ√
λ2 + x2

)β−1

dx.

Applying the change of variable in (C.5) and after some algebras we obtain

κλλ = −nβ
λ2

{∫ 1

0

[
2(β + 2)u4 − 3(3β + 5)u3 + (14β + 19)u2 − 9(β + 1)u+ 2β

]
uβ−1 du

}
,

which is a simple integral whose value is

κλλ = −nβ
λ2

[
β2 + 11β + 36

(β + 2)(β + 3)(β + 4)

]
,

and after partial fractions decomposition we obtain (3.21c).

Proof of Corollary 3.15.1. Note that in the FIM κββ < 0 and its determinant is given by

D =
(n
λ

)2 β3 − 7β2 + 10β + 72

β(β + 1)2(β + 2)2(β + 3)(β + 4)
.

Consider the polynomial equation defined by the last factor numerator of D:

β3 − 7β2 + 10β + 72 = 0.
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This polynomial equation has only one real root given by

β0 =
1

3

(
− 3

√
944− 27

√
1213− 19

3
√

944− 27
√

1213
+ 7

)
≈ −2.2966 . . . ,

and the associated polynomial do not assume negative values when β > β0. Then D > 0

and the result is proved.

Proof of Proposition 3.16. Note that

Uβββ =
2n

β3
, (C.24a)

Uββλ = 0, (C.24b)

Uβλλ =
n∑
i=1

λ
(
λ+

√
λ2 + x2

i

)
− x2

i

(λ2 + x2
i )

2 , (C.24c)

and

Uλλλ =
n∑
i=1

2x6
i + 6λ2x4

i − 2λ5
[
(β + 1)λ+ (β − 1)

√
λ2 + x2

i

]
λ3 (λ2 + x2

i )
3

+
n∑
i=1

λ3x2
i

[
6(β + 3)λ+ (β − 1)

√
λ2 + x2

i

]
λ3 (λ2 + x2

i )
3 (C.24d)

The results in (3.24a) and (3.24b) are derived taking the expected values of the constants
obtained in Eqs. (C.24a) and (C.24b) respectively. The result in (3.24c) is achieved by
taking the expected value of Eq. (C.24c) which is determined by the integral

κβλλ = −nβλ
∫ ∞

0

x

[
λ
(
λ+
√
λ2 + x2

)
− x2

(λ2 + x2)2 (λ2 + x2)
3/2

](
1− λ√

λ2 + x2

)β−1

dx.

Applying the change of variable in (C.5) it is possible to rewrite this integral in the form

κβλλ =
nβ

λ2

∫ 1

0

(u− 2)(u− 1)2(2u− 1)uβ−1 du,

which integrand is polynomial and can be evaluated as

κβλλ = −2n

λ2

[
β2 + 4β − 24

(β + 1)(β + 2)(β + 3)(β + 4)

]
and the result in (3.24c) follows after partial fractions decomposition.
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The result in (3.24d) is obtained by the following integral

κλλλ = nβλ

∫ ∞
0

x

{
2x6 + 6λ2x4 − 2λ5

[
(β + 1)λ+ (β − 1)

√
λ2 + x2

]
λ3 (λ2 + x2)3 (λ2 + x2)

3/2

}(
1− λ√

λ2 + x2

)β−1

+ x

{
λ3x2

[
6(β + 3)λ+ (β − 1)

√
λ2 + x2

]
λ3 (λ2 + x2)3 (λ2 + x2)

3/2

}(
1− λ√

λ2 + x2

)β−1

dx

Applying the change of variable in (C.5) and after some algebras it is possible to
rewrite this integral in the form

κλλλ =
nβ

λ3

∫ 1

0

[
−8(β + 2)u6 + (51β + 93)u5 − 3(43β + 71)u4 + 3(55β + 81)u3

−3(37β + 47)u2 + 36(β + 1)u− 4β
]
uβ−1 du,

which integrand is polynomial and can be evaluated as

κλλλ =
2n

λ3

[
β (β4 + 20β3 + 158β2 + 691β + 1866)

(β + 2)(β + 3)(β + 4)(β + 5)(β + 6)

]
and the result in (3.24d) follows after partial fractions decomposition.

Proof of Proposition 3.17. By Eq. (2.14) we can express the first order bias of the MLE as

(1/n)Bias(θ̂i) =
∑
r,s,t

κθi,θrκθs,θt
(
κ

(θt)
θrθs
− 1

2
κθrθsθt

)
. (C.25)

Applying the Corollary 3.15.2, Corollary 3.15.3 and Proposition 3.16 in (C.25) the result
is obtained after elementary algebras.

Proof of Lemma 4.1. Note that

I(q,θ) = (βλ)q
∫ ∞

0

[
x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)β−1
]q

dx

Applying the change of variables in (C.5) and then after some algebras we can set

I(q,θ) = βq
(
λ√
2

)1−q ∫ 1

0

uq(β−1/2)−1/2(1− u)2(q−1)

(1− u/2)(1−q)/2
du

Now we use the identity in (C.14) and the result is obtained.
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Proof of Lemma 4.2. The first gradient component is

∂I(q,θ)

∂β
=

∫ ∞
0

∂

∂β
[f(x)]q dx

= q

∫ ∞
0

[f(x)]q−1 ∂f(x)

∂β
dx.

Note that

∂f(x)

∂β
= λ

x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)β−1 [
1 + β log

(
1− λ√

λ2 + x2

)]
.

Then we can express

∂I(q,θ)

∂β
= q

[
I(q,θ)

β
+

∫ ∞
0

[f(x)]q log

(
1− λ√

λ2 + x2

)
dx

]
Applying the change of variables in (C.5) and then after some algebras we can set∫ ∞

0

[f(x)]q log

(
1− λ√

λ2 + x2

)
dx =

βq

λq−1

∫ 1

0

uq(β−1/2)−1/2 lnu

(2− u)(1−q)/2(1− u)2(1−q) du

=
Υ(q,β)

λq−1
.

Proof of Proposition 4.2. By definition, the cross Shannon entropy is given by

Hc
S(θ1,θ2) = −

∫ ∞
−∞

f1(x) log f2(x) dx,

then we can set

Hc
S(θ1,θ2) = −β1λ

∫ ∞
0

log

[
β2λ

x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)β2−1
]

x

(λ2 + x2)3/2

(
1− λ√

λ2 + x2

)β1−1

dx.

Using again the change of variable in (C.5) we obtain

Hc
S(θ1,θ2) =− β1 log

(
β2

λ

)∫ 1

0

uβ1−1 du− 2β1

∫ 1

0

uβ1−1 log(1− u) du

− β1

(
β2 −

1

2

)∫ 1

0

uβ1−1 log u du− β1

2

∫ 1

0

uβ1−1 log(2− u) du.

The first integral is straightforward and the last three were determined in Eqs. (C.16)–
(C.18), then after some algebras the result is obtained.


