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ABSTRACT

The first part of this thesis is devoted to address the problem of Bell

nonlocality quantification. For this, it is introduced a measure of nonlocality

associated with a quantum state embedded in a specific measurement context

dictated by a Bell inequality. Under this approach the amount of nonlocality is

closely related to the ability that a quantum state has to reveal non-classical

features when submitted to unbiased local random measurements. It is shown

that by employing this figure of merit, the most nonlocal states correspond to the

maximally entangled ones for the considered scenarios, especially for the case of

pairs of entangled d-level systems under two local measurements per party for

which the most known measures of nonlocality do not exhibit such an agreement,

(Quant. Inf. Comput. 7, 157, 2008). Another interesting observation is that the

amount of nonlocality diminishes with the inverse o the local dimension d of

the subsystems, and thus revealing the emergence of classicality in the limit of

large quantum numbers. In the second part it is investigated how to improve the

performance of several quantum information protocols when noise affects the

system. First it is proved that the replacement of EPR states and measurements

by their GHZ counterparts may improve the efficiency in the execution of the

teleportation and super-dense coding protocols when the qubits may suffer bit-flip

noise in the weak regime. Furthermore, it was performed a characterization of

the usual protocol of teleportation for qudits for the case in which the involved

parts may be affected by some of the most known instances of noise and/or the

channel and measurements are not ideal. The idea of fighting noise with noise,

presented by Fortes and Rigolin (Phys. Rev. A 92, 012338, 2015), is studied for

arbitrary dimension d.

Keywords: Entanglement. Bell nonlocality. Quantum teleportation. Noisy chan-

nels.



RESUMO

A primeira parte desta tese é direcionada no problema de quantificação

de não-localidade de Bell. Para isto, nos introduzimos uma medida associada

a um estado quântico sujeito a um esquema de medidas especifico ditado por

uma desigualdade de Bell. Sob esta aproximação, a quantidade de não-localidade

esta intimamente relacionada com a habilidade que um estado quântico emaran-

hado tem para revelar características não clássicas quando submetido a medidas

aleatórias locais não enviesadas. É mostrado que empregando esta figura de

mérito os estados mais não locais correspondem com os maximamente emaran-

hados para os cenários considerados, especialmente para o caso de pares de

sistemas d-dimensionais emaranhados sujeitos a uma entre duas medições por

parte, para os quais a maioria entre as mais conhecidas medidas de não-localidade

não exibem dita concordância, (Quant. Inf. Comput. 7, 157, 2008). Outra obser-

vação interessante é que a quantidade de não-localidade diminui com o inverso da

dimensão local d dos subsistemas, revelando assim a emergência de classicalidade
no limite de números quânticos grandes. Na segunda parte é investigado como

melhorar o desempenho de vários protocolos de informação quântica quando

ruido afeta o sistema. Em primeiro lugar é provado que a substituição de pares e

medições EPR pelos seus análogos GHZ pode melhorar a eficiência na execução

dos protocolos de teletransporte e codificação superdensa quando os qubits po-

dem sofrer ruido do tipo bit-flip no regime de ruido fraco. Adicionalmente foi

levada a cabo uma caracterização do protocolo usual de teletransporte de qudits

para o caso em que as partes envolvidas podem ser afetadas por alguns dos casos

mais conhecidos de ruido e/ou o canal e medições são não-ideais. A ideia de

atacar ruido usando ruido em qubits, introduzida por Fortes e Rigolin (Phys. Rev.

A 92, 012338, 2015) é estudada para sistemas de dimensionalidade arbitrária d.

Palavras-chave: Emaranhamento. Não-Localidade de Bell. Teletransporte quân-

tico. Canais ruidosos.
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1 INTRODUCTION

Along with general relativity, the formulation of quantum theory is proba-

bly one of the greatest scientific achievements of the twentieth century, mainly

because of two reasons: (i) the induced paradigm shift from the Newtonian view

of the world, and (ii) the burst of technological implementations never conceived

before its foundation. Although providing very accurate predictions within its

validity range, quantum mechanics is not completely understood. Even today

there are many open questions and considerable efforts are devoted day by day

towards their answer.

One of the most fundamental problems of quantum theory was raised by

Einstein himself together with Podolsky and Rosen in 1935 [Einstein, Podolsky

e Rosen 1935]. By using a gedankenexperiment involving a pair of entangled

particles and an elegant set of arguments, they concluded that “the wave function

in quantum mechanics does not give a complete description of the physical reality"

and therefore there should exist a more general theory in order to not enter into

a conflict with relativity. This became known after as the EPR paradox and did

not receive relevant attention1 until 1964, when John Bell showed that certain

predictions from quantum theory cannot be reproduced by using any local hidden
variables model [Bell 1964], or in other words he proved the impossibility of the

existence of a theory with the features idealized in EPR, conclusion confirmed

experimentally some years later by Aspect [Aspect, Grangier e Roger 1982]. Today

we have a lot of evidence to believe that in fact nature is able to exhibit such a

spooky action at a distance, but never violating the principles of relativity i.e. it

is not possible to use quantum correlations to send information faster than the

speed of light.
1 Due to accurate predictions of the theory, most of the scientific community was concerned

with the development of techniques and models describing the matter, or they simply were
not interested in the fundamental details of the formulation, in words of David Mermin “If I
were forced to sum up in one sentence what the Copenhagen interpretation says to me, it
would be ‘Shut up and calculate!’ ".
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Bell’s paper represents the starting point of the so called second quantum
revolution and together with other works (see for instance [Holevo 1973,Ingarden

1976]) contributed to the construction of the theory of quantum information.

Subsequent efforts include the development of Shor’s algorithm for integer factor-

ization [Shor 1996], and protocols using entanglement as the prime resource, like

quantum key distribution [Bennett e Brassard 1984,Ekert 1991], entanglement

swapping [Zukowski et al. 1993], super-dense coding [Bennett e Wiesner 1992]

and quantum teleportation [Bennett et al. 1993].

Entanglement based protocols offer a great advantage when compared

with classical counterparts for several reasons including security in the trans-

mission of information [Macchiavello e Palma 2002], increase in the speed of

execution for certain computational tasks2 [Ekert e Jozsa 1998], among oth-

ers. Nevertheless, most of the applications require sources capable of producing

perfect entanglement (e.g. pairs of maximally entangled states) and it is a well

known fact that from the experimentalist point of view, it is a very hard task [Barz

et al. 2010, Wagenknecht et al. 2010]. In addition one must also consider the

interactions with the environment, usually taking the system to low entangled

mixed states. For this, designing techniques heading towards the detection and

correction of errors in quantum systems is a very important subject in quantum

information theory. The second part of this thesis is devoted to that matter.

Most of the quantum information protocols were initially conceived for

systems based on qubits3, nevertheless recent developments have shown that

using high-dimensional systems may lead to a higher performance. For instance,

Durt and collaborators showed that the security of quantum key distribution may

be enhanced by the usage of entangled qutrits [Durt et al. 2003] (a generalization

using qudits is presented in [Durt et al. 2004], see also [Cerf et al. 2002, Acin,

Gisin e Scarani 2003]). Qudit systems have also been shown to be a useful

resource for quantum computation [Ralph, Resch e Gilchrist 2007,Lanyon et al.

2009,Strauch 2011,Mischuck e Mølmer 2013] and tests of nonlocality [Vértesi,

Pironio e Brunner 2010]. Remarkably, Skrzypczyk and Cavalcanti have recently
2 Note though that entanglement is not the only non-classical resource useful for computation.
3 Two-dimensional quantum systems. d-dimensional generalizations are usually known in the

literature as qudits.
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shown that through violation of the so called steering inqualities, qudits may

be used to generate maximal randomness, equal to log d bits [Skrzypczyk e

Cavalcanti 2018]. Moreover, technological limitations have been overcome and

nowadays entanglement generation in high dimensions is possible4 [Martin et al.

2017,Wang et al. 2018].

Motivated by the relevance of quantum high dimensional systems, through-

out this thesis we present several results regarding these special kind of states.

The first of these is related with the quantification of their nonlocal content, or

their ability to reveal non-classical features. There are currently in the literature

several ways to assess the amount of nonlocality of a given state. For the case

of pure bipartite qubit states most of them agree to state the singlet as the most

nonlocal one, however when the dimensionality is increased this feature ceases

to happen. This became known as an “anomaly of nonlocality" [Méthot e Scarani

2007]. We have proposed a quantifier of nonlocality in which such an “anomaly"

does not appear at least for d ≤ 7. Our second contribution related to this kind of

systems is a characterization of the protocol of qudit teleportation under noisy

environments. We extend the ideas introduced in [Fortes e Rigolin 2015] for

arbitrary dimension d and present some cases in which addition of noise in the

system leads to an increase in the fidelity of teleportation.

This thesis is organized as follows: In the first chapter (Ch. 2) we introduce

the main concepts and give the tools necessary to understand the rest of the work.

Chapter 3 is devoted to present the probability of violation as a measure of

nonlocality [Fonseca e Parisio 2015]. By employing the quantifier proposed in the

former chapter, we study the nonlocality of systems in higher dimensions [Fonseca

et al. 2018], in chapter 4. In chapter 5 we present a method to partially detect

bit-flip noise in entanglement based protocols [Moreno, Fonseca e Cunha 2018].

A characterization of the teleportation protocol for qudits in the presence of noisy

environments is given in chapter 6 [Fonseca 2018] (soon in arXiv). At the end we

give some of the most relevant conclusions of the thesis.

4 Recently it has been reported an experiment producing entangled states of at least d = 100
[Krenn et al. 2014].
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2 PRELIMINARIES

Highlights

Quantum entanglement is briefly presented as a resource for informational tasks.

An introduction is given to the different manifestations of quantum nonlocality and
proposals to quantify it.

The teleportation protocol is presented along with some extensions.

The last part is devoted to introduce the Kraus operators treatment to quantum
noise.

2.1 Quantum States

Before introducing some relevant ideas like entanglement, nonlocality

and teleportation, it is important to briefly clarify several concepts often used in

quantum theory1.

Depending on the nature of its preparation, observation and even the level

of interaction with the environment, the description of the state of a quantum

system may be divided in two classes: pure and mixed:

A pure state |ψ〉 describing a N -partite system may be represented as a

superposition of kets |j〉 in the associated Hilbert space H = H1⊗H2⊗· · ·⊗HN :

|ψ〉 =
∑
j

αj |j〉 , (2.1)

with j = (j1, · · · , jN), 0 ≤ jm ≤ dm − 1, where dm is the dimensionality of the

m-th subsystem and αjm ∈ C, satisfying
∑

j |αj|2 = 1. This definition corresponds

to the more general kind of pure state, nevertheless throughout this thesis we

will be dealing with subsystems of equal dimension d.
1 For a formal introduction, see [Sakurai e Napolitano 2011, Cohen-Tannoudji, Diu e Laloe

1992,Nielsen e Chuang 2010].
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On the other hand, mixed states may be thought as statistical ensembles

of pure states2 |ψk〉, represented by Hermitian, positive semi-definite operators

defined on the Hilbert-Schmidt space HS, also known as density matrices3:

ρ̂ =
M∑
k=1

pk |ψk〉〈ψk| , (2.2)

where pk ∈ [0, 1] and
∑M

k=1 pk = 1, in order to satisfy the normalization condition

Tr(ρ̂) = 1.

Given a density operator ρ̂, it is possible to determine its degree of mixed-

ness by calculating the purity parameter r = Tr(ρ̂2), whose extremal values are

given by r = 1 for a pure state (ρ̂ = |ψ〉〈ψ|) and r = 1/D for a maximally mixed

state (ρ̂ = 1̂/D), where 1̂ is the identity matrix and D is the dimensionality of the

whole Hilbert space, D =
∏N

j=1 dj.

Next we give a brief introduction to the subject of quantum entangle-

ment. For an exhaustive revision we refer the reader to the Horodecki’s re-

view4 [Horodecki et al. 2009] and Bengtsson & Życzkowski’s book [Bengtsson e

Zyczkowski 2007], for a more formal construction.

2.2 Entanglement

Although predicted in the early days of quantum theory [Einstein, Podolsky

e Rosen 1935,Schrödinger 1935], entanglement only came to play a significant

role after the appearance of the Bell’s proposal to test quantum mechanics against

local hidden variables models [Bell 1964]. Particularly, after the end of the eighties

the scientific community became aware of the capacity of this feature to overcome
2 The case mentioned in the text refers to a proper mixture. Nevertheless, a mixed state may

also be obtained when we have access to partial information about the whole system i.e. by
tracing some part. These are known as improper mixed states.

3 Some textbooks instead of the usual Hilbert-Schmidt space, define the density matrices on
B(H), the space of bounded operators acting on H [Bengtsson e Zyczkowski 2007].

4 The reader interested in experimental implementations is referred to [Pan et al. 2012].
Moreover, a review focused on entanglement in open systems is given in [Aolita, De Melo e
Davidovich 2015] and a personal perspective on the subject by Anton Zelinger can be found
in [Zeilinger 2017].



Chapter 2. Preliminaries 17

the performance in the execution of certain tasks when compared to the usage of

classical resources, giving birth to the field of quantum information.

Quantum entanglement may be seen inherently as a mathematical property

of a N -partite5 quantum state |ψ〉, namely the impossibility of this to be written

as a product of the form

|ψ〉 =
N⊗
j=1

|φ〉j = |φ〉1 ⊗ · · · ⊗ |φ〉N , (2.3)

or more generally, for the case of density operators one can say that the state ρ̂ is

entangled if there is no way to decompose it in a convex sum of separable density

matrices

ρ̂ =
∑
k

pk

N⊗
j=1

ρ̂
(k)
j =

∑
k

pkρ̂
(k)
1 ⊗ · · · ⊗ ρ̂

(k)
N , (2.4)

with coefficients pk ∈ [0, 1], satisfying
∑

k pk = 1.

In general terms it is possible to produce quantum entanglement between

degrees of freedom in continuous variables, e.g. gaussian states [Braunstein e

Loock 2005,Adesso e Illuminati 2007], or in discrete variables like spin or number

of particles. In this thesis we concentrate our attention on the second type.

2.2.1 Bipartite entanglement

Currently, the most known and widely studied instance of entanglement

corresponds to that between systems composed by two parts. A very useful way

to represent pure states of this kind is given by the Schmidt decomposition6:
5 Note that talking about multipartite entanglement does not necessarily imply that the

system as a whole is composed by spatially separated parts inasmuch as we can also have
entanglement between local degrees of freedom in a single particle e.g. spin and position
variables of an electron subject to a non-uniform magnetic field.

6 The Schmidt decomposition is originally introduced in [Schmidt 1907]. For a more friendly
presentation, we refer the reader to [Ekert e Knight 1995].
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Schmidt decomposition

In general, a bipartite pure quantum state may be written as:

|ψ〉 =

dA−1,dB−1∑
mn=0

γmn |m〉A ⊗ |n〉B , (2.5)

where γmn ∈ C. After some calculations it is possible to show that by performing

a local change of basis, the state is completely equivalent to:

|ψ〉 =
d∑
j=0

√
λj |µj〉A ⊗ |νj〉B , (2.6)

or:

|ψ〉 =
d∑
j=0

αj |jj〉AB , (2.7)

where d = min{dA, dB}, αj ∈ R and the λj ’s are known as Schmidt coefficients
which correspond to the eigenvalues of the reduced matrix ρ̂A = TrB{|ψ〉〈ψ|},
with TrB{} denoting the partial trace on subsystem B7. In conclusion, given a

bipartite system described by a pure state (eq. 2.5), we can always find a change

of basis which describes our state in the Schmidt form (eq. 2.7).

The number of non-null Schmidt coefficients is known as Schmidt-rank
and it is related to the amount of entanglement of the system as we will see next.

For the moment let us analyse the simplest scenario: a state whose Schmidt-rank

is equal to one, in this case, by virtue of the definition above (equation 2.3), is

separable. Thus, the calculation of the Schmidt coefficients represents a method

to witness the presence of entanglement i.e. if from experimental data we can

determinate the state coefficients γmn (eq. 2.5), then we are able to say whether

the state is entangled or not.

The Schmidt decomposition is also useful in the quantification of entan-

glement for bipartite states as we will see in the next part.
7 It is important to remark that the Schmidt coefficients are also eigenvalues of ρ̂B =

TrA{|ψ〉〈ψ|}.
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Measures of Bipartite Entanglement - Entropy of Entanglement

The superiority of entanglement above classical mechanisms have moti-

vated an operational formulation from the point of view of resource theories.

Under this, it is possible to define which rules a good measure of entanglement

should satisfy and conversely, the set of free operations under which the amount

of entanglement of a given state is not increased [Vedral e Plenio 1998, ao e

Plenio 2008,Horodecki et al. 2009]. The basic properties an entanglement mea-

sure E(|ψ〉) has to fulfill may be summarized as: Given a quantum state |ψ〉,
E(|ψ〉) ≥ 0, the equality only holds whenever |ψ〉 is a separable state, and E(|ψ〉)
is invariant under Local Operations and Classical Communication (hereafter, LOCC).

An extensive set of axioms may be further included, for a revision see [Horodecki

et al. 2009]. Among the zoo of entanglement measures, due to their operational

interpretation we can highlight distillable entanglement, entanglement cost [Ben-

nett et al. 1996] and concurrence [Wootters 1998]. For our case of interest

(bipartite pure states) the three examples cited above reduce to the entanglement
entropy [Bennett et al. 1996], for this reason and due to its simplicity, we employ

it to quantify entanglement all through this thesis.

The entropy of entanglement is calculated by using the von Neumann

entropy of the reduced density operator of any of the subsystems:

E(|ψ〉) = S(ρ̂A) = S(ρ̂B) = −Tr [ρ̂A log(ρ̂A)] = −Tr [ρ̂B log(ρ̂B)] . (2.8)

For a system composed by two d-dimensional systems (hereafter qudits), described

by the state 2.7, the reduced density matrix corresponding to the subsystem A

reads:

ρ̂A =
d−1∑
j=0

α2
j |j〉〈j| . (2.9)

Using the fact that log ρ̂A =
∑d−1

j=0 logα2
j |j〉〈j|, we have:

E(|ψ〉) = −
d−1∑
k=0

〈k|

(
d−1∑
l=0

α2
l |l〉〈l|

d−1∑
m=0

logα2
m |m〉〈m|

)
|k〉 ,

then:

E(|ψ〉) = −
d−1∑
m=0

α2
m logα2

m. (2.10)
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From here, it is straightforward to show that the state which maximizes the

entropy of entanglement is such that αm = 1/
√
d. In this way, we can define the

maximally entangled state of two qudits as:

|ψ〉 =
1√
d

d−1∑
j=0

|jj〉 , (2.11)

with an entropy of entanglement log d. The states above are not unique, instead

we can associate a phase exp(iϕj) to each coefficient. In particular, let us define

the “µ, ν” element of the generalized Bell basis as:∣∣φdµν〉 =
1√
d

d−1∑
j=0

ωjµd |j, j ⊕ ν〉 , (2.12)

where ωd = exp
{

2πi
d

}
is the primitive d-th root of unity, the symbol “⊕" denotes

sum modulo d and µ, ν = 0, . . . , d − 1. Note that for d = 2 we obtain the usual

Bell basis. Moreover, the set of maximally entangled states {|φµν〉} constitutes a

basis for the Hilbert space associated with a pair of qudits, Hd ⊗Hd.

In addition, it is always possible to transform a maximally entangled state

into another one by LOCC. In fact we can obtain |φ00〉 from any state |φµν〉 by

applying the conjugate of the Weyl operator Ûµν on the second part:∣∣φd00

〉
= 1̂A ⊗ Û∗µν

∣∣φdµν〉 , (2.13)

where Ûµν is defined as:

Ûµν =
d−1∑
j=0

ωµjd |j〉〈j ⊕ ν| . (2.14)

It is straightforward to show that for d = 2, Ûµν operators are proportional to the

Pauli matrices (see figure 4). In the last section we will make use of these objects

to define some kinds of noise on qudit systems.

Note that the more non-null Schmidt coefficients, the larger the contribu-

tions to the entropy of entanglement, thus it follows that the associated Schmidt

rank rφ constitutes a discrete valued measure of entanglement of a given quantum

state |φ〉.

Now we give a brief description of the phenomenon of entanglement

involving more than two parts.
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2.2.2 Multipartite entanglement

The bipartite case represents the less complex manifestation of entangle-

ment. Indeed one of the features motivating this assertion is the fact that one can

get any two-qudit state from a maximally entangled one by using LOCC [Vidal

1999,Bose, Vedral e Knight 1999]. Moreover, given that we can transform any

maximally entangled state (hereafter MES) into any other state by LOCC, then it

is possible to state that there is only one kind of genuine bipartite entanglement.

Nevertheless, this feature is uniquely observed in the two parts scenario. For the

next level of complexity, namely three entangled qubits, given an state one can

obtain it from one and only one out of two types of entangled states, or in other

words, there are two kinds of genuine three partite entanglement [Dür, Vidal e

Cirac 2000]. The first class is composed by states which may be obtained by LOCC

on the Greenberger-Horne-Zeilinger state (GHZ) [Greenberger, Horne e Zeilinger

1989], defined as:

|GHZ〉 =
1√
2

(|000〉+ |111〉) . (2.15)

Let us define the GHZ basis with elements |φµνλ〉

|φµνλ〉 =
1√
2

1∑
j=0

(−1)µj |j, j ⊕ ν, j ⊕ λ〉 , (2.16)

where µ, ν, λ ∈ {0, 1}. The GHZ state |GHZ〉 is related to the elements of the

basis as:

|φµνλ〉 =
(
σ̂µz ⊗ σ̂νx ⊗ σ̂λx

)
|GHZ〉 . (2.17)

Here, σ̂mk indicates m applications of the k-Pauli matrix.

The second class of genuine three-partite entanglement is constituted by

the so called W states [Dür, Vidal e Cirac 2000,Zeilinger, Horne e Greenberger

1997], defined as:

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) . (2.18)

As before, we can build a basis composed by 8 states equivalent to |W 〉 under

LOCC, however we do not present it here.
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An interesting feature emerges if we increase the number of particles by

one. Verstraete and collaborators [Verstraete et al. 2002] have shown that any

four qubit pure state is equivalent by SLOCC8 to one out nine families of states.

Nevertheless, at least 6 of these depend on a set of continuous parameters, and

in this way, different to the N = 3 case, it is possible to conclude that there are

infinite inequivalent SLOCC classes of four qubit entanglement [Dür, Vidal e Cirac

2000,Eltschka e Siewert 2014,Regula et al. 2014].

More formally, a genuinely entangled state may be defined as a state

which cannot be split as a product of two arbitrary partitions i.e. |ψ〉 6= |φ〉 ⊗ |ϕ〉.
This definition may be further extended to mixed states: A genuinely N -partite

entangled mixed state %̂ is any state indecomposable into arbitrary partitions %̂Aj
and %̂Bj , as:

%̂ =
∑
j

pj %̂Aj ⊗ %̂Bj . (2.19)

Note that the definition above is different from that no separable state because in

this, each partition %̂Cj may be composed by several subsystems which in addition

can be entangled, if so we can say that %̂ is entangled, but not genuinely.

Roughly speaking, the task of determining whether a quantum state is

genuinely entangled is very difficult and its complexity increases with the number

of parties and dimensions of each subsystem. Recently, Kraft and collaborators

[Kraft et al. 2018] have developed a method to address this problem. Under this

approach they were able to define the concept of genuinely entangled multilevel

states as those which are not decomposable in lower-dimensional subsystems and

extend their results to the multipartite case.

A less restrictive though difficult task is the verification of the presence

of entanglement in quantum systems. For this there exist a lot of procedures

whose effectiveness depends on the specific features of the state in question. The

most well known procedure is the Peres-Horodecki criterion which represents a

necessary condition for a bipartite system to be separable [Peres 1996,Horodecki,

Horodecki e Horodecki 1996], and specifically for the 2 × 2 and 2 × 3 cases, it

also constitutes a sufficient condition. Its importance lies on the capability of
8 Stochastic LOCC.
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discriminating entanglement in mixed states, on which it is no longer possible to

get a Schmidt decomposition. Remarkably, an extension of the Peres-Horodecki

criterion for systems in continuous variables has also been proposed [Simon

2000].

The Peres-Horodecki criterion requires a previous complete knowledge of

the system, (i.e. the whole elements of the density matrix ρ̂), nevertheless most

of the time it is by itself a very hard task from the experimentalist point of view.

An alternative is to use hermitian operators whose expectation values are always

positive or zero for separable states and negative for certain entangled states

and are known as entanglement witnesses [Horodecki, Horodecki e Horodecki

1996, Terhal 2000]. A closely related method to identify entanglement is the

violation of Bell inequalities [Terhal 2000], by virtue of the Gisin’s theorem (see

next section). For a complete review on the subject, we refer the reader to [Gühne

e Tóth 2009].

The following subsection is devoted to present some states relevant in

quantum information from the historic and foundational points of view.

2.2.3 Some special families of states

Supose we have a source of entangled qudits in a state ρ̂. We send one

qudit to Alice and the other to Bob. Then Alice applies an unitary operation Û

chosen at random and informs Bob to carry out either Û or Û∗9 on his qudit.

Regardless the initial state of the system, after many repetitions of the same

procedure, the final state shared by Alice and Bob reduces to a Werner or an

isotropic state:

Werner states

When Alice and Bob apply local operations Û⊗ Û , we have [Werner 1989]:

ρ̂→
∫
Û ⊗ Û ρ̂ Û † ⊗ Û †dU = ρ̂W , (2.20)

9 The symbol “∗”indicates complex conjugation of the associated matrix elements.
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where dU is the Haar measure of the unitary group U(d) and ρ̂W is the Werner

state, given by:

ρ̂W = (1− p) 2

d2 + d
P̂ (+) + p

2

d2 − d
P̂ (−), (2.21)

with P̂ (±) = 1
2

(
1̂± V̂

)
, where 1̂ is the identity: 1̂ =

∑d−1
jk=0 |jk〉〈jk| and V̂ is the

flip operator: V̂ =
∑d−1

jk=0 |jk〉〈kj|. It is important to mention that the Werner

state ρ̂W is invariant under Û ⊗ Û operations. By using the following relations

P̂ (+)P̂ (−) = 0, P̂ (±)2 = P̂ (±) and tr P̂ (−) = 1
2
(tr 1̂− tr V̂ ) = 1

2
(d2 − d), it is easy to

show that the operation invariant p 10 is equal to p = tr
(
P̂ (−)ρ̂W

)
.

Isotropic states

In the case of local operations Û ⊗ Û∗, the state ρ̂ is transformed as

[Horodecki e Horodecki 1999]:

ρ̂→
∫
Û ⊗ Û∗ ρ̂

(
Û ⊗ Û∗

)†
dU = ρ̂f , (2.22)

where ρ̂f is the isotropic state, given by:

ρ̂f =
1− f
d2 − 1

1̂ +
fd2 − 1

d2 − 1
P̂+, (2.23)

with P̂+ =
∣∣φd00

〉〈
φd00

∣∣. Analogously to the Werner state, the isotropic state is

invariant under Û ⊗ Û∗ operations.

By expanding the identity operator in the generalized Bell basis 1̂ =∑d−1
µν=0

∣∣φdµν〉〈φdµν∣∣, the isotropic state takes the form:

ρ̂f = f
∣∣φd00

〉〈
φd00

∣∣+
1− f
d2 − 1

d−1∑
µν=0

(µ,ν)6=(0,0)

∣∣φdµν〉〈φdµν∣∣ . (2.24)

In this expression it is possible to see more clearly that the operation invariant f

is equal to: f = tr
(∣∣φd00

〉〈
φd00

∣∣ ρ̂) = tr
(∣∣φd00

〉〈
φd00

∣∣ ρ̂f).
10 Particularly in the case d = 2, p denotes the singlet fraction or in other words the degree of

similarity of the state before (ρ̂) and after (Ŵp) twirling operations, to the singlet state
∣∣φ211〉,

i.e. p = tr
(∣∣φ211〉〈φ211∣∣ ρ̂) = tr

(∣∣φ211〉〈φ211∣∣ Ŵp

)
.
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2.2.4 Applications of entanglement

The advent of the so called second quantum revolution has been possible

due to key theoretical developments and applications of entanglement in quantum

systems, let us mention some of the most relevant:

In 1984 Charles Bennet and Guilles Brassard presented a quantum key

distribution protocol (BB84) [Bennett e Brassard 1984], which under ideal con-

ditions is able to exhibit an improved performance when compared to the case

in which only classical resources are employed. Moreover, in this it is possible to

detect an eavesdrop attack due to the fundamental 5fact that once a quantum

system is measured its state is modified.

Another interesting application using quantum resources is known as

super-dense coding [Bennett e Wiesner 1992]. Consider Alice and Bob sharing a

maximally entangled state |φ2
00〉, she performs one out of the following operations

on her qubit {1̂, σ̂x, σ̂y, σ̂z} and sends it to Bob, who carries out a Bell measurement

on the pair. It is easy to show that there is a one to one correspondence between

the measurement outcomes obtained by Bob and the operations performed by

Alice (see equation 2.13). In this way Alice by sending only one quantum bit can

transmit 2 classical bits, attaining a compression factor of two per message. We

devote one chapter of this thesis to present results of noise detection in protocols

like this when it is made use of GHZ states and measurements instead of bipartite

counterparts (Bell).

One of the most known applications of entanglement is the so called

quantum teleportation [Bennett et al. 1993]. In this case Alice and Bob share

an entangled state, additionally Alice possesses a qubit in a state that may be

unknown. By carrying out a Bell measurement on her particles and using a

classical channel to send the information about her outcome, Bob’s qubit can

recover the state of Alice’s particle. In other words Alice and Bob employed a

shared entangled state and LOCC to transmit the quantum state of a particle

without the need to transmit it physically. We extend this idea in a subsequent

section and present several results in the last two chapters of this thesis.

Another related protocol is the entanglement swapping [Zukowski et al.
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1993]. In this it is possible to entangle two qubits which have never interacted

but share entanglement with a third party that performs Bell measurements on

his qubits and sends classically the information about the outcomes to one of the

parties.

The next section is focused on a phenomenon closely related to entangle-

ment, i.e. quantum nonlocality.

2.3 Bell Nonlocality

To date there exist several compilations in the area from diverse perspec-

tives. Remarkably, in [Reid et al. 2009] it is given a focus mainly on experimental

implementations. Buhrman and collaborators review the relationship between

quantum information science and fundamental concepts in quantum mechanics

like nonlocality in [Buhrman et al. 2010]. The most recent (and probably the most

known) is the “Bell Nonlocality" review by Nicolas Brunner and co-workers [Brun-

ner et al. 2014]. Finally, in Gláucia Murta master’s dissertation it is presented a

series of mathematical tools essential to understand the geometrical structure

behind quantum nonlocality [Murta 2012].

Although the study of Bell nonlocality was initially motivated by the

Einstein-Podolsky-Rosen (EPR) paradox [Einstein, Podolsky e Rosen 1935,Bohm e

Aharonov 1957] and posteriorly by the work of Bell [Bell 1964], here we adopt an

alternative route to introduce the concept and after we review the most important

ideas behind these seminal papers. Let us start the discussion evoking one of the

most intuitive ways to see nonlocality in action: The CHSH11 game:

2.3.1 The CHSH game

Imagine two players, Alice and Bob as usual, who are cooperating to win

a game against an external referee. In each round the referee sends a pair of
11 CHSH, after John Clauser, Michael Horne, Abner Shimony and Richard Holt, responsible for

the derivation of the unique tight Bell inequality for the scenario 2, 2, 2 (Two parts, two inputs
each with two possible outcomes) [Clauser et al. 1969]. In the forthcoming paragraphs, some
technical details above mentioned will become more clear.
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classical bits (x, y) (questions) separately to Alice and Bob, and immediately after,

each of them sends back a bit a and b respectively (answers). They receive a point

whenever the relation a⊕ b = x ·y is satisfied, where the symbol “⊕”indicates sum

modulo 2. The only constraint in the game is that as soon as it begins, both players

are forbidden to interchange any kind of information (including the questions

sent by the referee). Nevertheless, they can previously agree on an strategy such

as a set of random shared bits, or simply as to ignore the questions and both

always provide the same answer i.e. a = b = 0. In fact, it is easy to see that if the

referee chooses the questions from a random uniformly distributed sample, the

last mentioned strategy is optimal, given that they can win three out of four times

and there is no way to overcome the limit pwin = 75% by only using classical

strategies. Moreover, Alice and Bob may adopt another strategy to win the game

with a higher probability (even keeping the no-signalling restriction, defined in the

next section), that is, by using a quantum resource: pairs of maximally entangled

qubits and local incompatible measurements. In particular, consider the players

sharing a state: ∣∣φ2
00

〉
=

1√
2

(|00〉+ |11〉) . (2.25)

The choice of the measurement basis is conditioned to the question sent by the

referee. It is not difficult to show that the optimal set of local measurement basis

are given by:

|a = 0〉 = |0〉 and |a = 1〉 = − |1〉 ,

|a = 0〉 =
1√
2

(|0〉+ |1〉) and |a = 1〉 =
1√
2

(|0〉 − |1〉) ,

for questions x = 0 and x = 1 in Alice respectively. For Bob we have:

|b = 0〉 = cos
(π

8

)
|0〉+ sin

(π
8

)
|1〉 and |b = 1〉 = sin

(π
8

)
|0〉 − cos

(π
8

)
|1〉 ,

|b = 0〉 = cos
(π

8

)
|0〉 − sin

(π
8

)
|1〉 and |b = 1〉 = − sin

(π
8

)
|0〉 − cos

(π
8

)
|1〉 ,

for measurement choices y = 0 and y = 1, subsequently.

After some calculations, it is possible to show that the probability of

winning the game is pQwin = cos2(π
8
) = 1

2
+ 1

2
√

2
≈ 0.853, which is significantly

greater than the larger value attainable by only using classical means, 75%!
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In this simple example we have shown that nature is capable of providing

correlations which are in fact stronger than classical ones by the mere application

of the laws of quantum mechanics. Now we turn our attention to a presentation

of nonlocality based on the statistics of the outcomes rather than the physical

mechanisms responsible of producing them: the device independent approach

(the interested reader may find very useful the Valerio Scarani’s work on the

subject [Scarani 2012]).

2.3.2 Device independent approach to nonlocality

The Device Independent (DI) certification program has a huge importance

because it only relies on the statistics of a given experiment and it is not necessary

to make any extra assumption on the system to be tested12. A system under the

DI approach is treated as an assortment of black-boxes equipped with buttons (or

simply inputs) which after being pushed produce one out of an array of outcomes,

in general different in each run of the experiment. At the end of the day, from the

set of frequencies it is possible to infer underlying properties of the whole system.

For simplicity and due to the fact that this thesis is mainly devoted to

bipartite systems, we present the main features of the device independent sce-

nario restricted to the N = 2 case. Nevertheless, the N -partite generalization is

straightforward.

Consider a system composed by two parts, Alice and Bob each possessing

a black-box as in figure 1. At each run of the experiment, Alice chooses an input

x out of mA options and likewise, Bob selects his input y from mB alternatives.

Subsequently their boxes give back outputs a and b respectively. From the fre-

quencies and after many repetitions Alice and Bob can build good estimates of

the set of joint probabilities {p(ab|xy)}. Here we adopt the standard convention

for the outputs labels in which they can attain discrete values between 0 and

dk − 1, where k stands for the part of the system, say Alice or Bob. Although, in

this work we do not consider subsystems with different number of outputs e.g.
12 The only physically motivated restriction imposed on the system is that communication

among parts is forbidden, thus in agreement with relativity. This is also known as the
non-signalling condition, introduced more formally later.
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A B

x={1, ... ,mA} y={1, ... ,mB}

a={0, ... ,dA-1} b={0, ... ,dB-1}

s

Figure 1 – Usual Bell nonlocality bipartite scenario. Alice’s (Bob’s) box has mA (mB)
possible inputs and dA (dB) potential outcomes. After many rounds of the
experiment they can construct the complete set of joint probabilities {p(ab|xy)}
from which it is possible to infer the presence of a shared resource S and even to
build a characterization of this.

dA = dB = d, we tend to maintain the generality in the introductory part. The

vector p(ab|xy) with elements {p(ab|xy)} is often called a behaviour and the set

of all possible behaviours define the probabilities space P, which may be seen as

the “positive hyperoctant" (simplex) in a mAmBdAdB-dimensional flat space. The

first an most natural constraint on P is the normalization:

dA−1,dB−1∑
a,b=0

p(ab|xy) = 1 ∀ x, y. (2.26)

Given that we have in total mAmB equations, then the effective dimensionality is

reduced to mAmB(dAdB − 1).

From Einstein’s theory of relativity we know that instantaneous trans-

mission of information is fundamentally forbidden, thus in order to take into

account all kind of possibilities, even those events in which Alice and Bob give

their inputs to their boxes are separated by space-like intervals, then the outputs

of a given part cannot depend of the choice on the other. It lead us to the so called

no-signalling conditions: Alice’s outcomes do not depend on the choice made by

Bob:
dB−1∑
b=0

p(ab|xy) =

dB−1∑
b=0

p(ab|xy′) = p(a|x), ∀ a, x, y, y′. (2.27)



Chapter 2. Preliminaries 30

And conversely for Bob, we have:

dA−1∑
a=0

p(ab|xy) =

dA−1∑
a=0

p(ab|x′y) = p(b|y), ∀ b, x, x′, y. (2.28)

These restrictions lead also to a decrease in the effective dimensionality of P.

Given two arbitrary vectors p1(ab|xy),p2(ab|xy) ∈ P , satisfying normaliza-

tion and no-signalling conditions, any convex sum of them is also a vector in P
and fulfils the same requirements above, then, the set of no-signalling correlations

constitutes a convex set. Additionally, it is possible to show that normalization

and no-signalling constraints induce the existence of a finite set of vertices or

extremal points13, therefore the no-signalling constraint defines a convex polytope.

The no-signalling polytope NS has a huge relevance because it imposes an outer
bound on models trying to explain nature.

An additional constraint, inspired by our newtonian-like perception of

nature is given by the local realism constraint. Locality is a natural restriction

which arises from the notion that nothing can alter the properties of something

that is separated enough and the realism prescription suggests that the outcomes

of a given measurement exists even prior to the measurement itself. According

to these ideas, the most basic probability distribution following the local realism

condition may be written as: pL(ab|xy) = δa,f(x)δb,g(y), where f and g are auxiliary

functions which account for the determinism in the outputs. However, we can

generalize this condition and instead of fixed values, a and b are determined now

by probability distributions. Furthermore, apart from the inputs we can consider

a set of factors λ influencing the final outcomes, in general unknown to us and for

this reason these are often called hidden variables. Thus, if a joint probability can

be constructed from a Local Hidden Variables Model (LHVM), we can write it as:

pL(ab|xy) =

∫
Λ

q(λ)p(a|x, λ)p(b|y, λ)dλ, (2.29)

where q(λ) is the probability distribution of the hidden variables and satisfies

normalization as usual
∫

Λ
q(λ)dλ = 1. An important element here is that we

13 Extremal points in a convex set are all points which cannot be written as a convex combination
of other points inside the set (p. 30, [Murta 2012]).
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assume free will in the choice of the inputs, given that they enter in the LHVM

as free parameters and do not depend on particular values of λ, for instance. It

can be shown that probability distributions satisfying 2.29 form a convex set and

furthermore the set of deterministic strategies describe extremal points on it, then

as in the case of the no-signalling correlations14, the set of probability distributions

admitting a LHVM constitute a polytope, called the local polytope L. In order

to determine whether a given behaviour p(ab|xy) admits a LHVM description

(p(ab|xy) ∈ L), one can find the related hyperplane equations corresponding to

the facets of the local polytope and test if the given probability is inside or not. In

general terms, those constraints may be written as [Brunner et al. 2014]:

s · p =
∑
abxy

sabxyp(ab|xy) ≤ SL. (2.30)

Expressions like this are known as Bell inequalities, where s is a vector with

elements sabxy ∈ R and SL = max
p∈L

s · p, is the locality bound. The inequality is

satisfied whenever the probability distribution can be decomposed as eq. 2.29, i.e.

p(ab|xy) allows a local hidden variable model description. The following section

is devoted to present several examples of Bell inequalities.

Now we proceed to describe the set formed by behaviours resulting from

predictions of quantum mechanics: the quantum set Q, which comprises probabil-

ity distributions that may written as:

pQ(ab|xy) = tr
(
M̂a|x ⊗ M̂b|y ρ̂AB

)
, (2.31)

where ρ̂AB ∈ HSA ⊗HSB is the density operator of the system shared between

Alice and Bob, and {M̂a|x} is the positive operator valued measurement (POVM)

associated with the input choice x for Alice’s subsystem, with M̂a|x a positive

semidefinite operator acting on HA, satisfying
∑

a M̂a|x = 1̂dA for all x (analogous

relations hold also for Bob’s POVM). It is important to note that the amount of

operators in the POVM is not necessarily equal to the dimensionality of the system.

However, in the case of conventional von-Neumann measurements in which the

measurement operators represent rank-1 projectors M̂ (p)
a|x = |a〉〈a|x, these two

14 More precisely the set of vertices in NS is constituted by the local deterministic strategies
(extremal points of L) and the so called PR boxes which we will explain latter.
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numbers must coincide in order to ensure that the total probability is always

equal to one. For this the joint conditional probability reads:

pQ(ab|xy) = tr
(
|a〉〈a|x ⊗ |b〉〈b|y ρ̂AB

)
. (2.32)

The work presented in this thesis makes use of projective measurements only,

then the expression above will be very useful in several contexts.

It can be proven that given two arbitrary behaviours inside the quantum

set, a convex sum of them is also in Q, thus we can conclude that the quantum

set is convex. Moreover, differently from its local and no-signalling counterparts,

the quantum set possesses an infinite number of extremal points, so it is not a

convex polytope and for this reason its characterization is more complex. Several

efforts have been made in this direction. From a numerical perspective, Navascués,

Pironio and Acín (NPA) introduced a method based on semi-definite programming

able to find the outer boundary of the quantum set [Navascués, Pironio e Acín

2007], for recent developments and extensions see [Navascués, Torre e Vértesi

2014,Navascués e Vértesi 2015,Navascués et al. 2015]. From an analytical point

of view, de Vicente derived a set of conditions that a given behaviour inside the

quantum set must satisfy [De Vicente 2015]. Recently, by using tools of convex

geometry it has been presented a characterization of Q for the (2, 2, 2) scenario

(two parts, two inputs and two outcomes per part), in which the authors found

several interesting features like flat boundaries and non-exposed extremal points,

in addition they show that more complex scenarios may lead to other previously

unexpected properties. For details, we refer the interested reader to [Goh et al.

2018].

After introducing NS, L and Q, a natural question that arises is how they

are distributed in P and whether exists a kind of hierarchy between them, in figure

2 we show a section of the space of behaviours and corresponding constraints for

the scenario (2, 2, 2). It can be shown [Murta 2012] and as we can see in figure 2,

the three sets are related as L ( Q ( NS. It is important to note that due to the

existence of particular kinds of behaviours the inclusion is strict. For instance the

condition L ( NS is satisfied because of the presence of the so called Popescu-

Rohlrich behaviours. Such probability distributions can be generated by PR-Boxes,
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NS

Q

L

Deterministic behaviour

PR-Box

Tight Bell inequality

Facet of  L

Figure 2 – Pictorial representation of the space of behavious and constraints on it. Q, L and
NS represent the quantum set, local and no-signalling polytopes. The green line
describes a facet of the local polytope for which we can always associate a Bell
inequality. The extremal points of the local polytope are local deterministic
strategies and those corresponding to the no-signalling part outside the local
region are known as Popescu-Rohrlich-Boxes (PR-boxes). Note that the relation
L ( Q ( NS is satisfied.

hypothetical objects capable of generating outputs correlated in such a way that

violate a determinate Bell inequality up to its maximal algebraic limit. Although

proposed by Rastall, Khalfin and Tsirelson [Khalfin e Tsirelson 1985,Rastall 1985],

the PR-boxes receive their name after Popescu and Rohlrich’s pioneering attempt

to formalize quantum theory from first principles instead of the usual postulates

[Popescu e Rohrlich 1994]. On the other hand, it is straightforward to show that

any behaviour inside the local polytope may be “simulated by using quantum

resources" (a separable state plus local measurements), i.e. for any pL(ab|xy),

it is always possible to find a decomposition leading to pL(ab|xy) = pQ(ab|xy).

Nevertheless the converse is not true, and actually there are quantum behaviours

generated by the use of entangled states and properly chosen local non-commuting
measurement operators leading to violation of Bell inequalities (eq. 2.30), and

in this way outside the local polytope. From this we can conclude that L ( Q.
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Behaviours violating Bell inequalities are usually termed as nonlocal15 due to

the impossibility of finding a model based on local hidden variables to explain

them16.

The EPR Argument and Bell’s Theorem

The result above constitutes the basis of Bell’s theorem which establishes

that there is no physical theory based on local hidden variables capable of repro-

ducing all the predictions of quantum mechanics17 [Bell 1964]. Bell’s conclusion

came after almost thirty years since the publication of the seminal paper by

Einstein, Podolsky and Rosen18 [Einstein, Podolsky e Rosen 1935], today known

as the EPR argument. In their work, EPR conceived an experiment in which Alice

and Bob share an ensemble of entangled pairs of qubits, and each of them is able

to perform local measurements. Under this scenario, the measurement events are

separated by space-like intervals. At each instant Alice may choose one out of two

incompatible observables Â1 or Â2 (analogously for Bob, B̂1 or B̂2). Assuming that

any local action on each particle cannot influence its counterpart (locality), and

that measurement results pre-exist for any observable independent of the choice

(realism)19, they were able to show that under special cases concerning systems

with a high degree of symmetry, two local measurements (one in Alice and the

other in Bob’s location) allow for the determination of the values associated to

the four involved observables, and thus in contradiction with Heisenberg’s uncer-

tainty principle. EPR concluded that there is no way in which QM satisfy the local

realism assumption, and then there should exist a more general theory possibly

described by a set of hidden variables (not available for the experimenter), in

analogy to the relation between thermodynamics and statistical mechanics, in
15 Some authors rather use the term nonclassical instead of nonlocal correlations.
16 In fact in order to reproduce an arbitrary quantum correlation it is necessary to use a model

based on nonlocal hidden variables only [Colbeck e Renner 2008].
17 A very interesting extension of Bell’s statements is given by the so called Fine’s Theorem [Fine

1982,Fine 1982].
18 An alternative and more friendly formulation of the EPR argument was given by Bohm and

Aharonov in 1957 [Bohm e Aharonov 1957] in terms of discrete degrees of freedom (spin),
instead of continuous variables as originally proposed. Moreover Bell’s deduction is built
following Bohm and Aharonov’s presentation.

19 The junction of both premises is known as local realism assumption.



Chapter 2. Preliminaries 35

which the position of particles in the phase space play the role of hidden variables.

Inspired by this, Bell derived a set of conditions (Bell inequalities) satisfied by

predictions from any theory based on LHV, which as mentioned before, quantum

mechanics violates under certain scenarios. Since then many efforts have been

concentrated to experimentally test QT against local realism hypothesis, with a

vast majority in favor of the first one. In an upcoming section we briefly discuss

some of these experiments along with the so called “loopholes" closed up to date.

The conclusion we can take from Bell’s theorem is that by the usage of

systems that even spatially separated by large distances behave like a single one,

we can observe how nature is able to exhibit correlations which are stronger

than those obtained when classical resources are used, and most important, those

correlations do not violate any physical principle and in this way, features like

faster than light communication are not allowed.

Back to the quantum set, it is not hard to show that quantum correla-

tions satisfy the no-signalling constraints (equations 2.27 and 2.28). In addition

Tsirelson showed that joint probabilities from quantum mechanics cannot ex-

ceed the value max
Q

ICHSH = 2
√

2 (Tsirelson limit), for the Bell-CHSH inequal-

ity [Clauser et al. 1969], instead of its maximal algebraic value, max
NS

ICHSH = 4

[Cirel’son 1980]. Then we can safely ensure that the relation Q ( NS is satisfied.

This result has inspired many efforts in order to understand what physical princi-

ples are behind the Tsirelson bound and why nature does not exhibit violation

of Bell inequalities up to their algebraic limit, we refer the interested reader to

references [Pawłowski et al. 2009, Masanes e Müller 2011, Popescu e Rohrlich

1994,Navascués e Wunderlich 2010].

2.3.3 Bell inequalities

From a geometrical point of view, tight Bell inequalities are known to be

hyperplane equations describing the boundary of the local polytope (facets), then

we can use them to discriminate local from nonlocal behaviours20. In this section
20 Note that not every Bell inequality is tight i.e. doesn’t represent a facet of L, and though

helpful in the task of nonlocality detection those are not optimal i.e. by employing non-tight
inequalities it is possible that a fraction of the nonlocal correlations remain unrevealed. The
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we present the Bell inequalities that we will employ throughout this thesis. A

compilation of Bell inequalities for diverse scenarios may be found in [Brunner et

al. 2014].

CHSH inequality

Let us start by the simplest scenario: two parts, two inputs and two

outcomes (2, 2, 2). In this case, John Clauser, Michael Horne, Abner Shimony

and Richard Holt (CHSH) derived an inequality for a system composed by two

spin-1/2 entangled particles under Pauli measurements [Clauser et al. 1969],

which is equivalent to:

−2 ≤ E(m,n) + E(m,n′) + E(m′,n′)− E(m′,n) ≤ 2, (2.33)

where E(m,n) is the correlation funtion between ŜA ·m and ŜB ·n measurements

performed along directions m and n on Alice and Bob’s particles respectively,

and Ŝj = ~
2

(
σ̂

(j)
x , σ̂

(j)
y , σ̂

(j)
z

)
denotes a vector whose components are the cartesian

projections of the spin operator associated to the j-th part. For convenience

we relabel the outcomes as 1
2
→ 0 and −1

2
→ 1, in this way we can write the

correlation function E(m,n) in terms of joint probabilities as

E(m,n) =
1∑

a,b=0

(−1)a⊕bp(a, b|m,n). (2.34)

Note furthermore that when Alice and Bob possess one of their measurement

directions alligned (e.g. m′ = n′) and if we allow perfect anti-correlations, i.e.

E(m′,m′) = −1, then the CHSH inequality reduces to the first Bell inequality [Bell

1964].

Several expressions equivalent to the CHSH inequality (eq. 2.33) are cur-

rently known in the literature. Let us point out the version derived by Clauser and

Horne [Clauser e Horne 1974], which is written in function of joint probabilities

instead of correlation functions:

−1 ≤ p(Ax, By)−p(Ax, By′)+p(Ax′ , By)+p(Ax′ , By′)−p(Ax′)−p(By) ≤ 0, (2.35)

most known instance is the first inequality derived by Bell [Bell 1964].
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where p(Ax, By) ≡ p(0, 0|Ax, By), is the joint probability of Alice and Bob obtain

the outcomes labeled by “0” each, given the observables choices Ax and By as

inputs for both parts respectively.

It is worth mentioning that its maximal violation may be attained by using

a maximally entangled state of two qubits subjected to properly chosen local

projective measurements [Cirel’son 1980].

Imm22 inequalities

The family of Imm22 tight Bell inequalities, first proposed by Froissart in

1981 [Froissart 1981] and then explored in [Collins e Gisin 2004, Śliwa 2003],

constitutes the generalization of the CHSH inequality (m = 2) for the case

in which Alice and Bob may choose among m inputs each. In terms of joint

probabilities, the Imm22 inequality may be written as [Acín, Gisin e Toner 2006]:

Imm22 = −p(A1)−
m−1∑
j=1

(m− j)p(Bj) +

m−j+1
m∑
j=1
k=1

p(Ak, Bj)−
m∑
j=2

p(Am−j+2, Bj) ≤ 0.

(2.36)

The importance of this family relies on its “ability" to reveal several non-

classical features impossible to detect if we restrict the scenario to two inputs

only. For instance, Collins and Gisin found a family of mixed entangled states

which admits a LHVM under a CHSH scenario and projective measurements,

but violates the I3322 inequality [Collins e Gisin 2004]. Furthermore in [Brunner,

Gisin e Scarani 2005] the authors show that for some non-maximally entangled

states it is impossible to simulate correlations under a (2, 3, 2) scenario with local

operations and a single use of the so called non-local machine (a hypothetical

apparatus capable of generating PR-box correlations), even though Cerf and

collaborators [Cerf et al. 2005] had previously proven that this kind of task

is always attainable when restricted to a CHSH scheme. In other words, the

simulation of (2, 3, 2) correlations requires a higher amount of nonlocal resources.

Another interesting feature of the I3322 inequality is that as conjectured

by Pál and Vértesi [Pál e Vértesi 2010], its maximal violation is only attained
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by using infinite-dimesional systems as opposed to the CHSH case, in which

two-dimensional subsystems are sufficient, as mentioned above.

The complexity associated to the task of finding the corresponding facets

of the local polytope increases very quickly with the number of parts, settings and

outcomes. Nevertheless, note that for some of the simplest scenarios (in addition

to the CHSH), only one more inequality suffices to fully describe it: the I3322 for

(2, 3, 2) and the CGLMP inequality (introduced below) for (2, 2, 3).

CGLMP inequality

The Collins, Gisin, Linden, Massar, Popescu (CGLMP) inequality [Collins et

al. 2002] represents a facet of the associated local polytope in scenarios involving

d outcomes per part (2, 2, d) [Masanes 2003] and may be written as:

Id =

[d/2]−1∑
k=0

(
1− 2k

d− 1

){
Bk − B−(k+1)

}
≤ 2, (2.37)

where [x] indicates the integer part of x, Bk = P (A1 = B1 + k) + P (B1 =

A2 + k + 1) + P (A2 = B2 + k) + P (B2 = A1 + k) and P (Ax = By + k) is the joint

probability that the outcomes corresponding to the observables Ax in Alice and

By in Bob respectively differ by k, modulo d:

P (Ax = By + k) ≡
d−1∑
j=0

P (Ax = j ⊕ k,By = j) =
d−1∑
j=0

P (j ⊕ k, j|x, y).

Given that entanglement is one of the necessary resources to reveal non-

locality, one could in principle argue that a maximally entangled state leads to

maximal violation of this inequality for arbitrary dimension d, however Acín

and collaborators were able to show that this is not the case for d > 2 [Acín et

al. 2002] (It is important to mention that the same results were obtained later

by employing a different approach [Navascués, Pironio e Acín 2007]). Such a

discrepancy among maximally entangled states and states that maximally violate

the CGLMP inequality together with other results regarding quantification of

nonlocality (wich we will explain later) became known in the literature as an

anomaly of nonlocality [Méthot e Scarani 2007]. The next two chapters are
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devoted to present a proposal to quantify nonlocality in which this divergence

does not appear anymore.

It is important to note that both CGLMP (for d = 2) and the I2222 reduce

to the CHSH inequality, as expected21.

Currently there are several Bell inequalities for the multipartite scenario.

For instance in [Laskowski et al. 2004] the authors present inequalities for

arbitrary number of measurement settings. More interestingly, to date (to the

knowledge of the author) there is no Bell inequality for the most general case (i.e.

arbitrary parts, inputs and outcomes). A complete list of known Bell inequalities

may be found in Bell nonlocality’s review [Brunner et al. 2014] and the “Zoo of
Bell inequalities" section in Jeong-Cherng Liang’s thesis [Liang 2008].

2.3.4 Quantification of nonlocality

As we have already mentioned, there is plenty of tasks whose performance

may be enhanced by the usage of quantum resources like entanglement. Neverthe-

less, in several cases the mere presence of this feature is not enough, it is needed

to be able to generate nonlocal correlations as well. In addition, it has been proved

from several perspectives that entanglement and nonlocality represent strictly

different resources [Brunner, Gisin e Scarani 2005,Quintino et al. 2015,Augusiak

et al. 2015], in fact the former is an ingredient of the later, but its presence does

not guarantee the observation of nonclassical correlations, given that it is neces-

sary to be able to perform non-commuting local measurements on the involved

parties. For this reason it is very important to have a way to assess how nonlocal

a given system is. A possible approach consists in treating the problem from the

point of view of resource theories [Brandão e Gour 2015]. Under this program

the objects which possess the property are defined, together with the rules a

proper measure must satisfy and the free operations under which the resource is

not increased. The resource theory of entanglement is the most known and well

established of this kind [Vedral e Plenio 1998,ao e Plenio 2008] and has served

as a reference to develop a wide variety of analogous constructions for quantities
21 However note that in order ensure agreement between mm22 and CHSH expressions, we

have to take into account the lower bound in the latter, namely SL< = −1.
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like coherence [Baumgratz, Cramer e Plenio 2014], quantum steering [Gallego e

Aolita 2015], contextuality [Amaral et al. 2018], among others. Regarding Bell

nonlocality, several efforts have been put towards this formulation, for further

details we refer the reader to [Gallego et al. 2012,Vicente 2014,Gallego e Aolita

2017].

Let us explore several quantifiers of nonlocality:

Maximal algebraic value of the Bell inequality - Robustness against noise

Due to its simplicity, it is quite usual to find works in the literature relating

the maximal violation of a Bell inequality to the amount of nonlocality. However

as pointed out in [Brunner et al. 2014], care must be taken in order to ensure

that such a figure of merit in fact have a physical meaning (a possible solution

consists in carrying out appropriate rescaling and normalization).

Furthermore, it is possible to show that the maximal violation of a Bell

inequality is intimately linked to the robustness of nonlocal correlations when

submitted to quantum noise. For instance assume the system is initially prepared

in a pure state |ψ〉 ∈ HA ⊗HB and then it is subjected to white noise. The state

of the system becomes ρ̂ = (1− λ) |ψ〉〈ψ|+ 1̂D λ/D, where λ is the noise fraction,

D = dimHA⊗HB and 1̂D is the D×D unity matrix. It is straightforward to prove

that the second part of ρ̂ admits a local hidden variables model description and

in this way has a null contribution to the Bell function. On the other hand if we

define Sψ as the maximal value of a given Bell inequality when the pure state |ψ〉
is used, then it is not difficult to show that above a noise threshold given by

λ∗ =
Sψ − SL
Sψ

. (2.38)

The arrangement in question is not able to exhibit Bell nonlocality anymore,

where SL denotes the local limit associated with the Bell inequality. This criteria

has been applied to test the nonlocality of multidimensional systems [Kaszlikowski

et al. 2000, Durt, Kaszlikowski e Żukowski 2001, Acín et al. 2002], results are

discussed in the next chapter.
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Other measures of nonlocality

In addition to the noise robustness and maximal violation of a Bell in-

equality, there exist several interesting approaches to quantify the amount of

nonlocality of a given setup. Let us explore briefly some of them.

Recently it has been proposed a nonlocality quantifier based on the min-

imum trace distance between a given behaviour and the local polytope [Brito,

Amaral e Chaves 2018], which satisfies the whole requirements to be an opera-

tional quantifier [Vicente 2014]. Particularly for the (2, 2, d) scenario the authors

found that this measure is proportional to the maximal violation of a scaled-

normalized version of the CGLMP inequality, thus results concerning the optimal

state and measurements are the same as in the former case.

Also known as classical relative entropy, the Kullback–Leibler (hereafter KL)

divergence measures “how separated" are two probability distributions in terms

of information. In a statistical test it can be interpreted as the average support

of a hypothesis against another. In [Dam, Gill e Grünwald 2005] (see also [Acín,

Gill e Gisin 2005]), roughly speaking the authors use the KL divergence to test

the nonlocality of a given probability distribution produced in a Bell experiment,

testing the hypothesis Q against L. Interestingly, they obtain the same set of

optimal measurements as in the previous measure and it was observed an increase

in the amount of nonlocality with the local dimension of the subsystems.

A more complete list of nonlocality quantifiers may be found in [Vicente

2014]. See also [Bernhard et al. 2014] for a experimental-theoretical comparison

of some proposed measures of nonlocality mentioned in this thesis for pairs of

entangled qutrits.

2.3.5 Entanglement and Nonlocality

Although together with measurements incompatibility22, entanglement is

one of the main ingredients needed to generate nonlocal correlations, the relation
22 Note though that even possessing an arbitrary entangled state, measurement incompatibility

does not necessarily imply violation of a Bell inequality [Quintino et al. 2016,Hirsch, Quintino
e Brunner 2018,Bene e Vértesi 2018].
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between these two quantities is very subtle and more complex than first thought.

Not every entangled state is useful to reveal nonlocality

The first and more clear observation is that the presence of entanglement is

necessary for the existence of nonlocal correlations, for it can be easily shown that

if we use a separable state ρ̂AB =
∑

j ρ̂
A
j ⊗ ρ̂Bj , then it will be possible to describe

any quantum correlation (eq. 2.31) in terms of a LHVM (eq 2.29). Nevertheless

the converse is not always true i.e. not all entangled states are able to reveal

nonlocality23. Regarding the simplest case: pairs of entangled qubits in a pure state

|ψ〉 = α2 |00〉+ (1− α2) |11〉, Gisin proved that any state of this kind may violate

the CHSH inequality whenever α 6= 0, 1 (non vanishing entanglement) [Gisin

1991]. This result is currently known as Gisin’s theorem and have been generalized

to the case of two [Chen, Deng e Hu 2008], and arbitrary number of qudits [Li e

Fei 2010] in pure states. In conclusion, any pure entangled state under proper

measurements is capable of generating nonlocal correlations.

The situation turns out to be more complex when we deal with mixed

states. For instance, by using the Horodecki’s criterion for violation of the CHSH

inequality24 [Horodecki, Horodecki e Horodecki 1995], it can be shown that

a two-qubit Werner state (see section 2.2.3) ρ̂W (p) = p |φ2
11〉〈φ2

11| + (1 − p) 1̂
4

subjected to local projective measurements is nonlocal whenever p > 1/
√

2

[Werner 1989]. Nonetheless this state is entangled for p > 1/3, then there in

an interval for p in which there is entanglement but no violation of the CHSH

inequality. Subsequent efforts include the construction of a class of LHVM using

generalized measurements [Barrett 2002], derivation of Bell inequalities more

efficient than the CHSH one revealing nonlocality [Vértesi 2008], and more

general classes of LHVM [Acín, Gisin e Toner 2006, Hirsch et al. 2017] closely
23 This assertion is valid at least under the usual Bell scenario where the inputs and outputs

may be conceived as classical bits. For the case in which the inputs are quantum, Buscemi
showed that any entangled state is able to reveal nonlocality [Buscemi 2012]. Note also
that some local states are capable of violating a Bell inequality after certain processes (like
filtering), and in this way revealing some kind of hidden nonlocality [Popescu 1995,Gisin
1996].

24 Do not confuse with the Peres-Horodecki separability criterion [Horodecki, Horodecki e
Horodecki 1996].
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related to a mathematical problem: The determination of the value for the

Grothendieck’s constant. The complete characterization of Werner and isotropic

entangled states is still an open problem given that for certain parameter regions

it is not known how to build a LHVM explaining the correlations produced nor

violate a Bell inequality. For a revision on the subject see [Augusiak, Demianowicz

e Acín 2014].

An anomaly of nonlocality

As we have seen, due to Gisin’s theorem we can guarantee that any entan-

gled pure state is capable of producing non-classical correlations, and given that

entanglement is one of the resources of nonlocality, then one could in principle

argue that states possessing a larger amount of entanglement lead to stronger

correlations. This statement is valid for systems composed by two qubits when we

employ any of the operational measures of nonlocality mentioned in a previous

section i.e. the most nonlocal state corresponds to the maximally entangled one,

say any of the Bell states. When we increase the local dimension of the subsystems

it is observed that the coincidence between maximal entanglement and quantum

nonlocality ceases to happen. The first observation of this feature was done by

taking into account the maximal violation of the CGLMP inequality (or equiva-

lently, the noise robustness) [Acín et al. 2002] and this value is also proportional

to the recently proposed trace distance to the set of classical correlations as a

nonlocality quantifier [Brito, Amaral e Chaves 2018], for the specific case of two

entangled qudits. Remarkably, by using the KL divergence as figure of merit [Acín,

Gill e Gisin 2005], the more nonlocal state is neither the maximally entangled nor

that leading to the maximal violation of the CGLMP inequality but another one,

suggesting that the task of assessing how nonlocal a state depends strongly on

the potential applicability from the point of view of the measure employed. Note

also that there are several proposed measures of nonlocality leading to the same

results mentioned above that we do not mention in this thesis for the sake of

simplicity. Such a disagreement between maximal entanglement and nonlocality

has been known since then in the literature as an anomaly of nonlocality [Méthot

e Scarani 2007]. A very interesting characteristic not mentioned until now is that



Chapter 2. Preliminaries 44

under the quantifiers cited above, the amount of nonlocality increases with the

dimension of the involved subsystems.

From an experimental point of view it has also been shown that Bell

experiments carried out using imperfect detectors require weaker entangled

states to violate optimally the CHSH inequality [Eberhard 1993]. For recent

developments see [Dilley e Chitambar 2018] and references therein.

Another very interesting manifestation of nonclassicality was given in 1993

by Hardy who derived a set of relations satisfied by joint probabilities respecting

local determinism [Hardy 1992,Hardy 1993]. Hardy’s argument constitutes the

simplest proof of the impossibility to explain quantum predictions in terms of a

local hidden variables model. A very short and intuitive derivation may be found

in [Goldstein 1994]. The most impressive result is that nonmaximally entangled

states lead to the larger deviation from predictions of local deterministic models

and remarkably when a maximally entangled state is employed, no deviations

from classical predictions are observed. Extensions have been proposed for high

dimensional systems [Chen et al. 2013], three partite states [Cabello 2002]

(sometimes refered to as Cabello’s nonlocality), arbitrary number of parties [Jiang

et al. 2018], and remarkably a device-independent derivation of the bounds for

the Hardy’s experiment [Rabelo, Zhi e Scarani 2012].

Besides the Hardy’s argument, there is another proof of Bell’s theorem

which does not make use of inequalities, namely the GHZ paradox [Greenberger,

Horne e Zeilinger 1989] in which the authors were able to show that if results

of local measurements on a three partite system prepared in a GHZ state are

previously defined, independent of the measurements and outcomes of the other

particles, one would get a mathematical contradiction (1 = −1 !), once again

showing the nonclassical nature of quantum correlations.

It is worth to remark that the knowledge about the relation between

entanglement and nonlocality in the multipartite scenario is even more obscure

because to date it has not been possible to define a proper way to quantify the

amount of entanglement of a given general state. Nevertheless, in [Augusiak et

al. 2015] the authors construct families of genuine entangled states which are
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not able to show genuine nonlocality [Brunner et al. 2014], proving in this way

the inequivalence between entanglement and nonlocality for a system composed

by several parts.

2.3.6 Experimental tests of nonlocality

After the publication of Bell’s work, several attempts were carried out in

order to test the validity of the predicted correlations by quantum mechanics25,

but it was only in 1982 that Alain Aspect and collaborators were able to perform

an experiment under reasonable assumptions [Aspect, Grangier e Roger 1982].

Although the observations of Aspect’s experiment favoured quantum predictions,

due to the possibility of alternative explanations for the results (loopholes), it is

not considered as a conclusive test. There exist several loopholes, let us mention

the two most relevant: The locality loophole emerges due to the possibility of

communication among parts during the intervals choice - outcome detection.

In order to avoid it, the experimenter must ensure that it is fundamentally

impossible to transmit any kind of information about the measurement choice

and outcome from Alice to Bob and vice versa. This kind of problem is usually

attacked by using ultra-fast detectors and disposing Alice as far as possible from

Bob. Moreover, note that one of the challenges in this kind of experiments is

dealing with the unavoidable interaction between particles and environment.

This is related to the so called detection loophole, which relies on a series of

factors like non-ideality of detectors and sources of entangled pairs. Recent years

have experienced a technological burst and currently it is possible to overcome

the problems mentioned above. Up to the year 2015 it had been possible to

perform tests avoiding either the locality or the detection loophole, but not both

at the same time. It was in the same year that emerged three independent papers

reporting results of loophole-free Bell tests [Hensen et al. 2015, Shalm et al.

2015, Giustina et al. 2015], all of them revealing results in favour of quantum

mechanics. Another problem to be overcome during the execution of a Bell test

is related to the randomness in the choice of the inputs for Alice and Bob. This
25 For a historical synthesis of Bell experiments up to the year 2000, we refer the reader to

Alain Aspect’s review [Aspect 1999].
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problem has been recently tackled from two different perspectives, one of them

using cosmic photons from opposite sources, thus guaranteeing independence

between the measurement choices in each side of the experiment [Handsteiner

et al. 2017]. The second approach is based on a random selection made by

thousands of people around the world by means of a video game [Abellán et

al. 2018]. Bell tests have also been carried out using high dimensional systems,

for further details see [Vaziri, Weihs e Zeilinger 2002,Howell, Lamas-Linares e

Bouwmeester 2002] and references therein.

2.3.7 Related concepts

Besides Bell nonlocality there are several manifestations of the non-

classical nature of quantum correlations. Let us mention briefly two very well

known examples:

Steering

The term steering was initially introduced by Shrödinger [Schrödinger

1935] in reference to the ability of Alice to induce a change in the state of Bob’s

particle by carrying out local measurements when both share an entangled state.

Even introduced as early as entanglement itself, the concept of quantum steering

only came to be formalized in 2007 by Wiseman, Jones and Doherty [Wiseman,

Jones e Doherty 2007, Cavalcanti et al. 2009]. It can be used as a semi-device

independent method to test the presence of entanglement in which we may

trust the results coming from quantum operations in one of the parties. Steering

is also an intermediate phenomenon between entanglement and nonlocality,

moreover it has been recently shown that there is an inclusion relation between

these quantities, with nonlocality being the strongest one [Quintino et al. 2015].

Remarkably, not long ago Gallego and Aolita have formulated a resource theory

for steering [Gallego e Aolita 2015]. For a review on the subject with focus on

semidefinite programming see [Cavalcanti e Skrzypczyk 2017].
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Contextuality

Contextuality refers to the fundamental impossibility of assigning deter-

minate values to a set of observables prior to the measurement act, independent

of the order those observables are applied [Bell 1966,Kochen e Specker 1967].

It may be thought as a generalization of nonlocality in which the space-like

separation between measurement events on different parts is removed. The anal-

ogous version of Bell’s theorem for contextuality is given by the Kochen-Specker
theorem (KS) [Kochen e Specker 1967]. A simple presentation and derivation

of the KS theorem may be found in [Cabello 1994]. Regarding the connection

among contextuality and nonlocality, Kurzynski and collaborators were able to

show that there is a monogamy relation between these two quantities, then it is

either observed contextuality or nonlocality, but not both at the same time for

the particular scenario in which Alice may perform one out of five dichotomic

observables and Bob one out of two [ński, Cabello e Kaszlikowski 2014]. It is

important to point that it has been very recently conceived a resource theory

of contextuality together with the free wirings any operational measure must

satisfy [Amaral et al. 2018]. The interested reader may find useful an unpublished

review by Thompson and collaborators [Thompson et al. 2013].

At this point we finish the introduction to Bell nonlocality and turn our

attention to quantum teleportation, matter of the last part of this thesis.

2.4 Qudit Teleportation

As mentioned in a previous section, qubit teleportation [Bennett et al.

1993] represents one of the most known applications of quantum entangle-

ment. Let us introduce a more general version of the teleportation protocol for

d-dimensional systems (qudits) using non-maximally entangled measurement

basis. This protocol involves two parts, Alice and Bob as usual, sharing a pair of

entangled qudits described by the density operator ρ̂ch26. Alice is intended to send

an arbitrary unknown qudit state |ψ〉 =
∑d−1

j=0 αj |j〉 to Bob. For this, she carries

out a d2-outcomes joint projective measurement on her pair of qudits in a Bell-like
26 The sub-index “ch" stands for channel
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basis {
∣∣φdmn〉}, with elements given by:

∣∣φdmn〉 =
d−1∑
k=0

ωk·md βk |k, k ⊕ n〉 , (2.39)

where the amount of entanglement is controlled by the β coefficients, in this way

we recover usual maximally entangled joint measurements whenever βk = 1/
√
d.

By using classical communication, Alice sends the information about her

outcome (m,n) to Bob who applies a local unitary operation on his qudit, given

by one out of the d2 Weyl operators Ûmn27. A schematic representation of the

teleportation protocol is given in figure 3. After each run of the experiment, the

state of the Bob’s part of the system (up to normalization) reads:

ρ̂mn = Ûmn TrA

{( ∣∣φdmn〉〈φdmn∣∣⊗ 1̂B

)
|ψ〉〈ψ| ⊗ ρ̂ch

}
Û †mn, (2.40)

where TrA denotes the partial trace on the Alice’s part of the system.

The reliability of the protocol is usually assesed by calculating the fidelity

of teleportation i.e. how close is the state in Bob after the process to that initially

possessed by Alice:

Fmn =
Tr (ρ̂mn |ψ〉〈ψ|)

Tr (ρ̂mn)
. (2.41)

This expression gives the fidelity related to the cases in which the measurement

outcome (m,n) is obtained. In order to estimate reliability of the whole protocol,

we have to take into account the whole possibilities. It is not hard to show that

the probability of occurrence of a determinate output (m,n) is given by Tr (ρ̂mn),

then the mean value of the fidelity of teleportation reduces to:

F =
∑
µν

Tr {|ψ〉〈ψ| ρ̂µν} . (2.42)

This expression typically depends on the state coefficients αj28, for this reason it
27 In the 2 × 2 case the corresponding Weyl operators are: {Û00, Û01, Û10, Û11} =

{1̂, σ̂x, σ̂z, σ̂zσ̂x}, in agreement with the standard teleportation protocol for qubits.
28 Actually, the fidelity F does not depend on the state coefficients αj only when we deal with

an ideal channel and measurements.
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1 2 3

3

Alice Bob

(m,n)

Ûmn

Figure 3 – Teleportation scheme: Alice and Bob share a channel composed by two entangled
qudits (red dashed), Alice performs a joint measurement on qudits 1 and 2 (blue
dotted). After a LOCC (green dot dashed) corresponding to transmission of a pair
of dits (m,n) using a classical channel and subsequent application of a local
unitary operation Ûmn, qudit 3 holds in the state previously possesed by Alice’s
qudit 1 (In the ideal case of maximally entangled channel and measurements).

is more convenient to calculate the average fidelity over the set of input states29:

〈F 〉 =
1

Vd

∫
dΓdF. (2.43)

General expressions for dΓd and Vd are given in appendix B.

It is possible to show that if only classical resources are employed (no

entanglement), then the maximal fidelity one can attain in the protocol is equal

to 2/(d+ 1). For this reason such a bound is known as classical fidelity [Horodecki,

Horodecki e Horodecki 1999,Weinar, Laskowski e Pawłowski 2013].

We devote one chapter of this thesis to present analytical results of fidelity

of qudit teleportation for a variety of non-ideal scenarios including non-maximally

entangled channels and measurements, and noisy environments. Our results are

motivated mainly by a recent exploration by Fortes and Rigolin [Fortes e Rigolin

2015], in which it is presented a survey on the diverse manners in which it is

possible to increase the fidelity of teleportation under non-ideal scenarios. For a

multipartite extension carried out by us under the weak noise regime, see [Cunha

et al. 2017].
29 The quality of the protocol may also be analysed by estimating the dispersion of the fidelities

around its average value [Bang, Ryu e Kaszlikowski 2018].
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As already mentioned, it is usual to evaluate the quality of the teleportation

protocol by quantifying how similar is the transferred to the initial state by means

of the fidelity. However it has been recently proposed another figure of merit

which takes into account only the non-classical contributions to the teleportation

process [Cavalcanti, Skrzypczyk e ć 2017]. By using this kind of non-classical

teleportation witness, the authors showed that the so called bound states are in

fact useful to perform quantum teleportation, contrary to previous conclusions

obtained in [Horodecki, Horodecki e Horodecki 1999] in which it was employed

the fidelity of teleportation. In addition, experimental results recently presented

support the ideas introduced above [Carvacho et al. 2018].

The first experimental realizations of the teleportation protocol were

carried out in 1997 by Zeilinger’s group [Bouwmeester et al. 1997, Pan et al.

2003], in which pairs of entangled photons produced under parametric down-

conversion were employed. It is worth mentioning that it is possible to build a

Bell measurement apparatus able to discriminate at most two out of the four

basis elements using linear optics only, thus in a vast majority of experimental

implementations 50% of the entangled pairs are lost, diminishing in this way the

efficiency30. To date the largest distance it has been possible to teleport a qubit is

1400 km [Ren et al. 2017] in a ground-to-satellite experiment, while the previous

record set was 143 km in free space [Ma et al. 2012]. Attaining such distances

represents a very important step towards the feasibility of large scale quantum

networks and in this way quantum based communication.

Another interesting fact is the relation between nonlocality and telepor-

tation, Cavalcanti and co-workers [Cavalcanti et al. 2013], by using the idea of

superactivation of nonlocality31 found that any state useful for teleportation32 is

also capable of violating a Bell inequality, extending results previously obtained

in [Popescu 1994].
30 For an alternative implementation which makes use of a hybrid technique allowing to perform

complete Bell measurements see [Takeda et al. 2013].
31 Given a local state ρ̂, if k copies of this ρ̂⊗k may violate a Bell inequality, it is said that the

nonlocality of ρ̂ can be superactivated [Palazuelos 2012].
32 An entangled state is said to be useful for teleportation whenever its usage leads to a fidelity

above the classical threshold [Horodecki, Horodecki e Horodecki 1999].
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2.5 Noise and Kraus Operators

The evolution in the state of a quantum system ρ̂ after interacting with the

environment may be modelled by a completely positive and trace preserving map

ρ̂→ ρ̂′ =
∑

k Êkρ̂Ê
†
k, where the Êk ’s are known as Kraus operators and satisfy the

completeness relation
∑

k Ê
†
kÊk = 1̂ [Nielsen e Chuang 2010].

2.5.1 Noise on qudit systems - Weyl operators

Kraus operators corresponding to bit-flip, phase-flip, bit-phase-flip and

depolarizing noise for qubits (d = 2) and qutrits (d = 3) are presented in [Nielsen

e Chuang 2010] and [Ramzan 2013] respectively. It is straightforward to show

that arbitrary d-dimensional generalizations are proportional to families of Weyl

operators Ûjk. Such a correspondence is illustrated in figure 4. Moreover the set

{Ûjk} constitutes a natural basis for the d × d Hilbert-Schmidt space. As it has

already been mentioned, the set of Pauli matrices plus the identity (Û00 = 1̂)

is given by the family of Weyl operators for the particular case d = 2. Now we

present a brief description of each particular noise and expressions for Kraus

operators.

Dit-flip noise

In analogy to bit-flip for the qubit case, this kind of noise considers

perturbations that flip the state |j〉 to one out of the following |j ⊕ 1〉, |j ⊕ 2〉,
. . . , |j ⊕ d− 1〉, with probability p. The associated Kraus operators are: Ê00 =
√

1− p Û00, Ê01 =
√

p
d−1

Û01, . . . , Ê0,d−1 =
√

p
d−1

Û0,d−1.

d-phase-flip noise

A qudit |j〉 subject to d-phase-flip noise may with probability p suffer one

out of d−1 phase-shifts of the form: ωd |j〉, ω2
d |j〉, . . . , ωd−1

d |j〉. The corresponding

Kraus operators are given by: Ê00 =
√

1− p Û00, Ê10 =
√

p
d−1

Û10, . . . , Êd−1,0 =√
p
d−1

Ûd−1,0.
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Figure 4 – Weyl operators Ûjk and their relation with Kraus operators for several kinds of
noise on d-dimensional systems. The blue row represents dit-flip like operators, the
yellow column d-phase-flip like operators and the pink squares are related to
matrices corresponding to dit-phase-flip like noise. Note that the three classes
mentioned before are employed to define depolarizing noise and the set of Pauli
matrices corresponds to the nontrivial operators for d = 2.

Dit-phase-flip noise

This is an special case in which a combination of both former kinds of

noise may take place, e.g. a qudit suffer a flip and a phase shift at the same

time. The related Kraus operators are: Ê00 =
√

1− p Û00 and Êkl =
√
p

d−1
Ûkl, with

1 ≤ j, k ≤ d− 1.

Mixed noise

In this case a qudit may with probability p suffer a dit-flip, d-phase-flip or

both at the same time. The Kraus operators are given by: Ê00 =
√

1− p Û00 and

Êkl =
√

p
d2−1

Ûkl, with 0 ≤ j, k ≤ d− 1, (j, k) 6= (0, 0).

Depolarizing noise

A system initially prepared in an arbitrary state evolves to a maximally

mixed state 1̂/d with probability p. The Kraus operators for this kind of noise are:

Ê00 =
√

1− d2−1
d2 p Û00 and Êkl =

√
p

d
Ûkl, with 0 ≤ j, k ≤ d− 1, (j, k) 6= (0, 0).

For the classes of noise mentioned above, the Kraus operators may be
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written as: Êmn = amnÛmn, with coefficients amn ∈ R, satisfying
∑

mn a
2
mn = 1.

Given an arbitrary system initially prepared in a state ρ̂ =
∑

kl ρkl |k〉〈l|, where N

is the number of parts of the system, k = (k1, ..., kN) and 0 ≤ kj ≤ d−1, the action

of a set of Kraus operators Êkl = Êk1l1 ⊗ ...⊗ ÊkN lN =
∏N

j=1 akj lj Ûk1l1 ⊗ ...⊗ ÛkN lN
evolves ρ̂ into ρ̂′ =

∑
mn ρ

′
mn |m〉〈n|, with ρ′mn given by:

ρ′mn =
∑
kl

ω
k·(m−n)
d ρm⊕l,n⊕l

(
N∏
j=1

a2
kj lj

)
. (2.44)

In this case, the noise coefficient amn may be expressed as a superposition

of the contributions of each region in figure 4: a0, noiseless region (green); af , flip

region (blue); ap, phase flip region (yellow) and ac for the region of combination

of flip and phase-flip (red). In this way, the squared noise coefficient a2
jk reads:

a2
jk = a2

0δj,0δk,0 + a2
fδj,0

d−1∑
n=1

δk,n + a2
pδk,0

d−1∑
m=1

δj,m + a2
c

d−1∑
m,n=1

δj,mδk,n. (2.45)

Thus we have the following correspondences between noise and reduced coeffi-

cients: dit-flip: ap = ac = 0, d-phase-flip: af = ac = 0, dit-phase-flip: ap = af = 0

and af = ap = ac for mixed and depolarizing noise.

The expressions above are useful whenever the Kraus operators are pro-

portional to Weyl matrices. Nevertheless for an important kind of noise, namely

Amplitude Damping we cannot do that, for this reason we have to turn to the

customary computational basis.

2.5.2 Noise on qudit systems - Computational Basis

For a system composed by one part only, we can write a Kraus operator as:

Ê
(a)
k =

∑
mn

a(k)
mn |m〉〈n|

and its hermitian conjugate:

Ê
(a)†
k =

∑
mn

a(k)∗
nm |m〉〈n| ,
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with operator coefficients a(k)
nm ∈ C, satisfying

∑
kn a

(k)
mna

(k)∗
ln = δml (due to the

completeness relation). The N -party case is a straightforward generalization:

ρ̂→ ρ̂′ =
∑
k

Êk ρ̂ Ê
†
k,

where dimk = N , as previously and Kraus operators Êk given by:

Êk = Ê
(a1)
k1
⊗ Ê(a2)

k2
· · · ⊗ Ê(aN )

kN
=

N⊗
j=1

Ê
(aj)
kj

=
∑
m,n

(
N∏
j=1

a(kj)
mjnj

)
|m〉〈n| ,

substituting, we get:

ρ̂′ =
∑
m,q

ρ′m,q |m〉〈q| ,

with modified density operator coefficients ρ′m,q given by:

ρ′mq =
∑
n,p,k

(
N∏
j=1

a(kj)
mjnj

a(kj)∗
qjpj

)
ρn,p. (2.46)

The coefficients a(k)
mn may be easily calculated for each particular case:

a(k)
mn = 〈m| Êk |n〉 . (2.47)

Now let us briefly present the last instance of quantum noise explored in

this work:

Amplitude Damping noise:

Amplitude damping noise have been widely used to model loses in two

level systems [Nielsen e Chuang 2010]. Recently it has been introduced a d-

dimensional generalization [Dutta et al. 2016], with Kraus operators given by:

Ê0 = |0〉〈0|+
√

1− p
d−1∑
j=1

|j〉〈j| , (2.48)

and

Êj =
√
p |0〉〈j| (2.49)
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with j = 1, · · · , d − 1. This kind of noise may be interpreted in the following

way: A d-dimensional system submitted to interactions with the environment may

with probability p lose population in the excited states, leading the system to the

ground state |0〉.
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3 PROBABILITY OF VIOLATION AS A

QUANTIFIER OF NONLOCALITY

Highlights

The probability of violation is introduced as a quantifier of nonlocality.

The application of this quantifier leads to an agreement between maximal entan-
glement and maximal nonlocality in several bipartite scenarios of multiple inputs
and outcomes.

The anomaly in the nonlocality of pairs of entangled qutrits ceases to happen when
the probability of violation is used as a figure of merit.

3.1 Introduction

We have already introduced the concept of quantum nonlocality as a man-

ifestation of the weirdness of quantum predictions when seen under the eyes of a

classical observer. In the previous chapter we also mentioned several alternatives

to quantify the strength of nonclassical correlations, which interestingly disagree

to assess the most nonlocal state under the scenario (2, 2, d) and for d > 2, these

optimal states are different from the maximally entangled one [Méthot e Scarani

2007]. In this chapter we introduce a measure of nonlocality in which the dis-

agreement between maximal entanglement and nonlocality vanishes for the states

in which such an anomaly emerged.

3.2 Motivations

It is clear that entanglement and nonlocality are different resources and

the mere presence of the former does not necessarily imply the manifestation of
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the latter, as we have already seen for Werner states1. Nevertheless it is worth

to remark that this is a feature exclusive of mixed states, given that due to the

Gisin’s theorem it is impossible to describe all the correlations produced by any
pure entangled state by using a LHVM, i.e. in this case a pure entangled state

under proper measurements implies nonlocality. Then it is reasonable to expect

that the maximally entangled state leads to a stronger manifestation of Bell

nonlocality [Lipinska et al. 2018], thus we argue that such a anomaly may occur

due to the structure behind the employed figures of merit.

A tenable reasoning about the quantification of nonlocality is that some

clue might come from nonlocal hidden variable (NLHV) models capable of re-

producing the quantum correlations. For example, one could say that a state ρ̂ is

more nonlocal than another one %̂ if the underlying NLHV model violates local

causality in different degrees for these different states. This, however, cannot

be inferred from these models in any obvious way. Even for theories relying on

finite (superluminal) signaling speed, the relation Imax(ρ̂) > Imax(%̂) > SL does

not necessarily imply that vρ̂ > v%̂ > c, where v is the signal velocity for each

state and c is the speed of light. This reasoning suggests that all violating states

for a particular setting are equally nonlocal, and that the essential information

provided by a Bell inequality is of a seemingly Boolean nature, a state being

either local or nonlocal with respect to those settings, without gradations. This

apparently all-or-nothing picture, however, does not lead to a dead end. On the

contrary, it may point to a conceptually simple solution as we will discuss.

An interesting feature exhibited by most of the nonlocality quantifiers

mentioned in the previous section is that they consider only one measurement

setting, say the particular configuration generating maximal violation of the

associated Bell inequality. For instance consider the pictorial representation of

the Bell value I in function of an experimental parameter θ in figure 5. Note

that according to the maximal violation of the Bell inequality, state 1 is more

nonlocal than 2, even though the parameter’s region leading to the manifestation

of nonclassicality is wider for the latter.

Based on the analysis above we propose the following quantifier of nonlo-
1 The same feature is observed in isotropic states.
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Figure 5 – Pictorial representation of the Bell value I(θ) associated with two different states
in function of the experimental parameter θ (for instance the orientation of
detectors in a Stern-Gerlach experiment). Although both states attain maximal
violation for θ = π, state 1 shows a larger numerical departure from the local
boundary, and most remarkably, state 2 presents a wider region of parameters
exhibiting Bell nonlocality.

cality.

3.3 The volume of violation as a quantifier of nonlocality

Given an entangled state and a specific Bell inequality (and in this way, an

experimental scheme with a determinate quantity of parts, inputs and outcomes),

the most exhaustive experiment one can go through is to investigate local causality

for all settings. We are led to state that ρ̂ is more nonlocal than %̂ if the former

violates the inequality, by any extent, for a larger amount of setting parameters

than the latter. This statement can be cast in very simple statistical terms: ρ̂ is

more nonlocal than %̂ if, for an unbiased random choice of settings, the probability

to observe a violation is larger for ρ̂. Following this reasoning, the state 2 is more

nonlocal than 1 in figure 5.
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To formalize this idea, define the space X = {x1, ..., xn} of all possible

parameters that determine the settings for a given (preferably tight) Bell inequality

I. For a particular state ρ̂, let Γρ̂ ⊂ X be the set of points leading to violation and

V (ρ̂) be proportional to the volume of Γρ̂. We say that if V (ρ̂) > V (%̂), then ρ̂ is

more nonlocal than %̂, with

VI(ρ̂) ≡ 1

N

∫
Γρ

dnx, (3.1)

where N is a normalization constant. The measure of integration is such that

every setting (set of parameters) has equal weight. For instance, one setting

corresponding to a direction in space demands two parameters, one polar (ϕ) and

one azimuthal (θ) angle, leading to d2x = dΩ = sin θdθdϕ. If, on the other hand,

the settings are defined by the in-plane angles (ϕj) of n polarisers, e.g., then we

simply have dnx = dϕ1 · · · dϕn. We call V the volume of violation. We remark that

the numeric calculations needed to determine the volume of violation are the

paradigmatic problem for which Monte Carlo methods are intended [Landau,

Paez e Bordeianu 2008]. The above definition has no relation to the volume of the

set of separable states defined in references [Życzkowski et al. 1998, Życzkowski

1999]; the volume of violation is an integration over the experimental parameters

that can be varied within the context of a given Bell inequality.

An interesting question we have not tackled is whether the volume of

violation satisfies the set of natural requirements an operational measure of non-

locality must fulfil. Nevertheless Lipinska and co-workers have recently derived

several analytical results supporting this idea [Lipinska et al. 2018].

3.3.1 Probability of violation of local realism

An interesting feature of the proposed measure is that V (ρ̂) may be inter-

preted either as the fraction of the volume of the set of parameters that leads to

violation of the given Bell inequality, or as the probability of violation of a Bell

inequality if Alice and Bob carry out local random isotropic measurements (up to

permutations of obsevables) [Liang et al. 2010,Wallman, Liang e Bartlett 2011].

A similar approach was recently developed by Atkin and Zohren [Atkin e Zohren

2015], in which the measurement settings are kept fixed, equal to the optimal
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Figure 6 – Schematic representation of the space of behaviours P, quantum set Q and local
polytope L. L and NL indicate local and nonlocal extemal points. The red region
corresponds to the fraction of the quantum set which cannot be explained by using
a local hidden variables model. Its volume compared to that of the quantum set
may be conceived as the probability of violation of a given state [De Rosier et al.
2017].

set and it is evaluated how the probabilty of violation varies with the number

of outcomes of the measurements for several ensembles of random pure states.

In the present work, instead of the measurement settings, the state of interest is

fixed and it is investigated the dependence of nonlocality with the dimension for

random uniformly distributed measurements.

It is worth mentioning that the only analytical results regarding probability

of violation of local realism under random unbiased measurements pv, currently

in the literature (to the knowledge of the author) are limited to the scenario

(2, 2, 2) for the CHSH inequality pv = 2(π − 3) [Liang et al. 2010] and the first

Bell inequality pv = 1/3 [Parisio 2016], for an entangled pair of qubits in a singlet

state. Both calculations were possible due to the high degree of symmetry of the

singlet.

3.3.2 Probability of violation in the space of behaviors

A more fundamental definition should not invoke a particular Bell inequal-

ity, but rather the set of conditional probabilities P (ab|xy), where a and b are

outcomes and x and y inputs for Alice and Bob observables respectively. This
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amounts to an integration similar to eq. 3.1, but over the exterior, no-signalling

part of the local polytope (see red region in figure 6). More formally, it can be

written as:

pv =
vol(Lc ∩Q)

vol(Q)
, (3.2)

where vol(A) is the Haar-measure associated volume to the set A and Lc indicates

the complement of the local polytope. Although representing an exponentially

hard computational problem, it has already been considered in the multipar-

tite/multiple inputs context [De Rosier et al. 2017], in which the authors find

several interesting results. Remarkably, they were able to show numerically that

within this context, as the quantity of inputs increases, it becomes easier for a

given state to demonstrate Bell nonlocality, even for states with a low amount

of entanglement. Some of these results have also been obtained analytically

in [Lipinska et al. 2018].

Although this approach has an implicit fundamental relevance, due to the

difficulty to perform measurement operations capable of exploring the whole

behaviours space, it seems impractical from an experimental point of view. For

this reason in this thesis we give emphasis on the calculation of the probability of

violation by employing the volume of violation as originally presented in equation

3.1.

3.4 Probability of violation - Scenario (2,m, 2)

Let us explore some initial results on the families of tight Bell inequalities

involving two parts and two outcomes mentioned in the previous chapter.

Alice and Bob share an entangled state

|ψα〉 = α |00〉+
√

1− α2 |11〉 , (3.3)

where α ∈ [0, 1] and {|0〉 , |1〉} are eigenstates of the z-spin operator Ŝz = (~/2)σ̂z.

In this case we have to deal with 2 × m independent measurement directions

(a1, a2, · · · , am) and (b1,b2, · · · ,bm) for Alice and Bob, respectively. Each mea-

surement direction may be parametrized with spherical coordinates (θkj , ϕkj), for
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E(
α)

α

Figure 7 – Red squares: Probability of violation of the CHSH inequality by an entangled pair
of qubits in the state |ψα〉 = α |00〉+

√
1− α2 |11〉 under local isotropic random

spin-1/2 measurements. Black circles: Normalized amount of entanglement. Note
that the probability of violation is maximized by the state with the larger amount
of entanglement, α = 1/

√
2 ≈ 0.7071. Note: Data obtained after 108 runs.

this the integration measure is given by dnx = dΩa1 · · · dΩamdΩb1 · · · dΩbm, with

dΩkj = sin θkjdθkjdϕkj .

In each step of the procedure a set of 4×m angles are sampled uniformly

on the unit sphere are generated and substituted into the expressions for joint

probabilities (Eqns. A.6, A.7, and A.8 in appendix A), which are then used to

evaluate the corresponding Bell function. The volume of violation is equal to the

fraction of the times such an inequality is not satisfied. In order to calculate the

probability of violation we have to take into account the different permutations

of local observables which could have led to violation of the same inequality. For

the (2,m, 2) scenario, it is not hard to show that such a factor is equal to (m!)2.

We have carried our calculations for the scenario m = 2 (CHSH), the

results are presented in figure 7. The trivial cases α = 0 and α = 1 exhibit a null

probability of violation as expected, and surprisingly, pv(α) presents a monotonic

behaviour with respect to the amount of entanglement of the state, attaining a
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α

3

Figure 8 – Probability of violation of the I3322 inequality by an entangled pair of qubits in the
state |ψα〉 = α |00〉+

√
1− α2 |11〉 under local random isotropic spin-1/2

measurements. As in the previous case, pv is maximized by the maximally
entangled state, α = 1/

√
2 ≈ 0.7071. Note: Data obtained after 109 runs in

approximately 24 hours on a standard laptop.

maximum of pv ≈ 28.3% for α = 1/
√

2, in agreement with previous analytical

results [Liang et al. 2010].

In addition, we calculated the probability of violation for the same state

(eq. 3.3), for the cases in which Alice and Bob have three, four and five measure-

ment choices, obtaining results qualitatively identical to those from the previous

treatment. In figures 8 and 9 we plot the probability of violation of the I3322 and

I4422 inequalities as a function of the parameter α. Once again it is possible to

observe an coincidence between maximal nonlocality and entanglement, however

this time the highest probability of violation attains lower values in comparison

with the CHSH case: pm=3
v ≈ 7.8%, pm=4

v ≈ 0.4% and pm=5
v ≈ 8 · 10−7%. Which

could in principle seem to be in contradiction with results of [De Rosier et al.

2017,Lipinska et al. 2018] indicating that pv increases with m. However we must

note that our approach does not take in consideration all the facets of the local

polytope, but only those described by the Imm22 inequality.
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Figure 9 – Probability of violation of the I4422 inequality by an entangled pair of qubits in the
state |ψα〉 = α |00〉+

√
1− α2 |11〉 under local random isotropic spin-1/2

measurements. pv is maximized by the maximally entangled state,
α = 1/

√
2 ≈ 0.7071. Note: Data obtained after 109 runs.

So far, the probability of violation gives no sensible new information

in comparison to the maximum of Bell functions, yet it is consistent with our

expectations on what should be a nonlocality measure in the safe terrain of two

entangled qubits. This agreement between pv and Imax ceases to happen when

two higher-dimensional systems are considered, even in the pure case.

3.5 No anomaly in the nonlocality of pairs of entangled qutrits

Now consider two entangled qutrits, i.e., a composite system with Hilbert

space H = HA ⊗ HB, dimHB = dimHB = 3. As mentioned in the previous

chapter, any arbitrary state of two qutrits (three-level quantum systems) may be

decomposed in the Schmidt basis as

|Ψ〉 =
2∑

m=0

αm|m〉A ⊗ |m〉B, (3.4)

where {|0〉i , |1〉i , |2〉i} is an orthonormal basis in Hi.
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A very interesting point regarding qutrit systems is that contrary to the

two dimensional case, here spin-1 measurements are not capable of revealing

the whole richness of the Hilbert space2 [Kaszlikowski et al. 2000,Kaszlikowski

2000], then a more sophisticated approach must be taken in consideration. An

alternative is given by the so called multiport beam splitters and phase shifters
(MBSPS) scheme. Under this, each of the parties can execute one out of two

d-outcome projective measurements (x, y = 1, 2), consisting in diagonal phase-

shift unitary operations with Umm = eiφ
m
x (Alice) and Unn = eiϕ

n
x (Bob), followed

by discrete Fourier transforms UFT and U∗FT on Alice’s and Bob’s subsystems

respectively, and then a projection onto the original basis [Kaszlikowski et al.

2000, Żukowski, Zeilinger e Horne 1997,Durt, Kaszlikowski e Żukowski 2001]. A

picture of the experimental implementation is illustrated in figure 10.

For d = 3, the CGLMP inequality (Eq. 2.37) reads:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)+

− P (A1 = B1 − 1)− P (B1 = A2)− P (A2 = B2 − 1)− P (B2 = A1 − 1) ≤ 2.

(3.5)

For details of the reduction of the CGLMP inequality under MBSPS measurements,

we refer the reader to appendix C.

It is important to note that the MBSPS scheme does not exhaust the (2, 2, d)

CGLMP scenario, however, we obtain a great simplification by remaining within

MBSPS realizations, which are often employed in CGLMP-tests. In addition, this

was exactly the considered situation when the anomaly in the nonlocality of two

qutrits was first reported [Acín et al. 2002]. It has also been conjectured that

the optimal settings are contained in the MBSPS scenario [Durt, Kaszlikowski

e Żukowski 2001], which has been proved in the two-qutrit case numerically

in [Navascués, Pironio e Acín 2007] and analytically in [Yang et al. 2014]. The

optimal phases for a general d-outcome MBSPS setup are given by: φj1 = 0,

φj2 = π
d
j, ϕj1 = π

2d
j and ϕj2 = − π

2d
j, providing the highest violation for maximally

entangled states
∣∣Ψd

me

〉
and those which maximally violate the CGLMP inequality

2 For instance, the Hilbert space associated to a three level system can be explored by the
usage of U(3) transformations.
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Figure 10 – Multiport beam splitters and phase shifters scheme. A pair of entangled photons
leave the k-th channel of a source S in opposite directions with probability α2

k.
After, each of them pass through a polarizer characterized by the phases φkx and
ϕky , for Alice’s and Bob’s photons respectively. Then every photon gets into the
k-th input of an unbiased multiport beam splitter, leaving by any output with the
same probability 1/d regardless the input it has come. After many runs of the
experiment and construction of joint probabilities it is not hard to show that for
some pure states it is impossible to describe some results by using a
LHVM [Zukowski, Zeilinger e Horne 1997].

∣∣Ψd
mv

〉
. Let us introduce a family of states which encloses both of them:

|Ψγ〉 =
1√

2 + γ2
(|00〉+ γ |11〉+ |22〉). (3.6)

It is straightforward to see that γ = 1 recovers the state |Ψme〉. On the other

side, γmv =
(√

11−
√

2
)
/2 ≈ 0.7923, as first found in [Acín et al. 2002], leads to

the state which maximally violates the CGLMP inequality for d = 3 by a value

I3(Ψmv) = 1+
√

11/3 ≈ 2.915, in contrast with the value I3(Ψme) ≈ 2.873 attained

by the maximally entangled state of two qutrits. Thus, the use of the maximal

violation of a Bell inequality as a figure of merit to assess how nonlocal a given

state is leads to a disagreement between maximal nonlocality and entanglement.

This, along with results from other quantifiers constitute the so called anomaly
of nonlocality [Méthot e Scarani 2007]. We argue that such a divergence may be

due to the way the amount of nonlocality of a given state is usually assessed, then

we proceed to employ the probability of violation for this particular case.

Under a MBSPS measurement scheme the experimental parameters are 12

in-plane polarization angles, hence the integration measure may be written as

dnx =
2∏

x,y=1

2∏
j,k=0

dφjxdϕ
k
y,
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γ

γ

1.3

Figure 11 – Red circles: Entropy of entanglement, Blue triangles Imax, and Black squares: pv
as functions of γ for the family of states in equation 3.6. All quantities are
normalized such that their maximal value is 1. The inset shows a zoom in of the
region marked by the rectangle in dashed lines.

thus the total volume is V (X ) = (2π)12. In order to calculate the probability of

violation, we have to take into account that the permutation among observables

gives a factor equal to 4. In this way, pv may be calculated as:

pv(|Ψ〉) =
4

(2π)12

∫
Γ|Ψ〉

2∏
x,y=1

2∏
j,k=0

dφjxdϕ
k
y, (3.7)

where Γ|Ψ〉 corresponds to the subset of X for which the measurement parameters

lead to violation of the inequality I3 ≤ 2 for a fixed state |Ψ〉.

The calculation of the term
∫

Γ|Ψ〉

∏2
x,y=1

∏2
j,k=0 dφ

j
xdϕ

k
y in Eq. 3.7 is per-

formed via Monte Carlo method. First of all we fix the state |Ψ〉, then in each

iteration we pick 12 measurement angles at random from a uniform distribution

between 0 and 2π and after we substitute into the CGLMP function. As the number

of iterations grows, the fraction of the times the inequality is violated gets closer

to the value of the integration.

Results of calculations are plotted in fig. 11. In order to facilitate the
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analysis, we compare normalized results of pv(γ), entropy of entanglement E(γ)

and the maximum of I3. The maxima of entropy and probability of violation

coincide exactly at γ = 1, as can be seen in the inset, while I3max attains its

maximum at γ = γmv . This shows that the anomaly in the nonlocality of two

entangled qutrits does not exist, if one adopts the probability of violation (or

equivalently volume of violation) as the measure of nonlocality.

It is easy to understand what is going on. Although |Ψ3
mv〉 presents a more

pronounced maximum of I3 in comparison to |Ψ3
me〉, the nonlocality of the former

is less robust, for, as we get farther away from the optimal setting in X , I3(γmv)

falls off faster than I3(γ = 1). This effect on the volume of violation is clearly

illustrated in Fig. 12, where two-dimensional sections φ0
1 − ϕ2

2 of Γ are shown for

|Ψ3
mv〉 [Fig. 12(b)] and for |Ψ3

me〉 [Fig. 12(a)]. The other parameters are set as

φ0
2 = φ1

2 = π/6, and ϕj1 = 0, the remaining angles keeping the optimal values. In

this particular example, the violation area for γ = 1 is about 14% larger than that

for γ = γmv. The scales are identical in both figures.

We argue that, given a state, a Bell inequality, and a particular setting,

there should be no gradations of nonlocality, with the inequality functioning

as a witness. However, by “tracing over the settings”, attributing equal weight

to all those that violate the inequality and weight zero to those that do not

lead to violations, we showed that it is possible to quantify Bell nonlocality in

a consistent way. In particular, within the context of our proposal, there is no

discrepancy between maximally entangled and maximally nonlocal states, at least

for entangled qutrits. Note moreover that as we will show in the next chapter this

feature persists in systems of higher dimensions, at least up to d = 7. In addition,

in [De Rosier et al. 2017], the authors calculate the probability of violation of

the same states considered here under the context of the space of behaviours (eq.

3.2) obtaining qualitative similar results, and in this way supporting our idea.



Chapter 3. Probability of Violation as a quantifier of nonlocality 69

Figure 12 – Sections φ0
1 − ϕ2

2 of the 12-dimensional space X . The regions inside the ovals
represent configurations leading to violation of the CGLMP inequality. In addition
it is worth to mention that some parameters (φxj , ϕ

k
y) were set away from the

optimal values. The area of violation for (a) γ = 1 is 14% larger than that for (b)
γ = 0.792.
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4 PROBABILITY OF VIOLATION IN

HIGHER DIMENSIONS

Highlights

By using the probability of violation, it is shown that there is no anomaly of
nonlocality at least up to d = 7.

The amount of nonlocality decreases with the local dimension of subsystems d.

4.1 Introduction

The violation of Bell inequalities constitutes one of the most impressive

confirmations of the nonlocal character of quantum theory. Presently, the majority

of the state-of-the-art experiments in the field involve two qubits in the context

of the CHSH inequality. However, it became clear that the use of systems of

higher dimensionality, or qudits, may lead to new, interesting phenomena and

improvements in the efficiency of some practical tasks [Mischuck e Mølmer

2013, Strauch 2011, Lanyon et al. 2009, Ralph, Resch e Gilchrist 2007, Durt

et al. 2004]. In particular, it has been proven that loophole-free Bell tests are

more feasible if qudits are employed [Vértesi, Pironio e Brunner 2010] (See [Lo

et al. 2016] for recent experimental developments.). The nonlocality of pairs

of entangled qudits have been used to certify high dimensional entanglement

and in the study of robustness against noise, imperfect state preparation and

measurements [Dada et al. 2011,Weiss et al. 2016,Dutta et al. 2016,Polozova e

Strauch 2016].

A more specific, but important question refers to the macroscopic limit.

Pioneering works, addressing two spin-s particles, revealed a tendency toward

local, classical behaviours as s→∞ [Mermin 1980,Mermin e Schwarz 1982], in

the sense that the range of parameters for which nonclassicality arises vanishes as
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1/s (however the considered inequalities are not tight). Complementarily, Gisin

and Peres [Gisin e Peres 1992] showed that for particular choices of measurement

parameters (under the context of the CHSH inequality), it is always possible to

obtain violation, but never above the Tsirelson bound.

The authors of [Kaszlikowski et al. 2000] employed the resistance to noise

as a nonlocality quantifier, and numerically calculated it for maximally entangled

states of two qudits up to d = 9, each subject to one out of two local measurements

characterized by a MBSPS scheme, they found that the resistance to white noise

increases with the dimension d. Presently, it is acknowledged that, although

physically relevant, resistance to noise is not a good measure of nonlocality [Acín

et al. 2002,De Rosier et al. 2017]. Also in this context, a surprising result is that

the nonlocality of a system of N qubits tends to increase with N , provided that

the ability to individually address each qubit is preserved [De Rosier et al. 2017].

This chapter is devoted to present results on calculations of the probability

of violation to quantify the nonlocality of two entangled qudits, addressing a

specific experimental situation, i. e., a fixed Bell scenario (CGLMP) and the set of

observables which are accessible in a particular experimental realization, namely,

multiport beam splitters and phase shifters (MBSPS) and then we contrast them

with results obtained by our collaborators who investigated the same set of states

in a more fundamental perspective, by calculating the probability of violation

directly in the full space of joint probabilities (the space of behaviours). While

the first approach corresponds to a situation that can be exhaustively investigated

within a single experimental preparation, it also inherits the bias associated with

the choice of a particular facet of the local polytope. We consider dimensions d

with 2 ≤ d ≤ 7. The second approach is conceptually more powerful, since it takes

into account all possible Bell inequalities (with a certain number of observables

per party), however, the probabilities of violation calculated in the space of

behaviours cannot possibly be determined by a single experimental setup. We

discuss, both the common points and the differences between the two approaches.
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4.2 Probability of violation for qudits in a MBSPS scheme

and the CGLMP inequality

Our main goal in this chapter is to compare the amount of nonlocality for

several entangled states of two qudits from the point of view of the probability of

violation of the CGLMP inequality. Among the states of interest we have: maxi-

mally entangled states, low-rank states (states with a number of non-vanishing

Schmidt coefficients lower than the dimension of the associated Hilbert space),

and states which maximally violate the CGLMP inequality.

It is usual to find the maximal value of CGLMP functions in the literature

but not the states leading to them. In order to calculate the state coefficients

associated to
∣∣Ψd

mv

〉
we applied the multidimensional Newton-Raphson method,

maximizing the violation of the CGLMP inequality (equation C.8) under the

optimal phases introduced in the previous chapter.

Let us parametrize the state as

|Ψd
mv〉 =

1√∑
γ2
jd

d−1∑
j=0

γjd|jj〉, (4.1)

where γjd ∈ R. Numerical values of γjd and maximal violation of CGLMP inequal-

ity for Ψd
mv and Ψd

me up to d = 7 are summarized in table 1.

Table 1 – Approximate values of coefficients γjd leading to maximal violation of CGLMP
inequality and corresponding maximum value of the CGLMP function
Imaxd

(∣∣Ψd
mv

〉)
up to d ≤ 7. Values for γ0d are not presented because those are all

equal to one.

d γ1d γ2d γ3d γ4d γ5d γ6d Idmax
(
Ψd
mv

)
Idmax

(
Ψd
me

)
2 1.000 - - - - - 2.8284 2.8284
3 0.792 1.000 - - - - 2.9148 2.8729
4 0.739 0.739 1.000 - - - 2.9727 2.8962
5 0.719 0.660 0.719 1.000 - - 3.0157 2.9105
6 0.709 0.626 0.626 0.709 1.000 - 3.0497 2.9202
7 0.705 0.607 0.581 0.607 0.705 1.000 3.0776 2.9272
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The calculation of the probability of violation in this case is carried out in

the same fashion as in the last part of the previous chapter, by using the results of

appendix C and generalizing expression 3.7, for arbitrary d:

pv(|Ψ〉) =
4

(2π)4d

∫
Γ|Ψ〉

2∏
x,y=1

d−1∏
j,k=0

dφjxdϕ
k
y. (4.2)

The results presented in this chapter have been obtained via Monte Carlo in-

tegrations, corresponding to several runs of a Bell experiment using uniform

random measurement configurations on a definite quantum state. Calculations

of the probability of violation of pairs of qudits in maximally entangled states

(MES) and maximally violating states (MVS) under the CGLMP inequality and

MBSPS measurements were carried out up to d = 7. The results are shown in a

monolog plot in figure 13. As it can be seen, the higher the dimension, the lower

the probability of violation. In this way it is possible to conclude that the nonlocal

content of a quantum entangled state of two qudits under the considered scenario

and the CGLMP inequality exponentially decreases with the dimensionality of the

system, which is in agreement with the notion of restoration of classical features

in the limit of high quantum numbers. However, we stress that the CGLMP sce-

nario refers to two observables per party, no matter the value of d. We found that

the exponential decay behaviour assumes a particularly simple form if we use

2π as the basis (this is a natural basis in MBSPS scenarios). The points are well

described by:

pv(d) ∼ (2π)−d, (4.3)

where pv(d) refers to the maximally entangled state (MES) of two qudits with d

levels each. In figure 13, these points are represented by (red) triangles, and the

upper continuous line corresponds to the best fitting with pv(d) ∼ (2π)−1.04d. The

squares correspond to the states that yield the maximal numeric violation of the

CGLMP inequality. Except for d = 2 (for which equal probabilities are obtained),

the MES present a higher probability in comparison with the maximally violating

states. The probability of violation for the MVS’s drops off approximately as

pv(d) ∼ (2π)−1.07d. This extends the conclusion of the previous chapter, showing

that there is no anomaly in the nonlocality of two entangled qudits up to d = 7,

at least in the CGLMP scenario, when pv is used as a figure of merit.
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d

Figure 13 – Monolog plot of the probabilities of violation (in percents) of the maximally
entangled state (MES) and maximally violating state (MVS) as a function of the
dimension d (CGLMP inequality and MBSPS measurements). The amount
nonlocality decreases exponentially with the dimension. Note that apart from the
qubit case (d = 2), the MES presents more nonlocality than the MVS. Results
obtained after 1010 runs of the code on each point

The MES and MVS coincide for d = 2, and pv(d = 2) ≈ 0.32, which shows

that the restriction to MBSPS measurements increases the probability of violation.

As already mentioned, for general measurements, the probability of violation

is around 0.28 for maximally entangled states, since the CGLMP and the CHSH

inequalities are equivalent for d = 2. Furthermore, a similar result appears when,

in the CHSH scenario, the parties previously agree on one of the measurement

directions. With this the inequality becomes the first Bell inequality, for which

pv = 1/3 ≈ 0.33 [Parisio 2016].

Now we address another interesting case: low rank states.

4.3 Rank vs Dimensionality under MBSPS

Regarding two qudits, MES are also maximally symmetric. However, one

can consider maximally symmetric states (MSS) with Schmidt ranks k, such that

k < d, which are not maximally entangled. In this case, the inequivalence between
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Figure 14 – Multiport beam splitters and phase shifters setup for low rank states. Note that
the source has d− k output channels blocked on each side. For this setup the
state coefficients αj must be interpreted as the probability amplitude of a photon
to reach j-th phase shifter.

MSS’s and states that maximize pv reappears for the CGLMP inequality. In spite

of the balancedness of states like (|00〉+ |11〉+ · · ·+ |(k − 1), (k − 1)〉) /
√
r due

to the fact that the basis kets |kk〉 , · · · , |d− 1, d− 1〉 are missing, they are not

maximally nonlocal, in the CGLMP scenario. However, this doesn’t constitute a

true anomaly, since the symmetric low rank states cannot be considered maximally

entangled. The investigation of states with lower ranks will provide a clear

illustration of how different can the results be when a single Bell inequality is

considered instead of the full space of behaviours.

As a starting point we carried out a numerical search of k-rank states

violating the CGLMP inequality for d-outcomes. We considered the experimental

scenario given in figure 14. The state of the system before the photons reach the

phase shifters may be written as |φ〉 =
∑k−1

j=0 αj |jj〉, with:

αj =


cos θ0 for j = 0

sin θ0 . . . sin θj−1 cos θj for 1 ≤ j ≤ k − 2

sin θ0 . . . sin θk−3 sin θk−2 for j = k − 1,

(4.4)

with 0 < θj ≤ π/2.

Results of the search are summarized in table 2 for states up to k = 7

under a CGLMP scenario and d ≤ 12. The most interesting observation is that

while rank-2 and rank-3 states only violate the CGLMP inequality up to d = 2 and

d = 5 respectively, states with rank larger than k = 4 are capable of violating the

CGLMP inequality at least up to d = 12.
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Table 2 – Violation of the CGLMP inequality for d-outcomes by a k-rank state under a
MBSPS scheme (see fig. 14). The symbol “X”(“−”) denotes the cases in which we
were (not) able to observe violation of the CGLMP inequality (no matter by how
much), and “X”indicates the trivial case k = d.

d
2 3 4 5 6 7 8 9 10 11 12

k

2 X − − − − − − − − − −
3 X X X − − − − − − −
4 X X X X X X X X X
5 X X X X X X X X
6 X X X X X X X
7 X X X X X X

As an example, let us consider the family of states (with zero as the

coefficient of |33〉):

cos θ0|00〉+ sin θ0 cos θ1|11〉+ sin θ0 sin θ1|22〉. (4.5)

In Fig. 15 we plot pv for the above rank-3 states with d = 4, as a function

of θ0 and θ1. The balanced state (αj = 1/
√

3) is identified by the cross, while

the two states that maximize the probability of violation are given by (θ0, θ1) ≈
(0.864, 0.604),

≈ 0.647 |00〉+ 0.628 |11〉+ 0.431 |22〉 ; (4.6)

and (θ0, θ1) ≈ (1.126, 0.798) (equivalent to the above state with |00〉 ↔ |22〉),
pv ≈ 0.224×pv(MES), where pv(MES), refers to the full rank maximally entangled

state.

Analogous calculations were carried out for r = 3 and d = 5, results are

presented in figure 16. In this case the states with larger probability of violation

corresponds to (θ0, θ1) ≈ (0.840, 0.585) and (θ0, θ1) ≈ (1.120, 0.809),

≈ 0.667 |00〉+ 0.621 |11〉+ 0.411 |22〉 , (4.7)

with pv ≈ 1.88 · 10−3 (approximately 2.4% of the probability of violation of the

d = 5 maximally entangled state, under the CGLMP context for d = 5). A very

interesting observation here is that the balanced state (represented by a cross in

the figure) does not lead to violation of the CGLMP inequality.
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Figure 15 – Probability of violation (%) for rank-3 states with d = 4 in the context of the
CGLMP inequality. The cross corresponds to the state (|00〉+ |11〉+ |22〉)/

√
3,

and the lower-left darker spot corresponds to state (4.6). Results obtained after
108 runs of the code on each point.

Figure 16 – Probability of violation (%) for rank-3 states under the CGLMP inequality for
d = 5. As before, the cross corresponds to the state (|00〉+ |11〉+ |22〉)/

√
3,

but interestingly, in this case the probability of violation is null. Results obtained
after 108 runs of the code on each point.
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4.4 Probability of violation on the space of behaviors

The results presented in this chapter are part of a work in collaboration

with Anna de Rosier and Wiesław Laskowski from the University of Gdànsk in

Poland, and Tamás Vértesi from the Institute for Nuclear Research in Hungary

[Fonseca et al. 2018]. Part of their contribution is the calculation of the probability

of violation for the same states we worked but from a more general perspective,

the space of behaviours (see section 3.3.2 and equation 3.2). Several results are

qualitatively very similar, for instance the probability of violation also suffers

a drop with the dimension d, but in this case the decrease is more moderate,

showing an almost linear behaviour compared to the exponential decay of the

nonlocality observed within the MBSPS and the CGLMP inequality context1 (see

Fig. 4 in [Fonseca et al. 2018]). It may be due to the fact that there is no restriction

to a particular Bell inequality because all relevant scenarios with a fixed number

of observables per party are simultaneously considered. There also no anomaly

shows up.

Differently from what we observed in the CGLMP-MBSPS scenario, it was

found that balanced states with any rank larger than 1, present a nonvanishing

probability of violation. For instance, for r = 2 and d = 6 it was found that 0.173%

of the possible behaviours are outside the local polytope, while for r = d = 6 this

percentage is about 9.3%.

Another interesting feature is the strong enhancement in the ability to

detect nonlocality by increasing the number of observables per party. In the

simplest case of two entangled qubits, this amounts to a change from pv ≈ 28.3%

to pv ≈ 78.2% for MES when m is increased from 2 to 3. For d = r = 5, the

probabilities of violation for 2 and 3 observables per party are 12.7% and 56.5%,

respectively. As we have already mentioned, similar results have been recently

reported in a variety of contexts [Lipinska et al. 2018, De Rosier et al. 2017].

Particularly, in [Lipinska et al. 2018] it is shown that for any pure bipartite

entangled state, pv tends to unity whenever the number of measurement choices
1 Nevertheless, Barasinski and Nowotarski have recently presented results of calculations of

the volume of violation associated to the CGLMP inequality in a slightly different context, in
which an anomaly is observed for d ≥ 8 [Barasiński e Nowotarski 2018].



Chapter 4. Probability of violation in higher dimensions 79

(of the two parties) tends to infinity.

Finally, they addressed the family of states in Eq. 4.5, this time considering

all possible behaviours. The results for the probability of violation show a much

more symmetric shape than the corresponding plot, restricted to the CGLMP-

MBSPS scenario (figure 15). In this case they were able to show that the balanced

state with r = 3 (αj = 1/
√

3), under the scenario d = 4 attains the maximum

of nonlocality, concluding thus that the apparent asymmetry revealed in figure

15 is mainly due to the bias introduced by the choice of a particular facet of the

local polytope. Since the number of relevant Bell inequalities grows with the

dimension, the effect of this bias tend to increase with d.

4.5 Closing remarks

The goal of the present chapter was to study quantum nonlocality in

bipartite systems of high dimensionality. The results presented in Fig. 13 showed

that the extent of nonlocality decreases with the dimension of the qudits in both,

the CGLMP scenario and in the space of behaviours (d ≤ 7). The decay being

exponential for the particular Bell inequality we addressed and much slower,

at most linear, when all possible behaviours are considered. It was additionally

shown that, within both approaches, no anomaly of nonlocality showed up, with

pv as the figure of merit.

The qualitative agreement between the two approaches ceases to hold

when maximally symmetric states of lower rank (r < d) are considered. While in

the fixed Bell scenario we observed that the balanced states are not maximally

nonlocal, we found numerical evidence that, whenever the entire local polytope

is considered this is no longer true. This may be understood as an effect of the

increasing (as d grows) bias introduced by the choice of a particular facet. This

is a further indication that the probability of violation defined in the space of

behaviours is a more fundamental quantity as compared to the volume of violation

of a particular Bell scenario.

The regime of large d may be, at least in some sense, considered as a

classical limit, and then, we should observe local behaviours as the dominant
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ones. However, we may as well conceive the classical limit as a large gathering of

two-level systems, which leads to an apparent contradiction. It has been shown

that the probability of violation strongly increases with the number N of qubits,

and two observables per party [González-Guillén et al. 2016, De Rosier et al.

2017]. In fact, random states of 5 qubits typically present pv > 0.99 [De Rosier et

al. 2017] and nonlocality becomes completely dominant for large N . We remark

that this is not a loose comparison because there is an isomorphism between the

Hilbert space of a system with N qubits (for simplicity we assume N to be even)

and the Hilbert space of two qudits with d = 2N/2 levels, each. How do we get

opposite trends in the limit N →∞, and consequently in the limit d→∞? The

point is that, in both cases, we have two observables per party, but this amounts

to quite different physical situations. In the N -qubit case we have two observables

per qubit, say A1, A2;B1, B2;C1, C2; etc. Since each observable is dichotomous, we

have 4 possibilities involving the choice of observables and potential outcomes for

every qubit. This leads to a total of 4N = 22N independent possibilities. In the case

of 2 qudits with dimension d = 2N/2 we only have four observables: A1,A2;B1,B2,

each with 2N/2 outputs, leading to a total of 4× 2N/2 × 2N/2 = 2N+2 possibilities.

So, the four many-output observables in the latter case are not sufficient to

compensate for the 2N dichotomic observables in the former situation. Of course,

in practice, it may become increasingly hard to address individual qubits in the

large-N regime.

Here we conclude the presentation of results regarding nonlocality. The

second part of this thesis is devoted to present some results related to the noise

influence in the quality of protocols in quantum information.
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5 USING THREE-PARTITE GHZ

STATES FOR PARTIAL QUAN-

TUM ERROR-DETECTION IN

ENTANGLEMENT-BASED PRO-

TOCOLS

Highlights

It is shown that the use of a three-partite GHZ state and measurements instead of
their EPR counterparts leads to an increase in the efficiency under certain noisy
scenarios.

The idea is extended to any protocol using entangled states and measurements.

It is provided a generalization for N -GHZ states and measurements and it is
concluded that the optimal number of qubits is only three.

5.1 Introduction

It has been just over two decades since the appearance of error-correction

schemes for quantum systems first introduced in a seminal paper by Shor [Shor

1995] and further extended 1 year later by Steane [Steane 1996]. Nowadays these

protocols represent a cornerstone in quantum information science (QIS) due to

the role played toward the possibility of building quantum devices large enough

to be able to improve processing capacity and information storage stability when

compared to classical counterparts [Terhal 2015]. Shor’s work inspired several

theoretical extensions and experimental realizations, and today it represents a

very active area in quantum information. For a deeper exploration and recent

progresses, we refer the reader to [Terhal 2015,Devitt, Munro e Nemoto 2013,
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Raussendorf 2012].

Entanglement is one of the essential elements in quantum error correction

codes (QEC) and hence on the feasibility of quantum computation [Horodecki et

al. 2009]. Besides QEC applications, entanglement is also a key resource for a large

variety of tasks in QIS [Vedral e Plenio 1998,Brandao e Plenio 2008], among the

most known we find: Ekert’s quantum key distribution [Ekert 1991], superdense

coding [Bennett e Wiesner 1992] and the teleportation protocol [Bennett et al.

1993]. In fact, an entire quantum computer can be conceived where entanglement

provides all the basic structure [Raussendorf e Briegel 2001].

Due to the importance of these protocols, several efforts have been put

toward their implementation under more realistic frameworks, i.e., considering

the effect of interactions with the environment. In reference [Taketani, Melo e

Filho 2012], the action of noise in the teleportation protocol is contemplated

and an optimal protocol is derived. A set of strategies to improve the fidelity

in quantum teleportation under different kinds of noise is proposed in [Fortes

e Rigolin 2015]. In addition, several schemes comparing multipartite channels

were considered in [Jung et al. 2008].

In the present chapter we introduce a scheme for partial error detec-

tion concerning protocols based on bipartite entanglement between qubits. We

show that this is possible by literally replacing EPR states by tripartite Green-

berger–Horne–Zeilinger (GHZ) states [Greenberger, Horne e Zeilinger 1989,

Greenberger et al. 1990], and whenever needed, instead of EPR measurements

we use the GHZ basis. Our procedure, inspired by some results reported in [Cunha

et al. 2017], follows the basic ideas of reference [Grassl, Beth e Pellizzari 1997],

using an ancillary system which allows for detection of the noise incidence and

post-selection of the desired outputs, a process that has been considered as a

viable mean of computation [Knill 2005]. On the one hand, our protocol is in a

certain way limited, for it only permits a partial detection of one kind of noise, say

bit-flip; on the other hand, it is far less expensive in terms of resources: while the

QEC proposed by Shor [Shor 1995] demands two extra qubits to detect bit-flip

in each qubit of memory, our proposal demands only one to reveal noise on two

qubits. Furthermore, our process does not demand an adjacent computation to
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be implemented; instead, it is only necessary to adjust some steps of the existing

task.

The chapter is organized as follows: First we describe the approach used

to model the effect of noise on the system in terms of the Kraus operators, and

the domain of validity of the model. In Sect. 5.2, we compare some protocols

using EPR states to the case when these are replaced by GHZ counterparts. In

both cases, we consider perfect realization (perfect in the sense of production of

states and completion of ideal measurements) and the presence of noise. In Sect.

5.4, the ideas exposed previously are extended in order to cover any protocol

using pairs of entangled qubits and EPR measurements. Section 5.5 is devoted to

show the optimality of the protocol for the case of N = 3. In the last section, the

main results are discussed and some conclusions are given.

5.2 Bit flip noise

In general terms, it is possible to include the noise effect on a quantum

system by employing several approaches. In this thesis, we are not interested in

the dynamics of the system in a detailed way; thus, we can use the formalism of

Kraus operators [Nielsen e Chuang 2010]. This approach provides a practical way

to describe several types of errors that may take place during the experimental

implementation of quantum protocols. In this chapter, our main concern is the

study of a system affected by bit-flip noise; under which a qubit initially prepared

in a state |j〉 is modified as:

|j〉 → |j ⊕ 1〉

where the symbol “⊕" denotes sum modulo 2. Given a N -partite system, if the

k-th qubit may with probability p be affected, the Kraus operators read:

Â0 =
√

1− p1̂1 ⊗ · · · ⊗ 1̂N , Â1 =
√
p1̂1 ⊗ · · · ⊗ σ̂(k)

x ⊗ · · · ⊗ 1̂N .

In the Kraus formalism, the quantum state evolution after the interaction with

the environment may be described as a map:

ρ̂ ∈ B(H) 7−→ ε(ρ̂) ∈ B(H), (5.1)
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where B(H) is the space of the bounded operators on the Hilbert space H. More

explicitly, ε(ρ̂) is given by:

ε(ρ̂) =
∑
j

Âj ρ̂Â
†
j, (5.2)

in this way, when a single qubit described by ρ̂ = |φ〉〈φ| is affected by bit-flip noise,

we have

ε(ρ̂) = (1− p) |φ〉〈φ|+ pσ̂x |φ〉〈φ| σ̂†x. (5.3)

For a composite system of N qubits subjected to bit-flip noise acting locally

in each subsystem, we have:

ε(ρ̂) =
1∑

j1,...,jN=0

Âj1 ⊗ · · · ⊗ ÂjN ρ̂ Â†j1 ⊗ · · · ⊗ Â
†
jN
. (5.4)

Let us assume that every part of the system may be affected with equal

probability p, and moreover, we restrict ourselves to the weak noise regime, i.e.,

the probability is low enough in order to ensure that events in which we have at

least two qubits affected are very unlikely compared to those where there is only

one. In this way, after some calculations, Eq. 5.4 is reduced to:

ε(ρ̂) ≈ (1−Np)ρ̂+ p
{(

σ̂x ⊗ 1̂⊗ · · · ⊗ 1̂
)
ρ̂
(
σ̂x ⊗ 1̂⊗ · · · ⊗ 1̂

)
+

+
(
1̂⊗ σ̂x ⊗ · · · ⊗ 1̂

)
ρ̂
(
1̂⊗ σ̂x ⊗ · · · ⊗ 1̂

)
+ · · · +

+
(
1̂⊗ 1̂⊗ · · · ⊗ σ̂x

)
ρ̂
(
1̂⊗ 1̂⊗ · · · ⊗ σ̂x

)}
+O(p2)f(ρ̂), (5.5)

where f(ρ̂) represents higher order perturbations on the initially prepared state ρ̂.

Note however that from this point we additionally restrict ourselves to

the case in which Bob is capable of protecting his qubit perfectly. In this way,

the term
(
1̂⊗ 1̂⊗ · · · ⊗ σ̂x

)
ρ̂
(
1̂⊗ 1̂⊗ · · · ⊗ σ̂x

)
does not appear in forthcoming

calculations1.
1 It can be experimentally seen as the case in which the source of entangled particles is in

Bob’s side and then he sends them to Alice’s location.
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5.3 Comparison between strategies

In this section, we provide a comparative overview between two possi-

ble strategies to develop two very important and well-known protocols in QIS:

quantum teleportation and superdense coding. We present the protocols in two

scenarios: the first one corresponding to the traditional way, using EPR pairs

weakly subject to bit-flip noise and EPR measurements. In the second scenario,

we replace all EPR states present in the system by noisy three-qubit GHZ states

and GHZ measurements.

5.3.1 Quantum Teleportation

Proposed initially by Bennet et al. and collaborators [Bennett et al. 1993]

and posteriorly experimentally implemented [Bouwmeester et al. 1997], the

quantum teleportation protocol represents a very important subject because

it illustrates how quantum mechanics can be used to develop new types of

communication technologies [Pirandola et al. 2015], and remarkably, in recent

times two realizations that make the protocol feasible in the context of global

communications [Yin et al. 2017,Ren et al. 2017] have been reported.

Let us start analizing the traditional scenario using EPR pairs, and in the

following, we consider the teleportation scheme using a GHZ state as the channel.

Teleportation using EPR states and measurements

Recall the EPR basis {|ψmn〉}, whose elements are given by:

|ψmn〉 =
1√
2

1∑
j=0

(−1)mj |j, j ⊕ n〉 , (5.6)

where m,n ∈ {0, 1}. In the same way, the projector of the (m,n) EPR state is

given by:

Π̂mn ≡ |ψmn〉〈ψmn| . (5.7)

As already mentioned, the set {Π̂mn} forms a complete basis for the two-qubit

Hilbert space (also known as Bell basis) and any element |ψjk〉 may be obtained
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by application of Pauli matrices on the state |ψ00〉:

|ψmn〉 = (σ̂mz ⊗ σ̂nx) |ψ00〉 , (5.8)

where σ̂kµ indicates k times the “µ" Pauli matrix.

The goal of the teleportation protocol is to send an a priori unknown

state |Ψ〉 = α0|0〉 + α1|1〉 from one part; let us say Alice whose qubit state lie

on the Hilbert space HA, to a distant part, hereafter Bob, possessing a qubit on

the Hilbert space HB. Initially, Alice and Bob share an EPR state; thus, the total

quantum state of the system is described by:

ρ̂o = |Ψ〉〈Ψ|A ⊗ |ψ00〉〈ψ00|AB ,

ρ̂o =
1

2

1∑
jkmn=0

αjα
∗
k |jm〉〈kn|A ⊗ |m〉〈n|B .

Decomposing Alice’s part in the Bell basis, using the relation between

the computational and Bell basis |mn〉 =
∑

k(−1)km |ψk,m⊕n〉 /
√

2 and after some

calculations, it is possible to show that:

ρ̂o =
1

4

1∑
mn=0

Π̂(A)
mn ⊗

(
σ̂nx σ̂

m
z |Ψ〉〈Ψ|B σ̂

m
z σ̂

n
x

)
+ ρ̂null. (5.9)

ρ̂null corresponds to the non-diagonal part of ρ̂o (i.e., terms proportional to

|ψkl〉〈ψmn| with k 6= m and l 6= n on the Alice’s part of the system). In forthcoming

decompositions, we use the same notation.

In the next step, Alice performs a projective measurement in the EPR basis

and according to her output, she tells Bob how to adjust his state with one out of

the set of operations {1, σx, σz, σzσx}. We can represent the teleportation protocol

by the transformation T : B(HA) ⊗ B(HB) 7→ B(HB), where B(HB) is the space

of the bounded operators on HB:

T (Ĉ) = TrA

{
1∑

mn=0

(
Π̂mn ⊗ σ̂mz σ̂nx

)
Ĉ
(

Π̂mn ⊗ σ̂nx σ̂mz
)}

, (5.10)
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where TrA represents the partial trace over Alice’s part. It is straightforward to

show that the application of the transformation T on the initial state ρ̂o gives:

T (ρ̂o) = |Ψ〉〈Ψ|B , (5.11)

as required by the teleportation protocol.

Now we assume that before the teleportation process, a small amount of

bit-flip noise affects Alice’s part. Thus, the state of the system (Alice + Bob) is

modified as ρ̂o → %̂:

%̂ = (1−2p)ρ̂o+p
{(

σ̂x ⊗ 1̂⊗ 1̂
)
ρ̂o
(
σ̂x ⊗ 1̂⊗ 1̂

)
+
(
1̂⊗ σ̂x ⊗ 1̂

)
ρ̂o
(
1̂⊗ σ̂x ⊗ 1̂

)}
+

+O(p2)f(ρ̂o),

where f(ρ̂o) is an operation on the initial state ρ̂o, which is not interesting under

the scope of the present work. By noticing that σ̂kx ⊗ 1̂ |ψmn〉 = (−1)km |ψm,n⊕k〉
and 1̂ ⊗ σ̂kx |ψmn〉 = |ψm,n⊕k〉, and after some calculations the density operator

reduces to

%̂ = (1− 2p)ρ̂d +
p

2

1∑
mn=0

Π̂
(A)
m,n⊕1 ⊗

(
σ̂nx σ̂

m
z |Ψ〉〈Ψ|B σ̂

m
z σ̂

n
x

)
+ %̂null, (5.12)

where ρ̂d represents the non-null part of ρ̂o (in Eq. 5.9).

Note above that the effect of the noise in the final state is to produce an

extra term where the adjustment to be performed according to the output of the

measurement is not the correct one. Proceeding with the protocol will have:

T (%̂) = (1− 2p) |Ψ〉〈Ψ|+ 2p(σ̂x |Ψ〉〈Ψ| σ̂x). (5.13)

Hence, only with probability (1− 2p) Bob’s part ends up in the desired state.

Now we turn our attention to the teleportation protocol, but instead of

EPR states, in this case we use three-partite GHZ states and measurements.
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Teleportation using GHZ states and measurements

First let us recall the three partite GHZ basis elements and related projec-

tors:

|φkmn〉 =
1√
2

1∑
j=0

(−1)kj |j, j ⊕m, j ⊕ n〉 , (5.14)

and

Π̂′kmn ≡ |φkmn〉〈φkmn| , (5.15)

where k,m, n ∈ {0, 1}. Analogously to the EPR basis, any element |φkmn〉 may be

obtained by application of Pauli matrices on the state |φ000〉 = (|000〉+ |111〉) /
√

2:

|φkmn〉 =
(
σ̂kz ⊗ σ̂mx ⊗ σ̂nx

)
|φ000〉 . (5.16)

Now Alice and Bob share three entangled qubits prepared in a GHZ state

|φ000〉: two qubits are held by Alice and the other one by Bob. Alice’s objective

is again to send an unknown qubit state |Ψ〉 to Bob. The initial state of the four

qubits reads:

ρ̂′o = |Ψ〉〈Ψ|A ⊗ |φ000〉〈φ000|AAB ,

ρ̂′o =
1

2

1∑
jkmn=0

αjα
∗
k |jmm〉〈knn|A ⊗ |m〉〈n|B . (5.17)

We can use the relation |kmn〉 =
∑

j(−1)jk |φj,k⊕m,k⊕n〉 /
√

2 to rewrite Eq.

5.17 in the following way:

ρ̂′o =
1

4

1∑
mn=0

Π̂′(A)
mnn ⊗

(
σ̂nx σ̂

m
z |Ψ〉〈Ψ|B σ̂

m
z σ̂

n
x

)
+ ρ̂′null. (5.18)

From the projector on Alice’s part, we can see that instead of eight, there are

only four possible outputs for a measurement in the GHZ basis, and the desired

operation to accomplish the teleportation process can be described by:

T ′(Ĉ) = TrA

{
1∑

mn=0

(
Π̂′mnn ⊗ σ̂mz σ̂nx

)
Ĉ
(

Π̂′mnn ⊗ σ̂nx σ̂mz
)}

, (5.19)

It is straightforward to show that T ′(ρ̂′o) = |Ψ〉〈Ψ|B, as expected.
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As in the previous case, before the teleportation protocol takes process,

we consider bit-flip noise acting on all Alice’s qubits under a weak regime. Thus,

we have ρ̂′o → %̂′:

%̂′ = (1− 3p)ρ̂′o + p
{(

σ̂x ⊗ 1̂⊗ 1̂⊗ 1̂
)
ρ̂′o
(
σ̂x ⊗ 1̂⊗ 1̂⊗ 1̂

)
+

+
(
1̂⊗ σ̂x ⊗ 1̂⊗ 1̂

)
ρ̂′o
(
1̂⊗ σ̂x ⊗ 1̂⊗ 1̂

)
+

+
(
1̂⊗ 1̂⊗ σ̂x ⊗ 1̂

)
ρ̂′o
(
1̂⊗ 1̂⊗ σ̂x ⊗ 1̂

)}
+O(p2)f ′(ρ̂′o).

In this case, we take into account the following relations: σ̂jx ⊗ 1̂⊗ 1̂ |φk,m,n〉 =

(−1)jk |φk,m⊕j,n⊕j〉, 1̂ ⊗ σ̂jx ⊗ 1̂ |φk,m,n〉 = |φk,m⊕j,n〉 and 1̂ ⊗ 1̂ ⊗ σ̂jx |φk,m,n〉 =

|φk,m,n⊕j〉. Substituting, we have:

%̂′ = (1− 3p)ρ̂′d+

+
p

4

1∑
mn=0

(
Π̂
′(A)
m,n⊕1,n⊕1 + Π̂

′(A)
m,n⊕1,n + Π̂

′(A)
m,n,n⊕1

)
⊗
(
σ̂nx σ̂

m
z |Ψ〉〈Ψ|B σ̂

m
z σ̂

n
x

)
+ %̂′null,

where as previously, ρ̂′d is the diagonal part of ρ̂′o in Eq. 5.18.

While in the ideal case we would only get four outputs, now we observe

four additional measurement results {|φ001〉 , |φ010〉 , |φ101〉 , |φ110〉} due to the in-

cidence of noise. At this point we cannot proceed as in the traditional error

syndrome, because we can only determine when noise has affected one of the

GHZ qubits in Alice, but we are not capable of identifying on which one specif-

ically. However, we can take advantage of this partial knowledge to perform a

post-selection during the protocol: discarding Bob’s qubits whenever “undesired”

outputs are obtained. In other words, the efficiency is decreased in favour of the

precision of the protocol.

Following this process and performing the proper renormalization, the

final state reads:

%̂F =
1− 3p

1− 2p
|Ψ〉〈Ψ|+ p

1− 2p
σ̂x |Ψ〉〈Ψ| σ̂x, (5.20)

which is better than the result obtained in the protocol using EPR states (eq. 5.13)

for p < 1/4 i.e. under a weak noise regime.
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5.3.2 Superdense Coding

Here, we analyze the protocol of superdense coding, theoretically proposed

in [Bennett e Wiesner 1992] and experimentally implemented in [Mattle et al.

1996], whose importance lies on its capability of reaching a compression factor of

2 per message. The scenario consists in two parts: Alice (the sender), sharing an

EPR state |ψ00〉 with Bob (the receiver).

Through the application of the operations σ̂a2
x σ̂

a1
z , Alice encodes a two-bit

message (a1, a2) on her qubit which is afterward physically sent to Bob. The

receiver (now holding both qubits) performs a measurement in the EPR basis and

recovers the original message according to his output: |ψa1,a2〉.

If nevertheless before Bob’s measurement the system is affected by bit-flip

noise, then under the regime of weak noise, the resulting state is given by:

%̂ = (1− 2p)Π̂a1,a2 + 2pΠ̂a1,a2⊕1, (5.21)

thus only a fraction of 1− 2p outputs will lead to a proper interpretation of the

original message.

It is possible to think on a different procedure to carry out this protocol.

Assume that Alice and Bob share a GHZ state |φ000〉ABB instead of an EPR state.

Alice encodes her message in the same way as before and sends her qubit to

Bob who performs a measurement in the GHZ basis. He recovers Alice’s string

by associating the output |φk,m,n〉 with the string (k,m). Notice that, so far, the

outputs with m 6= n are not possible; however when the action of noise on the

system is considered (before Bob’s measurement), the system is described by:

%̂′ = (1− 3p)Π̂′a1,a2,a2
+ p

(
Π̂′a1,a2⊕1,a2⊕1 + Π̂′a1,a2⊕1,a2

+ Π̂′a1,a2,a2⊕1

)
. (5.22)

In this case, after performing a measurement in the GHZ basis, Bob will receive

a fraction of 1− 3p of correct signal. However, he is capable of detecting that a

flip has happened by observing the detection of “disallowed outputs" (Π̂′k,m,n for

m 6= n). He can thus discard those results and increase to a rate of (1−3p)/(1−2p)

accurate strings, which is better than 1− 2p in the weak noise regime.
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5.4 General protocol

5.4.1 Any protocol involving EPR pairs may be performed using GHZ

states

In this section, our goal is to demonstrate that any protocol involving an

EPR pair and measurements can be performed using a GHZ state and measure-

ments. With this result, we show that by using GHZ configurations it is possible

to detect the presence of weak bit-flip noise and reach a higher precision by

post-selection.

Assume we are given a task to be performed using an EPR pair (|ψmn〉)
and an arbitrary subsystem described by the density operator ρ̂S ∈ B(HS). The

initial state of the system as a whole reads:

ρ̂o = ρ̂S ⊗ Π̂mn, (5.23)

for Π̂mn ∈ B(H1 ⊗H2), with Hj the Hilbert space associated to the qubits of the

EPR state.

In order to perform the task in question, eventually some operation T will

be performed on ρ̂o transforming into a new state ρ̂f . Hence at some point we

must have:

T (ρ̂o) = ρ̂f . (5.24)

In general, such a transformation may be written as:

T (σ̂) = TrHQ

(
m′∑
k=1

V̂kσ̂V̂
†
k

)
Γ−1
m′ , (5.25)

where Γm′ = Tr
{∑m′

k=1 V̂kσ̂V̂
†
k

}
and

∑m
k V̂

†
k V̂k = 1̂, for a given m′ ≤ m, under an

arbitrary Hilbert space HQ satisfying: HQ ⊂ HS ⊗H1 ⊗H2.

We can always add an extra qubit ρ̂anc = |0〉〈0| ∈ B(Hanc), sometimes

called ancilla and define the extended state ρ̂′o as follows:

ρ̂′o = (1̂S ⊗ 1̂1 ⊗ Ĉnot)ρ̂o ⊗ ρ̂anc(1̂S ⊗ 1̂1 ⊗ Ĉ†not) = ρ̂S ⊗ Π̂′mnn, (5.26)

where Ĉnot represents the CNOT operation acting on H2 ⊗Hanc.
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The transformation defined previously (Eq. 5.25) may be generalized to the

extended Hilbert space by introducing the operators V̂ ′k ∈ B(HS⊗H0⊗H1⊗Hanc)

in the following way:

V̂ ′k = (V̂k ⊗ 1̂anc)(1̂S ⊗ 1̂1 ⊗ Ĉ†not), (5.27)

likewise, the transformation T ′ holds:

T ′(σ̂) = TrHQ′

(
m′∑
k=1

V̂ ′kσ̂V̂
′†
k

)
, (5.28)

which implies that

T (ρ̂o) = T ′(ρ̂′o) = ρ̂f . (5.29)

In conclusion, any task making use of EPR pairs may be performed using the

same number of GHZ states.

5.4.2 Noise detection

Now we focus on tasks using EPR states that involve detecting some

elements of an EPR basis {|ψmn〉}, i.e., T is of the form:

T (ρ̂) = TrHQ

{∑
mn

(
Ûmn ⊗ Π̂mn

)
ρ̂
(
Û †mn ⊗ Π̂mn

)}
(5.30)

where Ûmn are arbitrary unitary matrices. It is important to remark that we

assume the measurement acting on at least one of the qubits in the EPR state.

Consider the incidence of bit-flip noise on the qubits involved in the

measurement. Under the weak noise regime, we have:

T (%̂o) = (1− 2p) TrHQ

{
1∑

mn=0

(
Ûmn ⊗ Π̂mn

)
ρ̂o

(
Û †mn ⊗ Π̂mn

)}
+

+ 2pTrHQ

{
1∑

mn=0

(
Ûmn ⊗ Π̂m,n⊕1

)
ρ̂o

(
Û †mn ⊗ Π̂m,n⊕1

)}
, (5.31)

T (%̂o) = (1− 2p)ρ̂f + 2pTrHQ

{
1∑

mn=0

(
Ûmn ⊗ Π̂m,n⊕1

)
ρ̂o

(
Û †mn ⊗ Π̂m,n⊕1

)}
.

(5.32)
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As we can see, the effect of bit-flip noise on the qubits involved in the measurement

is to mix the labels and in this way decrease the precision of the operation.

Following the results of the last section, we are able to modify the trans-

formation above in order to replace EPR states by GHZ states. Thus, it is straight-

forward to show that the corresponding operation T ′ is:

T ′(Ĉ) = TrHQ′

{
1∑

mn=0

(
Ûmn ⊗ Π̂′mnn

)
Ĉ
(
Û †mn ⊗ Π̂′mnn

)}
. (5.33)

On the other hand, if we look at the GHZ version of the protocol, we have:

T ′(%̂′o) = (1− 3p) TrHQ′

{
1∑

mn=0

(
Ûmn ⊗ Π̂′mnn

)
ρ̂′o

(
Û †mn ⊗ Π̂′mnn

)}
+

+ pTrHQ′

{
1∑

mn=0

(
Ûmn ⊗ Π̂′m,n⊕1,n⊕1

)
ρ̂′o

(
Û †mn ⊗ Π̂′m,n⊕1,n⊕1

)}
+

+ pTrHQ′

{
1∑

mn=0

(
Ûmn ⊗ Π̂′m,n⊕1,n

)
ρ̂′o

(
Û †mn ⊗ Π̂′m,n⊕1,n

)}
+

+ pTrHQ′

{
1∑

mn=0

(
Ûmn ⊗ Π̂′m,n,n⊕1

)
ρ̂′o

(
Û †mn ⊗ Π̂′m,n,n⊕1

)}
. (5.34)

It is clear from the above equation that the effect of noise in this scenario

is richer. We observe as in the EPR protocol a mixing of the detections labels;

however, it happens in a smaller proportion, and to compensate that effect, new

outcomes become possible. As those are supposed to appear, we can always

perform a post-selection by eliminating those outcomes. This can be done in the

generic operation T̃ ′:

T̃ ′(%̂′o) = Γ ·

{
(1− 3p) TrHQ′

[
1∑

mn=0

(
Ûmn ⊗ Π̂′mnn

)
ρ̂′o

(
Û †mn ⊗ Π̂′mnn

)]
+

+ pTrHQ′

[
1∑

mn=0

(
Ûmn ⊗ Π̂′m,n⊕1,n⊕1

)
ρ̂′o

(
Û †mn ⊗ Π̂′m,n⊕1,n⊕1

)]}
, (5.35)

where Γ is a normalization factor, which depends on the unexpected new outputs

and is equal to 1− 2p.
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5.5 General protocol using N -partite GHZ states

A natural point remaining to be explored in this work is whether the

improvement in the protocols observed here is only a manifestation of a non-ideal

version of some error-correction scheme, whose imperfection might arise from the

low size of the employed ancilla (0.5 qubits of the ancilla per qubit in the original

protocol). This can be verified by generalizing this protocol to the case where

more than one qubit is attached to the original system, i.e., replacing EPR pairs

and measurements by N -partite GHZ states and measurements, with N > 2. Such

a generalization is straightforward and first the N -partite GHZ state is defined as

follows:

|φ~µ〉 =
1√
2

1∑
j=0

(−1)jµ0 |j, j ⊕ µ1, . . . , j ⊕ µN−1〉 , (5.36)

where ~µ = (µ0, . . . , µN−1), with µj ∈ {0, 1}. In analogy to the previous cases, this

state may also be obtained from local application of Pauli operators on the state

|φ0,...,0〉, as:

|φ~µ〉 = (σ̂µ0
z ⊗ σ̂µ1

x ⊗ · · · ⊗ σ̂µN−1
x ) |φ0,...,0〉 . (5.37)

In the same way, the projector reads:

Π̂′′~µ = |φ~µ〉〈φ~µ| . (5.38)

Thus, the operation defined in Eq. 5.33 in this case reads:

T ′′(Ĉ) = TrHQ′′

{
1∑

mn=0

(
Ûmn ⊗ Π̂′′m,n,n,...,n

)
Ĉ
(
Û †mn ⊗ Π̂′′m,n,n,...,n

)}
. (5.39)
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In the presence of bit-flip noise, under the weak-noise regime, we have:

T̃ ′′(%̂′′o) = Γ ·

{
(1−Np) TrHQ′′

[
1∑

mn=0

(
Ûmn ⊗ Π̂′′m,n,...,n

)
ρ̂′o

(
Û †mn ⊗ Π̂′′m,n,...,n

)]
+

+ pTrHQ′′

[
1∑

mn=0

(
Ûmn ⊗ Π̂′′m,n⊕1,n⊕1,...,n⊕1

)
ρ̂′′o

(
Û †mn ⊗ Π̂′′m,n⊕1,n⊕1,...,n⊕1

)]
+

+ pTrHQ′′

[
1∑

mn=0

(
Ûmn ⊗ Π̂′′m,n⊕1,n,...,n

)
ρ̂′′o

(
Û †mn ⊗ Π̂′′m,n⊕1,n,...,n

)]
+

+ · · · +

+ pTrHQ′′

[
1∑

mn=0

(
Ûmn ⊗ Π̂′′m,n,n,...,n⊕1

)
ρ̂′′o

(
Û †mn ⊗ Π̂′′m,n,n,...,n⊕1

)]}
. (5.40)

Therefore, after post-selection we get an efficiency of (1 − Np)/ [1− (N − 1)p].

Now it is natural to ask whether increasing the number of parties above N = 3

enhances the performance of the protocol, i.e. for what values of N∗ and arbitrary

p, the following condition holds:

1−N∗p
1− (N∗ − 1)p

>
1− 3p

1− 2p
,

however this is only possible for N∗ < 3. In this way, we have shown that the best

strategy is to employ three-partite GHZ states and measurements.

5.6 Discussion and Conclusion

We presented a protocol for error detection in some entanglement-based

tasks, in which the key ingredient is the replacement of EPR pairs by GHZ states.

First, we showed its performance in two well-known tasks: teleportation and

superdense coding. Then, we considered a general task under the effect of weak

bit-flip noise, and we have demonstrated that it is alway possible to increase its

efficiency by using our protocol. Additionally, this process is less expensive than

many other protocols, as it only demands one ancillary qubit per pair of qubits

in the system. Nonetheless, it is important to remark that such an enhancement

is not for free; in fact, measurements in the EPR basis must be replaced by
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measurements in the GHZ basis. Furthermore, we have proven that our proposal

is not equivalent to any QEC by showing that it cannot be improved by increasing

the size of the ancilla.

It is a curious fact that the replacement of an EPR pair by a GHZ state as a

resource leads to an increase in the precision of some task that may be performed

between two remote parts, for instance the protocol of teleportation. That is

because if we consider the bipartition involved in this protocol, the three-partite

GHZ and the EPR state have the same entropy of entanglement [Horodecki et al.

2009], and thus, they should represent the same resource with the same potential

(which should be the maximum possible) for such a task.

An interesting question is whether a similar process can be performed

for tasks demanding a higher number of entangled parts using another relevant

classes of quantum states, such as cluster states, for instance.
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6 QUDIT TELEPORTATION UNDER

NOISY ENVIRONMENTS

Highlights

It is presented a generalization of the teleportation scheme proposed Fortes and
Rigolin [Fortes e Rigolin 2015], for arbitrary dimension d.

Several special cases are studied in detail.

It is shown that the scenarios in which is possible to fight noise with noise [Fortes
e Rigolin 2015] are more restricted for arbitrary d when compared with the case of
qubits.

6.1 Introduction

From its proposal in 1993 [Bennett et al. 1993] and even nowadays

[Pirandola et al. 2015], the teleportation protocol represents one of the most

known and widely studied applications of quantum entanglement. Under this,

if one has a source of pairs of maximally entangled qudits and a measurement

apparatus capable of discriminating the d2 elements of the generalized Bell

basis, then it is possible to send an arbitrary qudit state between two locations

even without prior knowledge of it. Nevertheless, in real life experiments one

has to deal with the unavoidable interaction of the parties involved with the

environment, and in this way leading to losses of quantum resources responsible

for the improvement of the task when compared to the usage of a classical channel.

In addition to concentrating experimental efforts to isolate the system, one may

also adapt the scheme of measurements and operations on the qudits in order

to improve the performance of the protocol (see [Taketani, Melo e Filho 2012],

and references therein). From another point of view, Fortes and Rigolin [Fortes

e Rigolin 2015] (hereafter FR15) have recently shown that in some particular
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cases the presence of noise can enhance the fidelity of qubit teleportation, even

reaching values above the classical value for noise fractions close to one. In this

chapter we present an extension of FR15 for systems of arbitrary dimension d, for

the families of noise presented in section 2.5.1. First we present the derivation of

a general expression for the average fidelity of teleportation under the families of

noise whose Kraus operators are proportional to Weyl matrices, then we explore

some special cases. In the final section we derive an expression for the fidelity

which takes into account amplitude damping noise and briefly present some

results.

6.2 Teleportation protocol

Alice’s aim is to send an arbitrary state |φ〉 =
∑d−1

j=0 αj |j〉 to Bob, through

a quantum channel ρ̂ch. We assume that Alice and Bob share many copies of

an entangled pair initially prepared in a pure state |ψ〉. Thus we can write

ρ̂ch = |ψ〉〈ψ|, with |ψ〉 =
∑d−1

k=0 γk |kk〉. For convenience, we express the initial

state of the system as

ρ̂ = |φ〉〈φ| ⊗ ρ̂ch =
d−1∑
j1j2j3

k1k2k3=0

ρj1j2j3k1k2k3 |j1j2j3〉〈k1k2k3| . (6.1)

As we mentioned in the first chapter (Sec. 2.5), the presence of noise tends to

change the state of the system (ρ̂→ ρ̂′). If we assume that noise acts locally, then

we can express the modified state coefficients ρ′m,n as in equations 2.44 and 2.46

in the Weyl and computational basis, respectively.

Alice performs a joint measurement in a basis whose elements are given by

|Φµν〉 =
∑d−1

k=0 ω
kµ
d βk |k, k ⊕ ν〉, and then sends her result (µ, ν) through a classical

channel to Bob, who applies the operation Ûµν on his qudit. The usual way

to quantify how close are two states is given by the fidelity (see Eq. 2.42). In

the ideal case (no noise and maximally entangled channel and measurements

βk = γk = 1/
√
d), Bob’s qudit recovers the state initially sent by Alice, |φ〉, and

in this way F = 1. Let us examine some particular cases, starting our discussion

with the kinds of noise which can be decomposed in the Weyl basis.
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6.3 Fidelity and Weyl-like noises

After some algebra, the fidelity of teleportation F =
∑

µν Tr {|φ〉〈φ| ρ̂µν}
takes the form:

F =
d−1∑
jkmn
µν=0

αmα
∗
nβjβ

∗
kω

µ(n−m+j−k)
d ρ′k,k⊕ν,n⊕ν,j,j⊕ν,m⊕ν , (6.2)

using equation (2.44), the expression above reduces to

F =
d−1∑

jkµνp1p2p3
q1q2q3=0

αj⊕q2	q3α
∗
k⊕q2	q3α

∗
j⊕q1αk⊕q1ω

(k−j)(p1+p2+p3)
d ×

× βjβ∗kγk⊕ν⊕q2γ∗j⊕ν⊕q2a
2
p1q1

b2
p2q2

c2
p3q3

, (6.3)

where, ap1q1, bp2q2 and cp3q3 are the noise coefficients corresponding to the input,

and the channel qudits respectively. F typically depends on the input state coeffi-

cients αj, for this reason it is more convenient to calculate the average fidelity

over the set of input states.

Using the result of appendix B (eq. B.11) and after some calculations, the

average fidelity takes the form:

〈F 〉 =
1

d+ 1

1 +
d−1∑

jkνp1p2p3
q1q2q3=0

ω
(k−j)(p1+p2+p3)
d βjβ

∗
kγk⊕ν⊕q2γ

∗
j⊕ν⊕q2a

2
p1q1

b2
p2q2

c2
p3q3

δq2,q1⊕q3

 .

(6.4)

By substituting ajk (Eq. 2.45) and using analogous expressions for the

noise coefficients of the channel qudits bjk and cjk into equation 6.4, and after
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some steps, the fidelity of teleportation becomes:

〈F 〉 =
1

d+ 1

(
1+d

{
b2
p

[
a2

0c
2
0+(d−1)a2

fc
2
f

]
+
[
a2
pc

2
0+a2

0c
2
p+(d−1)

(
a2
fc

2
c + a2

cc
2
f

) ]
×

×
[
b2

0 + (d− 2)b2
p

]
+
[
(d− 2)b2

0 + (d2 − 3d+ 3)b2
p

][
a2
pc

2
p + (d− 1)a2

cc
2
c

]}
+

+d(d−1)

{[
(d−2)b2

f+(d2−3d+3)b2
c

][
a2
pc

2
c+a

2
cc

2
p+(d−2)a2

cc
2
c

]
+b2

c

[
a2
fc

2
0+a2

0c
2
f+(d−2)a2

fc
2
f

]
+

+
[
b2
f + (d− 2)b2

c

][
a2
cc

2
0 + a2

0c
2
c + a2

fc
2
p + a2

pc
2
f + (d− 2)

(
a2
fc

2
c + a2

cc
2
f

) ]}
+

+
(
b2

0 − b2
p

) [ (
a2

0 − a2
p

) (
c2

0 − c2
p

)
+ (d− 1)

(
a2
f − a2

c

) (
c2
f − c2

c

) ](
1 + (d+ 1)fQ

)
+

+
(
b2
f − b2

c

) [ (
a2

0 − a2
p

) (
c2
f − c2

c

)
+
(
a2
f − a2

c

) (
c2

0 − c2
p

)
+(d−2)

(
a2
f − a2

c

) (
c2
f − c2

c

) ]
f̃

)
,

(6.5)

where fQ is the quantum contribution to the fidelity of teleportation in the absence

of noise

fQ =
2

d+ 1

d−1∑
j>k,ν=0

Re
{
βjβ

∗
kγk⊕νγ

∗
j⊕ν
}

(6.6)

and f̃ is related to the channel and measurement coefficients as:

f̃ =
d−1∑
jkν=0
q=1

βjβ
∗
kγk⊕ν⊕qγ

∗
j⊕ν⊕q. (6.7)

When the entanglement of the channel and measurements is maximum, it is

straightforward to show that these functions attain maximum values of fQ =

(d− 1)/(d+ 1) and f̃ = d(d− 1) .

It is worth mentioning that for the case of qubits (d = 2), the expression

for 〈F 〉 above reproduces all the results obtained in FR15, with the exception of

those regarding amplitude damping noise. However we were able to find a general

relation considering this class of noise as well by expressing the associated Kraus

operators in the computational basis, as we will show in the end of the chapter.

Now we consider several important examples, starting with the noiseless

case.
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Entanglement

d = 2
N = 104

2

 

Entanglement

Entanglement Entanglement

Figure 17 – Quantum contribution to the fidelity of teleportation fQ (Eq. 6.6), as a function
of the total amount of entanglement of the system (channel + measurement,
each normalized to 1) for a maximally entangled measurement basis and a set of
N random states of two entangled qudits in the channel, for several values of d.
Note that d = 2 is the only case in which fQ shows a monotonical behavior in
function of the entanglement. In the other cases, if the amount of entanglement
of the channel is known we can only determine bounds of fQ.

6.4 Noise-Free environment

When there is no noise acting on the system, the noise coefficients are

reduced to apjqj = δpj ,0δqj ,0, or equivalently: a0 = 1, af = 0, ap = 0 and ap = 0

(the same relations valid for coefficients bpjqj , cpjqj , bj and ck). Substituting in Eq.

6.5, the fidelity takes the form:

〈F 〉 =
2

d+ 1

(
1 +

d−1∑
j>k,ν=0

Re
{
βjβ

∗
kγk⊕νγ

∗
j⊕ν
})

. (6.8)

In this expression the classical and quantum contributions to the fidelity are

made clear. It is straightforward to see that if we have maximal entanglement

in the channel and measurements (βj = γk = 1/
√
d), then the fidelity reaches a

maximum value of 1, as expected.
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Entanglement

 

Entanglement

EntanglementEntanglement

Figure 18 – Quantum contribution to the fidelity of teleportation fQ (Eq. 6.6), as a function
of the total amount of entanglement of the system (channel + measurement,
each normalized to 1) for a set of N random states of two entangled qudits for
the channel and measurement basis, for several values of d. As in the preceding
case, the total amount of entanglement of the system determines bounds of the
quantum fidelity only.

In order to have a qualitative picture of how the amount of entanglement

of the channel and measurement basis are related to the quantum contribution to

the fidelity of teleportation, we produced a sample of random entangled states

uniformly distributed on the space of the Schmidt basis1. Results of the quantum

contribution to the fidelity of teleportation fQ as a function of the total amount of

entanglement in the channel and measurements (normalized to 2), for the case

in which neither the channel nor the measurement are maximally entangled are

presented in figure 17. Results corresponding to both components random are

shown In figure 18. From the results we see that if one is able to determine the

amount of entanglement, we can evaluate bounds of quantum fidelity.

In addition to the technical limitations in the preparation of the system
1 We produced random states uniformly distributed in the basis {|00〉 , |11〉 , · · · |d− 1, d− 1〉}.

Note that this parametrization does not cover the whole space of pure states for two-qudits.
Nevertheless for our purposes it is enough.
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and realization of measurements in maximally entangled states, noise is an

unavoidable feature of real experiments, for this reason it is very important to

establish strategies which lead to the improvement of the final results. In the

following sections we explore the influence of protecting one or more qudits from

noise on the fidelity of teleportation.

6.5 Noise in one qudit

In this section we consider the case in which two qudits are fully protected

from noise, e.g. an experiment in which the production of pairs of entangled

qudits is carried out in Alice’s location and Bob’s qudit is affected by interacting

with the environment during the transportation process.

By direct substitution into the expression for fidelity (eq. 6.4), it is easy to

see that when noise is acting on one qudit only, the final result does not depend

on the qudit affected. Then, giving continuity to the example given above, we

consider that the affected qudit is that on Bob’s location. In this case the general

expression for the fidelity of teleportation is reduced to:

〈F 〉 =
1

d+ 1

{
1 + dc2

p + c2
0 − c2

p + (d+ 1)(c2
0 − c2

p)fQ

}
, (6.9)

which does not depend on the coefficient cf , for this reason the fidelity corre-

sponding to dit-flip and dit-phase-flip noises attain the same values:

〈FF 〉 = 〈FFP 〉 =
2

d+ 1

(
1− p

2

)
+ fQ(1− p). (6.10)

For d-phase-flip noise, the fidelity is reduced to:

〈FP 〉 =
2

d+ 1
+ fQ

(
1− d

d− 1
p

)
, (6.11)

the classical fidelity is not affected because phase shifts are exclusive elements of

quantum systems. This feature will be explored in more detail in the following

subsection.

The corresponding fidelities under mixed and depolarizing noise respec-

tively are:

〈FM〉 =
2

d+ 1

(
1− d

2(d+ 1)
p

)
+ fQ

(
1− d2

d2 − 1
p

)
, (6.12)
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and

〈FD〉 =
2

d+ 1

(
1− d− 1

2d
p

)
+ fQ (1− p) . (6.13)

Our results for 〈FF 〉, 〈FP 〉 and 〈FD〉 are in agreement with t/se of FR15

for qubits, as expected.

It is important to note that when we have a maximally entangled channel

and measurements [fQ = (d− 1)/(d+ 1)], the fidelities 〈Ff〉, 〈Fp〉, and 〈Ffp〉 are

all equal to:

〈F 〉 = 1− d

d+ 1
p, (6.14)

and the corresponding to depolarizing reduces to:

〈FD〉 = 1− d− 1

d
p. (6.15)

6.5.1 Optimization of fidelity under d-phase-flip noise in one qudit

Besides the fact that the classical fidelity is not affected by the presence

of d-phase-flip noise on one qudit, it is possible to find other interesting features.

By analysing the expression for fidelity (eq. 6.11), we see that above a noise

threshold p∗ = (d − 1)/d, the quantum contribution becomes negative. This

situation may be overcome if we make a phase addition in the measurement

basis, as pointed out in FR15 for d = 2. Without loss of generality and in order

to simplify calculations, assume a channel initially prepared in a maximally

entangled state and a measurement basis maximally entangled with arbitrary

phases φj: βj = exp{iφj}/
√
d, with φ0 = 0. The fidelity is reduced to:

〈FP 〉 =
2

d+ 1

{
1 +

1

d

(
1− pd

d− 1

)(d−1∑
k=1

cosφk +
d−1∑
k>l=1

cos(φl − φk)

)}
. (6.16)

Thus the problem is reduced to an optimization procedure in which we

search for extremal values (maximum when p < p∗ and minimum for p > p∗) of

the quantum contribution to the fidelity. We carried out analytical calculations up

to d = 3, obtaining the following results: For noise fractions below the treshold

p∗, the whole set of phases are null, as expected. For p > p∗, we got φ1 = π for

d = 2 and (φ1, φ2) = (2π/3, 4π/3) for d = 3. The resulting fidelities are plotted in
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Figure 19 – (Solid): Optimal fidelity of teleportation for the case in which only one of the
qudits of the system may suffer d-phase-flip noise. (Dashed): Classical fidelity. (a)
Calculations of 〈Fp〉 for 2 ≤ d ≤ 5. (b) Optimal fidelity of teleportation for
arbitrary dimension d.

figure 19.(a). Furthermore we performed numerical calculations, from these we

were able to infer the following expression for fidelity:

〈FP 〉 =


1− dp

d+1
for p < p∗

dp+d−1
d2−1

for p > p∗.

(6.17)

In conclusion, if somehow Alice and Bob are capable of measuring the

amount of noise on the affected qudit, then she can improve the fidelity of the

teleported state by choosing one out of two measurement basis. The results are

summarized in Fig. 19.b. As it can be seen, the best improvement is attained by

systems composed by qubits. As FR15 have shown, this feature can be exploited if

we permit a part of the system to be affected by phase-flip noise2. Unfortunately

this is not the case for arbitrary dimension, for as it can be seen in Fig. 19.a., the

recovery becomes lower as we increase d.
2 Nevertheless as it can be easily seen, such a recovery in the fidelity of qubit teleportation

reported in [Fortes e Rigolin 2015] may be explained by the fact that an increase in the noise
fraction p leads to a suppression of phase-flip noise effect of the Kraus operators on the final
state for p > 1/2.
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6.6 Noise in more than one qudit

In this section we treat the case in which protection may be applied in at

most one of the qudits. Again, in order to have a better insight on the results, we

assume maximum entanglement in the channel and measurements.

Before examining some cases in detail let us summarize some general

observations regarding dit-flip (F ), d-phase-flip (P ), dit-phase-flip (FP ), mixed

(M) and depolarizing (D) noises on the teleportation protocol:

The fidelity of teleportation does not depend on how noise is distributed

on the qudits3, thus for instance a situation in which two qudits may be affected

is equivalent to that of having the input protected only i.e. 〈FX,∅,Y 〉 = 〈FX,Y,∅〉 =

〈F∅,X,Y 〉, where 〈FX,Y,Z〉 denotes the fidelity when X, Y and Z kinds of noise are

acting on the input, Alice’s and Bob’s qudits composing the channel respectively,

and we use the symbol “∅” to indicate a noise-free qudit.

Furthermore it is possible to observe some symmetries when we consider

dit-flip, d-phase-flip and dit-phase-flip noises: 〈FF,F,X〉 = 〈FP,P,X〉 with X =

{∅, FP,M,D}, 〈FX′,Y ′,F 〉 = 〈FX′,Y ′,P 〉 = 〈FX′,Y ′,FP 〉 for X ′ 6= Y ′ = {∅,M,D}
and 〈FX,Y,∅〉 = 〈FX,Z,∅〉 for X 6= Y 6= Z = {F, P, FP}. Explicit expressions are

not presented here, however all of them may be obtained by direct substitution

in the general equation for 〈F 〉.

Among the considered cases, in the scenario F, F,∅ (or equivalently

P, P,∅) there is always a quantum contribution to the fidelity, with d = 2 as

an extremal case in which 〈F 〉 = 1, when the fraction of noise is maximal (see

figures 20 and 21).

6.6.1 Noise thresholds

In order to compare the efficiency of the protocol for different schemes

we calculated the maximum fraction of noise in which there is still a quantum

contribution to the fidelity, p∗. As in the previous analysis, we assume maximal

entanglement in the channel and measurements.
3 This result holds for any case: one, two or three qudits affected.
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Figure 20 – Fidelity of teleportation in function of the fraction of noise for the cases in which
it is possible to fight noise with noise [Fortes e Rigolin 2015] without using a
measurement basis change, for d = 2. In order to facilitate the visualization of
results we have done pa = pb = p (= pc, whenever noise is acting on the third
qubit).

a) b)

Figure 21 – a) Scenario F, F,∅ (or P, P,∅). These are the only found instances in which it
is possible to fight noise by using noise without changing the measurement basis.
b) Scenario FP, FP,∅, for this the only instance exhibiting the possibility of
fighting noise with noise is the case of qubits. In order to facilitate the
visualization of results we have done pa = pb = p.
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Scenario (X,∅,∅)

For the simplest case where there is noise in one qudit only, it is straight-

forward to show that p∗ = (d− 1)/d for dit-flip, d-phase-flip, dit-phase-flip and

mixed noise, while p∗ = d/(d+ 1) for depolarizing.

Scenario (X, Y,∅)

Without considering the cases in which errors can be suppressed by adding

noise to another part of the system, we carried out a search of extremal values

for noise thresholds under this scenario. For the worst situation (X 6= Y ∈
{F, P, FP}) we found a noise threshold of p∗ = 1 − 1√

d
and for the best one

(X = Y ∈ {F, P, FP}), p∗ = 1− 1
d
, for d = 2 and X = Y ∈ {F, P} for d > 2 (see

also Fig. 21).

Scenario (X, Y, Z)

Finally, for the cases in which all qudits can be affected we were able to

calculate the maximal noise fraction for the extremal pictures: The worst situation

is reached for the scenario X 6= Y 6= Z ∈ {F, P, FP} with a noise threshold given

by

p∗ =
d− 1

(d− 1)2 − 1

{
d− 1− 2−

1
3

[
3

√
(d− 2)2 − 2− (d− 2)

√
d(d− 4) +

+
3

√
(d− 2)2 − 2 + (d− 2)

√
d(d− 4)

]}
. (6.18)

For the best situation we have (X = Y = Z ∈ {F, P, FP}, for d = 2 and

X = Y ∈ {F, P} for d > 2) with p∗ = 1− 1
d
.

A summary of the relevant noise thresholds for several dimensions is given

in figure 22. From this we can see that the situations leading to the highest and

lowest noise thresholds are those associated with only one and all qudits affected

(by different kinds of noise) respectively, as expected. Nevertheless we found an

extra feature for the (F, F, F ) scenario: even though the fidelity of teleportation

has the strongest decay, the noise threshold is the same as in the case of two

protected qudits under the same kind of noise.
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Figure 22 – Summary of extremal noise thresholds for several cases. The best scenarios are
those corresponding to two protected qudits (∅,∅, X) with X denoting any
noise, or the same noise on all qudits (X,X,X) with X = F, P (and FP for
d = 2). Note that the case (D,∅,∅) leads to the best performance, however it
does not make much sense to compare it with the other instances due to the fact
that noise fraction for depolarizing has a very different meaning. The worst case
is that in which different kinds of noise (F , P or FP ) act on each qudit.

Particular results for the cases in which there is only one kind of noise on

the system are shown in figure 23 for three cases: one, two and no protected

qudits. It is important to remark that results corresponding to d-phase-flip noise

are not presented because those have exactly the same behaviour as for the dit-flip

noise case. Note also that we restrict ourselves to the case in which all qudits may

be affected with the same probability.

6.7 Fidelity of teleportation - Amplitude damping noise

Due to the structure of the Kraus operators related to amplitude damping
noise it is not possible to decompose them by using Weyl matrices, for this reason

we use the traditional computational basis (see section 2.5.2).
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Figure 23 – Maximum fraction of noise p∗ for which the fidelity of teleportation has a
quantum contribution in function of the dimension d, in a scenario where the
qudits of the system may be affected (each with the same probability) by only
one kind of noise: a) dit-flip (d-phase-flip), b) dit-phase-flip, c) mixed, and d)
depolarizing noise. Note that with the exception of dit-flip and bit-phase-flip
noises, the scenarios in which two qudits are protected always lead to the best
performance, as expected.

Let us calculate the fidelity of teleportation. Substituting Eq. 2.46 in 6.2,

we have

F =
∑

jkmnµν
n1n2p1p2
k1k2k3

αmα
∗
nαn1α

∗
p1
βjβ

∗
kγn2γ

∗
p2
ω
µ(n−m+j−k)
d a

(k1)
k,n1

b
(k2)
k⊕ν,n2

c
(k3)
n⊕ν,n2

a
(k1)∗
j,p1

b
(k2)∗
j⊕ν,p2

c
(k3)∗
m⊕ν,p2

.

Analogously to the previous treatment, using the results of Appendix B and after
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Figure 24 – (Dots): Fidelity of qubit teleportation under amplitude damping noise acting on
the input qudit and, (Lines): classical fidelities, for several values of d.

some calculations the average fidelity of teleportation holds

〈F 〉 =
1

d+ 1

∑
kmνn1n2
p1k1k2k3

γn2γ
∗
p2
a

(k1)
k,n1

b
(k2)
k⊕ν,n2

c
(k3)∗
m⊕ν,p2

[
|βk|2a(k1)∗

k,n1
b

(k2)∗
k⊕ν,p2

c
(k3)
m⊕ν,n2

+

+ βk⊕m⊕(−n1)β
∗
ka

(k1)∗
k⊕m⊕(−n1),mb

(k2)∗
k⊕m⊕(−n1)⊕ν,p2

c
(k3)
n1⊕ν,n2

]
. (6.19)

Beside contemplating the relevant case of amplitude damping noise, it is important

to mention that from this expression we can obtain all the results presented in

previous sections.

In Figs. 24, 25 and 26, we have plotted the fidelity of teleportation for the

possible scenarios involving amplitude damping noise only. Note that, protecting

two qubits from noise leads to the higher increase in the noise threshold when

compared to the other two scenarios. From the figures it is also possible to observe

that the difference between fidelities diminishes and the noise threshold attains

larger values as the dimension grows, even for the case in which the three qudits

are affected.
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Figure 25 – (Dots): Fidelity of qubit teleportation under amplitude damping noise acting on
Alice’s qudits and, (Lines): classical fidelities, for several values of d. Note that in
order to facilitate the visualization of results we have done pa = pb = pc = p.
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Figure 26 – (Dots): Fidelity of qubit teleportation under amplitude damping noise acting on
all qudits and, (Lines): classical fidelities, for several values of d. Note that in
order to facilitate the visualization of results we have done pa = pb = pc = p.
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APPENDIX A – CALCULATION OF

JOINT PROBABILITIES

Joint probability for systems under spin-S2 measurements

The eigenvalue equation for a spin-S
2

measurement (S ∈ Z+), in an

arbitrary direction n = (sin θ cosφ, sin θ sinφ, cos θ) may be written as

Ŝ · n
∣∣∣Ŝ · n, s〉 = s~

∣∣∣Ŝ · n, s〉 = s~ |s〉n , (A.1)

with Ŝ = (Ŝx, Ŝy, Ŝz), where Ŝj indicates the spin-S
2

operator in the j direction,

and s =
{
−S

2
,−S

2
+ 1, · · · , S

2
− 1, S

2

}
. After solving A.1 for |s〉n, by convenience

we relabel s to start from zero. In this way we can express the eigenvectors |s〉n
as

|s〉n =
S∑
j=0

β
(n)
sj |j〉 . (A.2)

Given aN -partite system characterized by the density matrix ρ̂ =
∑

jk ρjk |j〉〈k|,
each part subject to spin-S

2
measurements, we can calculate the joint probability

of the outcomes s1, s2, · · · , sN in each one of the subsystems, given that they

chose to perform the measurements labelled by x1, x2, · · · , xN respectively,

P (s|x) = P (s1, s2, · · · , sN |x1, x2, · · · , xN)

P (s|x) = Tr
[ (
|a1〉〈a1|x1

⊗ · · · ⊗ |aN〉〈aN |xN
)
ρ̂
]
,

P (s|x) = Tr
(
|s〉〈s|x ρ̂

)
,

P (s|x) =
∑
jk

ρjk

(
N∏
m=1

β
(xm)
sm,km

β
(xm)∗
sm,jm

)
. (A.3)
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In the same way we can calculate marginal probabilities of a specific part

of the system j getting the outcome sj, given the input choice xj:

P (sj|xj) = Tr
[ (

1̂1 ⊗ · · · ⊗ |sj〉〈sj|xj ⊗ · · · ⊗ 1̂N

)
ρ̂
]
,

substituting and after some steps, we get

P (sj|xj) =
∑
k,m,n

ρk1,··· ,kj−1,n,kj+1,··· ,kN ;k1,··· ,kj−1,m,kj+1,··· ,kN β(xj)
sj ,m

β(xj)∗
sj ,n

. (A.4)

In the next subsections we provide particular expressions for two cases

worked in this thesis: spin-1
2

and spin-1 measurements.

Joint probability for a bipartite system under spin-1
2 measurements

Consider a bipartite spin-1
2

system initially prepared in a state ρ̂ =
∑

jklm ρjklm |jk〉〈lm|.

and related eigenvectors given by

|±〉n = cos

(
θn
2

)
|+〉 ± sin

(
θn
2

)
exp{iφn} |−〉 , (A.5)

where Ŝ = ~
2
(σ̂x, σ̂y, σ̂z) and n = (sin θ cosφ, sin θ sinφ, cos θ). By making

the following relabeling: |+〉 → |0〉 and |−〉 → |1〉, we can write the eigenvector

|±〉n more compactly as:

|a〉n =
1∑
j=0

β
(n)
aj |j〉 ,

where β(n)
a,0 = cos

(
θn
2

)
and β

(n)
a,1 = (−1)a sin

(
θn
2

)
exp{iφn}. Substituting, the joint

probability take the form:

P (ab|xy) =
1∑

jkmn=0

ρjmkn β
(x)
a,k β

(x)∗
a,j β

(y)
b,n β

(y)∗
b,m . (A.6)

Marginal probabilities P (a|x) and P (b|y) hold:

P (a|x) = Tr
[ (
|a〉〈a|x ⊗ 1̂B

)
ρ̂
]
,

P (a|x) =
1∑

jkm=0

ρjkmk β
(x)
a,m β

(x)∗
a,j , (A.7)
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and

P (b|y) = Tr
[ (

1̂A ⊗ |b〉〈b|y
)
ρ̂
]
,

P (b|y) =
1∑

jkm=0

ρjkjm β
(y)
b,m β

(y)∗
b,k . (A.8)

Joint probability for systems under spin-1 measurements

For S = 1, the spin operators are given by:

Ŝx =
~√
2

0 1 0

1 0 1

0 1 0

 , Ŝy =
~√
2

=

0 −i 0

i 0 −i
0 i 0

 , Ŝz = ~

1 0 0

0 0 0

0 0 −1

 .
Then, the operator related to a spin-1 measurement in an arbitrary direction

n = (sin θ cosφ, sin θ sinφ, cos θ) is given by:

Ŝ · n =
~√
2


√

2 cos θ exp{−iφ} sin θ 0

exp{iφ} sin θ 0 exp{−iφ} sin θ

0 exp{iφ} sin θ −
√

2 cos θ

 .
After diagonalization, the set of eigenvalues of Ŝ · n is {−1, 0, 1}, and associated

eigenvectors [Zettili 2009]:

|−1〉n =
1

2

(1− cos θ) exp{−iφ}
− 2√

2
sin θ

(1 + cos θ) exp{iφ}

 , |0〉n =
1√
2

− exp{−iφ} sin θ√
2 cos θ

exp{iφ} sin θ

 ,

|1〉n =
1

2

(1 + cos θ) exp{−iφ}
2√
2

sin θ

(1− cos θ) exp{iφ}

 .
Relabelling, we can write the eigenvectors compactly as:

|a〉n =
2∑
j=0

β
(n)
aj |j〉 ,
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with a = {0, 1, 2}. Finally, the joint probability of outcomes a and b in Alice and

Bob, given that their system was initially prepared as ρ̂ =
∑

jklm ρjklm |jk〉〈lm| and

chose to measure in the directions labelled by x and y, respectively is given by:

P (ab|xy) =
2∑

jkmn=0

ρjmkn β
(x)
a,k β

(x)∗
a,j β

(y)
b,n β

(y)∗
b,m . (A.9)

Finally, if the system is in a pure state ρ̂ = |ψ〉〈ψ|, with |ψ〉 =
∑d−1

j=0 αj |jj〉:

P (ab|xy) =
2∑

jk=0

αjα
∗
k β

(x)
a,k β

(x)∗
a,j β

(y)
b,k β

(y)∗
b,j . (A.10)

Joint Probability for a bipartite system under general unitaries

and CGLMP inequality

Given a bipartite system initially described by the state ρ̂ =
∑

jklm ρjklm |jk〉〈lm|
under the action of the unitaries Ûx =

∑d−1
mn=0 U

(x)
mn |m〉〈n| and Ûy =

∑d−1
pq=0 U

(y)
pq |p〉〈q|

on the first and second parts respectively, the joint probability P (ab|xy) is equal

to:

P (ab|xy) = Tr
(
|ab〉〈ab| Ûx ⊗ Ûy ρ̂ Û †x ⊗ Û †y

)
,

After some calculations, we have

P (ab|xy) =
d−1∑

jklm=0

ρjklmU
(x)
aj U

(y)
bk U

(x)∗
al U

(y)∗
bm .

Particularly for the case of a system initially prepared in a pure state |ψ〉 =∑d−1
j=0 αj |jj〉, the joint probability holds:

P (ab|xy) =
d−1∑
jk=0

αjα
∗
kU

(x)
aj U

(y)
bj U

(x)∗
ak U

(y)∗
bk . (A.11)

This expression will be useful in some parts of this thesis due to the fact that our

focus is mainly pure states.
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CGLMP inequality

After some calculaions the CGLMP inquality (eq. 2.37) holds:

Id =

[ d
2

]−1∑
k=0

(
1− 2k

d− 1

) d−1∑
j=0

2∑
x,y=1

(−1)y(x−1) {P1 − P2} , (A.12)

with P1 = P
(
j ⊕

[
(−1)x(y−1)k

]
, j|x, y

)
and P2 = P

(
j, j ⊕

[
(−1)x(y−1)(k ⊕ 1)

]
|x, y

)
.

Using eq. A.11, joint probabilities P1 and P2 respectively hold:

P1 =
d−1∑
mn=0

αmα
∗
nU

(x)

j⊕(−1)x(y−1)k,j
U

(y)
j,mU

(x)∗
j⊕(−1)x(y−1)k,n

U
(y)∗
j,n . (A.13)

P2 =
d−1∑
mn=0

αmα
∗
nU

(x)
j,mU

(y)

j⊕(−1)x(y−1)(k⊕1),m
U

(x)∗
j,n U

(y)∗
j⊕(−1)x(y−1)(k⊕1),n

. (A.14)

Thus the CGLMP inequality for a bipartite system initially prepared in a pure state

|ψ〉 =
∑d−1

j=0 αj |jj〉, under the action of a set of local unitary operations {Ûx, Ûy}
reduces to:

Id =

[ d
2

]−1∑
k=0

(
1− 2k

d− 1

) d−1∑
jmn=0

αmα
∗
n

2∑
xy=1

(−1)y(x−1)

(
U

(x)

j⊕(−1)x(y−1)k,j
U

(y)
j,m×

× U (x)∗
j⊕(−1)x(y−1)k,n

U
(y)∗
j,n − U

(x)
j,mU

(y)

j⊕(−1)x(y−1)(k⊕1),m
U

(x)∗
j,n U

(y)∗
j⊕(−1)x(y−1)(k⊕1),n

)
≤ 2,

(A.15)
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APPENDIX B – THE SPACE OF PURE

STATES

Volume of the space of pure qudit states

Any arbitrary pure state of a qudit |φ〉 =
∑d−1

j=0 αj |j〉 may be parametrized

as:

αj =


cos θ0 for j = 0

sin θ0 . . . sin θj−1 cos θj exp{iφj} for 1 ≤ j ≤ d− 2

sin θ0 . . . sin θd−2 exp{iφd−1} for j = d− 1,

(B.1)

with 0 < θj ≤ π/2 and 0 < φj ≤ 2π.

Under this parametrization the volume element of the space dΓd holds

[Caves 2001,Bengtsson e Zyczkowski 2007, Życzkowski e Sommers 2001]:

dΓd = sin2d−3 θ0 . . . sin θd−2 cos θ0 . . . cos θd−2dθ0 . . . dθd−2dφ1 . . . dφd−1,

in a compact form:

dΓd =
d−2∏
j=0

sin2d−2j−3 θj cos θj dθj dφj+1. (B.2)

The total volume Vd =
∫

dΓd may be easily calculated and is equal to:

Vd =
πd−1

(d− 1)!
(B.3)

Generation of random uniform qudit states

There are plenty of methods to generate random pure qudit states (for sev-

eral examples see [Maziero 2016]). Nevertheless, here we use a simple procedure

that takes advantage of the parametrization presented before.
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Due to the form of the volume element (eq. B.2), the generation of a

uniformly distributed sample of random pure states is not as simple as producing

random angles θm and φn and after substituting in equation (B.1). Instead, we

have to carry out a change of variables such that the volume element may be

written as dΓd ∝
∏

k drkdφk+1. After some calculations, we get the following

relation:

θk = asin

(
r

1
2(d−k−1)

k

)
, (B.4)

where 0 ≤ rk ≤ 1. Note that there is no necessity of such an operation for the

variables φj. At the end, the production of random uniform pure qudit states is

reduced to the generation of random numbers {rk, φj} uniformly distributed and

subsequent substitution in equations (B.4) and (B.1).

Calculation of 〈αjα∗kαlα∗m〉

In principle, the calculation of 〈αjα∗kαlα∗m〉 = 1
Vd

∫
dΓd αjα

∗
kαlα

∗
m may seem

a difficult task, however we can take advantage of some symmetries to make

things easier. First of all, note that the volume element dΓd does not depend

explicitly on the phases φj. Moreover, the state coefficients αj are proportional to

exp(iφj), then the only way in which the integration does not vanish is having

both: the coefficient and its conjugate inside the argument in order to cancel

the corresponding phases. In this way we must have: 〈αjα∗kαlα∗m〉 ∝
(
δjkδlm +

δjmδkl
)
. Let us determine the proportionality constant. For simplicity we only

show calculations for
〈
|α0|4

〉
, nevertheless as the generated states are uniformly

distributed, then any choice is equivalent. The integration reads:

〈
|α0|4

〉
=

(d− 1)!

πd−1

∫ d−2∏
j=0

sin2d−2j−3 θj cos θj dθj dφj+1 cos4 θ0 (B.5)

〈
|α0|4

〉
= 2d−1(d− 1)!

∫ d−2∏
j=0

sin2d−2j−3 θj cos θj dθj cos4 θ0 (B.6)

〈
|α0|4

〉
= 2d−1(d− 1)!

∫
sin2d−3 θ0 cos5 θ0dθ0

d−2∏
j=1

∫
sin2d−2j−3 θj cos θj dθj.
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It is not hard to show that integrations of the kind above have the following

solutions:

Inm =

∫ π/2

0

sinm x cosn+1 x dx =

n/2∑
k=0

(−1)k
(
n
2

)
!

k!
(
n
2
− k
)
!

1

2k +m+ 1
, (B.7)

for n = 0, 2, 4, · · · and m > 0. Thus, the expectation value above is reduced to:

〈
|α0|4

〉
= 2d−1(d− 1)! I4

2d−3

d−2∏
j=1

I0
2d−2j−3. (B.8)

From Eq. B.7, we have I0
2d−2j−3 = 1

2(d−j−1)
and I4

2d−3 = 1
(d+1)d(d−1)

. Then

〈
|α0|4

〉
= 2d−1(d− 1)!

1

(d+ 1)d(d− 1)

d−2∏
j=1

1

2(d− j − 1)
. (B.9)

This expression reduces to 〈
|α0|4

〉
=

2

d(d+ 1)
. (B.10)

Back to the general case, it is straightforward to see that the proportionality factor

must be equal to 1
d(d+1)

, and in this way for the general case we have

〈αjα∗kαlα∗m〉 =
1

Vd

∫
dΓd αjα

∗
kαlα

∗
m =

1

d(d+ 1)

(
δjkδlm + δjmδkl

)
. (B.11)

This result has been very useful in the calculation of reduced expressions for the

average fidelity of teleportation in chapter 6.
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APPENDIX C – CGLMP INEQUALITY -

MULTIPORT BEAM SPLITTERS AND

PHASE SHIFTERS

Recall the CGLMP inequality:

Id =

[d/2]−1∑
k=0

(
1− 2k

d− 1

){
Bk − B−(k+1)

}
≤ 2, (C.1)

where Bk = P (A1 = B1+k)+P (B1 = A2+k+1)+P (A2 = B2+k)+P (B2 = A1+k).

Any probability term P (Ax = By + k) may be written in function of joint

probabilities as:

P (Ax = By + k) =
d−1∑
j=0

P (Ax = j ⊕ k,By = j)

=
d−1∑
j=0

Pxy(j ⊕ k, j),

thus, Bk holds:

Bk =
2∑

x,y=1

d−1∑
j=0

Pxy(j ⊕ κxyk, j ⊕ λxyk),

with non vanishing coefficients κxyk and λxyk given by: κ11k = κ22k = λ12k = k,

and λ21k = k + 1.

After some calculations, the joint probability of Alice and Bob to obtain

the a-th and b-th outputs respectively, is given that their measurement choices

were x and y is given by:

PQ(ab|xy) =
1

d2
+

2

d2

d−1∑
m>n=0

Re(αmα
∗
n) cos ∆mn

xy (a, b), (C.2)

with

∆mn
xy (a, b) = φmx + ϕmy − φnx − ϕny +

2π

d
(m− n)

(
a⊕ (−b)

)
. (C.3)
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Moreover, joint probabilities for the MBSPS setup (equation C.2) satisfy

the following symmetry property:

d−1∑
j=0

PQM
xy (j ⊕ k, j ⊕ l) = d · PQM

xy (k, l), (C.4)

taking this into account, it is easy to see that the term Bk − B−(k+1) in the CGLMP

inequality reduces to:

Bk − B−(k+1) =
2

d

2∑
x,y=1

d−1∑
m>n

Re(αmα
∗
n)
{

cos ∆βmnxy (κxyk, λxyk)

− cos ∆βmnxy (κxy(−k−1), λxy(−k−1))
}
.

Using trigonometrical identities, the CGLMP function Id takes the form:

Id =
2∑

x,y=1

d−1∑
m>n=0

Cmn
xy sin

(π
d

(m− n)
)
×

×
{

cos
(
φmx + ϕmy − φnx − ϕny

)
+ Amnxy sin

(
φmx + ϕmy − φnx − ϕny

)}
,

with:

Amnxy = (−1)x(1+y)+1 cot
(π
d

(m− n)
)

(C.5)

and

Cmn
xy =

4 Re(αmα
∗
n)

d
(−1)y(1+x)Cmn, (C.6)

where:

Cmn =

[d/2]−1∑
k=0

(
1− 2k

d− 1

)
sin
(π
d

(m− n)(2k + 1)
)
, (C.7)

By using the harmonic addition theorem, the CGLMP function for quantum

joint probabilities under a measurement scheme based on multiport beam splitters

and phase shifters characterized by a set of angles (φnx, ϕ
m
y ) reduces to:

Id =
2∑

x,y=1

d−1∑
m>n=0

Cmn
xy cos

(
φmx + ϕmy − φnx − ϕny + Ψmnxy

)
, (C.8)
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with amplitude Cmn
xy given by C.6 and phase coefficient:

Ψmnxy = (−1)x(1+y)
[π

2
− π

d
(m− n)

]
. (C.9)

This simplification of the CGLMP inequality under MBSPS measurements has been

very helpful in the reduction of the computational time involved in numerical

calculations.
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