
Paola Rodrigues de Godoy Accioly

Understanding Collaboration Conflicts Characteristics

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2018

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Paola Rodrigues de Godoy Accioly

Understanding Collaboration Conflicts Characteristics

A Ph.D. Thesis presented to the Center for In-
formatics of Federal University of Pernambuco in
partial fulfillment of the requirements for the de-
gree of Philosophy Doctor in Computer Science.

Concentration Area: computer science
Advisor: Paulo Henrique Monteiro Borba

Recife
2018

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

A171u Accioly, Paola Rodrigues de Godoy

Understanding collaboration conflicts characteristics / Paola Rodrigues de
Godoy Accioly. – 2018.

 102 f.: il., fig., tab.

 Orientador: Paulo Henrique Monteiro Borba.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2018.
 Inclui referências.

 1. Engenharia de software. 2. Desenvolvimento colaborativo de software. I.
Borba, Paulo Henrique Monteiro (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2018-123

Paola Rodrigues Godoy Accioly

 ​Understanding Collaboration Conflicts Characteristics

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação.

Aprovado em: 26/02/2018.

Orientador: Prof. Dr. Paulo Henrique Monteiro Borba

BANCA EXAMINADORA

__
Prof. Dr.​ Vinicius Cardoso Garcia

Centro de Informática / UFPE

Prof. Dr. ​Leopoldo Teixeira Motta

Centro de Informática / UFPE

Prof. Dr. ​Leonardo Gresta Paulino Murta

Instituto de Computação / UFF

Prof. Dr. ​Tiago Lima Massoni
Departamento de Sistemas e Computação / UFCG

__

Profa. Dra. Anita Sarma
School of Electrical Engineering and Computer Science

Oregon State University

I dedicate this thesis to all my family, friends and professors who gave me the necessary
support to get here.

ACKNOWLEDGEMENTS

Agradecimentos especiais a todos que contribuiram diretamente para a realização deste
trabalho. Primeiramente ao meu orientador, professor Paulo Borba, pela sua orientação
cuidadosa durante todas as fases desse trabalho. Gostaria de agradecer aos membros do
SPG e do LabES pelos vários conselhos, momentos de apoio e também de descontração.
Em particular gostaria de agradecer a Guilherme, Roberto e Léuson por terem trabalhado
em colaboração comigo. Além disso, também faço um agradecimento especial as minhas
“irmãs de pesquisa”: Gabriela, Thaís e Klissiomara. Agradeço ao CIn, aos seus professores
e aos seus funcionários pela estrutura e formação de excelência que conheço desde quando
ingressei em 2005 para a graduação em Ciência da Computação. Agradeço ao INES —
Instituto Nacional de Ciência e Tecnologia para Engenharia de Software — e a FACEPE
por financiarem a minha pesquisa. Claro, não poderia deixar de agradecer a minha família
e ao meu marido Italo, por todo o apoio que me foi dado durante essa longa jornada.

ABSTRACT

Empirical studies show that collaboration conflicts frequently occur, impairing de-
velopers’ productivity, since merging conflicting contributions often is a demanding and
error-prone task. However, to the best of our knowledge, the structure of changes that
lead to conflicts has not been studied yet. Understanding the underlying structure of
conflicts, and the involved syntactic language elements might shed light on how to better
avoid merge conflicts. To this end, in this thesis we derive a catalog of conflict patterns ex-
pressed in terms of code changes (considering Java programs) that lead to merge conflicts.
We focus on conflicts reported by a semistructured merge tool that exploits knowledge
about the underlying syntax of the artifacts. This way, we avoid analyzing a large number
of spurious conflicts often reported by typical line based merge tools. To assess the occur-
rence of such patterns in different systems, we conduct an empirical study showing that
most semi-structured merge conflicts in our sample happen because developers indepen-
dently edit the same or consecutive lines of the same method. We also observe that using
more sophisticated merge tools might decrease integration effort. As a complementary
result, we also discuss that developers often do not take full advantage of version control
systems when they copy and paste pieces of code around different branches, and merge
conflicts usually involve more than two developers which might suggest that they are not
so easy to resolve. This study was a first exploration into merge conflicts characteristics.
As a practical consequence of our results, a possible strategy to avoid conflicts would
be improving existing development tools to alert when developers independently edit the
same method, ideally before code integration. However, it is possible that developers edit
unrelated parts of the same method without having to deal with conflicts. Because of
that, this strategy might have the potential to raise false alarms. In order to assess this
strategy precision, we conduct a second empirical study using Travis Continuous Integra-
tion service to learn if changing the same method increases the chance of having build
and test problems. In addition, we evaluate how frequently having different developers
editing directly dependent methods leads to build and test problems as well. Our results
indicate that detecting editions to the same method would be a reasonable conservative
strategy to detect conflicts early. Moreover, we also provide recommendations that could
provide even more precise results. For example, we could generate test cases to expose
contributions interaction to detect test conflicts more efficiently. In addition, we could
detect refactoring changes to decrease the number of false alarms in an awareness tool.
To sum up, in this thesis we conducted two empirical studies to understand different
characteristics of collaboration conflicts. Based on both studies evidence we were able to
derive different recommendations to detect conflicts early.

Key-words: Collaborative software development. Collaboration conflicts. Empirical soft-
ware engineering.

RESUMO

Estudos empíricos mostram que conflitos de integração acontecem frequentemente.
Essas ocorrências impactam a produtividade dos desenvolvedores, já que integrar con-
tribuições conflitantes é uma tarefa cansativa e propensa a erros. No entanto, de acordo
com nosso conhecimento, características como a estrutura das mudanças que levam a con-
flitos ainda não foram estudadas. Conhecer essas características, e os elementos sintáticos
das linguagens envolvidos em conflitos pode lançar uma luz em como evitar conflitos de
forma mais otimizada. Com essa finalidade, nesta tese nós derivamos um catálogo de
padrões de conflito reportados por uma ferramenta de integração semiestruturada para
programas escritos em Java. Esses padrões são expressos em termos das estruturas das
mudanças de código feitas e que levaram a conflitos de integração. Nós focamos em con-
flitos reportados por uma ferramenta semiestruturada que possui conhecimento sobre a
sintaxe dos artefatos a serem integrados, para que possamos evitar analisar uma grande
quantidade de conflitos irrelevantes tipicamente reportados for ferramentas de integração
baseadas em diferença de linhas. Para verificar a ocorrência dos padrões de conflito na
prática, nós conduzimos um estudo empírico mostrando que a maioria (aproximadamente
84%) dos conflitos semiestruturados em nossa amostra acontecem quando desenvolvedores
editam de forma independente as mesmas linhas ou linhas consecutivas de um mesmo
método. Como consequência prática dos nossos resultados, uma possível estratégia para
evitar conflitos seria modificar as ferramentas de desenvolvimento para alertar desenvolve-
dores quando eles editarem o mesmo método, preferencialmente antes da integração de
código. No entanto, é possível que desenvolvedores editem partes não relacionadas de um
mesmo método, o que não implicaria em um conflito de integração. Dessa forma, essa es-
tratégia de prevenção de conflitos pode tem o potencial de levantar muitos alarmes falsos.
Para avaliar a a eficiência dessa estratégia, nós conduzimos um segundo estudo empírico
utilizando a plataforma de integração contínua Travis CI para verificar se modificar o
mesmo método sem causar conflitos de integração aumenta as chances de se ter proble-
mas de compilação e testes. Outro possível preditor de conflitos que testamos, é editar
métodos diferentes, mas com dependências diretas entre si. Nossos resultados mostram
que detectar edições no mesmo método pode ser uma estratégia razoável considerando-se
uma postura conservadora de detecção de conflitos. Além disso também discutimos idéias
que podem trazer melhoras na precisão dos nossos resultados. Em resumo, nesta tese con-
duzimos dois estudos empíricos com o objetivo de entender diferentes características de
conflitos de colaboração. Baseados nas evidências trazidas por esses estudos nós fazemos
diferentes tipos de recomendação para se detectar conflitos de forma mais proativa.

Palavras-chaves: Desenvolvimento colaborativo de software. Conflitos de Integração.
Engenharia de Software Empírica.

LIST OF FIGURES

Figure 1 – The difference between git merge and git rebase commands. 19
Figure 2 – Merging development tasks might lead to different types of conflicts. . . 20
Figure 3 – Running diff3 with and without parameter E. 23
Figure 4 – Ordering conflicts. 24
Figure 5 – EditSameMC conflict pattern. 31
Figure 6 – EditSameFd conflict pattern. 31
Figure 7 – SameSignatureMC conflict pattern. 32
Figure 8 – AddSameFd conflict pattern. 32
Figure 9 – ModifiersList conflict pattern. 32
Figure 10 – ImplementsList conflict pattern. 33
Figure 11 – ExtendsList conflict pattern. 33
Figure 12 – EditSameEnumConst conflict pattern. 33
Figure 13 – DefaultValueA conflict pattern. 34
Figure 14 – Example of the EditSameMC pattern occurence. 34
Figure 15 – SameSignatureMC example from Graylog2-server project. 37
Figure 16 – Study infrastucture setup. Everything starts when it clones locally a

project repository from GitHub. Then a scripts retrieves all merge com-
mits in the master branch development history. Next, for each merge
scenario, we run the Conflict Analyzer tool which calls our adapted
version of FSTMerge to reproduce the merge scenario. Everytime FST-
Merge reports a conflict, the Conflict Analyzer captures it and com-
putes the metrics defined to answer our research questions. 39

Figure 17 – Types of conflicts that diff3 cannot merge. 41
Figure 18 – Computing the number of conflicts, and the probability of ending up

with conflicts while editing different language syntax elements. 44
Figure 19 – Bar charts showing the conflicts pattern distribution with and without

potential false positive conflicts. 46
Figure 20 – Boxplots showing the dispersion of the conflict patterns percentages

across projects. 47
Figure 21 – The top of the image shows the normalized number of conflicts per

project boxplots, computing EditSameMC changes by the number of
changed lines. Conversely, the lower part of the image shows the abso-
lute number of conflicts per project boxplots. 50

Figure 22 – SameSignatureMC different causes frequency. 51
Figure 23 – Computing conflict predictors’ precision and recall. 70
Figure 24 – Study design. 73

Figure 25 – Looking for EditDepMC predictor instances. 75
Figure 26 – Merge scenario from Jackson-core project. 81

LIST OF TABLES

Table 1 – Absolute number of conflicts. 45
Table 2 – Probability of having merge conflicts while editing different language

syntax elements. 48
Table 3 – Examples of projects from our sample. CR means conflicting scenario

rate considering all files in the revisions, and WFP means without false
positives, that is, spacing and consecutive line edit conflicts. 49

Table 4 – Conflicting Scenario Rate Description. DS means different spacing con-
flicts, CL means consecutive line edit conflicts, and IQR means in-
terquartile range. 50

Table 5 – Description of the percentages in our data considering the number of
developers (one, two, and more than two). IQR means interquartile range. 52

Table 6 – Description of the adjusted p-values and their corresponding effect sizes
according to the hypothesis test being made comparing the observations
from two different populations, and the research question. 53

Table 7 – Precision and recall results according to the predictors considered. WDS
means without different spacing. 78

Table 8 – EditSameMC false positive analysis. 79
Table 9 – EditDepMC false positive analysis. 80

CONTENTS

1 INTRODUCTION . 14

2 BACKGROUND . 18
2.1 VERSION CONTROL SYSTEMS . 18
2.2 COLLABORATION CONFLICT TYPES 20
2.3 MERGE STRATEGIES . 22
2.3.1 Unstructured Merge . 22
2.3.2 Semistructured Merge . 23
2.4 CONTINUOUS INTEGRATION . 24
2.5 CONCLUSION . 25

3 UNDERSTANDING MERGE CONFLICTS FREQUENCY AND THEIR
UNDERLYING STRUCTURE . 26

3.1 UNDERSTANDING MERGE CONFLICTS CHARACTERISTICS 29
3.1.1 Research Question 1 (RQ1): What are the structural conflict pat-

terns that can be found by a semistructured merge tool? 29
3.1.2 Research Question 2 (RQ2): How frequently does each merge con-

flict pattern occur? . 35
3.1.3 Research Question 3 (RQ3): What kinds of conflict patterns most

likely lead to conflicts? . 35
3.1.4 Research Question 4 (RQ4): How frequently do merge conflicts

occur? . 36
3.1.5 Pilot Study Outcome . 36
3.1.6 Research Question 5 (RQ5): How frequent are the underlying causes

of the SameSignatureMC pattern? 37
3.2 STUDY SETUP . 38
3.2.1 Conflict Analysis . 38
3.2.2 Identifying Different Spacing, and Consecutive Line Edit Conflicts

(Potential False Positives) . 40
3.2.3 Identifying the underlying causes of SameSignatureMC conflicts . . 41
3.2.4 Normalized number of conflicts analysis 43
3.2.5 Sample . 43
3.3 RESULTS . 44
3.3.1 RQ2: How frequently does each merge conflict pattern occur? . . . 44
3.3.2 RQ3: What conflict patterns most likely lead to conflicts? 46
3.3.3 RQ4: How frequently do merge conflicts occur? 48

3.3.4 RQ5: How frequent are the underlying causes of the SameSigna-
tureMC pattern? . 50

3.4 DISCUSSION . 53
3.5 THREATS TO VALIDITY . 61
3.5.1 Construct Validity . 61
3.5.2 Internal Validity . 62
3.5.3 External Validity . 65
3.6 CONCLUSIONS . 66

4 ANALYZING CONFLICT PREDICTORS IN OPEN-SOURCE JAVA
PROJECTS FROM GITHUB AND TRAVIS CI 67

4.1 ANALYZING CONFLICT PREDICTORS 69
4.1.1 Research Question 1 (RQ1): How precise are EditSameMC and

EditDepMC predictors? . 69
4.1.2 Research Question 2 (RQ2): How many conflicts can we avoid by

detecting EditSameMC and EditDepMC predictors? 70
4.1.3 Research Question 3 (RQ3): Why EditSameMC and EditDepMC

instances are not associated with merge, build, or test conflicts? . . 70
4.1.4 Research Question 4 (RQ4): What other change patterns are asso-

ciated with conflicts? . 71
4.2 STUDY SETUP . 72
4.2.1 Phase 1: Filtering Projects Containing Build and Test Conflicts . . . 72
4.2.2 Phase 2: Collecting Merge Conflicts and Conflict Predictors 74
4.2.2.1 Collecting EditSameMC predictors . 74
4.2.2.2 Collecting EditDepMC predictors . 75
4.2.3 Phase 3: false positives and false negatives analysis 76
4.3 RESULTS . 76
4.3.1 Conflict predictors’ precision and recall 77
4.3.2 False positive Manual Analysis . 78
4.3.3 False Negative Analysis . 78
4.4 HOW EFFECTIVE ARE THE CONFLICT PREDICTORS? 81
4.4.1 Strategies to improve the precision and recall of the conflict predictors 82
4.5 ARE BUILD AND TEST CONFLICTS NOT THAT FREQUENT AFTER

ALL? . 84
4.6 THREATS TO VALIDITY . 85
4.6.1 Construct Validity . 86
4.6.2 Internal Validity . 86
4.6.3 External Validity . 87
4.7 CONCLUSIONS . 87

5 RELATED WORK . 88
5.1 PREVIOUS STUDIES INVESTIGATING DIFFERENT ASPECTS OF COL-

LABORATION CONFLICTS . 88
5.2 TOOLS AND STRATEGIES FOR CONFLICT DETECTION AND RESO-

LUTION . 92

6 CONCLUSIONS . 94
6.1 FUTURE WORK . 96

REFERENCES . 98

14

1 INTRODUCTION

In a collaborative development environment, tasks are usually assigned to developers
that work separately without much need of communication using individual copies of
project files. As a result, while trying to integrate different contributions back together,
one might have to deal with collaboration conflicts. Such conflicts might occur during the
merge step (due to merge conflicts), while building the system (due to build conflicts), or
when running tests (due to test conflicts).

Previous studies bring evidence that such conflicts might occur frequently, and devel-
opers dedicate substantial effort to resolve them since understanding conflicting changes
often is a demanding and error-prone task. As a matter of fact, developers might even
introduce new code issues while attempting to fix conflicts (ZIMMERMANN, 2007; BRUN

et al., 2013; KASI; SARMA, 2013; SARMA; REDMILES; HOEK, 2012; BIRD; ZIMMERMANN,
2012). Perhaps even worse, test conflicts might not be detected during testing, escaping
to production releases and compromising correctness. Thus, collaboration conflicts might
impair development productivity, and even impact the resulting products’ quality.

Such evidence has guided and motivated the development of different tools and strate-
gies that try to mitigate or resolve conflicts. For example, Crystal (BRUN et al., 2013),
proactively integrates commits from different developers working on the same project
before they push their changes to a shared repository. In contrast, Palantír (SARMA; RED-

MILES; HOEK, 2012), a workspace awareness tool, informs different developers of ongoing
activities in the same repository. Moreover, Syde (HATTORI; LANZA, 2010) is a tool that
provides team awareness by capturing developers’ changes as atomic AST changes and
warns developers if they change the same nodes. Either way, by using these strategies, de-
velopers obtain information about conflicts sooner, and are able to resolve the problematic
integration scenario before it becomes too complex. Given that it is not always possible
to detect merge conflicts before the actual merge, FSTMerge (APEL et al., 2011) is a more
elaborated merge tool than the traditional line-based merge tools, such as diff3 (KHANNA;

KUNAL; PIERCE, 2007), commonly used by different open-source Version Control Systems
(VCS). Because of that, FSTMerge is able to resolve some conflicts automatically that
the traditional tools cannot. Consequently, FSTMerge reduces integration effort.

However, despite the existing evidence about conflicts frequency and their impact on
collaborative software development, to the best of our knowledge, the structure of the
changes that most likely lead to conflicts, expressed in terms of changed syntax elements,
has not been studied yet. We believe that understanding conflicts underlying structure
and the involved syntactic language elements might shed light on how to better avoid and
resolve conflicts. Our goal in this work is to learn through empirical studies about the
different types of changes and how frequently they lead to conflicts. In other words, we

Chapter 1. Introduction 15

want to identify different conflict predictors— as changes leading to conflicts when merged
together—, and analyze their effectiveness. Based on such evidence, we intend to suggest
improvements to existing strategies or even propose new ones. To achieve this goal, in
this thesis we propose, execute and discuss the results of two main empirical studies.

In our first empirical study, discussed in Chapter 3, and also published at the Empir-
ical Software Engineering Journal (ACCIOLY; BORBA; CAVALCANTI, 2017), we focus on
merge conflicts. We define merge conflicts as conflicts that can be identified by merge
tools while integrating two different code contributions together. To learn about what
kinds of changes might lead to merge conflicts, we systematically analyze FSTMerge’s
semistructured merge algorithm for Java programs to extract all situations that lead to
conflicts detected by this tool. As a result, we present a merge conflict pattern catalog
containing 9 conflicts patterns, expressing the structure of changes made by developers
leading to merge conflicts that can be detected by FSTMerge.

For example, one of the patterns represents the situation when different developers edit
the same lines, or consecutive lines from the same method. Another pattern represents the
conflict arising from different developers editing different parts of the same class field. For
example, if one developer changes the field type, while the other developer changes the
initialization value. While trying to integrate these contributions back together, FSTMerge
is able to report such conflict.

After deriving the conflict patterns catalog, we used the same FSTMerge tool to
reproduce merges and compute how frequently each one of the patterns occur in practice.
Among our main findings, we observed that most merge conflicts reported in our sample
happen because developers independently edit the same or consecutive lines of the same
method. Moreover, we also learn that editing methods is one of the change types that most
likely leads to merge conflicts. Based on these findings, we discuss possible implications
for existing awareness tools. For example, it seems like an efficient way to proactively
detect merge conflicts would be to detect when developers edit the same method, and
warn them before the conflict becomes too complex.

However, it is possible that developers edit different unrelated statements inside the
same method without causing merge conflicts. If this situation occurs often, then a tool
that alerts developers whenever they edit the same method would raise too many false
alarms. A tool that raises too many alarms tends to become obsolete or simply ignored
by its users. Therefore, we needed further studies to investigate whether editing the same
method is an effective conflict predictor in practice. This is the main motivation behind
our second empirical study. In particular, we are interested in investigating this conflict
predictor’s precision, that is, how frequently the conflict predictor presence is associated
to a conflict, and its recall, that is, what percentage of conflicts we might avoid by using
such predictors.

In addition, a previous work (LIMA, 2014) suggested that changes to directly dependent

Chapter 1. Introduction 16

methods is also a frequent cause for conflicts. This happens when one developer edits a
method that calls a second method edited by another developer. Although this situation
does not lead to merge conflicts, it is reasonable to consider that it might increase the
chance of having other types of conflicts, such as build and test conflicts. Build conflicts
happens when the system build process fails right after integrating the contributions
together. For example, if one developer renames a local variable that is later used in a
new statement added by the second developer. After integrating the code, the compiler will
not find the variable declaration that was renamed. Alternatively, test conflicts happen
when one of the system’s test cases starts to fail after the integration. This happens when
developers edit the same method without causing merge nor build conflicts, but alters the
code semantic causing method’s observable behavior to change.

Therefore, in Chapter 4 we describe our second empirical study where we investigate
the efficiency of two conflict predictor— edits to the same method, and edits to directly
dependent methods— by measuring their precision and recall. Our results indicate that
the predictors combined together have a precision of 57.99% and a recall of 82.67%. Such
results help to guide different strategies for early conflict detection. For example, a more
conservative strategy would be to alert developers about a large part of potential conflicts
at the cost of dealing with some false positives. In this case, warning developers about all
predictor occurrences (editing the same method or the same class field) is a reasonable
strategy. In contrast, a strategy that aims at precision, even at the cost of loosing conflicts,
would be alerting developers only when they edit the same lines of the same method.

In our second study we also conduct a manual analysis of the false positive instance
from our sample, that is, conflict predictors that did not cause conflicts, providing insights
about strategies that could further increase the precision and the recall of our results. For
instance, one strategy would be to detect when the considered contributions clearly do
not interfere with each other. This happens when one of the contributions consists in
refactoring changes, for example. When this happens, the awareness tool would not need
to trigger an alarm for a potential conflict. Our second empirical study was published at
the International Conference on Mining Software Repositories (ACCIOLY et al., 2018).

In conclusion, Chapters 3 and 4 describe the core of this thesis, all of our studies and
main conclusions. Then, to link such findings considering previous studies, in Chapter 5
we discuss related work. Finally, Chapter 6 sums up our main conclusions and future work
derived from them.

In this chapter we briefly motivate the problem that this thesis tackles— understand-
ing structural characteristics of merge conflicts— and how we managed to address this
problem by conducting two different empirical studies to learn what are the most frequent
merge conflicts causes in terms of changes performed by different contributions, and how
often the occurrence of such changes lead to conflicts in practice. Next, on Chapter 2, we
review essential concepts used throughout this work. Namely, commonly uses open-source

Chapter 1. Introduction 17

version control systems; conflicts arising from collaborative development, and their con-
sequences; unstructured and semistructured merge strategies; and continuous integration
practices.

18

2 BACKGROUND

In this chapter we explain concepts forming the basis to understand this work. First,
Section 2.1 describes key concepts about commonly used open-source Version Control
Systems (VCS). In particular, we focus on describing the characteristics of Git (GIT,
2018), and GitHub (GITHUB, 2018), which we use throughout this work. Subsequently,
Section 2.2 explains how developers work collaboratively and how their work might end
up conflicting with each other, thus, creating unwanted consequences such as integration
errors, loss of productivity, or even escaped defects. We also present a taxonomy of col-
laboration conflicts according to the moment when developers commonly detect them.
Next, Section 2.3 presents two merge strategies we use in this work: the unstructured
merge (KHANNA; KUNAL; PIERCE, 2007) which is widely used in practice and by different
open-source VCSs, and the semistructured merge, proposed by Apel et al. (APEL et al.,
2011), and improved by Cavalcanti et al. (CAVALCANTI; ACCIOLY; BORBA, 2015), which
is able to automatically resolve some of the conflicts that the unstructured merge can-
not. Finally, Section 2.4 discusses continuous integration practices covering the basics of
Maven (APACHE, 2018) and Travis CI (TRAVIS, 2018) tools.

2.1 VERSION CONTROL SYSTEMS

Version Control Systems (VCS) are fundamental tools in any software development project.
They help to keep track of project features, products and keep backed-up versions of the
project just in case anything goes wrong. Moreover, they are one of the key enablers
of collaborative software development because they provide a shared repository where
developers can work together.

We can classify open-source VCSs in two types, the centralized VCSs, and the decen-
tralized ones. The main difference between these two types is that centralized open-source
VCSs keep the history of changes on a central repository from which developers pull and
push work to. This means that everyone sharing the repository is also sharing everyone’s
work. The two most popular centralized open-source VCSs are the CVS (FOUNDATION,
2015), and SVN (APACHE, 2015).

In contrast, on decentralized open-source VCSs, also called as distributed VCSs, ev-
eryone has a local copy of the entire development history. In practice there is not a central
entity in charge of the work’s history, so that anyone can sync with any other team mem-
ber. This helps avoid failure due to a crash of the central versioning server. The most
popular decentralized open-source VCSs are Git (GIT, 2018) and Mercurial (MERCURIAL,
2018).

Throughout this work we analyze projects using decentralized open-source VCSs.

Chapter 2. Background 19

Moreover we focus on projects using Git, and GitHub, a web-based Git repository host-
ing service. GitHub, besides being one of the most important sources of software artifacts
on the internet (BIRD et al., 2009), hosts Git repositories, which facilitates the task of
understanding conflicts due to its version history model, as we detail further.

Git models the repository version history as a graph where the vertices represent
commits, and each commit has an edge pointing to its predecessor commit— the so
called parent commit. Figure 1 illustrates such model. In this example, the blue commits
represent the main development branch— also called the master branch— and the purple
commits represent the commits made by a developer in her local repository.

A D E

B C

after git merge

A D E

B C

F

after git rebase

Base Parents Merge
Commit

A D E

B C

before the integration

Figure 1 – The difference between git merge and git rebase commands.

After finishing the task, the developer needs to push her contributions back to the
master branch. However, another developer has already evolved the state of the master
branch— commits D and E. This means that the developer needs to merge her con-
tributions together with the other developer contributions directly to the master branch.
Alternatively, if the developer has no authorization to push changes to the master branch,
than he or she can open a pull request, that notifies authorized developers that new changes
are ready to be merged in.

Either way, to merge one’s contributions, Git offers two alternatives, the merge com-
mand, and the rebase command. If the developer uses the merge command, Git performs
a three-way merge considering commits C and E as parents, and commit A as the base
revision from which both branches derived. The result is the merge commit F containing
references to both of its parents. This way, in order to identify when developers worked
independently and had to merge their work back together, we just need to look for the
merge commits— commits having more than one parent— in the repository version his-
tory. Alternatively, if the developer uses the rebase command, Git replays B and C changes
on top of E commit. In such scenario, because there is no commit with more than one
parent, the history remains linear, and we cannot track contributions being integrated

Chapter 2. Background 20

back together.

2.2 COLLABORATION CONFLICT TYPES

In a collaborative development environment, it is common to assign different development
tasks to developers who implement them using their own copy of the system’s files. These
developers usually work with the support of a VCS such as the ones we cited in the last
section. In addition, they commonly work in a independent way without much need of
communication. Then, after implementing the tasks, they try to push their changes to
the shared repository. While doing that, they might have to deal with conflicting changes
made by other developers contributions.

As a motivating example for that scenario, consider the code snippets in Figure 2
showing that the tasks Authentication and Research Group were each assigned to different
developers, and both had to edit the Member class. The developer responsible for the
Authentication task adds a new field declaration representing a member’s username. In
addition, both developers add a toString method containing the same signature but
returning different values.

public class Member{
String name;
...

}

Base

Authentication Research Group

Code
Integration

public class Member{
String name;
String username;
public String toString(){

return this.username;
}
...

}

public class Member{
String name;
public String toString(){

return this.name;
}
...

}

<<<<<<< Authentication
String username;
public String toString(){

return this.username;
}

=======
public String toString(){

return this.name;
}

>>>>>>> Research Group

Merge Conflict

public String toString(){
return this.name;

}
...
public String toString(){

return this.username;
}

Build Conflict
public String toString(){

return this.name;
}
...

Test Conflict

Figure 2 – Merging development tasks might lead to different types of conflicts.

During the task integration process, the first step is to merge the system’s files often
using merge tools such as Unix diff3 program. The merge tool executes a process called

Chapter 2. Background 21

three way merge, since it consists in applying the changes made by left and right versions
of the file, using the base version from which they derived. During this step, the merge
program tries to merge new lines from each version, but when developers edit the same
line, or consecutive lines, the tool reports merge conflicts. In the current example, this
conflict is shown as in the lower left part of Figure 2. At this moment, the merge process
is interrupted until the developer manually resolves this conflict.

Imagine that, in order to resolve this merge conflict, the developer deletes the toString
method added by the Authentication task. Then, the merge conflict would be resolved,
but probably task Authentication would have an unexpected behaviour, which might
be detected by the system tests. We classify such test failure as a test conflict. We also
consider situations where the automatic merge could integrate both contributions without
merge or build conflicts, but with at least one of the tests failing as test conflicts.

Alternatively, a different scenario happens if the developer responsible for resolving
the merge conflict decides to resolve the merge conflict by adding both toString method
versions in different areas of the file. In this case, the merge tool would merge the files
successfully, without the presence of merge conflicts. However, the Member class would
contain two methods with the same signature. Consequently the compiler would not be
able to build this class, resulting in a build conflict due to a duplicate method error. Thus,
to resolve this conflict, the developer would probably have to rename one of the toString

methods.
As a result, collaboration conflicts might impair the development productivity because

they require rework, and might not be simple do understand and resolve. Even worse, if
test conflicts cannot be detected by the system’s existing tests, they might become escaped
defects, affecting directly the final product’s quality.

In the existing literature, previous studies have measured collaboration conflicts fre-
quency in practice. Zimmermann (ZIMMERMANN, 2007) analyzed 4 projects hosted on
CVS, and reports that merge conflicts occurred in a range of 23% to 47% of all files’ in-
tegration. Meanwhile, Brun et al. (BRUN et al., 2013) and Kasi and Sarma (KASI; SARMA,
2013), which analyzed projects from GitHub, found that merge conflicts occurred in a
total of 16%, and 13.3% of project merge scenarios, respectively. Moreover, Brun et al.
reported that 33% of all analyzed scenarios in their study represent cases of build or test
conflicts. Kasi and Sarma describes this information for each kind of conflict; their results
show build conflicts occurrence ranged from 2% up to 15% and test conflicts appear in a
range from 6% up to 35% of the merge scenarios respectively.

Kasi and Sarma also provide evidence that conflicts usually persist for days in the
repository before someone fixes them. As a matter of fact, Sarma et al. (SARMA; RED-

MILES; HOEK, 2012) reports that it is common for developers to race to finish their tasks
before others, so that they do not have to deal with conflicts while pushing their changes
to the shared repository. Altogether, those previous studies provide evidence that merging

Chapter 2. Background 22

is a tiresome and error prone activity which negatively impacts developers’ productivity,
and might even impact the product’s quality, since test conflicts might go on undetected
eventually leading to escaped defects.

2.3 MERGE STRATEGIES

After implementing the tasks using their own version of the system’s files, developers need
to integrate their changes back to the shared repository. For that, there are different merge
strategies. In this section we briefly explain and compare two of them: the unstructured,
and the semistructured merge strategies which are used throughout this work.

2.3.1 Unstructured Merge

Unstructured merge, also known as line-based merge, is commonly used by various VCSs
as their default merge strategy, thus, it is widely used in the industry nowadays. For
instance, GNU Merge (GNU, 2015) is one of the tools that implement this strategy. Like
all line-based merge tools, they work similarly to the Unix’s diff3 algorithm described
next.

In a nutshell, the main idea of the diff3 algorithm is to compare the files line by
line, detecting the smallest sets of differing lines (chunks). As diff3 (KHANNA; KUNAL;

PIERCE, 2007) describes, for each of the detected chunks, the algorithm checks whether
there is a common element in all three revisions, separating the chunk’s content into
two distinct areas according to the differences between the three revisions. Thus, if the
developers modify the content of the same lines, or consecutive lines, the algorithm reports
a conflict, separating the different parts of the same chunk.

In this work we use diff3 as an unstructured merge tool. In particular, we execute
diff3 in two different ways. First, by calling the diff3 --merge -E command, we get the
merge conflict display shown on the lower left part of Figure 2. Note that the conflict
markers isolate each version of the code — left and right — where the same lines, or
consecutive lines changed. With the E parameter, diff3 outputs only unmerged changes
from the left and right versions of the chunk, ignoring the base version of the chunk. As
a consequence, if left and right revisions make identical changes, diff3 would be able to
merge them successfully, as shown in Figure 3. Otherwise, if we remove the E parameter,
diff3 is not able to merge those versions. Instead, it would report a conflict considering
the base version of the code, as Figure 3 shows.

The benefits of the unstructured merge strategy are its generality and its performance.
It can be applied to all non-binary files, thus, in a system with source code files written in
different programming languages, you only need one tool to merge them. In addition, since
it compares files’ text lines, it has no knowledge of the underlying structure of the files,
which makes the merging process really fast. However it might miss conflicts, detect too

Chapter 2. Background 23

1.  void m(){
2.  int x;
3.  }

1.  void m(){
2.  int x1;
3.  }

1.  void m(){
2.  int x1;
3.  }

Base

Left Right

diff3 –merge -E
1.  void m(){
2.  int x1;
3.  }

diff3 –merge
1.  void m(){
2.  <<<<<<<
3.  int x;
4.  =======
5.  int x1;
6.  >>>>>>>
7.  }

Figure 3 – Running diff3 with and without parameter E.

many conflicts, and it might also produce syntactically incorrect outputs. For instance,
in the example of Figure 2, if the developers had put the toString methods in separate
text areas, the merge would be successful, but there would be a build conflict.

2.3.2 Semistructured Merge

Conversely, the semistructured merge tool FSTMerge (APEL et al., 2011) represents soft-
ware artifacts as partial trees, the so-called program structure trees, and provides in-
formation (through an annotated grammar) about how nodes of certain types (methods,
classes, fields, etc.), and its subtrees can be merged. This way, FSTMerge is able to resolve
conflicts based on the information that the order of certain elements (classes, methods,
fields, imports, and so on) does not matter — the so-called ordering conflicts. For exam-
ple, Figure 4 shows the difference between diff3 and FSTMerge when merging the same
example. While diff3 reports a conflict, FSTMerge knows that for Java files, the order of
the methods inside the class does not matter, and places both methods in an arbitrary
order. Note that in Figure 2 example where different developers added two toString

methods, even if they had added such methods in different parts of the file, FSTMerge
would match those methods by their signature, thus, reporting a conflict. In summary,
FSTMerge not only solves ordering conflicts, but also captures conflicts that diff3 do not
report.

Furthermore, we call the trees built by FSTMerge as partial trees because, at the
leaves level, FSTMerge represents code elements as pure text. For example, class fields,
and method declarations are leaves. Thus, when FSTMerge reaches the leaves, it does
not have enough information on how to merge them. So it uses a conventional line-based
merge tool to merge the leaves text content.

Previous studies have compared lined-based and semistructured merge tools. FST-
Merge provides evidence that semistructured merge reduced the number of conflicts in

Chapter 2. Background 24

1.  class E {
2.  int x;
3.  void s() {
4.  x--;
5.  }
6.  }

1.  class E {
2.  int x;
3.  void a() {
4.  x++;
5.  }
6.  }

1.  class E {
2.  int x;
3.  }

Base

Left Right

diff3 –merge -E
1.  void m(){
2.  int x;
3.  <<<<<<<
4.  void a() {
5.  x++;
6.  }
7.  =======
8.  void s() {
9.  x--;
10.  }
11.  >>>>>>>
12.  }

FSTMerge output

1.  void m(){
2.  int x;
3.  void a() {
4.  x++;
5.  }
6.  void s() {
7.  x--;
8.  }
9.  }

Figure 4 – Ordering conflicts.

60% of the sample merge scenarios by, on average, 34%, compared to unstructured merge.
In a replication of this study, Cavalcanti et al. (CAVALCANTI; ACCIOLY; BORBA, 2015)
also found similar benefits.

2.4 CONTINUOUS INTEGRATION

Fowler (FOWLER, 2006) defines Continuous Integration (CI) as “ a software development
practice where members of a team integrate their work frequently, usually each person in-
tegrates at least daily— leading to multiple integrations per day”. To enable this practice,
each integration, or merge, should be verified by an automated build— including tests—
to detect build and test errors as quick as possible. According to Yangyang et al. (ZHAO

et al., 2017) CI practices have the potential to speed up development and help maintain
code quality.

In practice, CI is seeing a broad adoption with the increasing popularity of decen-
tralized VCSs such as Git and their web-based repository hosts such as GitHub. Among
the most popular GitHub-compatible, cloud-based CI tools are Travis CI (TRAVIS, 2018),
CloudBees,1 and CircleCI.2 Moreover, frameworks such as Maven (APACHE, 2018), Gra-
dle3, and Ant4 are commonly used to automate projects’ build and testing.

In this work we focus on projects from GitHub using Travis CI and Maven as build
manager. In this context, each project repository has a Maven configuration file (pom.xml)
1 <https://www.cloudbees.com/>
2 <https://circleci.com/>
3 <https://gradle.org/>
4 <http://ant.apache.org/>

https://www.cloudbees.com/
https://circleci.com/
https://gradle.org/
http://ant.apache.org/

Chapter 2. Background 25

containing instructions about that project’s build and tests automation, together with a
Travis CI configuration file (.travis.yml) describing the Maven commands used to execute
the build process.

The CI workflow starts whenever a developer pushes new commits, or accepts a pull
request, to the remote shared repository on GitHub and Travis CI gets notified to start the
build process. There are 4 possible outcomes for the build automation process on Travis
CI. If the build fails, the status is errored, if the build executes successfully, but the tests
fail, the status is failed, and if build and tests run successfully, the status is passed. Finally,
if an external agent cancels the build process before it finishes, the status is canceled. In
the context of projects using CI platforms, developers might detect conflicts faster since
the build or the test conflicts might fail after the merge. Therefore, it becomes even more
important to resolve conflicts faster when using CI to remove build and test problems
without compromising other developers productivity who might refrain to merge their
changes to a master HEAD containing build and test errors.

2.5 CONCLUSION

In this chapter we explain the different software engineering techniques and concepts
that are essential to understand the remaining of this thesis. On the next chapters we
present in detail the two empirical studies we conduct using the definitions described
here. For example, in the first study we use the FSTMerge tool to derive a catalog of
semistructured merge conflict patterns. Then we use this catalog to assess how frequently
each pattern occurs in practice. To do so, we analyze the development history of different
open-source projects hosted on GitHub to assess in practice how often developers merging
contributions ended up having to deal with conflicts. Then, in our second empirical study
we analyze how frequently the most common conflict patterns end up causing merge, build
and test conflicts. To identify build and test conflicts we rely on the status of building
and testing processes executed by the Travis CI (TRAVIS, 2018) service.

26

3 UNDERSTANDING MERGE CONFLICTS FREQUENCY AND THEIR UN-
DERLYING STRUCTURE

In Chapters 1 and 2 we argue, based on previous works, how previous studies report that
collaboration conflicts occur frequently and impair the development productivity (ZIM-

MERMANN, 2007; KASI; SARMA, 2013; BRUN et al., 2013). However, to the best of our
knowledge, the structure of changes that lead to conflicts has not been studied yet. Un-
derstanding the underlying structure of conflicts, and the involved syntactic language
elements, might shed light on how to better avoid them. For example, awareness tools
that inform users about ongoing parallel changes such as Palantír (SARMA; REDMILES;

HOEK, 2012) can benefit from knowing the most common conflict patterns to become
more efficient.

With that aim, in this chapter we focus on understanding the underlying structure of
merge conflicts. At first one might think that merge conflicts do not have a direct impact on
software productivity and quality, as the state-of-the-practice merge tools identify merge
conflicts, and developers solve them before resuming implementation activities. However,
previous studies (SARMA; REDMILES; HOEK, 2012; BIRD; ZIMMERMANN, 2012) suggest the
contrary by reporting, based on experimental observations, that resolving merge conflicts
is not so trivial. It might take considerable time, and is an error-prone activity.

To better understand merge conflict characteristics, we derive a catalog of conflict
patterns for Java programs expressed in terms of the structure of code changes that lead
to conflicts. In particular, we focus on conflicts reported by FSTMerge (APEL et al., 2011),
a semistructured merge tool that is able to automatically resolve a large number of spu-
rious conflicts often reported by typical unstructured, line based merge tools (APEL et al.,
2011; CAVALCANTI; ACCIOLY; BORBA, 2015; CAVALCANTI; BORBA; ACCIOLY, 2017). For
example, FSTMerge automatically resolves conflicts due to changes involving commuta-
tive and associative declarations, such as two methods inserted in the same text area—
the so-called ordering conflicts. Moreover, FSTMerge is able to detect conflicting situa-
tions that line-based tools cannot. Namely, when developers add methods with the same
signature— but with different behaviors— to the same file. Such situation likely leads
to a build conflict. However, unless developers add both methods to the same text area,
line-based tools will not be able to detect such a conflict. From now on, when we mention
merge conflicts, we refer to the conflicts that FSTMerge reports.

To derive our conflict pattern catalog, we analyzed FSTMerge’s implementation and
systematically derived conflict patterns by abstracting all kinds of conflicts that can be
detected by this tool. Each pattern captures the language syntax elements involved in a
conflict, besides the interaction between two revisions that should be integrated, and their
common base revision —the so-called merge scenario. In particular, we are interested in

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 27

the structure of individual changes performed along two different development branches
or repository clones, and how they lead to a conflict. For example, the pattern “Different
edits to the same class field declaration” captures the situation when two developers,
working independently, edit the same class field declaration.

To assess the occurrence of such conflict patterns in different systems, we conduct
an empirical study that reproduces 70,047 merges from 123 GitHub Java projects. This
sample has 10 times more projects, and more than 15 times merge scenarios than related
previous studies (BRUN et al., 2013; KASI; SARMA, 2013). Like such studies, we analyze
commits having more than one parent— the so-called merge commits— that appear in the
development history of the project. These commits might be the result of a pull-request
merge or a simple branch merge. However, as we discuss in Chapter 2, sometimes devel-
opers hide merge commits from the project development history by using Git commands
such as rebase. It is not possible to identify when a rebase happened just by looking at the
development history of the repository. For this reason we do not consider rebase merges
in our analysis.

Our results show that 84.57% of semistructured merge conflicts in our sample happen
because developers independently edit the same or consecutive lines of the same method.
This result might seem obvious at first, as most code in Java files appear inside methods.
However this is only the case because we used a more sophisticated merge tool that is
able to solve ordering conflicts. Contrasting, if we had used a line-based merge tool, such
as GNU diff3 (Free Software Foundation, 2017), a significant part of the reported conflicts
would likely be ordering conflicts, which appear outside methods, or even crossing different
methods boundaries, as indicated by previous studies (APEL et al., 2011; CAVALCANTI;

ACCIOLY; BORBA, 2015; CAVALCANTI; BORBA; ACCIOLY, 2017). Moreover, even if one
expects most conflicts inside methods, it would be hard to guess the frequency proportions
among different conflict patterns considering edited language syntax elements.

By normalizing the number of conflicts considering the number of changes made to
the different language syntax elements, we found out that edits to method lines, class
fields, and modifier lists show similar probabilities of leading to merge conflicts. With the
obtained evidence, we might say that a reasonable strategy to avoid merge conflicts is
to monitor ongoing development activities, and alert developers editing the same method
lines, class field or modifier lists so that they can communicate and solve potential conflicts
early instead of having to resolve a merge conflict hours or even days after implementing
such changes.

Additionally, our results show that merge conflicts happened in 9.38% of the analyzed
merges from our sample, with a median of 6.64%, and an IQR (Interquartile Range) of
8.81%. However, we noticed that part of these semistructured merge conflicts are spu-
rious conflicts simply caused by changes to code indentation or consecutive line edits.
This motivated us to implement an improved version of FSTMerge that automatically re-

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 28

solves such conflicts. Using this adapted tool dropped the total conflicting merge scenario
rate to 8.39% (median of 6%, and IQR of 7.21%). This result reinforces the existing evi-
dence (APEL et al., 2011; CAVALCANTI; ACCIOLY; BORBA, 2015) that semistructured merge
indeed reduces the number of reported conflicts. And there is still room for improvements.

As a complementary result, by analyzing some patterns of behavior in Git, we notice
that developers often do not take full advantage of proper version control systems. Instead
of performing merges, they rather copy and paste code around different branches, editing
them, and then merging them back together, creating the risk of conflicts. This problem
evidences the need for tools that enable partial merges in which developers, instead of
merging entire sequences of commits, can break commits into smaller parts/pieces of code
and then choose what commits they want to merge.

Finally, our data indicates that merge scenarios often involve more than two develop-
ers’ contributions, suggesting that merging branches is not likely to be a simple task, since
one needs to understand and merge contributions made by different developers probably
working on different assignments. This evidence reinforces the need for tools such as TIP-
Merge (COSTA et al., 2016) which recommends expert developers for integrating changes
across branches.

In summary, in this chapter we make the following contributions:

• Derive a conflict pattern catalog with 9 patterns, and collect evidence on how fre-
quently each pattern occurs using different metrics;

• Implement a slightly improved version of the FSTMerge tool that further eliminates
spurious conflicts, and provide evidence that such improvement effectively decreases
the number of reported conflicts;

• Report new evidence on merge conflict frequency, by measuring how frequently
merges end up with conflicting changes, which allows us to compare our results
to previous studies. Moreover, we use a much larger sample, and adopt a more
advanced merge tool then other previous studies did;

• Reveal the need for new research studies, and suggest potential improvements to
tools that support collaborative software development.

The material used to execute our study, including sample description, tools, and re-
sults can be found in our Appendix. The remainder of this chapter is organized as follows.
In Section 3.1 we define the study goals, the research questions we analyze and the metrics
used to answer them. Then, in Section 3.2 we describe the tools and strategies we imple-
ment to conduct the study. Section 3.3 describes all study results. Section 3.4 presents
the discussion and actions supported by our results. Finally, in Section 3.5 we present the
possible threats to the validity of this study. This chapter was published as a journal at
the Empirical Software Engineering Journal (ACCIOLY; BORBA; CAVALCANTI, 2017).

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 29

3.1 UNDERSTANDING MERGE CONFLICTS CHARACTERISTICS

Considering the context described in the previous section, our goal in this chapter is to
understand characteristics— such as structural patterns, causes, and frequency— of merge
conflicts reported when reproducing real merge scenarios from the development history
of different software projects. To achieve this goal, we investigate the following research
questions.

3.1.1 Research Question 1 (RQ1): What are the structural conflict patterns that
can be found by a semistructured merge tool?

To answer RQ1 we need to derive a conflict pattern catalog, highlighting conflict struc-
tures in terms of the program elements independently changed in each of the revisions
that lead to the conflict. We derive such catalog by abstracting the kinds of conflicts that
can be detected by merge tools. Because we focus on merge conflicts, in this study we do
not use tools and strategies such as Semantic Diff (JACKSON; LADD, 1994), which com-
pute semantic differences between two versions of the same method, but does not try to
integrate them. This leaves us with the following strategies for merge tools: unstructured,
semistructured, and structured (APEL et al., 2011).

As explained in Chapter 2, unstructured, line-based merge tools such as diff3 might
report too many ordering conflicts. Besides that, it would be hard to systematically derive
a catalog of conflict patterns based on edited language syntax elements, as unstructured
tools analyze text lines, and have no knowledge about the underlying artifact syntax. We
need to have a systematic way to derive these patterns because we want to have patterns
that represent all conflicts that can be detected by a merge tool. So, mainly to avoid
biasing our sample with a large number of spurious merge conflicts, we decided not to use
unstructured tools to derive the conflict patterns.

In contrast, structured merge tools such as JDime (APEL; LESSENICH; LENGAUER,
2012) operate on Abstract Syntax Trees (ASTs), and incorporate full information on the
underlying language syntax. However, a drawback of this strategy is that it might intro-
duce defects in the merged version of the code. Consider, for example, when one developer
edits the initialization statement of a for declaration while the other developer edits the
condition statement. In such context, merging these contributions might introduce build
or semantic conflicts. Nonetheless, because they edit different statements, the structured
strategy is able to successfully merge them, increasing the chance of having build or test
conflicts. In addition, there is a considerable performance overhead to use structured tools
because they have to build and match the full artifacts’ ASTs for every merge scenario
we wish to analyze.

Finally, the FSTMerge tool inherits part of the strengths from both unstructured and
structured strategies by partially representing software artifacts as trees. It builds the

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 30

structured tree until the method level. Method bodies are represented as simple text. It
also provides information (through an annotated grammar) about how nodes of certain
types (methods, classes, etc.), and their subtrees can be merged. Thus, FSTMerge is able
to resolve ordering conflicts based on the information that the order of certain elements
(classes, methods, fields, and so on) does not matter. The code elements represented as
text— the method bodies— are merged using a conventional line-based merge tool.

In the example described above where two contributions edit the same for declaration,
if both statements (variable initialization and for condition) are in the same line, or in
consecutive lines, FSTMerge and diff3 will report it as a merge conflict. In such cases,
we believe that reporting the conflict is a better strategy than merging the code without
raising any alarm.

Moreover, besides resolving ordering conflicts, FSTMerge is capable of detecting some
types of conflicts that line-based merge cannot. For example, if two developers add to the
same class, but in different parts of the text, methods with the same signature, but with
different bodies, FSTMerge reports a conflict. Such strategy prevents subsequent build
problems while trying to build files with duplicate methods.

We chose FSTMerge to derive our conflict patterns because it has a more sophisticated
merge mechanism than diff3, while allowing less false negatives than JDime. However, the
list of conflicts detected by FSTMerge is not exhaustive. This tool, as any other merge
tool that we could have chosen to derive the conflict catalog, has false positives and false
negatives. In fact, in our threats to validity section (Section 3.5) we present a list of
FSTMerge false positives and false negatives, together with a discussion on the impact
that such cases have on our results.

In order to find the conflict patterns, our starting point was FSTMerge’s annotated
Java grammar. This file describes a Java grammar with annotations on nodes declarations
describing how FSTMerge should handle conflicts in each type of node. For example, the
method declaration node has an annotation saying that conflicts within this type of node
should be handled by calling the line-based merge approach.1 Thus, we checked all node
annotations in the Java grammar and derived the conflict patterns based on the syntactic
elements involved. Then, after performing this first analysis, we noticed that two nodes
(the class extends declaration, and the enumeration constant declaration) did not have
annotations. So we changed FSTMerge annotated grammar to add annotations to these
nodes as well. Finally, if our conflict analyzer tool cannot match the conflict with any of
the defined 14 patterns, it classifies the conflict in a pattern called “No Pattern”. However,
none of the conflicts from our sample were classified in this category.

We know describe the resultant catalog containing 9 conflict patterns for Java pro-
grams, expressed in terms of the performed kinds of changes to the involved syntactic
language structures. With these 9 conflict patterns we answer RQ1 by categorizing all
1 <https://goo.gl/9BXCmn>

https://goo.gl/9BXCmn

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 31

the conflicts that can be detected by FSTMerge.

EditSameMC

This conflict happens when different contributions edit the same or consecutive lines of
the same method or constructor, including lines with the list of modifiers and exceptions.
Figure 5 describes this pattern.

Figure 5 – EditSameMC conflict pattern.

EditSameFd

This conflict happens when different contributions edit the same class field declaration.
Figure 6 describes this pattern.

Figure 6 – EditSameFd conflict pattern.

SameSignatureMC

This conflict happens when different contributions add methods or constructors with the
same signature and different bodies to the same class. Figure 7 describes this problem.

AddSameFd

This conflict happens when different contributions add a class field declaration with the
same identifier and different types or modifiers. Figure 8 describes this conflict.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 32

Figure 7 – SameSignatureMC conflict pattern.

Figure 8 – AddSameFd conflict pattern.

ModifiersList

This conflict happens when different contributions edits the modifier list of the same type
declaration (class, interface,annotation or enum types). Figure 9 describes this conflict.

Figure 9 – ModifiersList conflict pattern.

ImplementsList

This conflict happens when different contributions edit the same implements class decla-
ration. Figure 10 describes this conflict.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 33

Figure 10 – ImplementsList conflict pattern.

ExtendsList

This conflict happens when different contributions edit the same class extends declaration.
Figure 11 describes this conflict.

Figure 11 – ExtendsList conflict pattern.

EditSameEnumConst

This conflict happens when different contributions edit the same Enum constant declara-
tion. Figure 12 describes this conflict.

public enum Status {
FOUND_IT(2,"icon_smile"){
…
}

}

public enum Status {
FOUND_IT(2,"found it"){
…
}

}

public enum Status {
FOUND_IT(“2”,"icon_smile"){
…
}

}

Figure 12 – EditSameEnumConst conflict pattern.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 34

DefaultValueA

This conflict happens when different contributions edit to the same annotation method
default value declaration. Figure 13 describes this conflict.

Figure 13 – DefaultValueA conflict pattern.

We add the word “different” in our edit related conflict patterns to remind that, if
developers make equal edits— such as adding the same get method— there is no conflict,
since their contributions do not interfere with each other. In this case, a straightforward
solution would be to simply merge the contributions choosing the first developer’s version.

To better illustrate our conflict patterns, Figure 14 shows an example of the Edit-
SameMC pattern. We found this conflict while analyzing the OpenTripPlanner project,
an open-source trip planner application.2 Note that, in this example, both developers
edited the declaration of variable optionsBefore. Hence, the merge tool reported this con-
flict so that it could be manually resolved.

private List<WalkStep>
getWalkSteps(List<State> states) {
...

...
}

boolean optionsBefore =
pathService.multipleOptionsBefore(edge,
backState);
boolean optionsBefore =
currState.multipleOptionsBefore();

Figure 14 – Example of the EditSameMC pattern occurence.

Although FSTMerge currently supports code written in Java, C#, and Python, for
simplicity, we only analyze Java projects. Considering other languages would require dif-
ferent conflict pattern catalogs and associated analysis. Deriving a conflict pattern in a
different language that FSTMerge supports would not be difficult. One would need to
inspect the language grammar file on FSTMerge project looking for the annotated nodes,
and then derive the patterns expressed in terms of the changes involving the specific
syntax elements.
2 <http://www.opentripplanner.org/>

http://www.opentripplanner.org/

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 35

However, some of our general patterns, such as EditSameMC and EditSameFd, would
also apply for C# and Python. But each language syntax particularities could add or
remove patterns from our catalog. For example, C# would have a pattern for when de-
velopers edit a directive with the same alias. In contrast, a catalog for Python would not
consider the ModifiersList pattern, since Python does not have explicit access modifiers.
In the threats to validity section (Section 3.5) we discuss how such a decision affect our
study.

3.1.2 Research Question 2 (RQ2): How frequently does each merge conflict pat-
tern occur?

After deriving the conflict pattern catalog, we are able to answer RQ2 by reproducing
real merge scenarios from the entire development history of different Java projects, while
collecting the absolute number of conflict occurrences for each conflict pattern from our
catalog, using the following metric:

• Number of conflicts

By answering RQ2 we will learn how frequently the different conflict patterns occur,
and the frequency proportions among them. In Section 3.2 we describe the experiment
setup used to answer RQ2 and the remaining research questions. Then, in Section 3.3 we
present our results.

3.1.3 Research Question 3 (RQ3): What kinds of conflict patterns most likely lead
to conflicts?

While the number of conflicts shows conflict patterns that occur more frequently, we
complement this information by understanding the probability of ending up with a merge
conflict when editing different language syntax elements. To this end we compute the
following metric:

• Normalized number of conflicts = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

We compute the normalized number of conflicts by dividing the number of conflict
occurrences from each pattern by the number of involved syntax elements changed during
the entire project development history. For example, if, during the development history
of a particular project, we observe 50 EditSameMC conflicts, and 500 edits to method
or constructor elements, the normalized number of conflicts for the EditSameMC pattern
would be 0.1, meaning that, when editing a method or constructor, there is a 10% chance
of introducing EditSameMC conflicts. In contrast, if, in this same project, we observe
5 EditSameFd conflicts, and 10 edits to class field elements, the normalized number of
conflicts for EditSameFd would be 0.5 or 50%. In such context, although EditSameMC

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 36

conflicts are 10 times more frequent than EditSameFd conflicts, the probability of having
EditSameFd conflicts when editing class fields is 5 times higher.

We compute both metrics because they complement each other. The number of con-
flicts shows which conflict patterns occur more frequently, whereas the normalized number
of conflicts is useful to understand what kinds of code changes most likely lead to merge
conflicts. One of the goals in our study is to provide recommendations for detecting con-
flicts more efficiently while working collaboratively. Therefore, computing both metrics is
useful to improve collaborative development tools’ recall by helping them to detect the
most frequent conflicts while being careful about important conflict predictors.

Furthermore, because FSTMerge runs diff3 to merge methods and constructor el-
ements, we compute the normalized number of conflicts for the EditSameMC pattern
considering not only the number of changed method and constructor elements, but also
the number of changed line chunks, that is, blocks of commands edited together, and the
total number of changed lines inside methods and constructors. Thus, we have different
alternatives to analyze the results.

3.1.4 Research Question 4 (RQ4): How frequently do merge conflicts occur?

By answering this question we would like to know how frequently developers have to deal
with conflicting changes when merging different code revisions. For this purpose we use
the following metric:

• Conflicting scenarios = 𝑀𝑒𝑟𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
𝑀𝑒𝑟𝑔𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

The conflicting scenarios metric measures the ratio of merge scenarios having at least
one merge conflict by the total number of analyzed merge scenarios. Thus, it gives us
the intuition of how often the merge process fails. This metric was also used in previous
studies (KASI; SARMA, 2013; BRUN et al., 2013). This way we can compare our results to
theirs.

3.1.5 Pilot Study Outcome

With the purpose of testing our infrastructure, which we describe in Section 3.2, we ran
a pilot version of this study with a subsample of 40 projects from a larger sample that we
selected according to the requirements we describe in Section 3.2.5. A surprising result was
that SameSignatureMC was the second most frequent pattern, representing approximately
13% of the conflict occurrences. It seems unlikely that developers working independently
would so often add, to the same class, methods with the exact same signature and different
bodies. To better understand the situation, we manually analyzed a few examples of
SameSignatureMC conflicts to understand their underlying causes.

During this analysis, we noticed that some of those duplicate methods were simple
methods such as getters and setters, which seems to be reasonable. However, some of

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 37

those duplications seemed odd as they were large methods (more than 100 lines, for
example), and only small parts of them differed. For example, Figure 15 illustrates a
conflict extracted from project Jitsi, an instant messenger application. In this example
the sendFile method is long— it has more than 100 lines— and only the highlighted part
of the figure differs. When we checked Jitsi development history we noticed that in a
certain commit one developer added the sendFile method. Then, on a different branch,
another developer copied this method and made a few changes. Finally, when merging the
changes, the conflict occurred. We saw other examples like these. In fact, we even found
examples where, instead of copying one method, the developer copied the entire file from
one repository to the other.

Figure 15 – SameSignatureMC example from Graylog2-server project.

In other examples, the duplicated method existed previously in the base revision and
was equally renamed in two different branches. For example, on project Async-http-client,
an asynchronous Http Client for Java programs, there was a method called onHttpError in
the base revision. Then, on subsequent commits from different branches this method was
equally renamed to onHttpHeaderError. By analyzing the project development history, we
found out that this method is overridden from the Grizzly project API.3 This method was
renamed in the new API version, and when the dependency was updated in the Async-
http-client project, the system build no longer worked, causing developers to rename this
method across different repositories.

After this analysis, we decided to further detail our study setup to automatically
analyze SameSignatureMC occurrences matching them with their underlying causes, as
further explained in Section 3.2. Understanding such causes is useful to derive new re-
quirements for tools supporting collaborative development. For this reason, we added an
extra research question that we describe as follows.

3.1.6 Research Question 5 (RQ5): How frequent are the underlying causes of the
SameSignatureMC pattern?

We consider the following causes for SameSignatureMC occurrences and measure their
frequency:
3 <https://grizzly.java.net/>

https://grizzly.java.net/

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 38

• Copied files: a developer copies an entire file from one branch to another, changes
it and tries to merge the branches;

• Copied methods: a developer copies a method from one branch to another, changes
it and tries to merge the branches;

• Small methods (getters or setters): simple methods, containing no more than 3 lines
of code, that could have been added by two developers working independently;

• Renamed methods: methods that are equally renamed in different branches that are
merged;

• Others: all SameSignatureMC conflicts that we cannot classify in any of the previour
categories.

We consider that copying and pasting across repositories does not necessarily imply
code cloning because, after the copy, the developer merged the branches. In this scenario,
after resolving the merge conflict, the code is no longer duplicated (cloned) in the reposi-
tory. If the branches were never meant to be merged (branches for different products, for
example) then we would have a code clone across software systems, like the ones detected
in previous studies (SVAJLENKO et al., 2014).

3.2 STUDY SETUP

In this section we describe the setup of the designed study, including how we implement
the tools and scripts to measure the metrics defined in the previous section, and also how
we select the sample projects to conduct the study.

3.2.1 Conflict Analysis

The infrastructure that we built to run our study can be divided in two steps: mining
and merging. Figure 16 describes the elements involved in our experiment setup and how
they relate with each other. In the mining step we have a script that clones a GitHub
project locally and runs the command git log --merges which provides a list containing
information about all merge commits of that project— commits that were the result of a
git merge command. Subsequently we parse the result of this command to retrieve a list
of all merge commit ids and their parent ids. Each merge commit has two parents that
we call from now on as left and right revisions.

After retrieving the list of merge commits, we use the JGit API (ECLIPSE, 2015)
to checkout and copy the three revisions involved in the merge scenario— the common
base revision, and the left and right revisions derived from the base revision and later
merged into the merge commit. Then we perform three-way merges using the git merge
command— which uses diff3 as default merge tool, and therefore can be applied to any

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 39

Merge
Scenarios

Conflict
Analyzer

Adapted
FSTMerge

Merge
Conflicts

<<<<<<< mine
int x = 0;

=======
int x = 1;

>>>>>>> yours

Base
Left

Right

Merge

Metrics
Report

Figure 16 – Study infrastucture setup. Everything starts when it clones locally a project
repository from GitHub. Then a scripts retrieves all merge commits in the
master branch development history. Next, for each merge scenario, we run
the Conflict Analyzer tool which calls our adapted version of FSTMerge to
reproduce the merge scenario. Everytime FSTMerge reports a conflict, the
Conflict Analyzer captures it and computes the metrics defined to answer
our research questions.

text file— to merge non Java files, and an adapted version of FSTMerge to merge Java
files. This way we compute the conflicting scenario rate considering all files in the revisions,
and not only Java files.

Our adapted version of FSTMerge contains the following new features:

1. An observer (GAMMA et al., 1995) that intercepts FSTMerge main mechanism and
collects all reported conflicts;

2. We changed FSTMerge’s annotated grammar to report the ExtendsList and Edit-
SameEnumConst patterns, which were missing in the original version;

3. We had to discard Java files that could not be parsed by FSTMerge. In particular,
it cannot parse the constructs related to lambda expressions and type annotations
from Java 8. However, these Java 8 new features are not the single cause for parser
errors. We observed that some parsed files had syntax issues as well. For example,
some files were committed to the main repository containing conflict headers. The
bad parsed files correspond to 0.16% of the total number of Java files in our sample;

4. We changed FSTMerge’s default line-based merge tool from Revision Control Sys-
tem’s (RCS)4 to Unix’s diff3 ; RCS is no longer maintained for mac os and we wanted

4 <http://www.gnu.org/software/rcs/>

http://www.gnu.org/software/rcs/

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 40

to run the same tool across different operating systems to increase the study replica-
bility. This change does not impact the results, as RCS uses diff3 in the background
to merge files

We also implement a component called Conflict Analyzer which calls FSTMerge to
integrate the merge scenarios. When our adapted version of FSTMerge calls diff3 to merge
tree leaves, it first executes the command diff3 –merge -E. The parameter E makes diff3
ignore the distinction between tabs and spaces on input. Then, if the output contains
conflict markers, we call diff3 again, but this second time without parameter E. We do
that because the parameter E removes the base code version from the conflict body, and
we need the base version in order to run further analysis on conflicts, as explained later.

Then, every time FSTMerge is about to merge the content of a node containing con-
flicts, our observer method notifies the Conflict Analyzer about it. The Conflict Analyzer
receives as argument the node containing the three versions of the code (left, base, and
right). Then, depending on the node type it can classify the conflict directly to its re-
spective pattern. For example, if it is a class modifier node, this conflict is classified as a
ModifiersList conflict. In contrast, if the node is a class field, we need to check if this field
exists in the base version of the code. If it exists, we classify this conflict as a EditSameFd
conflict. Otherwise, we classify it as a AddSameFd conflict. At the end, if we cannot match
the conflict to any of our defined patterns, then we classify it as a noPattern conflict. The
method responsible for classifying conflicts can be found in our GitHub repository.5

Besides classifying the conflicts according to their specific pattern, the Conflict Ana-
lyzer tool is responsible for computing the other metrics described in Section 3.1 and we
describe in more details in Section 3.2.2

3.2.2 Identifying Different Spacing, and Consecutive Line Edit Conflicts (Potential
False Positives)

After classifying conflicts to their respective patterns, the Conflict Analyzer tool evaluates
the conflict body content (base, left, and right versions) to identify two situations that
likely represent spurious conflicts: different spacing, and consecutive line edit conflicts.
Figure 17 illustrates both cases. The left side of the figure illustrates a different spacing
conflict example. On both revisions, the same line was edited, but only the right revision
made significant changes to the code: added a parameter to the method declaration. The
left revision simply altered code formatting.

Our tool is able to identify this type of false positive by comparing left and right
revisions to the base revision, ignoring tabs, spaces and line breaks. We treat the three
versions of the methods as strings. If one of the revisions (left or right) is equal to the
base, we classify this conflict as a different spacing conflict. We can then factor out this
5 <https://goo.gl/tkYrSh>

https://goo.gl/tkYrSh

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 41

kind of conflict in our results, focusing on the analysis of conflicts that are likely more
relevant.

void m() {
 int x;
 int y;
 …
}

void m()
{
 int x;
 int y;
…
}

void m(int a) {
 int x;
 int y;
…
}

Base

Left Right

void m() {
 int x;
 int y;
 …
}

void m() {
 int z;
 int x;
 int y;
…
}

void m(int a) {
 int x;
 int y;
…
}

Base

Left Right

Different code indentation Consecutive lines edition

Figure 17 – Types of conflicts that diff3 cannot merge.

On the right side of Figure 17, both revisions apply significant changes, but diff3
algorithm is not able to merge them because consecutive lines were edited (KHANNA;

KUNAL; PIERCE, 2007). While we analyze spacing conflicts for all conflict patterns in our
catalog, we only look for consecutive lines edition conflicts on EditSameMC occurrences,
because it is the only case when FSTMerge calls the diff3 algorithm. We identify such
conflicts using string comparison to check if only consecutive lines were edited.

While spacing conflicts always represent false positives, there is a risk that consecutive
line edits conflicts might lead to semantic conflicts. For example, if the definition of a
string variable takes more than one code line, and each developer edits one of the lines.
So the analysis factoring out this kind of conflict should be considered with care. For this
reason we present separate results to consider the incidence of conflicts with and without
consecutive line edits conflicts.

We identify such cases to compare the overall numbers with narrowed down numbers
that try to focus on the more interesting merge conflicts, that is, conflicts that have a
greater chance of representing an interference between development contributions. Besides
that, both conflict types are simple to resolve automatically. A straightforward solution
to resolve spacing conflicts is to replace the conflict body with the significant changed
version of the code. Moreover, allowing diff3 to merge code when consecutive lines are
edited could solve the second example from Figure 17.

3.2.3 Identifying the underlying causes of SameSignatureMC conflicts

After identifying spacing and consecutive line edit conflicts, there is one extra step applied
for the SameSignatureMC conflicts to understand and quantify its underlying causes. To

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 42

automate this analysis, we first check if the file containing the conflicting method or
constructor exists in the base revision. In case it does not, we classify this occurrence in
the “Copied file” category. Such situation happens when one developer adds one file to
her repository. Subsequently, another developer copies (instead of pulling and merging)
this file to her local workspace, and alters one of the methods body.

Conversely, if the file containing the method exists in the base revision, we check the
method size and its name. If the method name contains the words get or set, or it is a
small method— with no more than 3 lines of code— we consider the conflict to be in
the “Small method” category. This situation we believe is more reasonable to expect: two
developers working independently felt the need to add getters, setters or other kind of
simple methods to the same class.

However, if the conflict was not classified in the “Copied file” or in the “Small method”
categories, there are still three following categories: “Copied method”, “Renamed method”,
and “Others”, whose classification is more elaborate. First, because the SameSignatureMC
conflict body has no base version, we first compare both left and right method versions
using the Levenshtein distance algorithm (LEVENSHTEIN, 1966) to check for string sim-
ilarity. If the method bodies are considered similar enough— we discuss our similarity
analysis in the following paragraphs—, we consider the methods to be the same. Other-
wise, we classify them in the “Others” category.

If the methods are similar enough, we look for a method in the base AST that FST-
Merge was not able to match with any other method node and that is similar enough
to the other two matched methods. If we find this method, we classify this conflict in
the “Renamed method” category. That is, two contributions renamed the same method
in different branches, and then tried to merge them. Finally, if we do not find a similar
method in the base file, we classify the conflict in the “Copied method” category.

Regarding our string similarity analysis, we use Levenshtein original algorithm version
considering insertion, deletion, and substitution of characters. The extended version also
considers the transposition of two adjacent characters. This extension would be useful
to measure the distance between smaller strings such as words, when, for example, two
adjacent characters are displaced in a typo. In our work, we compare larger strings (entire
method declarations with more than 3 lines of code), so this feature would be less useful.
It would capture, for example, situations like when a local variable has its name slightly
changed, but we believe that our threshold— as discussed next— is able to consider such
cases.

We consider methods to be the same if the similarity value is greater than or equal to
70%. At first, we conducted some manual tests and found that 70% could be a reasonable
threshold. However, to gain more confidence in this choice, we executed our analyses
considering 68 randomly selected projects from our original sample, using 3 different
similarity thresholds (>=60%, >=70%, and >=80%). We found out that, for the Renamed

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 43

Method category, a total of 78.6% of the renamed methods in the sub sample fall in the
>=80% category, and an additional 11% is considered if we use the >=70% category. For
the Copied Method category, 84.4% fall in the >=80% category, and an additional 8%
is considered using the >=70% category. Hence, we considered 70% to be an acceptable
threshold value, since we get most part of the renamed and copied methods (more than
80% similar), and we are still able to get some of the renamed, and copied methods having
similarities between 70% and 80%.

3.2.4 Normalized number of conflicts analysis

To measure the normalized number of conflicts we need to compute the number of conflicts
for each conflict pattern, and divide this number by the sum of all changes made to the
involved language syntax elements during the entire project history. Figure 18 illustrates
how we compute both metrics. The top part of the figure shows a graph representing the
development history of a project hosted on Git. In this graph, the vertices represent the
commits, and each commit has an edge pointing to its parent (or parents, in the case of
merge commits such as commits E and G).

We compute the number of conflicts while using Conflict Analyzer and FSTMerge
to reproduce the merge scenarios. Then, to compute the total changes for a given kind
of syntactic element in the project history, we run the git log command that provides
information about all commits in that project, and parse the output to retrieve the list
of all commits ids and their parents ids. Then we use our adapted version of FSTMerge
to compute the difference between each commit and its parent in terms of the kinds and
numbers of nodes changed between each commit and its parents.

Note that in the CHANGES formula we sum changes only from regular commits, and
exclude changes from merge commits. Otherwise we would be summing up most of the
changes twice, because changes made on regular commits before the merge are replicated
on merge commits. Moreover, since FSTMerge calls diff3 to merge changes inside methods
and constructors, besides computing the number of changed method and constructor
nodes, we also compute the number of line chunks, and number of lines changed inside
methods and constructors, so that we can have different metrics to compare.

3.2.5 Sample

To select our subjects sample, we used GitHub’s advanced search page,6 and configured the
search to filter Java projects with more than 500 stars ordered by projects’ recent activity.
By filtering GitHub search by the number of stars we likely select more meaningful and
popular projects, avoiding toy projects. From this search results, we randomly selected
123 projects out of 1,963.
6 <https://github.com/search/advanced>

https://github.com/search/advanced

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 44

A	

B	

C	

D

G

E	

CHANGES= CHANGESBA + CHANGESCA + CHANGESDA

CONFLICTS = CONFLICTSE + CONFLICTSG

NORMALIZED_CONFLICTS = CONFLICTS / CHANGES

Figure 18 – Computing the number of conflicts, and the probability of ending up with
conflicts while editing different language syntax elements.

Although we have not systematically targeted representativeness or even diversity (NA-

GAPPAN; ZIMMERMANN; BIRD, 2013), by inspecting our sample we observe some degree
of diversity with respect to the following dimensions: size, domain, and number of collab-
orators. Our sample contains projects from different domains such as databases, search
engines, games, and frameworks. They also have varying sizes. For example, SimianArmy,
a cloud computing tool suite from Netflix, has only 4 KLOCs, while Osmand, a naviga-
tion application, has approximately 640 KLOCs. Moreover, Exhibitor has 20 collaborators,
while Cassandra has 112 collaborators. Besides that, we also selected projects that are
widely used by software developers, and that were analyzed in previous studies, including
Junit, Jenkins, Cassandra, Gradle, and Voldemort (KASI; SARMA, 2013; BRUN et al., 2013;
CAVALCANTI; ACCIOLY; BORBA, 2015). For further information on our sample, we provide
a complete subject list in our Appendix.

3.3 RESULTS

In this empirical study we analyze 70,047 merge scenarios considering the entire version
history of 123 projects hosted on GitHub. In this section, we present descriptive statistics
of the results structured according to the research questions.

3.3.1 RQ2: How frequently does each merge conflict pattern occur?

To answer RQ2, we collected a total of 28,883 conflicts reported by our adapted version
of FSTMerge, from the total of 4,141 merge scenarios with conflicts on Java files. Table 1
describes the absolute number of conflicts collected according to its pattern, with, and

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 45

without the potential false positives (spacing and consecutive lines conflicts). Also, none
of the collected conflicts was classified in the NoPattern category. Figure 19 describes
the conflict pattern distribution. We found out that EditSameMC was, by far, the most
frequent conflict pattern, representing 84.57% of the collected conflicts. The second most
frequent pattern was EditSameFd, followed by SameSignatureMC, AddSameFd, Modi-
fierList, ExtendsList, and ImplementList. Moreover, we did not collect any conflicts from
the DefaultValueA, which happens when two revisions edit the same default value of an
annotation method declaration.

The lower part of Figure 19 shows the bar chart after removing the potential false
positive conflicts, that is, conflicts due to different spacing, and consecutive line edits. A
percentage of 28.97% of the collected conflicts were classified in one of these categories.
More specifically, 48% of the false positives were due to different spacing, 37.69% due to
consecutive line edits, and the remaining 14.31% were due to both reasons. EditSameMC
was the pattern that had most occurrences of those conflict types (32.21%). However,
after removing spacing and consecutive line edit conflicts, EditSameMC is still the most
frequent pattern, representing a total of 80.71% of the collected conflicts, without changing
the big picture of our results.

Table 1 – Absolute number of conflicts.
Absolute number Removing potential FP

EditSameMC 24427 16557
EditSameFd 1578 1386

SameSignatureMC 1505 1275
ModifiersList 1020 1004

AddSameFd 136 112
ExtendsList 102 95

ImplementList 81 52
EditSameEnumConst 34 34

DefaultValueAnnotation 0 0
TOTAL 28883 20515

Since the total conflict percentages depicted by Figure 19 could be biased by outliers
with high occurrence of EditSameMC conflicts, we checked whether conflict pattern oc-
currences follow a similar tendency across projects. The boxplots in Figure 20 show the
conflict pattern percentage distributions considering all projects in our sample after re-
moving the spacing and consecutive line edition conflicts. By analyzing these boxplots, we
observe that, for more than 75% of the projects from our sample, more than 60% of the
collected conflicts were from the EditSameMC pattern. Moreover, the EditSameMC box-
plot is heavily skewed to the right, whereas the other pattern boxplots are heavily skewed
to the left. Therefore, we conclude that for most, but not all projects, we confirm the

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 46

0.00%

0.28%

3.53%

84.57%

5.21%

0.47%

5.46%

0.35%

0.12%

DefaultValueA

EditSameEnumConst

ImplementsList

ExtendsList

AddSameFd

ModifierList

SameSignatureMC

EditSameFd

EditSameMC

0 10000 20000
Number of occurrences

FSTMerge

0.00%

0.25%

4.89%

80.71%

6.21%

0.55%

6.76%

0.46%

0.17%

DefaultValueA

EditSameEnumConst

ImplementsList

ExtendsList

AddSameFd

ModifierList

SameSignatureMC

EditSameFd

EditSameMC

0 10000 20000
Number of occurrences

FSTMerge without potential false positives

Figure 19 – Bar charts showing the conflicts pattern distribution with and without po-
tential false positive conflicts.

same tendency of the total sample of conflicts, since the pattern with higher percentages
is indeed EditSameMC.

3.3.2 RQ3: What conflict patterns most likely lead to conflicts?

We answer RQ3 by computing the ratio between the number of conflicts and the number
of nodes changed during the project development history. In addition, for the EditSameMC
conflicts we use three different metrics. We divide the number of conflicts by the number
of changes in method nodes, by the number of line chunks— block of lines that were
edited together—, and by the total number of lines changes inside methods.

Table 2 summarizes the aggregated results. While EditSameMC Nodes and Edit-
SameMC Chunks are by far the most conflict prone changes, the others have proba-
bilities lower than 0.1%. To further compare them we use the Wilcoxon signed rank
test (WILCOXON; WILCOX, 1964) combined with the Bonferroni correction method for
multiple comparisons (BONFERRONI, 1936). Comparing the normalized number of con-
flicts The results show a statistically significant difference when we compare EditSameMC

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 47

●●●●●●

●●●●● ●●●●●●●●●● ●●●

● ●●●● ●●●● ●●●● ●●●●●●●●●

● ●●● ●●● ●●●● ●●●●●●●●● ●●●●●●●●

●●●●●● ●●●●●●●● ●●●● ●●● ●● ● ● ●

●● ● ●● ●●● ●● ●● ●

●● ●●●●●●● ●

●●●●● ●●● ●●●●●●●

EditSameEnumConst

ImplementsList

ExtendsList

AddSameFd

ModifierList

SameSignatureMC

EditSameFd

EditSameMC

0 20 40 60 80 100

Percentages(%) for each project

Figure 20 – Boxplots showing the dispersion of the conflict patterns percentages across
projects.

Chunks to EditSameFd, SameSignatureMC, and ModifiersList (p-values < 0.01). How-
ever, there is no statistically significant difference when we compare EditSameMC Lines
(each line edit inside a method counts 2 changes) to EditSameFd, SameSignatureMC, and
ModifiersList.

Figure 21 top part depicts the boxplots containing normalized number of conflicts
per project, computing EditSameMC normalization by the number of changed lines. The
lower part of Figure 21 shows the boxplots describing the absolute number of conflicts
per project. We can see that in the lower figure boxplots, EditSameMC is by far the most
frequent conflict pattern, followed by SameSignatureMC, and EditSameFd. However, in
the top graph of Figure 21 although there is not a statistically significant difference
between the observations, EditSameFd has indeed higher values than EditSameMC, and
SameSignatureMC.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 48

Table 2 – Probability of having merge conflicts while editing different language syntax
elements.

Pattern Probability
EditSameMC Nodes 0.30%

EditSameMC Chunks 0.26%
EditSameMC Lines 0.03%
SameSignatureMC 0.03%

EditSameFd 0.06%
AddSameFd 0.01%

EditSameEnumConst 0.07%
ExtendsList 0.04%

ModifiersList 0.06%
ImplementsList Approximately 0.00%

3.3.3 RQ4: How frequently do merge conflicts occur?

We answer RQ4 by reproducing 70,047 merge scenarios and computing the conflicting
scenario rate, which measures the percentage of merge scenarios with at least one merge
conflict (See Section 3.1). We also compute this metric without considering spacing and
consecutive line edit conflicts. Table 3 describes the conflicting scenario rates for a few of
the projects from our sample. The complete table is in our Appendix.

In addition, Table 4 describes conflicting scenario rate values with and without dif-
ferent spacing and consecutive line edition conflicts. Because our data is not normally
distributed, we used the Wilcoxon signed rank test (WILCOXON; WILCOX, 1964) com-
bined with the Bonferroni correction method for multiple comparisons (BONFERRONI,
1936) to run our hypotheses tests as we describe further. We also measure the effect size
for each test as defined by Rosenthal (ROSENTHAL, 1994), where an effect size of 0.1
means a small effect, 0.3 a medium effect, and 0.5 a large effect.

Our first hypothesis test was to compare the observed conflicting scenario rates for
each project with and without spacing conflicts. We found that there is a statistically
significant difference between these populations with a large effect size (p-value < 0.01,
effect size = 0.51). Then, our second hypothesis test compares the conflicting scenario
rates for each project with and without consecutive line edition conflicts. Again we found
a statistically significant between these populations with a large effect size (p-value < 0.01,
effect size = 0.53). Thus, such results suggest that removing such conflicts represents a
statistically significant decrease on the conflicting scenario rate.

We further analyzed the conflicting scenario rate to check how many merge conflicts
occur over the total number of commits. From the 70,047 analyzed merge scenarios, 4,141
(total of 5.91%, with a median of 4.43%, and an IQR of 5.54%) contain conflicts in
Java Files considering the FSTMerge semistructured merge algorithm. In these scenarios,

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 49

Project Size (KLOC) Merges CR CR WFP
Antlr4 11.4 663 8.60% 7.99%
Javaee7-samples 65.5 207 0.97% 0.97%
AndEngine 40.7 115 6.96% 6.96%
Clojure 67 40 12.5% 10%
Elasticsearch 953 2,736 5.77% 5.26%
FBReaderJ 387 1,310 14.43% 13.28%
Graylog2-server 124 1,072 12.31% 12.13%
HoloEverywhere 48.6 82 8.54% 8.54%
OpenTripPlanner 15.9 734 12.67% 10.76%
cgeo 53 2,128 8.46% 7.71%
SimianArmy 4 218 9.17% 6.42%
Titan 251 488 16.19% 12.5%
Orientdb 319 1,752 9.13% 7.25%
Hector 27.6 404 12.62% 9.41%
Hive 1,003 244 42.21% 39.34%
Netty 182 169 6.51% 6.51%
Kotlin 412 588 9.01% 8.67%
ListViewAnimations 8.1 117 8.55% 5.98%
K-9 103 566 6.01% 4.95%
Droidparts 10.3 105 2.86% 2.86%
BroadleafCommerce 219 1,061 22.34% 20.74%
ShowcaseView 2.1 96 9.38% 8.33%
Jmxtrans 17.2 275 2.55% 2.18%
StickyListHeaders 2.8 97 3.09% 3.09%
Retrofit 8.9 526 0.57% 0.38%
Storm 139 1,689 12.31% 11.78%
Eureka 32.7 391 6.65% 6.14%
Spout 70.5 854 4.8% 3.98%
Druid 160.3 2,061 5.34% 4.85%
Conversations 39.2 514 5.25% 5.06%
Generator-jhipster 19.3 1781 4.72% 4.72%
Mongo-hadoop 15.2 92 15.22% 11.96%
Rstudio 494 1,840 5.82% 5.49%
HikariCP 8.5 189 12.7% 12.17%
Jitsi 381 94 9.57% 9.57%
Gradle 550 975 28.72% 28.51%
Bukkit 32.6 19 15.79% 15.79%
Cucumber-jvm 39.9 560 16.61% 14.82%
Groovy-core 311 674 9.64% 9.2%

Table 3 – Examples of projects from our sample. CR means conflicting scenario rate con-
sidering all files in the revisions, and WFP means without false positives, that
is, spacing and consecutive line edit conflicts.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 50

EditSameMC
SameSignatureMC

EditSameFd
AddSameFd
ModifiersList
ExtendsList

EditSameEnumConst
ImplementsList

0.0000 0.0005 0.0010 0.0015

Normalized number of conflicts

EditSameMC
SameSignatureMC

EditSameFd
AddSameFd
ModifiersList
ExtendsList

EditSameEnumConst
ImplementsList

0 50 100 150 200 250

Number of conflicts

Figure 21 – The top of the image shows the normalized number of conflicts per project
boxplots, computing EditSameMC changes by the number of changed lines.
Conversely, the lower part of the image shows the absolute number of conflicts
per project boxplots.

Table 4 – Conflicting Scenario Rate Description. DS means different spacing conflicts, CL
means consecutive line edit conflicts, and IQR means interquartile range.

Total Median IQR

CR 9.38% 6.64% 8.81%
CR Without DS Conflicts 9.04% 6.50% 8.72%
CR Without CL Conflicts 8.64% 6.39% 7.76%

CR Without DS and CL Conflicts 8.39% 6.00% 7.21%

28,883 conflicts were detected.

3.3.4 RQ5: How frequent are the underlying causes of the SameSignatureMC
pattern?

Moving on with the analysis, our aim with RQ5 is to understand why the SameSigna-
tureMC pattern was the third most frequent pattern from our catalog. Figure 22 shows
the distribution of the underlying causes for this pattern. We notice that more than half
of the occurrences happened because files existing in both left and right revisions, did not

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 51

exist in the base revision. In such cases, the entire file was copied from one repository or
branch to another. Thus, for each method that was edited by a commit at least one of the
subsequent commits, there was a conflict. The second most frequent causes for method
duplication were small methods, such as getters and setters, followed by copied methods,
and renamed methods. Finally, a total of 6.4% of the SameSignatureMC conflicts were
not classified in any of the previous categories.

23.80%

6.30%

10.90%

52.60%

6.40%

Renamed Methods

Others

Copied Methods

Small methods

Copied Files

0 25 50 75 100
Aggregated percentages (%)

C
au

se
s

Figure 22 – SameSignatureMC different causes frequency.

One interesting aspect we noticed during the manual analysis conducted to understand
the underlying causes of the SameSignatureMC pattern, is that developers made conflict-
ing changes between her own branches. In fact, there are legitimate reasons for this work
flow, as there are legitimate reasons for conflicting changes between different developers
branches. We consider that conflicts involving contributions from a single developer are
likely less problematic to resolve than conflicts involving more than one developer. For
this reason we decided to run a complementary analysis to learn to which extent do merge
conflicts occur involving different developers.

In addition, more than 50% of the SameSignatureMC conflicts happened because
entire files were copied from one workspace to another, changed, and then merged back
together. If a single developer was involved in such a operation, it is more likely that
she copied files across her own branches, which could be considered less problematic.
However this situation could be more problematic if two or more developers were involved.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 52

Because of that we also check the number of developers involved in merge scenarios with
SameSignatureMC conflicts caused by copy of files.

To accomplish such task, we collect, for each analyzed merge scenario, the number of
different developers (considering their username and e-mail on Git) who authored commits
between the merge commit and its base commit. We then classify the merge scenarios into
three categories: single developer scenario, two developers scenario, and more than two
developers scenario. With this data we answer the following questions:

1. How many developers are involved in merge scenarios, conflicting merge scenarios,
and merge conflicts?

2. How many developers are involved in SameSignatureMC conflicts caused by copied
files?

We answer both research questions considering all merge conflicts collected by FST-
Merge and not only SameSignatureMC ones. Furthermore we consider all developers in-
volved in merge scenarios even if they do not edit the elements involved in conflicts.
Table 5 describes data percentages resulting from the analysis to answer question 1. We
describe the data using the total percentage, the observed median and the interquartile
range.

Furthermore, we used the Wilcoxon signed rank test combined with the Bonferroni
correction method for multiples comparisons to test hypotheses comparing the number of
developers (one developer vs. two developers, one developer vs. more than two develop-
ers, and so on) and considering merge scenarios, conflicting merge scenarios, and merge
conflicts. Table 6 describes the adjusted p-values, and effect sizes for each hypothesis test.

Table 5 – Description of the percentages in our data considering the number of developers
(one, two, and more than two). IQR means interquartile range.

Merge Scenarios Conflicting Merge
Scenarios

Merge Conflicts

Total Median IQR Total Median IQR Total Median IQR
One
Dev

6.53 5.19 8.92 6.39 1.23 9.21 2.56 0.00 4.22

Two
Devs

27.84 34.44 20.92 12.77 16.66 25.78 6.20 7.69 25.00

> Two
Devs

65.63 55.36 28.42 80.84 75.00 36.89 91.24 87.50 46.78

Analyzing Table 5 we see that most conflicts (more than 60%), and merge scenarios
with or without merge conflicts tend to have contributions from more than two develop-
ers. Thus, the cases we manually analyzed where contributions from the same developer

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 53

One Developer
vs

Two Developers

One Developer
vs

More than Two
Developers

Two developers
vs

More than Two
Developers

Nº of Developers
Involved in Merges

p-value<6.60e-16
eff. size=0.57

p-value<6.600e-16
eff. size=0.56

p-value=1.60e-06
eff size=0.32

Nº of Developers
Involved in

Conflicting Merges

p-value=2.44e-08
eff. size=0.36

p-value<6.60e-16
eff. size=0.56

p-value<6.60e-16
eff. size=0.57

Nº of Developers
Involved in

Merge Conflicts

p-value=8.38e-07
eff. size = 0.32

p-value<6.60e-16
eff. size=0.56

p-value=1.64e-14
eff. size=0.47

Table 6 – Description of the adjusted p-values and their corresponding effect sizes ac-
cording to the hypothesis test being made comparing the observations from
two different populations, and the research question.

conflicted with each other do not represent the majority of cases. The descriptive data is
reinforced by the p-values and effect sizes described in Table 6. All p-values fall under our
threshold of 0.01, with their respective effect size ranging from 0.32 up to 0.57.

Finally, considering question 2, in our data, 121 merge scenarios from 56 different
projects had conflicts that happened because files were copied. From those merge scenar-
ios, 20.66% involved a single developer, 14.87% involved two developers, and the remaining
64.47% involved more than two developers (the median was 4 developers, and the IQR
was 7 developers).

3.4 DISCUSSION

In this section, we discuss the consequences of our results, and actions they support.

Most merge conflicts happen when developers edit the same or consecutive lines of
the same method. However, perhaps awareness tools should be more careful with
class field, and modifier list edits as well.

RQ2 results points out that most merge conflicts— 84.57% of the collected conflicts,
and 80.71% after removing spacing and consecutive line edit conflicts— happen because
developers edit the same or consecutive lines of the same method or constructor. At first
this result might seem obvious due to the intuition that most part of the Java code is
inside methods. Thus the probability of conflicts occurring inside methods or constructors
would be higher.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 54

However, we achieved such results because we used a more sophisticated merge tool.
If we had used a line-based merge tool like previous studies (BRUN et al., 2013; KASI;

SARMA, 2013), a significant part of the collected conflicts would likely be ordering con-
flicts (APEL et al., 2011; CAVALCANTI; ACCIOLY; BORBA, 2015; CAVALCANTI; BORBA; AC-

CIOLY, 2017), contradicting the initial reasoning. According to our previous results (CAV-

ALCANTI; BORBA; ACCIOLY, 2017), approximately 40% of the conflicts reported by un-
structured merge are ordering conflicts. Therefore, the EditSameMC pattern would be
the most frequent conflict regarding the remaining 60% of the conflicts reported by un-
structured merge. Although ordering conflicts are still real conflicts, we can ignore they
altogether by using FSTMerge or any other merge solution considering the ordering of the
elements inside a class. Resolving ordering conflicts is simple in theory. One just needs
to disentangle the parts of the different elements inside the conflict headers. However,
depending on the number of lines involved in an ordering conflict, this task is laborious
and error prone (CAVALCANTI; BORBA; ACCIOLY, 2017).

In addition, FSTMerge captures the SameSignatureMC pattern that line-based merge
tools do not, which increases the recall of our numbers. So far, there has been no evidence
about the frequency for this type of conflict. Finally, we are not aware of previous stud-
ies providing empirical evidence about the distribution among different conflict patterns
considering the granularity of edited language syntax elements.

Such results can be useful to help awareness tools becoming more efficient in terms of
performance and precision, without compromising their recall. For example, although we
have not implemented and validated awareness tools considering different conflict predic-
tors, we hypothesize that a tool monitoring developers working on different repositories,
identifying when they edit the same method, and alerting them, would likely have a
reasonable recall since it would detect most merge conflicts (approximately 85%).

However, our biggest concern about driving conclusions based only on RQ2 results is
that there is no baseline about the proportion of changes made to the repository and the
number of conflicts. Most conflicts reported by FSTMerge involve method declarations,
but that could happen not because method changes are more problematic but just because
most changes occur inside method declarations. Perhaps, when comparing the frequency
of conflicts against this baseline, our results could change. For this reason we add RQ3
in this study. We believe that RQ3 complements RQ2 results because while the absolute
number of conflicts is more useful for driving awareness tools towards preventing a larger
part of the conflicts, normalizing this number is useful to understand the precision of each
kind of code change as a conflict predictor.

In fact, after executing RQ3 analysis we found that not only editing the same method,
but editing the same class field and modifier list are important predictors to consider
when trying to prevent conflicts. As a result, the hypothetical tool we describe could also
warn about the possibility of EditSameFd, and ModifiersList conflicts with low risk of

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 55

being wrong. This way, developers could communicate early and avoid the occurrence of
such conflicts. This hypothetical tool could monitor individual workspace changes as they
happen, or, they could analyze changes that were already committed. This second option
would be more flexible because it does not assume that developers should be all working
together, at the same time. Moreover, it would consider changes that will be integrated
eventually. In contrast, a tool that monitors changes in real-time can detect changes that
are not meant to be committed, for example, when a developer adds variables to help her
while debugging the code.

In practice, RQ2 and RQ3 combined results might be helpful to improve
existing awareness tools. For example, Palantír (SARMA; REDMILES; HOEK, 2012), a
workspace awareness tool, informs different developers of ongoing activities in the same
project. It proactively detects merge conflicts by informing when developers edit the same
files using a metric based on the number of lines changed. As developers edit more lines
of the same file, the higher is the risk of ending up in merge conflicts. However, such
metric could potentially report false positives. For instance, when developers implement
independent methods in the same class. As an improvement, one could add different
types of alarms to alert developers in the presence of EditSameMC, EditSameFd, and
ModifiersList patterns. This way, Palantír is still able to report most part of the conflicts,
but it avoids false alarms.

Differently from Palantír, Crystal (BRUN et al., 2013) proactively integrates commits
from developer repositories with the purpose of warning them if their changes conflict.
To produce conflict information sooner, Crystal has to run its analysis often. This can be
expensive because it might involve complex build and testing activities. To mitigate this
problem, Crystal could use our conflict patterns as predictors for conflicts. Then it could
process code contributions using partial ASTs such as FSTMerge before performing the
integration routine to check if they contain the most frequent patterns, and, in case they
do not, Crystal could delay the integration until the subsequent time period. Although
this suggestion likely reduces the cost of running Crystal, further studies are needed to
verify if it does not compromise Crystal’s accuracy regarding build and test conflicts.

Finally, Syde (HATTORI; LANZA, 2010) is a tool that provides team awareness by
capturing developers’ edits as atomic AST changes and warns developers if they change
the same nodes. Syde uses an approach that is very close to the hypothetical tool we
propose in this study to detect conflicts in real time. However, as described by Syde
authors, information overload could be a problem. Perhaps in an industrial environment
with very large teams and many simultaneous changes Syde could overload developers
with potential conflicts’ information which could impair their productivity. One possible
solution to mitigate information overload in those contexts would be to capture changes
concerning only methods, class fields, and modifiers as RQ2 and RQ3 results indicate
that such changes are the most likely to lead to merge conflicts.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 56

An important aspect of these three conflict awareness tools (Palantír, Crystal, and
Syde) is that they assume different collaborative development setups. For example, Palan-
tír and Syde consider that developers always work synchronously, since changes are being
monitored in real time even before they are committed. In contrast, Crystal only analyzes
changes that were previously committed but not merged to the shared repository. This
means that Crystal assumes that developers do not have to work synchronously, which
is a more flexible approach. This happens when developers work in different time zones,
for example. Either way, our results provide recommendations for both synchronous and
asynchronous development. However, if developers commit their changes locally, without
being connected to the internet for a long period of time, then it would not be possible to
detect potential conflicts until they connect again. In such cases, conflicts would probably
not be detected before they become severe (too many changes need to be considered to
resolve the merge).

Sophisticated merge tools reduce conflicts and might improve productivity and qual-
ity

Compared to previous studies, our results show lower conflicting scenarios rate values. Kasi
and Sarma (KASI; SARMA, 2013), and Brun et al. (BRUN et al., 2013), respectively show
average conflicting scenarios rates of 14.38%, and 17%, while the median of our conflicting
scenarios rate was 6.64%. Moreover, by using a slightly improved merge algorithm to
remove spacing and consecutive line edit conflicts, the median drops to 6%. As discussed
in our sample description section, we include in our analysis the same Java projects
that previous studies analyze. Such difference is likely due to the adoption of FSTMerge
to merge Java files, naturally reducing the number of reported conflicts compared to
line-based merge tools. This result reinforces the evidence provided by previous studies
that investigates the benefits of adopting semistructured merge tools (APEL et al., 2011;
CAVALCANTI; ACCIOLY; BORBA, 2015).

Thus we believe the adoption of our adapted version of FSTMerge could
help to further increase not only development productivity, since developers
could spend less time dealing with spurious conflicts (BIRD; ZIMMERMANN,
2012), but also product quality, given that a frequent cause of integration
errors are merge conflicts that are not resolved correctly.

Lastly, our results show that 90.68% of the merge scenarios have less than 10 merge
conflicts which could be considered less problematic from a quantitative perspective. How-
ever, the conflict resolution effort depends on the nature of the conflicts, as fewer conflicts
do not necessarily mean less effort resolving them. For example, our results show that
most merge conflicts involve more than 2 developers’ contributions, which sug-
gests that resolving merge conflicts might not be simple. Moreover, Menezes (MENEZES,
2016) achieved similar numbers when he analyzed the distribution of conflict chunks, us-

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 57

ing a traditional line-based merge tool. He reports that most failed merges involved just
4 or fewer conflicting chunks, and more than half involved 1 or 2 conflicting chunks.

Depending on the project development practices, we might have only been “scratch-
ing the surface” on the number of conflicts

We also analyze some of our sample outliers— projects with a conflicting scenario rate
significantly higher or lower than the median— to understand factors that might have
influenced such disparity. During this analysis, we noticed that 14 projects, including
Cassandra and Hive, had higher conflicting scenario rates, comparable to those of the
previous studies (higher than 16%). If we had not used a more advanced merge tool,
those rates might have been even higher.

By manually analyzing 4 of those projects— namely, Cassandra, Hive, Roboguice, and
BroadleafCommerce— we observe that these higher conflicting rates are accompa-
nied by a greater number of collaborators working independently at the same
period of time, and pushing their commits directly to the main repository
instead of performing pull requests. Such practices resemble the development envi-
ronment of centralized version control systems such as SVN and CVS (GOUSIOS; PINZGER;

DEURSEN, 2014). Particularly, Cassandra has a patch-based contribution process, with no
specific strategy to avoid conflicts.7

Alternatively, projects such as JeroMQ and Dagger have no conflicts on Java files.
In fact, after removing spacing and consecutive line edit conflicts, a total of 10 projects
from our sample turned out to have no conflicts on Java files. We suspect, but have no
hard evidence, that projects with no different spacing conflicts might use tools that fix
code indentation before commits. However, by analyzing 4 of those projects— Generator-
jhipster, Exhibitor, JeroMQ, and OkHttp— we observed that this happened mainly for
two reasons.

First, projects such as Generator-jhipster only merge contributions via pull requests
and after rebasing— a Git operation that effectively integrates code without creating
a merge commit or leaving any trace about a merge being performed. This practice is
explicitly mentioned in their contribution guide.8. Rebasing is a frequent practice in a
development model known as pull-based software development, commonly used in version
control systems such as Git. In this development model, instead of pushing changes to a
central repository, developers work locally and register pull-requests to the master repos-
itory (GOUSIOS; PINZGER; DEURSEN, 2014). Then, the repository administrator reviews
the pull-request, approves the changes and rebase the branch changes on top of the master
branch head. In such situations, although conflicts are still happening, the merge commit
7 http://wiki.apache.org/cassandra/HowToContribute
8 <https://goo.gl/XQyygC>

https://goo.gl/XQyygC

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 58

does not appear in the development history and, consequently, we cannot identify that
there is a merge just by looking at the project’s development history.

The second reason for having a low conflicting scenario rate is that, for some of the
projects, in spite of their popularity and large number of registered contributors in the
project’s Github page, only one or two contributors were significantly active at
the same period. This is the case of Exhibitor, which had 20 registered contributors, but
only one of them was responsible for 72% of the commits. In contrast, OkHttp, which has
a very low conflict rate (0.25%) had more than one active contributor but they contributed
on different periods of time, so their work never really interfered with each other.

In summary, the development model used (pull-based together with rebase vs. push
to shared repository) may affect the number of merge commits in history. The pull-
based model, together with the systematic use of Git commands that rewrites commits
history, such as rebase,squash and cherry-pick, decreases the number of merge commits.
Nevertheless, conflicts are still being solved locally, which means that our empirical results
represent a lower bound for the actual number of merge conflicts.

We did not assess the reasons why so many developers and projects prefer to use
rebase. Our intuition is that they do so because it might seem easier to analyze a linear
development history than a history with divergent branches. However, the drawback of
this habit is the fact that the true history gets lost. Consequently, it is not easy to go
back to the topic branch since it would have the appearance of being a part of the main
branch. It also makes reverting changes much more difficult, because one would have to
cherry-pick one commit at a time, trying to remember which ones came from the original
topic branch.

Another aspect that reinforces our intuition the we might have been only scratching
the surface on the number of conflicts in our retrospective analysis is that large companies
such as Google, Facebook, and Amazon are avoiding branches in general to reduce the
need of merges (POTVIN; LEVENBERG, 2016). They do “trunk-based development” where
only one branch, called trunk or master, is allowed and everyone commits to it. The
intuitive idea behind trunk-based development is that frequent integration to the master
containing smaller changes should produce less conflicts.

Trunk-based development resembles the development environment of centralized VCSs.
Thus, one could assume that in a replication of our study using projects from centralized
VCS or using trunk-based development the conflict ratios would decrease. However, Zim-
mermann (ZIMMERMANN, 2007) while studying systems in CVS reports that 23% up to
46% of files integration lead to merge conflicts, which is a relatively high number of con-
flicts. Moreover, the projects that we manually analyzed containing the highest conflicting
scenario rates from our sample have multiple collaborators working at the same time while
committing directly to the master branch. Finally, in centralized VCSs we would have ac-
cess to all merge conflicts since the development history is not rewritten to hide merges.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 59

Therefore, we believe that trunk-based development should be more investigated in order
to learn about the frequency and severity of conflicts in this context.

Developers do not take full advantage of proper code version and end up creating
conflicts

In order to answer RQ5 we analyzed the occurrences of SameSignatureMC conflicts in
our sample to understand their underlying causes. In fact we did not expect that it
would be so common for developers working on different assignments to add methods
with the same signature. Our automated analysis done with a total of 1,505 conflicts
of the SameSignatureMC pattern, shows that 63.5% of these conflicts happened because
developers copied methods, or entire files, from one repository or branch to the other. We
even observed curious cases where the same developer, working on different repositories,
copied methods across them.

As explained before, this is not the case of code cloning, since the developer copied
that same piece of code from other branch to her branch on the same class that it was
before. We believe the idea is to reuse pieces of code from branches that were not meant
to be merged— different products’ branches, for example— or they were not ready to
be merged yet— the feature was not fully implemented and tested. Furthermore, the
developer might have simply postponed the entire merge process to avoid having to deal
with conflicting changes at that moment.

Either way, our results show that copy and paste across different branches or repos-
itories is a common practice. This evidence suggests that developers do not take full
advantage of proper code version, but rather copy and paste code around creating the
risk of conflicts. Such finding supports the need for tools that enable partial merges,
where developers, instead of merging entire sequences of commits, can break commits
into smaller parts/pieces of code and then choose what commits they want to merge.

Breaking commits into smaller changes is not a new idea. In fact, tools that “un-
tangle” commits, often containing a bundle of unrelated changes, into smaller commits
containing few logical units of changes, together with a more descriptive message, have
been proposed (BARIK; LUBICK; MURPHY-HILL, 2015; DIAS et al., 2015). For example, the
goal of Commit Bubbles, and EpiceaUntangler is to help developers to build systematic
commit histories that adhere to version control best practices. Moreover, Codebase Ma-
nipulation (MUSLU et al., 2015), is a tool that automatically records a fine-grained history
and manages its granularity by applying granularity transformations. In addition to such
tools, we suggest a partial merge tool where developers that already know which code
parts (methods or files) they need at that moment, are able to isolate them in a different
commit, and merge just those selected commits to their local repository/branch.

Conversely, besides copying pieces of code, an additional 6.3% of SameSignatureMC
occurrences happened when a method from the base revision was equally renamed on

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 60

both derived revisions. At first this seemed like an odd coincidence, but through a manual
analysis we found that this was often due to a renaming in an API method, and, as a
result, when the dependency is updated, it breaks the build across different repositories.
Consequently, developers have to fix both the method’s name, and its calls, on their local
branch to successfully compile the code.

For those renaming cases, or other refactoring related changes, a mechanism that allows
“broadcasting” refactoring related changes across repositories could help. For example, the
developer responsible for committing the refactoring changes could mark this changes to
be replayed for all collaborators of the project. Of course, changes would be applied to
a repository only when the developer accepts the patch. This way, developers would not
need to reproduce the same code changes in different repositories. This is then extra
evidence for the need of better supporting refactorings in API evolution (DIG; JOHNSON,
2005). For example, Catch up! (HENKEL; DIWAN, 2005), a tool that uses descriptions of
refactorings to help application developers migrate their applications to a new version of
a component, could be extended to support the cases we have observed.

Alternatively, a total of 23.8% of the occurrences were simple methods such as getters,
setters, or methods with less than 3 lines of code. This situation we believe is more
reasonable to expect. Two developers might independently feel the need for adding a get
or an equals method to the same class. However, through a manual analysis we saw that
some of them were copied or equally renamed methods as well, but because they had few
lines of code, we did not run the analysis of copied and renamed methods on them.

Finally, the remaining 6.4% of the SameSignatureMC conflicts did not fit in any of
the previously defined categories. Through manual analysis, we observed that in some
cases the methods were copied or renamed as well. However, because they were signifi-
cantly changed, our string similarity algorithm returned a score smaller than our threshold
(70%). Nevertheless, most of the manually analyzed cases really reflected the name of the
pattern— developers indeed added complex methods with the same signature and differ-
ent behavior.

We noticed that those methods’ names often contained common words from develop-
ers’ vocabulary such as initialize, execute, run, and load. The example we describe back
in Section 3.1.5 illustrates a duplicated method called “sendFile” from project Jitsi which
could be a recurrent name for methods from an instant messenger application. For such
cases, we could improve awareness tools to alert when developers add methods with the
same signature, so that they can communicate and solve this conflict earlier.

Merge scenarios, conflicting merge scenarios, and merge conflicts usually involve
more than two developers

The bottom line of the analysis collecting the number of developers involved in merge
conflicts is that those conflicting scenarios involving a single developer that we found

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 61

while manually investigating underlying causes for SameSignatureMC conflicts are not
so common after all. In fact, our data indicates that merge scenarios, conflicting merge
scenarios, and merge conflicts often involve more than two developers. We also observe this
tendency when analyzing merge scenarios containing SameSignatureMC conflicts caused
by copied files.

Although the number of developers involved in merge conflicts does not measure di-
rectly the effort to resolve them, we believe that solving conflicts involving a single de-
veloper is probably easier than solving conflicts involving more developers. In addition,
Costa et al. (COSTA et al., 2016) reported that developers usually have a hard time while
merging branches because it might hold numerous contributions from different developers
and they need to understand changes in order to integrate them. Based on this problem
they propose a tool called TIPMerge, which recommends expert developers for integrating
changes across branches. Our work reinforces their findings.

3.5 THREATS TO VALIDITY

Our empirical analyses and evaluations naturally leave open a set of potential threats to
validity, which we explain in this section.

3.5.1 Construct Validity

A possible threat to the construct validity of our study is our choice of metrics. We tried
to mitigate this threat by using metrics already used in well established studies in the
area. For example, to learn about the frequency of conflicting merges in RQ4, we measure
the proportion between conflicting merge commits and merge commits. This metric was
also used by Kasi and Sarma (KASI; SARMA, 2013) and Brun et al. (BRUN et al., 2013).
This way, we are also able to compare our results with theirs.

A different alternative to learn about conflicts’ frequency would be to measure the ratio
between conflicting merge commits and commits in general. However, we believe that such
metric is not appropriate. For example, consider that one developer committed 8 times
while performing task A, and a second developer committed 1 time while performing task
B. Then, someone merged task A and task B contributions into a merge commit which
resulted in a conflict. In this case, the conflict frequency would be 10% (1 conflicting
merge commit out of 10 commits).

However, if the second developer had the habit of making smaller and more frequent
commits, the conflict frequency would decrease, but, in the end, her contributions would
have conflicted with the first developer contributions regardless of the number of commits.
In summary, depending on developers’ habits, they might commit too often or too rarely
and this metric would vary according to that. Meanwhile, by analyzing the proportion

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 62

between conflicting merge commits and merge commits we have a better notion of how
often developers’ contributions conflict with each other.

Moreover, we tried to choose metrics that gives us alternative views about the same
problem. For example, to learn about the most frequent conflict pattern, besides com-
puting the number of conflicts, we also compute the normalized number of conflicts to
complement our results. We compute this metric by dividing the number of conflict oc-
currences from each pattern by the number of involved syntax elements changed during
the entire project development history.

However, the normalized number of conflicts resulted in values that were small com-
pared to the relatively high number of conflicts in projects. Perhaps, an alternative to
compute this metric in the future would be to divide the number of conflicts by the num-
ber of changes made only to the elements involved in these conflicts. To compute this
metric we would need to track down the history of each element involved in a conflict to
compute the number of changes in each one of them. Moreover, we could add different
weights to compute this metric such as the number of developers involved in these changes
eventually leading to a conflict.

Finally we could also consider the notion of the lift measure commonly used in data
mining and association rule learning (TUFFERY, 2011). According to Tufféry, the lift
metric measures the improvement of a rule at predicting cases as the enhancement of that
rule measured against the normal population rates. For example, if we consider that the
conflicting rate for all projects is 10%, but the chance of ending up with conflicts when
two developers edit the same method is 50% then we can say that this conflict has a lift
measure of 5.0 (50 divided by 10). We also leave this alternative metric as future work.

3.5.2 Internal Validity

In this work we analyzed 123 Java projects from Git. Three projects from our sample
(JeroMQ, Dagger, and Closure-compiler) had no merge conflicts, however, the sum of
their merge scenarios represents only 1.07% from our sample and do not compromise our
general results.

Differently from previous studies, which used line-based merge tools, we use FSTMerge
which is a semistructured merge tool with some knowledge about the underlying syntax of
the artifacts. Thus FSTMerge is able to automatically solve ordering conflicts. In addition,
by using FSTMerge we were able to systematically derive our conflict pattern catalog by
analyzing FSTMerge annotated Java grammar and extracting all changes that leads to
conflicts detected by this tool. Nevertheless, the decision of using an adapted version of
FSTMerge also brings drawbacks to our analysis. Although it removes a large number of
false positives (APEL et al., 2011), it might add small numbers of false negatives and other
kinds of false positives, as we discuss next.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 63

The added false negatives might happen when two developers independently add im-
port declarations involving different packages and the same member name. For instance,
if developer A adds java.util.List, and developer B adds java.awt.List. When using FST-
Merge to integrate those contributions, it treats this case as an ordering conflict. In
contrast, FSTMerge orders the import list declarations, likely leading to a build conflict
(type ambiguity error). Thus, if one uses a line-based tool and the described contributions
were added to the same line (or in consecutive lines), the conflict would be reported and
the developer responsible for the integration could resolve it before it became a build
problem.

Moreover, a different type of false negative might happen when one developer adds a
method that calls a second method that was edited by another developer, which could lead
to a test conflict. Likewise, if those developers edit the same or consecutive lines of the
same text area, the line-based merge tool would report this conflict, while the FSTMerge
would not.

To measure if those two types of false negatives would have occurred frequently in our
data, we further analyzed all merge scenarios of 50 Java projects from our sample (CAVAL-

CANTI; BORBA; ACCIOLY, 2017). To identify false negatives concerning conflicting import
declarations, we used FSTMerge to identify when different contributions add import dec-
larations to the same class. Then, we try to build the merge class and check if we get a
type ambiguity error. In contrast, to identify the second type of false negative we use an
overestimated metric. We compare the results from FSTMerge to the diff3 merge. When-
ever diff3 reports a conflict involving different code elements (we parse the conflict body)
we consider it as a potential FSTMerge false negative.

From that analysis we observed that, from all the merge scenarios, only 1.66% had
changes matching those patterns, and are, therefore, false negatives. Thus, such conflicts
do not happen very often. Nevertheless, FSTMerge could be slightly improved to detect
such cases.

Regarding the possibly added false positives, FSTMerge fails to identify renaming
changes. If a program element such as a method is renamed in one revision, the FSTMerge
algorithm is not aware of this fact and cannot map the renamed method to its previous
version, and it considers that the method was removed. If the method that was renamed in
one revision, is edited by the other revision, FSTMerge will report a conflict. Conversely,
a line-based tool would report a conflict only if the same or consecutive lines were edited.
This means that a percentage of the EditSameMC conflict occurrences that we collected
might fall into this category and, therefore, be false positives, possibly affecting some of
our more detailed findings, such as the normalized results.

It is hard to guess whether a version of FSTMerge that properly handles renaming
would improve our findings. In fact, avoiding renaming conflicts could lead to new kinds of
false negatives. So fixing FSTMerge to properly handle renaming would demand careful

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 64

evaluation of the renaming detection strategy. In this paper, we decided to compute a
conservative (overestimated) number of renamings to check if, even considering more
renamings than expected, our main results would remain the same.

We collected a total of 24,427 EditSameMC occurrences. From this total, 9,206 might
be false positives due to the renaming issue. This is an overestimation because FSTMerge
cannot discern a deletion of an element from a renaming. To have evidence that the
FSTMerge renaming issue did not affect our main conclusions, we made a preliminary
analysis using a subsample of 60 projects from our original sample to check for references
on the renamed or deleted method.

We observed that 30.21% of renamed methods occurrences seems to be false positives,
but this is also an overestimation. So, considering that 30.21% of those 9206 occurrences
are false positives, the percentage of EditSameMC conflict drops from 84.57% to 82.92%.
Consequently, even with this overestimated amount of false positives, EditSameMC con-
flicts would still be the most frequent conflict pattern by far from our sample, without
compromising our general results. More details on FSTMerge’s false negatives and false
positives analysis can be found in Cavalcanti et al.’s study (CAVALCANTI; BORBA; ACCI-

OLY, 2017).
Like previous works (KASI; SARMA, 2013; BRUN et al., 2013) did, we analyze Git

projects, which support commands such as rebase, squash, and cherry-pick, that rewrite
project development history. Consequently, depending on the development practices of
each project, we may have lost merge scenarios where developers had to deal with merge
conflicts, but that do not appear on Git history as merge commits (BIRD et al., 2009).
When those commands are used in a systematic way they might dramatically decrease
the number of merge commits. Consequently, to analyze all merge scenarios, we would
need to have access to developers private repositories.

Thus, our results are actually a lower bound for the real conflicting scenarios rates.
In fact, our assumption is that if we use a centralized version control system such as
SVN, the number of conflicts and conflicting merge scenarios would increase. However,
studying SVN history is challenging in our context because there is no systematic way to
precisely select merge scenarios; SVN has no standard log entry type for merges. Previous
studies (APEL et al., 2011) look for commit messages that suggest a commit is the result of
merging, but that might be imprecise. So, unless one carefully filters the merge scenarios,
the analysis could be biased.

Besides that, we could have used different merge tools to extract our pattern catalog.
For example, JDime (APEL; LESSENICH; LENGAUER, 2012) is a merge tool that tunes the
merge process on-line by switching between unstructured and structured merge, depending
on the presence of conflicts. However, JDime has the same disadvantages of FSTMerge
(renaming and import declaration problems). Moreover we managed to remove some of the
false positives of FSTMerge that JDime can solve (spacing and consecutive line conflicts).

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 65

In addition, JDime inserts new false negatives with respect to FSTMerge. For instance,
if both revisions edit different parts the same field declaration— the type definition, and
the initialization— JDime will solve this conflict, most likely leading to a build or test
conflict. Lastly, we would not be able to use JDime’s autotuning strategy because we
would risk missing the false negatives of the line based merge. For example, we would
miss the occurrences of SameSignatureMC conflicts when the duplicated methods are
added in different areas of the file.

Finally, regarding our consecutive line edit conflict analysis, for most of the cases, the
edited lines can be merged safely. Nevertheless, there are cases were this merge might lead
to a build or test conflict. For example, if a string variable is initialized in two consecutive
lines (by string concatenation), and those lines were edited, the revisions would be editing
the value of the same variable. If such lines are merged, this could lead to a semantic
conflict. Thus, further studies are needed to analyze how frequent this situation happens.
Perhaps, with structured merge tools, we could assess if the edits made to consecutive lines
inside methods belonged to the same statement or variable initialization. In case they did
not, we could perform the merge successfully. Nevertheless we showed that, by removing
just the spacing conflicts there is a statistically significant difference in the conflicting
scenarios rate.

3.5.3 External Validity

Our sample contains only open source Java projects hosted on GitHub. We only use
Java projects for simplicity. Furthermore, by choosing only popular projects— projects
with more than 500 stars on GitHub, we might miss diversity in our sample. To analyze
projects in different languages, we would have to derive different catalogs as well. Thus,
generalization to other languages and other version control systems is limited, and further
studies would be needed to confirm our findings. We present these analysis as future work
in Chapter 6.

However some of our main patterns, like editing the same method or the same class
field, could also be present in other object-oriented languages similar to Java. However,
it would be harder to automatically solve spacing conflicts for languages such as Python,
given that indentation affects semantics. Also, the implications for future research dis-
cussed in this chapter, such as the concept of the tool that monitors developers, the
concept of partial merges, and the refactoring broadcast mechanism could be useful for
a number of different languages using different types of version control systems. Further-
more, Eirini et al. (KALLIAMVAKOU et al., 2015) showed in their survey that GitHub,
with its common development practices (pull-based development), is being increasingly
adopted in commercial projects as well.

Chapter 3. Understanding Merge Conflicts Frequency and their Underlying Structure 66

3.6 CONCLUSIONS

In this chapter we present in detail the first empirical study we conducted throughout
this thesis. This study aims at understanding the structure of the changes that lead to
conflicts. In order to do so, we derived a conflict catalog containing 9 semistructured
merge conflict patterns expressed in terms of the performed kinds of changes considering
involved syntactic language structures.

To assess the occurrence of conflict patterns in practice, we reproduced 70,047 merge
scenarios from 123 GitHub Java projects. Furthermore, we focused on conflicts reported by
a semistructured merge tool, avoiding a large number of spurious conflicts often reported
by typical line-based merge tools. Our results show that 84.57% of merge conflicts happen
because developers edit the same lines, or consecutive lines of the same method. However,
editing methods, class fields, or modifier lists have similar probabilities of leading to
merge conflicts. This means that, if we improve awareness tools to alert developers in
those cases, we might avoid most merge conflicts. In addition, merge conflicts occur in a
total of 9.38% of the analyzed merge scenarios. Moreover, by slightly improving the merge
algorithm to better handle spacing and consecutive line edit conflicts, we got statistically
significant lower numbers. Compared to previous studies, our results show that using
more advanced merge tools reduces the number of conflicting merge scenarios. We also
found that developers often copy methods, or even entire files across repositories, which
is evidence of the need for tools that enable partial merges. Finally, as a complementary
result, our data indicates that merge scenarios, conflicting merge scenarios, and merge
conflicts usually involve more than two developers. This result suggests that integrating
different branches is not often an easy task since one needs to understand and merge
contributions made by different developers.

In conclusion, this study was a first exploration into semistructured merge conflicts’
structure and frequency. However, we need further analysis to understand if our conflict
patterns, such as edits to the same method, would be efficient conflict predictors in prac-
tice, considering not only merge conflicts, but also build and test conflicts. We need to do
so because in this study we collect merge conflict instances to trace back the changes that
caused them. Which means that all of the EditSameMC instances we collect here indeed
caused merge conflicts. However, we do not have any knowledge about developers edit-
ing the same method without causing merge conflicts. This happens, for example, when
developers edit different lines concerning unrelated parts of the same method. If such sit-
uations happen frequently, then alerting developers whenever they edit the same method
would raise too many false alarms. Consequently, it would not be an efficient strategy to
avoid conflicts. To this end, in the next chapter we describe our second empirical study
where we capture change patterns, such as edits to the same method, and measure how
often they lead not only to merge conflicts, but also to build and test conflicts.

67

4 ANALYZING CONFLICT PREDICTORS IN OPEN-SOURCE JAVA
PROJECTS FROM GITHUB AND TRAVIS CI

In Chapter 3 we learned that most semistructured merge conflicts happen when developers
edit the same lines, or consecutive lines of the same method or constructor declaration.1

Moreover, after normalizing the number of conflicts considering the types of changes made
to a repository, we learned that editing method bodies is one of the change types that
most likely leads to merge conflicts.

Moreover, developers might edit the same method without touching the same lines,
avoiding merge conflicts, but increasing the chance of causing other types of conflicts,
such as build an test conflicts. As explained in Chapter 2, build and test conflicts occur
frequently and impair developers’ productivity. Build conflicts happen when the system
building process fails after the merge. This happens, for example, when developers in-
dependently introduce the same local variable declaration inside the same method body.
In contrast, a test conflict happens when merged contributions interact with each other
causing the system to have different observable outputs than the system tests expect. One
example of a test conflict would be when one developer edits one method by adding a call
to a method that was edited by another developer. Then, after the integration, one of the
test cases of the system starts to fail.

According to the described evidence, it sounds that a good strategy to avoid conflicts
would be to alert developers whenever they edit the same method. However, it is possible
that developers edit unrelated pieces of code inside the same method, without causing
merge, build or test conflicts. This might happen, for example, when a method contains
pieces of code from different features (crosscutting concerns). Likewise, if two developers
edit the same method, but one of them does not change the method semantics (refactoring
changes), it will not cause collaboration conflicts. If such situations happen frequently,
this alerting strategy we discuss might raise too many false alarms.

With regard to the other conflict patterns described in Chapter 3, we consider that they
rarely report false positives because changes inside those elements are too semantically
close together. Therefore, we recommend that such changes should be identified and always
reported as conflicts.

Therefore, we need further studies to investigate if edits to the same method is a
good conflict predictor not only for predicting merge conflicts, but also for build and
test conflicts. Moreover, since we are investigating build and test conflicts, we decided to
include new conflict predictors in our analysis. In particular, a previous work (LIMA, 2014)
suggests that when one developer edits a method that calls a second method edited by
another developer, conflicts often occur. Although this situation does not lead to merge
1 From now on, we use method declarations to refer both to method and constructor declarations.

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 68

conflicts, it is reasonable to consider that it might cause build and test conflicts as well.
In summary, in this study we are interested at investigating the efficiency of the two

following conflict predictors: edits to the same method— which we refer to as EditSameMC
predictor from now on—, and edits to directly dependent methods— or EditDepMC
changes. In particular, we are interested in investigating these conflict predictors precision,
that is, how frequently the conflict predictor presence is associated with a conflict, and
we also want to measure their recall, that is, what percentage of conflicts we can avoid
by using such predictors.

For establishing build and test conflicts ground truth, we rely on the status of building
and testing processes executed by the Travis CI (TRAVIS, 2018) service. Whereas this
provides quite precise guarantees for build conflicts, the guarantees for test conflicts are
as good as the project test suites. So, even for projects with strong test suites, actual
semantic conflicts might be missed by the existing tests.

To this end, in this chapter we conduct an empirical study that analyzes 5,647 merge
scenarios from 45 Java-maven-travis projects from GitHub to collect instances of conflicts
and conflict predictors. Then, we compute how frequently a predictor occurrence is asso-
ciated with a conflict occurrence, and the percentage of conflicts that can be captured by
detecting predictor instances.

Additionally, we conduct a manual analysis to understand what other types of changes
cause conflicts, and what changes were associated with predictor instances that did not
cause conflicts. Based on the collected evidence we derive more appropriate requirements
for detecting conflicts early, and suggest improvements to existing conflict awareness tools.

Our results indicate that, considering both EditSameMC and EditDepMC conflict pre-
dictors together, we achieve a precision of 57.99%. In particular, EditSameMC individual
precision is 56.71%, and EditDepMC precision is 8.85%. Moreover, we achieve a recall of
82.67% if we consider both predictors together, while EditSameMC individual recall is
80.85% , and EditDepMC recall is 13.15%.

The manual analysis points out that part of predictor occurrences in our sample that
are not associated with conflicts are actual missed merge conflicts, that is, although the
contributions do not edit the same limes, they interfere with each other. For example,
in one EditSameMC predictor from project Web Magic2 while one developer changes
an if statement condition, the other developer removes code located inside this same
if statement. This is expected given the limitations of how we establish test conflicts
ground truth— using projects existing test suites executed by Travis CI. Consequently,
the precision results we report represent lower bounds of actual semantic conflicts, whereas
the recall results are upper bounds because other missed semantic conflicts not caused by
the predictors might have occurred as well.

Nevertheless, such evidence is useful to guide different conflict awareness strategies.
2 <https://github.com/code4craft/webmagic>

https://github.com/code4craft/webmagic

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 69

For instance, a more conservative strategy would be to alert developers about a large
part of potential conflicts at the cost of dealing with some false positives. In this case,
warning developers about all predictor occurrences is a reasonable strategy. In contrast,
a strategy that aims at precision, even at the cost of loosing conflicts, would be alerting
developers about EditSameMC instances only when developers edit the same lines of the
same method. In addition, based on our false positives and false negatives analysis, we
discuss different strategies that could further increase the predictors’ precision as well as
increasing the recall by using other predictors.

The remainder of this chapter is organized as follows:

• In Section 4.1 we present the research questions, and the metrics used to answer
them;

• Section 4.2 describes the study infrastructure we implement to analyze and collect
the defined metrics;

• In Section 4.3 we report the study results;

• Sections 4.4 and 4.5 discuss the results and their implications;

• Section 4.6 presents the threats to the validity of our study.

All the material and data collected in this study is available in our Appendix. This
study was published at the International Conference on Mining Software Repositories (AC-

CIOLY et al., 2018).

4.1 ANALYZING CONFLICT PREDICTORS

Considering the motivation described in the previous section, our goal is to analyze Ed-
itSameMC and EditDepMC effectiveness as conflict predictors. Specifically, we want to
measure the conflict predictors’ precision and recall. Besides that, we want to understand
what happens when one conflict predictor occurrence is not associated with a merge, build
or test conflict occurrences. In addition, we analyze what other change patterns, besides
the defined predictors, could also be considered important conflict predictors.

Therefore, to achieve such a goal, we analyze merge scenarios from the development
history of different software projects while answering the following research questions:

4.1.1 Research Question 1 (RQ1): How precise are EditSameMC and EditDepMC
predictors?

To answer this question we measure the conflict predictors’ precision. The Venn diagram
depicted in Figure 23 illustrates how we compute this metric considering our context.
When we reproduce project merge scenarios, we collect the occurrences of merge, build

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 70

and test conflicts, together with the occurrences of the conflict predictors. This way,
when a merge scenario has a conflict predictor and a conflict occurrence, we classify it
as a true positive instance. In practice, if an awareness tool had alerted developers about
the occurrence of such predictor, it would have indeed detected a conflict. However, if a
merge scenario has predictors but no detected conflicts, we classify it as a false positive
instance. This means that the awareness tool might have raised a false alarm. In contrast,
if the merge scenario has conflicts but no predictors, we classify it as a false negative
instance because the awareness tool would not have triggered an alarm, and the conflict
would only be detected during the merge process. Finally, if the merge scenario has no
predictors nor conflicts, we consider it to be a true negative instance.

Predictors Conflicts

True
positives

False
positives

False
negatives

True negatives

Analyzed Merge Scenarios

Figure 23 – Computing conflict predictors’ precision and recall.

Therefore, we can compute the precision considering both predictors together, and for
each predictor individually, using the following formula:

• Precision = 𝑇 𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇 𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

4.1.2 Research Question 2 (RQ2): How many conflicts can we avoid by detecting
EditSameMC and EditDepMC predictors?

To answer this question, we need to measure the conflict predictors’ recall. We compute the
recall considering the predictors together, and individually, using the following formula:

• Recall = 𝑇 𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇 𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

4.1.3 Research Question 3 (RQ3): Why EditSameMC and EditDepMC instances
are not associated with merge, build, or test conflicts?

To answer this question, we conduct a manual analysis considering a sub sample of the false
positives depicted in Figure 23. With this analysis, we aim to understand how developers
managed to edit the same method or directly dependent methods without causing merge,

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 71

build or test conflicts. This way, we can improve the precision of the conflict detection
strategy. Conversely, we also want to check if semantic conflicts are being missed by the
projects test suites. As mentioned before, this is expected given the limitations of how we
establish test conflicts ground truth.

While analyzing false positive instances we try to understand if the contributions
clearly do not interfere with each other or if there is a possibility of interference— when
there are semantic conflicts. To this end, we rely on a broader notion of interference defined
by Horwitz et al. (HORWITZ; PRINS; REPS, 1989) and used in our previous work (CAVAL-

CANTI; BORBA; ACCIOLY, 2017). This definition states that “two contributions (changes)
to a base program interfere when the specifications they are individually supposed to
satisfy are not jointly satisfied by the program that integrates them; this often happens
when there is, in the integrated program, data or control flow between the contributions.
We then say that two contributions to a base program are conflicting when there is no
valid program that integrates them and has no unplanned interference”.

The challenge associated with such a more comprehensive comparison criteria is that
it is not computable in our context (BERZINS, 1986; HORWITZ; PRINS; REPS, 1989). There-
fore, we use Horwitz et al.’s definition in a conservative way during the manual analysis.
For example, if one contribution edits a variable assignment used by a command that
was added/edited by the second contribution, then there is a possibility of interference,
and we classify this predictor as a conflict. In addition, if one contribution edits an if
statement condition, while the other adds/edits commands inside this if statement body,
we also consider this to be a conflict. We consider that such cases should be reported to
developers involved as a potential conflicts.

Alternatively, if one of the contributions does not alter the program semantics— refac-
tors a command or edits comments— we consider that there is not an interference. In
addition, if the contributions edit unrelated local variables inside the same method, we
consider that they do not interfere with each other, and could be merged together with-
out further problems. In the results section we report what happened in each manually
analyzed case. Moreover, we also report the source code of these cases in our Appendix.

4.1.4 Research Question 4 (RQ4): What other change patterns are associated with
conflicts?

We answer this question by manually analyzing all false negative instances depicted in
Figure 23. Our aim is to learn about what other types of change patterns are associated
with conflicts in our sample. This way, new conflict predictors could arise, increasing the
recall of our results.

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 72

4.2 STUDY SETUP

To explain how we answer the research question described in the last section, here we
present our study setup and describe the selection, mining and analysis of our data. All
the scripts and data used in this study are available in the Appendix.

Like our previous study, we focus our analysis on Java projects hosted on GitHub.
In addition, we select projects using Travis CI and Maven as build manager. We select
projects using Travis CI because, besides being the most used CI service (ZHAO et al., 2017),
it provides all build information associated with a commit.3 We use this information to
compute our metrics as we further detail. Furthermore, we focus on projects using Maven
because we use its log report information for filtering conflicts without human effort.

Figure 24 illustrates the study design, which is divided in the three following phases: in
the first phase, we select Java projects from GitHub and Travis CI using Maven as build
manager to filter those containing at least one build or test conflict. Section 4.2.1 describes
this phase in more detail. Then, in the second phase, we use the same infrastructure from
the previous study to reproduce merge scenarios from each selected project. Only this
time, besides collecting merge conflicts, we enhance the Conflict Analyzer tool to collect
conflict predictor instances as well. In this phase we compute the metrics used to answer
RQ1 and RQ2. We explain how we do so in Section 4.2.2. Finally, in the third phase, we
perform a manual analysis on a sub sample of reported false positives and false negatives
so that we can answer RQ3 and RQ4. Section 4.2.3 explains this analysis in further
detail.

4.2.1 Phase 1: Filtering Projects Containing Build and Test Conflicts

We start selecting our sample on GitHub by filtering Java projects containing at least 40
stars and 50 forks. We choose a minimum number of stars and forks to avoid selecting
toy and personal projects. With the list of selected projects, for each project we check if
the repository contains both Travis CI and Maven configuration files —.travis.yml and
pom.xml. We also check the project current status on Travis (active or not). This way we
ensure we select only projects using Maven as build manager, and having data available
on Travis CI.

For projects meeting those requirements, we execute a script that clones each project
locally and retrieves their merge commit list, just like we did in our previous study.
However, as most projects adopted Travis CI later in its life cycle, we filter project merge
commits dated after the first finished build on Travis.

For each selected merge commit we use its build status on Travis CI, together with its
Maven build log report, and its parent commits build status, to identify build and test
conflicts. As explained in Chapter 2, when a developer pushes new commits to the remote
3 <https://docs.travis-ci.com/api>

https://docs.travis-ci.com/api

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 73

1- Filter projects
from GitHub,
Travis CI, and
Maven to identify
build and test
conflicts

2- Reproduce
merge scenarios
while collecting
merge conflicts
and conflict
predictors

Conflict
Analyzer

Semistructured
Merge

Metrics

Project
Filtering

Manual
Analysis

Build and Test Conflict
Identification

Projects
3- Manual

analysis of false
positives and

false negatives

Figure 24 – Study design.

repository in GitHub, or when a pull request is merged, Travis CI gets notified and starts
to run the build process. However, Travis CI builds only the latest commit state in the
push command or pull request to run the analysis, so not all commits have an associated
build status on Travis CI. Because of that, we use a script that forces the commit build
creation when there is no build yet. Basically, we create a project fork, activate it on
Travis CI, and clone it locally. Then, every push to the remote fork creates a new build
on Travis CI. So, for each merge commit, or merge commit parent, without an associated
build on Travis CI, we reset the fork repository head to this commit and force push it to
the remote fork.

If the merge commit build status on Travis CI is passed it means that there is no build
error, and none of the tests fails. For these merge commits, we consider that there are no
build or test conflicts. In contrast, if the merge commit build status is errored— when the
build is broken— or failed— the build is ok, but one of the tests failed—, we consider it to
be a build or a test conflict candidate, respectively. However, there are some conditions
that must be satisfied first.

It is possible that a build breaks or a test fails due to external configuration problems
such as trying to download a dependency that is no longer available, or exceeding the
time to execute tests. To eliminate these cases, we analyze for each build its Maven log
report seeking for specific message errors (SILVA, 2018). Basically, there are two external
causes responsible for interrupting a build process:

• Remote constraints: the build fails because Travis or another external service re-
quired by a build process was temporarily unavailable. We discard these scenarios

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 74

because they do not reflect issues caused by developers changes, therefore, not char-
acterizing a conflict;

• Environment configuration: the build process fails due to unsolvable or wrong project
dependencies. We only discard such scenarios when no changes were made to con-
figuration files. This restriction ensures an external problem is responsible for the
build failure.

After discarding those cases, we check the merge commit parents’ status to eliminate
cases where the build was already broken or with failing tests before the merge. If this is
the case, we consider the merge commit broken build or failed test was carried over from
its broken parents, instead of being caused by conflicting contributions.

Therefore, we consider that a merge commit with an errored build status has a build
conflict if its parents have a passed or failed build status, which means that the build
breaks only after code integration. Likewise, we consider that a merge commit with a
failed build status has a test conflict if its parents have a passed build status.

By the end of this phase, we select only projects containing build or test conflicts to
proceed to the second phase of the study, where we collect merge, and conflict predictors
occurrences. Moreover, each merge scenario selected to the second phase has its associated
commits— merge commit and its parents— built on Travis CI.

4.2.2 Phase 2: Collecting Merge Conflicts and Conflict Predictors

In this phase we use FSTMerge to reproduce all merge scenarios dated after Travis CI first
finished build from the projects selected in Phase 1 while collecting information about
merge conflicts using the conflict pattern catalog. However, we implement some changes
to our infrastructure so that we can collect instances of conflict predictors —EditSameMC
and EditDepMC. We discuss such changes in more detail over the next sections.

4.2.2.1 Collecting EditSameMC predictors

Collecting EditSameMC instances is straightforward because we already detected Edit-
SameMC instances associated with merge conflicts in the previous study. As explained
in Chapter 3, FSTMerge uses diff3 algorithm to merge the content inside methods. If
diff3 returned a text containing conflict markers, we collected an EditSameMC instance.
For this study, we extended this algorithm so that, if there are no conflict markers after
executing diff3, we compare the parents version to the base version. If both parents differ
from the base version, we collect an EditSameMC instance where there was no merge
conflicts. Later, at the end of the merge scenario replication, we check if this predictor
occurrence is associated with a build or a test conflict. If there is no conflict, we classify
this merge scenario as a false positive instance.

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 75

In addition, we use the same logic described in Chapter 3 to analyze EditSameMC
predictors and check if they are different spacing false positives. This happens when one
of the contributions only made changes related to code spacing, which is irrelevant for
Java code syntax. This way we can compute and compare our metrics in both ways,
considering all EditSameMC predictors, and filtering the different spacing ones, since
they do not represent conflicting contributions.

4.2.2.2 Collecting EditDepMC predictors

To detect EditDepMC predictors, while reproducing the merge, we collect all method
instances with non-spacing changes made by at least one parent— we discard changes
related to different spacing. We also keep the information about which parent was re-
sponsible for editing each method. By the end of the merge process, we have a list of all
methods changed by one of the parents.

Then, for each method changed by parent 1, we check if any other method changed by
parent 2 has a method call to it. Similarly, we do the same inverting parent 1 and parent
2 in the description above. Figure 25 illustrates this approach. Suppose that, by the end
of the merge process, we have three methods in our list. Methods m and n from class A,
edited by parent 1, and method o from class B, edited by parent 2. In this example, we
need to check if m calls o, if n calls o, if o calls m, and if o calls n. Note that there is no
need to check if m calls n, or if n calls m since these methods were edited by the same
parent. If there are reflexive calls inside those methods, we do not identify them.

A.java B.java
void m(){
 …
}
…
int n(){
 …
 this.m();
 …
}

String o(){
 …
 A.m();
 …
}

● Parent 1 changes
● Parent 2 changes

Figure 25 – Looking for EditDepMC predictor instances.

To check if one method calls another one, for performance reasons, we use a two step
approach. For example, consider that we need to check if method o calls method m. First,
we perform a simple textual search to see if the name of the method m is inside method o

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 76

body declaration. In case it does, we use Eclipse JDT library4 to parse class B and build
its AST. Then, we visit B AST nodes until we get to method o declaration. There, we
list all the method invocations, and check if any of them matches with method m from
class A.

In Figure 25 example, after performing all necessary method reference checks, we note
that there is one EditDepMC predictor instance involving methods o and m. As we do for
EditSameMC instances not associated with merge conflicts, we check if the EditDepMC
instances are associated with a build or a test conflict collected in Phase 1.

4.2.3 Phase 3: false positives and false negatives analysis

After computing the conflict predictors precision and recall, we conduct an analysis to
understand the causes of the false positives, and false negatives from our sample. We
start by randomly selecting a sub sample of the false positive instances to manually
analyze them. Because we reproduce the merge scenarios locally, we keep a copy of the
files containing EditSameMC and EditDepMC instances that are not associated with
conflicts.

During these files’ analysis, we check the changes made by each developer trying to
understand if there is a possibility of interference between their contributions. If one of
the contributions performs changes that does not change program semantics, such as
renaming a local variable, or removing an extra pair of parenthesis inside an if statement,
or if the developers edit variables that are not related, we consider that there is no
interference. Conversely, if both developers change the program semantics, and they edit
related variables, for example, when one developer changes an if statement condition,
while the other edit commands inside that if statement, then we consider that there is
an interference.

As for the false negatives, that is, a conflict that is not associated with a predictor,
we have two different strategies to analyze them. Because we use our previous study in-
frastructure to reproduce the merge scenarios, we automatically collect the merge false
negative conflicts causes using the conflict pattern catalog. In contrast, in order to un-
derstand what caused the build and test false negative conflicts, we analyze the Maven
log reports associated with the errored and failed builds. These logs contain information
about the cause of these failures.

4.3 RESULTS

In the first phase of this study we analyze a total of 64,445 merge scenarios from 422
Java projects from GitHub using Travis CI and Maven. From this total, 551 merge sce-
narios meet our build conflict criteria —the merge commit build status is errored while
4 <https://www.eclipse.org/jdt/>

https://www.eclipse.org/jdt/

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 77

the parents’ status are either passed or failed. However, after performing the Travis log
report analysis, we eliminate 467 of those merge scenarios because their builds fail dues to
external reasons not related to the contributions being merged. In such cases, we cannot
be sure that there is a build conflict due to conflicting contributions. Therefore, we only
consider the remaining 84 merge scenarios to have build conflicts. Alternatively, we only
found 5 merge scenarios meeting the test conflict criteria —merge commit build fails while
parents’ builds passes. This time, the log report analysis did not eliminate any of the test
conflict instances. In summary, by the end of this study first phase, we select a total of
45 projects containing 89 merge scenarios with build or test conflicts.

Like our first study, here we do not target representativeness or diversity (NAGAPPAN;

ZIMMERMANN; BIRD, 2013). Nonetheless, we consider that our sample contains substantial
and active software systems with some degree of diversity with respect to dimensions such
as size, domain, and number of collaborators. For example, Cloudify, a cloud infrastructure
platform, has 408 KLOCs, and 23 active collaborators, Java Jwt, a library for creating
and verifying JSON Web Tokens on the JVM has only 8 KLOCs and 8 collaborators,
and OkHttp, an HTTP client for Java and Android applications has 57 KLOCs and 128
collaborators. For further information on our sample, we provide a complete subject list
in the Appendix. In contrast, we did not find many merge scenarios containing build, and
especially, test conflicts. In Section 4.5 we further comment about this situation, but we
believe this happens because developers might be executing the projects build and test
script and resolving these conflicts locally before committing the integrated code version.

4.3.1 Conflict predictors’ precision and recall

In the second phase of this study, we take as input the list of 45 projects and use FSTMerge
to reproduce a total of 5,647 merge scenarios dated after each project first finished build
on Travis CI. In this sample, a total of 290 merge scenarios have merge conflicts, and 508
have EditSameMC and EditDepMC conflict predictors. If we remove different spacing
instances, the total number of merge scenarios containing merge conflicts drops to 251,
while the number of merge scenarios containing predictors drops to 469.

Moving on with the analysis, we cross information about merge scenarios containing
predictors associated with merge, build, and test conflicts. In total, there are 286 merge
scenarios containing at least one predictor occurrence associated with a conflict occur-
rence. If we remove the different spacing predictors and conflicts, this number drops to
272. Moreover, there are 282 merge scenarios containing EditSameMC instances associ-
ated with conflicts. By removing the different spacing occurrences, this number drops
to 266. Finally, there are 45 merge scenarios containing EditDepMC instances associ-
ated with conflicts. As explained in Section 4.2.2, we do not collect EditDepMC different
spacing instances.

Using the data described above we compute precision and recall considering the conflict

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 78

predictors together and individually. Moreover, we also measure these metrics considering
all predictor and conflict instances, and filtering the different spacing instances. Table 7
summarizes the results related to RQ1 and RQ2.

Table 7 – Precision and recall results according to the predictors considered. WDS means
without different spacing.

Both
Predictors

EditSameMC EditDepMC
Both

Predictors
WDS

EditSameMC
WDS

Precision 56.29% 55.51% 8.85% 57.99% 56.71%
Recall 83.62% 82.45% 13.15% 82.67% 80.85%

4.3.2 False positive Manual Analysis

In the third phase of this study, we answer RQ3 by conducting a manual analysis of
the false positives from our sample, that is, merge scenarios containing EditSameMC or
EditDepMC predictor instances that are not associated with conflicts. In total, our sample
has 222 merge scenarios containing predictors not associated with conflicts. If we remove
the different spacing instances, this number drops to 197. From this sample, we randomly
select 10 EditSameMC, and 10 EditDepMC instances to conduct the manual analysis.
Table 8 and Table 9 summarize EditSameMC and EditDepMC false positives analysis,
respectively. In summary, we consider that 8 predictor instances have the possibility of
interference, while 12 do not. All the false positives and false negatives manually analyzed
are available in the Appendix.

4.3.3 False Negative Analysis

To answer RQ4, we analyze false negatives conflict causes to learn what types of changes—
besides the predictors— are associated with conflicts. In our sample there are 56 conflict-
ing merge scenarios where no conflict predictor was involved. From this total, 20 merge
scenarios have merge conflicts (35.71%), 33 have build conflicts (35.71%), and 3 have test
conflicts (5.35%). Because we use our previous study infrastructure to reproduce merge
scenarios, we automatically collect merge conflict causes using the conflict pattern cata-
log. Alternatively, we conduct a manual analysis to understand false positive causes for
build and test conflicts.

Among the 20 merge scenarios containing merge conflicts, 11 scenarios have Edit-
SameFD conflicts (55%), 7 scenarios have SameSignatureMC conflicts (35%), 1 scenario
has the ModifierList conflict (2.5%), and 1 scenario has one ImplementList conflict (2.5%).

Furthermore, in our sample, 33 merge scenarios have build conflicts not associated with
the predictors. In this sample, the most frequent situation in build conflicts— a total of

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 79

Table 8 – EditSameMC false positive analysis.

Project edits Summary Interference
JavaPoet Parents change unrelated variables No

OpenGrok
One parent changes a variable assignment
passed as an argument in a method call

edited by the other parent
Yes

Jackson
Databind

One parent changes a variable assignment
used by the other developer to change an

if statement condition
Yes

CorfuDB
One parent changes a variable assignment,
while the other parent changes this same

variable method call
Yes

Swagger
Core

Parents change unrelated variables No

Wire
One parent changes a variable assignment

used in a for statement condition
changed by the other parent

Yes

Jackson
Databind

Parents edit unrelated variables No

OkHttp One parent refactors No
Restheart One parent refactors No

Web
Magic

One parent removes commands inside an if
body declaration while the other parent

changes the if statement condition
Yes

20 conflicts (60.61%)— happens when one developer adds a new reference to a program
element— such as a class, a method, or a variable— while the other developer deletes
or renames that element. For example, in one of project Blueprints merge scenarios, one
developer adds a new method calling another method that was removed by the other
developer. Consequently, after the merge, the compiler could not build the file containing
the reference to the removed method. In such cases, Crystal would be able to correctly
detect them, since it performs the build of the merged artifacts. Moreover, we do not
identify such cases as EditDepMC because there is more than one level of dependency in
the methods call graph.

In contrast, the second most frequent cause for build conflicts in the false negatives
sample are syntactic malformed programs after the merge. More specifically, 10 merge
scenarios (30.31%) from projects Java Driver, Cloud Slang, and Hdiv have broken builds
because some of the files did not have the expected license header, causing a compilation
error on Travis CI.

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 80

Table 9 – EditDepMC false positive analysis.

Project edits Summary Interference

OkHttp
One parent changes one method while
the other parent changes this method

call inside the other method
Yes

Jackson
Databind

One parent refactors No

Cloudify

One parent changes an if statement condition
inside of which there is a call to the method
edited by the other parent. The other parent

adds a new return command to the
second method

Yes

Jackson
Databind

One parent edits comments No

Wire

Both parents change
the same variable assignment which is

passed as an argument from one method
to the other

Yes

Truth One parent refactors No
Moshi One parent refactors No

JavaParser One parent refactors No
Retrofit One parent refactors No

Singularity One parent refactors No

The remaining three merge scenarios in the false negatives sample have different con-
flict causes. In one merge scenario from project ScribeJava, while one contribution adds
a new class implementing an existing interface, the other developer adds a new method
to this interface. After the merge, there is a compilation error because the newly added
class does not implement all interface methods.

One build conflict from project Blueprints has an occurrence of the SameSignatureMC
pattern where both contributions copy and paste the same method across different reposi-
tories and one of them edits the method indentation. Because of that, the line-based merge
tool reported a conflict and the developer responsible for the integration tried to fix the
conflict by copying and pasting the two versions of the same method to the resulting file.
As a result, there is a compilation error due to duplicate method declarations. Conversely,
if one had used a semistructured merge tool in this merge scenario, there would not be
a merge nor a build conflict because FSTMerge only reports SameSignatureMC conflicts
when one of the contributions edits the code content, ignoring spacing changes.

The last merge scenario containing a build conflict in the false negatives sample comes

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 81

from the Jackson-core project. Figure 26 depicts the differences between the merge commit
parents. The left side parent removed the line containing the local declaration of variable
f and added it as a parameter to the method. Meanwhile, the right side parent edited
INPUT variable content.

Figure 26 – Merge scenario from Jackson-core project.

Because the contributions edited consecutive lines of the same method —variables f
and INPUT declarations— the line-based tool reports a conflict involving these lines.
The developer tried to resolve this conflict by copying and pasting both local variable
declarations to the resulting file. However, he did not notice the new parameter added
by one of the parents. Consequently, variable f has two local declarations, causing a
compilation error.

Note that this last build conflict is actually an EditSameMC instance missed by FST-
Merge. This happens because, as explained in Chapter 3, FSTMerge cannot match meth-
ods when their signature is changed. Therefore, this merge scenario has an EditSameMC
instance associated with a conflict, which makes it a true positive in our sample that the
actual infrastructure is not able to detect.

As for the false negative test conflicts, our sample has three instances coming from
projects Jedis and Wire. Two of these conflicts happened because not directly dependent
methods were edited, and the third one happened because one developer updated a test
case executing a method that was edited by the other developer.

4.4 HOW EFFECTIVE ARE THE CONFLICT PREDICTORS?

The precision and recall metrics gives a notion of how effective an awareness tool con-
sidering EditSameMC and EditDepMC predictor would be if it was used during the
development of the 45 projects from our sample. Such evidence can guide better decisions
regarding a awareness tool conflict awareness strategy.

The precision indicates that for over half (57.99%, after removing the different spac-
ing cases) of the merge scenarios where the tool triggers an alarm, it is indeed alerting
developers about changes associated with merge, build and test conflicts. Meanwhile, the
recall indicates that we capture 82.67% of the merge scenarios containing merge, build
and test conflicts by using an awareness tool considering both predictors.

However, to establish the ground truth for build and test conflicts we rely on the status
of building and testing processes executed by Travis CI. Whereas this provides quite

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 82

precise guarantees for build conflicts, the guarantees for test conflicts are as good as the
project test suites. So, even for projects with strong test suites, actual semantic conflicts
might be missed by the existing tests. As a matter of fact, during the false positive analysis
we find that 8 out of 20 (40%) false positive instances are missed semantic conflicts. This
evidence suggests that if we had better test cases our precision would increase. In contrast,
better test cases would find more semantic conflicts not caused by the predictors as well.
Consequently, the precision results we report represent lower bounds of actual semantic
conflicts, whereas the recall results are upper bounds of semantic conflicts.

Furthermore, we note a significant difference between the two predictors’ precision
and recall when we analyze them individually. While EditSameMC precision is 56.71%,
EditDepMC precision is only 8.85%. Likewise, while EditSameMC recall is 80.85%, Ed-
itDepMC recall is 13.15%. Because there is not much difference between the measured
precision and recall considering the predictors together and EditSameMC individually,
there is significant evidence that EditSameMC instances dominate our measurements.
This is due to the fact that EditDepMC instances are not associated with merge conflicts,
which are the most numerous in our sample. Nonetheless, we consider that a solution
containing both predictors would still be advisable.

Our precision and recall results provide evidence to guide different conflict detection
strategies depending on each team preferences. For instance, if one particular team prefers
to be conservative and alert developers about a large part of the conflicts at the cost of
dealing with some false positives, then detecting EditSameMC and EditDepMC as we do
in this study is a reasonable strategy.

In contrast, if a team aims at precision, even at the cost of loosing some conflicts, then it
could alert developers about EditSameMC instances only when the contributions edit the
same or consecutive lines of the same method, which necessarily leads to merge conflicts.
This approach is similar to Crystal (BRUN et al., 2013), a tool that proactively integrates
commits from different developer repositories with the purpose of warning developers of
merge, build and test conflicts.

Finally, there is also the possibility of using other methods to further increase the
predictors’ precision without compromising their recall as we further detail in the next
section.

4.4.1 Strategies to improve the precision and recall of the conflict predictors

The false positives and false negatives analysis provides insights of opportunities to further
increase an awareness tool precision and recall. In this section we discuss such results and
the actions they support.

During the false positives analysis, we find 8 cases— 5 EditSameMC, and 3 EditDepMC—
where, even though there are no conflicts associated, it would still be advisable to alert
developers about such changes because there are interferences. For example, in one Edit-

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 83

SameMC instance from project Web Magic, while one developer removes code inside an
if statement, the other developer changes the if statement condition.

Conversely, we also find 9 false positive cases— 3 EditSameMC and 6 EditDepMC—
where there is clearly no interference because one of the contributions does not alter pro-
gram semantics. For instance, in one EditDepMC instance from project Jackson Databind,
one of the contributions renames a local variable, while in an EditSameMC case from
project RESTHeart one of the contributions simply removes an extra semicolon.

By observing the types of changes that were made, we learn about strategies that
might improve the conflict predictors precision. We can divide them in the following two
categories:

1. Identify and ignore cases where clearly there is no interference;

2. Identify possible interferences.

Regarding the first category, we already use in this study a strategy to detect cases
where one of the contributions changes only code spacing. Considering our sample, this
strategy improves the overall precision in 2.93%. Another simple strategy would be de-
tecting when one of the contributions edits only comments, as it happens in one case from
project Jackson Databind.

Perhaps, a possible strategy to detect and ignore cases with clearly no interference
would be to run refactoring detection tools, such as the one proposed by Nikolaos et
al. (TSANTALIS et al., 2018), to detect and ignore predictor cases where one of the contri-
butions performs solely refactoring edits without changing program semantics. However,
some refactorings, such as renamings, might cause build conflicts. For example, when in-
side the same method one developer renames a local variable while the other developer
adds code using this same variable. In such cases, after detecting the refactoring, the tool
could replay the refactoring over the other side. This could fix the problem of variable
rename, for instance, because the new uses of the variable would also be renamed.

An alternative way to use this strategy would be in the context of a tool such as
Crystal. While running its integration routine it identifies refactorings causing build con-
flicts. Moreover, Crystal would be able to provide more comprehensive alerts by adding a
refactoring detection algorithm to its integration routine. For example, if no conflicts are
detected, but both contributions change the program semantics it could alert developers
to be more cautious about this integration scenario. Conversely, if no conflicts are de-
tected and one of the contributions performs only refactorings, then Crystal could report
that there is no interference in this scenario. We suggest this analysis as a future work
in Chapter 6. Nonetheless, in an environment with many developers committing often,
Crystal’s speculative analysis might become to expensive.

For the second category of strategies, in Section 4.1, we mention that interferences
often happens when there is data or control flow between the contributions. Therefore,

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 84

one possible mechanism to identify possible interferences would be to check the existence
of information control flow between the contributions as an approximation for computing
interference. This is exactly what Filho (FILHO, 2017) investigates. He analyzed a total of
157 merge scenarios from 52 Java projects containing EditSameMC predictors. He finds
information control flow in 64% of the merge scenarios. Then, after a manual analysis,
he reports that there was indeed interference in 42.86% of the merge scenarios with
information flow between contributions. He also describes improvements to increase the
precision of his technique.

Alternatively, another strategy to identify interference would be using a similar ap-
proach to Böhme et al. (BöHME; OLIVEIRA; ROYCHOUDHURY, 2013), which proposes to
generate regression tests that expose change interaction errors. They do that by gener-
ating a graph called Change Dependence Graph (CDG) to summarize the control flow
and dependencies across changes. The CDG is then used as a guide during program path
exploration via symbolic execution— thereby producing test cases which witness change
interaction errors. An extension of this strategy, generating test cases exercising com-
mands changed by both developers might be able to identify more semantic conflicts. We
suggest this increment as a future study in Chapter 6.

Regarding the false negatives analysis from our sample, we consider that it would
not be hard to detect most part of them. For example, all merge conflicts from the false
negatives sample would be detected by the conflict pattern we describe in Chapter 3.
Syde (HATTORI; LANZA, 2010) would be able to detect such cases as well. Furthermore,
except for the build false negatives caused by the missing license headers from specific
project rules, the other build conflicts related to one contribution adding a reference to
a program element which was renamed, moved, or deleted by the other contribution are
already detected by existing awareness tools such as Palantír, Syde, and Crystal (SARMA;

REDMILES; HOEK, 2012; HATTORI; LANZA, 2010; BRUN et al., 2013). Such evidence suggests
that practices used by these tools are feasible as well.

4.5 ARE BUILD AND TEST CONFLICTS NOT THAT FREQUENT AFTER ALL?

Although this study does not aim to measure build and test conflicts frequency, we could
not help to notice that despite analyzing a considerable amount of merge scenarios and
projects in the first phase of our study, we did not find many build and test conflicts.
This becomes more evident when we compare our results to previous studies assessing
the frequency of build and conflicts. Kasi and Sarma (KASI; SARMA, 2013), for example,
reports build conflicts occurring in ranges between 2-15% and test conflicts occurring
in ranges between 5-35%, while Brun et al. (BRUN et al., 2013) describes both kinds of
conflicts ranging around 33%. In this section we discuss some of the reasons why our
numbers are so different compared to other studies.

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 85

We believe there are mainly two reasons for such contrasting numbers and they are
both related to differences between how we collect test and build conflicts. First, the pre-
vious studies rely only on the merge commit build status. They do not consider parents
commit build status. This way, false positives might have been introduced. For example,
the build might have been already broken or with failing tests before the merge. In such
cases, we consider the merge commit broken build or failed test was carried over from its
broken parents, instead of being caused by conflicting contributions. Second, because pre-
vious studies perform build and tests locally, some part of errored and failed builds might
have been caused by external or configuration problems, for example, due to unsolved
project dependencies.

In our study we mitigate both threats since we analyze Travis CI log report to filter
builds with errors caused by external problems, and we also check the merge commit
parents status. This way we increase confidence that the merge commit build problems
are caused by conflicting contributions.

Perhaps the decision of analyzing merge commits that occurred after the project has
adopted Travis CI might have impacted the conflicts frequency. According to previous
studies (ZHAO et al., 2017), the adoption of CI practices helps to maintain the code qual-
ity. This is so because, when a project adopts CI practices it uses automated scripts to
run build and testing. Thus, the developer responsible for the integration might be detect-
ing and resolving most part of the conflicts locally, before pushing changes to the shared
repository. Such perception seems to be aligned with previous empirical evidence (MUY-

LAERT; ROOVER, 2017) that broken builds occur more frequently in regular commits than
in merge commits. Finally, to better analyze this hypothesis, for future works, we suggest
a comparative study between projects using CI platforms and projects that do not use
them (but use automatic build scripts).

In conclusion, we believe that build and test conflicts occur more frequently than
what we report here. As we narrow our numbers while trying to increase the soundness of
our results, we might be loosing build and test true positives as well. However, we need
further studies to understand the impact of our methods in our results. A better way
for evaluating conflicts— not only build and test, but also merge conflicts— would be
by having access to developers private workspaces instantaneously evaluating the cases
without any external influences. In Chapter 6 we propose such analysis as future work.

4.6 THREATS TO VALIDITY

Our empirical analyses and evaluation naturally leave open a set of potential threats to
validity. We discuss such threats in this section, which is organized according to the types
of threats.

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 86

4.6.1 Construct Validity

One of the threats concerning our metric for detecting test conflicts is that we rely on
the projects existing test suites to detect them. This means that part of the semantic
conflicts might escape. As mentioned before, better test cases would probably increase
the precision, and decrease the recall reported in this study. Nonetheless, because the
notion of interference we use is not computable, it is impossible to detect all semantic
conflicts.

In addition, we answer RQ3 by conducting a manual analysis on 20 false positive
instances randomly chosen from our original sample of 203 false positives. Due to the size
of this sub sample, our results might not be representative of the entire sample. Therefore,
although it was not our intention, we cannot drive conclusions about the proportions
between false positives that we could avoid and those that we could not. In order to do
so, one would have to choose a statistically representative sample, which is out of the
scope of this work.

4.6.2 Internal Validity

As we reuse part of our previous study infrastructure to reproduce merge scenarios, we
inherit part of its threats as well (ACCIOLY; BORBA; CAVALCANTI, 2017). In particular,
because FSTmerge fails to identify renaming changes, we miss EditSameMC instances
where one of the contributions changes the method signature. In fact, one of the build
false negatives we analyze is actually a true positive that FSTMerge misses because of
method renaming.

In addition, on Travis a build can be composed of a set of jobs; each job varies itself
in some way. For example, different jobs can be used to simulate the same project with
different environment configurations. Therefore, it is possible to declare which jobs should
not be considered for the final build status. Thus, if a build conflict happens on a non-valid
job, we do not detect it.

For future work, we could edit travis.yml file aiming to consider all jobs for the final
build status. However, non-valid jobs are used only to verify how the project behaves on
a specific configuration. Therefore, problems in these scenarios possibly would not lead
developers to spend time with them.

Finally, we used a manual analysis to analyze the false positive instances from our
sample. Because it was a manual analysis, we could have committed mistakes. To miti-
gate this threat, we used the interference definition in a conservative way. Whenever we
considered that the contributions could have interfered with each other, we considered it
as a conflict. So, there might be cases where there is no interference and we they should
be classified as false positives. In future analysis we could use more proper interference
analysis such as Filho used in his master thesis (FILHO, 2017).

Chapter 4. Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI 87

4.6.3 External Validity

In this study we focus on open-source Java projects hosted on GitHub, using Travis CI and
Maven. Thus, results generalizability to other platforms and programming languages is
limited. Such requirements were necessary to reduce the influence of confounds, increasing
internal validity. We need subsequent studies to further understand the precision and recall
of the predictors for other programming languages. Nevertheless, we are confident that
we have analyzed active and substantial systems from various domains.

4.7 CONCLUSIONS

This second study to understand if alerting developers whenever the edit the same method
or directly dependent methods would be an efficient strategy to avoid collaboration con-
flicts in terms of raising few false positives and without too many false negatives. To this
end, we reproduce 5,647 merge scenarios from 45 Java-maven-travis projects from GitHub
to measure the precision and recall of our considered conflict predictors. Our results indi-
cate that, considering both conflict predictors together, we achieve a precision of 57.99%
and a recall of 82.67%. We believe that such results are useful to guide different early
conflict detection strategies.

Moreover, based on our manual analysis results, we provide further insights about
what we could do to provide more precise results. Our intuition is that if we implement
some of those changes our precision would increase because we would be able to discard
cases where the involved contributions clearly do not interfere with each other. In contrast,
by implementing better test cases, our recall would likely decrease since we would be able
to catch other types of test conflicts that were not caused by our predictors.

Finally, in this chapter we conclude the discussion regarding the core work of this
thesis. In the next chapter we present previous related work and how they compare with
our work.

88

5 RELATED WORK

In this chapter we describe some of the previous studies that we use as base evidence for
our study, and related work divided by their different topics.

5.1 PREVIOUS STUDIES INVESTIGATING DIFFERENT ASPECTS OF COLLABORA-
TION CONFLICTS

A number of empirical studies provide evidence about collaborative development issues.
In previous chapters we have already mentioned and discussed some of them. In this
section we present a summary of the key points presented previously.

In Chapter 2 we mention Kasi and Sarma (KASI; SARMA, 2013) and Brun et al. (BRUN

et al., 2013) studies that reproduced merge scenarios from different GitHub systems with
the purpose of measuring the frequency of merge scenarios that resulted in merge, build
and test conflicts. These studies respectively show average conflicting scenarios rates for
merge conflicts of 14.38%, and 17%, while the median of our conflicting scenarios rate was
6.64%. Compared to those studies, in Chapter 3, we also assess the conflicting scenarios
rate for merge conflicts. The median of our conflicting scenarios rate was 6.64%.

Compared to those studies, we use a much larger sample which makes our results more
representative. We also used a semistructured merge tool that avoids a large number of
spurious conflicts often reported by typical line-based tools which were used in those
studies. Because of that, we concluded that sophisticated merge tools reduce the number
of merge conflicts, and might decrease merge resolution effort.

In addition, we go further by deriving a conflict pattern catalog and measuring how
frequently those patterns occur, and the probability of having a merge conflict while
editing different language syntax elements. We also bring evidence about other problems
that developers often face while working collaboratively. For example, the conclusion that
developers often need to copy pieces of code or rename methods across different reposito-
ries. Therefore we go beyond the analysis provided in those studies and complement their
results.

Besides analyzing merge conflicts frequency, Kasi and Sarma, and Brun et al. also
provide evidence about build and test conflicts frequency. Kasi and Sarma reports build
conflicts occurring in ranges between 2-15% and test conflicts occurring in ranges between
5-35%, while Brun et al. (BRUN et al., 2013) describes both kinds of conflicts ranging
around 33%. In Chapter 4, although we do not aim at measuring build and test conflicts
frequency, we discuss some of the reasons why our results were so different from theirs.
After all, our average conflicting rate for build and test conflicts was much smaller (less
than 1%).

Chapter 5. Related Work 89

First, these studies rely solely on merge commit build status to compute build and
test conflicts. This means that the build or tests might have been failing before the merge
and the failures were not caused by code integration. Moreover, they do not analyze the
reason behind the build failure which might have been cause by external factors such as
missing dependencies and not by build or test conflicts. These factors, as discussed may
add false positives to the results. Therefore, the analysis we provide is probably more
accurate in the sense that is has less false positives. However, a drawback from our study
is that, while trying to filter false positives from our sample, we might have lost build
and test conflicts as well. Thus, we would need a more careful analysis to generalize our
results regarding build and test frequency.

Zimmermann (ZIMMERMANN, 2007), in contrast, assessed the number of merge con-
flicts using a different metric as the author reproduced files integration— and not merge
scenarios— from 4 CVS hosted projects. Thus, we cannot compare our results with his.
However, we believe that running our study on a centralized version control system would
show an increased number of conflicts and conflicting merge scenarios. We leave this
comparison as future work.

Still considering the frequency of collaboration conflicts, Perry et al. (PERRY; SIY;

VOTTA, 2001) made an observational case study to analyze the effect of parallel changes
on a large-scale industrial software system. They reported that, although 90% of the files
could be merged without problems, the degree of parallel changes is high— merge conflicts
involved between 2 to up to 16 parallel changes. We found similar results in Chapter 3,
since most part of merge conflicts (91.24%) involved more than two developers. In addi-
tion, we used open-source projects from varying sizes and domains which contributes to
generalize Perry et al.’s conclusions.

Regarding software merging techniques, Mens (MENS, 2002) describes a comprehensive
overview of the field, and suggested directions for future research. Among them, he claimed
for the need of a detailed but language independent taxonomy of the kinds of changes, and
corresponding conflicts, that can be made to software. In this work we provide a catalog of
merge conflict patterns in terms of the kinds of changes leading to conflicts. Although our
catalog is not language independent, some of our patterns, including the most frequent
ones such as EditSameMC could be extend to different programming languages. We leave
the study of deriving conflict patterns using different programming languages as future
work.

Concerning the cost of resolving conflicts, previous studies have tried to estimate it.
For example, Kasi and Sarma (KASI; SARMA, 2013) estimated conflict resolution effort
as the time interval between when a conflict first occurred and when it was resolved. In
other words, they compute the number of days that the conflict persisted in the master
repository. They reported that resolving merge conflicts took substantial effort, typically
spanning multiple days. However, their metric assumed that the computed time intervals

Chapter 5. Related Work 90

reflected the efforts of developers working exclusively to resolve the conflict, which is not
always the case. This means that this metric is an over-approximation.

We believe that a main challenge for estimating conflict resolution effort is that differ-
ent conflicts might demand different resolution effort. In this sense, Cavalcanti et al. (CAV-

ALCANTI; BORBA; ACCIOLY, 2017), while comparing different merge approaches (unstruc-
tured and semistructured), estimated the effort to resolve different types of conflicts by
evaluating the strategy used by developers while resolving them. They assumed that res-
olutions including only changes from the merged contributions (without new code, nor
combination of contributed code) probably demand less effort. While this estimation is a
fair approximation of the time needed to fix the code— which is part of the total inte-
gration effort—, it does not consider the time needed to understand the changes, reason
about the conflict and then decide how to fix it.

In contrast, other studies did not quantitatively measure the cost of resolving conflicts,
but they reported, based on experimental observations, that resolving merge conflicts is
not so trivial. It might take considerable time, and is an error-prone activity. For example,
Sarma et al. (SARMA; REDMILES; HOEK, 2012) reported that developers commonly rush
to commit their tasks before others so they would not have to deal with conflicts while
pushing their changes to the shared repository. In addition, Bird and Zimmermann (BIRD;

ZIMMERMANN, 2012) report that a frequent cause for integration errors are merge conflicts
that were not resolved correctly.

Alternatively, McKee et al. (MCKEE et al., 2017) conducted a series of interviews and
surveys to understand developers perceptions of merge conflicts. They reported that if
developers perceive a conflict as too complex or if they do not have much knowledge in
the code area of the conflict, they might feel the need to alter their resolution strategy,
such as reverting conflicting changes, and in some cases delaying the task of resolving
conflicts.

Those studies trying to estimated the cost of resolving conflicts do relate directly to
our main goal since we investigate merge conflicts frequency, the structure of conflicts,
and conflict predictors precision and recall. However, in Chapter 3 we report that merge
conflicts usually involve contributions from more than two developers. Thus, although such
analysis does not measure directly the effort to resolve them, we believe that resolving
conflicts involving a single developer is probably easier than resolving conflicts involving
different developers. Also, in Chapter 4, we present examples from real projects where the
developer performing the integration introduced build problems while trying to resolve
merge conflicts. Thus, our work complements previous findings and reinforces the claim
that resolving conflicts is an error-prone activity.

Alternatively, other studies have tried to analyze different technical and organizational
aspects that might have an impact on the occurrence of collaboration conflicts. For ex-
ample Cataldo and Herbsleb (CATALDO; HERBSLEB, 2011) tried to understand different

Chapter 5. Related Work 91

aspects leading to conflicts. They presented an empirical analysis of a large-scale project
where they examined the impact that software architecture characteristics, and organiza-
tional factors have on the number of conflicts. They concluded that architecture related
factors such as the nature and the quantity of component dependencies, as well as orga-
nizational factors such as the geographic dispersion of development teams, can lead to
higher integration failure rates.

Likewise, Leßenich et al. (LESSENICH et al., 2017) performed an empirical study ana-
lyzing how different factors, such as the size of changes, the number of files changed, and
the location of changes could be related to a higher numbers of merge conflicts. How-
ever, none of the factors analyzed in their study had a predictive power concerning the
frequency of merge conflicts.

Furthermore, Shihab et al. (SHIHAB; BIRD; ZIMMERMANN, 2012) presented an empir-
ical study that evaluated and quantified the relationship between software quality and
various aspects of the branch structure used in software projects. They reported that,
indeed, the branching strategy does have an effect on software quality and that mis-
alignment of branching structure and organizational structure is associated with higher
post-release failure rates.

Finally, Estler et al. (ESTLER et al., 2014), investigated the impact of awareness infor-
mation in the context of globally distributed software development. Among their findings,
they concluded that insufficient awareness information affects more negatively developers’
performance than actual merge conflicts.

Our work complements these works because we also examine factors that relate to
integration failures on collaborative development environments. However, we analyze dif-
ferent factors. While Cataldo and Herbsleb (CATALDO; HERBSLEB, 2011) and Leßenich
et al. (LESSENICH et al., 2017) analyzed architecture level and organizational factors that
lead to integration failures, and Shihab et al. (SHIHAB; BIRD; ZIMMERMANN, 2012) an-
alyzed branching strategies that have an impact on software quality, we analyze which
code changes often lead to merge conflicts, and the effectiveness of code changes as con-
flict predictors. Conversely, like Estler et al. (ESTLER et al., 2014), our results reinforce
the importance of using and improving awareness tools.

Regarding developer’s coordination dependencies while working collaboratively, Blin-
coe et al. (BLINCOE; VALETTO; DAMIAN, 2013) conducts a study to analyze what is the
reduced set of essential task properties that are indeed indicative of coordination needs
between a pair of developers working independently. Their purpose is to optimize the
process of tasks coordination without the risk of overwhelming developers with a large
list of recommendations for coordination awareness. With a similar purpose, in our work
we try to understand what changes most likely cause collaboration conflicts so that we do
not have to raise so many false alarms to developers like existing tools such as Palantír
does.

Chapter 5. Related Work 92

Moreover, Xuan and Filkov (XUAN; FILKOV, 2014), quantitatively analyses the phe-
nomenon of synchronous development manifested when file commits by two developers are
close together in time and modify the same files. They report a strong correlation between
synchronous development and communication, that is, for pairs of developers, more co-
commit bursts are accompanied with more communication bursts, and their relationship
follows closely a linear model. Such evidence complements our work since they provide
evidence that synchronous development occurs often, and suggest different requirements
for coordination awareness than the recommendations we make.

5.2 TOOLS AND STRATEGIES FOR CONFLICT DETECTION AND RESOLUTION

Tools and strategies to support collaborative development environments use different
strategies to both decrease integration effort, and improve correctness during task in-
tegration. Throughout this work we have mentioned most of them. Cassandra (KASI;

SARMA, 2013), for example, is a tool that analyzes task constraints to recommend an op-
timum order of tasks execution so that conflicts can be avoided. While the tasks are being
developed, Palantír (SARMA; REDMILES; HOEK, 2012) is an awareness tool that informs de-
velopers of ongoing parallel changes, and Crystal (BRUN et al., 2013), proactively integrates
commits from developer repositories with the purpose of warning them if their changes
conflict. In contrast, other awareness tools, such as Syde (HATTORI; LANZA, 2010), build
code artifact ASTs to make the analysis of changes more precise. WeCode (aES; SILVA,
2012) continuously merges uncommitted and committed changes to detect conflicts on
behalf of developers before they check-in their changes. Moreover, Bellevue (GUZZI et al.,
2015), is an IDE extension to make committed changes always visible, and code history
accessible inside developers’ workspaces.

Regarding such awareness and early conflict detection tools, in Chapter 3 we discuss
how implementing some strategies considering our conflicts patterns could help Palan-
tír (SARMA; REDMILES; HOEK, 2012) and Syde to provide more precise results while alert-
ing developers on concurrent changes. In addition, Crystal could postpone its speculative
analysis when our conflict patterns are not found.

Moreover, in Chapter 4, we argue that Crystal would be able to provide more compre-
hensive alerts by adding a refactoring detection algorithm to its integration routine. For
example, if no conflicts are detected, but both contributions change the program semantics
it could alert developers to be more cautious about this integration scenario. Conversely,
if no conflicts are detected and one of the contributions performs only refactorings, then
Crystal could report that there is no interference in this scenario.

Thus the evidence we report in this work might help to increase the precision and recall
of existing awareness and early conflict detection tools. We leave the implementation and
evaluation of such improvements as future work.

Chapter 5. Related Work 93

Alternatively, when the performed tasks are ready for being merged, TIPMerge (COSTA

et al., 2016) has an algorithm that recommends developers who are best suited to perform
merges considering different metrics such as developers’ past experience in the project,
their changes in the involved branches, and dependencies among modified files. Our work
supports the need of such tool since one of our findings from Chapter 3 is that most merge
conflicts involve more than two developers, and choosing a more suitable person to resolve
such conflicts could be useful.

Finally, given that it is not always possible to detect conflicts before code integration,
tools like FSTMerge (APEL et al., 2011), and JDime (APEL; LESSENICH; LENGAUER, 2012)
offer solutions to reduce integration effort by automating the resolution of some types of
conflict, such as the ordering conflicts.

Our work brings evidence that reinforces the need of using more sophisticated merge
tools to decrease collaboration conflicts resolution effort. In addition, we also provide
small improvements to FSTMerge algorithm, together with empirical evidence that they
indeed improve FSTMerge’s results.

Conversely, MergeHelper (NISHIMURA; MARUYAMA, 2016) captures code changes as
sequences of fine-grained atomic operations. This way, developers can replay all changes
involved in a conflict, which can help in resolving them. Similar to MergeHelper, Mol-
hadoRef (DIG et al., 2008) is also an operation-based approach, but it records refactoring
operations used to produce one version and replays them when merging different con-
tributions. In Chapter 3, we have shown SameSignatureMC conflict instances caused by
methods being renamed in different branches and then leading to merge conflicts. In such
cases tools like MolhadoRef could help to understand and resolve them.

94

6 CONCLUSIONS

In this work we conduct different empirical studies to learn about how conflicts hap-
pen, and the effectiveness of two conflict predictors. When working in a collaborative
development environment, developers implement different tasks in an independent way.
Consequently, during the integration, one might have to deal with collaboration conflicts.
Previous studies indicate that conflicts occur frequently, and impair developers’ productiv-
ity. In this context, the study described in Chapter 3 aims at understanding the structure
of the changes that lead to conflicts. First, we derived a conflict catalog with 9 conflict pat-
terns expressed in terms of the performed kinds of changes considering involved syntactic
language structures. To assess the occurrence of such patterns in open-source systems, we
conducted an empirical study reproducing 70,047 merge scenarios from 123 GitHub Java
projects. Furthermore, we focused on conflicts reported by a semistructured merge tool,
avoiding a large number of spurious conflicts often reported by typical line-based merge
tools.

Our results show that 84.57% of merge conflicts happen because developers edit the
same lines, or consecutive lines of the same method. However, editing methods, class fields,
or modifier lists have similar probabilities of leading to merge conflicts. This means that,
if we improve awareness tools to alert developers in those cases, we might avoid most
merge conflicts. In addition, merge conflicts occur in a total of 9.38% of the analyzed
merge scenarios. Moreover, by slightly improving the merge algorithm to better handle
spacing and consecutive line edit conflicts, we got statistically significant lower numbers.
Compared to previous studies, our results show that using more sophisticated merge tools
reduces the number of conflicting merge scenarios.

We also found that developers often copy methods, or even entire files across repos-
itories, which is evidence of the need for tools that enable partial merges. Finally, as a
complementary result, our data indicates that merge scenarios, conflicting merge scenar-
ios, and merge conflicts usually involve more than two developers. This result suggests
that integrating different branches is not often an easy task since one needs to understand
and merge contributions made by different developers.

Therefore, the work described in Chapter 3 was a first exploration into semistructured
merge conflicts’ structure. Like most empirical studies, our work has limitations which
could be improved in many ways. For example, regarding internal validity, FSTMerge has
false positives such as the renaming method problem— when one contribution renames
a method and the second contribution edit lines inside it. Likewise, FSTMerge also has
false negatives such as the imports list situation— both contributions adding imports
declaration to classes with the same name leading to type ambiguity errors. Although we
believe that those problems did not have a significant impact in our main conclusions, it

Chapter 6. Conclusions 95

would be important to implement strategies to mitigate them. We describe such strategies
as future work.

Despite such limitations, from that study we learned that editing the same lines of
the same method is, by far, the most common cause for merge conflicts. However, we
needed further studies to investigate if editing the same method would indeed be an
effective conflict predictor, considering not only merge, but also build and test conflicts.
To this end, in Chapter 4 we describe an empirical study where we reproduce 5,647
merge scenarios from 45 Java-maven-travis projects from GitHub to measure the precision
and recall of the following conflict predictors: edits to the same method, and edits to
directly dependent methods. Our results indicate that, considering both conflict predictors
together, we achieve a precision of 57.99% and a recall of 82.67%. Such results are useful
to guide different strategies for early conflict detection, depending on how teams perceive
the occurrence of conflicts.

Moreover, based on our manual analysis results, we learned about strategies that could
further improve our results. For example, by detecting refactorings we would be able to
discard cases where the involved contributions clearly do not interfere with each other.
In contrast, by implementing better test cases, our recall would likely decrease since we
would be able to catch other types of test conflicts that were not caused by our predictors.

There are two main limitations regarding our second empirical study. The first one
is that we rely on the projects existing test suites to detect them. This means that part
of the semantic conflicts might escape. Although detecting all semantic conflicts is not
possible, improving the quality of the tests, in particular, trying to explore contributions
interactions might be helpful to detect more semantic conflicts. Back in Chapter 4 we
discuss other strategies to improve precision.

The second limitation is how we filter merge commit build status to identify build
conflicts. While trying to achieve more precise results by removing potential false positives,
we might be missing actual build conflicts. However, we need further studies to understand
the impact of our methods in such results. We present these studies as future work.

Finally, both of our empirical studies suffer from the same threat to the external valid-
ity since both samples consist solely of Java open-source projects hosted on GitHub. This
means that we cannot generalize our results considering systems in other programming
languages or version control systems. Moreover, some of Git commands such as rebase,
squash, and cherry-pick might erase from the project development history actual merge
commits. Therefore, our empirical results represent a lower bound for the actual num-
ber of merge conflicts. To have a better notion of the frequency of merge conflicts one
would have to analyze developers’ local repositories logs to check how frequently these
commands were used. We leave this analysis as future work.

Chapter 6. Conclusions 96

6.1 FUTURE WORK

As the proposed studies described here are part of a broader context, a set of related
aspects were left out of the scope of this thesis. Thus, in this section we suggest them as
future work.

There are different possible directions to enhance our first empirical study, described
in Chapter 3. For example, although we analyzed a large number of merge commits, our
results could benefit from replications analyzing other projects, including projects in cen-
tralized version control system such as SVN or CVS. Likewise, it would be interesting to
replicate this study by deriving a new conflict pattern catalog for a different program-
ming language, or even for a different merge tool. Moreover, one could answer additional
questions with our data. For example, what are the conflict patterns inside method bod-
ies? What percentage of those conflicts involve method signatures or just statements
inside the method bodies? To answer this question, one would have to use a diff tool
such as GumTree (FALLERI et al., 2014), which builds the full AST. This would repli-
cate Menezes (MENEZES, 2016) work, which reports that most conflicts involve method
invocations, method declarations, variable declarations, commentaries, and if statements.

Moreover, in this study we analyzed merge conflicts’ frequency. Another important as-
pect to analyze is the cost associated to solving merge conflicts. We noticed that previous
studies that tried to estimate conflict resolution effort have either used experimental ob-
servations, proxies, or over-approximations (KASI; SARMA, 2013; CAVALCANTI; ACCIOLY;

BORBA, 2015; SARMA; REDMILES; HOEK, 2012; BIRD; ZIMMERMANN, 2012). We believe
that a solid way to estimate the effort to resolve different types of conflicts would be to
conduct controlled experiments where developers have to resolve conflicts while time and
other metrics are being measured.

Alternatively one could make a study to analyze our results on a per-project basis,
understanding, for example, why some projects have more false positives than others, why
some projects have more SameSignatureMC conflicts than others, etc. Other interesting
research questions were left outside of scope of this paper, mainly the ones involving
technical, organizational, and developers behavioral factors that might influence the pres-
ence/severity of conflicts.

Finally, an important process-related question is who is responsible for integrating the
merges. Such a decision is likely to influence the merge conflict resolution process. For
some of the projects we analyzed, such as Generator-jhipster, the integrator information
is not easily available at the project description pages and files. One could maybe try
to infer that by making a historical analysis of merge commit authors. This would likely
require a rigorous manual analysis to derive heuristics that could be used to answer this
question. Another option would be to interview developers.

Chapter 4’s study presents different directions for future works as well. First, our
results could benefit from replications analyzing different projects, using different pro-

Chapter 6. Conclusions 97

gramming languages, different version control systems, and different CI tools. Conversely,
we could generate tests to expose more test conflicts. One possibility would be to extend
Böhme et al. (BöHME; OLIVEIRA; ROYCHOUDHURY, 2013) approach to generate test cases
exercising both developers’ contributions. We could also replicate this study monitor-
ing developers private repositories. This study would provide a better notion about the
real frequency of conflicts. Finally, as discussed in Section 4.4, we could add refactorings
detection algorithms to Crystal and compare if this would actually increase this tool’s
effectiveness.

98

REFERENCES

ACCIOLY, P.; BORBA, P.; CAVALCANTI, G. Understanding semi-structured merge
conflict characteristics in open-source java projects. Empirical Software Engineering,
Springer Link, 2017.

ACCIOLY, P.; BORBA, P.; SILVA, L.; CAVALCANTI, G. Analyzing conflict predictors
in open-source java projects. In: Proceedings of the 15th International Conference on
Mining Software Repositories. [S.l.]: ACM, 2018. (MSR ’18).

aES, M. L. G.; SILVA, A. R. Improving early detection of software merge conflicts. In:
Proceedings of the 34th International Conference on Software Engineering. [S.l.]: IEEE
Press, 2012. (ICSE ’12).

APACHE. Apache Subversion. 2015. <https://subversion.apache.org/>. Accessed:
2014-11-14.

APACHE. Maven. 2018. <https://maven.apache.org/>. Accessed: 2018-01-25.

APEL, S.; LESSENICH, O.; LENGAUER, C. Structured merge with auto-tuning:
Balancing precision and performance. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. [S.l.]: ACM, 2012. (ASE
2012).

APEL, S.; LIEBIG, J.; BRANDL, B.; LENGAUER, C.; KäSTNER, C. Semistructured
merge: Rethinking merge in revision control systems. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering. [S.l.]: ACM, 2011. (ESEC/FSE ’11).

APPENDIX. Chapter 3 Online Appendix. 2018. <http://goo.gl/jmVJW7>. Accessed:
2018-01-23.

APPENDIX. Chapter 4 Online Appendix. 2018. <https://conflictpredictor.github.io/
onlineAppendix/>. Accessed: 2018-01-23.

BARIK, T.; LUBICK, K.; MURPHY-HILL, E. Commit Bubbles. In: Proceedings of the
International Conference on Software Engineering, New Ideas and Emerging Results
Track. [S.l.]: ACM, 2015. (ICSE 2015).

BERZINS, V. On merging software extensions. Acta Informatica, v. 23, n. 6, 1986.

BIRD, C.; RIGBY, P. C.; BARR, E. T.; HAMILTON, D. J.; GERMAN, D. M.;
DEVANBU, P. The promises and perils of mining git. In: Proceedings of the 2009 6th
IEEE International Working Conference on Mining Software Repositories. [S.l.]: IEEE
Computer Society, 2009. (MSR ’09).

BIRD, C.; ZIMMERMANN, T. Assessing the value of branches with what-if analysis. In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. [S.l.]: ACM, 2012. (FSE ’12).

https://subversion.apache.org/
https://maven.apache.org/
http://goo.gl/jmVJW7
https://conflictpredictor.github.io/onlineAppendix/
https://conflictpredictor.github.io/onlineAppendix/

References 99

BLINCOE, K.; VALETTO, G.; DAMIAN, D. Do all task dependencies require
coordination? the role of task properties in identifying critical coordination needs in
software projects. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. [S.l.]: ACM, 2013. (ESEC/FSE 2013).

BöHME, M.; OLIVEIRA, B.; ROYCHOUDHURY, A. Regression tests to expose change
interaction errors. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. New York, NY, USA: ACM, 2013. (ESEC/FSE 2013).

BONFERRONI, C. E. Teoria statistica delle classi e calcolo delle probabilità. [S.l.]:
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze,
1936.

BRUN, Y.; HOLMES, R.; ERNST, M.; NOTKIN, D. Early detection of collaboration
conflicts and risks. Software Engineering, IEEE Transactions on, IEEE Computer
Society, 2013.

CATALDO, M.; HERBSLEB, J. D. Factors leading to integration failures in global
feature-oriented development: An empirical analysis. In: Proceedings of the 33rd
International Conference on Software Engineering. [S.l.]: ACM, 2011. (ICSE ’11).

CAVALCANTI, G.; ACCIOLY, P.; BORBA, P. Assessing semistructured merge in
version control systems: A replicated experiment. In: Proceedings of the 9th International
Symposium on Empirical Software Engineering and Measurement. [S.l.]: ACM, 2015.
(ESEM’15).

CAVALCANTI, G.; BORBA, P.; ACCIOLY, P. Evaluating and improving semistructured
merge. Proceedings of the ACM on Programming Languages, ACM, 2017.

COSTA, C.; FIGUEIREDO, J.; MURTA, L.; SARMA, A. Tipmerge: Recommending
experts for integrating changes across branches. In: Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. [S.l.]:
ACM, 2016. (FSE 2016).

DIAS, M.; BACCHELLI, A.; GOUSIOS, G.; CASSOU, D.; DUCASSE, S. Untangling
fine-grained code changes. In: Proceedings of the 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering. [S.l.]: IEEE Computer Society, 2015.
(SANER 2015).

DIG, D.; JOHNSON, R. The role of refactorings in api evolution. In: Proceedings of the
21st IEEE International Conference on Software Maintenance. [S.l.]: IEEE Computer
Society, 2005. (ICSM ’05).

DIG, D.; MANZOOR, K.; JOHNSON, R. E.; NGUYEN, T. N. Effective software
merging in the presence of object-oriented refactorings. IEEE Trans. Softw. Eng., IEEE
Press, v. 34, n. 3, p. 321–335, 2008.

ECLIPSE. JGit User Guide. 2015. <http://wiki.eclipse.org/JGit/User_Guide>.
Accessed: 2018-01-25.

ESTLER, H. C.; NORDIO, M.; FURIA, C.; MEYER, B. et al. Awareness and
merge conflicts in distributed software development. In: Proceedings of the IEEE 9th
International Conference on Global Software Engineering. [S.l.]: IEEE Computer Society,
2014. (ICGSE’14).

http://wiki.eclipse.org/JGit/User_Guide

References 100

FALLERI, J.; MORANDAT, F.; BLANC, X.; MARTINEZ, M.; MONPERRUS, M.
Fine-grained and accurate source code differencing. In: ACM/IEEE International
Conference on Automated Software Engineering. [S.l.: s.n.], 2014. (ASE’14).

FILHO, R. Using Information Flow to Estimate Interference Between Developers
Same-Method Contributions. Dissertação (Mestrado) — Universidade Federal de
Pernambuco, 2017. Accessed: 2018-01-22.

FOUNDATION, F. S. Concurrent Versions System. 2015. <http://www.nongnu.org/
cvs/>. Accessed: 2014-11-14.

FOWLER, M. Continuous Integration. 2006. <https://www.martinfowler.com/articles/
continuousIntegration.html>. Accessed: 2018-01-27.

Free Software Foundation. Diff utils user’s manual. 2017. <https://www.gnu.org/
software/diffutils/manual/diffutils.html>. Accessed: 2018-01-25.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Elements of
Reusable Object-oriented Software. USA: Addison-Wesley Longman Publishing Co., Inc.,
1995.

GIT. 2018. <https://git-scm.com/>. Accessed: 2018-01-25.

GITHUB. 2018. <https://github.com/>. Accessed: 2018-01-25.

GNU. GNU Merge. 2015. <http://www.gnu.org/software/diffutils/manual/html_node/
>. Accessed: 2015-02-09.

GOUSIOS, G.; PINZGER, M.; DEURSEN, A. v. An exploratory study of the pull-based
software development model. In: Proceedings of the 36th International Conference on
Software Engineering. [S.l.]: ACM, 2014. (ICSE 2014).

GUZZI, A.; BACCHELLI, A.; RICHE, Y.; DEURSEN, A. van. Supporting developers’
coordination in the ide. In: Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work and Social Computing. [S.l.]: ACM, 2015. (CSCW ’15).

HATTORI, L.; LANZA, M. Syde: A tool for collaborative software development. In:
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 2. [S.l.]: ACM, 2010. (ICSE ’10).

HENKEL, J.; DIWAN, A. Catchup!: Capturing and replaying refactorings to support api
evolution. In: Proceedings of the 27th International Conference on Software Engineering.
[S.l.]: ACM, 2005. (ICSE ’05).

HORWITZ, S.; PRINS, J.; REPS, T. Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and Systems, ACM, New York, NY,
USA, v. 11, n. 3, 1989.

JACKSON, D.; LADD, D. A. Semantic diff: A tool for summarizing the effects of
modifications. In: Proceedings of the International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 1994. (ICSM ’94), p. 243–252. ISBN
0-8186-6330-8. Disponível em: <http://dl.acm.org/citation.cfm?id=645543.655704>.

http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://git-scm.com/
https://github.com/
http://www.gnu.org/software/diffutils/manual/html_node/
http://www.gnu.org/software/diffutils/manual/html_node/
http://dl.acm.org/citation.cfm?id=645543.655704

References 101

KALLIAMVAKOU, E.; DAMIAN, D.; BLINCOE, K.; SINGER, L.; GERMAN, D. M.
Open source-style collaborative development practices in commercial projects using
github. In: Proceedings of the 37th International Conference on Software Engineering.
[S.l.]: ACM, 2015. (ICSE ’15).

KASI, B. K.; SARMA, A. Cassandra: Proactive conflict minimization through optimized
task scheduling. In: Proceedings of the 2013 International Conference on Software
Engineering. [S.l.]: IEEE Press, 2013. (ICSE ’13).

KHANNA, S.; KUNAL, K.; PIERCE, B. C. A formal investigation of diff3. In:
Proceedings of the 27th International Conference on Foundations of Software Technology
and Theoretical Computer Science. [S.l.]: Springer-Verlag, 2007. (FSTTCS’07).

LESSENICH, O.; SIEGMUND, J.; APEL, S.; KÄSTNER, C.; HUNSEN, C. Indicators
for merge conflicts in the wild: survey and empirical study. Automated Software
Engineering, 2017.

LEVENSHTEIN, V. I. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. [S.l.], 1966.

LIMA, G. Uma Abordagem para Evolução e Reconciliação de Linhas de Produtos de
Software Clonadas. Tese (Doutorado) — Universidade Federal do Rio Grande do Norte,
2014. Accessed: 2018-01-12.

MCKEE, S.; NELSON, N.; SARMA, A.; DIG, D. Software Practitioner Perspectives on
Merge Conflicts and Resolutions. In: 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). [S.l.]: IEEE Computer Society, 2017. (ICSME
’17).

MENEZES, G. On the Nature of Software Merge Conflicts. Tese (Doutorado) — Federal
Fluminense University, 2016. Accessed: 2017-06-16.

MENS, T. A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering, IEEE Press, 2002.

MERCURIAL. Mercurial SCM. 2018. <https://www.mercurial-scm.org/>. Accessed:
2018-01-25.

MUSLU, K.; SWART, L.; BRUN, Y.; ERNST, M. D. Development history granularity
transformations (N). In: 30th IEEE/ACM International Conference on Automated
Software Engineering. [S.l.]: IEEE Computer Society, 2015. (ASE ’15).

MUYLAERT, W.; ROOVER, C. D. Prevalence of botched code integrations. In:
Proceedings of the 14th International Conference on Mining Software Repositories. [S.l.]:
IEEE Press, 2017. (MSR ’17).

NAGAPPAN, M.; ZIMMERMANN, T.; BIRD, C. Diversity in software engineering
research. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. [S.l.]: ACM, 2013. (ESEC/FSE 2013).

NISHIMURA, Y.; MARUYAMA, K. Supporting Merge Conflict Resolution by Using
Fine-Grained Code Change History. 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2016.

https://www.mercurial-scm.org/

References 102

PERRY, D. E.; SIY, H. P.; VOTTA, L. G. Parallel changes in large-scale software
development: An observational case study. ACM Transactions on Software Engineering
and Methodology, ACM, 2001.

POTVIN, R.; LEVENBERG, J. Why google stores billions of lines of code in a single
repository. Commun. ACM, ACM, 2016.

ROSENTHAL, R. Parametric measures of effect size. [S.l.]: Russell Sage Foundation.,
1994.

SARMA, A.; REDMILES, D. F.; HOEK, A. van der. Palantír: Early detection of
development conflicts arising from parallel code changes. IEEE Transactions on Software
Engineering, IEEE Computer Society, 2012.

SHIHAB, E.; BIRD, C.; ZIMMERMANN, T. The effect of branching strategies on
software quality. In: Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement. [S.l.]: ACM, 2012. (ESEM ’12).

SILVA, L. M. P. Build and Test Conflicts in the Wild. Dissertação (Mestrado) —
Universidade Federal de Pernambuco, 2018. Accessed: 2018-01-22.

SVAJLENKO, J.; ISLAM, J. F.; KEIVANLOO, I.; ROY, C. K.; MIA, M. M. Towards
a big data curated benchmark of inter-project code clones. In: Proceedings of the 2014
IEEE International Conference on Software Maintenance and Evolution. [S.l.]: IEEE
Computer Society, 2014. (ICSME ’14).

TRAVIS. Travis CI. 2018. <https://travis-ci.org/>. Accessed: 2018-01-25.

TSANTALIS, N.; MANSOURI, M.; ESHKEVARI, L. M.; MAZINANIAN, D.; DIG, D.
Accurate and efficient refactoring detection in commit history. In: Proceedings of the
2018 International Conference on Software Engineering. [S.l.]: IEEE Press, 2018.

TUFFERY, S. Data Mining and Statistics for Decision Making. 1st. ed. [S.l.]: Wiley
Publishing, 2011.

WILCOXON, F.; WILCOX, R. A. Some rapid approximate statistical procedures. [S.l.]:
Lederle Laboratories, 1964.

XUAN, Q.; FILKOV, V. Building it together: Synchronous development in oss. In:
Proceedings of the 36th International Conference on Software Engineering. [S.l.]: ACM,
2014. (ICSE 2014).

ZHAO, Y.; SEREBRENIK, A.; ZHOU, Y.; FILKOV, V.; VASILESCU, B. The impact of
continuous integration on other software development practices: A large-scale empirical
study. In: Proceedings of the 32Nd IEEE/ACM International Conference on Automated
Software Engineering. Piscataway, NJ, USA: IEEE Press, 2017. (ASE 2017).

ZIMMERMANN, T. Mining workspace updates in CVS. In: Proceedings of the Fourth
International Workshop on Mining Software Repositories. [S.l.]: IEEE Computer Society,
2007. (MSR ’07).

https://travis-ci.org/

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Background
	Version Control Systems
	Collaboration Conflict Types
	Merge Strategies
	Unstructured Merge
	Semistructured Merge

	Continuous Integration
	Conclusion

	Understanding Merge Conflicts Frequency and their Underlying Structure
	Understanding Merge Conflicts Characteristics
	Research Question 1 (RQ1): What are the structural conflict patterns that can be found by a semistructured merge tool?
	Research Question 2 (RQ2): How frequently does each merge conflict pattern occur?
	Research Question 3 (RQ3): What kinds of conflict patterns most likely lead to conflicts?
	Research Question 4 (RQ4): How frequently do merge conflicts occur?
	Pilot Study Outcome
	Research Question 5 (RQ5): How frequent are the underlying causes of the SameSignatureMC pattern?

	Study Setup
	Conflict Analysis
	Identifying Different Spacing, and Consecutive Line Edit Conflicts (Potential False Positives)
	Identifying the underlying causes of SameSignatureMC conflicts
	Normalized number of conflicts analysis
	Sample

	Results
	RQ2: How frequently does each merge conflict pattern occur?
	RQ3: What conflict patterns most likely lead to conflicts?
	RQ4: How frequently do merge conflicts occur?
	RQ5: How frequent are the underlying causes of the SameSignatureMC pattern?

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions

	Analyzing Conflict Predictors in Open-Source Java Projects from GitHub and Travis CI
	Analyzing Conflict Predictors
	Research Question 1 (RQ1): How precise are EditSameMC and EditDepMC predictors?
	Research Question 2 (RQ2): How many conflicts can we avoid by detecting EditSameMC and EditDepMC predictors?
	Research Question 3 (RQ3): Why EditSameMC and EditDepMC instances are not associated with merge, build, or test conflicts?
	Research Question 4 (RQ4): What other change patterns are associated with conflicts?

	Study Setup
	Phase 1: Filtering Projects Containing Build and Test Conflicts
	Phase 2: Collecting Merge Conflicts and Conflict Predictors
	Collecting EditSameMC predictors
	Collecting EditDepMC predictors

	Phase 3: false positives and false negatives analysis

	Results
	Conflict predictors' precision and recall
	False positive Manual Analysis
	False Negative Analysis

	How effective are the conflict predictors?
	Strategies to improve the precision and recall of the conflict predictors

	Are build and test conflicts not that frequent after all?
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions

	Related Work
	Previous Studies Investigating Different Aspects of Collaboration Conflicts
	Tools and Strategies for Conflict Detection and Resolution

	Conclusions
	Future Work

	References

