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Abstract

Based on the Ginzburg-Landau (GL) theory, superconducting materials are classi-
fied as ideally diamagnetic type-I or type-II, where the magnetic field penetrates the
superconducting condensate as a regular lattice of Abrikosov single-quantum vortices,
depending on the Ginzburg-Landau parameter κ. However, this simple classification
applies only for materials deep in type-I (κ < 1/

√
2) or in deep type-II (κ > 1/

√
2).

Superconducting materials with κ in the vicinity of κ0 ≈ 1/
√

2 reveals non-standard
properties that cannot be described within the conventional type-I/type-II dichotomy.
These materials are broadly referred as presenting intertype (IT) superconductivity.
IT superconductivity appears in a finite interval between types-I and -II amending the
standard classification. The existence of the IT superconductivity is a general prop-
erty of the BCS pairing mechanism and is related to the infinite degeneracy of the
Bogomolnyi point. By lowering the temperature or introducing or impurities and/or
defects this degeneracy is removed, leading to many unconventional properties of the
superconducting mixed state, which are characteristic to the IT superconductivity. The
magnetic properties of IT superconductivity cannot be described as a mixture of those
in type-I or -II superconductors. In this work we present results on the vortex matter
in the IT regime, and discuss the perspective of observing it in films, wires and bilayers
superconductors. We use Ginzburg-Landau theory, the Lawrence-Doniach model and
Extended Ginzburg Landau formalism to calculate the vortices configurations on these
systems. Our calculations reveal exotic flux distribution that are indeed in IT regime,
they can be classified into typical patterns which are not found in type-I and type-II
superconductors, like: giant vortices and vortex clusters, vortex chains, vortex stripes,
superconducting islands separated by vortex chains in the films superconductors. These
vortex configurations in IT superconductors depend on the vortex-vortex interaction
type. Analysis of the vortex-vortex interactions in the IT domain reveals that they
have a considerable many-body (many-vortex) contribution. Such many-body interac-
tions play a crucial role in the formation of the vortex matter in the mixed state, e.g.,
stabilizing multi-vortex clusters. The properties of the vortex-vortex interactions de-
pend strongly on the number of vortices in a cluster and on the material (κ value). The
interaction can be monotonically attractive, monotonically repulsive or, in the major
cases, non-monotonic, this being is more noticeable near to the boundary of the IT
regime. This observation demonstrates an existence of a special type of vortex matter



shaped by many-vortex interactions. Our findings shed a new light on the problem
of the interchange between types-I and -II, breaking the grounds of understanding the
magnetic response and of superconductors and raise questioning on the completeness
of the conventional classification of superconductors materials types.

Keywords: Intertype superconductors. Exotic vortex configuration. Bogomolnyi point.

Nanowires. Thin film superconductor. Bilayer superconductor.



Resumo

Com base na teoria de Ginzburg-Landau (GL), os materiais supercondutores são
classificados como idealmente diamagnéticos tipo-I ou tipo-II, onde o campo mag-
nético penetra no supercondutor como uma rede regular de vórtices com um único
quantum de fluxo (rede de Abrikosov), dependendo do parâmetro de Ginzburg-Landau
κ. No entanto, essa classificação simples aplica-se apenas a materiais fortemente tipo-I
(κ < 1/

√
2) ou tipo-II (κ > 1/

√
2). Materiais supercondutores com κ nas proximidades

de κ0 ≈ 1/
√

2 revelam propriedades magnéticas não-convencionais que não podem ser
descritas dentro da dicotomia convencional de materiais tipo-I/tipo-II. Estes materiais
são amplamente referidos como supercondutividade intertipo (IT). A supercondutivid-
ade IT aparece em um intervalo finito entre os tipo-I e -II que alteram a classificação
padrão. A existência da supercondutividade IT é uma propriedade geral do mecan-
ismo de pareamento BCS e está relacionada ao fato do ponto de Bogomolnyi (κ0, Tc)

possuir infinitos estados degenerados. Baixando a temperatura ou introduzindo-se im-
purezas e/ou defeitos no material, essa degenerecência é removida, levando a muitas
propriedades não convencionais do estado misto supercondutor, que são característi-
cos da supercondutividade IT. As propriedades magnéticas da supercondutividade IT
não podem ser descritas como uma mistura daquelas dos supercondutores tipo-I ou
tipo-II. Neste trabalho apresenta-se resultados sobre a materia de vórtices no regime
IT, e discutimos a perspectiva de observá-lo em filmes finos, fios e bicamada super-
condutores. Usamos a teoria de Ginzburg-Landau, o modelo de Lawrence-Doniach e o
formalismo Extendido de Ginzburg Landau, para calcular as configurações de vórtices
nesses sistemas. Nossos cálculos revelam a existência de fluxos exóticos, característicos
do regime IT, que não são encontrados em supercondutores tipo-I ou tipo-II, tais como:
vórtices gigantes, aglomerados de vórtices, cadeias de vórtices, faixas de vórtices, il-
has supercondutoras separadas por cadeias de vórtices. Essas configurações de vórtice
em supercondutores IT dependem do tipo da interação vórtice-vórtice. A Análise das
interações de vórtices no domínio IT revela uma considerável contribução de muitos
corpos (muitos vórtices). Tais interações de muitos corpos desempenham um papel
crucial na formação da matéria de vórtices no estado misto, por exemplo, estabilização
de aglomerados de múltiplos vórtices. As propriedades das interações vórtice-vórtice
dependem fortemente do número de vórtices em um cluster e de κ. A interação pode
ser monotonicamente atrativa, monotonicamente repulsiva ou, nos casos principais não-



monotônica, sendo este comportamento mais perceptível perto do limite do regime IT.
Esta observação demonstra a existência de um tipo especial de matéria de vórtices
moldada pelas interações de muitos vórtices. Nossas descobertas leva um novo olhar
sobre o problema da mudança entre os materias tipos I e II, rompendo os fundamentos
da compreensão da resposta magnética de supercondutores e levantando questiona-
mentos sobre a completeza da classificação convencional dos tipos de materiais dos
supercondutores.

Palavras-chaves: Superconductividade Intertipo. Configuração exóticas de vórtices. Ponto

de Bogomolnyi. Fios supercondutores. Filmes finos superconductorores. Bicamadas super-

conductoras.



Resumen

Con base en la teoría de Ginzburg-Landau (GL), los materiales superconductores se
clasifican como idealmente diamagnéticos tipo-I o tipo-II, donde el campo magnético
penetra el superconductor en forma de una red regular de vórtices con un único cuanto
de flujo (red de Abrikosov), según el parámetro Ginzburg-Landau κ. Sin embargo, esta
simple clasificación se aplica unicamente a los materiales fuertemente tipo-I (κ < 1/

√
2)

o tipo-II (κ > 1/
√

2). Materiales superconductores con valores de κ proximos de
κ0 = 1/

√
2 revelan propiedades magnéticas no estándar que no se pueden describir

dentro de la dicotomía convencional de materiales tipo-I/tipo-II. Estos materiales son
apliamente referidos como superconductividad intertipo (IT). La superconductividad
IT aparece en un intervalo finito entre tipo-I y tipo-II que modifica la clasificación es-
tándar. La existencia del régimen de superconductividad IT es una propiedad general
del mecanismo de emparejamiento BCS y está relacionada de hecho con el punto de
Bogomolnyi (κ0, Tc) poseer infinitos estados degenerados. Disminuyendo la temper-
atura o introduciendo impurezas y/o defectos, la degenerecencia es removida, llevando
a muchas propiedades no convencionales del estado mixto de los superconductores,
que son caracteristicos de la superconductividad IT. Las propiedades magnéticas de
la superconductividad intertipo no se pueden describir como una convinación de su-
perconductores convensionales tipo-I o tipo-II. En este trabajo presentamos resultados
sobre la materia de vórtices en el régimen IT, discutimos la perspectiva de observarlo
en: filmes finos, hilos y bicamada supercondutoras. Utilizamos la teoría de Ginzburg-
Landau, el modelo Lawrence-Doniach y el formalismo Extendido de Ginzburg Landau
(EGL) para calcular las configuraciones de vórtices en estos sistemas. Nuestros cál-
culos revelan distribuciones de flujos exóticos, característicos de el régimen IT, que
no son encuentran en superconductores tipo-I o tipo-II, tales como: vórtices gigantes,
aglomerados de vórtices, cadenas vórices, islas superconductoras separados por cadenas
vórtices. Estas configuraciones de vortices en superconductores IT dependen del tipo
de interacción vórtice-vórtice. El análisis de las interacciones de vórtices en el dominio
IT revela una considerable contribución de muchos cuerpos (muchos vórtices). Tales
interacciones de muchos cuerpos desempeñan un papel crucial en la formación de la
materia de vórtices en el estado mixto, por ejemplo, estabilizando de aglomeradosde
multiple-vórtices. Las propiedades de las interacciones vórtice-vórtice dependen en gran
medida del número de vórtices dentro del clúster y del valor de κ. La interacción puede



ser monótonamente atractivo, monótonamente creciente repulsiva, o, en los casos prin-
cipales no-monótonica, siendo este comportamiento más perceptible cerca del límite del
régimen IT Esta observación demuestra la existencia de un tipo especial de materia de
vórtices que es moldeada por las interacciones de muchos vórtices. Nuestros hallazgos
llevan a una nueva visión sobre el problema de cambio entre los materiales tipo-I y
tipo-II, rompiendo las bases de la comprensión de la respuesta magnética de supercon-
ductores y elevar cuestionamientos sobre la integridad de la clasificación convencional
de los tipos de materiales superconductores.

Palabras claves: Superconductores Intertipo. Configuraciones exóticas de vórtices. Punto

de Bogomolnyi. Hilos supercondutores. Filmes finos superconductorores. Bicamadas super-

conductoras.
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1 General Introduction

For over a 100 years there has been intense research of the physics of superconductors and

their applications. One important characteristic of superconductors is their peculiar behavior

in an applied magnetic field, which has been the focus of a great deal of experimental and the-

oretical research. Into technology, superconducting materials are today widely used for a large

variety of applications ranging from energy and management, medical diagnostics, the produc-

tion of superconducting quantum interference devices which in turn can be used to measure

low magnetic fields, and the utilization of superconducting properties to produce highly sens-

itive particle detectors. For a long time the application of superconductivity was hampered

by its low transition temperature Tc that required cooling down to liquid He temperature at

4.2 K. As a consequence, superconductive solutions were considered and developed in the past

only if classical solutions were not feasible, making practical superconducting devices just a

dream due the need for expensive liquid helium and the engineering complications that come

from retaining such a low temperature. However a marvelous breakthrough has been made

in the last 30 years in the discovery of high temperature superconductors. As is the case

of magnesium diboride (MgB2), that possess superconducting properties at temperatures at

39K. It also seems that the highest critical temperature found increases every year, giving

promise to the hope of room temperature superconductors.

The last decade has been marked by the fast development of the nanotechnology and low-

dimensional materials. For example, new properties of low-dimensional materials are revealed

and these materials can be used as fundamental building blocks for nanoscale science and

technology, ranging from chemical and biological sensors, field effect transistors to logic cir-

cuits. Also, the recent application is the employment of superconducting nanowires to detect

single photons [1]. Another important characteristic is the new properties of nano-size as the

quantum size fluctuations in nanosize superconductors, induced by a geometrical quantization

of the single particle states, first investigated by Blatt and Thomson [2]. This effect is notable

for sample sizes of the order of few nanometers. However, geometry-induced changes can be

important also for sample with much larger dimensions, where the quantization-related effects

are negligible. Such changes can appear, for instance, due to interactions between supercon-
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ducting condensate and sample boundaries [3] or due to coupling with stray magnetic fields

outside the superconducting sample. Both interactions modify the free energy of the sample

which can lead to substantial changes in its magnetic properties. It is also clear that their

contribution to the energy grows with the decreasing system size. This opens a possibility

to control and manipulate properties of artificially created inhomogeneous superconductors

by changing their geometry and dimensions. For example, magnetic properties of a super-

conducting film, made of type I material, becomes that of type II, when the film thickness is

comparable to several superconducting coherence lengths, ξ [4–6], chapter5.

Returning to another of the highlights mentioned above. The discovery of the intermetallic

compound superconductor MgB2 stirred up intense research to investigate the novel properties

of this material. The compound MgB2, the temperature dependences are seen in the material

that are not seen in more traditional superconductors. This has caused some to theorize

that these materials may possess multiple electron bands that participate in superconductiv-

ity. The so called Two-Band Ginzburg Landau model was derived to handle such materials.

This gave physicists and mathematicians a better grip on these new phenomena. Other odd

behaviors such as anisotropies in the crystal structure of the material have also been found

in these materials, and recently there has been increased interest in superconductors with

several superconducting components. The main situations where multiple superconducting

components arise are, multiband superconductor and artificially fabricated superconducting

layers.

In this endeavor to create new technology, numerical simulations to model such technology

are a must. Any engineer would prefer to have some reliable computational simulations to

make predictions about a new technology before diving in and building the actual device.

Computer simulations form a bridge between theory and experiments: on the one hand com-

putational models are based on certain assumptions which simplify the true situation, but on

the other hand computations can be performed for systems which are much more complex

and closer to reality than can be described by analytical theory. In this respect computer

simulations play an important role in assessing the appropriateness of theoretical models. As

is the case of the superconductivity, where until today many works have been developed in

this area and produced excellent results that can be verified by experimental dates.

With all this in mind and choosing some topics, I develop my doctoral work and as a final

product, this thesis was produced.

The thesis will be organized as follows:

In Chapter 2, presents a brief overview of the key historic events related to superconduct-

ivity. Further, different theoretical frameworks are presented, starting with London brother’s

phenomenological models, Ginzburg-Landau (GL) theory, the Lawrence-Doniach model for
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layered superconductors and finally, present the Bardeen-Cooper-Schrieffer (BCS) theory.

In Chapter 3 the Extended GL formalism (EGL) derived based on Gor’kov formalism

for a clean s-wave superconductor, is presented. The GL equation and EGL formalism for a

single band superconductor in the absence of the magnetic field is obtained.

In Chapter 4 presents the numerical methods for solving the Ginzburg-Landau model

and Extendent Ginzburg-Landau. In the first part for this chapter, we found the explains for

the TDGL model of superconductivity and introduce the equations of the TDGL. The TDGL

equations are written in their dimensionless form, with the characteristics of the material,

as well as, the universal constants, are included in the dimensionless variables, making them

easier for analysis and computations, Also we describes the popular U−ψ method used in the

most numerical computation work on superconductivity. In the second part, presents a brief

summary of the Monte Carlo method used to solve Extendent Ginzburg-Landau formalism in

the problem of vortex interaction, chapter 8.

A comprehensive analysis of flux configurations in a thin film superconducting in an ap-

plied perpendicular magnetic field is present in Chapter 5. It is investigated how those

configurations depend on the system parameters, in particular, on the field magnitude, GL

parameter κ, film thickness w and the temperature. It is demonstrated explicitly that there

is a thickness interval, where the flux patterns are qualitatively different from those typical

for the standard types I and II. Among them are giant vortices and vortex clusters, stripes of

vortices, and lattices of superconducting islands separated by vortex chains.

Chapter 6 reports the results on the mixed and intermediates states in a thin supercon-

ducting wire, made of a type I material, subject to a perpendicular magnetic field. It is shown

that superconducting wires like thin films change from type I to type II superconductivity

with decreasing thickness. Despite the 1D geometry of the mixed state and a strong influence

of the wire boundaries and the stray fields, the field/condensate configurations reveal clear

signatures of the IT superconductivity, such as vortex clustering and giant vortices. These

can be traced in the magnetization curve that undergoes qualitative changes, when the IT

domain is crossed.

In the Chapter 7 we studied a mechanism for superconducting bilayer which can mimic

two-band superconductors, where each layer can be corresponds to each band. The the-

oretical description which we used is a variant of the famous Lawrence-Doniach model for

high-temperature cuprates emphasizing the layered aspect of the structure. In the results we

show that the complexity of the patterns obtained in the penetration of the magnetic field

comes from the changes in the interaction of short and medium range between the vortices

(non-monotonic interaction), where these patterns implicitly depends on parameters such as

the coupling between layers and temperature.
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Chapter 8 presents the results on the vortex-vortex interaction dependence on the sample

thickness, and the influence of stray field on different vortex cluster configuration, in special

we are the focus in the analysis of the vortex-vortex interactions in the intertype (IT) domain.

The results reveal that the, IT domain interaction, have a considerable many-body (many-

vortex) contribution. Such many-body interactions play a crucial role in the formation of the

vortex matter in the mixed state stabilizing multi-vortex clusters. Properties of the vortex-

vortex interactions depend strongly on the number of vortices in a cluster.

In the Chapter 9 present the summary for each work presented in this thesis and future

works.

Finally, the Appendix contains different calculation that are explicit in the thesis: Time-

dependent delta function, the integrals which appearing in the EGL formalism and derivation

of Bogomolnyi equations and the scientific Works Produced During my Ph.D. Course.
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2 Superconductivity: Phenomena and Theories

In this chapter a review of the important phenomenological and mycroscopic theories that

were successful in explaining some features of superconductivity will be presented.

2.1 Fundamental properties of Superconductors

The phenomenon of superconductivity was discovered in 1911 by H. Kamerlingh Onnes,

whose “factory” for producing liquid helium had provided a considerable advance in exper-

imental low temperatures physics. In his quest for the intrinsic resistance of metals, he

surprisingly observed that the electrical resistance of mercury drops abruptly to zero around

4.2 K [7–9], Fig. 2-1.

Figure 2-1 : Resistivity of mercury as a function of temperature. Figure take
from [7].

He called this unexpected feature superconductivity, as a special and unknown way of

carrying electric currents below that critical temperature. This was the beginning one of the

most exciting adventures in physics throughout the 20th century, having seen the award of

numerous Nobel prizes.
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For the next decades, several other metals and compounds were shown to exhibit super-

conductivity under very low temperatures, always below 30 K. Soon after his discovery, H.K.

Onnes noticed that superconductivity was influenced by an external magnetic field, bring-

ing back a sample to its normal resistive state at sufficiently high values. A superconductor

was thus characterised by a spectacular feature “the total loss of resistivity” and two critical

parameters: a temperature and a magnetic field.

H

H

T>Tc

T<Tc

Figure 2-2 : The Meissner effect for a superconducting sample.

In 1933, W. Meissner and R. Oschenfeld discovered that superconductors also have the

property of expelling a magnetic field. Together they devised an experiment which made use

of a very small coil to measure the magnetic field between two solid, current-carrying, single-

crystal cylinders, made of tin. The result was unexpected: even when the tin cylinders were

not carrying any current, the magnetic field between them increased when they were cooled

into superconducting state, as if there was something forcing the magnetic field to be expelled

out of the superconducting cylinders [see Fig. 2-2]. It was clear that this effect of expulsion

of applied flux is not some dynamical consequence of perfect conductivity, meaning that

superconductors also exhibit perfect diamagnetism as a fundamental property [10]. In fact,

now it is well known that this Meissner-Ochsenfeld effect arises because of the flow of internal

currents (the so-called Meissner-Ochsenfeld currents) which generate a magnetic field inside a

superconductor, equal in magnitude to the applied field, but with opposite direction so that

total field is canceled out. Superconductors can remain in the state of perfect diamagnetism

only up to a certain applied field, above which magnetic flux penetrates the material, and

suppresses superconductivity.

The first sucessful microscopic description of superconductivity was proposed by Bardeen,
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Cooper, and Schrieffer in their seminal BCS theory in 1957. Before the BCS theory, various

theories were proposed, including the London equations in 1935, and the Ginzburg-Landau

macroscopic theory in 1950. The Ginzburg-Landau (GL) theory was not appreciated until, in

1959, Gorkov proved that the GL theory is actually a limiting case of the BCS theory. The

GL theory is now since then commonly accepted as a successful phenomenological model for

superconductivity.

Also in 1957, Abrikosov, based on the Ginzburg-Landau theory, predicted that supercon-

ductors are divided into two categories, i.e., Type I and Type II. For their work, Abrikosov

and Ginzburg won the 2003 Nobel Prize.

In 1962, on the basis of BCS theory, Josephson predicted that a supercurrent can flow

between two pieces of superconducting material separated by a thin layer of insulating mater-

ial [11]. This phenomenon is called the Josephson effect and it is exploited by some import-

ant superconducting electronic devices such as superconducting quantum interference devices

(SQUIDs) which are used for measuring extremely weak signals. For this work, Josephson

was awarded the Nobel Prize in 1973.

2.2 Summary of Theories for Superconductivity

2.2.1 London theory

The first theory which could account for the existence of the Meissner-Ochsenfeld effect

was developed by the two brothers, F. London and H. London, in 1935 [12]. Their theory

was originally motivated by two-fluid model. They assumed that all free electrons in a super-

conducting material can be a divided into two groups: superconducting electrons of density

ns and normal electrons of density nn. The total density of free electrons is n = ns + nn.

As the temperature increases from 0 to Tc, the density ns decreases from n to 0. They also

considered that both the electric field , E, and the magnetic field, H, are so weak that they

do not have any appreciable influence on ns (ns = constant everywhere) and the supercurrent

is homogeneous.

The equation of motion for ns electrons in an electric field E is

nsm
dvs
dt

= nseE, (2.1)

wherem is the electron mass, e is the electron charge, vs is the superfluid velocity. Visualizing

the currents as a flow of the superconducting electrons of number density ns (per unit volume),

charge and mass moving with the superfluid velocity vs(r), one can calculate the supercurrent
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density as js = nsevs(r), then the above equation becomes

E =
d

dt
(Λjs). (2.2)

This is the first London equation, where Λ = m/nse
2. It denotes the perfect conductivity:

when d/dt(js) = 0 the electric field inside the superconductor is absent.

The total free energy of the superconductor can be written as:

F =

∫
fsd

3r + Fkin + Fmag, (2.3)

where fs is the superconductor energy density, Fkin the kinetic energy of the electric currents,

and Fmag =
∫
H2/8πd3r the energy of the magnetic field H2. The total kinetic energy of

such flow of particles is then

Fkin =

∫
1

2
nsmv

2
sd

3r. (2.4)

Moreover, the currents must obey the Maxwell equation ∇×H = 4π
c js. Substituting this

information into Eq. (2.3) we obtain

F = F0 +
1

8π

∫
[H2 + λ2

L|∇×H|2]d3r, (2.5)

where we denoted F0 =
∫
fsd

3r and the London penetration depth λL is defined as

λL =

[
mc2

4πnse2

] 1
2

. (2.6)

Now we look for the configuration of the local magnetic field H(r) which minimizes the

above energy, by searching for a variational fixed point of energy F with respect to small

variation δH(r)

δF =
1

4π

∫
[H · δH + λL(∇×H) · (∇× δH)]d3r

=
1

4π

∫
[H + λL(∇×∇×H)] · δHd3r, (2.7)

where the final expression has been obtained by integration by parts. For δF = 0 (stationary

condition), we must have

H + λL(∇×∇×H) = 0. (2.8)

Additional use of the vectorial identity ∇×∇×H = ∇(∇ ·H)−∇2H and the Maxwell
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equation ∇ ·H = 0 finally leads us to:

∇2H =
H

λL
, (2.9)

where ∇2 is the Laplace operator. This equation is the second London equation, and together

with the Maxwell equation, it allows one to calculate the spatial distribution of the magnetic

fields and currents.

The simplest situation to consider is a semi-infinite superconductor filling the half-space

x > 0, and a normal material filling the half-space x < 0, where the surface coincides with

x = 0 plane, with applied homogeneous external field H0 parallel to the surface. We solve Eq.

(2.9) with the boundary conditions H(0) = H0 and H(∞) = 0, where we want to calculate

the field profile inside the superconductor. It is trivial to see that the appropriate solution

is H(x) = H0e
−x/λL , meaning that the magnetic field decays inside a superconductor with a

characteristic length scale given by London penetration depth λL which is analog of the skin

depth in a metal. A visual representation of λL is given in Fig. 2-3. Following the two fluid

model, λL is also temperature dependent, as

λL(T ) =
λL(0)

[1− (T/Tc)4]
1
2

(2.10)

N SC

H(x)

x

�L

Figure 2-3 : A normal/superconductor boundary in the presence of an applied ex-
ternal magnetic field. The field decays into the superconductor over
characteristic lengthscale λL.

2.2.2 Phenomenological Ginzburg-Landau (GL) Theory

In 1950, L. Landau and V. Ginzburg applied this successful framework and achieved a

powerful phenomenological theory that could explain superconductivity as a second order



24

phase transition [13]a.

The theory relies on a space dependent order parameter Ψ which is supposed to vanish in

the normal state, but to take some finite value below the critical temperature; it is usually

normalized to the density of supercharge carriers ns already introduced in the London theory:

Ψ(r) =
√
ns(r)eiθ(r). (2.11)

It is further assumed that the thermodynamic free energy G of the system is an analytic

function of ns, so that its value Gs in the superconducting state can be expanded in power

series around its value in the normal state Gn, close to the critical temperature

Gs = Gn + αns +
β

2
ns + · · · . (2.12)

It follows that the Ginzburg-Landau (GL) theory is strictly valid only close to the crit-

ical temperature. A dynamical approach requires the introduction of gradients of the order

parameter, which are combined with the electromagnetic field in such way that local U(1)

gauge invariance is preserved. Finally, the free energy of the normal state can involve differ-

ent definitions, and may always be shifted by a constant, so that in general one is interested

in the condensation energy Gs − Gn:

Gs − Gn = α|Ψ|2 +
β

2
|Ψ|4 +

1

2m

∣∣∣∣
(
−i~∇− e∗

ccc
A

)∣∣∣∣
2

+
(H −H0)2

2µ0
, (2.13)

where A is the electromagnetic vector potential. It is now admitted that superconductivity

involves paired electrons, so that we may identify the electric charge e∗ = 2e = −2|e| < 0 in

the term accompanying the gradient. For the same reason, one generally considers m∗ = 2m

as the mass of one pair of electrons. Assuming the superconducting state to be energetically

more favourable than the normal state below the critical temperature, this energy difference

must be kept negative. The quantities α and β are phenomenological parameters whose signs

are fixed by analysis of the power expansion: β must be positive, otherwise the minimal

energy would be obtained for arbitrary large values of the order parameter, and the only way

to get a nontrivial value of the order parameter which minimizes the energy is to assume that

α is negative [see Fig. 2-4]. In principle both parameters are temperature dependent: one

can show that α varies as 1 − t, with t = T/Tc , close to the critical temperature, and β as

(1− t2)−2 and is usually taken to be constant [14].

• Ginzburg-Landau Equations
aIn second order transitions, one phase evolves into the other so that both phases never
coexist. Their first derivatives are continuous, and second derivatives are discontinuous.
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Figure 2-4 : Ginzburg-Landau free-energy functions for describing spontaneous sym-
metry breaking through a second order phase transition.

The total energy of the superconducting system can be obtained from the volume integ-

ration of Eq. (2.13), and the equilibrium state is reached when the variations of this total

energy with respect to Ψ∗ and A become zero.

The former δΨ∗Gs can be written as
∫ {

αΨδΨ∗ +
1

2m∗

[
(−i~∇− e∗

c
A)Ψ(−i~∇− e∗

c
A)δΨ∗

]
+ β|Ψ|2δΨ

}
d3r = 0. (2.14)

Let ϕ = (−i~∇ − e∗

c A)Ψ, by using relationship ∇ · (dν) − ν ·∇d + d∇ · ν where d is a

scalar, the second term in Eq. (2.14) can be written as

1

2m∗
ϕ(−i~− e∗

ccc
A)δΨ∗ =

1

2m∗
i~ [∇ · (δΨ∗ϕ)− δΨ∗∇ · ϕ]− 1

2m∗
ϕ
e∗

ccc
AδΨ. (2.15)

Following Gauss theorem
∫
∇T d3r =

∮
n · T d2r,

∫
1

2m∗
(−i~∇−e

∗

c
A)δΨ∗d2r =

∫
1

2m∗
i~ [∇ · (δΨ∗ϕ)− δΨ∗∇ · ϕ] d3r− 1

2m∗

∮

s
i~n·ϕδΨd2r.

(2.16)

Eq. (2.16) can only be satisfied if

αΨ +
β

2
|Ψ|2Ψ− 1

2m∗

(
−i~∇− e∗

c
A

)2

Ψ = 0, (2.17)



26

with the additional boundary condition

∮
n ·
[

1

2m∗

(
−i~∇− e∗

c
A

)
ΨδΨ∗

]
d2r = 0⇒

(
−i~∇− e∗

c
A

)
Ψ

∣∣∣∣
∂Ω

= 0. (2.18)

Which are the first Ginzburg-Landau equation and the boundary condition (valid for a su-

perconductor vacuum interface), respectively, where the subscript ∂Ω refers to the component

normal to the sample surface. The first relation is recognized as the Schrodinger equation for

the superconducting carriers; the second generalizes London’s constitutive relation including

possible spatial variation of Ψ.

The variation of Eq. (2.13) with respect to the vector potential A is

∫ {(
−i~∇− e∗

c
A

)
Ψ
−e∗
c
δAΨ∗ +

−e∗
c
δAΨ

(
−i~∇− e∗

c
A

)
Ψ∗
}
d3r+

+
1

4π

∫
(∇×A−H) ·∇× δAd3r = 0. (2.19)

The first integral can be written as

∫ [
i~e
m∗c

(Ψ∗∇Ψ−Ψ∇Ψ∗) +
4e2

m∗c2
|Ψ|2A

]
· δAd3r = 0. (2.20)

By using vector identity ∇ · (a×b) = b · (∇×a)−a · (∇×b), the second integral becomes

1

4π

∫
{δA ·∇×∇×A + ∇ · [δA× (∇×A−H0)]} d3r = 0. (2.21)

By using Gauss’s theorem
∫

∇ · [δA× (∇×A−H0)]d3r =

∮

s
[δA× (∇×A−H0)]d2r, (2.22)

with turns out to be zero if one chooses the integral surface to be far from the superconductor,

where A = A0. Eq. (2.19) finally takes the form

∫ [
i~e
m∗c

(Ψ∗∇Ψ−Ψ∇Ψ∗) +
4e2

m∗c2
|Ψ|2A +

1

4π
∇×∇A

]
· δAdV = 0, (2.23)

which combined with the Maxwell equation (Ampere’s law)

js =
ccc

4π
∇×A, (2.24)
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gives the second GL equation as

js =
i~e
m∗

(Ψ∗∇Ψ−Ψ∇Ψ∗) +
4e2

m∗ccc2
|Ψ|2A. (2.25)

For a superconductor-normal metal interface the boundary condition must be modified,

the more general expression, which assures that no supercurrent passes perpendicular to the

sample boundary, can be written as [14].

(
−i~∇− e∗

c
A

)
Ψ

∣∣∣∣
∂Ω

=
i~
b

Ψ

∣∣∣∣
∂Ω

, (2.26)

with b the extrapolation length (de Gennes extrapolation length) over which the order para-

meter becomes zero in the normal metal by extrapolation [see Fig. 2-5]. Notice that for a

superconductor-normal metal interface b is positive.

b

Normal materialSuperconductor

x

�(x)

Figure 2-5 : Schematic diagram illustrating the boundary condition (2-26) at an su-
perconductor/normal material interface characterized by an extrapola-
tion length b. Taken from [14].

The value of the extrapolation length is determined by the medium adjacent to the su-

perconductor:

• for vacuum or insulator: b→∞,

• for normal metals: b > 0, and for ferromagnets or disordered materials: b→ 0,

• for a superconducting layer material with a higher Tc: b < 0.

Validity of the Ginzburg-Landau theory

A few points need to be discussed in relation to the validity of the GL equations ref [15]:
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• Landau assumes in his theory of second order transitions that the free energy can

be expanded in powers of |Ψ| [16]. This is not generally valid, but Gor’kov showed

theoretically that the Landau expansion is valid in the case of superconductors [17].

• Ψ must be a slowly varying function over distances of the order of ξ0. A necessary

condition for the validity of the theory is, therefore, ξ(T )� ξ0 or

Tc − T
Tc

� 1 (2.27)

i.e. the temperature must be close to Tc, the critical temperature in zero field.

• The local electrodynamic approximation will be valid only ifH andA are slowly varying

functions over distances of the order of ξ0. Therefore, it is necessary that λ(T )� ξ0 or

Tc − T
Tc

�
[
λ(0)

ξ0

]2

, (2.28)

which expresses again the temperature must be close to Tc

2.2.3 Characteristic Length Scales

From the GL equations some meaningful quantities can be defined. For a bulk supercon-

ductor in the absence of a magnetic field, Eq. (2.17) in one dimension reduce to

αΨ + βΨ3 − ~2

2m

∂2Ψ

∂x2
= 0, (2.29)

where we chose a gauge in which the order parameter is real. This has as non-trivial solution

|Ψ| = Ψ0 =
√
−α/β, the value of the order parameter far away from inhomogeneities. By

expressing the order parameter in Ψ0 by defining ψ = Ψ/Ψ0, the GL equation reduces to

− ψ + ψ3 − ~2

2m|α|
∂2ψ

∂x2
= 0, (2.30)

and a characteristic length scale for variation of ψ emerges,

ξ2 =
~2

2m|α| , (2.31)

over which changes of ψ are expected happen. This fundamental length scale is called the

coherence length. When we consider a normal metal-superconductor boundary at x = 0, the

meaning of ξ becomes clear. We then have ψ = 0 at x = 0 and ψ = 1 at x→∞ as boundary
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condition. The solution of Eq. (2.29) becomes

ψ = tanh

(
x√
2ξ

)
, (2.32)

i.e. ξ represents the length over which the order parameter heals.

x

�(x)

N S C

1

�

Figure 2-6 : The density of superconducting charge carriers within a superconduct-
ing material can vary over a characteristic length scale (ξ) called the
coherence length. ξ emerges from the Ginzburg-Landau theory and is
defined in Eq. 2.31.

Figure 2-6 offers a visual representation of how ψ varies at a superconducting/normal

boundary. It is now clear that GL theory achieves what it set out to do: characterise the

spatial variation of ψ within a superconductor.

Since α depends on the temperature as α ∝ (T − Tc), the coherence length varies as a

function of the temperature as

ξ(T ) ∝ (1− T/Tc)−1/2. (2.33)

Notice that this is certainly not the same length as the BCS coherence length [14, 18].

Near Tc the relation between ξ(T ) and ξ0 depends on the material purity, defined by elastic

mean free path lel:

ξ(T ) = 0.74ξ0(1− T/Tc)−1/2 when lel � ξ0(pure), (2.34)

ξ(T ) =
√
ξ0lel(1− T/Tc)−1/2 when lel � ξ0dirty). (2.35)

Notice further that the coherence length ξ(T ) diverges at the critical temperature Tc.

Another fundamental length scale emerges when considering the second GL equation. In

a weak magnetic field the order parameter can be assumed constant and equal to Ψ0 and in
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that case Eq. (2.25) reduces to

js = −4e2

mc
|Ψ0|2A, (2.36)

which is simply the second London Eq. (2.24-2.25) describing that a magnetic field cannot

penetrate a superconductor beyond a layer of thickness λ. After taking the curl of both sides,

gives:

λ2 =
mc2

16|Ψ0|2πe2
=

mc2

8πe2ns
=

mc2β

16π|α|e2
(2.37)

where the density of superconducting electrons ns = 2|Ψ0|2 = 2|α|/β. Also the penetration

depth λ(T ) varies as a function of the temperature as

λ(T ) ∝ /(1− T/Tc0)−1/2, (2.38)

since |Ψ0|2 ∝ |α| ∝ (Tc0 − T ). The relation between the temperature dependent penetration

depth λ(T ) and the London penetration depth λL(0) at absolute zero temperature differs for

pure and dirty materials [14]

λ(T ) =
λ(T )√

2
(1− T/Tc0)−1/2 when lel � ξ0(pure), (2.39)

λ(T ) =
λ(T )√

2

√
ξ0

1.33lel
(1− T/Tc0)−1/2 when lel � ξ0(dirty) (2.40)

Notice that the penetration depth λ(T ) diverges at the critical temperature Tc

2.2.4 Types of Superconductors

A classification of superconductors can be made depending on their behavior in an external

applied magnetic field. This division is based on the fact that the surface energy σs which is

proportional to the difference (ξ − λ), of a boundary between a normal and superconducting

(S/N) has different sing depending on the value of the GL parameter κ = λ/ξ. In fact for

T = Tc it changes sign at κ0 = 1/
√

2 [19,20]. If κ < κ0(type-I superconductor), the energy of

the interface σs > 0, i. e., the system tends to minimize the normal-superconducting interface;

if κ > κ0 (type-II superconductor), the energy of the interface σns < 0, i. e., the system tends

to maximize the normal superconducting interface. This favors formation of superconductor-

normal boundaries and the flux penetration in small tubes (vortices) each one carrying a

quantized amount of flux, or superconducting flux quantum Φ0 = hc/2e = 2.7 × 10−15Tm2.

Therefore, two types of superconductors are distinguished by κ. This behavior of type-I and

type-II materials at an SN interface is illustrated in Fig. 2-7.
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(a) (b)
Figure 2-7 : Spatial variation of the magnetic induction B(x) and the order para-

meter Ψ(x) in type-I and type-II superconductor. (a) type-I supercon-
ductor κ < κ0, (b) type-II superconductor, κ > κ0.

All critical fields can be expressed in terms of the fundamental length scales of the GL

theory. The field at which a type-I superconductor abruptly loses superconductivity,

Hc(T ) =
Φ0

2
√

2λ(T )ξ(T )
, (2.41)

is called the thermodynamic critical field, as it corresponds to an energy density equal to the

condensation energy density of the superconducting state in te absence of a magnetic field.

A bulk type-II superconductor is in the Meissner state until the first critical field Hc1 < Hc

is reached,

Hc1(T ) =
Φ0

4πλ2(T )
ln(k) =

Hc(T ) ln(κ)√
2κ

. (2.42)

After this field the magnetic induction is allowed to penetrate the sample stepwise by

means of vortices, each carrying one magnetic flux quantum. The vortices arrange them-

selves in an Abrikosov lattice. By further increasing the field, vortices keep entering the

sample, the mean Cooper pair density gradually decreases, eventually leading to the loss of

superconductivity at the second critical field

Hc2 =
Φ0

2πξ2(T )
=
√

2κHc. (2.43)

In the region Hc2 < H < Hc3, superconductivity only exists at a thin layer of thickness

ξ(T ) near the sample edge, while the inner side of the sample is in the normal state. For
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bulk type-II superconductors, which an applied magnetic parallel to sample surface, the third

critical field Hc3 is Hc3 ≈ 1.69Hc2 [18]. In obtaining the latter expression it was assumed

that the medium has flat boundary and it is semi-infinite, which allows one to ignore all other

surfaces. In general the coefficient for Hc3 is geometry dependent. For example, for a thin

field in a parallel field the critical field for bulk superconductivity, i.e Hc3 = 2Hc2 [14]. If the

surface of a superconductor is covered with a layer of normal metal, it causes a reduction of

Hc3 to a value very close to Hc2.

The critical fieldsHc, Hc1, Hc2 andHc3 depend on temperature. TheH−T phase diagram

for type-I and type-II bulk superconductors are shown in the Fig. 2-8.

T TTc

Meissner state

H (T)c

H (T)c1

H (T)c2

H (T)c3

Mixed state

H(T)

Meissner state

H(T)

Tc

(a) Type-I (b) Type-II
Surface

superconductivity 

Figure 2-8 : Schematic H − T phase diagram for a type-I (a) and a type-II (b) bulk
superconductor.

The different phases (Meissner, mixed and normal) can be easily identified by the equilib-

rium magnetization:

M =
1

4π
(B −H0), (2.44)

where the magnetic induction B = 〈H〉 and H0 is the applied magnetic field.

-M type-I

HHc

Meissner
state

Normal state

-M

HHc1 Hc2

Meissner
state

Normal state

Mixed state

type-IIType-I Type-II

Figure 2-9 : The magnetization as a function of the applied magnetic field for bulk
type-I and type-II superconductor.
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Fig. 2-9 shows the negative of the magnetization −M plotted as a function of the applied

field H for bulk type-I and type-II superconductors. In the Meissner state all magnetic flux

is expelled (B = 0) from the interior of the sample and therefore M = −H/4π. For absolute
values of the field H > Hc1, type-II superconductors are in the mixed state. The incoming

magnetic flux causes a smooth decrease of the magnetization |M | down to zero at the second

critical field Hc2, where superconductivity is suppressed. Some examples of critical fields are

given in Table 2-1 .

Table 2-1 : Experimental values of superconducting parameters for some materials:
Tc is the critical temperature, expressed in Kelvin, κ GL-parameter, Hc,
Hc1, Hc2 critical magnetic fields expressed in Tesla.

Metal κ Hc Hc1 Hc2 Tc

Al 0.07 0.11 1.2
Sn 0.15 0.030 3.7
Pb 0.45 0.076 7.2
Nb 1.03 0.157 0.003 0.223 9.3

Nb3Sn 22 1.95 0.12 29 18
YBCO(‖c ) 560 1.1 0.01 130 92

2.3 Vortices in Superconductors

2.3.1 Flux quantization

The distinguishing property of type-II superconductors is the existence of an intermediate

state between the Meissner and the normal phase where vortices appear due to the negat-

ive energy of the superconducting-normal interface. Using the second GL equation, let us

calculate the magnetic flux inside area S of a type-II superconductor enclosed by a path C.

Writing the order parameter in the polar form of complex numbers, i.e. Ψ = |Ψ|eiϕ. Eq (2.25)

becomes

js =
2e~
m
|Ψ|2∇ϕ− 4e2

mc
|Ψ|2A. (2.45)

Consider a contour C enclosing the flux inside the superconductor, as show in Fig. 2-10,

where the supercurrent js = 0 everywhere on C. The contour integral of vector potential

along C can be calculated as
∮

C
A · dl =

c~
2e

∮

C
∇ϕ · dl. (2.46)
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Figure 2-10 : Flux quantization

From Eq. (2.46), one can see that ϕ is a multiple-valued function. However the wavefunc-

tion Ψ must be single-valued. Therefore, we have to stipulate that the change in ϕ after each

turn around the hole containing the magnetic flux must be an integral multiple of 2π. Indeed,

the addition of 2πn where n = 0, 1, 2, · · · to ϕ does not change the function Ψ(r) = ψ(r)eiϕ

since ei2πn = 1. Therefore
∮
C ∇ϕ · dl = 2πn and Eq. (2.46) can finally be written as

Φ = nΦ0, where Φ0 =
~c
2e
. (2.47)

This shows that the magnetic flux enclosed can only assume values which are integer

multiples of the minimal possible magnetic flux, the magnetic flux quantum Φ0. The value of

Φ0 is defined above and equals to 2.7× 10−15T m2. The generalized expression of Eq. (2.47)

to the case of any contour (even with non-zero current) is

Φ = nΦ0 −
mc

4e2

∮

C

js
|ψ2| · dl. (2.48)

2.3.2 Vortex state

In section 2.2.3 we defined two regimens based in considerations of the overall system

energy at the superconducting/normal (SN) interface. In type-I bulk superconductor, the

system exhibits the Meissner-Ochsenfeld effect until superconductivity is destroyed by the

applied magnetic field. In the type-II superconductor, the SN boundary has negative sing and

so nature acts to maximise the surface area of the interface by admitting flux (normal regions)

into the samples where they coexist alongside Meissner screened areas of superconductivity. In

light of the results discussed in the previous section it is now clear that in order to minimise the

total system energy (maximise the SN surface area), flux penetration will occur in the form of

flux tubes containing quantised packets of flux Φ0 known as superconducting vortices. Within

the framework of GL the structure of vortex is characterized by two fundamental length scales:

the magnetic penetration depth λ and the coherence length ξ, where λ > ξ. The flux tubes

can be described as a cylindrical normal core with radius ξ and a superconducting current



35

circulating around it at a radius λ.

x

y

|��r�|2 2�

2�

H(r)

Figure 2-11 : The magnetic flux density and the magnitude of the order parameter,
Ψ(r), for a isolated vortex. The magnetic flux density decreases from
the maximum value at the vortex centre to zero in the superconductor
with a characteristic length λ. The order parameter grows from zero
to maximum value in the superconductor with a characteristic lenth
ξ.

The structure of a vortex is depicted in Fig. 2-11. A maximum of the magnetic flux

density occurs in the centre of the vortex and at large distance from the core decays roughly

exponentially with the penetration depth λ. The order parameter Ψ(r) is reduced in a small

core region with radius of the order of the coherence length ξ, therefore the vortex core can

be represented as a region of normal phase of an area ∼ πξ2.

Abrikosov predicted theoretically, that the most energetically favorable configuration for

a vortex lattice in the absence of any impurity in the superconducting material is the square

array. His prediction for the square lattice had a small numerical error which was later rectified

by Kleiner [21] and showed that the hexagonal configuration is most favorable situation for

all possible periodic [see Fig. 2-12].

This state of a superconductor is referred to as the mixed state because it is characterized

by a partial penetration of the magnetic field in the interior of the specimen so that the sample

contains interrelated superconductivity and normal regions. The existence of the mixed state

in type-II superconductor has been verified by experiments, where the first experimental

demonstration was done via Bitter decoration by Essmann and Trauble in 1967 [23] and other

experimental works with different techniques as: Magneto-optical imaging, scacnning SQUID

microscopy, scanning Hall probe microscopy, transmission electron microscopy (TEM) are

cited in the references [24–30].
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Figure 2-12 : Mixed state of a type II superconductor. Vortices form a regular
triangular (hexagonal) (a) or square (b) lattice. Vortex cores (dashed
regions) are normal. Taken from [22].

2.3.3 Isolated Vortex

As a long as the separation between vortices is large compared to λ, there will negligible

overlap or interaction between vortices. In this limit, each vortex can be treated as isolated.

We consider the case of a typical type-II superconductor, where limit κ = λ/ξ � 1, and

|Ψ|2 = 1 a distance r � ξ, the currents and field can be calculated by using London’s

equation Eq. (2.8) or from the second GL equation (Eq. 2.24) where we took the curl of both

sides, we obtain

H + λ∇×∇×H =
Φ0

2π
∇×∇θ. (2.49)

Around the vortex core, we have the following relationship
∫

∇×∇θ · dS =

∮
∇θ · dl = 2π, (2.50)

so that

∇×∇θ = 2πδ(r)eν , (2.51)

where eν is the unit vector along the vortex. As a result, the solution of Eq. (2.49) subjected

to the boundary condition H(∞) = 0 is

H =
Φ0

2πλ2
K0(r/λ), (2.52)

where K0 is the Bessel function with imaginary argument. By setting a cut-off at r = ξ � λ,



37

one obtains an approximate field in the center of a vortex as

H(0) ≈ Φ0

2πλ
lnκ (2.53)

2.3.4 Vortex Interactions

When two vortices are far apart, the resulting current distribution can be approximated

as a superposition of the individual current distribution. Then the vortex-vortex interaction

can be calculated analytically. For a bulk superconductor the result is [14,18,31]

Uvv =
Φ2

0

8π2λ
K0

( r
λ

)
. (2.54)

It decays exponentially for r > λ, thus it is a short range interaction. In a thin supercon-

ducting film the interaction energy is [5].

Uvv =
Φ2

0

4π2

1

r
. (2.55)

It has been shown in [32] that for large distances the interaction energy between two

vortices is

Uvv =
Φ2

0

8π2λ

[
K0

( r
λ

)
−K0

(
r

ξ/
√

2

)]
, (2.56)

the first term is the repulsive electromagnetic interaction and the second term is the core-core

attraction. When κ > 1/
√

2, i.e., for type-II superconductors, Uvv > 0 so there is an repulsive

pairwise interaction. When κ < 1/
√

2, i.e., for type-I superconductors, Uvv < 0 so there is an

attractive pairwise interaction.

A very special case can be found in the close vicinity to the crossover point κ ≈ 1/
√

2,

where Meissner (typical type-I) and vortex states (typical type-II) can co-exist in te same

sample [see Fig. 2-13] [33, 34]. This state is called in text books as “intermediate-mixed

state” [35,36]. The intermediate state is formed in type-I superconducting samples when the

actual magnetic field at the sample’s edge exceeds the critical field, Hc. Direct visualization

of the intermediate state is ordinarily carried out on samples with flat surfaces, usually slabs

or disks. There is an ongoing discussion on the effects of this nonellipsoidal geometry, with no

consensus yet achieved. The thermodynamics of the intermediate state has been the subject

of many works [37]. The conventional approach is to assume some geometrical pattern of the

intermediate state, and then minimize its free energy by varying the geometrical parameters.

The typical and most used structure is the Landau laminar pattern of alternating normal and

superconducting regions. Experimental works in which the intermediate state patterns are

directly observed and are shown in Fig. 2-14 [38]. In such cases, the system can present a
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variety of patterns, not only the reticular phases of Meissner and Abrikosov and the magnetic

response exhibit discontinuity in the first critical field.

Figure 2-13 : Intermediate state ofat a Pb-1.89% TL disc (κ=0.73 at 1.2 K), with
diameter 5 mm and thickness 1 mm for Hext = 365 Oe. Abrikosov
vortex lattice (black regions) and Meissner phase (white regions) are
seen. Take from [33].

Figure 2-14 : Structure of the intermediate state in a disc-shaped Pb single crystal
at 5 K. Left column-increasing magnetic field after ZFC. Right column
decreasing magnetic field, Taken from [38].

Already in 1970’s it was observed that type-I to type-II transition occurs at finite interval of

κ ≈ 1/
√

2. An experimental study of the κ−regime, in which the interaction between vortex is
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attractive, has been performed by Auer and Ullmaier [39] using magnetization measurements.

For obtaining sufficient accuracy, such measurements required samples with high reversibility,

i.e., vanishing influence of flux pinning, and a careful control of the Ginzburg-Landau para-

meter. Both requirements could be achieved by doping polycrystalline wires of hight-purity

tantalum and niobium with nitrogen. Figure 2-15 shows a series of magnetization curves

for a TaN (κ = 0.665) at different temperatures. We see that the material exhibits type-

I behavior for hight-temperature curves and type-II behavior for lower-temperature curves

with a discontinuity at Hc1. They demonstrated that between pure type-I and pure type-II

(there called type-II/2) there exists a region of type-II/1 superconductivity, with a particular

magnetic response, namely, with a first order transition at Hc1. indicating the κ-range, with

attractive vortex interaction (and first order transition at Hc1), as function of temperature. In

this phase diagram we see that vortex attraction occurs in a narrow κ−range near κ = 1/
√

2,

this range becoming large with decreasing temperature.

Figure 2-15 : One the left, highly reversible magnetization curves for tantalum
sample doped with nitrogen, with κ = 0.665 and exhibiting the type-I
behavior at the high temperatures, and type-II/1 behavior at lower
temperature. On the right, phase diagram of the magnetic behavior
for TaN system. Both the Ginzburg-Landau parameter κ (lower ab-
scissa) and the impurity parameter α (upper abscissa) are proportional
to the amount of dissolved nitrogen. Taken from Ref. [39].

From the theoretical point of view, κ0 = 1/
√

2 is the Bogomolnyi point of the GL the-

ory [19]. It has an number infinite degenerate solutions for the superconducting state, as each

vorticity has the same energy at κ0. Within Ginzburg-Landau theory, κ is temperature inde-

pendent and therefore it predicts κ0 = 1/
√

2 as universal dividing value at all temperatures,
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regardless of whether one considers the sign of the normal metal-superconductor interface

energy, Hc = Hc1, Hc = Hc2 or the long-range vortex asymptotics.

2.4 The Josephson Effect

One of the archetypal consequences of the quantum behavior of electrons is their ability to

tunnel through potential barriers. Similarly, the tunneling of Cooper pairs between two super-

conductors separated by a thin insulating or metallic layer has provided one of the hallmarks

of the quantum nature of the Cooper pairs. However, the fact that the Cooper pairs form

a highly coherent condensate, unlike electrons in a conduction band, allows the stabilization

of an persistent flow between two weakly connected superconductors without any external

drive (the Josephson effect) [11]. This effect, named after the theoretical prediction of Brian

David Josephson in 1962, is one of the most successfully applied features of superconductivity

in technology. In order to explain this effect, let us consider a junction where a thin layer

separates two superconductors such as shown in Fig. 2-16.

|��|ei�
1 |��|ei�

2

Cooper pair

Superconductor Superconductor
In

su
lat

or

Figure 2-16 : The sketch of a Josephson junction. Taken from [40].

Moreover, consider the following appropriate boundary conditions for the junction [31].

∂Ψ1

∂x
− ie∗

~ccc
AxΨ1 =

Ψ2

ζ
, and

∂Ψ2

∂x
− ie∗

~ccc
AxΨ2 =

Ψ1

ζ
(2.57)

where ζ is a phenomenological parameter associated to the insulating layer. Substituing the

junction boundary condition in the x component of the superconducting current density given

by Eq. (2.25), one obtains

jx =
e∗~
2m∗

[
Ψ∗1

(
Ψ2

ζ
+
ie∗

~ccc
AxΨ1

)
−Ψ1

(
Ψ∗2
ζ
− ie∗

~ccc
AxΨ∗1

)]
. (2.58)

In the last equation, where the time reversal invariance of the order parameter an the
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vector potential was assumed, the boundary coefficient ζ become real, along with the vector

potential leading to the following simple form

jx =
e∗~
m∗ζ
|Ψ1||Ψ2| sin(ϕ2 − ϕ1), (2.59)

where the polar expression of the superconducting order parameters have been used. If the

two superconductors are the same material, the expression for this tunneling current becomes

jx = jm sin Φ21, (2.60)

where jm = e∗~|Ψ|2
m∗ζ is the maximal value of the Josephson current and Φ21 = ϕ2 − ϕ1 is

the phase difference between the two superconductor. Eq. (2.60) then tells us that due to

tunneling of Cooper pairs between two weakly connected superconductors, a nonzero current

density can appear on the junction provided that there exists an imbalance in phase between

the two sides of the junction. Such imbalance can be achieved by e.g. applying a voltage to

the junction or an external magnetic field.

2.5 The Lawrence-Doniach Model for Layered Superconductors

The Lawrence-Doniach (LD) model [41] can be understood as a modification of the aniso-

tropic Ginzburg-Landau theory for the extremely anisotropic (layered) materials, where the

discrete superconducting layers are only weakly coupled in the perpendicular direction. It is

widely applied to the high-Tc cuprate superconductors as it is able to capture their highly

anisotropic behavior which in some cases even becomes effectively two-dimensional (as expec-

ted from a stack of decoupled superconducting film planes). We will refer to this model in

Chapter 7, where we will use its modification to study a superconducting bilayer composed

of two layers superconductors.

In the LD model the layered superconductors are viewed as a stacked array of two-

dimensional superconductors. Within each layer the GL order parameter Ψn(x, y)is a 2D

function. The layers are coupled together by Josephson tunneling between adjacent layers.

When the superconducting coherence length ξ is much larger than the distance between the

layers, as is for example always the case close to Tc, the effective behavior is three-dimensional

and the Lawrence-Doniach model gives essentially the same results as the anisotropic GL the-

ory. If the coherence length is insufficient to “bridge” the layers, the effective behavior becomes

two-dimensional. Let us take the layers to be in the ab plane, while the perpendicular direc-

tion will be denoted c as usual in crystallography. The Cartesian coordinates x and y then lie

in the ab plane, while the z axis is along the c direction. The perpendicular distance between
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the layers is denoted by s. Then in the absence of the magnetic field we can write the free

energy of the Lawrence-Doniach model as

F =
∑

n

s

∫ [
α|Ψn|2 +

1

2
β|Ψn|4 +

~2

2mab

(∣∣∣∣
∂Ψn

∂x

∣∣∣∣
2

+

∣∣∣∣
∂Ψn

∂y

∣∣∣∣
2
)

+
~2

2mcs2
|Ψn −Ψn−1|2

]
d2r,

(2.61)

where the sum runs over the layers and the integral is over the area of each layer. At this

point we introduce the effective mass mab to describe different modes of the charge transport

within each layer, and mc to describe different modes of charge transport within each layer

and between neighboring layers and discretized the derivative along the the z−direction. The
reason to call the last term Josephson coupling becomes clear if we write Ψ = |Ψn|eiϕn and

assume that the amplitude of the order parameter |Ψn| is the same in all layers. Then the

term becomes
~2

mcs2
|Ψn|2[1− cos(ϕn − ϕn−1)], (2.62)

which has the same form as the Josephson energy. If we minimize variationally the LD free

energy Eq.(2.61) with respect to Ψ∗n we get the LD equation for Ψn

α|Ψ|n + β|Ψn|2Ψn −
~2

2mab

(
∂2

∂x2
+

∂2

∂y2

)
− ~2

2mcs2
(Ψn+1 − 2Ψn + Ψn−1) = 0, (2.63)

where in the last term we recognize the discrete second derivative. With the inclusion of

magnetic field, i.e, non-zero vector potential A we have

α|Ψ|n + β|Ψn|2Ψn −
~2

2mab

(
∇− i2e

~c
A

)2

Ψn−

− ~2

2mcs2
(Ψn+1e

−2ieAzs/~c − 2Ψn + Ψn−1e
2ieAz/~c) = 0. (2.64)

where the mab term the gradient operator ∆ and A are two-dimensional vectors in the xy

plane.

We recover the anisotropic GL theory if the variation of Ψ along z direction is smooth

enough so that we can replace (Ψn −Ψn+1)/s with ∂Ψ/∂z.

αΨ + β|Ψ|2Ψ− ~2

2

(
∇− i2e

~c
A

)
1

m

(
∇− i2e

~c
A

)
Ψ = 0, (2.65)

where 1/m is the reciprocal mass tensor i.e diag(1/mab, 1/mab, 1/mc)
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2.6 BCS Theory

One had to wait until 1957 to see a microscopic model of superconductivity elaborated

by J. Bardeen, L.N. Cooper and J.R. Schrieffer [42]. Even if it has been proved to fail in

explaining the mechanisms of superconductivity in high-Tc and other exotic superconducting

materials, it is still a widely applied formalism to interpret experimental results and a reference

basis for other specific theories.

The BCS theory is based on the idea of an attractive interaction between electrons due to

phonons. It is well know that the Coulomb interaction between two identical electric charges

is repulsive. However, in certain circumstances and when described in momentum space,

effective attraction can bind electrons due to their motion through the ionic lattice. The

best intuitive way of understanding this fact is given by picture of thick and soft mattress

on which heavy balls are thrown rolling: the trajectory of one ball leaves a depression in

which a second ball moving on the mattress would fall as if the balls would attract each other.

The microscopic picture of superconducting metals is identical: electrons slightly deform the

crystal lattice by attracting ions cores, creating an area of greater positive charge density

around itself; this excess of positive charge attracts in turn another electron. At a quantum

level, those distortion and vibrations of the thermal excitations of the lattice which would

break then up, the electrons remain paired; roughly, this explains why superconductivity

requires very low temperatures. Cooper also showed that the optimal pairing is obtained by

electrons with opposite spins and momenta.

2.6.1 The Cooper Problem

Cooper first introduced the concept of electron pairs-further called Cooper pairs by show-

ing that the Fermi sea of conducting electrons was unstable in the presence of an attractive

interaction; he demonstrated the possibility of bound states solutions, with negative energy

with respect to the Fermi state, involving two electrons whose momenta belong to a thin shell

above the Fermi level. At a quantum level, since the formed pairs have a bosonic character,

nothing prevents then from condensing in the same quantum state: hence the attractive inter-

action leads to a condensation of paried electrons close to the Fermi level until an equilibrium

is reached. The usual picture of BCS superconductivity is a twofold electron scattering by

phonons. In its simplest realisation, which we shall also consider in the present study, it as-

sumed that the process is dominated by exchanges which do not flip the electron spin, hence

the so-called s-wave pairing channel.

Originally, Cooper considered to add a pair of electrons with momenta k and −k and

their energies Ek slightly beyond the Fermi surface of the system. Their wave functions are
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uk = eik·rUk and u−k = e−ik·rU−k, respectively. Adding an electron with momentum −k
is equivalent to annihilating a hole with −k and wavefunction v∗k = u−k. Here, we write

v∗k = e−ik·rV ∗k and we see that V ∗k = U−k. Then, the pair state Ψk for momentum k can be

expressed as

Ψk(r1, r2) = uk(r1)u−k(r2) = UkV
∗
k e

ik·(r1−r2). (2.66)

The linear combination of different k states gives the real space wave function

Ψ(r1, r2) =
∑

k

g(k)eik·(r1−r2), (2.67)

where g(k) = UkV
∗
k . Note that g(k) = 0 for |k| < kF due to the Pauli exclusion principle.

The Schrödinger equation for the paired electrons has the form

[
− ~2

2m
(∇2

1 +∇2
2) + V (r1 − r2)

]
Ψ(r1, r2) = (E + 2EF )Ψ(r1, r2), (2.68)

where V (r1−r2) is the interacting potential between the paired electrons and E is the energy

of the relative to the state when the two electrons are at the Fermi level. Inserting Eq.(2.67)

into Eq. (2.68), we obtain the Schrödinger equation in momentum space,

[2(Ek − EF )− E]g(k) = −
∑

k′

Vk,k′g(k′) (2.69)

with

Ek =
~2k2

2m
, (2.70)

Vk,k′ = Ω−1

∫
ei(k−k

′)·rV (r)dr, (2.71)

where Ω is the volume of the system. For simplicity, he assumed that the interaction is

constant near the Fermi level, within the Deybe window ~ωD,

Vk,k′ =

{
V/Ω, |Ek − EF | and |Ek′ − EF | < ~ωD

0 otherwise.
(2.72)

Then, Eq. (2.69) becomes

gk = − V C/Ω

E − 2(Ek − EF )
, (2.73)

where

C =
∑

|Ek′−EF |<~ωD

g(k′). (2.74)
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is a constant. Eqs.(2.73) and (2.74) form a set of self-consist equations.

After using the density of states N(E) to replace the summation by an integral, the

solution of eigenvalue can be found:

E = − 2~ωD
e2/V N(Ef ) − 1

, (2.75)

where N(EF ) is the density of states at the Fermi level. This is the binding energy of a Cooper

pair and it is always lower than the energy of the normal state no matter the interaction V .

2.6.2 The BCS Hamiltonian

The previous section showed that the Fermi becomes unstable when attractive interac-

tions exist between electrons. The BCS theory suggested that the attractive interaction

are a consequence of electron-electron interactions mediated by electron-lattice interaction

(electron-phonon). The motivation is the isotope effect Tc ∝ M−α where M is the isotope

mass of the ion and α ∼ 0.5. The nature of this electron-phonon interaction is shown in Fig.

2-17 and the Hamiltonian is

HI =
1

2

∑

q,k,k′,σ1,σ2

Vk1,qc
†
k1+q,σ1

c†k2−q,σ2ck2,σ2ck1,σ1 , (2.76)

where c†k,σ and ck,σ are the creation and destruction operation of electrons with momentum

k and spin σ, and q is the momentum of the phonon. The interaction potential Vk,q is

Vk,q = 2|Mq|2
~ωq

(εk+q − εk)− (~ωq)2
, (2.77)

where Mq is the ion-electron interaction, ε and ~ωq are the energy of electrons and phonon,

respectively.

Figure 2-17 : Phonon mediated electron-electron interaction. The electron (k2, σ2)
emits a phonon of momentum q, absorbed by the electron (k1, σ1)

Next, the BCS theory considered a reduce case. First, only electrons within the Debye
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energy ~ωD around the Fermi energy EF are considered, i.e |εk+q−εk| < ~ωD. The interaction
potential Vk,q is assumed to be constant V . Second, only those pairs with k1 + k2 = 0 are

considered. As shown in Fig. 2-18, for the pairs with total momentum k1 + k2 = K,

only those electrons in the dashed area can participate. When K = 0, the dashed area is

maximum and gives most important contribution. In addition, to insure the antisymmetry of

the wavefunction, it is desirable to take pairs of opposite spin. Thus, the best choice for the

ground state pairing is (k ↑,−k ↓) and the BCS reduced Hamiltonian is written as

Figure 2-18 : If the Cooper pair consist of two electrons having a momentum sum
k1 + k2 = K, then the total number of such pairs is proportional to
the dashed area.

H =
∑

k,σ

εkc
†
k,σck,σ −

∑

k,k′

Vk,k′c
†
k′,↑c

†
−k′,↓ck,↓ck,↑. (2.78)

The first term represents a sum of kinetic energies of all electrons. The second term rep-

resents the interaction among electrons. Here, Vk,k′ > 0 represents the attractive interaction.

2.6.3 The BCS Ground State

In the second quantisation formalism, we can represent the ground state of a normal metal

at zero temperature by ∏

k≤kF

c†−k↓c
†
k↑|vac〉, (2.79)

that is, for normal metals with a spherical Fermi surface, all energy states are completely

filled up to the Fermi level and none are occupied above that level.

At T = 0K, the BCS theory proposes that all electrons near the Fermi energy EF the form

of Cooper pairs. This is the so called BCS ground state. The proposed trial wave functions

for the many-body ground state |ΨBCS〉 is:

|ΨBCS〉 =
∏

k

(uk + vkc
†
k,↑c

†
−k,↓)|vac〉. (2.80)
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Here uk and vk are the probability amplitude of the unoccupied and occupied pair state,

respectively. They are variational parameters. The normalization conditions reads |uuk |2 +

|vuk |2 = 1. As seen from Eq. (2.80), the number of particles in the system is not conserved.

The BCS theory is based on the grand canonical ensemble. Therefore we have to impose a

constraint on the number of electrons N:

〈ΨBCS |N̂ |ΨBCS〉 = 〈ΨBCS |
∑

kσ

c†kσckσ|ΨBCS〉 = N. (2.81)

Using a Lagrange multiplier, i.e., the Fermi energy EF , one can minimize the ground state

energy ES with constant N :

δES = 〈ΨBCS |Ĥ − EF N̂ |ΨBCS〉 = 0. (2.82)

Substituting the Hamiltonian Eq. (2.78) and wavefunction Eq. (2.80) into this equation, we

obtain

ES =
∑

k

2ξkv
2
k +

∑

kk′

Vkk′ukvkuk′vk′ , (2.83)

where ξk = εk − EF . By minimizing this energy with respect to uk and vk and making use

of the normalization condition, one obtains:

|uk|2 =
1

2

(
1 +

ξk
Ek

)
, (2.84)

|vk|2 =
1

2

(
1− ξk

Ek

)
. (2.85)

where Ek is

Ek =
√
ξ2
k + ∆2

k (2.86)

and ∆k satisfies the relation:

∆k = −
∑

k′

Vkk′uk′v
∗
k′ = −1

2

∑

k′

Vkk′
∆k′

Ek′
. (2.87)

∆k is called the pairing potential or the order parameter. Eq. (2.87), the so-called gap

equation, must be solved self-consistently.

The total energy of the superconducting ground state (Vkk ≡ V in the BCS theory) is

given by

ES =
∑

k

(
ξk −

ξ2
k

Ek

)
− ∆

V
. (2.88)

The condensation energy is the energy difference between the superconducting state and the
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normal state:

Econd = Es − EN ≈
∑

k

[ξk − Ek] = −1

2
N (0)|∆|2, (2.89)

where N (0) is the density of states at the Fermi energy. It also show that the energy of the

superconducting ground state is lower than the energy of the normal state.

2.6.4 Elementary Excitations

Form the superconducting ground state, the total energy of the system will increase when

the pair state (k ↑,−k ↓) is broken. Due to the Pauli exclusion principle, this can be done by

adding an electron in state k ↑ or removing an electron from state −k ↓. The total energy

change must be accounted for (1) energy for removing a pair state from the system and (2)

energy for adding the single electron in the system.

According to Eq. (2.83), breaking a pair state with k increases the energy of the system

by an amount

δF = −2ξkv
2
k − 2

∑

k′

Vkk′ukvkuk′vk′ . (2.90)

With Eq. (2.87), it may be written as

δF = −2ξkv
2
k + 2∆kukvk. (2.91)

After including the kinetic energy of the added electron, the total energy changes by an

amount:

δE = −2ξk(1− 2v2
k) + 2∆kukvk

= ξk

[
1−

(
1− ξk

Ek

)]
+

∆2
k

Ek
(2.92)

= Ek.

Thus, Ek is the minimum energy to break a Cooper pair and to create an create an

excitation. ∆k is also called the energy gap because it is the smallest energy that can be

added (Ek = ∆k if ξk = 0).

A single-particle excitation is a superposition of an electron and a hole. This is referred

to as quasiparticle and Ek is the energy of the quasiparticle excitation. Excited states of the

reduced Hamiltonian can be obtained through a (Bogoliubov-Volatin transformation), which

diagonalizes the Hamiltonian. Bogoliubov interpreted Ek as the energy of quasiparticles γ†k =

uk+vkc
†
k,↑c

†
−k,↓ which create electron-like excitations above the Fermi level or correspondingly

hole-like excitations below the Fermi surface [43].
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The value of the gap δ at zero temperature T = 0K can be shown to be

∆(0) ≈ 2~ωDe−1/N (0)V , (2.93)

where ωD is the Deybe frequency and N(0) is the density of energy states at the Fermi level.

At finite temperature, excitations above the ground state must be taken into account and

physical state will take the form

∏

occ. states

γ†k|ΨBCS〉, (2.94)

which express the fact the quasiparticles progressively fill the excited states according too the

Fermi-Dirac probability distribution

f(Ek) = (1 + eβEk)−1, β =
1

kT
. (2.95)

The BCS treatment of the electron pairing allows for the identification of the gap equation

at any temperature:
1

N (0)
=

1

2

∫ ~ωD

−~ωD
dε

tanh(βEk/2)

Ek
. (2.96)

In particular, the critical temperatures is defined as the temperature at which the gap is

completely closed; analysis of the previous integral yields

kTc ≈ 1.13~ωDe−1/N (0)V . (2.97)

Finally, the temperature dependence of the gap can be obtained by analysis of (2.96) and

is shown in Fig. 2-19. Close to the critical temperature, the curve can be approximated by

∆(T ) ≈ 1.74∆(0)

(
1− T

Tc

) 1
2

, atT ∼ Tc. (2.98)

Summarising the main results of the original BCS theory: it is possible to create bound

states of electron pairs around the Fermi surface due to their interactions through lattice

phonons. This attractive s-wave pairing gives rise to a modified energy spectrum of the

conduction electrons, with a gap between the ground state and the first excited states, cor-

responding to the minimal excitation energy of Bogoliubov’s quasiparticles, which correlate

electrons with opposite momenta and spins close to the Fermi level. The energy gap has a

definite temperature dependence, and the temperature at which it vanishes, restituting the

original energy spectrum of non-paired electrons, gives the critical temperature for the super-
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Figure 2-19 : Temperature dependence of the energy gap according to the BCS the-
ory, compared to some experimental data for typical superconductors.
Taken from [44].

conducting transition. The coherence and penetration lengths can also be recovered within

this framework and they match with those of the Ginzburg-Landau formalism.



51

3 The Extended Ginzburg Landau Formalism (EGL)

In this chapter, we present the Extended GL formalism (EGL) derived based on Gor’kov

formalism for a clean s-wave superconductor and in the absence of the magnetic field.

3.1 Introduction

By applying Landau’s theory of second-order transitions to study the superconductivity,

Ginzburg and Landau [13] in 1950, derived a set of two equations, one describing the spatial

variation of Ψ and the other describing the magnetic field, now known as the Ginzburg-Landau

(GL) equations for superconductivity.

As seen in the previous chapter, the microscopic theory of superconductivity was proposed

in 1957 by Bardeen, Cooper and Schrieffer [42]. The theory explained the superconducting

current as a superfluid of “Cooper pairs”, pairs of electrons interaction through the exchange

of phonons. In 1959, Gor’kov showed that the BCS theory reduced to the GL theory close

the critical temperature.

Based on Gor’kov formalism for a clean s-wave superconductor A. Vagov and A. Shanenko

et al. [45] develop an extended version of the single-band Ginzburg-Landau (GL) theory. They

derive the extended theory in the form of the perturbation expansion of the microscopic free-

energy functional and the gap equation using the proximity to the critical temperature as

the small parameter. The two lowest orders of this expansion yield the standard Ginzburg-

Landau theory and the higher orders are its corrections. They demonstrate that the EGL

formalism is not just a mathematical extension to the theory, where the variation of the gap

and thermodynamic critical field with temperature calculated within the EGL theory are

found in very good agreement with the full BCS result down to low temperatures. Also, this

plan has sketched for two-bands superconductors [46,47] and multiband superconductors [48].

In this chapter, we will find how the GL equation and EGL formalism for a single band

superconductor can be derived from the BCS theory. Recall that the GL formalism works near

Tc, therefore using the assumption that the energy gap is small and varies slowly near to the

critical temperature Tc. The derivation is founded on the method proposed by Gor’kov [49]

and based on the Green’s function formalism at arbitrary temperatures and fields. For the
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calculation we consider the absence of the magnetic field. The absence of the magnetic field

greatly simplifies the situation, because the electronic Green’s function calculated to next-to-

leading order in τ in the presence of the magnetic field is more complicated than the one in

zero magnetic field.

3.2 Nambu - Gor’kov Theory

Let’s consider an homogeneous system. The Hamiltonian with s-wave singlet pairing is

given

HBCS =
∑

σ

∫
dr
[
ψ†σ(r)Trψσ(r) + ψ†↑(r)ψ†↓(r)∆(r) + h.c

]
, (3.1)

where Tr is the single-electron kinetic energy operator

Tr = − ~2

2me

(
∇− i e

~c
A
)
− µ, (3.2)

and the energy gap is:

∆(r) = −g〈ψ↑(r)ψ↓(r)〉 (3.3)

It is not convenient to work with the usual Heisenberg picture at finite temperatures due

to the factor e−βH. To overcome this problem the Heisenberg picture with imaginary time is

usually introduced. In this case the Heisenberg operators are defined as:

ψσ(r, t) = eHBCS t/~ψσ(r)e−HBCS t/~,

ψσ(r, t) = eHBCS t/~ψ†σ(r)e−HBCS t/~.

The equation of motion, in the imaginary-time Heisenberg picture is of form:

−~∂tψ↑(r, t) = [ψ↑(r, t),HBCS ] = Trψ↑(r, t) + ∆(r)ψ↓(r, t), (3.4)

−~∂tψ̄↓(r, t) = [ψ↓(r, t),HBCS ] = ∆∗(r)ψ↑(r, t)− T ∗r ψ↓(r, t). (3.5)

Let us now introduce the temperature (Matsubara) Green’s Functions

G(r, t; r′, t′) = −1

~
〈Ttψ↑(r, t)ψ↑(r

′, t′)〉,

F (r, t; r′, t′) = −1

~
〈Ttψ↓(r, t)ψ↑(r

′, t′)〉,

G(r, t; r′, t′) = −1

~
〈Ttψ↓(r, t)ψ↓(r

′, t′)〉,

F (r, t; r′, t′) = −1

~
〈Ttψ↑(r, t)ψ↓(r

′, t′)〉,

(3.6)
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where Tt is the time-ordering operator, generalized time-ordering proceduce Tt(A(t)B(t′)) =

Θ(t− t′)A(t)B(t′)−Θ(t′ − t)B(t′)A(t).

The equations of motion for the temperature Green’s function read

−~∂tG(r, t; r′, t′) = δ(t− t′)δ(r − r′) + TrG(r, t; r′, t′) + ∆(r)F (r, t; r′, t′),

−~∂tF (r, t; r′, t′) = ∆∗(r)G(r, t; r′, t′)− T ∗r F (r, t; r′, t′),

−~∂tG(r, t; r′, t′) = δ(t− t′)δ(r − r′) + ∆∗(r)F (r, t; r′, t′)− T ∗r G(r, t; r′, t′),

−~∂tF (r, t; r′, t′) = TrF (r, t; r′, t′) + ∆(r)G(r, t; r′, t′).

(3.7)

These equation are called the Gor’kov equations [49]. Note that there are no δ(t− t′)δ(r−
r′) functions in the equations of motion for F and F , thus they are called anomalous Green

functions.

In his pioneering paper Gor’kov derived and used first two equation in (3.7). Supplemented

with two additional relations, the Gor’kov equations can be rewritten as:

G(r, t; r′, t′) =

(
G(r, t; r′, t′) F (r, t; r′, t′)

F (r, t; r′, t′) G(r, t; r′, t′)

)
, (3.8)

HBdG =

(
Tr ∆(r)

∆∗(r) −T ∗r

)
, (3.9)

where BdG refers to the Bogoliubov-de Gennes Hamiltonian. Now it possible rearrange

Eqs.(3.7) in the following elegant form:

(~∂t1 +HBdG)G(r, t; r′, t′) = δ(t− t′)δ(r − r′)1. (3.10)

Eqs. (3.10) are often called the Gor’kov-Nambu equations [50]. It is clear from the

representation given by Eq. (3.10) that the 2× 2 matrix HBdG determines all the properties

of the temperature Green’s function. This is why it is convenient to introduce eigenvalues

and eigenfunctions of such a matrix differential operator.

One of the most important things concerning the temperature Green’s functions are the

imaginary-time boundary conditions.

G(r, t; r′, t′) = −1

~
〈Ttψ↑(r, t)ψ↑(r

′, t′)〉

=
(−1)

~Tr(e−βHBCS )
Tr
(
e−βHBCS

[
Θ(t− t′)eHBCS t/~ψ↑(r)e−HBCS t/~eHBCS t

′/~ψ†↑(r
′)e−HBCS t

′/~

− Θ(t′ − t)eHBCS t
′/~ψ†↑(r

′)e−HBCS t
′/~eHBCS t/~ψ↑(r)e−HBCS t

′/~
])
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=
(−1)

~Tr(e−βHBCS )
Tr
(
e−βHBCS

[
Θ(t− t′)eHBCS(t−t′)/~ψ↑(r)e−HBCS(t−t′)/~ψ†↑(r

′)

− Θ(t′ − t)eHBCS(t′−t)/~ψ†↑(r
′)e−HBCS(t′−t)/~ψ↑(r)

])

G(r, t; r′, t′) = G(r, r′, t− t′); where − ~β < t− t′ < ~β

that in a general form

A(r, r′; η) = −A(r, r′; η + β~), with η = t− t′ [A = G,G, F, F ]. (3.11)

Now, one can try to rewrite Eq. (3.7)(the Gor’kov equations) and Eq. (3.10)(the Gor’kov-

Nambu equations), using the boundary condition (3.11) and make an expansion in terms of

the Matsubara frequencies (3.12)

A(r, r′; η) ≡ 1

β~

∞∑

n=∞
e−iωnηAω(r, r′), Aω(r, r′) ≡

∫ ~β

−~β
eiωηA(r, t; r′, t′)

δ(η) =
1

β~
∑

n

e−iω̃nη, see Appendix A.
(3.12)

where, ωn = π(2n + 1)/β~ are the fermionic Matsubara frequencies. Using these Fourier

components, the Gor’kov-Nambu equation can be written as,

~∂tG(r, t; r′, t′)⇒ − 1

β~

∞∑

n=∞
(i~ωn)e−iωn(−t−t′)Gω(r, r′), (3.13)

Gω(r, r′) =

(
Gω(r, r′) Fω(r, r′)

Fω(r, r′) Gω(r, r′)

)
. (3.14)

Since the HBdG operator depends only on the spacial variables, the last term is simply

reduced to

HBdGG(r, t; r′, t′)⇒ 1

β~

∞∑

n=∞
e−iωn(−t−t′)HBdGGω(r, r′), (3.15)

and the term with the δ is reduced to

δ(t− t′)δ(r − r′)⇒ 1

β~

∞∑

n=∞
e−iωn(−t−t′)δ(r − r′). (3.16)

Now Eq. (3.10) for the Fourier transform of Green functions reads

(i~ω1−HBdG)Gω(r, r′) = δ(r − r′)1. (3.17)
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Introduction the 2× 2 matrix operators in the Hilbert space, to try solve these equations

Gω(r, r′) = 〈r|Ğω|r′〉, 〈r|ĤBdG|r′〉 = δ(r − r′)H̆GdB(r′), δ(r − r′)1 = 〈r|1|r′〉.
(3.18)

Eq. (3.17) result a matrix equation resembling the well-known Green’s function equation

for the operator H̆GdB,
(i~ω1̆− H̆GdB)Ğω = 1̆, (3.19)

also, as the H̆GdB operator can be expressed as the sum of the kinetic and interaction contri-

butions

H̆GdB = T̆ + ∆̆, T̆ =

(
T̂ 0

0 ˆ−T ∗

)
, ∆̆ =

(
0 ∆̂

∆̂∗ 0

)
. (3.20)

The Eq.(3.19) becomes:

(i~ω1̆− T̆ )Ğω = 1̆ + ∆̆Ğω. (3.21)

In the normal state where ∆̂ = 0, the normal or unperturbed Green function operator can

be constructed as

(i~ω1̆− T̆ )Ğ(0)
ω = 1̆⇒ [Ğ(0)

ω ]−1Ğ(0)
ω = 1̆,

[Ğ(0)
ω ]−1 = (i~ω1̆− T̆ ). (3.22)

The Eq. (3.22 can be used to transform (3.21) into a Dyson equation (integration and

summation of repeated variables is implicit):

[Ğ(0)
ω ]−1Ğω = 1 + ∆̆Ğω

Ğω = Ğ(0)
ω + Ğ(0)

ω ∆̆Ğω (3.23)

3.3 Extend Ginzburg-Landau Formalism (EGL)

The GL theory and EGL formalism can be derived from the microscopic BCS model. Near

the transition line the function ∆ is small, and the Dyson equation (3.23) for Ğω can be solved

by iteration. Then, to construct the self-equation for the the superconducting gap, one needs

to extract the equation for the anomalous Green function. In its explicit form Eq.(3.23) is

given by

(
Ĝω F̂ω

F̂ω Ĝω

)
=


Ĝ

(0)
ω 0

0 Ĝ
(0)

ω


+


Ĝ

(0)
ω 0

0 Ĝ
(0)

ω



(

0 ∆̂

∆̂∗ 0

)(
Ĝω F̂ω

F̂ω Ĝω

)
, (3.24)
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and one get the following relation:

Ĝω = Ĝ(0)
ω + Ĝω∆̂∗F̂ω, F̂ω = Ĝ

(0)

ω ∆̂∗Ĝω,

Ĝω = Ĝ
(0)

ω + Ĝω∆̂∗F̂ω, F̂ω = Ĝ(0)
ω ∆̂Ĝω.

(3.25)

Now we need to evaluated the self-consistency equation Eq.(3.25). For this we use the

Eqs.3.26 iteratively to find expression for Fω in term of ∆̂ and Gω

F̂ω = Ĝ(0)
ω ∆̂Ĝ

(0)

ω + Ĝ(0)
ω ∆̂Ĝ

(0)

ω ∆̂∗Ĝ(0)
ω ∆̂Ĝ

(0)

ω + Ĝ(0)
ω ∆̂Ĝ

(0)

ω ∆̂∗Ĝ(0)
ω ∆̂Ĝ

(0)

ω ∆̂∗Ĝ(0)
ω ∆̂Ĝ

(0)

ω · · · (3.26)

In order to obtain the GL equations, one must truncate the infinite series in Eq. (3.26)

keeping only the first and third powers. To obtain the EGL formalism, it is necessary to

include the fifth-power, since when T → Tc, the order parameter decays as ∆ ∝ τ−1/2. So,

with terms τ1/2 → we obtain the equation for Tc, τ3/2 → we recover the standard GL and

τ5/2 → gives the Extended GL formalism. The self-consistency equation Eq.(3.3) for the order

parameter ∆(r) and the anomalous Green functions reads

∆(r) = −g~ lim
r→r′

lim
η→0

Fω(r, t; r′, t′)

= −g~ lim
r→r′

lim
η→0

1

β~
∑

w

e−iωηFω(r, r′)

= gT lim
r→r′

lim
η→0

∑

ω

e−iωηFω(r, r′) (3.27)

In the absence of the magnetic field, the G(0)
ω is the usual Green’s function of the non-

interacting electrons

G(0)
ω (r,y) = 〈r|(i~ω − T )−1|y〉 =

=

∫
d3k

(2π)3

d3k′

(2π)3
〈r|k〉〈k|(i~ω − T )−1|k′〉〈k′|y〉

=

∫
d3k

(2π)3

d3k′

(2π)3
eik·r

1

i~ω − ξk
(2π)3δ(k − k′)e−ik

′·y =

=

∫
d3k

(2π)3

eik·(r−y)

i~ω − ξk
. (3.28)

with the single-particle energy ξk = ~2k2
2m − µ, measured from the chemical potential µ. Fur-

thermore Gω(r,y) = −G−ω(r,y).

Using the completeness relation, by inserting identity operators 1̂ =
∫
dy|y〉〈y| in Eq.
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(3.26), one obtain the self-consistency equation

Fω(r,y) =

∫
dyG(0)

ω (r,y)∆(y)G
(0)
ω (y, r)+

+

∫ 3∏

j=1

dyjG
(0)
ω (r,y1)∆(y1)G

(0)
ω (y1,y2)∆∗(y2)G(0)

ω (y2,y3)∆(y3)G
(0)
ω (y3, r)+

+

∫ 5∏

j=1

dyjG
(0)
ω (r,y1)∆(y1)G

(0)
ω (y1,y2)∆∗(y2)G(0)

ω (y2,y3)∆(y3)G
(0)
ω (y3,y4)×

×∆∗(y4)G(0)
ω (y4,y5)∆(y5)G

(0)
ω (y5, r) + . . . . (3.29)

Inserting Eq.(3.27), we obtain the self-consistent gap equation. Then, the solution to the

gap equation can be represented in the form of a perturbation series over powers of ∆(r)

(which is small in the vicinity of the critical temperature Tc):

∆(r) =

∫
dyKa(r,y)∆(y) +

∫ 3∏

j=1

dyjKb(r, {y}3)∆(y1)∆∗(y2)∆(y3)+

+

∫ 5∏

j=1

dyjKc(r, {y}5)∆(y1)∆∗(y2)∆(y3)∆∗(y4)∆(y5),

(3.30)

where {y}n = {y1, · · · ,yn}. The integral kernel are given by:

Ka(r,y) = −gkBT
∑

ω

G(0)
ω (r,y)G

(0)
ω (y, r), (3.31)

Kb(r, {y}3) = −gkBT
∑

ω

G(0)
ω (r,y1)G

(0)
ω (y1,y2)G(0)

ω (y2,y3)G
(0)
ω (y3, r), (3.32)

Kc(r, {y}5) = −gkBT
∑

ω

G(0)
ω (r,y1)G

(0)
ω (y1,y2)G(0)

ω (y2,y3)G
(0)
ω (y3y4)G(0)

ω (r4,y5)G
(0)
ω (y5, r).

(3.33)

Then, the non-linear integral form of the self-consistency equation is transformed into the

differential form by introducing the gradient expansion, we define z = y − r

∆(yj) = ∆(r + zj) =
∞∑

n=0

1

n!
(zj · ∇r)n∆(r). (3.34)

Fortunately from the standard single-band GL theory it turns out that as one approach Tc
not only the order parameter behaves as ∆ ∝ τ1/2, but also its spatial variations occur on

the length scale ξ ∝ τ−1/2. Then any spatial gradient is proportional to τ1/2, i.e., ∇ ∝ τ1/2,

therefore ∇∆ ∝ τ , meaning the τ -order of each term in the GL expansion can be found by
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counting one power τ1/2 for each occurence of the order parameter or its gradient.

The coefficients of the partial differential equation governing ∆ still have to be calculated

by explicitly evaluating the integrals in Eq. (3.29) to the desired precision. In particular,

the GL equation obtained when keeping only the first two term, including Ka and Kb in the

Eqs. (3.31-3.33) and the second-order spatial derivatives in the gradient expansion, where

the terms are of the order of τ3/2. Now for the EGL where the terms are in an order of τ5/2

its necessary to incorporate all the spatial derivatives up to the fourth order in the gradient

expansion inside the integral in Ka, up to second order inside the integral involving Kb and

just the leading term inside the integral involving Kc. Due to the spherical symmetry of the

kernels, with respect to the transformation z → −z, some odd-order terms of these expansions

can be neglected. The details of calculation can be found in Appendix B, here we quote the

results.

The first tern in Eq. (3.30) evaluates to:
∫
dyKa(r,y)∆(y) ≈ a1∆ + a2∇∆ + a3∇(∇2∆), (3.35)

where

a1 = A− a[τ +
τ

2
+O(τ3)], A = gN (0) ln

(
2eΓ

π

~ωD
Tc

)
, a = −gN (0).

a2 = K[1 + 2τ +O(τ2)], K = gN (0)
~2v2

f

6

7ζ(3)

8π2T 2
c

.

a3 = Q[1 +O(τ)], Q = gN (0)
~4v4

f

30

93ζ(5)

128π4T 4
c

.

(3.36)

From the second term of the Eq. (3.30) we get:

∫ 3∏

j=1

dyjKb(r, {y}3)∆(y1)∆∗(y2)∆(y3)

≈ −b1∆|∆|2 − b2[2∆|∇∆|2 + 3∆∗(∇∆)2 + ∆2∇2∆∗ + 4|∆|2∇2∆] (3.37)

With

b1 = b[1 + 2τ +O(τ2)], b = gN (0)
7ζ(3)

8π2T 2
c

,

b2 = L[1 +O(τ)], L = gN (0)
~2v2

f

9

93ζ(5)

128π4T 4
c

.

(3.38)
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Finally the last term contributes in the order τ5/2 only as:

∫ 5∏

j=1

dyjKc(r, {y}5)∆(y1)∆∗(y2)∆(y3)∆∗(y4)∆(y5) ≈ c1|∆|4∆, (3.39)

with

c1 = c[1 +O(τ)], c = gN (0)
93ζ(5)

128π4T 4
c

, (3.40)

where a = −N (0) and N (0) = mkf/(2π
2~2) is the DOS at the Fermi energy; vf the Fermi

velocity; ωD denotes the Debye (cutoff) frequency, Γ = 0.577 is the Euler constant, and ζ(...)

is the Riemann zeta function.

In total we have:

∆ =a1∆ + a2∇2∆ + a3∇(∇2∆)− b1∆|∆|2

− b2[2∆|∇∆|2 + 3∆∗(∇∆)2 + ∆2∇2∆∗ + 4|∆|2∇2∆] + c1|∆|4∆. (3.41)

A systematic expansion of the gap equation in τ can be facilitated by introducing the

scaling transformation for the order parameter, the coordinates, and the spatial derivatives

of the order parameter in the following form:

r = τ1/2r, ∆ = τ1/2∆, ∇ = τ1/2∇ (3.42)

Where it is understood that ∆ = ∆(r), i.e., the gap is spatially dependent. The solution

to the gap Eq. (3.41), must also be sought in the form of a series expansion in τ

∆ = ∆0 + τ∆1 + τ2∆2 . . . (3.43)

By substituting Eq. (3.43) into Eq. (3.42) and collecting terms of the same order, we

obtain a set of equations for each ∆n, (n = 0, 1, 2, · · · ). At τ1/2 we obtain

τ0 : ∆0 = A∆0. (3.44)

The solution to this equation, i.e., A = 1, gives the ordinary BCS expression for the

critical temperature, i.e.,

Tc =
2Γ

π
hωD exp[−1/(gN (0))]. (3.45)

The terms of the order τ3/2 recovers the standard GL equation for the leading contribution
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to the order parameter ∆0

0 = a∆0 −K∇2
∆0 + b|∆0|2∆0. (3.46)

Finally, at τ5/2 one gets

a∆1 + b(2|∆0|2∆1 + ∆2
0∆∗1)−K∇∆1 = F (3.47)

This is a linear differential inhomogeneous equations to be solved after ∆0 is found from

Eq. (3.46), where F is given by

F = −a
2

∆0 + 2K∇2
∆0 +Q∇2

(∇2
∆0)−

− 2b|∆0|2∆0 − L[2∆0|∇∆0|2 + 3∆∗(∇∆0)2 + ∆2
0∇

2
∆∗0 + 4|∆0|2∇2

∆∗0] + c|∆0|4∆0 (3.48)

3.3.1 Validity Domain of the EGL Formalism

We obtain the quantitative and qualitative validity domain of the GL approach when

extended to the next-to-leading order in τ .

The Uniform case (terms with ∇ = 0)

a∆0 + b|∆0|2∆0 = 0, ⇒ |∆0|2 = −a
b

a∆1 + b(2|∆0|2∆1 + ∆2
0∆∗1) = −a

2
∆0 − 2b|∆0|2∆0 + c|∆0|4∆0

∆1(a+ 3b∆2
0) = (−a/2− 2b∆2

0 + c∆4
0)∆0

∆1

∆0
= −1

2

(
3

2
+
ca

b2

)
,

where
ca

b2
= − 93ζ(5)

98ζ2(3)
,

∆1

∆0
= −1

2

(
3

2
− 93ζ(5)

98ζ2(3)

)
. (3.49)

Taking into account Eq. (3.43) and using Eq. (3.49), we obtain the order parameter in

the unscaled representation up to the order τ as

∆ = τ1/2∆0

(
1− τ∆1

∆0

)

= τ1/2

√
−a
b

(
1− τ

2

(
3

2
− 93ζ(5)

98ζ2(3)

))
, −a

b
=

gN (0)

gN (0) 7ζ(3)
8π2T 2

c

,
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∆ = τ1/2πTc

√
8

7ζ(3)

(
1− τ

2

(
3

2
− 93ζ(5)

98ζ2(3)

))
,

∆ = τ1/2πTc

√
8

7ζ(3)
(1− 0.35τ). (3.50)

With ∆BCS(0) = π/eγTc is the zero- temperature gap calculated from the full BCS form-

alism [51] we obtain,

∆(T )

∆BCS(0)
= τ1/2eγ

√
8

7ζ(3)
(1− 0.35τ) (3.51)

The result from the standard and extended GL formalism compared to the full BCS

solution are shown in Fig. (3-1)
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)
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Figure 3-1 : (Color online) The temperature-dependent gap (unscaled) in units of
the zero-temperature order parameter calculated within the full BCS
approach ∆BCS(0) versus the relative temperature T/Tc: the solid curve
represents the full BCS; the dashed curve shows the result of the EGL
formalism given by Eq. (3.51); the dotted curve illustrates the standard
GL approach. Taken from [45].

It is seen that the EGL approach is in very good quantitative agreement with the BCS

theory up to T =0.2Tc, and only below this temperature is the order parameter calculated

within the extended formalism, as with the GL theory there is a noticeable difference with

the BCS curve for temperature below T = 0.7Tc.

For details of the calculation as well as the extended GL theory for nonzero field one is

referred to Refs. [45]. Some of the results of the extended GL formalism in the presence of an
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with the applied field can be found in Chapter 8, where we apply them to calculate vortex

interaction in a superconducting thin film including stray field.
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4 Numerical Methods

The range of problems in superconductivity which can be solved by analytic methods is

extremely limited. More complex problems must be solved numerically. In this Chapter we

will present the numerical methods used in this thesis. The time-dependent Ginzburg-Landau

theory will be described, and we included a subsection concerned with how these equations can

be written in a dimensionless form amenable to computation. Also we describe the popular

U − Ψ method used in the most numerical computation work on superconductivity. Finally,

we present the monte Carlo method used in this work.

4.1 Time Dependent Ginzburg-Landau (TDGL)

Equations (2.17), (2.24) and (2.25) have been utilized by many groups to study equilibrium

states in a superconductor. However, often one finds several meta stable states that satisfy

these time-independent GL equations and it is not clear which of these states will occur

in an experiment. An expression for the time evolution of the order parameter is needed

that makes possible to study the transition between meta stables states driven by changes of

external parameters such as magnetic field, voltage and temperature.

The simplest assumption is that the order parameter relaxes towards a local minimum of

the free energy with a rate proportional to slope of the free energy,

~2

2mD

∂Ψ

∂t
= − δG

δΨ∗
, (4.1)

where D is a phenomenological diffusion constant that characterises the decay time of an

excitation. The relaxation mechanism is due to an interaction with the lattice via exchange

of quasi-particles.
∂

∂t
→ +

ie∗

~
ϕ, (4.2)

where ϕ is the electrical potential. To the left hand side of equation (2.24), a normal current
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jn is added to account for non-condensed electrons which obey Ohm’s law,

jn = σnE = σn

(
−∇ϕ− 1

ccc
∂tA

)
. (4.3)

Take this considerations into account, it can be shown that the Time Dependent Ginzburg-

Landau (TDGL) equations are given by,

~2

2mD

(
∂t + i

e∗

~
ϕ

)
Ψ =

1

2m

(
−i~∇− e∗

ccc
A

)2

Ψ + |α|Ψ− β|Ψ|2Ψ, (4.4)

σn

(
−∇ϕ− 1

ccc
∂tA

)
= js −

ccc

4π
∇×∇×A, (4.5)

To make the model suitable for computations and numerical methods, it must first be res-

caled through non-dimensionalization. This alleviates the large difference in scale between the

terms in the G-L model, making a numerical solution more precise, and the non dimension-

alization process introduces more well known values as parameters, such as the characteristic

lengths, in place of the more obscure parameters such as α and β for a superconducting

material.

4.1.1 Dimensional Units

For convenience, to facilitate calculations we will introduce dimensionless units into the

TDGL equations described by Eq. (4.4) and (4.5). We transform the variable as: T = T/Tc,

r′ = r/ξ(0), t′ = t/τ , ψ = Ψ/Ψ0(T ), A′ = A/A0, ϕ′ = ϕ/ϕ0 e α = −α0(1− T ′).
Substituting these transformations into the TDGL equations we have (we will omit the

tilde to simplify the notation), we obtain:

− Γ

τ
(∂t + iϕ)ψ = −α0(1− T )ψ + βΨ2

0|ψ|2ψ +
~2

2mξ(0)2
(−i∇−A)2 ψ, (4.6)

σn
2eτ

(∂tA + ∇ϕ) =
2eΨ2

0

m
R[ψ∗(−i∇−A)ψ]− ccc2

8πeξ(0)2
∇×∇×A, (4.7)

where A0 = ~c/2eξ(0) and ϕ0 = ~/2eτ . Equating all the coefficients on the right side of Eq.

(4.6) and using the order parameter value definition Ψ0 = mc2/16πe2λ2(T ) in the Eq. (4.7)

we have

− Γ

τ
(∂t + iϕ)ψ = −α0(1− T )[(−i∇−A)2ψ + (1− T )(|ψ|2 − 1)ψ], (4.8)

σn
τ

(∂tA + ∇ϕ) =
c2

2πλ2
R[ψ∗(−i∇−A)ψ]− ccc2

4πeξ(0)2
∇×∇×A, (4.9)
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remembering that λ2(T ) = λ2
0/(1− T/Tc), we have

σn
τ

(∂tA + ∇ϕ) =
ccc2

2πλ2

{
(1− T )R[ψ∗(−i∇−A)ψ]− ccc2

4πeξ(0)2
∇×∇×A

}
, (4.10)

where τ = 4πλ0σn/c
2, we obtain the TDGL equations in dimensionless units:

(∂t + iϕ)ψ =
1

η

[
(−i∇−A)2ψ + (1− T )(|ψ|2 − 1)ψ]

]
, (4.11)

(∂tA + ∇ϕ) = (1− T )R[ψ∗(−i∇−A)ψ]− κ∇×∇×A. (4.12)

One can find in the above equation a gauge symmetry whereby the equation is unchanged

under transformation of the type

ϕ′ = ϕ− ∂χ

∂t
, ψ′ = ψeiχ, A′ = A + ∇χ. (4.13)

According to this transformation, we are free to choose the function χ. Then, let χ =
∫ t

0 ϕdt, this is so-called “Zero electric potential gauge” (see [52]). It gives us the new electric

potential ϕ′ = 0 and removes the term ϕ from the TDGL equation.

The gauge invariant transform of these equations allows the choice of the potential to scale

zero. So we finally have,

∂ψ

∂t
=

1

η

[
(−i∇−A)2ψ + (1− T )(|ψ|2 − 1)ψ]

]
, (4.14)

∂A

∂t
= (1− T )R[ψ∗(−i∇−A)ψ]− κ∇×∇×A. (4.15)

Where distances are measured in units of the coherence length ξ(0) =
√

~/2mα0, time

in τ = 4πλ2
0σn/c

2, the external field in units of Hc2(0) = Φ0/2πξ
2(0) =

√
2κHc(0), the

potential vector in units Hc2ξ(0) and temperature in Tc units. η = tψ/A is proportional to

the relation existing between the characteristic times for ψ and A, and was determined from

the BCS theory for various limits: η = 1 clear limit, η = 12 for superconductors with magnetic

impurities [53] and η = 5.79 for weakly coupled superconductors [54].

In this work, we consider that the order parameter and the potential magnetic vector have

the same relaxation time, so η = 1. This assumption is acceptable since we will determine

configurations.
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4.2 The U − ψ method

The problems that we generally want to solve in this thesis consist of a superconductor

immersed in an empty space subjected to a magnetic field, as shown in the figure 4-1. The

superconductor has dimension a× b× c and the total volume A×B ×C. The geometry and

the boundary conditions varies according to the problem, and the vacuum space is taken large

enough in order to consider demagnetization effects and the stray magnetic field

Figure 4-1 : Illustration of the cell utilized in this work, a superconductor with di-
mension a× b× c immersed in an empty space A×B × C.

The widely used U −ψ method is described in detail by Gropp et al. [55]. As this method

forms the basis of our algorithm we briefly review the main points here. Complex link variables

Ux, Uy and Uz are introduced to preserve the gauge invariant properties of the discretized

equations:

Ux(x, y, z, t) = exp

(
−i
∫ x

x0

Ax(ξ, y, z)dξ

)
,

Uy(x, y, z, t) = exp

(
−i
∫ y

y0

Ay(x, η, z)dη

)
,

Uz(x, y, z, t) = exp

(
−i
∫ z

z0

Az(x, y, ζ)dζ

)
,

(4.16)

where (x0, y0, z0) is an arbitrary reference point. This will allow to write the first of the TDGL

equations in a form that resembles a heat diffusion equation. This procedure not only ensures

gauge invariance when discretizing the TDGL equations [55,56], it is also important to ensure

the stability of the explicit Euler method that will be used in temporal integration. Therefore,
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using the link variables, can rewritten the TDGL equations can be rewritten, as [55]:

∂µUµ = −iUµA, (4.17)

such that

∂µ[UµΨ] = Ψ∂µUµ + Uµ∂µΨ,

= −iΨUµAµ + Uµ∂µΨ,

= iUµ(−i∂µ −Aµ)Ψ, (4.18)

indicating that

(−i∂µ −Aµ)Ψ = −iUµ∂µ[UµΨ]. (4.19)

Now, applying the derivative to the equation above

∂µ(−i∂µ −Aµ)Ψ = ∂µ(−iUµ∂µ[UµΨ])

= Uµ(Aµ∂µ[UµΨ]− i∂2
µUµΨ])

= Uµ(iAµUµ(−i∂µ −Aµ)Ψ− i∂2
µ[UµΨ])

−i∂2
µΨ− ∂µAµΨ = iAµ(−i∂µ −Aµ)Ψ− iUµ∂2

µ[UµΨ]

−∂2
µΨ + i(∂µAµ + Aµ∂µ)Ψ + A2

µΨ = −Uµ∂2
µ[UµΨ]

(−i∂µ −Aµ)2 = −Uµ∂2
µ[UµΨ]. (4.20)

The first TDGL equation (4.14) is rewritten as

∂ψ

∂t
=

∑

µ=x,y,z

Uµ
∂2

∂µ2
(Uµψ)− (1− T )(1− |ψ|)ψ. (4.21)

The supercurrent density js is given in terms of ψ and A by (4.15), or, alternatively, in

terms of ψ and U by

js = (1− T )=
[
Uµψ

∂

∂µ
(Uµψ)

]
, µ = x, y, z. (4.22)

where = indicates the imaginary part of the complex variable.

4.2.1 Computational mesh

Consider that the domain Ωsc covers the superconductor parallelepiped of thickness c and

lateral sizes a and b. The interface between this region and vacuum is denoted by ∂Ωsc.
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Because the demagnetization effects, we need to consider a larger domain Ω of dimensions

A×B × C, such Ωsc ⊂ Ω, the vacuum-vacuum interface is indicated by Ω. [See Fig. 4-1].

The method used to obtain numerical solutions of TDGL equations is that of finite dif-

ferences. Here, we consider a grid in the form of a parallelepiped, with Nx × Ny × Nz unit

cells, each with dimension ax × ay × az, in such a way that the A = Nxax, B = Nyay and

C = Nzaz. Therefore, we have a grid of (Nx − 1) × (Ny − 1) × (Nz − 1) points, so that the

computational simulations will be developed in a box composed of unit cell given by:

Ωi,j,k = {r = (x, y, z) : xi < x < xi+1, yj < y < yj+1, zk < z < zk+1}, (4.23)

where

xi = (i− 1)ax, yj = (j − 1)ay, zk = (k − 1)az. (4.24)

Fig. 4-2 show a typical grid cell of the domain Ωsc and the evaluation points for all physical

quantities.

Figure 4-2 : Unit cell in a 3-dimensional mesh.

The domain Ωsc is located an integer number of mesh width inside Ω, in such a way that

there is always at least one layer of grid points between Ωsc and Ω, that is

Ωsc;i,j,k ={r = (x, y, z) : dx1 +
1

2
ax < x < dx2−1 −

1

2
ax, dy1 +

1

2
ay < y < dy2−1 −

1

2
ay,

dz1 +
1

2
az < z < dz2−1 −

1

2
az}.

(4.25)

To solve the TDGL equations it is necessary to replace continuous variables with equivalent
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discrete variables. In order to assure the equivalence of the method, it is necessary to define

in which grid points the physical quantities are calculated. Since such TDGL equations

are differential equations that have gauge invariance, some care is needed because when we

discretizing such equations, this invariance can break (symmetry breaking) and the results

may not be satisfactory (non physical). The use of the so-called link variables guarantee the

invariance of gauge in the discretization process [56].

We denote the discrete variables by the same symbols as their continuous counterparts.

The index (i, j, k) is assigned to any quantity related to the grid cell Ωi,j,k. The primary

variables are the order parameter and the vector of link variables; all other variables (vec-

tor potential, induced magnetic field, supercurrent) are expressed in terms of these primary

variables. The primary variable are evaluated on staggered grids.

• The order parameter ψ,

ψ = {ψi,j,k : i = x1, . . . , x2; j = y1, . . . , y2; k = z1, . . . , z2}, (4.26)

where

ψi,j,k = ψ(xi, yj , zk). (4.27)

• The vector of link variables U = (Ux, Uy, Uz),

Ux = {Ux;i,j,k : i, j, k}, Uy = {Uy;i,j,k : i, j, k}, Uz = {Uz;i,j,k : i, j, k}. (4.28)

To derive the discrete equations it is useful to notice that,from the definition of the link

variables,discrete analogs of Ux, Uy and Uz from (4.16) can be defined at the nodes as

Uxi,j,k =
i−1∏

l=1

Uxl,j,k, Uyi,j,k =

j−1∏

l=1

Uyi,l,k, Uzi,j,k =
k−1∏

l=1

U zi,j,l, (4.29)

which leads to

Uxi,j,k = Ux(xi+1, yj , zk)Ux(xi, yj , zk) = exp

(
−i
∫ xi+1

xi

Ax(ξ, yj , zk)dξ

)
, (4.30)

Uyi,j,k = Uy(xi, yj+1, zk)Uy(xi, yj , zk) = exp

(
−i
∫ yj+1

yj

Ax(xi, η, zk)dη

)
, (4.31)

U zi,j,k = Uz(xi, yj , zk+1)Uz(xi, yj , zk) = exp

(
−i
∫ zk+1

zk

Ax(xi, yj , ζ)dζ

)
. (4.32)

Using the midpoint method for simple integration (for example
∫ xi+1

xi
Ax(ξ, yj , zk)dξ =
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Axi,yj ,zkax +O(a2
x)), we can also write in general form:

Uµi,j,k = exp(−iAµ;i,j,kaµ), µ = x, y, z, (4.33)

whereAx;i,j,k = Ax(xi+ax/2, yj , zk), Ay;i,j,k = Ax(xi, yj+ay/2, zk) andAz;i,j,k = Az(xi, yj , zk+

az/2)

Calculation of the path integral of the vector potential in a unit cell of the mesh results in

the magnetic flux. Let D be any two-dimensional domain that is orthogonal to the z direction.

so, take D = r = (x, y, z) ∈ Ω : xi < x < xi+1, yj < y < yj+1, z = zk, exactly one unit cell:

let ∂D denote the boundary of D. According to Stokes’s identity then we have:

exp

(
−i
∫

D
Bzdxdy

)
= exp

(
−i
∮

∂D
A · dr

)
(4.34)

= Ux;i,j,kUy;i+1,j,kUx;i,j+1,kUy;i,j,k

= Lz;i,j,k. (4.35)

If we approximate the area integral in (4.34) by the midpoint rule and the resulting

exponential by the first two terms of its Taylor expansion

exp

(
−i
∫

D
Bzdxdy

)
= exp(−iBz;i,j,kaxay)

= 1− iBz;i,j,kaxay, (4.36)

where Bz;i,j,k = Bz(xi + ax
2 , yj +

ay
2 , zk), we get:

Bz;i,j,k = − 1

axay
=(Lz;i,j,k). (4.37)

In general, we have

Bµ;i,j,k = − aµ
axayaz

=(Lµ;i,j,k), µ = x, y, z, (4.38)

where we have introduced the abbreviations

Lx;i,j,k ≡ Uy;i,j,kUz;i,j+1,kUy;i,j,k+1U z;i,j,k (4.39)

Ly;i,j,k ≡ Uz;i,j,kUy;i,j,k+1U z;i+1,j,kUx;i,j,k (4.40)

Lz;i,j,k ≡ Ux;i,j,kUy;i+1,j,kUx;i,j+1,kUy;i,j,k (4.41)
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4.2.2 Discretization of the Equations

In the following, discrete approximations for each term of (4.14)-(4.15) are derived, main-

taining second order accuracy in space. Thus using that

(∂xf)i,j,k ≈
fi+1,j,k − fi,j,k

ax
,

(∂2
xf)i,j,k ≈

fi+1,j,k − 2fi,j,k + fi−1,j,k

a2
x

,

we can write:

Ux
∂2

∂x2
(Uxψ)

∣∣∣∣
xi,yj ,zk

=
Ux;i,j,kψi+1,j,k − 2ψi,j,k + Ux;i−1,j,kψi−1,j,k

a2
x

, (4.42)

Uy
∂2

∂y2
(Uxψ)

∣∣∣∣
xi,yj ,zk

=
Uy;i,j,kψi,j+1,k − 2ψi,j,k + Uy;i,j−1,kψi,j−1,k

a2
y

, (4.43)

Uz
∂2

∂z2
(Uzψ)

∣∣∣∣
xi,yj ,zk

=
Uz;i,j,kψi,j,k+1 − 2ψi,j,k + U z;i,j,k−1ψi,j,k−1

a2
z

. (4.44)

Now (1− |ψ|2)ψ, is readily approximated by

(1− ψi,j,kψi,j,k)ψi,j,k. (4.45)

Collecting the previous results, the TDGL equation for order parameter reads:

∂ψi,j,k
∂t

=
Ux;i,j,kψi+1,j,k − 2ψi,j,k + Ux;i−1,j,kψi−1,j,k

a2
x

+
Uy;i,j,kψi,j+1,k − 2ψi,j,k + Uy;i,j−1,kψi,j−1,k

a2
y

+
Uz;i,j,kψi,j,k+1 − 2ψi,j,k + U z;i,j,k−1ψi,j,k−1

a2
z

+ (1− T )(1− ψi,j,kψi,j,k)ψi,j,k

(4.46)

We now turn to the process of discretization of the second TDGL equation (4.15), we can

rewrite the equation (4.22) as:

jsx;i,j,k = jsx

(
xi +

ax
2
, yj , zk

)
= (1− T )=

[
Uxψ

∂

∂x
(Uxψ)

]∣∣∣∣
xi+

ax
2
,yj ,zk

=
(1− T )

ax
=[ψi,j,kUx;i,j,kψi+1,j,k], (4.47)
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jsy;i,j,k = jsy

(
xi, yj +

ay
2
, zk

)
= (1− T )=

[
Uyψ

∂

∂y
(Uyψ)

]∣∣∣∣
xi,yj+

ay
2
,zk

=
(1− T )

ay
=[ψi,j,kUy;i,j,kψi,j+1,k], (4.48)

jsz;i,j,k = jsz

(
zi, yj , zk +

az
2

)
= (1− T )=

[
Uzψ

∂

∂z
(Uyψ)

]∣∣∣∣
xi,yj ,zk+az

2

=
(1− T )

az
=[ψi,j,kUz;i,j,kψi,j,k+1]. (4.49)

For the term ∇×∇×A = ∇×B, using the definition

∇×B = x̂

(
∂Bz
∂y
− ∂By

∂z

)
+ ŷ

(
∂Bx
∂z
− ∂Bz

∂x

)
+ ẑ

(
∂By
∂x
− ∂Bx

∂y

)
, (4.50)

we can use the approximations

Lz;i,j,kLz;i,j−1,k = exp[−iaxay(Bz;i,j,k −Bz;i,j−1,k)]

≈ 1− iaxay(Bz;i,j,k −Bz;i,j−1,k)

≈ 1− iaxay∂yBz,

⇒∂yBz ≈
i

axa2
y

(Lz;i,j,kLz;i,j−1,k − 1), (4.51)

then,

∂yBz(xi +
ax
2
, yj , zk) ≈

i

axa2
y

(Lz;i,j,kLz;i,j−1,k − 1), (4.52)

−∂xBz(xi, yj +
ay
2
, zk) ≈

i

a2
xay

(Lz;i−1,j,kLz;i,j,k − 1). (4.53)

Proceeding analogously it is done for the other derivatives, the term ∂tA, is written as:

∂t[Ux(x, y, z, t)Ux(x+ ax, y, z, t)] = ∂tU
x

= −iUx(x, y, z, t)Ux(x, y, z, t)

∫ x+ax

x
∂tA

x(ξ, y, z, t)dξ,

= −iaxUx(x, y, z, t)Ux(x, y, z, t)∂tA
x(x+

ax
2
, y, z, t) +O(a2

x)

(4.54)

thus it follows that

∂tA
x(xi, yj , zk, t) =

i

ax
Ux;i,j,k∂tUx;i,j,k. (4.55)
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So, the equation of motion for Uµ is

∂Ux;i,j,k

∂t
=− i(1− T )∂tUx;i,j,k=[ψi,j,kUx;i,j,kψi+1,j,k]−

κ2

a2
y

(Lz;i,j,kLz;i,j−1,k − 1)+

+
κ2

a2
z

(Ly;i,j,kLy;i,j,k−1 − 1). (4.56)

The equation for Uy and Uz are obtained by cycling permutation.

Finally, a simple forward-Euler scheme is adopted to discretize the time variable with step

∆t,namely

ψi,j,k(t+ ∆t) = ψi,j,k(t) + ∆t∂tψi,j,k(t). (4.57)

Uµ, i, j, k(t+ ∆t) = Uµ,i,j,k(t) + ∆t∂tUµ,i,j,k(t), µ = x, y, z. (4.58)

The magnetization 4πM = B −H, where B is the induction (the spatial average of the local

magnetic field), is

− 4πMn =
1

NxNyNz

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

hnz;i,j,k −H (4.59)

4.2.3 Boundary Condition

Equations (4.57)-(4.58) are not defined for boundary nodes or links. Generally, in super-

conducting systems, are considered problems with Dirichlet or Neumann boundary conditions

representing the superconducting/metal interface or the superconducting/insulating interface

or vacuum, respectively. The boundary condition implies that no superconducting current

can transpose the limit of the superconducting sample. For the superconductor/insulator

interface it is described by equation (2.26) with b→∞ that is

(−i∇−A)ψ · n̂|∂Ω = 0. (4.60)

For example, if the boundary is aligned with y-axis, the zero-current condition implies

(−i∂x−Ax)ψ = 0 or, equivalently, −iUx∂x(Uxψ) = 0. For the order parameter at i = dx1+ax
2

(west boundary) is implemented as

∂x(Uxψ)
∣∣∣dx1+ax2 ,j,k

= 0

⇒ Ux,2,j,kψ2,j,k − Ux,1,j,kψ1,j,k

ax
= 0

Ux,1,j,kψ1,j,k = Ux,2,j,kψ2,j,k

ψ1,j,k = Ux,1,j,kψ2,j,k.
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It also occurs for the other faces. Therefore, the boundary conditions applied to the faces

of the superconductor are:

ψdx1,j,k = Ux;dx1,j,kψdx1+1,j,k, West boundary (4.61)

ψdx2,j,k = Ux;dx2−1,j,kψdx2−1,j,k, East boundary (4.62)

where, dy1 + 1 ≤ j ≤ dy2 − 1 and dz1 + 1 ≤ k ≤ dz2 − 1,

ψi,dy1,k = Uy;i,dy1,kψi,dy1+1,k, Behind boundary (4.63)

ψi,dy2,k = Uy;i,dy2−1,kψi,dy2,k, East boundary (4.64)

where, dx1 + 1 ≤ i ≤ dx2 − 1 and dz1 + 1 ≤ z ≤ dz2 − 1,

ψi,j,dz1 = Uz;i,j,kψi,j,dz1+1, Botton boundary (4.65)

ψi,j,dz2 = U z;i,j,dz2−1ψi,j,dz2−1, Top boundary (4.66)

where, dx1 + 1 ≤ i ≤ dx2 − 1 and dy1 + 1 ≤ j ≤ dy2 − 1.

Note that we now have all the values of ψi,j,k inside the sample and on the surface ∂Ωsc.

For the edges of the superconducting sample we make an approximation by calculating the

arithmetic averages of the two nearest points adjacent in the faces. Likewise, we make an

approximation for the vertices of the sample, taking, however, the three closest points on the

faces.

After updating ψi,j,k, it is possible to update the values of the variable Uµ,i,j,k. The

magnetic field is updated through equations (4.30)-(4.32). The local magnetic field is equated

to the applied magnetic field, maintaining the continuity of the field. In our simulations, we

used the field applied only in the z direction, so that, Bz,i,j,k = H, where H is the applied

magnetic field.

Uy;1,j,k = Ux;1,j,kUy;2,j,kUx;1,j+1,ke
iaxayH ; Uy;Nx+1,j,k = Ux;Nx,j+1,kUy;Nx,j,kUx;Nx,j,ke

−iaxayH ,

Ux;i,1,k = Uy;i+1,1,kUx;i,2,kUy;i,1,ke
−iaxayH ; Ux;i,Nx+1,k = Uy;i,Ny ,kUx;i,Nx,kUy;i+1,Ny ,ke

iaxayH ,

Uz;i,j,i = eiaxayH ; Uz;i,j,Nz+1 = eiaxayH ; (4.67)

In some simulations we consider periodic boundary conditions on one of the axes. In this

way, we only require that the lower and upper faces in the direction to be periodic have the
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same value. Periodic boundary conditions ψi,j,k and Uµ;i,j,k for example in the edge x are:

ψi,1,k = ψi,Ny ,k, ψi,Ny+1,k = ψi,2,k, (4.68)

Ux;i,1,k = Ux;i,Ny ,k, Ux;i,Ny+1,k = Ux;i,2,k, (4.69)

Periodic boundary condition

Sometimes it is not necessary to take into account the influence of the boundary on the

physical properties that we are interested in studying. Numerically, the most economical way

to achieve this is to study the problem in a periodical region, where the observable physical

magnitudes are invariant before a spatial translation with period given by the size of the

analyzed region. In the case of superconductor we must also request that the magnetic flux

Φ is quantized within the periodic region that we will assume of size Lx × Ly.
Therefore, one of the necessary conditions to be able to apply periodic boundary condition

is that the vector potential is also periodic in such a way that, in the boundary of the simulation

cell, the values of the potential vector coincide with the boundary of the neighboring cell. To

satisfy the gauge invariance of the problem, the periodic conditions for a translation of the

potential vector and the order parameter in a lattice have the form

A(x+ aµ) = A(x) +∇χµ(x),

ψ(x+ aµ) = ψ(x) exp

[
i
2e

~c
χµ(x)

]
,

(4.70)

These transformations follow those used in the development of the TDGL equations, and

depend on the mesh structure, which is characterized by the translation vectors aµ and the

gauge potential χµ(x) associated with each vector aµ. The conditions (4.70) establish that

a translation by a lattice vector maintains the gauge invariance, that is, the transformation

in ψ and A ensure the invariance of the equations, and hence of the physical measurable

quantities, such B and the density of Cooper pairs |ψ|2.
The potential vector for a uniform magnetic field applied in the direction z can be expressed

as follows, A = xHz ŷ, where, Hz is a applied magnetic field. Thus, one chooses for the

transformation (4.70) a gauge potential directly related to this form of the vector potential.

For a rectangular sample with area Lx × Ly subject to the external field H, we have:

χµ = HLxy = y
Φ

Ly
, χy = 0, (4.71)

where Φ = HLxLy. With the choice of this potential the conditions of invariance Eq. (4.70)
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for translation in the x-direction can be written as:

Ax(x+ bx, y) = Ax(x) + ∂x

(
y

Φ

Ly

)
= Ax(x),

Ay(x+ bx, y) = Ay(x) + ∂y

(
y

Φ

Ly

)
= Ay(x) +

Φ

Ly
,

(4.72)

and for translations in the y direction:

Ax(x, y + by) = Ax(x), Ay(x, y + by) = Ay(x). (4.73)

For the order parameter using the gauge potential given by Eq. (4.71), we obtain the

following boundary condition for translation in the x−direction:

ψ(x+ bx, y) = ψ(x) exp

(
i2π

y

Ly

Φ

Φ0

)
,

ψ(x, y + by) = ψ(x).

(4.74)

Using the translation invariance condition given by equation 4.72-4.74 the periodic bound-

ary condition can be obtained for each axis. Proceeding in this way for the cell simulation of

size Lx × Ly, we have in the x and y direction [57]:

Ax(Lx, y) = Ax(0, y),

Ay(Lx, y) = Ay(0, y) +
Ψ

Ly
,

ψ(Lx, y) = ψ(0, y) exp

(
i2π

y

Ly
n

)
,

Ax(x, Ly) = Ax(x, 0),

Ax(x, Ly) = Ay(x, 0),

ψ(x, Ly) = ψ(x, 0).

(4.75)

where n is the total number of flow quanta present in the system, given by Φ = nΦ0. The

discrete form of the boundary condition for the vector potential components are contained

in the discrete form of the link variables. Therefore, in the grid simulation size Nx ×Ny we

have:

Ux;Nx+1,j,k = Ux;1,j,k,

Uy;Nx+1,j,k = Uy;1,i,k exp

(
i2π

n

Ny

)

ψNx+1,j,k = ψ1,j,k exp

(
i2π

y

Ly
n

)
,

Ux;i,Ny+1,k = Ux;i,1,k,

Uy;i,Ny+1,k = Uy;i,1,k,

ψi,Ny+1,k = ψi,1,k.

(4.76)

Those are the boundary conditions that make the order parameter and the magnetic field.



77

4.2.4 Algorithm to solve TDGL

In this work we perform two types of simulations to solve the TDGL equations. In the

first, which correspond to field cooled (FC) process the magnetic field is assumed constant

and the temperature is varied. On the second the temperature is keepted fixed we set one the

magnetic field is varied.

In the first case, we start at T = Tc and with ψ0(i, j, k) = 0 in every grid point, in the

FC . Since the magnteic field is constant it is converted to link-variable arrays, U0
x(i, j, k),

U0
y (i, j, k) and U0

z (i, j, k) and, upon using the TDGL and the boundary condition, the new

order parameter and the link-variables are determined. This process is repeated until a

equilibrium state is achieved. The temperatura is decreased by a small temperature interval

∆T and the process is repeated, using as a starting point the equilibrium state obtained

previously to obtain the new equilibrium state. That is the time evolution of the equilibrium

configurations, at each temperature is obtained.

In the second case, for the fixed temperature, the magnetic field H is ramped up in small

intervals of ∆H. The stationary state found for fixed value of H is then used as the initial

condition for H + ∆H. For the first value of H the system is initialized at the Meissner

state where ψ0(i, j, k) = 1 and Ux(i, j, k) = Uy(i, j, k) = Uz(i, j, k) = 1. At each fixed

applied field we follow the time evolution of the local magnetic field an the superconducting

order parameter until we obtain a steady state solution. Thus, as the applied magnetic field

increases and the time changes, we preserve the magnetic history of the system. That is, we

study the time evolution of the system at each fixed applied magnetic field.

The stationary state is accepted when the absolute values of the order parameter does not

change a certain precision ||ψn+1
i,j,k |− |ψni,j,k||, in some calculation also obtain the precision with

the variation of local magnetic field.

In all simulation we choose equally spaced points (ax = ay = az) in space and time ∆t.

A finite-difference representation of the order parameter is chosen to be 0.25ξ0. On average,

the step in ∆t is approximately 10−3, depending on the grid used, as well as on a specific

distribution of the order parameter. This value is aimed at minimization of the number of

steps in ∆t and, at the same time, keeps the procedure stable. A practical rule for selection

of ∆t is is given by [58]:

∆t ≤ min
{
δ2

4
,
βδ2

4κ2

}
, where δ =

2
1
a2x

+ 1
a2y

+ 1
a2z

. (4.77)

Algorithm used to solve the TDGL Equation

1. main
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2. Initial condition to ψ0(i, j, k), U0
µ(i, j, k)

3. for (H ±∆H) or T −∆T

4. for tn + ∆t

5. - ψ(t+ ∆t) = ψ(t) + ∆tψ(t)

- jsc,µ, µ = x, y, z.

- Uµ(t+ ∆t) = Uµ(t) + ∆tUµ(t)

6. Calculate the Boundary condition

7. Convergence criterion (Conv)

|ψn+1
i,j,k | − |ψni,j,k| or |Bn+1

z:i,j,k| − |Bn
z;i,j,k|

if (Conv) is Ok the program continues

If not return to 5.

end for tn

8. Calculation The magnetization −4πM ,

Calculation of induction magnetic field B,

Calculation of |ψ|2

9. end for H or T

4.3 The Monte Carlo Method

The Monte Carlo method is, as the name might suggests, a method using probability

arguments and random numbers to perform calculations and provide estimates of averages.

The whole idea is built around the fact that we can use random numbers to calculate physical

properties of systems. More precisely we can calculate physical observables, such as the

internal energy and magnetization, using a probabilistic approach. In this thesis, it will be

used the so-called classical Metropolis Monte Carlo. The Metropolis Monte Carlo algorithm

generates configurations according to the desired statistical mechanics distribution. It allows

to study the equilibrium properties of the system. In this method it is not possible to study

the time evolution of the system.

Statistical physics provides us tools to calculate physical quantities in terms of average

values of the physical observables of interest. A ensemble average of quantity A(r,p) can be
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calculated for a given distribution function ρ(r,p) as,

ρ(rN ,pN ) =
1

Z
exp

(
−E(rN ,pN )

kT

)
(4.78)

〈A(rN ,pN )〉 =
1

Z

∫
A(rN ,pN ) exp

(
−E(rN ,pN )

kT

)
drNdpN (4.79)

Energy can always be expressed as a sum of kinetic and potential contributions. The

contribution of the kinetic part is trivial and we can consider integral in only configurational

3N dimensional space, where Z is a configurational integral.

〈A(rN )〉 =
1

Z

∫
A(rN ) exp

(
−U(rN )

kT

)
drN , Z =

∫
exp

(
−U(rN )

kT

)
drN (4.80)

Statistical-mechanics integrals typically have significant contributions only from very small

fractions of the 3N space. For example for hard spheres contributions are coming from the

areas of the configurational space where there are no spheres that overlap, see Fig. ??.

Figure 4-3 : Example of the random sampling of the configuration space.

We have to restrict the sampling to the areas of space contributing to the intergral

“concept of importance sampling”.

4.3.1 Importance sampling: Metropolis Monte Carlo

We can use importance sampling concept and the Monte Carlo method to calculate the en-

semble average of a quantity A: Average over measurements of A for configurations generated

according to distribution P (rN ) is given by:

〈A(rN )〉 =

∫
A(rN )

exp
(
−U(rN )

kT

)

Z︸ ︷︷ ︸
P (rN )

drN , Z =

∫
exp

(
−U(rN )

kT

)
drN . (4.81)

To generate configurations according to the desired distribution P (rN ) we can create a

random walk process in the phase space, sampling it with the ensemble distribution. This can

be realized in different ways. The approach that is used in famous Metropolis Monte Carlo
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algorithm uses random walk in the phase space with transition probability to go from state

m to state n equal to 1 if the move is downhill in energy (∆Unm < 0). If the move is uphill

in energy (Unm > 0) than the move is accepted with a probability defined by the ratio of

probabilities of initial and final states:

ρn
ρm

=
1
Z exp

(
−Un
kT

)

1
Z exp

(
−Um
kT

) = exp

(
−Un − Um

kT

)
=

1

Z
exp

(
−Unm)

kT

)
(4.82)

Let us set up a random walk through the configurational space (so-called Markov chain

of configurations) by the introduction of a fictitious kinetics. The “time” t is a computer time

(reflecting the number of iterations of the procedure), it is not the real time - our statistical

system is considered to be in equilibrium, and thus time is irrelevant.

Take P (m, t) as being the probability of finding the system in configuration m at time t,

P (n, t) the probability of being in configuration n at time t, and W (m→ n, t) the probability

of going from state m to state n per unit time (transition probability). Then we have

P (m, t+ 1) = P (m, t) +
∑

n

[W (n→ m)P (n, t)−W (m→ n)P (m, t)]. (4.83)

At large t, once the arbitrary initial configuration is “forgotten”, we want P (m, t) to be

P (m). Clearly a sufficient (but not necessary) condition for an equilibrium (time independent)

probability distribution is the so-called detailed balance condition:

W (n→ m)P (n, t) = W (m→ n)P (m, t). (4.84)

This can be applied to any probability distribution, but if we choose the Boltzmann

distribution we have

W (n→ m)

W (m→ n)
=

P (n)

P (m)
=

1
Z exp

(−Un
kT

)

1
Z exp

(−Um
kT

) = exp

(
−Unm
kT

)
, Umn = Un − Um. (4.85)

Z does not appear in this expression. It only involves quantities that we know, T , or can

easily calculate, U .

There are many possible choices of the W which will satisfy detailed balance. Each choice

would provide a dynamic method of generating an arbitrary probability distribution. Let us

make sure that Metropolis algorithm satisfies the detailed balance condition.

W (m→ n) = exp

(
−Umn
kT

)
Unm > 0, (4.86)

W (m→ n) = 1 Unm ≤ 0. (4.87)



81

if U(n) > U(m)
W (m→ n)

W (n→ m)
=

exp
(
−Unm

kT

)

1
= exp

(
−Unm
kT

)
(4.88)

if U(n) < U(m)
W (m→ n)

W (n→ m)
=

1

exp
(
−Unm

kT

) = exp

(
−Unm
kT

)
(4.89)

Thus, the Metropolis Monte Carlo algorithm generates a new configuration n from a

previous configuration m so that the transition probability W (m → n) satisfies the detailed

balance condition.

4.3.2 Metropolis Monte Carlo algorithm

1. Choose the initial configuration, calculate energy

2. Make a “move” (e.g., pick a random displacement). Calculate the energy for new “trail”

configuration.

3. Decide whether to accept the move:

If Unm = Un − Um < 0 then accept the new configuration,

If Unm = Un − Um > 0, then calculate W (m→ n) = exp
(
−Unm

kT

)

m n

4. Draw a random number R from 0 to 1. If W (m → n) > R then accept the new

configuration, otherwise, stay at the same place.

5. Repeat from step 2, accumulating sums for averages (if particle is retained at its old

position, the old configuration is recounted as a new state in the random walk).
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5 Between types I and II: Intertype superconductivity-exotic flux states in

thin superconductorsa

This charter presents results of our numerical simulations for thin superconducting films

that, in full agreement with the picture of breaking the Bogomolnyi degeneracy, demonstrate the

intertype domain with a rich internal structure based on variety of non-standard flux/condensate

configurations. In particular, our calculations reveal various lattices of superconducting islands

separated by vortex chains, complex patterns of vortex stripes and worms, and mixtures of giant

vortices and vortex clusters.

5.1 Introduction

Late discoveries of novel superconducting materials with high critical temperatures (see,

e.g., [59, 60]) prompted revisiting many old-standing problems in the field. One of them is

the classification of a superconductor taking into account it magnetic properties. As is well-

known [31,61,62], the Ginzburg-Landau (GL) theory distinguishes superconductors of ideally

diamagnetic type I and of type II, where the field penetrates the condensate as a regular

lattice of Abrikosov single-quantum vortices. Which of the types is realized depends on the

GL parameter κ = λ/ξ, with λ and ξ being, respectively, the magnetic penetration depth and

the GL coherence length. The types interchange abruptly when κ crosses the critical value

κ0 = 1/
√

2.

As was shown already in one 1970’s, the reality is more complex than what follows from

the GL theory (see [39, 63–67] and references therein): the picture of the superconductivity

types separated by the single point κ0 = 1/
√

2 applies only in the limit T → Tc. Below Tc the

intertype regime occupies a finite interval of κ’s, forming the intertype domain between types

I and II in the (κ, T )-plain [39]. This domain exhibits a non-conventional field dependence

of the magnetization, in particular, the first order phase transition between the Meissner and

the mixed state [39,63]. Subsequent works revealed that the physics of the inter-type domain

is closely related to the Bogomolnyi self-duality [19,20] that results in an infinite degeneracy

aContains material published in the paper [91].
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of the superconducting state at the Bogomolnyi point (κ0, Tc), see, e.g., [68]. This degeneracy

follows from the symmetry of the GL equations at κ0 and implies that the mixed state has an

infinite number of possible spatial configurations of the magnetic flux, including very exotic

ones (here referred to as “exotic flux states”). When the degeneracy is lifted, for example,

by lowering the temperature, it is possible to expect that the exotic flux states break out of

the Bogomolnyi-point “prison” and spread over the finite IT domain in the phase diagram,

shaping the domain internal structure.

A comprehensive investigation of possible flux/condensate configurations in the IT domain

has not been presented so far. The related theoretical study for bulk materials requires an

approach beyond the GL theory that is technically very demanding, see, e.g., [65, 69]. The

corresponding experimental study is also rather nontrivial because one should change κ by

an appropriate doping in order to cross the intertype domain in the (κ, T )-plane [39, 63]. To

date, only the appearance of a long-range attraction between Abrikosov vortices has been

investigated in detail, see, e.g., [67]. Such an attraction is often regarded as the main charac-

teristic of the intertype regime which is then referred to as type II/1 [39], as opposed to the

standard type-II with repulsive Abrikosov vortices. Few interesting theoretical works [69–71]

considered giant (multi-quantum) vortices in single- and multi-band superconductors with

κ ∼ 1 but decisive conclusions on their stability cannot be made based on the current theor-

etical evidence.

The intertype domain can also be found in superconducting films. Here the Bogomolnyi-

point degeneracy is removed due to non-local interactions via stray magnetic fields outside

superconducting samples. It has long been known [4–6] that very thin superconductors made

of a type-I material demonstrate type-II properties in the presence of a perpendicular magnetic

field. This behavior can be explained by recalling that the vortex-vortex interaction has

two contributions of opposite signs: one of them is due to the magnetic field and the other

comes from the condensate [61]. In bulk type-I materials the condensate contribution is

dominant and the resulting vortex interaction is attractive. However, as the film thickness

w decreases, the contribution due to stray magnetic fields grows, and finally the interaction

becomes repulsive. The thickness is, therefore, a parameter that can be used to gradually drive

the system from type-I to type-II by passing through the intertype domain in the (w, T )-plane.

However, contrary to the (κ, T )-plane, here the intertype domain does not collapse into a single

point at T → Tc. Indeed, unlike bulk materials, the intertype regime for thin films can be at

least qualitatively described by the GL theory amended with the equations for the stray fields.

The reason is that here the degeneracy is removed mainly by the stray field contribution and

thus the non-local condensate interactions beyond the realm of the GL theory (responsible for

lifting the Bogomolnyi-point degeneracy in bulk) can be safely neglected if the temperature
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is not so low.

We note that solving the GL formalism for thin films is much more technically demanding

than in bulk: the appearance of stray fields makes the problem three-dimensional. Experi-

ments with thin films are also challenging because results are often invalidated by structural

imperfections. [Superconducting films with an atomically uniform thickness have been pro-

duced only recently, see the review in Ref. [72].] Thought the appearance of the intertype

domain was demonstrated by solving the linearized GL equations [73], subsequent studies of

the full GL formalism [74, 75] did not confirm the predictions of the linearized theory about

a honeycomb lattice of multi-quantum vortices. In particular, the authors of [74] found that

the double-fluxoid lattices never preempt the single-fluxoid lattice in thin films. Calculations

in [75] suggested that a mixture of different multi-quantum vortices (two-quantum, three-

quantum etc.) can be stable but does not exhibit any well-defined periodic lattice. There are

experimental signatures of multi-quantum vortices reported for thin films previously [76, 77]

but these results are questionable due to structural imperfections of the samples unavoidable

at that time. Thus, until now the existence of the intertype plethora of non-standard flux

configurations has been unambiguously confirmed (theoretically and experimentally) neither

in bulk superconductors nor in thin superconducting films.

5.2 Formalism

Our calculations are done for a superconducting film (slab) of a type-I material, placed

parallel to the (x, y)-plane so that the material fills interval z ∈ [−w/2, w/2]. The supercon-

ducting order parameter Ψ and the vector potential A are governed by the GL equations,

which in the standard dimensionless units (see, e.g., [78]) writes as

(−i∇−A)2 Ψ− (1− T )(1− |Ψ|2)Ψ = 0, (5.1)

κ2∇×∇×A = (1− T )< [Ψ∗ (−i∇−A) Ψ] , (5.2)

where ∇ is the gradient operator and the order parameter is assumed to be zero outside the

slab. We use the standard boundary conditions demanding zero current through the slab

boundary, which implies

ẑ · (i∇ + A) Ψ
∣∣∣
z=±w/2

= 0, (5.3)

with ẑ being the unit vector of the z-axis. In addition, the magnetic field satisfies the standard

field-continuity conditions on the superconductor surface. We assume that the field becomes

uniform at infinity, i.e.,

∇×A
∣∣∣
z→±∞

= H, (5.4)
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with H = (0, 0, H) (H is constant) being parallel to the z-axis. The model defined by

Eqs. (5.1) - (5.4) depends on four parameters κ, T , w and H. In practical calculations the

condition in Eq. (5.4) is defined at z = ±Lz, and the problem is solved inside a square unit

cell 0 ≤ x, y ≤ L with the in-plane periodic boundary conditions [79]. The values of Lz and

L are chosen sufficiently large not to affect the results.

The solution to the model equations is obtained using the standard method of the auxiliary

time dependence, in which the GL equations become time-dependent by adding the first-order

time derivative term to simulate the decaying time evolution that converges to the solution of

the original stationary GL theory. The modified equations are then solved by the link-variable

approach [80]. The complete numerical procedure also utilizes the so-called “field cooling”

algorithm, where one starts from the normal state at T = Tc and then gradually decreases the

temperature while keeping the magnetic field fixed; the equilibrium configuration obtained

for the previous temperature step is used as the initial condition for the next step.

5.3 Intertype Exotic States

The obtained results are qualitatively similar for all values of κ as long as they correspond

to a type-I material (we considered κ = 0.4 - 0.6). Spatial configurations of the absolute value

of the order parameter shown in Figs. 5-1 and 5-2 are calculated for κ = 0.55, L = 50ξ0

and Lz = w/2 + 5ξ0, where ξ0 is the GL coherence length at zero temperature. Our grid cell

size is 0.25ξ0. For the obtained results we do not use any extrapolation or averaging. The

external magnetic field is set as H = 90Φ0/L
2, with Φ0 being the flux quantum. Another

choice, namely, H = 60Φ0/L
2, yielded the same structure of the inter-type domain.

The results given in the upper and lower sets of panels in Fig. 5-1 are obtained for

relatively thick, w/ξ0 = 20, and thin, w/ξ0 = 2, samples, respectively, and calculated for

the central plane z = 0. The upper panels demonstrate intermediate states (the laminar

structure) typical of type-I superconductors, where the Meissner superconducting S-phase

(red) coexists with, but is spatially separated from, the normal N -phase (blue). Notice, that

the geometry of the system bans the uniform Meissner S-phase since the total magnetic flux is

non-zero. The obtained configurations tend to have a minimal S−N interface area reflecting

positive surface energy of the interface. Such type-I configurations in relatively thick films

are dictated by a type-I material of the film.

The type-II configurations, shown in the lower panels of Fig. 5-1, appear in very thin films

where the repulsive interaction due to the stray fields overweighs the vortex-vortex attraction

of the type-I material [4–6]). The surface energy of S − N interfaces becomes negative,

favoring a configuration with the maximal interface area, i.e., a triangular lattice of Abrikosov
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Figure 5-1 : The local density of Cooper pairs |Ψ|2 in films with thicknesses w/ξ0 =
20 [panels (a), (b) and (c)] and w/ξ0 = 2 [panels (d), (e) and (f)],
calculated at temperatures T/Tc = 0.76, 0.7, 0.6. Other parameters are
given in the text.

vortices [31, 61, 62]. This lattice is clearly seen in panel (f) of Fig. 5-1 that corresponds to

T/Tc = 0.6. A visible lattice distortion at larger temperatures is a consequence of a slow

convergence of the numerical procedure when the superconducting state approaches the point

of the normal-superconducting transition. In this regime the minimum of the energy functional

is very flat and the convergence time of the “field cooling” algorithm increases significantly

(it diverges at the transition point). Notice that at T/Tc = 0.76 and w/ξ0 = 2 the chosen

external magnetic field H = 90Φ0/L
2 is close to the upper critical field as the superconducting

solution decays at T/Tc > 0.77. For clear comparison of our results for different thicknesses,

all the data in Figs. 5-1 and 5-2 are also shown below T/Tc = 0.76.

Contrary to Fig. 5-1, Fig. 5-2 demonstrates quite exotic flux configurations. In particular,

one can see a rich variety of exotic flux states that appear in the mixed state of films with
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Figure 5-2 : The local density of Cooper pairs |Ψ|2 for film thicknesses w/ξ0 = 8
[panels (a) - (e)], w/ξ0 = 6 [panels (f) - (j)], and w/ξ0 = 4 [panels (k) -
(o)], calculated at temperatures T/Tc = 0.76, 0.73, 0.68, 0.64, 0.6. Other
parameters are the same as in Fig. 5-1.

thicknesses in the interval 4 . w/ξ0 . 8. [Again the results for the central plane z = 0 are

given.] For films with w/ξ0 = 6 and 8, at higher temperatures, one can see superconducting

islands arranged in a periodic triangular lattice and separated by chains of single-quantum

vortices [panels (a), (b), (f) and (g) in Fig. 5-2].

Vortices are represented by white small empty circles in the blue background. Their

identification is supported by checking the phase twist of the order parameter. For example,

in Fig. 5-3-(a) one can see two panels: the left one represents the phase of the superconducting

order parameter while the right panel gives its amplitude for one of the island patterns. In

the left panel one can see the blue and red stripes: when crossing the blue or red stripes,

the phase of the order parameter changes by π/2. As seen from the figure, each vortex is a

junction of four such stripes, i.e., the phase twist around the vortex center is 2π. Vortices

can be observed in Figs. 5-2-(b),(f),(g)(and also in the right panel of Fig. 5-3-(a)) as small

white (black in Fig. 5-3-(a)) circles in the blue background. Though the order parameter is

suppressed there it is not exactly equal to zero. However, in Fig. 5-2-(a) vortices can be seen



88

between superconducting islands only when the islands are in a close proximity to each other

(otherwise the order parameter becomes negligible). This explanations concerning the vortex

structure around the superconducting islands are indeed necessary and the same is related to

the stripe/worm patterns.

Figure 5-3 : The spatially-dependent phase and amplitude of the order parameter
for island, stripes and multi-quantum vortices patterns.

The shape and size of the islands change visibly with the temperature. For example, in

panels (a) and (f) of Fig. 5-2 the islands are almost perfectly circular while in panels (b)

and (g) they tend to become elliptic. One can also see that the distance between islands
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decreases at lower temperatures, which makes the separating chains of vortices more visible.

At T/Tc ∼ 0.7 the island pattern abruptly disappears: the superconducting islands merge

in the condensate stripes while the vortex honey-comb chain changes to stripes/worms of

vortices. Whether such an island-stripe transformation is a phase transition is unclear at this

stage.

When the temperature is lowered further, stripes of single-quantum vortices break into

vortex clusters and then the cluster constituents merge into multi-quantum vortices (as sup-

ported by the analysis of the order-parameter phase portraits (see Fig. 5-3-(b),(c))). The

temperature of this crossover depends on the film thickness: for w/ξ0 = 6, it occurs at

T/Tc ∼ 0.6, while for w/ξ0 = 4 it takes place at T/Tc ∼ 0.7. We note that for w/ξ0 = 8

a similar crossover happens at T/Tc = 0.5. However, the corresponding panel is not shown

in Fig. 5-2 for the reason that the validity of the GL theory is typically restricted to tem-

peratures T/Tc & 0.6 - 0.7, although in some cases its qualitative predictions still hold down

to lower temperatures. As is seen, mixtures of different giant vortices and vortex clusters in

Fig. 5-2 do not form well-defined periodic lattices, which agrees with the results calculated

for low magnetic fields (as compared to the upper critical field) in [75]. Notice that we reach

the low-field regime when decreasing the temperature (as the upper critical field grows).

Comparing results for different T and w in Fig. 5-2, one notices a general trend: for

thinner films the qualitative transformations of the intertype patterns are shifted to larger

temperatures. For example, for w/ξ0 = 8 and 6 the stripe/worm configurations are stable

below T/Tc ∼ 0.7 [see panels (c), (d), (e) and (h), (i), (j)] while for w = 4ξ0 the stripe/worm

configuration appears already at T/Tc = 0.76 [panels (k) and (l)]. Similarly, for w = 6ξ0

the stripes/worms start to break into vortex clusters and giant vortices at T/Tc ∼ 0.6 while

for w = 4ξ0 it happens at T/Tc ∼ 0.7, compare panels (j) and (m). Finally, we note that

vortex clusters and multi-quantum vortices becomes smaller in thinner films, tending to form

a periodic triangular lattice (thus approaching type-II).

As already mentioned above, our calculations for other values of the system parameters

yield the same qualitative results: similar patterns of islands, stripes and multi-quantum vor-

tices/vortex clusters as well as their temperature transformations are observed if one takes

other κ and H. The results can be summarized in the form of the schematic phase diagram in

the (w, T )-plane shown in Fig. 5-4. Types-I and type-II exist, respectively, at large w > wI

and small w < wII film thicknesses (for simplicity the temperature dependencies of the bound-

aries wI and wII are neglected). The intertype regime takes place for wII < w < wI , where

one finds the non-conventional flux/condensate configurations discussed above, i.e., supercon-

ducting islands surrounded by vortex chains; stripes/worms of vortices separating condensate

stripes; and mixtures of giant vortices and vortex clusters. When the system approaches
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the lower boundary of the inter-type domain, multi-quantum vortices and vortex clusters get

smaller, their spatial distribution becomes more regular, until finally single-quantum (Ab-

rikosov) vortices arranged in Abrikosov lattices appear. Close to the upper boundary of the

inter-type domain vortices gradually disappear and we arrive at lamellas of type-I.

Figure 5-4 : A schematic phase diagram of thin film superconductors: a qualitative
summary of the results of Figs. (5-1) and (5-2). Type I and II are
found at w > wI and w > wII (T -dependence of boundaries wI , wII is
neglected for the sake of simplicity). The inter-type domain wII < w <
wI is divided into subdomains with distinguished non-standard flux
patterns: superconducting islands separated by vortex chains; vortex
stripes/worms that separate condensate stripes; and mixtures of giant
vortices and vortex clusters.

After having raised the phase diagram discussed above, we decided to properly build this

and show the different phases present and already discussed, and also build the phase diagram

when H = 60Φ0/L
2. These diagrams are presented in the Fig. 5-5 [H = 90Φ0/L

2] and Fig. 5-

6 [H = 60Φ0/L
2]. It can be observed that for the lower field and for w 6 8ξ0 the giant vortex

and cluster phases are favored. Also there is a growth of the superconducting island and

laminar phases. On the other hand the laminar structure phase is not found for w 6 20ξ0 to

find a type-I behavior it is necessary to go beyond this thickness.
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Figure 5-5 : Phase diagram of thin film superconductors in the (w − T )-plane, for
external magnetic field H = 90Φ0/L
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5.4 Intertype in a Rectangular Sample

In order to to study the effect of the sample geommetry we decide to study the intertype

domain in a retangular parallelepiped, as shown in Fig. 5-7, where the superconducting sample

is a rectangular parallelepiped with thickness w and lateral sizes a = 50ξ0 and b = 75ξ0.

The interface between the sample and the vacuum is large enough to consider the effects

of demagnetization and stray field, (∆L = 10ξ0). Also in this calculations we assume the

superconductor material has κ = 0.55 (type-I in bulk superconductor). The superconductor

is submitted to an uniform perpendicular magnetic field H = (0, 0, H). Since presence of the

superconductor will modify the profile of the local magnetic field near the edges. ∆L is taken

sufficiently large such that the local magnetic field equals the external applied magnetic field

H at w + ∆L.

H

Figure 5-7 : Layout of the studied sample: thin film superconducting rectangle sub-
mitted to a perpendicular a magnetic field.

The TDGL equations (5.1) and (5.2) are solved, with the boundary condition

n̂ · (i∇ + A) Ψ
∣∣∣
∂Ωsc

= 0, (5.5)

∇×A = H. (5.6)

It is also imposed that the current density does not flow out of the superconductor into

the vacuum. This means that the perpendicular component of js vanishes at the surface. Let

us denote by n̂ the unit vector outward normal to the superconductor-vacuum interface.

The superconducting film thickness was taken as w = 6ξ0 and a field cooling process

was done for each H value. Figures 5-8(a)-(h) show the flux patterns obtained when the

temperature T = 0.7Tc. At low fields, the sample is in the Meissner state with no flux observed

Fig. 5-8(a). By increasing the magnetic field(H =0.032Hc(0)), the magnetic flux begins to



93

penetrate into the sample in form of single vortex Fig. 5-8(b). A further increase of the field,

some of vortex merge into giant vortex, there is a coexistence of single vortex and giant vortex

Fig. 5-8(c) typical of the intertype superconductivity. At H = 0.093Hc(0) vortex cluster are

formed Fig. 5-8(d). When the magnetic field reaches H =0.14Hc(0) clusters start to merge

and form normal domain stripes, resulting in a configuration with the coexistence of cluster

and stripes Fig. 5-8(e). For higher field, as show in Fig. 5-8(g)-(h), once it become favorable

H=0.004Hc(0) H=0.031Hc(0) H=0.062Hc(0) H=0.093Hc(0)

H=0.140Hc(0) H=0.155Hc(0) H=0.186Hc(0) H=0.202Hc(0)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5-8 : Flux patters for rectangular parallelepiped superconductor with thick-
ness w = 6ξ0, calculated for differents H at T =0.7Tc

for the system to form superconducting island (small regions where only superconductivity

prevails), they thrive as the magnetic field increases, resulting in the formation of small

domains of superconductivity, which eventuality merge to form wider normal domains that

cover almost all the superconductor until only having surface superconductivity which is

formed before the system transits to the normal state.

Notice that the ground state flux structures in thin films type-I superconductors do not

depend only on the applied magnetic field, but also on the confinement due of the finite size

of the sample. In a superconducting sample, with rectangular symmetry, in the intertype

superconductor regime, the flux structures are not preserved [81] as in the case of samples

with squared symmetry [82], as a consequence of confinement.
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6 Quasi-One-Dimensional Vortex Matter in Superconducting Nanowiresa

It is well-known that superconducting films made of a type-I material can demonstrate a

type-II magnetic response, developing stable vortex configurations in a perpendicular magnetic

field. In this chapter we show that the superconducting state of a type-I nanowire under-

goes more complex transformations, depending on the nanowire thickness. Sufficiently thin

nanowires deviate from type-I and develop multi-quantum vortices and vortex clusters similar

to intertype (IT) vortex states in bulk superconductors between conventional superconductivity

types I and II. When the nanowire thickness decreases further, the quasi-one dimensional vor-

tex matter evolves towards type II so that the IT vortex configurations gradually disappear in

favour of the standard Abrikosov lattice (chain) of single-quantum vortices. However, type II

is not reached. Instead, an ultrathin nanowire re-enters abruptly the type-I regime while vor-

tices tend to be suppressed by the boundaries, eventually becoming one-dimensional phase-slip

centers.

6.1 Introduction

Low dimensional superconductors attract significant interest due to a tantalising possib-

ility to manipulate their properties by varying the sample geometry. A prospective example

is recently fabricated arrays of superconducting nanowires (see, for instance, Refs. [83–89])

produced, e.g., by electrochemical deposition of a metal in a nanoporous insulating matrix

or by the focused ion beams (FIB) lithography. Dimensional parameters of such a composite

superconducting material are controlled with high precision. As a result, one can tune the

superconducting magnetic response that is a cornerstone characteristic of superconductors for

their applications.

In particular, when a superconducting film made of a type-I material becomes sufficiently

thin it can develop stable vortex configurations in a perpendicular magnetic field [4–6], becom-

ing a type-II superconductor. This type interchange takes place due to a stray magnetic field

aContains material from the manuscript: Quasi-One-Dimensional Vortex Matter in Super-
conducting Nanowires
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that introduces repulsion between initially attractive (and thus unstable) vortices. Extrapol-

ating results for superconducting films to the case of a nanowire made of a type-I material

in a perpendicular magnetic field, one expects that it can also become a type-II supercon-

ductor. Recent experiments [86] have indeed demonstrated that the magnetisation of an array

of superconducting nanowires changes notably when the wire thickness decreases. However,

interpreting these changes is not straightforward. Indeed, extrapolating results for films must

be taken with care. Nanowires are quasi-1D objects, where the condensate and its possible

vortex-matter state are inevitably affected by the confining potential of the boundaries. If

the boundary effects overcome the stray field influence, one can expect that a nanowire made

of a type-I material remains a type-I superconductor irrespective of its thickness. Which of

these factors actually dominates and whether a superconductivity type interchange can be

observed in thin superconducting wires has not been investigated to date.

The present work fills this gap by studying the magnetic response of a single supercon-

ducting nanowire made of a type-I material. Our study demonstrates that sufficiently thin

nanowires develop the mixed state in a perpendicular magnetic field. However, the related

quasi-1D vortex matter is shown to exhibit vortex clusters and multi-quantum vortices that

are found in neither type-II nor in type-I but similar to IT vortex configurations in bulk

superconductors [69,90,91]. When the nanowire thickness decreases further, vortices tend to

arrange themselves in a regular chain (1D Abrikosov lattice) so that the system evolves to-

wards type-II. However, due to the 1D character of the sample, the type-II magnetic response

is not reached. Instead, ultrathin nanowires re-enter the type-I regime: vortices become 1D

phase-slip centres typical for 1D weak superconducting links [92] and are then expelled from

the wire. We stress that our work differs fundamentally from earlier studies of the geometry

related effects in small superconducting samples where vortices are confined in all dimensions

and the geometry forces them to merge into clusters or multi-quantum vortices. In contrast

here the nanowire is assumed infinite (very long), vortices are not confined along it and thus

the appearance of nonstandard IT configurations such as vortex clusters is not simply induced

by the interaction with the boundaries.

6.2 Method and model

Our analysis is done on the basis of the GL theory. Although this approach cannot

explain a finite IT domain in bulk superconductors [69], it is sufficient for systems where the

Bogomolnyi degeneracy is lifted due to geometry-related factors, as in the case of thin films,

see Ref. [91] for a detailed discussion.

In the calculations we assume that a nanowire is in the form of a slab of the length L (in the
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z direction) and with the square cross section d×d (in the x and y directions), see Fig 6-1. The

boundary condition for the order parameter Ψ on the wire surface is [n·(−i~∇−2eA/c)]Ψ = 0,

where A is the vector potential whose curl is the magnetic field B = ∇ ×A, and n is the

unit vector perpendicular to the surface. We consider that L � d and use the periodic

boundary conditions with period L in the z direction for both Ψ and B. The nanowire is

placed in the perpendicular external homogeneous magnetic field H = (H, 0, 0), which implies

an asymptotic condition B→ H at infinity. In the calculations this condition is fulfilled on a

surface of a larger embedding slab, also with the square cross section, with the surface located

at distance ∆L = 10 from the wire (hereafter all distances are given in the units of the bulk

Cooper pair size ξ0).

H
d

d

�L

�L

Ly

Lx

y

x

z

Figure 6-1 : Layout of the studied sample: nanowire is in the form of a slab of
the length L and with the square cross section d × d (in the x and
y directions). The nanowire is placed in the perpendicular external
homogeneous magneic field

The GL equations for Ψ and A are solved using a standard method of auxiliary time

dependence, where the time dependence is introduced by adding the first-order time derivat-

ives of Ψ and A in the equations, such that the solution converges to the stationary point at

sufficiently large times. The resulting time-dependent equations are solved by using the link

variable method [80,91].

The dimensionless GL equations for a nanowire depend on just two parameters: the GL

parameter of the material κ = λ/ξ (the ratio between the bulk GL coherence and magnetic

lengths) and the nanowire thickness d. We choose κ = 0.55 which corresponds to a type-I
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material. This particular choice of κ is not essential as the results are qualitatively similar

for any type-I material with κ < 1/
√

2. For this value of κ the main changes in the magnetic

response take place when d < 50 and so we focus on this thickness interval. For clean

superconductors with large bulk ξ0 the length d = 50 can go far beyond the nanoscale.

However, in practice the electronic mean free path, which is ∼ d [93], significantly reduces ξ0

so that changes of the magnetic response are expected for the nanosize wires [86]. The external

field is varied in the interval 0 < H < 0.5Hc(0), where Hc(0) is the bulk thermodynamic

critical field at zero temperature. To investigate the hysteresis in the magnetisation, the

calculations are done for the ascending and descending magnetic field. Finally, we assume

T = 0.7Tc, where the GL theory is still applicable.

6.3 Results

A summary of the results is shown in Figs. 6-2, 6-3and 6-4. Magnetisation curves (the

volume averaged value of −4πM as a function of H), shown in panels (i) to (vi), correspond

to the wire thicknesses d = 50, 20, 15, 10, 8 and 5, respectively correspondingly. The upper

magnetisation curve (red circles) illustrates the ascending field case, the lower curve (blue

circles) is the magnetisation for descending field. The color density plots below each panel

show the spatial distribution of |Ψ|2 in the center cross section plane of the slab perpendicular

to the applied magnetic field, calculated for different representative points shown on the

magnetisation curve.

Figure 6-2(i) demonstrates results for a relatively thick wire with d = 50. Considering the

ascending field magnetisation curve together with the corresponding profiles of |Ψ|2, one notes
that the field does not enter the wire until the magnetisation starts to decrease. This is a clear

signature of the Meissner state. A decrease in−4πM(H) indicates that the field penetrates the

sample, where it forms the well-known intermediate state of type-I superconductors [18,31,94]

with coexisting stratified normal and superconducting phases [see “b”,“c”, “d”, and “e” in Fig. 6-

2(i)]. The field occupies first the vicinity of the boundaries [see “b” in Fig. 6-2(i)], and then

creates bubbles of the normal phase inside the superconducting condensate [see “c” in Fig. 6-

2(i)]. The bubbles grow in size with increasing the field and then merge into a stripe, producing

alternating normal and superconducting lamellas, see “d” in Fig. 6-2(i). Finally, the normal

phase occupies almost the entire volume of the wire and superconductivity survives only near

the boundaries [the surface superconductivity, see “e” and “f” in Fig. 6-2(i)]. Here lamellas

are observed due to finite dimensions of the system. As the result, the magnetisation does not

drop to zero abruptly, as expected for type I in bulk but decreases gradually like in type-II

materials.
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Figure 6-2 : Magnetization M as a function of applied magnetic field H is plotted
for increasing (red points) and decreasing (blue points) field is calcu-
lated for wires of different crossection with Lx,y = 50ξ0, 20ξ0. The field
H as well as M are expressed in the units of the thermodynamic bulk
critical field Hc(0) at zero temperature. Density colour plots below
magnetization panels illustrate the order parameter profiles, that cor-
respond to points in the magnetization curve. Points denoted by small
red letters a, b, c . . . are found on the ascending field curve and points
denoted by capital letters A,B,C, . . . are on the descending field curve.
All calculations are done at temperature T = 0.7Tc.

The descending-field magnetisation [blue curve in Fig. 6-2(i)] has a different sign (i.e., a

paramagnetic response) and a much smaller absolute value. This is a hysteretic behaviour,

which takes place due to trapping of the magnetic flux inside the nanowire. For the descending

field the intermediate state undergoes a similar sequence of patterns, however, in the reverse

order as compared to the ascending field case [cf. “a” - “f” and “A” - “E” in Fig. 6-2(i)].

We note that for d = 50 the spatial field/condensate configurations has an effectively 2D

character: the nanowire can accommodate more than one normal state bubble or stripe in its

perpendicular direction [see “c”, “d”, “A” and “B” in Fig. 6-2(i)]. It is also worth noting that

when the field decreases, bubbles of the normal phase survive even in the limit H → 0 due to

the flux trapping, i.e., the system remains in a paramagnetic state at zero external field.
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A wire with d = 20 is no longer a type-I superconductor, as seen from Fig. 6-2 (ii). Here,

similarly to Fig. 6-2(i), the interval on the ascending field curve (red) with increasing −4πM

corresponds to the Meissner state. However, the magnetisation decrease is no longer smooth:

it follows a sequence of saw-like drops. This is explained by looking at the density plots below,

which demonstrates that unlike the case of d = 50 [cf. “b” in Fig. 6-2(i)], here the magnetic

field penetrates the sample in the form of vortices. A drop in the magnetisation occurs each

time when additional vortices enter the wire, rearranging the vortex configuration [see “a” -

“e” in Fig. 6-2(ii)].

However, Fig. 6-2(ii) does not exhibit standard type-II superconductivity either. An

important difference is that at relatively small ascending fields (just after the Meissner state),

the mixed state develops giant (multi-quantum) vortices which are unstable in a type-II

material [see “b” in Fig. 6-2(ii)]. Giant vortices are arranged in a 1D lattice (chain), and

the magnetic flux carried by one vortex increases with the field (the vortices grow). When

the external field exceeds a certain threshold, the multi-quantum vortices are replaced by a

chain of elongated clusters of single-quantum (Abrikosov) vortices [see “c” in Fig. 6-2(ii)].

While the field increases further, these clusters merge into a 1D lattice of single-quantum

vortices located in the wire center [see “d” in Fig. 6-2(ii)]. Finally, at larger fields only surface

superconductivity survives [see “e” in Fig. 6-2(ii)], before the superconducting state eventually

disappears.

The field patterns seen in Fig. 6-2(ii) appear to be similar to those attributed earlier to

the IT regime in bulk superconductors. This regime is found between conventional types-I

and -II in the phase diagram for both single- and multiband superconductors [69, 90]. Such

non-standard vortex configurations are related to a special vortex-vortex interaction that

combines repulsion and attraction at different ranges and has a significant many-body (many-

vortex) contribution favouring the formation of clusters [90] and giant vortices [69]. We

expect that despite a strong boundary influence these IT features of the interaction between

vortices are also present in nanowires. We note that this mechanism for the formation of giant

vortices and vortex clusters is totally different from what is observed in small (mesoscopic)

superconductors, where vortices are squeezed by the boundaries in all dimensions, see, e.g.,

[95–97]. A nanowire is an extended quasi-1D object where vortices can move freely along

its length and their longitudinal arrangement is determined by the nontrivial interaction

between them, rather than with boundaries. The infinite length implies that a system is in

the thermodynamic limit so that one can still use the concept of superconductivity types.

For the descending field the plots of |Ψ|2 in Fig. 6-2(ii) are similar to those of the ascending

field case, though the sequence of patterns is reversed [cf. “a” - “e” with “A” - “E” in Fig. 6-2(ii)].

The descending-field magnetisation is still negative, similarly to that in Fig. 6-2(i), but its
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amplitude becomes smaller, which indicates a weaker magnetic flux trapping. However, this is

not the case in the limit H → 0: the zero-field paramagnetic response (i.e., the paramagnetic

Meissner effect) in Fig. 6-2(ii) is more pronounced then in Fig. 6-2(i). It should also be noted

that a giant paramagnetic Meissner effect has previously been reported for bulk IT two-band

superconductors. [98].

The field-condensate patterns in Fig. 6-2(ii) are essentially of the 1D character (with the

exception of “A”), in contrast with the 2D character of the density plots shown in Fig. 6-2(i).

This can be viewed as the dimensional crossover in the mixed-state configuration. Surprisingly,

the crossover occurs for values of d that are an order of magnitude larger than ξ0.
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Figure 6-3 : Magnetization M as a function of applied magnetic field H is plotted
for increasing (red points) and decreasing (blue points) field is calcu-
lated for wires of different crossection with Lx,y = 15ξ0, 10ξ0. The field
H as well as M are expressed in the units of the thermodynamic bulk
critical field Hc(0) at zero temperature. Density colour plots below
magnetization panels illustrate the order parameter profiles, that cor-
respond to points in the magnetization curve. Points denoted by small
red letters a, b, c . . . are found on the ascending field curve and points
denoted by capital letters A,B,C, . . . are on the descending field curve.
All calculations are done at temperature T = 0.7Tc.
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For d = 15 [see Fig. 6-3(iii)] the magnetisation is qualitatively similar to that of Fig. 6-

2(ii). However, multi-quantum vortices here play a minor role: they are absent for the

ascending field case and visible only at point “B” on the descending field curve. However,

clusters of single-quantum vortices observed at lower fields [see, e.g., “b” in Fig. 6-3(iii)] are

still a clear signature of the IT superconductivity.
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Figure 6-4 : Magnetization M as a function of applied magnetic field H is plotted
for increasing (red points) and decreasing (blue points) field is calcu-
lated for wires of different crossection with Lx,y = 8ξ0 and 5ξ0. The
field H as well as M are expressed in the units of the thermodynamic
bulk critical field Hc(0) at zero temperature. Density colour plots below
magnetization panels illustrate the order parameter profiles, that cor-
respond to points in the magnetization curve. Points denoted by small
red letters a, b, c . . . are found on the ascending field curve and points
denoted by capital letters A,B,C, . . . are on the descending field curve.
All calculations are done at temperature T = 0.7Tc.

Panels 6-3 (iv) and 6-4 (v), calculated, respectively, for d = 10 and d = 8, demonstrate

that the nanowire is still in the IT regime, although in both ascending and descending cases

giant vortices disappear. Vortex clusters are not seen at the ascending field but they are

still present at the descending field [see “C” in Figs. 6-3 (iv) and 6-4(v)]. One also sees
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that the descending and ascending magnetisation curves become closer one to another. This

can be explained by the decrease of the Bean-Livingston barrier [99], which makes it easier

for vortices to escape the wire. The magnetisation patterns in Figs. 6-3(iv) and 6-4(v) are

apparently in agreement with the type II/1 concept of the IT superconductivity: the Abrikosov

lattice at large fields is stable because of the short-range repulsion between single-quantum

vortices whereas clusters of vortices at smaller fields are explained by the long-range vortex

attraction [39, 100–105] [see also the discussion of type-II/1 configurations in the IT regime

in Ref. [69]].

Finally, type II is almost approached at d = 5 [see Fig. 6-4(vi)]. Here the mixed state

contains only single-quantum vortices arranged in a 1D Abrikosov lattice while the ascending

and descending magnetisation curves are very close one to another. However, in sharp contrast

to type-II superconductors, the magnetisation in Fig. 6-4(vi) almost instantly drops to zero

when the field starts to penetrate the nanowire, so that the mixed state is restricted to a very

narrow interval of the external field values. When decreasing the nanowire thickness further,

vortices become energetically unfavourable and, finally, the system demonstrates a magnetic

response of a type-I material. Surprisingly, the corresponding magnetisation as a function of

the applied magnetic field is close to that observed in bulk type-I superconductors, without

any lamellas and bubbles of the normal state usually observed in finite samples. It is also

worth noting that vortices in Fig. 6-4(vi) become elongated in the direction perpendicular

to the nanowire. This is an onset of the formation of phase slip centers typical for 1D weak

superconducting links [92].

The identification of such vortex states can easily be done with the help of Fig. 6-5 which

shows the phase portraits of the order parameter for different cross section area of the wires

at chosen normalized magnetic field.
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7 Superconductor Bilayera

In this chapter we studyd a mechanism for superconducting bilayer. The superconducting

bilayer is formed by two layers, where the top type-II superconducting layer by the top type-I

superconducting layer. In the results we show that the complexity of the patterns obtained

in the penetration of the magnetic field comes from the changes in the interaction of short

and medium range between the vortices (non-monotonic interaction), where these patterns

implicitly depends on parameters such as the coupling between layers and temperature.

7.1 Introduction

According to the Ginzburg-Landau (GL) theory, a conventional superconductor near Tc is

described by a parameter κ, the GL parameter. This parameter determines the response of a

superconductor immersed in an external magnetic field, H, sorting them into two categories

as follows: type-I when κ < 1/
√

2 and type-II when κ > 1/
√

2 [106]. Type-I superconductors

expel weak magnetic fields, while strong fields give rise to formation of macroscopic normal

magnetic flux domains [35,107,108] whereas type-II superconductors behaves differently; when

H is below the critical Hc1, it is expelled from the superconducting sample. When H is above

this value a vortex lattice appears in the superconductor until other critical field, Hc2, is

reached. At such critical field the superconductivity is destroyed.

These different responses are usually viewed as consequences of the interaction between

vortices in these systems. In type-II superconductor the energy cost of a boundary between

the normal and the superconductor state is negative, leading to a repulsive vortex-vortex

interaction [106]. This favors the formation of stable vortex lattices. In type-I superconductors

the situation is opposite to that, the normal-superconducting interface has positive energy

favoring an attractive vortex-vortex interaction. Thus a vortex lattice is not stable because

the vortices collapse to form larg magnetic flux bundles. At exactly κ = 1/
√

2, also called

Bogomolnyi point, the vortices do not interact with each other [19,20].

aContains material from the manuscript: Superconducting type-II/N/type-I bilayer (in pre-
paration)
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Recently there has been increased interest in superconductors with several superconduct-

ing components. The main situations where multiple superconducting components arise

are, multiband superconductor [109–114] and artificially fabricated superconducting layers

[115, 116]. It was discussed recently that in multicomponent systems the magnetic response

is much complex than that in ordinary systems, and that the type-I or type-II behavior is

not sufficient to classify such superconductors. Rather, in a wide range of parameters, as a

consequence of the existence of three fundamental length scales, there is a separate supercon-

ducting regime where vortices have long-range attractive combined to a short-range repulsive

interaction which induces the formation of vortex cluster immersed in superconducting do-

mains [98,117]. Experimental works [118,119] have suggested that this state is realized in the

two-band material MgB2.

Several works have recently discussed the type of superconductors comprising multiple

coherence lengths, some of which are larger and some smaller than the magnetic field pen-

etration length. These multiple coherence lengths arise in superconducting states that break

multiple symmetries and also in materials with multiple superconducting bands.

Several materials have been suggested in experiments to belong to this type of supercon-

ductors [118,120], where vortices can display multi-scale attractive and repulsive inter-vortex

interactions [117, 118, 121, 122]. Multiple attractive length scales come from core-core inter-

vortex interactions. Multiple repulsive length scales can be obtained instead in (i) artificially

fabricated superconducting bilayers, where the different layers give rise to two coherence

lengths, or rather generally in (ii) thin films of type-I materials due to stray fields.

An ultrathin superconductor bi-layer can be considered as an artificial multicomponent

superconductor [123]. The emergence of controlled fractional vortices has been studied in

Ref. [115] and [124]. Multiband superconductors can develop vortex states that are qualit-

atively different from those in single-band materials. A trivial configuration is a composite

vortex that comprises two vortices from the different band condensates, that are centered at

the same point, and have equal winding numbers. Stationary equilibrium states in two-band

bulk superconductors are formed by the composite vortices. However, a nonequilibrium system

can develop a state in which the band vortices are shifted spatially, the so-called noncomposite

vortices. Those vortices are associated with a nonquantized magnetic flux: each of the partial

vortices in the band condensates carry a fraction of the total (quantized) flux, and are often

called fractional vortices. As an example, the aluminum bi-layer was originally considered to

mimic a multi-band superconductor [112, 123] and presents evidences of the flux fractional-

ization. The ability to produce this type of condensate using a conventional superconductor

or a multi-band superconductor creates a brand-new platform on which new topological elec-

tronics can be constructed. This would require us to establish fractional quantization in a
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superconducting bi-layer and multi-band superconductors to confirm whether such an elegant

approach toward realizing multi-component quantum condensates really exists. With this

idea, Tanaka at al have shown in Ref. [125] the experimental formation of a fractional vortex

generated by using a thin superconducting bi-layerformed by two niobium single layers.

Other theoretical works investigated a bilayer structure [126–129], made of two different

single-gap superconductors [116, 130], for which they show a phenomenology very similar

that found for two-gap superconductors, however much more easily tunable. The theoretical

description used is a variant of the famous Lawrence-Doniach model for high-temperature

cuprates emphasizing the layered aspect of the structure. It has been found that there is indeed

a mid-range intervortex attraction present in combination with the long-range 1/r repulsion

stemming from the interaction of stray magnetic fields from the vortices. This aspect of the

vortex-vortex interaction leads to myriads of possible vortex structures forming soft-matter-

like gels, glasses, chain-like structures and other intriguing patterns [38,107,119,120,131].

Besides these pioneering works, searching appearance of fractional vortices under other

setups is challenging and important since it gives new viewpoints of the problem an also new

possibility for experimental discovery. In this section, we studied a mechanism for supercon-

ducting bilayer which can mimic two-band superconductors. We consider the system under

an applied perpendicular magnetic field and discuss how the variation of the coupling between

layers with the variation of external variables (temperature, external magnetic field and inclu-

sion of stray field) can lead to a behavior similar to two-band superconductors (no-monotonic

interaction and vortex dissociate ).

7.2 Theoretical model

z

x

y

Hd2

d1
s

Lx

Ly=∞ 

Figure 7-1 : The studied system: two superconducting layers with thicknesses d1

and d2, respectively, separated by an insulating material with thickness
s in the presence of a magnetic field H perpendicular to the layers.
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We consider superconducting bilayer formed by two layers, where the bottom type-II

superconducting layer (layer-1) with thickness d1 and the top type-I superconducting layer

(layer-2) with thickness d2 are separated by a thin insulator with thickness s. The layers

are coupled by both Josephson and magnetic couplings and are immersed in a magnetic field

applied perpendicular to them, [see Fig. 7-1].

This system can then be described by the Lawrence-Doniach (LD) model [116, 132–134],

which is based on the Ginzburg-Landau (GL) theory. In this model, the free energy is com-

posed of the individual contributions of each layer, the LD coupling and the magnetic field

energy.

F = FN +
∑

n=1,2

dn

∫

S

[
αn|Ψn(r)|2 +

1

2
βn|Ψn(r)|4 +

1

2mn

∣∣∣∣
(
~
i
∇− 2e

ccc
A(r)

)
Ψn(r)

∣∣∣∣
2
]
d2r+

(7.1)

+ s

∫

S
η|e(−i 2e~ccc

∫ s
0 Azdz)Ψ2(r)−Ψ1(r)|2d2r +

1

8π

∫

V
(h−H)2d3r,

where Ψn represent the order parameter of each superconducting layer, the coefficients αn =

−α0n(1 − T/Tcn) and βn are the GL coefficients, and the phenomenological constant η is

proportional to the Josephson coupling between adjacent layers, [η = ~2/(2m⊥s
2)], which

inversely proportional to the effective Cooper pair mass for the tunnelling between the layers

m⊥ and the thickness of the insulating layer s. The last integral in (7.1) is taken over the entire

space, whereas the first two are assumed uniform over the superconducting layer thickness

and spacer layer, and the integral over surface projection of the layers.

The equations for the order parameter for each layer are given by Eqs. (7.2) and (7.3)

with e−i
2e
~ccc = 1. These equations are identical as the GL equations, plus a coupling term

1

2m1

(
−i~∇2D −

2e

ccc
A

)2

Ψ1 + αΨ1 + β|Ψ1|2Ψ1 +
sη

d1
(Ψ1 −Ψ2) = 0, (7.2)

1

2m2

(
−i~∇2D −

2e

ccc
A

)2

Ψ2 + αΨ2 + β|Ψ2|2Ψ2 +
sη

d2
(Ψ2 −Ψ1) = 0, (7.3)

and the equation for the current is given as

−∇2A3D =
4π

ccc
j2D. (7.4)

The equations for Ψ1 and Ψ2 are solved in 2D and in the middle of each layer. For the

vector potential, we consider Az = 0 in Eq. (7.4), which implies that the phase factor is

the coupling term is equal to one. The other implication is that jz = 0, therefore the jz
component of the current in each layers can be neglected and the supercurrent will flow only
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within of the respective layers, and can be spatially separated:

jn = − e

mn
<
[
Ψ∗n

(
−i~∇− 2e

ccc
A

)
Ψn

]
. (7.5)

If we consider that s is much smaller than ξ (s � ξ), we can assume that the supercon-

ducting currents of each of the layers can be added algebrically in the plane corresponding to

half of the sample, s/2. Then we write the current equation as,

− ∇2A
∣∣
s/2

=
4π

ccc
(j1 + j2). (7.6)

Here we assume that the bilayer is infinity in y direction (periodic boundary conditions

were set in this direction). Its width is Lx in the x direction and Lz represents the thickness

of the bilayer (Lz = d1 + s+d2), as shown in Fig. 7-1. The super-currents jn in Eq. (7.5) are

also calculated in 2D. However, the Eq. (7.4) is solved in 3D. We solve the Eqs. (7.2)-(7.3)

and (7.4) self-consistently, with the boundary condition corresponding to the sides of the

sample as given by the Eq. (7.7) below. This imposes that no supercurent can pass through

the sample boundary,

(
−i~∇− 2e

c
A

)
Ψn

∣∣∣∣
⊥,boundary

= 0, js = 0. (7.7)

The bilayer is placed in a perpendicular homogeneous field H along the z axis, what leads

to the boundary condition for the field as B = H at infinity.

To present the above equation in dimensionless form we express the length in units of

ξ10(ξn0 = ~/
√

2mn|αn0|), the vector potential in A0 = ~c/2eξ10, the order parameter Ψn0 =

Ψn0(T = 0, η = 0, Ha = 0) =
√
−αn0/βn and the temperature in Tc1, the magnetic field in

Hc2,1, additionally we use a new variable α = ξ2
10/ξ

2
20.

This system of non-linear coupled differential equations are then solved by the link-variable

approach seen in chapter 3. In the first part of this chapter we used the so-called “field cooling”

algorithm, where one starts from the normal state at T = Tc1 and then gradually decreases

the temperature while keeping the magnetic field fixed; the equilibrium configuration obtained

for the previous temperature step is used as the initial condition for the next step and the

second part we make a magnetic history for different coupling values and fixed temperatures.

We chose the Nb and Sn superconductors for the first and the second layers. The Nb is

a type II superconductor with κ1=1.03 and Tc1=9.2K and the Sn is a type I superconductor

with κ2=0.15 and Tc2=3.7K.
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Figure 7-2 : Phase diagram (T×m⊥/m1) forH = 0.1Hc2,1 The regions with different
colors identify the phases of vortex when temperature decreasse to each
value of coupling. The dotted line show when the vortex dissociates

7.3 Results

7.3.1 Magnetic response dependence on the Josephson coupling between the
superconducting layers

In this section we will see how the variation of electronic coupling between the layers affects

the behavior of vortices. To do this aim we considered the sample dimensions Lx = 45ξ10,

Ly = 60ξ10 and Lz = d1 + d2 + s, where d1 = 5ξ10, d2 = 5ξ10 and s =0.05ξ10, with a variation

of the term m⊥ in a range m1 ≤ m⊥ ≤ 200m1. We simulated a Field Cooling process with

a range of temperatures Tc1 < T < 0.1Tc1 for the fixed value of the applied magnetic field,

H =0.1Hc2,1 (that corresponds to 39 vortices inside of sample) and ζ = 0.2.

The phase diagram presented on Fig. 7-2 show how the configuration of vortices vary

as a function of coupling m⊥/m1 and T/Tc1. Each point in the diagram corresponds to a

stable configuration of vortices, for each value of T/Tc1. We note that some configurations

are formed by vortices of both layers that share the same axis, i. e. composite vortices as

show in the Fig. 7-3. It is seen that the density of cooper pairs in layer-1 (a) as well in

layer-2 (b) are the same, but this structure of composited vortices only prevail up to a value

of coupling (m⊥/m1 ≈ 35). Beyond this value we have dissociation of vortices, observed for

certain two-component systems [124,135–138]. This transition, is shown by the dotted line in
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the phase diagram and it is going to be studied later.

Figure 7-3 : Composite vortex, m⊥/m1 = 2 at T = 0.1Tc1. Vortices are centered at
the same point and have equal flux number.

Notice that for T > Tc2, the vortices arrange them selves in a Abrikosov Lattice. This was

expected, since the influence of type-I superconductor on the bilayer is only reflected when

the temperature reaches its critical temperature. In Fig. 7-4 we present vortex configuration

for m⊥/m1 =2 and 4. For this case, we observed that for whatever temperature, an almost

homogeneous distribution of vortex is present, indicating a type-II behavior. That can be

explained by the fact that stronger couplings between layers mean stronger influence of the

type-II layer.

(a) (b) (c)

(d) (e) (g)

T=0.3Tc1 T=0.2Tc1 T=0.1Tc1

(a) (b) (c)

(d) (e) (g)

T=0.3Tc1 T=0.2Tc1 T=0.1Tc1

(a) (b) (c)

(d) (e) (g)

T=0.3Tc1 T=0.2Tc1 T=0.1Tc1

(a) (b) (c)

(d) (e) (g)

T=0.3Tc1 T=0.2Tc1 T=0.1Tc1

(a) (b) (c)

(d) (e) (g)

T=0.3Tc1 T=0.2Tc1 T=0.1Tc1

Figure 7-4 : Abrikosov Lattice m⊥/m1 =2 [(a),(b)and (c)] and 4[(e),(f) and (g)],
profile in the type-II layer.

When coupling is increasing for low temperatures new effects on the vortex lattice appear.

At m⊥/m1 =6 and T =0.1Tc1 different types of cluster show up (dimers, three vortex cluster
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and short individual chains [see Fig. 7-5(e)]. The transition to from the cristaline (Abrikosov)

lattice to the vortex cluster phase is distinguished by the vortex interaction, where by effects

of temperature a slight attraction between vortices is present and leads to the formation of this

kind of state. This interaction is a typical non-monotonic interaction, where the interaction

between vortices is short-range repulsive and long-range attractive.

(a) (b) (c) (d)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(e)

T=0.3Tc1 T=0.24Tc1 T=0.2Tc1 T=0.14Tc1 T=0.1Tc1

Figure 7-5 : The evolution the vortex structure with temperature, shown order para-
meter profile in the type-II layer consider very strongly coupled lay-
ers, m⊥/m1 =6 (a-e) (Abrikosov Lattice → Clusters),m⊥/m1 =10 (f-j)
(Abrikosov Lattice → Clusters, chains), m⊥/m1 =20 (k-o) (Abrikosov
Lattice → Domains Vortex-Chains) and m⊥/m1 =30 (p-t) (Abrikosov
Lattice → Domains Vortex-Chains)

Figures. 7-5(f)-(j), show the vortex configuration for the coupling between layersm⊥/m1 =
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10. The long-range vortex attractive is set at higher temperatures that that found for

m⊥/m1 = 6, in the panel (h) small vortex cluster of two and four vortices are already. For

lower temperatures, the panels (i)-(j) show that chains are established and follow the sample

geometry. For m⊥/m1 = 20, attractive part of the interaction becomes stronger, because the

formation of small vortex cluster is suppressed in favor of large vortex agglomeration as depic-

ted in panels (i)-(n). At T = 0.1Tc1 these agglomeration becomes and form two rows of vortex

aligned to the sample borders (m)-(o). The same behavior is observed for m⊥/m1 = 30, but

here on of row is broken (t), due to the strong interaction between vortex and the layer of

superconductor type-I become more apparented.

(a) (b) (c) (d)

(e) (f) (g) (h)

T=0.22Tc1 T=0.14Tc1 T=0.12Tc1 T=0.1Tc1

Layer-2

Layer-1

Figure 7-6 : The evolution of the vortex structure with decreasing temperature, with
electronic coupling m⊥/m1 = 35. Transition agglomeration → curvi-
linear domains, and vortex dissociation.

When the coupling between the superconductor layer is further reduced m⊥/m1 = 35,

we observe Another interesting feature for such low couplings is the phenomenon of vortex

dissociation between layers. Notice in Figs. 7-6(d),(h) that many vortices in the first layer do

not share the same axis with the corresponding vortices in the second layer.

These effect is still more stronger for smaller coupling as m⊥/m1 =40, 100 and 200 Fig. 7-

7. It is clear that low couplings favor the distinct superconducting behavior inside each layer,

type-2 behavior in the first layer and type-1 behavior in the second layer. Thus, in the layer

2 there is a trend to form a single vortex domain in the center of the sample. On the other

hand, the layer 1 vortices are forced to follow the the layer 2 vortex domain by influence of

the magnetic coupling, but, at the same time, they experience a strong intra-layer repulsion.

That produces the vortex dissociation mentioned above.

Fig. 7-8 shows the profiles of the magnetic field induction crossing the superconducting
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and insulator layers. It can be observed how the field on the z-direction is curved due to the

attraction exerted by vortices in the layer-2. The schematic picture of this shown the effect

of the field is show Fig. 7-8(c).

(a) (b)

s/2

d1/2

d2/2

(c)

s/2

d1/2

d2/2

Figure 7-8 : Profile of the magnetic induction at three planes d1/2, s/2 and d2/2 for
two couplings m⊥/m1 = 35(a) and 60(b) to T = 0.1Tc1 showing how
it is curved in the sample.c) Schematic picture of this effect. Different
localization of magnetic field in each layer gives multi-scale interaction
for configuration of vortex.

Fig. 7-9 represents a situation in which there is vortex dissociation between layers. In this

Fig. we depict the phase difference between layers calculated by =(Ψ∗1Ψ2), that shows the

process of vortex splitting. The phase difference is marked in the graph as the color variation

from red to blue indicating where vortex has dissociated. To make a better identification we

superimposed the phase difference plot over the vortex distribution in each layer. The latter

is illustrate by the contour lines of the condensate density |Ψ|2. Vortices in the layer-1 are

represented by the red lines, while the vortices in layer-2 are given by blue lines. The panels

(a) and (b) were calculated for m⊥/m1 =100 and 200 at T =0.1Tc1.

One can clearly distinguish the dissociated vortex pairs because they leave traces in the

plots. These traces show what vortex have been dissociated.

Fig. 7-10 shows the sample magnetization as function of the reduced temperature T/Tc1,

i.e. the phase diagram (Mc,M×T/Tc1), for several values of the coupling parameter m⊥/m1.

The magnetization M as function of temperature, M(T ) = (〈h〉 − H)/4π, where 〈h〉 is the

local magnetic field average over sample was calculated in each layer separately and then

averaged Mtotal = (Mlayer-I +Mlayer-II)/2.
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Figure 7-9 : Phase difference between layers, showing dissociation of vortices
in layer-I (red) and layer-II(blue) for coupling (a)m⊥/m1=100 and
(b)m⊥/m1=200 both at T = 0.1Tc1
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Figure 7-10 : Phase diagram M × T for sevral values of the coupling m⊥/m1.

For small values of m⊥ (m⊥ ≤ 10) one sees a monotonic groth of the magnetization with

decreasing temperature. This is a expected behavior since for low values of m⊥ we have

the formation of the Abrikosov lattice, showing the prevalence of the repulsive interaction

between vortices. In contrast for values above m⊥ ≥ 10 and low temperatures, the magnet-

ization presents a jump and this jump is associated with the vortex structure. It happens

near 0.3Tc, approximately where the transition for non-monotonic vortex-vortex interaction
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induced configurations takes place. It is reasonable to assume that the M(T ) signature can

be useful to classify layers according to the strength of the Josephson coupling between them.

7.3.2 Magnetization behavior

Fig. 7-11 presents the increasing brunch of the magnetization loops (M × H) of the

bilayer for different values of the Josephson coupling strength and temperature. We chose

temperatures close to Tc2, T = 0.3Tc1 and T = 0.1Tc1. Figs. 7-12 to 7-15 present the order

parameter profiles, corresponding to the specified point in the magnetization curve (Fig. 7-11

(i)-(iv),for coupling between layer m⊥/m1 = 2; 35; 100 and 500, respectively at T =0.3Tc1
and T =0.1Tc1.
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Figure 7-11 : Increasing brunch of the magnetization M(H) loop at T =0.3Tc1 and
0.1Tc1, for sequentially increased the coupling of the bilayer m⊥/m1

Considering m⊥/m1 = 2 [see Fig. 7-11(i)], the shape of the M(H)-loop suggests that

the whole system still behaves like a type-II superconductor, This is confirmed by the order

parameter profiles show in Fig. 7-12(a)-(d).
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(a) (b) (c) (d)

Figure 7-12 : Order parameter profiles for the bilayer system, that correspond to
point in the magnetization curve for coupling between layer m⊥/m1 =
2 at T=0.1Tc1 (see Fig. 7-11(i)).

However, for m⊥/m1 = 35, we find that in the Meissner state is a small concavity at hp.

This field marks the entry of vortices in layer-1, while layer-2 is kept in the Meissner state [see

Fig. 7-11(ii) and Fig. 7-13(b)-(c)] until the first jump [see Fig. 7-11(ii) and Fig. 7-13(d)]

occurs, precisely when the field manages to penetrate layer-2. This behavior of magnetization

versus external magnetic is neither type-I or type-II like. This state is characterized by a

strong drop of the magnetization at a transition field Fig. 7-11(ii)(f). Beyond the transition

field, the flux continues to enter the sample gradually, exhibiting a mixed state that leads to

the overall behavior of magnetization as a superposition of type-I (steep drop) and type-II

(gradual decrease) behavior.

a b c d e f g

Layer-1

Layer-2

Figure 7-13 : Order parameter profiles for the bilayer system, that correspond to
point in the magnetization curve for coupling between layer m⊥/m1 =
35 at T=0.1Tc1 (see Fig. 7-11(ii))

For m⊥/m1 =100 and 500 the magnetization presents the same behavior for the Meissner

state, where the magnetic field first penetrates the layer-1 in hp [see Fig. 7-11(iii) and Fig. 7-

14(b)-(d)) and [see Fig. 7-11(iv) and Fig. 7-15(b)-(e)] and a pronounced jump from the



118

Meissner state to mixed state. This behavior does not have a type-I behavior since the

influence of type-II allows the entry of vortices and generates one mixed state for layer-1 and

a completely dissociate state for layer-2 [see Fig. 7-14(e)-(g) and Fig. 7-15(f)-(g)].

a b c d e f g

Layer-1

Layer-2

Figure 7-14 : Order parameter profiles for the bilayer system, that correspond to
point in the magnetization curve for coupling between layer m⊥/m1 =
100 at T=0.1Tc1 (see Fig. 7-11(iii))

a b c d e f g

Layer-1

Layer-2

Figure 7-15 : Order parameter profiles for the bilayer system, that correspond to
point in the magnetization curve for coupling between layer m⊥/m1 =
500 at T=0.1Tc1 (see Fig. 7-11(iv))
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8 Stray Field Contribution to Vortex Interaction in Thin Films: Extended

Ginzburg-Landau Analysisa

In this chapter we presents the results on the vortex-vortex interaction dependence on the

sample thickness, and the influence of stray field on different vortex cluster configuration, in

the intertype (IT) domain. The results reveal that the IT domain interaction has a considerable

many-body (many-vortex)contribution. Such many-body interactions play a crucial role in the

formation of the vortex matter in the mixed state stabilizing multi-vortex clusters. Properties

of the vortex-vortex interactions depend strongly on the number of vortices in a cluster.

8.1 Introduction

Several theoretical and experimental works showed that for κ = 1/
√

2 = κ0, and T → Tc,

there exist a intertype domain between the type-I and type-II superconductor in the (κ, T )

plain [39, 63–67], see Fig. 8-1. This domain exhibits a non-conventional field dependence

of the magnetization and reveals a first-order transitions between Meissner and the mixed

state [39, 63].

The physics of the intertype domain results from the infinite degeneracy of the mixed

state at the Bogomolnyi point (κ0, Tc) [68] which is closely related to the Bogomolnyi self-

duality [19,20]. This degeneracy implies that at (κ0, Tc) the mixed state has an infinity number

of possible configurations for the magnetic flux. By lifting this degeneracy, for example by

doping or by decreasing the temperature, one is able to exhibit new flux configurations,

different from those on either type-I or type-II domains, thus forming the inter-type domain.

The intertype domain does not exist only in the bulk samples, it can be found also in

thin superconducting films, where the Bogomolnyi degeneracy can be lifted by the magnectic

stray fields outside the sample. Indeed, there are experimental reports on the existence of

nonconventional flux configuration, as multiquantum vortices, in thin films [76, 77]. Also, it

has been known since 1960’s [4, 6] that, in the presence of a perpendicular magnetic field,

an originally type I superconductor thick film must present type II properties as the film
aContains material from the manuscript: Stray Field Contribution to Vortex Interaction in
superconducting Thin Films: Extended Ginzburg-Landau Analysis (in preparation)
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Figure 8-1 : Phase diagram of the superconductivity types in the (κ, T )plane. (see
[90,139])

thickness decreases sufficiently. We have shown in Chapter 4 and [91], that this transition from

type-I to type-II domain occurs via the intertype domain. Our results have revealed various

non-standard patterns such as lattices of superconducting islands separated by vortex chains;

complex vortex stripes and worms, and mixtures of giant vortices and vortex clusters. All this

configurations are qualitatively different from the standard flux/condensate patterns observed

in traditional types-I and type-II superconductors. They can be explained by recalling that

the vortex-vortex interaction has two contributions of opposite signs: one of them is due

to the magnetic field and the other comes from the condensate. In bulk type-I materials

the condensate contribution is dominant and the resulting vortex interaction is attractive.

However, as the film thickness d decreases, the contribution due to stray magnetic fields

grows, and finally the interaction becomes repulsive. The thickness is, therefore, a parameter

that can be used to gradually drive the system from type-I to type-II by passing through the

intertype domain in the (d, T )-plane. However, contrary to what is seen in the (κ, T )-plane,

here the intertype domain does not collapse into a single point as T → Tc. Indeed, unlike bulk

materials, the intertype regime for thin films can be at least qualitatively described by the

Ginzburg-Landau theory amended with the equations for the stray fields. The reason is that

here the degeneracy is removed mainly by the stray field contribution and thus the non-local

condensate interactions beyond the realm of the Ginzburg-Landau theory (responsible for

lifting the Bogomolnyi-point degeneracy in bulk) can be safely neglected if the temperature

is not so low.
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Recently theoretical studies using the Extended Ginzburg Landau (EGL) formalism [45–

47] have show that the intertype regime can be found in both single and multiband supercon-

ducting bulk samples [90,139]. Moreover, by analyzing the character of the vortices interaction

in IT domain in superconductors, the authors of ref [90], have shown that the IT domain is

composed of two subdomains, IT/I and IT/II, each of them with diferent characteristics.

Whereas in the IT/II the vortex interaction potential has a two-body character and a non-

monotonic spacial interaction (long-range attraction and short-range repulsion), in the IT/I

subdomain the vortex interaction is dominated by many body interaction wich stabilize large

clusters and can develop very peculiar vortex matter.

With this in mind, we calculate the vortex-vortex interaction for different clusters [see

Fig. 8-3] for a superconducting film in the presence of a perpendicular external magnetic

field. Our objective is to understand how the vortex-vortex interaction change with thickness

and what is the influence of stray fields on it. These calculation will be done using the EGL

formalism.

8.2 Formalism

We work with the Gibbs free energy, that contained both contribution, the Gibbs energy

of the superconducting sample with thickness d and the Gibbs free energy of the stray fields

outside the superconductor, as shown in Fig. 8-2.

7.2 FORMALISM 76

we wnat to show as the transition domain between type I and type II when we introduce stray mag-

netic field and control of the sample thickness, the study of vortex interaction also gives information

about the stability of differents vortex configuration in the IT domain in principal we can .....

7.2. FORMALISM

We work with the Gibbs free energy, that contained the both contribution, the Gibbs energy of the

superconductor sample with thickness d and the Gibbs free energy of the stray fields outside the

superconductor, as shown in Fig. (??)

s s

HZ

d ss

Figura 7-1.: Schematic representation of a thin film showing the curvature of the field (stray

fields)

G = GSup.sample + GStray field. (7-1)

We consider that the free energy does not change over the thickness of the sample (d), therefore,the

Gibbs free energy of the superconductor is written as

Gsup =

∫
gd3r = d

∫
gd2r, g = fs +

B2

8π
− BH

4π
, (7-2)

Stray Field

Figure 8-2 : Schematic representation of a thin film showing the curvature of the
field (stray fields)

G = GSup.sample + GStray field. (8.1)
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8.2.1 Gibbs free energy of the superconductive sample

We consider that the free energy does not change over the thickness of the sample (d),

therefore,the Gibbs free energy of the superconductor is written as

GSup.sample =

∫
gd3r = d

∫
gd2r, g = fs +

B2

8π
− BH

4π
, (8.2)

where B is the magnetic field (induction), H is external (uniform) field, both directed along

the z direction and fs is the energy of the condensate. We subtract the Gibbs energy density

gM of the uniform Meissner state at H = Hc, where the Gibbs free energy difference is

analysed.

g = g − gM = fs +
B2

4π
− BHc

4π
− H2

c

8π
+
H2
c

4π

g = fs +
(B −Hc)

2

8π
(8.3)

Now, the total flux of the field B coincides with the flux of the external field H = Hc+δH,

where the energy density takes a new version

g = fs +
B2

8π
− BH

4π
= fs +

B2

8π
− BHc

4π
− BδH

4π

g = g + gHc − gHc = fs +
B2

8π
− BHc

4π
− BδH

4π
+
H2
c

8π
− H2

c

8π
= fs +

(B −Hc)
2

8π
− BδH

4π
− H2

c

8π

g = g− BδH

4π
− H2

c

8π
, (8.4)

obtained by expanding all pertinent physical quantities. The spatial coordinates are scaled

as τ1/2r, which introduces the corresponding scaling into the spatial derivatives. The gap

function ∆ and the magnetic field B (or the vector potential A) are represented in the form

∆ = τ1/2(Ψ + τψ + · · · )
B = τ(B + τb + · · · )
A = τ1/2(A + τa + · · · )

(8.5)

The density of the Gibbs free energy difference is given by the expansion

g = τ2(g(0) + τg(1) + · · · ), (8.6)

the free energy density of the condensate as [69],

f = τ2(f (0) + τf (1) + · · · ), (8.7)
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the leading-order correlation to GL free energy are split into two parts

f (1) = f
(1)
1 + f

(1)
2 , (8.8)

then

g(0) =
(B−H(0)

c )2

8π
+ f (0) (8.9)

g(1) =
(B−H(0)

c )(b−H(1)
c )

8π
+ f (1) (8.10)

where

f (0) = a|Ψ|2 +
b

2
|Ψ|4 +K|DΨ|2, (8.11)

with D = ∇− i2eA
~ccc the gauss invariant derivative with the leading order contribution of the

vector potential and i = i2e
~ccc (ΨD∗Ψ∗ −Ψ∗DΨ)

f
(1)
1 =

a

2
|Ψ|2 + 2K|DΨ|2 + b|Ψ|4 +

b

36

e2~2

m2ccc
B2|Ψ|2

−Q
{
|D2Ψ|2 +

1

3
(rotB · i) +

4e2

~2ccc2
B2|Ψ|2

}

− L
2

{
8|Ψ|2|DΨ|2 + [Ψ2(D∗Ψ∗)2 + c.c]

}
− c

3
|Ψ|6

(8.12)

and includes only the lowest-order contribution Ψ and B(A) to the gap field, respectively,

while the second part writes

f
(1)
2 = (a+ b|Ψ|2)(Ψ∗ψ + Ψψ∗) +K[(DΨ ·D∗ψ∗ + c.c.)− a · i] (8.13)

The coefficients in Eqs. (8.11)-(8.13) are obtained using a chosen microscopic model of

the charge-carrier states. In particular, for a spherical Fermi surface in the clean limit one

gets

a = −N (0), K =
b

6
~2v2

F ,

b = N (0)
7ζ(3)

8π2T 2
c

, Q =
c

30
~4v4

F ,

c = N (0)
93ζ(5)

128π4T 4
c

, L =
c

9
~2v2

F

(8.14)

where N (0) = mkF
(2π2~2)

is the carrier density of states (DOS) at the Fermi surface with the

Fermi momentum kF and Fermi velocity vF = ~kF /m. To proceed further, it is convenient
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to introduce the following dimensionless quantities:

r̃ =
r√
2λ
, Ã = κ

A

H
(0)
c λ

, B̃ = κ
√

2
B

H
(0)
c

, Ψ̃ =

√
− b
a

Ψ

D̃ =
√

2λD, ĩ = 4π
Kλ
H

(0)
c

, g =
(H

(0)
c )2

4π
g̃ G =

(H
(0)
c )2(

√
2λ)3

4π
G̃

(8.15)

where λ = ~2cccb/32πe2K|a| and κ = λ/ξ = λ
√
|a|/K.

GSup.sample =
(H

(0)
c )2

4π
(
√

2λ)3d̃

[∫

s
g̃d2r̃ −

∫

s
B̃δH̃d2r −

∫

s

1

2
d2r

]
(8.16)

the Gibbs energy difference becomes (see Appendix C)

g(0) =
1

2

(
B

κ
√

2
− 1

)
− |Ψ̃|2 +

1

2
|Ψ̃|4 +

1

2κ2
|D̃Ψ̃|2 (8.17)

g(1) =

(
B̃

κ
√

2
− 1

)(
1

2
+

ac

3b2

)
− 1

2
|Ψ̃|2 + |Ψ̃|4 +

ca

3b2
|Ψ̃|6 +

1

κ2
|D̃∆̃|2

+
Qa
K2

1

4κ4

(
|D̃2Ψ̃|2 +

1

3
rotB̃ · ĩ + B̃|Ψ̃|2

)

+
La
Kb

1

4κ2

(
8|Ψ̃|2|D̃Ψ̃|2 + Ψ̃∗2(D̃Ψ̃)2 + Ψ̃2(D̃∗Ψ̃∗)2

)
(8.18)

The physical quantities are scaled in function τ , also the Gibbs free energy scaled in τ is

equal to:

G̃Sup.sample = τ1/2(d̃
√
τ)

[∫

s
g̃d2r̃ −

∫

s
B̃δH̃d2r −

∫

s

1

2
d2r

]
(8.19)

Since we are interested in the solution near the Bogomolnyi point, it is also useful to

introduce the expansion over δκ = κ − κ0, where κ0 = 1/
√

2, and employ the perturbation

expansion. With respect to δκ, with this aim we need to expand g̃(0) in δκ

g̃(0) = g̃(0)
∣∣∣
κ= 1√

2

+ δκ




∂g̃(0)

∂κ

∣∣∣
κ= 1√

2

+

∫
dr


δg̃

(0)

δΨ

dΨ

dκ︸ ︷︷ ︸
=0

+
δg̃(0)

δΨ∗
dΨ∗

dκ︸ ︷︷ ︸
=0

+
δg̃(0)

δA

dA

dκ︸ ︷︷ ︸
=0








+ g̃(1)
∣∣∣
κ= 1√

2

τ

g̃(0) = g̃(0)
∣∣∣
κ= 1√

2

+
∂g̃(0)

∂κ

∣∣∣
κ= 1√

2

δκ+ g̃(1)
∣∣∣
κ= 1√

2

τ. (8.20)
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Then, the free energy can be written as,

G̃Sup.sample =τ1/2(d̃
√
τ)

[∫

s
d2r̃

(
g̃(0)
∣∣∣
κ= 1√

2

+
∂g̃(0)

∂κ

∣∣∣
κ= 1√

2

δκ+ g̃(1)
∣∣∣
κ= 1√

2

τ

)
−

−
∫

s
B̃δH̃d2r −

∫

s

1

2
d2r

]
.

(8.21)

Note, that the implicit contributions are zero because they are proportional to δg̃(0)/δΨ∗

and δg̃(0)/δA, which are zero in the equilibrium. At κ = κ0 = 1/
√

2, a solution to the GL

equation can be obtained by using Bogomolnyi self-duality equations (see Appendix D)

B = 1− |Ψ|2, (∂y + i∂x)Ψ = (Ax − iAy)Ψ (8.22)

Using a solution to Bogomonlyi equation one can represent GSup.sample in terms of Ψ

g̃(0)|κ= 1√
2

=
1

2
(1− G̃)2 − |Ψ̃|2 +

1

2
|Ψ̃|4 + |D̃Ψ̃|2

=
1

2
(1− 1 + |Ψ̃|2)2 − |Ψ̃|2 +

1

2
|Ψ̃|4 + Ψ̃∗(−g̃2Ψ̃)

=
1

2
|Ψ̃|4 − |Ψ̃|2 +

1

2
|Ψ̃|4 + Ψ̃∗(Ψ̃(1− |Ψ̃|2))

= 0. (8.23)

The contribution g̃(0)|κ= 1√
2
corresponds to the GL contribution and at κ = κ0 is equal to

zero due to the Bogomonlnyi degeneracy. The other contributions

∂g̃(0)

∂κ
|κ= 1√

2
=

2

2

(
1− B̃

κ
√

2

)(
− B̃√

2

)(
−1

κ

)
− 1

κ3
|D̃Ψ̃|

∣∣∣∣κ= 1√
2

= (1− B̃)B̃
1

κ
+

1

κ3
Ψ̃∗D̃2Ψ̃

∣∣∣∣κ= 1√
2

= −
√

2|Ψ̃|2(1− |Ψ̃|2). (8.24)

the terms that correspond to g(1) can be writen as function of Ψ

|D̃Ψ̃|2 → |Ψ̃|2(1− |Ψ̃|2), (8.25)

|B̃2Ψ̃|2 → |Ψ̃|2(1− |Ψ̃|2)− |Ψ̃|4(1− |Ψ̃|2), (8.26)

rotB̃ · ĩ = i2 = 2̃|Ψ̃|2|D̃Ψ̃|2, |Ψ̃|2|D̃Ψ̃|2 =
1

2
|Ψ̃|2(1− |Ψ̃|2). (8.27)

Now we can represent G in terms of I and J which are integrals that depend exclusively
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as a function of order parameter Ψ

I =

∫
d2r|Ψ|2(1− |Ψ|2), J =

∫
d2r|Ψ|4(1− |Ψ|2), (8.28)

GSup.sample = τ1/2d
√
τ
{
−
√

2Iδκ+ τ
[
(1− c̃+ 2Q̃)I +

(
2L̃ − c̃− 5

3
Q̃
)
J
]
−
∫

s
BδHd2r −

∫

s

H2
c

2
d2r

}
. (8.29)

with the dimensionless coefficients

c̃ =
ca

3b2
= −0.227, Q̃ =

Qa
K

2

= −0.454, L̃ =
La
bK = −0.817. (8.30)

these constants are material independent for the chosen model [69].

8.2.2 Stray Field Gibbs Energy Outside the Superconductor

The Gibbs free energy of the stray field is given by,

GStray field =

∫
d3r

B(r)2

8π
. (8.31)

We consider that the field inside the superconductor has component z and outside the

superconductor there is no current. Thus from Ampère’s law we have ∇ × B = 4πJ =

0; ∇·B = 0, which results ∇×B = 0⇒∇×∇ϕ = 0 which implies that B can be written

in terms of a magnetic scalar potential B = −∇ϕ

∇ ·B = 0⇒ ∇2ϕ = 0 (8.32)

The boundary condition is ∇zϕ = −Bz(x, y)⇒ ∇⊥ϕ = f(x, y). If B has only the normal

component, than ϕ is constant on the plane ∇‖ϕ = 0→ ϕ = Constant. Therefore, our work

is reduced to in solving the Laplace equation for ϕ.

The solution of Laplace’s equation for the scalar pottential can be found by direct integ-

ration of the Green’s function.

ϕ(r) =
1

4π

∮

s

(
1

R

∂ϕ(r)

∂n̂
+ ϕ(r)

∂

∂n̂

1

R

)
d2r, R = |r − r′|. (8.33)
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With the boundary condition ϕ reduce to

ϕ(r) =
1

4π

∮

s

1

|r − r′|
∂ϕ(r′)

∂n̂
d2r = − 1

4π

∮

s

Bz(r
′)

|r − r′|d
2r′, (8.34)

therefore,

B(r) = −∇ϕ(r) =
1

4π

∮

s
d2r′∇ Bz(r

′)

|r − r′| . (8.35)

Since the magnetic flux is independent on the distance form boundary of the supercon-

ductor, we can write,

Φ =

∫
S Bd

2r∫
S d

2r
=

1

4πS

∫

S

∮

s
∇ Bz(r

′)

|r − r′|d
2r′d2r =

1

4πS

∫

V

∮

s
∇2 Bz(r

′)

|r − r′|d
2r′d3r

=
1

4πS

∮

s
Bz(r

′)d2r′
∫

V
∇2 1

|r − r′|︸ ︷︷ ︸
−4πδ(r−r′)

d3r =
1

S

∮

s
Bz(r

′)d2r′. (8.36)

Then, the stray field energy is given by,

GStray field =
1

8π

∫
B2(r)d3r =

1

8π

1

4π

1

4π

∫

V

∫

s

∫

s
∇ Bz(r

′)

|r − r′|∇
Bz(r

′′)

|r − r′′|d
2r′d2r′′d3r

=
1

8π

1

4π

1

4π

∫

s

∫

s

(∫

V
∇ 1

|r − r′|∇
1

|r − r′′|d
3r

)
Bz[r

′]Bz[r
′′]d2r′d2r′′. (8.37)

Using the relation ∇(a(r)∇b(r)) = ∇a(r)∇b(r) + a(r)∇2b(r), we can write,

1

4π

1

4π

∫

V
∇ 1

|r − r′|∇
1

|r − r′′|d
3r =

1

4π

1

4π

∫

s

1

|r − r′|∇
1

|r − r′′|d
2r +

1

4π

1

|r′′ − r′| . (8.38)

Since that field is calculated on both sides of the superconducting sample, and since it is

antisymmetric.

∫

s

1

|r − r′|∇
1

|r − r′′|d
2r =

∫

s1

d2r1 +

∫

s2

d2r2

(
1

|r − r′|∇
1

|r − r′′|

)
= 0, (8.39)

due to the symetry d2r1 = −d2r2, and to the fact that the integral is now extended on the

entire space

GStray field =
1

8π

1

4π

∫

S

∫

s

Bz(r
′)Bz[r

′′]

|r′′ − r′| d2r′d2r′′ (8.40)

scaling the expression for the energy with the dimensional units defined in (8.14) and τ (8.5)

G̃Stray field =
τ1/2

8π

∫

S

∫

s

B(r′)B(r′′)

|r′′ − r′| d2r′d2r′′. (8.41)
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It is important to notice that the GSup.sample defined by Eqs. (8.28), (8.29) and (8.41)

depends only on the solution of Eq. (8.22), demonstrating that the properties of the vortex

matter in the IT domain are fully determined by the Bogomolyi self-duality.

8.2.3 Multi-vortex Configurations

We consider now the case of multi-vortex configuration. We start by rewriting the Bogo-

molnyi equations in order to simplify the work for obtaining a solution for any arbitrary con-

figuration of vortices (both single- and multi-quantum). To solve the Bogomolnyi equations

it is conveniently to recall that the vector potential is generally written as A = (Ax, Ay, 0),

when the magnetic field has only z component B = (0, 0, Bz).

Adopting the Coulomb gauge ∇ · A = ∂xAx + ∂yAy = 0, we can introduce the scalar

potential φ so that

Ax = −∂yφ, Ay = ∂xφ. (8.42)

In this case for the magnetic field we have

B = rotA = ∇2φ = (∂2
x + ∂2

y)φ. (8.43)

Using the substitution Ψ = e−φΦ, Substituting this ansatz into Bogomolnyi self equation,

we obtain

D−Ψ = (Dx − iDy)Ψ = [(∂x + iAx)− i(∂y + iAy)]e
−φΦ = 0

(∂x − i∂yφ)e−φΦ− i(∂y + i∂xφ)e−φΦ = 0

−φ∂xΦ− ie−φ∂yΦ = (∂y + i∂x)Φ = 0. (8.44)

This is the standard condition that Φ is an analytical function of the complex variable

Z = x+ iy. The other equation is,

B = 1− |Ψ|2 =⇒ ∇2φ = 1− |e−φΦ|2 = 1− e−2φ|Φ|2, (8.45)

Φ can easily be chosen to represent a mixed state with an arbitrary vortex spatial configur-

ation. Indeed, the positions of vortices are defined by the zeros of Φ that fully define any

analytic properties of a complex function. For example, a single vortex positioned at a is

obviously described by Φ = Z − a, where a = ax + ay. Two vortices located at a1 and a2

correspond to Φ = (Z − a1)(Z − a2), with ai = ai,x + ai,y. Similarly one can construct Φ

that corresponds to any spatial configuration of multiple single-quantum vortices at positions
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ai’s, i.e., Ψ =
∏
i(Z − ai), see [69]. In turn, an isolated N-quantum vortex located at a yields

Ψ = (Z − a)N , etc.

Then, the solution that describes N vortex with the centers at ri is obtained as follows.

First find Ψ1(r) that describes an isolated Abrikosov vortex with the center at r = 0. Then

we represent the N-vortex solution in the form

Ψ(r) = e−δφ
N∏

i=1

Ψi, Ψi = Ψ1(r − ri). (8.46)

Here Ψ represents the solution for an isolated Ni−quantum vortex located at ri. As

already mentioned in the previous paragraph, Ψi is given by

Ψi = (Z − ai)Nie−φi , (8.47)

where φi satisfies

(∂2
x + ∂2

y)φi = 1− |Ψi|2, (8.48)

so that

φ = δφ+
∑

i

φi. (8.49)

Substituting this into the last equation, we obtains,

(∂2
x + ∂2

y)δφ = 1 +
∑

i

(|Ψi|2 − 1)− e−2δφ
∏

i

|Ψi|2 (8.50)

Solving this equation and substituting the obtained Ψ, we find the Gibbs free energy dif-

ference G for the N-vortex and then extract the corresponding interaction energy (interaction

potential) by subtracting the energies of N isolated vortices

Gint = G/N − G1, (8.51)

where the G1 the free energy by the single vortex solution.

To simulate structure formations of a system of interacting vortex, we use the Metropolis

Monte Carlo method as discussed in Chapter 4 section 4.3.

We consider a thin superconducting define a square region with dimensions L× L, where
vortices are treated as interacting elementary particles in two dimensions with position (x, y),

free to move in any direction in the plane. To reduce surface effects we impose periodic

boundary conditions. The simulations will be performed at a constant number of particles N

(vortices), constant system area L× L, and constant temperature T , in this case, we choose
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τ = 1 (exactly in the Bogomonlyi point).

Applied for a system of vortices, the Metropolis Monte Carlo algorithm is as follows:

1. Generate a starting configuration and calculate the energy G0.

2. Randomly pick one vortex and change position in a random direction by a length of

χ · d, where χ is a random number between 0 and 1 and d is the maximal step length.

3. Calculate the new energy G of the system.

4. If the net change of energy ∆G = G−G0 is positive, keep the new vortex state. If ∆G is

negative, draw a random number η between 0 and 1, and keep the new vortex position

if exp(−β∆G) > η, otherwise, the old state is the new state.

5. Set G0 = G and repeat from step 1 for a desired number of iterations.

To calculate the Gibbs energy, we calculate Ψ using Eqs. (8.50) and (8.46), after calculate

integrals I, J Eqs. (8.28) and B = 1 − |Ψ|2, finally calculate the Gibs free energy G. In

order to solve numerically (8.50) and (8.41), one can use either fast Fourier transform (FFT)

algorithm [140].

8.3 Results

The vortex interaction in superconductors depends on control parameters, some of these

parameters can be: Type of superconductor, which in the case depends on the value of GL-

parameter κ and the thickness of the superconducting sample where effects produced by stray

fields take an important role [91].

Under these conditions, we will analyse how the vortices interaction behaves with the

variation of the thickness of the superconductor sample. We will consider superconductors

with different thicknesses that can represent volumetric superconductors until the thinner one

which will be of the order of λ, for different values of δκ.
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Figure 8-3 : Vortex cluster configuration (a) two vortex (b)-three vortex -T (c) three
vortex -L (d) four vortex -T (e) four vortex -S (f) five vortex -T (g) five
vortex -P

For this analysis we choose different configurations of vortex cluster. Fig. 8-3 shows each

one of the vortex-cluster configurations which we consider: The configuration for two vortex

cluster is shown in the Fig. 8-3(a); for three-vortex cluster we consider two different configur-

ations, the equilateral triangle-T 8-3(b) and linear-L array of vortices 8-3(c); for four-vortex

cluster we limited for two possible configuration, one rhombic or hexagonal-T 8-3(d) and the

square-S 8-3(e); finally for five-vortex cluster we also choose two different configurations, the

hexagonal-T 8-3(f) and the pentagonal-P 8-3(g).

In all cases, we only consider one degree of freedom which represents the case that all

distances r between vortices are varied in the same way.

The vortex interaction potential can be extracted from the free energy with the chosen

positions of the vortex centers, from which the energy of isolated vortices is subtracted, the

interaction energy was then calculated for all different vortex cluster configurations in function

of r(in units of λ/
√

2 with λ the magnetic penetration depth) and for different thickness d (in

units of λ/
√

2).

The values of thickness that we consider are d =(100, 10, 5, 3 ,1)λ/
√

2 and δκ = 1, 0.2,

0.1, 0, -0.05, -0.08, -0.11, -0.5, where δκ = 1 and −0.5 represents values for type-II and type-I

superconductor and the other values are values close to the point of Bogomonlyi κ = 1/
√

2,

especially IT states.

The first result to be presented are for d = 100, that corresponds to our volumetric system

limit. The results of vortex interaction are shown in the Fig. 8-4. In this figure, we show

how the interaction potential varies with the variation of the GL parameter for the vortices

cluster previously mentioned [2-vortex panel (A), 3 vortex panel (B) and 4-vortex panel (C)].
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We consider the different values of δκ.

When δκ = 1 the interaction potential is purely repulsive (type II superconductor), below

this value (δ =0.2 and δ =0.1) the vortex are repulsive at short and attractive al large inter-

vortex distances - this agrees with the early results the type II/1,2 picture. For the case

of small δκ(=0, -0.05, -0.08, -0.11) values near the boundary between the IT/I and IT/II

subdomains and IT-domain and near the Bogomolnyi point. In a more general view of the

behavior between the vortex interaction, we found an attraction a large distance while the

short-range interaction remains repulsive, then, vortex interaction becomes more attractive.

For small distances between vortex we have the following scenario: in the case of two

vortices, it becomes more attractive at smaller δκ, where the minimum becomes local and

disappear for increasing δκ,[see Fig. 8-4 (A.1) → (A.2) → (A.3) → (A.4)]. For the clusters

with three and four vortex, we see that when δκ = 0 we are in the vicinity of the IT/I

- IT/II boundary, and the vortex interaction potential is similar to the 2-vortex case. For

δ =0.1 and 0.2, that correspond to the IT/II and type II regimes, the results are similar

for all the three cases. In the IT/II subdomain, we do not see a qualitative change in the

total vortex interaction due to many body contribution. Nevertheless, for the IT/I case, we

observe substantial changes in the interaction profiles for two vortices cluster. For example,

when δκ = -0.08 we find a minimum for 3- and 4-vortices clusters [see Fig. 8-4(B.3)-(C.3)],

whereas for the 2-vortex cluster this minimum disappears [see Fig. 8-4(A.3)]. This means

that the interaction is already for the 2-vortices cluster, attractive and for 3- and 4-vortex

cluster the non-monotonic type interaction is maintained, indicating an increased role of the

many-body interaction. At δκ =-0.11 the 3- and 4-vortex cluster potential become qualitative

different: the interaction is fully repulsive for the 3-vortex cluster [see Fig. 8-4(B.4)] while the

potential for the 4-vortex case still non-monotonic [see Fig. 8-4(C-4)]. Finally, for δκ = −0.5

we see the vortex interaction becomes attractive for all cases and corresponds typically to the

type-I behavior superconductor.
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Figure 8-4 : Vortex interaction potential for N-vortex cluster (panel (A) 2-vortex,
panel (B) 3-vortex and panel (C) 4-vortex) at different parameter δκ in
a film with thickness d = 100λ

√
2. Panels on th right are amplifications

of the left panels for δκ =0, -0.05, -0.08 and -0.11

In this second part of the results, we will discuss the effect of the sample tickness and the

stray field on the behavior of the interaction potential. We will consider the same δκ values

and the configurations for 2-,3- and 4-vortex cluster previously studied. The film tickness we

choose are d =(10, 5, 3, 1)λ/
√

2.
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As shown in Fig. 8-5 for δκ = 1.0, the interaction potential, per vortice and per film

thickness, decreases monotonically with the distance for all configuration and film tickness.

The vortex-vortex interaction is repulsive in all cases. Also the amplitude of the interaction

potential increases with decreasing film tickness, i.e. the vortex - vortex repulsion increases

with increasing stray field contribution.

For δκ = 0.2 , it is seen in Fig. 8-6[panels (a.I), (b.I), and (c.I)] that, for all clusters

configurations, and, decreasing the film thickness, the interaction potential is increasingly

repulsive. The IT/II behavior dominates for small d(d < 5), and disapear for lager d(d > 5).

For δκ = 0, Fig. 8-6[panels (a.II), (b.II), (c.III)], and d > 1 we see a non-monotonic beha-

vior, where the potential preserves a stability minimum. By decreasing d the minimum moves

to bigger r. At long distances a repulsive interaction dominates, as seen in the two vortices

cluster where the potential has a maximum in r ≈ 5 (a.II). For all clusters configurations and

for d =1, we see a drastic change in the potential, showing monotonically decreasing behavior

favoring the repulsion between the vortices at long distances. For 3-, 4-vortex cluster (b.II,

c.II), at small distances r < 2, the potential has a minimum that can correspond to metastable

states, where the vortices prefer to remain as an agglomerate.

For the case δκ = -0.05 and -0.11, which corresponds to the IT/I case, we observe a

similar behavior to the previous case where for d =10, 5 and 3 the non-monotonic interaction

prevails and for d = 1 the change in the potential is also observed, but with a peculiarity, that

the potential does not decay monotonically, since, some minimum of instability are observed

mainly when r ≈ rmin.
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Now we analyze the case in which when δκ can be considered as type I, here we take

δκ = −0.5 and the same 2-, 3- and 4-vortex cluster. For d = 10, 5 and 3, and for all vortex

clusters we find vortex attraction that is typically type-I behavior [see Fig. 8-7]. For d = 1

and δκ = −0.5 cases [see red line Fig. 8-7-(a), (b), (c)] we find an repulsion at large distance

while the short-range interaction remain attractive, also, this indicates that for this thickness

and δκ we have an IT behavior.

8.3.1 Stability of different vortex cluster symmetry in bulk samples (d=100), with
δκ close to Bogomolnyi point

In this section we will compare the behavior of the interaction potential of different vortex

cluster symmetry, with the same number of vortices, in bulk samples (d = 100), and for δκ

close to the Bolgomolnyi point. In figure 8-8 we present the interaction energy(per vortex and
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per thickness of samples) profile as function of the vortex separation, for n-vortex clusters, n =

3, 4 and 5 [panels (a), (b) and (c) respectively], and different symmetries in the bulk limit (d =

100). For the 3-vortex clusters configuration [see Fig. 8-8(a)] it is seen that the triangular

(T) symmetry is much more stable than the linear one (L), for δκ < −0.11. For δκ = −0.11
the interaction potential of both symmetries, present a attractive potential with minimum

energy at r = 0. Neverless, while interaction energy for the 3-vortex cluster configuration

with L symmetry presents a monotonic dependence on r, the one with T symmetry presents

a non-monotonic dependence.

For 4-vortex cluster configuration [Fig. 8-8(b)] the potential profiles presented in figure 8-

8 show that for δκ = - 0.2, 0 and -0.05, both simmetries, S and T are stable for finite r, but the

S symmetry presents a greater potential depth. This indicates that the system favors having

S symmetry when consider IT/I. For δκ =-0.11 the situation is significantly different, for the

T symmetry the absolute minimum of the potential is found at r = 0 . On the other hand,

the 4-vortex cluster with S symmetry presents an stable configuration for vortices sitting at

a finite distance, rmin = 2.1, between them.

For 5-vortex cluster configuration, the interaction potential profiles are similar to those

observed in the 4-vortex cluster configuration, for all values of δκ studied [see Fig. 8-8(c)]. In

this case, IT/I regime, the system favors the configuration with P symmetry.

In summary, these results show that, in the IT/II regime, vortices clusters can form closed

configurations with L, T, S or P symmetry. On the other hand, in the IT/I regime, vortex

clusters prefer configurations with symmetry other than triangular one. To investigate this

further we obtained the configuration of 49 vortices with different δκ’s [see Fig. 8-9(a)]. When

δκ = 1 the vortices forms an the Abrikosov lattice [see Fig. 8-9(a)]. For δκ =0.2 and 0.1, the
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Figure 8-8 : Interaction potential of different vortex cluster symmetry, with the same
number of vortices, in bulk samples (d = 100)

vortices are attracted forming domains of vortices - where the triangular vortex configuration

is kept inside-with superconducting regions within these domains [see Fig. 8-9(b),(c)]. When

δ = 0 a vortex agglomerate is formed with superconducting regions within this agglomerate,

the vortices here do not form a triangular lattice but prefer to follow the agglomerate geometry

[see Fig. 8-9(d)]. For δκ = - 0.05 and - 0.1 the vortices form an agglomerate with curvilinear

domains, where the vortices also prefer to follow the agglomerate contour [see Fig. 8-9(e)-(f)].

Finally, for δκ = -0.15 and -0.2 a single agglomerate appears where some vortices sitting at

the agglomerate contour the rest forming dimers, cluster, chains and giant vortices inside the

agglomerate [see Fig. 8-9(g)-(h)].
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9 Summary and Future works

9.1 Summary

In the introductory chapters of this thesis, I first reviewed the phenomenology of con-

ventional superconductors and the theoretical approaches used to describe them (London

theory, Ginzburg-Landau theory, Lawrence-Doniach model and BCS theory). Subsequently I

reviewed the recently developed Extended Ginzburg-Landau (EGL) theory.

The numerical simulations done in this thesis were based on the Time-Dependent Ginzburg-

Landau theory and Monte Carlo method, which are explained in details in Chapter 4. We

have introduced the equations of the TDGL model using both phenomenological and mi-

croscopic approaches. Then, the TDGL equations were written in their dimensionless form,

making them easier for analysis and computation. The numerical method for solving TDGL

equations have been also discussed and implemented in this work. We have introduced the

method to discretize the TDGL equations with the help of the link variable. This method was

also used to study the problem of superconducting bilayer using the Lawrence-Doniach model

as theoretical support. The complete numerical procedure was done using the so-called “field

cooling” process and magnetic response with respect to temperature and magnetic field. In

the case of EGL formalism, we used the Monte Carlo method with the standard Metropolis

algorithm to calculated the vortex-vortex interaction for different configurations and δκ.

Using the theoretical and computational formalisms discussed above we studied the prop-

erties of the intertype superconductivity differents superconducting systems.

In Chapter 5, we presented the analysis of the mixed states configurations in thin super-

conducting films. Our consideration was focused on the problem of the change from traditional

type-I to type-II superconductivity when, starting with a type-I superconducting material,

its thickness is decreased. Here the infinite topological degeneracy of the Bogomolnyi point is

removed due to the stray magnetic fields and the intertype domain appears in the thickness-

temperature phase diagram. It was found that, between the type-I and type-II regimes there

exist an intertype domain which presents a rich internal structure presenting a variety of non-

standard flux patterns in the mixed state. Our investigation identified three distinguished

exotic magnetic flux configurations, i.e., lattices of superconducting islands separated by vor-



140

tex chains, stripes/worms of vortices, and mixtures of giant vortices and vortex clusters. The

observed flux distributions cannot be considered as any simple combination of the standard

configurations observed on type-I and type-II superconductor. Thus, our results demonstrate

that the magnetic response of thin superconductors cannot be described via the standard

dichotomy of types-I and type-II, questioning the completeness of the textbook classification

of the superconductivity types, breaks the grounds of understanding the superconductor mag-

netic response, and opens important prospects in further studies of the intertype regime in

superconducting materials.

In Chapter 6, we have investigated the formation of quasi-1D vortex matter in a single

nanowire made of a type-I material in a perpendicular magnetic field. It has been demon-

strated that the magnetic response of the nanowire notably changes when its thickness de-

creases. Sufficiently thin nanowires deviate from type-I in favor of the IT regime with multi-

quantum vortices and vortex clusters in the mixed state. In this case a regular chain of

Abrikosov vortices is observed in the mixed state only when the field is close to its upper

critical value. When decreasing the nanowire thickness further, signatures of the IT regime

gradually disappear. However, the regime of type-II superconductivity is not reached. Instead,

ultrathin nanowires re-enter the type-I regime because the confinement due to boundaries sup-

press the vortex matter. Although the calculations have been done for a single nanowire, our

results are relevant for arrays of nanowires when they are sufficiently far from each another

in an insulating template. This study opens prospects of creating composite superconducting

materials with widely tuneable magnetic properties.

In Chapter 7, we concentrated our attention on vortex matter on a type-II/type-I super-

conducting bilayer. In the first part of our results, we studied in detail the phase transition

between the Abrikosov lattice to the vortex clusters by decreasing the decreasing the tem-

perature and changing the magnetic coupling between the layers. We found that the vortex

matter in a bilayer has proven to be an exciting study object, presenting structures as rich as:

Abrikosov Lattice, different kind of clusters, chains, or phases where type-I flux domains in

one layer trap the type-II vortices in the other leading to vortex dissociation between layers.

These configurations reflects the potential interaction between vortices that can be repulsive,

attractive or non-monotonic. In the second part of this chapter, we showed that the super-

conducting bilayer depending on the stregth of the magnetic coupling between them. For

strong couplings, the layer type II has a domain in the bilayer. For weak couplings, we found

different profiles, especially an abnormal behavior in the Meissner state where one of the layer

(layer-2) remains in Meissner state whereas the magnetic field has already penetrated the

other one, therefore, the profiles of magnetization are neither type-I or type-II like.

In Chapter 8 using the extended Gizburg Landau (EGL) formalism we investigate vortex-



141

vortex interaction in thin superconducting films, between standard type-I and type-II super-

conductors as a function of δκ. The developed approach takes into account the stray magnetic

fields outside the sample. Using this approach we demonstrated that the vortex-vortex in-

teraction has two contributions of opposite signs: one is due to the magnetic field and the

other one induced by the condensate. In bulk samples the latter is dominant and the resulting

vortex interaction is attractive in type-I superconductors and repulsive in type-II. However,

as the film thickness decreases the contribution due to stray field increases, and the interac-

tion demonstrate a different behaivor. We show that for the thickness of the order of λ, the

interaction between vortices is completely repulsive for δκ’s close to κ0 whereas for smaller

thickness the behaviour is typical of the IT domain being a non-monotonic function. Analysis

of the vortex interactions in the IT domain reveals that they have a considerable many-body

(many-vortex) component. Such many-body interactions play a crucial role in the formation

of the vortex matter. Properties of the vortex-vortex interactions depend strongly on the

number and symmetry of vortices in a cluster.

9.2 Future works

• Recent advances in nanotechnology-enabled the fabrication of nanoscale superconduct-

ors with artificial structuring, e.g., designed interfaces, impurities, edge steps and other

more complex boundary profiles. These factors directly alter the electronic states of the

material and result in different superconducting properties, the tuning of which could

be purposefully made useful when engineering electronic. In order to extend the study

of the vortex states in a clean thin film and in nanowires type-I superconductors (see

Chapter 5 and Chapter 6), we will investigate the effect of non-magnetic impurities

and edge steps on the electrical and magnetic properties of the these low-dimensional

system.

• A promising superconducting device is an array of superconducting nanowires embedded

in an insulating matrix. It can be readily produced by, e.g., the process of electrochem-

ical deposition in nanoporous materials, where related dimensional parameters can be

controlled with high precision [83, 84, 86]. Theoretical analysis of superconductivity in

such structures is a nontrivial problem because geometrical factors give rise to qualitat-

ive effects and cannot be assumed small. For example, extrapolating the known results

for superconducting films (see,e.g., Refs. [5,6,14]), one can expect that a nanowire made

of a type-I material in a perpendicular magnetic field becomes a type-II superconductor

due to additional repulsion between vortices induced by stray magnetic fields. Recent

experiments [86] have indeed demonstrated that the magnetization of an array of su-
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perconducting wires changes notably, when the wire thickness decreases. Our plan is

to apply the results obtained for a single nanowire and to design new superconducting

devices with novel and unconventional properties. In particular one of the focuses is

to investigate the magnetic response of arrays superconducting nanowires made of a

type-I material, that are arranged in matrices with different geometries, e.g. separation

between wires. This work is already in progress. Some preliminary results are shown

in Figs. 9-1 and 9-2, where we consider an array with four type-I nanowires with the

dimensions a = c = 6ξ0 and b = 50ξ0. The results demonstrate that this system has a

hysteresis-like dependence on the magnetic field.
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Array of two superconducting nanowires in
a perpendicular magnetic field
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Figure 9-1 : Preliminary results for the magnetic field dependece for a two super-
conducting nanowire array in a perpendicular magnetic field.
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• On other possible work, would be to extend the study done with of superconducting

bilayers including mixtures of different superconductors in each layer and arrays of

pinning centers or deffect in one layer, in order to study their magnetic properties

[125,141,142].
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APPENDIX A - Time-dependent Delta Function

The matter is that delta function δ(t− t′) (Eq. (3-12)) does not satisfy the anti-periodic

boundary condition. So, what about the expansion in terms of the Matsubara frequencies.

δ(t− t′) =
1

β~
∑

n

e−iω(t−t′) (A.1)

For the periodic function varying with periodic 2β~ we have

F(t− t′) =
1

2β~
∑

n

e−iω(t−t′)F(w̃n), ω̃n =
2πn

2~β
=
πn

β~
, (A.2)

where

F(ω̃n) =

∫ ~β

−~β
d(t− t′)eiω(t−t′)F(t− t′). (A.3)

Why do we need such a periodic function? We can construct a function being periodic with

period 2β~ and obeying Eq. (3.11) for −β~ < t− t′ < β~, so, antiperiodic with period β~, in
this case we can write

F(t− t′) =
1

β~
∑

n

e−iω̃n(t−t′)F(w̃n), F(w̃n) =
1

2
F(ω̃n), (A.4)

with

F(w̃n) =





1

2

∫ ~β

−~β
d(t− t′)eiω̃n(t−t′)F(t− t′) = 0, n is even

1

2

∫ ~β

−~β
d(t− t′)eiω̃n(t−t′)F(t− t′) 6= 0, n is odd

⇐ F(t− t′ + β~) = −F(t− t′)

(A.5)

Then, we cant get

F(t− t′) =
1

β~
∑

n,odd

e−iω̃n(t−t′)F(w̃n) =
1

β~
∑

n

e−iωn(t−t′)F(wn), (A.6)
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which is a justification of Eq. (3.12). Inserting the time delta-function, one can find F(ω) =

1/2. However, this is not valid because of the violation of boundary condition δ(t− t′+β~) 6=
−δ(t− t′)!!!. The correct procedure is based on a little mathematical trick. First, we should

make a substitution

δ(t− t′)→ δ(t− t′)− δ(t + β~)− δ(t− β~), (A.7)

which replaces the delta-function by delta-function-based antiperiodic function. Whit this

substitution one gets F(ωn) = 1. How this substitution can distort a solution of the Gor’kov

and Gor’kov-Nambu equations? The temperature Green’s functions are defined only for

−β~ < t − t′ < β~. Hence, appearance of two extra delta function exactly at the edges

of this region can in no way influence solution of the time-dependent differential equations.

Thus, we array at

δ(t− t′) =
1

β~
∑

n

e−iω̃n(t−t′), −β~ < t− t′ < β~. (A.8)
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B APPENDIX B - Main Integrals of the EGL Formalism

APPENDIX B.1 - Coefficients Related to the Integral Kernel Ka(x,y)

We start our derivation from the terms coming from the integral involving the kernel

Ka(x,y) = Ka(x,x + z) (with y = x + z), i.e.,

Ia =

∫
d3yKa(x,y)∆(y) =

∫
d3zKa(x,x + z)∆(x + z). (B.1)

Following the usual practice, this integral is expanded in terms of the spatial derivatives

of the order parameter ∆(x), i.e., Eq. (3.30). We conclude that working to the order τ5/2, it

is necessary to incorporate all the spatial derivatives up to the fourth order in the gradient

expansion (3.30). Due to the symmetry of the kernel Ka(x,x + z) with respect to the

transformation z → −z, the first- and third-order derivatives do not contribute.

Ia =

∫
dzKa(x,x + z)∆(x + z)

=

∫
dzKa(x,x + z)

(
∆(x) +

(z ·∇)2

2!
∆(x) +

(z ·∇)4

4!
∆(x) + · · ·

)

So, as ∆ ∝ τ−1/2 and ∇∆ ∝ τ , or the short-hand notation ∇ ∝ τ1/2, we obtain only the three

relevant terms:

Ia1 =

∫
d3zKa(x,x + z)∆(x), (B.2)

Ia2 =

∫
d3zKa(x,x + z)

(z ·∇)2

2!
∆(x), (B.3)

Ia2 =

∫
d3zKa(x,x + z)

(z ·∇)4

4!
∆(x). (B.4)

The first integral

Ia1 =

∫
d3zKa(x,x + z)∆(x) =

∫
d3z(−gT ) lim

η→0+

∑

ω

e−iωηG(0)
ω (z)G

(0)
ω (−z)∆(x)

G(0)
ω (z) =

∫
d3k

(2π)3

eik·z

i~ω − ξk
,
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= −gT lim
η→0+

∑

ω

∫
e−iωηd3z

∫
d3k

(2π)3

d3k′

(2π)3

eik·z

i~ω − ξk
e−ik

′·z

i~ω + ξk
∆(x)

= −gT lim
η→0+

∑

ω

∫
d3k

(2π)3

e−iωη

2ξk

(
1

i~ω − ξk
− 1

i~ω + ξk

)
∆(x).

Let evaluate

lim
η→0+

∑

ω

e−iωη
1

i~ω − ξk
,

this can be done with a contour integrating, ω → ωn, ~ωn = πT (2n+ 1)

lim
η→0+

∑

ω

e−iωη

i~ω − ξk
= − β

2iπ

∮

C

dz

eβz + 1

eizη/~

z + ξk
,

such that the contour integral along the paths

1

2iπ

∮

C

dz

eβz + 1

eizη/~

z + ξk
= − e−iξkη/~

e−βξk + 1
.

Therefore,

lim
η→0+

∑

ω

e−iωη

i~ω − ξk
=

β

e−βξk + 1
.

lim
η→0+

∑

ω

e−iωη

i~ω + ξk
=

β

eβξk + 1
.

the integral reduces to,

Ia1 = −gT
∫

d3k

(2π)3

1

2ξk

(
− β

e−βξk + 1
+

β

eβξk + 1

)
∆(x)

= −g
∫

d3k

(2π)3

1

2ξk

1− eβξk
1 + eβξk

∆(x)

= g

∫
d3k

(2π)3

1

2ξk
tanh(

βξk
2

)∆(x) making the change of variable
d3k

(2π)2
→ N (ξ)dξ

= gN (0)

∫ ~ωD

−~ωD
dξ

1

2ξ
tanh

(
βξ

2

)
∆(x),

where integral which corresponded to tanh is solved the following form

∫ ~ωD

−~ωD
dξ

1

2ξ
tanh

(
βξ

2

)
=

∫ β
2
~ωD

0
d

(
ξ
β

2

)
1

ξ β2
tanh

(
βξ

2

)
; x =

βξ

2

=

∫ β
2
~ωD

0

dx

x
tanh(x) =

∫ βc
2
~ωD

0
d(ln(x)) tanh(x)
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= ln(x) tanh(x)|
βc
2
~ωD

0 −
∫ β

2
~ωD

0
ln(x)d(tanh(x))

= ln(x) tanh(x)|
β
2
~ωD

0 −
∫ β

2
~ωD

0

ln(x)

cosh2(x)︸ ︷︷ ︸
− ln( 4eγ

π
)

;
β~ωD

2
→ +∞

= ln

(
βc~ωD

2

)
+ ln

(
4eγ

π

)
= ln

(
2eγ~ωD
πTc

)
.

Finally the integral Ia1 is equal

Ia1 = gN (0) ln

(
2eγ~ωD
πTc

)
∆(x) (B.5)

In this expression ωD denotes the cut-off frequency an γ = 0, 577 is the Euler constant, and

N (0), is the density of states (DOS) at the Fermi energy.

The second integral

Ia2 =

∫
d3zKa(x,x + z)

(z ·∇)2

2!
∆(x) =

∫
d3zKa(x,x + z)

∑

i,j

zizj∇i∇j
2!

∆(x)

= −1

2
gT
∑

ω

∫
d3zG(0)

ω (z)G
(0)
ω (−z)

∑

i,j

zizj∇i∇j∆(x)

By using a property of Fourier’s transforms, the components of the vector o
¯
ldsymbolz in the

integral can be expressed as derivatives in the Fourier space
∫
d3ze−ik·zG(0)

ω (z)zj =

∫
d3z(i∂kj)e

−ik·zG(0)
ω (z) = i∂kjG

(0)
ω (k)

∫
d3ze−ik·zG

(0)
ω (−z)zj =

∫
d3z(i∂kj )e

−ik·zG
(0)
ω (−z) = i∂kjG

(0)
ω (k)

The integral above can be rewritten in terms of the Fourier’s transformation

∫
d3zKa(x,x + z)zizj =

1

2
gT
∑

ω

∫
d3k

(2π)3

(
∂ki

1

(i~ω − ξκ)2

)(
∂kj

1

(i~ω + ξκ)2

)

=
1

2
gT
∑

ω

∫
d3k

(2π)3

−~2ki
m

(i~ω − ξκ)2

~2ki
m

(i~ω + ξκ)2

In the case of spherical Fermi surfaces the integral are non-zero, clearly, only when i = j and

also k2
i can be substituted by k2/3, then

∫
d3zKa(x,x + z)zizj =

gT

3

~2

m
N (0)T

∑

ω

∫ ~ωD

−~ωD
dξ

ξ + µ

(~2ω2 + ξ2)2
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=
gT

3

~2

m
N (0)µ

∑

ω

1

|~ω|3
∫ ∞

−∞
dx

1

(1 + x2)2

︸ ︷︷ ︸
π/2

, x =
ξ

~ω

=
gT

3

~2

m
N (0)µ

π

2

∑

ω

1

|~ω|3 =
gT

3

~2

m
N (0)µ

π

2

2

(2πT )3

∑

ω

1

(n+ 1/2)3

︸ ︷︷ ︸
(23−1)ζ(3)

= gN (0)
7ζ(3)

8π2T 2

1

6
~2v2

F

In the above expression using
∑∞

n=0
1

(n+1/2)z = (2z − 1)ζ(z), where ζ(z) is the Riemann zeta

function. Hence, Ia2 is equal

Ia2 = gN (0)
7ζ(3)

8π2T 2

1

6
~2v2

F∇2∆. (B.6)

Finally for Ia3

Ia3 =

∫
d3zKa(x,x + z)

(z ·∇)4

4!
∆(x)

=

∫
d3zKa(x,x + z)

∑

i,j,k,l

zizjzkzl∇i∇j∇k∇l
4!

∆(x), It is convenient to rearrange

=

∫
d3zKa(x,x + z)


 1

4!

∑

n

z4
n∇4

n +
1

8

∑

n6=m
z2
nz

2
m∇2

n∇2
m


∆(x)

=

(∑

n

∫
d3zKa(x,x + z)

z4
n

4!

)
∇4
n +


∑

n6=m

∫
d3zKa(x,x + z)

z2
nz

2
m

8


∇2

n∇2
m

so that the integral

∫
d3zKa(x,x + z)

z2
nz

2
m

8
= −gT

8

∑

ω

∫
d3k

(2π)3

(
−∂kn∂km

1

i~ω − ξk

)(
−∂kn∂km

1

i~ω + ξk

)

= −gT
8

∑

ω

∫
d3k

(2π)3

2

(i~ω − ξk)3

~2kn
m

~2km
m

2

(i~ω + ξk)3

~2kn
m

~2km
m

=
gT

2

∑

ω

(
~2

m

)4 ∫
d3k

(2π)3

k2
nk

2
m

(~2ω2 + ξ2
k)3

,

In the following, assume spherical symmetry. In this case, the above integrals do not depend
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on indices n andm. For example n = 1, n = 2, so that k1 = k sin θ cosϕ and k2 = k sin θ sinϕ.

∫
d3zKa(x,x + z)

z2
nz

2
m

8
=
gT

2

(
~2

m

)4∑

ω

∫
d3k

(2π)3

k4 sin2 θ cos2 ϕ sin2 θ sin2 ϕ

(~2ω2 + ξ2
k)3

=
gT

2

(
~2

m

)4∑

ω

∫
dk

(2π)3

k6

(~2ω2 + ξ2
k)3

∫ 2π

0
cos2 ϕ sin2 ϕdϕ

︸ ︷︷ ︸
π/4

∫ π

0
sin4 θ sin θdθ

︸ ︷︷ ︸
16/15

=
gT

2

(
~2

m

)4
4π

15

∑

ω

∫
dk

(2π)3

k6

(~2ω2 + ξ2
k)3

change of variable ξ = ~2k2
2m ⇒ dξ = ~2kdk

m , and k =
√

2m
~ (ξ + µ)

∫
d3zKa(x,x + z)

z2
nz

2
m

8
=
gT

2

4π

15

m

~2

(
~2

m

)4(
2m

~2

)5/2 1

(2π)3

∑

ω

∫ ~ωD

−~ωD
dξ

(ξ + µ)5/2

(~2ω2 + ξ2
k)3

(B.7)

The same is related to the terms proportional to ωD due to the summation over the positive

and negative Matsubara frequencies. So, Eq. (B.7) is further reduced to

∫
d3zKa(x,x + z)

z2
nz

2
m

8
=
gT

2

m

~2

4π

15

(
2m

~2

)5/2 1

(2π)3

(
~2

m

)4

µ5/2
∑

ω

∫ ∞

−∞
dξ

1

(1 +
(
ξ
~ω

)2
)3

x =
ξ

~ω

=
gT

2

4π

15

m

~2

(
2m

~2

)5/2 1

(2π)3

(
~2

m

)4

µ5/2
∑

ω

1

|~ω|5
∫ ∞

−∞
dx

1

(1 + x2)3

︸ ︷︷ ︸
3π/8

=
gT

2

4π

15

m

~2

(
2m

~2

)5/2 1

(2π)3

(
~2

m

)4
3πµ5/2

8

2

(2πT )5

∞∑

n=0

1
(
n+ 1

2

)5
︸ ︷︷ ︸

(2n−1)ζ(5)

as µ =
~2k2f
2m , N (0) =

mkf
2π2~2

∫
d3zKa(x,x + z)

z2
nz

2
m

8
= gN (0)

~4v4
f

30

93ζ(5)

128π4T 4
c

(B.8)

The other integral

1

4!

∫
d3zKa(x,x + z)z4

n = −gT
4!

∑

ω

∫
d3zG(0)

ω (z)z2
nḠ

(0)ω(−z)(−zn)2
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= −gT
4!

∑

ω

∫
d3k

(2π)3

(
2

(i~ω − ξk)3

(
~2

m

)2

k2
n +

1

(i~ω − ξk)2

~2

m

)
×

×
(

2

(i~ω + ξk)3

(
~2

m

)2

k2
n −

1

(i~ω + ξk)2

~2

m

)

=− gT

4!

∑

ω

∫
d3k

(2π)3

[
−4

(~2ω2 + ξ2
k)3

(
~2

m

)4

k4
n+

+
2ξk

(~2ω2 + ξ2
k)3

(
~2

m

)3

k2
n −

(1)

(~2ω2 + ξ2
k)2

(
~
m

)2
]

this integral is reduced for

1

4!

∫
d3zKa(x,x + z)z4

n = N (0)
g~4v4

f

30

93ζ(5)

128π4T 4
c

(B.9)

so that:

Ia3 =

[∑

n

N (0)
g~4vf

30

93ζ(6)

128π4T 4
c

∇4
n +

∑

n,m

N (0)
g~4v4

f

30

93ζ(5)

128π4T 4
c

∇2
n∇2

m

]
∆(x)

= N (0)
g~4v4

f

30

93ζ(5)

128π4T 4
c

[∑

n

∇4
n +

∑

n,m

∇2
n∇2

m

]

︸ ︷︷ ︸
∇4

∆(x)

The final expression become

Ia3 = N (0)
g~4v4

f

30

93ζ(5)

128π4T 4
c

∇2(∇2∆(x)) (B.10)

APPENDIX B.2 - Coefficients Related to the Integral Kernel Kb(x, {y}3)

Our next step is to calculate the coefficients that are related to the second integral kernel,

i.e., Kb(x, {y}3).

Ib =

∫ 3∏

j=1

d3yjKb(x, {y}3)∆y1∆∗(y2)∆(y3)

= −gT
∑

ω

∫ 3∏

j=1

d3yjG
(0)
ω (x,y1)Ḡ(0)

ω (y1,y2)G(0)
ω (y2,y3)Ḡ(0)

ω (y3,x)∆(y1)∆∗(y2)∆(y3),

= −gT
∑

ω

∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)Ḡ(0)

ω (z3)∆(x + z1)∆∗(x + z2)∆(x + z3),
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=− gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x + z1)∆∗(x + z2)∆(x + z3) (B.11)

The integral in Eq. (B.11) is expanded in terms of the spatial derivatives of ∆(x) and ∆∗(x)

Ib = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)×
(

∆(x) +
(z1 ·∇)

1!
∆(x) +

(z1 ·∇)2

2!
∆(x)

)
×

×
(

∆∗(x) +
(z2 ·∇)

1!
∆∗(x) +

(z2 ·∇)2

2!
∆∗(x)

)
×
(

∆(x) +
(z3 ·∇)

1!
∆(x) +

(z3 ·∇)2

2!
∆(x)

)
.

The terms that contribute to the relevant orders τ3/2 and τ5/2 are the following:

I1b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)(z1 ·∇)∆(x)(z2 ·∇)∆∗(x)∆(x), (B.12)

I2b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x)(z2 ·∇)∆∗(x)(z3 ·∇)∆(x), (B.13)

I3b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)(z1 ·∇)∆(x)∆∗(x)(z3 ·∇)∆(x), (B.14)

I4b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)
(z1 ·∇)2

2!
∆∗(x)∆(x)∆(x) (B.15)

I5b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x)∆∗(x)
(z3 ·∇)2

2!
(B.16)

I6b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x)
(z2 ·∇)2

2!
∆∗(x)∆(x) (B.17)

The integral in Eqs. (B.12-B.17) is reduced by invoking the Fourier transform and applying

the well-known convolution theorem provided that we rearrange the polynomial in the relevant

integrand as.

z2 = z2 − z1 + z1

for example, z1nz2m = z1n(z2m − z1m + z1m) = (z1n(z2m − z1m) + z1nz1m)

The integral (B.12):

I1b = −gT
∑

ω

∫ 3∏

j=1

dzjKb({z}3)
∑

n

z1n∇n∆(x)
∑

m

z2m∇m∆∗(x)∆(x),
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= −gT
∑

n,m

∑

ω

∫ 3∏

j=1

dzjz1nG
(0)
ω (−z1)z2mḠ

(0)
ω (z1 − z2)G(0)

ω (z2 − z3)Ḡ(0)
ω (z3)∇n∆(x)∇m∆∗(x)∆(x),

= −gT
(∑

n,m

· · ·
)∑

ω

∫ 3∏

j=1

dzj(z1n)G(0)
ω (−z1)(z2m − z1m + z1m)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)Ḡ(0)

ω (z3),

= −gT
(∑

n,m

· · ·
)∑

ω



∫ 3∏

j=1

dzj(−z1n)G(0)
ω (−z1)(−(z1m − z2m))Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)Ḡ(0)

ω (z3) +

+

∫ 3∏

j=1

dzj(−z1nz1m)G(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)Ḡ(0)

ω (z3)


 .

=
∑

n,m

(I
(a)
1b + I

(b)
1b )∇n∆(x)∇m∆∗(x)∆(x).

I
(b)
1b = −gT

∑

ω

∫
d3k

(2π)3
(−∂kn∂km)

1

i~ω − ξk
1

i~ω + ξk

1

i~ω − ξk
1

i~ω + ξk

integral to converge, n = m.

= −gT
∑

ω

∫
d3k

(2π)3

(
−∂2

n

1

i~ω − ξk

)
1

(i~ω + ξk)2(i~ω − ξk)

= gT
∑

ω

∫
d3k

(2π)3

[
2~4k2n
m2

(i~ω − ξk)4(i~ω + ξk)2
+

~2
m

(i~ω − ξk)3(i~ω + ξk)2

]

with k = {k1, k2, k3}. Due to the spherical symmetry of the term in the parentheses, the

integral does not depend on n so that k2
n can be replaced by k2/3, and ξk = ~2k2

2m − µ. Then,
by making use of the standard approximation (ξ = ξk),

∫
d3k

(2π)3
≈ N (0)

∫ +∞
−∞ dξ. One gets

I
(b)
1b = gT

∑

ω

N (0)

[
2~2

3m

∫
dξ

(ξ + µ)(i~ω + ξ)2

(i~ω − ξ)4(i~ω + ξ)4
+

~2

m

∫
dξ

(i~ω + ξ)2

(i~ω − ξ)3(i~ω + ξ)3

]

So, the integral is reduced to

I
(b)
1b = gT

2~2

3m
µN (0)

∑

ω

∫ +∞

−∞
dξ

(−~2ω2 + ξ2)

(~2ω2 + ξ2)4
, x = ξ/~ω

= gT
2~2

3m
µN (0)

∑

ω

1

|~ω|
︸ ︷︷ ︸
2

(2πT )5
(25−1)ζ(5)

∫ +∞

−∞
dξ

(x2 − 1)

(x2 + 1)4

︸ ︷︷ ︸
−π/4

= −gN (0)
~2v2

f

6

31ζ(5)

128π4T 4

Now the first integral

I
(a)
1b = gT

∑

ω

∫
d3k

(2π)3
(−∂kn)

1

i~ω − ξk
∂km

1

i~ω + ξk

1

i~ω − ξk
1

i~ω + ξk
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= −gT
∑

n,m

∑

ω

∫
d3k

(2π)3

~2kn
m

1

(i~ω − ξk)2

(
−~2km

m

)
1

(i~ω + ξk)2

1

(i~ω − ξk)
1

(i~ω + ξk)

integral to converge, n = m.

= gT
∑

ω

∫
d3k

(2π)3

2~2(ξk + µ)

3m

1

(i~ω − ξk)3

1

(i~ω + ξk)3

= gT
2~2

3m
µN (0)

∑

ω

∫ ∞

−∞
dξ

(−1)

(~2ω2 + ξ2)3
, x = ξ/~ω

= gT
2~2

3m
µN (0)(−1)

∑

ω

1

|~ω|
︸ ︷︷ ︸
2

(2πT )5
31ζ(5)

∫ ∞

−∞
dx

1

(x2 + 1)3

︸ ︷︷ ︸
3π/8

,

I
(b)
1b = −gN (0)

~2v2
f

4

31ζ(5)

128π4T 4

Thus, the first integral is equal

I1b = I
(a)
1b + I

(b)
1b = −gN (0)

9
~2v2

f

93ζ(5)

128π4T 4
c

∆(x)∇∆(x) ·∇∆∗(x) (B.18)

The integral (B.13) is:

I2b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x)(z2 ·∇)∆∗(x)(z3 ·∇)∆(x),

= −gT
∑

n,m

∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x) z2n︸︷︷︸
Z2n−Z3n+Z3n

∇n∆∗(x)z3m∇m∆(x),

= −gT
∑

n,m

∑

ω



∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)(z2n − z3n)G(0)
ω (z2 − z3)z3mḠ

(0)
ω (z3)+

+

∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)z3nz3mḠ

(0)
ω (z3)


∆(x)∇n∆∗(x)∇m∆(x)

I2b = −gT
∑

n,m

∑

ω

∫
d3k

(2π)3

[
1

i~ω − ξk
1

i~ω + ξk

(
∂kn

1

i~ω − ξk

)(
∂km

1

i~ω + ξk

)

+
1

(i~ω − ξk)2

1

i~ω + ξk

(
−∂kn∂km

1

i~ω + ξk

)]
∆(x)∇n∆∗(x)∇m∆(x)

note that these integrals are equal to those previously calculated

I2b = −gN (0)

9
~2v2

f

93ζ(5)

128π4T 4
c

∆(x)∇∆∗(x) ·∇∆(x) (B.19)
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Calculate the integral (B.14).

I3b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)(z1 ·∇)∆(x)∆∗(x)(z3 ·∇)∆(x).

= −gT
∑

n

∑

ω

∫ 3∏

j=1

d3zjKb({z}3)z1n∇n∆(x)∆∗(x)z3n∇n∆(x).

= −gT
∑

n

∆∗(x)∇n∆(x)∇n∆(x)
∑

ω

∫ 3∏

j=1

d3zjz1nG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)z3nḠ

(0)
ω (z3)

= −gT
∑

n

∆∗(x)∇n∆(x)∇n∆(x)
∑

ω

∫
d3k

(2π)3

(
−1

i
∂kn

1

i~ω − ξk

)
1

i~ω + ξk

1

i~ω − ξk

(
−1

i
∂kn

1

i~ω + ξk

)

= −gT
∑

n

∆∗(x)∇n∆(x)∇n∆(x)
∑

ω

∫
d3k

(2π)3

~2kn
m

i~ω − ξk
1

i~ω + ξk

1

i~ω − ξk

(−1)~2kn
m

i~ω + ξk

= gT∆∗(x)∇∆(x) ·∇∆(x)
∑

ω

1

3

∫
d3k

(2π)3

~4k2
m2

(i~ω − ξk)3(i~ω + ξk)3

= gT∆∗(x)∇∆(x) ·∇∆(x)
∑

ω

2

3

~2

m

∫
d3k

(2π)3

ξk + µ

(i~ω − ξk)3(i~ω + ξk)3

= −gT∆∗(x)∇∆(x) ·∇∆(x)
2

3

~2

m
µN (0)

∑

ω

∫ ∞

−∞
dξ

1

(~2ω2 + ξ2)3

= −gT∆∗(x)∇∆(x) ·∇∆(x)
2

3

~2

m
µN (0)

∑

ω

1

|~ω|5
∫ ∞

−∞
dx

1

(x2 + 1)3

︸ ︷︷ ︸
3π/8

I3b = −gN (0)

3
~2v2

f

93ζ(5)

128π4T 4
c

∆∗(x)∇∆(x) ·∇∆(x) (B.20)

Calculate the integral (B.15).

I4b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)
(z1 ·∇)2

2!
∆(x)∆∗(x)∆(x)

= −gT
∑

n

|∆x|2
2
∇2
n∆(x)

∑

ω

∫
d3k

(2π)3

(
−∂2

n

1

i~ω − ξk

)
1

(i~ω + ξk)2(i~ω − ξk)

= gT
∑

n

|∆x|2
2
∇2
n∆(x)

∑

ω

∫
d3k

(2π)3

(
2~2
mkn

~2
mkn

(i~ω − ξk)3
+

~2
m

(i~ω − ξk)2

)
1

(i~ω + ξk)2(i~ω − ξk)

= gT
∑

n

|∆x|2
2
∇2
n∆(x)

∑

ω

{∫
d3k

(2π)3

2

(i~ω + ξk)2(i~ω − ξk)4

~2

m
kn

~2

m
kn

}
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= gT
|∆x|2

2
∇2∆(x)

∑

ω

4~2

3m

∫
d3k

(2π)3

(ξk + µ)(i~ω + ξk)
2

(i~ω + ξk)4(i~ω − ξk)4

= gT
|∆x|2

2
∇2∆(x)

∑

ω

4~2

3m

∫
d3k

(2π)3

(ξk + µ)(−~2ω2 + ξ2
k + iξk~ω)

(i~ω + ξk)4(i~ω − ξk)4

= gT
4~2

3m
µN (0)

|∆x|2
2
∇2∆(x)

∑

ω

∫
dξ

(−~2ω2 + ξ2)

(~2ω2 + ξ2)4

= gT
4~2

3m
µN (0)

|∆x|2
2
∇2∆(x)

∑

ω

1

|~ω|5
∫ ∞

−∞
dξ

(x2 − 1)

(x2 + 1)4

︸ ︷︷ ︸
−π/4

= gT
4~2

3m
µN (0)

|∆x|2
2
∇2∆(x)

(
−π

4

) 2

(2πT )5
31ζ(5)

I4b = −gN (0)

3
~2v2

f

93ζ(5)

128π4T 4
c

2

9

|∆x|2
2
∇2∆(x) (B.21)

The integral (B.16).

I5b = −gT
∑

ω

∫ 3∏

j=1

d3zjKb({z}3)∆(x)∆∗(x)
(z3 ·∇)2

2!
∆(x)

= −gT
∑

n

|∆x|2
2
∇2
n∆(x)

∑

ω

∫
d3k

(2π)3

1

(i~ω − ξk)2(i~ω + ξk)

(
−∂2

n

1

i~ω + ξk

)

= gT
∑

n

|∆x|2
2
∇2
n∆(x)

∑

ω

∫
d3k

(2π)3

(
2~2
mkn

~2
mkn

(i~ω + ξk)3
−

~2
m

(i~ω − ξk)2

)
1

(i~ω − ξk)2(i~ω + ξk)

= gT
∑

n

|∆x|2
2
∇2
n∆(x)

∑

ω

{∫
d3k

(2π)3

2

(i~ω − ξk)2(i~ω + ξk)4

~2

m
kn

~2

m
kn

}

= gT
|∆x|2

2
∇2∆(x)

∑

ω

4~2

3m

∫
d3k

(2π)3

(ξk − µ)(i~ω + ξk)
2

(i~ω + ξk)4(i~ω − ξk)4

= gT
|∆x|2

2
∇2∆(x)

∑

ω

4~2

3m

∫
d3k

(2π)3

(ξk + µ)(−~2ω2 + ξ2
k − iξk~ω)

(i~ω + ξk)4(i~ω − ξk)4

= gT
4~2

3m
µN (0)

|∆x|2
2
∇2∆(x)

∑

ω

∫
dξ

(−~2ω2 + ξ2)

(~2ω2 + ξ2)4

= gT
4~2

3m
µN (0)

|∆x|2
2
∇2∆(x)

∑

ω

1

|~ω|5
∫ ∞

−∞
dξ

(x2 − 1)

(x2 + 1)4

︸ ︷︷ ︸
−π/4

= gT
4~2

3m
µN (0)

|∆x|2
2
∇2∆(x)

(
−π

4

) 2

(2πT )5
31ζ(5)

I5b = −gN (0)

3
~2v2

f

93ζ(5)

128π4T 4
c

2

9

|∆x|2
2
∇2∆(x)

|∆x|2
2

(B.22)
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Finally calculate of integral (B.17)

I6b = −gT
∑

ω

∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)Ḡ(0)

ω (z3)∆(x)
(z2 ·∇)2

2!
∆∗(x)∆(x)

(z2 ·∇)2 =
∑

n,m

z2nz2m∇n∇m →
∑

n

z2
2n∇2

n

=
∑

n

(z2n − z3n + z2n)2∇2
n

=
∑

n

{(z2n − z3n)2 + z2
3n + 2(z2n − z3n)z3n}∇2

n

here have three integrals to solve

I
(a)
6b = −gT

∑

n

∆2(x)
∇2
n∆(x)

2!

∑

ω

∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)(z2n − z3n)2G(0)
ω (z2 − z3)Ḡ(0)

ω (z3),

I
(b)
6b = −gT

∑

n

∆2(x)
∇2
n∆(x)

2!

∑

ω

∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)G(0)
ω (z2 − z3)z2

3nḠ
(0)
ω (z3),

I
(a)
6b = −gT

∑

n

∆2(x)∇2
n∆(x)

∑

ω

∫ 3∏

j=1

d3zjG
(0)
ω (−z1)Ḡ(0)

ω (z1 − z2)(z2n − z3n)G(0)
ω (z2 − z3)z3Ḡ

(0)
ω (z3).

I
(a)
6b = −gT

∑

n

∆2(x)
∇2
n∆(x)

2!

∑

ω

∫
d3k

(2π)3

1

(i~ω − ξk)(i~ω + ξk)2

(
−∂2

n

1

i~ω − ξk

)
,

I
(b)
6b = −gT

∑

n

∆2(x)
∇2
n∆(x)

2!

∑

ω

∫
d3k

(2π)3

1

(i~ω − ξk)2(i~ω + ξk)

(
−∂2

n

1

i~ω + ξk

)
,

I
(a)
6b = −gT

∑

n

∆2(x)∇2
n∆(x)

∑

ω

∫
d3k

(2π)3

1

(i~ω − ξk)(i~ω + ξk)

(
−∂2

n

1

i~ω − ξk

)(
−∂2

n

1

i~ω + ξk

)
.

the solution is similar to previously resolved integrals, the result is:

I
(a)
6b = −gN (0)

2

9
~2v2

f∆2(x)∇2∆∗(x)
93ζ(5)

128π4T 4
c

,

I
(b)
6b = −gN (0)

2

9
~2v2

f∆2(x)∇2∆∗(x)
93ζ(5)

128π4T 4
c

,

I
(c)
6b = gN (0)

~2v2
f

3
∆2(x)∇2∆∗(x)

93ζ(5)

128π4T 4
c

.
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such that

I6b = I
(a)
6b + I

(b)
6b + I

(c)
6b = −gN (0)

~2v2
f

3

93ζ(5)

128π4T 4
c

2

9
∆2(x)∇2∆∗(x) (B.23)

APPENDIX B.3 - Coefficient of the Term Coming with Kc(x, {y}5)

Ic =

∫ 5∏

j=1

dyjKc(x, {y}5)∆(y1)∆∗(y2)∆(y3)∆∗(y4)∆(y5)

We need all contributions up to the order τ5/2. As the leading-order term in the order

parameter is proportional to τ1/2, it is possible to neglect the contribution of the spatial

derivatives of the order parameter and limit ourselves only to the local contribution given by

Ic = −gT∆(x)|∆(x)|4
∑

ω

∫ 5∏

j=1

dyjG
(0)
ω (x,y1)Ḡ(0)

ω (y1,y2)G(0)
ω (y2,y3)Ḡ(0)

ω (y3,y4)G(0)
ω (y4,y5)Ḡ(0)

ω (y5,x)

= −gT∆(x)|∆(x)|4
∑

ω

∫
d3k

(2π)3

1

(i~ω − ξk)3(i~ω − ξk)3

= gT∆(x)|∆(x)|4
∑

ω

∫
d3k

(2π)3

1

(~2ω2 + ξ2
k)3

= gTN (0)∆(x)|∆(x)|4
∑

ω

1

|~ω|5
∫ ∞

−∞
dξ

1

(x2 + 1)3

︸ ︷︷ ︸
3π/8

= gTN (0)∆(x)|∆(x)|4 2

(2πT )5
31ζ(5)

3π

8

Ic = gN (0)
93ζ(5)

128π4T 4
c

∆(x)|∆(x)|4. (B.24)
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APPENDIX C - Calculation g(0) and g(0)

According to the equations (8.9) and (8.10) the solution to the zero order

g(0) =
(B−H(0)

c )2

8π
+ f (0) (C.1)

=
(H

(0)
c )2

8π

(
B

H
(0)
c

− 1

)2

+ a|Ψ|2 +
b

2
|Ψ|4 +K|DΨ|2, (C.2)

and to the first order

g(1) =
(B−H(0)

c )(b−H(1)
c )

8π
+ f (1) (C.3)

=
(B−H(0)

c )b

8π︸ ︷︷ ︸
I

− (B−H(0)
c )H

(1)
c

8π︸ ︷︷ ︸
II

+ f (1)

︸︷︷︸
III

(C.4)

• I.

I =
(B−H(0)

c )b

8π
=

∫
dr

(B−H(0)
c )rota

8π
=

∫
dr

(Bi −H(0)
c,i )εijk∂jak

8π

=

∫
dr

[
∂j

(
(Bi −H(0)

c,i )εijkak

8π

)
− ∂j

(
(Bi −H(0)

c,i )

8π

)
εijkak

]

=

∫
dr∂j

(
(Bi −H(0)

c,i )εijkak

8π

)

︸ ︷︷ ︸
=0

−
∫
drεijkak∂j

(
(Bi −H(0)

c,i )

8π

)

=

∫
dr

arotB
8π

• II.

II =

∫
dr

(B−H(0)
c )H

(1)
c

8π
=

∫
dr
H

(0)
c

4π

(
B

H
(0)
c

− 1

)
H(0)
c =

∫
dr

(H
(0)
c )2

4π

(
B

H
(0)
c

− 1

)
H

(1)
c

H
(0)
c



172

how H
(1)
c

H
(0)
c

= −
(

1
2 + ac

3b2

)
(eq. 41), then

II = −
∫
dr

(H
(0)
c )2

4π

(
B

H
(0)
c

− 1

)(
1

2
+

ac

3b2

)

• III

III =

∫
drf (1) =

∫
dr(f

(1)
1 + f

(1)
2 )

then
∫
drf (1)

1 =

∫
dr
{

(a+ b|Ψ|2)(Ψ∗ψ + c.c.) +K[(DΨ ·D∗ψ∗ + c.c.)− a · i]
}

DΨ ·D∗ψ∗ = e−αD(eαΨ)eαD(e−αψ∗1)

= D(e−αD(eαΨ)eαψ∗e−α)−D(e−αD(eαΨ))(eαΨ∗e−α)

= D(e−αD(eαΨ)eαψ∗e−α)−D2Ψψ∗

∫
drf (1)

2 =
{

(a+ b|Ψ|2)(Ψ∗ψ + c.c.) +K[D(e−αD(eαΨ)eαψ∗e−α)−D2Ψψ∗ − a · i]
}

=

∫
dr [aΨ + b|Ψ|2Ψ−KD2Ψ + c.c.]︸ ︷︷ ︸

=0

Ψ∗ +

∫
drKD(e−αD(eαΨ)eαψ∗e−α)−

∫
drKa · i

= −
∫
drKa · i

g =

∫
dr


(H

(0)
c )2

8π

(
B

H
(0)
c

− 1

)2

+ a|Ψ|2 +
b

2
|Ψ|4 +K|DΨ|2


+

∫
dr

arotB
8π

−
∫
dr

(H
(0)
c )2

4π

(
B

H
(0)
c

− 1

)(
1

2
+

ac

3b2

)
−
∫
drKa · i

+

∫
dr
{
a

2
|Ψ|2 + 2K|DΨ|2 + b|Ψ|4 +

b

36

e2~2

m2ccc
B2|Ψ|2.

−Q
{
|D2Ψ|2 +

1

3
(rotB · i) +

4e2

~2ccc2
B2|Ψ|2

}

− L
2

{
8|Ψ|2|DΨ|2 + [Ψ2(D∗Ψ∗)2 + c.c]

}
− c

3
|ψ|6

}

The Maxwell equation (rotB = 4π
ccc j) in the zeroth order and j = j + τ j where j = Kci,

then, rotB = 4π
ccc j = Ki
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∫
dr

arotB
4π

−
∫
drKa · i =

∫
dr(rotB−Ki)a = 0.

To proceed further, it is convenient to introduce the following dimensionless quantities:

r̃ =
r√
2λ
, Ã = κ

A

H
(0)
c λ

, B̃ = κ
√

2
B

H
(0)
c

, Ψ̃ =

√
− b
a

Ψ

D̃ =
√

2λD, ĩ = 4π
Kλ
H

(0)
c

, g =
(H

(0)
c )2

4π
g̃ G =

(H
(0)
c )2(

√
2λ)3

4π
G̃

(C.5)

G̃ =

∫
d3r

[
−1

2

(
B

κ
√

2
− 1

)
− |Ψ̃|+ 1

2κ2
|D̃Ψ̃|2

+

(
B̃

κ
√

2
− 1

)(
1

2
+

ac

3b2

)
− 1

2
|Ψ̃|2 + |Ψ̃|4 +

ca

3b2
|Ψ̃|6 +

1

κ2
|D̃∆̃|2

+
Qa
K2

1

4κ4

(
|D̃2Ψ̃|2 +

1

3
rotB̃ · ĩ + B̃|Ψ̃|2

)

+
La
Kb

1

4κ2

(
8|Ψ̃|2|D̃Ψ̃|2 + Ψ̃∗2(D̃Ψ̃)2 + Ψ̃2(D̃∗Ψ̃∗)2

)]

the Gibbs energy difference becomes

g(0) =
1

2

(
B

κ
√

2
− 1

)
− |Ψ̃|2 +

1

2
|Ψ̃|4 +

1

2κ2
|D̃Ψ̃|2 (C.6)

g(1) =

(
B̃

κ
√

2
− 1

)(
1

2
+

ac

3b2

)
− 1

2
|Ψ̃|2 + |Ψ̃|4 +

ca

3b2
|Ψ̃|6 +

1

κ2
|D̃∆̃|2 (C.7)

+
Qa
K2

1

4κ4

(
|D̃2Ψ̃|2 +

1

3
rotB̃ · ĩ + B̃|Ψ̃|2

)
(C.8)

+
La
Kb

1

4κ2

(
8|Ψ̃|2|D̃Ψ̃|2 + Ψ̃∗2(D̃Ψ̃)2 + Ψ̃2(D̃∗Ψ̃∗)2

)
(C.9)
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APPENDIX D - Bogomolnyi Equations

Our starting point is the standard GL equations

Ψ(1− |Ψ|2) + D2Ψ = 0, rotB = i. (D.1)

A magnetic field is set along the z axis, B = (0, 0, B), so that the system is homogeneous

along this axis and the order parameter is independent of z.

B = (0, 0, B) ⇒ A = (Ax, Ay, 0)

we introduce the new gauge invariant gradients

D± = Dx ± iDy (D.2)

that satisfy the identity

D2 = D2
x +D2

y

D+D− = D2
x +D2

y + i[Dy, Dx]

[Dx, Dy] =[∂y + iAy, ∂x + iAx]

= :0
[∂y, ∂x] + i[Ay, ∂x] + i[∂y, Ax] + i2

:0
[Ax, Ay]

= i(Ay∂x − ∂xAy) + i(∂yAx −Ax∂y)
= i(∂yAx − ∂xAy)
= −iB

D+D− = D2
x +D2

y +B ⇒ D2 = D+D− −B

Let us assume that a solution to the GL formalism satisfies the first order equation

D−Ψ = 0, the first of the Bogomolnyi equation
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Ψ−Ψ|Ψ|2 + (D+D− −B)∆ = 0

Π−∆ = 0, 1− |∆|2 = B

then

B = 1− |Ψ|2, which is know as the second Bogomolnyi equation.

Taking into account that rotB = (∂yB,−∂xB, 0), one can find from the second GL equa-

tion that

rotB = 2Im[ΨD∗Ψ∗]

∂yB = (ΨD∗xΨ∗ −Ψ∗DxΨ); −∂xB = (ΨD∗yΨ
∗ −Ψ∗DyΨ);

∂yB = (Ψ(∂x + iAx)∗Ψ∗ −Ψ∗(∂x + iAx)Ψ); −∂xB = (Ψ(∂y + iAy)
∗Ψ∗ −Ψ∗(∂y + iAy)Ψ);

∂yB = (Ψ∂xΨ∗ −Ψ∗∂xΨ− i2Ax|Ψ|2); −∂xB = (Ψ∂yΨ
∗ −Ψ∗∂yΨ− i2Ay|Ψ|2);

∂yB = (Ψ∂xΨ∗ −Ψ∗∂xΨ− i2Ax|Ψ|2); −i∂xB = (Ψi∂yΨ
∗ −Ψ∗i∂yΨ + 2Ay|Ψ|2);

∂yB = (∂x|Ψ|2 − 2Ψ∗∂xΨ− i2Ax|Ψ|2); −i∂xB = (i∂y|Ψ|2 − 2Ψ∗i∂yΨ + 2Ay|Ψ|2);

(∂yB + i∂xB) = ∂x|Ψ|2 − i∂y|Ψ|2 − 2Ψ∗(∂x + iAx)Ψ− 2Ψ∗(i∂y −Ay)Ψ
(∂yB + i∂xB) = ∂x|Ψ|2 − i∂y|Ψ|2 − 2 (Ψ∗(∂x + iAx)Ψ− iΨ∗(∂y + iAy)Ψ)︸ ︷︷ ︸

Ψ∗(D−Ψ)=0

(∂yB + i∂xB) = (∂x − i∂y)|Ψ|2

and by D−Ψ = 0

(∂y + i∂x)Ψ = (Ax − iAy)Ψ

so, the Bogomonlyi equation are reduced to self-duality Bogomolnyi equation

B = 1− |Ψ|2

(∂y + i∂x)Ψ = (Ax − iAy)Ψ
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APPENDIX E - Scientific Works Produced During this Ph.D. Course

• W. Y. Córdoba-Camacho, R. M. da Silva, A. Vagov, A. A. Shanenko, and J. Albino

Aguiar. Between types I and II: Intertype flux exotic states in thin superconductors.
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W. Y. Córdoba-Camacho,1 R. M. da Silva,2 A. Vagov,3 A. A. Shanenko,1 and J. Albino Aguiar1,2

1Departamento de Fı́sica, Universidade Federal de Pernambuco, Avenida Jorn. Anı́bal Fernandes, s/n,
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The Bogomolnyi point separates superconductivity types I and II while itself hiding inf nitely degenerate
magnetic f ux conf gurations, including very exotic states (referred to here as f ux “monsters”). When the
degeneracy is removed, the Bogomolnyi point unfolds into a f nite, intertype domain in the phase diagram
between types I and II. One can expect that in this case the f ux monsters can escape their “prison” at the
Bogomolnyi point, occupying the intertype domain and shaping its internal structure. Our calculations reveal
that such exotic f ux distributions are indeed stable in the intertype regime of thin superconductors made of a
type-I material, where the Bogomolnyi degeneracy is removed by stray magnetic f elds. They can be classif ed
into three typical patterns that are qualitatively different from those in types I and II: superconducting islands
separated by vortex chains; stripes/worms/labyrinths patterns; and mixtures of giant vortices and vortex clusters.
Our f ndings shed light on the problem of the interchange between types I and II, raising important questions on
the completeness of the textbook classif cation of the superconductivity types.
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Scientific works under preparation

1. Exotic Vortices States in Superconducting Bilayer type-II/N/type-I.

2. Stray Field Contribution to Vortex Interaction in Thin Films: Extended Ginzburg-

Landau Analysis.
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