
LEONARDO DE ALMEIDA E BUENO

BIASED RANDOM-KEY GENETIC ALGORITHM FOR WAREHOUSE
RESHUFFLING

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2018

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Leonardo de Almeida e Bueno

BIASED RANDOM-KEY GENETIC ALGORITHM FOR WAREHOUSE
RESHUFFLING

A M.Sc. Dissertation presented to the Cen-
ter for Informatics of Federal University of
Pernambuco in partial fulfillment of the re-
quirements for the degree of Master of Sci-
ence in Computer Science with emphasis in
Operational Research

Advisor: Ricardo Martins de Abreu Silva

Recife
2018

Catalogação na fonte
Bibliotecário Jefferson Luiz Alves Nazareno CRB 4-1758

B928b Bueno, Leonardo de Almeida e.
Biased random key genetic algorithm for warehouse reshuffling /

Leonardo de Almeida e Bueno. – 2018.
139f.: fig.

Orientador: Ricardo Martins de Abreu Silva
Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn. ,

Recife, 2018.
Inclui referências e apêndices.

1. Ciência da computação. 2. Pesquisa operacional. 3. Otimização. I.
Silva, Ricardo Martins de Abreu. (Orientador). II. Titulo.

 004 CDD (22. ed.) UFPE-MEI 2018-112

Leonardo de Almeida e Bueno

Biased Random Key Genetic Algorithm for Warehouse Reshuffling

 Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Mestre em Ciência da

Computação

Aprovado em: 08/08/2018.

BANCA EXAMINADORA

 __

Prof. Dr. Silvio de Barros Melo

Centro de Informática/UFPE

 __

Prof. Dr. Rodrigo Gabriel Ferreira Soares

Departamento de Estatística e Informática/ UFRPE

Prof. Dr. Ricardo Martins de Abreu Silva

Centro de Informática / UFPE

(Orientador)

I dedicate this thesis to my parents, who invested so much in my education. Without
their wisdom, support and inspiration I would never achieve this or any step on my life.

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my advisor Professor
Dr. Ricardo Martins de Abreu Silva, for accepting me as a graduate student in his group
even though I was a working student with less time available for the Masters. Ricardo was
always giving me all the scientific freedom I wanted, encouraging me to new researches,
and criticizing my ideas and results.

I would like to thank Miguel Domingos de Santana Wanderley and the Professors Dr.
Cleber Zanchettin and Dr. Adriano Lorena Inacio Oliveira for the amazing collaboration
that resulted in a published paper about deep learning. I am also grateful to Professor
Dr. Abel Guilhermino da Silva Filho and his advisees Eronides Felisberto da Silva Neto
and Hilson Gomes Vilar de Andrade for the collaborations and all the support, advice
and encouragement given.

I had the opportunity to supervise two excellent students, Diogo Pereira de Morais
and Danilo Dias Pena during their undergraduate senior projects. Their persistence and
motivation contributed greatly to this project.

Many thanks to Mariana Alves Moura for the help with programming, the fruitful
discussion, and the advice regarding my research.

Thanks a lot to all the friends I made during the masters: Antonio Luís do Rego
Luna Filho, Raimundo Martins Leandro Junior, Diocleciano Dantas Neto, Eudes da Silva
Barboza, Rodrigo Gomes de Souza, and many others. It’s been a great joy to study and
spend free time with you. Thanks as well to Ben Qureshi for the fantastic illustrations
made.

I greatly appreciate all the support I received from Professor Dr. Jeroen Bergmann of
the Natural Interactions Lab, and from my previous co-workers and employers at Tomus,
that accepted my studies, motivated me on my personal research and supported me on
busy moments.

A special thanks to my family. I am very grateful to my parents for all of the support
and sacrifices that they’ve made on my behalf. My mother that always wisely advised me
in the universe of academia and research, as well as on my personal life, and my father
who always inspired my journey to improve the lives of those surrounding me. I am also
very grateful to my siblings, aunts, and cousins for their patience on hearing my struggles
with my work and my studies.

I would like to give an special thank my girlfriend who gave me the motivational push
and the emotional support needed to conclude this research.

Ultimately, I am grateful to the Center for Informatics of the Federal University of
Pernambuco and to all people and institutions that directly or indirectly participated in
this phase of my academic life that I am pleased to conclude now.

“It is not enough to have a good mind; the main thing is to use it well."
(DESCARTES; ARIEW, 2000)

ABSTRACT

Due to its strategical importance, the efficient stock management in a warehouse
presents several challenges that can be approached using optimization methods. In this
universe, frequently explored problems are ambient dimensioning, department organiza-
tion and layout, stock organization and layout, pilling design, product storage and recovery
methodology. Design and operation imprecisions and failures can result in large delays
in the product delivery or even in missing items in final client stocks. Among the main
causes of missing items in inventories, there are the incongruity between storage capac-
ity and refilling frequency; infrequency, delay, or nonexistence of product restitution in
shelves; inexact or wrong inventories; storages with the inadequate organization, package
disruption and scarce availability; poor storage layout and inefficient operational services.
To determine the optimized product stocking is a problem frequently approached in the
literature throughout the decades. However, the increasing need or changes in the storage,
increase the importance of other problem: the sequence of movement to obtain a particu-
lar stock organization, given the current organization of the items. This problem is known
as stock rearrangement, stock shuffling, or stock reshuffling. The optimization of pack-
age reshuffling in large warehouses directly impacts the profits. Large warehouses need,
very frequently, to reorganize stock because of: seasonality, market changes, logistics, and
other factors. Certain types of products have higher demand during specific periods of the
year. Products on sale may leave the stock faster, new products may have higher output.
All these are examples that justify a frequent stock reshuffling. Warehouse stock reshuf-
fling consists of repositioning items by moving them sequentially. Several studies aim to
solve reshuffling problems by applying exact methods. However, due to the complexity
of the problem, only heuristics result in practical solutions. This study investigates how
to optimize unit-load warehouse reshuffling in multiple empty locations scenarios. Tradi-
tional heuristics are reviewed and an evolutionary programming approach is proposed for
the unit-load warehouse reshuffling problem. Experimental results indicate the proposed
heuristic perform satisfactorily in terms of computational time and is able to improve
solution quality upon benchmark heuristics.

Keywords: Optimization. Evolution Strategy. Genetic Algorithms. Warehouse Reshuf-
fling. Logistics.

RESUMO

Devido à sua importância estratégica, a gestão eficiente de grandes armazéns apre-
senta diversos desafios que podem ser resolvidos via métodos de otimização. Neste uni-
verso, são frequentemente explorados pela literatura os problemas de: dimensionamento de
ambientes, organização e layout de departamentos e estoques, padrão de empilhamento,
metodologia de armazenamento e recuperação de produtos. Imprecisões e falhas de pro-
jeto e operação de armazéns podem resultar em grandes atrasos na entrega de produtos e
até na falta de itens em inventários de clientes finais. Entre as causas principais de falta de
inventário se encontram: incongruência entre capacidade e frequência de abastecimento;
infrequência, atraso ou inexistência de reposição de artigos em prateleiras; inventário inex-
ato ou errado; armazenamento com organização inadequada, rompimento de embalagens
ou pouca disponibilidade; mal projeto do estoque e serviços operacionais ineficientes. De-
terminar a forma otimizada de armazenamento de produtos é um problema que vem sido
estudado há décadas, porém, a cada vez mais frequente necessidade de mudança nos es-
toques trouxe um novo problema à tona: a sequência de movimento para obtenção de
uma organização em particular, dado o estado atual das cargas no estoque. Este prob-
lema é conhecido como reorganização de estoque. Otimizar a reorganização de itens em
grandes armazéns impacta diretamente e de forma positiva os rendimentos. Grandes ar-
mazéns frequentemente necessitam de reorganizações por motivos sazonais, de mercado,
logísticos, etc. Determinados tipos de produtos tem maior demanda em uma época do
ano do que em outras, produtos postos em promoção vão ser liquidados e vão sair do
estoque mais rapidamente, novos produtos são recebidos constantemente nos depósitos,
todos esses são exemplos que requerem uma reorganização frequente no estoque. Reorga-
nização de pacotes em centros de distribuição consiste em reposicionar itens movendo-os
sequencialmente. Vários estudos da literatura se propõem a solucionar problemas de re-
organização de pacotes aplicando métodos exatos. No entanto, devido à complexidade
do problema, apenas heurísticas obtém tempos de processamento viáveis para aplicações
reais. Este estudo investiga como otimizar a reorganização de centros de distribuição de
cargas unitárias em cenários onde existem múltiplas localizações vazias. Heurísticas tradi-
cionais são revisadas e uma abordagem de programação evolucionária é proposta para o
problema. Resultados experimentais indicam que a heurística proposta tem desempenho
satisfatório em termos de tempo computacional e é capaz de melhorar a qualidade das
soluções em comparação com heurísticas de referência.

Palavras-chave: Otimização. Computação Evolucionária. Algoritmos Genéticos. Reor-
ganização de armazéns. Logística.

LIST OF FIGURES

Figure 1 – Flow of items in a supply chain. 18
Figure 2 – Single rack with material handling equipment. 21
Figure 3 – The initial (a) and final (b) configurations for a sample reshuffling prob-

lem. 22
Figure 4 – The initial (a) and final (b) configurations for a sample reshuffling prob-

lem with open location and two cycles. 24
Figure 5 – The initial (a) and final (b) configurations for a sample reshuffling prob-

lem with two open locations, one cycle, and one non-cycle item. 25
Figure 6 – Terminology used in genetic algorithms. 28
Figure 7 – Example of point crossover. 29
Figure 8 – Example of mutation operation. 30
Figure 9 – Example of inviable offspring generated by point crossover. 31
Figure 10 – Decoder used to map solutions in the random-key hypercube to solu-

tions in the solution space where fitness is computed. 32
Figure 11 – RKGA randon-key decodification example. 33
Figure 12 – Creation of new generation in the RKGA. 34
Figure 13 – Parametrized uniform crossover. 35
Figure 14 – Creation of new generation in the BRKGA. 36
Figure 15 – Flowchart of a Biased Random-Key Genetic Algorithm. 38
Figure 16 – The initial and final configurations and Chebyshev cost matrix for a

sample reshuffling problem with two open locations, one cycle, and one
non-cycle item. 40

Figure 17 – Reshuffle solution using H3. Initial storage organization and non-cycle
movement (a), movement to break the cycle (b), subsequent movements
to reorganize the cycle elements (c - e), the final desired organization (f). 41

Figure 18 – Reshuffle solution using GRH. Initial storage organization and non-
cycle movement (a), movement to break the cycle (b), subsequent move-
ments to reorganize the cycle elements (c - e), the final desired organi-
zation (f). 44

Figure 19 – The initial (a) and final (b) configurations for a sample reshuffling prob-
lem to be solved using H3 heuristic. 46

Figure 20 – Sample problem solution using H3. Initial storage organization and
non-cycle movement (a), movement to break the cycle (b), subsequent
movements to reorganize the cycle elements (c - e), the final desired
organization (f). 47

Figure 21 – Example chromosome for reshuffling. 49

Figure 22 – Boxplot of the average of the percentile difference between best re-
sults found by Biased Random-Key Genetic Algorithm (BRKGA) and
General Reshuffling Heuristic (GRH) with respect to each operating
environment. 72

Figure 23 – Example of Comma-Separated Values (CSV) reshuffling Scenario out-
putted by ScenarioGenerator.py. 118

LIST OF TABLES

Table 1 – Reshuffle solution for example problem using H3. 41
Table 2 – Reshuffle solution for example problem using GRH. 45
Table 3 – Best BRKGA automatic parameter configurations ranked according to

the solution quality. 62
Table 4 – Seeds for the random number generator for convergence analysis. 63
Table 5 – Comparison between convergence configurations with respect to solution

quality 𝑍 and generation executed until termination 𝐺𝑒𝑛. 64
Table 6 – Friedman Tests for convergence configurations solution qualities. 65
Table 7 – Nemenyi Post-hoc Test for convergence configurations solution qualities. 65
Table 8 – Friedman Tests for convergence configurations solution performance. . . 66
Table 9 – Nemenyi Post-hoc Test for convergence configurations solution perfor-

mance. 67
Table 10 – Seeds for the random number generator. 70
Table 11 – The average quality results of BRKGA, GRH, and H3 with respect to

each operating environment. 71
Table 12 – The average runtime results of BRKGA, GRH, and H3 with respect to

each operating environment. 74
Table 13 – Friedman Test for solution quality (𝑍) results of BRKGA, GRH, and

H3 with respect to each operating environment. 75
Table 14 – Nemenyi Post-hoc Test for solution quality (𝑍) results of BRKGA, GRH,

and H3 with respect to each operating environment. 75
Table 15 – Friedman Test for runtime (𝑅𝑇) results of BRKGA, GRH, and H3 with

respect to each operating environment. 76
Table 16 – Nemenyi Post-hoc Test for runtime (𝑅𝑇) results of BRKGA, GRH, and

H3 with respect to each operating environment. 77

LIST OF ALGORITHMS

1 Generic pseudo code for Genetic Algorithms 30
2 Example Decoder . 32
3 BRKGA Pseudocode . 37
4 H3 Heuristic . 39
5 GRH Heuristic . 42
6 Polynomial-time algorithm to identify cycles 43
7 BRKGA Reshuffling Decoder . 48
8 Algorithm to generate different initial and final configuration of storage . . 56
9 Iterated Racing Pseudocode . 58
10 Racing procedure in irace . 59

LIST OF ABBREVIATIONS AND ACRONYMS

𝜌𝑎 Probability of inherit allele from first parent

𝜌𝑒 Probability of inherit allele from elite parent

𝑝 Population size

𝑝𝑒 Elite population percentage

𝑝𝑚 Mutant population percentage

MAXGEN Maximum number of generations

maxDist Maximum Distance

API Application Programming Interface

ASRS Automated Storage/Retrieval Systems

BRKGA Biased Random-Key Genetic Algorithm

CP Convergence Population Fraction

CSV Comma-Separated Values

DCs Distribution Centers

DE Differential Evolution

DP Dynamic Programming

DU Distance Unit

EA Evolutionary Algorithms

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Proce-
dure

GRH General Reshuffling Heuristic

H3 Heuristic 3

I/O Input/Output

IRACE Iterated Racing for Automatic Algorithm
Configuration

K Number of separated populations

MinGW Minimalist GNU for Windows

NP-Hard Non-deterministic Polynomial acceptable

P/D Pickup/Drop-off

PSO Particle Swarm Optimizer

RKGA Random-Key Genetic Algorithm

RWW Rearrange-While-Working

S/R Storage/Receive

SA Simulated Annealing

SGA Simple Genetic Algorithm

SI Shuffling with Insertion

SLAP Storage Location Assignment Problem

SNN Shuffling with Nearest Neighbor Heuristic

SSD Solid State Drive

CONTENTS

1 INTRODUCTION . 17
1.1 MOTIVATION . 17
1.2 PROBLEM STATEMENT . 19
1.3 STATEMENT OF THE CONTRIBUTIONS 22
1.4 ORGANIZATION OF THE DISSERTATION 23

2 LITERATURE REVIEW . 24

3 METHODS . 27
3.1 GENETIC ALGORITHM . 27
3.1.1 Random-Key Genetic Algorithm . 31
3.1.2 Biased Random-Key Genetic Algorithm 35
3.2 RESHUFFLE BRKGA . 39
3.2.1 Decoder . 39
3.2.1.1 Heuristic H3 . 39
3.2.1.2 Heuristic GRH . 42
3.2.1.3 Reshuffle Decoder . 45
3.2.2 Stopping Criteria . 50

4 PARAMETER CONFIGURATION 53
4.1 SCENARIO REPRESENTATION . 53
4.1.1 Parser . 54
4.1.2 Scenario Generation . 55
4.2 AUTOMATIC PARAMETER CONFIGURATION 57
4.2.1 Iterated Racing . 57
4.3 GRH PARAMETER TUNING . 60
4.4 BRKGA PARAMETER TUNING . 60
4.5 BRKGA STOPPING CRITERIA TUNING 62
4.5.1 Comparison Between Stopping Criteria Configurations 63
4.6 FINAL RESHUFFLING BRKGA CONFIGURATION 67

5 EXPERIMENTAL ANALYSIS . 69
5.1 COMPUTATIONAL ENVIRONMENT . 69
5.2 EXPERIMENTAL DESIGN . 69
5.3 RESULTS . 70
5.4 STATISTICAL ANALYSIS . 74
5.4.1 Solution Quality . 74

5.4.2 Runtime . 76

6 CONCLUSIONS AND FUTURE RESEARCH 78
6.1 FUTURE RESEARCH . 79

REFERENCES . 80

APPENDIX A – HEURISTICS . 85

APPENDIX B – SCENARIO GENERATION AND PARSING . . . 118

APPENDIX C – IRACE CONFIGURATION AND RESULTS 132

17

1 INTRODUCTION

“ Rene Descartes: Divide each difficulty into as many parts as is feasible
and necessary to resolve it. ”

1.1 MOTIVATION

The supply chain is the collection of resources and methods required to plan, execute
and control the production, storage, and delivery of goods and services from the origins to
the final consumers. It involves several key activities and processes that must be completed
in a cost-effective and timely manner to efficiently deliver products to the clients (ASGARI

et al., 2016).
The whole chain is composed of a series of operators specialized in a specific step of

the process. As an example, a manufacturer that fabricates products in a different country
from the consumer market. From the manufacturer until the consumer, the items will be
produced, transported, stored, distributed, and accessed by end consumers (ASGARI et al.,
2016). Operators take roles in each of these phases, and they are all dependent on the
other operators in the supply chain. An example of the flow of articles in such a chain is
depicted in Figure 1.

The overall performance of a supply chain depends on its design and operation. Num-
ber, location, and capacities of manufactures, warehouses, Distribution Centers (DCs),
and retailers; inventory control methodologies, storage facilities, and service quality; ac-
cess to suppliers, transporters, resellers, distributors, are individual aspects that have
important roles in the chain (RAJGOPAL, 2016).

Warehouses and large distribution centers are an essential part of the product supply
chain. Design and operation imprecisions and failures can result in large delays in the
product delivery or even in missing items in final client stocks. The study conducted by
Corsten e Gruen (2004) over a population of 71,000 consumers in 29 countries indicate
that clients will recur to other suppliers between 21% and 41% of the times, if they find
a missing item in the inventory, resulting in a loss of at least 4% for a retailer.

Some of the main reasons for missing items in inventories are the incongruity between
storage capacity and refilling frequency (replenishment); infrequency, delay, or nonexis-
tence of product restitution in shelves; inexact or wrong inventory control; storages with
an inadequate organization, package disruption and scarce availability; poor storage lay-
out and inefficient operational services (GRUEN et al., 2002). Delays in one point of the
supply chain can result in considerable losses for a final retailer. Losses for poor stor-
age can represent up to 10% of the final losses due to stock faults. This means, at any
point where there is a storage for raw materials or manufactured products, there is an

Chapter 1. Introduction 18

Figure 1 – Flow of items in a supply chain.

opportunity to improve the timing in which the orders are fulfilled, by optimizing the
storage.

Several points in the supply chain include warehouses, DCs, and storages including
the manufacturer, the transporter, and the distributor. The storages can have racks sys-
tems, individual product placements, container terminals, among others. Therefore, it is
possible to improve the flow of products from the manufacturer to final users by improv-
ing the design and operation of storages, of any type. Due to its strategical importance,
the efficient stock management in a warehouse contains several problems that can be
approached using optimization methods. In this universe, frequently explored problems
are ambient dimensioning, department organization and layout, stock organization and
layout, pilling design, product storage and retrieval methodology (GU; GOETSCHALCKX;

MCGINNIS, 2007), (GU; GOETSCHALCKX; MCGINNIS, 2010).
An efficient storage operation within a supply chain greatly requires an effective orga-

nization of the stock. A disorganized storage will have products in unassigned locations,
resulting in losses of time for storage and retrieval, unnecessary use of tools and equip-
ment, inadequate use of space, additional replacements of items, and low productivity,
resulting in profit losses and affecting the competitiveness of the organization and of those
that rely on it.

Chapter 1. Introduction 19

One of the most frequently studied problems within this context is the efficient Storage
Location Assignment Problem (SLAP). This class of problems is defined as "the assign-
ment of locations of products inside a storage in order to minimize the costs related to
handling the items during daily operation" (HAUSMAN; SCHWARZ; GRAVES, 1976). These
problems can be found from shelves systems in final products to container terminals, and
pallet racks. Fortunately, SLAP has been largely investigated and is solved using different
policies for location assignments (GU; GOETSCHALCKX; MCGINNIS, 2007) intended to min-
imize travel distances, travel time, or energy required to access locations and items. The
studies by Gu, Goetschalckx e McGinnis (2007), Koster, Le-Duc e Roodbergen (2007),
Roodbergen e Vis (2009), and Gu, Goetschalckx e McGinnis (2010) provide extensive re-
views of the warehouse operational problems, including the most commonly used policies
to solve the SLAP.

In most of the cases, these policies are based on the item demand, and it is inevitable
that demand profiles change over time (KOSTER; LE-DUC; ROODBERGEN, 2007). The de-
mand profiles can change due to competition, new products in the market, product matu-
rity or seasonality (CARLO; GIRALDO, 2012). Consequently, the best arrangement of the
items in a stock changes with time.

To determine the new best arrangement, the new demand profiles are used and the
SLAP problem is solved once again. This process creates a new problem: the sequence of
movements to efficiently obtain a particular stock organization, given the current organi-
zation of the item in the storage. This problem is known as stock rearrangement, stock
shuffling, or stock reshuffling. The reshuffling activities’ frequency varies. Daily, weekly,
monthly, quarterly and semiannual reshuffling policies are adopted depending on the type
and size of the warehouse and the supplied demand profile.

The optimization of storage reshuffling in warehouses directly impacts the profits by
keeping the storage best arranged to the demand and consequently reducing losses due
to delays in product storage and recovery operations. The reshuffling can be especially
important for large warehouses with larger storage units. In these scenarios, improve-
ments between 8–15% in storage and retrieval converts in savings of up to $500,000 per
year based on a 2011 evaluation (TREBILCOCK, 2011). This costs should be balanced
by the reshuffling costs, that include manpower (in manual storages) and electricity (in
automatized storages). In both cases, the reshuffling costs can be minimized through the
reduction in the total time needed for the process.

1.2 PROBLEM STATEMENT

As described in Christofides e Colloff (1973) the reshuffle problem is to find a sequence
of movements to be executed that will transform the initial arrangement of K items in a
storage (𝐼𝐾) to some specified final arrangement (𝐹𝐾), and that will minimize the total
cost involved.

Chapter 1. Introduction 20

In the warehouse reshuffling universe, the items that are relocated may be stored in
pallets, as in most warehouses and in the reserve area of DCs, or in totes as in mini load
Automated Storage/Retrieval Systems (ASRS) and in the forward area of DCs where
picking occurs (KOSTER; LE-DUC; ROODBERGEN, 2007). The items may be distributed in
several aisles, and frequently the access to these aisles is controlled and regulated by proper
entrance and exits, traffic direction, and even driving speeds. As a result, accidents are
avoided when storing and recovering packages (GU; GOETSCHALCKX; MCGINNIS, 2007).

To simplify the design and analysis, this study focuses on a system where items are
palletized and stored in a single rack that is served by a single material handling equip-
ment as the one depicted in Figure 2. Without loss of generality, the main assumptions
restricting the problem studied are:

1. Items are carried as unit-loads;

2. Each location may store only one item;

3. Each item has a unique storage location (i.e., dedicated storage policy); each copy
of an item is treated as a unique item that has a specific location in the initial and
final storage configurations;

4. The initial and final storage configurations are known;

5. Reshuffling is performed by a single material handling equipment;

6. The travel distance between any two storage locations is assumed to be known;

7. Only one rack (i.e., one side of the aisle) served by the Storage/Receive (S/R)
machine is considered;

8. Every item is directly accessible from the aisle (i.e., a single-deep aisle);

9. The Input/Output (I/O) point is known and considered as a location in the rack;

10. All moves can be completed in the time available;

11. The objective is to minimize the total movement cost measured as the distance
traveled for both loaded and unloaded movements.

The objective function in the last assumption can be easily modified from travel dis-
tance to travel time by incorporating the travel speed, acceleration/deceleration, and
Pickup/Drop-off (P/D) times. Alternatively, if P/D’s are to be incorporated, a fixed
distance-penalty may be added for each P/D. Travel distance metrics may also be altered
to correspond with different storage layouts.

The studied methodologies, though, are directly implementable for manual or auto-
mated warehouses and can be later expanded to consider double-handling of materials

Chapter 1. Introduction 21

Figure 2 – Single rack with material handling equipment.

and heterogeneous loads. The main modeling assumptions used in this study are consis-
tent with the traditional assumptions in the warehousing reshuffling literature (PAZOUR;

CARLO, 2015), (GIRALDO, 2011). Each of these assumptions can be relaxed, generating
new studies to identify strategies to approach the derived problems.

Figure 3 depicts a sample reshuffling problem in which four items (A–D) require repo-
sitioning. The required solution is the order of movements to be executed by the material
handling machine to reshuffle an item from the initial storage configuration depicted in
Figure 3 (a), to the final storage configuration depicted in Figure 3 (b).

Items A, B, and C in Figure 3 are referred to as cycle items because to reposition any
of these items the other items need to be moved. The final location of item A is initially
occupied by item C. The final location of item C is initially occupied by item B, and the
final location of item B is occupied by item A. Therefore, to reposition these items, it is
necessary to break the cycle moving one item from its initial location to an intermediary
location different from its final location. This additional step allows moving sequentially
the remaining items in the cycle to their final location before moving the first item to its
final location. A set of items is classified as cycle items when the set’s initial locations are
equal to the set’s final locations. A larger set may be decomposed into a union of disjoint

Chapter 1. Introduction 22

subsets that denote individual cycles. The cycles are a property of the problem that was
initially identified in the study of Christofides e Colloff (1973) and is frequently used in
the literature to simplify the problem modeling and the design of solutions.

The remaining item (D) is a non-cycle item because it is not part of any cycles as it
can be directly moved from its initial location (Loc 1) to its final location (Loc 5).

In addition to the items, the problem contains two open locations (represented by 01

and 02 in the initial and 0′
1 and 0′

2 in the final configurations). The I/O point is assumed
to be at the bottom leftmost location (i.e., location 0, labeled as Loc 0 in Figure 3). A
possible solution to this problem is to move unloaded from the I/O point (Loc 0) to the
initial location of item B. Then reposition item B from its initial location (Loc 4) to the
open location identified as 01 in Loc 5. Next, move unloaded to the initial location of
item C (Loc 0), pick up item C in and move it to its final location (Loc 4). Then move
unloaded to item A (Loc 3) and move it to its final location (Loc 0). At that point, item
B can be moved from location 5 to its final location (Loc 3), followed by the repositioning
of item D (From location 1 to location 5). For a solution to be feasible, an item cannot
be moved to a location unless the location is open. However, the open location changes
as the items are being reshuffled. Consequently, there are multiple feasible solutions to
the sample problem, which increase exponentially with the number of items and open
locations considered.

Figure 3 – The initial (a) and final (b) configurations for a sample reshuffling problem.

1.3 STATEMENT OF THE CONTRIBUTIONS

This study has as main contributions:

1. A genetic algorithm based on the BRKGA metaheuristic (GONÇALVES; RESENDE,
2011) for solving unit-load warehouse reshuffling problems in large storages;

Chapter 1. Introduction 23

2. Validation of the proposed heuristic by benchmark comparison with recent literature
heuristics successfully applied to the problem;

3. A warehouse reshuffling scenario generator for benchmark testing of reshuffling op-
timization algorithms.

1.4 ORGANIZATION OF THE DISSERTATION

The remainder of the dissertation is organized as follows:

• Chapter 2 presents a review of relevant literature pertaining to the reshuffling prob-
lem;

• Chapter 3 introduces genetic algorithms and their random-key variations used in
this project and describes the methods used to apply the metaheuristic in reshuffling
problems;

• Chapter 4 presents the experiments performed to adjust the parameters of the
reshuffling heuristic built;

• Chapter 5 analyzes the experimental results obtained with the developed heuristic
in comparison with literature benchmark solutions.

• Chapter 6 presents the conclusions extracted from the study and future research.

24

2 LITERATURE REVIEW

The concept of warehouse reshuffling was initially proposed by Christofides e Colloff
(1973) who referred to it as "warehouse rearrangement". This study assumes problems
as exemplified in Figure 4. The problems have one empty location within the warehouse
(represented by 𝑂1 in the figure) and all items contained in cycles (exemplified in the figure
with one cycle with items A, B and C, and one cycle with items D and E). Furthermore,
it is assumed that items in a cycle are moved sequentially (i.e., once an item that is part
of a cycle is moved, the remainder of the items in the cycle have to be moved). The paper
hypothesizes that the position of the open locations remains fixed throughout the problem
since only cycles are considered and that the cycles must be executed separately, one after
the other. The same open locations will be available before and after the reshuffling.

Figure 4 – The initial (a) and final (b) configurations for a sample reshuffling problem
with open location and two cycles.

The authors propose a two-stage algorithm that will sequence load movements by
minimizing the travel costs required to rearrange the products in a dedicated warehouse.
The first stage identifies how each of the cycles can be repositioned, whereas the second
stage uses Dynamic Programming (DP) to determine the sequence in which the cycles are
moved. The DP algorithm by Christofides e Colloff (1973) is capable of finding the opti-
mum solution for the simplified problem scenario, but, as later found by Muralidharan,
Linn e Pandit (1995), the problem with non-cycle items is Non-deterministic Polynomial
acceptable (NP-Hard), and the solution space for their DP-based method grows exponen-
tially with the number of cycles and empty locations such that the algorithm becomes
impractical. As illustrated in Figure 5, the problem addressed here is similar to the prob-
lem studied in Christofides e Colloff (1973), but relaxing the assumptions of having only

Chapter 2. Literature Review 25

one empty location and only cycles that must be executed sequentially. By relaxing these
assumptions the problem becomes more complex as open locations change throughout the
reshuffling process and non-cycle items need to be considered individually.

Figure 5 – The initial (a) and final (b) configurations for a sample reshuffling problem
with two open locations, one cycle, and one non-cycle item.

The first sub-optimum solution applied to this problem was proposed by Muralidharan,
Linn e Pandit (1995). In this study, the problem was formulated as a Precedence Con-
strained Selective Asymmetric Traveling Salesman Problem and, given the computational
complexity of the problem, the authors proposed two heuristics: the Shuffling with Near-
est Neighbor Heuristic (SNN) and the Shuffling with Insertion (SI). Based on simulation
results the authors conclude that using idle times to update the warehouse configuration
increases the storage/retrieval process efficiency. One important assumption used in by
Muralidharan, Linn e Pandit (1995) is that the open location for each item is preassigned
and available, which allows them to focus only on minimizing unloaded travel.

Chen, Langevin e Riopel (2011) focuses on relocating items in a warehouse by simulta-
neously deciding which items are to be relocated and their relocation destination in order
to satisfy the required throughput during peak periods. A mathematical model for the
problem and two heuristics are presented, a two-stage heuristic and a Tabu Search. Since
Chen, Langevin e Riopel (2011) considers the destination as a variable of their problem,
the nature of their problem is different than the one studied in this project.

Carlo e Giraldo (2012) introduces the Rearrange-While-Working (RWW) strategy. The
RWW concept is to reposition pallets by storing them in a different location than where
they were retrieved from. Hence, upon retrieving an item, a decision of where to store
it is made considering the open locations, the desired final location of the item, and the
set of retrieval movements required to serve a predetermined number of orders. Genetic
Algorithm is used to find the sequence of repositions that minimizes the total travel

Chapter 2. Literature Review 26

costs. However, as the scheduled retrievals may not suffice to complete the rearrangement
of all items, a polynomial-time heuristic called Heuristic 3 (H3), similar to the SNN
heuristic in Muralidharan, Linn e Pandit (1995), was used to estimate the remaining
work after serving all orders by performing reshuffling. H3 assumes that non-cycle items
are moved before cycle items and that items in a cycle are repositioned sequentially. Since
the H3 is sub-optimum, to compare its results with optimum solutions, Giraldo (2011)
proposes a dynamic programming algorithm based on the branch and bound approach.
This DP algorithm could not be applied in real scale problems due to its exponential-time
complexity.

More recently, Pazour e Carlo (2015) proposed 4 different mathematical models for
reshuffling operating policies. These models include the original formulation by Christofides
e Colloff (1973), and additional formulations where non-cycle items are also handled. It
was indicated that the formulation where cycle items are treated sequentially before non-
cycle items, returns the best results. The new formulations proposed by Pazour e Carlo
(2015) are a good reference for optimum solutions to small-scale problems. However, as
the problem scale increases, these solutions also demand impractical processing times.
To overcome these limitations Pazour e Carlo (2015) proposes the GRH, which is based
on the H3 but relaxes the assumption that non-cycles are moved before cycles. This
is achieved by introducing a parameter 𝜏 that allows breaking nearby cycles in between
non-cycle movements. In addition, Pazour e Carlo (2015) proposes a Simulated Annealing
(SA) adapted from the one elaborated in Wilhelm e Ward (1987). It was found that the
GRH algorithm results in better solutions than the benchmark heuristic H3 with similar
processing times. The SA approach reported respectable solutions in small and medium
scales. However, Pazour e Carlo (2015) demonstrated statistically that the algorithm is
not scalable to large problems.

As the most successful approaches reported so far in the literature for the reshuffling
problem studied, H3 from Carlo e Giraldo (2012) and the GRH from Pazour e Carlo (2015)
were used as inspiration for a Biased Random-Keys Genetic Algorithm (BRKGA) reshuf-
fling decoder and as benchmark solutions. The BRKGA is a genetic algorithm recently
successfully applied in several combinatorial applications. Chapter 3 details the main con-
cepts behind this metaheuristic with its differences to the classical genetic algorithms, and
introduce the modifications added to solve reshuffling problems.

27

3 METHODS

As detailed in Chapter 2, several heuristic approaches were suggested to solve reshuf-
fling problems. The main meta-heuristic paradigm applied to these problems was the
Simulated Annealing (SA). However, as shown in Pazour e Carlo (2015), the SA ap-
proach evaluated significantly fewer candidate solutions once the scale of the problem
grew. Even after running for 10 hours, only approximately 13% of the candidate solutions
for instances with 100 locations were considered. For this reason, the authors decided not
to increase run-times for the heuristic.

To overcome the apparent limitation of the SA, this study proposes the use of a Ge-
netic Algorithm. As observed in the literature, even though for some problems the SA
paradigm has better performance, such as in learning fuzzy cognitive map (GHAZANFARI

et al., 2007), and integrated process routing and scheduling (BOTSALI, 2016), for com-
binatorial problems similar to the warehouse reshuffling, the Genetic Algorithm (GA)
paradigm resulted in significantly better performance, especially with increasing problem
sizes (MANIKAS; CAIN, 1996), (NAIR; SOODA, 2010), (ADEWOLE et al., 2012).

Within the GA heuristics available, this study focuses on using the Biased Random-
Key Genetic Algorithm because of the significant performance gain reported from this
approach in comparison with more traditional GAs (MOURA, 2018).

The following sections detail the main references and developed methods of this study.
The BRKGA heuristic is described and each of the features added for solving reshuffle
problems are introduced. Two heuristics are analyzed as inspirations for the BRKGA
reshuffling decoder. The first reference heuristic for the reshuffling problem is the H3 from
Carlo e Giraldo (2012), which implicitly assumes that items not in a cycle are repositioned
before items in cycles, that items within a cycle are repositioned sequentially, and that
double handling is not considered other than to break cycles. The implicit assumptions
in H3 are those atone with the current rule-of-thumb in practice. Next, it is the GRH
from Pazour e Carlo (2015), which relaxes these assumptions to obtain better results than
those of Carlo e Giraldo (2012). The development is completed with the stopping criteria
used to reduce the processing time of the Reshuffling BRKGA.

3.1 GENETIC ALGORITHM

Genetic Algorithms were introduced by Holland (1975) as a particular class of Evo-
lutionary Algorithms (EA). These algorithms use techniques inspired by the Darwinian
evolutionary biology (CHARLES, 1859) as inheritance, mutation, natural selection, and sex-
ual reproduction using crossover. As explained by Goldberg (2006), Genetic Algorithms
use computer models of the natural evolutionary processes as a tool to solve optimization

Chapter 3. Methods 28

problems. Although several variations exist within the proposed models in the literature,
all have in common the concept of simulating a population of individuals with different
characteristics, determined by their genes. Some characteristics are favorable for the en-
vironment in which they are inserted, while others are not. The GA transfers a group
of the best performing solutions to a problem (fittest individuals in an environment) to
a new population in a process analogous to the natural selection. These individuals can
suffer modifications through genetic operations (mutation and crossover) in their chromo-
somes. The main idea is on the course of subsequent iterations, the worse individuals are
discarded, therefore only the best individuals in the population remain.

Figure 6 – Terminology used in genetic algorithms.

As shown in Figure 6, Genetic Algorithms are inspired by evolutionary biology terms
combined with optimization concepts. One solution to the problem is referred to as an
individual. Each individual is associated with a 𝑛 size vector named chromosome. Each
entry in the vector is known as gene, an its value is referred as allele. The position each
gene occupies in the chromosome is called locus. The first entry in the gene vector is
referred to as the first locus. Each gene represents a characteristic of the individual. A
group of individuals (chromosomes) forms a population.

The selection operator picks the chromosomes that will take part in the reproduction
process to combine their characteristics and generate new individuals. An objective func-
tion is applied to quantify the fitness of each individual (solution) in a population in the

Chapter 3. Methods 29

given evaluation environment (problem). The solutions better adapted for the problem
(fittest), usually have higher probabilities of being selected for reproduction, transmitting
their characteristics to future generations.

The crossover operator combines two parent chromosomes to create a new child chro-
mosome by imitating a biological sexual reproduction of organisms. One example of a
crossover operation is illustrated in Figure 7. This example operator is known as point
crossover, in which a cutting point is determined to divide the parent’s chromosomes into
two parts. Two offspring are then generated by receiving one part from the first parent
and another part from the second parent.

Figure 7 – Example of point crossover.

The mutation operator changes the values of some randomly selected alleles increasing
the diversity in the population. This avoids a quick convergence to a local optimum. A
mutation operator, for example, can randomly select a locus and alter its associated allele.
Considering a Simple Genetic Algorithm (SGA), where chromosomes are represented by
binary vectors, if the allele has a 0 value, it will become a 1, and vice-versa. Figure 8
illustrates this procedure. In this example, the second locus had its allele altered from 1
to 0.

Chapter 3. Methods 30

Figure 8 – Example of mutation operation.

The last and most important aspect of the GA is to define the objective function to
quantify the fitness of each chromosome from the information contained in its genes. This
is problem-specific and will greatly vary according to the algorithm design.

A pseudo-code of a traditional genetic algorithm is detailed in Algorithm 1.

Algorithm 1 Generic pseudo code for Genetic Algorithms
1: procedure Genetic Algorithm
2: Initialize starting population P;
3: while Stopping criteria not met do
4: Evaluate fitness for each individual in P;
5: Select parents for reproduction;
6: Perform reproduction via crossover;
7: Perform mutation;
8: Generate new population;
9: end while

10: return Fittest individual in the population
11: end procedure

At the second line, a starting population is initialized. This is usually done by randomly
generating individuals. Next, from the third line to the ninth line, the main evolutionary
process occurs. At the fourth line, the fitness of each individual is quantified using the
objective function. At the fifth line, the selection operator is applied to pick parents to
participate in the reproduction process at the sixth line. At the seventh line, mutation is
applied to increase the diversity in the solutions. At the eighth line, the new offspring and
mutant individuals are combined to form the next generation. This procedure is repeated
until a stopping criterion is reached. This stopping criterion can be a maximum number
of generations (iterations), a threshold number of generations with no improvements,
among others. Several stopping criteria are analyzed in Zielinski, Peters-Drolshagen e

Chapter 3. Methods 31

Laur (2005). Finally, at the tenth line, the algorithm returns the best solution found.
A common problem is the generation of inviable solutions after the application of mu-

tation and crossover operations. In a sequencing problem, where a solution is represented
by the permutation of some values without repetitions, the point crossover exemplified
in Figure 9 would generate two inviable children solutions, because repetitions would oc-
cur. To overcome this problem in the GA, many authors developed algorithms highly
dependent on the problems they proposed to solve (GOLDBERG; LINGLE et al., 1985),
(GREFENSTETTE et al., 1985), (GREFENSTETTE, 1987), (CLEVELAND; SMITH, 1989). In-
tending to create a genetic alternative without this inviability problem, (BEAN, 1994)
proposed the random-key strategy shown in Section 3.1.1

Figure 9 – Example of inviable offspring generated by point crossover.

3.1.1 Random-Key Genetic Algorithm

A Random-Key Genetic Algorithm (RKGA) is an evolutionary metaheuristic for com-
binatorial optimization problems introduced by (BEAN, 1994). The RKGA is based on
the solution representation through a vector of 𝑛 random keys, in which each key is a
real number randomly generated according to a uniform distribution in the continuous
interval [0,1).

The solutions (chromosomes) represented by the random-key vectors pass through a
decoder responsible for mapping the keys into a viable solution for the problem and return
its cost (fitness). The mapping process is illustrated in Figure 10, where on the left side is

Chapter 3. Methods 32

the continuous n-dimensional unit hypercube and on the right side is the solution space
for the problem. The decoder located between both spaces connects each random-key
vector to a problem solution and calculates its fitness.

Figure 10 – Decoder used to map solutions in the random-key hypercube to solutions in
the solution space where fitness is computed.

The decoding process is exemplified in the Algorithm 2. In this example, the decoder
has to convert the random-key vector into an integer vector of length 6 with values varying
from 0 to 100. The problem has a constraint that forces 3 vector positions of the solution
to be 0.

Algorithm 2 Example Decoder
1: procedure Decoder(𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒)
2: Copy the random-key vector represented by 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 into the new vector 𝑘𝑒𝑦𝑠;
3: Sort in increasing order the vector 𝑘𝑒𝑦𝑠;
4: Multiply the first 3 sorted elements in 𝑘𝑒𝑦𝑠 to 100 and convert them to integer;
5: Verify in the initial 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 the index of the first 3 sorted elements in 𝑘𝑒𝑦𝑠;
6: Define a new vector 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 of length 6 and attribute the integer values to the

first 3 sorted elements in 𝑘𝑒𝑦𝑠 at the indexes found in the previous step.;
7: Define the remaining positions of the next vector as 0;
8: Calculate fitness of vector 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛;
9: return fitness of vector 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

10: end procedure

Through this process, the decoder receives the random-key vector (the chromosome)
at the first line; creates the vector 𝑘𝑒𝑦𝑠 with a sorted copy of the chromosome at the
second and third lines; obtains the corresponding integer values at the fourth line; and at
the fifth line verifies the corresponding indexes in the original chromosome of the first 3
sorted elements in vector 𝑘𝑒𝑦𝑠. At the sixth line, the algorithm attributes the 3 integer

Chapter 3. Methods 33

values obtained previously to the original indexes of the keys. The remaining positions of
the final vector are set to 0 at the seventh line. This new vector is the decoded solution and
can be used to find the corresponding fitness to the problem at the eighth line. Following
this process, the decodification process always results in a viable solution. One example
of this decodification process is numerically illustrated in Figure 11.

Figure 11 – RKGA randon-key decodification example.

In the RKGA, mutation and crossover operator are applied in the random-key vector
before the fitness evaluation, not affecting the decoding process. By elaborating a decoder
that always converts the random-key vector into viable solutions, the resultant algorithm
does not produce non-viable solutions.

The evolution of the population (set of Population size (𝑝) random-key vectors) is done
based on the Darwinian principle, in which the fittest individuals have higher chances of
passing their genetic information to future generations. This is due to higher chances of
selection to generating offspring in reproduction phases and being copied as elite individ-
uals.

Chapter 3. Methods 34

Figure 12 – Creation of new generation in the RKGA.

As illustrated in Figure 12, the 𝑝 individuals of the population are divided into two
groups at the end of each generation: the Elite population percentage (𝑝𝑒) with the best
solutions in the population, where 𝑝𝑒 < 𝑝/2, and the non-elite group. The elite individ-
uals are copied to the next population, applying the Darwinian elitism. Next, a Mutant
population percentage (𝑝𝑚) is generated and added to the future generation to guarantee
diversity. A mutant individual is just a random-key vector generated in the same way as
initial individuals are generated. Finally, to complete the new population, the remaining
𝑝 - 𝑝𝑒 - 𝑝𝑚 individuals are generated combining pairs of randomly selected parents in the
current population. The parents are combined using the uniformly parametrized crossover
proposed by Spears e Jong (1995), illustrated in Figure 13.

Chapter 3. Methods 35

Figure 13 – Parametrized uniform crossover.

For this crossover process, at each chromosome position, a random number is generated
and compared with the Probability of inherit allele from first parent (𝜌𝑎) (parameter of
the algorithm). If the number is lower than 𝜌𝑎 the allele of the first parent (𝑎) is inherited
by the offspring. Otherwise, the allele of the second parent is inherited by the offspring. In
Figure 13, given 𝜌𝑎 = 0.7, if the random number is smaller than 0.7, the offspring receives
the allele of parent 𝑎. Otherwise, it receives the allele of parent 𝑏.

The RKGA runs until a stopping criterion is met, then it returns the best solution
found so far.

3.1.2 Biased Random-Key Genetic Algorithm

The BRKGA is a variant metaheuristic of RKGA proposed by (GONÇALVES; RE-

SENDE, 2011). As illustrated in Figure 14, the dynamic evolution of BRKGA is similar to
that of RKGA. The population is divided into elite and non-elite groups. The elite group
is copied to the next generation. A number 𝑝𝑚 of new individuals is randomly generated
and added to the new generation. The main innovation in comparison with the RKGA is
in the selection of the parents for the crossover operation. The BRKGA always opts for
one elite parent (𝑝𝑒) crossing with one non-elite parent. In some cases, the second par-
ent is selected from the entire population. This characteristic makes the BRKGA biased

Chapter 3. Methods 36

towards elitism. The repetition of parents is allowed in the reproduction phase, allowing
then one parent to have more than one offspring. Since 𝑝𝑒 < 𝑝/2, the probability of one
elite individual being selected for crossover (1/𝑝𝑒) is larger than a non-elite individual
(1/(𝑝 − 𝑝𝑒)). Therefore, increasing the chances of elite individuals to pass their genetic
material to future generations.

Figure 14 – Creation of new generation in the BRKGA.

The same way as in the RKGA, the BRKGA always applies the previously described
uniformly parametrized crossover from (SPEARS; JONG, 1995). The only modification is
that the probability 𝜌𝑎 of inheriting an allele from the first parent (𝑎) is always larger
than 0.5. Considering that the first parent is always an elite one, setting 𝜌𝑎 > 0.5 results
in a higher chance of the offspring to inherit genes from an elite parent, adding a bias
toward elite genes that was not present in the original RKGA.

The BRKGA pseudocode is described in Algorithm 3. Initially, in line 2, a population
P is started. At line 4, the fitness of each individual is calculated using the solution
decoder. At line 5, the population is sorted according to the individuals’ fitness. The elite
and non-elite groups of the population are divided in line 6. At line 7, the elite individuals
are copied to the new population, while in line 8 the selection of parents for crossover is
performed. Lines 9 and 10 show the application of the mutation and crossover operators.
Finally, the new population is generated in line 11. The evolutionary process runs until

Chapter 3. Methods 37

the stopping criteria is met, and the algorithm returns the best solution found.

Algorithm 3 BRKGA Pseudocode
1: procedure BRKGA
2: Randomly generate initial population P;
3: while Stopping criteria not met do
4: Evaluate fitness of each individual in P using the Decoder;
5: Sort population P in increasing order of fitness values;
6: Divide P into elite and non-elite groups;
7: Copy elite individuals of current population to next generation;
8: Select an elite parent to crossover with a second parent from the non-elit pop-

ulation;
9: Perform the parametrized uniform crossover;

10: Generate new mutants;
11: Update next population;
12: end while
13: return Returns best individual in the population
14: end procedure

According to the study, the BRKGA was built as a general search metaheuristic ca-
pable of finding optimal or near-optimal solutions to hard combinatorial optimization
problems (TOSO; RESENDE, 2015). As a general metaheuristic, the BRKGA clearly sepa-
rates the problem-dependent from the problem-independent parts. As illustrated in Figure
15, the evolutionary part of the algorithm has no knowledge of the problem and seeks
to operate only in the random-keys domain. The only problem-dependent part is the
decoder, responsible for mapping the random-key vectors into viable solutions and calcu-
lating their fitness. This way, to use the BRKGA, it is only needed to define a decoder
suitable for the studied problem and to adjust the execution parameters.

Chapter 3. Methods 38

Figure 15 – Flowchart of a Biased Random-Key Genetic Algorithm.

The main advantage of using a Random-Key Genetic Algorithm, either BRKGA or
RKGA, is the re-usability and ease of modeling and maintenance since the evolutionary
parts are independent of the problem domain, which is not always true for other Genetic
Algorithms in the literature. For the BRKGA, the modification added in comparison with
the RKGA, resulted in considerable performance improvements as found in Gonçalves e
Resende (2011) and Gonçalves, Resende e Toso (2014). According to the authors, the
elitism bias results in greedy characteristics similar to those found in the semi-greedy
heuristic of Hart e Shogan (1987) and in the Greedy Randomized Adaptive Search Proce-
dure (GRASP) (FEO; RESENDE, 1995). The greedy characteristics improved, on average,
the solutions found in comparison with pure random constructive methods. As with other
traditional genetic algorithms, the BRKGA has the disadvantage of having a high number
of parameters and a high computational cost, being more recommended for harder prob-
lems. It is important to notice that the decoder is one of the most important operational
parts of the algorithm. Therefore, its performance highly impacts the final performance
of the heuristic in a given problem.

To use the BRKGA this study focused on three main aspects:

1. Decoder: Responsible for converting the Random-Key Vectors into viable solutions
and calculating their fitnesses;

2. Parameter Configuration: The tuning of the several parameters to guarantee the
best performance in the studied problems;

3. Stopping Criteria: Responsible for limiting the processing time and guaranteeing

Chapter 3. Methods 39

the solution of the problem is found within a viable time.

The following sections describe each of these aspects.

3.2 RESHUFFLE BRKGA

3.2.1 Decoder

To build a reshuffling decoder for the BRKGA, the best-performing reshuffling heuris-
tics in the literature are used as references. The following subsections analyze these heuris-
tics and describe how the decoder was built based on them.

3.2.1.1 Heuristic H3

As described in Chapter 2, Carlo e Giraldo (2012) proposes a reshuffling heuristic called
H3, which is similar to the shuffling with nearest neighbor heuristic in Muralidharan, Linn
e Pandit (1995). The H3 heuristic may be summarized as follows:

Algorithm 4 H3 Heuristic
1: procedure H3(Initial and Final location of elements, Movement cost matrices)
2: FinalCost = 0. ◁ Init variable for final cost
3: while Final organization was not reached do
4: while Exist items whose final location is open do ◁ Move non-cycle items
5: Reposition the item whose final location is open and is closest to item

position; Draws are settled by favoring the load closest to S/R machine.
6: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
7: Using cost matrices, add to FinalCost loaded cost of moving item from

initial to final location
8: end while
9: Move to the closest open location the item closest to the S/R that is not in its

final position and its final position is currently occupied. ◁ Break a cycle
10: Using cost matrices, add to FinalCost unloaded cost of moving S/R to item’s

initial location.
11: Using cost matrices, add to FinalCost loaded cost of moving item from initial

to open location
12: end while
13: return Reshuffling steps, FinalCost
14: end procedure

By carefully examining H3 one can note two implicit assumptions: (1) cycles will be
moved after non-cycles; and (2) cycles are moved sequentially (i.e., once a cycle is started,
it is finished). The first implicit assumption is associated with lines 4 and 5. Notice that
H3 starts with all items whose final location is open. Hence, by definition of a cycle, all
items that are part of a cycle are left to be repositioned at the end. The second implicit
assumption is associated with line 9. After breaking a cycle (line 9) there will be exactly

Chapter 3. Methods 40

one item that meets the criteria for line 4. Therefore, the while loop in line 4 will continue
to be repeated for the all items in the cycle before moving to the next cycle. While
the items are repositioned, the unloaded costs of moving the S/R machine unloaded to
the item initial position, and moving loaded to the final or intermediary position are
calculated in lines 6, 7, 10 and 11 using the movement cost matrices. The final cost and
the reshuffling steps are returned in line 13.

To exemplify how the H3 approach solves unit-load reshuffle problems, the algorithm
applied to the problem illustrated in Figure 16.

Figure 16 – The initial and final configurations and Chebyshev cost matrix for a sample
reshuffling problem with two open locations, one cycle, and one non-cycle
item.

One solution to this problem according to H3 results in the steps illustrated in Figure
17. In this figure, the star represents the position of the material handling equipment
before executing the movements, and the arrow represents the next loaded movements to
be performed.

Chapter 3. Methods 41

Figure 17 – Reshuffle solution using H3. Initial storage organization and non-cycle move-
ment (a), movement to break the cycle (b), subsequent movements to reor-
ganize the cycle elements (c - e), the final desired organization (f).

The final sequence of movements for this example are listed in Table 1.

Table 1 – Reshuffle solution for example problem using H3.

Move Item Moved Move Cost Total Cost
Location of items
𝐶 −𝑂1 −𝑂2 − 𝐴−𝐵 −𝐷

0 - 5 none 2 2 As above
5 - 2 D 1 3 𝐶 −𝑂1 −𝐷 − 𝐴−𝐵 −𝑂2

2 - 4 none 1 4 As above
4 - 1 B 1 5 𝐶 −𝐵 −𝐷 − 𝐴−𝑂1 −𝑂2

1 - 0 none 1 6 As above
0 - 4 C 1 7 𝑂1 −𝐵 −𝐷 − 𝐴− 𝐶 −𝑂2

4 - 3 none 1 8 As above
3 - 0 A 1 9 𝐴−𝐵 −𝐷 −𝑂1 − 𝐶 −𝑂2

0 - 1 none 1 10 As above
1 - 3 B 1 11 𝐴−𝑂1 −𝐷 −𝐵 − 𝐶 −𝑂2

For the C++ implementation of the H3 algorithm, refer to Appendix A.

Chapter 3. Methods 42

3.2.1.2 Heuristic GRH

Pazour e Carlo (2015) proposes a reshuffling heuristic similar to H3 but relaxing the
assumption that non-cycles are moved before cycles. This is achieved by including a pa-
rameter 𝜏 that permits cycles to be broken while there are still non-cycles to be relocated.
The GRH heuristic may be summarized as follows:

Algorithm 5 GRH Heuristic
1: procedure GRH(Initial and Final location of elements, Movement cost matrices, 𝜏)
2: Define set 𝐶𝑐 with cycles in the problem
3: FinalCost = 0. ◁ Init variable for final cost
4: while Final organization was not reached do
5: Identify item (q) with final position occupied stored closest to the S/R ma-

chine’s current position that has loaded movement cost from initial location to an
open location 6 𝜏 OR whose ending position is currently open.

6: if item is part of cycle (𝑞 ∈ 𝐶 : 𝐶 ∈ 𝐶𝑐) then ◁ Break nearby cycle
7: Move item q (for which loaded movement cost from the initial location to

an open location 6 𝜏) and remove the cycle from the list of all cycles (𝐶𝑐 = 𝐶𝑐 ∖ 𝐶).
8: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
9: Using cost matrices, add to FinalCost loaded cost of moving the item from

initial to open location.
10: else if item (q) has ending position is currently open then ◁ Move non-cycle

item
11: Move item to its final position
12: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
13: Using cost matrices, add to FinalCost loaded cost of moving the item from

initial to the final location.
14: else ◁ Break distant cycle
15: Move to the closest open location the item closest to the S/R that is not

in its final position and its final position is currently occupied.
16: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
17: Using cost matrices, add to FinalCost loaded cost of moving the item from

initial to open location.
18: end if
19: end while
20: return Reshuffling steps, FinalCost
21: end procedure

As stated in the original paper (PAZOUR; CARLO, 2015), the H3 is a specific case of
the GRH when 𝜏 = 0. This can be observed in the algorithm. At line 5, if 𝜏 = 0, no items
will be found to meet the criteria of travel distance from starting location of q to an open
location 6 𝜏 . In this case, all identified items will be non-cycles, meeting the conditions
for moving non-cycle items (lines 10 to 13). Only when no items are identified in line 4
the cycles will be broken (lines 14 to 17). This behavior is exactly that of H3. However,

Chapter 3. Methods 43

when 𝜏 > 0, nearby cycles will be broken before non-cycle items (lines 6 to 9). This
relaxation of the previous assumptions allows the heuristic to find new solutions with a
similar processing time of the H3. At each item movement, the final cost of the reshuffle is
updated with the cost of moving the S/R machine unloaded to the item’s initial position,
and then moving loaded to the final or intermediary position (lines 8, 9, 12, 13, 16 and
17). The final cost and the reshuffling steps are returned in line 20.

Since each problem may require a different 𝜏 , the authors also propose running the
GRH iteratively with different values of 𝜏 (𝜏 > 0) and reporting the best objective value.
Values between 0 and 20 were found to be more appropriate for scenarios up to 400
locations and distances calculated by Chebyshev metric (maximum between horizontal
and vertical distances) (PAZOUR; CARLO, 2015).

The GRH algorithm starts by identifying all cycles in the problem. This step can be
performed using the polynomial-time algorithm also proposed in Pazour e Carlo (2015)
and summarized in Algorithm 6.

Algorithm 6 Polynomial-time algorithm to identify cycles
1: procedure Cycles(Initial (𝐼𝑘) and Final (𝐹𝑘) location of elements 𝑘 ∈ 𝐾)
2: Define 𝐿 = {𝑘 ∈ 𝐾 : 𝐼𝑘 ̸= 𝐹𝑘

⋂︀
𝐹𝑘 ̸= 𝑂𝑃𝐸𝑁}.

3: Initialize set index 𝑖 = 0.
4: if 𝐿 ̸= ∅ then
5: 𝑖 = 1. ◁ Increase cycle index
6: 𝑘 = 𝑙 ∈ 𝐿. ◁ Select an item from set L
7: 𝐶𝑖 = {𝑘}. ◁ Set 𝐶𝑖 only includes item k
8: end if
9: while 𝐿 ̸= ∅ do ◁ While there are cycles

10: Select 𝑘′ ∈ 𝐾 such that 𝐼 ′
𝑘 = 𝐹𝑘. ◁ Select the item currently located in item

k’s final location
11: if 𝑘′ ∋ 𝐿 then ◁ 𝐶𝑖 is not a cycle
12: 𝐿 = 𝐿 ∖ 𝐶𝑖. ◁ Remove the elements in 𝐶𝑖 from L
13: 𝑘 = 𝑙 ∈ 𝐿. ◁ Select an item from the new set L
14: 𝐶𝑖 = {𝑘}. ◁ Set 𝐶𝑖 only includes item k
15: else if 𝑘′ ∈ 𝐶𝑖 then ◁ Cycle 𝐶𝑖 identified
16: 𝐿 = 𝐿 ∖ 𝐶𝑖. ◁ Remove the elements in 𝐶𝑖 from L
17: 𝑖 = 𝑖 + 1. ◁ Increase cycle index
18: 𝑘 = 𝑙 ∈ 𝐿. ◁ Select an item from the new set L
19: 𝐶𝑖 = {𝑘}. ◁ Set 𝐶𝑖 only includes item k
20: else ◁ 𝑘′ ∋ 𝐶𝑖

21: 𝐶𝑖 = 𝐶𝑖
⋃︀

𝑘′ ◁ Add 𝑘′ to set 𝐶𝑖

22: 𝑘 = 𝑘′

23: end if
24: end while
25: return Cycles 𝐶𝑖

26: end procedure

Using the initial storage configuration 𝐼𝑘, the final storage configuration 𝐹𝑘, the set

Chapter 3. Methods 44

of items to be reshuffled K, and the open locations OPEN, Algorithm 6 identifies the
cycles when their number is unknown. The algorithm starts with a subset of items 𝐿 ∈ 𝐾

containing the items that require reshuffling and whose final location is initially occupied
by another item.

A solution for the problem of Figure 16 according to GRH results in the steps il-
lustrated in Figure 18. In this figure, the star represents the position of the material
handling equipment before executing the movements, and the arrow represents the next
loaded movements to be performed. The solution was evaluated with a 𝜏 = 1.

Figure 18 – Reshuffle solution using GRH. Initial storage organization and non-cycle
movement (a), movement to break the cycle (b), subsequent movements to
reorganize the cycle elements (c - e), the final desired organization (f).

The final sequence of movements for this example are listed in Table 2. As can be
observed, the combination of cycle break and non-cycle movements allowed the GRH to
find a better solution to the problem when compared with the H3. Total final cost of 10
distance units in comparison with the 11 distance units found by the H3.

Chapter 3. Methods 45

Table 2 – Reshuffle solution for example problem using GRH.

Move Item Moved Move Cost Total Cost
Location of items
𝐶 −𝑂1 −𝑂2 − 𝐴−𝐵 −𝐷

0 - 1 C 1 1 𝑂1 − 𝐶 −𝑂2 − 𝐴−𝐵 −𝐷

1 - 5 none 1 2 As above
5 - 2 D 1 3 𝑂1 − 𝐶 −𝐷 − 𝐴−𝐵 −𝑂2

2 - 3 none 2 5 As above
3 - 0 A 1 6 𝐴− 𝐶 −𝐷 −𝑂1 −𝐵 −𝑂2

0 - 4 none 1 7 As above
4 - 3 B 1 8 𝐴− 𝐶 −𝐷 −𝐵 −𝑂1 −𝑂2

3 - 1 none 1 9 As above
1 - 4 C 1 10 𝐴−𝑂1 −𝐷 −𝐵 − 𝐶 −𝑂2

For the C++ implementation of the GRH algorithm, refer to Appendix A. And for
the C++ implementation of the polynomial-time cycles algorithm, refer to Appendix B.

3.2.1.3 Reshuffle Decoder

The GRH heuristic (PAZOUR; CARLO, 2015) adds an advantageous flexibility in com-
parison to the H3 heuristic (CARLO; GIRALDO, 2012), and maintains the excellent per-
formance of the previous. However, by defining a fixed 𝜏 to be applied through all the
reshuffling process, it reduces the explored universe by not considering using larger and
smaller values of 𝜏 in different moments of the reshuffling.

To take advantage of the performance characteristics and increase the explored solution
universe in order to find better reshuffling configurations, this study proposes a BRKGA
heuristic with decoder based on the GRH heuristic by Pazour e Carlo (2015).

The core of the GRH is maintained in the decoder, the main improvement offered is
to use the random-keys of the BRKGA chromosome to dynamically adapt the 𝜏 during
the reshuffling process. Before each movement decision, the 𝜏 value is readjusted by an
allele in the chromosome.

The GRH uses the 𝜏 at each loop to decide whether to move a non-cycle element to
its final position, to break a nearby cycle, or to break a distant cycle. To maintain this
behavior, each random-key in the chromosome is multiplied by a constant factor to form
the 𝜏 . To guarantee the maximum flexibility for the decoder, the constant factor used is
the maximum loaded cost (𝑔MAX) of the given problem. This factor can be obtained when
the loaded travel cost matrix for the problem is calculated. An example of such a matrix is
illustrated in the Christofides e Colloff (1973) study and is also used in the mathematical
models proposed by Pazour e Carlo (2015).

The chromosome should be long enough to contain keys for all movements performed,
but not too long, otherwise, the performance will be greatly affected. Knowing that the

Chapter 3. Methods 46

GRH heuristic is based on the H3, it is reasonable to use the latter to define upper bound
for movements to obtain the final configuration.

Figure 19 – The initial (a) and final (b) configurations for a sample reshuffling problem
to be solved using H3 heuristic.

The H3 moves all non-cycle elements, and later adds one movement per cycle in other
to break the cycle by opening one position and starts relocating the rest of the items
as non-cycles. To illustrate this breaking behavior applied in the example of Figure 19,
consider the Figures 20(a) to (f). In Figure 20(a) the storage is in its initial organization.
The first movement is to relocate the non-cycle item D to its final position. After this
step, a series of movements is needed to relocate the cycle items A (Loc 3), B (Loc 4),
and C (Loc 0), to their respective final positions. The first step is to break the cycle by
moving the element closest to the S/R to the open position closer to its final position. In
this case, it is to move element C from Loc 0 to Loc 1 (Figure 20(b)). This movement
frees Loc 0 for relocating item A from Loc 3 to Loc 0 (Figure 20(c)). Now that Loc 3 was
freed, item B can be relocated there from Loc 4 (Figure 20(d)). Finally, Loc 4 is open
for relocating item C (Figure 20(e)). The final organization is depicted in Figure 20(f).
The final sum of movements is 1 non-cycle item relocation + 1 cycle break + 3 cycle item
relocations = 5 movements = total of items to be relocated + total number of cycles to
break.

Note that there are several possible ways of solving that same scenario. Neverthe-
less, the heuristic increases the probability of finding the optimum solution by greedily
searching shortest distances. This is done by choosing the break-movement based on the
shortest distance between the element intermediate position and its final position and
solving draws by selecting elements closest to the S/R current position.

The sequential cycle relocation used in this routine was originally introduced in Christofides
e Colloff (1973) and demands one movement to break each cycle, and one movement to

Chapter 3. Methods 47

Figure 20 – Sample problem solution using H3. Initial storage organization and non-cycle
movement (a), movement to break the cycle (b), subsequent movements to
reorganize the cycle elements (c - e), the final desired organization (f).

relocate each item within a cycle. When considering the additional movements to relocate
non-cycle items, at the end, the H3 relocation process requires one movement per item to
be relocated 𝑘MAX (total number of elements to be reshuffled) plus one break movement
per cycle 𝑐MAX (total number of cycles identified). So the upper bound for the relocation
movements is:

maxMoves = 𝑘MAX + 𝑐MAX (3.1)

Even though the GRH heuristic changes the order of cycle and non-cycle relocations,
it does not add movements to the final relocation process. For this reason, the upper limit
for relocation movements is maintained. This limit can now be used as the size of the
chromosome for the reshuffling BRKGA.

For the example scenario in Figure 20, considering the loaded movements cost matrix
calculated using Chebyshev metric (largest between horizontal and vertical distances)
over a rack with unitary distances, a chromosome, and its translation into 𝜏 values are
illustrated in Figure 21.

The BRKGA reshuffling decoder may be summarized as follows:

Chapter 3. Methods 48

Algorithm 7 BRKGA Reshuffling Decoder
1: procedure ReshuffleDecoder(Initial and Final location of elements, Movement

cost matrices, Chromosome)
2: Define set 𝐶𝑐 with cycles in the problem
3: Initiate using first gene locus (first allele in the chromosome
4: FinalCost = 0. ◁ Init variable for final cost
5: while Final organization was not reached OR chromosome is over do
6: Update 𝜏 using current chromosome allele
7: Identify item (q) with final position occupied stored closest to the S/R ma-

chine’s current position that has loaded movement cost from initial location to an
open location 6 𝜏 OR whose ending position is currently open.

8: if item is part of cycle (𝑞 ∈ 𝐶 : 𝐶 ∈ 𝐶𝑐) then ◁ Break nearby cycle
9: Move item q (for which loaded movement cost from the initial location to

an open location 6 𝜏) and remove the cycle from the list of all cycles (𝐶𝑐 = 𝐶𝑐 ∖ 𝐶).
10: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
11: Using cost matrices, add to FinalCost loaded cost of moving the item from

initial to open location.
12: else if item (q) has ending position is currently open then ◁ Move non-cycle

item
13: Move item to its final position
14: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
15: Using cost matrices, add to FinalCost loaded cost of moving the item from

initial to the final location.
16: else ◁ Break distant cycle
17: Move to the closest open location the item closest to the S/R that is not

in its final position and its final position is currently occupied.
18: Using cost matrices, add to FinalCost unloaded cost of moving S/R to

item’s initial location.
19: Using cost matrices, add to FinalCost loaded cost of moving the item from

initial to open location.
20: end if
21: Move to next gene locus (get next allele)
22: end while
23: return Reshuffling steps, FinalCost
24: end procedure

Chapter 3. Methods 49

Figure 21 – Example chromosome for reshuffling.

As stated previously, the core of the GRH is maintained in the decoder. At the first
line, the decoder receives the chromosome with the random-keys, the initial and final orga-
nization of the storage, and the movement cost matrices. The initial and final organization
of the storages are vectors that relate the elements with their locations in the storage.
The movement cost matrices include the loaded and unloaded travel cost matrices calcu-
lated using the distance metric defined in the problem. At the second line, the algorithm
identifies all the cycles in the problem using the polynomial-time algorithm previously
used in the GRH. At the third line, the indexes are set to start calculating 𝜏 using the
first allele in the chromosome. At the fourth line the condition of the while loop is set
to guarantee a final organization is reached or the possible configurations for 𝜏 (values
calculated from the chromosome) are exhausted. This new decision is not strictly neces-
sary since the chromosome size is calculated to contain the maximum allowed movement
number. In any case, it is used for safety measurement. In line 6 the main modification
in comparison with the GRH is introduced. At this point, the algorithm uses the chro-
mosome to update the 𝜏 value. From line 7 to line 20 the decoder uses exactly the same
procedure of the GRH algorithm. In line 7 the algorithm searches for an item close to
the material handling equipment that is either a non-cycle item whose final location is
available or part of a nearby cycle. In lines 8 to 11, if an item is found and it is part of
a nearby cycle, it is moved to an intermediary open position close to its final location,
and the cycle is removed from the list of all cycles. In lines 12 to 15, if an item is found
and it is a non-cycle, the item is moved to its final location. In lines 16 to 19, if no other
item is selected to move in the previous steps, the item closest to the material handling
equipment that has its final position occupied is moved to the closest open location. In
line 14, the indexer of the gene in the chromosome is updated in order to change the 𝜏

for the following movement decision. As previously done in the H3 and the GRH, at each
item movement the final cost of the reshuffle is updated by adding the costs of moving
the S/R machine unloaded to the item’s initial position, and moving loaded to the final

Chapter 3. Methods 50

or intermediary position (lines 8, 9, 12, 13, 16 and 17). After achieving the final organiza-
tion, the decoder returns the final reshuffling cost and the execution stops in line 23. This
reshuffling cost, which depends on the cost matrices used and the reshuffling movements,
is the fitness of the chromosome.

For the C++ implementation of the Reshuffle BRKGA Decoder, refer to Appendix A.

3.2.2 Stopping Criteria

Several studies investigated the best the upper bound generations to ensure conver-
gence of the evolutionary algorithm. As pointed out in Safe et al. (2004), traditionally
three termination conditions have been employed for Genetic Algorithms:

• An upper limit on the number of generations;

• An upper limit on the number of evaluations of the fitness function;

• An evaluation of the chance of extremely low chances of achieving significant changes
in the next generations.

The authors of the study discuss that a choice of sensible settings for the first two
alternatives demands significant knowledge about the problem to allow estimation of rea-
sonable search length. In contrast, the third alternative is alternative and does not require
such knowledge. For this approach, two variants are applied. Genotypical and phenotyp-
ical stopping criteria. The former ends when the population reaches a certain threshold
with respect to the chromosomes in the populations. A number of genes converged to
a certain value in a percentage of the population, for example. The phenotypical crite-
rion, on the other hand, measures the algorithm progress achieved in terms of the results
of the chromosomes, which may be expressed as the fitness values of the population.
Though adaptive, these stopping criteria raise difficulties concerning the establishment of
appropriate values for their associated parameters.

The study of adaptive termination methods was further deepened in Zielinski, Peters-
Drolshagen e Laur (2005). The study executed an extensive evaluation of eleven stopping
criteria on Differential Evolution (DE) and Particle Swarm Optimizer (PSO) algorithms.
It was found that maximum distance criterion MaxDist and combined criterion ComCrit
are the most promising stopping criteria for differential evolution algorithms. For PSO
algorithms, the distribution-based maximum distance criterion MaxDistQuick and the
combined criterion lead to more reliable convergence behaviors.

In the MaxDist criterion, the allowed Maximum Distance (maxDist) between the fit-
ness of every chromosome in the population is calculated through the Equation 3.2.

maxDist = 𝑓(𝑥𝑖)− 𝑓(xBest) (3.2)

Chapter 3. Methods 51

Where xBest is the individual with the best fitness in the population, and 𝑥𝑖 are the
other individuals of the population. To terminate the execution, the criterion considers
that the heuristics converged when:

𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ≤

⎧⎪⎨⎪⎩m, 𝑖𝑓 𝑓(𝑥Best) = 0

m · 𝑓(𝑥Best), 𝑖𝑓 𝑓(𝑥Best) ̸= 0
(3.3)

The combined criterion ComCrit waits for an average improvement of the algorithm
to stagnate for t generation before the MaxDist criterion is analyzed. The MaxDistQuick
evaluates the MaxDist only in a Convergence Population Fraction (CP), instead of the
whole population. For the MaxDistQuick criterion to converge, the top CP individuals of
the population should have a maximum distance from the best chromosome lower than
m according with Equation 3.3.

In addition to these findings, the study presents several recommendations concerning
suitable stopping criteria for evolutionary algorithms based on the performance variations
observed. In general, for evolutionary algorithms, Zielinski, Peters-Drolshagen e Laur
(2005) suggests an m = 0.001. The parameter CP used in the MaxDistQuick criterion
is more dependent on the specific model. The authors found that for PSO algorithms
0.3 6 𝐶𝑃 6 0.6 results in a good cost-benefit between processing time to analyze the
convergence and the final time the algorithm is allowed to run. Values under 0.3 were found
to have a higher risk of premature convergence because the fraction of the population is
too small to guarantee significant statistical certainty of genetic diversity. While values
over 0.6 did not result in a significant reduction in final processing time because the
fraction of the population is too large to analyze using sorting algorithms.

Based on these findings and recommendations, the Maximum number of generations
(MAXGEN) criterion (where the algorithm stops after reaching a maximum number
of generations allowed) and the MaxDistQuick stopping criterion were applied in the
reshuffle BRKGA to reduce processing time. The MaxDistQuick criterion was combined
with the MAXGEN criterion in order to ensure an upper limit of generation executed
in case the population does not converge quickly. The MaxDistQuick was used because
it is unexpected that the whole population converges to a similar phenotypic solution
in the case of the BRKGA, rendering ineffective the use of the basic MaxDist criterion.
This is due to the way the mutant population is generated. As previously explained, the
BRKGA randomly generates mutants the same way individuals are generated for the
first population. The impact of such mutation procedure is that these mutants have no
genetic relationship with the rest of the population, lowering the chances of resulting in
similar phenotypes. In this case, the MaxDistQuick can be evaluated only over the elite
and generated fractions of the population and avoid the mutants. The MaxDistQuick also
benefits from the fact that the BRKGA already sorts the whole population using the
fitness, facilitating the evaluation in a fraction of the population. Because of the multi-

Chapter 3. Methods 52

objective character of the parameter CP of the MaxDistQuick that needs to result in
better solutions (tending to higher values) but also limit the processing time (tending
to lower values) it was manually adjusted in the parameter tuning phase described in
Chapter 4.

53

4 PARAMETER CONFIGURATION

Before running the final experiments where the reshuffling BRKGA is evaluated in
comparison with the H3 heuristic (CARLO; GIRALDO, 2012) and the GRH heuristic (PA-

ZOUR; CARLO, 2015), it is necessary to create an instance generator for reshuffling prob-
lems and to configure the several parameters present in the heuristics.

Section 4.1 describes how the reshuffling scenarios are represented for the code. This
section also introduces a parser for the input files and an algorithm developed for this study
to generate the reshuffling scenarios. Since no real data was available for the experiments,
all the scenarios were created using the developed generator.

Section 4.2 introduces the Iterated Racing (Irace) technique used for automatic param-
eter configuration, while Sections 4.3 and 4.4 describes how the iterated racing technique
was applied to configure the GRH and the reshuffling BRKGA respectively. The param-
eter tunning used the Iterated Racing for Automatic Algorithm Configuration (IRACE)
library (LÓPEZ-IBÁÑEZ et al., 2016) developed for the R computing Environment (R Core

Team, 2015).
To run the IRACE, the primary step was to create the configuration files defining

the tunned parameters (including type, variation range, and initial configurations), the
rules and constraints the parameters should comply to, the instance list used for the
adjustment, as well as the connection with the optimized algorithm and its cost function.

The GRH was configured using the IRACE to guarantee the original 𝜏 values proposed
by the authors in the original paper are valid for the scenarios tested in this study. The
authors suggest 0 > 𝜏 6 20 for scenarios up to 400 locations and Chebyshev distance
metric Pazour e Carlo (2015).

The reshuffling BRKGA was configured via IRACE with only MaxDistQuick termina-
tion criterion to ensure best solution quality results. Since the IRACE process is single-
objective and was not designed to improve both the processing time and the solution
quality of the tunned heuristics, in Section 4.5 the parameters of the MaxDistQuick stop-
ping criteria used in the BRKGA were manually tunned. This additional step intends to
build a BRKGA with low processing time and high-quality results.

4.1 SCENARIO REPRESENTATION

In order to facilitate the description of testing cases and provide standard inputs for
the heuristics, all the scenarios were described using the following information for the
reshuffling independent of the used algorithm. These are:

• imax: the number of storage locations;

Chapter 4. Parameter Configuration 54

• startPos: location of S/R when reshuffling starts actuating. Positive numbers are
actual locations and negative numbers indicate the algorithm to start the S/R where
the best first move starts;

• Ik: initial location i of item k;

• Fk: final location i of item k;

• gij: matrix of cost of loaded movement from location i to location j. This matrix
can be asymmetric as the ones used in Christofides e Colloff (1973) to represent
complex aisle systems in storages;

• dij: matrix of cost of unloaded movement from location i to location j. This matrix
can be asymmetric and with lower values than the gij matrix as the ones used in
Christofides e Colloff (1973) to represent higher accelerations when unloaded.

For a CSV example of the input file, refer to Appendix B.

4.1.1 Parser

Along with the reshuffle scenario input file, a parser class was written to be used by
all the tested heuristics. The parser not only reads the input file to identify the previous
parameters, but also finds:

• Cc: The cycles using the polynomial-time algorithm to identify all cycles found in
Pazour e Carlo (2015);

• gMAX: the maximum loaded travel cost;

• dMAX: the maximum unloaded travel cost;

• kMAX: number of elements to rearrange;

• oMAX: number of open positions in the scenario;

• Ii: initial item k stored in location i (Ii(i) ∈ 0 ... kMAX-1 for items, Ii(i) = -1 for
open locations);

• Fi: final item k stored in location i (Ii(i) ∈ 0 ... kMAX-1 for items, Ii(i) = -1 for open
locations);

• OIo: initial location i of open position o (OIo(o) ∈ 0 ... iMAX-1);

• OFo: final location i of open position o (OFo(o) ∈ 0 ... iMAX-1);

A C++ implementation of the parser can be found in Appendix B.

Chapter 4. Parameter Configuration 55

4.1.2 Scenario Generation

To standardize the generation of testing scenarios an automatic generator was created.
This code receives inputs for:

• Size of storage (Imax): the number of storage locations;

• Utilization (U): percentage of storage locations occupied by item. 0% > U >
100%;

• Organization (O): percentage of items that do not change positions during reshuf-
fling. O > 100%;

• Final Open Locations (FO): if the open locations remain in the same positions
in the end configuration of the storage ("equal"), or if the final configurations of the
open locations are randomly repositioned ("random");

• Start location (S): location of S/R when reshuffling starts actuating. Can be:
"random" (starts at random location); "none" (starts at the same position of the
best first item to move as defined by the algorithm); or with fixed value S, where S
< Imax;

• Columns (Cols): number of columns in the rack. This parameter defines the rack
organization. So a 20 x 20 rack is a rack with 400 items and 20 columns. Through
this parameter, different rack organization can be obtained;

• Loaded Movement Metric (D): metric used to calculate the cost of moving a
loaded S/R between different rack locations in terms of distance. Can be: "random",
the distances are randomly attributed with maximum value Imax and minimum
value a random number between 1 and Imax/2; "euclidean", the distances are rec-
tilinear and calculated using rack organization; "chebyshev", the distances are cal-
culated using Chebyshev metric (largest between horizontal and vertical distances)
on the rack organization; "cityblock", the distances are calculated using Manhattan
metric (sum of horizontal and vertical distances) on the rack organization;

• Unloaded Movement Factor (UD): factor used to calculate the cost of moving
an unloaded S/R machine in relation to the distance between rack locations. Can
be: "random", the cost of moving an unloaded S/R is the distance between racks
multiplied by a random factor between 0.1 and 0.99; "equal", the cost of moving an
unloaded S/R is the same as the distance between racks as used by the loaded cost.

All the distances evaluations consider the locations with dimensions of 1 Distance Unit
(DU).

Chapter 4. Parameter Configuration 56

To guarantee a reliable random distribution of the storage configurations generated,
the Algorithm 8 was used. At line 1, the algorithm receives as input the size of the storage
(Imax), the utilization (U), the organization (O) and the final configuration of the open
positions (FO). At line 2, the parameters ranges are verified. At line 3 the number of items
in the storage (kmax) is calculated using the storage size and the utilization. At line 4,
a list i_list of random integer ranging from 0 to Imax is created. At line 5, the initial
configuration of the items is obtained from the first kmax items in i_list. Lines 6 to 10
define if the final configuration of the open positions (FO) coincide with the initial position
or if they are randomly reshuffled. If FO is random, all the list i_list will be reshuffled
to obtain the final configuration of the storage. Otherwise, if FO is coincident, only the
first kmax items in i_list will be reshuffled to obtain the final storage configuration. After
defining FO, at lines 11 to 13 the algorithm randomly swaps pairs of allowed reshuffled
items in i_list until the number of different location between the first kmax elements in
the list is greater than the desired organization limit defined by O. Finally, at line 14
the final configuration of the storage Fk is obtained from the first kmax elements of the
reshuffled i_list.

Algorithm 8 Algorithm to generate different initial and final configuration of storage
1: procedure StorageConfigurationGenerator(Imax, U, O, FO)
2: Check parameters
3: kmax = Imax * U
4: Create random list i_list of size Imax
5: Create list of initial locations Ik from first kmax items in i_list
6: if FO = "random" then
7: Max Reshuffle Index = Imax.
8: else if FO = "equal" then
9: Max Reshuffle Index = kmax.

10: end if
11: while Equal elements in first kmax elements in i_list is greater than kmax * O

do
12: Swap items in two random indexes of i_list
13: end while
14: Create list of final locations Fk from first kmax items in i_list
15: end procedure

The quality of the random distribution of this algorithm is guaranteed by the ran-
dom number generator used in the code. This study relies on the widely used Mersenne
Twister pseudorandom number generator (MATSUMOTO; NISHIMURA, 1998) due to its fast
generation of high-quality pseudorandom integers.

A Python 3.4 implementation of the scenario generator can be found in Appendix B.

Chapter 4. Parameter Configuration 57

4.2 AUTOMATIC PARAMETER CONFIGURATION

Frequently optimization algorithms require the fine-tuning of a large number of pa-
rameters in order to perform well. Sometimes, these parameters can be adjusted manually
until an acceptable configuration is reached. Nevertheless, when the number of parame-
ters increases, the increasing amount of possible parameter combinations makes tunning
difficult.

Several techniques were suggested throughout the years addressing this problem and
automatizing the parameter selection in the best manner. Recently the Iterated Racing
technique is receiving more attention in the scientific community for successfully auto-
matically configuring several algorithms (LÓPEZ-IBÁÑEZ et al., 2016). This section will
describe this technique.

4.2.1 Iterated Racing

The IRACE is an automatic parameter configuration technique recently applied in
several literature problems such as traveling salesman with time windows (LÓPEZ-IBÁÑEZ

et al., 2013), simultaneous slot allocation (PELLEGRINI; CASTELLI; PESENTI, 2012), flow
shops (BENAVIDES; RITT, 2015), placement of virtual machines (STEFANELLO et al., 2015),
on-line bin packing (YARIMCAM et al., 2014), image binarization (MESQUITA et al., 2015),
real-time train routing selection (SAMA et al., 2016), bike sharing re-balancing (DELL et

al., 2016), energy planning (JACQUIN; JOURDAN; TALBI, 2014), class scheduling (NANNEN;

EIBEN, 2006), time series discretization (ACOSTA-MESA et al., 2014), finite state machines
construction (CHIVILIKHIN; ULYANTSEV; SHALYTO, 2016), and others.

The race concept was initially described by (MARON; MOORE, 1997) as a machine
learning technique to compare different models and find the statistically superior. Later
the technique was adopted by (BIRATTARI et al., 2002) to configure parameters in opti-
mization algorithms.

The IRACE has three main phases that repeat until a stopping criterion is met:

1. Sampling of new configurations according to a truncated normal distribution for
continuous parameters, and according to a discrete probability for categorical pa-
rameters;

2. Selection of the best configuration among the new samples through a racing process;

3. Updating the sampling distribution to increase the probability that the best config-
urations are selected.

In the IRACE, each configurable parameter is associated with a sampling distribution
independent of other parameters. Constraints and conditions are applied for the generation
of each parameter. Continuous parameters use a truncated normal distribution, while

Chapter 4. Parameter Configuration 58

categorical parameters use the discrete probability function described in López-Ibáñez et
al. (2011) and López-Ibáñez et al. (2016). Ordinal parameters are considered integers. To
update the sampling distributions, the average and standard deviation are adjusted in
normal distributions, and the probability is altered in discrete distributions. The update
of the sampling distribution is based on the best configurations so far, creating a type of
elitism where the chances of selection of parameters close to best configurations increase.

The new configurations for the parameters are sampled from the distributions, the
best are selected through racing. The configured models run until they reach: a minimum
number of survival configurations; a maximum number of used instances; or a maximum
computational limit 𝐵 defined as a maximum computational time or ran experiment (ex-
ecution of one configured model in one testing instance). Algorithm 9 details the IRACE
pseudocode.

Algorithm 9 Iterated Racing Pseudocode
1: procedure IteratedRacing(𝐼 = {𝐼1, 𝐼2, ...} ∼ ℐ, 𝑋, 𝐶(𝜃, 𝑖) ∈ R, 𝐵)
2: Θ𝑖 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑋)
3: Θ𝑒𝑙𝑖𝑡𝑒 ← 𝑅𝑎𝑐𝑒(𝐼, Θ1, 𝐵1, 𝐶)
4: 𝑗 ← 1
5: while 𝐵𝑢𝑠𝑒𝑑 ≤ 𝐵 do
6: 𝑗 ← 𝑗 + 1
7: Θ𝑛𝑒𝑤 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑎𝑚𝑝𝑙𝑒(𝑋, Θ𝑒𝑙𝑖𝑡𝑒);
8: Θ𝑗 ← Θ𝑛𝑒𝑤 ∪Θ𝑒𝑙𝑖𝑡𝑒

9: Θ𝑒𝑙𝑖𝑡𝑒 ← 𝑅𝑎𝑐𝑒(𝐼, Θ𝑗, 𝐵𝑗, 𝐶);
10: end while
11: return Θ𝑒𝑙𝑖𝑡𝑒

12: end procedure

At line 1, the algorithm receives as input:

1. The testing instances 𝐼, sampled from the problem space ℐ, over which the candidate
models run;

2. The parameters 𝑋 which will be automatically configured;

3. A cost function 𝐶 to determine the quality of each configuration;

4. A computational limit 𝐵 that is usually either a maximum execution time or a
maximum number of experiments.

For the first iteration, the initial set of candidate configurations is sampled from a
uniform distribution of each parameter’s space 𝑋 (line 2). Next, the best configurations
are found through a race (line 3). At each iteration of the race, the configurations are
applied to a problem instance and are evaluated according to the average cost 𝐶. Then
the results are compared through a statistical test, that can be either a Friedman test

Chapter 4. Parameter Configuration 59

(FRIEDMAN, 1937), or a Student’s t-test (STUDENT, 1908). If there is statistical evidence
that some candidate configurations performed better than others, the worst configura-
tions are discarded and the best configurations are tested in the next instance. At each
new iteration, a new group of candidate configurations is generated through the sample
distributions updated in the previous iteration (line 7). At line 8, the new candidates
are combined with the best candidates from the previous iteration to form a new testing
group. The new group races again in line 9 to determine the best solutions of the group.
The procedure runs until the predefined computational limit is reached. In the end, the
algorithm returns the best configuration found.

The Iterated Racing algorithm makes use of the race procedure summarized in Algo-
rithm 10.

Algorithm 10 Racing procedure in irace
1: procedure Race(𝐼, Θ𝑖𝑡, 𝐵, 𝐶, 𝐼)
2: 𝐵𝑖𝑡 = 𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐵)
3: Θ𝑒𝑙𝑖𝑡𝑒 = Θ𝑖𝑡

4: while 𝐵𝑢𝑠𝑒𝑑 ≤ 𝐵𝑖𝑡 do
5: 𝑏𝑖 = 𝑆𝑎𝑚𝑝𝑙𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝐵𝑖𝑡)
6: 𝐸𝑥𝑒𝑐𝑢𝑡𝑒(Θ𝑒𝑙𝑖𝑡𝑒, 𝑏𝑖)
7: Identify non-dominant configurations Θ𝑛𝑜𝑛−𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 using statistical test
8: Θ𝑒𝑙𝑖𝑡𝑒 = Θ𝑒𝑙𝑖𝑡𝑒 ∖Θ𝑛𝑜𝑛−𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 ◁ Eliminate non-dominant configurations
9: end while

10: return Θ𝑒𝑙𝑖𝑡𝑒

11: end procedure

At line 1, the race algorithm receives as input:

1. The testing instances 𝐼, sampled from the problem space ℐ, over which the candidate
models run;

2. The set of candidate configurations Θ to be tested;

3. The parameters 𝑋 which will be automatically configured;

4. A cost function 𝐶 to determine the quality of each configuration;

5. A computational limit 𝐵 that is usually either a maximum execution time or a
maximum number of experiments.

The algorithm initially sets all the input configurations as elite (line 2). Next, the
algorithm samples a number of instances to be used for the racing process (line 3). After
that, the algorithm enters the loop of executions to identify elite configurations while
there are instances to run (line 4). At line 5, a subset of the racing instances is sampled
for the current iteration. At line 6 the algorithm executes the configuration in a subset of
instances 𝑏𝑖. The results of these executions are statistically analyzed in line 7 to identify

Chapter 4. Parameter Configuration 60

non-dominant configuration. The poor-performing configurations are eliminated in line 8,
remaining only the elite configurations. After executing these steps until no more instances
are available to execute, the algorithm returns the best configurations found in line 10.

4.3 GRH PARAMETER TUNING

The GRH tunning aims to find the best configuration and confirm if the interval of
0 < 𝜏 < 20 for problems with up to 400 locations used in the original paper is reasonable.
The parameters for the IRACE execution were:

• 𝜏 : Real values between 0 and 40;

• Computational Limit: 15,000 iterations;

• Scenarios: 1,296 instances formed from the combination1 of the following factors:

– Rack Size: 9 (3 x 3), 100 (10 x 10), 400 (20 x 20);

– Utilization: 50%, 80%, 95%;

– Organization: 0%, 50%, 85%;

– Start Location: Coincide, Random, 0;

– Final Open Locations: Coincide, Random;

– Loaded Move Cost: Euclidean, Chebychev, Manhattan, Random;

– Unloaded Move Factor: 1, Random.

The best configuration found by the IRACE for the GRH in the given scenarios was
𝜏 = 22. The second best configuration found was 𝜏 = 13.6267. The best configurations
are not too distant from the ones used in the original paper, so the final experimental
tests to compare all the heuristics can be performed using the GRH with 0 < 𝜏 < 25,
guaranteeing the best 𝜏 is used.

See all configuration files in the Appendix C. Detailed results can be found in the
GitHub link: https://github.com/FaridLeoBueno/Warehouse-Reshuffling.

4.4 BRKGA PARAMETER TUNING

The BRKGA tuning aims to find the configuration that is best suitable for the reshuf-
fling process. This step was performed before the parameter configuration of the MaxDis-
tQuick criterion, because the IRACE process is designed to adjust the parameters to im-
prove only solution quality. If the stopping criterion is adjusted using the same method,
the best configuration found by the IRACE would decrease the time performance of the
1 Factors are combined to form each scenario. Example scenario: Rack 100, Utilization 50%, Organiza-

tion 0%, Start 0, Final Open Locations Random, Loaded Cost Chebyshev, Unloaded Factor 1.

Chapter 4. Parameter Configuration 61

algorithm to increase the search and consequently the chances of finding better solutions.
In this case, only the number of maximum generations was set to be configured by the
IRACE. For reshuffling BRKGA, the IRACE parameters were defined as follows:

• Population size (𝑝): Integer value between 1 and 100;

• Elite population fraction (𝑝𝑒): Real value between 0 and 1;

• Mutant population fraction (𝑝𝑚): Real value between 0 and 1;

• Probability of inherit allele from elite parent (𝜌𝑒): Real between 0 and 1;

• Number of separated populations (K): Integer value between 1 and 5;

• Maximum number of generations (MAXGEN): Integer between 50 and
3,000;

• Top individuals exchanged between populations (X_NUMBER): Integer
value between 2 and 5;

• Generation interval to exchange top individuals between populations
(X_INTVL): Integer value between 30 and 300.

As described in the paper (TOSO; RESENDE, 2015), the BRKGA parameters have the
following constraints:

𝑝𝑒 + 𝑝𝑚 6 1 (4.1)

𝑝𝑒 * 𝑝 > 1 (4.2)

𝑋_𝑁𝑈𝑀𝐵𝐸𝑅 *𝐾 6 𝑝𝑒 * 𝑝 (4.3)

𝑋_𝐼𝑁𝑇𝑉 𝐿 6 𝑀𝐴𝑋𝐺𝐸𝑁 (4.4)

To reduce the processing time, but guarantee good generalization of the tunned BRKGA,
the algorithm ran for 4,000 iterations on the 432 scenarios from the combinations2 of the
following factors:

• Rack Size: 100 (10 x 10);

• Utilization: 50%, 80%, 95%;

• Organization: 0%, 50%, 85%;
2 Factors are combined to form each scenario. Example scenario: Rack 100, Utilization 50%, Organiza-

tion 0%, Start 0, Final Open Locations Random, Loaded Cost Chebyshev, Unloaded Factor 1.

Chapter 4. Parameter Configuration 62

• Start Location: Coincide, Random, 0;

• Final Open Locations: Coincide, Random;

• Loaded Move Cost: Euclidean, Chebychev, Manhattan, Random;

• Unloaded Move Factor: 1, Random.

These experiments are the same ones used for the GRH, but executing only on racks
with 100 locations. This size of racks reduces the total processing time of the iterated
racing process without reducing much of the problem complexity. The expectation is that
the best configuration found for this size will also perform well when scaled to larger
scenarios.

The best configurations found by the IRACE for the BRKGA in the given scenarios
were:

Table 3 – Best BRKGA automatic parameter configurations ranked according to the so-
lution quality.

Ranking Parameters
p 𝑝𝑒 𝑝𝑚 𝜌𝑒 K MAXGEN X_NUMBER X_INTVL

1 78 0.1625 0.2631 0.3122 4 2982 2 40
2 77 0.1458 0.3402 0.3317 4 2987 2 46
3 84 0.1714 0.2281 0.4196 4 2895 2 33
4 87 0.2497 0.1856 0.4032 4 2889 2 32
5 87 0.1318 0.2655 0.3220 4 2906 2 37

Since the configuration 1 was the best ranked, it was used in the rest of this study
with one modification. The MAXGEN values found was 2,982. To simplify the algorithm
operation, a maximum value of 3,000 was applied.

See all configuration files in Appendix C.

4.5 BRKGA STOPPING CRITERIA TUNING

As presented in Chapter 3, the maximum number of generations executed MAXGEN
and the MaxDistQuick stopping criterion were applied in the reshuffle BRKGA to reduce
processing time. The stopping criterion was combined with the maximum number of
generations executed MAXGEN in order to ensure an upper limit of generations executed
in case the MaxDistQuick criterion does not converge. The MaxDistQuick was used to
benefit from the fact that the BRKGA already sorts the whole population using the
fitness, facilitating the evaluation in a fraction of the population.

The MaxDistQuick criterion has two important parameters. The maximum distance
threshold m and the fraction of the population to be evaluated CP. For the criterion to

Chapter 4. Parameter Configuration 63

converge, the best CP*p individuals of the population should have a maximum distance
from the fittest individual lower than m*𝑓(𝑥Best). Following the suggestions of the original
study (ZIELINSKI; PETERS-DROLSHAGEN; LAUR, 2005) for evolutionary algorithms, the
parameter m was set to 0.001. The study also recommends 0.3 6 𝐶𝑃 6 0.6.

The CP parameter has a direct impact on the moment of convergence of the algorithm.
Small CP means that only a small fraction of the top of the total population will be used
to evaluate the phenotypical diversity of the individuals. Therefore, small CP can result
in premature convergence, since the diversity of a few of the fittest individuals of the
population can more easily converge. In contrast, large CP means that a large fraction of
the top of the population needs to have phenotypical similarity to allow termination of
the algorithm. Therefore, a large CP can delay the convergence until a larger size of the
population slowly converges to similar fitness values. The delay allows the algorithm to
search longer for a better solution before termination.

To decide which CP to use for the BRKGA, a convergence analysis test was performed.
The tests evaluated the impact of the parameter CP on the solution quality and the con-
vergence (measured using the generation in which the algorithm was terminated at each
execution). The best CP would result in a reduction of processing time while maintaining
good results in solution quality.

The test was executed on the same 432 scenarios used for the BRKGA automatic
parameter tuning. In each execution of the BRKGA a different seed was used for the
random number generator. The 5 seeds were taken from the decimal places of 𝜋 and can
be seen in Table 4. The evaluated CP were: 0.3; 0.45; 0.6. The fraction values are smaller
than the non-mutant population of the tunned BRKGA (since the best 𝑝𝑚 found by the
irace was 𝑝𝑚 = 0.2631, the non-mutant fraction of the population is 1 − 𝑝𝑚 = 0.7369).
All values are also within the optimum range found in the original study (ZIELINSKI;

PETERS-DROLSHAGEN; LAUR, 2005).

Table 4 – Seeds for the random number generator for convergence analysis.

1415926535 8979323846 2643383279 5028841971 6939937510

The next section analyzes the results to select the best CP for the developed heuristic.

4.5.1 Comparison Between Stopping Criteria Configurations

In order to compare the test results and select the most suitable CP for the reshuffling
BRKGA, it was used as performance measures the average quality of solutions (𝑍) and
the average number of executed generations until algorithm termination (𝐺𝑒𝑛). Table 5
outlines the obtained convergence results.

Find all results in the GitHub link: https://github.com/FaridLeoBueno/Warehouse-
Reshuffling.

Chapter 4. Parameter Configuration 64

Table 5 – Comparison between convergence configurations with respect to solution quality
𝑍 and generation executed until termination 𝐺𝑒𝑛.

Property Configurations

CP = 0.30 CP = 0.45 CP = 0.60
𝑍MIN 1224.12 1217.51 1217.15
𝑍MAX 1248.17 1234.80 1234.20
𝑍 1235.86 1226.51 1226.09
Ave. S.D. 10.36 7.30 7.19
𝐺𝑒𝑛MIN 150.28 2324.95 2551.49
𝐺𝑒𝑛MAX 1093.71 2529.64 2659.90
𝐺𝑒𝑛 543.44 2438.01 2599.54
Ave. S.D. 422.80 98.25 52.98
%conv 99.54% 23.15% 15.05%

From Table 5 it is noticeable that the configuration CP = 0.30 converges early almost
100% of executions. This observation combined with the fact that the configuration yields
worse solution qualities in all measures is an indication of premature convergence. On the
other hand, configurations CP = 0.45 and CP = 0.60 have very similar solution qualities
and convergence.

In order to confirm if the results of the three configurations are significantly different
in terms of quality and performance, the Non-parametric Friedman Test was used with a
significance level of 0.05.

Solution Quality
For the solution quality test, the hypotheses were defined as:

𝐻0 : The configurations have the same statistical quality;

𝐻1 : The configurations have different statistical quality;

If the result of p-Value is lower than 0.05, the null hypothesis that the approaches
were defined as equal, is rejected and it is possible to assume with 95% of certainty that
there was a difference between at least one pair of the analyzed samples.

The detailed results are listed in Table 6, where the lowest ranking indicates the best
configuration, and the highest ranking is the worst configuration.

Chapter 4. Parameter Configuration 65

Table 6 – Friedman Tests for convergence configurations solution qualities.

Friedman Test
F-Value: 353.274
p-Value: 1.110e-16

Average Ranking
Configuration Ranking
CP = 0.30 2.432
CP = 0.45 1.803
CP = 0.60 1.764

From these results, the p-Value obtained was lower than 0.05, confirming the config-
urations have solutions statistically different. The test also ranked the configuration CP
= 0.60 as the best.

Since the null hypothesis of the Friedman test was rejected, the Nemenyi post-hoc test
was applied to compare data at each execution and measure the significance difference
between them. As in the previous test, if p-Value > 0.05, the configurations have similar
results statistically, while p-Value < 0.05 indicate significant statistical difference between
the solutions. The test results are listed in Table 7.

Table 7 – Nemenyi Post-hoc Test for convergence configurations solution qualities.

Nemenyi Post-hoc Test
CP = 0.30 X CP = 0.45

Z-value: 20.668
p-Value: 0.000
p-value adjusted 0.000
CP = 0.30 X CP = 0.60

Z-value: 21.962
p-Value: 0.000
p-value adjusted: 0.000
CP = 0.45 X CP = 0.60

Z-value: 1.293
p-Value: 0.196
p-value adjusted: 0.588

From the post-hoc test results it is possible to confirm that both configurations CP
= 0.45 and CP = 0.60 are statistically different from CP = 0.30, with both comparisons
having p-Value under 0.05. Since they are also better ranked in the Friedman test, we can
discard the latter configuration as inappropriate for the project.

The comparison between CP = 0.45 and CP = 0.60, on the other hand yields a p-
Value = 0.196 > 0.05. This means these approaches are statistically equivalent and it is

Chapter 4. Parameter Configuration 66

not possible to decide between them based only on the quality results.
To decide between these options and ensure the best balance between solution quality

and processing time given by the stopping criteria, a statistical analysis of the generations
executed until termination was performed.

Executed Generations until termination
To analyze the best configuration in terms of the executed generations until termina-

tion, the hypothesis for the Friedman Test were defined as:

𝐻0 : The configurations have similar performance;

𝐻1 : The configurations have different performance;

The test results are detailed in Table 8, where again the statistical difference can be
evaluated using p-Value.

Table 8 – Friedman Tests for convergence configurations solution performance.

Friedman Test
F-Value: 1911.301
p-Value: 1.110e-16

Average Ranking
Configuration Ranking
CP = 0.30 1.210
CP = 0.45 2.353
CP = 0.60 2.436

From this test, the CP = 0.30 has the better rank. This result is expected since almost
100% of its executions had early convergence.

As in the quality test, the null hypothesis was rejected and the Nemenyi post-hoc test
was applied to evaluate the statistical difference between a pair of samples. The results
are listed in Table 9

Chapter 4. Parameter Configuration 67

Table 9 – Nemenyi Post-hoc Test for convergence configurations solution performance.

Nemenyi Post-hoc Test
CP = 0.30 X CP = 0.45

Z-value: 37.572
p-Value: 0.000
p-value adjusted 0.000
CP = 0.30 X CP = 0.60

Z-value: 40.296
p-Value: 0.000
p-value adjusted: 0.000
CP = 0.45 X CP = 0.60

Z-value: 2.723
p-Value: 0.006
p-value adjusted: 0.019

The post-hoc test of the executed generations once again confirm both configurations
CP = 0.45 and CP = 0.60 are statistically different from CP = 0.30. The comparison
between configurations CP = 0.45 and CP = 0.60 has p-Value = 0.006 < 0.05, which
indicates the execution times of these configurations are also significantly different.

Configurations CP = 0.45 and CP = 0.60 have similar solution qualities but signifi-
cantly different execution times, in order to speed up the final simulation, the option CP
= 0.45 was selected for being better ranked in execution generations.

4.6 FINAL RESHUFFLING BRKGA CONFIGURATION

After the parameter adjustment phase, the BRKGA used for reshuffle problems has
the following configuration:

• BRKGA Configuration:

– Population size (𝑝): 78;

– Elite population fraction (𝑝𝑒): 0.1625;

– Mutant population fraction (𝑝𝑚): 0.2631;

– Probability of inherit allele from elite parent (𝜌𝑒): 0.3122;

– Number of separated populations (K): 4;

– Maximum number of generations (MAXGEN): 3,000;

– Top individuals exchanged between populations (X_NUMBER): 2;

– Generations interval to exchange top individuals between popula-
tions (X_INTVL): 40;

Chapter 4. Parameter Configuration 68

• Stopping Criteria Configuration:

– Maximum phenotypical distance between individuals (m): 0.001;

– Convergence Population Fraction (CP): 0.45.

69

5 EXPERIMENTAL ANALYSIS

To compare the quality and performance of the developed heuristics, the reference
heuristics and the reshuffle BRKGA were executed within all the scenarios suggested by
Carlo e Giraldo (2012) and the additional scenarios formed in this study. Tables have
been created to analyze and compare the data in order to evaluate the contributions of
this study.

The tables detail the results in terms of relative solution quality and execution time.
Each table registers the average of the obtained results, as well as the percent comparison
between heuristics in each of the operating environment tested.

Statistical tests were performed on the results and computational times to evaluate
the relevance of the proposed algorithm. The non-parametric Friedman test (FRIEDMAN,
1937) was used in combination with the Nemenyi post-hoc test (NEMENYI, 1963) to
compare the different heuristics.

5.1 COMPUTATIONAL ENVIRONMENT

All algorithms were coded in C++11 (LANGUAGES, 2011) using Eclipse Neon 3 IDE
for C/C++ Developers (Eclipse Contributors, 2016) and Minimalist GNU for Windows
(MinGW) 64bits Release 5.0. The experiments were run on an Asus K43E personal com-
puter with a 2,30 GHz Intel Core i5 2410M Processor, 8GB RAM DDR3, and 256GB Solid
State Drive (SSD), operating on Windows 10 Pro 64bits. The algorithms were developed
based on the Application Programming Interface (API) for the BRKGA proposed in Toso
e Resende (2015).

5.2 EXPERIMENTAL DESIGN

The final performance of the heuristics was analyzed through the full factorial experi-
mental expanded from the scenarios used by Carlo e Giraldo (2012) by adding variation in
the final locations of open positions as seen in Pazour e Carlo (2015). The final scenarios
resulted from the combinations of the following factors:

• Rack Size: 9 (3 x 3) ,100 (10 x 10), 400 (20 x 20);

• Utilization: 50%, 80%, 95%;

• Organization: 0%, 50%, 85%;

• Start Location: 0;

• Final Open Locations: Coincide, Random;

Chapter 5. Experimental Analysis 70

• Loaded Move Cost: Euclidean, Chebychev;

• Unloaded Move Factor: 1.

Five instances of each combination were generated for the experiments, resulting in
a total of 540 instances. Each scenario ran 10 times. In each execution of the BRKGA a
different seed was used for the random number generator. The 10 seeds were taken from
the decimal places of 𝜋 and can be seen in Table 10. For each run, the GRH had the
𝜏 parameter variated with integer numbers from 0 to 25, passing through the optimum
values found during the tuning process.

Table 10 – Seeds for the random number generator.

1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 8628034825 3421170679 8214808651

In the end, the average values of the obtained results and computational times were
calculated, as well as the percentage of iterations that reached the maximum distance
stopping criteria.

5.3 RESULTS

The analysis of the performance of the heuristics is performed in each operating envi-
ronment of the problem. This approach is used to verify the impact of the design assump-
tions when optimizing different problems. For example, it is expected that larger scales
scenarios provide more opportunities for the flexibility of the BRKGA to find better so-
lutions in comparison to the benchmark approaches.

The following analysis evaluates the impact of each operating environment by solu-
tion quality and runtime. The tables display data averaging the results of all executions
over all instances of each scenario combination. To facilitate comparisons with references,
the tables display the results following the design used in the literature. The reported
parameters are:

• 𝑍: Average cost found by heuristic;

• %𝑑𝑖𝑓𝑓𝐺𝑅𝐻: Average of percentual difference between best results found by BRKGA
and GRH in each scenario;

• %best 𝑍: Percentage of instances the BRKGA found a solution as good as or better
than GRH;

• 𝑅𝑇 : Average run-time of the heuristic for one instance;

• 𝐺𝑒𝑛: Average end generation of the BRKGA for each scenario;

Chapter 5. Experimental Analysis 71

• %conv: Percentage of instances in which the BRKGA converged early due to the
maxDist stopping criteria;

The tables with detailed results and computational times can be found in the GitHub
link: https://github.com/FaridLeoBueno/Warehouse-Reshuffling.

Table 11 – The average quality results of BRKGA, GRH, and H3
with respect to each operating environment.

Operating Environment 𝑍H3 𝑍GRH 𝑍BRKGA %𝑑𝑖𝑓𝑓𝐺𝑅𝐻 %best 𝑍

Average of all instances 1203.36 1011.79 946.87 6.73 ± 6.37 91.67

Rack Size Small (9) 14.83 14.14 13.05 4.73 ± 8.51 83.33

Medium (100) 418.33 371.03 330.36 9.68 ± 4.75 97.22

Large (400) 3176.92 2650.20 2494.17 5.77 ± 3.90 94.44

Final Open Locations Random 1040.49 910.01 873.74 4.96 ± 4.65 88.89

Equal 1366.23 1113.58 1020.00 8.49 ± 7.35 94.44

Utilization 50% 753.53 647.48 608.64 5.59 ± 6.66 94.44

80% 1266.15 1063.93 998.29 6.73 ± 5.77 88.89

95% 1590.39 1323.97 1233.69 7.86 ± 6.63 91.67

Organization 0% 1826.19 1919.76 1711.06 8.86 ± 7.65 91.67

50% 1267.86 918.36 860.93 6.34 ± 5.26 100.00

85% 422.46 290.83 268.62 4.98 ± 5.49 83.33

Distance Metric Chebyshev 1136.69 955.78 892.36 6.56 ± 6.79 92.59

Euclidean 1270.02 1067.81 1001.38 6.89 ± 5.99 88.89

As indicated in Table 11, in all the analyzed scenarios the BRKGA found, in average,
better solutions than the benchmark heuristics, resulting in an average improvement of
the solution quality of 6.73%. Observing the boxplot in Figure 22, it is clear that in
all the scenarios the BRKGA found better solutions in at least 75% of the instances.
The improvement was more relevant in scenarios with coincident final open locations
where there was an average improvement of 8.49% with some instances having over 25%
improvement. This result is particularly important because these scenarios were also the
ones which the GRH had higher improvements over the H3. Apparently, the nearby cycle
break used in the GRH and in the BRKGA is a relevant technique for handling such
scenarios. In scenarios with 0% of organization, the most complex cases, the solutions
found were significantly better than those of the GRH, resulting in 8.86% improvement
in solution quality, also with some instances having over 25% improvement. This result
demonstrates the potential of the BRKGA in finding better solutions in the most extreme
cases. This result is very relevant because the situation of a very low organization is when
the storage has no policies to organize the stock and needs to implement one. In this case,
the BRKGA is significantly better than the best heuristics in the literature.

Chapter 5. Experimental Analysis 72

Figure 22 – Boxplot of the average of the percentile difference between best results found
by BRKGA and GRH with respect to each operating environment.

Another very important result is the improvement of 7.86% in scenarios with high
utilization. These cases are very relevant because in these scenarios the GRH improve-
ments over the H3 were not as significant as in scenarios with lower utilization. These
results indicate that the added flexibility of the nearby cycle distance configuration of the
BRKGA decoder added a strong tool to handle scenarios with fewer open locations.

On average, in 8.33% of the instances, the BRKGA found worse solutions than the
GRH. This behavior seems to be partially due to premature convergence. In other words,
the stopping criteria may be terminating the BRKGA before it searches enough the so-
lution space and finds better solutions for the problem than the ones found by the GRH.
As can be interpreted from the processing time and stopping generations of the BRKGA
reported in Table 12, the genetic algorithm converged early in average 43.28% of the
executions. This interpretation can also be observed in the specific operating environ-
ment of 50% utilization. In these cases, the BRKGA only converged early in 23.38% of
the executions, the lowest convergence percentage in all operating environments. As a
result, the BRKGA found better instances in 100% of the analyzed scenarios. This early
convergence capability was added to reduce the processing time to a practical range of
operation in larger scenarios. As a result, the average runtime of large scenarios is about
30 minutes, within the 1-hour limit frequently applied in the literature. Nevertheless, the
early convergence apparently created a problem that was not observed during the con-
vergence analysis phase, because the results were not compared against the GRH results
at that moment. To evaluate the influence of the stopping criterion in the final results,
it was calculated the linear correlation between %𝑏𝑒𝑠𝑡𝑍 and %𝑐𝑜𝑛𝑣. On a scale of 1 to
-1, where 0 indicates no correlation, the obtained correlation was -0.12. Therefore the
early convergence has low correlation with the low performance of the BRKGA in certain
scenarios. In other words, the early convergence does not have a negative effect on the

Chapter 5. Experimental Analysis 73

BRKGA solution quality.
Future research is needed in order to ensure the early convergence does not negatively

affect the performance and to better balance the trade-off between solution quality and
processing time. One approach to be studied is to add a minimum threshold of gener-
ations iterated before analyzing the MaxDistQuick criterion to terminate the execution.
The genetic algorithm can be forced to run 1% of the total generations before allowing
convergence, for example. This would force the algorithm to search for more solutions
before returning the final results.

Since the early convergence is not responsible for the degraded performance of the
BRKGA in specific scenarios, the problem may be when searching the solution space. A
solution found by the GRH is equivalent to a chromosome with all allele with the same
values, resulting in a reshuffling process where the 𝜏 value is the same in all movement
decisions. This situation is highly unlikely to be generated when creating individuals using
random generators. One technique that could be tested to avoid such issue is to add the
best solution found by the GRH in the initial population of the BRKGA. This would
create an elite individual in the initial population that could be genetically enhanced
throughout the iterative process. This proposed modification may add a bias towards GRH
elite solutions that may need to be compensated with larger diversity in the population.
For this reason, the modified BRKGA with the addition of GRH elite individuals may
need to have the parameters again tuned through the IRACE process.

There is a noticeable variation in processing times. For a small scenario, the BRKGA
used on average 0.675s. For a medium scenario, the BRKGA ran on average for 2m 59.145s.
In large scenarios, the BRKGA required on average 29m 56.672s. From these results, we
observe that for an increase of 11.11 in the scenario size (from small to medium scenarios)
the BRKGA runtime increased 265.57 times, while an increase of 4 times in the scenario
size (from medium to large scenarios) the BRKGA runtime increased about 9.78 times.
As expected, larger scenarios had larger runtimes. However, the larger scenarios also have
lower convergence rates, which can explain the significant difference between the execution
times of small and medium scenarios. These observations demonstrate the capability of
the stopping criteria in reducing the processing time.

The quickest scenarios were the ones with 0% of organization with an average runtime
of 6m 58.626s, while the longest scenarios were the ones with 50% organization with
15m 1.083s. From these results, retailers and warehouse managers can derive organization
policies that could either allow the storage to have lower organization before starting
reshuffling or having more frequent reshuffling activities while the storage has over 50%
organization.

Chapter 5. Experimental Analysis 74

Table 12 – The average runtime results of BRKGA, GRH, and H3
with respect to each operating environment.

Operating Environment 𝑅𝑇 H3 𝑅𝑇 GRH 𝑅𝑇 BRKGA 𝐺𝑒𝑛 %conv

Average of all instances 4.65 5.38 643830.61 ± 943256.55 1388.07 43.28

Rack Size Small (9) 0.03 0.05 674.57 ± 1370.14 229.5 93.89

Medium (100) 0.60 0.69 179144.97 ± 181486.40 2404.1 20.72

Large (400) 12.94 15.42 1751672.27 ± 881562.09 2546.71 15.24

Final Open Locations Random 5.71 7.19 574476.28 ± 999985.35 1406.1 53.72

Equal 3.34 3.58 713184.93 ± 886837.64 2047.4 32.85

Utilization 50% 4.77 5.86 668832.35 ± 969424.66 1433.0 35.42

80% 5.71 6.82 682476.20 ± 1007102.74 1822.51 26.70

95% 3.09 3.47 580183.27 ± 871581.73 1924.7 24.44

Organization 0% 2.62 4.86 408626.19 ± 737550.91 1387.0 36.96

50% 7.38 8.29 871083.48 ± 1067656.36 1958.1 23.38

85% 3.58 3.00 651782.15 ± 962332.07 1835.2 26.22

Distance Metric Chebyshev 5.49 4.56 643341.82 ± 936529.19 1686.6 44.70

Euclidean 5.28 4.49 644319.39 ± 958731.37 1766.9 41.86

To ensure the interpretations extracted from the average data are not distorted, sta-
tistical hypothesis analysis using Friedman test combined with the Nemenyi post-hoc test
were performed.

5.4 STATISTICAL ANALYSIS

5.4.1 Solution Quality

To prove the BRKGA had a significant statistical difference in comparison with the
other heuristics in terms of solution quality (𝑍), the Friedman test was performed con-
sidering a significance level of 0.05. It was assumed as the hypothesis for the statistical
analysis that:

𝐻0 : The heuristics have similar solution quality;

𝐻1 : The heuristics have different solution quality.

The test results are detailed in Table 13, where the statistical difference can be eval-
uated using p-value.

Chapter 5. Experimental Analysis 75

Table 13 – Friedman Test for solution quality (𝑍) results of BRKGA, GRH, and H3 with
respect to each operating environment.

Friedman Test
F-Value: 263.974
p-Value: 1.110e-16
Average Ranking

Heuristic Ranking
BRKGA 1.181
GRH 1.954
H3 2.866

From this test, the BRKGA has the better rank. This result is expected since 91.67%
of the scenarios the BRKGA found significantly better solutions than the best benchmark
approach.

From Table 13 we observe that the p-Value is lower than the confidence level. In other
words, the null hypothesis was rejected. From these results, the Nemenyi post-hoc test
was applied to evaluate the statistical difference between a pair of samples. The results
are listed in Table 14

Table 14 – Nemenyi Post-hoc Test for solution quality (𝑍) results of BRKGA, GRH, and
H3 with respect to each operating environment.

Nemenyi Post-hoc Test
BRKGA X GRH

Z-value: 5.681
p-Value: 1.336e-08
p-value adjusted 4.007e-08

BRKGA X H3
Z-value: 12.384
p-Value: 0.000
p-value adjusted: 0.000

GRH X H3
Z-value: 6.838
p-Value: 8.022e-12
p-value adjusted: 2.407e-11

Observing that the p-Values are all lower than 0.05, the post-hoc test of the solution
qualities confirms that the heuristics are statistically different from each other.

Chapter 5. Experimental Analysis 76

5.4.2 Runtime

The Friedman test was also performed using the runtime results to prove significant
processing time difference between the heuristics. The test considered a significance level
of 0.05. It was assumed as the hypothesis for the statistical analysis that:

𝐻0 : The heuristics have similar runtimes;

𝐻1 : The heuristics have different runtimes.

The test results are detailed in Table 15, where again the statistical difference can be
evaluated using p-value.

Table 15 – Friedman Test for runtime (𝑅𝑇) results of BRKGA, GRH, and H3 with respect
to each operating environment.

Friedman Test
F-Value: 437.761
p-Value: 1.110e-16
Average Ranking
Heuristic Ranking
BRKGA 3.000
GRH 1.731
H3 1.269

From this test, the BRKGA has the worst rank. This result was expected because
the BRKGA executes several times the adapted GRH algorithm as a decoder for the
chromosomes.

As in the quality test, the null hypothesis was rejected, indicating that the heuristics
are statistically different in terms of processing time. The Nemenyi post-hoc test was
applied to evaluate the statistical difference between a pair of heuristics. The results are
listed in Table 16

Chapter 5. Experimental Analysis 77

Table 16 – Nemenyi Post-hoc Test for runtime (𝑅𝑇) results of BRKGA, GRH, and H3
with respect to each operating environment.

Nemenyi Post-hoc Test
BRKGA X GRH

Z-value: 9.322
p-Value: 0.000
p-value adjusted: 0.000

BRKGA X H3
Z-value: 12.724
p-Value: 0.000
p-value adjusted: 0.000

GRH X H3
Z-value: 3.402
p-Value: 0.001
p-value adjusted: 0.002

The post-hoc test confirmed the statistical difference between the heuristics in terms
of processing time.

78

6 CONCLUSIONS AND FUTURE RESEARCH

From the warehouse strategy where the item locations are reassigned to create a new
layout configuration that will improve product picking and putting-away performance,
storage reshuffling is the procedure to move items from the original to the final configu-
ration.

This study had as major goals to introduce a Biased Random-Keys Genetic Algorithm
(BRKGA) to solve unit-load single handled reshuffling problems and quantify its results in
common scenarios studied in the literature for the warehouse reshuffling problem against
the most recent and successful benchmark references, heuristic H3 (CARLO; GIRALDO,
2012) and the General Reshuffling Heuristic (GRH) (PAZOUR; CARLO, 2015).

The designed BRKGA uses as decoder an adaptation of the General Reshuffling
Heuristic (GRH), the best-published reshuffling heuristic in the literature. To do so, the
chromosome of the BRKGA dynamically modify the 𝜏 parameter used by the GRH as a
threshold to select nearby cycles to break. This adaptation results in an added flexibility
of the nearby cycles distance threshold and allows the heuristic to search the reshuffling
solution in a broader solution space.

Using a scenario-generator created to generate reshuffle scenarios with different sizes,
utilization percentage, organization percentage, distance metrics, initial material handling
position, final configuration of open locations, and rack design, an exhaustive full factorial
experiment was executed to compare the heuristics and to quantify the effect that the
BRKGA design assumptions and different operating environments have on performance.

Based on statistical tests, the BRKGA proved to be significantly different from the pre-
viously published reshuffling heuristics. From the experimental results, it was concluded
that the reshuffling BRKGA outperforms the benchmark heuristics in all scales and op-
erating environments. By analyzing the experiments, it was observed that the reshuffling
BRKGA outperforms the GRH on average by 6.73%. For scenarios with coincident final
open locations, which the GRH had significant improvement over the H3, the previously
best reshuffling heuristic, the BRKGA improved 8.49% the solution qualities. In scenarios
with 0% organization, the BRKGA outperformed the GRH by 8.86%, while in scenar-
ios with 95% utilization the BRKGA outperformed the reference in 7.86%. These results
indicate the potential of the technique to solve highly complex scenarios.

In 8.33% of the tested scenarios, the BRKGA could not find a solution better or
equivalent to the GRH possibly due to space search problems. Solutions to this issue
may include adding the best solution found by the GRH in the initial population of the
BRKGA, this way the genetic algorithm would have a reference elite individual to enhance
on. To complement the previous approach, it is possible to improve the stopping criteria
and reduce the chances of premature convergence by adding a threshold of executed

Chapter 6. Conclusions and Future Research 79

generations before verifying the MaxDistQuick stopping criterion.
Another issue to be studied more carefully is the processing time. Although the

BRKGA had average run-time in larger scenarios of about 30 minutes (significantly less
than one hour per instance, as assumed in the literature as a practical solution time), the
processing times increase with the size of the scenarios, which may limit the application
of the algorithm in real scale scenarios. To guarantee scalability to larger scenarios, the
algorithm complexity should be evaluated in future research. An eventual processing time
limitation may be solved by applying the BRKGA-Levy-LS introduced in Moura (2018)
which had better performance than the canonical BRKGA applied in this study. Another
approach to be studied is the study of another convergence criterion that is better suitable
for the BRKGA and the reshuffling problems.

6.1 FUTURE RESEARCH

Future research may include:

• Introducing GRH solution as elite individual in the initial population of the BRKGA
to improve performance;

• Improving convergence of the BRKGA by adding a threshold of minimum number
of generations executed before evaluation of QuickMaxDist stopping criterion, or
investigating better criterion for the heuristic;

• Testing reshuffling using the BRKGA-Levy-LS (MOURA, 2018);

• Analyzing the impact of different distance metrics in the final solutions;

• Analyzing the quality of the BRKGA in scenarios with only one open location;

• Optimizing scenarios with heterogeneous items and storage location sizes;

• Optimizing scenarios with multiple material handlers working together;

• Optimizing scenarios with multiple intermediary movements until conducting item
to final location;

• Considering reshuffling using a dynamic SLAP;

• Combining reshuffling policies with RWW from Carlo e Giraldo (2012).

80

REFERENCES

ACOSTA-MESA, H.-G.; RECHY-RAMÍREZ, F.; MEZURA-MONTES, E.; CRUZ-
RAMÍREZ, N.; JIMÉNEZ, R. H. Application of time series discretization using
evolutionary programming for classification of precancerous cervical lesions. Journal of
biomedical informatics, Elsevier, v. 49, p. 73–83, 2014.

ADEWOLE, A.; OTUBAMOWO, K.; EGUNJOBI, T.; NG, K. A comparative study of
simulated annealing and genetic algorithm for solving the travelling salesman problem.
International Journal of Applied Information Systems, v. 4, p. 6–12, 10 2012.

ASGARI, N.; NIKBAKHSH, E.; HILL, A.; FARAHANI, R. Z. Supply chain management
1982–2015: a review. IMA Journal of Management Mathematics, v. 27, n. 3, p. 353–379,
2016. Disponível em: <http://dx.doi.org/10.1093/imaman/dpw004>.

BEAN, J. C. Genetic algorithms and random keys for sequencing and optimization.
ORSA journal on computing, INFORMS, v. 6, n. 2, p. 154–160, 1994.

BENAVIDES, A. J.; RITT, M. Iterated local search heuristics for minimizing total
completion time in permutation and non-permutation flow shops. In: ICAPS. [S.l.: s.n.],
2015. p. 34–41.

BIRATTARI, M.; STÜTZLE, T.; PAQUETE, L.; VARRENTRAPP, K. A racing
algorithm for configuring metaheuristics. In: MORGAN KAUFMANN PUBLISHERS
INC. Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation. [S.l.], 2002. p. 11–18.

BOTSALI, A. R. Comparison of simulated annealing and genetic algorithm approaches
on integrated process routing and scheduling problem. International Journal of
Intelligent Systems and Applications in Engineering, İsmail SARITAŞ, p. 101 – 104,
2016.

CARLO, H. J.; GIRALDO, G. E. Toward perpetually organized unit-load warehouses.
Computers and Industrial Engineering, v. 63, n. 4, p. 1003 – 1012, 2012. ISSN
0360-8352. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0360835212001611>.

CHARLES, D. On the origin of species by means of natural selection. Murray, London,
1859.

CHEN, L.; LANGEVIN, A.; RIOPEL, D. A tabu search algorithm for the
relocation problem in a warehousing system. International Journal of Production
Economics, v. 129, n. 1, p. 147 – 156, 2011. ISSN 0925-5273. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0925527310003506>.

CHIVILIKHIN, D.; ULYANTSEV, V.; SHALYTO, A. A. Modified ant colony algorithm
for constructing finite state machines from execution scenarios and temporal formulas.
Automation and Remote Control, Springer, v. 77, n. 3, p. 473–484, 2016.

CHRISTOFIDES, N.; COLLOFF, I. The rearrangement of items in a warehouse.
Operations Research, v. 21, n. 2, p. 577–589, 1973. Disponível em: <https:
//doi.org/10.1287/opre.21.2.577>.

http://dx.doi.org/10.1093/imaman/dpw004
http://www.sciencedirect.com/science/article/pii/S0360835212001611
http://www.sciencedirect.com/science/article/pii/S0360835212001611
http://www.sciencedirect.com/science/article/pii/S0925527310003506
https://doi.org/10.1287/opre.21.2.577
https://doi.org/10.1287/opre.21.2.577

REFERENCES 81

CLEVELAND, G. A.; SMITH, S. F. Using genetic algorithms to schedule flow shop
releases. In: Proceedings of the 3rd International Conference on Genetic Algorithms.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989. p. 160–169. ISBN
1-55860-066-3. Disponível em: <http://dl.acm.org/citation.cfm?id=645512.657259>.

CORSTEN, D.; GRUEN, T. Stock-Outs Cause Walkouts. Harvard Business Review,
v. 82, n. 5, p. 26–28, 2004. Disponível em: <http://www.redi-bw.de/db/ebsco.php/
search.ebscohost.com/login.aspx?direct=true&db=buh&AN=12932512&lang=de&site=
ehost-live>.

DELL, M.; IORI, M.; NOVELLANI, S.; STÜTZLE, T. et al. A destroy and repair
algorithm for the bike sharing rebalancing problem. Computers & Operations Research,
Elsevier, v. 71, p. 149–162, 2016.

DESCARTES, R.; ARIEW, R. Philosophical Essays and Correspondence. Hackett
Pub., 2000. (Hackett Classics Series). ISBN 9780872205024. Disponível em:
<https://books.google.com.br/books?id=F3Ob74iLXwMC>.

Eclipse Contributors. Eclipse documentation - Eclipse Neon. 2016. Disponível em:
<http://help.eclipse.org/neon/index.jsp>.

FEO, T. A.; RESENDE, M. G. Greedy randomized adaptive search procedures. Journal
of global optimization, Springer, v. 6, n. 2, p. 109–133, 1995.

FRIEDMAN, M. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the american statistical association, Taylor & Francis,
v. 32, n. 200, p. 675–701, 1937.

GHAZANFARI, M.; ALIZADEH, S.; FATHIAN, M.; KOULOURIOTIS, D. Comparing
simulated annealing and genetic algorithm in learning fcm. Applied Mathematics
and Computation, v. 192, n. 1, p. 56 – 68, 2007. ISSN 0096-3003. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0096300307002949>.

GIRALDO, G. E. Metodología Para la Reorganización Perpetua de Almacenes.
Dissertação (Mestrado) — University of Puerto Rico, Mayaguez, 2011.

GOLDBERG, D. E. Genetic algorithms. [S.l.]: Pearson Education India, 2006.

GOLDBERG, D. E.; LINGLE, R. et al. Alleles, loci, and the traveling salesman problem.
In: LAWRENCE ERLBAUM, HILLSDALE, NJ. Proceedings of an international
conference on genetic algorithms and their applications. [S.l.], 1985. v. 154, p. 154–159.

GONÇALVES, J. F.; RESENDE, M. G. Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, Springer, v. 17, n. 5, p. 487–525, 2011.

GONÇALVES, J. F.; RESENDE, M. G.; TOSO, R. F. An experimental comparison
of biased and unbiased random-key genetic algorithms. Pesquisa Operacional, SciELO
Brasil, v. 34, n. 2, p. 143–164, 2014.

GREFENSTETTE, J.; GOPAL, R.; ROSMAITA, B.; GUCHT, D. V. Genetic algorithms
for the traveling salesman problem. In: Proceedings of the first International Conference
on Genetic Algorithms and their Applications. [S.l.: s.n.], 1985. p. 160–168.

http://dl.acm.org/citation.cfm?id=645512.657259
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx?direct=true&db=buh&AN=12932512&lang=de&site=ehost-live
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx?direct=true&db=buh&AN=12932512&lang=de&site=ehost-live
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx?direct=true&db=buh&AN=12932512&lang=de&site=ehost-live
https://books.google.com.br/books?id=F3Ob74iLXwMC
http://help.eclipse.org/neon/index.jsp
http://www.sciencedirect.com/science/article/pii/S0096300307002949

REFERENCES 82

GREFENSTETTE, J. J. Incorporating problem specific knowledge into genetic
algorithms. In: . Genetic Algorithms and Simulated Annealing. London: [s.n.],
1987. p. 42–60.

GRUEN, T.; CORSTEN, D.; BHARADWAJ, S.; AMERICA, G. M. of. Retail
Out-of-stocks: A Worldwide Examination of Extent, Causes and Consumer
Responses. Grocery Manufacturers of America, 2002. Disponível em: <https:
//books.google.co.uk/books?id=zxAPHwAACAAJ>.

GU, J.; GOETSCHALCKX, M.; MCGINNIS, L. F. Research on warehouse operation: A
comprehensive review. European Journal of Operational Research, v. 177, n. 1, p. 1 – 21,
2007. ISSN 0377-2217. Disponível em: <http://www.sciencedirect.com/science/article/
pii/S0377221706001056>.

GU, J.; GOETSCHALCKX, M.; MCGINNIS, L. F. Research on warehouse design and
performance evaluation: A comprehensive review. European Journal of Operational
Research, v. 203, n. 3, p. 539 – 549, 2010. ISSN 0377-2217. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0377221709005219>.

HART, J. P.; SHOGAN, A. W. Semi-greedy heuristics: An empirical study. Operations
Research Letters, Elsevier, v. 6, n. 3, p. 107–114, 1987.

HAUSMAN, W. H.; SCHWARZ, L. B.; GRAVES, S. C. Optimal storage assignment
in automatic warehousing systems. Management Science, v. 22, n. 6, p. 629–638, 1976.
Disponível em: <https://doi.org/10.1287/mnsc.22.6.629>.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press, 1975. Second edition, 1992.

JACQUIN, S.; JOURDAN, L.; TALBI, E.-G. Dynamic programming based metaheuristic
for energy planning problems. In: SPRINGER. European Conference on the Applications
of Evolutionary Computation. [S.l.], 2014. p. 165–176.

KOSTER, R. de; LE-DUC, T.; ROODBERGEN, K. J. Design and control of
warehouse order picking: A literature review. European Journal of Operational
Research, v. 182, n. 2, p. 481 – 501, 2007. ISSN 0377-2217. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0377221706006473>.

LANGUAGES, J. . S. for P. ISO/IEC 14882:2011. [S.l.], 2011. Disponível em:
<https://www.iso.org/standard/50372.html>.

LÓPEZ-IBÁÑEZ, M.; BLUM, C.; OHLMANN, J. W.; THOMAS, B. W. The travelling
salesman problem with time windows: Adapting algorithms from travel-time to makespan
optimization. Applied Soft Computing, Elsevier, v. 13, n. 9, p. 3806–3815, 2013.

LÓPEZ-IBÁÑEZ, M.; DUBOIS-LACOSTE, J.; CÁCERES, L. P.; BIRATTARI, M.;
STÜTZLE, T. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, Elsevier, v. 3, p. 43–58, 2016.

LÓPEZ-IBÁÑEZ, M.; DUBOIS-LACOSTE, J.; STÜTZLE, T.; BIRATTARI, M. The
irace Package: Iterated Race for Automatic Algorithm Configuration. Université Libre de
Bruxelles, 2011.

https://books.google.co.uk/books?id=zxAPHwAACAAJ
https://books.google.co.uk/books?id=zxAPHwAACAAJ
http://www.sciencedirect.com/science/article/pii/S0377221706001056
http://www.sciencedirect.com/science/article/pii/S0377221706001056
http://www.sciencedirect.com/science/article/pii/S0377221709005219
https://doi.org/10.1287/mnsc.22.6.629
http://www.sciencedirect.com/science/article/pii/S0377221706006473
https://www.iso.org/standard/50372.html

REFERENCES 83

MANIKAS, T.; CAIN, J. Genetic Algorithms vs. Simulated Annealing: A Comparison of
Approaches for Solving the Circuit Partitioning Problem. [S.l.], 1996.

MARON, O.; MOORE, A. W. The racing algorithm: Model selection for lazy learners.
In: Lazy learning. [S.l.]: Springer, 1997. p. 193–225.

MATSUMOTO, M.; NISHIMURA, T. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), ACM, v. 8, n. 1, p. 3–30, 1998.

MESQUITA, R. G.; SILVA, R. M.; MELLO, C. A.; MIRANDA, P. B. Parameter
tuning for document image binarization using a racing algorithm. Expert Systems with
Applications, Elsevier, v. 42, n. 5, p. 2593–2603, 2015.

MOURA, M. A. Algoritmo Genético de Chaves Aleatórias Via Distribuição de Levy Para
Otimização Global. Dissertação (Mestrado) — Federal University of Pernambuco, Recife,
Brazil, 2018.

MURALIDHARAN, B.; LINN, R. J.; PANDIT, R. Shuffling heuristics for the
storage location assignment in an as/rs. International Journal of Production
Research, Taylor & Francis, v. 33, n. 6, p. 1661–1672, 1995. Disponível em:
<http://dx.doi.org/10.1080/00207549508930234>.

NAIR, T. R. G.; SOODA, K. Comparison of genetic algorithm and simulated annealing
technique for optimal path selection in network routing. CoRR, abs/1001.3920, 2010.
Disponível em: <http://arxiv.org/abs/1001.3920>.

NANNEN, V.; EIBEN, A. E. A method for parameter calibration and relevance
estimation in evolutionary algorithms. In: ACM. Proceedings of the 8th annual conference
on Genetic and evolutionary computation. [S.l.], 2006. p. 183–190.

NEMENYI, P. Distribution-free Multiple Comparisons. Tese (Doutorado) — Princeton
University, 1963.

PAZOUR, J. A.; CARLO, H. J. Warehouse reshuffling: Insights and optimization.
Transportation Research Part E: Logistics and Transportation Review, v. 73, p. 207 –
226, 2015. ISSN 1366-5545. Disponível em: <http://www.sciencedirect.com/science/
article/pii/S1366554514001914>.

PELLEGRINI, P.; CASTELLI, L.; PESENTI, R. Metaheuristic algorithms for the
simultaneous slot allocation problem. IET Intelligent Transport Systems, IET, v. 6, n. 4,
p. 453–462, 2012.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria, 2015. Disponível em: <https://www.R-project.org/>.

RAJGOPAL, J. Supply Chains: Definitions & Basic Concepts. [S.l.], 2016.

ROODBERGEN, K. J.; VIS, I. F. A survey of literature on automated storage and
retrieval systems. European Journal of Operational Research, v. 194, n. 2, p. 343 – 362,
2009. ISSN 0377-2217. Disponível em: <http://www.sciencedirect.com/science/article/
pii/S0377221708001598>.

http://dx.doi.org/10.1080/00207549508930234
http://arxiv.org/abs/1001.3920
http://www.sciencedirect.com/science/article/pii/S1366554514001914
http://www.sciencedirect.com/science/article/pii/S1366554514001914
https://www.R-project.org/
http://www.sciencedirect.com/science/article/pii/S0377221708001598
http://www.sciencedirect.com/science/article/pii/S0377221708001598

REFERENCES 84

SAFE, M.; CARBALLIDO, J.; PONZONI, I.; BRIGNOLE, N. On stopping criteria for
genetic algorithms. In: BAZZAN, A. L. C.; LABIDI, S. (Ed.). Advances in Artificial
Intelligence – SBIA 2004. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. p.
405–413. ISBN 978-3-540-28645-5.

SAMA, M.; PELLEGRINI, P.; D’ARIANO, A.; RODRIGUEZ, J.; PACCIARELLI, D.
Ant colony optimization for the real-time train routing selection problem. Transportation
Research Part B: Methodological, Elsevier, v. 85, p. 89–108, 2016.

SPEARS, W. M.; JONG, K. D. D. On the virtues of parameterized uniform crossover.
[S.l.], 1995.

STEFANELLO, F.; AGGARWAL, V.; BURIOL, L. S.; GONÇALVES, J. F.; RESENDE,
M. G. A biased random-key genetic algorithm for placement of virtual machines across
geo-separated data centers. In: ACM. Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation. [S.l.], 2015. p. 919–926.

STUDENT. The probable error of a mean. Biometrika, v. 6, n. 1, p. 1–25, 1908.
Disponível em: <http://dx.doi.org/10.1093/biomet/6.1.1>.

TOSO, R. F.; RESENDE, M. G. A c++ application programming interface for biased
random-key genetic algorithms. Optimization Methods and Software, Taylor & Francis,
v. 30, n. 1, p. 81–93, 2015.

TREBILCOCK, B. Resolve to Reslot Your Warehouse, Modern Materials Handling.
2011. <http://www.mmh.com/issue_archive/2011/mmh_11_05.pdf>. Accessed:
2017-09-30.

WILHELM, M. R.; WARD, T. L. Solving quadratic assignment problems by ‘simulated
annealing’. Iie Transactions, v. 19, p. 107–119, 03 1987.

YARIMCAM, A.; ASTA, S.; ÖZCAN, E.; PARKES, A. J. Heuristic generation via
parameter tuning for online bin packing. In: IEEE. Evolving and Autonomous Learning
Systems (EALS), 2014 IEEE Symposium on. [S.l.], 2014. p. 102–108.

ZIELINSKI, K.; PETERS-DROLSHAGEN, D.; LAUR, R. Stopping criteria for
single-objective optimization. 01 2005.

http://dx.doi.org/10.1093/biomet/6.1.1
http://www.mmh.com/issue_archive/2011/mmh_11_05.pdf

85

APPENDIX A – HEURISTICS

A.1 H3 HEURISTIC

Listing A.1 – GiraldoH3.h
1 /∗∗
2 ∗ @ f i l e GiraldoH3 . h
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date May 9 , 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Dec l a ra t i on s f o r H e u r i s t i c H3 from German Gira ldo ' s a r t i c l e

10 ∗ " Toward p e r p e t u a l l y organ ized unit−load warehouses " , 2012
11 ∗
12 ∗∗
13 ∗ @sect ion Rev i s i ons :
14 ∗
15 ∗ Revi s ion : 1 . 0 May 9 , 2018 Leonardo Bueno
16 ∗ ∗ O r i g i n a l v e r s i o n based on German Gira ldo ' s a r t i c l e :
17 ∗ " Toward p e r p e t u a l l y organ ized unit−load warehouses " 2012
18 ∗
19 ∗∗ ∗/
20
21 #i f n d e f GiraldoH3_H
22 #d e f i n e GiraldoH3_H
23
24 #inc lude <l i s t >
25 #inc lude <vector>
26 #inc lude <algor ithm>
27 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
28
29 #inc lude <b i t s / s tdc++.h>
30 us ing namespace std ;
31 # d e f i n e INF 0 x 3 f 3 f 3 f 3 f
32
33 c l a s s GiraldoH3
34 {
35 p r i v a t e :
36 std : : vector<int > OIo ; // the i n i t i a l l o c a t i o n o f item k
37 std : : vector<std : : vector <double>> d i j ; // d i s t a n c e to t r a v e l from l o c a t i o n i

to j .
38 std : : vector<std : : vector <double>> g i j ; // d i s t a n c e to t r a v e l from l o c a t i o n i

to j .
39 std : : vector<int > Ik ; // the i n i t i a l l o c a t i o n o f item k
40 std : : vector<int > Fk ; // the f i n a l l o c a t i o n o f item k ;
41 std : : vector<int > I i ; // I n i t i a l i tems in each l o c a t i o n i
42 std : : vector<int > Fi ; // Fina l i tems in each l o c a t i o n i
43 i n t s ta r tPos ; // S t a r t i n g p o s i t i o n o f S/R Machine
44
45 pub l i c :
46 GiraldoH3 (const R e s h u f f l e S c e n a r i o P a r s e r &s c e n a r i o) ; // Constructor

APPENDIX A. Heuristics 86

47
48 // p r i n t s s h o r t e s t path from s
49 double bestPath (bool p r i n t) ;
50
51 void printMovement (const i n t i n i t i a l L o c , const i n t f ina lLoc ,
52 const i n t element , const std : : vector<int > &trackItem ,
53 const double moveCost , const std : : vector<int > &items) const ;
54
55 void pr int IntVectorSequence (const std : : vector<int > &vec) const ;
56 } ;
57
58 #e n d i f /∗ GiraldoH3_H ∗/

APPENDIX A. Heuristics 87

Listing A.2 – GiraldoH3.cpp
1 /∗∗
2 ∗ @ f i l e GiraldoH3 . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date May 9 , 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Implements H e u r i s t i c H3 from German Gira ldo ' s a r t i c l e

10 ∗ " Toward p e r p e t u a l l y organ ized unit−load warehouses " , 2012
11 ∗
12 ∗∗
13 ∗ @sect ion Rev i s i ons :
14 ∗
15 ∗ Revi s ion : 1 . 0 May 9 , 2018 Leonardo Bueno
16 ∗ ∗ O r i g i n a l v e r s i o n based on German Gira ldo ' s a r t i c l e :
17 ∗ " Toward p e r p e t u a l l y organ ized unit−load warehouses " 2012
18 ∗
19 ∗∗ ∗/
20
21 #inc lude <b i t s / s tdc++.h>
22 #inc lude " GiraldoH3 . h "
23
24 us ing namespace std ;
25 # d e f i n e INF 0 x 3 f 3 f 3 f 3 f
26
27 GiraldoH3 : : GiraldoH3 (const R e s h u f f l e S c e n a r i o P a r s e r &s c e n a r i o)
28 {
29 th i s −>OIo = s c e n a r i o . getOIo () ;
30 th i s −>Ik = s c e n a r i o . ge t Ik () ;
31 th i s −>Fk = s c e n a r i o . getFk () ;
32 th i s −>I i = s c e n a r i o . g e t I i () ;
33 th i s −>Fi = s c e n a r i o . getF i () ;
34 th i s −>g i j = s c e n a r i o . ge tGi j () ;
35 th i s −>d i j = s c e n a r i o . g e tD i j () ;
36 th i s −>star tPos = s c e n a r i o . getStartPos () ;
37 }
38
39 // Pr in t s s h o r t e s t paths from s r c to a l l other v e r t i c e s
40 double GiraldoH3 : : bestPath (bool printKeyFlag)
41 {
42 const unsigned i n t kmax = Ik . s i z e () ;
43 i n t currentLoc = star tPos ;
44 i n t auxItem ;
45 i n t moveLoc = −1;
46 i n t emptyIdx = −1;
47 unsigned i n t o ; // Index f o r open l o c a t i o n s
48 unsigned i n t k ; // Index f o r i tems
49 double to ta lCos t = 0 ;
50 double minCostToEmpty = INF ;
51 double minCostToSR = INF ;
52
53 std : : vector<int > emptyLoc (OIo) ; // Tracks empty l o c a t i o n s
54 std : : vector<int > currentPos (Ik) ; // Track item l o c a t i o n s
55 std : : vector<int > TrackI i (I i) ; // Track s to rage m o d i f i c a t i o n s

APPENDIX A. Heuristics 88

56
57 whi le (currentPos != Fk)
58 {
59 minCostToEmpty = INF ;
60 minCostToSR = INF ;
61 moveLoc = −1;
62 emptyIdx = −1;
63
64 // i d e n t i f y the item (q) s to r ed c l o s e s t to the S/R machine
65 // cur rent p o s i t i o n whose ending p o s i t i o n i s c u r r e n t l y open .
66 f o r (o = 0 ; o < emptyLoc . s i z e () ; o++)
67 {
68 i f ((Fi [emptyLoc [o]] >= 0) && (currentLoc != currentPos [Fi [emptyLoc [o

]]]))
69 {
70 i f ((currentLoc >= 0))
71 {
72 i f ((d i j [currentLoc] [currentPos [Fi [emptyLoc [o]]]] <

minCostToSR))
73 {
74 moveLoc = currentPos [Fi [emptyLoc [o]]] ;
75 minCostToSR = d i j [currentLoc] [moveLoc] ;
76 emptyIdx = o ;
77 }
78 }
79 e l s e
80 {
81 moveLoc = currentPos [Fi [emptyLoc [o]]] ;
82 emptyIdx = o ;
83 }
84 }
85 }
86
87 // Perform movement
88 i f (moveLoc < 0)
89 {
90 minCostToSR = INF ;
91 minCostToEmpty = INF ;
92 moveLoc = −1;
93 emptyIdx = −1;
94
95 // i d e n t i f y the item (q) s to r ed c l o s e s t to the S/R machine
96 // cur rent p o s i t i o n whose ending p o s i t i o n i s c u r r e n t l y occupied
97 // and move i t to the open p o s i t i o n c l o s e s t to i t s f i n a l p o s i t i o n
98 f o r (o = 0 ; o < emptyLoc . s i z e () ; ++o)
99 {

100 f o r (k = 0 ; k < kmax ; ++k)
101 {
102 // Item us ing t h i s p o s i t i o n i s not in f i n a l p o s i t i o n
103 i f ((currentPos [k] != Fk [k]))
104 {
105 // Has minimum moving co s t to empty p o s i t i o n under

th r e sho ld
106 i f (g i j [currentPos [k]] [emptyLoc [o]] < minCostToEmpty)
107 {
108 moveLoc = currentPos [k] ;
109 emptyIdx = o ;

APPENDIX A. Heuristics 89

110 minCostToEmpty = g i j [moveLoc] [emptyLoc [o]] ;
111
112 i f ((currentLoc >= 0))
113 {
114 minCostToSR = d i j [currentLoc] [moveLoc] ;
115 }
116 }
117 e l s e i f ((g i j [currentPos [k]] [emptyLoc [o]] ==

minCostToEmpty) &&
118 (currentLoc >= 0) &&
119 (d i j [currentLoc] [currentPos [k]] < minCostToSR))
120 {
121 moveLoc = currentPos [k] ;
122 minCostToSR = d i j [currentLoc] [moveLoc] ;
123 }
124 }
125 }
126 }
127 }
128
129 i f (moveLoc >= 0)
130 {
131 i f ((currentLoc != moveLoc) && (currentLoc >= 0))
132 {
133 // Move v e h i c l e from i n i t i a l p o s i t i o n to the p o s i t i o n o f the

element to be moved
134 t o ta lCos t += d i j [currentLoc] [moveLoc] ;
135
136 i f (printKeyFlag)
137 {
138 printMovement (currentLoc , moveLoc , −1, TrackI i , tota lCost ,

emptyLoc) ;
139 }
140 }
141
142 // Now the i n i t i a l p o s i t i o n i s the p o s i t i o n o f the element
143 // to be moved and the f i n a l p o s i t i o n i s the empty p o s i t i o n
144 currentLoc = moveLoc ;
145 moveLoc = emptyLoc [emptyIdx] ;
146
147 // Move item to i t ' s f i n a l p o s i t i o n
148 t o ta lCos t += g i j [currentLoc] [moveLoc] ;
149
150 currentPos [TrackI i [currentLoc]] = emptyLoc [emptyIdx] ;
151
152 // Swap item on each l o c a t i o n
153 auxItem = TrackI i [moveLoc] ;
154 TrackI i [moveLoc] = TrackI i [currentLoc] ;
155 TrackI i [currentLoc] = auxItem ;
156
157 emptyLoc [emptyIdx] = currentLoc ;
158
159 i f (printKeyFlag)
160 {
161 printMovement (currentLoc , currentPos [TrackI i [moveLoc]] ,
162 TrackI i [moveLoc] , TrackI i , tota lCost , emptyLoc) ;
163 }

APPENDIX A. Heuristics 90

164
165 // Now v e h i c l e i s in the f i n a l p o s i t i o n
166 currentLoc = moveLoc ;
167 }
168 }
169
170 re turn to ta lCos t ;
171 }
172
173 void GiraldoH3 : : printMovement (const i n t i n i t i a l L o c , const i n t f ina lLoc ,
174 const i n t element , const std : : vector<int > &trackItem ,
175 const double moveCost , const std : : vector<int > &items) const
176 {
177 std : : cout << i n i t i a l L o c << " \ t " << f i n a l L o c << " \ t " ;
178 i f (e lement == −1){
179 std : : cout << " none\ t \ t "<< moveCost << " \ t \ t " ;
180 }
181 e l s e {
182 std : : cout << element <<" \ t \ t "<< moveCost << " \ t \ t " ;
183 }
184
185 pr int IntVectorSequence (trackItem) ;
186
187 std : : cout << " \ t " ;
188
189 pr int IntVectorSequence (items) ;
190
191 std : : cout << std : : endl ;
192 }
193
194 void GiraldoH3 : : pr int IntVectorSequence (const std : : vector <int > &vec) const
195 {
196 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = vec . begin () ; i != vec . end () ; ++i)
197 std : : cout << ∗ i << ' ' ;
198 }

APPENDIX A. Heuristics 91

Listing A.3 – mainGiraldoH3.cpp
1 /∗∗
2 ∗ @ f i l e mainGiraldoH3 . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Main f i l e f o r execut ing German Gira ldo ' s

10 ∗ R e s h u f f l i n g H e u r i s t i c 3 (H3)
11 ∗
12 ∗ This code t r e a t s the f o l l o w i n g parameters
13 ∗ OBS: Parameters should be in t h i s order
14 ∗
15 ∗ FILE . csv pr intBoo l tau
16 ∗
17 ∗ Where :
18 ∗ − FILE . csv − The r e s h u f f l e s c e n a r i o
19 ∗ − pr intBoo l − True p r i n t s f i n a l s o lu t i on , f a l s e p r i n t s only the f i n a l co s t
20 ∗
21 ∗∗
22 ∗ @sect ion Rev i s i ons :
23 ∗
24 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
25 ∗ ∗ O r i g i n a l v e r s i o n based on German Gira ldo ' s a r t i c l e :
26 ∗ " Toward p e r p e t u a l l y organ ized unit−load warehouses " 2012
27 ∗
28 ∗∗ ∗/
29
30 #inc lude <iostream>
31 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
32 #inc lude " GiraldoH3 . h "
33 #inc lude <c l i m i t s >
34 #inc lude <time . h>
35 #inc lude <math . h>
36
37 #d e f i n e DEFAULT_SCENARIO_FILE ((char ∗) " s c e n a r i o s \\ scenario_Imax100Uti l50Org0 .

csv ")
38 #d e f i n e DEFAULT_PRINT_KEY f a l s e
39
40 i n t main (i n t argc , char ∗ argv []) {
41 char ∗ s c e n a r i o F i l e P t r = DEFAULT_SCENARIO_FILE;
42 bool printKey = DEFAULT_PRINT_KEY;
43
44 std : : cout << " \ r \nGiven parameters : " ;
45 f o r (i n t argCount = 0 ; argCount < argc ; argCount++)
46 {
47 std : : cout << argv [argCount] << " " ;
48 }
49 std : : cout << " \ r \n" ;
50
51 i f (argc >= 2)
52 {
53 s c e n a r i o F i l e P t r = argv [1] ;
54 }

APPENDIX A. Heuristics 92

55
56 char ∗findCSV = NULL;
57 findCSV = s t r s t r (s c e n a r i o F i l e P t r , " . csv ") ;
58
59 i f (! findCSV)
60 {
61 // Te l l the user how to run the program
62 std : : c e r r << " Usage : " << argv [0] << " FILE . csv t rue (pr intBoo l) " << std

: : endl ;
63 /∗ " Usage messages " are a convent iona l way o f t e l l i n g the user
64 ∗ how to run a program i f they ente r the command i n c o r r e c t l y .
65 ∗/
66 re turn 1 ;
67 }
68
69 i f (argc >= 3)
70 {
71 std : : s t r i ng s t r eam s s (argv [2]) ;
72
73 i f (! (s s >> std : : boo la lpha >> printKey))
74 {
75 // Te l l the user how to run the program
76 std : : c e r r << " Usage : " << argv [0] << " FILE . csv t rue (pr intBoo l) " <<

std : : endl ;
77 /∗ " Usage messages " are a convent iona l way o f t e l l i n g the user
78 ∗ how to run a program i f they ente r the command i n c o r r e c t l y .
79 ∗/
80 re turn 1 ;
81 }
82 }
83
84 std : : s t r i n g f i l e P a t h (s c e n a r i o F i l e P t r) ;
85 R e s h u f f l e S c e n a r i o P a r s e r s c e n a r i o (f i l eP a t h , printKey) ;
86
87 // H3
88 clock_t s t a r t = c lo ck () ;
89
90 GiraldoH3 H3_cs1 (s c e n a r i o) ;
91 double h3Results = H3_cs1 . bestPath (printKey) ;
92
93 unsigned long i n t h3_mi l l i s econds_s ince_star t = ((c l o ck () − s t a r t) ∗ 1000)

/ CLOCKS_PER_SEC;
94 std : : cout << std : : endl << "H3: \ t " << h3Results ;
95 std : : cout << " \tRuntime = "<<h3_mi l l i s econds_s ince_start << "ms" << std : : endl ;
96 std : : cout << std : : endl << h3Results ;
97
98 // Output r e s u l t s
99 std : : o f s tream o u t f i l e (" r e s h u f f l e R e s u l t s H 3 . csv " , i o s : : out | i o s : : app) ;

100
101 i f (o u t f i l e . is_open ())
102 {
103 o u t f i l e << argv [1] ;
104 o u t f i l e << " , " << h3Results << " , " << h3_mi l l i s econds_s ince_star t ; // H3

Resu l t s
105
106 o u t f i l e << " \n" ;
107 o u t f i l e . c l o s e () ;

APPENDIX A. Heuristics 93

108 }
109
110 re turn 0 ;
111 }

APPENDIX A. Heuristics 94

A.2 GRH HEURISTIC

Listing A.4 – PazourGRH.h
1 /∗∗
2 ∗ @ f i l e PazourGRH . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date May 10 , 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Dec l a ra t i on s f o r H e u r i s t i c GRH from J e n n i f e r Pazour ' s a r t i c l e

10 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " , 2015
11 ∗
12 ∗∗
13 ∗ @sect ion Rev i s i ons :
14 ∗
15 ∗ Revi s ion : 1 . 0 May 10 , 2018 Leonardo Bueno
16 ∗ ∗ O r i g i n a l v e r s i o n based on J e n n i f e r Pazour ' s a r t i c l e :
17 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " 2015
18 ∗
19 ∗∗ ∗/
20
21 #i f n d e f PazourGRH_H
22 #d e f i n e PazourGRH_H
23
24 #inc lude <l i s t >
25 #inc lude <vector>
26 #inc lude <algor ithm>
27 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
28
29 #inc lude <b i t s / s tdc++.h>
30 us ing namespace std ;
31 # d e f i n e INF 0 x 3 f 3 f 3 f 3 f
32
33 c l a s s PazourGRH
34 {
35 p r i v a t e :
36 std : : vector<int > OIo ; // the i n i t i a l l o c a t i o n o f item k
37 std : : vector<std : : vector <double>> d i j ; // d i s t a n c e to t r a v e l from l o c a t i o n i

to j .
38 std : : vector<std : : vector <double>> g i j ; // d i s t a n c e to t r a v e l from l o c a t i o n i

to j .
39 std : : vector<std : : vector <int >> Cc ; // Cc − s e t o f i tems that belong to

c y c l e c , indexed on c .
40 std : : vector<int > Ik ; // the i n i t i a l l o c a t i o n o f item k
41 std : : vector<int > Fk ; // the f i n a l l o c a t i o n o f item k ;
42 std : : vector<int > I i ; // I n i t i a l i tems in each l o c a t i o n
43 std : : vector<int > Fi ; // Fina l i tems in each l o c a t i o n
44 i n t s ta r tPos ;
45
46 pub l i c :
47 PazourGRH(const R e s h u f f l e S c e n a r i o P a r s e r &s c e n a r i o) ; // Constructor
48
49 // p r i n t s s h o r t e s t path from s

APPENDIX A. Heuristics 95

50 double bestPath (double c lo seDis tanceThresho ld , bool printKeyFlag) ;
51
52 void printMovement (const i n t i n i t i a l L o c , const i n t f ina lLoc , const i n t

element , const std : : vector <int > &trackItem , const double moveCost , const
std : : vector<int > &items) const ;

53
54 void pr int IntVectorSequence (const std : : vector<int > &vec) const ;
55 } ;
56
57 #e n d i f /∗ PazourGRH_H ∗/

APPENDIX A. Heuristics 96

Listing A.5 – PazourGRH.cpp
1 /∗∗
2 ∗ @ f i l e PazourGRH . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date May 10 , 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Implements H e u r i s t i c GRH from J e n n i f e r Pazour a r t i c l e

10 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " , 2015
11 ∗
12 ∗∗
13 ∗ @sect ion Rev i s i ons :
14 ∗
15 ∗ Revi s ion : 1 . 0 May 10 , 2018 Leonardo Bueno
16 ∗ ∗ O r i g i n a l v e r s i o n based on J e n n i f e r Pazour a r t i c l e :
17 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " 2015
18 ∗
19 ∗∗ ∗/
20
21 #inc lude <b i t s / s tdc++.h>
22 #inc lude "PazourGRH . h"
23
24 us ing namespace std ;
25 #d e f i n e INF 0 x 3 f 3 f 3 f 3 f
26
27 PazourGRH : : PazourGRH(const R e s h u f f l e S c e n a r i o P a r s e r &s c e n a r i o)
28 {
29 th i s −>OIo = s c e n a r i o . getOIo () ;
30 th i s −>Cc = s c e n a r i o . getCc () ;
31 th i s −>Ik = s c e n a r i o . ge t Ik () ;
32 th i s −>Fk = s c e n a r i o . getFk () ;
33 th i s −>I i = s c e n a r i o . g e t I i () ;
34 th i s −>Fi = s c e n a r i o . getF i () ;
35 th i s −>g i j = s c e n a r i o . ge tGi j () ;
36 th i s −>d i j = s c e n a r i o . g e tD i j () ;
37 th i s −>star tPos = s c e n a r i o . getStartPos () ;
38 }
39
40 double PazourGRH : : bestPath (double c lo seDis tanceThresho ld , bool printKeyFlag)
41 {
42 const unsigned i n t kmax = Ik . s i z e () ;
43 i n t currentLoc = star tPos ;
44 i n t auxItem ;
45 i n t moveLoc = −1;
46 i n t emptyIdx = −1;
47 i n t moveCycle = −1;
48 unsigned i n t o ; // Index f o r open l o c a t i o n s
49 unsigned i n t c ; // Index f o r c y c l e in Cc
50 unsigned i n t k ; // Index f o r i tems
51 double to ta lCos t = 0 ;
52 double minCostToEmpty = INF ;
53 double minCostToSR = INF ;
54
55 std : : vector<int > emptyLoc (OIo) ; // Tracks empty l o c a t i o n s

APPENDIX A. Heuristics 97

56 std : : vector<int > currentPos (Ik) ; // Track item l o c a t i o n s
57 std : : vector<int > TrackI i (I i) ; // Track s to rage m o d i f i c a t i o n s
58 std : : vector<std : : vector <int >> TrackCc (Cc) ; // Track c y c l e breaks
59
60 whi le (currentPos != Fk)
61 {
62 minCostToEmpty = c lo seDi s tanceThre sho ld ;
63 minCostToSR = INF ;
64 moveLoc = −1;
65 emptyIdx = −1;
66 moveCycle = −1;
67
68 // i d e n t i f y the item (q) s to r ed c l o s e s t to the S/R machine
69 // cur rent p o s i t i o n that i s e i t h e r part o f a c y c l e that can be
70 // broken with l e s s than tau d i s t a n c e u n i t s (i . e . , t r a v e l d i s t a n c e
71 // from s t a r t i n g l o c a t i o n o f q to an open l o c a t i o n <= tau)
72 // OR whose ending p o s i t i o n i s c u r r e n t l y open .
73 f o r (o = 0 ; o < emptyLoc . s i z e () ; o++)
74 {
75 // (Break nearby c y c l e) Move item q
76 // (f o r which t r a v e l d i s t a n c e from s t a r t i n g l o c a t i o n o f q to an open

l o c a t i o n 6 s)
77 // and remove the c y c l e from the l i s t o f a l l c y c l e s .
78 // Find item with minimum cos t to move to empty l o c a t i o n
79 f o r (c =0; c < TrackCc . s i z e () ; c++)
80 {
81 f o r (k=0; k<TrackCc [c] . s i z e () ; k++)
82 {
83 // Item has moving co s t to empty lower than minimum found so

f a r
84 // And item i s not in f i n a l p o s i t i o n
85 i f ((g i j [currentPos [TrackCc [c] [k]]] [emptyLoc [o]] <=

minCostToEmpty) &&
86 (currentPos [TrackCc [c] [k]] != Fk [TrackCc [c] [k]]))
87 {
88 i f ((currentLoc >= 0) &&
89 (d i j [currentLoc] [currentPos [TrackCc [c] [k]]] <

minCostToSR))
90 {
91 moveLoc = currentPos [TrackCc [c] [k]] ;
92 emptyIdx = o ;
93 moveCycle = c ;
94 minCostToSR = d i j [currentLoc] [moveLoc] ;
95 }
96 e l s e i f (moveLoc < 0)
97 {
98 moveLoc = currentPos [TrackCc [c] [k]] ;
99 emptyIdx = o ;

100 moveCycle = c ;
101 }
102 }
103 }
104 }
105
106 // i d e n t i f y the item (q) s to r ed c l o s e s t to the S/R machine
107 // cur rent p o s i t i o n whose ending p o s i t i o n i s c u r r e n t l y open .
108 i f ((Fi [emptyLoc [o]] >= 0) && (currentLoc != currentPos [Fi [emptyLoc [o

APPENDIX A. Heuristics 98

]]]))
109 {
110 i f ((currentLoc >= 0))
111 {
112 i f ((d i j [currentLoc] [currentPos [Fi [emptyLoc [o]]]] <

minCostToSR))
113 {
114 moveLoc = currentPos [Fi [emptyLoc [o]]] ;
115 emptyIdx = o ;
116 minCostToSR = d i j [currentLoc] [moveLoc] ;
117 }
118 }
119 e l s e
120 {
121 moveLoc = currentPos [Fi [emptyLoc [o]]] ;
122 emptyIdx = o ;
123 }
124 }
125 }
126
127 // (Break c y c l e f a r away) Move the item c l o s e s t to the S/R
128 // (which r e q u i r e s r e p o s i t i o n i n g) to the c l o s e s t open l o c a t i o n
129 i f (moveLoc < 0)
130 {
131 minCostToSR = INF ;
132 minCostToEmpty = INF ;
133 moveLoc = −1;
134 emptyIdx = −1;
135
136 f o r (o = 0 ; o < emptyLoc . s i z e () ; ++o)
137 {
138 f o r (k = 0 ; k < kmax ; ++k)
139 {
140 // Item us ing t h i s p o s i t i o n i s not in f i n a l p o s i t i o n
141 i f ((currentPos [k] != Fk [k]))
142 {
143 // Has minimum moving co s t to empty p o s i t i o n under

th r e sho ld
144 i f (g i j [currentPos [k]] [emptyLoc [o]] < minCostToEmpty)
145 {
146 moveLoc = currentPos [k] ;
147 emptyIdx = o ;
148 minCostToEmpty = g i j [moveLoc] [emptyLoc [o]] ;
149
150 i f ((currentLoc >= 0))
151 {
152 minCostToSR = d i j [currentLoc] [moveLoc] ;
153 }
154 }
155 e l s e i f ((g i j [currentPos [k]] [emptyLoc [o]] ==

minCostToEmpty) &&
156 (currentLoc >= 0) &&
157 (d i j [currentLoc] [currentPos [k]] < minCostToSR))
158 {
159 moveLoc = currentPos [k] ;
160 minCostToSR = d i j [currentLoc] [moveLoc] ;
161 }

APPENDIX A. Heuristics 99

162 }
163 }
164 }
165 }
166
167 // Perform movement
168 i f (moveLoc >= 0)
169 {
170 i f ((currentLoc != moveLoc) && (currentLoc >= 0))
171 {
172 // Move v e h i c l e from i n i t i a l p o s i t i o n to the p o s i t i o n o f the

element to be moved
173 t o ta lCos t += d i j [currentLoc] [moveLoc] ;
174
175 i f (printKeyFlag)
176 {
177 printMovement (currentLoc , moveLoc , −1, TrackI i , tota lCost ,

emptyLoc) ;
178 }
179 }
180
181 // Now the i n i t i a l p o s i t i o n i s the p o s i t i o n o f the element to be

moved
182 // and the f i n a l p o s i t i o n i s the empty p o s i t i o n
183 currentLoc = moveLoc ;
184 moveLoc = emptyLoc [emptyIdx] ;
185
186 // Move item to i t ' s f i n a l p o s i t i o n
187 t o ta lCos t += g i j [currentLoc] [moveLoc] ;
188
189 currentPos [TrackI i [currentLoc]] = emptyLoc [emptyIdx] ;
190
191 // Swap item on each l o c a t i o n
192 auxItem = TrackI i [moveLoc] ;
193 TrackI i [moveLoc] = TrackI i [currentLoc] ;
194 TrackI i [currentLoc] = auxItem ;
195
196 emptyLoc [emptyIdx] = currentLoc ;
197
198 i f (printKeyFlag)
199 {
200 printMovement (currentLoc , currentPos [TrackI i [moveLoc]] ,
201 TrackI i [moveLoc] , TrackI i , tota lCost , emptyLoc) ;
202 }
203
204 // Now v e h i c l e i s in the f i n a l p o s i t i o n
205 currentLoc = moveLoc ;
206
207 i f (moveCycle >= 0)
208 {
209 TrackCc . e r a s e (TrackCc . begin () + moveCycle) ;
210 }
211 }
212 }
213
214 re turn to ta lCos t ;
215 }

APPENDIX A. Heuristics 100

216
217 void PazourGRH : : printMovement (const i n t i n i t i a l L o c , const i n t f ina lLoc , const i n t

element ,
218 const std : : vector<int > &trackItem , const double moveCost ,
219 const std : : vector<int > &items) const
220 {
221 std : : cout << i n i t i a l L o c << " \ t " << f i n a l L o c << " \ t " ;
222 i f (e lement == −1){
223 std : : cout << " none\ t \ t "<< moveCost << " \ t \ t " ;
224 }
225 e l s e {
226 std : : cout << element <<" \ t \ t "<< moveCost << " \ t \ t " ;
227 }
228
229 pr int IntVectorSequence (trackItem) ;
230
231 std : : cout << " \ t " ;
232
233 pr int IntVectorSequence (items) ;
234
235 std : : cout << std : : endl ;
236 }
237
238 void PazourGRH : : pr int IntVectorSequence (const std : : vector <int > &vec) const
239 {
240 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = vec . begin () ; i != vec . end () ; ++i)
241 std : : cout << ∗ i << ' ' ;
242 }

APPENDIX A. Heuristics 101

Listing A.6 – mainPazourGRH.cpp
1 /∗∗
2 ∗ @ f i l e mainPazourGRH . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Main f i l e f o r execut ing J e n n i f e r Pazour ' s

10 ∗ General R e s h u f f l i n g H e u r i s t i c (GRH)
11 ∗
12 ∗ This code t r e a t s the f o l l o w i n g parameters
13 ∗ OBS: Parameters should be in t h i s order
14 ∗
15 ∗ FILE . csv pr intBoo l tau
16 ∗
17 ∗ Where :
18 ∗ − FILE . csv − The r e s h u f f l e s c e n a r i o
19 ∗ − pr intBoo l − True p r i n t s f i n a l s o lu t i on , f a l s e p r i n t s only the f i n a l co s t
20 ∗ − tau − Distance to break nearby c y c l e s − Defau l t 0
21 ∗
22 ∗∗
23 ∗ @sect ion Rev i s i ons :
24 ∗
25 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
26 ∗ ∗ O r i g i n a l v e r s i o n based on J e n n i f e r Pazour ' s a r t i c l e :
27 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " 2015
28 ∗
29 ∗∗ ∗/
30
31 #inc lude <iostream>
32 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
33 #inc lude "PazourGRH . h"
34 #inc lude <c l i m i t s >
35 #inc lude <time . h>
36 #inc lude <math . h>
37 us ing namespace std ;
38
39 #d e f i n e DEFAULT_SCENARIO_FILE ((char ∗) " \\ s c e n a r i o s \\ scenario_Imax100Uti l50Org0 .

csv ")
40 #d e f i n e DEFAULT_GRH_TAU 0.0
41 #d e f i n e DEFAULT_PRINT_KEY f a l s e
42
43 i n t main (i n t argc , char ∗ argv []) {
44 char ∗ s c e n a r i o F i l e P t r = DEFAULT_SCENARIO_FILE;
45 double grh_Tau = DEFAULT_GRH_TAU;
46 bool printKey = DEFAULT_PRINT_KEY;
47
48 std : : cout << " \ r \nGiven parameters : " ;
49 f o r (i n t argCount = 0 ; argCount < argc ; argCount++)
50 {
51 std : : cout << argv [argCount] << " " ;
52 }
53 std : : cout << " \ r \n" ;
54

APPENDIX A. Heuristics 102

55 i f (argc >= 2)
56 {
57 s c e n a r i o F i l e P t r = argv [1] ;
58 }
59
60 char ∗findCSV = NULL;
61 findCSV = s t r s t r (s c e n a r i o F i l e P t r , " . csv ") ;
62
63 i f (! findCSV)
64 {
65 // Te l l the user how to run the program
66 std : : c e r r << " Usage : " << argv [0] << " FILE . csv t rue (pr intBoo l) 30 .0 (

Tau) " << std : : endl ;
67 /∗ " Usage messages " are a convent iona l way o f t e l l i n g the user
68 ∗ how to run a program i f they ente r the command i n c o r r e c t l y .
69 ∗/
70 re turn 1 ;
71 }
72
73 i f (argc >= 3)
74 {
75 std : : s t r i ng s t r eam s s (argv [2]) ;
76
77 i f (! (s s >> std : : boo la lpha >> printKey))
78 {
79 // Te l l the user how to run the program
80 std : : c e r r << " Usage : " << argv [0] << " FILE . csv t rue (pr intBoo l) 30 .0

(Tau) " << std : : endl ;
81 /∗ " Usage messages " are a convent iona l way o f t e l l i n g the user
82 ∗ how to run a program i f they ente r the command i n c o r r e c t l y .
83 ∗/
84 re turn 1 ;
85 }
86 }
87
88 i f (argc >= 4)
89 {
90 grh_Tau = a t o f (argv [3]) ;
91 }
92
93 std : : s t r i n g f i l e P a t h (s c e n a r i o F i l e P t r) ;
94 R e s h u f f l e S c e n a r i o P a r s e r s c e n a r i o (f i l eP a t h , printKey) ;
95
96 // GRH
97 clock_t s t a r t = c lo ck () ;
98
99 PazourGRH GRH_cs1(s c e n a r i o) ;

100 double grhResu l t s = GRH_cs1 . bestPath (grh_Tau , printKey) ;
101
102 unsigned long i n t grh_mi l l i s e conds_s ince_star t = ((c l o ck () − s t a r t) ∗ 1000)

/ CLOCKS_PER_SEC;
103 std : : cout << std : : endl << "GRH: \ t " << grhResu l t s ;
104 std : : cout << " \tRuntime = "<<grh_mi l l i s econds_s ince_star t << "ms" << std : : endl

;
105 std : : cout << std : : endl << grhResu l t s ;
106
107 // Output r e s u l t s

APPENDIX A. Heuristics 103

108 std : : o f s tream o u t f i l e (" reshuf f leResultsGRH . csv " , i o s : : out | i o s : : app) ;
109
110 i f (o u t f i l e . is_open ())
111 {
112 o u t f i l e << argv [1] ;
113 o u t f i l e << " , " << grhResu l t s << " , " << grh_mi l l i s e conds_s ince_star t << " ,

" << grh_Tau ; // GRH Resu l t s
114
115 o u t f i l e << " \n" ;
116 o u t f i l e . c l o s e () ;
117 }
118
119 re turn 0 ;
120 }

APPENDIX A. Heuristics 104

A.3 BRKGA RESHUFFLE DECODER

Listing A.7 – ReshuffleDecoder.h
1 /∗∗
2 ∗ @ f i l e r e s h u f f l e D e c o d e r . h
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Dec la ra t i on f o r R e s h u f f l e BRKGA Decoder

10 ∗
11 ∗∗
12 ∗ @sect ion Rev i s i ons :
13 ∗
14 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
15 ∗ ∗ O r i g i n a l v e r s i o n based on BRKGA C++ API Sample Code :
16 ∗ A C++ APPLICATION PROGRAMMING INTERFACE FOR
17 ∗ BIASED RANDOM−KEY GENETIC ALGORITHMS
18 ∗ RODRIGO F. TOSO AND MAURICIO G.C. RESENDE, 2011
19 ∗
20 ∗∗ ∗/
21 #i f n d e f RESHUFFLEDECODER_H
22 #d e f i n e RESHUFFLEDECODER_H
23
24 #inc lude <l i s t >
25 #inc lude <vector>
26 #inc lude <algor ithm>
27 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
28
29 c l a s s Reshuf f l eDecoder {
30 pub l i c :
31 Reshuf f l eDecoder (const R e s h u f f l e S c e n a r i o P a r s e r &s c e n a r i o) ;
32 ~ Reshuf f l eDecoder () ;
33
34 double decode (const std : : vector < double >& chromosome) const ;
35 double decode (const std : : vector < double >& chromosome , bool printKeyFlag)

const ;
36 i n t chromosomeSize (void) const ;
37 void printMovement (const i n t i n i t i a l L o c , const i n t f ina lLoc , const i n t

element ,
38 const std : : vector<int > &trackItem , const double moveCost ,
39 const std : : vector<int > &items) const ;
40 void pr int IntVectorSequence (const std : : vector<int > &vec) const ;
41 void printKey (const std : : vector < double >& chromosome) const ;
42
43 p r i v a t e :
44 std : : vector<std : : vector <double>> g i j ; // d i s t a n c e to t r a v e l from l o c a t i o n i

to j .
45 std : : vector<std : : vector <double>> d i j ; // d i s t a n c e to t r a v e l unloaded from

l o c a t i o n i to j .
46 std : : vector<std : : vector <int >> Cc ; // Cc − s e t o f i tems that belong to

c y c l e c , indexed on c .
47 std : : vector<int > Ik ; // the i n i t i a l l o c a t i o n o f item k

APPENDIX A. Heuristics 105

48 std : : vector<int > Fk ; // the f i n a l l o c a t i o n o f item k
49 std : : vector<int > I i ; // I n i t i a l i tems in each l o c a t i o n
50 std : : vector<int > Fi ; // Fina l i tems in each l o c a t i o n
51 std : : vector<int > OIo ; // the open l o c a t i o n s
52 double gmax ;
53 i n t s ta r tLoc ;
54 } ;
55
56 #e n d i f /∗ RESHUFFLEDECODER_H ∗/

APPENDIX A. Heuristics 106

Listing A.8 – ReshuffleDecoder.cpp
1 /∗∗
2 ∗ @ f i l e r e s h u f f l e D e c o d e r . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Methods f o r R e s h u f f l e BRKGA Decoder

10 ∗
11 ∗∗
12 ∗ @sect ion Rev i s i ons :
13 ∗
14 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
15 ∗ ∗ O r i g i n a l v e r s i o n based on BRKGA C++ API Sample Code :
16 ∗ A C++ APPLICATION PROGRAMMING INTERFACE FOR
17 ∗ BIASED RANDOM−KEY GENETIC ALGORITHMS
18 ∗ RODRIGO F. TOSO AND MAURICIO G.C. RESENDE, 2011
19 ∗
20 ∗∗ ∗/
21
22 #inc lude " Reshuf f l eDecoder . h "
23 #inc lude <vector>
24 #inc lude <tuple>
25 #inc lude <s t r i n g >
26 #inc lude <set >
27 #inc lude <cmath>
28 #inc lude <c l i m i t s >
29 #inc lude <fstream>
30 #inc lude <iostream>
31 #inc lude <sstream>
32 us ing namespace std ;
33
34
35 #d e f i n e CALC_MOVES_IN_CYCLE(kmax , cmax , imax) (kmax+cmax)
36 # d e f i n e INF 0 x 3 f 3 f 3 f 3 f
37
38 Reshuf f l eDecoder : : Reshuf f l eDecoder (const R e s h u f f l e S c e n a r i o P a r s e r &s c e n a r i o)
39 {
40 th i s −>OIo = s c e n a r i o . getOIo () ;
41 th i s −>Cc = s c e n a r i o . getCc () ;
42 th i s −>Ik = s c e n a r i o . ge t Ik () ;
43 th i s −>Fk = s c e n a r i o . getFk () ;
44 th i s −>I i = s c e n a r i o . g e t I i () ;
45 th i s −>Fi = s c e n a r i o . getF i () ;
46 th i s −>g i j = s c e n a r i o . ge tGi j () ;
47 th i s −>d i j = s c e n a r i o . g e tD i j () ;
48 th i s −>gmax = s c e n a r i o . getGmax () ;
49 th i s −>star tLoc = s c e n a r i o . getStartPos () ;
50 }
51
52 Reshuf f l eDecoder : : ~ Reshuf f l eDecoder (void)
53 {
54 }
55

APPENDIX A. Heuristics 107

56 i n t Reshuf f l eDecoder : : chromosomeSize (void) const
57 {
58 re turn CALC_MOVES_IN_CYCLE(Ik . s i z e () , Cc . s i z e () , I i . s i z e ()) ;
59 }
60
61 double Reshuf f l eDecoder : : decode (const std : : vector < double >& chromosome) const
62 {
63 re turn decode (chromosome , f a l s e) ;
64 }
65
66 double Reshuf f l eDecoder : : decode (const std : : vector < double >& chromosome , bool

printKeyFlag) const
67 {
68 const unsigned i n t kmax = Ik . s i z e () ;
69 i n t currentLoc = th i s −>star tLoc ;
70 i n t auxItem ;
71 i n t moveLoc = −1;
72 i n t emptyIdx = −1;
73 i n t moveCycle = −1;
74 i n t a l l e l e ; // Index f o r chromosome a l l e l e s
75 unsigned i n t o ; // Index f o r open l o c a t i o n s
76 unsigned i n t c ; // Index f o r c y c l e in Cc
77 unsigned i n t k ; // Index f o r i t e n s
78 double to ta lCos t = 0 ;
79 double minCostToEmpty = INF ;
80 double minCostToSR = INF ;
81
82 i f (printKeyFlag) {
83 std : : cout << "From\tTo\ tItem Carr ied \tMoveCost\ t P o s i t i o n s " << std : : endl ;
84 }
85
86 std : : vector<int > emptyLoc (OIo) ; // Tracks empty l o c a t i o n s
87 std : : vector<int > currentPos (Ik) ; // Track item l o c a t i o n s
88 std : : vector<int > TrackI i (I i) ; // Track s to rage m o d i f i c a t i o n s
89 std : : vector<std : : vector <int >> TrackCc (Cc) ; // Track c y c l e breaks
90
91 f o r (a l l e l e = 0 ; (currentPos != Fk) && (a l l e l e < chromosomeSize ()) ; a l l e l e ++)
92 {
93 // Tau i s now c a l c u l a t e d us ing gmax and the cur rent a l l e l e
94 minCostToEmpty = th i s −>gmax ∗ chromosome [a l l e l e] ;
95 minCostToSR = INF ;
96 moveLoc = −1;
97 emptyIdx = −1;
98 moveCycle = −1;
99

100 // i d e n t i f y the item (q) s to r ed c l o s e s t to the S/R machine
101 // cur rent p o s i t i o n that i s e i t h e r part o f a c y c l e that can be
102 // broken with l e s s than tau d i s t a n c e u n i t s (i . e . , t r a v e l d i s t a n c e
103 // from s t a r t i n g l o c a t i o n o f q to an open l o c a t i o n <= tau)
104 // OR whose ending p o s i t i o n i s c u r r e n t l y open .
105 f o r (o = 0 ; o < emptyLoc . s i z e () ; o++)
106 {
107 // (Break nearby c y c l e) Move item q
108 // (f o r which t r a v e l d i s t a n c e from s t a r t i n g l o c a t i o n o f q to an open

l o c a t i o n 6 s)
109 // and remove the c y c l e from the l i s t o f a l l c y c l e s .
110 // Find item with minimum cos t to move to empty l o c a t i o n

APPENDIX A. Heuristics 108

111 f o r (c =0; c < TrackCc . s i z e () ; c++)
112 {
113 f o r (k=0; k<TrackCc [c] . s i z e () ; k++)
114 {
115 // Item has moving co s t to empty lower than minimum found so

f a r
116 // And item i s not in f i n a l p o s i t i o n
117 i f ((g i j [currentPos [TrackCc [c] [k]]] [emptyLoc [o]] <=

minCostToEmpty) &&
118 (currentPos [TrackCc [c] [k]] != Fk [TrackCc [c] [k]]))
119 {
120 i f ((currentLoc >= 0) && (d i j [currentLoc] [currentPos [

TrackCc [c] [k]]] < minCostToSR))
121 {
122 moveLoc = currentPos [TrackCc [c] [k]] ;
123 emptyIdx = o ;
124 moveCycle = c ;
125 minCostToSR = d i j [currentLoc] [moveLoc] ;
126 }
127 e l s e i f (moveLoc < 0)
128 {
129 moveLoc = currentPos [TrackCc [c] [k]] ;
130 emptyIdx = o ;
131 moveCycle = c ;
132 }
133 }
134 }
135 }
136
137 // i d e n t i f y the item (q) s to r ed c l o s e s t to the S/R machine
138 // cur rent p o s i t i o n whose ending p o s i t i o n i s c u r r e n t l y open .
139 i f ((Fi [emptyLoc [o]] >= 0) && (currentLoc != currentPos [Fi [emptyLoc [o

]]]))
140 {
141 i f ((currentLoc >= 0))
142 {
143 i f ((d i j [currentLoc] [currentPos [Fi [emptyLoc [o]]]] <

minCostToSR))
144 {
145 moveLoc = currentPos [Fi [emptyLoc [o]]] ;
146 emptyIdx = o ;
147 minCostToSR = d i j [currentLoc] [moveLoc] ;
148 }
149 }
150 e l s e
151 {
152 moveLoc = currentPos [Fi [emptyLoc [o]]] ;
153 emptyIdx = o ;
154 }
155 }
156 }
157
158 // (Break c y c l e f a r away) Move the item c l o s e s t to the S/R
159 // (which r e q u i r e s r e p o s i t i o n i n g) to the c l o s e s t open l o c a t i o n
160 i f (moveLoc < 0)
161 {
162 minCostToSR = INF ;

APPENDIX A. Heuristics 109

163 minCostToEmpty = INF ;
164 moveLoc = −1;
165 emptyIdx = −1;
166
167 f o r (o = 0 ; o < emptyLoc . s i z e () ; ++o)
168 {
169 f o r (k = 0 ; k < kmax ; ++k)
170 {
171 // Item us ing t h i s p o s i t i o n i s not in f i n a l p o s i t i o n
172 i f ((currentPos [k] != Fk [k]))
173 {
174 // Has minimum moving co s t to empty p o s i t i o n under

th r e sho ld
175 i f (g i j [currentPos [k]] [emptyLoc [o]] < minCostToEmpty)
176 {
177 moveLoc = currentPos [k] ;
178 emptyIdx = o ;
179 minCostToEmpty = g i j [moveLoc] [emptyLoc [o]] ;
180
181 i f ((currentLoc >= 0))
182 {
183 minCostToSR = d i j [currentLoc] [moveLoc] ;
184 }
185 }
186 e l s e i f ((g i j [currentPos [k]] [emptyLoc [o]] ==

minCostToEmpty) &&
187 (currentLoc >= 0) &&
188 (d i j [currentLoc] [currentPos [k]] < minCostToSR))
189 {
190 moveLoc = currentPos [k] ;
191 minCostToSR = d i j [currentLoc] [moveLoc] ;
192 }
193 }
194 }
195 }
196 }
197
198 // Perform movement
199 i f (moveLoc >= 0)
200 {
201 i f ((currentLoc != moveLoc) && (currentLoc >= 0))
202 {
203 // Move v e h i c l e from i n i t i a l p o s i t i o n to the p o s i t i o n o f the

element to be moved
204 t o ta lCos t += d i j [currentLoc] [moveLoc] ;
205
206 i f (printKeyFlag)
207 {
208 printMovement (currentLoc , moveLoc , −1, TrackI i , tota lCost ,

emptyLoc) ;
209 }
210 }
211
212 // Now the i n i t i a l p o s i t i o n i s the p o s i t i o n o f the element to be

moved
213 // and the f i n a l p o s i t i o n i s the empty p o s i t i o n
214 currentLoc = moveLoc ;

APPENDIX A. Heuristics 110

215 moveLoc = emptyLoc [emptyIdx] ;
216
217 // Move item to i t ' s f i n a l p o s i t i o n
218 t o ta lCos t += g i j [currentLoc] [moveLoc] ;
219
220 currentPos [TrackI i [currentLoc]] = emptyLoc [emptyIdx] ;
221
222 // Swap item on each l o c a t i o n
223 auxItem = TrackI i [moveLoc] ;
224 TrackI i [moveLoc] = TrackI i [currentLoc] ;
225 TrackI i [currentLoc] = auxItem ;
226
227 emptyLoc [emptyIdx] = currentLoc ;
228
229 i f (printKeyFlag)
230 {
231 printMovement (currentLoc , currentPos [TrackI i [moveLoc]] ,
232 TrackI i [moveLoc] , TrackI i , tota lCost , emptyLoc) ;
233 }
234
235 // Now v e h i c l e i s in the f i n a l p o s i t i o n
236 currentLoc = moveLoc ;
237
238 i f (moveCycle >= 0)
239 {
240 TrackCc . e r a s e (TrackCc . begin () + moveCycle) ;
241 }
242 }
243 }
244
245 re turn to ta lCos t ;
246 }
247
248 void Reshuf f l eDecoder : : printMovement (const i n t i n i t i a l L o c , const i n t f ina lLoc ,

const i n t element ,
249 const std : : vector<int > &trackItem , const double moveCost ,
250 const std : : vector<int > &items) const
251 {
252 std : : cout << i n i t i a l L o c << " \ t " << f i n a l L o c << " \ t " ;
253 i f (e lement == −1){
254 std : : cout << " none\ t \ t "<< moveCost << " \ t \ t " ;
255 }
256 e l s e {
257 std : : cout << element <<" \ t \ t "<< moveCost << " \ t \ t " ;
258 }
259
260 pr int IntVectorSequence (trackItem) ;
261
262 std : : cout << " \ t " ;
263
264 pr int IntVectorSequence (items) ;
265
266 std : : cout << std : : endl ;
267 }
268
269 void Reshuf f l eDecoder : : pr int IntVectorSequence (const std : : vector <int > &vec) const
270 {

APPENDIX A. Heuristics 111

271 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = vec . begin () ; i != vec . end () ; ++i)
272 std : : cout << ∗ i << ' ' ;
273 }
274
275 void Reshuf f l eDecoder : : printKey (const std : : vector< double >& chromosome) const
276 {
277 decode (chromosome , t rue) ;
278 }

APPENDIX A. Heuristics 112

Listing A.9 – mainReshuffleBRKGA.cpp
1 /∗∗
2 ∗ @ f i l e mainReshuffleBRKGA . cpp
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Main f i l e f o r execut ing R e s h u f f l e BRKGA

10 ∗
11 ∗ This code t r e a t s the f o l l o w i n g parameters
12 ∗ OBS: Parameters should be in t h i s order
13 ∗
14 ∗ FILE . csv pr intBoo l seed P pe pm rhoe k maxgen X_NUMBER X_INTVL distP
15 ∗
16 ∗ Where :
17 ∗ − FILE . csv − The r e s h u f f l e s c e n a r i o
18 ∗ − pr intBoo l − True p r i n t s f i n a l s o lu t i on , f a l s e p r i n t s only the f i n a l co s t
19 ∗ − seed − Long unsigned used as seed f o r the random generato r
20 ∗ − P − S i z e o f populat ion − Defau l t 78
21 ∗ − pe − E l i t e f r a c t i o n o f the populat ion − Defau l t 0 .1625
22 ∗ − pm − Mutant f r a c t i o n o f the populat ion − Defau l t 0 .2631
23 ∗ − rhoe − P r o b a b i l i t y o f i n h e r i t i n g a l l e l e from e l i t e − Defau l t 0 .3122
24 ∗ − k − Number o f independent popu la t ions − Defau l t 4
25 ∗ − maxgen − Maximum number o f g e n e r a t i o n s − Defau l t 3000
26 ∗ − X_NUMBER − Number o f exchanged top i n d i v i d u a l s − Defau l t 2
27 ∗ − X_INTVL − Generation per iod to exchange i n d i v i d u a l s − Defau l t 40
28 ∗ − distP − Fract ion o f populat ion f o r d i s t a n c e convergence − Defau l t 0 .45
29 ∗
30 ∗∗
31 ∗ @sect ion Rev i s i ons :
32 ∗
33 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
34 ∗ ∗ O r i g i n a l v e r s i o n based on BRKGA C++ API Sample Code :
35 ∗ A C++ APPLICATION PROGRAMMING INTERFACE FOR
36 ∗ BIASED RANDOM−KEY GENETIC ALGORITHMS
37 ∗ RODRIGO F. TOSO AND MAURICIO G.C. RESENDE, 2011
38 ∗
39 ∗∗ ∗/
40
41 #inc lude <iostream>
42 #inc lude " Reshuf f l eDecoder . h "
43 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
44 #inc lude "MTRand. h "
45 #inc lude "BRKGA. h"
46 #inc lude <c l i m i t s >
47 #inc lude <time . h>
48 #inc lude <s t r i n g . h>
49
50 #d e f i n e DEFAULT_SCENARIO_FILE ((char ∗) " s c e n a r i o s \\

scenario_Imax400Uti l95Org50 . csv ")
51 #d e f i n e DEFAULT_PRINT_KEY f a l s e
52
53 #d e f i n e DEFAULT_POPULATION (78)
54 #d e f i n e DEFAULT_POPULATION_ELITE_FRACTION (0 . 1 6 2 5)

APPENDIX A. Heuristics 113

55 #d e f i n e DEFAULT_POPULATION_MUTANT_FRACTION (0 . 2 6 3 1)
56 #d e f i n e DEFAULT_PROBABILITY_INHERITANCE_FROM_ELITE (0 . 3 1 2 2)
57 #d e f i n e DEFAULT_INDEPENDENT_POPULATIONS (4)
58 #d e f i n e DEFAULT_NUMBER_OF_THREADS (4)
59 #d e f i n e DEFAULT_RANDOM_SEED (14159265)
60
61 #d e f i n e DEFAULT_INDIVIDUAL_EXCHANGE_COUNT (2)
62 #d e f i n e DEFAULT_MAX_GENERATIONS (3000)
63 #d e f i n e DEFAULT_INDIVIDUAL_EXCHANGE_GEN (40)
64
65 #d e f i n e DEFAULT_MAXDIST (0 . 0 0 1)
66 #d e f i n e DEFAULT_MAXDIST_POLULATION_PERCENTAGE (0 . 4 5)
67
68 /∗
69 ∗ Quick Maximum Distance eva lua t i on as de f ined in :
70 ∗ " Stopping C r i t e r i a f o r S ing le −Object ive Optimizat ion " ,
71 ∗ Karin Z i e l i n s k i , Dagmar Peters , and Rainer Laur
72 ∗ 2007
73 ∗/
74 bool quickMaxDistConverged (BRKGA< Reshuf f leDecoder , MTRand > &alg , double

popPercentage , double d i s tTo l e rance)
75 {
76 double best = a lg . g e tBes tF i tne s s () ;
77 unsigned j = a lg . getP () ∗ popPercentage − 1 ;
78
79 f o r (unsigned i = 0 ; i < a lg . getK () ; ++i)
80 {
81 i f (a l g . getPopulat ion (i) . g e t F i t n e s s (j) > best+best ∗ d i s tTo l e r ance)
82 {
83 re turn f a l s e ;
84 }
85 }
86
87 re turn true ;
88 }
89
90 i n t main (i n t argc , char ∗ argv [])
91 {
92 char ∗ s c e n a r i o F i l e P t r = DEFAULT_SCENARIO_FILE;
93 bool printKey = DEFAULT_PRINT_KEY;
94
95 unsigned p = DEFAULT_POPULATION; // s i z e o f

populat ion
96 double pe = DEFAULT_POPULATION_ELITE_FRACTION; // f r a c t i o n o f

populat ion to be the e l i t e −s e t
97 double pm = DEFAULT_POPULATION_MUTANT_FRACTION; // f r a c t i o n o f

populat ion to be rep laced by mutants
98 double rhoe = DEFAULT_PROBABILITY_INHERITANCE_FROM_ELITE; // p r o b a b i l i t y

that o f f s p r i n g i n h e r i t an a l l e l e from e l i t e parent
99 unsigned K = DEFAULT_INDEPENDENT_POPULATIONS; // number o f

independent popu la t i ons
100 unsigned MAXT = DEFAULT_NUMBER_OF_THREADS; // number o f

threads f o r p a r a l l e l decoding
101 long unsigned rngSeed =DEFAULT_RANDOM_SEED; // seed to the

random number genera to r
102
103 unsigned X_INTVL = DEFAULT_INDIVIDUAL_EXCHANGE_GEN; // exchange best

APPENDIX A. Heuristics 114

i n d i v i d u a l s at every X_INTVL g e n e r a t i o n s
104 unsigned X_NUMBER = DEFAULT_INDIVIDUAL_EXCHANGE_COUNT; // exchanged top

i n d i v i d u a l s
105
106 unsigned MAX_GENS = DEFAULT_MAX_GENERATIONS; // maximum number

o f g e n e r a t i o n s
107 double m = DEFAULT_MAXDIST; // Distance from

best s o l u t i o n to assume convergence
108 double d istP = DEFAULT_MAXDIST_POLULATION_PERCENTAGE; // Percentage o f

populat ion with d i s t a n c e sma l l e r than m to assume convergence
109
110 std : : cout << " \ r \nGiven parameters : " ;
111 f o r (i n t argCount = 0 ; argCount < argc ; argCount++)
112 {
113 std : : cout << argv [argCount] << " " ;
114 }
115 std : : cout << " \ r \n" ;
116
117 i f (argc >= 2)
118 {
119 s c e n a r i o F i l e P t r = argv [1] ;
120 }
121
122 char ∗findCSV = NULL;
123 findCSV = s t r s t r (s c e n a r i o F i l e P t r , " . csv ") ;
124
125 i f (! findCSV)
126 {
127 // Te l l the user how to run the program
128 std : : c e r r << " Usage : " << argv [0] << " FILE . csv (pr intBoo l) randomSeed P

pe pm rhoe k MAX_GENS X_NUMBER X_INTVL" << std : : endl ;
129 /∗ " Usage messages " are a convent iona l way o f t e l l i n g the user
130 ∗ how to run a program i f they ente r the command i n c o r r e c t l y .
131 ∗/
132 re turn 1 ;
133 }
134
135 i f (argc >= 3)
136 {
137 std : : s t r i ng s t r eam s s (argv [2]) ;
138
139 i f (! (s s >> std : : boo la lpha >> printKey))
140 {
141 // Te l l the user how to run the program
142 std : : c e r r << " Usage : " << argv [0] << " FILE . csv (pr intBoo l)

randomSeed P pe pm rhoe k MAX_GENS X_NUMBER X_INTVL" << std : : endl ;
143 /∗ " Usage messages " are a convent iona l way o f t e l l i n g the user
144 ∗ how to run a program i f they ente r the command i n c o r r e c t l y .
145 ∗/
146 re turn 1 ;
147 }
148 }
149
150 i f (argc >= 4)
151 {
152 rngSeed = (unsigned long) a t o l (argv [3]) ;
153 }

APPENDIX A. Heuristics 115

154 i f (argc >= 5)
155 {
156 p = (unsigned) a t o i (argv [4]) ;
157 }
158 i f (argc >= 6)
159 {
160 pe = a t o f (argv [5]) ;
161 }
162 i f (argc >= 7)
163 {
164 pm = a t o f (argv [6]) ;
165 }
166 i f (argc >= 8)
167 {
168 rhoe = a t o f (argv [7]) ;
169 }
170 i f (argc >= 9)
171 {
172 K = (unsigned) a t o i (argv [8]) ;
173 }
174 i f (argc >= 10)
175 {
176 MAX_GENS = (unsigned) a t o i (argv [9]) ;
177 }
178 i f (argc >= 11)
179 {
180 X_NUMBER = (unsigned) a t o i (argv [1 0]) ;
181 }
182 i f (argc >= 12)
183 {
184 X_INTVL = (unsigned) a t o i (argv [1 1]) ;
185 }
186 i f (argc >= 13)
187 {
188 distP = a t o f (argv [1 2]) ;
189 }
190
191 std : : s t r i n g f i l e P a t h (s c e n a r i o F i l e P t r) ;
192 R e s h u f f l e S c e n a r i o P a r s e r s c e n a r i o (f i l e Pa t h , printKey) ;
193
194 unsigned long i n t s t a r t = (unsigned long i n t) c l o ck () ;
195 Reshuf f l eDecoder decoder (s c e n a r i o) ; // i n i t i a l i z e the decoder
196 unsigned n = decoder . chromosomeSize () ; // s i z e o f

chromosomes
197
198 MTRand rng (rngSeed) ; // i n i t i a l i z e the random number genera to r
199
200 // i n i t i a l i z e the BRKGA−based h e u r i s t i c
201 BRKGA< Reshuf f leDecoder , MTRand > algor i thm (n , p , pe , pm, rhoe , decoder , rng ,

K, MAXT) ;
202
203 unsigned gene ra t i on = 0 ; // cur rent gene ra t i on
204 unsigned bestGenerat ion = 0 ; // cur rent gene ra t i on
205 double b e s t F i t n e s s = 0 ;
206 std : : vector< double > bestChromosome ;
207 double cu rF i tne s s = 0 ;
208 do {

APPENDIX A. Heuristics 116

209 a lgor i thm . evo lve () ; // evo lve the populat ion f o r one gene ra t i on
210
211 i f ((++ genera t i on) % X_INTVL == 0) {
212 a lgor i thm . exchangeEl i t e (X_NUMBER) ; // exchange top i n d i v i d u a l s
213 }
214 cu r F i tne s s = algor i thm . ge tBe s tF i tne s s () ;
215 i f (b e s t F i t n e s s != c urF i tn e s s)
216 {
217 b e s t F i t n e s s = curF i t ne s s ;
218 bestGenerat ion = genera t i on ;
219
220 i f (printKey)
221 {
222 std : : cout << "At gene ra t i on " << genera t i on <<" best s o l u t i o n

found has o b j e c t i v e va lue = "
223 << b e s t F i t n e s s << std : : endl ;
224 }
225 }
226 } whi le ((gene ra t i on < MAX_GENS) &&
227 (! quickMaxDistConverged (algorithm , distP , m))
228) ;
229
230 bestChromosome = algor i thm . getBestChromosome () ;
231
232 i f (printKey)
233 {
234 std : : cout << " Best Chromosome Key = "<< std : : endl ;
235 f o r (std : : vector <double >: : c o n s t _ i t e r a t o r i = bestChromosome . begin () ; i !=

bestChromosome . end () ; ++i)
236 std : : cout << ∗ i << ' , ' ;
237 std : : cout << std : : endl ;
238 std : : cout << " Best Chromosome Decoded = "<< std : : endl ;
239 decoder . printKey (bestChromosome) ;
240 std : : cout << std : : endl ;
241 }
242
243 unsigned long i n t brkga_mi l l i s econds_s ince_star t = (unsigned long i n t) (((

unsigned long i n t) c l o ck () − s t a r t) ∗ 1000) / CLOCKS_PER_SEC;
244 std : : cout << std : : endl << "BRKGA: \ t " << b e s t F i t n e s s << " \ tGenerat ion = " <<

bestGenerat ion ;
245 std : : cout << " \tRuntime = "<<brkga_mi l l i s econds_s ince_start << "ms" << " \tEnd

Generation = "<< genera t i on << std : : endl ;
246 std : : cout << std : : endl << b e s t F i t n e s s ;
247
248 // Output r e s u l t s
249 std : : o f s tream o u t f i l e (" reshuffleResultsBRKGA . csv " , i o s : : out | i o s : : app) ;
250
251 i f (o u t f i l e . is_open ())
252 {
253 o u t f i l e << argv [1] ;
254 o u t f i l e << " , " << b e s t F i t n e s s << " , " << brkga_mi l l i s econds_s ince_star t <<

" , " << bestGenerat ion ; // GRH Resu l t s
255 o u t f i l e << " , " << rngSeed ; // Random Seed
256 o u t f i l e << " , " << p << " , " << pe << " , " << pm << " , " << rhoe << " , " << K;

// BRKGA Parameters
257 o u t f i l e << " , " << MAX_GENS << " , " << X_INTVL << " , " << X_NUMBER; //

Execution Parameters

APPENDIX A. Heuristics 117

258 o u t f i l e << " , " << genera t i on ; // Conversion Generation
259
260 o u t f i l e << " \n" ;
261 o u t f i l e . c l o s e () ;
262 }
263
264 re turn 0 ;
265 }

118

APPENDIX B – SCENARIO GENERATION AND PARSING

B.1 EXAMPLE SCENARIO FILE

Figure 23 – Example of CSV reshuffling Scenario outputted by ScenarioGenerator.py.

B.2 SCENARIO PARSER

Listing B.1 – ReshuffleScenarioParser.h
1 /∗∗
2 ∗ @ f i l e R e s h u f f l e S c e n a r i o P a r s e r . h
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date Apr i l 18 , 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Dec la re s c l a s s R e s h u f f l e S c e n a r i o P a r s e r

10 ∗
11 ∗∗
12 ∗ @sect ion Rev i s i ons :

APPENDIX B. Scenario Generation and Parsing 119

13 ∗
14 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
15 ∗ ∗ O r i g i n a l v e r s i o n based on s c e n a r i o s used in J e n n i f e r Pazour ' s a r t i c l e :
16 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " 2015
17 ∗
18 ∗∗ ∗/
19
20 #i f n d e f Reshuf f l eScenar ioParser_H
21 #d e f i n e Reshuf f l eScenar ioParser_H
22
23 #inc lude <algor ithm>
24 #inc lude <fstream>
25 #inc lude <iostream>
26 #inc lude <sstream>
27 #inc lude <s t r i n g >
28 #inc lude <vector>
29
30 us ing namespace std ;
31
32 c l a s s R e s h u f f l e S c e n a r i o P a r s e r {
33 p r i v a t e :
34 i n t s ta r tPos ; // R e s h u f f l e s t a r t p o s i t i o n
35 unsigned i n t imax ; // Set o f s t o rage l o c a t i o n s , indexed on i , j = 0 ,

1 , 2 , . . . , | I | .
36 unsigned i n t omax ; // Number o f empty p o s i t i o n s
37 unsigned i n t kmax ; // Set o f items , indexed on k = 1 , 2 , . . . , |K | .
38 unsigned i n t cmax ; // Number C o f s e t s o f cyc l e s , indexed on c = 1 ,

2 , . . . , |C | .
39 unsigned i n t nmax ; // Items not in a c y c l e
40 double gmax ; // Max loaded co s t
41 double dmax ; // Max unloaded co s t
42 std : : vector<int > Ik ; // The i n i t i a l l o c a t i o n o f item k
43 std : : vector<int > Fk ; // The f i n a l l o c a t i o n o f item k ;
44 std : : vector<int > I i ; // I n i t i a l i tems in each l o c a t i o n
45 std : : vector<int > Fi ; // Fina l i tems in each l o c a t i o n
46 std : : vector<int > OIo ; // The open l o c a t i o n s
47 std : : vector<int > OFo; // The open l o c a t i o n s
48 std : : vector<int > N; // Number N o f items that do not belong to a

c y c l e (i . e . , non−c y c l e i tems) , indexed on k .
49 std : : vector<std : : vector <int > > Cc ; // Set o f i tems that belong to

c y c l e c , indexed on c .
50 std : : vector<std : : vector <double> > d i j ; // Unloaded co s t to t r a v e l from

l o c a t i o n i to j .
51 std : : vector<std : : vector <double> > g i j ; // Loaded Cost to t r a v e l from

l o c a t i o n i to j .
52 std : : vector<std : : vector <double> > f i e l d s ; // Var iab le used to s t o r e the csv

f i e l d s
53
54 pub l i c :
55 R e s h u f f l e S c e n a r i o P a r s e r (s t r i n g csvFileName , bool p r i n t) ;
56 const vector <int > get Ik (void) const ;
57 const vector <int > getFk (void) const ;
58 const vector <int > g e t I i (void) const ;
59 const vector <int > getFi (void) const ;
60 const vector <int > getOIo (void) const ;
61 const vector <int > getOFo (void) const ;
62 const vector <vector<double> > getDi j (void) const ;

APPENDIX B. Scenario Generation and Parsing 120

63 const vector <vector<double> > getGi j (void) const ;
64 const vector <vector<int > > getCc (void) const ;
65 const unsigned i n t getImax (void) const ;
66 const unsigned i n t getOmax(void) const ;
67 const unsigned i n t getKmax(void) const ;
68 const i n t getStartPos (void) const ;
69 const double getGmax(void) const ;
70 const double getDmax(void) const ;
71 } ;
72
73 #e n d i f // Reshuf f l eScenar ioParser_H

APPENDIX B. Scenario Generation and Parsing 121

Listing B.2 – ReshuffleScenarioParser.cpp
1 /∗∗
2 ∗ @ f i l e R e s h u f f l e S c e n a r i o P a r s e r . h
3 ∗ @version 1 .0
4 ∗ @author Leonardo Bueno
5 ∗ @date Apr i l 18 , 2018
6 ∗
7 ∗∗
8 ∗
9 ∗ @br ie f : Implements c l a s s R e s h u f f l e S c e n a r i o P a r s e r

10 ∗
11 ∗∗
12 ∗ @sect ion Rev i s i ons :
13 ∗
14 ∗ Revi s ion : 1 . 0 2018 Leonardo Bueno
15 ∗ ∗ O r i g i n a l v e r s i o n based on s c e n a r i o s used in J e n n i f e r Pazour ' s a r t i c l e :
16 ∗ " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " 2015
17 ∗
18 ∗∗ ∗/
19
20 #inc lude <fstream>
21 #inc lude <iostream>
22 #inc lude <sstream>
23 #inc lude <s t r i n g >
24 #inc lude <vector>
25 #inc lude <algor ithm>
26 #inc lude <s t d i o . h>
27 #inc lude <s t d l i b . h>
28 #inc lude <ctype . h>
29 #inc lude " R e s h u f f l e S c e n a r i o P a r s e r . h "
30
31 us ing namespace std ;
32
33 #d e f i n e DEFAULT_STARTPOS −1
34
35 #d e f i n e LBL_COL 0
36 #d e f i n e DATA_COL 0
37
38 #d e f i n e IMAX_LINE 0
39 #d e f i n e STARTPOS_LINE 1
40 #d e f i n e IK_LINE 2
41 #d e f i n e FK_LINE 4
42 #d e f i n e GIJ_LINE 6
43
44 #d e f i n e DIJ_LINE(imax) (GIJ_LINE + imax + 1)
45
46 R e s h u f f l e S c e n a r i o P a r s e r : : R e s h u f f l e S c e n a r i o P a r s e r (s t r i n g csvFileName , bool p r i n t)
47 {
48 // R e s h u f f l e S c e n a r i o P a r s e r r e c e i v e s the name o f csv f i l e
49 i f s t r e a m c s v F i l e (csvFileName) ; // Reading csv f i l e
50 unsigned i n t f i e l d C o un t e r ; // f i e l d counter
51 unsigned i n t j = 0 ; // column counter
52 unsigned i n t i = 0 ; // item counter
53
54 i f (c s v F i l e . is_open ())
55 {

APPENDIX B. Scenario Generation and Parsing 122

56 // Reading e lements from every l i n e and pushing in to f i e l d vec to r o f
v e c t o r s

57 s t r i n g l i n e ;
58 whi le (g e t l i n e (c svF i l e , l i n e))
59 {
60 s t r ing s t r eam sep (l i n e) ;
61 s t r i n g f i e l d ;
62 f i e l d s . push_back (vector <double >()) ;
63 whi le (g e t l i n e (sep , f i e l d , ' , '))
64 {
65 i f (s td : : any_of (f i e l d . begin () , f i e l d . end () , : : i s d i g i t))
66 {
67 f i e l d s . back () . push_back (stod (f i e l d)) ;
68 }
69 }
70 }
71 }
72 e l s e
73 {
74 throw std : : inval id_argument (" Cannot open CSV f i l e ") ;
75 }
76
77 // Gett ing imax from csv f i l e
78 imax = f i e l d s [IMAX_LINE] [DATA_COL] ;
79
80 // Gett ing s t a r t p o s i t i o n from csv f i l e
81 s ta r tPos = DEFAULT_STARTPOS;
82 i f (f i e l d s [STARTPOS_LINE] . s i z e ())
83 {
84 s ta r tPos = f i e l d s [STARTPOS_LINE] [DATA_COL] ;
85 }
86
87 // Checking e r r o r s c s v F i l e startPos , Ik , Fk , Imax and Omax
88 i f (s ta r tPos >= (i n t) (imax))
89 {
90 throw std : : inval id_argument (" I n v a l i d csv : s ta r tPos >= (imax) ") ;
91 }
92 i f ((f i e l d s [IK_LINE] . s i z e () − DATA_COL) >= (imax))
93 {
94 throw std : : inval id_argument (" I n v a l i d csv : Ik . s i z e () >= (imax) ") ;
95 }
96 i f ((f i e l d s [FK_LINE] . s i z e () − DATA_COL) >= (imax))
97 {
98 throw std : : inval id_argument (" I n v a l i d csv : Fk . s i z e () >= (imax) ") ;
99 }

100 i f (f i e l d s [IK_LINE] . s i z e () != f i e l d s [FK_LINE] . s i z e ())
101 {
102 throw std : : inval id_argument (" I n v a l i d csv : Ik . s i z e () != Fk . s i z e () ") ;
103 }
104
105 // Extract ing Ik from f i e l d s (f u l l csv in a matrix)
106 f o r (f i e l d Co u n te r =0; f i e ldCounte r <f i e l d s [IK_LINE] . s i z e () ; f i e l d C ou n te r++)
107 {
108 Ik . push_back (f i e l d s [IK_LINE] [f i e l d C ou n t e r+DATA_COL]) ;
109 Fk . push_back (f i e l d s [FK_LINE] [f i e l dC o u nt e r+DATA_COL]) ;
110 }
111

APPENDIX B. Scenario Generation and Parsing 123

112 // Def in ing Kmax
113 kmax = Ik . s i z e () ;
114
115 // Find empty p o s i t i o n s
116 f o r (i = 0 ; i<imax ; ++i)
117 {
118 I i . push_back(−1) ;
119 Fi . push_back(−1) ;
120
121 // I f p o s i t i o n i s not occupied as i n i t i a l l o c a t i o n o f any item , i t i s

i n i t i a l l y empty
122 i f (s td : : f i n d (Ik . begin () , Ik . end () , i) == Ik . end ())
123 {
124 OIo . push_back (i) ;
125 }
126 // I f p o s i t i o n i s not occupied as f i n a l l o c a t i o n o f any item , i t i s

f i n a l l y empty
127 i f (s td : : f i n d (Fk . begin () , Fk . end () , i) == Fk . end ())
128 {
129 OFo. push_back (i) ;
130 }
131 }
132
133 // Number o f empty p o s i t i o n s
134 omax = OIo . s i z e () ;
135
136 // Polynomial−time a lgor i thm to i d e n t i f y c y c l e s from J e n n i f e r Pazour ' s

a r t i c l e
137 // " Warehouse r e s h u f f l i n g : I n s i g h t s and opt imiza t i on " 2015
138
139 // Subset o f i tems that conta in s a l l i tems that r e q u i r e r e s h u f f l i n g and
140 // whose f i n a l l o c a t i o n i s i n i t i a l l y occupied by another item .
141 std : : vector<int > L ;
142 i n t k ; // Item under i n v e s t i g a t i o n
143 i n t k_ ; // Item c u r r e n t l y l o ca t ed item k ' s f i n a l l o c a t i o n
144 f o r (k = 0 ; k<(i n t)kmax ; ++k)
145 {
146 I i [Ik [k]] = k ;
147 Fi [Fk [k]] = k ;
148
149 // Element might be part o f a c y c l e
150 i f ((Fk [k] != Ik [k]) && (std : : f i n d (Ik . begin () , Ik . end () , Fk [k]) != Ik . end

()))
151 {
152 L . push_back (k) ;
153 } e l s e // Element i s not in a c y c l e
154 {
155 N. push_back (k) ;
156 }
157 }
158
159 i f (L . s i z e () > 0)
160 {
161 i = 0 ;
162 k = L [0] ;
163 Cc . r e s i z e (i +1) ;
164 Cc [i] . push_back (k) ;

APPENDIX B. Scenario Generation and Parsing 124

165 }
166
167 whi le (L . s i z e () > 0)
168 {
169 k_ = std : : d i s t a n c e (Ik . begin () , s td : : f i n d (Ik . begin () , Ik . end () , Fk [k])) ;
170 // i f k_ not in L , then Ci i s not a c y c l e ;
171 i f (s td : : f i n d (L . begin () , L . end () , k_) == L . end ())
172 {
173 f o r (i n t index = (i n t)Cc [i] . s i z e () ; index > 0 ; index −−)
174 {
175 k=Cc [i] [0] ;
176 Cc [i] . e r a s e (Cc [i] . begin () ,Cc [i] . begin () +1) ;
177 N. push_back (k) ;
178 L . e r a s e (std : : remove (L . begin () , L . end () , k) , L . end ()) ;
179 }
180
181 i f (L . s i z e () > 0)
182 {
183 k = L [0] ;
184 Cc [i] . r e s i z e (0) ;
185 Cc [i] . push_back (k) ;
186 }
187 }
188 e l s e
189 {
190 // i f k_ i s Ci , then you have i d e n t i f i e d c y c l e Ci ;
191 i f (s td : : f i n d (Cc [i] . begin () , Cc [i] . end () , k_) != Cc [i] . end ())
192 {
193 L . e r a s e (std : : remove_if (L . begin () , L . end () ,
194 [&] (i n t item) −>
195 bool { re turn std : : f i n d (Cc [i] . begin () , Cc [i] . end () , item)

!= Cc [i] . end () ; }) ,
196 L . end ()) ;
197
198 i ++;
199 i f (L . s i z e () > 0)
200 {
201 k = L [0] ;
202 Cc . r e s i z e (i +1) ;
203 Cc [i] . push_back (k) ;
204 }
205 }
206 // I d e n t i f y i n g Ci
207 e l s e
208 {
209 Cc [i] . push_back (k_) ;
210 k = k_;
211 }
212 }
213 }
214 cmax = i ; //C = s e t o f cyc l e s , indexed on c = 1 , 2 , . . . , |C | .
215
216 nmax = N. s i z e () ; // Items not in a c y c l e
217
218 // Extract ing g i j and d i j
219 g i j . r e s i z e (imax , vector<double >(imax)) ; // A l l o c a t i n g g i j (imax s i z e)
220 d i j . r e s i z e (imax , vector <double >(imax)) ; // A l l o c a t i n g d i j (imax s i z e)

APPENDIX B. Scenario Generation and Parsing 125

221
222 gmax = 0 ;
223 dmax = 0 ;
224
225 f o r (f i e l d Co u n te r =0; f i e ldCounter <imax ; f i e l d C ou n t e r++)
226 {
227 std : : vector<double> auxFie ldLineGi j (f i e l d s [f i e l d C ou n t e r+GIJ_LINE]) ;
228 i f (auxFie ldLineGi j . s i z e () < imax)
229 {
230 throw std : : inval id_argument (" I n v a l i d csv : g i j l i n e < imax ") ;
231 }
232
233 std : : vector<double> auxFie ldLineDi j (f i e l d s [f i e l dC o u nt e r+DIJ_LINE(imax)]) ;
234 i f (auxFie ldLineDi j . s i z e ()−DATA_COL < imax)
235 {
236 throw std : : inval id_argument (" I n v a l i d csv : d i j l i n e < imax ") ;
237 }
238
239 f o r (j =0; j<imax ; j++)
240 {
241 g i j [f i e l d C o un t e r] [j] = auxFie ldLineGi j [j+DATA_COL] ;
242
243 // Checking e r r o r s in g i j
244 i f (g i j [f i e l d C ou n te r] [j] <0)
245 {
246 throw std : : inval id_argument (" I n v a l i d csv : empty or incohe rent

va lue g i j ") ;
247 }
248
249 i f (g i j [f i e l d C ou n te r] [j] > gmax)
250 {
251 gmax = g i j [f i e l d C ou n t e r] [j] ;
252 }
253
254 d i j [f i e l dC o un t e r] [j] = auxFie ldLineDi j [j+DATA_COL] ;
255
256 // Checking e r r o r s in d i j
257 i f (d i j [f i e l d Co u n te r] [j] <0)
258 {
259 throw std : : inval id_argument (" I n v a l i d csv : empty or incohe rent

va lue d i j ") ;
260 }
261
262 i f (d i j [f i e l d Co u n te r] [j]> g i j [f i e l d Co u nt e r] [j])
263 {
264 throw std : : inval id_argument (" I n v a l i d csv : empty or incohe rent

va lue d i j ") ;
265 }
266
267 i f (d i j [f i e l d Co u n te r] [j] > dmax)
268 {
269 dmax = d i j [f i e l d C o un t e r] [j] ;
270 }
271 }
272 }
273
274 i f (p r i n t)

APPENDIX B. Scenario Generation and Parsing 126

275 {
276 std : : cout << " imax : " << imax << endl ;
277 std : : cout << "kmax : " << kmax << endl ;
278 std : : cout << " Star t Pos i t i on : " << star tPos << endl ;
279
280 std : : cout << " Ik : " ;
281 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = Ik . begin () ; i != Ik . end () ; ++i)
282 std : : cout << ∗ i << ' ' ;
283 std : : cout <<endl ;
284
285 std : : cout << "Fk : " ;
286 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = Fk . begin () ; i != Fk . end () ; ++i)
287 std : : cout << ∗ i << ' ' ;
288 std : : cout <<endl ;
289
290 std : : cout << " Cycles : " << cmax << endl ;
291 f o r (unsigned c = 0 ; c<cmax ; c++)
292 {
293 f o r (unsigned item =0; item < Cc [c] . s i z e () ; item++)
294 {
295 std : : cout << Cc [c] [item] << ' ' ;
296 }
297 std : : cout <<endl ;
298 }
299
300 std : : cout << "Non Cycles : " << nmax << endl ;
301 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = N. begin () ; i != N. end () ; ++i)
302 std : : cout << ∗ i << ' ' ;
303 std : : cout <<endl ;
304
305 std : : cout << "Empty Locat ions : " << omax << endl ;
306 f o r (std : : vector <int >: : c o n s t _ i t e r a t o r i = OIo . begin () ; i != OIo . end () ; ++

i)
307 std : : cout << ∗ i << ' ' ;
308 std : : cout <<endl ;
309 }
310
311 }
312
313 const vector <int > R e s h u f f l e S c e n a r i o P a r s e r : : g e t Ik (void) const
314 {
315 re turn Ik ;
316 }
317 const vector <int > R e s h u f f l e S c e n a r i o P a r s e r : : getFk (void) const
318 {
319 re turn Fk ;
320 }
321 const vector <int > R e s h u f f l e S c e n a r i o P a r s e r : : g e t I i (void) const
322 {
323 re turn I i ;
324 }
325 const vector <int > R e s h u f f l e S c e n a r i o P a r s e r : : ge tF i (void) const
326 {
327 re turn Fi ;
328 }
329 const vector <int > R e s h u f f l e S c e n a r i o P a r s e r : : getOIo (void) const
330 {

APPENDIX B. Scenario Generation and Parsing 127

331 re turn OIo ;
332 }
333 const vector <int > R e s h u f f l e S c e n a r i o P a r s e r : : getOFo (void) const
334 {
335 re turn OFo ;
336 }
337 const vector <vector<double> > R e s h u f f l e S c e n a r i o P a r s e r : : g e tD i j (void) const
338 {
339 re turn d i j ;
340 }
341 const vector <vector<double> > R e s h u f f l e S c e n a r i o P a r s e r : : g e tGi j (void) const
342 {
343 re turn g i j ;
344 }
345 const vector <vector<int > > R e s h u f f l e S c e n a r i o P a r s e r : : getCc (void) const
346 {
347 re turn Cc ;
348 }
349
350 const i n t R e s h u f f l e S c e n a r i o P a r s e r : : getStartPos (void) const
351 {
352 re turn s ta r tPos ;
353 }
354 const unsigned i n t R e s h u f f l e S c e n a r i o P a r s e r : : getImax (void) const
355 {
356 re turn imax ;
357 }
358 const unsigned i n t R e s h u f f l e S c e n a r i o P a r s e r : : getOmax(void) const
359 {
360 re turn omax ;
361 }
362 const unsigned i n t R e s h u f f l e S c e n a r i o P a r s e r : : getKmax(void) const
363 {
364 re turn kmax ;
365 }
366
367 const double R e s h u f f l e S c e n a r i o P a r s e r : : getGmax(void) const
368 {
369 re turn gmax ;
370 }
371 const double R e s h u f f l e S c e n a r i o P a r s e r : : getDmax(void) const
372 {
373 re turn dmax ;
374 }

APPENDIX B. Scenario Generation and Parsing 128

B.3 SCENARIO GENERATOR

Listing B.3 – ScenarioGenerator.py
1 ' ' '
2 Created on May 18 , 2018
3
4 @author : Leonardo Bueno
5 ' ' '
6 from __future__ import pr int_funct ion
7 import sys
8 import os
9 sys . path . i n s e r t (0 , os . path . dirname (os . path . r ea lpa th (__file__)))

10 import random
11 import numpy as np
12 import csv
13 from sc ipy . s p a t i a l . d i s t a n c e import squareform
14 from sc ipy . s p a t i a l . d i s t a n c e import p d i s t
15
16 de f whireOutCsvFile (outputDict) :
17 with open (outputDict [" outputF i l e "] , 'w ') as c s v f i l e :
18 outFi le_ = csv . w r i t e r (c s v f i l e , d i a l e c t=' e x c e l ' , quotechar=' " ' ,
19 quot ing=csv .QUOTE_NONE, l i n e t e r m i n a t o r = ' \n ')
20
21 # Write imax
22 writtenValue = [" imax "]
23 writtenValue . extend ([outputDict [" imax "]])
24 outFi le_ . writerow (writtenValue)
25
26 # Write Sta r t Pos i t i on
27 writtenValue = [" s ta r tPos "]
28 writtenValue . extend ([outputDict [" s ta r tPos "]])
29 outFi le_ . writerow (writtenValue)
30
31 # Write Ik
32 writtenValue = [" Ik "]
33 writtenValue . extend (outputDict [" Ik "])
34 outFi le_ . writerow (writtenValue)
35
36 writtenValue = []
37 outFi le_ . writerow (writtenValue)
38
39 # Write Fk
40 writtenValue = ["Fk"]
41 writtenValue . extend (outputDict ["Fk"])
42 outFi le_ . writerow (writtenValue)
43
44 writtenValue = []
45 outFi le_ . writerow (writtenValue)
46
47 # Write g i j
48 writtenValue = [" g i j "]
49 f o r i in range (outputDict [" imax "]) :
50 writtenValue . extend (outputDict [" g i j "] [i])
51 outFi le_ . writerow (writtenValue)
52 writtenValue = [" "]

APPENDIX B. Scenario Generation and Parsing 129

53
54 outFi le_ . writerow (writtenValue)
55
56 # Write d i j
57 writtenValue = [" d i j "]
58 f o r i in range (outputDict [" imax "]) :
59 writtenValue . extend (outputDict [" d i j "] [i])
60 outFi le_ . writerow (writtenValue)
61 writtenValue = [" "]
62
63 de f l i stCompare (x , y) :
64 count = 0
65 f o r i in range (0 , l en (x)) :
66 i f x [i] == y [i] :
67 count += 1
68 re turn count
69
70 de f g e n e r a t e R e s h u f f l e S c e n a r i o (imax , ut i l_prct , org_prct , outputFi le ,
71 s ta r tPos = −1, c o l s = 1 , d i s tanceMet r i c = ' random ' ,
72 unloadedDistanceMetr ic = ' random ' ,

f i na lOpenPos i t i on s = ' random ') :
73
74 u t i l _ p r c t = ut i l _ p rc t /100 ;
75 org_prct = org_prct /100 ;
76
77 i f (imax < 2) :
78 r a i s e ValueError (" I n v a l i d parameter : imax < 2 ")
79 i f ((u t i l _p r c t <= 0) or (u t i l _ p rc t >= 1 . 0)) :
80 r a i s e ValueError (" I n v a l i d parameter : u t i l i z a t i o n >= 100% or u t i l i z a t i o n

<= 0%")
81 i f ((org_prct >= 1 . 0)) :
82 r a i s e ValueError (" I n v a l i d parameter : o r g a n i z a t i o n >= 100%")
83 i f (" . csv " not in outputF i l e) :
84 r a i s e ValueError (" I n v a l i d parameter : output f i l e i s not . csv ")
85
86 i f (s ta r tPos == " none ") :
87 s ta r tPos = −1;
88 e l i f (s ta r tPos == " random ") :
89 s ta r tPos = random . randint (0 , imax−1) ;
90 e l i f (s ta r tPos . i s d i g i t ()) :
91 s ta r tPos = i n t (s ta r tPos) ;
92 e l s e :
93 r a i s e ValueError (" I n v a l i d parameter : s ta r tPos i s not \" none \" , \" random

\" , or \" d i g i t \" ")
94
95 i f (imax < star tPos) :
96 r a i s e ValueError (" I n v a l i d parameter : imax < star tPos ")
97
98 kmax = np . i n t (imax∗ u t i l _ p r c t) ;
99

100 equa lLocat ion = np . i n t (kmax ∗ org_prct) ;
101
102 outputDict = {}
103 outputDict [" imax "] = imax
104 outputDict [" s ta r tPos "] = sta r tPos
105 outputDict [" outputF i l e "] = outputF i l e
106

APPENDIX B. Scenario Generation and Parsing 130

107 i _ l i s t = l i s t (np . random . permutation (imax))
108
109 outputDict [" Ik "] = l i s t (i _ l i s t [: kmax]) ;
110
111 i f (f i na lOpenPos i t i on s == " random ") :
112 maxIndex = imax ;
113 e l i f (f i na lOpenPos i t i on s == " equal ") :
114 maxIndex = kmax ;
115 e l s e :
116 r a i s e ValueError (" I n v a l i d parameter : f i na lOpenPos i t i on s i s not \ ' equal \ '

nor \ ' random \ ' ")
117
118 whi le (l i stCompare (l i s t (i _ l i s t [: kmax]) , outputDict [" Ik "]) > equa lLocat ion) :
119 index1 = random . rand int (0 , maxIndex−1) ;
120 index2 = random . rand int (0 , maxIndex−1) ;
121 i _ l i s t [index1] , i _ l i s t [index2] = i _ l i s t [index2] , i _ l i s t [index1]
122
123 outputDict ["Fk"] = l i s t (i _ l i s t [: kmax]) ;
124
125 i f (d i s tanceMet r i c == " random ") :
126 #c o n s i d e r us ing randint to generate d i j and g i j with i n t e g e r i n t e r v a l s
127 gij_min = random . uniform (1 , imax /2)
128
129 g i j = np . random . uniform (low=gij_min , high=imax , s i z e =(imax , imax))
130 np . f i l l _ d i a g o n a l (g i j , 0)
131 e l s e :
132 i f (c o l s > imax) :
133 r a i s e ValueError (" I n v a l i d parameter : c o l s > imax ")
134
135 imaxHVList = [(i n t (i%c o l s) , i n t (i / c o l s)) f o r i in range (imax)]
136 g i j = squareform (p d i s t (imaxHVList , d i s tanceMet r i c))
137
138 outputDict [" g i j "] = g i j
139
140 i f (unloadedDistanceMetr ic == ' equal ') :
141 di j_deduct ion = 1 ;
142 e l i f (unloadedDistanceMetr ic == ' random ') :
143 di j_deduct ion = random . uniform (0 . 1 , 0 . 9 9)
144 e l s e :
145 r a i s e ValueError (" I n v a l i d parameter : unloadedDistanceMetr ic i s not \ '

equal \ ' nor \ ' random \ ' ")
146
147 d i j = di j_deduct ion ∗ g i j
148 np . f i l l _ d i a g o n a l (d i j , 0)
149 outputDict [" d i j "] = d i j
150
151 p r i n t (" Imax : " + s t r (imax)) ;
152 p r i n t (" Sta r t Pos : " + s t r (s ta r tPos)) ;
153 p r i n t ("Kmax: " + s t r (kmax)) ;
154 p r i n t (" Organizat ion : " + s t r (org_prct ∗100) + "%") ;
155 p r i n t (" Equal Locat ions : " + s t r (equa lLocat ion)) ;
156 p r i n t (" F ina l open p o s i t i o n s : " + f ina lOpenPos i t i on s) ;
157 p r i n t (" Ik : " + s t r (outputDict [" Ik "])) ;
158 p r i n t ("Fk : " + s t r (outputDict ["Fk"])) ;
159 p r i n t (" Columns : " + s t r (c o l s)) ;
160 p r i n t (" Distance Metric : " + d i s tanceMet r i c) ;
161 p r i n t (" Unloaded Distance Metric : " + unloadedDistanceMetr ic) ;

APPENDIX B. Scenario Generation and Parsing 131

162
163 whireOutCsvFile (outputDict)
164
165 i f __name__ == '__main__ ' :
166 t ry :
167 imax = np . i n t (sys . argv [1]) ;
168 u t i l _ p r c t = np . double (sys . argv [2]) ;
169 org_prct = np . double (sys . argv [3]) ;
170
171 outputF i l e = " s c e n a r i o . csv "
172 i f (l en (sys . argv) >= 5) :
173 outputF i l e = sys . argv [4] ;
174
175 s ta r tPos = −1;
176 i f (l en (sys . argv) >= 6) :
177 s ta r tPos = sys . argv [5] ;
178
179 c o l s = 1 ;
180 i f (l en (sys . argv) >= 7) :
181 c o l s = np . i n t (sys . argv [6]) ;
182
183 d i s tanceMet r i c = ' random ' ;
184 i f (l en (sys . argv) >= 8) :
185 d i s tanceMet r i c = sys . argv [7] ;
186
187 unloadedDistanceMetr ic = ' random ' ;
188 i f (l en (sys . argv) >= 9) :
189 unloadedDistanceMetr ic = sys . argv [8] ;
190
191 f i na lOpenPos i t i on s = ' random ' ;
192 i f (l en (sys . argv) >= 10) :
193 f i na lOpenPos i t i on s = sys . argv [9] ;
194
195 g e n e r a t e R e s h u f f l e S c e n a r i o (imax , ut i l_prct , org_prct , outputFi le , s tartPos

,
196 co l s , d i s tanceMetr i c , unloadedDistanceMetr ic ,

f i na lOpenPos i t i on s) ;
197
198 except Asse r t i onErro r :
199 r a i s e ValueError (" I n v a l i d parameter ")

132

APPENDIX C – IRACE CONFIGURATION AND RESULTS

C.1 IRACE FILES FOR GRH PARAMETER TUNNING

C.1.1 Parameters

Listing C.1 – Parameters for GRH Irace execution
1 # name switch type va lue s
2 tau " " r (0 , 40)

C.1.2 Restrictions

No restrictions were applied for the GRH configuration

APPENDIX C. Irace configuration and results 133

C.1.3 Evaluation Function

Listing C.2 – Evaluation Function for GRH Irace execution
1 #! / usr / bin /python
2 ###
3 # This s c r i p t i s the command that i s executed every run .
4 # This s c r i p t i s run in the execut ion d i r e c t o r y (execDir , −−exec−d i r) .
5 #
6 # PARAMETERS:
7 # argv [1] i s the candidate c o n f i g u r a t i o n number
8 # argv [2] i s the i n s t a n c e ID
9 # argv [3] i s the seed

10 # argv [4] i s the i n s t a n c e name
11 # The r e s t (argv [5 :]) are parameters to the run
12 #
13 # RETURN VALUE:
14 # This s c r i p t should p r i n t one numerica l va lue : the co s t that must be minimized .
15 # Exit with 0 i f no er ror , with 1 in case o f e r r o r
16 ###
17
18 import datet ime
19 import os . path
20 import re
21 import subproces s
22 import sys
23
24 exe = "C: \TunningBRKGA\ iracePazour \PazourGRH\BuildPazourGRH . exe "
25 f ixed_params = " f a l s e −1"
26
27 i f l en (sys . argv) < 5 :
28 p r i n t (" \nUsage : . / target −runner . py <candidate_id> <instance_id> <seed>")
29 p r i n t ("<instance_path_name> < l i s t o f parameters >\n")
30 sys . e x i t (1)
31
32 de f target_runner_error (msg) :
33 now = datet ime . datet ime . now ()
34 p r i n t (s t r (now) + " e r r o r : " + msg)
35 sys . e x i t (1)
36
37 # Get the parameters as command l i n e arguments .
38 candidate_id = sys . argv [1]
39 ins tance_id = sys . argv [2]
40 seed = sys . argv [3]
41 i n s t a n c e = sys . argv [4]
42 cand_params = sys . argv [5 :]
43
44 # Def ine the stdout and s t d e r r f i l e s .
45 o u t _ f i l e = " c " + s t r (candidate_id) + "−" + s t r (ins tance_id) + " . stdout "
46 e r r _ f i l e = " c " + s t r (candidate_id) + "−" + s t r (ins tance_id) + " . s t d e r r "
47
48 i f not os . path . i s f i l e (exe) :
49 target_runner_error (s t r (exe) + " not found ")
50 i f not os . a c c e s s (exe , os .X_OK) :
51 now = datet ime . datet ime . now ()
52 p r i n t (s t r (now) + " e r r o r : " + s t r (exe) + " i s not executab l e ")
53

APPENDIX C. Irace configuration and results 134

54 # Build the command , run i t and save the output to a f i l e ,
55 # to parse the r e s u l t from i t .
56 #
57 # Stdout and s t d e r r f i l e s have to be opened be f o r e the c a l l () .
58 #
59 # Exit with e r r o r i f something went wrong in the execut ion .
60
61 command = [exe] + [i n s t a n c e] +fixed_params . s p l i t () +cand_params
62
63 out f = open (out_f i l e , "w")
64 e r r f = open (e r r _ f i l e , "w")
65 return_code = subproces s . check_ca l l (command , stdout = outf , s t d e r r = e r r f)
66 out f . c l o s e ()
67 e r r f . c l o s e ()
68
69 i f return_code != 0 :
70 now = datet ime . datet ime . now ()
71 p r i n t (s t r (now) + " e r r o r : command returned code " + s t r (return_code))
72 sys . e x i t (1)
73
74 i f not os . path . i s f i l e (o u t _ f i l e) :
75 now = datet ime . datet ime . now ()
76 p r i n t (s t r (now) + " e r r o r : output f i l e "+ o u t _ f i l e +" not found . ")
77 sys . e x i t (1)
78 # This i s an example o f read ing a number from the output .
79 # I t assumes that the o b j e c t i v e va lue i s the f i r s t number in
80 # the f i r s t column o f the l a s t l i n e o f the output .
81
82 l a s t l i n e = [l i n e . r s t r i p (' \n ') f o r l i n e in open (o u t _ f i l e)] [−1]
83
84 # from http :// s tackove r f l ow . com/ que s t i on s /4703390
85 numeric_const_pattern = r " " "
86 [−+]? # o p t i o n a l s i gn
87 (? :
88 (? : \d∗ \ . \d+) # . 1 .12 .123 e tc 9 .1 e t c 98 .1 e t c
89 |
90 (? : \d+ \ . ?) # 1 . 12 . 123 . e t c 1 12 123 e tc
91)
92 # fo l l owed by o p t i o n a l exponent part i f d e s i r e d
93 (? : [Ee] [+−]? \d+) ?
94 " " "
95 rx = re . compi le (numeric_const_pattern , re .VERBOSE)
96
97 co s t = rx . f i n d a l l (l a s t l i n e) [0]
98 p r i n t (co s t)
99

100 os . remove (o u t _ f i l e)
101 os . remove (e r r _ f i l e)
102
103 sys . e x i t (0)

APPENDIX C. Irace configuration and results 135

C.1.4 Scenario

Listing C.3 – Scenario for GRH Irace execution
1 ## −∗− mode : r −∗− #####
2 ## Scenar io setup f o r GRH I t e r a t e d Race (iRace) .
3 ##
4
5 ## F i l e that conta in s the d e s c r i p t i o n o f the parameters .
6 parameterFi l e = " . / parameters . txt "
7
8 ## Direc tory where the programs w i l l be run .
9 execDir = " . / exec−d i r / "

10
11 ## F i l e to save tuning r e s u l t s as an R dataset , e i t h e r abso lu t e path
12 ## or r e l a t i v e to execDir .
13 l o g F i l e = " . / i r a c e . Rdata "
14
15 ## Direc tory where tuning i n s t a n c e s are located , e i t h e r abso lu t e path or
16 ## r e l a t i v e to cur rent d i r e c t o r y .
17 t r a i n I n s t a n c e s D i r = " . . / In s tance s "
18
19 ## F i l e with a l i s t o f i n s t a n c e s and (o p t i o n a l l y) parameters .
20 t r a i n I n s t a n c e s F i l e = " in s tance s − l i s t . txt "
21
22 ## A f i l e conta in ing a l i s t o f i n i t i a l c o n f i g u r a t i o n s .
23 c o n f i g u r a t i o n s F i l e = " c o n f i g u r a t i o n s . txt "
24
25 ## The s c r i p t c a l l e d f o r each c o n f i g u r a t i o n that launches the program to be
26 ## tuned .
27 targetRunner = " . / target −runner . py "
28
29 ## The maximum number o f runs (i n v o c a t i o n s o f targetRunner) that w i l l
30 ## performed . I t determines the (maximum) budget o f exper iments f o r the tuning .
31 maxExperiments = 15000
32
33 ## Enable/ d i s a b l e d e t e r m i n i s t i c a lgor i thm mode , i f enabled i r a c e
34 ## w i l l not use an i n s t a n c e more that once in each race . Note that
35 ## i f the number o f i n s t a n c e s provided i s l e s s than f i r s t T e s t , no
36 ## s t a t i s t i c a l t e s t w i l l be performed .
37 d e t e r m i n i s t i c = 1

APPENDIX C. Irace configuration and results 136

C.2 IRACE FILES FOR RESHUFFLE BRKGA PARAMETER TUNNING

C.2.1 Parameters

Listing C.4 – Parameters for Reshuffle Brkga Irace execution
1 # name switch type va lue s
2 p " " i (10 , 100)
3 pe " " r (0 , 1)
4 pm " " r (0 , 1)
5 rhoe " " r (0 , 1)
6 K " " i (1 , 4)
7 MAX_GENS " " i (50 , 3000)
8 X_NUMBER " " i (2 , 5)
9 X_INTVL " " i (30 , 300)

C.2.2 Restrictions

Listing C.5 – Restrictions for Reshuffle Brkga Irace execution
1 pe+pm > 1
2 pe∗p < 1
3 X_NUMBER∗K > pe∗p
4 X_INTVL > MAX_GENS

APPENDIX C. Irace configuration and results 137

C.2.3 Evaluation Function

Listing C.6 – Evaluation Function for Reshuffle BRKGA Irace execution
1 #! / usr / bin /python
2 ###
3 # This s c r i p t i s the command that i s executed every run .
4 # This s c r i p t i s run in the execut ion d i r e c t o r y (execDir , −−exec−d i r) .
5 #
6 # PARAMETERS:
7 # argv [1] i s the candidate c o n f i g u r a t i o n number
8 # argv [2] i s the i n s t a n c e ID
9 # argv [3] i s the seed

10 # argv [4] i s the i n s t a n c e name
11 # The r e s t (argv [5 :]) are parameters to the run
12 #
13 # RETURN VALUE:
14 # This s c r i p t should p r i n t one numerica l va lue : the co s t that must be minimized .
15 # Exit with 0 i f no er ror , with 1 in case o f e r r o r
16 ###
17
18 import datet ime
19 import os . path
20 import re
21 import subproces s
22 import sys
23
24 exe = "C: \TunningBRKGA\iraceBRKGA\BuildBRKGA\BuildBRKGA . exe "
25 f ixed_params = " f a l s e "
26
27 i f l en (sys . argv) < 5 :
28 p r i n t (" \nUsage : . / target −runner . py <candidate_id> <instance_id> <seed>")
29 p r i n t ("<instance_path_name> < l i s t o f parameters >\n")
30 sys . e x i t (1)
31
32 de f target_runner_error (msg) :
33 now = datet ime . datet ime . now ()
34 p r i n t (s t r (now) + " e r r o r : " + msg)
35 sys . e x i t (1)
36
37 # Get the parameters as command l i n e arguments .
38 candidate_id = sys . argv [1]
39 ins tance_id = sys . argv [2]
40 seed = sys . argv [3]
41 i n s t a n c e = sys . argv [4]
42 cand_params = sys . argv [5 :]
43
44 # Def ine the stdout and s t d e r r f i l e s .
45 o u t _ f i l e = " c " + s t r (candidate_id) + "−" + s t r (ins tance_id) + " . stdout "
46 e r r _ f i l e = " c " + s t r (candidate_id) + "−" + s t r (ins tance_id) + " . s t d e r r "
47
48 i f not os . path . i s f i l e (exe) :
49 target_runner_error (s t r (exe) + " not found ")
50 i f not os . a c c e s s (exe , os .X_OK) :
51 now = datet ime . datet ime . now ()
52 p r i n t (s t r (now) + " e r r o r : " + s t r (exe) + " i s not executab l e ")
53

APPENDIX C. Irace configuration and results 138

54 # Build the command , run i t and save the output to a f i l e ,
55 # to parse the r e s u l t from i t .
56 #
57 # Stdout and s t d e r r f i l e s have to be opened be f o r e the c a l l () .
58 #
59 # Exit with e r r o r i f something went wrong in the execut ion .
60
61 command = [exe] + [i n s t a n c e] +fixed_params . s p l i t () +cand_params
62
63 out f = open (out_f i l e , "w")
64 e r r f = open (e r r _ f i l e , "w")
65 return_code = subproces s . check_ca l l (command , stdout = outf , s t d e r r = e r r f)
66 out f . c l o s e ()
67 e r r f . c l o s e ()
68
69 i f return_code != 0 :
70 now = datet ime . datet ime . now ()
71 p r i n t (s t r (now) + " e r r o r : command returned code " + s t r (return_code))
72 sys . e x i t (1)
73
74 i f not os . path . i s f i l e (o u t _ f i l e) :
75 now = datet ime . datet ime . now ()
76 p r i n t (s t r (now) + " e r r o r : output f i l e "+ o u t _ f i l e +" not found . ")
77 sys . e x i t (1)
78 # This i s an example o f read ing a number from the output .
79 # I t assumes that the o b j e c t i v e va lue i s the f i r s t number in
80 # the f i r s t column o f the l a s t l i n e o f the output .
81
82 l a s t l i n e = [l i n e . r s t r i p (' \n ') f o r l i n e in open (o u t _ f i l e)] [−1]
83
84 # from http :// s tackove r f l ow . com/ que s t i on s /4703390
85 numeric_const_pattern = r " " "
86 [−+]? # o p t i o n a l s i gn
87 (? :
88 (? : \d∗ \ . \d+) # . 1 .12 .123 e tc 9 .1 e t c 98 .1 e t c
89 |
90 (? : \d+ \ . ?) # 1 . 12 . 123 . e t c 1 12 123 e tc
91)
92 # fo l l owed by o p t i o n a l exponent part i f d e s i r e d
93 (? : [Ee] [+−]? \d+) ?
94 " " "
95 rx = re . compi le (numeric_const_pattern , re .VERBOSE)
96
97 co s t = rx . f i n d a l l (l a s t l i n e) [0]
98 p r i n t (co s t)
99

100 os . remove (o u t _ f i l e)
101 os . remove (e r r _ f i l e)
102
103 sys . e x i t (0)

APPENDIX C. Irace configuration and results 139

C.2.4 Scenario

Listing C.7 – Scenario for Reshuffle BRKGA Irace execution
1 ## −∗− mode : r −∗− #####
2 ## Scenar io setup f o r GRH I t e r a t e d Race (iRace) .
3 ##
4
5 ## F i l e that conta in s the d e s c r i p t i o n o f the parameters .
6 parameterFi l e = " . / parameters . txt "
7
8 ## Direc tory where the programs w i l l be run .
9 execDir = " . / exec−d i r / "

10
11 ## F i l e to save tuning r e s u l t s as an R dataset , e i t h e r abso lu t e path
12 ## or r e l a t i v e to execDir .
13 l o g F i l e = " . / i r a c e . Rdata "
14
15 ## Direc tory where tuning i n s t a n c e s are located , e i t h e r abso lu t e path or
16 ## r e l a t i v e to cur rent d i r e c t o r y .
17 t r a i n I n s t a n c e s D i r = " . . / In s tance s "
18
19 ## F i l e with a l i s t o f i n s t a n c e s and (o p t i o n a l l y) parameters .
20 t r a i n I n s t a n c e s F i l e = " in s tance s − l i s t . txt "
21
22 ## A f i l e conta in ing a l i s t o f i n i t i a l c o n f i g u r a t i o n s .
23 c o n f i g u r a t i o n s F i l e = " c o n f i g u r a t i o n s . txt "
24
25 ## The s c r i p t c a l l e d f o r each c o n f i g u r a t i o n that launches the program to be
26 ## tuned .
27 targetRunner = " . / target −runner . py "
28
29 ## The maximum number o f runs (i n v o c a t i o n s o f targetRunner) that w i l l
30 ## performed . I t determines the (maximum) budget o f exper iments f o r the tuning .
31 maxExperiments = 4000

	TITLE PAGE
	
	ACKNOWLEDGEMENTS
	EPIGRAPH
	Abstract
	Resumo
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	Introduction
	Motivation
	Problem Statement
	Statement of the Contributions
	Organization of the Dissertation

	Literature Review
	Methods
	Genetic Algorithm
	Random-Key Genetic Algorithm
	Biased Random-Key Genetic Algorithm

	Reshuffle BRKGA
	Decoder
	Heuristic H3
	Heuristic GRH
	Reshuffle Decoder

	Stopping Criteria

	Parameter Configuration
	Scenario Representation
	Parser
	Scenario Generation

	Automatic Parameter Configuration
	Iterated Racing

	GRH Parameter Tuning
	BRKGA Parameter Tuning
	BRKGA Stopping Criteria Tuning
	Comparison Between Stopping Criteria Configurations

	Final Reshuffling BRKGA Configuration

	Experimental Analysis
	Computational Environment
	Experimental Design
	Results
	Statistical Analysis
	Solution Quality
	Runtime

	Conclusions and Future Research
	Future Research

	REFERENCES
	Heuristics
	H3 Heuristic
	GRH Heuristic
	BRKGA Reshuffle Decoder

	Scenario Generation and Parsing
	Example Scenario File
	Scenario Parser
	Scenario Generator

	Irace configuration and results
	Irace files for GRH parameter tunning
	Parameters
	Restrictions
	Evaluation Function
	Scenario

	Irace files for Reshuffle Brkga parameter tunning
	Parameters
	Restrictions
	Evaluation Function
	Scenario

