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RESUMO 

A falsificação de cédulas, mesmo com os investimentos governamentais em recursos 

gráficos avançados e itens de segurança, tem se tornado tão sofisticada que algumas são 

capazes de escapar aos testes de autenticidade. Portanto, o desenvolvimento de métodos mais 

eficientes, especialmente aqueles baseados na informação química, capazes de detectar a 

falsificação de maneira precisa e não destrutiva, torna-se relevante. Neste trabalho, a 

espectroscopia no infravermelho próximo (NIR) combinada com Modelagem Independente e 

Flexível por Analogia de Classes (SIMCA) e Análise Discriminante Linear (LDA) associada 

ao Algoritmo de Projeções Sucessivas (SPA) foi aplicada para identificar cédulas de Real 

(R$20, R$50 e R$100) falsas e verdadeiras, usando um equipamento NIR portátil para a 

aquisição dos espectros, permitindo a realização de ensaios em campo, através de 

procedimento simplificado. Trezentas cédulas verdadeiras e duzentas e vinte sete falsas, 

analisadas na sede da Polícia Federal de Pernambuco, foram empregadas neste trabalho. Os 

espectros no infravermelho próximo (950-1650 nm) de sete áreas diferentes das cédulas (duas 

com tinta fluorescente, uma na marca d’água, três nas impressões calcográficas e uma no 

número de série impresso em tipografia) foram avaliados, usando um espectrômetro portátil, 

MicroNIR
TM 

1700 JSDU. Modelos SIMCA e SPA-LDA foram construídos usando os 

espectros pré- processados com a primeira derivada de uma das áreas calcográficas, a qual foi 

mais informativa para identificação da autenticidade. Gráficos de escores e resíduos versus 

influência foram utilizados para detectar amostras anômalas. Os modelos SPA-LDA para as 

cédulas de R$20, R$50 e R$100 foram desenvolvidos utilizando-se doze, duas e dezenove 

variáveis, respectivamente. Para os modelos SIMCA, todas (300) as cédulas verdadeiras 

foram classificadas corretamente e nenhuma das falsas (227) foi classificada como verdadeira. 

Para os modelos SPA-LDA de duas classes (verdadeiras e falsas), todas as amostras de teste 

foram corretamente classificadas em suas respectivas classes. Para ambas as técnicas de 

classificação foram alcançadas sensibilidade, especificidade e eficiência igual a 100% e 

coeficiente de correlação de Matthew de +1. Assim, a combinação da espectroscopia NIR 

com instrumento portátil e modelos SIMCA e SPA-LDA é um método analítico efetivo, 

simples, rápido e não destrutivo para avaliar a autenticidade de cédulas de real.  

Palavras-chave: Cédulas. Autenticidade. Infravermelho próximo portátil. Quimiometria. 

Classificação multivariada. 



ABSTRACT 

Banknote counterfeiting, even with the government investments in advanced graphic 

resources and security features, have become so sophisticated that some can escape to 

authenticity exams. Therefore, the development of more efficient methods, especially those 

based on chemical information, able to detect the counterfeit in an unambiguous and non 

destructive mode, becomes relevant. In this work, the near infrared spectroscopy (NIR) 

combined with Soft Independent Modeling of Class Analogy (SIMCA) and Linear 

Discriminant Analysis (LDA) associated to Successive Projections Algorithm (SPA) was 

applied to identify counterfeit and authentic Brazilian Real (R$20, R$50 e R$100) banknotes, 

using portable NIR equipment for spectra acquisition, thus allowing in field analysis to be 

carried out, through a simplified procedure. Three hundred authentic and two hundred and 

twenty seven counterfeit Brazilian banknotes, analyzed at the headquarters of the Federal 

Police in Pernambuco, were employed in this study. Near infrared spectra (950-1650 nm) 

from seven different areas of the banknotes (two with fluorescent ink, one over watermark, 

three with intaglio printing process and one over the serial numbers with typography printing) 

were evaluated using a portable MicroNIR
TM

 Spectrometer 1700 JSDU. SIMCA and SPA-

LDA models were built using first derivative preprocessed spectral data from one of the 

intaglio areas, which was more informative to authenticity identification. Score and residual 

versus leverage plots were used to detect outliers. The SPA- LDA models to the R$20, R$50 

and R$100 banknotes were developed using twelve, two and nineteen variables, respectively. 

For the SIMCA models, all authentic (300) banknotes were correctly classified and none of 

the counterfeits (227) was classified as authentic. For the two classes SPA-LDA models 

(authentic and counterfeit currencies), all the test samples were correctly classified into their 

respective class. For both classification techniques were achieved sensitivity, specificity and 

efficiency equal to 100% and Matthews’s correlation coefficient of +1. Thus, the combination 

of the NIR spectroscopy with portable equipment and SIMCA and SPA-LDA models is an 

effective, simple, fast and non-destructive analytical method to assessment Real banknotes 

authenticity. 

Keywords: Banknotes. Authenticity. Portable near-infrared. Chemometrics. Multivariate 

classification. 
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1 INTRODUÇÃO 

Inflação, mercado clandestino, prejuízos para o comércio e para prestação de serviços, 

são algumas das consequências desastrosas da circulação de cédulas falsas, além do impacto 

severo na economia. A falsificação de cédulas é um crime recorrente em muitos países, 

inclusive no Brasil, que em 2017 registrou a apreensão de 500.726 cédulas falsas, em todos os 

estados, abrangendo todos os valores da primeira e segunda família do Real, vigentes desde 

1994 e 2010, respectivamente. O estado de Pernambuco está entre os 10 primeiros na 

quantidade de cédulas falsas retidas, com 14.546 apreensões nesse mesmo ano. As cédulas 

com maior número de apreensões são as de R$20, R$50 e R$100. A Figura 1 mostra a 

distribuição da quantidade de cédulas retidas no país, durante 2017.  (BANCO CENTRAL 

DO BRASIL, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Como forma de inibir a falsificação, muitos governos têm investido esforços e custos 

para implantação de recursos gráficos avançados e itens de segurança em suas cédulas. A 

segunda família do Real é um exemplo do avanço tecnológico nessa área. Baseada na análise 

sensorial essa moeda traz itens que podem ser vistos (marca d’água, fios de segurança e 

quebra-cabeça), sentidos (alto relevo - calcografia e textura do papel) ou descobertos (faixa 

holográfica, números que mudam de cor, número escondido, elementos fluorescentes e 

microimpressões).  

Na cartilha de treinamento disponibilizada pelo Banco Central do Brasil são 

Figura 1 – Distribuição de cédulas falsas retidas no Brasil em 2017.  

Fonte: Banco Central do Brasil (2017) 
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apresentados os testes para avaliação da autenticidade das cédulas com base nesses itens de 

segurança. (BANCO CENTRAL DO BRASIL, 2012). Esses exames, que são tácteis ou 

visuais, requerem treinamento prévio, alguns, inclusive exigem o emprego de equipamento, 

por exemplo, para detecção de tipo de impressão, microletras e de elementos fluorescentes. 

Além do mais, podem ser considerados subjetivos, uma vez que dependem da experiência do 

perito analista.  

A fim de facilitar e agilizar os exames de autenticidade, estão disponíveis 

comercialmente muitos equipamentos portáteis baseados principalmente na radiação 

ultravioleta (UV). Porém, a característica fluorescente analisada pela maioria desses 

equipamentos é frágil, já que tintas fluorescentes comerciais (“UV Stuff”, [s.d.]) podem ser 

facilmente utilizadas pelos falsificadores, podendo causar um falso-positivo na detecção por 

radiação UV. 

Neste sentido, os dispositivos existentes podem ser ineficientes em alguns casos, haja 

vista a sofisticação das falsificações e a habilidade dos fraudadores em burlar as atuais 

técnicas de verificação de autenticidade. Assim, o desenvolvimento de exames mais 

confiáveis, principalmente aqueles baseados na informação química, torna-se relevante.  

Diferentes técnicas analíticas já vêm sendo utilizadas para identificar cédulas falsas 

com base na informação química, tais como, radiometria fototérmica infravermelha por laser 

induzido (OTHONOS et al., 1997), fluorescência de raios-X (APPOLONI; MELQUIADES, 

2014; RUSANOV et al., 2009), espectrometria de massas (EBERLIN et al., 2010; KAO et al., 

2013, 2016; SCHMIDT et al., 2014), espectroscopias Raman (BOŽIČEVIĆ; GAJOVIĆ; 

ZJAKIĆ, 2012; DE ALMEIDA et al., 2013), infravermelho médio (IMPERIO et al., 2015; 

SONNEX et al., 2014; VILA et al., 2006) e infravermelho próximo (DALE; KLATT, 1999). 

Contudo, durante o desenvolvimento deste trabalho não foi reportado na literatura o uso da 

espectroscopia NIR portátil na análise da autenticidade de cédulas. 

Portanto, o objetivo deste trabalho foi o de desenvolver um método analítico eficiente, 

rápido, de baixo custo e não destrutivo baseado em medidas espectrais usando um 

espectrômetro NIR portátil e dois métodos de classificação, SIMCA e o SPA-LDA, para 

distinguir cédulas de Real falsas de autênticas (R$20, R$50 e R$100) em análises de campo. 
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2 FUNDAMENTAÇÃO TEÓRICA 

2.1 Espectroscopia vibracional aplicada à análise da autenticidade de cédulas 

As técnicas analíticas baseadas na espectroscopia vibracional vêm sendo reportadas na 

literatura para diferenciação de cédulas falsas e verdadeiras, bem como em estudos com papel 

moeda. 

Vila e colaboradores (2006) distinguiram cédulas de euro (50€ e 100€) genuínas de 

cédulas falsas, de diferentes países (Espanha, Alemanha e França), utilizando espectroscopia 

no infravermelho médio (MIR) e análise de componentes principais (PCA). O procedimento 

foi baseado na aquisição dos espectros (4000-720 cm
-1

) com um microscópio no modo de 

reflectância total atenuada (ATR) em quatro áreas diferentes, cada uma com 200 µm
2
, na 

frente e no verso da cédula. Análise dos espectros das notas falsas e verdadeiras revelaram 

diferenças nas bandas de absorção. As cédulas genuínas tiveram espectros reprodutíveis para 

cada uma das áreas analisadas, variando minimamente de acordo com a origem da nota. Os 

resultados da PCA mostraram uma distinção clara entre as cédulas originais e as falsificadas. 

MIR também foi empregada por Sonnex (2014) para avaliar a autenticidade de cédulas 

de £20 de bancos ingleses, utilizando dois equipamentos portáteis de baixa resolução e um 

terceiro equipamento mais sofisticado com um sistema de imagem (microscópio). As cédulas 

verdadeiras e falsas foram analisadas a partir dos espectros adquiridos nos três equipamentos 

em três áreas diferentes da cédula (área em branco, filme polimérico que recobre a faixa 

holográfica e no logo do Banco da Inglaterra). Mesmo com baixa resolução, os espectros 

obtidos nos equipamentos portáteis mostraram diferenças nos perfis de absorção, permitindo a 

identificação das cédulas falsificadas. Nos casos ambíguos, os autores sugeriram o uso do 

equipamento mais sofisticado, o qual tem melhor resolução e imagens das áreas em branco do 

papel e do filme polimérico que cobre a faixa holográfica. 

Recentemente, Imperio e colaboradores (2015) aplicaram as espectroscopias Raman e 

MIR no modo ATR para identificar cédulas falsas e avaliar o estado de conservação de 

cédulas de 1000£ impressas na Itália entre 1947 e 2002. As análises foram feitas em diversas 

áreas das cédulas como marcas d’água, marcas de segurança e números de série, além de 

fibras, colas e revestimentos da superfície; em cinco tipos diferentes de impressões durante 

esses 55 anos. Os espectros MIR e Raman mostraram diferenças no papel moeda e na 

composição dos pigmentos usados em cada época. Nas cédulas falsas, os espectros Raman 

revelaram a presença de pigmentos diferentes daqueles encontrados nas cédulas verdadeiras. 

Os espectros MIR demonstraram que o papel utilizado na confecção das notas falsas tinha 



14 

 

 

composição diferente daquela do papel moeda das cédulas autênticas. 

Dale e Klatt (1999) reportaram o uso da reflectância difusa no infravermelho próximo 

(NIR) e do reconhecimento de padrões para verificar a possibilidade de separar papel moeda 

de papel estoque de boa qualidade. As amostras das cédulas foram analisadas em áreas sem 

pigmento e comparadas com os espectros do papel estoque de boa qualidade. O método do k-

ésimo vizinho mais próximo (KNN) foi aplicado para determinar o grau de classificação. Os 

resultados mostraram que, mesmo as amostras tendo espectros similares e sobrepostos, foi 

possível separá-las. 

Os trabalhos anteriormente citados descrevem a habilidade das espectroscopias NIR, 

MIR e Raman em identificar cédulas falsas. Durante o desenvolvimento desta pesquisa não 

foi reportado na literatura o uso de equipamentos portáteis para essa finalidade. Devido à livre 

circulação das cédulas em bancos e no comércio, é relevante o desenvolvimento de um 

método analítico simples e prático para examinar a autenticidade das cédulas. A 

espectroscopia NIR apresenta esses requisitos e pode ser implementada usando um 

equipamento portátil, que permite uma análise em campo, com baixo custo se comparado aos 

equipamentos de bancada, empregados nos artigos citados. Além disso, análises mais 

confiáveis, quando comparadas àquelas obtidas com os equipamentos UV comerciais, podem 

ser obtidas, já que a espectroscopia NIR considera a informação da composição química tanto 

da tinta quanto do papel. Métodos que utilizam a informação química podem facilmente 

detectar cédulas falsas, pois distinguem a composição das tintas utilizadas, mesmo se as 

cédulas exibirem perfis visuais ou fluorescentes similares. A capacidade de análise em campo 

de forma eficiente e com equipamento de baixo custo é de extrema importância para uma 

posterior transferência da tecnologia proposta para setores da sociedade, como de serviço 

financeiro e de segurança. Ademais, é importante que as forças policiais tenham métodos que 

lhes permitam estar à frente de novas ações dos falsificadores. 

2.2 Espectroscopia no infravermelho 

A espectroscopia no infravermelho (IR) é uma técnica vibracional na qual a radiação 

eletromagnética interage com a amostra através do processo de absorção molecular (SKOOG; 

HOLLER; CROUCH, 2009). A radiação infravermelha não tem energia suficiente para 

realizar transições eletrônicas, como acontece na absorção da radiação visível e ultravioleta, 

ficando restrita a pequenas variações energéticas entre os diferentes estados vibracionais e 

rotacionais. Apenas algumas moléculas podem absorver a radiação IR, pois, para que a 

radiação incidente seja absorvida e o modo de vibração ou rotação seja detectado é necessário 
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que haja alteração do momento de dipolo durante esses movimentos, tal como acontece em 

moléculas heteronucleares, como HCl (SKOOG; HOLLER; CROUCH, 2009).  Os diferentes 

modos de vibração e rotação das moléculas dão origem aos espectros na região do 

infravermelho, que correspondem à faixa de número de onda de 12.800 – 10 cm
-1

. Esses 

diferentes tipos de vibrações que ocorrem nas ligações moleculares são mostrados na Figura 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A faixa espectral do infravermelho pode ser dividida em três regiões: o IR-próximo 

(NIR) que abrange a faixa de 12800 a 4000 cm
-1

 e revela as bandas de sobretons e 

combinações, o IR-médio (MIR) que compreende os números de onda entre 4000 e 200 cm
-1

 

e observa transições rotacionais- vibracionais, sendo a região mais utilizada nas análises 

qualitativas, e o IR- distante (FIR) que inclui a faixa com números de onda de 200 a 10 cm
-1

 e 

exibe bandas relacionadas às transições rotacionais, que, por serem quantizadas, aparecem 

como linhas discretas bem definidas. 

Figura 2 – Modos vibracionais moleculares. + movimento para fora da página; - movimento para dentro de 

página.  

Fonte: Adaptado de Skoog; Holler; Crouch (2009) 
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As vibrações de estiramento podem ser explicadas de forma aproximada pelo modelo 

mecânico do oscilador harmônico, ilustrado na Figura 3 (a) (SKOOG; HOLLER; CROUCH, 

2009). Sendo sua energia potencial máxima atingida quando a mola é comprimida ou esticada 

e zero quando as massas estão em repouso (Equação 1).  

E  
1

2
  2 

onde k é a constante de força e x a distância entre as massas.  

Contudo, o modelo descrito pela mecânica clássica não reflete o comportamento real 

das partículas atômicas, que têm energias de vibração quantizada (Equação 2), sendo 

necessário, portanto, a inclusão dessa característica pelo uso das equações de onda da 

mecânica quântica. 

E     + 
1

2
 h  

onde: E  é a energia vibracional do  -ésimo nível quântico,   é o número quântico 

vibracional, h é a constante de Planc  e   é a frequência vibracional fundamental, que no 

modelo clássico é definida como: 

   
1

2 
 
 

 
 

em que µ é a massa reduzida: 

   
    

      
 

 

Outra imposição do modelo harmônico é a de que as transições ocorram apenas entre 

os níveis adjacentes, ou seja, Δ    ±1, o que faz com a diferença de energia entre dois níveis 

adjacentes seja sempre a mesma (PASQUINI, 2003). Todavia, esse não é o comportamento 

observado a nível molecular, onde as contribuições das forças coulômbicas precisam ser 

consideradas. Assim, o modelo que melhor explica as vibrações moleculares é o do oscilador 

anarmônico, onde níveis de energia Δ    2 ou mais elevados (sobretons) também podem ser 

alcançados e a existência de bandas de combinação é prevista. Esses dois tipos de bandas de 

absorção são mais comumente observadas na região do infravermelho próximo (NIR). No 

modelo anarmônico, a separação entre dois níveis de energia adjacentes diminui com o 

número quântico vibracional (PASQUINI, 2003). Esse modelo também considera a repulsão 

da nuvem eletrônica dos átomos envolvidos na ligação quando esses estão muito próximos, 

bem como a ruptura da ligação quando os átomos se afastam. 

(1) 

(2) 

(3) 

(4) 
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De forma mais detalhada, esse comportamento pode ser descrito da seguinte maneira 

(Figura 3): à medida que os núcleos se aproximam (r1), a força de repulsão coulômbica entre 

eles estará no mesmo sentido da força restauradora da ligação fazendo com que a energia 

potencial aumente mais rapidamente do que aquela descrita pelo modelo do oscilador 

harmônico. Por outro lado, à proporção que os átomos se distanciam a força restauradora 

diminui assim como a energia potencial, que chega até um valor mínimo e volta a aumentar 

na medida em se aproxima da distância de dissociação (r2) atômica. (SKOOG; HOLLER; 

CROUCH, 2009). 

 

Os modos de vibração identificados na espectroscopia de infravermelho são 

importantes ferramentas tanto para análises qualitativas quanto quantitativas, como por 

exemplo, na identificação de compostos puros, elucidação de estruturas de compostos 

orgânicos, inorgânicos e espécies organometálicas, detecção de impurezas e ainda na 

estimativa da quantidade de um analito em uma mistura complexa, para áreas agrícolas 

(DONG et al., 2011) e industriais (KAUPPINEN et al., 2013). 

2.3 Espectroscopia no infravermelho próximo 

Descoberta em 1800, pelo alemão Frederick William-Herschel, a espectroscopia no 

infravermelho próximo (NIR) só passou a ser utilizada como técnica analítica quantitativa em 

Figura 3 – Diagramas da energia potencial: (a) oscilador harmônico, (b) curva 1, oscilador harmônico e curva 2,  

movimento anarmônico.  

Fonte: Adaptado de Skoog; Holler; Crouch (2009) 
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1960, por Karl Norris, na determinação de umidade em produtos agrícolas. Contudo, foi 

somente após 1980 que a espectroscopia NIR se consolidou como técnica analítica alternativa, 

devido aos avanços tecnológicos que permitiram o desenvolvimento dos equipamentos de 

aquisição e tratamento dos espectros e em especial, ao advento da quimiometria, que forneceu 

as ferramentas necessárias para a coleta de informações úteis desses espectros (PASQUINI, 

2003). 

A região do espectro eletromagnético com número de onda entre 12.800 e 400 cm-1 

(780 a 2.500 nm) corresponde à região do NIR. As bandas de absorção observadas nessa 

região são essencialmente sobretons (frequências com amplitude aumentada devido à 

anarmonicidade das vibrações) e combinações (soma ou diferença entre duas ou mais 

frequências) de vibrações fundamentais que, em geral, envolvem as ligações C-H, O-H e N-H. 

Essas bandas têm intensidades 10 a 100 vezes mais fracas que as bandas fundamentais, logo 

não se confundem com essas (SKOOG; HOLLER; CROUCH, 2009). 

Diferentemente das linhas discretas e bem definidas apresentadas pelos espectros no 

FIR, as bandas presentes nos espectros NIR são normalmente largas e sobrepostas 

dificultando a correlação simples e direta com a concentração do analito. Para isso, são 

utilizadas técnicas quimiométricas que auxiliam na interpretação desses dados. 

A presença constante dos modos de vibração do hidrogênio torna a região do NIR 

essencial nas análises qualitativas, quantitativas e estudos de moléculas que contenham os 

grupos CH, OH e NH, como as proteínas, hidrocarbonetos de baixa massa molar e gorduras, 

sendo especialmente adotada nos processos industriais dos ramos da agricultura (FARDIM; 

FERREIRA; DURÁN, 2002), alimentos (RÍOS-REINA et al., 2018), e farmacêutico (DA 

SILVA; DA SILVA; PEREIRA, 2017). Além das aplicações forenses como quantificação de 

cocaína (CORREIA et al., 2018), identificação de resíduos biológicos, sangue e sêmen; 

(PEREIRA et al., 2017a; SILVA et al., 2017) e detecção de adulteração em documentos. 

(PEREIRA et al., 2017b).  

Os instrumentos utilizados na região NIR podem ser de quatro tipos: os instrumentos 

dispersivos baseados em redes de difração, como aqueles utilizados na região do UV-VIS; os 

que utilizam filtros discretos como seletor de comprimento de ondas; os instrumentos com 

filtros óptico- acústicos sintonizáveis (AOFT: acoustoopic tunable filter) capazes de difratar a 

radiação em comprimentos de onda determinados; e ainda os espectrômetros com 

transformada de Fourier (FT) que têm como principais vantagens a reprodutibilidade e a 

relação sinal-ruído. As fontes de radiação, geralmente, empregadas nesses instrumentos são 

lâmpadas do tipo tungstênio-halogênio com janelas de quartzo e os detectores podem ser 
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fotodetectores de PbS e PbSe ou fotodiodos de InSb e InAs, ou ainda arranjos de detectores 

como InGaAs (SKOOG, D. A.; HOLLER, F.J.; CROUCH, 2009). Em conjunto com as fontes 

de radiação esses detectores produzem altas relações sinal-ruído, o que compensa, 

parcialmente, as baixas intensidades bandas de absorção NIR (PASQUINI, 2003). 

Os instrumentos baseados na transformada de Fourier agregam as melhores 

características em termos de precisão e exatidão na discriminação do comprimento de onda, 

alta relação sinal-ruído e velocidade de varredura. Contudo, a mesma tecnologia que 

possibilita todas essas vantagens, o uso do interferômetro, torna esse tipo de equipamento 

mais caro (PASQUINI, 2003), o que pode ser uma desvantagem para o uso em análises de 

rotina. 

Os recentes avanços na microeletromecânica têm permitido a miniaturização dos 

equipamentos que operam na região NIR, possibilitando o desenvolvimento de 

espectrômetros portáteis mais práticos e econômicos que os atuais instrumentos de bancada. 

Um exemplo é o espectrômetro MicroNIR comercializado pela JSDU, que utiliza duas 

lâmpadas de tungstênio associadas a um filtro linear variável (LVF: Linear Variable Filter) 

que funciona como elemento dispersivo. O LVF é ligado diretamente a um conjunto de 

detectores, sem partes móveis, fazendo com que cada pixel detectado corresponda a um 

comprimento de onda diferente (O’BRIEN; HULSE; FRIEDRICH, 2012). Como resultado 

obtém-se um equipamento compacto, leve, resistente, de baixo custo, que, em geral, requer o 

mínimo de treinamento e pode ser facilmente empregado em análises de rotina, além da 

possibilidade de transporte do dispositivo. 

A simplicidade da arquitetura dos instrumentos portáteis parece não ser um fator 

limitante para sua eficiência analítica, que em muitos casos é comparável à eficiência dos 

instrumentos de bancada como demonstrado em trabalhos de diferentes áreas, como química 

forense (RISOLUTI et al., 2018), análise de combustíveis (DA SILVA et al., 2017) e de 

alimentos (MALEGORI et al., 2017). 

2.4 Quimiometria 

É a área da química que utiliza ferramentas estatísticas, matemáticas e computacionais 

a fim de extrair de forma eficiente informações úteis de um conjunto de dados de interesse 

químico. As principais subáreas da Quimiometria são: planejamento e otimização de 

experimentos, reconhecimento de padrões e calibração multivariada. (DE SOUZA; POPPI, 

2012). 

No planejamento e otimização de experimentos o uso de ferramentas estatísticas 
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permite identificar as variáveis mais influentes em um processo, bem como a influência de 

suas interações, possibilitando que seja extraído o máximo de informação do sistema com um 

número mínimo de ensaios. Já no reconhecimento de padrões busca-se verificar a existência 

de similaridade ou diferenças entre as respostas obtidas sobre uma série de amostras. Quanto à 

calibração multivariada, medidas experimentais, como as espectrais, são relacionadas, por 

meio de modelos matemáticos, a alguma propriedade da amostra, como a concentração, por 

exemplo. A partir desses modelos é possível prever a concentração ou outras propriedades de 

amostras desconhecidas. Neste trabalho, foram empregadas as técnicas de reconhecimento de 

padrões. 

2.5 Técnicas de reconhecimento de padrões 

Nessa área da quimiometria as técnicas são divididas em: supervisionadas e não 

supervisionadas. Sendo as técnicas supervisionadas aquelas que usam uma série de dados 

(conjunto de treinamento), de classe conhecida, para "treinar" o algoritmo a distinguir as 

classes e, portanto, são usadas para a classificação. Enquanto que, nas técnicas não 

supervisionadas, as amostras se agrupam naturalmente sem o uso de informações prévias 

sobre as classes, sendo aplicadas na análise exploratória. Dentre as técnicas não 

supervisionadas estão a análise de agrupamento hierárquico (HCA: Hierarchical Cluster 

Analysis) e a análise de componentes principais (PCA: Principal Components Analysis). Já 

entre as técnicas supervisionadas podemos destacar o método do k-ésimo vizinho mais 

próximo (KNN: K-Nearest Neighbors), modelagem independente e flexível por analogia de 

classes (SIMCA: Soft Independent Modeling of Class Analogy) e análise discriminante linear 

(LDA: Linear Discriminant Analysis). As técnicas utilizadas neste trabalho são detalhadas a 

seguir. 

2.5.1 PCA 

É uma das técnicas não supervisionadas mais utilizadas para o reconhecimento de 

padrões, pois possibilita a detecção de amostras anômalas (outliers), a visualização da 

dispersão das amostras e a avaliação da relação entre as variáveis. A PCA é uma manipulação 

matemática feita na matriz de dados que projeta o máximo de informação (variância), 

utilizando o mínimo de variáveis não correlacionadas, chamadas de componentes principais 

(PCs) ou fatores (BEEBE; PELL; SEASHOLTZ, 1998). Os eixos das variáveis originais são 

combinados linearmente para construção de novos eixos ortogonais entre si, as PCs, o que 

permite a redução das dimensões e uma melhor visualização da matriz de dados, 
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possibilitando uma análise real da sua natureza multivariada. As similaridades e diferenças 

das amostras são evidenciadas nas coordenadas (escores) do novo sistema de eixos. A 

contribuição das variáveis originais para o novo sistema é denominada pesos (loadings), 

sendo calculada como o cosseno do ângulo entre o eixo da variável original e o eixo da PC. 

Quanto maior o módulo desse valor, maior será a importância da variável na PC. (AGELET; 

HURBURGH, 2010; BEEBE; PELL; SEASHOLTZ, 1998).  

Para o cálculo da PCA são, frequentemente, empregados os algoritmos de 

decomposição por valores singulares (SVD: Singular Value Decomposition) e o dos mínimos 

quadrados parciais iterativos não-lineares (NIPALS: Nonlinear Iterative Partial Least 

Squares) (WOLD; ESBENSEN; GELADI, 1987), utilizado neste trabalho através do 

programa  The Unscrumbler. O algoritmo NIPALS decompõe a matriz de dados X (n x m) 

nos conjuntos de escores (t) e pesos (p). Segundo, Wold e colaboradores (1987) esse processo 

tem início com a estimativa do vetor de escores, que é a coluna de X com maior variância. A 

segunda etapa é o calculo do vetor peso, p, obtido pela projeção de X em t (Equação 5): 

    
      

    
 

 

em seguida o vetor p é normalizado para comprimento 1: 

 
    

   
 

       
 

e a nova estimativa de escores é obtida: 

   
   

    

 
    

  
    

 

Na sequência, verifica-se a convergência utilizando-se, por exemplo, a soma dos quadrados da 

diferença dos elementos de dois vetores de escores consecutivos. Se a convergência foi 

atingida, passa-se para etapa de estimativa dos resíduos. Se não houve convergência, o 

algoritmo retorna à segunda etapa, cálculo do vetor peso, até que o valor predefinido para 

convergência seja atingido. Por fim calculam-se os resíduos: 

              

Assim, a matriz X é representada pelo modelo de componentes principais como: 

         
 

onde T e P são as matrizes de escores e pesos, respectivamente. 

O gráfico de escores, obtido pela PCA, em conjunto com o gráfico de resíduo versus 

influência (leverage) é uma ferramenta muito útil para a detecção de amostras anômalas. As 

(5) 

(5.1) 

(5.2) 

(5.4) 

(5.3) 
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amostras com alto resíduo não são descritas adequadamente pelo modelo e aquelas com alto 

leverage influenciam o próprio modelo, fazendo com que algumas PCs sejam utilizadas 

apenas para descrever o comportamento de variáveis associadas a determinadas amostras. 

Portanto, amostras que apresentam alto resíduo e alta influência são consideradas como 

potenciais amostras anômalas (outliers). 

2.5.2 SIMCA 

É uma técnica supervisionada baseada em PCA, que modela o espaço 

multidimensional formado pelas amostras para definição da classe (BEEBE; PELL; 

SEASHOLTZ, 1998). A classificação de amostras pelo SIMCA contrasta com o método 

KNN, que utiliza apenas a distância das amostras. No SIMCA, uma amostra é classificada se 

estiver dentro da caixa multidimensional construída pelo modelo. Assim, cada classe é 

modelada independentemente e a classificação pode ser feita pela comparação da variância 

residual (Equação 6) da amostra a ser classificada com a variância residual total da classe 

(Equação 7) (PONTES, 2009). 

Si   
 (res )

2 

  1

  A
 

 

St   
  (resi )

2 

  1
N
i 1

(N A 1)(  A)
 

Onde N é o número de amostras do conjunto de treinamento da classe; A é o número de 

componentes principais utilizadas pela classe; p é o número de variáveis; i e j representam os 

índices das amostras e variáveis, respectivamente. 

A localização da amostra em relação ao modelo pode ser feita utilizando um teste F, 

onde o valor calculado na Equação 8 (Fcal) é comparado com um valor crítico (Fcrit), 

determinado de modo empírico ou tabelado dentro de certos níveis de confiança e graus de 

liberdade (PONTES, 2009). Se o valor de Fcal da amostra investigada for menor que o Fcrit, ela 

pertencerá à classe em consideração. 

Fcal  
(Si)

2

(St)
2
 . 

N

N A 1
 

Como o modelo SIMCA pode classificar a amostra em mais de uma classe ou mesmo 

em nenhuma classe, é importante considerar a possibilidade de ocorrer os seguintes erros: erro 

(6) 

(7) 

(8) 
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tipo I, onde a amostra não é classificada na classe correta ou erro tipo II, quando a amostra é 

classificada na classe errada.  

2.5.3 LDA 

Nesse método o espaço amostral é dividido em tantas regiões quanto o número de 

classes analisadas, através de uma fronteira linear que separa as classes. Para isso, são 

utilizadas funções lineares discriminantes que maximizam a variância entre as classes e 

minimizam a variância dentro da classe (FISHER, 1936). A classificação é feita de acordo 

com a região em que a amostra se encontra. Sendo considerada para tal o quadrado da 

distância Mahalanobis, conforme a Equação 9, sendo a amostra atribuída à classe de menor r
2
: 

r2  ,            
 
. 

 1
.         

 

onde r
2
 é o quadrado da distância de Mahalanobis entre a amostra x e o centro da j-ésima 

classe; mj e S são as estimativas do vetor média e da matriz de covariância para a classe j 

(DUDA; HART; STORK, 2001), obtidas a partir  do conjunto de treinamento de classificação 

conhecida (BEEBE; PELL; SEASHOLTZ, 1998). 

Para o cálculo da matriz inversa da Equação 9 é necessário que o número de amostras 

seja maior que o número de variáveis incluídas no modelo LDA, para evitar que a covariância 

estimada, S, seja singular (PONTES, 2009). Assim, para dados espectrais o uso de métodos 

de seleção de variáveis ou de compressão espectral é um passo indispensável na construção de 

modelos LDA. 

2.6 Validação dos modelos de classificação 

A etapa de validação dos modelos de classificação é indispensável para analisar a 

confiabilidade dos modelos e pode ser feita através da validação cruzada (cross validation), 

normalmente implementada no algoritmo do programa de modelagem, ou pelo uso de um 

conjunto de amostras validação externas (amostras de classe conhecida não pertencentes ao 

conjunto de treinamento). Um dos procedimentos que podem ser escolhidos é o da validação 

cruzada total (full cross validation), onde uma amostra do conjunto de treinamento é retirada e 

o modelo reconstruído sem essa amostra. Em seguida, a classificação da amostra retirada é 

feita por esse novo modelo. Essa amostra é reinserida no conjunto de treinamento e o 

processo se repete para cada uma das demais amostras. 

(9) 
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2.7 Pré- processamento de dados 

Uma etapa fundamental em qualquer análise quimiométrica é o pré-processamento de 

dados, já que, é nessa etapa que as fontes de variação irrelevantes e aleatórias, são eliminadas 

ou pelo menos reduzidas (BEEBE; PELL; SEASHOLTZ, 1998). As principais ferramentas 

para o pré-processamento das amostras são: normalização, suavização e correções da linha de 

base. Para as variáveis podem ser usadas as técnicas de centrar na média, autoescalonamento, 

entre outras. Neste trabalho, foram testadas as técnicas para correção da linha de base: 

derivadas, correção multiplicativa de sinal (MSC: Multiplicative Signal Correction) e 

variação normal padrão (SNV: Standard Normal Variation). 

2.7.1 Derivadas 

Além dos ruídos, as medidas espectrais podem conter fontes de variação de baixa 

frequência que não estão relacionadas com as informações químicas de interesse. Essas 

variações são chamadas de variações da linha de base. Dentre as diversas formas de realizar a 

correção na linha de base estão as derivadas, que são utilizadas especialmente quando é difícil 

identificar os pontos da linha de base. As derivadas evidenciam os picos presentes nos dados 

originais, facilitando sua visualização. Um dos métodos mais utilizados para o cálculo das 

derivadas é o método de suavização Savitzky-Golay e Gorry, onde um polinômio de baixa 

ordem é estimado a partir de uma região do vetor da amostra, um intervalo (janela) é 

selecionado e o ponto central desse intervalo é substituído pela derivada do polinômio 

estimado nesse ponto (BEEBE; PELL; SEASHOLTZ, 1998). Enquanto a primeira derivada 

remove o efeito aditivo, a segunda derivada elimina efeitos multiplicativos (RINNAN; 

BERG; ENGELSEN, 2009; SAVITZKY; GOLAY, 1964). 

2.7.2 Correção Multiplicativa de Sinal (MSC: Multiplicative Signal Correction) 

Desenvolvido para corrigir o problema de espalhamento da luz na espectroscopia de 

reflectância, o MSC calcula os coeficientes da regressão linear e o erro de cada espectro em 

relação a um espectro de referência (Equação10), geralmente o espectro médio (RINNAN; 

BERG; ENGELSEN, 2009). Para obter o espectro corrigido é feita a subtração do espectro 

original pela divisão desses coeficientes, como mostra a Equação 11:  
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(12) 

 orginal  b0+ b1.  referência    

 

 corrigido 
 original   b0

b1
 

 
onde Xoriginal é a matriz dos espectros medidos, Xreferência é o espectro de referência 

utilizado para processar todo o conjunto de dados, e E é a matriz de resíduos, Xcorrigido é a 

matriz com os espectros corrigidos, b0 e b1 são os parâmetros escalares que variam de acordo 

com a amostra (RINNAN et al.,2009) e estimam os efeitos aditivos e multiplicativos, 

respectivamente, enquanto o erro (ou matriz de resíduos) pode ser relacionado com as 

informações químicas.  

2.7.3 Variação normal padrão (SNV: Standard Normal Variation) 

Assim como o MSC, o SNV também elimina efeitos aditivos e multiplicativos 

causados pelo espalhamento da luz, embora seja mais eficiente na correção dos efeitos 

aditivos. Para isso, o SNV emprega o valor médio e o desvio padrão de cada espectro como 

mostra a Equação 12 (BARNES; DHANOA; LISTER, 1989; GELADI; MACDOUGALL; 

MARTENS, 1985).  

SNV   
 ( i    )
 

i 1

  ( i    )
 

i 1

2

  1

 

Onde x é o sinal analítico no comprimento de onda i e    é a média dos p comprimentos 

de onda da amostra, que é calculada de acordo com a Equação 13: 

     
  i
 

i 1

 
 

2.8 Seleção de amostras  

As amostras de treinamento utilizadas na construção dos modelos de classificação 

devem ser escolhidas de tal modo que sejam as mais representativas para formar a classe. Para 

isso, existe o algoritmo Kennard Stone (KS) que seleciona essas amostras a partir da distância 

euclidiana entre os vetores das respostas experimentais (x) (BOUVERESSE et al., 1996; 

KENNARD; STONE, 1969) selecionando o par de amostras com maior distância. Dentre as 

amostras restantes, busca-se aquelas com menor distância em relação as amostras já 

(10) 

(11) 

(13) 
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selecionadas, sendo retida aquela com a maior distância mínima. Esse procedimento se repete 

até que o número de amostras determinado pelo usuário seja atingido. A distância euclidiana, 

dx(p,q), entre x vetores das amostras p e q é determinada pela Equação 14: 

d   ,q     [       q   ]
2

J

  1

  ; ,q    [1, N] 

onde xp(j) e xq(j) são os vetores das respostas instrumentais no j-ésimo comprimento de onda 

do par de amostras p e q. (GALVÃO et al., 2005).  

O algoritmo ainda permite que após a seleção das amostras de treinamento, as 

amostras remanescentes sejam divididas nos conjuntos de validação e teste, conforme 

determinação prévia pelo analista. A divisão das amostras em subconjuntos possibilita a 

construção de modelos com amostras representativas (treinamento) e com as melhores 

condições de modelagem (validação) para cada classe. Além de viabilizar a avaliação final 

dos modelos a partir de um conjunto real (previsão) de amostras independentes que não 

estiveram envolvidas no desenvolvimento dos modelos, garantindo a confiabilidade do 

método. 

2.9 Seleção de variáveis 

O tamanho da matriz de dados pode ser um problema na análise multivariada, seja pelo 

pequeno número de amostras, seja pela grande quantidade de variáveis. Essas condições 

restringem a escolha e a atuação do método de reconhecimento de padrões escolhido. A fim 

de minimizar esses efeitos, muitos algoritmos de seleção de variáveis têm sido desenvolvidos 

para evidenciar as variáveis importantes e suprimir aquelas irrelevantes ou redundantes. Além 

disso, a seleção de variáveis pode ser útil na eliminação de ruído e na viabilização do uso de 

técnicas como a regressão linear múltipla (MLR: Multiple Linear Regression) e Análise 

discriminante linear (LDA: Linear Discriminant Analysis). 

A seleção de variáveis é definida classicamente como a “seleção de um subconjunto 

de M variáveis provenientes de um conjunto de N variáveis (M< N). Neste caso, uma função 

de custo é em regada  ara otimização.” (DASH; LIU, 1997). 

Os algoritmos mais conhecidos e empregados com essa finalidade são o algoritmo 

genético (GA: Genetic Algorithm), o stepwise (SW), a regressão dos mínimos quadrados 

parciais por intervalos (iPLS:  Internal Parcial Least Squares Regression), o algoritmo Jack-

Knife (JK) e o algoritmo de projeções sucessivas (SPA: Sucecssive Projections Algorithm).  

Neste trabalho foi utilizado como método de seleção de variáveis o SPA-LDA, que é 

(14) 
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(15) 

uma adaptação do método SPA, originalmente desenvolvido para reduzir problemas de 

colinearidade em modelos de regressão linear múltipla (MLR: Multiple Linear Regression). O 

SPA, essencialmente, determina um grupo de variáveis representativas com o mínimo de 

multicolinearidade e o máximo de informação. (ARAÚJO et al., 2001). No SPA-LDA, uma 

função de custo é aplicada a fim de avaliar o risco médio de o modelo LDA realizar uma 

classificação incorreta. Para o cálculo dessa função de custo as amostras utilizadas para 

validar o modelo LDA são consideradas, como mostra a Equação 15 (PONTES, 2009):  

G   
1

KV

 g
 

KV

  1

 

 

onde Kv é o número de amostras do conjunto de validação e gk é o risco de uma 

classificação incorreta do objeto Xk da k-ésima amostra de validação e é definido como: 

g
 
 

r2( 
 
,m )

min   r
2
( 

 
,m

 
)
 

onde o numerador da equação é o quadrado da distância Mahalanobis entre o objeto Xk e a 

média de sua classe (mk). E o denominador é o quadrado da distância Mahalanobis entre o 

objeto e o centro da classe errada mais próxima (mj). Assim, gk deve ser o menor possível 

garantindo que o objeto esteja o mais próximo de sua verdadeira classe e o mais distante das 

classes erradas. Para minimizar a colinearidade o algoritmo utiliza uma sequência de 

projeções vetoriais aplicadas às colunas da matriz das amostras de treinamento. Como um de 

seus resultados, o algoritmo fornece o gráfico da função de custo versus o número de 

variáveis, sendo o número ótimo de variáveis o valor mínimo desta curva. 

2.10 Figuras de mérito 

O desempenho dos modelos de classificação pode ser avaliado por diferentes 

parâmetros, sendo os mais utilizados: a sensibilidade, a especificidade e a eficiência. Esses 

parâmetros são baseados em quatro respostas binárias possíveis: verdadeiro positivo (VP), 

quando o modelo de classificação dá uma resposta positiva a uma amostra que de fato é 

positiva; falso positivo (FP), quando o modelo classifica como positivo uma amostra 

negativa; verdadeiro negativo (VN), quando o modelo dá uma resposta negativa a uma 

amostra que é negativa e o falso negativo (FN), quando uma amostra positiva é classificada 

como negativa. Neste trabalho, o resultado foi considerado positivo quando a amostra era uma 

(15.1) 
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cédula autêntica e negativo quando a cédula era falsificada.  

A sensibilidade, que é a fração das amostras corretamente classificadas na classe 

modelada, é medida pelo nível de confiança do espaço das classes (OLIVERI; DOWNEY, 

2012): 

sensibilidade   
VP

VP  +  FN
 

 

Enquanto a especificidade corresponde à habilidade do modelo de identificar 

corretamente amostras que não pertencem à classe modelada (OLIVERI; DOWNEY, 2012): 

es ecificidade   
VN

VN  +  FP
 

Eficiência representa a habilidade de classificação total do modelo (OLIVERI; DOWNEY, 

2012): 

eficiência    
VP . VN

(VP+FN) .(VN+FP)
 

. 

 

(16) 

(18) 

(17) 
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3 MATERIAIS E METÓDOS 

3.1 Amostras 

Considerando o caráter forense das amostras e, portanto, a necessidade de preservar 

sua integridade, nenhum tratamento prévio foi aplicado. Para cada valor estudado (R$20, 

R$50 e R$100) foram analisadas 100 cédulas verdadeiras. As cédulas falsas, impressas em 

jato de tinta e de diferentes apreensões, foram disponibilizadas pela Polícia Federal (PF) de 

Pernambuco para a aquisição espectral, por questões legais e de segurança, nas dependências 

da PF. Dessas cédulas, foram analisadas, 56 de R$20, 18 de R$50 e 153 de R$100. Todas as 

cédulas falsas foram analisadas por peritos da Polícia Federal que certificaram a fraude nas 

cédulas através de exames físicos e visuais baseados nos itens de segurança definidos pelo 

Banco Central do Brasil. Sete áreas (Figura 4), na frente e no verso, das notas de Real foram 

selecionadas para este estudo: duas fluorescentes (1 e 7), a marca d'água (2), três calcográficas 

(3,5 e 6) e uma tipográfica (7). 

 

 

 

 

 

 

 

 

 

 

Além das cédulas, também foi analisada uma amostra de papel sulfite branco com 

gramatura de 75g/m
2
, para fins de comparação espectral com o papel moeda. 

Fonte: Autoria própria 

Figura 4 – Áreas analisadas nas cédulas: 1,7- fluorescentes; 2- marca d'água; 3,5,6- calcográficas, 4- tipográfica. 
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3.2 Equipamento e aquisição dos espectros 

Os espectros no infravermelho próximo foram obtidos com o espectrômetro portátil, 

MicroNIR
TM

1700 JSDU, de dimensões 45 mm x 42 mm (diâmetro e altura), em uma faixa 

espectral de 950-1650nm com resolução < 1,25% do centro de comprimento de onda e média 

de 50 varreduras, com tempo de integração de 5 ms. Uma base de teflon redonda com o 

mesmo diâmetro do micronir foi colocada embaixo da cédula e utilizada como branco durante 

a aquisição dos espectros. Em cima da cédula foi fixado um molde de plástico transparente 

(transparência para retroprojeção), com circunferências vazadas, no mesmo diâmetro do 

micronir, em cada uma das áreas analisadas a fim de garantir que cada aquisição espectral 

fosse realizada exatamente no mesmo local e, portanto, assegurar a reprodutibilidade das 

medidas. (Figura 5). 

 

 

 

 

 

 

 

 

 

 

 

Cada espectro foi obtido em triplicata, sendo utilizada a média dessas aquisições para 

a construção dos modelos de classificação.  

3.3 Tratamento quimiométrico dos dados 

Os espectros foram processados utilizando o programa The UnscramblerⓇ X, versão 

10.4 (CAMO S.A.). Diferentes técnicas de pré-processamento de dados foram utilizadas para 

a correção de fontes de variação irrelevantes e aleatórias, tais como variação normal padrão 

(SNV), correção de sinal multiplicativo (MSC), primeira e segunda derivadas (filtro Savitzky-

Golay, polinômio de segunda ordem e janelas com diferentes tamanhos).  

Inicialmente, PCA foi aplicada para análise exploratória. Em seguida, foram 

Figura 5 – Procedimento de aquisição espectral com o NIR portátil. 

Fonte: Autoria própria 
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construídos modelos SIMCA apenas para as cédulas verdadeiras. O algoritmo Kennard- Stone 

(KS) foi utilizado para dividir essas amostras em grupos de treinamento (70% das amostras) e 

de previsão (30% das amostras). As cédulas falsas foram utilizadas como grupo de teste 

desses modelos. Para detecção de amostras anômalas (outliers) foram utilizados os gráficos de 

escores e o de resíduos versus influência (leverage). Como técnica de validação interna dos 

modelos foi utilizada a validação cruzada total leave-one-out. Também foram construídos 

modelos para cédulas falsas e verdadeiras utilizando SPA-LDA. Tanto no modelo das cédulas 

falsas, quanto no das cédulas verdadeiras os grupos de treinamento (50% das amostras), 

validação (25% das amostras) e teste (25% das amostras) foram divididos usando o KS. Os 

algoritmos KS e SPA-LDA foram aplicados utilizando o programa Matlab
®
 R2010a 

7.10.0.499.  
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4 RESULTADOS E DISCUSSÃO 

4.1 Espectros NIR 

Os espectros médios sem pré-processamento de todas as amostras em cada uma das 

sete áreas analisadas são mostrados na Figura 6. A diferença entre os espectros das cédulas 

autênticas e das falsas pode ser nitidamente observada. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considerando que o componente majoritário do papel moeda é a celulose, a atribuição 

das bandas foi feita com base no espectro NIR da celulose. As regiões espectrais entre 1212 e 

1225 nm correspondem ao segundo sobretom de estiramento C-H. A banda com baixa 

intensidade em torno de 1366 nm está associada à combinação do primeiro sobretom do 

estiramento e deformação C-H. As bandas entre 1450 e 1650 nm estão associadas ao primeiro 

sobretom do estiramento O-H. 

Também é possível visualizar na Figura 6 que existe uma variação na linha de base 

dos espectros devido ao efeito de espalhamento da radiação, o qual não está relacionado com 

a informação química e precisa ser removida usando técnicas de pré-processamento antes da 

construção dos modelos de classificação. 

A comparação entre o espectro de uma amostra de papel sulfite e os espectros da 

Figura 6 – Espectros médios sem pré-processamento das áreas analisadas nas cédulas. (A) R$20, (B) R$50 e (C) 

R$100. 

Fonte: Autoria própria 
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marca d'água, a área menos pigmentada, das cédulas autênticas e falsas é mostrada na Figura 

7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apesar de a comparação ter sido feita entre um papel pigmentado, o papel moeda, e 

um papel branco, a Figura 7 mostra que ainda sim o espectro do papel sulfite é mais similar 

aos espectros das cédulas falsas, do que aos espectros das cédulas verdadeiras. Segundo Dale 

e Klatt (1999) é possível distinguir papel moeda de papel comum utilizando reflectância NIR 

difusa, o que comprova que eles têm propriedades químicas diferentes. Esse resultado sugere 

que as cédulas falsas são provavelmente feitas utilizando papel comum, enquanto as cédulas 

verdadeiras são impressas em papel especial, papel moeda, que tem uma composição 

diferente do papel comum. 

Os espectros das áreas calcográficas 3 tiveram baixa reprodutibilidade porque a tinta 

nessa área não é homogênea (espectro mais diferente na Figura 6). As ranhuras presentes 

nessa área afetam a refletância, aumentando o espalhamento de radiação e, consequentemente, 

causando variações na linha de base dos espectros. 

Figura 7 – Espectros médios sem pré-processamento do papel sulfite e da marca d'água das cédulas verdadeiras e 

falsas de R$20, R$50 e R$100. 

Fonte: Autoria própria 
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4.2 Análise exploratória dos dados espectrais  

PCA foi, preliminarmente, aplicada usando todas as áreas a fim de identificar a área 

mais informativa para distinção entre cédulas falsas e autênticas. O gráfico de escores para 

cada tipo de cédula, R$20, R$50 e R$100 é mostrado na Figura 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Como pode ser observado, a distinção entre as cédulas verdadeiras e falsas é evidente 

em todos os tipos de notas analisadas. Na Figura 8B, D e F é possível identificar um 

agrupamento da área 3, mostrando que essa área é diferente das outras e poderia ser suficiente 

para distinguir as amostras. Porém, como discutido anteriormente, essa área teve baixa 

reprodutibilidade e, portanto, não foi considerada para construção dos modelos SIMCA e 

SPA-LDA. 

O gráfico dos pesos (loadings) é mostrado na Figura 9. Como se pode observar no 

gráfico de pesos da PC1, para as cédulas de R$100 as principais variáveis responsáveis pela 

Figura 8 – Gráfico de escores para R$20(A e B), R$50(C e D), R$100(E e F) empregando os espectros pré-

processados com a primeira derivada. 

Fonte: Autoria própria 
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separação das amostras estão em torno de 1100 nm, que correspondem às bandas 

características da tinta calcográfica. (MAEDER et al., 2013). As cédulas de R$20 têm a maior 

variabilidade espectral na faixa1400-1450 nm, relativa à banda atribuída ao estiramento O-H 

da celulose. E para as cédulas de R$50 essa variabilidade ocorre em 1650 nm, ainda na região 

relativa ao estiramento O-H da celulose. Esse resultado é consistente, considerando que a 

composição do papel moeda é essencialmente celulose. Nos pesos da PC2 percebe-se que a 

variabilidade espectral ocorre novamente na região da tinta calcográfica das cédulas de 

R$100. E no gráfico de pesos da PC3 a variabilidade espectral acontece na região atribuída ao 

estiramento O-H da celulose. Percebe-se, portanto, que as variáveis responsáveis pela 

distinção das cédulas falsas e verdadeiras estão tanto na região associada à tinta calcográfica 

quanto na região de estiramento O-H da celulose. Logo, as amostras podem ser diferenciadas 

por dois critérios, a presença da tinta calcográfica e o tipo de papel. 

 

 

 

 

 

 

 

 

 

 

 

 

Com esses resultados, pode-se afirmar que a área calcográfica (6) para as notas de 

R$20 e R$100, e a área calcográfica (5) para a de R$50, foram suficientes para identificar as 

cédulas autênticas e diferenciá-las das falsas. Dentre todas as técnicas de pré- processamento 

testadas, a primeira derivada, com filtro Savitzky-Golay, polinômio de segunda ordem e 

janelas de 9 (R$100) e 11 (R$20 e R$50) pontos, foi a mais efetiva na correção dos efeitos de 

espalhamento (Figura 10), de acordo com a visualização dos espectros. 

Figura 9  – Gráficos dos pesos para todas as áreas analisadas das cédulas de R$20, R$50 e R$100. 

Fonte: Autoria própria 
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4.3 Modelos de classificação 

4.3.1 SIMCA 

Os modelos SIMCA foram desenvolvidos empregando os espectros NIR das áreas 

selecionadas das cédulas autênticas. Para as amostras de R$ 20 (área 6), o modelo requereu 5 

PCs. Nesse modelo, as duas primeiras PCs explicaram 91% da variância total. O modelo para 

as cédulas de R$50 (área 5) utilizou 4 PCs, sendo que as duas primeiras PCs explicaram 86% 

da variância dos dados. Para o modelo de R$100 (área 6), foram utilizadas 5 PCs e as duas 

primeiras representaram 87% da variância total. Não foram encontradas amostras anômalas na 

construção dos modelos.  

Usando os modelos SIMCA construídos para classificar as notas de R$20, R$50 e 

R$100 como autênticas, no nível de confiança de 95%, todas as cédulas verdadeiras foram 

corretamente classificadas, ao passo que nenhuma cédula falsa foi classificada como 

autêntica. Portanto, não foram detectados erros do tipo I (amostra não incluída em sua classe) 

ou erros do tipo II (amostra incluída na classe errada). 

Figura 10 – Espectro médio pré-processado de todas as áreas analisadas nas cédulas. (A) R$20, (B) R$50 e (C) 

R$100. 

Fonte: Autoria própria 
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4.3.2 SPA- LDA 

Foram construídos modelos LDA para as classes verdadeira e falsa usando as variáveis 

selecionadas pelo SPA. O valor mínimo da função de custo G (PONTES et al., 2005) foi 

usado para determinar o número ótimo de variáveis nesses modelos. A Figura 11 mostra os 

valores mínimos das variáveis, 12, 2 e 14, bem localizados para as notas de R$ 20, R$ 50 e 

R$ 100, respectivamente. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Figura 12 mostra as variáveis selecionadas pelo SPA para cada tipo das cédulas 

analisadas. Os principais comprimentos de onda selecionados foram atribuídos ao estiramento 

O-H (primeiro sobretom) na região de 1450-1650nm. Especificamente, para as amostras de 

R$ 100, a região entre 1000-1100 nm também foi selecionada, a qual corresponde à banda 

específica da tinta calcográfica. 

  

Figura 11 – Número ótimo de variáveis no SPA-LDA para (A) área 6 de R$20, (B) área 5 de R$50 e (C) área 6 

de R$100. 

Fonte: Autoria própria 
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Figura 12 – Variáveis selecionadas dos espectros médios para (A) área 6 R$20, (B) área 5 R$50 e (C) área 6 

R$100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Embora os modelos SPA-LDA apresentem a vantagem de reduzir a não linearidade 

(GHASEMI-VARNAMKHASTI et al., 2012) devido à seleção de variáveis, os modelos 

SIMCA são os mais adequados no estudo da autenticidade de cédulas, já que trata-se de um 

problema de modelagem de classes, uma vez que uma das classes de interesse, a classe das 

cédulas autênticas, pode ser eficientemente modelada de forma independente de qualquer 

outra classe. O que não é possível nos modelos LDA, em que devem existir no mínimo duas 

classes para modelagem. 

4.4 Figuras de mérito 

Os modelos SIMCA e SPA-LDA foram avaliados conforme os parâmetros expressos 

pelas Equações 16, 17 e 18 sendo obtidos 100% de sensibilidade, especificidade e eficiência. 

O que significa que os modelos classificaram corretamente as amostras nas classes modeladas 

identificaram corretamente as amostras que não pertenciam a uma determinada classe e que, 

portanto, foram eficientes na classificação total do modelo. Esses resultados demonstram a 

robustez do método analítico desenvolvido neste trabalho. 

 

Fonte: Autoria própria 
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5 CONCLUSÃO 

Neste trabalho foi apresentado um método analítico para o exame da autenticidade de 

cédulas de Real, R$20, R$50 e R$100, empregando espectroscopia NIR com instrumento 

portátil e classificação das amostras através dos modelos quimiométricos SIMCA e SPA-

LDA.  

Com o método desenvolvido foi possível a classificação com 100% de sensibilidade, 

especificidade, eficiência, refletindo assim a robustez do método proposto para distinguir as 

cédulas verdadeiras das falsas. 

O procedimento para avaliação da autenticidade de cada cédula durou cerca de 30 

segundos, incluindo a aquisição dos espectros, pré-processamento dos dados e a classificação. 

A rotina dos modelos pode ser facilmente incorporada a um software amigável escrito em 

qualquer linguagem de programação, como Assembly, C++, Visual Basic, LabVIEW, entre 

outros. Não sendo necessário conhecimento técnico para interpretação da resposta dos 

modelos. Assim, a metodologia desenvolvida neste trabalho pode ser facilmente utilizada no 

comércio ou em bancos. Todavia, é necessário que um exame confirmatório da autenticidade 

seja realizado por peritos oficiais. 

Além da efetividade, o método desenvolvido neste trabalho analisou uma 

característica ainda não explorada pelos equipamentos comercias de verificação de 

autenticidade de cédulas, a tinta calcográfica, estando à frente de novas ações dos 

falsificadores. Assim, o método descrito é uma maneira simples, rápida, confiável e não 

destrutiva de avaliar a autenticidade de notas de Real e ainda pode ser utilizado na análise em 

campo, reduzindo o tempo de análise. 

Como a calcografia está presente na maioria das moedas mundiais, o método analítico 

implementado neste trabalho tem potencial para ser aplicado de forma bem sucedida em 

Euros, Dólar e cédulas australianas, por exemplo. Contudo, é necessário o desenvolvimento 

de novos modelos, usando tanto cédulas autênticas quanto falsas da moeda em questão.  
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