
Rodrigo Benedito Otoni

A Strategy for Local Analysis of Determinism

Recife
2018

Rodrigo Benedito Otoni

A Strategy for Local Analysis of Determinism

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do
Centro de Informática da Universidade Fed-
eral de Pernambuco como requisito parcial
para obtenção do grau de Mestre em Ciência
da Computação.

Orientador: Augusto Cezar Alves
Sampaio
Cooreintadora: Ana Lúcia Caneca
Cavalcanti

Recife
2018

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

O88s Otoni, Rodrigo Benedito

A strategy for local analysis of determinism / Rodrigo Benedito Otoni. –
2018.

 81 f.: il., fig.

 Orientador: Augusto Cezar Alves Sampaio.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2018.
 Inclui referências.

 1. Engenharia de software. 2. Linguagem de programação. I. Sampaio,
Augusto Cezar Alves (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE- MEI 2018-102

Rodrigo Benedito Otoni

A Strategy for Local Analysis of Determinism

 Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 17/07/2018.

BANCA EXAMINADORA

Prof. Dr. Alexandre Cabral Mota

Centro de Informática / UFPE

Prof. Dr. Rohit Gheyi

Departamento de Sistemas e Computação / UFCG

Prof. Dr. Augusto Cézar Alves Sampaio

Centro de Informática / UFPE
(Orientador)

I dedicate this work to my parents, without whom none of this would have been possible.

ACKNOWLEDGEMENTS

I would like to thank all those that supported me during the course of my master’s degree.
I am deeply indebted to my supervisor, Professor Augusto Sampaio, and my Co-

Supervisor, Professor Ana Cavalcanti, for the opportunity to work with them, for all the
help and counselling, and for always pushing me to my limit.

My experience at the Centro de Informática was a wonderful one, allowing me to
grow both professionally and personally, and for that I thank all faculty members and
colleagues with whom I had the pleasure to work with. In special, I thank professors
Alexandre Mota, and Gustavo Carvalho, for their collaboration and support, and Madiel
Conserva Filho, Joabe Jesus Júnior, André Didier, Pedro Antonino, Filipe Arruda, and
Flávia Falcão, for all the helpful discussions.

For the financial support given, I thank FACEPE, which provided me with a master’s
scholarship (grant IBPG-0074-1.03/16), and INES, which aided me with the payment of
event registration fees (grants CNPq/465614/2014-0, and FACEPE/APQ/0388-1.03/14).

For introducing me to the life of research, for always providing me with a friendly
advice when needed, and for setting me up to do a master’s in the first place, I thank
Professor Leila Silva, to whom I will be forever grateful.

Last, but definitely not least, I thank my parents, for the unconditional support they
have always given me, and for always driving me to do me best in all circumstances.

ABSTRACT
Nondeterminism is an inevitable constituent of any theory that describes concurrency.

For the validation and verification of concurrent systems, it is essential to investigate the
presence or absence of nondeterminism, just as much as it is in the case of properties
such as deadlock and livelock. CSP is a well established process algebra that offers rich
semantic models, capable of capturing a wide range of sources of nondeterminism. The
approach taken by the main tool for practical use of CSP, the model checker FDR, it
to check for determinism through global analysis, which limits its scalability. In this dis-
sertation we propose a local analysis strategy to check for determinism in specifications
written in a practical subset of CSP. Our goal is to provide an efficient and scalable
method of checking for determinism. We use a compositional approach in which we start
from basic deterministic processes and check whether any of the composition operators
used in the specification can introduce nondeterminism. The use of controlled subsets of
selected notations is a common feature of local analysis, with the subset of CSP captured
by our strategy containing most of the main operators of CSP, and thus being capable
of modelling real world systems. Furthermore, our strategy is sound, according to our
empirical evaluation, but not complete; giving up completeness is also a usual compro-
mise of compositional approaches to analysis, as a way to improve efficiency. We present
here our strategy, the prototype developed to allow its automation, and the results of a
number of experiments. There are two main aspects of our strategy: its metadata, and
its algorithms. After a process of the CSP specification is checked to be deterministic,
we gather metadata about it. The metadata stores all the information of a process that
is relevant to our strategy, and is the only element used when checking further composi-
tions. For each composition operator available in our subset of CSP, we have developed
a specific algorithm to check if the composition is deterministic. By the use of metadata,
we remove the need to check the operands at each composition, relying only on the in-
formation previously gathered, and thus achieving an efficient compositional approach. A
number of case studies, both toy problems and systems described in the literature, have
been performed. We compared our prototype with FDR in all the experiments. For most
examples our prototype is capable of analysing instances that FDR is not able to, due to
lack of memory resulting from the state explosion. In some cases, our prototype is capable
of analysing instances up to three orders of magnitude higher. For most instances in which
both tools provide a result, besides the trivial ones, our prototype is more efficient than
FDR, with some cases where FDR takes more than twenty minutes to reach a result, and
our prototype requires only a few seconds.

Keywords: Model Checking. CSP. FDR. Performance. Experiments.

RESUMO
Não determinismo é um constituinte inevitável de qualquer teoria que descreva con-

corrência. Para a validação e verificação de sistemas concorrentes, é essencial que se inves-
tigue a presença ou a ausência de não determinismo, tanto quanto de outras propriedades,
como deadlock e livelock. CSP é uma álgebra de processos bem estabelecida e que oferece
ricos modelos semânticos, capazes de capturar uma grande variedade de fontes de não
determinismo. A abordagem utilizada pela principal ferramenta de CSP, o verificador
de modelos FDR, é verificar determinismo através de uma análise global, o que limita
a sua escalabilidade. Nesta dissertação nós propomos uma estratégia de análise local de
determinismo para especificações escritas em um subconjunto de CSP. Nosso objetivo é
prover um método eficiente e escalável de verificação de determinismo. Nós usamos uma
abordagem composicional, partindo de processos determinísticos básicos, e verificando se
os operadores de composição usados na especificação podem introduzir não determinismo.
O uso de subconjuntos controlados de notações é comum em estratégias de análise local,
sendo que o subconjunto de CSP capturado por nossa estratégia contêm os principais
operadores de CSP, possibilitando a modelagem de sistemas reais. A nossa estratégia é
correta, segundo nossos experimentos, mas não completa; abrir mão de completude é uma
decisão comum em estratégias de análise composicional, como uma forma de aumentar a
eficiência. Nós apresentamos aqui a nossa estratégia, o protótipo desenvolvido para per-
mitir a sua automação, e os resultados de vários experimentos. Nossa estratégia tem dois
elementos principais: os seus metadados, e os seus algoritmos. Após um processo de uma
especificação ser verificado como determinístico, nos coletamos metadados sobre ele. Os
metadados armazenam todas as informações do processo que são relevantes para a es-
tratégia, sendo o único elemento utilizado nas verificações seguintes. Para cada operador
de composição disponível em nosso subconjunto de CSP, nós desenvolvemos um algoritmo
específico para verificar se a composição é determinística. Pelo uso dos metadados, nós
removemos a necessidade de verificar os operandos a cada composição, o que nos leva
a uma abordagem composicional eficiente. Vários estudos de caso foram realizados, nos
quais nós comparamos nosso protótipo com FDR. Para a maior parte dos experimentos
nosso protótipo é capaz de analisar instâncias que FDR não consegue, devido a falta de
memória causada pela explosão de estados. Em alguns casos, nosso protótipo é capaz de
analisar instâncias até três ordens de magnitude maiores. Para a maioria das instâncias
nas quais ambas as ferramentas geram um resultado, além das triviais, nosso protótipo é
mais eficiente que FDR, com alguns casos em que FDR demora mais que vinte minutos
para chegar a um resultado, e o nosso protótipo requer apenas alguns segundos.

Palavras-chaves: Verificação de Modelos. CSP. FDR. Performance. Experimentos.

LIST OF FIGURES

Figure 1 – Graphical representation of M (WorkingRobot). 16
Figure 2 – Some of the operators of CSP. 18
Figure 3 – Three overlapping pairs of segments, and signals of a pair of segments. 20
Figure 4 – Graphical representation of a network, and its pairs. 21
Figure 5 – CSP model of the network in Figure 4 21
Figure 6 – Graphical example of nondeterminism. 25
Figure 7 – BNF of the subset of CSP considered. 28
Figure 8 – Graphical representation of M (Ex5). 30
Figure 9 – Graphical representation of M (Ex6b). 32
Figure 10 – Graphical representation of M (Ex6d). 32
Figure 11 – Fluxogram of Parallelism(P,Q,X) . 46
Figure 12 – Calculating the local states in Parallelism(P,Q,X) 53
Figure 13 – Checking the local states in Parallelism(P,Q,X) 56
Figure 14 – Checking the external choices in Parallelism(P,Q,X) 58
Figure 15 – Graphical representation of a ring buffer. 65

LIST OF TABLES

Table 1 – Deterministic instances of the ring buffer experiment. 69
Table 2 – Nondeterministic instances of the ring buffer experiment. 69
Table 3 – Deterministic instances with one train in the railway. 69
Table 4 – Nondeterministic instances with one train in the railway. 69
Table 5 – Deterministic instances with three trains in the railway. 70
Table 6 – Nondeterministic instances with three trains in the railway. 70
Table 7 – Deterministic instances with five trains in the railway. 70
Table 8 – Nondeterministic instances with five trains in the railway. 70
Table 9 – Deterministic instances of the external choice experiment. 71
Table 10 – Nondeterministic instances of the external choice experiment. 71
Table 11 – Deterministic instances of the internal choice experiment. 72
Table 12 – Nondeterministic instances of the internal choice experiment. 72
Table 13 – Deterministic instances of the interleaving experiment. 72
Table 14 – Nondeterministic instances of the interleaving experiment. 72
Table 15 – Deterministic instances of the interleaving with external choice experi-

ment. 73
Table 16 – Nondeterministic instances of the interleaving with external choice ex-

periment. 73
Table 17 – Deterministic instances of the hiding experiment. 73
Table 18 – Nondeterministic instances of the hiding experiment. 73

CONTENTS

1 INTRODUCTION . 11
1.1 Motivation . 11
1.2 Objectives . 12
1.3 Strategy Overview . 13
1.4 Dissertation Outline . 16

2 BACKGROUND . 18
2.1 CSP . 18
2.1.1 CSP Syntax . 18
2.1.2 CSP Semantics . 22
2.2 Determinism . 24

3 STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 27
3.1 Process Structure and Restrictions 27
3.2 Metadata . 29
3.3 Composition Rules . 42
3.3.1 External Choice . 43
3.3.2 Internal Choice . 44
3.3.3 Parallelism . 44
3.3.4 Hiding . 61

4 EXPERIMENTAL RESULTS . 63
4.1 Prototype . 63
4.2 Case Studies . 64
4.2.1 Systems from the Literature . 64
4.2.2 Toy Examples . 67
4.3 Results . 68
4.4 Threats to Validity . 74

5 CONCLUSION . 75
5.1 Related Work . 76
5.2 Future Work . 77

REFERENCES . 79

11

1 INTRODUCTION

This dissertation proposes a local analysis strategy for determinism. The strategy checks
specifications written in a subset of a well known process algebra, Communicating Se-
quential Process, or CSP for short, and is capable of efficiently analysing a number of
real world problems. Its main advantage is its scalability, achieved by our compositional
approach. Our experiments with the prototype that automates its application indicate
the value of our contribution.

In this chapter we present the motivation of our work, in Section 1.1, together with
our objectives, in Section 1.2, an overview of our strategy, in Section 1.3, and an outline
of the dissertation, in Section 1.4.

1.1 Motivation
Concurrent systems are more common each passing day. These systems are harder to
develop and to analyse than sequential ones. Nevertheless, the never ending quest to
increase computational speed, be it through the use of multiple CPUs in one machine, or
through distributed machines, together with the need to accurately model the concurrent
world that we live in, make them, and all their traits, necessary (WATT, 2004).

When dealing with concurrency, we not only need to tackle the added complexity of
having multiple components, each with its own individual state, but we also we need to
consider problems that are exclusive to concurrent systems. The three classical properties
of concurrency are deadlock, livelock, and nondeterminism.

The analysis of the classical properties of concurrency is crucial in the specification and
design of concurrent systems. Deadlock and livelock are usually considered undesirable
in all circumstances. Nondeterminism, however, is to be expected in abstract models of
a wide range of systems, but may indicate problems in concrete designs. Verification
techniques to investigate the presence or absence of all these properties in a model are
essential for validation and verification of concurrent systems.

Deadlock and livelock have been investigated in depth, and there are very efficient tools
available for their analysis. Among those, there is a well established model checker, FDR
(GIBSON-ROBINSON et al., 2014), and prototypes implementing a number of techniques to
check for deadlock, be it with CSP (RAMOS; SAMPAIO; MOTA, 2009; ANTONINO; SAMPAIO;

WOODCOCK, 2014; ANTONINO; GIBSON-ROBINSON; ROSCOE, 2016a), CCS (FRANCESCA

et al., 2011), or other notations (BENSALEM et al., 2011), and livelock (CONSERVA FILHO

et al., 2016; CONSERVA FILHO et al., 2018), many using compositional approaches.
Of the three classical properties, nondeterminism is the one that has been less studied.

It is, however, specially important in notations for refinement, where it is used for ab-

Chapter 1. INTRODUCTION 12

straction, being an inevitable constituent of any theory that describes concurrency where
some form of arbitration is present (ROSCOE, 2010).

To model concurrent systems, process algebras are a possible choice, since they allow
for high level modelling and formal reasoning about specifications. CSP is a well estab-
lished process algebra that is accompanied by a set of robust tools that allow its practical
use both in academia and in industry. In particular, CSP is capable of modelling both
explicit and implicit nondeterminism, such as the ones that can be introduced by paral-
lelism, internal communications, or renaming. Its versatility in modelling nondeterminism,
together with its tool support, makes CSP a good choice for the analysis of determinism.

FDR (GIBSON-ROBINSON et al., 2014) is the main tool for practical use of CSP; it is
a model checker that takes as input specifications in CSPM , a machine readable version
of CSP, and can, among other things, check for the presence of deadlock, livelock, and
nondeterminism. Other tools for CSP, or CSP dialects, like ProB (LEUSCHEL; BUTLER,
2003), and PAT (SUN et al., 2009), also implement analysis strategies for these classical
properties. The approach taken by all these tools for checking nondeterminism is, however,
based on global analysis, where the entire model is expanded and exhaustively checked. In
this dissertation, we propose a local analysis strategy for determinism, in order to improve
both performance and scalability.

Local analysis has already been adopted for the verification of deadlock and livelock.
Here, we present a local strategy for the verification of determinism in models written
using a subset of CSP that includes most of its main operators, with some restrictions on
how they can be used. Our strategy follows the CSP semantic model of failures, but is not
strongly attached to any aspect of the language, and can possibly be extended to other
formalisms. As far as we know, this is the first approach to local analysis of determinism,
not only in the context of CSP, but also of any other formal modelling notation.

1.2 Objectives
The goal of this work is the creation of a local analysis strategy for determinism. To guide
the development, six objectives are considered, listed below.

1. The strategy must be sound;

2. The strategy must be complete;

3. The analysis needs to be efficient and scalable;

4. As much of standard CSP as possible must be covered;

5. Real world systems must be verifiable;

6. Automation must be available.

Chapter 1. INTRODUCTION 13

Soundness is essential to allow the applicability of our strategy, since it provides guar-
antees to engineers about their designs. Together with soundness, completeness is also
an important property for our verification strategy, since it allows the identification of
nondeterministic systems, preventing the presence of false negatives. To allow for scala-
bility, a compromise regarding these two properties must be made. We have relaxed our
requirement of completeness to improve efficiency, while maintaining soundness. This is a
common design decision among local analysis strategies, with many being sound, but not
complete; examples include the works of Antonino, Sampaio and Woodcock (2014), for
deadlock analysis, and of Conserva Filho et al. (2016), for livelock analysis. Our claim of
soundness is only backed by empirical evaluation, without formal proofs, and this remains
as an important weakness, to be addressed in future work.

Besides soundness and completeness, it is essential for our strategy to be efficient and
scalable. This is the main contribution of our work, since there are already tools that
guarantee correctness and are relatively efficient, besides implementing global analysis.
We aim to match the guarantees provided by other tools, but provide a more efficient
and, specially, a more scalable way of conducting analysis of determinism.

As is common in local analysis, we aim to cover a subset of our selected language. We
provide a subset suitable for analysis of a number real world problems; this expressiveness
is exemplified by some of the case studies developed. By focusing on a controlled subset
of our choice, we can minimize considerably the verification effort.

Finally, the strategy must allow for automation, which is essential for its practical
use. The prototype developed for this purpose automates the whole application of the
strategy, including parsing, creation of metadata, and use of all algorithms. With our
tool, we provide push button verification.

1.3 Strategy Overview
Our strategy receives as input a specification written in an accepted subset of CSP and
outputs a message informing if the specification is deterministic or not. If there is the
possibility of nondeterminism, it reports the specific point. The accepted subset includes
most of the main operators of CSP, such as prefixing, external choice, internal choice, in-
terleaving, generalized parallelism, and hiding; the complete subset is presented in Section
3.1. To illustrate the application of our strategy, we consider the following specification.

GetBox = selectBox → pickUpBox → GetBox

MoveBox = moveToDepot → dropBox → moveToDesk → MoveBox

BrokenMoveBox = moveToDepot → moveToDesk → dropBox → BrokenMoveBox

WorkingRobot = GetBox 2 MoveBox

BrokenRobot = WorkingRobot 2 BrokenMoveBox

Chapter 1. INTRODUCTION 14

In this simple specification we model a robot that receives boxes in a desk and moves
them to a given depot, a common activity in a post office, for example. It consists of five
processes, which are the main structures of CSP: GetBox , MoveBox , BrokenMoveBox ,
WorkingRobot , and BrokenRobot . The first three processes model the individual activ-
ities of the robot, with GetBox and MoveBox dealing with the normal behaviour, and
BrokenMoveBox depicting an unexpected one. The process WorkingRobot models a robot
that always works as expected, while BrokenRobot models a robot that can fail to deliver
a box the depot. We assume that the robot is directed by an external system, and always
picks up a box before moving to the depot.

To conduct the analysis, we divide the processes in two categories: Basic Processes,
which are assumed to be deterministic, and Composite Processes, which are the result
of the composition of Basic Processes and other Composite Processes. In our example,
the processes GetBox , MoveBox , and BrokenMoveBox , are Basic Processes; they simply
communicate certain events and then recurse. Processes WorkingRobot and BrokenRobot

are Composite Processes, because they are the result of a composition of other processes,
using the external choice operator.

Since the Basic Processes are expected to be deterministic, our strategy only needs to
check if the compositions in the specification are sources of nondeterminism. The subset of
CSP used guarantees that most Basic Processes will be deterministic by definition. When
a guarantee cannot be obtained, an external verification needs to carried out before the
application of the strategy.

When checking a composition, we use the metadata of its operands as inputs. The
metadata of a process stores all the relevant information needed for our analysis, such
that we do not need to analyse it when it is used in compositions. The first step of
our strategy is to create the metadata of the Basic Processes, which is used to anal-
yse the first compositions. The metadata, M , of the processes GetBox , MoveBox , and
BrokenMoveBox , is shown below; the formal definition of the metadata, including the
types of its internal structures, are presented in Section 3.2.

M (GetBox) =

⟨ ⎧⎨⎩
⎛⎝ ⟨ ⎧⎨⎩

⟨
selectBox ,

pickUpBox , 0

⟩ ⎫⎬⎭
⟩
,∅,∅

⎞⎠ ⎫⎬⎭
⟩

M (MoveBox) =

⟨ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

⟨ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨ moveToDepot ,

dropBox ,

moveToDesk , 0

⟩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩
,∅,∅

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⟩

M (BrokenMoveBox) =

⟨ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

⟨ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨ moveToDepot ,

moveToDesk ,

dropBox , 0

⟩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩
,∅,∅

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⟩

Chapter 1. INTRODUCTION 15

The metadata consists of a sequence of sets of tuples, which have size three. The first
element of a tuple stores the structure of a Basic Process, the second element stores syn-
chronizations, and the third element stores information regarding internal compositions.
The metadata of a Basic Process only has one set, with one tuple, since no composition
has been made, and the second and third elements of the tuple are always the empty set.
For M (GetBox), M (MoveBox), and M (BrokenMoveBox), we can see that the metadata
simply stores the sequence of events specified in the definition of those processes, with
zero indicating a recursion.

With the metadata of the Basic Processes calculated, we can now check if the com-
position in WorkingRobot is deterministic. The process WorkingRobot is a composition
of GetBox and MoveBox using the external choice operator of CSP. To check any com-
position, we apply a specific algorithm, depending on the operator in use, passing as
arguments the metadata of its operands. In the case of WorkingRobot , the algorithm will
receive M (GetBox) and M (MoveBox) as input.

After conducting its analysis, the algorithm will conclude that WorkingRobot is deter-
ministic. This conclusion can be reached by verifying that the first event of each operand
that is present in the choice offered to the environment, selectBox and moveToDepot , are
different, and thus each path can be selected accurately; the complete definition of this
algorithm is presented in Section 3.3.1.

The strategy then proceeds to create the related metadata, M (WorkingRobot), for
future use; M (WorkingRobot) is shown below. The sequence has three sets, each with one
tuple. The first two were extracted from M (GetBox) and M (MoveBox), and represent
the behaviour of their respective processes. The last set represents the choice introduced
by the composition, with the first element of its tuple containing only 𝑆𝐾𝐼𝑃 , which is the
process that does nothing, used to avoid introducing new behaviour, the second element
being the empty set, since there are no internal synchronizations, and the third element
containing the positions 1 and 2, in M (WorkingRobot), of the possible behaviours.

We create a tree structure in M (WorkingRobot), as can be seen in Figure 1, by concate-
nating the metadata of selectBox and moveToDepot , and adding a new composite node.
A detailed description of the structure of our metadata, and of the graphical notation
used, is given in Section 3.2.

M (WorkingRobot) =

⟨
⎧⎨⎩

⎛⎝ ⟨ ⎧⎨⎩
⟨

selectBox ,

pickUpBox , 0

⟩
,

⎫⎬⎭
⟩
,∅,∅

⎞⎠ ⎫⎬⎭ ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

⟨ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⟨ moveToDepot ,

dropBox ,

moveToDesk , 0

⟩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩
,∅,∅

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

{︁ (︁ ⟨ {︁
⟨𝑆𝐾𝐼𝑃 ⟩

}︁ ⟩
,∅,

{︁
1, 2

}︁)︁ }︁

⟩

Chapter 1. INTRODUCTION 16

Figure 1 – Graphical representation of M (WorkingRobot).

With M (WorkingRobot), we can now check BrokenRobot . We use the same algo-
rithm, since we have an external choice again, and its inputs are M (WorkingRobot)

and M (BrokenMoveBox); we note that a more natural definition of BrokenRobot can
be achieved with an internal choice, but we use an external choice here to illustrate as-
pects of our strategy. When checking this composition, however, the algorithm identifies
the possibility of nondeterminism. This arises from the presence of moveToDepot in the
initial events of both operands. In BrokenRobot , after performing moveToDepot , the en-
vironment can not control if the robot will perform MoveBox or BrokenMoveBox . At this
point our strategy stops, returning that the external choice between WorkingRobot and
BrokenMoveBox is a possible source of nondeterminism; no new metadata is created.

The automation provided by our prototype allows for quick and efficient application
of the strategy. It calculates the metadata of the processes during its execution and
applies the required algorithms at each composition. When applied to the given example,
it outputs “Potential nondeterminism in WorkingRobot 2 BrokenMoveBox , the initial
events of WorkingRobot and BrokenMoveBox can introduce nondeterminism”.

1.4 Dissertation Outline
This section presents the structure of this dissertation. In Chapter 2 we discuss the neces-
sary background of our work: the process algebra CSP, and its definitions of determinism.
All the features of CSP used, as well as the various forms of defining determinism in CSP,
and the definition chosen for our strategy, are presented.

In Chapter 3 we explain our strategy in detail. Initially we present the requirements
needed to apply our strategy, which is followed by the definition the metadata used.
Finally, we present the algorithms for each supported composition.

Chapter 1. INTRODUCTION 17

The case studies used, together with our experimental results, are discussed in Chapter
4. Beyond the problems used, and the results obtained, we also discuss the experimental
infrastructure, and the features of our prototype. Finally, in Chapter 5, we summarise
the contributions of our work. Additionally, we provide a comparative overview of related
works dealing with local analysis, and propose ideas for future research.

18

2 BACKGROUND

We present here the background material related to our work: the process algebra CSP,
in Section 2.1, and its notion of determinism, in Section 2.2.

2.1 CSP
CSP is a process algebra that can be used to describe systems as interacting compo-
nents. These components, called processes, are independent entities that interact among
themselves, and with the environment. The interactions, called events, are atomic, in-
stantaneous, and synchronous messages. The main constructs of the CSP language are
presented in Section 2.1.1, and its semantic models are discussed in Section 2.1.2; further
information can be found in the works of Hoare (1985) and Roscoe (2010).

2.1.1 CSP Syntax

The processes in CSP are defined in terms of events. The set of all possible events is
called Σ. We also define the set of events that a process P can engage in, its alphabet,
denoted by 𝛼P , with 𝛼P ⊆ Σ. To build a specification, processes can be composed in
many different forms. Some of the main operators of CSP can be found in Figure 2.

Process ::= “𝑆𝐾𝐼𝑃”
| “𝑆𝑇𝑂𝑃”
| “𝐷𝐼𝑉 ”
| Event “→ ” Process
| Condition “&” Process
| “ if ” Condition “then” Process “else” Process
| Process “ ; ” Process
| Process “ 2 ” Process
| Process “ ⊓ ” Process
| Process “ ||| ” Process
| Process “[[” X “]]” Process
| Process “ ∖ ” X
| Process “[[” R “]]”

Terminating process
Deadlock process
Divergent process
Prefixing
Guard
Conditional
Sequential Composition
External Choice
Internal Choice
Interleaving
Generalized Parallel
Hiding
Renaming

Figure 2 – Some of the operators of CSP.

CSP has three primitive processes, 𝑆𝐾𝐼𝑃 , 𝑆𝑇𝑂𝑃 , and 𝐷𝐼𝑉 , which can be used in the
definition of other processes. The process 𝑆𝐾𝐼𝑃 does nothing and terminates successfully,
with the termination being marked by the special event X ̸∈ Σ, which is always the
last event communicated by any terminating process. The process 𝑆𝑇𝑂𝑃 stands for a
canonical deadlock; it is not capable of any communication. Finally, the process 𝐷𝐼𝑉

Chapter 2. BACKGROUND 19

models a divergent behaviour, standing for an infinite cycle of internal events, which are
events that cannot be observed in the environment in which they are inserted.

A prefixing a → P , with a ∈ Σ, is initially capable of performing the event a, and then
behaves like the process P . Events can be compound to communicate data. For instance,
c.5 is the event that represents the transmission of the value 5 through the channel c.
Communications can be explicitly used for input or output. The composition c?x → P(x),
for example, first receives a value through channel c, which is stored in the variable x , and
then proceeds to behave as P(x); in this case, we write P(x) to indicate that the value
of x can be used in P . An example of output can be seen in in?x → out !x → 𝑆𝐾𝐼𝑃 ,
which receives a value through channel in, outputs this value through channel out , and
then terminates; the “!” symbol is semantically equivalent to the “.” symbol.

The use of guards and conditionals is written g & P , and if g then P else Q , respec-
tively. The former behaves as P if g is true, and as 𝑆𝑇𝑂𝑃 otherwise. The latter behaves
as P if g is true, and as Q otherwise. Sequential composition is written as P ; Q , and it
behaves as P , until P terminates successfully, in which case it behaves as Q.

There are two operators that define choice in CSP. The process P 2 Q is the external
choice between P and Q , resolved in favour of either of them when the environment
synchronizes on their initials, which are the sets of events that they initially offer. In
contrast, we have the internal choice, P ⊓ Q , in which the environment has no control
over how the choice is resolved, as the choice is taken by the process itself, potentially
leading to nondeterminism.

To model parallelism in CSP we have various options. The process P ||| Q is the inter-
leaving of P and Q ; in this composition P and Q execute in parallel, but independently.
Another form of composition can be achieved with generalised parallelism, P [[X]]Q , in
which P and Q agree on X ⊆ Σ. The events in X occur for both operands, and the events
outside of X occur independently; if X = ∅, the composition behaves as an interleaving.

Among other parallelism operators, we have, for example, alphabetized parallel, and
linked parallel; these operators are not discussed here, since they are not present in our
strategy. We note, however, that the extra forms of parallelism can be expressed in terms
of operators we do consider (ROSCOE, 2010).

To achieve abstraction, we can encapsulate some events of a process. To do that we
can write P ∖ X , which hides the events in the set X , with X ⊆ Σ, from the environment.
It is important to point out that, although not visible, the hidden events still take place,
leading to synchronizations not visible to the environment.

To rename the events of a process P , we write P [[R]], where R is a series of mappings
of the form a ← b. The process P [[a ← b]] behaves as P , but all occurrences of a are
replaced by b, so, for P = a → 𝑆𝐾𝐼𝑃 , we have P [[a ← b]] = b → 𝑆𝐾𝐼𝑃 .

As an example, we present a specification of a railway network described by Schneider
(1999). It is composed by a series of segments of tracks, with a signal between every

Chapter 2. BACKGROUND 20

two adjacent segments used to control the flow of trains. The segments are organised in
overlapping pairs, as shown in Figure 3(a), with segment pairs P1, P2 and P3. In its initial
state, the railway can have a number of trains in specific segments. A safety requirement
is that no two trains should be in adjacent segments.

Figure 3 – Three overlapping pairs of segments (a), and signals of a pair of segments (b);
modified from the original of Schneider (1999).

Each pair of segments has three signals, as indicated in Figure 3(b): e, which indicates
a train entering the pair; f , which indicates the train moving from the first to the second
segment; and g , which indicates the train leaving the pair. A pair of segments is modelled
as a process that can communicate three events, signal .e, signal .f , and signal .g , corre-
sponding to the signals e, f , and g . To deal with all possible initial states of a pair, three
processes are defined. Pair Empty specifies a pair that is initially empty, Pair First , a
pair in which a train is initially in its first segment, and Pair Second , a pair in which a
train is initially in its second segment.

Pair Empty = signal .e → signal .f → signal .g → Pair Empty

Pair First = signal .f → signal .g → signal .e → Pair First

Pair Second = signal .g → signal .e → signal .f → Pair Second

To model a network we compose a number of instances of pairs of segments in parallel,
with each instance having its own signals defined according to its position in the network.
In Figure 4 we present an example of a cyclic network that has four pairs and four
segments, with the last and the first segments being adjacent to each other. Figure 4(a)
gives an overview of the complete network, in which there is initially a single train in the
segment demarcated by signal.0 and signal.1. Figure 4(b) shows the four segment pairs,
from Pair0 to Pair3. In this figure, the segment pairs are expressed in continous lines.
For example, Pair0 in Figure 4(b) represents the pair of segments demarcated by signal .0

and signal .1, and signal .1 and signal .2.
The CSP processes that describe the four segment pairs are presented in Figure 5.

These processes define the initial state of each segment pair. Therefore, although Pair0 is
formed of the two segments demarcated by signal .0 and signal .1, and signal .1 and signal .2,
the process is written as Pair0 = signal .1 → signal .2 → signal .0 → Pair0, because the

Chapter 2. BACKGROUND 21

Figure 4 – Graphical representation of a network (a), and its pairs (b).

train is in the first segment of this pair, and the next relevant event it must communicate
is signal .1, indicating the train is moving from the first to the second segment of Pair0. So
Pair0 follows the form of Pair First , previously explained. Similarly, Pair1 and Pair2

are modelled as Pair Empty , since the train is not in any of their segments. Finally,
Pair3 is modelled as Pair Second , as the train is in the second segment of this pair. The
composition of the pairs is made using the generalised parallel operator, since the signals
of a pair need to synchronise with the signals of its adjacent pairs.

Pair0 = signal .1→ signal .2→ signal .0→ Pair0

Pair1 = signal .1→ signal .2→ signal .3→ Pair1

Pair2 = signal .2→ signal .3→ signal .0→ Pair2

Pair3 = signal .1→ signal .3→ signal .0→ Pair3

SyncSet1 = {signal .1, signal .2}
SyncSet2 = {signal .0, signal .2, signal .3}
SyncSet3 = {signal .0, signal .1, signal .3}
RailwayNetwork = ((Pair0[[SyncSet1]]Pair1)[[SyncSet2]]Pair2)[[SyncSet3]]Pair3

Figure 5 – CSP model of the network in Figure 4

The process RailwayNetwork can initially communicate only signal .1, and afterwards
signal .2, signal .3, signal .0, signal .1, signal .2 and so on. Each pair synchronises its first
two signals with the pair on its left and its last two signals with the pair on its right, so
when the network communicates signal .1, it means that a train is, simultaneously: moving
from segment 1 to segment 2 of Pair0, entering segment 1 of Pair 1, and leaving Pair3.

Chapter 2. BACKGROUND 22

2.1.2 CSP Semantics

CSP has both an operational and a denotational semantics (ROSCOE, 2010). The opera-
tional semantics of a process is given in terms of a Labelled Transition System, LTS for
short, which models a specification as a set of states, with transitions between them. This
approach is used, for example, in FDR, which creates the LTS of a CSP specification to
conduct its analysis.

To reason about specifications, denotational semantics are usually preferred. There are
three well established denotational semantic models for CSP: traces, failures, and failures-
divergences. Other models exist, such as the stable revivals model used for deadlock
analysis by Antonino, Sampaio and Woodcock (2014).

The traces model is the simplest one available. In it, a process P is represented by
𝑡𝑟𝑎𝑐𝑒𝑠(P), which is the set that contains all sequences of events in which P can engage.
The trace semantics of the operators used in our strategy can be seen in Definition 1.

Definition 1 (Trace Semantics) Let P and Q be two CSP processes, and a ∈ Σ.

traces(𝑆𝐾𝐼𝑃) =
traces(𝑆𝑇𝑂𝑃) =
traces(a → P) =
traces(g & P) =
traces(if g then P else Q) =
traces(P ; Q) =

traces(P 2 Q) =
traces(P ⊓ Q) =
traces(P ||| Q) =
traces(P [[X]]Q) =
traces(P ∖ X) =

{⟨⟩, ⟨X⟩}
{⟨⟩}
{⟨⟩} ∪ {⟨a⟩⌢s | s ∈ traces(P)}
traces(P), if g is true, traces(𝑆𝑇𝑂𝑃) otherwise
traces(P), if g is true, traces(Q) otherwise
(traces(P) ∩ Σ*) ∪
{s⌢t | s⌢⟨X⟩ ∈ traces(P) ∧ t ∈ traces(Q)}
traces(P) ∪ traces(Q)

traces(P) ∪ traces(Q)⋃︀
{s ||| t | s ∈ traces(P) ∧ t ∈ traces(Q)}⋃︀
{s ‖

X

t | s ∈ traces(P) ∧ t ∈ traces(Q)}

{t ∖ X | t ∈ traces(P)}

where s⌢t stands for the concatenation of the sequences s and t , Σ* represents all possible
finite sequences of events in Σ, and t ∖ X represent a subsequence of t, without the events
of X; the functions |||, and ‖

X

, can be found in definitions 2, and 3, respectively.

Definition 2 (Interleaving of Sequences) Let s and t be sequences of events, with
a, b ∈ Σ. Then the interleaving s ||| t is defined as:

⟨⟩ ||| s = {s}

s ||| ⟨⟩ = {s}

⟨a⟩⌢s ||| ⟨b⟩⌢t = {⟨a⟩⌢u | u ∈ s ||| ⟨b⟩⌢t} ∪ {⟨b⟩⌢u | u ∈ ⟨a⟩⌢s ||| t}

Chapter 2. BACKGROUND 23

Definition 3 (Parallelism of Sequences) Let s and t be sequences of events, X ⊆ Σ,
x , x ′ ∈ X , and y , y ′ ̸∈ X . Then the parallelism s ‖

X

t is given by:

s ‖
X

t = t ‖
X

s

⟨⟩ ‖
X

⟨⟩ = {⟨⟩}

⟨⟩ ‖
X

⟨x ⟩ = ∅

⟨⟩ ‖
X

⟨y⟩ = {⟨y⟩}

⟨x ⟩⌢s ‖
X

⟨y⟩⌢t = {⟨y⟩⌢u | u ∈ ⟨x ⟩⌢s ‖
X

t}

⟨x ⟩⌢s ‖
X

⟨x ⟩⌢t = {⟨x ⟩⌢u | u ∈ s ‖
X

t}

⟨x ⟩⌢s ‖
X

⟨x ′⟩⌢t = ∅ if x ̸= x ′

⟨y⟩⌢s ‖
X

⟨y ′⟩⌢t = {⟨y⟩⌢u | u ∈ s ‖
X

⟨y ′⟩⌢t} ∪ {⟨y ′⟩⌢u | u ∈ ⟨y⟩⌢s ‖
X

t}

The process 𝑆𝑇𝑂𝑃 has only the empty trace, since it models a deadlock. The process
𝑆𝐾𝐼𝑃 , on the other hand, can perform the trace with X. The semantics of prefixing,
guard, conditional, external choice, and internal choice, are quite straightforward. With
sequential composition, we must point out that X marks the concatenation point of
the sequences of P and Q , but X itself does not belong to any trace in traces(P ; Q);
traces(P) ∩ Σ* represents the traces of P that do not contain X.

The traces of interleaving and generalized parallelism, although not trivial, are not
complex, as they simply represent the intertwine of sequences. The traces of hiding are
also simple, since they entail removing the hidden events from all the sequences that are
traces of the process.

The traces model allows us to capture what a process can do, but not what it is unable
to do. One example of this is that with traces we cannot differentiate between external
and internal choice, even though they can lead to different behaviours: an internal choice
may refuse events that are accepted by an external choice. To capture what a process
cannot do, we use the failures model.

In the failures model, a process P is represented by the pair (𝑡𝑟𝑎𝑐𝑒𝑠(P), 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(P)),
with 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(P) being a set of pairs (s ,X), where s is a trace of P and X is a set of
events that P can refuse after performing s . This model captures not only how a process
can behave, but also how it may refuse to behave. The failures semantics of the CSP
operators used in our strategy can be seen in Definition 4.

The processes 𝑆𝐾𝐼𝑃 and 𝑆𝑇𝑂𝑃 refuse all events of Σ, with 𝑆𝐾𝐼𝑃 accepting only
X, after the empty trace. The semantics of prefixing, guard, conditional, sequential com-
position, and internal choice are, like in the traces model, quite straightforward. External

Chapter 2. BACKGROUND 24

Definition 4 (Failures Semantics) Let P and Q be two CSP processes, and a ∈ Σ.

failures(𝑆𝐾𝐼𝑃) =
failures(𝑆𝑇𝑂𝑃) =
failures(a → P) =
failures(g & P) =
failures(if g then P else Q) =
failures(P ; Q) =

failures(P 2 Q) =

failures(P ⊓ Q) =
failures(P ||| Q) =

failures(P [[X]]Q) =

failures(P ∖ X) =

{(⟨⟩,X) | X ⊆ Σ} ∪ {(⟨X⟩,X) | X ⊆ Σ ∪ {X}}
{(⟨⟩,X) | X ⊆ Σ ∪ {X}}
{(⟨⟩,X) | a ̸∈ X } ∪ {(⟨a⟩⌢s ,X) | (s ,X) ∈ failures(P)}
failures(P), if g is true, failures(𝑆𝑇𝑂𝑃) otherwise
failures(P), if g is true, failures(Q) otherwise
{(s ,X) | s ∈ Σ* ∧ (s ,X ∪ ⟨X⟩) ∈ failures(P)} ∪
{(s⌢t ,X) | s⌢⟨X⟩ ∈ traces(P) ∪ (t ,X) ∈ failures(Q)}
{(⟨⟩,X) | (⟨⟩,X) ∈ failures(P) ∩ failures(Q)} ∪
{(t ,X) | (t ,X) ∈ failures(P) ∪ failures(Q) ∧ t ̸= ⟨⟩} ∪
{(⟨⟩,X) | X ⊆ Σ ∧ ⟨X⟩ ∈ trace(P) ∪ traces(Q)}
failures(P) ∪ failures(Q)⋃︀
{(s ||| t ,Y ∪ Z) | Y ∖X = Z ∖X ∧

(s ,Y) ∈ failures(P) ∧ (t ,Z) ∈ failures(Q)}⋃︀
{(s ‖

X

t ,Y ∪ Z) | Y ∖ (X ∪ {X}) = Z ∖ (X ∪ {X}) ∧

(s ,Y) ∈ failures(P) ∧ (t ,Z) ∈ failures(Q)}
{(t ∖ X ,Y) | (t ,X ∪ Y) ∈ failures(P)}

choice, however, is more complex, since it now takes into account the events that can-
not be engaged in, after the choice is resolved. The semantics of interleaving, generalized
parallelism, and hiding are uplifted from the traces model, adding considerations for the
refusal of events.

To enhance the failures model, we have the failures-divergences model, the more com-
plete of the classical ones. This model is capable of capturing divergent behaviour in a
specification. It is built upon the failures model, similarly as the failures model is built
upon the traces model. As this model is not used in our strategy, it is not presented here.
In the next section, we discuss determinism using the failures model.

2.2 Determinism
A deterministic system can be thought of as one that always produces the same output,
given a fixed input. Nondeterminism happens when we cannot control the output of a
system with its input. An example of nondeterminism can be seen in Figure 6, where the
system initially can perform e, but it has no control if it will be able to synchronize on
either a or b afterwards.

CSP has different definitions for determinism, depending on the semantic model being
used. The traces model, since it does not capture what a process cannot do, is not rich
enough to allow us to determine if the process is deterministic or not, so it cannot be
used for this end. For the example of Figure 6, the traces model can only capture that
the traces ⟨e, a⟩, and ⟨e, b⟩ are valid, but it cannot capture that after e, either a, or b,
can be refused, depending on how the choice is resolved.

Chapter 2. BACKGROUND 25

Figure 6 – Graphical example of nondeterminism.

The failures model is rich enough to capture nondeterminism. Its definition of deter-
minism is reproduced in Definition 5. It states that, after a trace tr , a process cannot
have the possibility of both accepting and refusing any given event a.

Definition 5 (Determinism in the failures model) The process P is deterministic
if, and only if, ∀ tr : 𝑡𝑟𝑎𝑐𝑒𝑠(P), a : Σ ∙ ¬(tr⌢⟨a⟩ ∈ 𝑡𝑟𝑎𝑐𝑒𝑠(P) ∧ (tr , {a}) ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(P)).

This definition captures the essence of determinism: a process cannot have the pos-
sibility of both accepting and refusing an event at any given state, which can lead to
different observable behaviours given the same input. To further illustrate the definition,
consider the concrete examples 1, 2, and 3, based on the specification shown in Figure 5.

Example 1 The process Ex1a = Pair1 2 Pair2 is deterministic, since Pair1 and Pair2

are deterministic and the intersection of their initials is empty. Without initial events in
common, the environment has a clear choice between Pair1 and Pair2, which, with their
traces and failures, do not violate Definition 5.

The process Ex1b = Pair1 2 Pair3, on the other hand, is nondeterministic, because
signal .1 is in the initials of both Pair1 and Pair3, so, by performing signal .1, the envi-
ronment has no control over how the external choice is resolved, allowing Ex1b to both
accept or refuse signal .2 afterwards, depending on whether Pair1 or Pair3 is chosen; the
trace ⟨signal .1, signal .2⟩ and the failure (⟨signal .1⟩,{signal .2}), for instance, are in the
semantics of Ex1b, which therefore does not satisfy the restriction in Definition 5. �

Example 2 The composition in Ex2 = Pair1 ||| Pair2 is nondeterminitic because we
have an event, signal .3, after which Pair1 and Pair2 behave differently. In terms of
Definition 5, we note that ⟨signal .1, signal .2, signal .3, signal .1⟩ is a trace of Ex2, and
(⟨signal .1, signal .2, signal .3⟩,{signal .1}) is a failure of Ex2. �

Chapter 2. BACKGROUND 26

Example 3 The hiding of event signal .1 in Ex1a, Ex1a ∖ {signal .1}, leads to nondeter-
ministic behaviour, since the environment looses control over the choice between Pair1

and Pair2. One possible trace of the composition is ⟨signal .2, signal .3, signal .2⟩, if the
choice is resolved in favour of Pair1, and one failure is (⟨signal .2, signal .3⟩,{signal .2}), if
the choice is resolved in favour of Pair2. �

With the failures model, we can capture the main aspect of nondeterminism, discussed
so far. A different source of nondeterminism, however, is divergence, which is captured by
the failures-divergences model. Its depiction of nondetermism is built upon Definition 5,
with added considerations for divergent behaviour.

We adopt the definition of determinism in the failures model for the development
of our strategy. There are two reasons for this decision. The first is that, as previously
stated, the failures model captures the essence of determinism, which is the property we
focus on, and not divergence. Second, there are already tools that verify divergence in a
compositional way (CONSERVA FILHO et al., 2018), and can complement our strategy. The
two-step approach for verification of determinism in the failures-divergences model, of
first ensuring that the specification is divergence-free, and then checking for determinism
in the failures model, can already be taken for global analysis, with automation being
provided by tools like FDR (ROSCOE, 2010). Our strategy can be part of local analysis
alternative for this two-step verification.

The global analysis of determinism in the failures model implemented by FDR is based
on Lazic’s algorithm for determinism checking (ROSCOE, 2010). This algorithm requires
two copies of the given process in parallel in order conduct the analysis, which requires
the creation of the whole state space of this parallel composition, which is even larger
than that of the original process. In the next chapter we describe our approach, in which
determinism can be predicted by analysing only a restricted subset of the state space of
the process being checked.

27

3 STRATEGY FOR LOCAL ANALY-
SIS OF DETERMINISM

Our analysis of a process is compositional. We constructively check the process, starting
from its basic components. If the possibility of nondeterminism is found at any point, the
analysis stops and indicates the component that may be the source of nondeterministic
behaviour. We collect information of the processes analysed, in the form of metadata, so
that it is readily available when necessary, avoiding unnecessary recalculation.

Our strategy is sound, but not complete. When nondeterminism is indicated, we may
have found a true nondeterminism, or it may be an inconclusive result, but when the strat-
egy indicates that a process is deterministic, it is certainly the case. Local approaches to
the analysis of classical concurrency properties tend to give up completeness in favour of
efficiency gains; see, for example, the works of Antonino, Sampaio and Woodcock (2014),
Antonino et al. (2014), Antonino, Gibson-Robinson and Roscoe (2016a), and Antonino,
Gibson-Robinson and Roscoe (2016b) for deadlock analysis, and Conserva Filho et al.
(2016), and Conserva Filho et al. (2018) for livelock analysis. To illustrate the incom-
pleteness of our approach, we present a concrete example.

Example 4 We consider the following processes.

Ex4a = a → b → Ex4a Ex4c = Ex4a ⊓ Ex4b

Ex4b = c → d → 𝑆𝐾𝐼𝑃 Ex4d = Ex4c[[{a, c}]]𝑆𝑇𝑂𝑃

The process Ex4c is nondeterministic, due to its internal choice. The process Ex4d ,
on the other hand, is deterministic, since it is equivalent to STOP. When analysing Ex4d ,
however, our strategy indicates the possibility of nondeterminism in Ex4c and stops. �

Our claim of soundness is not yet backed by a formal proof. We intend for the strategy
to have this property, and the experiments provide evidence in this direction, but currently
there is no guarantee. In this chapter we assume that our approach is sound, with the
lack of soundness being addressed in Chapter 5.

We present the subset of CSP that our strategy works with in Section 3.1, and the
metadata it gathers after each composition in Section 3.2. The algorithms used to check
for determinism are detailed in Section 3.3.

3.1 Process Structure and Restrictions
In our strategy the processes are separated in two categories, Basic Processes and Com-
posite Processes, defined in Figure 7. The elements Event, Condition, ProcessName, and

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 28

SetOfEvents are the syntactic categories of the possible events, logical conditions, names
of processes, and sets of events of CSP, respectively. We assume that all processes are
divergence free, since we do not intend to capture nondeterminism introduced by diver-
gence; this assurance can be achieved by conducting an appropriate verification prior to
the application of our strategy, and checking for divergence can also be compositional
(CONSERVA FILHO et al., 2018).

Process ::= BasicProcess | CompositeProcess

BasicProcess ::= “𝑆𝐾𝐼𝑃” | “𝑆𝑇𝑂𝑃” | ProcessName
| Event “→ ” BasicProcess
| Condition “&” BasicProcess
| “ if ” Condition “then” BasicProcess “else” BasicProcess
| BasicProcess “ ; ” BasicProcess
| BasicProcess “ 2 ” BasicProcess

CompositeProcess ::= ProcessName “ ; ” ProcessName
| ProcessName “ 2 ” ProcessName | ProcessName “ ⊓ ” ProcessName
| ProcessName “ ||| ” ProcessName | ProcessName “[[” SetOfEvents “]]” ProcessName
| ProcessName “ ∖ ” SetOfEvents

Figure 7 – BNF of the subset of CSP considered.

Due to the nature of the set of operators that can be used to create Basic Processes,
most of them are deterministic by definition. The processes 𝑆𝐾𝐼𝑃 and 𝑆𝑇𝑂𝑃 are deter-
ministic, and prefixing, guard, conditional, and sequential composition cannot introduce
nondeterminism; if a Basic Process is composed exclusively of these elements, no verifica-
tion is needed. The external choice operator, however, can lead to nondeterminism. If this
operator is used in a Basic Process, it is necessary to check if the process is deterministic
before applying the strategy, using an external verification. We include external choice as
a composition operator for both Basic and Composite processes, however, to be able to
cover a larger class of processes with our strategy. For example, a memory cell, as shown
below, cannot be modelled without external choice for Basic Processes.

MemoryCell(value) = in?newValue → MemoryCell(newValue)

2

out !value → MemoryCell(value)

Note that Basic Processes consist of a structured, possibly branching, sequence of
events, ending in either 𝑆𝐾𝐼𝑃 , 𝑆𝑇𝑂𝑃 , or recursion; we allow only tail recursion, with
a Basic Process not being able to reference any other process. Composite Processes, on
the contrary, consist of a single composition, with its operands being references to other
processes. This distinction is used to enforce the idea of components being put together.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 29

In our strategy, no verification is carried out of the Basic Processes. The Composite
Processes, which are the result of compositions between Basic Processes or other Com-
posite Processes, are our focus.

The subset of CSP that our strategy can analyse includes most of the main operators
of the language. They are, however, restricted on how they can be used. Prefixing, guards,
and conditionals, can only be used in Basic Processes, while internal choice, interleaving,
generalized parallel, and hiding are restricted to Composite Processes. To allow for greater
expressiveness, sequential composition and external choice can be used both in Basic
Processes and in Composite Processes, with only the added burden of checking, before
applying the strategy, if the external choice can lead to nondeterminism in Basic Processes.

3.2 Metadata
For each process in a given specification, upon it being guaranteed to be deterministic,
be it by definition or verification, we gather metadata, M , about it. This metadata is a
sequence of sets of tuples, with the tuples being of size three. Each tuple in M represents
a Basic Process, and the structure of a sequence of sets reflects the compositions. The
first element of each tuple stores the syntactic structure of a Basic Process, the second
element stores synchronisations among processes, which arise from parallel compositions,
and the third element stores the order in which the compositions are made.

Example 5 The metadata of the processes Ex4a and Ex4b, from Example 4, and of
Ex5 = Ex4a 2 Ex4b, is shown below.

M (Ex4a) =

⟨ {︂ (︁ ⟨ {︁ ⟨
a, b, 0

⟩ }︁ ⟩
,∅,∅

)︁ }︂ ⟩
M (Ex4b) =

⟨ {︂ (︁ ⟨ {︁ ⟨
c, d , 𝑆𝐾𝐼𝑃

⟩ }︁ ⟩
,∅,∅

)︁ }︂ ⟩

M (Ex5) =

⟨
{︂ (︁ ⟨ {︁ ⟨

a, b, 0
⟩
,
}︁ ⟩

,∅,∅
)︁ }︂

,{︂ (︁ ⟨ {︁ ⟨
c, d , 𝑆𝐾𝐼𝑃

⟩ }︁ ⟩
,∅,∅

)︁ }︂
,{︁ (︁ ⟨ {︁

⟨𝑆𝐾𝐼𝑃 ⟩
}︁ ⟩

,∅,
{︁

1, 2
}︁)︁ }︁

⟩

The metadata of all Basic Processes consist of a sequence with a singleton set; it has
one tuple, since no composition among processes is present. In that tuple, the second
and third elements are always the empty set, because there can be no synchronisations
or compositions in a Basic Process. We can see that M (Ex4a) and M (Ex4b) store the
sequence of events of their respective processes, a → b → Ex4a, and c → d → 𝑆𝐾𝐼𝑃 ,
in the first element of their tuples; the zero represents a recursion. The second element is

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 30

the empty set, since there are no synchronizations at this point, as is the third, because
no compositions were made. The general form of the first element of each tuple is always
a sequence of sets of sequences; this is further discussed in Example 7.

The sequence of M (Ex5) contains three sets, since we are dealing with a Compos-
ite Process. The first two are the sets of M (Ex4a) and M (Ex4b), and the third has a
composition tuple, which contains only 𝑆𝐾𝐼𝑃 in its first element, and models the choice
introduced by the composition operator; we use the term “composition tuple” to refer-
ence a tuple that does not store structure of a Basic Process. The third element of the
composition tuple has the positions, in M (Ex5), of the two alternative behaviours: 1 and
2, in this case. The sequence of sets of the metadata creates a tree structure, storing the
order of the compositions, with the root being the last set. A graphical representation of
M (Ex5) can be seen in Figure 8; the graphical notation used is presented in detail after
the next example. �

Figure 8 – Graphical representation of M (Ex5).

The second element of each tuple, the synchronisation set, is a set of pairs, with
each pair having an integer value as its first component, and a set of events as its second
component. The events in the pair are the ones being synchronised, and the integer values
identify which processes participate in the synchronisation.

Example 6 We consider the following processes.

Ex6a = a → 𝑆𝑇𝑂𝑃 Ex6c = b → Ex6c

Ex6b = Ex6a[[{a}]]Ex4a Ex6d = Ex6b[[{b}]]Ex6c

With the generalised parallel operator, we add the synchronised events to all tuples of
the metadata, except the new composition tuple, the last one in the sequence, as shown in

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 31

M (Ex6b). The base, unsigned, integer value uniquely identifies the synchronisation, and
its signal is used to differentiate between the two process arguments of the parallelism;
a fresh integer is used for each new synchronisation, with its positive value indicating
the left operand, and the negative counterpart indicating the right operand. Note that,
differently from M (Ex5), the tuples of the operands of Ex6b are joined in a single set; in
the metadata, tuples in the same set model parallelism.

M (Ex6b) =

⟨ ⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

a, 𝑆𝑇𝑂𝑃
⟩
,
}︁ ⟩

,
{︁ (︁

1,
{︁

a
}︁)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

a, b, 0
⟩
,
}︁ ⟩

,
{︁ (︁

−1,
{︁

a
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⟩

If Ex6b is used in a composition with generalised parallel, as in Ex6d , we add the
new synchronised events to its tuples. When more than one non-composition tuple has a
synchronisation set with the same integer, 2 in the case of M (Ex6d), only one of those
need to synchronise with a counterpart indexed with the opposite integer, -2 in this case.
The graphical representation of M (Ex6b) and M (Ex6d) can be seen in figures 9 and 10;
the dashed vertical lines in the figures are used to represent parallel regions.

M (Ex6d) =

⟨

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ ⟨ {︁ ⟨
a, 𝑆𝑇𝑂𝑃

⟩
,
}︁ ⟩

,

⎧⎨⎩
(︁

1,
{︁

a
}︁)︁

,(︁
2,
{︁

b
}︁)︁

⎫⎬⎭ ,∅

⎞⎠ ,

⎛⎝ ⟨ {︁ ⟨
a, b, 0

⟩
,
}︁ ⟩

,

⎧⎨⎩
(︁
−1,

{︁
a
}︁)︁

,(︁
2,
{︁

b
}︁)︁

⎫⎬⎭ ,∅

⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,
{︁ (︁

2,
{︁

b
}︁)︁ }︁

,
{︁

1
}︁)︁

,(︁ ⟨ {︁ ⟨
b, 0

⟩
,
}︁ ⟩

,
{︁ (︁

−2,
{︁

b
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁ }︂

⟩

�

The graphical notation we use to represent the metadata is UML state diagrams
(FAKHROUTDINOV, 2015). With this notation, we present the metadata as the tree struc-
ture that its sequence models, with Basic Processes being the nodes and their relations
representing a wrapper for composed processes; besides the Basic Processes, the composite
nodes, whose body contains only 𝑆𝐾𝐼𝑃 , are also shown.

To represent parallelism, we use orthogonal states, with one region for each operand;
an example of an orthogonal state can be seen in Figure 9. Since our goal is to present
the structure of the metadata itself, the internal structure of the nodes, that is, their
sequences of events, is omitted.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 32

Figure 9 – Graphical representation of
M (Ex6b).

Figure 10 – Graphical representation of
M (Ex6d).

We now present the formal definition of our metadata. First, it is important to record
how a process behaves after a sequence of events. To this end, we add an indicator that
represents the final behaviour of the sequence as its last element. The indicator can be
𝑆𝐾𝐼𝑃 or 𝑆𝑇𝑂𝑃 , to represent their respective behaviours, or a natural number, that
works as a pointer to another sequence of events, with zero representing a recursion. We
call the set that contains these new sequences Valid Sequences, VSeq .

Definition 6 (Valid Sequences (VSeq))

VSeq = {a : Σ*, b : N ∪ {𝑆𝐾𝐼𝑃 , 𝑆𝑇𝑂𝑃} ∙ a⌢⟨b⟩}

To hold the structure of a Basic Process, we combine elements of VSeq in a sequence of
sets. This sequence represents the internal structure of the process, with multiple elements
in a set representing an external choice, and pointers in a valid sequence being used to
model sequential composition and recursion. We call the set that contains theses sequences
of sets Valid Structures, VStruct .

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 33

Definition 7 (Valid Structures (VStruct))

VStruct = Seq(P(VS))

where Seq stands for the sequence type constructor.

Example 7 We consider the following processes.

Ex7a = a → Ex7a

Ex7b = a → Ex7b 2 b → 𝑆𝐾𝐼𝑃

Ex7c = (a → Ex7c 2 b → 𝑆𝐾𝐼𝑃) ; c → 𝑆𝐾𝐼𝑃

Ex7d = (a → Ex7d 2 b → 𝑆𝐾𝐼𝑃) ; (c → 𝑆𝐾𝐼𝑃 2 d → 𝑆𝑇𝑂𝑃) ; e → 𝑆𝐾𝐼𝑃

The processes Ex7a, Ex7b, Ex7c, and Ex7d are built in an incremental way, so that
we can see the evolution of their valid structures. For Ex7a, our starting point, we have a
structure similar to that of the previous examples, a sequence with one set, which contains
an element of VSeq , ⟨{⟨a, 0⟩}⟩; zero symbolises a recursion.

For Ex7b we have ⟨{⟨a, 0⟩, ⟨b, 𝑆𝐾𝐼𝑃 ⟩}⟩, since we add a new sequence to the set, with
multiple sequences in a set representing an external choice between behaviours. For Ex7c

we have ⟨{⟨c, 𝑆𝐾𝐼𝑃 ⟩}, {⟨a, 0⟩, ⟨b, 1⟩}⟩, by adding a new set to represent the sequential
behaviour, with the 𝑆𝐾𝐼𝑃 that triggers the composition becoming a pointer to the new
behaviour; the initial behaviour of the Basic Process is always given by the last set.
For Ex7d we have ⟨{⟨e, 𝑆𝐾𝐼𝑃 ⟩}, {⟨c, 1⟩, ⟨d , 𝑆𝑇𝑂𝑃 ⟩}, {⟨a, 0⟩, ⟨b, 2⟩}⟩, since we add the
external choice with d → 𝑆𝑇𝑂𝑃 in the second set, create a new set for the new sequential
composition, and update the pointers.

Initially, Ex7d has a choice between the events a and b. Event a leads to a recursion,
index 0, while event b leads to a choice between the events c and d , with the pointer 2
to the second set of the sequence. If event c happens then event e followed by 𝑆𝐾𝐼𝑃 will
happen, by following the pointer 1 to the first set of the sequence, and if event d happens,
we have a deadlock. �

To record which events in a tuple must take part in an internal synchronisation, we
use, in their second element, pairs of integers and sets of events. With these pairs we can
know which events in the valid structure of the tuple are part of a synchronisation, when
applying the verification algorithms. We call the set that contains all possible sets of these
pairs Syncronisation Sets, SyncSets ; the use of SyncSets can be seen in Example 6.

Definition 8 (Syncronisation Sets (SyncSets))

SyncSets = P(Z1 × P(Σ))

where Z1 stands for non-zero integers.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 34

Finally, we define the Enhanced Traces, eTraces . It is a set whose elements are tuples
of size three, with their first element being a VStruct sequence, the second one being a
SyncSets set, and the third being a set of positive naturals.

Definition 9 (Enhanced Traces of P (eTraces(P)))

eTraces(P) =

⎧⎨⎩ et : VStruct × SyncSets × N+ | ∀ s ∈ fullSeq(first(et)) ∙

front(s) ∈ 𝑡𝑟𝑎𝑐𝑒𝑠(P) ∧ P/front(s) ≡F last(s)

⎫⎬⎭
where P/t represents the behaviour of P after it has performed the trace t , and ≡F

indicates equivalence in the failures model. The function fullSeq receives an element of
VStruct, and returns a set with all the sequences that start in the last set of its argument
and ends in 𝑆𝐾𝐼𝑃 , 𝑆𝑇𝑂𝑃 , or recursion, with the pointers being removed after used;
fullSeq(⟨{⟨c, 𝑆𝐾𝐼𝑃 ⟩}, {⟨a, 0⟩, ⟨b, 1⟩}⟩) = {⟨a, 0⟩, ⟨b, c, 𝑆𝐾𝐼𝑃 ⟩}, with the value 0 stand-
ing for a recursive call; the order of the sets is inverted for efficiency reasons, and last(0)

stands for last(P), since 0 represents a recursion.

The set eTraces is defined for a given Basic Process P , and its elements are all possible
tuples that can represent P . The predicate in Definition 9 ensures that each sequence of
events that can be derived, through all valid pointers, from the valid structure of the tuple
contains a valid trace of P and leads the process to 𝑆𝐾𝐼𝑃 , 𝑆𝑇𝑂𝑃 , or a recursion. With
these restrictions, we can use eTraces as our building blocks to define metadata.

With eTraces , we can now give the complete definition of our metadata. For a process
P , we define Metadata(P) as a set containing sequences of subsets of eTraces(P). The
tuples in a same set represent Basic Processes in parallel, and the multiple sets, guided
by the pointers, which are the third element of the tuples, model external choice and
sequential composition; one pointer represents sequential composition, and many pointers
represent an external choice.

Definition 10 (Metadata of P (Metadata(P)))

Metadata(P) = Seq(P(eTraces(P)))

where Seq stands for the sequence type constructor.

To map a process P to its correct metadata, we use the semantic function M , declared
below. The type of M is a dependent type (BOVE; DYBJER, 2009). It maps a process P

to a metadata for this process. The range of M is specialised for each process P to which
M is applied; this is why we need a dependent type declaration. So, although the type of
the source of M is Process, we need to declare a variable (P : Process) so that P can be
used to define the type of the range of M for P , which is Metadata(P).

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 35

Definition 11 (Semantic Function of P (M(P)))

M : (P : Process)→Metadata(P)

Now we present how the metadata is calculated. For the Basic Processes, we calculate
M as shown below; P and Q are processes, n is a process name, representing a recursive
call, and g is a boolean value. Note that the following definition is by structural induction
on the syntax of Basic Process.

Definition 12 (Metadata of the Basic Processes)

• M (n) =

⟨ {︁ (︁ ⟨ {︁
⟨0⟩

}︁ ⟩
,∅,∅

)︁ }︁ ⟩

• M (𝑆𝐾𝐼𝑃) =

⟨ {︁ (︁ ⟨ {︁
⟨𝑆𝐾𝐼𝑃 ⟩

}︁ ⟩
,∅,∅

)︁ }︁ ⟩

• M (𝑆𝑇𝑂𝑃) =

⟨ {︁ (︁ ⟨ {︁
⟨𝑆𝑇𝑂𝑃 ⟩

}︁ ⟩
,∅,∅

)︁ }︁ ⟩
• M (a → P) =

⟨ {︁
prefixingBasic(a, getBasic(M (P)))

}︁ ⟩
• M (g & P) = M (P)

• M (if g then P else Q) = M (P)

• M (P ; Q) =
⟨ {︁

seqComp(getBasic(M (P)), getBasic(M (Q)))
}︁ ⟩

• M (P 2 Q) =
⟨ {︁

extChoice(getBasic(M (P)), getBasic(M (Q)))
}︁ ⟩

Four auxiliary functions are used in the equations, which are presented below. The
auxiliary functions themselves use some other functions, which we present first; these
functions are standard sequence operators specialised to apply to the sequence component
of an eTrace.

• startSet(eTrace) = last(first(eTrace))

• frontSeq(eTrace) = front(first(eTrace))

• lengthSeq(eTrace) = length(first(eTrace))

• getSeq(eTrace) = first(eTrace)

The function prefixingBasic receives an event and an Enhanced Trace, and appends
the new event to the end of the valid structure of the eTrace. If the last set of the valid
structure has only one sequence, the event is appended to this sequence, otherwise, a new
set is created, containing a sequence with the new event and a pointer.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 36

• prefixingBasic(event , eTrace) =

if #(startSet(eTrace)) == 1 then
(frontSeq(eTrace)⌢⟨{⟨event⟩⌢⟨startSet(eTrace)⟩}⟩,∅,∅)

else
(getSeq(eTrace)⌢⟨{⟨event , lengthSeq(eTrace)⟩}⟩,∅,∅)

To access the Enhanced Trace of a Basic Process, we use the function getBasic. This
function works in this context because a Basic Process has only one Enhanced Trace.

• getBasic(⟨{eTrace}⟩) = eTrace

For sequential composition, we have the function seqComp. This function receives two
Enhanced Traces, and returns a new Enhanced Trace, with the valid structures of the
arguments appended and their pointers updated. To correctly model the composition, all
occurrences of 𝑆𝐾𝐼𝑃 in the first eTrace are replaced by a pointer; N+ stands for the
positive naturals.

• seqComp(eTrace1, eTrace2) =⎛⎝ getSeq(eTrace2)⌢seqCompForSets

⎛⎝ getSeq(eTrace1),

getSeq(eTrace2)

⎞⎠ ,∅,∅

⎞⎠
• seqCompForSets(⟨⟩, seq2) = ⟨⟩

• seqCompForSets(⟨set⟩⌢seq1, seq2) =

⟨seqCompInSet(set , seq2)⟩⌢seqCompForSets(seq1, seq2)

• seqCompInSet(∅, seq2) = ∅

• seqCompInSet({seqInSet} ∪ set , seq2) =

if last(seqInSet) == 𝑆𝐾𝐼𝑃 then
{front(seqInSet)⌢⟨length(seq2)⟩} ∪ seqCompInSet(set ∖ {seqInSet}, seq2)

else if last(seqInSet) ∈ N+ then
{front(seqInSet)⌢⟨last(seqInSet) + length(seq2)⟩} ∪
seqCompInSet(set ∖ {seqInSet}, seq2)

else
{seqInSet} ∪ seqCompInSet(set ∖ {seqInSet}, seq2)

The function extChoice receives two Enhanced Traces, and returns an Enhanced Trace
modelling an external choice. The front of the valid sequences of the arguments is ap-
pended, and their pointers updated. The last set of the new valid sequence is the union
of the last sets of the valid sequences of the arguments, with their pointers also updated.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 37

• extChoice(eTrace1, eTrace2) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

frontSeq(eTrace1)⌢

shift(frontSeq(eTrace2), length(frontSeq(eTrace1)))⌢

joinInitials

⎛⎜⎜⎜⎝
startSet(eTrace1),

startSet(eTrace2),

length(frontSeq(eTrace1))

⎞⎟⎟⎟⎠
,∅,∅

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• shift(⟨⟩, val) = ⟨⟩

• shift(⟨set⟩⌢seq , val) = ⟨shiftSet(set , val)⟩⌢shift(seq , val)

• shiftSet(∅, val) = ∅

• shiftSet({seq} ∪ set , val) =

if last(seq) ∈ N+ then
{front(seq)⌢⟨last(seq) + val⟩} ∪ shiftSet(set ∖ {seq}, val)

else
{seq} ∪ shiftSet(set ∖ {seq}, val)

• joinInitials(set1, set2, val) = ⟨set1 ∪ shiftSet(set2, val)⟩

Example 8 The calculation of M(Ex4a) is shown below.

M (Ex4a) =
⟨ {︁ (︁ ⟨ {︁

⟨0⟩
}︁ ⟩

,∅,∅
)︁ }︁ ⟩

M (b → Ex4a) =
⟨ {︁ (︁ ⟨ {︁

⟨b, 0⟩
}︁ ⟩

,∅,∅
)︁ }︁ ⟩

M (a → b → Ex4a) =
⟨ {︁ (︁ ⟨ {︁

⟨a, b, 0⟩
}︁ ⟩

,∅,∅
)︁ }︁ ⟩

M (Ex4a) = M (a → b → Ex4a)

We differentiate between the process Ex4a and its recursive call. For the sequential
composition Ex4b ; Ex4a, we have the following metadata.

M(Ex4b ; Ex4a) =
⟨ {︁ (︁ ⟨ {︁

⟨a, b, 0⟩
}︁
,
{︁
⟨c, d , 1⟩

}︁ ⟩
,∅,∅

)︁ }︁ ⟩
�

We assume that the boolean values in guards and conditionals are always true; in
those cases we simply keep the metadata of P . In the conditional, if the processes P and
Q are not equivalent, the strategy returns the possibility of nondeterminism. With this
approach, we record behaviours for the processes that may not be actually possible. The
addition of behaviours, however, can only lead to nondeterminism, never remove it. So,

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 38

as already explained, it is possible that we indicate a potential nondeterminism that does
not exist, but a process defined to be deterministic is guaranteed to be so.

We now present the equations to calculate the metadata of the Composite Processes;
X is a set of events, and i is a fresh integer, different from zero.

Definition 13 (Metadata of the Composite Processes)

• M (P ; Q) = M (Q)⌢addPointer(M (P), length(M (Q)))⌢

⟨{(⟨{⟨𝑆𝐾𝐼𝑃 ⟩}⟩,∅, {length(M (P)) + length(M (Q))})}⟩

• M (P 2 Q) = M (P)⌢shiftM (M (Q), length(M (P)))⌢

⟨{(⟨{⟨𝑆𝐾𝐼𝑃 ⟩}⟩,∅, {length(M (P)), length(M (P)) + length(M (Q))})}⟩

• M (P ⊓ Q) = M (P)

• M (P ||| Q) = front(M (P))⌢shiftM (front(M (Q)), length(front(M (P))))⌢

⟨last(M (P)) ∪ shiftSet(last(M (Q)), length(front(M (P))))⟩⌢

⟨{(⟨{⟨𝑆𝐾𝐼𝑃 ⟩}⟩,∅, {length(M (P)) + length(M (Q))− 1})}⟩

• M (P [[X]]Q) = applyAddSync(front(M (P)),X , i)⌢

applyAddSync(shiftM (front(M (Q)), length(front(M (P)))),X ,−i)⌢

⟨addSyncToSet(last(M (P)),X , i)∪

addSyncToSet(shiftSet(last(M (Q)), length(front(M (P)))),X ,−i)⟩⌢

⟨{(⟨{⟨𝑆𝐾𝐼𝑃 ⟩}⟩,∅, {length(M (P)) + length(M (Q))− 1})}⟩

• M (P ∖ X) = remove(M (P),X)

The auxiliary functions used in the equations are presented below. For sequential
composition, we need to add a new pointer to join the metadata of the two operands. To
this end, we use the function addPointer . It adds a reference, in the leafs of the metadata
of P , to the root of the metadata of Q ; the existing pointers are also updated accordingly.

• addPointer(⟨⟩, val) = ⟨⟩

• addPointer(⟨set⟩⌢seq , val) = ⟨addPointerSet(set , val)⟩⌢addPointer(seq , val)

• addPointerSet(∅, val) = ∅

• addPointerSet({(fst , sec, trd)} ∪ set , val) =

if trd == ∅ then
{(fst , sec, {val})} ∪ addPointerSet(set ∖ {(fst , sec, trd)}, val)

else
{(fst , sec, shiftPointers(trd , val))} ∪ addPointerSet(set ∖ {(fst , sec, trd)}, val)

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 39

To update the pointers of the metadata of a process, we use the function shiftM . This
function receives a metadata and an integer value, and adds this value to all pointers in
the metadata. The functions shiftSet and shiftPointers update the pointers of a given set
of Enhanced Traces, and of an Enhanced Trace itself, and can be applied directly.

• shiftM (⟨⟩, val) = ⟨⟩

• shiftM (⟨set⟩⌢seq , val) = ⟨shiftSet(set , val)⟩⌢shiftM (seq , val)

• shiftSet(∅, val) = ∅

• shiftSet({(fst , sec, trd)} ∪ set , val) = {(fst , sec, shiftPonters(trd , val))}∪

shiftSet(set ∖ {(fst , sec, trd)}, val)

• shiftPonters(∅, val) = ∅

• shiftPonters({p} ∪ set , val) = {p + val} ∪ shiftPonters(set ∖ {p}, val)

To add a new synchronisation to a metadata, we use the function applyAddSync.
This function receives a metadata, a set of events, and an integer value, and updates all
synchronisation sets in the metadata. As is the case with the update of pointers, we can
use the functions addSyncToSet and addSync directly to a set of Enhanced Traces, and
to an Enhanced Trace itself.

• applyAddSync(⟨⟩,X , id) = ⟨⟩

• applyAddSync(⟨set⟩⌢seq ,X , id) = ⟨addSyncToSet(set ,X , id)⟩⌢

applyAddSync(seq ,X , id)

• addSyncToSet(∅,X , id) = ∅

• addSyncToSet({eTrace} ∪ set ,X , id) = {addSync(eTrace,X , id)}∪

addSyncToSet(set ∖ {eTrace},X , id)

• addSync(eTrace,X , id) = (first(eTrace), second(eTrace)∪ {(id ,X)}, third(eTrace))

To remove a set of events from a metadata, we use the function remove. This function
receives a metadata and a set of events, and it removes the events contained in the received
set from the metadata; the pointers are not affected.

• remove(⟨⟩,X) = ⟨⟩

• remove(⟨set⟩⌢seq ,X) = ⟨removeFromSet(set ,X)⟩⌢remove(seq ,X)

• removeFromSet(∅,X) = ∅

• removeFromSet({eTrace} ∪ set ,X) = {removeFromTuple(eTrace,X)}∪

removeFromSet(set ∖ {eTrace},X)

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 40

• removeFromTuple(eTrace,X) =

⎛⎜⎜⎜⎝
removeSeq(first(eTrace),X),

removeSet(second(eTrace),X),

third(eTrace)

⎞⎟⎟⎟⎠
• removeSeq(⟨⟩,X) = ⟨⟩

• removeSeq(⟨set⟩⌢seq ,X) = ⟨removeSetOfSeq(set ,X)⟩⌢removeSeq(seq ,X)

• removeSetOfSeq(∅,X) = ∅

• removeSetOfSeq({seq} ∪ set ,X) = {removeSeqOfEv(seq ,X)}∪

removeSetOfSeq(set ∖ {seq},X)

• removeSeqOfEv(⟨⟩,X) = ⟨⟩
• removeSeqOfEv(⟨a⟩⌢t ,X) = if a ∈ X then

removeSeqOfEv(t ,X)

else

⟨a⟩⌢removeSeqOfEv(t ,X)

• removeSet(∅,X) = ∅

• removeSet({(id , evSet)}∪s ,X) = {(id , evSet ∖X)}∪removeSet(s ∖{(id , evSet)},X)

For sequential composition we concatenate the metadata of the two operands, update
their pointers, and add a new composition tuple to mark the composition. For external
choice, we also concatenate the metadata of the operands, update their pointers, and
add a new composition tuple, but in a different way. Instead of creating a sequence of
references, from the composition tuple to the first operand, and then to the second, as
is the case for sequential composition, the composition tuple becomes the parent of both
operands in a tree structure. When creating the metadata of a process resulting from an
internal choice, we simply keep the metadata of one of the operands, since the composition
is only deterministic if both operands are equivalent.

For interleaving, we concatenate the front of the metadata of both operands, and
join their last sets; the pointers are updated to reflect the concatenation. Multiple tuples
in a same set represent the parallelism we want to capture. As a final step, we add a
composition tuple to mark the composition. The calculation for a generalised parallel
is similar to that of an interleaving, but we also add the new synchronisation to the
metadata. For hiding, we simply remove the elements in X from the metadata.

Example 9 Considering the processes Ex9a = a → b → c → Ex9a, and Ex9b =

Ex9a[[{b}]]Ex9a, we calculate M(Ex9b ∖ {b}).

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 41

M(Ex9b) =
⟨ ⎧⎪⎨⎪⎩

(︁ ⟨ {︁ ⟨
a, b, c, 0

⟩
,
}︁ ⟩

,
{︁ (︁

1,
{︁

b
}︁)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

a, b, c, 0
⟩
,
}︁ ⟩

,
{︁ (︁

−1,
{︁

b
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⟩

M(Ex9b ∖ {b}) =
⟨ ⎧⎪⎨⎪⎩

(︁ ⟨ {︁ ⟨
a, c, 0

⟩
,
}︁ ⟩

,
{︁ (︁

1, {}
)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

a, c, 0
⟩
,
}︁ ⟩

,
{︁ (︁

−1, {}
)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⟩
�

The composition tuples, introduced by many equations, are used to both record the
compositions themselves, as is the case for external choice, and to keep their order. If we
do not introduce a composition tuple after an interleaving, for example, we can have a set
with Enhanced Traces of many compositions, after two or more interleavings in sequence.

If a synchronisation introduces deadlock, or if a synchronisation channel is hidden,
there is the possibility that our strategy considers invalid behaviours of the process. This,
however, can only introduce nondeterminism, never remove it.

Example 10 We consider the following processes.

Ex10a = b → a → c → d → Ex10a Ex10b = Ex9a[[{a, b}]]Ex10a

The process Ex10b is deterministic, because it is deadlocked from the start. Our
strategy, however, predicts a nondeterministic behaviour because both Ex9a and Ex10a

offer event c to the environment, which never happens in Ex10b. �

Tuples of a set in M are equivalent, symbolised by ≡, if their valid structures are
equal, they have the same meaningful synchronisations, with equivalent pairs, and their
pointers reference equivalent sets. A synchronisation is meaningful if it involves at least
one of the events in the valid structure of the pair.

Definition 14 (Meaningful Synchronisations) Given an Enhanced Trace of the form
(Struct , SetOfSyncs, Pointers), a pair sync ∈ SetOfSyncs is a meaningful synchronisa-
tion if sync ∩ ran(Struct) ̸= ∅.

We abuse the notation here, with sync standing for its set of events, and ran(Struct)

representing the set of all events present in Struct .

Example 11 We consider the following metadata.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 42

M(Ex11a) =
⟨ ⎧⎪⎨⎪⎩

(︁ ⟨ {︁ ⟨
a, b, c, 0

⟩
,
}︁ ⟩

,
{︁ (︁

1,
{︁

r
}︁)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

x , y , 𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,
{︁ (︁

−1,
{︁

r
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⟩

M(Ex11b) =
⟨ ⎧⎪⎨⎪⎩

(︁ ⟨ {︁ ⟨
a, b, c, 0

⟩
,
}︁ ⟩

,
{︁ (︁

2,
{︁

r
}︁)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

x , y , 𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,
{︁ (︁

−2,
{︁

r
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⟩

M(Ex11c) =
⟨ ⎧⎪⎨⎪⎩

(︁ ⟨ {︁ ⟨
a, b, c, 0

⟩
,
}︁ ⟩

,∅,∅
)︁
,(︁ ⟨ {︁ ⟨

x , y , 𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⟩

The three metadata given are all equivalent, since the only difference between them is
their synchronisation sets, which is irrelevant in this case. The synchronisations of Ex11a

and Ex11b are not meaningful, as they do not affect the valid structures, and Ex11c does
not have synchronisations. �

3.3 Composition Rules
The algorithms that verify if the compositions are deterministic take the metadata of
the operands as input, and sometimes also a set of events, and return true if the given
composition is guaranteed to be deterministic, and false if we have an inconclusive result.
We present here all the algorithms for the supported compositions; sequential composition
does not have an algorithm, since it cannot introduce nondeterminism.

All algorithms need to compare events to know if they are equal or not. If there is
no communication, this is a trivial matter. If data is being communicated, however, we
need to consider all possible values that the types of channel can assume, which is very
expensive. To avoid this problem, we deal with communications symbolically, by making
an overestimation of the values that are being communicated at any given point, and
always including the case that may lead to nondeterminism.

To make explicit comparisons, we use the function EqEvents , which takes two events,
modelled as sequences, and a function that indicates the compositions being analysed.
For example, for the event inOut?val1!val2, we have ⟨inOut , ?val1, !val2⟩. If one of the
events has an input, through “?”, EqEvents assumes that the events are equal, since an
input can assume any value of its type.

• EqEvents(⟨⟩, ⟨⟩, fun) = true

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 43

• EqEvents(⟨p1⟩⌢ ev1, ⟨p2⟩⌢ ev2, fun) =
if head(p1) == “?” ∨ head(p2) == “?” then

true
else

fun(p1,p2) ∧ EqEvents(ev1,ev2,fun)

The function EqEvents checks whether the events are equal, since this is usually a
condition for nondeterminism. At some points in our strategy, however, the metadata of
two processes need to be equivalent to avoid nondeterminism. In this case, we use an
alternative version of EqEvents , which checks whether the events are different.

We also deal with parameters symbolically, though indirectly. Since Basic Processes
can only be tail recursive in our strategy, we know that the structure of the process does
not change, only the value of the parameters might change. The parameters themselves
are only used in communications, which are analysed symbolically.

3.3.1 External Choice

The external choice, with our restrictions, can only introduce nondeterminism if its two
operands have at least one common initial event, since these are their only points of
interaction. The limited interaction results from the nature of the Basic Processes, which
are not able to reference processes other than themselves; the initial events of a Composite
Process derive from the initials of its Basic Processes. In this scenario, the composition
is deterministic only if the two processes have the same behaviour after every common
initial event.

To check an external choice, we use Algorithm 1. This algorithm takes the metadata
of two processes, P and Q , and compares the initial events of the tuples of each operand;
the process names stand for their metadata. If there is a common initial event, then the
environment has no control over how the choice is resolved when synchronising on this
event, so the composition is deterministic only if the operands are equivalent.

Algorithm 1 External Choice (P,Q)

1: for each elemP ∈ last(P), elemQ ∈ last(Q) do
2: for each seqP ∈ getStartSet(elemP), seqQ ∈ getStartSet(elemQ) do
3: if EqEvents(head(seqP),head(seqQ),EqExtChoiceStart) ∧ ¬(P ≡ Q) then
4: return false
5: return true

The function getStartSet returns a set with the initial valid sequences of an Enhanced
Trace. This set can be the last set of the valid structure of the tuple, or a set containing
valid sequences from other tuples, if the argument is a composition tuple. For a compo-
sition tuple, we simply follow the pointers until a non-composition tuple is found.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 44

We use EqExtChoiceStart to compare events in an external choice; Val stands for
an explicit value, as opposed to a variable. For this operator, unless we have two explicit
values, we always assume that they are equal, which is a precondition for nondeterminism.
When comparing the metadata of two processes, P ≡ Q , we check if they model the same
behaviour, that is, the same events are offered in the same order.

• EqExtChoiceStart(p1,p2) = if p1 ∈ Val ∧ p2 ∈ Val then

if p1 == p2 then true else false

else

true

3.3.2 Internal Choice

An internal choice only results in a deterministic process if its operands have the same
behaviour. For this operator, we simply check if the metadata of both operands are equiv-
alent, as can be seen in Algorithm 2.

Algorithm 2 Internal Choice (P,Q)

1: if ¬(P ≡ Q) then
2: return false
3: return true

3.3.3 Parallelism

We deal with parallelism in two forms: interleaving and generalised parallel. First, we
discuss how interleaving can introduce nondeterminism. Afterwards, we present our con-
siderations about generalised parallel. Finally, we show the algorithm for the verification
of parallel compositions.

Differently from external and internal choice, with interleaving, as well as with the
other parallel operators of CSP, both operands execute at the same time, so we must
take into account all of their events, not only the initials. With interleaving, we need to
consider that when one of its operands is offering a specific event to the environment, the
other operand can be offering any of its events.

The condition for a composition using interleaving to be deterministic is that, after
each event in common to both processes, the composition needs to offer the same events
to the environment, no matter which process performs the event, so the environment does
not observe any different behaviour.

Example 12 We consider the following processes.

Ex12a = a → b → Ex12a Ex12d = Ex12a ||| Ex12b

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 45

Ex12b = a → Ex12b Ex12e = Ex12b ||| Ex12c

Ex12c = b → Ex12c Ex12f = Ex12a ||| Ex12e

The process Ex12d is nondeterministic, because after performing event a, the envi-
ronment can synchronise on either a again or on a or b, depending on whether a was
performed by Ex12a or Ex12b. The process Ex12e is deterministic, because the alpha-
bets of its components are disjoint, so there are no events in common. The composition in
Ex12f is deterministic, because, although there is an intersection of the alphabets, events
a and b are always available to the environment. �

The generalised parallel operator allows us to have parallelism with synchronisations.
The events that are not in the synchronisation set are analysed in a similar way to what
is done with interleaving, and the events in the synchronisation set cannot introduce
nondeterminism on their own, because each synchronised event happens only once and
both operands engage in this event.

Example 13 The process Ex13 = Ex12a[[{a}]]Ex12b, differently from Ex12d , is deter-
ministic, because the event a is in the synchronisation set, so, after it occurs, the only
possibility for the parallel composition is to offer event b. �

We use the same algorithm, Algorithm 3, for the two forms of parallelism discussed.
It receives the processes being composed, P and Q , and the synchronisation set, X . For
interleaving, the synchronisation set is empty. In Figure 11 we present a fluxogram that
illustrates its execution; this fluxogram is used to incrementally explain the execution of
the algorithm.

Algorithm 3 Parallelism (P,Q,X)

1: avEvents = availableEvents(P,Q,X)
2: localStatesP = getLocalStates(P)
3: localStatesQ = getLocalStates(Q)
4: for each stateP ∈ localStatesP, stateQ ∈ localStatesQ do
5: if first(stateP) == first(stateQ) ∧ first(stateP) ̸∈ X then
6: nextStateP = second(stateP) ∪ {first(stateQ)} ∪ avEvents
7: nextStateQ = second(stateQ) ∪ {first(stateP)} ∪ avEvents
8: if nextStateP ̸= nextStateQ then
9: return false

10: if ¬extChoiceWithND(P,Q,X) ∨ ¬extChoiceWithND(Q,P,X) then
11: return false
12: return true

Algorithm 3 iterates over all pairs of local states of P and Q , which are the states of
each Basic Process that composes P and Q . If there is a local state in P and one in Q

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 46

Figure 11 – Fluxogram of Parallelism(P,Q,X)

in which both offer the same event, line 5, if the processes offer different events after its
occurrence, line 8, then we have a potential source of nondeterminism, line 9. We now
describe in detail each part of the algorithm.

We initially define avEvents , line 1, which is the set that contains the events that are
always available to the environment, in the given composition. This set is used in the
calculation of which events are available to the environment after either P or Q evolves,
when both offer the same event, lines 6 and 7.

To calculate avEvents , we use availableEvents , shown in Algorithm 4. This function
initially calculates the events that are always available to the environment in each operand,
lines 1 and 2. These events belong to Basic Processes of the form P = ev → P , and do
not change the state of the composition.

Algorithm 4 availableEvents(P,Q,X)

1: localAvailableEventsP = localAvailableEvents(P,X)
2: localAvailableEventsQ = localAvailableEvents(Q,X)
3: finalSet = first(localAvailableEventsP) ∪ first(localAvailableEventsQ)
4: needToCheckP = second(localAvailableEventsP)
5: needToCheckQ = second(localAvailableEventsQ)
6: for each evP ∈ needToCheckP, evQ ∈ needToCheckQ do
7: if evP == evQ then
8: finalSet = finalSet ∪ {evP}
9: return finalSet

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 47

The function localAvailableEvents returns a pair of sets of events. The first set contains
events that are always available, and thus are directly added to finalSet , line 3. The
second set contains events that, although always available in their individual process, can
be restricted by the synchronisation set, lines 4 and 5. For these events to be added to
finalSet , they must be always available in both sets, lines 6 to 8.

Example 14 We consider the following processes, and their metadata.

Ex14a = a → b → Ex14a Ex14e = Ex14a ||| Ex14b

Ex14b = c → Ex14b Ex14f = Ex14e ||| Ex14c

Ex14c = d → 𝑆𝐾𝐼𝑃 Ex14g = Ex14f ||| Ex14d

Ex14d = e → Ex14d

M(Ex14g) =
⟨

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

a, b, 0
⟩
,
}︁ ⟩

,∅,∅
)︁
,(︁ ⟨ {︁ ⟨

c, 0
⟩
,
}︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁

,(︁ ⟨ {︁ ⟨
d , 𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭ ,⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁

,(︁ ⟨ {︁ ⟨
e, 0

⟩
,
}︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

3
}︁)︁ }︂

⟩

Ex14h = x → Ex14h Ex14k = Ex14h[[{x}]]Ex14i

Ex14i = x → y → Ex14i Ex14l = Ex14k ||| Ex14j

Ex14j = e → f → Ex14j

M(Ex14l) =
⟨

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

x , 0
⟩
,
}︁ ⟩

,
{︁ (︁

1,
{︁

x
}︁)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

x , y , 0
⟩
,
}︁ ⟩

,
{︁ (︁

−1,
{︁

x
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

1
}︁)︁

,(︁ ⟨ {︁ ⟨
e, f , 0

⟩
,
}︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁ }︂

⟩

If we execute Algorithm 3 for Parallelism(Ex14g ,Ex14l ,{e}), we have avEvents = {c}.
The Enhanced Traces with the sequences ⟨a, b, 0⟩, ⟨x , y , 0⟩, and ⟨e, f , 0⟩ are discarded
for having more than one event. The tuple with ⟨d , 𝑆𝐾𝐼𝑃 ⟩ is discarded for not being

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 48

recursive. The Enhanced Traces with the sequences ⟨x , 0⟩, and ⟨e, 0⟩ are discarded due
to their synchronisations, the former with the valid sequence ⟨x , y , 0⟩, and the latter with
the synchronisation being introduced in this composition, through the set {e}. �

To capture the events that are always available in a process that already had its
metadata calculated, we use localAvailableEvents , shown in Algorithm 5; M is a metadata,
and X is a set of events. This function returns two sets, finalSet , which contains the events
that are guaranteed to always be available, and needToCheck , containing the events that
may be restricted by the synchronisation set X .

Algorithm 5 localAvailableEvents(M,X)

1: finalSet = needToCheck = ∅
2: tuples = parallelTuples(M)
3: for each elem ∈ tuples do
4: validChoice = true
5: finalSetTemp = needToCheckTemp = ∅
6: for each seq ∈ getStartSet(elem) do
7: if length(seq) = 2 ∧ last(seq) == 0 then
8: if evAlwaysAvailable(elem,tuples) then
9: if head(seq) ̸∈ X then

10: finalSetTemp = finalSetTemp ∪ {head(seq)}
11: else
12: needToCheckTemp = needToCheckTemp ∪ {head(seq)}
13: else
14: validChoice = false
15: if validChoice then
16: finalSet = finalSet ∪ finalSetTemp
17: needToCheck = needToCheck ∪ needToCheckTemp
18: return (finalSet,needToCheck)

First, we gather the Basic Processes that are in parallel in the tuples set, line 2, by
removing the unnecessary composition tuples; for the process Ex14g , we would remove
all composition tuples, gathering the four non-empty Enhanced Traces of the metadata.
Then, for each gathered tuple, we check if it is a Basic Process of the form P = ev → P ,
line 7. If the tuple is of the required form, and its event is not restricted by the internal
synchronisations of the process, line 8, it may be added to either finalSet or needToCheck ,
lines 9 to 12.

A Basic Process in tuples can have an external choice of its own, with multiple valid
sequences in the last set of its valid structure, which is captured by getStartSet in line 6.
If this is the case, unless all valid sequences offer exactly one event and then recurse, the
valid sequences that follow our pattern are being restricted, and are not always available.
We check for this possibility with the boolean validChoice, lines 4, 14 and 15.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 49

Example 15 We consider the following processes.

Ex15a = (a → Ex15a) 2 (b → c → 𝑆𝐾𝐼𝑃) Ex15d = Ex15a ; Ex15b

Ex15b = d → 𝑆𝐾𝐼𝑃 Ex15e = Ex15d ||| Ex15c

Ex15c = (e → Ex15c) 2 (f → Ex15c)

M(Ex15e) =
⟨

{︂ (︁ ⟨ {︁ ⟨
d , 𝑆𝐾𝐼𝑃

⟩ }︁ ⟩
,∅,∅

)︁ }︂
{︂ (︁ ⟨ {︁ ⟨

a, 0
⟩
,
⟨

b, c, 𝑆𝐾𝐼𝑃
⟩ }︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁

,(︁ ⟨ {︁ ⟨
e, 0

⟩
,
⟨

f , 0
⟩ }︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

3
}︁)︁ }︂

⟩

If we execute localAvailableEvents(Ex15e,∅), the result is ({e, f },∅). The process
Ex15c in the composition presents a more general form of P = ev → P , offering more
than one event, while complying with our requirement that the state must not change.
The event a, in a → Ex15a, is not always available because of the external choice in the
process Ex15a, which leads to validChoice being false. �

To remove the unnecessary composition tuples in localAvailableEvents , line 2, we use
the function parallelTuples , shown in Algorithm 6. This function starts at the root of the
given metadata, line 1, and gathers all non-composition tuples that can be reached from
this node that do not introduce restrictions, in the set returnTuples ; the root itself can
be a non-composite node.

The function getFromSet , line 4, returns a random tuple from tempTuples , which is
then checked to see if it is a composition tuple, lines 6 to 14. Note that, in line 8, we check
if the composite node has more than one pointer, which indicates an external choice. We
do this because the presence of an external choice can restrict an event that otherwise
would be always available. The function getChildren returns a set with all tuples in the
sets in M referenced by the given pointers.

Example 16 If we apply parallelTuples to M (Ex15e), the result is the following:

returnTuples =

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

a, 0
⟩
,
⟨

b, c, 𝑆𝐾𝐼𝑃
⟩ }︁ ⟩

,∅,
{︁

1
}︁)︁

,(︁ ⟨ {︁ ⟨
e, 0

⟩
,
⟨

f , 0
⟩ }︁ ⟩

,∅,∅
)︁

⎫⎪⎬⎪⎭
The root of the metadata is removed, since it is a composition tuple. In its child, we

have one composition tuple, which we also remove, and one non-composition tuple, added
to returnTuples . The child of the second composition tuple has one non-composition tuple,

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 50

Algorithm 6 parallelTuples(M)

1: tempTuples = last(M)
2: returnTuples = ∅
3: while tempTuples ̸= ∅ do
4: elem = getFromSet(tempTuples)
5: tempTuples = tempTuples ∖ {elem}
6: if size(startSet(elem)) == 1 then
7: seq = getFromSet(getStartSet(elem))
8: if seq == ⟨𝑆𝐾𝐼𝑃 ⟩ ∧ size(third(elem)) == 1 then
9: pointer = third(elem)

10: tempTuples = tempTuples ∪ getChildren(pointer,M)
11: else
12: returnTuples = returnTuples ∪ {elem}
13: else
14: returnTuples = returnTuples ∪ {elem}
15: return returnTuples

also added to returnTuples . If, instead of the interleaving in Ex15e, we had an external
choice, as in Ex16 = Ex15d 2 Ex15c, the function parallelTuples would simply return
the root of the metadata, which leads localAvailableEvents to return (∅,∅); M (Ex16) is
shown below.

M(Ex16) =
⟨

{︂ (︁ ⟨ {︁ ⟨
d , 𝑆𝐾𝐼𝑃

⟩ }︁ ⟩
,∅,∅

)︁ }︂
,{︂ (︁ ⟨ {︁ ⟨

a, 0
⟩
,
⟨

b, c, 𝑆𝐾𝐼𝑃
⟩ }︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

,{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁ }︂

,{︂ (︁ ⟨ {︁ ⟨
e, 0

⟩
,
⟨

f , 0
⟩ }︁ ⟩

,∅,∅
)︁ }︂

,{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

3, 4
}︁)︁ }︂

⟩

�

Finally, to check, in Algorithm 5, if an event is restricted by an internal synchroni-
sation, we use evAlwaysAvailable, shown in Algorithm 7. This function checks, for each
meaningful synchronisation of an event that has the potential to be always available, line
3, if there is another event, that is also always available, and that enables the synchroni-
sation to happen unrestricted, lines 4 to 12.

Example 17 We consider the following processes.

Ex17a = a → Ex17a Ex17c = Ex17a 2 Ex17b

Ex17b = b → Ex17b Ex17d = Ex17c[[{a}]]Ex17a

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 51

Algorithm 7 evAlwaysAvailable(elem,set)

1: seq = getFromSet(getStartSet(elem))
2: for each syncTuple ∈ second(elem) do
3: if head(seq) ∈ second(syncTuple) then
4: for each otherElem ∈ set do
5: for each otherSyncTuple ∈ second(otherElem) do
6: if first(syncTuple) == first(otherSyncTuple)*-1 then
7: if size(startSet(otherElem)) == 1 then
8: otherSeq = getFromSet(getStartSet(otherElem))
9: if seq ̸= otherSeq then

10: return false
11: else
12: return false
13: return true

If we execute localAvailableEvents with M(Ex17d), shown below, as an argument,
evAlwaysAvailable is called once, with the first argument being the tuple representing
Ex17a, and the second argument containing this tuple and the composition tuple rep-
resenting the external choice in Ex17c. The function evAlwaysAvailable returns false in
this case, because, although there can be a synchronisation between Ex17a and Ex17c in
event a, this synchronisation depends on the outcome of the external choice.

M(Ex17d) =
⟨

{︂ (︁ ⟨ {︁ ⟨
a, 0

⟩ }︁ ⟩
,
{︁ (︁

1,
{︁

a
}︁)︁ }︁

,∅
)︁ }︂

{︂ (︁ ⟨ {︁ ⟨
b, 0

⟩ }︁ ⟩
,
{︁ (︁

1,
{︁

a
}︁)︁ }︁

,∅
)︁ }︂

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,
{︁ (︁

1,
{︁

a
}︁)︁ }︁

,
{︁

1, 2
}︁)︁

,(︁ ⟨ {︁ ⟨
a, 0

⟩ }︁ ⟩
,
{︁ (︁

−1,
{︁

a
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭ ,

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

3
}︁)︁ }︂

⟩

�

With avEvents calculated, in Algorithm 3, we now proceed to capture the possible local
states of both operands, lines 2 and 3; the current stage of Parallelism(P,Q,X) is shown,
in green, in Figure 12. To this end, we use getLocalStates , shown in Algorithm 8. This
function returns a set of pairs, with the their first element being an event, representing
the event being offered to the environment at a given state, and the second element being
a set of sets of events, representing what will be offered by the process to the environment,
if the first event happens; we use a set of sets in order to capture different states in which
the same event is offered.

The function getLocalStates checks for each tuple in M, lines 2, 3, 4 and 24, what
events they offer, and what will be offered after these events, lines 8 to 23. For each valid

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 52

Algorithm 8 getLocalStates(M)

1: localStates = ∅
2: tuples = last(M)
3: while tuples ̸= ∅ do
4: elem = getFromSet(tuples)
5: localSeq = first(elem)
6: syncSet = second(elem)
7: pointers = third(elem)
8: while localSeq ̸= ⟨⟩ do
9: for each seq ∈ last(localSeq) do

10: if size(seq) > 1 then
11: for each ev ∈ front(front(seq)) do
12: if newEvent(ev,localStates) then
13: localStates = localStates ∪ {(ev,∅)}
14: localStates = addState(ev,nextEvents(ev,seq,syncSet,M),localStates)
15: ev = last(front(seq))
16: end = last(seq)
17: if newEvent(ev,localStates) then
18: localStates = localStates ∪ {(ev,∅)}
19: if end ∈ N then
20: localStates = addState(ev,nextEvets(ev,end,localSeq,syncSet,M),localStates)
21: else if end == 𝑆𝐾𝐼𝑃 then
22: localStates = addState(ev,nextEvents(ev,pointers,syncSet,M),localStates)
23: localSeq = front(localSeq)
24: tuples = tuples ∖ {elem} ∪ getChildren(pointers,M)
25: return localStates

sequence, lines 9 and 23, we initially check the events in its front, lines 11 to 14. If it
is the first time the event has been captured, we add it to localStates , lines 12 and 13.
We add what will be offered to the environment by the process in line 14; the function
addState adds a set of events, its second argument, to the set of sets of events referenced
by its first argument. The function nextEvents returns the events that a process, or part
of a process, modelled through an Enhance Trace, offers to the environment after a given
event happens; this function is detailed after Example 18.

We deal with the last event of the valid sequence in lines 15 to 22. If the valid sequence
references another valid sequence, we capture its first event, line 20; if it ends in SKIP

we follow the pointers of the tuple, line 22, and if it ends in 𝑆𝑇𝑂𝑃 nothing is added; the
function nextEvent is overloaded.

Example 18 We consider the following processes.

Ex18a = (a → Ex18a) 2 (b → c → 𝑆𝐾𝐼𝑃) Ex18d = Ex18a ; Ex18b

Ex18b = a → d → 𝑆𝐾𝐼𝑃 Ex18e = Ex18d 2 Ex18c

Ex18c = (c → d → e → Ex18c) 2 (f → Ex18c)

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 53

Figure 12 – Calculating the local states in Parallelism(P,Q,X)

M(Ex18e) =
⟨

{︂ (︁ ⟨ {︁ ⟨
a, d , 𝑆𝐾𝐼𝑃

⟩ }︁ ⟩
,∅,∅

)︁ }︂
{︂ (︁ ⟨ {︁ ⟨

a, 0
⟩
,
⟨

b, c, 𝑆𝐾𝐼𝑃
⟩ }︁ ⟩

,∅,
{︁

1
}︁)︁ }︂

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁ }︂

{︂ (︁ ⟨ {︁ ⟨
c, d , e, 0

⟩
,
⟨

f , 0
⟩ }︁ ⟩

,∅,∅
)︁ }︂

,{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

3, 4
}︁)︁ }︂

⟩

If we execute getLocalStates with M(Ex18e) as the argument, the result is:

⎧⎨⎩ (a, {{a, b}, {d}}), (b, {{c}}), (c, {{a}, {d}}), (d , {{e}}), (e, {{c, f }}),

(f , {{c, f }})

⎫⎬⎭
There are two occurrences of event a, one in Ex18a, which leads to a recursion, and

one in Ex18b. We capture the two states, with the former leading to the offer of the initial
events of Ex18a, and the latter leading to the offer of event d . Event b simply leads to
event c. Event c also has two occurrences, the first, in Ex18a, pointing to the initials of
Ex18b, and the second, in Ex18c, to event d . Of the two occurrences of event d , one leads
to 𝑆𝐾𝐼𝑃 and is not a trigger to a sequential composition, so no event is offered after it
happens, and the other leads to event e. Events e and f both lead to the initials of Ex18c.

�

We have three functions nextEvents , shown below. The first one is used in line 14
of getLocalStates and simply gets the next event in the given valid sequence, using

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 54

getNextFromSeq ; getLocalStates can differentiate between multiple occurrences of an event
in a sequence, such as in a → b → a → 𝑆𝐾𝐼𝑃 . The second one is used in line 20 of
getLocalStates and gets the initial events of the valid sequences in the set in localSeq,
a valid structure, referenced by index; getFromSeq returns the needed set, and getHeads

extracts the events. The third one is used in line 22 of getLocalStates and get the initials
of the Enhanced Traces of the sets in M referenced in pointers; getFromSeq is overloaded
to work with the metadata as well as valid structures.

1. nextEvents(ev,seq,sycnSet,M) =
{getNextFromSeq(ev,seq)} ∪ syncEvents(ev,syncSet,M)

2. nextEvents(ev,index,localSeq,sycnSet,M) =
getHeads(getFromSeq(index,localSeq)) ∪ syncEvents(ev,syncSet,M)

3.1. nextEvents(ev,∅,sycnSet,M) = syncEvents(ev,syncSet,M)

3.2. nextEvents(ev,{p} ∪ pointers,sycnSet,M) =
getHeads(getFromSeq(index,M)) ∪ nextEvents(ev,pointers ∖ {p},sycnSet,M)

In all versions of nextEvents , we use the function syncEvents , shown in Algorithm 9.
This function is used to get the events in the metadata that are guaranteed to be available
due to internal synchronisations. These events are then joined by those gathered by the
particular method of each nextEvents function.

For each meaningful synchronisation in the given synchronisation set, we check all
Enhanced Traces that lead to the handshake, lines 2 to 13; otherNextEvents stores the
events that may be added to syncEvents . If a possible synchronisation is found, line 13,
we check the valid structure of the other tuple for events that have the possibility of being
always offered to the environment after the synchronisation, lines 15 to 42.

The first time a synchronisation is found, line 18, we update otherNextEvents accord-
ingly, lines 19 to 28. If another synchronisation is found later on, line 29, we gather the
events that will be available after its occurrence, lines 30 to 39, and check if they are
the same to what was previously gathered, lines 40 and 41. If they are not, validEvent
is marked false, meaning that no guarantee can be given regarding the events offered by
the synchronised tuple. Since a synchronisation can happen with any of the tuples that
match the given synchronisation pair, if more than one is present in the metadata, they
need to offer the same events to be added to syncEvents , lines 44 and 45.

Example 19 We consider the following processes.

Ex19a = a → b → Ex19a Ex19d = Ex19a ||| Ex19b

Ex19b = b → c → Ex19b Ex19e = Ex19d [[{a, b}]]Ex19c

Ex19c = (a → b → c → Ex19c) 2 (d → 𝑆𝐾𝐼𝑃)

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 55

Algorithm 9 syncEvents(ev,sycnSet,M)

1: syncEvents = ∅
2: for each syncTuple ∈ syncSet do
3: if ev ∈ second(syncTuple) then
4: for each tuple ∈ last(M) do
5: localTuples = {tuple}
6: otherNextEvents = ∅
7: validEvent = true
8: while localTuples ̸= ∅ do
9: otherElem = getFromSet(localTuples)

10: localSeq = first(otherElem)
11: pointers = third(otherElem)
12: for each otherSyncTuple ∈ second(otherElem) do
13: if first(syncTuple) == first(otherSyncTuple)*-1 then
14: nextAdded = false
15: while localSeq ̸= ⟨⟩ do
16: for each otherSeq ∈ last(localSeq) do
17: for each otherEv ∈ front(otherSeq) do
18: if ev == otherEv ∧ ¬nextAdded then
19: otherEnd = last(otherSeq)
20: if getNextFromSeq(otherEv,otherSeq) == otherEnd then
21: if otherEnd ∈ N then
22: otherNextEvents =

otherNextEvents ∪ getHeads(getFromSeq(otherEnd,localSeq))
23: else if otherEnd == 𝑆𝐾𝐼𝑃 then
24: for each pointer ∈ pointers do
25: otherNextEvents =

otherNextEvents ∪ getHeads(getFromSeq(pointer,M))
26: else
27: otherNextEvents =

otherNextEvents ∪ {getNextFromSeq(otherEv,otherSeq)}
28: nextAdded = true
29: else if ev == otherEv ∧ validEvent then
30: otherEnd = last(otherSeq)
31: otherNextEventsTemp = ∅
32: if getNextFromSeq(otherEv,otherSeq) == otherEnd then
33: if otherEnd ∈ N then
34: otherNextEventsTemp =

otherNextEventsTemp ∪ getHeads(getFromSeq(otherEnd,localSeq))
35: else if otherEnd == 𝑆𝐾𝐼𝑃 then
36: for each pointer ∈ pointers do
37: otherNextEventsTemp =

otherNextEventsTemp ∪ getHeads(getFromSeq(pointer,M))
38: else
39: otherNextEventsTemp =

otherNextEventsTemp ∪ {getFromSeq(otherEv,otherSeq)}
40: if otherNextEvents ̸= otherNextEventsTemp then
41: validEvent = false
42: localSeq = front(localSeq)
43: localTuples = localTuples ∖ {otherElem} ∪ getChildren(pointers,M)
44: if otherNextEvents ̸= ∅ ∧ validEvent then
45: syncEvents = syncEvents ∪ otherNextEvents
46: return syncEvents

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 56

M(Ex19e) =
⟨

⎧⎪⎨⎪⎩
(︁ ⟨ {︁ ⟨

a, b, 0
⟩ }︁ ⟩

,
{︁ (︁

1,
{︁

a, b
}︁)︁ }︁

,∅
)︁
,(︁ ⟨ {︁ ⟨

b, c, 0
⟩ }︁ ⟩

,
{︁ (︁

1,
{︁

a, b
}︁)︁ }︁

,∅
)︁

⎫⎪⎬⎪⎭⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,
{︁ (︁

1,
{︁

a, b
}︁)︁ }︁

,
{︁

1
}︁)︁

,⎛⎝ ⟨ {︁ ⟨
a, b, c, 0

⟩ }︁
,{︁ ⟨

d , 𝑆𝐾𝐼𝑃
⟩ }︁ ⟩

,
{︁ (︁

−1,
{︁

a, b
}︁)︁ }︁

,∅

⎞⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭{︂ (︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

2
}︁)︁ }︂

⟩

If we execute syncEvents(a, {(1, {a, b})},Ex19e), the result is {b}, since there is
only one tuple with event a that synchronises on -1. If, on the other hand, we execute
syncEvents(b, {(−1, {a, b})},Ex19e), the result is ∅, since, of the two tuples that have
event b and synchronise on 1, one offers event a, and the other c. For the two possible
executions of syncEvents(b, {(1, {a, b})},Ex19e), the function can differentiate between
the valid sequences of Ex19a and Ex19b, which come from the call to nextEvents in
getLocalStates . �

With the local states calculated, we are now in a position to check for the possible
presence of nondeterminism; the current stage of the verification can be seen in Figure
13. There are two scenarios where nondeterminism can arise from a parallel composition,
with both having an event in common as the trigger.

Figure 13 – Checking the local states in Parallelism(P,Q,X)

First, the algorithm checks for each possible pair of local states of P and Q , if they
offer the same event to the environment, and if this event is not in the synchronisation
set, lines 4 and 5. If this is the case, then the events offered to the environment if either

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 57

process evolves must be the same, for the composition to be deterministic, lines 6 to 9. We
calculate the events that will be offered by joining the events gathered by getLocalStates ,
the second element of the local state, the event of the other process, that continues to be
offered, and the events that are always available, avEvents .

At a given moment, a process can be offering a number of events to the environment,
and not only the event that we capture in the first element of stateP and stateQ . These
events, however, can be offered in some situations, and not in others, depending on the
overall state of the CSP process. To avoid the state explosion problem, we only consider
the events that are guaranteed to happen. One effect of this design choice is that there are
some deterministic specifications that the algorithm cannot guarantee to be deterministic,
since it does have all the information available.

Example 20 We consider the following processes.

Ex20a = a → b → a → Ex20a Ex20b = Ex20a ||| Ex20a

For the process Ex20b, we have avEvents = ∅. The conditional in line 5 of Algo-
rithm 3 returns true for the first events of both operands of Ex20b, with nextStateP and
nextStateQ being both the result of {b} ∪ {a} ∪∅, so nextStateP == nextStateQ , line 8.
For the first event of the first operand, a, and the second event of the second operand, b,
the conditional in line 5 returns false. For the first event of the first operand, a, and the
third event of the second operand, a, line 5 returns true, but nextStateP = {b}∪{a}∪∅,
and nextStateQ = {a} ∪ {a} ∪∅, so Algorithm 3 returns false in line 9. �

Example 21 We consider the following processes.

Ex21a = a → b → c → Ex21a Ex21d = Ex21a ||| Ex21b

Ex21b = d → e → f → Ex21b Ex21e = Ex21d [[{d}]]Ex21c

Ex21c = d → e → g → Ex21c

If we check Ex21e, we have avEvents = ∅, since there is no sequence with a freely
occurring event. Algorithm 3 then calculates the local states and check for equal events.
For the states offering events a, b, c, and f , in Ex21d , and the state offering event g , in
Ex21c, the conditional in line 5 returns false. When stateP and stateQ both offer d , the
conditional in line 5 also returns false, since event d is in the synchronisation set. For event
e, however, we have that nextStateP = {g} ∪ {e} ∪∅ and nextStateQ = {f } ∪ {e} ∪∅,
so Algorithm 3 returns false, in line 9. �

The second possibility of nondeterminism arises if one of the operands has an external
choice, and one of the initial events of this choice is also present in the other operand;
this is the final verification stage, as shown in Figure 14. In this case it is possible that
the environment looses control over how the choice is resolved after the composition. An
example of this scenario is shown in Example 22.

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 58

Figure 14 – Checking the external choices in Parallelism(P,Q,X)

Example 22 We consider the following processes.

Ex22a = Ex21a 2 Ex21b Ex22b = Ex22a ||| Ex21a

The process Ex22a is deterministic, because the initials of each operand are disjoint.
The composition in Ex22b, however, have a nondeterminism arising from event a. Even
though every pair of states from P and Q do not cause a problem in themselves, the choice
in Ex22a causes nondeterminism. If the first event that the environment synchronises with
in Ex21b is a, we cannot know if events a and b will be offered afterwards, if Ex21a in
the left operand evolves, or if events a, b, and d will be available, if Ex21a in the right
operand evolves. �

To check if a choice can lead to nondeterminism in a parallel composition, we use
extChoiceWithND , shown in Algorithm 10. This function takes the metadata of two pro-
cesses and checks if a choice in the first one can lead to nondeterminism. For the analysis,
extChoiceWithND checks in the tree of P , lines 2 to 11, if an external choice in Basic
Process of P , lines 6 to 8, or Composite Process of P , lines 9 and 10, lead to nondeter-
minism; the functions basicExtChoiceWithND and compExtChoiceWithND checks those
cases, respectively.

We apply extChoiceWithND to both P and Q in Algorithm 3, line 10, and if a choice
present in either operand has the possibility of introducing nondeterminism, the algorithm
returns false in line 11.

The function basicExtChoiceWithND , shown in Algorithm 11, checks, for every event
in Q , lines 1 to 11, if this event occurs in the initials of the external choice modelled in
setP , if it is not in the synchronisation set, and if the branches of the external choice

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 59

Algorithm 10 extChoiceWithND(P,Q,X)

1: tuplesP = last(P)
2: while tuplesP ̸= ∅ do
3: elemP = getFromSet(tuplesP)
4: localSeqP = first(elemP)
5: pointersP = third(elemP)
6: for each setP ∈ localSeqP do
7: if size(setP) > 1 ∧ ¬basicExtChoiceWithND(setP,elemP,Q,X) then
8: return false
9: if size(pointersP) > 1 ∧ ¬compExtChoiceWithND(pointersP,P,Q,X) then

10: return false
11: tuplesP = tuplesP ∖ {elemP} ∪ getChildren(pointersP,P)
12: return true

are not equivalent. The function pathEq checks if the events starting in each sequence in
setP , in elemP , lead to the equivalent states; we only need to check the valid structure
here, and not the the other elements of P , because, if equal sequences of events end in
𝑆𝐾𝐼𝑃 , they will follow the same pointers.

Algorithm 11 basicExtChoiceWithND(setP,elemP,Q,X)

1: tuplesQ = last(Q)
2: while tuplesQ ̸= ∅ do
3: elemQ = getFromSet(tuplesQ)
4: localSeqQ = first(elemQ)
5: pointersQ = third(elemQ)
6: for each setQ ∈ localSeqQ do
7: for each seqQ ∈ setQ do
8: for each evQ ∈ front(seqQ) do
9: if evQ ∈ getHeads(setP) ∧ evQ ̸∈ X ∧ ¬pathEq(setP,elemP) then

10: return false
11: tuplesQ = tuplesQ ∖ {elemQ} ∪ getChildren(pointersQ,Q)
12: return true

For external choices that arise from compositions, we use algCompExtChoiceWithND ,
shown in Algorithm 12. This function works similarly to its counterpart for external choice
in Basic Processes, checking, for all events in Q , if they interfere with an initial event of
the external choice captured by the set of pointers. The function pathEq is overloaded to
also analyse the metadata itself; in this case it needs to go down the tree to ensure that
both branches of the choice are equivalent.

In all points where two events are compared in the verification of parallelism, be it
directly or by checking if it is part of a set of events, we use the function EqParallelism.
The body of this function is equal to that of EqExtChoiceStart , since, in both cases, the

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 60

Algorithm 12 compExtChoiceWithND(pointersP,P,Q,X)

1: tuplesQ = last(Q)
2: while tuplesQ ̸= ∅ do
3: elemQ = getFromSet(tuplesQ)
4: localSeqQ = first(elemQ)
5: pointersQ = third(elemQ)
6: for each setQ ∈ localSeqQ do
7: for each seqQ ∈ setQ do
8: for each evQ ∈ front(seqQ) do
9: if evQ ∈ getHeads(getFromSeq(pointersP,P)) ∧ evQ ̸∈ X ∧

¬pathEq(pointersP,P) then
10: return false
11: tuplesQ = tuplesQ ∖ {elemQ} ∪ getChildren(pointersQ,Q)
12: return true

condition that can lead to nondeterminism is that the events are equal.

• EqParallelism(p1,p2) = if p1 ∈ Val ∧ p2 ∈ Val then

if p1 == p2 then true else false

else

true

With the functional aspect of our verification of parallel compositions explained, let
us consider the efficiency of our approach. The analysis of determinism is naturally ex-
ponential, since we need to check all possible pairs of states of both operands. By doing
so we achieve a sound and complete analysis, but a very inefficient one. Our strategy
takes into account the subset that we are dealing with and all the potential sources of
nondeterminism that can arise from it to limit the scope of the analysis.

As can be seen in line 4 of Algorithm 3, we do check all pairs of events from both
operands. This, however, is a subset of all the possible states of the processes, since, when
checking a valid sequence, we do not take into account the state of the other Enhanced
Traces in the metadata. For process Ex21e, for example, we do not consider all possible
states of its left operand, Ex21d , which would be 9 states, because, when checking an
event in Ex21a, the event that is being offered in Ex21b is not taken into account, so we
only consider 6 states of the 9 available. This trivial example does not show it, but this
approach is essential to the scalability of our strategy.

If we define a process composed of 10 copies of Ex21a in interleaving, we will have
310, more than fifty thousand, possible states. Following our constructive approach, we
check each composition individually. In the first one, the strategy analyses all the nine
states available. On the following compositions, however, we analyse only part of the
available states. Each copy of Ex21a has three local states, so for Comp1 ||| Ex21, with

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 61

Comp1 = Ex21a ||| Ex21a, we have (3+3)*3 states. By adding the number of states
checked during each composition, we reach a total of 405.

All Basic Processes that offer more than one event can, at a given state, offer a specific
event, but, more importantly, can refuse to offer it; this is the idea that underpins our
whole verification of parallelism. To ensure that we do not discard relevant information,
we use avEvents to capture the events that are available to the environment in all states.

3.3.4 Hiding

In the failures model, hiding of the initials of processes in external choice can introduce
nondeterminism. The reason is that hiding does not remove the events from the processes,
but makes them invisible, so, if initial events are hidden, the environment may loose the
way of controlling a choice, which becomes internal.

Example 23 We consider the following processes.

Ex23a = a → b → c → Ex23a Ex23c = Ex23a 2 Ex23b

Ex23b = b → c → d → Ex23b

Hiding event c in Ex23c, which is deterministic, does not introduce nondeterminism,
because this does not affect its initials. Hiding event a, however, allows the choice to
be resolved in favour of Ex23a, due to the possibility of engaging in the hidden event,
without the command of the environment. �

Algorithm 13 Hiding (P,X)

1: tuplesP = last(P)
2: while tuplesP ̸= ∅ do
3: elemP = getFromSet(tuplesP)
4: localSeqP = first(elemP)
5: pointersP = third(elemP)
6: for each setP ∈ localSeqP do
7: if size(setP) > 1 ∧ getHeads(setP) ∩ X ̸= ∅ then
8: newElem = hideEv(elemP,X)
9: newSet = hideEv(setP,X)

10: if ¬pathEq(newSet,newElem) then
11: return false
12: if size(pointersP) > 1 ∧ getHeads(pointersP,P) ∩ X ̸= ∅ then
13: newP = hideEv(P,X)
14: if ¬pathEq(pointersP,newP) then
15: return false
16: tuplesP = tuplesP ∖ {elemP} ∪ getChildren(pointersP,P)
17: return true

Chapter 3. STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM 62

When hiding is applied to a process P we check if an initial event of an external choice
is being hidden. If it is, then, to be deterministic, all branches of the choice, with the
required events hidden, need to equivalent. We use Algorithm 13; P is a metadata, and
X the set of events to be hidden. This function checks the entire metadata, lines 1 to 16,
for the presence of external choices, both in Basic Processes, lines 6 to 11, and Composite
Processes, lines 12 to 15, similarly to extChoiceWithND .

If an external choice is found, we check, using hideEv , if, after removing the events
in X , the branches of the metadata are equivalent, lines 10 and 14; the function hideEv

is overloaded, and simply returns the given structure without the events in its second
argument, the set X .

Hiding events from a deterministic internal choice or the parallel composition does not
introduce nondeterminism. In the case of internal choice, the reason is that its operands
need to be equivalent for it to be deterministic, and, for parallelism, all events in the inter-
section of the alphabets lead to the same set of events being offered to the environment.

We have implemented all the algorithms presented in this section to construct a proto-
type determinism checker. In the next chapter, we show the results of experiments carried
out using this prototype.

63

4 EXPERIMENTAL RESULTS

To automate the application of our strategy, and to check its efficiency, we developed
a prototype and performed a number of case studies. We discuss the features of our
prototype in Section 4.1. The case studies performed are presented in Section 4.2, with
their results being detailed in Section 4.3, and the threats to validity being discussed in
Section 4.4. All the files used in the experiments, together with the prototype itself, are
available online1.

4.1 Prototype
The prototype is implemented in Java (GOSLING et al., 2015), and is built upon the CSP
parser developed by Jesus Júnior (2009). It receives a CSP specification complying with
its requirements and outputs a message with its conclusion. The message can be “All
processes are deterministic”, or it can point out a potential nondeterministic composition
in the specification.

The current version of the prototype implements a large subset of our strategy, con-
taining all its algorithms. The elements that were not yet implemented are some details
related to the access of some structure of the metadata. One example of a process that
the prototype is not yet able to analyse is shown below.

P = a → P PQ = P 2 Q

Q = b → Q PQR = PQ 2 R

R = c → R PQRS = PQR 2 S

S = a → b → S

M(PQRS) =
⟨

{︂ (︁ ⟨ {︁ ⟨
a, 0

⟩ }︁ ⟩
,∅,∅

)︁ }︂
{︂ (︁ ⟨ {︁ ⟨

b, 0
⟩ }︁ ⟩

,∅,∅,
)︁ }︂

{︂ (︁ ⟨ {︁ ⟨
𝑆𝐾𝐼𝑃

⟩
,
}︁ ⟩

,∅,
{︁

1, 2
}︁)︁ }︂

{︂ (︁ ⟨ {︁ ⟨
c, 0

⟩ }︁ ⟩
,∅,∅

)︁ }︂
,{︂ (︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

3, 4
}︁)︁ }︂

,{︂ (︁ ⟨ {︁ ⟨
a, b, 0

⟩ }︁ ⟩
,∅,∅

)︁ }︂
,{︂ (︁ ⟨ {︁ ⟨

𝑆𝐾𝐼𝑃
⟩
,
}︁ ⟩

,∅,
{︁

5, 6
}︁)︁ }︂

⟩

1 https://www.cin.ufpe.br/~rbo2/DissertationFiles.zip

Chapter 4. EXPERIMENTAL RESULTS 64

In M(PQRS) we have a tree with two composite nodes from the root to the tuples
that model the processes P and Q . Our prototype, currently, can only check up to one
composite node between two tuples, so the process PQRS cannot be checked. This is only
an implementation issue, since the strategy does not have this limitation.

Besides restrictions on the analysis, we also have some limitations regarding the writing
of the specifications. Synchronisation channels, for example, need to be written explicitly,
due to how they are treated by the implementation. For a channel in : {0, 1}, we need to
explicitly write the set of events {in.0, in.1}, instead of the usual shorthand {| in |}.

One final comment must be made regarding the compositions. In all examples so far we
always performed one composition at a time. The reason behind this is that our prototype
can only check compositions written in such a manner. The strategy itself does not forbid
us from writing PQRS = ((P 2 Q) 2 R) 2 S , but since the current implementation of
the prototype does not calculate the metadata of the intermediary components (P 2 Q)

and (P 2 Q) 2 R), it cannot handle this style of writing. This restriction does not
diminishes the expressiveness of the specifications that the prototype can analyse, and it
can be addressed in future implementations.

The limitations of our prototype require only implementation effort to be resolved.
They do not reflect any theoretic limitations of our strategy, beyond those discussed in
Chapter 3. They do not impact our experiments, since the unimplemented aspects of the
strategy would not be executed even if they were present in the prototype.

4.2 Case Studies
We performed seven case studies: two with systems extracted from the literature, and five
with toy examples. The toy examples are used as a benchmark to analyse each algorithm
individually, and the more complex systems are used to check their combined performance.

4.2.1 Systems from the Literature

One of our case studies is a Ring Buffer described by Woodcock and Cavalcanti (2001).
This system is a fixed sized buffer with a controller and a number of cells, each one capable
of storing one piece of information, organized in a circular fashion. The controller stores
the index of the first and last cells with information, in a FIFO-style, and contains itself
a cache, so a buffer with four cells is capable of storing up to five pieces of information.

After each input or output operation, the controller updates its indexes, if needed,
and the value of its cache. If the buffer is empty its output operation is disabled, as is
its input option, if it is full. An example of a ring buffer with eight cells can be seen in
Figure 15. In this example the buffer contains two values, 2 in the cache, and 5 referenced
by the bot index; the top index points to the next cell to be written. The values in the
first three cells were already read, so their state is irrelevant.

Chapter 4. EXPERIMENTAL RESULTS 65

Figure 15 – Graphical representation of a ring buffer.

The CSP specification of a cell is shown below. The current state of the cell is mod-
elled by IRingCellState, with internal operations to read, i rd , and write, i wrt . These
operations are controlled by IRingCellBody , that initially behaves as IRingCellInit , since
output is not enabled, and then it behaves as IRingCellLoop. The cell itself, IRingCell ,
is the result of the parallel composition of its state and body, IRingCellComp, with the
internal communications on i rd and i wrt hidden. So the visible channels of a cell are
read and write, as shown in Figure 15.

IRingCellState(id , val) = i rd .id !val → IRingCellState(id , val)

2

i wrt .id?newVal → IRingCellState(id , newVal)

IRingCellInit(id) = write.id?newVal → i wrt .id !newVal → 𝑆𝐾𝐼𝑃

IRingCellLoop(id) = i rd .id?val →⎛⎜⎜⎜⎝
read .id !val → IRingCellLoop(id)

2

write.id?newVal → i wrt .id !newVal → IRingCellLoop(id)

⎞⎟⎟⎟⎠
IRingCellBody(id) = IRingCellInit(id) ; IRingCellLoop(id)

IRingCellComp(id) = IRingCellBody(id)[[{| i rd , i wrt |}]]IRingCellState(id , 0)

IRingCell(id) = IRingCellComp(id) ∖ {| i rd , i wrt |}

Chapter 4. EXPERIMENTAL RESULTS 66

The specification of the controller is similar in structure, and is shown below. The pro-
cess Controller is the result of the parallel composition of ControllerLoop, which manages
the communication with the environment, through the channels input and output , and
ControllerState, which manages the cache and the cells, with the internal communications
on readState, readVal , and writeVal hidden.

ControllerState(top, botton, cache, size) =

readState!size!cache → ControllerState(top, botton, cache, size)

2

readVal →

⎛⎜⎜⎜⎜⎜⎜⎝
size > 1 & read .botton?val →

ControllerState(top, (botton + 1)%MaxRing , val , size − 1)

2

size == 1 & ControllerState(top, botton, cache, 0)

⎞⎟⎟⎟⎟⎟⎟⎠
2

writeVal?val →

⎛⎜⎜⎜⎜⎜⎜⎝
size == 0 & ControllerState(top, botton, val , 1)

2

size > 0 and size < MaxBuff & write.top!val →

ControllerState((top + 1)%MaxRing , botton, cache, size + 1)

⎞⎟⎟⎟⎟⎟⎟⎠
ControllerLoop = readState?size?cache →⎛⎜⎜⎜⎝

size < MaxBuff & input?val → writeVal !val → ControllerLoop

2

size > 0 & output !cache → readVal → ControllerLoop

⎞⎟⎟⎟⎠
ControllerComp = ControllerLoop

[[{| readState, readVal ,writeVal |}]]

ControllerState(0, 0, 0, 0)

Controller = ControllerComp ∖ {| readState, readVal ,writeVal |}

The buffer itself is simply the parallel composition of the controller with a given
number of cells. We can see below the specification of ring buffer that contains four cells.

CellComp1 = IRingCell(0) ||| IRingCell(1)

CellComp2 = CellComp1 ||| IRingCell(2)

CellComp3 = CellComp2 ||| IRingCell(3)

RingComp = Controller [[{| read ,write |}]]CellComp3

RingBuffer = RingComp ∖ {| read ,write |}

Chapter 4. EXPERIMENTAL RESULTS 67

For our experiments, we created a nondeterministic version of the ring buffer presented,
in which one of the cells can have an error, after which it reads or writes nondeterministi-
cally. The IRingCellLoop process of the modified cell is shown below; the other processes
of the specification remain unchanged.

IRingCellLoopND(id) = i rd .id?val →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

read .id !val → IRingCellLoopND(id)

2

write.id?newVal → i wrt .id !newVal → IRingCellLoopND(id)

2

error → read .id !val → IRingCellLoopND(id)

2

error → write.id?newVal → i wrt .id !newVal → IRingCellLoopND(id)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Besides the ring buffer, we also used the railway network described in Section 2.1.1

as a case study. In addition to the original, deterministic, version, we created nondeter-
ministic instances for the experiments. These instances have a problem in their last two
pairs of tracks, which leads to nondeterminism. The processes Pair18 and Pair19 of a
nondeterministic network with twenty pairs are shown below.

Pair18 =
signal .18→ signal .19→ signal .0→ interference → FixingProblem →

delay .5→ ProblemFixed → Pair18

Pair19 =
signal .1→ signal .19→ signal .0→ interference → FixingProblem →

delay .8→ ProblemFixed → Pair19

4.2.2 Toy Examples

To check the efficiency of each algorithm individually, we created five toy examples. These
examples consist of a number of simple Basic Processes composed with a particular op-
erator. Below we have the instance of size five for the external choice example.

Basic0 = a.0→ b.0→ c.0→ Basic0 Comp0 = Basic0 2 Basic1

Basic1 = a.1→ b.1→ c.1→ Basic1 Comp1 = Comp0 2 Basic2

Basic2 = a.2→ b.2→ c.2→ Basic2 Comp2 = Comp1 2 Basic3

Basic3 = a.3→ b.3→ c.3→ Basic3 Comp3 = Comp2 2 Basic4

Basic4 = a.4→ b.4→ c.4→ Basic4

For internal choice and interleaving, we use a similar structure, only changing the
operator in the Comp processes. One of our toy examples is a mix of operators, with the

Chapter 4. EXPERIMENTAL RESULTS 68

odd compositions using interleaving, and the even ones using external choice. The aim of
this example is to check parallelism with operands that have an external choice.

To analyse the hiding algorithm, we use a series of external choices, which then have
one of their events hidden. The instance of size five of the hiding example is shown below.
The processes Basic0 to Basic4 are as in the previous example.

Comp0 = Basic0 2 Basic1 Hiding0 = Comp0 ∖ {b.1}

Comp1 = Hiding0 2 Basic2 Hiding1 = Comp1 ∖ {b.2}

Comp2 = Hiding1 2 Basic3 Hiding2 = Comp2 ∖ {b.3}

Comp3 = Hiding2 2 Basic4 Hiding3 = Comp3 ∖ {b.4}

For the nondeterministic versions of the examples, we made small modifications to
certain compositions. The modifications made depend on the operator being changed.
The nondeterministic version of the hiding instance shown above, for example, has the
process Hiding3 = Comp3 ∖ {a.4}, while the external choice instance shown before it
has the body of the process Basic4 being changed to a.3 → b.4 → c.4 → Basic4. In all
cases, nondeterminism was introduced in the last compositions of the specification, which
is the most unfavourable position for the prototype, since it requires the verification of
all previous processes.

4.3 Results
The experiments were run in a server with an Intel Core i7-2600k, 16GB of RAM, 160GB
of SSD, and Ubunto 17.04 64-bit. We used FDR 4.2.3. All the experiments were run
three times, and we present here the best results for FDR and the worst results for our
prototype; the * indicates an out-of-memory error.

In all experiments our prototype correctly identified the deterministic specifications as
such, and returned an inconclusive result for the nondeterministic ones. It is important to
remember that FDR implements a complete strategy, and it provides counter-examples
when nondeterminism is found, something that our prototype is unable to do.

The results for the ring buffer experiment can be seen in tables 1 and 2; the instance
size indicates the number of memory cells. As we can see, FDR can only analyse the
most trivial instances, while our prototype can analyse almost all of them. For the nonde-
terministic instances, in particular, the prototype can quickly give a result, although an
incomplete one. The experiments show that the ring buffer is a especially hard system to
analyse through a global approach.

For the railway network, we considered three scenarios: one train in the network, three
trains in the network, and five trains in the network. The increase in the number of trains
leads to considerable larger state spaces, so we can analyse how each tool scales. The

Chapter 4. EXPERIMENTAL RESULTS 69

Table 1 – Deterministic instances of the
ring buffer experiment.

Instance FDR4 Prototype
3 0.48s 0.75s
6 * 0.50s
9 * 0.55s
10 * 0.55s
30 * 2.00s
60 * 3.29s
90 * 6.14s
100 * 7.99s
300 * 1m 11s
500 * 5m 21s
700 * 11m 29s
900 * 31m 47s
1000 * *

Table 2 – Nondeterministic instances of
the ring buffer experiment.

Instance FDR4 Prototype
3 0.21s 0.68s
6 * 0.46s
9 * 0.47s
10 * 0.53s
30 * 0.98s
60 * 2.44s
90 * 3.24s
100 * 4.51s
300 * 19.15s
500 * 46.02s
700 * 1m 30s
900 * 2m 23s
1000 * 2m 58s

results for the network with one train can be seen in tables 3 and 4; the instance number
indicates the size of the network, that is, the amount of pairs of tracks.

Table 3 – Deterministic instances with one
train in the railway.

Instance FDR4 Prototype
20 0.12s 0.60s
30 0.14s 0.87s
60 0.26s 5.14s
90 0.40s 20.46s
100 0.42s 31.97s
300 1.44s 47m 33s
500 2.82s *
700 4.49s *
900 6.82s *
1000 8.38s *

Table 4 – Nondeterministic instances with
one train in the railway.

Instance FDR4 Prototype
20 0.13s 0.65s
30 0.15s 1.04s
60 0.27s 5.02s
90 0.40s 20.81s
100 0.43s 31.12s
300 1.70s 43m 59s
500 3.38s *
700 6.14s *
900 9.84s *
1000 11.84s *

In this example FDR gives the best results, since it is not only capable of analysing
all instances, but it is also more efficient in doing so. Our prototype suffers with the need
to calculate and maintain its metadata, which hinders its efficiency. The scalability of our
strategy, however, shows up in the other two scenarios, as can be seen in tables 5 to 8.

With a larger state space to analyse, FDR loses its edge. In the network with three
trains it is still a better alternative than our prototype, but it starts to struggle with

Chapter 4. EXPERIMENTAL RESULTS 70

Table 5 – Deterministic instances with
three trains in the railway.

Instance FDR4 Prototype
20 0.17s 0.86s
30 0.26s 0.89s
60 0.87s 4.95s
90 2.36s 20.24s
100 3.29s 32.60s
300 4m 33s 45m 33s
500 32m 57s *
700 * *
900 * *
1000 * *

Table 6 – Nondeterministic instances with
three trains in the railway.

Instance FDR4 Prototype
20 0.12s 0.59s
30 0.16s 1.01s
60 0.35s 5.29s
90 0.72s 20.79s
100 0.91s 31.78s
300 44.33s 46m 55s
500 5m 46s *
700 25m 12s *
900 1h 9m *
1000 * *

Table 7 – Deterministic instances with five
trains in the railway.

Instance FDR4 Prototype
20 0.21s 0.59s
30 0.77s 0.87s
60 1m 28s 5.58s
90 20m 39s 20.91s
100 * 31.72s
300 * 47m 56s
500 * *
700 * *
900 * *
1000 * *

Table 8 – Nondeterministic instances with
five trains in the railway.

Instance FDR4 Prototype
20 0.13s 0.83s
30 0.19s 0.88s
60 1.54s 4.90s
90 17.38s 21.05s
100 35.52s 30.80s
300 * 45m 46s
500 * *
700 * *
900 * *
1000 * *

the larger instances. In the network with five trains it becomes preferable to apply our
strategy, since it is more efficient and is capable of analysing instances that FDR cannot.

In all three scenarios our prototype shows a somewhat similar result, this happens
because an increase in the size of the state space does not automatically translates into a
greater verification effort. Our strategy does not need to analyse the new states that arise
from the positions of the additional trains to achieve its result.

It is important to point out that the bad result that our prototype achieved when
analysing the network with only one train comes from the overhead created by the meta-
data. An earlier version of our strategy (OTONI; CAVALCANTI; SAMPAIO, 2017), in which
we considered a more restricted subset of CSP, and thus had a simpler metadata structure,
had more positive results in this scenario.

Chapter 4. EXPERIMENTAL RESULTS 71

With the toy examples we can get a clear picture of the efficiency of each individual al-
gorithm. When analysing external choice compositions, FDR was more efficient, checking
all instances in less than one second. Our prototype, although less efficient, was also able
to analyse all instances in a reasonable amount of time. The results for the experiments
with external choice can be seen in tables 9 and 10.

Table 9 – Deterministic instances of the
external choice experiment.

Instance FDR4 Prototype
3 0.06s 0.53s
6 0.06s 0.26s
9 0.06s 0.28s
10 0.06s 0.29s
30 0.07s 0.36s
60 0.08s 0.51s
90 0.09s 0.57s
100 0.09s 0.56s
300 0.19s 1.23s
500 0.33s 2.81s
700 0.52s 4.89s
900 0.67s 6.27s
1000 0.84s 11.35s

Table 10 – Nondeterministic instances of
the external choice experiment.

Instance FDR4 Prototype
3 0.04s 0.26s
6 0.04s 0.28s
9 0.05s 0.28s
10 0.05s 0.32s
30 0.05s 0.38s
60 0.06s 0.47s
90 0.07s 0.54s
100 0.08s 0.53s
300 0.12s 1.22s
500 0.32s 2.95s
700 0.47s 5.12s
900 0.68s 7.21s
1000 0.76s 9.71s

When it comes to internal choice, both tools again can analyse all given instances.
The results can be seen in tables 11 and 12. For the deterministic case, the scalability
of the prototype starts to show in the instance of size 100, due to increase of the state
space. In the nondeterministic case, however, FDR seems to be able to quickly capture
the nondeterminism, despite the size of the state space.

For interleaving the limitations of global analysis show up clearly, as can be seen
in tables 13 and 14. FDR is only capable of analysing the trivial instances, while our
prototype can check all instances in less than one minute.

In the experiment that combines interleaving and external choice we can see that
the results, shown in tables 15 and 16, are somewhat similar to the experiment with
only interleaving. FDR still struggles greatly, but the fact that half of the compositions
are not made with interleaving alleviates the verification effort a bit, specially in the
nondeterministic case. Our prototype is also impacted positively by the reduced number
of interleaves, analysing all instances in less than thirty seconds.

Hiding is another operator that FDR has difficulties in dealing with, as can be seen
in tables 17 and 18, only being able to check the trivial instances. Our prototype, on the
other hand, is able to efficiently analyse all instances.

Chapter 4. EXPERIMENTAL RESULTS 72

Table 11 – Deterministic instances of the
internal choice experiment.

Instance FDR4 Prototype
3 0.06s 0.25s
6 0.07s 0.25s
9 0.07s 0.27s
10 0.08s 0.28s
30 0.14s 0.36s
60 0.24s 0.41s
90 0.33s 0.49s
100 0.40s 0.49s
300 1.46s 0.77s
500 3.09s 1.07s
700 5.27s 1.25s
900 14.39s 1.38s
1000 25.56s 1.47s

Table 12 – Nondeterministic instances of
the internal choice experiment.

Instance FDR4 Prototype
3 0.05s 0.24s
6 0.05s 0.27s
9 0.05s 0.27s
10 0.05s 0.27s
30 0.05s 0.32s
60 0.06s 0.43s
90 0.07s 0.45s
100 0.07s 0.52s
300 0.14s 0.76s
500 0.21s 1.03s
700 0.28s 1.23s
900 0.38s 1.46s
1000 0.43s 1.43s

Table 13 – Deterministic instances of the
interleaving experiment.

Instance FDR4 Prototype
3 0.06s 0.25s
6 0.08s 0.31s
9 0.24s 0.32s
10 0.54s 0.34s
30 * 0.51s
60 * 0.84s
90 * 1.14s
100 * 1.31s
300 * 4.57s
500 * 12.01s
700 * 21.10s
900 * 33.93s
1000 * 40.76s

Table 14 – Nondeterministic instances of
the interleaving experiment.

Instance FDR4 Prototype
3 0.07s 0.27s
6 0.08s 0.30s
9 0.13s 0.34s
10 0.18s 0.34s
30 * 0.52s
60 * 0.79s
90 * 1.14s
100 * 1.23s
300 * 4.94s
500 * 11.63s
700 * 21.75s
900 * 33.93s
1000 * 41.63s

For most experiments our prototype took a similar time to analyse both the deter-
ministic and nondeterministic instances of a given size. The reason behind this is that
the nondeterministic instances were created in way to pose the hardest scenario to the
prototype. By adding a nondeterminism in the final composition, we force the prototype
to analyse, and then create the metadata for, all the previous processes, while FDR does
not necessarily suffers this impact.

Chapter 4. EXPERIMENTAL RESULTS 73

Table 15 – Deterministic instances of
the interleaving with external
choice experiment.

Instance FDR4 Prototype
3 0.08s 0.26s
6 0.15s 0.29s
9 0.36s 0.33s
10 0.38s 0.32s
30 * 0.47s
60 * 0.69s
90 * 0.93s
100 * 1.00s
300 * 3.15s
500 * 7.97s
700 * 14.12s
900 * 21.42s
1000 * 25.10s

Table 16 – Nondeterministic instances of
the interleaving with external
choice experiment.

Instance FDR4 Prototype
3 0.07s 0.28s
6 0.13s 0.31s
9 0.34s 0.30s
10 0.35s 0.32s
30 4.86s 0.49s
60 32.57s 0.65s
90 1m 41s 0.94s
100 2m 22s 1.03s
300 * 3.34s
500 * 7.62s
700 * 13.83s
900 * 21.82s
1000 * 25.30s

Table 17 – Deterministic instances of the
hiding experiment.

Instance FDR4 Prototype
3 0.08s 0.25s
6 1.69s 0.28s
9 * 0.32s
10 * 0.31s
30 * 0.41s
60 * 0.56s
90 * 0.65s
100 * 0.76s
300 * 2.78s
500 * 4.87s
700 * 8.21s
900 * 15.92s
1000 * 16.96s

Table 18 – Nondeterministic instances of
the hiding experiment.

Instance FDR4 Prototype
3 0.06s 0.26s
6 1.69s 0.27s
9 * 0.31s
10 * 0.30s
30 * 0.44s
60 * 0.60s
90 * 0.67s
100 * 0.79s
300 * 3.00s
500 * 4.91s
700 * 8.48s
900 * 16.01s
1000 * 17.46s

Chapter 4. EXPERIMENTAL RESULTS 74

The results show that FDR struggles to analyse large parallel systems, with our pro-
totype being a scalable alternative. Another composition operator that our experiments
indicate that FDR cannot efficiently handle is hiding, which is also efficiently analysed
by our prototype. These are very promising results, since ours is an academic prototype,
while FDR is a very optimized commercial tool.

4.4 Threats to Validity
There are four threats to the validity of our experiments, discussed below. For each threat,
we present the reasons for its occurrence, and the steps taken to minimise its effects.

• Instance generation The instances generated have the potential to favour one
tool over the other, which can create misleading results. To address this, part of
the specifications were selected from the literature, and the rest were created in
such a way to provide the hardest scenario for our prototype. The nondeterministic
instances, in particular, had the nondeterminism introduced in the least favourable
position for the prototype.

• Instance topology All our experiments used regular topologies, to allow for the
increase of the instance sizes. Due to this, we have no data regarding the efficiency
of our prototype in other scenarios. Regular topologies can potentially be tackled
by induction (CREESE; REED, 1999), so it is interesting to ensure that our strategy
is scalable in the general case. Our expectation is that the efficiency of our strategy
will the same in other scenarios, but this remains as a weakness to be addressed in
future work.

• Tool comparison Our prototype was compared only with FDR4. To allow for a
richer result, we need to compare it with other tools. These can include other model
checkers, such as ProB (LEUSCHEL; BUTLER, 2003) and PAT (SUN et al., 2009), or
theorem provers, like CSP Prover (BARTELS; KLEINE, 2011). The additional com-
parisons are not a trivial action, since the other tools use different semantic models
of CSP, together with variations in syntax, and this remains as a weakness. It is
important to note, however, that FDR4 is the main model checker for CSP, and the
comparisons with it do provide relevant information.

• Algorithm correctness The algorithms used have no formal connection with our
definition of determinism. This remains as the main threat to validity, and requires
formal proofs in order to be addressed. The use of formal tools, such as Dafny
(LEINO; MOSKAL, 2013), to provide a partial guarantee is a possibility.

75

5 CONCLUSION

In this dissertation we propose a local analysis strategy for the verification of determinism
in specifications written in a subset of CSP. Our strategy is sound and it encompasses
most of the main operators of CSP. With these features we are able to provide a viable
alternative to existing techniques.

Our strategy is constructive and compositional. To check if a process is deterministic,
we first check its components. The components themselves have their operands checked
first, until we reach processes that are assumed to be deterministic, which we call Basic
Processes. For each process that is known to be deterministic, we gather metadata about
it. When checking a composition we use only the medatada of its operands, thus removing
the need to re-evaluate processes that were already verified.

By considering a controlled subset of CSP, we know what the potential sources of
nondeterminism are. With this knowledge we developed algorithms to check, for each
composition operator, these particular sources. By knowing in advance what should be
analysed, we do not need to check the entire state space, which allows the verification
to scale. We performed some experiments and the results show that, in most cases, our
approach scales better than that of FDR4, the main tool for verification of CSP models,
specially when dealing with large parallel systems.

Despite its advantages, our strategy has some limitations. Its main restrictions are the
incompleteness of the analysis, the use of a controlled subset of CSP, instead of the full
language, and the lack of formal proofs.

• Incompleteness. Our analysis is not able to ensure that a negative result indicates
nondeterminism. This limitation on the accuracy permeates the entire strategy. The
algorithms not only can consider unreachable, nondeterministic, behaviours, in some
circumstances, but can also fail to capture restrictions in the specification that
remove nondeterminism. The metadata used is also a factor, since, for example,
it always considers guards and conditionals to be true. These inaccuracies exist
because we do not analyse the complete state space. As already mentioned, this is
a common trade-off to improve efficiency. Our examples and case studies indicate
good accuracy in the verification, but a more in depth study must be carried out.

• Subset of CSP. Our strategy is able to check specifications written in a restricted
subset of CSP. By restricting the language, we limit the potential sources of non-
determinism, so that we can conduct our analysis. This restriction is needed for
efficiency. It is important to note that, besides the inclusion of only part of the CSP
operators, there are also restrictions on their use, such as the categorisation of Basic
and Composite processes.

Chapter 5. CONCLUSION 76

• Lack of formal proofs. We closely analysed the potential sources of nondetermin-
ism in our selected subset of CSP, and carried out a number of examples and case
studies, all of which provided correct results. This, however, although an indicator,
is not enough to guarantee the soundness of our strategy. To achieve this goal formal
proofs need to be developed, regarding both the adequacy of the metadata and the
application of all the algorithms.

5.1 Related Work
As the focus of this dissertation is to provide a local analysis strategy to check for the
absence of nondeterminism, our aim is to compare our strategy with others from the
literature. Although there are global analysis techniques to check for nondeterminism, like
the ones provided by tools such as FDR (GIBSON-ROBINSON et al., 2014), ProB (LEUSCHEL;

BUTLER, 2003), and PAT (SUN et al., 2009), to the best of our knowledge, ours is the first
approach to local analysis of determinism, not only in the context of CSP, but also of
other formal modelling notations. Given the lack of direct comparative works, we discuss
here local analysis that check other properties.

The local analysis of deadlock is a topic that has been studied in depth. Antonino,
Sampaio and Woodcock (2014) propose two patterns for deadlock avoidance, together with
a series of assertions to automatically and efficiently check adherence to these patterns.
This approach is extended by Antonino et al. (2014), whose work presents and additional
pattern for deadlock avoidance, together with assertions to locally verify adherence to it.

The transformation of a deadlock verification in a satisfiability problem is proposed
by Antonino, Gibson-Robinson and Roscoe (2016a). This work presents a transforma-
tion framework to allow the use of SAT solvers. This approach is extended by improv-
ing its accuracy (ANTONINO; GIBSON-ROBINSON; ROSCOE, 2016b), and by generalizing
it, allowing the verification of other properties, such as mutual exclusion (ANTONINO;

GIBSON-ROBINSON; ROSCOE, 2017).
A constructive approach to check both deadlock and livelock in component-based

systems written in CSP is proposed by Ramos, Sampaio and Mota (2009). This work
follows a grey-box component driven architecture, using a number of composition rules
that ensure the preservation of deadlock- and livelock-freedom. The livelock verification
aspect of this work, however, is limited, with the analysis being trivial. To address this,
Conserva Filho et al. (2016) propose a black-box constructive approach, by allowing the
hiding of internal communications, to check for livelock in this component-based scenario.
A version of this local analysis of livelock, for general CSP specifications, is proposed by
Conserva Filho et al. (2018).

CSP is widely used for the development of verification techniques, but other notations
can also be adopted. Francesca et al. (2011) propose a deadlock verification strategy

Chapter 5. CONCLUSION 77

using the process algebra CCS. In this work the authors explore the use of AI techniques,
namely Ant Colony Optimization, in this context. Bensalem et al. (2011) proposes a
deadlock verification strategy using a C like language. This work is underpinned by the
use of invariants, and the authors provide a tool capable of generating C code of the
verified systems.

5.2 Future Work
In this section we present research avenues that can improve the verification strategy
proposed in this dissertation. We consider both enhancements to the strategy itself and
ways to make it more applicable in practice.

• Development of formal proofs. The more pressing issue with our strategy is the
lack of formal proofs. As already mentioned, we need to establish the adequacy of
the metadata used and the correctness of the algorithms.

• Complexity of the algorithms. A relevant follow-up is an study of the com-
plexity of the algorithms used. This study is important to correctly analyse their
efficiency, and detect and correct any bottlenecks. With this information we will be
able to correctly present their efficiency, which is now done via a proxy, through our
experimental results.

• Extension of the subset used. The widening of the subset of CSP considered can
make the strategy more appealing and improve its applicability. This includes not
only the inclusion of new CSP operators, such as renaming, but also the removal of
some of the restrictions, allowing, for example, the use of process references other
than tail recursion.

• Refactoring of specifications. A refactoring function that attempts to adapt a
general CSP specification to our controlled subset can be an interesting addition to
our strategy. It can work as a pre-processing step and has the possibility of lifting
some of the restrictions without the need to change the strategy.

• Revision of the metadata. To improve the efficiency of our strategy, one possi-
bility is the reshaping of the metadata, so that less information is stored, and what
is stored is more easily accessible. This can have direct impact on the verification
effort and on the amount of memory needed by the strategy.

• Extension to other formalisms. As a more ambitious future work, one possibility
is to try to transfer the verification strategy to other formalisms. In particular, to
other process algebras, since this would be the easier first step, and would allow for
a greater reach for the strategy.

Chapter 5. CONCLUSION 78

• Improvement of the tool support. Improvements to our prototype can range
from the development of a user interface to internal optimizations, both of which
would be a welcome addition. Two important features to be considered are the
possibility to save the metadata of a process for future use, and the option for
the user to allow the verification to continue even if a potential nondeterminism
has been found. As a long term goal, the combination of techniques that verify
deadlock, livelock, and determinism locally is a possibility. By identifying a subset
of CSP shared by all of them, an integrated approach, and tool, to analyse all the
three classical properties is viable.

• Perform more case studies. To further demonstrate the usefulness of our strat-
egy, more case studies can be performed. In particular, case studies of systems used
in industry would be ideal. This would allow us to draw more conclusions in regards
to the efficiency and accuracy of the strategy.

79

REFERENCES

ANTONINO, P. R. G.; GIBSON-ROBINSON, T.; ROSCOE, A. W. Efficient deadlock-
freedom checking using local analysis and sat solving. In: Integrated Formal Methods.
[S.l.]: Springer International Publishing, 2016. p. 345–360. ISBN 978-3-319-33693-0.

ANTONINO, P. R. G.; GIBSON-ROBINSON, T.; ROSCOE, A. W. Tighter Reachability
Criteria for Deadlock-Freedom Analysis. In: FM 2016: Formal Methods - 21st
International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings. [S.l.:
s.n.], 2016. p. 43–59.

ANTONINO, P. R. G.; GIBSON-ROBINSON, T.; ROSCOE, A. W. Checking static
properties using conservative SAT approximations for reachability. In: Formal Methods:
Foundations and Applications - 20th Brazilian Symposium, SBMF 2017, Recife, Brazil,
November 29 - December 1, 2017, Proceedings. [S.l.: s.n.], 2017. p. 233–250.

ANTONINO, P. R. G.; OLIVEIRA, M. V. M.; SAMPAIO, A.; KRISTENSEN, K. E.;
BRYANS, J. W. Leadership Election: An Industrial SoS Application of Compositional
Deadlock Verification. In: NASA Formal Methods - 6th International Symposium, NFM
2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings. [S.l.: s.n.], 2014. p.
31–45.

ANTONINO, P. R. G.; SAMPAIO, A.; WOODCOCK, J. A Refinement Based Strategy
for Local Deadlock Analysis of Networks of CSP Processes. In: FM 2014: Formal
Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings. [S.l.:
s.n.], 2014. p. 62–77.

BARTELS, B.; KLEINE, M. A CSP-based Framework for the Specification, Verification,
and Implementation of Adaptive Systems. In: Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. [S.l.: s.n.],
2011. p. 158–167.

BENSALEM, S.; GRIESMAYER, A.; LEGAY, A.; NGUYEN, T.; PELED, D. A.
Efficient Deadlock Detection for Concurrent Systems. In: 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, MEMOCODE 2011,
Cambridge, UK, 11-13 July, 2011. [S.l.: s.n.], 2011. p. 119–129.

BOVE, A.; DYBJER, P. Dependent types at work. In: . Language Engineering and
Rigorous Software Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p.
57–99. ISBN 978-3-642-03153-3.

CONSERVA FILHO, M. S.; OLIVEIRA, M. V. M.; SAMPAIO, A.; CAVALCANTI, A.
Local Livelock Analysis of Component-Based Models. In: Formal Methods and Software
Engineering - 18th International Conference on Formal Engineering Methods, ICFEM
2016, Tokyo, Japan, November 14-18, 2016, Proceedings. [S.l.: s.n.], 2016. p. 279–295.

CONSERVA FILHO, M. S.; OLIVEIRA, M. V. M.; SAMPAIO, A.; CAVALCANTI, A.
Compositional and Local Livelock Analysis for CSP. Information Processing Letters,
v. 133, p. 21 – 25, 2018. ISSN 0020-0190.

REFERENCES 80

CREESE, S. J.; REED, J. Verifying end-to-end protocols using induction with
CSP/FDR. In: Parallel and Distributed Processing. [S.l.]: Springer Berlin Heidelberg,
1999. p. 1243–1257.

FAKHROUTDINOV, K. UML 2.5. 2015. Available at: <https://www.uml-diagrams.
org/>.

FRANCESCA, G.; SANTONE, A.; VAGLINI, G.; VILLANI, M. L. Ant Colony
Optimization for Deadlock Detection in Concurrent Systems. In: Proceedings of the
35th Annual IEEE International Computer Software and Applications Conference,
COMPSAC 2011, Munich, Germany, 18-22 July 2011. [S.l.: s.n.], 2011. p. 108–117.

GIBSON-ROBINSON, T.; ARMSTRONG, P.; BOULGAKOV, A.; ROSCOE, A. FDR3
- A Modern Refinement Checker for CSP. In: Tools and Algorithms for the Construction
and Analysis of Systems: 20th International Conference. [S.l.: s.n.], 2014. p. 187–201.

GOSLING, J.; JOY, B.; STEELE, G.; BRACHA, G.; BUCKLEY, A. Java SE 8 Edition.
2015. Available at: <https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf>.

HOARE, C. A. R. Communicating Sequential Processes. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1985. ISBN 0-13-153271-5.

JESUS JúNIOR, J. B. de. Design e Validação Formal de Sistemas de Controle de Voo
Fly-By-Wire. Master’s Thesis (Dissertation) — CIn UFPE, 2009.

LEINO, R.; MOSKAL, M. Co-Induction Simply: Automatic Co-Inductive Proofs in a
Program Verifier. [S.l.], 2013.

LEUSCHEL, M.; BUTLER, M. J. ProB: A Model Checker for B. In: FME 2003: Formal
Methods, International Symposium of Formal Methods Europe, Pisa, Italy, September
8-14, 2003, Proceedings. [S.l.: s.n.], 2003. p. 855–874.

OTONI, R.; CAVALCANTI, A.; SAMPAIO, A. Local Analysis of Determinism for CSP.
In: Formal Methods: Foundations and Applications: 20th Brazilian Symposium, SBMF
2017, Recife, Brazil, November 29 — December 1, 2017, Proceedings. [S.l.: s.n.], 2017. p.
107–124. ISBN 978-3-319-70848-5.

RAMOS, R.; SAMPAIO, A.; MOTA, A. Systematic Development of Trustworthy
Component Systems. In: FM 2009: Formal Methods, Second World Congress, Eindhoven,
The Netherlands, November 2-6, 2009. Proceedings. [S.l.: s.n.], 2009. p. 140–156.

ROSCOE, A. Understanding Concurrent Systems. 1st. ed. New York, NY, USA:
Springer-Verlag New York, Inc., 2010. ISBN 184882257X, 9781848822573.

SCHNEIDER, S. Concurrent and Real Time Systems: The CSP Approach. 1st. ed. New
York, NY, USA: John Wiley & Sons, Inc., 1999. ISBN 0471623733.

SUN, J.; LIU, Y.; DONG, J. S.; PANG, J. PAT: Towards Flexible Verification under
Fairness. In: Computer Aided Verification: 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings. [S.l.: s.n.], 2009. p. 709–714. ISBN
978-3-642-02658-4.

WATT, D. A. Programming Language Design Concepts. [S.l.]: John Wiley & Sons,
2004. ISBN 0470853204.

https://www.uml-diagrams.org/
https://www.uml-diagrams.org/
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

REFERENCES 81

WOODCOCK, J.; CAVALCANTI, A. A Concurrent Language for Refinement. In: 5th
Irish Workshop on Formal Methods, IWFM 2001, Dublin, Ireland, 16-17 July 2001. [S.l.:
s.n.], 2001.

	Title page
	Dedication
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	INTRODUCTION
	Motivation
	Objectives
	Strategy Overview
	Dissertation Outline

	BACKGROUND
	CSP
	CSP Syntax
	CSP Semantics

	Determinism

	STRATEGY FOR LOCAL ANALYSIS OF DETERMINISM
	Process Structure and Restrictions
	Metadata
	Composition Rules
	External Choice
	Internal Choice
	Parallelism
	Hiding

	EXPERIMENTAL RESULTS
	Prototype
	Case Studies
	Systems from the Literature
	Toy Examples

	Results
	Threats to Validity

	CONCLUSION
	Related Work
	Future Work

	REFERENCES

