"Centro o
wnfor natica
l . ek | R O] Q] o

Poés-Graduacao em Ciéncia da Computacao

TARCIANA DIAS DA SILVA

VALIDATING TRANSFORMATIONS OF OO PROGRAMS
USING THE ALLOY ANALYZER

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

Recife
2017



Tarciana Dias da Silva

Validating Transformations of OO Programs using the Alloy Analyzer

A Ph.D. Thesis presented to the Center for Informatics
of Federal University of Pernambuco in partial
fulfillment of the requirements for the degree of
Philosophy Doctor in Computer Science.

ADVISOR: Augusto Cezar Alves Sampaio
CO-ADVISOR: Alexandre Cabral Mota

Recife
2017



Catalogagédo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

S586v Silva, Tarciana Dias da

Validating transformations of OO programs using the alloy analyzer /
Tarciana Dias da Silva. — 2017.
149 f.. il., fig.

Orientador: Augusto Cezar Alves Sampaio.

Tese (Doutorado) — Universidade Federal de Pernambuco. Cin, Ciéncia da
Computacéo, Recife, 2017.
Inclui referéncias e apéndice.

1. Engenharia de software. 2. Linguagem de programagdo. |. Sampaio,
Augusto Cezar Alves (orientador). Il. Titulo.

005.1 CDD (23. ed.) UFPE- MEI 2018-104




Tarciana Dias da Silva

Validating Transformations of OO Programs using the Alloy Analyzer

Tese de Doutorado apresentada ao Programa
de Pds-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencéo do titulo de Doutora em Ciéncia da
Computacao

Aprovado em: 23/08/2017

Orientador: Prof. Dr. Augusto Cezar Alves Sampaio

BANCA EXAMINADORA

Prof. Dr. Marcio Lopes Cornélio
Centro de Informética / UFPE

Prof. Dr. Juliano Manabu lyoda
Centro de Informética / UFPE

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informética / UFPE

Prof. Dr. Rohit Gheyi
Departamento de Sistemas e Computacao / UFCG

Profa. Dra Ana Cristina Vieira de Melo
Instituto de Matematica e Estatistica / USP



ACKNOWLEDGEMENTS

Primeiramente, gostaria de agradecer a Deus pela vida, pela saide, pela familia e filho
maravilhosos que me deu, e por ter estado sempre ao meu lado, guiando os meus caminhos e
decises. A minha mie, Fernanda Maria, um agradecimento muitissimo especial, por ter sido
a pessoa que mais me incentivou e esteve ao meu lado, tendo uma contribui¢ao fundamental
para a conclusdo desta tese. Ao meu pai, Luiz da Penha, pelos exemplos de pessoa, profissional
e persisténcia dados ao longo de uma vida que, certamente, foram fundamentais para que eu
chegasse até aqui. Ao meu marido, Bruno Gomes, por todo o carinho e apoio. Aos meus irmaos,
Taise e Luiz Fernando, por toda a ajuda, apoio e companheirismo de sempre.

Aos meus orientadores Augusto e Alexandre, por todas as reunides, sempre regadas
de incentivo, boas risadas e bom—humor. Muito obrigada por todos os ensinamentos, apoio,
paciéncia e atencdo durante todo este periodo. Vocé€s me fizeram conhecer na pratica o verdadeiro
significado da palavra orientador, tendo o feito com extrema maestria. Espero sempre ter a sorte
de poder trabalhar com profissionais como voces.

A Giovanny Palma, pelas discussdes construtivas, pela contribui¢ao fundamental, pelo
tempo disponibilizado inclusive aos finais de semana. Muito obrigada, Giovanny, vocé realmente
foi mais uma pessoa iluminada que cruzou o meu caminho. Aos demais amigos do formula,
especialmente Sidney Nogueira, Gustavo Carvalho e Mércio Cornélio pelas valiosas discussdes
sobre este trabalho.

Aos colegas da Universidade Federal de Campina Grande, UFCG, em especial Rohit,
Gustavo e Melina, por terem me recebido e acolhido tdo bem em reunides presenciais e pelos
debates ricos em torno de Java, refactorings e principalmente, Alloy.

Aos amigos Cristina Luzia, Raphael D’Castro, Juliana Neiva, Lucas Freire, Amanda

Pimentel, Suely Batista, por todo o incentivo e ajuda para a conclusdo deste trabalho.



ABSTRACT

Program transformation is current practice in software development, especially refac-
toring. However, in general, there is no precise specification of these transformations and,
when it exists, it is neither proved sound nor validated systematically, which can cause static
semantic or behavioural errors in the resulting programs, after each transformation application.
This work proposes a strategy to validate program transformation specifications grounded by a
formal infrastructure built predominantly in Alloy. In this work we focus on transformations in
languages that support OO features such as Java, ROOL, the calculus of refinement of component
and object-oriented systems known as rCOS and an OO language with reference semantic. The
scope of this work, concerning the strategy implementation, is a subset of Java. Complementarily
to testing, formal languages provide a mathematically solid reasoning mechanism to establish the
soundness of transformations. Unfortunately, a complete formal treatment for transformations
in OO languages is ruled out because even for Java there is no complete formal semantics. We
investigate the trustworthiness of program transformations by using an approach that combines
(bounded) model finding and testing. Our Alloy formal infrastructure comprises four main Alloy
models: (1) a metamodel for a subset of OO language features and a set of predicates that capture
the static semantics, where the main predicate is able to determine if a program is well-formed;
(2) a Transformation-Specific model for each program transformation being investigated; (3)
a Static Semantics Validator model; and (4) a Dynamic Validator Model, which generates all
possible instances (according to the scope specified), each one having a representation of a
program before and after the transformation application. If any instances are generated in (3),
this means that there is a failure in the transformation specification. So, in this case it is necessary
to correct the specification and re—submit it to the Alloy Analyzer. This process is repeated until
no more instances are found by the Static Semantics Validator Model. Hence, the instances
generated by the Dynamic Validator model only represent well-formed programs since it is only
applied after the Static Semantics Validator model. Afterwards, the instances generated by (4)
are further submitted to a tool, called Alloy-To-Java Translator, which generates Java programs
corresponding to these instances along with tests to be applied in each side of the transformation.
These programs are finally validated with regard to dynamic semantic problems, based on these
automatic tests generated in (4). In this way, a developer can implement the transformations
with some confidence on their behavioural preservation, after validating the transformation
specifications using the proposed framework. The strategy we propose seems promising since it
is an alternative to validate transformations even when a complete semantics of the languages is
not available. The results of the validation of a representative set of transformations found in the
literature show that some transformation issues, concerning both static and dynamic behaviour,

can be detected.

Keywords: Program Transformation Specification. OO. Alloy. Alloy Analyzer. Validation.



RESUMO

Transformagdo de programas é uma prética atual em desenvolvimento de software,
especialmente refactoring. No entanto, em geral, ndo hd uma especificacdo precisa dessas trans-
formagdes e, quando existe, ndo € provada correta nem sistematicamente validada, o que pode
causar erros de semantica estitica ou comportamentais nos programas resultantes da transfor-
macao. Este trabalho propde uma estratégia, baseada em uma infraestrutura predominantemente
formal construida em Alloy, para validar especificacOes de transformacgdo de programas. Neste
trabalho, focamos em transformac¢des em linguagens que suportam caracteristicas orientadas
a objetos (O0) tais como Java, ROOL, o célculo de refinamento de componentes e sistemas
orientados a objetos, conhecido como rCOS e uma linguagem OO com semantica de referéncia.
O escopo deste trabalho, com relacdo a implementacdo da estratégia, ¢ um subconjunto de Java.
Complementarmente a testes, linguagens formais fornecem um mecanismo matematicamente
sOlido para estabelecer a consisténcia (soundness) das transformacdoes. Infelizmente, um trata-
mento formal completo para transformacdes em linguagens OO € descartado porque, mesmo para
Java, n@o hd uma semantica formal completa. Nés investigamos a corretude de transformagdes
de programas usando uma abordagem que combina (bounded) model finding e testes. Nossa
infraestrutura formal € composta de quatro modelos Alloy principais: (1) um metamodelo para
um subconjunto de caracteristicas de linguagens OO e um conjunto de predicados que capturam
a semantica estatica correspondente, onde o predicado principal € capaz de determinar se um
programa € bem—formado; (2) um modelo especifico para cada transformacgao (que esta sendo
investigada); (3) um Validador de Seméntica Estética e (4) um Validador Dinamico, que gera in-
stancias possiveis da transformacao (de acordo com o escopo especificado), cada uma tendo uma
representacdo de um programa antes e depois da transformacgao. Se alguma instancia for gerada
em (3), isto significa que ha uma falha (de semantica estética) na especificagdo da transformacao.
Neste caso, € necessario corrigir a especificagdo e re—submeté—la para o Alloy Analyzer. Este
procedimento é repetido até nenhuma instincia ser encontrada pelo modelo do Validador de
Semantica Estatica. Logo, as instancias geradas pelo modelo do Validador Dinamico (4) tipica-
mente somente representam programas bem formados ja que este € aplicado na nossa estratégia
apenas depois que o modelo em (3) ndo retornar instancia alguma. Em seguida, as instancias
geradas em (4) sdo submetidas a uma ferramenta, Alloy—To—Java Translator, que transforma as
instancias geradas em programas Java, e também gera os testes que serdo aplicados em cada lado
da transformacao. Estes programas sao finalmente validados com relacio a problemas dindmicos
com base nestes testes gerados em (4) de forma automatica. Dessa forma, um desenvolvedor
pode implementar as transformacdes com alguma seguranca depois de validar a especificagdo
das transformagdes usando o framework proposto. A estratégia que propomos parece promissora
jé que € uma alternativa para validar especificacdes de transformacdes em geral mesmo quando
uma semantica completa da linguagem nao estd disponivel. Resultados da valida¢do de um

conjunto representativo de especificacdes de transformacdes, encontrados na literatura, mostram



que tanto problemas de semantica estdtica quanto dindmica podem ser detectados.

Palavras-chave: Especificacdes de Transformagdes de Programas. OO. Alloy. Alloy Analyzer.
Validacao.
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INTRODUCTION

Program transformation is current practice in software development, especially refactor-
ing. In literature, refactorings is known as a program transformation that preserves behaviour.
It is used for many purposes, such as to improve program readability, reduce coupling, and
introduce concurrency in sequential programs. The objective of refactorings is the perfective
evolution of the models to improve quality aspects without changing the observable behaviour of
the system (DIAZ V., 2014). Yet, according to (DIAZ V., 2014), beyond the perfective model evolu-
tion, there are also the corrective (concerned with correcting errors in the design) and adaptive
one (concerned with modifying a design model to accommodate changes in requirements and
design constraints).

Usually, refactorings are available in IDEs, like Eclipse or NetBeans. Unfortunately, as
commonly occurs in software engineer, people worry about in providing an implementation with-
out a correspondent specification. Furthermore, specifying a transformation is a very challenging
task. This kind of specification must consider a program as input to the transformation be applied
and this program can assume different patterns and contain different source language elements.
The specification should also take into consideration both static and dynamic semantics of the
source language for which the transformation is specified and the necessary conditions that a
starting—hand side program should fit to the transformation be applied. The tasking of specifying
transformation is even more challenging if we consider that in most cases there is no formal
specification of both static and dynamic semantics of the source language in question. Thus, in
general, a more abstract specification of the transformation! itself is not available, and when
it exists, it is neither proved sound nor even systematically validated. In some cases, only one
or two examples are given to explain the transformation and there is no precise description of
the transformation specification, which makes difficult to validate it. As a consequence, the
implementation correspondent to this specification usually presents faults.

Most works focus on providing transformation (more commonly, refactorings) implemen-
tations, and are usually available as plug—ins to an IDE tool. In these works, the transformations

are typically validated using test suites, provided by the tool itself or by some IDE. Due to the

'In this work, we will refer as transformation every change to a program, regardless if it is through a refactoring,
an algebraic law, refactoring or rCOS rules, and so forth. Each one of these concepts will be further detailed in this
thesis.
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absence of transformation precise specifications, some works such as (OVERBEY; JOHNSON, 2011;
OVERBEY M. J. FOTZLER; JOHNSON, 2011; SCHAFER, 2010) take the initiative to also specify
these refactorings in a way to ease implementation. They provide a high-level specification of
common refactorings, but in terms of pseudocode, in order to facilitate implementations. The
authors also compare their refactoring engine with the Eclipse one, using the Eclipse internal
test suite. They also give a formal correctness proof for one of their defined and implemented
refactoring, as a case study.

On the other hand, the works in (SOARES, 2015; SABINO, 2016) focus mainly on evalua-
tion of the implementations provided by (OVERBEY; JOHNSON, 2011; OVERBEY M. J. FOTZLER;
JOHNSON, 2011; SCHAFER, 2010); but the initiatives in (SOARES, 2015; SABINO, 2016) do not ad-
dress specification or implementation of refactorings. They present a technique to test refactoring
engines based on test input generators using the Alloy Analyzer; in their cases, Alloy instances
characterize Java programs that are used as inputs to be submitted to the refactoring engines
implementations. The authors use Alloy for the generation of random instances (supported by a
metamodel for a subset of Java), and translate them to Java. In (SOARES, 2015), after verifying
that a generated instance is compilable, they apply a refactoring (available in some refactoring
engine) on such an instance and a new program is obtained. These programs (before and after a
refactoring) are subjected to a test campaign, where behavioural changes, as well as compilation
errors caused by the application of the refactoring, are evaluated.

However, a validation of transformation specifications, regardless of their implementa-
tions in a source language, is not addressed. As discussed along this thesis, our strategy focused
on transformation specification validations, considering that a transformation specification is
given as input. Using Alloy and the Alloy Analyzer, we simulate all possible inputs (according
to a given scope of elements) matching a specification template which enables a transformation
to be applied. At the same time, all the respective instances of programs are also generated con-
comitantly by our Alloy infrastructure and it is checked if the transformation does not cause static
semantics or behaviour (in case of transformations following a perfective or corrective model
evolution) problems in them. So our main goal is transformation validation, rather than providing
an transformation implementation that can be plugged into an IDE and used by developers.

Validating transformation specification is a challenge. Complementarily to testing, formal
languages provide a mathematically solid reasoning mechanism to establish the soundness of
transformations. There are some efforts in this direction. In (BORBA et al., 2004), a set of algebraic
laws is proposed for a subset of Java with copy semantics (ROOL). Soundness is proved based on
a formal semantics. The algebraic approach has been adopted to provide insight into the algebraic
semantics of several programming languages, proved to be useful as a basis for the definition
of trustworthy transformations (DUARTE; MOTA; SAMPAIO, 2011; DUARTE, 2008). In (QUAN;
ZONGYAN; LIU, 2008), it is investigated how design patterns and refactoring rules are used in a
formal method by formulating and showing them as refinement laws in the calculus of refinement

of component and object—oriented systems, known as rCOS. In addition, Fowler’s refactoring
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rules, described via examples in (FOWLER., 2002), are formulated as rCOS refinement rules for
their correctness to be provable, as claimed by the authors. In (SILVA; SAMPAIO; LIU, 2008) a
set of behaviour—preserving transformation laws for a sequential object-oriented language is
proposed with reference semantics, in the context of the rCOS calculus. The work in (PALMA,
2015) enhances the one in (SILVA; SAMPAIO; LIU, 2008) and proposes a more comprehensive
(and relatively complete) set of algebraic laws and a data refinement rule for reasoning about
object oriented programs with a reference semantics. The work described in (DUARTE; MOTA;
SAMPAIO, 2011; DUARTE, 2008) proposes laws in the Java context but neglects soundness proofs;
the central barrier is the lack of a complete formal semantics for Java.

The specifications we validated follow an algebraic presentation style. Some refers
to algebraic laws, others to refactoring rules and some others to refinement laws. Although
algebraic or refinement laws can not only represent or characterize perfective evolution models,
the specific ones validated in this work do. They were validated in various contexts: the one
where specifications were only (1) postulated, regardless any kind of validation; the other one
where they were (2) proved; and, finally, the one they were derived from provably correct
ones—we validated 4 specifications in (1) context, 1 in (2) context and 2 in (3) context. In all of
them, different kind of errors were found, mainly, the static semantics and behavioural ones. The
former was found in 4 of the 7 specifications analysed whilst the latter, in 5 of the 7 specifications

analysed.

1.1 Our approach

In this work, we propose a strategy to validate specifications of program transformations.
Figure 1 shows an overview of our strategy. Firstly, we capture all the transformation elements,
defined in the transformation specification, into a Transformation—Specific Alloy Model, which
is built from a generic OO Alloy model that represents a subset of the Java Language. The
specification elements include classes, methods and/or fields involved in the transformation,
along with the provisos or premises as well as substitution (if they exist or are necessary). We
use several kinds of specifications which are detailed in Chapter 2.

Secondly, another Alloy Model called the Static Semantics Validator is executed by the
Alloy Analyzer. This Validator is used to check if the transformation (described in the previous
Alloy model), applied to a well-formed starting program (or simply SS, for short), causes static
semantics problems in the resulting program (or simply RS, for short). Basically, static semantics
problems mean compilation errors. If it is possible to find ill-formedness in the resulting
program, the Static Semantics Validator presents Alloy instances corresponding to each situation.
This validator can be used in transformations that fit in all kind of evolution models (perfective,
corrective or adaptive). We rely on the bounded exhaustive analysis (according to a given scope)
(JACKSON, 2006) (see Chapter 2) provided by the Alloy Analyzer to capture all possible variations

of SS well-formed programs, together with the application of the transformation for each one.
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Figure 1 Overview of our strategy.

This transformation is done through a main predicate defined in the Transformation—Specific
Alloy Model in (1). Thus, if the Static Semantics Validator Model generates any Alloy instance, it
comprises the following pair of programs: a starting well-formed program and its corresponding
non well-formed resulting program. The specifier can adjust the transformation specification or
the Alloy Models in (1) until no more pairs of programs with a non well-formed RS are found
by the Static Semantics Validator.

Thirdly, a Dynamic Validation phase starts. In this phase, the Alloy Analyzer only
generates, through the Dynamic Validator Model, well-formed pairs of programs (or else,
programs that do not present static semantics problems) as long as the transformation—specific
model is carefully adjusted in the previous step. Both Static Semantics and Dynamic validation
steps are detailed in Chapter 4.

Finally, all the instances (representing pairs of programs, before and after the application
of the transformation being analysed) generated by the Dynamic Validator, are translated into
Java and a test campaign, generated in Java in step (4), is performed to detect possible dynamic
problems. This step can be discarded when transformations considered in the context of adaptive
evolution models since as new features are added, it is difficult guaranteeing the same system
behaviour.

The method we propose to validate transformations can be used in a complementary
way to test tools and oracles. Our focus is on improving transformation specifications in the
sense that they can be validated in a constructive way. Some experiments we have conducted
have produced evidence that transformation failures can be detected during the specification
analysis, without the need to implement them in a source language or submitting them to a more
elaborated test campaign. Instead we use the Alloy Analyzer, with adequate models, and simple

validation tests.
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Despite our OO model built is based on the Java Language Specification (ORACLE,
2016), as detailed in Chapter 3, our OO Model is only a subset of Java which groups common
OO constructs of various other OO languages. Because of this, it was possible to validate
transformations not only specified for Java programs but for other languages as well. The
program specifications we validated were written for languages such as Java (presented in
(DUARTE; MOTA; SAMPAIO, 2011; DUARTE, 2008)), rCOS (shown in (QUAN; ZONGYAN; LIU,
2008)), ROOL (in (CORNELIO, 2004)), and an object—oriented language with reference semantics
(presented in (PALMA, 2015)). All of them have in common OO features that are compatible with
the ones supported by our OO metamodel. Thus, our strategy can detect errors in specifications
related to OO features that are language independent. All of these specifications are mainly
represented by either refactoring, or refinement rules or algebraic laws, detailed in Chapter 2,
which are the input to our strategy.

We adopt a test—based approach with random method invocation, and with structural
comparison of the results in SS and RS programs. Some experiments have uncovered several
behavioural problems in the analysed transformation, as detailed in Chapter 4. As future work
we consider an alternative approach that assumes a formal (behavioural) semantics for an OO
language like Java in Alloy, and the semantic validation performed by the Alloy Analyser, but

such a semantic model is not yet available.

1.2 Main Contributions

In summary, the main contributions of this work are as follows:

= A transformation validation engine, composed by:

= an OO metamodel: a metamodel in Alloy that supports some of the main
of OO features. This metamodel together with a transformation—specific
model is able to validate transformations in many OO languages that have
in common OO features such as transformations defined in Java ((DUARTE,
2008)), rCOS (QUAN; ZONGYAN; LIU, 2008), ROOL (CORNELIO, 2004),
and some OO languages with reference semantics (PALMA, 2015). The
predicates defined in our OO metamodel detect if a specific program is
well-formed with regard to the absence of static semantics problems,
considering the subset defined in this model;

= a model in Alloy representing each transformation. This model gives
support to the Validator Models (item below) and allows the generation
of both sides of a transformation (in the Alloy abstract syntax notation
or Alloy instances format) and can be seen as a precise transformation
specification;

= two main Alloy Validator Models: the Static Semantics and the Dynamic

one;
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» the Alloy-To-Java Translator, which translates the Alloy abstract syntax
notation to the Java one. Hence, it generates the Java programs correspond-
ing to the object instances generated by our Alloy formal transformation
engine. The Alloy-To-Java Translator also generates test classes;

= a Java Validator tool, that receives the Java programs translated by the
Alloy-To-Java Translator (after the Static Semantics or Dynamic Validator
is executed), and compile them, giving the corresponding compiler error,
if it exists (in the case of programs from instances generated by our Static
Semantics Validator). If it is not the case, in the case of programs from
instances generated by our Dynamic Validator, it executes test classes
(generated earlier by the Alloy—To—-Java translator) to check for dynamic
problems that cannot be identified by the Alloy Analyzer but are identified

in our strategy by testing.

1.3 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 provides some background. Specifically, an overview of the algebraic style for
presenting the transformation laws is given (see Section 2.1.2) as well as some other formalisms
used to specify transformations such as rCOS and refactoring rules; in addition, the Alloy
language and the Alloy Analyzer are introduced as well as how their use contributed to our
solution (see Section 2.2). Some challenges in dealing with this formal infrastructure are also
pointed out.

Chapter 3 describes the Alloy models: the OO metamodel and the various transforma-
tion—specific Alloy models (for each transformation specification). The corresponding elements
and predicates are detailed and, for the OO metamodel, a comparison with the elements of the
Java Language Specification is done.

Chapter 4 describes our Alloy Validators and how they can detect transformation spec-
ification errors which would cause compilation or behavioural problems. In addition, the
Alloy-To-Java Translator and the generation of test classes are detailed. Besides, validation
results are discussed in various transformation specifications. Our strategy is also compared to
existing ones in Chapter 5. Finally, Chapter 6 summarises the main contributions and presents

future work.
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BACKGROUND

In this chapter, some concepts on which our infrastructure is based on are introduced.
At first, it is a challenge to express correct transformations for complex languages, mainly the
ones without a formal language documented. There are some formalisms and notations used
to specify transformations. The algebraic—like styles of presentation help in this direction by
allowing transformations to be specified in a compositional way. The specifications following
this style can be used as a basis for proving the soundness of the transformations when a formal
semantics is available. Many works such as (BORBA et al., 2004; SILVA; SAMPAIO; LIU, 2008;
NAUMANN; SAMPAIO; SILVA, 2012; CORNELIO, 2004; QUAN; ZONGYAN; LIU, 2008; PALMA, 2015;
DUARTE, 2008) illustrate the applicability of transformation specifications in algebraic—style
notations. We detailed some of them in Section 2.1.

Secondly, as these kind of transformation specification establishes the equivalence
between programs before and after the transformation according to the conditions stated for the
transformation, we also establish the notion of equivalence in Section 2.1.1 used in our strategy
with regard to the fourth step (see Figure 1). Actually, this equivalence can only be applied to
a transformation that is not a refinement since a refinement does not guarantee the behaviour
preservation. As a consequence, the fourth step of our strategy can not be applied to a refinement
as well.

In addition, the Alloy formal language as well as the Alloy Analyzer are detailed in
Section 2.2 since they are used to build our formal Alloy infrastructure which implements and
validates program transformations. Finally, an overview of the use of metamodels and Model-
Driven Architecture, as well as metamodels used to represent the Java language, is also given in
Section 2.3.

2.1 Algebraic Notations

Some works propose constructions in the algebraic style. In (BORBA et al., 2004), a set of
sound and (relatively) complete laws, along with a strategy, is proposed for reducing programs to
an imperative normal form. Besides, they clarify aspects of a (copy) semantics of object—oriented
constructs and the major application of their laws is to formally derive more elaborate behaviour

preserving program transformations, useful for optimizing or restructuring object—oriented
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applications. Also, they present how laws can be used as a basis for proving refactorings. Later,
the works (SILVA; SAMPAIO; LIU, 2008) and (NAUMANN; SAMPAIO; SILVA, 2012) presented laws
for object—oriented languages considering a reference semantics. In (SILVA; SAMPAIO; LIU, 2008)
the authors use the rCOS semantics to prove soundness of each proposed law, illustrating the
applicability through a case study for improving code structure; in (NAUMANN; SAMPAIO; SILVA,
2012) the focus is on data refining class hierarchies. A common feature of all these works is that
they are based on extremely simplified languages, when compared to languages like Java. The
advantage is that these languages have a formal semantics and allow one to prove the soundness
of the transformations.

Additionally, there is a very poor documentation regarding the most common refactoring
specifications. The absence of precise refactoring descriptions is also mentioned in (SCHAFER,
2010). Even the existing refactorings in modern available IDEs are only explained in terms of
one or two examples, without any guarantee of static semantics preservation of the programs, let
alone their behaviour.

Some works, nonetheless, take the initiative to specify refactorings. In (SCHAFER, 2010),
the authors define informal pseudocode notation for specifying refactorings that serve as the
basis of an implementation. They decompose complicated refactorings into microrefactorings to
make the description of the former ones more manageable. The implementation is then verified
by using both correctness proofs (SCHAFER, 2010; SCHAFER; EKMAN; MOOR, 2009) and their
own test suite and the one for Eclipse and IntelliJ, which are publicly available. In (BECKER et al.,
2011), a refactoring specification consists of a set of rules, formalized by graphs. They use an
invariant checker to check that the refactoring rules do not produce any forbidden patterns.

In (OVERBEY; JOHNSON, 2011), the traditional precondition-based approach is followed.
A library containing preconditions and ways to check them, for the most common refactorings,
is available in different languages. In all cases, the way in which the refactoring is specified
remains very close to how it is implemented, which makes it difficult to understand and is
language dependent. On the other hand, an algebraic approach (represented by algebraic laws as
well as refactoring or refinement rules) helps in this direction by allowing transformations to be
specified in a compositional way. They provide precise, easy to understand and implementation
independent refactorings.

The work in (CORNELIO, 2004) takes the initiative to formalise refactorings for a language
named ROOL (an acronym for Refinement Object—oriented Language) using an algebraic
approach based on what they call refactoring rules. The main objective of this work is to
formalise and prove refactorings. A set of rules is given to formalize adaptations of an important
set of refactorings catalogued in (FOWLER., 2002) and a few others formulated by (OPDYKE,
1992). However, ROOL takes a copy semantics defined by weakest preconditions. Without
references, some important and interesting laws of OO programs do not hold for ROOL.

In (QUAN; ZONGYAN; LIU, 2008), it is investigated how design patterns and refactoring

rules are used in a formal method by formulating and showing them as refinement rules in
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the refinement calculus of component and object—oriented systems, known as rCOS. The
advantage of using rCOS is that it takes a reference semantic model with rich OO features,
including subtypes, visibility, inheritance, dynamic binding and polymorphism. In particular,
some Fowler’s refactoring rules are formulated as rCOS so their correctness can be provable.
However, they were not and there is no relative completeness for the laws. They show the
formulation for one rule from each of six Fowler’s categories as a representative, while the
others are left in their report (LONG Q., 2005). In (SILVA; SAMPAIO; LIU, 2008) a set of behaviour-
preserving transformation laws for a sequential object-oriented language is proposed with
reference semantics (rCOS). The work in (PALMA, 2015) enhances the one in (SILVA; SAMPAIO;
LIU, 2008), and proposes a comprehensive set of algebraic laws (in the sense they can reduce a
Java like program to an imperative normal form) for reasoning about object oriented programs
with a reference semantics.

Inspired by the laws of ROOL (BORBA et al., 2004), the work described in (DUARTE, 2008)
presented laws for a significant subset of Java (ORACLE, 2016), considering Java’s concrete syntax
and the provisos for laws. New laws were introduced: laws involving constructors, static methods,
and abstract classes (which were not considered before), as well as some parallelization algebraic
laws to introduce concurrency in an original sequential program. Aiming at covering a broader
range of applications, a strategy to cope with open systems was presented and incorporated
to the laws. The authors of (DUARTE, 2008) also presented a reduction strategy to transform
Java programs into a normal form, expressed in a small subset of Java. This allowed them to
establish relative completeness of the set of laws. Their main goal is showing that there is a
better performance when their parallelization strategy is applied to a program. And they show
this using some case studies. In addition, a comparison between the (outcome provided by
them) transformed program and the original program was done to see that the application of
their strategy did not cause behavioural problems in the programs. Unfortunately, they do not
provide any additional form of validation for the laws. Using our strategy, we detect some
problems in their laws (the ones that reduce a program into a normal form), as will be discussed
in Section 4.4.3.1, although these laws have been derived from already proved ones in (BORBA et
al., 2004).

2.1.1 Equivalence Notion

The term equivalence notion refers whether two programs have the same behavior
(SABINO, 2016). In (BORBA et al., 2004), that is, the programs (before and after the transformation)
are compared with regard to the main function, similarly as done by (OPDYKE, 1992). In our
strategy, our main method only invokes non—void methods, so the results of these methods are
compared through a sysout command. In other words, we hope that the transformed program
have the same output set of the original program for a given set of inputs. This is similar to the
seventh property of the set of properties defined by Opdyke (OPDYKE, 1992) for refactorings

that ensure the correctness of the transformations. The first six properties are related to well—
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formedness of the programs, whereas the last property is related to semantics preservation of
the program. Opdyke (OPDYKE, 1992) defines semantic equivalence between programs as: “let
the external interface of the program be the main function. If the main function is called twice
(once before and once after a refactoring) with the same set of inputs, the resulting set of output
values must be the same (p. 40)”. In this way, a refactoring may change the internal structure
of the program since the mapping between input and outputs of the main method be preserved.
Although for some application domain, guaranteeing that for a set of inputs the program has
the same outputs after the transformation is not enough to state the transformation preserved
behaviour (MENS; TOURWE, 2004), we used the same equivalence notion in (OPDYKE, 1992) in

our work.

2.1.2 Algebraic Laws

Algebraic laws have been used to provide a formal basis for transformations, including
refactorings. In the context of the refinement calculus for imperative programming, there are
well established laws that can assist and form a basis for formal program development (MORGAN,
1994; PALMA, 2015). Likewise are the laws for imperative programming (AL., 1987). In (BORBA;
SAMPAIO., 2000), a set of basic formal programming laws for object—oriented programming in
the ROOL context are presented. These laws deal with imperative commands of ROOL as well
as with medium—grain object—oriented constructs (PALMA, 2015). Borba et al.(BORBA ez al., 2004;
BORBA; SAMPAIO; CORNELIO, 2003) present a comprehensive set of laws for object—oriented
programming. They concentrate on object—oriented features, and they show that this set of
laws is sufficient to transform an arbitrary program into a normal form expressed in terms of a
small subset of the language operators. These laws not only clarify aspects of semantics, but
also serve as a basis for deriving more elaborate laws and for practical applications of program
transformations (PALMA, 2015). These laws are also used to prove rules that support compiler
construction in the algebraic style proposed by Sampaio (SAMPAIO, 1997; PALMA, 2015).

Typically, in the object—oriented paradigm, an algebraic law establishes the equivalence
between two programs according to a program context represented by the entire set of class
declarations (cds), a Main class (Main), and also considering that some provisos must be
respected. The algebraic approach has been adopted to provide insight into the algebraic
semantics of several programming languages, proved to be useful as a basis for the definition of
trustworthy transformations. It has been shown that algebraic laws can be successfully used in
the context of program transformations (CORNELIO, 2004; GHEYIL; MASSONI, 2005), as they can
be composed to prove more complex transformations.

In the case of a specification written in an algebraic style, program transformations are
described as conditional equations. Each equation (or algebraic law) is intended to express a
semantic equivalence between the starting— and the resulting—hand side programs (SS and RS,
respectively) which denote the sides before and after the transformation application, respectively.
In the presentation style used in (BORBA et al., 2004) and (DUARTE, 2008), conditions marked
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with () must hold when performing the transformation in both directions; conditions marked
with (—) must hold for the transformation from left to right, and those with (<) from right to
left. In addition, ads, cnds, and mds represent the attribute, constructor, and method declarations,
respectively; T represents an attribute type; and the symbol < represents the subtype relation
between classes.

As an example, the algebraic transformation described in Law 1 captures a refactoring
that moves an attribute to a superclass and also the inverse transformation (from right to left).
This inverse transformation is used as one of our running examples in this work (see Chapter 3),
where the attribute of class B is moved to class C. The proviso (+—) of this law states that the
attribute can be moved provided it does not already belong to the set of attributes of the class
C (1). Besides, there must be no access to this attribute by any subclass of B, excluding the
subclasses of C (2). The proviso (—) of this law is simpler: the attribute can be pulled up to class
B provided there must be no declaration of this field in its subclasses. The constraints established

by this algebraic law are reflected in the transformation—specific model (see Chapter 3).

Law 1. (move attribute to superclass (DUARTE, 2008))

class B extends A { class B extends A {
ads public 7 f; ads
cnds cnds
mds mds

} B }

class C extends B { TedsMain | lass C extends B {
public 7 f; ads' ads'
cnds’ cnds’
mds’' mds’'

} }

provided

(—) The attribute name f is not declared by the subclasses of B in cds;
(<) (1) The attribute name f is not declared in ads’; (2) D.f, for any D < B and D £ C, does

not appear in cds, Main, cnds, cnds’, mds, or mds’

Another example is Law 2, which captures moving an original method to its superclass
and the inverse transformation. This is similar to the push down method refactoring, mentioned
in many works such as (SCHAFER, 2010; SOARES, 2015). The proviso (<) states that the method
can be pulled up or pushed down provided there is no access to super or private attributes
in its body (1). In addition the method is not declared in any subclasses of B (2) and is not
private (3). The proviso (— ) requires that there is no other method with the same signature and
arguments in class B (right) (1) and the body of the method being pulled up do not contain any
uncast occurrences of the keyword this or expressions in the form ((C)this).a, for any protected
attribute a in the set of attributes of class C(2). Finally, proviso (<) requires there is no method
declaration in C (left) and (2) is similar to the condition (+— (2)) of Law 1.
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As already mentioned, transformations in this style are the main input for our validation
strategy. Our Alloy infrastructure was used to check if the provisos in the mentioned laws were
correct (thus not causing static semantics or behavioural problems). The corresponding Alloy
models for Laws 1 and 2 are shown in Sections 3.2.1 and 3.2.2, respectively, whilst the one
representing the Push Down/Pull Up Method, mentioned in works such as (SCHAFER, 2010;
SOARES, 2015), in Section 3.2.3. The conclusions about the provisos of these transformations

are described in Sections 4.4.3.1 and 4.4.3.2, respectively.

Law 2. (move original method to superclass (DUARTE, 2008))

class B extends A { class B extends A {
ads ads
cnds cnds
mds rt m(pds) {mbody}
} mds
class C extends B { =cds.Main |}
ads’ class C extends B {
cnds' ads’'
rt m(pds) {mbody} cnds'
mds' mds'
} }
provided

(<) (1) super and private attributes do not appear in mbody; (2) m(pds) is not declared in any
subclass of B in cds; (3) m(pds) is not private.

(=) (1) m(pds) is not declared in mds; (2) mbody does not contain uncast occurrences of this
nor expressions in the form ((C)this).a for any protected attribute a in ads'.

(<) (1) m(pds) is not declared in mds'; (2) D.m(e), for any D < B and D £ C, does not appear

in cds, Main, mds or mds’'

2.1.3 Refactoring Rules

Refactoring rules, illustrated in (CORNELIO, 2004), also follow an algebraic approach and
are very similar to the ones explained earlier in Section 2.1.2. Refactoring Rules are described
by means of two boxes written side by side, along with where and provided clauses, where the
former is used to write abbreviations and the latter lists the provisos for applying a refactoring
rule. The left-hand side of the rule presents the class or classes before the rule application;
the right-hand side presents the classes after the rule application: the transformed classes. In
addition, many of the refactoring rules are equalities and can be applied in both directions
(CORNELIO, 2004).
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Rule 2.1 (Pull Up/Push Down Method)—Rule 4.4 in (CORNELIO, 2004)

llel A D
) © ;Zs' extends llclass A extends D
@ 2| adsg;
3| mts, = ,
4| end 3| meth m= (pds,ec)
4 t
5|class B extends A MtSa
6 ads.: 5|end
b ~ , 6/class B extends A
7| meth m= (pdsy, ec) _
—cds,c 7] adsp;
8| mtsp
8| mtsp
9/end
10|class C extends A o|end
1 ads. 10|class C extends A
C» N 11 .
12| meth m= (pds,, ec) adse;
12| mts,
13| misc 13| end
14|end
provided

(«+) .1 super and private fields do not appear in ¢’.
(—) .1 mis not declared in mts,, and can only be declared in a class N, for any N < A, if it has
parameters pds,,;
.2 m is not declared in any superclass of A in cds.
(<) .1 mis not declared in mts;, or mts,;
.2 super.m does not appear in mtsy, or mts, nor in any class N such that N <A and N £ B
or N £ C; and
3 N.m, forany N <A and N £ Bor N £ C, does not appear in cds, ¢, mts, , mtsp or mts.

The work in (CORNELIO, 2004) follows from the formal derivation of refactoring rules
using programming laws (BORBA ez al., 2004) that deal with commands, classes and also laws
for data refinement as a basis for the proofs of the program transformations (described by
refactorings). Thus, based on refactoring rules and, eventually on data refinement, the author of
(CORNELIO, 2004) transform a system into a structured one according to a design pattern. The
correctness proof of these refactoring rules is based on the application of programming laws
whose soundness is proved against the language’s semantics.

Rule 2.1 formalizes the refactorings (Pull Up Method) and (Push Down Method) from
Fowler’s catalog (OPDYKE, 1992) and is similar to the Law 2, with the difference that in the
former case the same method in different subclasses is grouped together and moved to the
superclass whilst in the latter case the method in one subclass is only moved to the superclass
(and vice—versa). Thus, some provisos and conditions need to be different.

However, the authors of (PALMA, 2015) corrected some provisos of this rule since they
discovered that the formulations in (CORNELIO, 2004) and in (NAUMANN; SAMPAIO; SILVA, 2012)
do not ensure the soundness of the transformation (PALMA, 2015). We considered Rule 2.1 as
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Rule 3 (Move Method). Let N b an attribute of class M, ops'J {m(){c}} the method
set of M, where m is only used locally in M. And ops, the method set of N such that
m() is not in ops,. If c only refers to an attribute b.x of N and a method b.n() of b for
theoretical neatness’. Define
ops’
CJ’

ops[b.m()/m()] — {m()}
clz/b.x,n()/b.n()]

where F'[a/b] stands for the substitution of all occurrences of b. We have

cdecls; M[N b, ops U {m(){c}}]: N[ops,]
C cdecls; M[N b,ops']; Nops, U{m(){c'}}]

provided that m() is not called from outside of M on the left hand side of the rule.

! This means local variables declared outside c.
2 1t can be the case that ¢ refers to a number of attributes and a number of methods of N.

Figure 2 Rule 3 (Move Method) in (QUAN; ZONGYAN; LIU, 2008).

one of the inputs to our Alloy infrastructure and conclude the same as the work in (PALMA,
2015). The corresponding Alloy model is shown in Section 3.2.4 and the conclusions about
the provisos missing and added are described in Section 4.4.3.3, along with the corresponding
modified specification depicted in Rule 4.1 (the same shown in (PALMA, 2015)). Besides, the
additional predicates, corresponding to the new provisos, are also described in Section 4.4.3.3.
We also translated another refactoring rule in (CORNELIO, 2004) —the rule 5.8, Encapsu-

late Field— and discovered that some adjustments in the provisos need to be done.

2.1.4 rCOS

As already mentioned, refactoring rules are formulated as rCOS refinement laws of OO
specifications and programs in (QUAN; ZONGYAN; LIU, 2008). A rule for each of the six Fowler’s
refactoring rule categories is defined as an rCOS refinement law, while the others are presented
in an extended report (LONG Q., 2005). »COS supports typical OO constructs as well as some
special statements for specification and refinement. In this section, we present some examples of
these refinement laws; the ones that we evaluate using our Alloy infrastructure.

A refactoring rule is formalized as a refinement law (QUAN; ZONGYAN; LIU, 2008) of
the form cdeclsy ® Py C cdecls; e P, where the left—hand side is the original program and the
right-hand side is the refactored one. Observe that the notation is similar to the other formalisms
already mentioned, with the difference that in the case of a refinement law only one direction
(from left to right) of the transformation is allowed (since it is a refinement). We can see that
the notation of the rules is easy to understand as depicted in Figure 2. These rules can also be
presented with UML diagrams (see Figure 3).

The rCOS refinement law, depicted in Figure 2, states that if a method of a class M only
refers to attributes of another class N, one can move the method to class N. This rule is also

depicted as a UML diagram (see Figure 3). The other rule we have analysed is Rule 6, Pull
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m () {my0):]} m ()| b.my():}
ms() |:
¢ p— Y
N N
m,()

Figure 3 Representation of Rule 3 (Move Method) in UML (QUAN; ZONGYAN; LIU, 2008).

Rule 6 (Pull Up Method). Assume M is the super class of Ny and No, method m() are
declared with the same definition in both N1 and N2, and all attributes used in m() are
in M. Let ops be the operations declared in M which does not include m(). Then

cdecls; M[ops]; Ny [M, {m()} Uops,]; No[M, {m()} U ops,]
C cdecls; M[ops U {m()}]; N1[M, ops,]; Na[M, opss)

Figure 4 Rule 6 (Pull Up Method) in (QUAN; ZONGYAN; LIU, 2008).

Up Method, depicted in Figure 4, which is very similar to refactoring Rule 2.1 presented in
Section 2.1.3. However, Rule 6 is less rigorously specified since its only restriction is that all
attributes used in m() are declared in M—its satisfaction allows to pull the method m() up to the
class M. The rest of the rule is composed by the substitutions and definition of the set of methods

in each class involved in the refinement.

2.2 The Alloy language and the Alloy Analyzer

The Alloy modeling language is a concise formal language, based on first—order logic.
Some of its features are unique to Alloy, notably signatures and the notion of scope. Other
constructs—modules, polymorphism, parameterized functions, and so on—are standard features
of most programming and modeling languages, and have been designed to be as conventional as
possible (JACKSON, 2006).

What is perhaps new to Alloy is the separation of the scope specification from the model
itself, and the ability to adjust the scope in a fine—grained manner. This separation prevents the
model from being polluted with analysis concerns, and makes it easy to run different analyses
with different scopes without adjusting the model itself. The fine—grained control goes beyond

static configuration parameters (such as the number of processes in a network) to bounds on

M M

A A
1 = [

N

mi) mi)

Figure 5 Representation of Rule 6 (Pull Up Method) in UML (QUAN; ZONGYAN; LIU, 2008).
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dynamically allocated data (such as the number of messages in a queue, or the number of objects
in a heap) (JACKSON, 2006). In the next sections we give an overview of the Alloy language and
the Alloy Analyzer.

2.2.1 The Alloy language

The Alloy language supports three different logic styles, which can be mixed and varied at
will. In the predicate calculus style (usually too verbose), there are only two kinds of expressions:
relation names, which are used as predicates, and tuples formed from quantified variables.
In the navigation expression style, expressions denote sets, which are formed by navigating
from quantified variables along relations. In the relational calculus style (usually too cryptic),
expressions denote relations and there are no quantifiers at all (JACKSON, 2006).

An Alloy specification can be represented by signatures, fields, constraints (facts, predi-
cates or assertions) and functions. Each element declared as a signature represents a type and
can also be associated to other elements by fields (or relations) along with their types. For
instance, Figure 6 shows a type Class (and other types it relates with) that owns the following
fields: extend, methods and fields whose types, in turn, are, respectively: Classld, Method, Field.
The relation extend associates the class declared in the signature with at most one element of
type Classld—this is ensured by the keyword lone. The relations methods and fields represent
the set of elements of types Method and Field, respectively. The keyword one can be seen in
type ClassType in the declaration of the relation classldentifier—in this case it means that a
type ClassType can only be associated with exactly one Classld. This keyword is also used
in some other signatures such as Field, VarDec and Method. Observe that Classld, Methodld
and Fieldld are all subsignatures or extensions of type Id. Subsignatures in Alloy are subsets
mutually disjoint of parent signatures. Also observe that some signatures are declared as abstract.
An abstract element means that it has no elements of its own that do not belong to its extensions.
Because of this, these elements are not created as concrete instances in the Alloy Models, only
their extensions.

The language of relations has constants and operators. Our models used almost all of
Alloy operators defined in (JACKSON, 2006). Basically, operators fall into two categories. For the
set operators, the tuple structure is irrelevant—they are considered as atoms. For the relational
operators, the tuple structure is essential: these operators make relations powerful ((JACKSON,
2006), see section 3.4). The set operators (i.e. union, intersection, difference, subset, equality)
were all used in our models, whereas the relational operators used were: arrow (product), dot
(join), box (join), transpose, transitive closure, reflexive—transitive closure, and override (see
section 3.4.3 in (JACKSON, 2006)). The most common is dot (join). The dot join (or just join) p.q
of relations p and ¢ is the relation you get by taking every combination of a tuple in p and a tuple
in g, and including their join, if it exists. These relations can have any arity except they cannot
be both unary (since that would result in a relation with zero arity) (JACKSON, 2006). When

x is a scalar, and r is a binary relation, x.r is the set of atoms that x maps to. This is the most
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Figure 6 A UML class metamodel and its representation in Alloy

common use of the join operator in our models as can be seen in Chapter 3. The box operator [/
is semantically identical to join, but takes its arguments in a different order. For instance, the
expression el[e2] is the same as e2.el. The use of this operator is observed in many predicates
in Chapter 3.

The arrow product was used in Code 3.5 to define the relation classDeclarations in
type Program. According to (JACKSON, 2006), the arrow product (or just product) p > q of two
relations p and q is the relation you get by taking every combination of a tuple from p and a
tuple from q and concatenating them. When p and q are sets, p > q is a binary relation. If one
of p or q has arity of two or more, then p > q will be a multirelation. In case of the relation
classDeclarations in type Program, the relation g corresponds to type Class and is restricted
with the keyword one. Thus, this means that the relation classDeclarations in type Program
simulates a mapping data structure because it only allows a combination of an element of the
type Classld with exactly one element of the type Class.

Another important relational operator used in our models is the transitive closure operator:
“. The transitive closure “r of a binary relation r, or just the closure for short, is the smallest relation
that contains r and is transitive. You can compute the closure by taking the relation, adding the
join of the relation with itself, then adding the join of the relation with that, and so on (section
3.4.3.5 in (JACKSON, 2006)). For instance, the predicate noCyclelnExtends uses this operator, as

can be seen in Code 3.8, in the expression c. ((p.classDeclarations).extend). If the expression
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was only c.((p.classDeclarations).extend), it would refer to the class identifier in the relation
extend of the class referred by the expression c.((p.classDeclarations))—the variable c is the
class identifier in the predicate parameter. Remember p.classDeclarations refers to the mapping
data structure between class identifiers and classes. Thus, according to the relation that the
transitive closure is applied to (that is, ((p.classDeclarations).extend), then the join of this relation
with itself, and so forth, considering the first expression is c.((p.classDeclarations).extend)),
represents all the class identifiers in the hierarchy of the class identifier ¢, passed as parameter.

The reflexive transitive closure operator is obtained by adding the identity relation to
the just mentioned closure operator. It was also extensively used in our work. One example is
in the predicate fieldMatchesAndlsNotPrivate, presented in Code 3.18. Observe that in there
the operator was applied to the expression (extend.(p.classDeclarations)). If the expression was
only c.(extend.(p.classDeclarations)) it would refer to the class whose identifier is in the relation
extend of the class c, passed as parameter. As the reflexive—transitive closure is applied, the
identity relation is considered as an option, and because of this the expression can become only c.
Thus, it is verified if the field f is in the set of fields of this class c. Another possibility is if this
field is in the set of fields of the classes in the hierarchy of this class ¢ (in the case the closure
operator is applied since it is the another possibility for the reflexive transitive closure operator).

The constants in Alloy are represented by: none, univ and iden. None and univ represent
the set containing no atom and every atom, respectively, whilst the relation identity is binary and
contains a tuple relating every atom to itself (section 3.4.1 in (JACKSON, 2006)). In addition,
when the operator univ is applied to a binary relation, it represents the set of the elements in the
domain of this binary relation. For instance, the expression univ.(p.classDeclarations) represents
all the elemts of type Classld that comprises the domain of this mapping. On the other hand,
expression like (p.classDeclarations).univ represents the image of the relation, that is, the set of
elements of type Class representing the image of the binary relation p.classDeclarations. The
constant univ was intensively used in our models as can be observed in Code 3.5.

The override operator was also used in our Alloy models, as can be observed in Code 3.21,
line 28. In this case it is used to update the relation classDeclarations in the type Program,
replacing the class of the original program for the respective class of the resulting program,
keeping the same identifier for all the classes involved in the transformation. This will be detailed
in Section 3.2. In addition, the transpose operator was also used in our models. One example
is in Code 3.21, lines 36 and 37. Consider the expression c. {((ss.classDeclarations).extend).
If the expression was only c.((ss.classDeclarations).extend) (without the transpose), it would
refer to the class identifier in the relation extend of the class represented by the expression
c.(ss.classDeclarations). As the transpose operator is used, the expression refers to the sons of
the class c.

With regard to Alloy constraints, a fact records a constraint that is always assumed to
hold in the model. On the other hand, an assertion, marked by the keyword assert, introduces a

constraint that is intended to follow from the facts (and the predicates expanded) of the model.
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The command check tells the analyzer to find a counterexample to the assertion: that is, an
instance that makes it false (JACKSON, 2006). An example of an assertion and its use is given in
Section 4.1. A predicate defines a reusable constraint. Many examples of predicates are shown
in Chapter 3. Observe that the use of the navigational style is predominant. For instance, in
predicate wellFormedProgram, the quantified variable ¢ (of type Classld) navigates along with
the elements in the set represented by the expression (p.classDeclarations).univ. It is ensured
that if an element ¢ belongs to this set (the type of each element is Class), then it is well-formed.
From an analysis perspective, detailed further in Section 2.2.2, there is no fundamental difference
between assertions and predicates. Running a predicate involves searching for an instance of
its constraint; checking an assertion involves searching for an instance of the negation of its

constraint. So, checking an assertion C is equivalent to running a predicate not C.

2.2.2 The Alloy Analyzer

The Alloy Analyzer is a model finder able to generate what we call Alloy instances from
an Alloy model. These instances can be displayed in graphical form, or in textual form, or as
an expanding tree. It can also generate model diagrams from model text. The variables that are
assigned in an instance comprise: the sets associated with the signatures, the relations associated
with the fields, and, for a predicate, its arguments.

For doing this generation, a scope must be specified. A scope sets a bound on the size of
each of the top-level signatures, and, optionally, on subsignatures too (described in Section 2.2.1).
An instance is within a scope if each signature constrained by the scope has no more elements
than its associated bound permits. To perform an analysis, the analyzer considers all candidate
instances within the scope. Of course, the number of candidates is usually so large that an explicit
enumeration would be infeasible. The analysis therefore uses pruning techniques to rule out
whole sets of candidate cases at once (JACKSON, 2006). If it finds no instance, it is guaranteed
that none exists within that scope, although there might be instances in a larger scope.

Every analysis involves solving a constraint: either finding an instance (for a run com-
mand) or finding a counterexample (for a check). The Alloy Analyzer is therefore a constraint
solver for the Alloy logic. In its implementation, however, it is more of a compiler, because,
rather than solving the constraint directly, it translates the constraint into a boolean formula and
solves it using an off-the-shelf SAT solver (JACKSON, 2006). The Alloy Analyzer is bundled
with several SAT solvers and a preference setting lets one choose which is used.

The resulting boolean formula is passed to the SAT solver. If it finds no solution, the
Alloy Analyzer just reports that no instance or counterexample has been found. If it does find
a solution, the solution is mapped back into an instance. Each Alloy instance is composed by
the objects generated for each signature defined in the specification, according to the constraints
specified. The analyzer lets one customize how instances are displayed; one can select a set and
project all relations in the instance onto the columns associated with that set.

The translation from the Alloy logic to a boolean formula, performed by the Alloy
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Analyzer, applies a variety of optimizations, the most significant one (and interesting) is symmetry
breaking, that is: every Alloy model has a natural symmetry—one can take any instance of a
command and create another one by permuting the atoms. This means that when an analysis
constraint has a solution, it actually has a whole set of solutions corresponding to all the ways in
which the atoms of the solution can be permuted (JACKSON, 2006).

The Alloy approach is therefore less capable of establishing the absence of bugs, but
when there is a bug, it may be more rapidly found by Alloy SAT-based analysis than by model
checking, because of the depth-first nature of SAT solving. The machine description language of
most model checkers is very low-level, so describing a protocol such as this tends to be much
more challenging. Model checkers are generally capable of exhausting an entire state space. In
an Alloy trace analysis, only traces of bounded length are considered, and the bound is generally

small.

2.3 Metamodels for Java

The Model Driven Architecture (MDA) (KLEPPE; WARMER; BAST, 2003) is a framework
for software development defined by the Object Management Group (OMG). Key to MDA
is the importance of models in the software development process. Within MDA the software
development process is driven by the activity of modeling your software system. Traditionally,
the transformations from model to model, or from model to code, are done mainly by hand.
Many tools can generate some code from a model, but that usually goes no further than the
generation of some template code, where most of the work still has to be filled in by hand
(KLEPPE; WARMER; BAST, 2003).

The traditional four—layer Object Management Group modeling infrastructure, depicted
in Figure 7, consists of a hierarchy of model levels, each (except the top) being characterized
as an instance of the level above. The bottom level, MO, holds the userdata — the actual data
objects the software is designed to manipulate. The next level, M1, is said to hold a model of
the MO user data. User models reside at this level. Level M2 holds a model of the information
at M1. Because it is a model of a model, it is often referred to as a metamodel. Finally, level
M3 holds a model of the information at M2, and therefore is often called the meta—metamodel
(ATKINSON; KiiHNE, 2003). For historical reasons, it is also referred to as the Meta—Object
Facility (GROUP, 2016). In this work, the term metamodel is grounded on the prefix meta concept,
commonly used to denote that something is applied twice: in this case a model of models. More
specifically, we use the term Java metamodel to represent a model upon from another model,
that is: the EBNF description in the Java Language Specification (ORACLE, 2016). However,
we can find similarities among the MDA aproach and ours. For instance, the UML metamodel
produces instances as concrete models whereas our metamodel produces instances that are
models characterizing Java well-formed programs, if the wellFormed predicate (available in this

model) is used for these programs. Besides, we enhance the MDA approach regarding the code
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generation upon from an Alloy model specification, as further described.

M3 == _— Meta-Object Facility
instance_of

Mz ﬁj‘f/ UML concepts
instance_of

M1 /,,,// ﬁ — User concepts
instance_of

MO /,,//ﬁ User data

Figure 7 Traditional Object Management Group modeling infrastructure (ATKINSON; KiiHNE, 2003).

Generally, in Model-Driven Architecture methods, there is a creation of meaningful
models, which evolve systematically through model transformations (that can specify and
apply patterns, for instance, that reflect useful and reusable design abstractions), and thus these
models are refined and can generate code. In (FRANCE et al., 2003), a pattern—based approach
to refactoring is presented, where a process of transforming a model using a design pattern is
presented. Model transformation is defined as a process to modify a source model to produce a
target model. They call metamodel the transformation specifications that characterize families of
transformations. With the development of these metamodels, they consider achieving rigorous
pattern—based refactorings. In addition, they consider that metamodels act as points against which
they can check model transformations for conformance. They claim that popular descriptive
forms of design patterns, although effective at communicating design experiences to software
developers, are too informal to use as a basis for developing pattern—aware modeling tools, and
conclude that they need precise forms of patterns, called pattern specification, and to codify
them in tools. Besides, transformation rules must also be precisely specified if these tools are to
support them and, for solving this problem, they use a metamodeling approach to specify both
patterns and transformation rules.

Our approach defines Alloy Models that act as a source and as a target model in a
transformation process because it is able to generate the source and target representations of
programs, supported by a transformation specification and its corresponding rules in Alloy. In
this way, we are using a formal infrastructure as a basis for developing or applying program
transformations. In addition, through the use of the Alloy Analyzer (see Section 2.2.2) together
with our Alloy—To—Java Translator (explained in Chapter 4), we also generate Java code which

contains programs before and after the application of transformations. Thus, we rely on the
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bounded exhaustive analysis offered by the Alloy Analyzer to capture all the variations of a
transformation, according to a given scope (and hence its application in a program), specified in
an Alloy model. Not capturing all the variations of a pattern in one specification is described as
a problem in (FRANCE et al., 2003), where it is necessary moving, create or remove elements to
match the structure of what they call solution specification. This formal form is only mentioned
in the article but not described or shown in detail.

The work in (JUDSON; CARVER; FRANCE, 2003) represents a continuation of the one
in (FRANCE et al., 2003) and details the metamodeling approach, which defines families of
transformations in terms of classes of model elements that are created and deleted during
transformations. The classes of model elements are distinguished in the metamodel as subclasses
of UML metamodel classes. An example of the Bridge pattern is used. In addition, the
transformation approach is described in two levels: M1’ and M2’, where M2’ is an extension
of the UML metamodel level that supports the specification of transformation rules and M1’ is
an extension of the UML model level that supports representation of model transformations. A
model transformation at the M1’ level (model level) takes a source model and transforms it to a
target model. The M1’ model transformations are characterized by a transformation pattern at the
M2’ level that includes a source pattern that characterize source models and a target pattern that
characterizes target models. In this direction, we can make an analogy between this approach and
ours in the sense that the M1’ layer can be represented by our Alloy models, since they establish
a transformation pattern, a source and target pattern. On the other hand, the M2’ layer can be
represented by the Alloy Analyzer as it generates instances conforming to each of these patterns,
or else, representations of Java classes (in our case) characterizing the starting— and resulting
hand-side classes of a transformation. The main difference is that, in our case, the classes are
not removed and created, but tagged (or identified) as classes before and after a transformation.
Another similarity is that their approach is also used to model refactorings.

Metamodels involving Java are also addressed in the literature (MILLER; MUKERJI, 2003;
OMG, 2015). In (ALANEN et al., 2003), algorithms are described to map any BNF grammar
into a metamodel and also the other way around. An example for a subset of Java is shown.
However, besides its subset being much smaller than ours, little is described with regard to how
well-formedness rules are guaranteed in their Java metamodel. In our case, our Java metamodel
is also generated from the Java EBNF described in (ORACLE, 2016), but in a manual way (not
automatically) and with some simplifications as our goal is only to cover a subset of the Java

language, but broader than theirs.
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JAVA AND TRANSFORMATION-SPECIFIC MODELS

As described in Chapter 1, our strategy is comprised by four steps (see Figure 8 again),
where the main goal is validating transformation specifications. In these steps, Alloy models
are used as inputs to the Alloy Analyzer. The transformation—specific Alloy model describes
the transformation specification; this model includes predicates and some auxiliary functions
necessary to encode the conditions, provisos and substitutions of the specific transformation
being analysed. In addition, this model uses all the elements (i.e. types, predicates, auxiliary
functions, and so forth) defined in the OO metamodel. No additional Alloy signature, other than
the ones in the OO model, is necessary in the transformation—specific model. On the other hand,
the validator models detect static semantics errors or behavioural problems of the transformation,
depending on which validator model is used.

The transformation—specific model owns a main predicate, which is responsible for the
transformation. This predicate (along with its parameters) is the parameter for the commands
run or check in the validator models, along with a scope defined for the specific transformation
being analysed. The validator models are actually the inputs for the Alloy Analyzer, but these
models use the transformation—specific, which in turn uses the OO model (see Figure 8). Then,
the Alloy Analyzer generates Alloy instances characterizing the programs before and after the
transformation, and according to the restriction or restriction violation, respectively—it will
depend on the command specified.

This chapter describes the OO model, that gives support to the transformation—specific
model, in Section 3.1. Section 3.1.1 details the subset of the Java language considered in our
OO Model since a correspondence between our OO Model and the Java Language Specification
(JLS) (ORACLE, 2016) is explicitly described, with the indication of the elements in JLS that
were disconsidered or simplified in our OO Model. Section 3.1.2 complements the description
of the OO Model with details of each relevant predicate as well as the well-formedness rules.
Finally, the transformation—specific model is detailed in Section 3.2 where each subsection

describes a model for each transformation analysed in this work.
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Figure 8 Overview of our strategy.

3.1 The OO Metamodel

Our OO model brings together some OO features which makes possible to represent
OO programs in Alloy. It is important to emphasize that, although the OO model was used to
evaluate transformations in languages other than Java, we define the elements of this metamodel
as close as possible to the ones defined in the Java Language Specification (JLS (ORACLE,
2016)) syntactic grammar as we use Java to express concrete transformations in the behavioural
analysis phase. Besides, the proximity with the JLS eases the understanding and enhancement, if
necessary. However, we had to do some simplifications not to compromise the scalability of the
Alloy model. In Section 3.1.1, we detail the mapping (and their simplifications) between what
exists in the JLS (ORACLE, 2016) syntactic grammar and our Alloy signatures.

Our OO model defines types through signatures, shown in Figure 9. We started to explain
our OO metamodel in Section 2.2.1 with Figure 6 (left), which represents a subset of our OO
metamodel depicted in Figure 9. As seen in Figure 6 (left), the signatures and their respective
relations are analogous to classes and associations in the UML class diagram. In addition to the
signatures already described in Section 2.2.1, Code 3.1 shows the MethodInvocation signature in
Alloy. The pExp relation links a MethodInvocation with exactly one PrimaryExpression whilst
the realParam relation links a MethodInvocation with at most one Expression, excluding the
PrimaryExpression’s this, super and newCreator and the AssignmentExpression as well. The
reason is simplifying type checking as we almost do not do it. We assume all methods have
a return (of type long), and when there is a formal parameter, this one is also of type long.
Because of this, the only expression allowed for realParam relation is MethodInvocation—for
simplification purposes. This constraint can be seen in the associations with MethodInvocation

in Figure 9.
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Mapping the relations of the MethodInvocation type to a concrete example, it would
be "pExp.methodInvoked (realParam)”, where we replace each relation name to a concrete
instance that is generated by the Alloy Analyzer. For instance, in case the pExp relation is of
newCreator type (whose class in its c¢f relation is A), whilst the methodInvoked is a method
identifier like methodO1 and the realParam is a method invocation like this.method02(), then
the MethodInvocation type in question is represented as “"new A().method01(this.method02())” .
This is translated from an Alloy instance to a Java program by our Alloy—To—Java translator. The
remaining Alloy types defined in our OO model and described in this section follows the same

reasoning.

Code 3.1 Representation of the MethodInvocation signature

sig MethodInvocation extends Statement ({
pExp: one PrimaryExpression,
methodInvoked: one MethodId,
realParam: lone {Expression - this_ - super - newCreator -
AssignmentExpression }

Some relevant signatures in our OO metamodel were not described in Section 2.2.1 but
they are present in Figure 9. They are important to ease the understanding of some predicates de-
scribed in this chapter. These signatures are: the AssignmentExpression signature (Code 3.2), the
FieldAccess signature (Code 3.3), and the group of PrimaryExpression subsignatures (Code 3.4).
The AssignmentExpression signature contains two relations: the pExpressionLeft represented by
only a FieldAccess type (for simplification purposes) and the pExpressionRight relation (with
exactly one Expression, excluding the expressions this, super and newCreator and the Assign-
mentExpression as well—for the same reason explained earlier for realParam). These restrictions
can simplify our Alloy Models as much as possible but not compromising our transformation

evaluations (see Chapter 4).

Code 3.2 Representation of the AssignmentExpression signature

sig AssignmentExpression extends Statement {
pExpressionlLeft: one FieldAccess,
pExpressionRight: one {Expression - this_ - super -
newCreator - AssignmentExpression}

In addition, the FieldAccess signature also contains a pExp relation, similarly to the
one in MethodInvocation, and an id_fieldInvoked relation to represent the id of the field being

invoked in the FieldAccess expression.
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Code 3.3 Representation of the FieldAccess signature

sig FieldAccess extends Statement {
pExp: one PrimaryExpression,
id_fieldInvoked: one FieldId

Finally, Code 3.4 contains the group of PrimaryExpression subsignatures, which is:
this, super, newCreator (with its cf relation, that represents the Classld linked to the newCre-
ator) and ExpressionName (with its name relation, that represents the Fieldld linked to the
ExpressionName). Besides, our OO model also contains well-formedness rules that are diluted
into its wellFormed predicates: one for each signature in our model—see Section 3.1.2. The
well-formedness rules are presented when we describe these predicates. They were validated
through the Java Compiler when our Alloy—To—Java Translator (Section 4.3) compiles each
of the starting programs (where the respective validated transformations were applied) and no

compiler errors were found in them.

Code 3.4 Group of PrimaryExpression’s signatures

abstract sig PrimaryExpression extends Expression {

}
sig this_, super extends PrimaryExpression {}
sig newCreator extends PrimaryExpression {

cf :one ClassId

sig ExpressionName extends PrimaryExpression/{
name: one FieldId

As can be seen in this section and in Appendix A, only a subset of JLLS was chosen
not to increase unnecessarily the complexity of the Alloy model, and consequently to avoid
compromising its scalability, since not all elements in the JLS syntactic grammar are necessary to
analyse specific transformations and the more signatures and relations available in the model, the
greater are the constraints and predicates to guarantee programs well-formedness. We verify that
it is possible to analyse transformations with only a subset of the Java language or OO features,

and this subset may even vary (minimally) depending on the transformations being analysed.

3.1.1 Correspondence between the Java Language Specification and our OO metamodel

As discussed before, we have followed the pattern of the JLS syntactic grammar as
much as possible. The figures presented in this section exhibit subparts of the JLS specification
in (ORACLE, 2016). The MethodDeclaration definition, depicted in Figure 10, is represented
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as the Method signature in our OO model. Observe that the MethodModifier element was
simplified in our model by the relation acc in the Method signature. This is represented by only
an Accessibility type element that in turn can be public, private or protected (its subsignatures).
As the Accessibility signature is defined as abstract, only its subsignatures appear as an Alloy

element instance in our Alloy model.

MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

MethodModifier:
(one of)
Annotation public protected private

abstract static £inal synchronized native strictfp

MethodHeader:
Result MethodDeclarator [Throws]
TvpeParameters {Annotation} Result MethodDeclarator [Throws]

Result:
UnannIvpe

void

MethodDeclarator:
Identifier ( [FormalParameterList] ) [Dims]

FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

Figure 10 Subpart of the JLS syntactic grammar.

As can be observed, the definition for the MethodModifier element in JLS is more
detailed since it has more production rules than simply to be public, private or protected,
however, according to our transformation specification elements, it was not necessary to all
production rules of the MethodModifier element in JLS to be completely defined in our model.
The MethodHeader element in JLS was also simplified and we adopt only the first possibility in
the grammar: Result MethodDeclarator [Throws], excluding the [Throws] element. The Result
element is represented by the refurn relation in our OO model, which links our Method signature
with at most one Type. When the Alloy instance is generated without this 7ype element, then a
void method is represented (second case for the Result element in the JLS). Otherwise, a non—void
method is represented and thus the first case for the Result element in the JLS is contemplated. In
addition, our Method signature contains the relations id (corresponding to the Identifier element
in the MethodDeclarator in JLS) and param (corresponding to the FormalParameterList element
in JLS). Aiming at simplification, the [Dims| element in the MethodDeclarator in JLS was not

considered and we limited the number of formal parameters of a method to at most one element—
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FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters:
FormalParameter {, FormalParameter}
ReceiverParameter {, FormalParameter)

FormalParameter:
{VariableModifier} UnannIvpe VariableDeclaratorld

VariableModifier:
(one of)
Annotation £inal

LastFormalParameter:
{VariableModifier} UnannTyvpe {Annotation} . .. VariableDeclaratorld
FormalParameter

ReceiverParameter:
{Annotation} Unannlvpe [ldentifier .] this

Figure 11 FormalParameterList element and its dismemberment.

see the keyword lone in our Method signature (see Figure 6). Thus, the FormalParameterList
element was resumed to only the LastFormalParameter element, which in turn was resumed to
the FormalParameter element—as shown in Figure 11. In the FormalParameter element, we
only consider the elements UnanmType and VariableDeclaratorld, since the VariableModifier
element is optional. Observe that the sequence UnanmType VariableDeclaratorld contained in
FormalParameter element is exactly what our VarDec signature represents—it is the type of the
param relation in our Method signature.

Finally, the last element composing the MethodDeclaration element—the MethodBody
element, shown in Figure 12—is equivalent to the type Block in our OO model. In turn, a Block is
a potentially empty or is a sequence of BlockStatements elements. As a simplification, in our OO
model we assume that a BlockStatements element can only be represented by a Statement element,
the third option for the BlockStatements element. Hence, in our Alloy model, a type Block is
represented by a sequence of Statement types. In turn, we consider the Statement element (in
Figure 13) always as a StatementWithoutTrailingSubstatement element, which in turn is always
considered by us as an ExpressionStatement element that is always a StatementExpression in
JLS grammmar (see Figure 14). A StatementExpression is then resumed to a MethodInvocation
or an Assignment, which are the two subsignature possibilities of the Statement abstract type
signature in our model.

With regard to the MethodInvocation element in the JLS, we adopt the third, fourth

and fifth options (see Figure 15), with some simplifications. For instance, ExpressionName
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MethodBody:
Block

Block:
{ [BlockStatements] }

BlockStatements:
BlockStatement { BlockStatement}

BlockStatement:
LocalVariableDeclarationStatement
ClassDeclaration
Starement

LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
{VariableModifier} UnannIyvpe VariableDeclaratorList

Figure 12 MethodBody element and its dismemberments.

(first element in Figure 15) in the third option was simplified to be always an Identifier and this
Identifier can only be of Fieldld type in our OO model—this corresponds to the relation name
(of type Fieldld) of our ExpressionName type signature. Our varName relation in VarDec type
of our Alloy model is also of Fieldld type for compatibility reasons.

With regard to the Primary element in the JLS grammar, contained in the fourth op-
tion, we consider this and a ClassInstanceCreationExpression as possible values for this ele-
ment, since a Primary element can be a PrimaryNoNewArray which in turn can be a this or
ClassInstanceCreationExpression element (see Figure 16).

In the latter case we restrict this element to be UnqualifiedClassInstanceCreationExpres-
sion (see Figure 17), which is then restricted to new ClassOrlInterfaceTypeTlolnstantiate (since
the other possible elements are optional) which is finally restricted to new Identifier, where the
Identifier in our OO model is the type Classld. The formation newClassld is represented in
our model by the type newCreator, which has a relation called cf that links this type with a
type Classld. The fifth option has a super element in its beginning, which is also a signature
in our OO model. ExpressionName, this, newCreator and super are all subsignatures of type
PrimaryExpression in our model, which is the type of the relation pExp in our MethodInvocation
signature. In addition, we do not consider the [TypeArguments| element in any of the options
and our [ArgumentList| element has always one as the maximum size—it corresponds to the
relation realParam in our type MethodInvocation. We also consider the Identifier element in all
of the options as the Methodld of the method being invoked, which is represented by the relation
id_methodlInvoked in our type MethodInvocation.

On the other hand, the Assignment element in JLS, the other possibility we consider
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Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementWithoutTrailingSubstatement:
Block
EmptvStatement
ExpressionStatement
AssertStatement
SwirchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStarement
ThrowStatement
TrvStatement

Figure 13 Statement element and its dismemberments.

to the StatementExpression element in JLS, is represented as a sequence like LeftHandSide
AssignmentOperator Expression, shown in Figure 15. In our OO model, we have an type
AssignmentExpression that has two relations, as already mentioned: the pExpressionLeft—whose
type is FieldAccess which is then a possibility for the LeftHandSide element in JLS—and the
pExpressionRight. The type of this last one is Expression, excluding this, super, newCreator (for
simplification in type checking mechanism as earlier mentioned) and AssignmentExpression—to
avoid recursion calls in the model. The Alloy Analyzer only allows a maximum depth size
of 3 in recursion calls, meaning the Alloy Analyzer can unroll recursive calls up to 3 times
only, regardless of the scope of our analysis, and, even so, unless we configure this in the Alloy
Analyzer tool. The AssignmentOperator element in JLS is considered in our model to be always
the equals or assignment operator. Finally, the FieldAccess element in JLS was simplified in our
OO0 model to its first and second option, depicted in Figure 15.

Likewise described for the MethodInvocation element, our FieldAccess type signature has
the pExp relation (whose type is PrimaryExpression)—which embraces the Primary and super
elements in JLS, respectively, for the first and second options for the FieldAccess element—and
the id_fieldInvoked relation that corresponds to the Identifier element in JLS which in this case
is of type Fieldld in our OO model.

A program is defined through two main relations: the classDeclarations relation, which
represents a mapping between Classld and Class elements, and the main relation that represents

the main method of the specific program. Because of this mapping between Classld and Class
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ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PrelncrementExpression
PreDecrementExpression
PostincrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

Figure 14 ExpressionStatement metamodel.

elements in the type Program, the type Class does not contain a relation id with a Classld
as its type—it is not necessary. Observe that this is not the case for the Method and Field
signatures (see Figure 6). For these cases, we opt not to work with mappings (between Method
and Methodld, and Field and Fieldld) due to scalability problems we experienced using the
Alloy Analyzer. An interesting thing we guarantee in our Alloy instances is that the value of the
Classld element remains the same for both starting and ending programs (it is unique for each
pair of classes in the starting and resulting programs) of a transformation while the Class element
can vary in the different programs according to the restrictions of the transformation—this is

described in details in Section 3.2.

Code 3.5 Representation of a Program

sig Program {
classDeclarations: ClassId -> one Class,
main: Method

3.1.2 Predicates in our OO metamodel — specifying well-formedness rules

Each predicate in our OO model captures well-formedness rules, which are responsible
for guaranteeing the correct static semantics of the instances, according to the scope (of elements)
defined. The wellFormedProgram is the main predicate in the OO model and guides the
invocation of the other ones in a cascade effect as depicted in Figure 18. For instance, as a
program is comprised by a mapping from the identifiers of the classes to each corresponding
class type (see line 2, Code 3.5), a program is well-formed exactly when each of its classes is
also well-formed (line 3, Code 3.6).

The class well-formedness is guaranteed by the wellFormedClass predicate (see Code 3.7).
Following the usual OO structure, a class is well-formed in our model if each of its method is
well-formed (see line 9, Code 3.7). A method is well-formed when its statements are (see line 6,
Code 3.12), and so forth.
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ExpressionName:
Identifier
AmbiguousName . Identifier

FieldAccess:
Primary . Identifier
super .Idenﬁﬁér
TvpeName . super . Identifier

MethodInvocation:
MethodName ( [ArgumentList] )
TyvpeName . [Tvpedrguments| Identifier ( [ArgumentList] )
ExpressionName . [TyvpeArguments] Identifier ( [ArgumentList] )
Primary . [Tvpedrguments] Identifier ( [ArgumentList] )
super . [Typedrguments] Identifier ( [ArgumentList] )
TvpeName . super . [Typedrguments] Identifier ( [ArgumentList] )

ArgumentlList:
Expression {, Expression}

AssignmentExpression.
Conditional Expression
Assignment

Assignment:
LeftHandSide AssignmentOperator Expression

LeftHandSide:
ExpressionName
FieldAccess
ArrayAccess

Figure 15 Dismemberments of the StatementExpression.

Primary:
PrimaryNoNewArray
ArravCreationExpression

PrimaryNoNewArray:
Literal
ClassLiteral
this
TypeName . this

( Expression )
ClassinstanceCreationExpression
FieldAccess

ArravAccess

MethodInvocation
MethodReference

Figure 16 Primary element and its dismemberments.
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ClassInstanceCreationExpression:
UnqualifiedClassinstanceCreation Expression
ExpressionName . UnqualifiedClassInstanceCreationExpression
Primary . UnqualifiedClassInstanceCreation Expression

UnqualifiedClassInstanceCreationExpression:
new [Typedrguments]
ClassOrinterfacelvpelolnstantiate ( [ArgumentList] ) [ClassBodv]

ClassOrinterfaceTvpeTolnstantiate:
{Annotation} Identifier { . {Annotation} Identifier}
[TvpedrgumentsOrDiamond]

Tvpedrguments OrDiamond:
TypeArguments

<>

Figure 17 ClassInstanceCreationExpression element and its dismemberments.

[ wellFormedProgram [p:Program] Jf

For all classes

[wellFormedClass [p:Program, c:ClassId] J:;n the Program
|

—"
[wellFor'rnedMe'i'hod[p:Pr'ogr'am, cl:Class, m:Method] J:

For all methods
in the Class

[welIFormedStaTement[p:Pr‘ogr‘am, cl:Class, st:Statement, m:Method] J

For all statements
in the method

Is it an Assignment? Iz it a FieldAccess?

Is it a MethodInvocation?

[wel|For‘medMeThodInvoccfion[p:Program, cl:Class, st:Statement, mMethod] J-J

[noCycIe.InExfends[p:Program, c:ClassId]Jt

[ noFieldWithSameId [p:Program, c:ClassId]J+
[superClassIsDeclared [p:Program, cl:Class]J*

[wel|For'medFr'eIdAccess[p:Pr'ogr'cm, cl:Class, st:Statement, m:Method] 147

wellFormedAssignment [p:Program, cl:Class, st:Statement, m:MeThod]J

[ noMethWithSameId&Param [p:Program, c:ClussId]J*

Figure 18 An overview of the main predicates in our OO Model
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Code 3.6 Representation of the wellFormedProgram predicate

pred wellFormedProgram [p:Program] {
all c:ClassId.{ c in (p.classDeclarations) .univ =>
wellFormedClass[p, C]

With regard to the class well-formedness, it is necessary that not only each of its methods
be well-formed but also other restrictions guaranteed through the other predicates present inside
the predicate wellFormedClass, as shown in Code 3.7 and in Figure 18. Firstly, it is necessary
that there is no cycle in the extend relation of the class (see line 2, Code 3.7); secondly, no
distinct fields with the same id (line 3 and corresponding definition in Code 3.9), and, thirdly, no
distinct methods with the same id and parameters (line 4 and Code 3.10). Finally, completing the
requirements for a class to be well-formed in our OO model, its superclass needs to be in the

mapping representing all the classes in the specific program (line 7 and Code 3.11).

Code 3.7 Representation of the wellFormedClass predicate

pred wellFormedClass[p:Program, c:ClassId] {
noCycleInExtends[p, C]
noFieldWithSameId[p, c]
noMethWithSameIdAndParam[p, C]

let class = c.(p.classDeclarations) {
superClassIsDeclared[p,class]
all m: Method }In in class.methods =>
wellFormedMethod[p,class, m]

The predicate in Code 3.8 ensures that a class does not have cycles in its extend relation
when its Classld (passed as parameter for the predicate) is not in its extend relation nor in the
extend relation of the classes in its hierarchy (line 2, Code 3.8). Observe that the expression
c.(p.classDeclarations) retrieves the corresponding Class element to the Classld, represented
by the ¢ variable, in the p’s Program mapping. Then, the extend relation of this Class can be
retrieved through the expression c.(p.classDeclarations).extend. We use the transitive closure
operator (") in order to retrieve the set of all ids (type ClassId) in the extend relation of each class
in the hierarchy of a specific Classld c passed as parameter. In this way, ¢ cannot be in this set to

avoid a cycle in the extend relation.

Code 3.8 Representation of the noCyclelnExtends predicate

pred noCycleInExtends|[p:Program, c:ClassId] {
c !'"in c.”((p.classDeclarations) .extend)
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The predicate in Code 3.9 guarantees that a class (whose identifier is passed as one of its
parameters) does not own two distinct field with the same identifier (this situation would cause
a compilation error). Predicate noMethWithSameldAndParam (see Code 3.10) is similar but
concerning methods. The difference is that the distinct methods in the same class can have the

same identifier if their parameters are different (number or the corresponding types).

Code 3.9 Representation of the noFieldWithSameld predicate

pred noFieldWithSameId[p:Program,c:ClassId] {
no disj fl,f2: p.classDeclarations([c].fields
fl.id = £2.1id

Code 3.10 Representation of the noMethWithSameldAndParam predicate

pred noMethWithSameIdAndParam[p:Program,c:ClassId] {
no disj ml,m2: p.classDeclarations([c].methods
ml.id = m2.id &&
# (ml.param) = #(m2.param) &&
(ml.param.type = m2.param.type)

Predicate superClasslsDeclared (see Code 3.11) checks if the identifier in the extend
relation of a class (passed as one of the predicate parametera) is in the domain of class identifiers
contained in the mapping of the specific program p (also passed as parameter). In other words,
the predicate checks if the super class of the class passed as parameters exists in the program
context.

The predicate wellFormedMethod (see Code 3.12) checks if a specific method, passed
as parameter, is well-formed considering a program context. In our OO model, a method
is well-formed if all of its statements comprising its body are well-formed (line 4), which is
guaranteed by the predicate wellFormedStatement (see line 5, Code 3.12), that in turn is described
in Code 3.13.

Code 3.11 Representation of the superClasslsDeclared predicate

pred superClassIsDeclared[p:Program,c:Class] {
c.extend in (p.classDeclarations) .univ

Code 3.12 Representation of the wellFormedMethod predicate

pred wellFormedMethod[p:Program,class:Class, m:Method] {
let body = (m.body) .elems
{
all stm: Statement ‘ stm in body =>
wellFormedStatement [p, class, stm, m]

}
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70}

As shown in our OO metamodel (see Figure 9), a statement can be an Assignment, a
MethodInvocation or a FieldAccess. For each of these possibilities, there is a corresponding
wellFormed predicate (lines 2 to 4, Code 3.13). Following the same reasoning described in the
other wellFormed predicates, an Assignment is well-formed (Code 3.14) when the elements
that represent each of its relations are also well-formed. That is, when its left (line 2) and
right-hand side (line 4 to 10) expressions are well-formed. The former is represented by a
FieldAccess while the latter can be a MethodInvocation (line 6) or another FieldAccess (line 9).
The predicates wellFormedFieldAccess and wellFormedMethodInvocation are further described.
As already discussed at the end of Section 3.1.1, another Assignment was discarded to represent
an AssignmentExpression right-hand side expression for simplification purposes, essentially

because of the restriction of the Alloy Analyzer in doing recursive calls.

Code 3.13 Representation of the wellFormedStatement predicate

llpred wellFormedStatement [p:Program,class:Class, st:Statement, m:
Method] {

2 st in AssignmentExpression => wellFormedAssignment [p,class,
st,m]

3 st in MethodInvocation => wellFormedMethodInvocation|[p,
class, st,m]

4 st in FieldAccess => wellFormedFieldAccess|[p,class,st,m]

50}

In order to guarantee the well-formedness of a FieldAccess, it is necessary to do some
type checking. For doing this, the first thing is retrieving its pExp relation (type PrimaryExpression,
retrieved in line 3, Code 3.16) and the formal parameter of the method whose body contains
this FieldAccess (formal parameter is also retrieved in line 3). The only checking done by the
wellFormedPrimaryExpression (line 5, Code 3.16 and described in Code 3.17) is verifying if
the cf relation, in the case of an expression of type newCreator (which is a subsignature of
the PrimaryExpression type), which in turn represents the identifier of the class (type Classld,
see Figure 9), is in the set of class identifiers (Classld elements) in the mapping relation
classldentifiers of the Program type. The other possibilities for a pExp relation in a FieldAccess
type are the expressions this and super (the other subsignatures of PrimaryExpression type)
which are considered well-formed by default. Afterwards, the type checking starts. In line
7, Code 3.16, it is ensured that if the formal parameter is a primitive type (so it is not from
the ClassType type), and the target of the FieldAccess being analysed is represented by an
ExpressionName (which is a subsignature of PrimaryExpression), then the identifier of the field
(type Fieldld) contained in its name relation cannot be the same as the one in the varName
relation of the formal parameter since its type is primitive (line 8). Our model does not allow a
variable to be declared in a method body and the only possibility for a name relation (from an

ExpressionName type) is the identifier of the field contained in the method formal parameter, if it
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exists, or the identifier of a field declared in the class where the method is located.

Code 3.14 Representation of the wellFormedAssignment predicate

pred wellFormedAssignment [p:Program,class:Class, stm:
AssignmentExpression,m:Method] {
wellFormedLeftHandSide[p,class, stm.pExpressionLeft, m]

let rightExp = stm.pExpressionRight
{

rightExp in MethodInvocation =>
wellFormedMethodInvocation|[p,class,rightExp, m]

rightExp in FieldAccess =>
wellFormedFieldAccess[p,class, rightExp, m]
}

Code 3.15 Representation of the wellFormedLeftHandSide predicate

pred wellFormedLeftHandSide[p:Program,class:Class, stm:
FieldAccess,m:Method] {

stm in FieldAccess => wellFormedFieldAccess[p,class,stm,m]

Code 3.16 Representation of the wellFormedFieldAccess predicate

pred wellFormedFieldAccess[p:Program,class:Class,stm:
FieldAccess, m:Method] {

let target = stm.pExp, formal = m.param

{

wellFormedPrimaryExpression[p,class,target]

(formal.type !'in ClassType && target in ExpressionName) =>
formal.varName != target.name

target in newCreator =>
fieldMatchesAndIsNotPrivate|[p,stm.id_fieldInvoked, (target.
cf).(p.classDeclarations) ]

target in this_ => (fieldIsInTheClass[p,stm.id_fieldInvoked,
class] H

(!fieldIsInTheClass|[p,stm.id_fieldInvoked,class] &&

fieldIsInTheHierarchyAndIsNotPrivate[p,stm.id_fieldInvoked,
class]))
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target in super =>
fieldIsInTheHierarchyAndIsNotPrivate[p, stm.id_fieldInvoked,
class]

Line 10, Code 3.16, state that, in all cases where the access to the field (of the FieldAccess
being analysed) is through an expression of type newCreator, then the predicate fieldMatchesAn-
dIsNotPrivate needs to hold (line 11). This predicate is detailed in Code 3.18 and checks if a
field—whose value in its id relation matches the Fieldld value for the fieldInvoked relation of the
FieldAccess being analysed (line 3)—exists in some class in the parent level of class ¢, including
its own (this is represented by the expression c. *(extend.(p.classDeclarations)), see line 2). In
addition, this field must not be private (line 4). Observe that the class c is the one associated
to the expression (of type newCreator) of the FieldAccess (see line 11, Code 3.16, expression
(target.cf).(p.classDeclarations)) and is passed as parameter to the predicate fieldMatchesAn-
dIsNotPrivate. For simplification purposes, we assume that all classes are in the same package
since there is no Package element in our model.

On the other hand, when the access to the field is through an expression of type this
(lines 13 to 15, Code 3.16), the associated field must lie in the class itself (call to the predicate
fieldlsInTheClass) or, when this is not the case, the field must lie in any class in the parent class
level. This is represented by the predicate fieldlsInTheHierarchyAndIsNotPrivate that is similar
to the predicate fieldMatchesAndIsNotPrivate, just explained, with the difference that the class
itself is not included in the parent hierarchical level — this condition was already verified in line
14. In addition, when the access is through an expression of type super (line 17), the field must
lie in classes at the parent level of class ¢ and must not be private. This is represented by the
predicate fieldIsInTheHierarchyAndIsNotPrivate in line 18.

Code 3.17 Representation of the wellFormedPrimaryExpression predicate

pred wellFormedPrimaryExpression[p:Program,c:Class,stm:
PrimaryExpression] {
stm in newCreator => classIsDeclared[p,stm.cf]

Code 3.18 Representation of the fieldMatchesAndlsNotPrivate predicate

pred fieldMatchesAndIsNotPrivate[p:Program, fId:FieldId,c:Class
14
some f:Field.’ f in c.x (extend. (p.classDeclarations)) .fields
&&

f.id = fId &&
fieldIsNotPrivate[f]
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The predicate wellFormedMethodInvocation follows the same reasoning (Code 3.19)
as the predicate wellFormedFieldAccess but for methods and method invocations. However,
it is slightly different since a method invocation can have real parameters (only one in case
of our OO model) whilst field invocations do not. Thus, additional checkings should be done.
This is represented by the predicate wellFormedRealParameter expanded in lines 24, 34, 42,
48 and 56, Code 3.19 and shown in Code 3.20. In addition, lines 10 and 11 ensure that, if the
formal parameter of the method is of type long (1), then it should not be the target of a method
invocation (line 12)—this would cause a compilation error since a method can not be invoked
from a primitive type. On the other hand, when the type of the formal parameter is not primitive
(line 14) and coincides to be the variable in the target of a method invocation (2) (see line 15),
then a type checking is done, similarly as done in cases where the target is a expression of types
newCreator, this or super (see codes from lines 26 to 34, 36 to 48 and 50 to 56, respectively, in
Code 3.19).

Code 3.19 Representation of the wellFormedMethodInvocation predicate

pred wellFormedMethodInvocation[p:Program,class:Class, stm:
MethodInvocation, m:Method] {

let
target = stm.pExp,
formal = m.param,

formalCId = formal.type.classIdentifier {

stm.pExp in PrimaryExpression =>
wellFormedPrimaryExpression[p, class, stm.pExp]

(#formal > 0 && formal.type in Long_ &&
target in ExpressionName) =>
formal.varName != target.name

(#formal > 0 && formal.type in ClassType &&

target in ExpressionName && formal.varName = target.name
) =>

some m’ : Method.‘ m’ in formalCId. (p.classDeclarations)
.* (extend. (p.classDeclarations)) .methods &&

m’ .id = stm.id_methodInvoked &&

# (stm.realParam) = # (m’ .param) &&

((m” in formalCId. (p.classDeclarations) .methods &&
formalCId. (p.classDeclarations) != class) =>

m’ .acc !in private_ ) &&

wellFormedRealParam[p, stm,class, m’ ]

target in newCreator => (some m’: Method |nﬂ in
(target.id cf) . (p.classDeclarations) . (extend. (p.
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classDeclarations) ) .methods &&
m’ .id = stm.id_methodInvoked &&
#(stm.realParam) = # (m’ .param) &&
((m” in (target.id_cf). (p.classDeclarations) .methods
&&
(target.id_cf) . (p.classDeclarations) != class ) =>
m’ .acc !in private_) &&
wellFormedRealParam[p, stm, class, m’]

target in this_ =>

((some m’: Method_‘ m’ in
class.” (extend. (p.classDeclarations) ) .methods &&
m’ .id = stm.id_methodInvoked &&
# (stm.realParam) = # (m’.param) &&
m’ .acc !'in private_ &&
wellFormedRealParam[p, stm, class, m’])
Usome m’ : Method
m’ in class.methods &&
m’ .id = stm.id_methodInvoked &&
# (stm.realParam) = # (m’ .param) &&
wellFormedRealParam[p, stm, class, m’']))

target in super =>

some m’: Method ‘In’ in

class.” (extend. (p.classDeclarations) ) .methods &&
m’ .id = stm.id_methodInvoked &&

# (stm.realParam) = # (m’.param) &&

m’ .acc 'in private_ &&

wellFormedRealParam[p, stm,class, m]

In (2) and also when the target of a method invocation is of type newCreator, then it is
necessary to check if there is a method in the class (or in any class in its hierarchy) corresponding
to the target and to the corresponding relation of the method invocation (lines 17 to 19 and 26 to
28, respectively). This method should have the same identifier (lines 19 and 28, respectively)
and number of parameters (lines 20 and 29, respectively) as the one in method invocation. The
specific type of the parameter is not checked since we assume all of them have the same type:
long. For simplification purposes, we assume that the only possible type for a real parameter is
FieldAccess. As a method parameter is always of type long and likewise the type of a field, then
type checking errors are avoided. In addition, the method should not be private (lines 23 and
33, respectively) when the method being called is in the set of the methods of the class in the
formal parameter (lines 18 and 21), or of the class represented by the expression newCreator)

(lines 27 and 30) and this class is not the one where the method invocation is (lines 22 and 32,
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respectively).

Code 3.20 Representation of the predicate wellFormedRealParam

pred wellFormedRealParam[p:Program, stm:MethodInvocation, class
:Class, m:Method] {
# (stm.realParam)

# (m.param)
1 => some f:Field
wellFormedFieldAccess[p, class, stm.realParam] &&

# (stm.realParam)

f.id = stm.realParam.id_fieldInvoked &&
(m.param.type in Long_ => f.type in Long_) &&
(m.param.type in ClassType =>
(f.type in ClassType &&
firstIsSubtypeOfTheSecondOneClass[p, f.type.
classIdentifier,m.param.type.classIdentifier]))

The type checking when the target is this is almost similar but there are some differences.
Firstly, the checking for the method in class (line 45) or in its hierarchy (line 38) was divided. As
explained earlier, in both cases the method identifier should be the same as the one in the method
invocation expression (lines 39 and 53) and the number of formal and real parameters should be
the same (lines 36 and 31). In addition, the real parameter should be well-formed (lines 37 and
32). The difference is that if the method is in the class, it can be private as well. Finally, when
the target is super, the same checkings when the target is this are done, except for in this case the
method is not in the class where the method invocation is but in its hierarchy, are done.

It is important to say that our OO metamodel was useful to validate not only Java transfor-
mation specifications, but specifications in other languages (i.e. rCOS, ROOL, an object—oriented
language with reference semantics presented in (PALMA, 2015)) that use common OO features
defined in our metamodel. Even considering a subset of the language and some simplifications,
we observe that all starting—hand side programs (where the predicate wellFormedProgram is
applied to) used in the transformations analysed are 100% compilable, different from the model
presented in (SOARES, 2015), which generates only 68,8% compilable programs. However, our
OO model consider different elements of the JLS. For instance, they consider packages whilst
we do not. The elements we defined in our OO model follows the JLS BNF syntax, whilst they
do not. In addition, they argue that less rules are incorporated in their model not to inhibit the
generation of interesting programs, even at risk generating non—compilable programs. This deci-
sion did not compromise the goal of their work because the non—compilable programs generated
are discarded and only the compilable ones are submitted to the engine implementations. On
the other hand, the OO model in our work has a different goal, as already described, beyond

generating input programs to engine implementations.
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3.2 Transformation—Specific Models

A second model, for each transformation being analysed, is also specified in Alloy. Each
one uses the metamodel described in the previous section to represent the elements, such as
classes and conditions, involved before and after the transformation. Usually, a transformation—
specific model is comprised by one or two main predicates, depending on whether the specifica-
tion refers to a uni— or bidirectional transformation, respectively. For instance, specifications
based on algebraic laws or refactoring rules in (CORNELIO, 2004) refer to bidirectional transfor-
mations whereas the ones based on rules in rCOS have only one direction, since a refinement
is specified (and as a consequence, there is just one main predicate). Each of these predicates
represents the changes provoked by the transformation in the corresponding programs (and their
contexts) according to the specific direction of the transformation.

Code 3.21 depicts an abstract predicate, for a specific direction of a transformation. The
goal is illustrating how this kind of predicate is structured. We follow the same structural division
(or pattern) along with the main predicates for the other transformation specifications, as can be
seen in the following sections. Such predicates are used by our Validators, which are described
in detail in Chapter 4.

Considering the direction from the left— to the right—hand side, the parameters SS and
RS correspond to left and right contexts, respectively. As already discussed along this thesis, SS
and RS states, respectively, for the starting— and the resulting—hand sides programs. The other
parameters (line 3) refer to the elements involved in the transformation. Usually, these ones
are explicitly highlighted in the specification. Afterwards, the mapping between the elements
Classld and Class from the SS and the RS programs are retrieved (variables ssCds and rsCds,
respectively, lines 5 and 6, Code 3.21). Afterwards, classes B and C from the SS (bss and css,
respectively) and RS (brs and crs, respectively) are also retrieved from the mappings (see lines 7
to 10).

We split the general predicate for a specific direction of a transformation into four main
parts: firstly the SS description (line 13); secondly, the predicates that establish the provisos (from
the SS to the RS) specified in the transformation (lines 16 and 19); thirdly, the RS description;
and finally the equivalence between the SS and the RS is stated (lines 28 to 36). The SS and RS
descriptions stands for the relationships among the elements before and after the transformation,
respectively. For instance, as illustrated as SS description (line 13), B is the C super class, or

better, B 1s in the css’s extend relation.

Code 3.21 Predicate in Alloy for illustrating the general template for specifying a transformation,

considering a specific direction

module transformationSpecificModel

pred predicateForASpecificDirection[b,c:ClassId, element:Field,
ss,rs: Program] {
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let ssCds = ss.classDeclarations,
rsCds= rs.classDeclarations,
bss = b.ssCds,
brs = b.rsCds,
css = c.ssCds,
crs = c.rsCds {

// ss description
css.extend = Db

// proviso (1)

provisol[f, crs]

// proviso (2)
proviso2[b, ¢, £, rs]

//rs description
crs.extend = b

//equivalence between ss and rs-hand sides

ssCds = rsCds ++ {b —> bss} ++ {c —> css}
css.fields = crs.fields + £

bss.fields = brs.fields - £

bss.methods = brs.methods

css.methods crs.methods

bss.extend = brs.extend

c.~((ss.classDeclarations) .extend)

classDeclarations) .extend)

b.~((ss.classDeclarations) .extend)

classDeclarations) .extend)

.~((rs.

.~((rs.

Notice that the equivalence between the SS and RS classes is captured in line 29,

Code 3.21, through the equivalence of the respective mappings, except for the classes involved in

the transformation (in this case, classes B and C). This occurs because these classes can contain

different sets of fields or methods—depending on the particular transformation. In the case of
the transformation illustrated in Code 3.22 (Law 1, from the right— to the left—hand side), the

methods are the same (lines 32 and 33, Code 3.22) as they are not changed in the transformation.
Nevertheless, the set of fields are not (lines 30 and 31, Code 3.22)—the difference is just the field
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being moved. This behaviour was copied in Code 3.21, lines 31 to 34, just to give an example of
the equivalence among methods and fields in different sides of a transformation. The equivalence
of the classes is also required for their extend relation as a simplification (see line 36 Code 3.21,
and line 35, Code 3.22). It is guaranteed that the super class of the class B, present in both
sides of the transformation, is the same—in other words, the corresponding class in their extend
relation is the same. In addition, it is established that the C’s sons from both sides are the same
(see lines 37 and 38, Code 3.21 and lines 36 and 37, Code 3.22).

Observe that the mapping equivalence (line 29, Code 3.21 and line 28, Code 3.22)
guarantees the correspondence of the ids (the same id) of each pair of classes in the two sides. It
also guarantees that each class, in a specific side (right or left), owns a different id from each
other since a mapping structure is being used. In addition, as the context of a program (being left
or right) is given as parameter, a right—hand side class is prevented from being related with a
left—hand side class and vice-versa. This occurs because, given a class identifier (type Classld),
the corresponding class is always retrieved from the corresponding mapping (as shown in lines 7
to 10, Code 3.21) and all the object manipulation is done in this way. This optimises the Alloy
model because it avoids the existence of some predicates to avoid, for instance, left classes
to extend the right ones and vice-versa, among other undesirable scenarios. Actually, these
classes are the same but they need to be differentiated to record the situations before and after
the transformation. In the following subsections, we only detail the lines (in the main predicates
of the respective transformations) that are specific for each transformation; the others are as in
Code 3.21.

3.2.1 Transformation—Specific Model for Law 1

In this section, we describe the Transformation—Specific Model for Law 1, from the right—
(SS) to the left—hand side (RS) direction, as our initial example. We consider it the most simple
transformation we have analysed. The Alloy predicate named lawlRL, Code 3.22, groups all
the necessary steps to capture the transformation from the right— to the left-hand side described
in Law 1. Complementarily to what was already discussed in Section 3.2 about the general
predicate for a specific direction of a transformation, it is stated in RS description that B is the C
super class (line 23) (or B is in the crs extend relation); the field f is in the B class in the SS (line
24) and it is public (line 25); and finally the equivalence between the left and right—hand sides
is stated (lines 28 to 37). The predicates expanded to satisfy the conditions established by the
provisos in Law 1 (from the right— to the left-hand side) are fieldIsNotDeclaredInTheClass and
forbidsAccessToFieldF (lines 16 and 19). Besides, to ease understanding, Figure 19 indicates

these predicates along with the corresponding provisos.

Code 3.22 Predicate that represents the transformation specified by Law 1

I|module transformationSpecificMetaModel

2

3lpred lawlRL[b,c: ClassId, f:Field, right,left: Program] {
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let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// RS description
cl.extend = Db

// proviso (1)
fieldIsNotDeclaredInTheClass[f, cr]

// proviso (2)
forbidsAccessToFieldF[b, ¢, £, right: Program]

//SS description
cr.extend = Db

f in br.fields
f.acc in public

// equivalence between left and right-hand sides
leftCds = rightCds ++ {b -> bl} ++ {c -> cl}

cl.fields = cr.fields + £
bl.fields br.fields - £
bl.methods = br.methods
cl.methods = cr.methods

bl.extend = br.extend

c.~((left.classDeclarations) .extend) = c.~((right.
classDeclarations) .extend)

b.~((left.classDeclarations) .extend)

b.~((right.
classDeclarations) .extend)

With regard to the predicate fieldIsNotDeclaredInTheClass, that represents the proviso
< (1) of Law 1 and is shown in Code 3.23, it guarantees that there is no field in the set of fields
of ¢ right—hand side class (cr) whose id is the same as the id of the field being moved. On the
other hand, the predicate forbidsAccessToFieldF is an embedding of the proviso (+— (2)) of
Law 1 and is shown in Code 3.24. It states that the access to the field being moved is forbidden
from any method in any of the right-hand side classes. This is guaranteed by the predicate
accessToFieldFIsForbidden, available in Code 3.25, which does the checking for each statement
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of a specific method body (line 3, Code 3.25) where an access to the field can appear. This
happens in the case where the statement is a FieldAccess itself (line 4), or the statement is an
AssignmentExpression, but its left—-hand side expression (relation pExpressionLeft) contains a
FieldAccess. We represent this through the expression in the second parameter of the predicate
forbidsAccessToFieldFFromAFieldAccess in line 8: st.pExpressionLeft.

Likewise, an access to the field can also appear in the Assignment’s right—hand side
expression, that is represented by the expression st.pExpressionRight in line 10. In addition, an
access to the field can also appear in a right—hand side expression of an Assignment, as stated
in line 11. In this law evaluation, we consider an OO metamodel where the MethodInvocation
signature has no parameter. If it was the case, it would be necessary to also include the possibility
for an access to the field through the parameter of a MethodInvocation.

The predicate forbidsAccessToFieldFFromAFieldAccess is used as auxiliary and guaran-
tees that, in all cases where there is an access (represented by the FieldAccess type, variable fa)
to the specific field moved (lines 3, 7 and 11, Code 3.26), and (1) whose class in its pExp relation
is of type newCreator (line 3), or (2) in case the pExp relation points to a this expression (line 7),
or (3) if the pExp relation points to a super expression (line 11), then this class (in case (1)), or
the class where the invocation occurs (this, case (2)), or the super class referred (in case (3)) is
not in the set of classes that are subtypes of B and also are not subtypes of C (lines 4 and 5, 8
and 9, 12 and 13, respectively). The predicate firstIsSubtype OfTheSecondOneClass, referenced
in Code 3.26 and detailed in Code 3.27, is used to check if the first Classld passed as parameter
is a subtype of the second one.

Code 3.23 Predicate that restricts a field from being declared in a specific class.

pred fieldIsNotDeclaredInTheClass[f:Field,c:Class] {
f.id !in c.fields.id

Code 3.24 Predicate that restricts a field from being declared in any subclass of the class passed as

parameter.

pred forbidsAccessToFieldF [b,c:ClassId, f:Field, right:Program] {
let rightCds = right.classDeclarations {

all someClassId: ClassId,someClass: Class,m_: Method

(someClassId in rightCds.univ &&

someClass = someClassId.rightCds &&

m_ in someClass.methods) => accessToFieldFIsForbidden[m_ , f
, someClass, someClassId,b,c, right]
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Figure 19 Law 1 with the indication of the predicates expanded in Code 3.22 corresponding to provisos,

from the right— to the left-hand side direction.
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Code 3.25 Predicate that forbids the access to the field being moved from B to C

pred accessToFieldFIsForbidden[m: Method, f: FieldId, someClass:
Class, someClassId,b,c: ClassId,p: Program] {

all st:Statement } st in univ. (m.body) =>
((st in FieldAccess =>
forbidsAccessToFieldFFromAFieldAccess|[p, st, f, someClass,
someClassId,b,c]) &&

(st in AssignmentExpression =>
(forbidsAccessToFieldFFromAFieldAccess[p, st.
pExpressionLeft, £, someClass, someClassId,b,c] &&

(st .pExpressionRight in FieldAccess =>
forbidsAccessToFieldFFromAFieldAccess[p, st.
pExpressionRight, £, someClass, someClassId,b,c])

Code 3.26 Auxiliary predicate to restrict the access of the field moved.

pred forbidsAccessToFieldFFromAFieldAccess|[p: Program, fa:
FieldAccess, f: FieldId,someClass: Class, someClassId,b,c:
ClassId]{

(fa.id_fieldInvoked = £ && fa.pExp in newCreator) =>
! (firstIsSubtypeOfTheSecondOneClass[p, mi’ .pExp.cf, b] &&
!firstIsSubtypeOfTheSecondOneClass[p, mi’ .pExp.cf, c])

(fa.id_fieldInvoked = f && fa.pExp in this_) =>
! (firstIsSubtypeOfTheSecondOneClass[p, someClassId, b] &&
!firstIsSubtypeOfTheSecondOneClass[p, someClassId, c])

(fa.id_fieldInvoked = f && fa.pExp in super) =>

! (firstIsSubtypeOfTheSecondOneClass[p, someClass.extend, b]
& &

!firstIsSubtypeOfTheSecondOneClass|[p, someClass.extend, c])

Code 3.27 Predicate that indicates if the first Classld parameter is subtype of the second one.

llpred firstIsSubtypeOfTheSecondOneClass|[p: Program, first, second:

2
3

ClassId] {
let secondSubClasses=second.*~ ((p.classDeclarations) .extend)

{




AN N

O 00 1 N Dt B W~

e e e e e
NN R W N = O

18
19
20

3.2. TRANSFORMATION-SPECIFIC MODELS 62

first in secondSubClasses

3.2.2 Transformation—Specific Model for Law 2

The transformation—specific Alloy model for Law 2 is defined in almost the same way as
Law 1, since these laws typically follow the same template or have the same elements involved in
the transformation—the only difference is that now a method is being moved, instead of a field.
Code 3.28 shows the transformation from the right— to the left—hand side, which is equivalent
to the push down method refactoring. To ease understanding, Figure 20 shows Law 2 with the
indication of the main elements involved in the transformation as well as the predicates that
guarantee the provisos specific for the transformation direction. With regard to the main elements
involved in the transformation, there is the method m, that references the method being moved. In
some other transformations, when changes or substitutions occur in the method body, indicated
by the transformation specification, there are the mR and mL methods which actually represent
the same method, standing, respectively, for the occurrence before and after the transformation.
In addition, the set of methods in the B left-hand side class is represented by the expression in
Alloy bl.methods, the ones in B right-hand side, by br.methods, and so forth. The predicates and

the main elements can also be seen in Code 3.28.

Code 3.28 Predicate that captures the transformation from the right— to the left—hand side in Law 2.

pred law2RL[b,c: ClassId,m: Method, right,left: Program] {
let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
bl = b.leftCds,

br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// SS description: right
m in (br.methods)
cr.extend = Db

// proviso (<-=>) (1)
noSuperOrPrivateAttributesInM|[right,m, b]

//proviso <-> (2)
mIsNotDeclaredInAnySubclassOfTheClassInParam[b,m, left,
right]

// proviso (<->) (3)
methodIsNotPrivate [m]
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Figure 20 Law 2 with the indication of the main elements and the predicates (in Code 3.28) corresponding

to provisos, from the right to the left-hand side direction.
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// proviso (<-) (1)
methodIsNotDeclaredInTheClass[m, cr]

// provisos (<=) (2)
forbidsAccessToMethodM[b,c,m, right]

// RS description: left
cl.extend = Db
m in (cl.methods)

// equivalence between left and right-hand sides
leftCds = rightCds ++ {b -> bl} ++ {c -> cl}

cl.fields = cr.fields
bl.fields br.fields
bl.methods = br.methods - m
cl.methods — m = cr.methods

bl.extend = br.extend

c.~((left.classDeclarations) .extend) = c.~((right.
classDeclarations) .extend)

b.~((left.classDeclarations) .extend)

b.~((right.
classDeclarations) .extend)

The most significant difference between the specifications of Law 1 and Law 2 is the
predicate noSuperOrPrivateAttributesInM—TIine 14, Code 3.28 (an embedding of the proviso
((«») (1)) in Law 2). The predicate noSuperOrPrivateAttributesInM (Code 3.29) guarantees that
no super or private attributes appear in the body of the method being moved. An attribute in this
case can refer to both fields or methods. The only way for this fact to happen in our model is
through a FieldAccess (line 3), an AssignmentExpression (line 6) or a MethodInvocation (line
9). For the first case, the noSuperOrPrivateAttrinLeftHandSide predicate (line 4) should hold.
This predicate is shown in Code 3.30 and states that, for all FieldAccess inside the body of the
method being moved (it is passed as the second parameter of the predicate), there is no pExp
relation of that FieldAccess in the set of super instances (expression lhs.pExp !in super (line 2)).
In addition, the field represented by the relation fieldInvoked of the FieldAccess should not have
the private accessibility, guaranteed by the predicate fieldIsNotPrivate (line 3).

Code 3.29 Predicate that captures no access to super or private attributes.

l{pred noSuperOrPrivateAttributesInM[p: Program,m: Method,class:

2
3

ClassId]{
all st:Statement st in univ. (m.body) =>
(st in FieldAccess =>




O 0 3 O\ L

10

[

3.2. TRANSFORMATION-SPECIFIC MODELS 65

noSuperOrPrivateAttrInLeftHandSide[p, st,class]) &&

(st in AssignmentExpression =>
noSuperOrPrivateAttrInAssignment [p,st,m,class]) &&

(st in MethodInvocation =>
noSuperOrPrivateAttrInMethodInvocation[p,st,m,class])

Code 3.30 Predicate noSuperOrPrivateAttrinLeftHandSide.

pred noSuperOrPrivateAttrInleftHandSide[p: Program, lhs:
LeftHandSide, class: ClassId]{
lhs in FieldAccess => lhs.pExp !in super &&
fieldIsNotPrivate[p, lhs.id_fieldInvoked, class]

For the second case, when the statement in the body of the method being moved is an
AssignmentExpression (line 6, Code 3.29), the predicate noSuperOrPrivateAttrinAssignment
(Code 3.31) should hold. In this predicate, since the left—hand side of an AssignmentExpression
(represented by the relation pExpressionLeft in this Alloy signature) is always a FieldAccess in
our OO model, the predicate noSuperOrPrivateAttrInLeftHandSide, just explained, is applied to
the pExpressionLeft of an AssignmentExpression, which appears in line 2, Code 3.31. See also
Figure 9 to remember these relationships. Yet regarding the AssignmentExpression (Code 3.31),
it is also necessary to avoid the super or private access on its right—hand side expression (repre-
sented by the relation pExpressionRight, accessed in lines 4 and 7, Code 3.31), which can be a
MethodInvocation or another FieldAccess. In the latter case, the predicate noSuperOrPrivateAt-
trinLeftHandSide (already explained) must hold (line 8). In case the relation pExpressionRight
is represented by a MethodInvocation, the predicate noSuperOrPrivateAttrInMethodlInvocation
(Code 3.32) should hold (line 5).

Code 3.31 Predicate noSuperOrPrivateAttrInAssignment.

pred noSuperOrPrivateAttrInAssignment [p: Program, ae:
AssignmentExpression,m: Method,class: ClassId]{
noSuperOrPrivateAttrInleftHandSide[p, ae.pExpressionleft,
class]

ae.pExpressionRight in MethodInvocation =>
noSuperOrPrivateAttrInMethodInvocation[p, ae.
pExpressionRight, m,class]

ae.pExpressionRight in FieldAccess =>
noSuperOrPrivateAttrInleftHandSide[p, ae.pExpressionRight, m,
class]
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Likewise the restriction in FieldAccess (lines 2 and 3, Code 3.30), it is necessary to
guarantee that the pExp relation of the MethodInvocation is not in the set of super instances
(expression mi.pExp !in super, line 3, Code 3.32) and that the method represented by the relation
methodlInvoked of the MethodInvocation does not have the private accessibility (call to the
predicate methodlsNotPrivate in line 3, Code 3.32). In addition, if there is a real parameter in
MethodlInvocation (expression #(mi.realParam) > 0 in line 4), and our OO model limits that a real
parameter of a MethodInvocation can be only a FieldAccess, then the application of the predicate
noSuperOrPrivateAttrinLeftHandSide must hold. Finally, for the case a MethodlInvocation
statement is inside the body of the method being moved (line 9, Code 3.29), the predicate
noSuperOrPrivateAttrInMethodInvocation (Code 3.32), just described, is expanded.

Code 3.32 Predicate noSuperOrPrivateAttrinMethodInvocation.

pred noSuperOrPrivateAttrInMethodInvocation[p: Program,mi:
MethodInvocation,m: Method,class: ClassId]{

mi.pExp 'in super && methodIsNotPrivate[p,mi.
id_methodInvoked, class]

# (mi.realParam) > 0 => noSuperOrPrivateAttrInLeftHandSide[p,
mi.realParam, class]

Lines 17 and 20 from Code 3.28 are an embedding of the provisos ((«+) (2) and (3)),
respectively, in Law 2. In the first case, predicate mIsNotDeclaredInAnySubclassOfTheClassIn-
Param (Code 3.33) states that, for all methods with the same signature of the method being moved,
mR, inside all classes on the right—hand side that are also B subtypes, then these methods are not
in the set of methods of these classes (line 9). In the second case, predicate methodIsNotPrivate

(Code 3.34) establishes that the method being moved cannot be private.

Code 3.33 Predicate that restricts a method from being declared in any subclass of the class passed as

parameter.

pred mIsNotDeclaredInAnySubclassOfTheClassInParam[b: ClassId,mR
Method, left, right: Program] {

let leftCds = left.classDeclarations,
rightCds= right.classDeclarations {

all someClass:{ClassId-b}, m:Method

(sameSignature[m,mR] && someClass in rightCds.univ &&
firstIsSubtypeOfTheSecondOneClass|[right, someClass,b]) =>
m !in someClass.rightCds.methods

}
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Code 3.34 Predicate that restricts a method from being private.

pred methodIsNotPrivate[meth: Method] {

mR.acc !in private_

AW N =

The remainder predicates in Code 3.28 are similar to the ones already explained in the
predicate lawlRL, Code 3.22. For instance, the predicate methodlsNotDeclaredInTheClass
(expanded in line 23, Code 3.28 and depicted in Code 3.35) is equivalent to the predicate
fieldlsNotDeclaredInTheClass (see line 16, Code 3.22).

In addition, predicate forbidsAccessToMethodM (expanded in line 26, Code 3.28 and
depicted in Code 3.36) is similar to the line 19, Code 3.22 and shown in Code 3.24. The only
difference in both cases is that the restriction is to a method instead of a field, as can be seen in
Codes 3.35 and 3.36.

Code 3.35 Predicate that restricts a method from being declared in the set of methods of a specific class,

passed as.
I|pred methodIsNotDeclaredInTheClass[mR: Method,cr: Class] {
2
3 no m’ :Method ‘nﬂ in (cr.methods) && m’.id = mR.id &&
4 # (m’ .param) = # (mR.param)
5|}
Code 3.36 Predicate that forbids the access from the classes of a specific context (left or right) to a
method passed as parameter.
l{pred forbidsAccessToMethodM[b,c: ClassId,mR: Method, right:
Program] {
2
3 let rightCds= right.classDeclarations {
4
5 all someClassId: ClassId,someClass: Class,m_: Method
6 (someClassId in rightCds.univ &&
7 someClass = someClassId.rightCds &&
8 m_ in someClass.methods) =>
9 accessToMethodMIsForbidden[m_,mR, someClass, someClassId, b, c,
right]
10 }
11{}

3.2.3 Transformation—Specific Model for Push Down Refactoring

We also created a model to represent the push down refactoring. We assume the same

specification in Law 2 but we include a common practice used by the developers. That is, suppose
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a scenario where, inside the body of the method to be pushed down, there is an access, through
the keyword this, to another method. After the method being pushed down, it is desirable that
this access is changed to the super keyword, to guarantee that the same method is invoked. In
this way, a behavioural problem is apparently avoided and the transformation application is not
rejected, hence giving some flexibility to the refactoring application. This is not possible to be
done in Law 2 because of the proviso («+) (1), that states, as already mentioned, that the method
can be pulled up or pushed down provided there is no access to super (or private) attributes in its
body.

Considering a transformation from the right— to the left—hand side (the case being
discussed, since it is a push down refactoring), this proviso does not interfere and can exist in
the main predicate since this is the access keyword inside the method body. Thus, the only
necessary change in the main predicate, Code 3.28, that represents Law 2, is the presence of the
predicate correspondenceBetweenMethods (see Code 3.37). As the body of the method being
moved changes, it is necessary to have two different methods in Alloy—one to represent the
method before and the other to represent the method after the transformarion, as mentioned in

the first paragraph of the Section 3.2.2.

Code 3.37 Predicate that does the correspondence between the methods before mR and after mL the

transformation.

pred correspondenceBetweenMethods [mR, mL:Method] {
mR.id = mL.id

(mL.param) = (mR.param)
(mL.return) = (mR.return)
mR.acc = mL.acc

correspondentMethodBodies [mR, mL]

The predicate correspondentMethodBodies is depicted in Code 3.38. Firstly, it estab-
lishes that the number of statements in each method body must be the same (line 2). Besides,
for each corresponding statement (the ones having the same index, lines 7 and 8), predicates
correspondingAssignment (line 11), correspondingMethodInvocation (line 14) and correspond-
ingFieldAccess (line 17) are used to do the correspondence for all possible statements in our OO

model, respectively, AssignmentExpression, MethodInvocation or FieldAccess.

Code 3.38 Predicate that does the correspondence between method bodies involved in the transformation.

pred correspondentMethodBodies [mRight, mLeft :Method] {

# (mRight .body) = # (mLeft.body)
let
indexes = (mRight.body) .inds
{

all i: indexes

let stRight = (mRight.body) [1],

stLeft = (mLeft.body) [1i]
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{

stRight in AssignmentExpression => (stLeft in
AssignmentExpression &&

correspondingAssignment [stRight, stLeft])

stRight in MethodInvocation => (stLeft in
MethodInvocation &é&
correspondingMethodInvocation[stRight, stLeft])

stRight in FieldAccess => (stLeft in FieldAccess &&
correspondingFieldAccess[stRight, stLeft])
}

The predicate correspondingAssignment, depicted in Code 3.39, does the correspondence
between the left—hand side expressions of the Assignment’s statements as well as their right ones.
In the former one, the only possibility in our OO model is to be a FieldAccess expression so the
predicate correspondingFieldAccess, depicted in Code 3.41, is used. For the latter, there are two
possibilities in our OO model: doing the correspondence of MethodInvocation’s statements (line
5, Code 3.39) through the predicate correspondingMethodInvocation (see Code 3.40) or saying
that if one is of the type LiteralValue, so is the other (line 7, Code 3.39).

Code 3.39 Predicate that does the correspondence between 2 AssignmentExpression statements.

pred correspondingAssignment [ass, ass2:AssignmentExpression] {
correspondingFieldAccess|[ass.pExpressionleft, ass2.
pExpressionLeft]

ass.pExpressionRight in MethodInvocation =>
correspondingMethodInvocation[ass.pExpressionRight, ass?2.
pExpressionRight]

ass.pExpressionRight in LiteralValue => ass2.
pExpressionRight in LiteralValue

In the predicate correspondingMethodInvocation, Code 3.40, the relation pExp of the
MethodInvocation (corresponding to a statement of the method being moved, parameter mi, line
2) is checked. It must not be a super expression (line 6) not to cause behavioural problems
(after the method is moved) and to be compliant with the proviso («+) (1), Law 2. In addition,
if it is also not a this expression, then the correspondent statements can be the same (line 8).
On the other hand, if it is a this expression, then the other correspondent statement must also
be a MethodInvocation but whose pExp relation is a super expression (line 2), according to

the practice adopted by the developers in this kind of refactoring. The other relations such as
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id_methodInvoked and realParam must be the same (lines 3 and 4).

Code 3.40 Predicate that does the correspondence between 2 MethodInvocation statements.

pred correspondingMethodInvocation[mi,mi2:MethodInvocation] {
mi.pExp in this_ => ((mi != mi2) && mi2.pExp in super &&
(mi.id_methodInvoked = mi2.id_methodInvoked) &&
mi.realParam = mi2.realParam)

mi.pExp !'in super

mi.pExp !in this_ => (mi = miZ2)

Likewise the predicate correspondingMethodInvocation, Code 3.40, predicate corre-
spondingFieldAccess follows exactly the same reasoning as can be seen in Code 3.41. The only
difference is the appearance of the relation id_fieldInvoked (from type FieldAccess) instead of

the relations id_methodInvoked and realParam (from type MethodInvocation).

Code 3.41 Predicate that does the correspondence between 2 FieldAccess statements.

pred correspondingFieldAccess[ae,ae2: FieldAccess] {
ae.pExp in this_ => ((ae != ae2) && ae2.pExp in super &&
ae.id_fieldInvoked = ae2.id_fieldInvoked)

ae.pExp !in super

ae.pExp !in this_ => (ae = ae2)

3.2.4 Transformation—Specific Model for Pull Up/Push Down Method Rule in (CORNELIO,
2004)

The Alloy predicates of this rule in our model (Pull Up/Push Down Method Rule in
(CORNELIO, 2004)) follow the same reasoning compared to the ones that represent Law 2,
explained in Section 3.2.2. The only difference is that now we have two A subclasses instead of
only one (see Law 2). However, as long as the structural template changed, even if slightly (from

the one in Law 2), we have to adapt all these lines accordingly.

Code 3.42 Predicate that captures the transformation from the left— to the right-hand side direction in
Pull Up/Push Down Method Rule in (CORNELIO, 2004) (see Section 2.1.3).

pred ruled44lR[a,b,c: ClassId,m: Method, left,right: Program] {
a !'=5>
b !'= c

let leftCds = left.classDeclarations,
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rightCds= right.classDeclarations,
al = a.leftCds,

ar = a.rightCds,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// RS description
m in (ar.methods)
br.extend = a
cr.extend = a

// proviso (<-=>) (1)
noSuperOrPrivateAttributesInM|[right,mR, b]

// proviso (—>) (1)
methodIsNotDeclaredInTheClass[m, ar]

// proviso (->) (2)

mIsNotDeclaredInAnySuperClassOfTheClassInParaml[a,m,

right]

// SS description
bl.extend = a
cl.extend = a
m in (bl.methods)
m in (cl.methods)

// equivalence between left and right-hand sides
al.extend = ar.extend
leftCds = rightCds ++ {a->al} ++ {b->bl} ++ {c—>cl}

al.fields = ar.fields
bl.fields = br.fields
cl.fields = cr.fields
al.methods = ar.methods - m
bl.methods — m = br.methods
cl.methods - m = cr.methods

a.~((left.classDeclarations) .extend) a.~((right.
classDeclarations) .extend)
b.~((left.classDeclarations) .extend) = b.~((right.

classDeclarations) .extend)
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49 c.~((left.classDeclarations) .extend) = c.~((right.
classDeclarations) .extend)

50 }

51)}

In addition, the predicate noSuperOrPrivateAttributeslnM, already explained in Sec-
tion 3.2.2, and present in line 20, Code 3.42, is also applied as an embedding of the proviso ((<>)
(1), also in Law 2). Besides, the predicate methodlsNotDeclaredInTheClass, also explained
earlier, needs to be applied for class ar (see line 23), as stated in proviso (—) (1).

The predicate mIsNotDeclaredInAnySuperClassOfTheClassInParam, depicted in Code 3.43,
is the only one not explained so far in any of the specifications presented. It is an embedding of
the proviso (—) (2) and states that the method m is not declared in any superclass of the class
passed as parameter (in this case, any A superclass). Although not mentioned in Pull Up/Push
Down Method Rule in (CORNELIO, 2004) and to do an adaptation for Java language (since the
language used in (CORNELIO, 2004) generates a compilation error if the method declared in
hierarchical level has same identifier but different parameters), we assume that not only method
m must not exist in A superclasses but also any other method with the same method m signature

(same identifier and formal parameters—Iine 6, Code 3.43).

Code 3.43 Predicate that restricts a method from being declared in any super class of the class passed as

parameter.
l|pred mIsNotDeclaredInAnySuperClassOfTheClassInParam[m: ClassId,
methMoved: Method,p: Program] {
2
3 let pCds = p.classbDeclarations {
4
5 all someClass:{ClassId-m}, meth: Method
6 (sameSignature [meth, methMoved] &&
7 someClass in pCds.univ &&
8 firstIsSubtypeOfTheSecondOneClass[p,m, someClass]) =>
9 methMoved !in someClass.pCds.methods
10 }
11}}

With regard to the transformation from the right— to the left—-hand side direction, the
main Alloy predicate to represent this transformation is very similar to the one that represents
Law 2 (considering the same direction), as can be seen in Code 3.28. The difference is that the
requirement for the method not to be private does not exist in Pull Up/Push Down Method Rule
in (CORNELIO, 2004) specification. In addition, the predicate methodlsNotDeclaredInTheClass

needs to be applied twice for classes br and cr, lines 23 and 24, Code 3.44, as stated in proviso

(<) (.

Code 3.44 Predicate that captures Pull Up/Push Down Method Rule in (CORNELIO, 2004) (see Sec-
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pred ruled44RL[a,b,c: ClassId,m: Method, left,right: Program] {
a !'=Db
b !'=c
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let leftCds = left.classDeclarations,

rightCds= right.classDeclarations,
al = a.leftCds,

ar = a.rightCds,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// right description
m in (ar.methods)

br.extend = a
cr.extend = a
// proviso (<->) (1)

noSuperOrPrivateAttributesInM|[right, mR, b]

// proviso (<-) (1)
methodIsNotDeclaredInTheClass[m, br]
methodIsNotDeclaredInTheClass[m, cr]

// provisos (<=) (2) (3)
forbidsAccessToMethodM[b, ¢, m, right]

//left description
bl.extend = a
cl.extend a

m in (bl.methods)
m in (cl.methods)

// equivalence between the left- and the right-hand

sides
al.extend = ar.extend

leftCds = rightCds ++ {a->al} ++ {b->bl} ++ {c->cl}
al.fields = ar.fields

bl.fields = br.fields

cl.fields = cr.fields

al.methods = ar.methods — m

bl.methods — m = br.methods
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cl.methods — m = cr.methods
a.~((left.classDeclarations) .extend) = a.~((right.
classDeclarations) .extend)
b.~((left.classDeclarations) .extend) = b.~((right.
classDeclarations) .extend)
c.~((left.classDeclarations) .extend) = c.~((right.

classDeclarations) .extend)

In addition, the predicate forbidsAccessToMethodM (line 27) follows the same pattern
as the same predicate expanded in line 26, Code 3.28. Compare Codes 3.36 with 3.45 and
the expanded predicates in each one—the only difference is the existence of the predicate in
Code 3.47, that we adapt to what is required by the proviso («—) (2) and (3). The parameters b
and c (type Classld) represent in this case the A subclasses shown in Pull Up/Push Down Method
Rule in (CORNELIO, 2004) specification (Section 2.1.3), different from the parameters b and
¢ in Code 3.26, which represent the classes B and C in Law 2. This predicate, as we already
described in Section 3.2.1, works similarly to the predicate forbidAccessToMethodM, used for
Law 2. The difference is that we have to replace the FieldAccess for MethodlInvocation type

along with its corresponding relations.

Code 3.45 Predicate forbidsAccessToMethodM.

pred forbidsAccessToMethodM[b,c: ClassId,m: Method, right:
Program] {

let rightCds= right.classDeclarations {

all someClassId: ClassId, someClass: Class, m_: Method

(someClassId in rightCds.univ &&

someClass = someClassId.rightCds &&

m_ in someClass.methods) =>

accessToMethodMIsForbidden[m_,m, someClass, someClassId, b, c,
right]

Code 3.46 Predicate accessToMethodMIsForbidden.

pred accessToMethodMIsForbidden[m_,m: Method, someClass: Class,
someClassId,b,c: ClassId,p: Program] {

all st: Statement ‘
st in univ. (m_.body) =>
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((st in AssignmentExpression && st.pExpressionRight in
MethodInvocation) =>

forbidAccessToMethodM[p, st .pExpressionRight, m, someClass,
someClassId,b,c])

&&

(st in MethodInvocation => forbidAccessToMethodM[p, st,m,
someClass, someClassId,b,c])

Besides, due to the difference between Law 2 and Rule 2.1 structural templates and in the
way the provisos (<) (2) and (<) (2) and (3), respectively, are described in each specification,
observe that there is also a slightly difference between the respective forbidAccessToMethodM
predicates that represent them. Actually the provisos mean the same thing, but we tried to write
the predicates exactly the way they are described. Thus, in Code 3.47, it is ensured that the
type representing the keyword access (someClass) from the MethodInvocation mi is a B or C
subtype (lines 6 and 7, 11 and 12, 16 and 17), exactly as described in provisos («+) (2) and (3).
In addition, there is a restriction to the keyword access super in calls to a method m. This is
shown in line 4, Code 3.47.

Code 3.47 Predicate forbidAccessToMethodM.

pred forbidAccessToMethodM[p: Program,mi’: MethodInvocation,m:
Method, someClass: Class,someClassId,b,c: ClassId]{

//proviso (<-=) (2)

mi’.id_methodInvoked = m.id && mi’ .pExp in super =>
(someClassId != b && someClassId != c &&
(firstIsSubtypeOfTheSecondOneClass[p, someClass.extend, b] H
firstIsSubtypeOfTheSecondOneClass[p, someClass.extend,c]))

//proviso (<-=) (3)

mi’ .id_methodInvoked = m.id && mi’ .pExp in newCreator =>
(firstIsSubtypeOfTheSecondOneClass[p,mi’ .pExp.id_cf,b] H
firstIsSubtypeOfTheSecondOneClass[p,mi’ .pExp.id_cf,c])

//proviso (<-) (3)

mi’ .pExp in this_ && mi’.id_methodInvoked = m.id =>
(firstIsSubtypeOfTheSecondOneClass|[p, someClassId, b] H
firstIsSubtypeOfTheSecondOneClass [p, someClassId,c])

3.2.5 Transformation—Specific Model for Rule 3

In this section, we describe the transformation—specific model for Rule 3, mentioned in

Section 2.1.4. Differently from the laws, rules in rCOS only have one direction, since they are a
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refinement and we assume this direction is from the left— to the right—hand side, if we consider
the directions adopted by algebraic laws. In Rule 3 specification, we have predicates that did
not appear in the earlier specifications and this specification owns a higher degree of difficulty,
compared to the others explained so far. This occurs because of the many replacements necessary
to be done.

The parameters m and n refers to the ids of the M and N classes in the specification
template, respectively, while mBefore and mAfter refers to the method m before and after the
application of the transformation, respectively. Although they are the same method, they have
different chronological time, and need to be differentiated in our Alloy model due to the change of
its internal context as the rule determines substitutions in its body. The parameter f corresponds
to the field b (of type N) in the template.

Code 3.48 Predicate that captures the refinement described in Rule 3.

pred rule3LR[m,n: ClassId, mBefore,mAfter: Method, f: Field,
left, right: Program] {

let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
ml = m.leftCds,
mr = m.rightCds,
nl = n.leftCds,
nr = n.rightCds{

// SS description

mBefore in (ml.methods)
mBefore !in (mr.methods)
mBefore !in (nl.methods)
mBefore !in (nr.methods)

// premise3LR

f in ml.fields && f.type.classIdentifier = n

methodOnlyRefersToAttrOrMethodsThroughB [mBefore, £, ml,
left]

mIsOnlyUsedLocallyInM[m,ml, left, mBefore]
// RS description

mAfter in (nr.methods)

mAfter !in (nl.methods)

mAfter !in (mr.methods)

nl.extend =

[
3

nr.extend

Il
3

// ops
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// correspondenceBetween ml and mr
correspondenceBetweenMlAndMr [left, right, ml, mr, m, mBefore,
mAfter, f]

// replacements inside the body
equalsMethodsRule3[left,n, mBefore,mAfter, £.1id]

//equivalence between left and right-hand sides
leftCds = rightCds ++ {m -> ml} ++ {n -> nl}

nl.fields = nr.fields
ml.fields = mr.fields

nl.methods = nr.methods - mAfter

//classes equivalence

nl.extend = nr.extend

n.~((left.classDeclarations) .extend) = n.~((right.
classDeclarations) .extend)

ml.extend = mr.extend

m.~((left.classDeclarations) .extend) = m.~((right.

classDeclarations) .extend)

Concerning the equivalence of the methods mr and ml, and nr and nl, we cannot do
in Rule 3 specification the same as we have done in Law 2 specification, lines 38 and 39 in
Code 3.28, that is, simply establish that the set of methods in the left—hand side is the same as
the ones in the right—hand side except for the method being moved, which is in the left— but not
in the right-hand side. The reason is because in Rule 3 we have the ops substitution that says:
for every access to m() in M, which is the method being moved to class N, we have to change
the access for b.m(). Thus, we cannot do an equivalence in classes that represent M such as
ml.methods - mBefore = mr.methods + mAfter. In other words, it is necessary to be careful in
the correspondence of classes before and after the transformation, since every method, where
the replacement defined in ops is necessary, needs to change its internal body. In this case, we
have different but correspondent methods (with same id and parameters but different bodies).
The other methods, where the replacement is not necessary, are equals, with only a different
context (left or right), which is passed as a predicate parameter. Thus, not to violate what the
substitution determines, lines 10 to 13 and 22 to 24, Code 3.48, establishes where methods
mBefore and mAfter exist before and after the transformation. Besides, we have the predicate
correspondenceBetweenMIAndMr (depicted in Code 3.49 and present in line 31) to guarantee
that the substitutions will be done correctly, according to the Rule 3 specification in Section 2.1.4.
However, as a substitution is not defined for the class N, we can adopt the pattern followed in

the earlier specifications, that is shown in line 41. The only difference for this class after the
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transformation is the addition of the method m() in its set of methods.

Figure 21 shows a kind of call graph to ease the visualization and understanding of
the predicates relationships (which ones are present in the others). The ones underlined repre-
sent functions used in the predicates. For instance, we have some auxiliary functions such as
methodsThatFitTheConditions and methodsThatFitTheConditionsInRight in predicate correspon-
denceBetweenMIAndMr.

Code 3.49 Predicate that establishes the correspondence among the methods in class M before and after

the transformation.

pred correspondenceBetweenMlAndMr [left,right: Program, ml,mr:
Class, m: ClassId, mBefore,mAfter: Method, f: Field]{

all meth:{Method - mBefore}

(meth in methodsThatFitTheConditions[left,mBefore,ml]) =>

therelIsACorrespondingMethodInMr [right, left, m,meth, mBefore, £
]

all meth:{Method - mBefore}
(meth !in methodsThatFitTheConditions[left,mBefore,ml]) =>
meth in mr.methods

all meth:{Method - mAfter}

(meth in methodsThatFitTheConditionsInRight[right, m, mAfter,
£f1) =>

thereIsACorrespondingMethodInMl [left, right, m,meth, mAfter, f]

all meth:{Method - mAfter}

(meth !in methodsThatFitTheConditionsInRight[right,m, mAfter,
£f1) =>

meth in ml.methods

The first function, depicted in Code 3.50, returns the set of methods in a specific class
(see line 2, Code 3.50)—in this case, it is the M left-hand side class or simply m!/ (see third
parameter in line 5, Code 3.49)—that owns a call to the method being moved (method mBefore).
The method being moved is excluded from the set returned by the function, as can be seen in
line 4, Code 3.50. This occurs due to the definition of ops substitution in Figure 2—observe that

ops excludes method m().

Code 3.50 Function that returns the set of methods in mClass (passed as parameter) that owns a call to

the method being moved.

1| fun methodsThatFitTheConditions[p: Program, mBefore: Method,

2
3

mClass: Class]: set Method {
{meth:Method,’ meth in mClass.methods &&
methodFitsTheConditions [p,meth, mBefore,mClass] &&
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Figure 21 Call graph of the main predicates and functions used in the predicate rule3LR.
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meth != mBefore}

50}

10

The predicate methodFitsTheConditions in Code 3.51 is responsible for verifying if there
is any statement (line 3) from the method being analysing which owns a call to the method being
moved. For doing this, it uses an auxiliary predicate stmtCallsTheMethodBeingMoved (see lines
4 and 7), which is depicted in Code 3.52.

Code 3.51 Predicate that ensures that a method passed as parameter owns a call to the method being

moved

pred methodFitsTheConditions[p: Program, m,mBefore: Method,
mClass: Class]{

some st:Statement ‘ st in (m.body) .elems &&
(st in MethodInvocation => stmtCallsTheMethodBeingMovedl|p,
st,mBefore,mClass]) &&
(st in AssignmentExpression =>
(st.pExpressionRight in MethodInvocation &&
stmtCallsTheMethodBeingMoved|[p, st.pExpressionRight, mBefore
,mClass]

There, it is checked at first if the identifier of the method being invoked is the same
as the one of the method being moved (lines 13, Code 3.52). Secondly, in the case of the
MethodInvocation being analysed owns a real parameter (see line 2), it is checked if the type of
this real parameter is the same as the formal parameter type of the method being moved. There
are two possibilities: both are primitive (line 8) or one is subtype of the other (lines 9 and 10).
The real parameter (along with its type) is retrieved through the function whichFieldls (line 5),
depicted in Code 3.53, which returns the first field in the class hierarchy (the class is passed as
parameter) that owns a specific identifier.
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Code 3.52 Predicate that ensures that a MethodInvocation, passed as parameter, owns a call to the method

being moved

pred stmtCallsTheMethodBeingMoved|[p: Program, stmt:
MethodInvocation,m: Method,c: Class] {
( (#stmt.realParam > 0) =>
{
let
field = whichFieldIs[p, stmt.realParam.id_fieldInvoked, c]
{
fstmt.realParam = #m.param
((#stmt.realParam = 1 && field.type in Long_ && m.param.
type in Long_ ) H
(#stmt.realParam = 1 && field.type in ClassType &&
firstIsSubtypeOfTheSecondOneClass|[p, field.type.
classIdentifier,m.param.type.classIdentifier])

}) && (stmt.id _methodInvoked = m.id)

Code 3.53 Function that returns the first field in the class hierarchy (the class is passed as parameter) that

owns a specific identifier.

fun whichFieldIs[p: Program, fId: FieldId,c: Class]: Field{
{f:Field ‘ f in c.* (extend. (p.classDeclarations)).fields &&
f.id = fId}

Hence, the predicate correspondenceBetweenMIAndMr ensures that, for every method in
class ml that owns a call to the method being moved (line 4, Code 3.49), there is a corresponding
method, in the class mr, that will follow the substitution rule ops defined in Figure 2 (see line 5,
Code 3.49). This is guaranteed by the predicate therelsACorrespondingMethodInMr, depicted in
Code 3.54. It ensures the existence of a method in class mr (lines 2 and 3) correspondent to the
one that calls the method being moved, according to the requirement of the ops substitution. This
method is different from the one moved to class N (line 4) and it is not in class m/ (line 5). In
addition, the correspondence of the methods is done by the predicate correspondingRule3Methods

(line 6) whose code is shown in Code 3.55.

Code 3.54 Predicate that ensures the existence of a method correspondent to the one that calls the method

being moved, according to the requirement of the ops substitution.

pred therelIsACorrespondingMethodInMr [p,p’: Program, m: ClassId,
meth, moved: Method, f: Field]{
one m’ :Method
m’ in (m. (p.classDeclarations)) .methods &&
m’ !'= meth &&
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m’ !in (m. (p’ .classDeclarations)) .methods &&
correspondingRule3Methods [p, meth,m’ ,moved, f.id, m. (p.
classDeclarations) ]

The predicate correspondingRule3Methods establishes that the identifiers of the corre-
spondent methods are the same (line 2) as well as their parameters (line 3), return types (line 4)
and accessibility modifiers (line 5). In addition, the correspondence of the method bodies is done

by the predicate correspondentRule3MethodBodies (line 6) whose code is shown in Code 3.56.

Code 3.55 Predicate that do the correspondence defined in ops substitution.

pred correspondingRule3Methods[p: Program, mR,mL,moved: Method,
varN: FieldId, c: Class]{

mR.id = mL.id

(mL.param) = (mR.param)
(mL.return) = (mR.return)
mR.acc = mL.acc

correspondentRule3MethodBodies [p, mR, mL, moved, varN, c]

In predicate correspondentRule3MethodBodies (Code 3.56), it is guaranteed that the
number of statements in each body is the same (line 2). Besides, as a method body is defined as
a sequence of Statement (see Section 3.1), each corresponding statement (in the left— and the
right-hand side) is compared one by one, through its corresponding index, which is the same for
both (lines 6 and 7). In this way, the correspondence defined in the ops substitution can be done
with the predicates stmtCallsTheMethodBeingMoved and stmtWasReplaced as auxiliaries. The
first one was already explained (see Code 3.52) whilst the other effectively do the substitution.

In this replacement definition (see the ops substitution), we assume that in every place
where there exists a call to the method m(), regardless the target, we have to replace m() for
b.m(). Thus, if we have a call such as this.m(), we have to replace for this.b.m(), if the call is
newMSubtype().m(), we have to replace for newMSubtype().b.m(), and so forth. If the statement
of a body is a MethodInvocation (lines 9 and 15), so is the other statement (lines 11 and 17). In
the first case (line 9), if besides being a MethodInvocation, it owns a call to the method being
moved to class N (m() corresponds to the parameter moved() method in line 10), the predicate
stmtWasReplaced would be applied (line 12) to replace the pExp (type PrimaryExpression) from
the MethodInvocation in line 9 by another pExp (for MethodInvocation in line 11)—which would
be a FieldAccess whose pExp relation is the same as the one in the MethodInvocation in line 9.
In addition, its id_fieldInvoked relation is the identifier of the field b in class M.

Code 3.56 Predicate that do the correspondence, defined in ops substitution, between the bodies of the

methods.

l{pred correspondentRule3MethodBodies|[p: Program,mRight,mLeft,

moved: Method,varN: FieldId,c: Class]{
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# (mMRight.body) = # (mLeft.body)

let indexes = (mRight.body) .inds

{

all i: indexes
let stRight = (mRight.body) [1],
stLeft = (mLeft.body) [1]
{
(stRight in MethodInvocation &&
stmtCallsTheMethodBeingMoved[p, stRight, moved, c])
=>

(stLeft in MethodInvocation &é&
stmtWasReplaced[stLeft, varN, moved] &&
stRight.realParam = stlLeft.realParam)

(stRight in MethodInvocation &&

!'stmtCallsTheMethodBeingMoved[p, stRight,moved, c])
=>

(stLeft in MethodInvocation && stLeft = stRight)

(stRight in AssignmentExpression &é&
stRight .pExpressionRight in MethodInvocation &é&
!'stmtCallsTheMethodBeingMoved[p, stRight.

pExpressionRight,moved,c]) =>
(stLeft in AssignmentExpression && stlLeft =
stRight)

(stRight in AssignmentExpression &&

stRight .pExpressionRight in MethodInvocation &&

stmtCallsTheMethodBeingMoved[p, stRight.
pExpressionRight, moved,c]) =>

(stLeft in AssignmentExpression &&

stLeft.pExpressionRight in MethodInvocation &&

stmtWasReplaced[stLeft.pExpressionRight, varN,
moved] &&

stRight.realParam = stLeft.realParam)

}

In this way, the pExp relation of a MethodInvocation needs to be also a FieldAccess.
Thus a FieldAccess type needs to be a PrimaryExpression subsignature, in addition to this,
super and newCreator types. The problem is, if we do this, we generate a recursive situation
in FieldAccess type, since this type also owns a pExp relation of type PrimaryExpression. As
mentioned in Section 3.1.1, it is difficult to deal with recursive predicates in Alloy. Because

of this, the predicate stmtWasReplaced in Code 3.57 is not correct (or complete) since it does
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not consider the PrimaryExpression (in pExp relation) of the MethodInvocation’s in class M.
The pExp relation from these statements are discarded and the new MethodInvocation formed
(see Code 3.56, lines 12 and 29—this last one is the right expression of an Assignment) has a
pExp relation of ExpressionName type (line 2, Code 3.57). Its name relation is the field b in
Rule 3 (it corresponds to the field f in line 2). Finally, the identifier of the method in this new
MethodInvocation is the same as the one in the earlier MethodInvocation which in turn is the
identifier of the method moved to class N (line 3).

Hence, our specification has a limitation and the substitution defined in ops substitution
in Rule 3 (represented in our model by the predicate stmtWasReplaced) is not done completely.
The expression in the pExp relation (from the statement having a call to the method being
moved) should be pExp.b (in the corresponding new statement in class M) instead of only b.
In other words, the first pExp relation is discarded. As already explained, for being pExp.b,
as this expression corresponds to a FieldAccess, it would be necessary that a FieldAccess
was a possibility for a PrimaryExpression (which in turn is a type of the relation pExp in
MethodlInvocation). But this is not possible since this would generate a recursion scenario in the
FieldAccess type since it also owns a PrimaryExpression in one of its relation. Actually, it is an
Alloy limitation—its difficulty in dealing with recursive calls, as we already discussed in Section
3.1.1. Although the recursion would be caused in FieldAccess type, as the model is unique for all
types, the execution of the substitution ops in Rule 3 is compromised. One can think the solution
is to remove the FieldAccess type but it does not make sense doing this for Rule 3 since all the

substitutions defined involves a field (b) and consequently the access to it.

Code 3.57 Predicate that do the replacement defined in ops substitution, in the case of a MethodInvocation.

pred stmtWasReplaced[st: MethodInvocation, f: FieldId,moved:
Method] {
st.pExp in ExpressionName && st.pExp.name=f &&
st.id_methodInvoked = moved.id

As a consequence, the correspondentRule3MethodBodies predicate (see Code 3.56) is
not completely performed, because of the part where the ops substitution (in Rule 3) would
be performed—mainly through the expansion of the stmtWasReplaced predicate (lines 12 and
29). The remaining lines (lines 15 to 22) cover the cases where there is no invocation for the
method being moved (to classN) inside the methods of class M. In other words, the cases not
contemplated by the ops substitution in Rule 3.

Returning to the main predicate, named predicateRule3LR, in Code 3.48, line 16 estab-
lishes that the location of the field f is in class ml/ and its type is N—remember the field f is
equivalent to the field b in Figure 2. By following our interpretation of the Rule 3, we assume
that the sentence "’If ¢ only refers to an attribute b.x of N and a method b.n() of b for theoretical
neatness” implies that there is no access from the body ¢ (see Figure 2) to attributes or methods

through an expression different from b.x or b.n(), where n() is a method from class N. Hence,
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the predicate methodOnlyRefersToAttrOrMethodsThroughB, present in line 17, Code 3.48, and

depicted in Code 3.58, represents this sentence.

Code 3.58 Predicate methodOnlyRefersToAttrOrMethodsThroughB.

pred methodOnlyRefersToAttrOrMethodsThroughB [method: Method, b:
Field, correspondingMClass: Class, p: Program] ({
all st:Statement }
st in univ. (method.body) => (st in AssignmentExpression =>
lhsOnlyRefersToFieldsThroughB[p, correspondingMClass, st.
pExpressionlLeft,b]) &&

(st in AssignmentExpression &&

st.pExpressionRight in MethodInvocation =>

methodOnlyRefersToMethodsThroughB [p, correspondingMClass, st.
pExpressionRight,b]) &&

(st in MethodInvocation =>
methodOnlyRefersToMethodsThroughB[p, correspondingMClass,
st,bl)

As a statement in our OO model can be an AssignmentExpression or a MethodInvocation,
then the predicate in Code 3.58 ensures that, in dealing with an AssignmentExpression (line 3),
(1) its pExpressionLeft (type LeftHandSideExpression, abbreviation lhs) only accesses a field in
N through the b attribute (see call to the lhsOnlyRefersToFieldsThroughB predicate in line 4) and
(2) its pExpressionRight, which can only be a MethodInvocation (line 7), only accesses a method
in N through the b attribute (see call to the methodOnlyRefersToMethodsThroughB predicate in
line 8). Finally, if the statement in the body is a MethodInvocation itself, then the same predicate

just mentioned can be used (line 10).

The predicates lhsOnlyRefersToFieldsThroughB and methodOnlyRefersToMethodsThroughB

are very simple as depicted in Code 3.59 and Code 3.58, respectively. In the former one, it is en-
sured that the pExpressionLeft of the AssignmentExpression should be a FieldAccess whose pExp
relation is a ExpressionName (line 3) which in turn has a relation name correspondent to the id
of the attribute b (line 4, Code 3.59)—remember that the type of the relation pExpressionLeft of
an AssignmentExpression in our model can only be a FieldAccess. In the latter case, it is ensured
the same for the pExp relation but now considering that this relation is of a MethodInvocation
type (line 3, Code 3.60). In addition, as the real parameter of a MethodInvocation can be a
FieldAccess, then in the case a real parameter exists (line 5, Code 3.60), we apply the predicate
lhsOnlyRefersToFieldsThroughB again but now using this real parameter as parameter of the

predicate (line 6).

Code 3.59 Predicate [hsOnlyRefersToFieldsThroughB.
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pred lhsOnlyRefersToFieldsThroughB[p: Program,
correspondingMClass: Class, lhs: LeftHandSide, b: Field] {

lhs in FieldAccess && lhs.pExp in ExpressionName &&
lhs.pExp.name = b.id

Code 3.60 Predicate methodOnlyRefersToMethodsThroughB.

pred methodOnlyRefersToMethodsThroughB[p: Program,
correspondingMClass: Class, mi’: MethodInvocation, b: Field]

{
mi’ .pExp 1in ExpressionName && mi’ .pExp.name = b.id
#(mi’ .realParam) = 1 =>

lhsOnlyRefersToFieldsThroughB[p, correspondingMClass, mi’ .
realParam, b]

Because of the affirmative “where m is only used locally in M in Rule 3 specification,
we have the predicate mlsOnlyUsedLocallyInM (see line 19, Code 3.48) whose definition is in
Code 3.61. It is very similar to the predicates forbidsAccessToFieldF (see line 19, Code 3.22)
and forbidsAccessToMethodM (see line 26, Code 3.28). The main difference is that in the case
of the predicate mIsOnlyUsedLocallyInM, the restriction in the access to the method is for all the
classes in the left context, except for the class M, whilst in the other cases the restriction is for all

the classes in the correspondent context.

Code 3.61 Predicate that restricts method m() is only used in class M.

pred mIsOnlyUsedLocallyInM[m: ClassId,ml: Class,left: Program,
mBefore: Method] {

let leftCds = left.classDeclarations

{

all someClassId:{ClassId-m},someClass:{Class-ml},m_:Method
(someClassId in leftCds.univ &&

someClass = someClassId.leftCds &&

m_ in someClass.methods && m_ != mBefore) =>
accessToMethodMIsForbidden[m_, mBefore]

}

By following the description of the predicate rule3LR, in Code 3.48, lines 26 and 27 only
establishes that class M is in the extend relation of class N. The predicate equalsMethodsRule3,

line 34, performs the substitutions in the body of method m() being moved, as established in the
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second substitution rule in Rule 3 specification (Figure 2). It is shown in Code 3.62 and is very
similar to the predicate correspondingRule3Methods and likewise establishes that the identifiers
of the corresponding methods are the same (line 2) as well as their parameters (line 3), return
types (line 4) and accessibility modifiers (line 5). In addition, the correspondence of the method
bodies is done by the predicate correspondentMethodBodiesRule3 (line 6). In this case, only the
body of the method being moved is taken into account (the one from the left— and right-hand
side), differently from the substitution done by the predicate correspondentRule3MethodBodies
(Code 3.56), already discussed, which is applied for every method body where exists a call to

the method being moved.

Code 3.62 Predicate that establishes the equality of the method being moved, before and after the

transformation, in Rule 3 specification.

pred equalsMethodsRule3[p: Program, n: ClassId, mR,mL: Method,
varN: FieldId] {

mR.id = mL.id
(mL.param) = (mR.param)
(mL.return) = (mR.return)

mR.acc = mL.acc
correspondentMethodBodiesRule3 [p, n, mR, mL, varN]

With regard to the predicate correspondentMethodBodiesRule3 (see Code 3.63), we
assume that the expressions that will be replaced are of type FieldAccess and MethodInvo-
cation (respectively, in the case of b.x and b.n(), see Figure 2). Thus, the replacements can
be done without major problems. The statements in each method body are compared one by
one likewise the correspondentRule3MethodBodies predicate (Code 3.56), already explained.
Hence, if we have an AssignmentExpression, as a statement of the m() method body in one
side, the other statement in the m() method body of the other side (corresponding to the same
index), is also an AssignmentExpression (lines 11 and 15). The same occurs for the Method-
Invocation statements (lines 19 and 23). The noCorrespondingFieldAccessMethodRule3 and
noCorrespondingMethodInvocationMethodRule3 predicates, used as auxiliaries in the predicate
correspondentRule3MethodBodies, ensures that the pExp relation of these both statements do
not suit in the pattern previewed by the second substitution rule in Figure 2, as depicted in
Codes 3.64 and 3.65. Hence, the negative of these predicates mean the expression suits the rule.
Thus, if this is the case (lines 12 and 24), the predicates correspondingAssignmentMethodRule3
(Code 3.66) and correspondingMethodInvocationRule3 (Code 3.68) are used to do the correspon-
dence, according to the substitution rule, between the correspondent AssignmentExpression and

MethodInvocation, respectively.

Code 3.63 Predicate that establishes the equality of the bodies of the methods mLeft and mRight, which

represent the method being moved, before and after the transformation, respectively.
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pred correspondentMethodBodiesRule3[p: Program, n: ClassId,
mRight, mLeft: Method, wvarN: FieldId] {

# (mMRight.body) = # (mLeft.body)
let
indexes = (mRight.body) .inds

{

all i: indexes
let stRight = (mRight.body) [i],
stLeft = (mLeft.body) [1]

stRight in AssignmentExpression =>

stLeft in AssignmentExpression &&

(!noCorrespondingFieldAccessMethodRule3 [stRight.
pExpressionlLeft, varN] =>
correspondingAssignmentMethodRule3 [p, n, stRight, stlLeft,
varN])

stRight in AssignmentExpression =>

stLeft in AssignmentExpression &&

(noCorrespondingFieldAccessMethodRule3 [stRight.
pExpressionLeft,varN] => (stLeft=stRight))

stRight in MethodInvocation =>

stLeft in MethodInvocation &é&

(noCorrespondingMethodInvocationMethodRule3 [p, n, stRight,
stLeft,varN] => (stLeft=stRight))

stRight in MethodInvocation =>

stLeft in MethodInvocation &é&

(!noCorrespondingMethodInvocationMethodRule3[p, n, stRight,
stLeft,varN] =>
correspondingMethodInvocationMethodRule3 [p, n, stRight,
stLeft,varN])

Code 3.64 Predicate that ensures that the FieldAccess, passed as parameter, does not suit in the pattern

previewed by the second substitution rule in Figure 2.

pred noCorrespondingFieldAccessMethodRule3 [ae: FieldAccess,
varN: FieldId] {
ae.pExp !in ExpressionName H
(ae.pExp in ExpressionName && ae.pExp.name != varN)
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Code 3.65 Predicate that ensures that the MethodInvocation, passed as parameter, does not suit in the

pattern previewed by the second substitution rule in Figure 2.

pred noCorrespondingMethodInvocationMethodRule3 [p: Program, n:
ClassId, mi,mi2: MethodInvocation, varN: FieldId] {
mi.pExp !in ExpressionName H
(mi.pExp in ExpressionName && mi.pExp.name != varN)

As the left-hand side expression of an AssignmentExpression is always a FieldAccess
expression, another predicate (named correspondingFieldAccessMethodRule3) is present in
the predicate correspondingAssignmentMethodRule3 (see line 3, Code 3.66) to guarantee the
substitutions required by the second substitution rule in Figure 2 are done in the FieldAccess
expression. On the other hand, if the right—hand side expression of the AssignmentExpression
refers to a MethodInvocation expression (line 5), then another predicate is necessary to guarantee
the substitutions: the correspondingMethodInvocationRule3 (Code 3.68). Otherwise, in case this
expression refers to a LiteralValue we simplify saying that the other correspondent expression

needs also to be a LiteralValue (line 7).

Code 3.66 Predicate that does the correspondence between the AssignmentExpressions that are statements
(with the same index) in the method being moved, according to the pattern previewed by the second

substitution rule in Figure 2.

pred correspondingAssignmentMethodRule3 [p: Program, n: ClassId
, ass,ass2: AssignmentExpression, varN: FieldId] {

correspondingFieldAccessMethodRule3[p,n, ass.pExpressionleft,
ass2.pkExpressionLeft, varN]

ass.pExpressionRight in MethodInvocation =>
correspondingMethodInvocationRule3 [p,n, ass.
pExpressionRight, ass2.pExpressionRight, varN]

ass.pExpressionRight in LiteralValue => ass2.
pExpressionRight in LiteralValue

The correspondingFieldAccessMethodRule3 predicate, Code 3.67, attributes the this
expression to the value for the relation pExp of the FieldAccess expression being replaced in the
method m() after the transformation (line 3). In addition, the id_fieldInvoked relation remains the
same as before the transformation (line 3). This is done only in the case that the relation pExp of
the FieldAccess expression before the transformation is of type ExpressionName, and whose name
relation is equal to the field b, which is represented by the varN variable (line 2)—this scenario
fits the one required for the substitution rule ¢ defined in Figure 2. Otherwise, or in the case the

noCorrespondingFieldAccessMethodRule3 predicate (line 5) fits, both AssignmentExpression
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expressions (in each method m before and after the transformation) can be the same (line 5). The
difference here, if we compare to what is defined by the rule, is the application of this expression,
when the rule does not specify anyone. We apply the this expression only to fit in our OO model
that requires exactly one PrimaryExpression for the pExp relation in the FieldAccess type. And,

in this case, having or not the this expression does not make difference.

Code 3.67 Predicate that does the correspondence between the FieldAccess that are statements (with the
same index) in the method being moved, according to the pattern previewed by the second substitution

rule in Figure 2.

pred correspondingFieldAccessMethodRule3[p: Program, n: ClassId
, ae,ae?2: FieldAccess, varN: FieldId]{
(ae.pExp in ExpressionName && ae.pExp.name = varN) =>
((ae != ae?) && ae2.pExp in this_ && ae2.id_fieldInvoked =
ae.id_fieldInvoked)

noCorrespondingFieldAccessMethodRule3[ae,varN] => (ae = ae2)

The predicate correspondingMethodInvocationMethodRule3, Code 3.68, do exactly the
same as the predicate just described but for a MethodInvocation. Besides, it checks if the
real parameter of the MethodInvocation (which in our OO model can only be a FieldAccess
expression) fits in the scenario described by the substitution rule ¢ defined in Figure 2. If this is
the case, predicate correspondingFieldAccessMethodRule3, just described, is applied to the real

parameter (lines 11 to 13).

Code 3.68 Predicate that does the correspondence between the MethodInvocations that are statements
(with the same index) in the method being moved, according to the pattern previewed by the second

substitution rule in Figure 2.

pred correspondingMethodInvocationMethodRule3 [p: Program, n:
ClassId, mi,mi2: MethodInvocation, varN: FieldId]{

all someNMethod: (n.(p.classDeclarations)) .methods
(mi.pExp in ExpressionName && mi.pExp.name = varN &é&
mi.id_methodInvoked = someNMethod.id) =>

mi2.pExp in this_ && mi2.id_methodInvoked = someNMethod.id

mi.realParam in FieldAccess => mi2.realParam in FieldAccess
& &

(noCorrespondingFieldAccessMethodRule3 [mi.realParam,varN] =>
(mi.realParam=mi2.realParam))

mi.realParam in FieldAccess => mi2.realParam in FieldAccess
& &




12

13

14

[S—

O 0 1 O\ L &~ W N

| NS T NS I S T e e e e e N
N = O 0 00 1N DN A W = O

3.2. TRANSFORMATION-SPECIFIC MODELS 91

(noCorrespondingFieldAccessMethodRule3 [mi.realParam,varN] =>

correspondingFieldAccessMethodRule3[p,n,mi.realParam,mi2.
realParam, varN])

Line 37 in Code 3.48 establishes the equivalence between the mapping of the classes in
left and right—hand side (before and after the refinement), following the same reasoning in the
earlier specifications already explained— as can be seen, the only difference is the M and N
classes that, although their correspondent classes in the different sides have the same id, they are
different internally, because of the difference in their methods as their bodies change. Their set
of fields are equals (lines 39 and 40) since they do not change before and after the refinement.

Finally, lines 44 to 47 follows the same reasoning already explained in Section 3.2, for Code 3.21.

3.2.6 Transformation—Specific Model for Rule 6

As mentioned in Section 2.1.4, Rule 6 is another rCOS refinement law described in
(QUAN; ZONGYAN; LIU, 2008). This one is simpler than the Rule 3, just described, since
substitutions are not required. As a consequence, the main predicate that represents it (see

Code 3.69) is simpler as well as the predicates it uses.

Code 3.69 Predicate that captures the refinement described in Rule 6.

pred rule6LR[m,nl,n2: ClassId, meth: Method, left,right:
Program] {
m != nl
nl !'= n2

let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
ml m.leftCds,
mr m.rightCds,
nll = nl.leftCds,
nlr = nl.rightCds,
n2l = n2.leftCds,
n2r = n2.rightCds

// SS description
nll.extend = m
n2l.extend = m

meth in (nll.methods)
meth in (n2l.methods)

// premise6LR
methodOnlyRefersToAttributesInM[meth,nll, ml, left]
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// RS description
meth in (mr.methods)
meth !in (nlr.methods)
meth !in (n2r.methods)
nlr.extend = m
n2r.extend = m

//equivalence between left and right-hand sides

ml.extend = mr.extend

m.~((left.classDeclarations) .extend) = m.~((right.
classDeclarations) .extend)

nl.~((left.classDeclarations) .extend)
classDeclarations) .extend)

nl.~((right.

n2.~((left.classDeclarations) .extend)
classDeclarations) .extend)
leftCds = rightCds ++ {m->ml} ++ {nl->nll} ++ {n2->n21}

n2.~((right.

ml.fields = mr.fields

nll.fields = nlr.fields
n2l.fields = n2r.fields
ml.methods = mr.methods-meth
nll.methods - meth = nlr.methods
n2l.methods - meth = n2r.methods

Following the pattern defined in Code 3.21, the parameters of the main predicate rule6LR
are the elements involved in the refinement (along with the two possible contexts: left or right).
Lines 2 and 3 ensure the M, NI and N2 classes are different, thus having different identifiers.
Lines 5 to 12 retrieve each class from its correspondent context, likewise earlier specifications
do.

Assuming a refinement is a transformation from the left— to the right—hand side, left
description (SS) establishes class M as the super class of both N/ (line 16) and N2 (line 17)
classes, and that the method meth (which refers to the method that is moved to class M after
the refinement) is in both N/ (line 18) and N2 (line 19) classes, as defined in the specification.
The methodOnlyRefersToAttributesInM predicate (present in line 22 and defined in Code 3.69)
is used to represent what is defined in the specification: “all attributes used in m() are in M.
By this sentence, we assume that every field used in m() is a field from class M. Observe that
this restriction is very similar to the one defined in Rule 3, but there is a slight difference. In
Rule 3, the specification restricts that all the accesses in the method being moved are through an

attribute b whose type is the same as the type of the super class.
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The possibilities to a field appear in a method body is through an expression of type
FieldAccess that can, in turn, appear in an AssignmentExpression (line 4, Code 3.70) or in a
MethodInvocation statement (line 10, Code 3.70). For the former case, there are two possibilities:
through its left-hand side expression (see line 4)—which in our OO model can only be a
FieldAccess—or through its right-hand side expression (see line 6), which in our OO model
can only be a MethodInvocation, whose real parameter (if exists) is a FieldAccess. This last
possibility is also the case for the latter (see lines 10 and 11). As can be seen, in all situations,
the predicate [hsOnlyRefersToFieldsInM (see Code 3.71) is the responsible for guaranteeing that

the field identifier(s) used in the FieldAccess expression are in class M.

Code 3.70 Predicate that ensures every field used in m() is a field from class M, according to the
specification in Figure 4.

pred methodOnlyRefersToAttributesInM[method: Method,
correspondingNClass, correspondingMClass: Class, p: Program]

{

all st:Statement } st in univ. (method.body) =>

(st in AssignmentExpression => lhsOnlyRefersToFieldsInM|p,
correspondingNClass, correspondingMClass, st.
pExpressionlLeft]) &&

(st in AssignmentExpression && st.pExpressionRight in
MethodInvocation &&

# (st .pExpressionRight.realParam) > 0 =>

lhsOnlyRefersToFieldsInM[p, correspondingNClass,
correspondingMClass, st .pExpressionRight.realParam]) &&

(st in MethodInvocation && # (st.realParam) > 0 =>
lhsOnlyRefersToFieldsInM[p, correspondingNClass,
correspondingMClass, st.realParam])

The lhsOnlyRefersToFieldsInM predicate applies the whichFieldls auxiliary function,
explained in Section 3.2.5, on both pExp.name (see second parameter, line 4, Code 3.71) and
id_fieldInvoked (see second parameter, line 5, Code 3.71) relations of a FieldAccess expression.
In the first case (line 4), the function is applied to the name relation of the pExp relation, in case
this one refers to an ExpressionName type, which is a subsignature of the PrimaryExpression
type—see Section 3.1. The goal is to detect the first field in the correspondingNClass class hierar-
chy that owns the specific identifier referred in lhs.pExp.name (if exists) or in lhs.id_fieldInvoked
expression. This field needs to be in class M (lines 9 and 14).

Code 3.71 Predicate that ensures the field used in FieldAccess expression is from class M.
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pred lhsOnlyRefersToFieldsInM[p: Program, correspondingNClass,
correspondingMClass: Class, lhs: LeftHandSide] {

let

fieldInExprName = whichFieldIs[p, lhs.pExp.name,
correspondingNClass],

fieldInFieldInvoked = whichFieldIs[p, lhs.id_fieldInvoked,
correspondingNClass] {

(lhs in FieldAccess && lhs.pExp in ExpressionName =>
(#fieldInExprName = 1 && fieldInExprName.type !in Long_ &&
lhs.pExp.name in (correspondingMClass.fields) .id ))

(lhs in FieldAccess && lhs.pExp !in ExpressionName =>
(lhs.pExp !in super && #fieldInFieldInvoked = 1 &&
fieldInFieldInvoked.type !in Long_ &&
lhs.id_fieldInvoked in (correspondingMClass.fields).id ))
}

Returning to the main predicate, rule6LR, Code 3.69, lines 25 to 29 describes the scenario
after the refinement is applied. For instance, the method being moved, which is represented by
the variable meth, is in class M (line 25) and not anymore in the set of methods of classes N1
(line 26) and N2 (line 27). In addition, class M continues in the extend relation of classes N/
(line 28) and N2 (line 29). Lines 41 to 43 reinforce this.
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VALIDATING TRANSFORMATION SPECIFICATIONS

In this chapter, the Static Semantics and the Dynamic validation steps are detailed in
Sections 4.1 and 4.2, respectively. Section 4.3 describes how our Alloy—To—Java translator
works; it is responsible for translating Alloy instances into Java programs as well as generating
test classes, which enable the Java transformations to be validated with regard to dynamic
behaviour. Finally, Section 4.4 describes how our transformation specifications were validated

and the results obtained so far using our strategy.

4.1 Static Semantics Validation Step

Figure 22 details the part of our strategy with regard to the static semantics validation of
a transformation specification. It also details the Static Semantics Validation step in Figure 1.
When the Static Semantics Validator is executed, it is assumed as a premise that the SS program
of the transformation is well-formed. For guaranteeing this, the model of a subset of Java is
used through its main predicate: the wellFormedProgram predicate, which receives a program as
parameter (in case of the premise, the SS program). This predicate guarantees that the program
passed as parameter is a well-formed Java program. Apart from syntactic aspects, the model
of a subset of Java embodies a static semantics via predicates and constraints that ensure type
correctness in the object instances that represent the SS program of the transformation. In other
words, in this case we have that the SS program is compilable.

On the other hand, the wellFormedProgram predicate is not applied to the RS program, so
its well-formedness would have to be guaranteed by the transformation—specific model predicates
since a well-formed program is considered before the transformation. Our Static Semantics
validator model checks, through an assertion, if the following implication holds, up to a given
scope, for a specific transformation: wellFormedProgram|[SS] && transformationPredicate
implies wellFormed[RS]. In this way, if there is any instance returned, it is because the resulting
program is not well-formed. Hence, we can assert that there is some failure in the transformation—
specification since SS did not present any static semantics problems before. An example of this
Alloy validator model is shown in Code 4.1. This checking is executed by the Alloy Analyzer.
This step just described is represented in the first decision point, Figure 22.

If counter examples for the assertion stated by the Static Semantics Validator are found
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Figure 22 Overview of the first part of our complete strategy.

(Step (2) of Figure 22), then they will be presented indistinctly by the Alloy Analyzer, inde-
pendent of the static semantics problem they present. Thus, the user has two options (second
decision point) to identify the specific static semantics problem presented by the instances:
(a) examine the counter examples pointed by the Alloy Analyzer (Step (3./6.)) or (b) use the
Alloy—To-Java Translator to translate these counter—examples (Step (3)) into Java programs
(Step (4)) and, through a compilation process of each of these programs (this process is done
by our strategy, step (5)), examine the compilation errors (decision point (3))—so the static
semantics problem caused by the transformation becomes more evident. Afterwards, one needs
to correct the transformation specification (Steps (3./6.) and re—submit the models again to
the Alloy Analyzer (1). This process is done until no counter examples are found (4./7.); in
other words, until all the RS programs generated by the transformation do not present any static
semantics problems.

The Static Semantics Validator Model presented in Code 4.1 is relative to Rule 3: see
Section 3.2. However, the Static Semantics Validator Model follows the same pattern to all
the specifications being analyzed. The only variation is in the transformationPredicate (i.e.,
predicate rule3LR in case of Rule 3), that will be replaced by the predicate of the corresponding
transformation being analysed, along with the corresponding direction—from the left— to the
right—hand side or vice-versa. In case of a refinement, we have only one possible direction: from
the left— to the right—hand side, where the left program is the SS one and the right, the RS. In
addition, the wellFormedProgram predicate is always applied to the program representing the
starting side of the transformation (in the case of Code 4.1, the left-hand side because Rule 3 is
being analysed from the left to the right—hand side). If the implication described in lines 6 and
7, Code 4.1, always holds, it means that no counter examples are found and the transformation

does not introduce static semantics problems in the resulting program.
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On the other hand, if a counterexample is returned by the Alloy Analyzer from the
assertion used by the Static Semantics Validator Model, this means that there is some error in the
transformation specification or in the predicates that specify it (in the Alloy model) because the
instances that represent the starting—hand side of the transformation were generated according to
a Java metamodel that ensures conformance with the static semantics in its classes, as explained
in Chapter 3. Also observe that the analysis scope can be specified (line 9, Code 4.1) to bound
the Alloy Analyzer evaluation. As explained in Section 2.2.2, second paragraph, a bound is
specified (in this case is 12 in line 9) to enable the analysis be performed. This bound means that
there are at most 12 (for each top—level signature) instances in each Alloy instance generated
for the model. The exceptions for this bound of 12 is the Program type—since only 2 (the one
before and the other after the transformation) are necessary— and the Method and Field types
(we observe 6 method and 3 field instances, respectively, are a good number for the analysis).
We could change our bound limitation and restrict even more top—level signatures of our model,
but this one was enough to generate interesting Alloy instances, which evidence errors described
in this thesis. Actually, it is just an example and we vary the bound limitation in our analysis,

especially if we consider other specifications analysis.

Code 4.1 Representation of the Static Semantics Validator

module staticSemanticsValidator
open transformationSpecificModel

assert rule3LeftToRightTransf {
all m,n: ClassId, mBefore,mAfter: Method, f: Field, left,
right: Program |
(wellFormedProgram[left] && rule3LR[m,n,mBefore,mAfter, f,
left,right]) implies wellFormedProgram[right]

check rule3LeftToRightTransf for 12 but exactly 2 Program,
exactly 6 Method, exactly 3 Field

4.2 Dynamic Validation Step

The next step of our strategy is to check for dynamic problems. It is depicted in Figure 23,
which in turn details the dynamic validation step in Figure 1. We then submit another Alloy
Model to the Alloy Analyzer when no more counter examples are found by the Static Semantics
Validator (see Figure 23). Because of this, in this step, both SS and RS programs are well-formed
(Step 8, Figure 23). They are generated through the Dynamic Validator Alloy Model, which
uses the same transformation—specific model and also the model of a subset of Java, but instead
generates all the possible instances that represent the transformation, according to the exhaustive

analysis provided by the Alloy Analyzer and within a given scope. Afterwards, these instances
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are further submitted to the Alloy—To—Java Translator tool (Step (3./9.), Figure 23) that generates
Java programs (Step (4./10.)) corresponding to these instances. In this step, we benefit from
the ASTs of the programs (generated by the Alloy—To—Java translator) to build the test classes.
All the classes (including the test ones) are added in the compilation unit to be submitted to
the Java compiler (Step (5./11.)). The non—occurrence of programs with structural or syntactic
problems (only well-formed SS and RS programs) is confirmed in the Validate step (see step
12 in Figure 23) that compiles (in Java) each side of each transformation, including the test
classes, after the translation of the Alloy—To—Java Translator. Finally, the validation with regard
to dynamic problems is also done in step (12) through the execution of the corresponding test
class—the invocation results (in both SS and RS programs) are compared to check behaviour
preservation after the transformation; if they are not the same, then there is a behavioural

non-conformance in the transformation, also meaning a transformation specification error.
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Figure 23 Second part of our Validation Strategy.

The Dynamic Validator is illustrated in Code 4.2. It is submitted to the Alloy Analyzer

to execute the second part of our strategy (see Figure 23).

Code 4.2 Representation of the Dynamic Validator

module dynamicSemanticValidator
open transformationSpecificModel

pred dynValidationRule3[] {
all m,n:ClassId, mBefore,mAfter: Method, f: Field, left,
right: Program |
rule3LR[m,n, mBefore,mAfter, f, left, right]
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9/run dynValidationRule3 for 12 but exactly 2 Program, exactly 6
Method, exactly 3 Field

4.3 The Alloy—-To—Java Translator

JDolly is a program generator; it is particularly used to automatically generate test inputs
to be submitted to the refactoring engine implementations (SOARES, 2015). Actually, JDolly
generates Alloy instances according to an Alloy metamodel for a subset of Java. These instances
are translated into Java programs and then used as test cases to refactoring implementations.
The evaluation of the correctness of these transformations is done (in (SOARES, 2015)) using
another tool, called SafeRefactor (SOARES et al., 2010). In order to complete our strategy, we have
developed, besides the Alloy OO metamodel (an improvement on the one in (SOARES, 2015))
and several transformation—specific models, an Alloy—To—Java translator tool that translates the
Alloy instances generated by both Static Semantics and Dynamic Validators.

As discussed in Section 4.1, the Alloy—To—Java Translator can also be applied in the
static validation step (beyond the dynamic one) to ease the examination of the errors in the
resulting programs. The generated pair of programs in the static validation step can be translated
and then compiled by the Alloy—To—Java Translator, depending on the user decision (see second
decision point in Figure 22), so one can examine the compilation errors found in the resulting
programs instead of analyzing an Alloy instance in the Alloy Analyzer evaluator tool.

One difference between our OO metamodel and the one used by JDolly in (SOARES, 2015)
is that our metamodel captures, when desired, the static semantics of a Program, considering the
OO subset defined in this model, which is not the case in the metamodel used in JDolly, which
in turn allows programs to be generated with compilation errors. As a second improvement,
our Alloy instances, in both static and dynamic validation steps, already represent the pair of
programs following a transformation specific model. In the first case, it is known that, if there
are static issues, the resulting program present static semantics problems. On the other hand,
in case of dynamic validation step, the pair of programs are both well-formed. Afterwards, the
Alloy-To—Java translator generates Java programs for the instances that represent the left— and
the right—hand sides of the transformation, rather than for an instance that only represents a
single Java program, as in JDolly.

Our Alloy-To-Java translator identifies related Java classes from an Alloy transformation
instance. Object instances such as the ones of type Class or of type Method are only generated
as pairs when, depending on the transformation defined, substitutions and the internal context
of these elements change. These pairs, when generated, are distinct as their internal structure
changes, due to these substitutions—if any one is necessary. They have the same id (for each
pair) and play corresponding roles on the SS and RS.

The Alloy—To-Java translator maps an Alloy abstract syntax tree into two Java abstract

syntax trees (one for each of the SS and RS of the transformation). In addition, test classes are



4.4. EVALUATION 100

generated for each method in common among the corresponding classes. If there is no method in
common (with the same signature), we check for the case that a method exists in classes with
an inheritance relationship (for instance, in Law 2, method m does not exist in the same classes
of corresponding sides but it exists in a class that is a supertype of the one being analysed—i.e.
class C). In this case, the method is invoked by the test class from the class C of both sides. As
can be seen, the generation of the test classes is very simple, basically these classes only invoke
the already generated method by the Alloy Models, because we consider that the distinguishing
feature of the tests is exactly what is generated by the Alloy Analyzer from the Alloy Models.
The results of these invocation executions are compared; if they are not the same, then there
is a behavioural inconsistency in the transformation. In a future work, we can also use a more
elaborate test campaign to improve test generation.

The Alloy—To-Java translator stores the Java trees into Java files (as well as the corre-
sponding test classes) in the corresponding folders for each side of the transformation. After-
wards, another tool, named Java Validator, is used to compile and execute them, comparing the
corresponding results and pointing the cases where there are behavioural inconsistency. The
results found so far show that our strategy has the potential to find many bugs also found using

more sophisticated test Oracles.

4.4 Evaluation

In this section, we describe the validation results focusing on each one of the transforma-
tion specifications analysed. We evaluated seven transformation specifications, selected from
each kind of specification: algebraic law, refactoring rule and rCOS transformation (see Chap-
ter 2). These transformation specifications were validated in different contexts in the literature.
Some of these specifications were (1) postulated regardless proofs of their correctness. Others,
although (2) proved or (3) derived from provably correct ones, presented errors identified by our
strategy. For instance, concerning the proved ones context, some refactoring rules in (CORNELIO,
2004) presented both static semantics and behaviour problems. On the other hand, laws in
(DUARTE, 2008), derived from the ones in (BORBA et al., 2004) and adapted for Java, presented
behaviour problems (due to incorrect or missing provisos) and some redundant conditions. The
specifications that are only postulated have a higher probability to present problems and we

found some of them using our strategy. We uncover problems in these three contexts, namely:

1. Transformation specifications that were postulated, regardless correctness proofs or
any kind of validation.
2. Transformation specifications that were proved.

3. Transformation specifications derived from provably correct ones.

Firstly, we present the experiment definition (see Section 4.4.1) and planning (see Sec-
tion 4.4.2). Next, Section 4.4.3 discusses the results found in each transformation specification.

Finally, Section 4.4.4 describes some threats to validity and difficulties faced in the evaluation.
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4.4.1 Experiment definition

In all of the contexts mentioned earlier (beginning of the Section 4.4), there are different
types of errors that can be found. In particular, we focus on the following research points: (a)
whether all the provisos or conditions in the transformation specifications are enough not to
cause static semantics problems in the resulting programs after the transformation is applied.
The second point (b) is similar, but for behavioural problems instead. In the specifications
considered, we identified that some provisos or conditions are missing and the application of the
transformations may result in errors. Finally, we address the following concern (c): are there any
redundant conditions or provisos in the transformation specification? We found in our analysis
that some provisos or conditions present in some transformation specifications, such as the one
in Law 2, are not necessary to guarantee the correctness of the transformation because some

predicates are of the form p A ¢ where p = ¢ and so we can replace p A g with p.

4.4.2 Planning

In this section, we describe the subjects used in the experiment and its instrumentation.

4.4.2.1 Selection of Subjects

The specifications analysed with regard to the contexts just described are summarized in
Table 1, where each line represents one of the transformations analysed whereas the columns

represent the contexts just described.

Table 1 Classification of main specifications analysed according to each context

Transformations Analysed ‘ 1 (Postulated) ‘ 2 (Proved) ‘ 3 (Derived)
Law 1—Move Attribute in (DUARTE, X

2008)

Law 2—Move Method in (DUARTE, X

2008)

Law 4—Push Down Method in | X
(SCHAFER, 2010)

Rule 2.1—Pull Up/Push Down X
Method in (CORNELIO, 2004)
Rule 3—Move Method in (QUAN; | X
ZONGYAN; LIU, 2008)
Rule 6—Pull Up Method in (QUAN; | X
ZONGYAN; LIU, 2008)

Law 5—Move Attribute, adapted | X
from (DUARTE, 2008)

As already discussed, these specifications were selected for different reasons. Some

of them were proved or transcribed from other ones already proved. In these cases, finding
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errors using another technique (i.e. our strategy) seems more exciting/interesting. Another
point considered for the selection is evaluating transformation specifications in different kind of

specifications: algebraic law, refactoring rule and rCOS transformation (see Chapter 2).

4.4.2.2 Instrumentation

We ran the experiment on a notebook 1.80 GHz core 17-4500U with 8 GB RAM running
Windows 8 Single Language with JDK 1.8. In addition, the solver used by the Alloy Analyzer
was the Sar4J. As already mentioned, we used different transformation specifications present in
different works (DUARTE, 2008; SCHAFER, 2010; CORNELIO, 2004; QUAN; ZONGYAN; LIU, 2008;
PALMA, 2015). Our Static Semantics Validator was used to evaluate whether these specifications
preserves the static semantics of the resulting programs (generated after the application of the
transformation specification). On the other hand, our Dynamic Validator was used to detect if
behaviour is preserved, instead. Our Alloy models did not contemplate the package element, and
the programs generated did not contain packages as a consequence. The scope, with regard to
the bound used for limiting each top—level signature in the Alloy models being evaluated, varies
according to each transformation specification. This scope can be seen in the Static Semantics

and Dynamic Validator models, available online!. The scope limitation is also discussed in
Section 4.4.4.

4.4.3 Results

Considering all of the contexts discussed earlier (in the beginning of this section),

different kind of errors were found, namely:

(a) Provisos or conditions in the transformation specifications that are not sufficient to ensure
the absence of static semantics errors after the transformation is applied.

(b) Provisos or conditions in the transformation specifications that are not sufficient to ensure
the absence of behavioural problems in the resulting programs after the transformation is
applied.

(c) Redundant conditions or provisos in the transformation specification.

The results concerning the different type of errors found in the specifications analysed are
summarized in Table 2, where each line represents one of the transformations analysed whereas
the columns represent the errors just described. In the following subsections, we discuss about

the different kind of errors found in each transformation specification.

4.4.3.1 Analysis for Law 2

The first transformation specification analysed, Law 2 (see Section 2.1.2), presented

problems in almost all contexts—except the one related to static semantics problems—item (a) of

1Tt can be downloaded from http://www.cin.ufpe.br/ tds/phd/JTransformations.
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Table 2 Comparison of main specifications analysed according to the different errors found

Transformations Analysed (a) Static Semantics | (b) Behavioural | (¢c) Redundant
conditions

Law 1—Move Attribute in | No No No

(DUARTE, 2008)

Law 2—Move Method in | No Yes Yes

(DUARTE, 2008)

Law 4—Push Down Method | No Yes No

in (SCHAFER, 2010)

Rule 2.1—Pull Up/Push | Yes Yes No

Down Method in (CORNELIO,

2004)

Rule 3—Move Method in | Yes Yes No

(QUAN; ZONGYAN; LIU, 2008)

Rule 6—Pull Up Method in | Yes Yes No

(QUAN; ZONGYAN; LIU, 2008)

Law 5—Move Attribute, | Yes No No

adapted from (DUARTE, 2008)

the enumeration in Section 4.4. Firstly, we describe the one related to behaviour consistency in
the resulting programs after the transformation is applied: item (b). Suppose we have a method
defined with the same id and formal parameters of the method being moved, in a class B super
type. When the method m is moved from class C to class B (from the left to the right-hand side
transformation direction), it results in a method redefinition on the right—hand side in class B
(not existing before). Some behavioural changes can occur if we consider a method invocation
where the B class is the target. This same problem can occur in the inverse direction of the
transformation (right to left). This error was identified by our Dynamic Validator. For instance,
the method invocation new B().m() returns 3 in the left-hand side program and 2 in the right one
(see Figure 24).

So, a proviso with this restriction is necessary for both sides of the transformation
((+>))—see proviso ((«<+)) (2) in Law 3 (below). We rewrite Law 2 as Law 3, fixing all the errors
found in provisos of the former. The other contexts in which errors are found are discussed
throughout this section.

Law 2 was manually translated into Java (DUARTE, 2008) from Law 8 (BORBA et al., 2004),
which is a provably correct specification in ROOL. Hence, even in the case of a transcription,
errors can occur and this is the case for Law 2. Thus, context addressed in item 3 in Section 4.4
was also identified by our analysis. Observe that the behavioural error just described, in proviso
((+») (2)) of Law 2, was apparently a spelling error since in Law 8 (BORBA et al., 2004) this
same proviso already existed, meaning that probably the word super was incorrectly spelled as

subclasses.
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3 public class A {

public int m(){
return 3;

7 }
5 3

public class A {

public int m(){
return 3;
}

}

» public class B extends A {
4 protected C fieldId_e;

public class B extends A {
protected C fieldId_@;

5} 5 public int m(){
return 2;
}

¥

public class C extends A {
protected C fieldId_e;

5 public class C extends A {
protected C fieldId_e;

public int m(){ 6 }
return 2;
i

Figure 24 An example of program generated with behavioural problems when Law 2 is applied.

Our strategy can also help to find redundant conditions in the transformation specifica-
tions. Analysing the Alloy Model for Law 2 from the right— to the left-hand side, we observe
that there are some redundant provisos in the sense that some of them logically imply in others.
For instance, we observe that when the predicate responsible for guaranteeing the proviso ((+—)
(2)) in Law 2 is considered, there is no significant changes in the Alloy Analyzer instances when
compared with a scenario where the predicate guaranteeing the proviso ((<») (2)) in Law 2
is considered or not. We realized this by running our Static Semantics validator without all
the predicates representing the provisos in the transformation specification—we have inten-
tionally commented some of them. Hence, we did a manual analysis (since some predicates
were commented) along with the use of our Static Semantics validator to achieve the analysis
of the item (c), described in Section 4.4. We can also verify that, considering the existence of
all predicates to guarantee the transformation from the right— to the left—hand side, when the
predicate representing the proviso ((«—) (2)) in Law 2 is considered and the other one ((+) (2))
in Law 2 is not, the Static Validator remains not returning any counter—examples. This gave
us some clue that the predicate representing the proviso ((+—) (2)) in Law 2 implies the one
representing the proviso ((++) (2)) in Law 2. We further discuss this hypothesis below.

Taking into account the proviso ((«<+) (2)) in Law 2, suppose there is a method redefinition
of m in a class D which is a subclass of B. When the method m is moved from B to C, the method
in D is not anymore a redefinition and this can cause behavioural changes when the method
m is called in other classes and D (or a subclass of D) is used as the type of the target of this
call. However, this scenario could only occur if the access to the method m was allowed from
B subtypes that are not C ones (which is the case of class D in question), which is denied by
the proviso ((«—) (2)) in Law 2. So this last proviso logically implies the proviso ((++) (2)) in
Law 2 since it cannot cause behavioural problems if there is no access to the method. Thus, we
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can remove the proviso ((«+) (2)) from Law 2 because it is not necessary from the right— to the
left-hand side direction of the transformation.

For the same reason, the proviso ((«») (3)) from Law 2 is also not necessary from the
right— to the left-hand side direction of the transformation. Observe that the accessibility of
the method being moved does not matter since its access is avoided by the proviso ((«—) (2)) in
Law 2 from B but not C subtypes. Even supposing we have an access (from a C subtype) of the
method being moved, this access is only possible if the method is not private. Hence, we have
two cases of redundant provisos in Law 2: provisos (2) and (3) ((+»)) in Law 2.

We can still think about the need for the existence of these two provisos with regard to
from the left— to the right—hand side direction of the transformation. In the former case, if a
method m with the same id and formal parameters of the method being moved is declared in a
B subtype, then the behaviour of this method (in some call to it) can change since the method
m will be moved from C to B and in this scenario we have a method redefinition that did not
exist before. Hence in this case the proviso is required only from the left— to the right—hand
side direction, to avoid behavioural problems. In the latter case (proviso ((<>) (3) in Law 2),
suppose there is an invocation to the method being moved in class C. If this method is moved to
class B, then the invocation will be invalid if the method is private. Thus, again, the proviso is
required from only the left— to the right—hand side direction and the method cannot be private.
Hence the provisos (+) (2) and (3) should be migrated to be provisos in the (—) direction only.
Unfortunately it was not possible for us to completely validate this law because in proviso ((—)
(2)) a cast expression appears and this kind of expression is out of the scope of our OO model.
Although we did not analyse the entire set of laws in (DUARTE, 2008), we imagine that, just
as we have found errors in laws that were derived from provably correct ones in (BORBA et al.,

2004), there maybe exist similar errors in the other ones catalogued in (DUARTE, 2008).

Law 3. (move original method to superclass with corrections)

class B extends A { class B extends A {
ads ads
cnds cnds
mds rt m(pds) {mbody}
} mds
class C extends B { =cdsMain |}
ads’' class C extends B {
cnds' ads’
rt m(pds) {mbody} cnds'
mds' mds'
} }

provided
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(«») (1) super and private attributes do not appear in mbody; (2) m(pds) is not declared in any
superclass of B in cds.

(=) (1) m(pds) is not declared in mds; (2) mbody does not contain uncast occurrences of this
nor expressions in the form ((C)this).a for any protected attribute a in ads'; (3) m(pds) is
not declared in any subclass of B in cds; (4) m(pds) is not private.

(<) (1) m(pds) is not declared in mds'; (2) D.m(e), for any D < B and D £ C, does not appear

in cds,Main, mds or mds’'

4.4.3.2 Analysis for Push Down Method Refactoring

Due to the errors found in Law 2 and discussed in Section 4.4.3.1, we change the
transformation—specific model for Push Down Refactoring accordingly. The specification repre-
senting this one is now Law 4. The difference of this one to the Law 3 is that we incorporated a
common practice adopted by the developers in this kind of refactoring, described in Section 3.2.3,
which is represented by the item (3) of the proviso («+—) in Law 4. The inclusion of this proviso
caused behaviour problems in RS programs (after the transformation is applied)—item 3 of the
enumeration in the beginning of Section 4.4. Observe also that the item (1) in proviso (<) was
modified (compare Law 3 with Law 4), for the reasons already explained in Section 3.2.3. We
adapted the Alloy model(s) that represent the specification in Law 3 to the one(s) that represent
the specification in Law 4, which in turn represent the Push Down Method Refactoring.

But still note the main difference between the specification in Law 3 and Law 4, with
regard to the Alloy Models that represent them, is basically the presence of the predicate
correspondenceBetweenMethods, already described in Section 3.2.3. It remained the same
although many changes occurred in the Alloy model representing the Law 2. With the new
specification (Law 4), and considering the right— to the left—hand side direction, programs such
as the one in Figure 25 are generated, where behavioural problems can be found.

Observe that, before the transformation, the result of the method invocation in (new
Classld_6().methodid_1()) is 2 and, after the transformation, 0. This occurs because, before,
as methodid_1 is invoked on an instance of Classld_6, which in turn invokes methodid_0(),
using the qualifier this. In this case, the keyword this refers to the implementation of the
method methodid_0 in Classld_6, which yields 2. On the other hand, after the transformation,
methodid_1() invokes methodid_0 of the super class of the Classld_6 class, which yields O.
Observe that the test itself (new Classld_6.methodid_1()) does not need to be sophisticated to

catch behavioural problems but instead the programs where these tests would be applied.

Law 4. (move original method to superclass—illustrating a common refactoring practice)
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public class ClassId_e {}

public long fieldid @ = @;

return this.fieldid e;
¥
h

public long fieldid @ = 2;
public long methodid_@ (long a){
return this.fieldid_e;

return super.methodid_e(2)

}

}

public class ClassId_7 extends ClassId_e {

protected long methodid_@ (long a){

public class ClassId_6 extends ClassId_7 {

}
public long methodid_1(long a)
Cne

public class ClassId_e {}
lpublic class ClassId_7 extends ClassId_ @ {
public long fieldid @ = @;
public long methedid_1 (long a){
1 return this.methodid_8(2);
}
protected long methodid_@(long a){
return this.fieldid @;
}

}

public class ClassId_6 extends ClassId_7 {
public long fieldid_e = 2;
public long methodid_@(long a){
return this.fieldid e;
X

H

< Transformation from right to left

Figure 25 Classes generated according to the Law 4 specification.

class B extends A {
ads
cnds
mds

}

class C extends B {

ads’

cnds’'
rt m(pds) {mbody}

mds’

}

provided

=cds.Main

class B extends A {
ads
cnds
rt m(pds) {mbody}
mds

}

class C extends B {

ads’

cnds’

mds’

(+<>) (1) private attributes do not appear in mbody; (2) m(pds) is not declared in any superclass

of B in cds.

(=) 1) m(pds) is not declared in mds; (2) mbody does not contain uncast occurrences of this

nor expressions in the form ((C)this).a for any protected attribute a in ads'; (3) m(pds) is

not declared in any subclass of B in cds; (4) m(pds) is not private.
(<) (1) m(pds) is not declared in mds’; (2) D.m(e), for any D < B and D £ C, does not appear
in cds, Main, mds or mds';(3) this.method (e) for any call for a method in mbody is replaced

with super.method(e).

4.4.3.3 Analysis for Pull Up/Push Down Method Rule in (CORNELIO, 2004)

The Pull Up/Push Down Method (Rule 4.4 in (CORNELIO, 2004)) has already been
analysed in (PALMA, 2015) (reproduced below as Rule 4.1). We have analysed both specifications.

Firstly, we created an Alloy Model to represent the specification in (CORNELIO, 2004): the main
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predicates of the transformation—specific model are the ones depicted in Codes 4.3 and 4.4, which
describe, respectively, the transformation from the left— to the right—hand side and vice—versa,

according to what is defined in the specification.

Code 4.3 Predicate that captures the transformation from the left— to the right—hand side defined in the
Rule 2.1 (see Section 2.1.3).

pred ruled44lR[a,b,c: ClassId, m: Method, left,right: Program] {
a !'=5>
b !'= c

let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
al = a.leftCds,

ar = a.rightCds,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// right description
m in (ar.methods)

br.extend = a
cr.extend = a
// proviso (<=>) (1)

noSuperOrPrivateAttributesInM|[right,mR, b]

// proviso (—>) (1)
methodIsNotDeclaredInTheClass[m,al]

// proviso (->) (2)
mIsNotDeclaredInAnySuperClassOfTheClassInParam[a,m, left,
right]

//left description
bl.extend = a
cl.extend = a

m in (bl.methods)
m in (cl.methods)

//equivalence between the left- and the right-hand sides
al.extend = ar.extend
leftCds = rightCds ++ {a->al} ++ {b->bl} ++ {c->cl}

al.fields = ar.fields
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public class ASuperClass { 3 public class ASuperClass {
4 public int m(){ 4 public int m(){
5 return 3; 5 return 3;
5} 5}
7} 7}
3 public class A extends ASuper(Class{ 35 public class A extends ASuperClass{
5 public int m(){
} 6 return 2;
7 ¥
8 )
3 public class B extends A { 3 public class B extends A {
4 protected C fieldId_8; - protected C fieldId_e;
5 5 }
6 public int m(){
7 return 2;
}
¥
3 public class C extends A { 3 public class C extends A {
- protected C fieldId_@; - protected C fieldId_e;
6 public int m(){ 6 }
7 return 2;
- }
)

Figure 26 Example of a program generated with behavioural problem using Rule 2.1 specification.

bl.fields = br.fields

cl.fields = cr.fields

al.methods = ar.methods — m
bl.methods - m = br.methods
cl.methods — m = cr.methods

a.~((left.classDeclarations) .extend) a.~((right.
classDeclarations) .extend)

b.~((left.classDeclarations) .extend)

b.~((right.
classDeclarations) .extend)

c.~((left.classDeclarations) .extend) c.~((right.

classDeclarations) .extend)

Similarly to the verification by the work in (PALMA, 2015), we conclude the proviso
(—) (2) in Rule 2.1 and represented in line 26, Code 4.3, is also necessary from the right— to
the left—hand side direction. Suppose method m() is being pushed down from the class A to
its subclasses B and C. Figure 26 shows an example of program before (right) and after the
transformation following the specification in Rule 2.1. An simple test like new A().m() evidences
behavioural problems with different results in the method executions. Thus, Rule 2.1 present
behavioural problems in every call to method m where the class A is the target.

Hence, this proviso ((—) (2)) was moved to be the proviso (<) (2) in Rule 4.1. Likewise,
it is necessary to add its corresponding predicate mlsNotDeclaredInAnySuperClassOfTheClass-
InParam in both predicates rule44LRModified and rule44RLModified, line 23, Codes 4.5 and 4.6.
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This is the only necessary modification with regard to the right— to the left-hand side direction.

Code 4.4 Predicate that captures the transformation from the right— to the left-hand side defined in
Rule 2.1 (see Section 2.1.3).

pred ruled44RL[a,b,c: ClassId, m: Method, left,right: Program] {
a !'=Db
b !'= c

let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
al = a.leftCds,

ar = a.rightCds,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// right description
m in (ar.methods)

br.extend = a
cr.extend = a
// proviso (<->) (1)

noSuperOrPrivateAttributesInM|[right,mR, b]

// proviso (<-=) (1)
methodIsNotDeclaredInTheClass[m, br]
methodIsNotDeclaredInTheClass[m, cr]

// proviso (<-=) (2) (3)
forbidsAccessToMethodM[b, c,m, right]

//left description
bl.extend = a
cl.extend = a

m in (bl.methods)
m in (cl.methods)

//equivalence between the left- and the right-hand sides
al.extend = ar.extend
leftCds = rightCds ++ {a->al} ++ {b->bl} ++ {c—>cl}

al.fields = ar.fields
bl.fields = br.fields
cl.fields = cr.fields
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Rule 4.1 (Pull Up/Push Down Method)—Rule 2.1 in (PALMA, 2015)

class A extends D
ads,;
mits,

end

class B extends A
adsp;
meth m = (sige )
mtsy

end

class C extends A
ads.;
meth m = (sige )
mts,

end

O 0 1 O\ U B~ W N —

—
B W N = O

provided

—cds,c

O 0 1 O Lt b W N —

10
11
12
13

class A extends D
ads,;
meth m = (sige )
mts,

end

class B extends A
adsp;
mitsp

end

class C extends A
ads,;
mts,

end

(«+) .1 super and private fields do not appear in ¢; and

.2 mis not declared in any superclass of A in cds.

(—) .1 mis not declared in mts,, and can only be declared in a class N, for any N < A, if it has

signature sig;

.2 there are no occurrences of self.f in ¢’ for any field f declared both in ads; and ads.;

and

.3 if there is some occurrence of self.m; in ¢’ for some method m; declared both in mts,

and mts., m; must be declared in A or any superclass.
(«) .1 mis not declared in mts;, or mts;
.2 super.m does not appear in mts; or mts. nor in any class N such that N <A and N £ B

or N £ C; and

.3 N.m, forany N <A and N £ Bor N £ C, does not appear in cds, ¢, mts, , mtsp or mts.

al . .methods =

ar.methods - m

bl.methods — m = br.methods

cl.methods - m = cr.methods

a.~((left.classDeclarations) .extend) = a.~((right.
classDeclarations) .extend)

b.~((left.classDeclarations) .extend) = b.~((right.
classDeclarations) .extend)

c.~((left.classDeclarations) .extend) = c.~((right.

classDeclarations) .extend)

In addition, concerning the left— to the right—hand side direction, we verify static seman-
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tics errors when the method is pulled up if the body of this method refers to a field defined in
classes B and C but not defined in class A. This is also verified in (PALMA, 2015) and, for this
reason, there is an added proviso (—) (2) in Rule 4.1. We then create a predicate to represent it,
named noSelfFieldsInM (and added it in a modified version of the predicate rule44LR, named
predicate rule44LRModified in Code 4.6), that should be applied twice for classes B and C,
according to what is established by the proviso.

Likewise, a static semantics error can appear when a method, only defined in classes
B and C, is referred in the body of the method m. Thus, the proviso (—) (3) was also added
in Rule 4.1. This inclusion does not cause behavioural problems. For instance, consider that
the condition stated by the proviso holds, meaning that there is a call to a method m, with the
qualifier this (or self), inside method m body. Besides, suppose m is declared in both classes
B and C, and in class A or any of its superclass. In a supposed call to method m, the target for
this call can only be class B or C, since a well-formed program is assumed as a premise. Then,
even when the method is pulled up, the qualifier this (or self) in the method call will refer to the
method m in class B or C, preserving the same behaviour before the transformation is applied.

Lines 33 and 34 from Code 4.5 represents the proviso (—) (3) in Rule 4.1.

Code 4.5 Predicate that captures the transformation from the left to the right-hand side in Rule 4.1.

pred ruled44lLRModified[a,b,c: ClassId, m: Method, left,right:
Program] {
a !'=D>b
b !'= c
let leftCds = left.classDeclarations,
rightCds= right.classDeclarations,
al = a.leftCds,
ar = a.rightCds,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

//right description

m in (ar.methods)
br.extend = a
cr.extend = a

// proviso (<->) (1)
noSuperOrPrivateAttributesInM|[right, mR, b]

// proviso (<=>) (2)
mIsNotDeclaredInAnySuperClassOfTheClassInParam[a,m, left,
right]
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// proviso (->) (1)
methodIsNotDeclaredInTheClass[m,al]

// provisos (->) (2)
noSelfFieldsInM[left,m, b]
noSelfFieldsInM[left,m, c]

// proviso (->) (3)

all m_:Method }HL_!= m && thereIsAMethodInvocationInM[m_
, m] =>

m_ in (a.leftCds.x* (extend.leftCds)) .methods

// left description
bl.extend = a
cl.extend = a

m in (bl.methods)

m in (cl.methods)

// equivalence between the left- and the right-hand
sides
al.extend = ar.extend

leftCds = rightCds ++ {a->al} ++ {b->bl} ++ {c->cl}
al.fields = ar.fields
bl.fields = br.fields
cl.fields = cr.fields

al .methods
bl.methods
cl.methods — m = cr.methods

ar.methods — m

m = br.methods

a.~((left.classDeclarations) .extend) = a.~((right.
classDeclarations) .extend)

b.~((left.classDeclarations) .extend) = b.~((right.
classDeclarations) .extend)

c.~((left.classDeclarations) .extend) = c.~((right.

classDeclarations) .extend)

Code 4.6 Predicate that captures the transformation from the right- to the left-hand side in Rule 4.1.

llpred rule44RLModified[a,b,c: ClassId, m:Method, left,right:

Program] {
2 a !=D>b
3 b !'= ¢
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let leftCds = left.classDeclarations,

rightCds= right.classDeclarations,
al = a.leftCds,

ar = a.rightCds,
bl = b.leftCds,
br = b.rightCds,
cl = c.leftCds,
cr = c.rightCds {

// right description
m in (ar.methods)
br.extend = a
cr.extend = a

// proviso (<=>) (1)
noSuperOrPrivateAttributesInM|[right,mR, b]

// provisos (<=>) (2)
mIsNotDeclaredInAnySuperClassOfTheClassInParam[a,m, left,
right]

// proviso (<-=) (1)
methodIsNotDeclaredInTheClass[m, br]
methodIsNotDeclaredInTheClass[m, cr]

// provisos (<=) (2) (3)
forbidsAccessToMethodM[b, c,m, right]

//left description
bl.extend = a
cl.extend = a

m in (bl.methods)
m in (cl.methods)

// equivalence between left- and right-hand sides
al.extend = ar.extend
leftCds = rightCds ++ {a->al} ++ {b->bl} ++ {c—>cl}

al.fields = ar.fields
bl.fields = br.fields
cl.fields = cr.fields
al.methods = ar.methods - m

bl.methods — m = br.methods
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cl.methods — m = cr.methods

a.~((left.classDeclarations) .extend) a.~((right.

classDeclarations) .extend)

b.~((left.classDeclarations) .extend) b.~((right.

classDeclarations) .extend)

c.~((left.classDeclarations) .extend) c.~((right.

classDeclarations) .extend)

Observe that the other lines of the predicate rule44LRModified remain the same as
the ones in rule44RLModified. The only predicate included in these predicates that were not
presented before was the noSelfFieldsInM predicate (see Code 4.7). It verifies if any statement
of a method, passed as parameter, owns a FieldAccess whose pExp relation is not in the set of
this instances and whose field identifier in its id_fieldInvoked relation be a field of the class
passed as parameter. This is done through auxiliary predicates as can be seen in Code 4.7.
Firstly, the AssignmentExpression statement is verified (line 3, Code 4.7) through the predicate
noSelfFieldsInAssignment (see Code 4.8). Secondly, the MethodInvocation statement (line 35,
Code 4.7) is verified through the predicate noSelfFieldsInMethodInvocation (see Code 4.11).

Code 4.7 Predicate noSelfFieldsInM.

pred noSelfFieldsInM[p:Program, m:Method, class:ClassId] {
all st:Statement } st in univ. (m.body) =>
(st in AssignmentExpression => noSelfFieldsInAssignment [p,
st,m,class])
&&
(st in MethodInvocation => noSelfFieldsInMethodInvocationl|[p,
st,class])

In the predicate noSelfFieldsInAssignment (see Code 4.8), it is checked if there are
any accesses to fields in an AssignmentExpression statement (in a class passed as parameter).
To do this, firstly its left—hand side expression is checked (through the predicate noSelfField-
sInLeftHandSide, line 2). Secondly, its right-hand side expression is also checked. In our
OO model used for analysing this rule, a right-hand side expression of an AssignmentExpres-
sion statement can be a LiteralValue or a MethodInvocation. Thus, only the second case is
checked: if there are any accesses to fields in the class passed as parameter, through the predicate
noSelfFieldsInMethodInvocation (lines 3 and 4).

Code 4.8 Predicate noSelfFieldsInAssignment.

pred noSelfFieldsInAssignment [p:Program, ae:
AssignmentExpression, m:Method, class:ClassId] {
noSelfFieldsInLeftHandSide[p, ae.pExpressionlLeft,class]
ae.pExpressionRight in MethodInvocation =>
noSelfFieldsInMethodInvocation|[p, ae.pExpressionRight, class]
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50}

In predicate noSelfFieldsinLeftHandSide (see Code 4.9), an auxiliary predicate, named

existsFieldInClass, is used to check for a field identifier in the class passed as parameter.

Code 4.9 Predicate noSelfFieldsInLeftHandSide.

lipred noSelfFieldsInLeftHandSide[p:Program, lhs:LeftHandSide,
class:ClassId]{

2 lhs in FieldAccess && existsFieldInClass[p, lhs.
id_fieldInvoked, class] =>

3 lhs.pExp !in this_

4|}

Code 4.10 Predicate existsFieldInClass.

l|pred existsFieldInClass[p:Program, fieldId:FieldId, class:
ClassId]{
2 some f: Field,| f in class. (p.classDeclarations) .fields &&
3 f.id = fieldId
41}
Code 4.11 Predicate noSelfFieldsinMethodlnvocation.
l|pred noSelfFieldsInMethodInvocation[p:Program, mi:
MethodInvocation, class:ClassId]{
2 # (mi.realParam) != 0 && mi.realParam in FieldAccess =>
3 noSelfFieldsInLeftHandSide[p,mi.realParam,class]
41}

4.4.3.4 Analysis for Rule 3 in (QUAN; ZONGYAN; LIU, 2008)

Analysing the Alloy Model for Rule 3 (Section 3.2.5) and, more specifically, by analysing
the resulting instances of this Alloy model, we discover some static semantics errors due to the
absence of some conditions in Rule 3: item 2 in the beginning of Section 4.4. Firstly, the most
basic problem that causes a static semantics error is not to verify if there is any method with the
same id and parameters of the method m being moved, before moving it. Thus, a condition with
this restriction in Rule 3 is missing and consequently the corresponding predicate to guarantee
this restriction in Code 3.48—see Chapter 3.

Secondly, suppose we have a call to method m in the body of another method, which is
also in class M—see Figure 27, which depicts an example of the application of Rule 3 in three
classes, M, N and B, where N and B are M subtypes. Despite the example being in Java, it also
applies to rCOS since all OO features presented in Figure 27 also exist in rCOS. The referred
access does not violate the specification, that says “m is only used locally in M.”. The access

in question is illustrated in line 12 of class M on the left-hand side, Figure 27. According to
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public class M { 3 public class M {
; private N b; % private N b;
public int m(){ i public int otherMethod(){
8 return b.x; a ? return new B().b.m();
0| ! wl !

11 public int otherMethod(){
12 return new B().m();

B3 )
14 }
public class N extends M { 3 public class N extends M {
5 protected int x = 2; 5 protected int x = 2;
7} 7 public int m(){
8 8 return Xx;
_ }
11 }
3 public class B extends M { 3 public class B extends M {
5 } 5 }

Figure 27 Example of programs where Rule 3 was applied.

the substitution ops in the Rule 3 specification, we have to replace every access to m by b.m()
when method m is moved to class N—see line 8 of class M on the right—hand side. However,
this expression will not compile if the attribute b is private; it can only be a public or protected
attribute. Hence, this condition needs to be included in the specification. For instance, in the
initial phrase we have to change for ”Let NV be a public attribute of class M. In addition, it is
necessary to add the expression && f.acc !in private_ in line 16, Code 3.48, to complete the
premise required for the refinement and avoid this kind of error.

However, the replacement defined in ops turns this rule specification the most complicated
one—considering the translation to Alloy—so far. As already mentioned in Section 3.2.5, the
pExp relation of a MethodInvocation needs to also be a FieldAccess. Thus a FieldAccess type
needs to be a PrimaryExpression subsignature, beyond this, super and newCreator types. This
generates a recursive situation in FieldAccess type, since this type also owns a pExp relation of
type PrimaryExpression.

As mentioned in Section 3.1.1, it is difficult to deal with recursive predicates in Alloy.
Because of this limitation, although we have found some errors in this rule, we had to limit our
analysis and the potential discovery of more errors. In addition, it is necessary to be careful in
the correspondence of classes M before and after the transformation, since every method where
the replacement defined in ops is necessary needs to change its internal body. So in this case we
have different but corresponding methods (with same id and parameters, but different bodies),

and the other ones (where the replacement is not necessary) are equal, with only a different
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context, passed as a predicate parameter (that is, the Program parameter which indicates the
context before or after the transformation). However, the execution of this correspondence (and
consequently of the predicates that do it) is compromised since we cannot do the ops replacement
completely, as just explained. In spite of this limitation, we were able to find many errors related
with this rule, but it would be possible to find even more if we were able to specify it entirely.
Finally, a dynamic error can occur if b has not been initialized, i.e. the attribute B is null.
There is no restriction or premise in the rule specification that ensures that B should have been

initialized in class M and thus the replacements defined in ops can throw a null pointer exception.

4.4.3.5 Analysis for Rule 6 in (QUAN; ZONGYAN; LIU, 2008)

Rule 6 specification in (QUAN; ZONGYAN; LIU, 2008) says “all attributes used in m() are
in M” as a premise. This sentence leaves holes that can provoke behavioural problems—item 3
in the beginning of Section 4.4. Suppose for instance a field that is referenced by the method m()
in classes NI and N2, but this field is also in class M. Thus, the sentence is not violated. However,
when the method m() is moved to class M, a behavioural problem can occur since the field, also
in class M, can assume a different value. We solve this ambiguity by modifying the predicate
lhsOnlyRefersToFieldsInM in Code 3.71 by the one we call lhsOnlyRefersToFieldsInMCorrected,
in Code 4.12. Lines 10 and 16 were added to guarantee that the field does not exist in neither
class NI nor N2 (possible returns to the function whichFieldls) but only in class M (the next

class after classes NI and N2 in the return of the function whichFieldls).

Code 4.12 Predicate that ensures the field used in FieldAccess expression is from class M.

pred lhsOnlyRefersToFieldsInMCorrected|[p: Program,
correspondingNClass, correspondingMClass: Class, lhs:
LeftHandSide] {

let

fieldInExprName = whichFieldIs[p, lhs.pExp.name,
correspondingNClass],

fieldInFieldInvoked = whichFieldIs[p,lhs.id_fieldInvoked,
correspondingNClass] {

(lhs in FieldAccess && lhs.pExp in ExpressionName =>
(#fieldInExprName = 1 && fieldInExprName.type !in Long_ &&
lhs.pExp.name in (correspondingMClass.fields) .id &&
lhs.pExp.name !in (correspondingNClass.fields) .id ))

(lhs in FieldAccess && lhs.pExp !in ExpressionName =>
(lhs.pExp !in super && #fieldInFieldInvoked = 1 &&
fieldInFieldInvoked.type !in Long_ &&

lhs.id_fieldInvoked in (correspondingMClass.fields).id &&
lhs.id_fieldInvoked !in (correspondingNClass.fields) .id ))
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A similar problem occurs when there are calls for methods in m that are in classes M
and N with the same identifiers. This fact does not violate what is said in the rule (i.e. "all
attributes used in m() are in M), but also causes a behavioural problem for the same reasons
already presented for fields. Hence, it is necessary some additional restrictions in this premise.
Firstly, we can enhance it to "all attributes and methods used in m() are only in M, not in N™.
As a consequence, the methodOnlyRefersToAttributesInM predicate, Code 3.70 changes to the
methodOnlyRefersToAttrAndMethsInM predicate, shown in Code 4.13. The difference is the
presence of the just mentioned predicate lhsOnlyRefersToFieldsInMCorrected and also of the
methodOnlyRefersToMethodsInM predicate (shown in Code 4.14).

Code 4.13 Predicate that ensures every field or method used in m() is a field or method from class M.

pred methodOnlyRefersToAttrAndMethsInM[method:Method,
correspondingNClass, correspondingMClass:Class, p:Program] ({

all st:Statement st in univ. (method.body) =>

(st in AssignmentExpression =>

lhsOnlyRefersToFieldsInMCorrected|[p, correspondingNClass,
correspondingMClass, st .pExpressionlLeft]) &&

(st in AssignmentExpression && st.pExpressionRight in
MethodInvocation =>

(methodOnlyRefersToMethodsInM[p, correspondingNClass,
correspondingMClass, st .pExpressionRight])) &&

(st in MethodInvocation =>
methodOnlyRefersToMethodsInM[p, correspondingNClass,
correspondingMClass, st])

Observe that the predicate methodOnlyRefersToMethodsInM includes the checking done
in the real parameters of the MethodInvocation (see line 17). This was also done in the predicate
methodOnlyRefersToAttributesInM, Code 3.70 (lines 7 and 10). In addition, the predicate method-
OnlyRefersToMethodsInM does the checking in the pExp relation (type PrimaryExpression) of
the MethodInvocation (see lines 7 to 10, Code 4.14), in the case this expression refers to an
expression of type ExpressionName. This checking is similar to what is done in the predicate
lhsOnlyRefersToFieldsInMCorrected (lines 7 to 10, Code 4.12).

In spite of this correction, the premise remains incomplete. There are still other errors
in Rule 6. For instance, even if the method m() accesses only fields or methods from class M,

but if this access is through a super expression, when the method is moved to class M, then a
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compilation error can occur, if the super class of M does not have a similar field or method, or a
behavioural problem, otherwise. This scenario is avoided in Law 3 through the existence of the
proviso ((«+) (1)). Hence, we include in the predicates lhsOnlyRefersToFieldsInMCorrected and
methodOnlyRefersToMethodsInM the restriction not to access fields or methods through a super
expression (see lines 13 and 13, respectively, from Codes 4.12 and 4.14).

Besides, as just mentioned, if there is a method m() also defined in a super class of M, a
behavioural problem can occur. Thus, similarly as done in Law 2, it is necessary to include this
restriction in Rule 6, likewise the proviso ((«) (2)) in Law 3. The predicate mIsNotDeclaredl-
nAnySuperClassOfTheClassInParam, defined in Code 3.43 ensures this restriction and it can be
included in Code 3.69, in line 22, for example.

Code 4.14 Predicate that checks if the MethodInvocation refers to a field or method from class M.

pred methodOnlyRefersToMethodsInM[p:Program,
correspondingNClass, correspondingMClass:Class, mi’:
MethodInvocation] {

let

field = whichFieldIs[p,mi’ .pExp.name, correspondingNClass],

method = whichMethodIs[p,mi’.id_methodInvoked,
correspondingNClass] {

mi’ .pExp in ExpressionName =>

(#field = 1 && field.type !'in Long_ &&

mi’ .pExp.name in (correspondingMClass.fields) .id &&
mi’ .pExp.name !in (correspondingNClass.fields) .id )

mi’ .pExp !in ExpressionName =>

(mi’ .pExp !in super && #method = 1 &&

method.id in (correspondingMClass.methods) .id &&
method.id !'in (correspondingNClass.methods) .id )

#(mi’ .realParam) = 1 =>
lhsOnlyRefersToFieldsInM[p, correspondingNClass,
correspondingMClass, mi’ .realParam]

Another restriction, not included as a premise in this Rule, but already discussed for
Rule 3, is the requirement for the non existence of a method in class M with same identifier and
formal parameters as method m(), not to cause a compilation error. This restriction was also

contemplated in Law 3 with the proviso ((—) (1)).
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4.4.3.6 Other Analyses

We have also explored several variations aiming at generating syntactic errors and in all
cases counter examples were generated, which gives some evidence that our Static Semantics
Validator embedded in Alloy indeed captures the syntax and static semantics of a subset of Java.

For instance, suppose we change the specification for Law 1 to Law 5. If we observe the
only change is in the proviso («—) of Law 1. More specifically, D, mentioned in this proviso,
assumes the value of a class of type B when it should not. This is because class D belongs to
the set of the B’s subtype—it is B itself. Thus, the body in the predicate in Code 3.27, which
is referenced in Code 3.26, has to change to the one presented in Code 4.15. In this new body,
class B (or C) is not included in its own subtype. Only their subclasses are because there we are
using transitive closure (*) instead of a reflexive transitive closure (x).

Mapping the situation to our model, a FieldAccess, using its pExp relation of type
newCreator (a subtype of PrimaryExpression), whose cf relation, in turn, is of class B would be
generated trying to access the specific field (relation fieldInvoked of FieldAccess signature) being

moved by the transformation.

Law 5. (move attribute to superclass)

class B extends A { class B extends A {
ads public 7 f; ads
cnds cnds
mds mds

} }

class C extends B { TedsMain | ags C extends B {
public T f; ads' ads’'
cnds'’ cnds'’
mds’' mds’'

} }

provided

(—) The attribute name f'is not declared by the subclasses of B in cds;
(<) (1) The attribute name f is not declared in ads’; (2) D.f, for any D1 B and D % C, does not

appear in cds, Main, cnds, cnds’, mds, or mds’

Code 4.15 Mutation of the predicate in Code 4.15

pred firstIsSubtypeOfTheSecondOneClassMutate[p:Program, first,
second:ClassId] {
let secondSubClasses = second.”~((p.classDeclarations).
extend) {
first in secondSubClasses
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This modification causes the Alloy Analyzer to find counter examples when the model in
Code 4.1—Static Semantics Validator—is executed. Thus, programs such as the ones presented
in Figure 28 are generated. This program shows the class Classld_4 (left) trying to access the
field (fieldid _2) (It is no longer available because it was moved from right to the left-hand side).

Left-hand side Right-hand side
public class ClassId_e {} public class ClassId_e {}
public class ClassId_7 extends ClassId_@ { public class | 7 extends ClassId_@ {
private long fieldid l=this.fieldid_e=8; |lon§ fieldid 2-0; |
protected long fieldid ©=0; private long Tieldid_l=this.fieldid_e=e;

protected long fieldid ©=0;
private long methodid_1( long a){
return this.fieldid_e=e;
}
}

private long methodid_1( long a){
return this.fieldid_e=0;
¥
H

public class ClassId_6 extends ClassId_7 { public class ClassId_6 extends ClassId_7 {}

RIE|

public class ClassId_4 extends ClassId_7 { P“blic Ei;;sh(;?:SI?}E_EXtizds ClassId_7 {
long methodid_e(long a){ ong methodid_@(long a .
return new ClassId_7().fieldid 2 = 1; (:I return new ClassId_7().fieldid_2 = 1;
} ass }
} }

Figure 28 Classes generated showing anomalies in the program transformation.

4.4.4 Threats and Validity

Next we present the threats to validity of our evaluation.

4.4.4.1 Construct Validity

We reported to almost all the transformation specifiers the errors found (except the
specifier of the Law 4—Push Down Method in (SCHAFER, 2010)). All of them (reported)

accepted the errors.

4.4.4.2 Internal Validity

The scope limitation certainly hide possibly detectable errors. At first, we have the scope
defined by the type elements defined in our OO model. Secondly, there is the scope defining a
bound on the size of each of the top-level signatures in the Alloy model, that will be submitted
to the Alloy Analyzer. In the former case, Java programs are only generated using the types in
our OO model. For instance, there is no package (this type was not considered for simplification
purposes, as already discussed in Chapter 3).

Besides, some specifications analysed use type elements in their provisos that were not
defined in our OO model. One example is the cast type, used in Law 2—Move Method in
(DUARTE, 2008). This type was not included in our OO model due to its complexity; for instance,
type checkings would be required to be done simulating a programs execution. This is very

difficult (maybe impossible) to do using the Alloy infrastructure.
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Another point that limit some more detectable errors to be found is the Alloy limitation
in dealing with recursion as explained thorough this work. For instance, specifications such as
Rule 3 can not be analysed entirely due to this restriction (see Section 4.4.3.4). In general, when
substitutions are required, recursion is necessary. Even when it is not necessary, the Alloy model
become more complex because it is necessary to apply these substitutions in the elements (of the
Alloy model) involved in the transformation, according to what is described in the specification.

In addition, we observe memory leak problem in the sat4j solver used by the Alloy
Analyzer, that difficulties the detection of more transformation specification faults, mainly the
ones related to behavioural problems. Thus, the solver was not able to finish the generation of
all of the Alloy instances. As a consequence, we had to limit the number of instances analysed.
Actually, we faced this problem in all of the specifications analysed and had to do the behavioural
analysis manually, using the Alloy Analyzer tool itself (with our Alloy Validator model), instead
of our Alloy—To—Java translator tool. A possible solution not to cause memory leak problems or
decrease the analysis time would be to decrease the scope bound limitation of each type element
involved in the transformation or even remove some of them. However, for each transformation
specification we already worked with the minimal type elements (and their corresponding bounds)
required for doing the analysis.

Memory problems are also observed when (1) specifications did not present static
semantics problems or (2) specifications were fixed and seemed not to present static semantics
problems. When there is an error in the specification (and as a consequence in the transformation—
specific model that represent it), the Alloy Analyzer returns counter examples (in case of the
Static Semantics Validator model) rapidly. However, when there is no counter example, Alloy
Analyzer delays in returning that no counter examples have been found, mainly in the cases the
models are more complex (i.e. with more types, facts and predicates). In these cases, after some

days waiting, a memory error is returned by the Alloy Analyzer.
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RELATED WORK

Most related works focus on providing transformation (more commonly, refactorings)
implementations, and are usually available as plug—ins to an IDE tool. In these works, the
transformations are typically validated using test suites, provided by the tool itself or by some
IDE. Due to the absence of transformation precise specifications, some works such as (OVERBEY;
JOHNSON, 2011; OVERBEY M. J. FOTZLER; JOHNSON, 2011; SCHAFER, 2010) take the initiative to
also specify these refactorings in a way to ease implementation. On the other hand, the works in
(SOARES, 2015; SABINO, 2016) focus mainly on evaluation of the implementations provided by
(OVERBEY; JOHNSON, 2011; OVERBEY M. J. FOTZLER; JOHNSON, 2011; SCHAFER, 2010) based
on test input generators using, for example, the Alloy Analyzer; but the initiatives in (SOARES,
2015; SABINO, 2016) do not address specification or implementation of refactorings. The major
contributions reported in (SOARES, 2015; SABINO, 2016) were to find many bugs in refactoring
implementations available in IDEs (or refactoring engines) such as JRRT (EKMAN; HEDIN, 2007),
Eclipse, NetBeans and IntelliJ.

However, a validation of transformation specifications, regardless of their implementa-
tions in a source language, is not addressed. As discussed along this thesis, our strategy focused
on transformation specification validations, considering that a transformation specification is
given as input. Using Alloy and the Alloy Analyzer, we simulate all possible inputs (according
to a given scope of elements) matching a specification template which enables a transformation
to be applied. At the same time, all the respective instances of programs are also generated
and it is checked if the transformation does not cause static semantics or behaviour problems
in them. So our main goal is transformation validation, rather than providing a transformation
implementation that can be plugged into an IDE and used by developers. As a future work, we
aim at providing a tool, where our strategy can be embedded, that offers a standard format of
transformation specification, that can be easily implemented in a programming language.

In addition to the related work mentioned above, in this chapter we consider some addi-
tional approaches closely related to ours. The considered works are summarised in Table 3, where
the lines represent each work being compared, and the columns represent the perspectives being
compared. For instance, works such as (OVERBEY; JOHNSON, 2011; SCHAFER, 2010) propose

transformation (in their case, refactoring) specifications (see first column in Table 3), whereas
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we focus on validating transformations. The focus on validation is also the case for the works
in (SOARES, 2015; SABINO, 2016) but they only validate the transformation implementations.
Concerning transformation implementation (second column), the works (OVERBEY; JOHNSON,
2011; SCHAFER, 2010) adopt concrete programming languages whilst we use the Alloy formal
notation for providing an implementation of each transformation specification. This point is not
addressed by the works (SOARES, 2015; SABINO, 2016). On the other hand, all the works address
transformation validation (third column). However, as we already mentioned, except for our
case, only the transformation implementation is validated (not the specification). In some works
such as (SCHAFER, 2010), the specification is adjusted as a consequence of the implementation
validation, since when a fault is found in the implementation, the adjustment is propagated back
to the specification. This can be done in the case of the specification provided by the authors in
(SCHAFER, 2010) since it is done as a pseudocode, to ease the implementation of the refactoring.
However, what is actually (or directly) validated is the transformation implementation. For this
reason, we indicate in the transformation validation column the symbols S or I referring to the
validation of specification or implementation, respectively.

With regard to the fourth column, named Dependency of a particular source language, it
captures whether the program where the transformation is applied needs to be in a specific source
language. In our strategy, this perspective does not apply since we are validating transformation
specifications.

The column internal model representation refers to the specific model used to evaluate
a specific transformation, regardless whether what is being evaluated is a specification or an
implementation. Hence, in our case we work with Alloy instances, whilst the differential
precondition checking proposed in (OVERBEY; JOHNSON, 2011) works with a program graph
(i.e. AST). The other strategies consider programs (in general) as input to a refactoring engine
implementation. The column internal model generation is intuitive and refers to which tool is
used to generate the internal model representation.

Finally, the columns Static Semantics and Dynamic checks indicate which mechanisms
are used to do the static semantics and dynamic validations, respectively, of the transformations
being evaluated. Each perspective/column is further detailed when describing each one of the
related work.

Many authors refer to preconditions incompleteness as the main source of program
transformation misbehaviour. In this direction, the work in (OVERBEY; JOHNSON, 2011) presented
a technique called differential precondition checking. They classified refactoring preconditions
as ensuring input validity, compilability, and behaviour preservation. The first one checks if all
inputs from the user are legal, hence it is possible to apply the transformation. Compilability
checks if the resulting program (RS) will compile after the transformation is applied (the RS
will meet all the syntactic and semantic requirements of the target language, according to a
given scope). This property is similar to what our Static Semantics validator does. Finally, the

preservation property checks if, when the transformation is performed and the RS is compiled
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class Test2 | Class
int field = 0; name: "Test2"
void fun() { body:

T 0; (1) Field
freddtss . . e ek
System.out.println(i); ;'nfﬁaﬂ:/afue
} : IntConstant
value: 0
(2) Method
returnType: void
name: "fun"
arguments: (none)
body:
'S o= (i) LocalVariable
! type: int
name:"i"
initialValue:
IntConstant
\ value: 0
, == (ii) Postincrement
‘ variable: "i"
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| variable: "field"
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Figure 29 Example of the Java program and its corresponding program graph (OVERBEY; JOHNSON,
2011).

and executed, it will exhibit the same runtime behaviour as the original program. That is what
our Dynamic validator does.

Overbey et al. (OVERBEY M. J. FOTZLER; JOHNSON, 2011) wrote detailed specifications
of 18 refactorings in a technical report. Each specification describes both the traditional and the
differential version of the refactorings, both at a level of detail sufficient to serve as a basis for
implementation. They implemented a differential precondition checker and used it to implement
differential refactorings in three refactoring tools—Fortran 95, PHP 5, and BC—, following their
detailed specifications. Their checker can be placed in a library and reused in refactoring tools
for many different languages. For the tools having traditional versions of the refactorings, they
did a comparison between the results applying the traditional and differential versions—since
they were able to reuse the existing test cases to test the differential implementations.

The referred checker builds a semantic model of the program prior to transformation,
simulates the transformation, performs semantic checks on the modified program, computes
a semantic model of the modified program, and then looks for differences between the two
semantic models. The semantic model is represented by a program graph (see an example in
Figure 29), which is an AST with semantic information such as name bindings, control flow,
inheritance relationships and so forth. If the actual differences in the semantic models are all
expected, then the transformation is considered to be behaviour preserving. The changes are
applied to the user code only in this case.

Observe that our Alloy instances, which characterizes Java programs, have a similar (but

more complete, see Figure 9) structure than the program graph presented in Figure 29. All of
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our programs follow the pattern defined in our OO metamodel. Our SS or input programs are
generated taking advantage of formal techniques through our Alloy infrastructure (see Chapter 3),
that in turn benefit from the exhaustive generation of the Alloy Analyzer, according to a given
scope. Likewise are our resulting (RS) programs, but these ones, in addition, are generated
according to what is defined in the Alloy transformation—specific model and at the same time
of SS programs (in a synchronized manner). Instead, the work in (OVERBEY; JOHNSON, 2011)
generates an internal representation (an AST) to compare the two sides of a transformation, both
from a syntactic and a semantic perspective. However, the AST representation with the respective
annotations is not enough to ensure full semantic preservation since not all required semantic
information is modeled in the AST. For instance, replace every instance of the constant 0 with
the constant 1 would almost certainly break a program, but their analysis would not detect such
a problem, since this change would not affect any edges in a typical program graph. They cite
another example of bug (in this case a behaviour problem) in the Encapsulate Field refactoring
that cannot be detected by their solution since doing so would require an interprocedural analysis
and this cannot be modeled in their program graph. On the other hand, our validate step can
detect behaviour problems by taking advantage of the exhaustive generation offered by the Alloy
Analyzer (according to the corresponding Dynamic Alloy model defined) and an adequate testing
campaign (our Java Test tool).

In addition, our checking whether the transformation causes any static semantics error
in the resulting program is done through our Static Semantics Validator Alloy model (see
Section 4.1). This model yields exactly the Alloy instances (characterizing programs) generated
with static semantics errors. Instead of this, the technique defined in (OVERBEY; JOHNSON,
2011) detects the difference between the ASTs (representing the starting and resulting programs,
respectively), as just mentioned, through the indication, in the first one, of which semantic
information they expect to be preserved after the transformation. According to the authors
themselves, this is another vulnerability point since it is up to the developer/user to determine
what will be preserved or not and not all semantic information is modeled in a program graph.
Besides, it is a challenge expressing which semantic information are expected to be preserved
(same type and endpoint) because, since the AST has been modified and the endpoints are AST
nodes, it is not easy determining what the same endpoints. The comparison between graphs is
done by exploiting an isomorphism between graph nodes and textual intervals.

Our work stands out mainly due to the absence of transformation precise descriptions so
one can validate or improve it using our strategy. In general, refactorings commonly implemented
in modern IDEs are explained in terms of one or two examples. Describing a refactoring precisely
is a difficult task and consequently the guarantee that the refactored program is always valid
and behaves likewise the original program. This problem is also mentioned in (SCHAFER,
2010), which takes the initiative to specify some refactorings. The authors provide a high-level
specification of common refactorings, in terms of an informal pseudocode notation, but precise

enough to serve as the basis of an implementation. They use their own specification to implement
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all of the refactorings specified—a case study is presented in which they specify and implement
the refactorings Rename Variable, Inline Temp, and Extract Method. Whenever they discover
a bug in their implementation, as it is based on a high—level specification (also provided by
them), then they propagate the fix back to the corresponding specification. In this way, they
argue that they not only improve a particular implementation but also deep their understanding
of the refactoring itself. In this aspect, we do the same since we use our strategy to validate a
transformation specification and consequently deep our understanding about it. The difference is
that they validate their own specification (in pseudocode) and implementation whilst we validate
the ones in various other works (in a language independent format as discussed in Chapters 2
and 3). The Alloy instances generated in our strategy help us to fix eventual bugs in our Alloy
models and, when it is not the case, repair the specification and modify the corresponding Alloy
model(s) accordingly in a continuous and interactive process. Note that after all our main goal is
validating the transformation specification.

The refactoring specifications provided in (SCHAFER, 2010) do not follow the traditional
precondition—based approach but are based on proposed concepts (and techniques) of dependency
preservation, language extensions, and microrefactorings. The first is the notion of dependencies,
which captures static semantics properties of the program to be refactored. For instance, there is a
name binding dependency from every name to the declaration it accesses, and a flow dependency
from every use of a variable to each of its reaching definitions. The authors provide a framework
for tracking such dependencies over the course of a refactoring and for making sure that they
are preserved in the output program. In our case, this is achieved using our Alloy infrastructure
and the Alloy Analyzer since our resulting instances are generated at the same time as instances
representing the starting programs (and according to the predicates specifying the specific
transformation) and their preservation (concerning static semantics aspects) checked through our
wellFormedProgram predicate. The second concept proposed in (SCHAFER, 2010) is created to
overcome shallow problems caused by idiosyncrasies or lacking features of the object language,
then their refactorings are formulated in terms of an enriched language with extensions that make
the transformation easier to describe—in our case, Alloy is used as a language independent format
to describe and specify the transformations and we structure the specifications in terms of Alloy
types and predicates in a way that eases the understanding of transformations specified. Finally,
they achieve reusability through their technique of microrefactorings since they decompose
a complex refactoring into multiple smaller and simpler ones, which can help with verifying
the correctness of critical parts of the specification—in our case the reusability is achieved
through the use of common predicates in different Alloy transformation—specific models, since
each predicate can represent provisos, conditions or substitutions that can commonly appear in
different transformation specifications.

The refactoring engine in (SCHAFER, 2010) is implemented as an extension to the
JastAddJ Java compiler (EKMAN; HEDIN, 2007) frontend. They can only process programs

that successfully pass syntactic and semantic checks. They argue their implementation is more
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compact than the Eclipse’s one. This is partly due to JastAdd’s aspect—oriented features that
enable one to separate the essence of refactoring implementation from supporting code, but
most of the reduction in size comes from the fact that complicated issues of static semantics
preservation are handled by the underlying framework, not by every individual refactoring.

Besides, they do some adjustments in the input programs to enable the refactorings being
applied, whilst Eclipse would refrain from doing so and instead reject the whole refactoring.
Along their work, examples are given of the wrong output produced by refactoring engines
such as Eclipse, IntelliJ and NetBeans. They argue that their refactoring engine is very reliable
because, although not implementing all the additional features Eclipse provides, they can handle
many programs where Eclipse produces wrong output and also they refactor many programs on
which the Eclipse implementation has to give up.

However, the authors of (SCHAFER, 2010) point out two major weaknesses of their
refactoring engine in comparison with Eclipse: it is currently not integrated into an IDE, and
it is somewhat lacking in performance. The former is a design choice since their goal was to
develop a working prototype, not an end—user tool. The latter they attribute partly to the general
approach of decomposing refactorings into smaller units, but more importantly to the choice of
implementation language.

In addition, they verify their implementation using both correctness proofs (SCHAFER,
2010; SCHAFER; EKMAN; MOOR, 2009) and their own test suite and the one for Eclipse and
IntelliJ, which are publicly available. A general method for formalising reference attribute
grammars in the theorem prover Coq is proposed. They present a verified implementation
of the name binding framework for a subset of Java in the theorem prover Coq. Besides, a
framework for verifying analyses and transformations on source language is presented, consisting
of a specification formalism for source-level analyses and transformations, namely Circular
Reference Attribute Grammars, and an embedding of that formalism in Coq. Their embedding is
supported by tools that reduce the tedium work with a complex language definition and allow
proofs to be conducted at a high level of abstraction. Later, the work in (SOARES, 2015) found
bugs in the engine presented by (SCHAFER, 2010). The bugs were already fixed.

In (SELIM; CORDY; DINGEL, 2012), a model transformation testing process is surveyed and
they conclude that the transformation testing process is composed by four phases: (1) a test case
generation, where there is a test suite or a set of test models conforming to the source metamodel
for testing the transformation of interest; (2) the assessment of the generated test suite; (3) the
oracle function, which is the function that compares the actual output of a transformation with
the expected output to evaluate the correctness of the transformation; (4) the assessment of the
transformation—if discrepancies are found, then the tester can analyse the transformation and fix
any faults accordingly.

The works in (SOARES, 2015; SABINO, 2016) seem to follow the transformation testing
process defined in (SELIM; CORDY; DINGEL, 2012). The main goal of both works is checking

implementation of refactoring engines. In the former, a tool, named JDolly, works as a test case
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generator. Actually, it is a Java program generator, which involves an Alloy specification model
(that can be mapped to a source metamodel in (SELIM; CORDY; DINGEL, 2012)) representing a
subset of Java, from where Alloy instances (characterizing Java programs) are generated by the
Alloy Analyzer. Furthermore, these Alloy instances are translated into Java programs. The ones
not compiling are discarded and thus not submitted to the tools containing the refactoring engine
implementations. It is important to emphasize that each one of these Java programs represents
only the starting—hand side program (the program before the transformation) and the IDE plugin
implements the transformation itself to generate the resulting—hand side. On the other hand, in
our strategy, starting and resulting programs are generated concomitantly as Alloy instances
by the Alloy Analyzer according to our Alloy models, as already discussed throughout this
thesis. Afterwards, our Alloy—To—Java translator transforms these instances into Java programs.
Besides, our OO metamodel was useful to validate not only Java transformation specifications,
but specifications in other languages (rCOS, ROOL, and an object—oriented language with
reference semantics presented in (PALMA, 2015)) that use, or have in common, OO features
defined in our metamodel. Even considering a subset of the language and some simplifications,
we observe that all the starting—hand side programs (where the predicate wellFormedProgram is
applied to) used in the transformations analysed are 100% compilable, different from the model
presented in (SOARES, 2015), which generates only 68,8% compilable programs.

In addition, in (SOARES, 2015), tests are generated by the SafeRefactor tool (SOARES et
al., 2010) to assert whether there are any behavioural discrepancies after the transformation—that
is, the assessment phase in (SELIM; CORDY; DINGEL, 2012). SafeRefactor checks the common
methods of the programs being compared and generates many tests, each one with some possible
calls to these methods. The results are then compared and behavioural problems can be detected—
the oracle function in (SELIM; CORDY; DINGEL, 2012).

Later, the work in (SABINO, 2016) enhances the one in (SOARES, 2015) and JDolly
becomes Dolly. Besides providing a Java program generator with a better expressiveness due to
the inclusion of abstract classes, abstract methods, and interfaces, which enabled more bugs to be
discovered, Dolly also works as a C program generator. In addition, besides compilation errors
and program behaviour changing, they also find overly weak and overly strong conditions in
transformations as well as what they call as transformation issues. A transformation issue refers
to incorrect transformations, regarding the refactoring transformation definition, that appears
in the resulting program. As an example of a refactoring definition for the Push Down Method
refactoring, we have: the transformation must remove the method from its original class, add the
removed method in the subclass(es) of its original class, and update all calls to the refactored
method; on the other hand, the transformation must not move the method when there is another
method with the same signature in the target class, and apply the transformation when there is no
subclass to push down the method.

The authors argue that transformations can be global and change parts of the code that

they are not supposed to. When this scenario happens in practice, mainly for large subjects, the
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user cannot be aware of all transformation changes. They also analyse additional transformations
that must not be performed, such as removing an entity from the program. Thus, this is neither the
case of an overly strong condition nor an overly weak condition, but it is a transformation issue
in the refactoring implementation. Transformation issues are only checked when the resulting
program compiles and preserves behaviour.

The work in (SABINO, 2016) proposes two oracles to identify transformation issues in
refactoring implementations: Differential Testing (DT) and Structural Change Analysis (SCA)
oracles. DT oracle compares the outputs of two refactoring implementations. For this, they
implement a program that compares two Java programs concerning their Abstract Syntax Tree
(AST). When the outputs compile and preserve the program behaviour, they check if they are
different. If some difference is identified, they manually inspect the transformations to analyse if
one of them (or both) has issues.

SCA detects transformation issues related to the refactoring definition. The way this
oracle works is very similar to what is done in (OVERBEY; JOHNSON, 2011), where the ASTs of
programs before and after the transformations are compared concerning their expectations. These
expectations are named as refactoring definitions in (SABINO, 2016), as just explained. This is also
very similar to what is done in (SCHAFER, 2010) but, in this last case, besides the process being
performed just after the refactoring is applied, it is done to detect if the transformation caused
any kind of problem, not restricted to transformation issues. Still, in (SCHAFER, 2010) their own
implementation is checked and done according to their own transformation specification. If an
unexpected result is found in the refactored program, then the implementation is fixed and the
modification is propagated back to the specification.

Behaviour preservation is checked by them through SafeRefactorImpact, which is an
oracle (enhanced from SafeRefactor) to identify failures related to behavioural changes. It
generates test cases only for the methods impacted by a transformation. The time to test the
refactoring implementation is reduced (if we compare to SafeRefactor in (SOARES et al., 2010))
by proposing a technique to skip some consecutive test inputs, which enables finding some initial
failures in a few seconds. However, some bugs are missed.

New subjects, including real case studies, considering Object-Oriented (OO) and Aspect-
Oriented (AO) constructs are evaluated with respect to two new defined metrics (change coverage
and relevant tests), time to evaluate a transformation, and detected behavioural change transfor-
mations. The evaluation in the context of Aspects showed evidence that the technique is useful to
evaluate transformations in Aspect] programs. SafeRefactorImpact is also used to detect faults
related to overly weak and overly strong preconditions as well as transformation issues.

Overly strong preconditions are detected in (SABINO, 2016) by disabling some precondi-
tions. For each program generated by Dolly, they apply the transformation using the refactoring
engine under test. Next, they collect the different kinds of messages reported by the refactoring
engine when it rejects transformations. For each kind of message, they inspect the refactoring

engine and manually identify the refactoring preconditions that can raise it. Thus, the refactoring
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engine code is changed to allow disabling the preconditions that prevent the refactoring. If
the engine, with some preconditions disabled applies the transformation, and preserves the
program behaviour (according to SafeRefactorImpact), then they classify the set of disabled
preconditions as overly strong. Finally, the authors in (SABINO, 2016) implement an automated
issue categorizer to classify the outputs of DT and SCA oracles into different kinds of issues.
It is based on the kinds of differences between the outputs (for DT oracle) and the kinds of
refactoring definitions that the transformations do not follow (for SCA oracle).

However, in both works (SOARES, 2015; SABINO, 2016), the Alloy infrastructure is
only used to generate the SS program inputs, if we consider the nomenclature used in our
strategy (see Chapter 1). This is done through the Alloy model defining the subset of the
corresponding language used to implement refactorings. On the other hand, the RS programs
(using our nomenclature) are generated by the refactoring engines implementations instead of in
the Alloy infrastructure as ours, likewise the SS programs. In addition, when a test fails, it is
not detected if its origin is in the specification or in the implementation engine. In our approach,
an Alloy instance, generated by the Alloy Analyzer, represents not only a Java program used
as an input but a pair of programs, before and after the transformation, following what was
specified in the transformation specification, translated into an Alloy transformation—specific
model. Thus, it is possible to obtain program examples of the transformation failure through
its own specification. Our strategy can be used in a complementary manner to first validate
the respective transformation specification that captures the program transformations, and then
provide a more reliable input for a possible implementation.

The work in (BECKER ez al., 2011) focuses on the consistency preservation of the refactor-
ings. In their approach, the language’s metamodel, the set of well-formedness constraints and
maintenance rules are language-specific and they are formalized as graph transformations. A
model is considered consistent if no maintenance rule is applicable to it and if it satisfies each
well-formedness constraint. In our strategy, this well-formedness constraint can be represented
by the wellFormedProgram predicate where the model being checked is the one that represents
the resulting program. In (BECKER ez al., 2011), a refactoring specification S consists of a set of
rules, formalized by graph rules, with priorities —when more than one rule is applicable to the
same graph, the rule with the highest priority is applied first. There is an invariant checker which
proceeds for statically verifying that the absence of forbidden patterns is preserved by a set of
graph transformation rules with priorities; it analyses statically which kind of graph elements may
be produced by a rule, and then it checks how these created graph elements may be overlapped
with the forbidden pattern. To have a consistency-preserving refactoring they use the invariant
checker to show that the refactoring rules do not produce any forbidden patterns. In addition they
check that no maintenance rule is done during the refactoring phase. Otherwise, the addition of
some predicate by a maintenance rule could lead to a violation of some forbidden pattern during
the refactoring phase as well. If violations are found, counterexamples are produced and the

developer is then able to inspect and change the refactoring specification accordingly. Similarly,
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this can be done in our work through the counterexamples returned by our Static Semantics
Validator. Besides, our Dynamic Semantics Validator presents the behaviour problem(s) along

with the corresponding pair of programs (see our Validate step, Figure 23).



Table 3

Comparison of the main works presented
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2011)
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CONCLUSION AND FUTURE WORK

In this work we propose a strategy intended to help with the validation of transformation
specifications (following a perfective, corrective or adaptive model evolution) relying on a
combination of formal verification techniques, Alloy and the Alloy Analyzer, and testing. For
doing this, we firstly build Alloy metamodels. The first one is the OO metamodel which groups
OO features. Although based on JLS elements, this model is used to validate specifications in
languages other than Java (i.e., rCOS, ROOL, and an object—oriented language with reference
semantics presented in (PALMA, 2015)).

In our strategy, it is possible to completely carry out the static semantics validation of a
transformation specification using only our Alloy infrastructure. However, this is not the case for
our dynamic validation. There are some reasons for this. Firstly, in most cases, the semantics of
the programming language, in which the transformations are expressed, is not even fully defined
in a precise way. Even if a formal semantics is available, the effort for encoding it and carry out
a full semantic analysis in a framework like Alloy would probably not scale. This is the main
motivation for our choice to combine formal analysis and testing. It is important to emphasize
that the dynamic validation can be discarded in cases of transformation specifications following
a adaptive evolution model. Hence, for this specific case, it is possible to completely carry out
the specification validation using only our Alloy infrastructure.

Although our long term goal is to develop a language agnostic framework, we choose
Java as the reference language for the semantics validation since this language owns a compiler
whilst the other languages where transformations were specified, do not. Some of them such
as rCOS are specification, as opposed to programming languages. Others like ROOL have
not been implemented. Although these languages have a similar semantics, it is important to
emphasize that an error pointed by our strategy (represented by a pair of programs denoting the
transformation application) is actually a possibility of an error, which needs to be checked with
regard to the semantics of the language (for which the transformation is specified) in question.

A Java tool was built, which is comprised by some other tools: (1) the Alloy—To—Java
translator, which translates the Alloy instances (generated by our dynamic validator) into Java
programs. For doing this, we benefit from JDolly (SOARES, 2015) that, among other things,

also translates Alloy instances into Java programs. However, we had to change the way this
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translation is done since the Alloy metamodel used in JDolly was completely different from ours;
in our case, we have a completely different structure since, besides the OO metamodel, there
are the transformation—specific and validators models, whose generated instances characterize
programs before and after the transformation application; (2) a Java Test tool, where tests are
generated to be executed by the generated Java programs. Actually, these two tools are integrated
and tests are generated at the same time the programs are translated, benefiting from the ASTs of
the programs before and after the transformation. These tests exercise methods of each side of
the transformation. The corresponding main method of each Test class is applied in the context
of the classes generated for the starting— and the resulting—hand sides of a transformation. This
enables detecting behavioural errors.

The second Alloy model is actually a family of specific metamodels, one for each
transformation specification being investigated. This model is comprised by predicates defining
the transformation from an SS to an RS program. It uses the elements defined in the first
model. Finally, the last Alloy metamodels are our Validator Models; in the case of the Static
Semantics Validator, Alloy instances where the RS programs present static semantics problems
are returned as counterexamples by the Alloy Analyzer. In the case of the Dynamic Validator,
the Alloy Analyzer produces Alloy instances that represent a set of classes in Java involved in
a transformation so that it is possible to identify the ones before and after the transformation.
The programs resulted from the Alloy—To—Java translation always compile since our Dynamic
Validator only runs after the Static Semantics one—thus they are always compliant to the subset
of the JLS defined in our strategy and discussed in Section 3.1.1.

Although the counterexamples returned by the Static Semantics Validator can be analysed
using the Alloy evaluator tool, the Alloy—To—Java translator can be used to ease and speed up
the detection of which static semantics error is appearing in the RS program, specially in the
cases when the user is not an Alloy developer with experience or desires to fastly know all of
the static semantics errors of all of the Alloy instances (counterexamples returned). As a future
work, discussed further, we can even categorize the errors and have an idea of which kind of
errors appear (and the corresponding count of each one) in the transformation specification.

Results showed that transformation static semantics failures can be detected by the
Alloy Static Semantics Validator without the need to implement them in a source language or
submitting them to a more elaborate test campaign as done in (SOARES, 2015; SABINO, 2016).
Actually the Alloy Analyzer acts, with an adequate model, as a powerful test generator since
it generates, according to the transformation scenario, different possibilities of classes, their
relationships and properties such as methods and attributes, elements inside method bodies as
well as the other properties included in our OO metamodel (see Section 3.1).

However, we are not underestimating oracles or testings done by tools in the literature
(SCHAFER, 2010; SOARES, 2015; SABINO, 2016). With regard to our Dynamic Validator, we
know it can be enhanced, or maybe more elaborated testing tools can be used, instead of tests

based on common methods invoked randomly and with structural comparison of the results in
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SS and RS programs. This can be cited as a limitation of our work. If we had a complete formal
semantics of our OO subset, coded in an Alloy model (or maybe a formal semantics for each
language in which the transformations are specified), the dynamic validation would be done
using the Alloy Analyzer as well, similarly to what we do with the static semantics validation
(subject to scalability, as discussed before).

The Validate step is very valuable and also speeds up a more complete dynamic validation
(if desired) since the pair of programs already characterizing the transformation are generated
based on a formal infrastructure. Thus, this can be faced as a previous step before the dynamic
validation itself, done with test tools in the literature. Commonly, the dynamic validation in
previous works is done considering a program refactored but this refactoring is done by IDEs
implementations. In our case, the representation of the program refactored is generated by
our formal infrastructure and then translated to Java. Thus we have a more confidence in the
transformation specification, considering the resulting program does not contain any static
semantics problems and that a dynamic validation is also done, even if partially.

Another contribution of our work is that we specify the models in Alloy following a
pattern in terms of elements and predicates—see Figure 18 in case of OO model and Figure 21
in case of transformation—specific model. In this regard, the structure of our Alloy models is
predictable, intuitive, thus easing their future automatic generation (from a source transformation)
and extension. For instance, if a new kind of Statement is included in the OO model such as
the SwitchStatement (see Figure 13), a predicate similar to the wellFormedMethodInvocation
predicate in Figure 18, but for a SwitchStatement, should be added. As long as it is necessary
to include new elements, the pattern of the grammar in JLS is followed, with simplifications,
according to the scope of the transformation, as discussed in Section 3.1.1.

However, when the OO model is enhanced to include new elements of the transformation
specifications, the Alloy—To—Java translator has to be adapted likewise. Nevertheless, for some
elements, some difficulties are introduced. For instance, the concurrency laws reported in
(DUARTE, 2008) have elements such as Threads, joins, typical of a concurrency environment,
that requires not only a careful mapping into our OO model, introducing the adequate types and
predicates to guarantee the well-formedness of the programs, but also a correct translation from
the Alloy instances into Java programs. This can be very challenging specially considering a
concurrent context.

Besides, we observe that the predicates specifying the transformations from SS to RS
programs (in the Alloy transformation—specific model) also follow a structure, where firstly
some variables are declared (these ones are almost the same in all the transformation predicate
specifications). Secondly, the code establishes the elements in both sides of the transformation
template: left and right. Thirdly, predicates corresponding to each proviso, condition or substitu-
tion in the transformation appear. Finally, the equivalence between the SS and RS programs is
established. We also defined a mapping between each predicate in the transformation—specific

model and its corresponding proviso, condition or substitution (see Figures 19 and 20). As these
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provisos, conditions or substitutions commonly appear repeatedly along different transformation
specifications, these predicates can be reused. The reuse of the predicates minimizes the possibil-
ities of errors and helps the users to specify the transformations. In addition, as a future work, in
cases the Static Semantics Validator generates counterexamples, we could suggest the possible
predicate that could be potentially related to it.

The effort to code the metamodels contemplating each transformation as well as doing
its validation using predominantly a formal technique demands significant effort. However, it
is compensated by the benefits obtained from the exhaustive generation of the Alloy Analyzer,
according to a given scope and specific for each transformation, in a way that a significant part of
the transformation validation can be done using a formal technique. Our experiments helped to

validate our own OO metamodel and some transformation specifications as shown in Chapter 4.

6.1 Future Work

Despite the results already achieved, there are some interesting directions for extending
our strategy. Firstly, we plan to consider validating more transformation specifications. In
addition, the scalability of our strategy should be evaluated. So far we realized that, when there
is a problem in the specification related to a static semantics error in the resulting program, then
the output of our strategy is fast. On the other hand, if the specification yields only a dynamic
error in RS, then the performance tends to be unsatisfactory. This occurs because, firstly, the
Static Semantics validator does not find any counterexamples (and this might take a long time
since all possibilities—according to a given scope—are explored by the Alloy Analyzer) and,
secondly, the Dynamic validator run until all possible Alloy instances (characterizing SS and RS
programs involved in the transformation) are generated, which also tend to involve an intense
computation. Afterwards, these Alloy instances have to be translated into Java programs for the
semantic preservation to be checked via (automatic) testing.

Concerning the effort related to testing, a direction we plan to explore a more elaborate
strategy to guide generation of the instances to be tested based on the transformation side
conditions. Currently, the Alloy Analyzer is used without any guidelines. One possibility is
a kind of “intelligent” method main, that would be generated by our Alloy infrastructure and
would be able to catch dynamic problems in the transformation. This method main can be
represented by the relation main of type Program in our OO model and can be used in the current
strategy as the method to be applied in both sides of the transformation, instead of the current
tests generated. More elaborated testing tools (existent in literature) can also be used, instead
of the current approach. At the end, we can even compare the results from using each of these
possibilities (or some combination of them), according to well-defined metrics.

Another topic for further research is to encode an Alloy semantics for the language in
which the transformations are expressed, and carry out semantic check using the Alloy Analyzer,

as we do now for the static semantics verification. The main challenge for carrying out a full
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dynamic semantics analysis using the Alloy Anayzer is scalability, as already discussed.

Although we have an Alloy infrastructure (with an OO and transformation—specific
models and Alloy validators as well), using our strategy as it currently stands requires specialized
knowledge of the Alloy language since a transformation—specific Alloy model is required for
doing the evaluation of a specific transformation. Eventually, some predicates can be reused
depending on the similarity among the provisos, conditions or substitutions of the transformation
and the ones already encoded. The requirement for the knowledge of a formal language such
as Alloy can be a barrier to some developers. Actually, every solution that requires a specific
language or technology is not the ideal solution. Thus, it is also in our agenda providing a
standard way of specifying transformations in a more accessible notation, as well as a translator
from such a notation into the corresponding Alloy models, in a systematic way.

Although we have not yet automated the translation of a transformation specification
into Alloy, we follow a pattern that will hopefully help in this direction. This pattern can be
clearly seen in the way transformation—specific predicates were specified as well as how the
OO model is structured and can be enhanced, as described in Chapter 3, and also mentioned in
the beginning of this chapter. In addition, we started to define a mapping (see Chapter 3) from
provisos, conditions or substitutions to the corresponding predicates. It can be enhanced as long
as additional elements appear in new transformations.

As mentioned in Chapter 5, another future work is providing a tool where our strategy
would be embedded, with traceability to the original transformation specification, hiding the
encoding in Alloy.

Yet related to the just described tool, another future work is establishing a more elabo-
rate traceability information related to the counterexamples generated by the Static Semantics
validator and the transformation specification in a way that from a counterexample the tool
could suggest which conditions are missing in the specification. The user can then accept the
suggestion from the tool in an interactive and iterative process.

We also plan to explore the integration of our strategy with refactoring engines such as
Eclipse. By applying the engine refactoring implementation to an SS program generated from an
Alloy instance, we can obtain the result of the transformation and translate it back to Alloy and
compare it with SS within the Alloy Analyzer. This allows a way of checking the soundness of
refactoring engines in a more rigorous way than testing, but this also requires the encoding in

Alloy of the semantics of the language in which the transformations are expressed.
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Code A.1 OO Metamodel
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module Jjavametamodel

open util/relation

abstract sig Id {}

sig ClassId, MethodId, FieldId, VarId extends Id {}

abstract sig Accessibility {}

one sig public, private_, protected extends Accessibility {}
abstract sig Type {}

abstract sig PrimitiveType extends Type {}

one sig Long_ extends PrimitiveType ({}

sig ClassType extends Type(

classIdentifier: one ClassId

abstract sig Class {
extend: lone ClassId,
methods: set Method,
fields: set Field

sig Field {
id: one FieldId,
type: one Type,
acc :one Accessibility

sig VarDec {
varName: one Varld,
type: one Type

sig Method {
id: one MethodId,
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param: lone VarDec,
return: lone Type,

acc: one Accessibility,
body: seq Statement

abstract sig Expression {}
abstract sig Statement extends Expression {}

sig AssignmentExpression extends Statement {
pExpressionlLeft: one LeftHandSide,
pExpressionRight: one {Expression - PrimaryExpression -
AssignmentExpression}

abstract sig PrimaryExpression extends Expression {}

sig this_, super extends PrimaryExpression {}

sig newCreator extends PrimaryExpression {

id_cf :one ClassId

abstract sig LeftHandSide({}

sig FieldAccess extends LeftHandSide {

pPExp: one PrimaryExpression,
id_fieldInvoked: one FieldId

sig ExpressionName extends LeftHandSide({
name: one VarId

sig MethodInvocation extends Statement {
PExp: one PrimaryExpression,
id_methodInvoked: one MethodId,
realParam: lone LeftHandSide

sig LiteralValue extends Expression {}

sig Program {

classDeclarations: ClassId —> one Class,
main: Method
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pred wellFormedProgram [p:Program] {
all c:ClassId,| c in (p.classDeclarations) .univ =>
wellFormedClass |[p, C]

pred wellFormedClass|[p:Program, c:ClassId] {
noCycleInExtends [p, C]

no disj fl,f2: p.classDeclarations([c].fields
fl.id = f£2.1id

no disj ml,m2: p.classDeclarations|[c].methods
ml.id = m2.1id &&

# (ml.param) = # (m2.param) &&

(ml.param.type = m2.param.type)

let class = c.(p.classDeclarations) {
superClassIsDeclared[p,class]
all m:Method.| m in class.methods =>
wellFormedMethod[p, class, m]

pred noCycleInExtends|[p:Program, c:ClassId] {
c !'in c.”((p.classDeclarations) .extend)

pred superClassIsDeclared[p:Program,c:Class] {
c.extend in (p.classDeclarations) .univ

pred wellFormedMethod[p:Program, class:Class, m:Method] {

let body = (m.body) .elems

{
all stm: Statement ‘ stm in body =>
wellFormedStatement [p, class, stm, m]

}

pred sameSignature[ml,m2:Method] {

# (ml.return)= # (m2.return)
ml.id = m2.id && # (ml.param) = # (m2.param) &&
(# (ml.param) = 1 => (ml.param.type = m2.param.type))
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pred lessOrEqualAccessibility[m,mOverriden: Method] {
//check accessibility of methods involved in overriding
(m.acc in protected && mOverriden.acc !'in private_ &&
# (mOverriden.acc) != 0) H
(m.acc in public && mOverriden.acc in public ) H
(# (m.acc) = 0 && # (mOverriden.acc) = 0 )

pred wellFormedStatement [p:Program, class:Class, st:Statement,
m:Method] {
st in AssignmentExpression => wellFormedAssignment[p,class,
st,m]
st in MethodInvocation => wellFormedMethodInvocation|[p,
class, st, m]

pred wellFormedAssignment [p:Program, class:Class, stm:
AssignmentExpression, m:Method] {
wellFormedLeftHandSide[p,class, stm.pExpressionLeft]

let rightExp = stm.pExpressionRight {
rightExp in MethodInvocation =>
wellFormedMethodInvocation[p,class, rightExp, m]

pred wellFormedLeftHandSide[p:Program, class:Class, stm:
LeftHandSide] {
stm in FieldAccess => wellFormedFieldAccess[p,class, stm]
stm in ExpressionName => wellFormedExpressionName [p, stm,m]

pred wellFormedFieldAccess[p:Program, class:Class, stm:
FieldAccess] {

let target = stm.pExp {
wellFormedPrimaryExpression|[p,class, target]
target in newCreator => stm.id_fieldInvoked in
((target.id_cf). (p.classDeclarations) .x* (extend. (p.

classDeclarations)) .fields) .id
target in this_ => stm.id_fieldInvoked in
(class.* (extend. (p.classDeclarations)) .fields) .id

target in super => stm.id_fieldInvoked in
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(class.” (extend. (p.classDeclarations)) .fields) .id

target in ExpressionName => some f,f2:Field
((f.id = target.name && f in class.fields && f.type !in

Long_) H
(f.id = target.name && f in
class.” (extend. (p.classDeclarations)) .fields &&
f.type !in Long_ && f.acc !in private_)) &&

(f2.1id = stm.id_fieldInvoked &&

f2 in (f.type.classIdentifier). (p.classDeclarations) .x* (
extend. (p.classDeclarations)) .fields

&& f2.acc !'in private_)

((f.type.classIdentifier). (p.classDeclarations) .* (extend
.(p.classDeclarations)) .fields) .id)

pred wellFormedExpressionName [p:Program, variable:
ExpressionName, m:Method] {
variable.name in (m.param) .varName

pred wellFormedMethodInvocation[p:Program, class:Class, stm:
MethodInvocation, m:Method] {
stm.pExp in PrimaryExpression =>
wellFormedPrimaryExpression[p,class, stm.pExp]

let target = stm.pExp {
target in newCreator => (some m’: Method }

m’ in (target.id_cf). (p.classDeclarations) .x (extend. (p.
classDeclarations)) .methods &&
m’ .id = stm.id_methodInvoked &&
# (stm.realParam) = #(m’.param) &&
( ((target.id_cf). (p.classDeclarations) != class H
m’ !in class.methods) => m’.acc !in private_)
&&

wellFormedRealParam|[p, stm,class,m’])

target in this_ => (

(some m’: Method

m’ in class.” (extend. (p.classDeclarations)) .methods &&
m’ .id = stm.id_methodInvoked &&

# (stm.realParam) = # (m’.param) &&
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m’ .acc !'in private_ && wellFormedRealParam[p, stm,class,m

1)
|

(some m’: Method ‘nﬂ in class.methods &&
m’.id = stm.id_methodInvoked &&

# (stm.realParam) = #(m’ .param) &&
wellFormedRealParam[p, stm, class, m’]) )

target in super => some m’: Method
m’ in class.” (extend. (p.classDeclarations)) .methods &&
m’ .id = stm.id_methodInvoked &&
#(stm.realParam) = # (m’ .param) &&
m’ .acc !in private_ &&
wellFormedRealParam|[p, stm,class, m’ ]

target in ExpressionName =>
wellFormedExpressionNameInMethodInvocation[target,class,
p,stm]

pred wellFormedExpressionNameInMethodInvocation|[target:
ExpressionName, class:Class, p:Program, stm:MethodInvocation

1

some f:Field.’ some mZ:Method
((f.id = target.name && f in class.fields && f.type !in
Long_)

(f.id = target.name &&
f in class.” (extend. (p.classDeclarations)) .fields &&
f.type !in Long_ && f.acc !in private_)) &&

((m2.1id = stm.id_methodInvoked &&
m2 in (f.type.classIdentifier). (p.classDeclarations).
methods)

(m2.1id = stm.id_methodInvoked &&

m2 in (f.type.classIdentifier). (p.classDeclarations) .”(
extend. (p.classDeclarations)) .methods &&

m2.acc !in private_ )) &&

wellFormedRealParam|[p, stm,class, m2]
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pred wellFormedRealParam[p:Program, stm:MethodInvocation, class
:Class, m:Method] {
# (stm.realParam) = # (m.param)
# (stm.realParam) = 1 => some f:Field
wellFormedFieldAccess|[p,class, stm.realParam] &&
f.id = stm.realParam.id_fieldInvoked &&
(m.param.type in Long_ => f.type in Long_) &&
(m.param.type in ClassType => (f.type in ClassType &&
firstIsSubtypeOfTheSecondOneClass[p, f.type.classIdentifier,
m.param.type.classIdentifier]))

pred wellFormedPrimaryExpression[p:Program, c:Class, stm:
PrimaryExpression] {
stm in newCreator => classIsDeclared[p,stm.id_cf]

pred classIsDeclared[p:Program, c:ClassId] {
let cds = p.classDeclarations {
c in cds.univ

pred firstIsSubtypeOfTheSecondOneClass[p:Program, first,second:
ClassId] {
let secondSubClasses = second.x*~((p.classDeclarations).
extend) {
first in secondSubClasses
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