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Resumo

Nesta Dissertacao de Mestrado é apresentado um estudo experimental e teérico do es-
palhamento hiper-Rayleigh de alta ordem em nanocristais de beta-borato de bério (S-BaB204),
ou, -BBO. O espalhamento hiper-Rayleigh (EHR), também denominado de espalhamento de
luz em harmoénicos, € uma variagio incoerente do processo de geracdo de harménicos 6pticos
que ocorrem em cristais volumares. Conforme se sabe, a geracao de harmonicos opticos (GHO)
produz radiacio em frequéncias que sdo miltiplos da frequéncia do laser de excitacio. Assim,
0o EHR é comumente demonstrado na literatura através dos processos nao lineares de ordem
mais baixa, ou seja, através do espalhamento de segundo harménico em materiais nao cen-
trossimétricos e do espalhamento de terceiro harménico em sistemas centrossimétricos. Neste
trabalho de dissertacdo, nds reportamos a emissao simultdnea do segundo, terceiro, quarto e
quinto harmo6nicos em amostra composta por nanocristalitos de B-BBO de aproximadamente
15 nm de didmetro. A excitacdio da amostra foi feita em 2000 nm, com pulsos de 100 fs, a uma
taxa de repeticio de 1,0 kHz. Estes pulsos sdo obtidos através de um amplificador paramétrico
6ptico (OPA) bombeado por um amplificador regenerativo de Ti:safira. A emissao da amostra
foi observada nos comprimentos de onda de 1000 nm, 670 nm, 500 nm e 400 nm. A fim de
descrever teoricamente a GHO observada, bem como também a sua dependéncia em fun¢do da
poténcia de bombeamento, o modelo cldssico do oscilador nao linear foi utilizado para derivar

uma expressao generalizada da regra de Miller.

Palavras-chave: Espalhamento Hiper-Rayleigh. Geracao de Harmdnicos. Fentossegundos.

Nanocristais. BBO.



Abstract

In this Master Thesis is presented an experimental and theoretical study on high-order
hyper-Rayleigh scattering. Hyper-Rayleigh scattering (HRS), also called harmonic light scat-
tering, 1s an incoherent variant of harmonic generation process which occurs in bulk crystals.
As it is known, Optical Harmonic Generation (OHG) produces radiation at frequencies that are
multiples of the excitation laser frequency. Thus, HRS is, in general, addressed in the literature
to the lowest-order nonlinear processes of molecules or nanoparticles, i.e., second harmonic
scattering in noncentrosymmetric materials and third harmonic scattering in centrosymmetric
systems. In this work, we report the simultaneous emission of the second, third, fourth and fifth
harmonic scattering in a sample consisting of beta barium borate (f3-BaB,04) nanocrystals of
approximately 15 nm diameter. The optical excitation of the samples was performed at 2000
nm, with 100 fs pulses, at a repetition rate of 1.0 kHz, obtained via an OPA system pumped by a
Ti:sapphire regenerative amplifier. The generated emission was observed at 1000 nm, 670 nm,
500 nm and 400 nm. In order to theoretically describe the observed OHG and their dependence
as a function of the excitation laser power, a classical nonlinear oscillator model was used to

derive a generalized expression of the Miller’s rule.

keywords: Hyper-Rayleigh scattering. Harmonics Generation. Femtosecond Pulses. Nano-

crystals. BBO.
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1 14

Conceitos introdutérios de optica

Desde os primérdios da fisica como ciéncia, fendmenos fisicos ndo lineares sdo observados
em diversas situacdes na mecanica, eletricidade, magnetismo, etc. Assim, na maioria das vezes
em que descrevemos um fendmeno por um comportamento linear trata-se de situagdo bem
especifica onde os parametros do sistema sdo reduzidos a fim de se facilitar a compreensdo
dele. De fato, com um olhar mais cuidadoso, vamos perceber que a natureza ¢ tdo nao linear,
que ficamos felizes quando identificamos comportamentos meramente lineares em nosso dia a
dia. Na 6ptica nao poderia ser diferente.

Apesar da resposta de um sistema fisico nem sempre ser proporcional ao estimulo, na grande
maioria das vezes esta ¢ a abordagem inicial para um tratamento analitico e modelamento
tedrico do fendmeno estudado. Dependendo da situacdo, esta primeira aproximacao pode ser
tao eficiente que ndo hd necessidade de outras aproximacdes. Por exemplo, uma situagcdo em
que a aproximacao linear proporciona um dos maiores paradigmas da fisica € na mecanica, no
tratamento de pequenas oscilagdes, onde se considera uma forga proporcional ao deslocamento

relativo a posi¢do de equilibrio. Neste caso, a equacdo de movimento é:

mx = kyx, (1.1)
onde m é a massa e k; € a constante de forca descrita na lei de Hooke. A solu¢do da equagdo
(1.1), descreve um movimento harmonico simples tal que:

x =A-cos[wpt + 9], (1.2)
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onde a frequéncia natural de oscilagio é wy = /k;/m , e os pardmetros A e ¢ sio fixos pelas
condi¢des inicias do sistema. Para condicao em que a amplitude, A, é pequena a equagdo (1.1) é
uma Gtima aproximacao. Porém para situacdes mais proximas do nosso dia a dia, correcdes sdo
necessdrias. De fato, o tratamento de sistemas reais apresenta muitos parametros com resposta
nao linear. Para uma ripida discussdo basta considerar a introdu¢@o de um termo ndo linear na
equagdo (1.1), através de uma modificacdo na constante eldstica de forma a rescrever aeq (1.1)
como:

mi = —kix+ kox?. (1.3)

A adi¢do do termo de segunda ordem torna a constante eldstica antissimétrica no deslocamento.
Neste caso, a resposta linear, por si s6, ndo consegue mais descrever satisfatoriamente o pro-
blema fisico. Além disto, como se sabe, equacdes diferenciais ndo lineares sdo, em geral, de
dificil resolucao analitica, onde na maioria das vezes a solu¢do numérica € a Unica alternativa.
Uma abordagem alternativa € o tratamento perturbativo, onde a solugdo € obtida por corregdes

do caso linear.

1.1 Optica linear

Uma maneira de descrever a interagao e a propagacao da luz com o meio € através da analo-
gia com o oscilador harmdnico [3]. Neste modelo, um dipolo € for¢ado a oscilar por um campo
elétrico externo, E(r). Para a discuss@o que se segue, consideremos o dipolo induzido orien-
tado na dire¢do da coordenada x, mostrado na figura (1). Por sua vez, também consideremos o
campo elétrico, E(t), na forma E(t) = 3 [E(w)e '® + cc], encontra-se polarizado na diregéo

x. Neste caso unidimensional, a notagio vetorial foi suprimida por simplicidade, e a equagéo

de movimento pode ser escrita como:
" . 2 4
X+Ti+ayx = —E(t). (1.4)
m

Na equagdo (1.4) , I' é o coeficiente de amortecimento, enquanto m € e sdo a massa e carga do
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Figura 1: Modelo de oscilador harménico forgado: o elétron estd preso ao nicleo fixo por uma
forga de restauracio eldstica. Um campo elétrico oscilante na dire¢do X perturba o sistema.

elétron. Observe que, por conveniéncia a constante eldstica k foi descrita em funcao da frequén-

cia natural @y, ou seja, foi usado que k = may. Para solucionar esta equacdo de movimento

uma solugdo na forma x (f) = 1 [X(@)e~'®" + cc|, pode ser testada. Substituindo-a na equagdo

(1.4) , obtém-se a seguinte solucdo:

e
m(wf — 0?—ilCw)

x(t) =

Et). (1.5)
Por consequéncia, o dipolo induzido pelo campo elétrico externo, p, é dado por:

p(t) =ex(t). (1.6)

Como sabemos do eletromagnetismo, a resposta macroscépica de um meio material submetida

a um campo elétrico externo, E, ¢ dada pela polarizacao elétrica do meio, P:

P=1¢gy.E, (1.7)

onde P ¢ a média volumétrica dos momentos de dipolos induzidos pelo campo E, x ¢ a suscep-
tibilidade elétrica e &y é a permissividade elétrica no vidcuo. Em particular, quando o sistema é
isotrépico e homogéneo, ¥ € um escalar e estd relacionado com a constante dielétrica g, através
dee=1+y.

Deste modo, considerando um sistema composto por N dipolos induzidos, similar aquele des-
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crito pela equacgdo (1.6), temos que a polarizagdo P(t) serd dada da seguinte forma:

YYpi=y ()

1

v
2 1.8
P(r):fv\’—e ——E (1), (18

onde foi considerado que o valor médio do dipolo elétrico, (p), seria dado pelas equagdes (1.5)
e (1.6). Ao comparar a expressdo (1.8) com a equacdo (1.7), obtemos que a susceptibilidade

linear, ¥, para o sistema é:
N e?

x= V ggm (0 — @ — iTw)’

(1.9)

onde a expressdo (1.9) descreve uma susceptibilidade escalar devido as aproximagdes consi-
deradas. Contudo, é importante destacar que, de uma forma mais geral, a susceptibilidade
apresenta natureza tensorial. Isto significa que a polarizagdo P (¢) pode conter elementos em
direcdes diferentes do campo elétrico aplicado.

De fato, no regime linear a susceptibilidade € um tensor de segunda ordem, y;;, podendo ser

descrita por:

Plze()Z]%l(j)E] (l,]:X,y,Z) (110)

No entanto, para discussdo que se segue, continuaremos a tratar a susceptibilidade como es-
calar. Desta forma, retornando a descricdo microscdpica, temos que a amplitude da oscilagdo

x(t), calculando o médulo da equacéo (1.5), é dada por:

eEo 1
m \/(wg — )’ + 012

x| = (1.11)

onde € possivel observar que a amplitude exibe uma ressondncia, caracterizada por um ma-

Ximo, que ocorre quando ®? = a)g — g,conforme mostrado na figura (2). Ainda nesta abor-

dagem microscdpica, € possivel reescrever o momento de dipolo induzido, p, em termos da

polarizabilidade microscépica, a. Desta forma, teremos:

P =aE . (1.12)
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onde a polarizabilidade a € o equivalente microscopico da susceptibilidade y, e E Joc € 0O campo
local que € diferente do campo incidente. Assim, a polarizabilidade linear, apresenta a mesma
natureza tensorial da susceptibilidade y, sendo um tensor de segunda ordem. Nos préximos

capitulos discutiremos um pouco mais esta abordagem e de sua importancia.

o
v 4]
1

o
o
1

Amplitude |[x| (normalizada)
o
B

=
ha
1

0 1 ('I'J = I

Frequéncia (w)

Figura 2: Comportamento da amplitude de oscilagdo Ixl, em fungdo da frequéncia de excitagdo
o.

1.2 Optica néo linear

A dptica ndo linear € o estudo de fendmenos Spticos que ocorrem devido a modificacdo das
propriedades 6pticas dos materiais induzidas por feixe de luz de alta intensidade. A dptica ndo
linear teve seu inicio com a observagdo da geracdo de segundo harmdnico (GSH), no ano de

1961, pelo cientista americano Peter A. Franken [4]. Em seu trabalho, Franken utilizou como
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fonte de excitagido um laser pulsado de rubi, de comprimento de onda de 694,3 nm. O quartzo
cristalino foi o meio ativo utilizado para producdo do segundo harménico. Por sua vez, para
descri¢do tedrica do processo de geracdo de harmdnicos, o formalismo das susceptibilidades
foi empregado. Este formalismo das susceptibilidades se aplica no dominio das frequéncias,
considerando que um campo elétrico, E(®), que oscila com frequéncia @ excita o meio mate-
rial. No regime linear, conforme mencionado na equagdo (1.10) a resposta do meio é descrita

por uma polarizagio, P (@), tal que:
P(0) =gy E (o). (1.13)

Para campos intensos a polarizagdo do meio material, induzida pelo campo 6ptico aplicado,
¢ ndo linear com a magnitude do campo elétrico. De fato, generalizando a equacdo (1.13)
através de um tratamento perturbativo, € possivel descrever a polarizagdo através de uma série

de Taylor, de forma que [S][6]:
P=¢ [X(I)E IV VO] ] =p) 4 p@ 4 p®) 4 (1.14)

onde as quantidades %(2) e 1(3) sdo conhecidas, respectivamente, como susceptibilidades ndao
lineares de segunda e terceira ordem. Por sua vez, PU ¢ a polarizacdo linear, e P2 ¢ pB)
sdo as polarizacOes ndo lineares de segunda e terceira ordem, respectivamente. Obviamente,
para que a expansdo em série convirja, é necessdrio que cada ordem superior da expansao seja
menor que o precedente, e que o campo E seja menor que o campo atdmico que € da ordem de
5,14x10''V /m.

Conforme ja comentamos, as susceptibilidades ndo sdo quantidades escalares. Enquanto a sus-
ceptibilidade x(l) ¢ um tensor de segunda ordem, x(z) € tensor de terceira ordem e assim por
diante. Além disto, os processos fisicos associados as diferentes ordens perturbativas possuem
caracterfsticas diferentes. Por exemplo, os fendmenos relativos a resposta ndo linear de segunda
ordem somente ocorrem em cristais ndo centrossimétricos - cristais que nao possuem simetria
de inversdo. Assim sendo, em liquidos, gases e cristais que possuem simetria de inversdo, a

susceptibilidade x? énula, e consequentemente a GSH ndo ocorre nestes materiais.
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Por outro lado, interacdes de terceira ordem, associadas 2 x(3) ocorrem, em ambos, meios
centrossimétricos e meios ndo centrossimétricos. Deste modo, € possivel perceber que as sus-
ceptibilidades ndo lineares sdo dependentes da estrutura cristalina do meio, fato que corrobora
com a natureza tensorial das susceptibilidades.

Para o caso microscopico uma expansao andloga a equacgdo (1.14) pode ser realizada de forma
que o dipolo induzido pode ser descrito por [5]:

Bii
2!

EiE+ U EEE + ... (1.15)

pi = O4jE;+ 31

onde B e y sdo, respectivamente, a hiperpolarizabilidades de primeira e segunda ordem.

1.3 Geracao de segundo harmoénico (GSH)

Conforme mencionado na sec@o anterior, a geracdo de segundo harménico (GSH) é um
processo de segunda ordem. Assim, para gerar o segundo harmonico é necessdrio um cristal
com x(z) ndo nulo. Considerando um feixe laser monocromdtico cujo campo elétrico tem
magnitude representada como:

E(t) == [E(w)e " +cc], (1.16)

N —

teremos, por (1.14), que a polarizagdo de segunda ordem serd dada por [5], [7]:

2 —2iot
PO = gy @p2 =2 {X(Z) (o) + 2@ [EX2)e . J”'ﬂ } . (1.17)

Percebe-se na polarizacdo ndo linear de segunda ordem que existem dois termos que descre-
vem dois processos distintos. O primeiro termo € constante, ndo possuindo dependéncia com
a frequéncia. Esse fendmeno 6ptico é chamado de retificacdo optica, associado a um processo
que desloca o baricentro das cargas positivas do baricentro das cargas negativas no meio, cri-

ando uma polarizacdo DC quando o feixe laser atravessa o meio. J4 o segundo termo possui
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dependéncia com o dobro da frequéncia fundamental, sendo este o termo responsédvel pelo

GSH. O processo de geragdo de segundo harménico pode ser visualizado de acordo com a

20w

a;* x (2) i Gl

Figura 3: Processo de geracao do segundo harmonico e diagrama de niveis descrevendo o GSH.

figura (3), onde dois fétons de frequéncia @ sdao destruidos e um féton de frequéncia 2@ €
simultaneamente criado. Durante este processo a energia € conservada, por isso o féton criado

possui metade do comprimento de onda do féton destruido.

Einicial :Eﬁl’l017
2%Vi:%\’f—>%:%s (1.18)
Ai

Muitos fatores influenciam na eficiéncia da conversao de fétons, uma delas € o nivel de pu-
reza do cristal, além do tipo de cristal utilizado. Outro fator importante é o casamento de fase
(""phase matching'), associado a diferenga do vetor de onda Ak = 2k(w) —k(2®).

Em geral, considerando as propriedades 6pticas, os cristais podem ser reduzidos a trés eixos
principais, onde um ou dois deles podem exibir indice de refracio diferente. Em cristais unia-
xiais, por exemplo, existe um eixo de simetria preferencial onde se pode identificar dois ndices
de refragdo principais denominados de ordinario e extraordinario. Para uma melhor compre-

ensdo da propagacao da luz neste tipo de cristal, considere os campos elétricos abaixo:

E|(m) = % [Enl(a)l)ei(klxl_wll) +CC] ,
(1.19)

EQ(Q)Z) = % |:En2(a)2)€i(k2x2_w2[) +CC:| ,
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onde n; é o indice de refragdo na dire¢do do eixo i, e k; = n(@;)@;/c é o respectivo nimero de
onda.
Através da ndo linearidade de segunda ordem do cristal é possivel combinar E| e E, de forma
que a polariza¢do ndo linear de segunda ordem apresentard um elemento dado por:

PP (@3) o< 22 (3001, 0) Ej (01) Ex (). (1.20)
Neste caso, em particular, duas ondas de frequéncias angulares @; e @, sao combinadas e for-
mam uma terceira onda de frequéncia angular w3. Observe que no caso degenerado, @) = @, =
o, esta soma se reduz a GSH.
Voltando a nossa discussdo, observe que da equacao (1.20) para cada posi¢do X, no meio, a po-
larizacdo de segunda ordem oscila com uma frequéncia s e também com o seu correspondente
vetor de onda k3 = n(@3) - ®3/c. Assim, para uma eficiente soma de frequéncia é necessario
que haja, ao longo da propagacdo, uma superposicdo construtiva da emissao dos diversos dipo-
los microscépicos do meio material. Para que esta situacdo de interferéncia construtiva ocorra

¢ necessdrio que seja satisfeita a relacdo abaixo:
ks =k; + k. (1.21)

Esta condicao € dita de casamento de fase. Observe que isto nos leva a seguinte relag@o entre

os indices de refracdo n3@; = njw; +ny; .

1.4 Geracao de terceiro harmonico (GTH)

De acordo com a equagdo (1.14), processos de ordens superiores sdo possiveis, desde que
a magnitude do campo seja grande e o termo da susceptibilidade seja diferente de zero. A
nao linearidade de terceira ordem estd relacionada com a susceptibilidade %3, sendo o termo
cubico na equacgao (1.14).

PO =gy DE3. (1.22)
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A fim de identificar alguns processos que surgem da ndo linearidade de terceira ordem, vamos

considerar o caso geral, quando o campo elétrico E possui trés componentes de frequéncia:

E(t) = % [E1(0))e ™" + Ey()e " + E3(w3)e " +cc] . (1.23)

Ao calcular E? pode-se perceber que existem 22 maneiras de se combinar estas componentes
de frequéncia. Desta maneira, considerando apenas frequéncias positivas, a polarizacdo de

terceira ordem possuird componentes que oscilam com as seguintes frequéncias:

1,0, 03;301,30,303; (0 + 0 + 03) , (0] + @ — @3)
(0 + @3 —03), (0 + 03 — @), (20, T @), (20 T 03), (20, @) (1.24)
2ot o3),2os o), (203 £ w) .

A fim de descrever P (®,), sem se preocupar com a parte complexa, é possivel representar a
polarizagao por [7]:

PO(1) = X [PY (@) e +cc] (1.25)

n

onde teremos:
e Termos responsdveis pelo fendmeno de auto-focalizagdo,desfocalizagdo e modulacdo de fase

cruzada:
PO) (@) = 84 (3E\Ef + 6E2E5 + 63 ES) E

PO) () = 2y 0) (6| Ef + 3E,E + 6E3EL) Ey (1.26)
PO (@) = 243 (6E\ E} + 6E,E5 + 3EEX) Es.

e Termos responsdveis pela geragdo de terceiro harmonico:

pB) (Bwy) = %X(3)(E1)3,
pB3) (3an) = %1(3)@2)3, (1.27)
pB) (3ws) = %%(3)(153)2
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e Termos responsdveis pelos processos de soma e diferenca de frequéncias:

O +03 — 0

2480%( E%El,
=Z€0)C( E2E3>
= 3e0xVE2E,, P

= 3eoxVEIE,, PO 203 — o

= 480% E1E2E3 ;

§

§

S— N N N N N

§

= Seyx VE\E>E;,

(1.28)

48()% IE\E5E;,
=4€0% I E>E5E},

= 3gox O E2E;,
= 380)((3)E2E§,

X( )Ezin",
%(»)]52E§<7
X( )]52]5;<7

(1.29)

-Nw -Nw -Nw -lsl

eox VEIE; .

Novamente podemos perceber que a geracdo de terceiro harmdnico (GTH) trata-se do caso

degenerado da soma de frequéncia onde ®;

= w) = 03 = ®. Observe também que, assim

como a GSH, a GTH é um processo coerente paramétrico onde a radiacdo fundamental @ entra

com trés fétons para cada producdo de foton de frequéncia 3w, conforme descrito na figura (4).

Além disso, para uma eficiente GTH o casamento de fase também deve ser observado.

444

¥ (3

3w

Figura 4: Processo de geragdo do terceiro harmodnico e o diagrama de niveis envolvidos.
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E importante observar que nesta dissertagio, foi adotado a convencio usada na referéncia
[8] para os campos e susceptibilidades. Entretanto, existem outras formas de se descrever estas
quantidades como as utilizadas na referéncia [9], que podem levar a expressdes ligeiramente
diferentes daquelas descritas em (1.26), (1.27) e (1.28). Por exemplo, o fator de 4—1‘ presente em
nossas equacdes ¢ oriundo das defini¢des adotadas em (1.23) e (1.25). Assim sendo, este fator

ndo apareceria se fosse considerado a convencao adotada na referéncia [9].
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Espalhamento hiper-Rayleigh

2.1 Introducao

O espalhamento hiper-Rayleigh (EHR) ¢ uma técnica utilizada para se estudar as proprie-
dades 6pticas ndo lineares microscépicas, como a hiperpolarizibilidade molecular 8, de meios
macroscopicamente isotrépicos. O principio de funcionamento da técnica de EHR € o espalha-
mento da luz em frequéncias que sao mdltiplos inteiros da frequéncia 6ptica da luz incidente
[8]. Essa técnica foi desenvolvida por Clays e Persoons [1] e tornou-se bastante utilizada de-
vido a sua simplicidade e flexibilidade quando comparada a outras técnicas como, por exemplo,
atécnica de geracdo de segundo harmonico induzido por um campo elétrico [10],[11]. De fato,
apesar desta técnica ter sido inicialmente concebida para o estudo das hiperpolarizabilidades de
moléculas dissolvidas em um solvente [12], ela passou também a ser empregada para o estudo
de nanoparticulas [13]. Neste dltimo caso, a Unica restricdo é que as particulas sejam peque-
nas o suficiente para que a tnica contribui¢cdo multipolar seja a dipolar elétrica. Outro aspecto
de bastante importancia é que para nanoparticulas a condicido de casamento de fase nao € tao
restitiva quanto em cristais volumares, pois praticamente nao hd propagacdo, uma vez que as
dimensdes caracteristicas das nanoparticulas sdo muito menores que o comprimento de onda

de excitagdo.

2.2 Descriciao da técnica de medida do EHR de segunda ordem

Conforme visto no capitulo anterior, hd uma dependéncia quadratica da intensidade do sinal
do segundo harmdnico com a intensidade de bombeamento do fundamental. Por sua vez, em

um experimento de EHR, onde as moléculas a serem estudadas (soluto) encontram-se diluidas
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em um solvente, o sinal do EHR varia linearmente com a concentra¢do dos emissores. Assim,
¢ possivel mostrar que a intensidade do EHR de segunda ordem, considerando contribui¢des

tanto do soluto quanto do solvente, serd dada por [14]:

3
2+nm01

o = G (FuoiNsot (Bor) + TootNowot (Brot) ) SNCA)

2 6
ns ,+2
For = (242

onde n,,,; € ny,; sdo os indices de refracdo do soluto e do solvente, respectivamente. G é uma

T( ) _ t4

mol — t2w er=

constante experimental, N,,,;(Nsy;) é 0 nimero de moléculas do soluto (solvente) por unidade
de volume, e < ,121 ol> (< Szol ) ¢ a média orientacional do quadrado da hiperpolarizabilidade
para as moléculas do soluto (solvente). Perceba que T( % e Fy,; sdo os fatores de corre¢do do
campo elétrico do soluto e do solvente, respectivamente.

Considerando que as propriedades do solvente s@o conhecidas, percebe-se que hd duas quan-
tidades a serem determinadas G e <Br%lol>. Para obté-las é realizada uma série de medidas
variando a concentragdo do soluto N,,,;, que resultard em n expressdes da intensidade 7 (2®)
em funcdo da intensidade / (w), onde n é o nimero de diferentes concentragdes utilizadas. Da

expressao (2.1) espera-se uma relagdo do tipo Ly = qilfo, onde a informagdo sobre B estard

contida nos coeficientes ¢'s, ou seja:

q1 :GNs01< sol>+GN1< 112101>’
q> = GNsol< so[>+GN2< 112101>’

g3 = GNyp; ( wl> +GN3 (B2 (2.2)

mol

4dn = GNy; < sol> + GNy, <ﬁmol

Em resumo, conforme pode ser visto na figura (5), o principio deste método € construir um
gréfico dos coeficientes quadréticos g;’s em fungdo de N,,,;. Caso a constante experimental G

tenha se mantido constante, estes gréficos resultam numa reta cujo o coeficiente linear, A, e



28

5000 T T T

]

S 4000
58]

=

(2]

=

=

=

T 3000
[wa]

(S ]

o

&

B

£ 2000
(5}

-

o

b

&

£ 1000
T

o]

o

0 1 1 ] 1

0 20 40 60 BO 100
Densidade de particulas PNA (10“‘ cm._g)

Figura 5: Coeficiente quadrético GB>=G [Nsolve szolv ~+ Nyotu szolu] versus Npyy (concentragao
de PNA em metanol), referéncial 1]

angular, B, sdo definidos por:
A =GNy (B2,)

sol

B=G(B2,) -

mol

(2.3)

Desta maneira € possivel calcular o valor G a partir do coeficiente A e ﬁn% o @ partir do coeficiente
B, de forma que:

A BN 2
G=——c (o) =1 —2%. (2.4)
Nsol 5201 < mol> A

Essa forma é denominada de método de referéncia interna [1]. Por suas limitag¢des, este método
ndo € tao utilizado. Entre as limita¢cdes podemos destacar, por exemplo, o fato que é requerido
que a molécula do solvente seja nao centrossimétrica, para se ter um valor de < BS201> diferente
de zero [15].

Atualmente a forma mais utilizada no EHR é o método de referéncia externa [16]. Neste
segundo método, repete-se a medida do sinal do EHR variando a concentragdo do soluto. Tendo

os cuidados necessdrios para ndo modificar as condi¢cdes experimentais, ou seja, mantendo o

fator G.
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Em seguida repete-se n vezes a medida de intensidade do EHR para um material de referéncia
para diferentes concentragdes. Desta forma, temos um gréfico I /I versus N, para o soluto
e outro para o material de referéncia. Assim, temos os coeficientes angulares B,,,; para o soluto

€ By para o material de referéncia, de modo que:

_ 2
Bmol - Gﬁmol )

(2.5)
By =GPl

Considerando que as medidas foram realizadas mantendo a configuragdo experimental, pode-
mos eliminar a constante G e relacionar a hiperpolarizabilidade do soluto f,,,; com a hiper-
polarizabilidade do material de referéncia f3,,y comparando as duas equagdes, entdo temos a

seguinte relagao:

B 5 Bl 1/2
B = (B3 ) 0.6)

2.3 Espalhamento hiper-Rayleigh para altas ordens

Similarmente a abordagem feita para espalhamento de segunda ordem, onde temos que a

intensidade do segundo harmonico, desprezando-se a contribuicao do solvente, € dada por:
2 2
ho = GaNae TS BV - T = 143, 2.7

para generalizarmos EHR prosseguimos com o raciocinio de que cada hiperpolarizabilidade
efetiva possui as mesmas propriedades de seu andlogo macroscopico ¥, e que cada um é
responsdvel pelo seu respectivo harmoénico gerado. Entdo espera-se que o EHR também pode

ocorrer para ordens mais altas, isto é, 3@w,4®,4w, etc . Desta maneira, podemos escrever:

Ly = GSNnCTn(g) <%%c>12) Tn(:) = fg')f32w,
Lo = GaNue T (82N 18 - T =182 (2.8)

5 5
Iso = GsNuc T (E2) 1 . T = 11012,
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onde os G's sdo constantes experimentais que ndo necessariamente sdo idénticas para as dife-
rentes ordens. Ny € a concentragdo dos espalhadores ndo lineares, (B2.); (72.); (62 e (E2)
¢ a média do quadrado da hiperpolarizabilidade, sobre todas as possiveis orientacdes dos espa-
lhadores. Tn(; ),Tn(? S Tn(c5 ) sd0 os fatores de corre¢do do campo elétrico para espalhamentos de
terceira, quarta e quinta ordem, respectivamente.

Considerando os valores relativos entre as hiperpolarizibilidades, teremos:

ho _ Gy T (1)
ho Gyp{¥(B2)

2
nc

Iy, (2.9)

ne el (2.10)

(8c)
(Yae)
Lo  GsT <§nzc>1w. Q.11
(6:)

Lo Gap®
Deste modo, espera-se que as curvas entre os sinais relativos Iy /b, liw/Bws lo/liw, em
funcdo da poténcia de bombeamento, sejam retas cujos coeficientes angulares estdo associados
as razdes das respectivas hiperpolarizabilidades. Com isto, conhecendo o valor de uma delas,
por exemplo, <,Bn(cz)> ¢ possivel a obtencdo das demais num tratamento do tipo "referéncia

interna".
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Aproximacao do oscilador harmonico classico

Diversos modelos fisicos podem ser utilizados na descri¢do da interacio da radiacdo eletro-
magnética com a matéria. Nesta discussdo, vamos considerar o modelo do oscilador harmdnico
cléssico, também chamado de modelo de Lorentz, onde a posicdo do elétron e o campo eletro-
magnético sdo consideradas varidveis continuas e bem caracterizadas. Este modelo fornece
uma boa descri¢ao das propriedades Opticas lineares de vapores atdmicos e s6lidos ndo me-
talicos [9]. No regime ndo linear, o modelo de Lorentz pode ser expandido através de um
tratamento perturbativo, com a introdug@o de termos ndo harmonicos no potencial, permitindo
a descricdo qualitativa de boa parte dos processos dpticos ndo lineares.

Uma das maiores limitagdes desta descri¢do cldssica € tratar o 4tomo com apenas uma Unica
frequéncia de ressonincia, @y, embora saibamos que sistemas atdmicos possuem muitos valo-
res de auto-energia e consequentemente mais de uma frequéncia de ressonancia [9]. Embora
exista esta inconveniéncia, ainda é vélido utilizar o modelo clédssico, pois ele funciona sa-
tisfatoriamente bem na condicdo em que a frequéncia de excitacdo estd distante de qualquer
ressonancia do dtomo.

Em particular, no modelo classico do oscilador ndo linear for¢ado é considerado um sistema
unidimensional composto de N osciladores (dipolos) por unidade de volume, forcados por um
campo elétrico externo monocromético E(1):

E(t)=Z[E(®)e ™ +cc]. (3.1)

1
2
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Neste caso, o Hamiltoniano de um destes osciladores pode ser escrito como:

H=1 +U(x)—pE,
. R p=ex, 3.2)
p=pi ,
=L
|E|

-~

onde X = xi é o vetor que descreve a separagdo entre as cargas elétricas, sendo orientado na
mesma dire¢do do campo elétrico E pelo versor i. Por sua vez, a energia potencial eldstica

U (x) pode ser escrita, em torno da posicdo de equilibrio do oscilador (x = 0), como:

Ux) = mw" +m Z s (3.3)
a4y = {M] . (3.4)
dx" x=0

Note que esta energia potencial eldstica U (x) estaria associada a forgas restauradoras do di-
polo. Assim sendo, por exemplo, as informagdes sobre as simetrias cristalinas estdo incorpo-
radas neste potencial. Por exemplo, o primeiro e segundo termos da correciio, azx> e azx*,
respectivamente, provocam uma distor¢do no perfil parabdlico da energia potencial do oscila-
dor harmonico, como mostra a figura (6).

Uy,(x) = me‘%xz +azx?,

2, (3.5)
Up(x) = 55252 +agx?.

Percebe-se que a expressdo para U, em (3.5) ndo se aplica ao caso centrossimétrico, pois a
condigdo U(x) = U(—x) ndo é satisfeita. Para isto, o termo de ordem impar deveria ser nulo,
resultando apenas no termo de ordem par.

Note que a expansdo em série da funcdo energia potencial (3.3) permite a descri¢cdo genérica
de um meio, seja ele centrossimétrico ou ndo centrossimétrico.

Assim, partindo da equacdo do Hamiltoniano (3.2), é possivel escrever a equacdo de movimento



33

U(x)

U(x)

(b)

Figura 6: Gréfico da energia potencial para um (a) meio ndo centrossimétrico e (b) meio cen-
trossimétrico. A linha tracejada representa o potencial harmonico e a linha cheia o potencial
ndo harmonico.

do oscilador por:

o ~1

. . 2 xn . E(t)
x+Fx+w0x+’§3an(n_l)! =e— (3.6)

onde nota-se que a equagdo (3.6) é uma equacao diferencial ndo linear.
Considerando que o campo aplicado induz deslocamentos pequenos de maneira que o termo
linear seja maior que o termo ndo linear, é possivel a utilizacdo do tratamento perturbativo

empregado da mecanica quantica. Neste contexto, € possivel obter uma solu¢io aproximada
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para a equacdo (3.6), onde tanto o campo aplicado, E (), quanto o deslocamento, x (¢), passam
a serem ajustados pelo pardmetro A que varia entre O e 1. Desta forma, teremos:
X1 AE(r)

.. . 2 - -
x+Fx+a)0x+};3an(n_1)!—e o (3.7)

onde, considerando uma expansio em série para x () do tipo
n
Zl% = AWy (1) + APy (1) + AP (1) + -+, (3.8)

teremos ao substituir a equacao (3.8) na equacio (3.6), que:

(A0 (0) 4 2@is(0) + 2Ds30) 4+ | + T [A W1 (1) + A5 (0) + 2Dtz (1) 4+

2
[/l(‘)xl(t)+?t(2)x2(t)+7L(3)x3(t)+---]

_|_a)3 [)'(l)xl (l‘) +A’(2)x2(t) +l(3)X3(t) 4. ] +as

2!
3
[l(l)xl(l‘)+7L(2)x2(t)—|—l(3)x3(t)—l—---] E(t)
+a4 3' —|—... 287.
' (3.9)

Por simplicidade, vamos considerar, por enquanto, até a terceira ordem. Expandindo cada

termo e separando termos proporcionais a cada poténcia de A, identificamos 3 equacdes:

jél(t)+Fx1(t)+w§x1(t):eEn(;) ) (3.10)
2
(1) + Do) + 0+ ay P o), (3.11)
65(0) + T4 (0) + @us(1) + 5,05 20 (o)) + e fa@F =0/ 3.12)




35

3.1 Processo Linear

Como podemos ver a expressio (3.10) para a contribuicio de primeira ordem A () é exata-
mente a mesma que aquela discutida na secdo 1.1, na descrigdo das propriedades lineares dos

meios materiais. Conforme visto, a solucdo particular para esta equacdo é dada por:

xi (1) = %[X(l)(co)e_i“” +cc], (3.13)

onde substituindo (3.13) em (3.10) obtemos a amplitude X (w):

. E(®)
X (w)_emD(w), (3.14)
sendo
D(w)=w}—o*—ilw. (3.15)

Uma vez que a polarizag¢do pode ser descrita em termos dos momentos de dipolos, ou seja:

N

P:é;<pj>, (3.16)
temos, para a primeira ordem, que
(pj(®)) = eX; (0) = aVE (w) - (3.17)
onde a(!) ¢ a polarizabilidade linear dada por:
ol — e _ e (3.18)

mD(®) m(w} —w?—iTw)

Por outro lado da relacdo entre a polarizagdo e a susceptibilidade, sabemos que:

P=g [X(I)E+X2EE+X(3)EEE+---] : (3.19)
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Assim, das equacdes (3.16) e (3.19) temos:

PY () = egX(l)(a)) : (3.20)

P () =gy (0)E (o) . (3.21)

onde da substituicdo da equacdo (3.20) na equacdo (3.21), obtemos a seguinte expressdo para

susceptibilidade linear:

A MN(0)= ——=—— " D(0)=u} — 0’ —iTo|. (3.22)

Convém lembrar que a susceptibilidade linear, na equagdo (3.22), € a responsdvel pelas propri-

edades Opticas lineares dos materiais, tais como, refragdo, reflexao e absorgao.

3.2 GSH

Para calcular as susceptibilidades ndo lineares continuaremos a solucionar as equacgdes
(3.11) e (3.12). Para a equagdo de segunda ordem do pardmetro A é necessério a solucdo

da equacdo anterior. Portanto, vamos substituir (3.13) em (3.11). Assim:

2 (t) + Tia (1) + @2xa (t) = —%@ e (1)) . (3.23)

Novamente, temos uma equagdo ndo-homogénea de segunda ordem. Note que no lado direito

da equacdo acima ha a presenca dos termos:
, . 2
o ay [(X(U)ze—z’“”+(X(1)*)2e2“”’+2 x| ] , (3.24)

onde estamos interessados nos termos relacionados ao processo de geracdo de 2° harmonico

. . 2
que sdo: e 2 2 O termo 2 ‘X (')‘ estd relacionado com o processo de retificacao 6ptica.
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Semelhante ao que foi feito para o caso linear, a solucéo para x,(¢), serd do tipo:

x(t) = % [X(z)(Za))e_Ziwt +cc| . (3.25)

Substituindo (3.25) em (3.24), t€ém-se:

—ax  [xM72
X(Z)(zw):z!D(z3 )[ 2] - xP0e) =75

Desta forma:

(3.27)
) __21é k
a? = _7%D(2w)a[2)(w)]2 :

sendo al_(Z) a polarizabilidade ndo linear de segunda ordem, ou a primeira hiperpolarizabilidade

B. Desta forma, a susceptibilidade de segunda ordem que descreve a geragdo do segundo

harmdnico em cristais volumares (bulk) € determinada pelas seguintes expressoes:

P (20) = % 1?2 (20:0,0)E(0)E() (3.28)
N
) (20) — L @\ _ Ny@
P (2a>)_vj_zl<pj >—eVX 20), (3.29)

onde substituindo a equagdo (3.26) na equagdo (3.28) e depois na equacdo (3.29), encontramos
a susceptibilidade ndo linear de segunda ordem responsdvel pela geracdo de segundo harmo-

nico:

1PQo0,0)=—L58 5 . D(e)=}-(0)?—iTol. (3.30)
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3.3 GTH

Para obtencdo de uma expressdo para a susceptibilidade de terceira ordem, procederemos
da mesma maneira, ou seja, substituimos (3.13) e (3.25) na equacgdo (3.12). O resultado encon-

trado serd uma equacao nao homogénea de segunda ordem cuja solugéo € :

x3(t) = [X(3)(3a))e_3iwt+cc ) (3.31)

| =

Analisando apenas os termos e 3i%¢ 3@ caracterfsticos do processo de geracio do terceiro

harmonico, teremos:

1 & 93V (x) E? 2
2im | 9x [ ](2’”1}[ ox? }OD(Z(D)[ ( ) (3.32)
o a4v(x)] _gLr S
3m | dxt o mD(w)
3 3 3 3
xOp0) = LB e, EL0_ G:33)
8m3 " D(3w)D(20) [D(w)]  3'4m3 " D(3w) [D(w)]
o que implica em:
() G)) = exs(30) = 41 E (@),
(3.34)
B3 1 a Tl 3
o —3!{ 3!m3D(3w)[4D(w)]3+2m3D(3w)D(220)[D(w)]3}’

onde a® ¢ a polarizabilidade ndo linear de terceira ordem ou também denominada de ¥ (se-
gunda hiperpolarizabilidade).
Deste modo, considerando um meio macroscépico, a susceptibilidade de terceira ordem pode

Ser escrita como:

4 4 2
®) (300: _ N T a4 ¢ (a3) . (3.35
XC00.0.0) = % 73 b3 (@) | 2 DEe)Dee) D) || )
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Nesta secdo acabamos de calcular a susceptibilidade linear e as susceptibilidades ndo linea-
res de segunda e terceira ordem, considerando um meio arbitrdrio caracterizado pela energia

potencial U (x).

3.4 Generalizacao

A solugdo proposta como uma expansdo em série de poténcias, nos permite calcular as
polarizabilidades e susceptibilidades para quaisquer nao linearidade de ordem superior. A fim
de obtermos a expressdo generalizada, vamos observar os termos da polarizabilidade de terceira

ordem:
1 4 4 2

as e az

310 D(30) D@ | 27 D(30)D(2w) D(@)] (330

a®) =31

Note que, para o regime de frequéncias dpticas, temos que @, @y >> 1. Assim sendo, percebe-
se que nestas condi¢des o primeiro termo (oc a)_S) decresce mais lentamente que o segundo
(oc (0 10), desta forma, o primeiro termo serd o dominante da polarizabilidade de terceira
ordem. E possivel mostrar que este mesmo padrio se repete para as ndo linearidades superiores
a terceira ordem, onde teremos sempre dois termos com apenas um deles contribuindo de forma
mais significativa para a polarizabilidade ndo linear. De fato, considerando apenas estes termos

dominantes, pode-se escrever a seguinte expressdo geral para a polarizabilidade ndo linear [17]:

a (w0, o)~ e il ) (3.37)
O T Do) D(0) T ‘

Desta maneira, considerando o processo de geracdo de harmdnicos em um material volumar, a

expressdo da susceptibilidade ndo linear generalizada para uma ordem n pode ser escrita por:

IN(1eH a
(n) “@. - ~_———{ — n+l . >
x" (oo, o) eV {n! i D(no) [D(@)]" } s on>2 (3.38)
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3.5 Relacao de Miller

Empiricamente é observado que para diversos materiais a suceptibilidade de segunda or-
dem, na regido de transparéncia do material, pode ser expressa em termos de produtos das
susceptibilidades lineares, da seguinte forma [18]:

1 20:0,0) ~ Ay o)1) (0)1) (). (3.39)
onde a constante A; j; , conhecida como constante de Miller, € uma constante de acoplamento
que relaciona processos ndo lineares de segunda ordem com processos lineares. A principio
acreditava-se que a constante era independente do material, porém mais tarde verificou-se que
esta afirmacdo ndo estava correta. Através do modelo cldssico do oscilador harménico ndo
linear, descrito nas secOes anteriores, € possivel encontrar uma expressao generalizada para a
constante de Miller A; j;, para qualquer ordem incluindo n > 2. Partindo da equag@o (3.38),

obtemos:

A me) [N ()]

A expressao para A" revela que a constante de acoplamento de Miller depende dos termos ndo

Rfﬂ
=
0
e
e
3
2

harmonicos da energia potencial, pois de acordo com a expressdo (3.3), temos:

3.6 Razoes das polarizabilidades

Conforme ja mencionamos, pretendemos utilizar uma variacdo do método da referéncia
interna. Deste modo, é conveniente que escrevamos um quociente entre polarizabilidades, com
o propdsito de relaciond-las com as ordens mais altas. Assim, partindo da equagdo (3.36) ¢

possivel obter as seguintes expressdes:

L0 B U0 aW(w), (3.41)
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- 2.2 7 o(w), (3.42)

= 0.2 7 a)(w). (3.43)

Deste modo, considerando que as razdes expressas no lado esquerdo das expressoes (3.41),
(3.42), (3.43) poderdo ser diretamente medidas a partir os resultados experimentais, estas ex-
pressdes possibilitam uma estimativa do potencial atdmico dos dipolos induzidos no 8 - BBO
através da obten¢do dos coeficientes as, a4, as € ag. Por sua vez, os valores experimentais
destes coeficientes tanto poderdo ser tteis para o estudo de otimizacdo da geragcdo de hiper-
Rayleigh de alta ordem em 8 - BBO, como podem servir de referéncia para modelamentos do

tipo ab-initio empregados em quimica molecular. De fato para este fim basta considerar que:

oo s an—l—lU(x)
U(x) _n;an CE TR {W]o (3.44)
Partindo da Regra de Miller (3.40) , obtemos as seguintes expressoes:
1 5 /N\? %0 o,
@ o 5 (V) X 20:0,0) (3.45)
- W 2o) [x(o)]
G)3w: (1)
a3 o< 3age <ﬁ> 27(30:0,0,0)r (20) (3.46)
V) x?2w:0,0)xV(30)xV (o)
@ (4: (1)
a4 o< dase (ﬂ) 2(00,0,0,0)7(30) (3.47)
V) 28 G00,0,0)x"(40)x ) (0)
O (5m: (1)
45 o< Sage (]j) 1P 50,0,0,0,0,0)x" (40) | (3.48)
V) xW (o0 0,0.0)x"50)x 0 (0)

Assim, com o propdsito de conectar as relacdes das susceptibilidades obtidas anteriormente,
com as relacdes entre hiper polarizabilidades descritas na secdo 3, vamos utilizar as equacdes

(2.9),(2.10), (2.11).

: (3.49)

1Y (B0,0,00) al (V) 2 (@) (B0)
N

1D2wi0,0)  a3e\N 2V (2w)
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1V (40:0,0,0,0) a1 (K) Lo ) (3.50)
1O GBw0,0,0)  asde \N 2VGe) |
2 9(50:0,0,0,0,0) a5 1 (K) 1D (0)x M (5) (3.51)
X(3)(4(D‘,(D,CO, 0, ) a,5¢ \ N x(l)(4a)) ) }
onde, das expressdes (3,37) e (3.38):
2
2P 2w;0,0) Ba)
2
w0000 (5. (3.53)
2B Bw;0,0,0) (Vi) |
2
1V (50:0,0.0,0,0)]" (&) (3.54)
1 (40 0,0,0,0) (67) '
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Nanocristais de BBO

Neste capitulo, serdo expostas as caracteristicas opticas de cristais volumares de BBO, bem
como sua estrutura eletronica e cristalina. Em seguida, abordaremos o processo de sintese e

caracterizacdo das nanoparticulas de BBO utilizadas no experimento.

4.1 Propriedades macroscopicas do BBO

BBO ¢ a abreviacao para o cristal de borato de bdrio (BaB;Oy), que foi sintetizado pela
primeira vez em 1984 por um grupo de investigadores chineses coordenados pelo Prof. Chu-
angtian Chen do Instituto de Pesquisa Fujian [19]. O cristal de BBO é composto por um grupo
anidico hexagonal (B306)_3, como mostra a figura (7), e pode cristalizar-se em duas fases,
conhecidas como "a'"e "B". A fase a é centrossimétrica, o que torna os elementos do tensor
ndo linear de segunda ordem identicamente nulos. Ao contrdrio da fase o, a fase B do BaB,0y4
¢ ndo centrossimétrica e portanto os cristais que se desenvolvem nesta fase apresentam propri-
edades nio lineares de segunda ordem [20]. De fato, o 3-BBO possui estrutura cristalogréfica
trigonal, também chamada de romboédrica (grupo espacial: R3C) de classe 3m, sendo portanto

um cristal uniaxial [21].
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Figura 7: Estrutura molecular do grupo (B30g) >

O B-BBO se popularizou bastante por suas vantagens, tais como: altos coeficientes nao
lineares para geracdo de segundo harmonico, ampla faixa de transparéncia e alto valor para o
limiar de dano (> 100 GW /cm?). A figura (8), obtida da referéncia [2], mostra a transmitancia
do cristal de B-BBO em fung¢éo de A. Claramente pode-se observar que o 3-BBO exibe uma

grande faixa de transmitancia, entre aproximadamente 400-2100 nm.

=
[=]
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]
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Figura 8: Curva da transmitancia do cristal de BBO de 3,72 mm de espessurae 0 = 21° [2].

Do tratamento da propagagdo de ondas eletromagnéticas em cristais anisotropicos, sabemos
que a polarizacao induzida, ?, nao é necessariamente paralela ao campo elétrico incidente, f

De fato, a relacdo geral entre o vetor deslocamento, B, e o campo elétrico ? ¢ dada por:
Dy =& (Ex+ Y 21 Er) = Y &iEr, (4.1)
I I

onde os subescritos se referem as coordenadas cartesianas (k,/ = x,y,z). Desta maneira, a
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densidade de energia elétrica armazenada € dada por:

1 ELE], (4.2)
ou seja:
2up = ExEy + EyE; + €E2 + 26, E\E, + 26, ExE, + 26, ExE)y. (4.3)

Entretanto, através de uma escolha de eixos apropriada, i.e., considerando que os eixos coorde-
nados coincidem com os eixos principais do cristal, teremos o tensor &; diagonalizado e assim
a expressdo (4.3) € simplificada para:
Qup = &E? + &,E? + &,E> (4.4)
E — &xly y=y Z 9 .

Z

0 que resulta na equacdo de uma elipsoide no espago dos D's, isto é:

p: D} D?
2upgy = —5 +— + —, 4.5)
ny ny 7

onde n; = /€ é o indice de refragdo na direcdo k. Cristais uniaxiais, como o -BBO pos-
suem simetria de rotagdo em torno de um eixo, de forma que a equacdo do elipsoide (4.5) é

simplificada para:

2 2 2
X

+o 5=, (4.6)
nO nO ne

onde n,(n,) é o indice de refragdo ordindrio (extraordindrio) do cristal e as coordenadas x,y,z
sdo definidas a partir da relacio 7 = D/\/2€yug. Em particular, no caso do B-BBO temos
ny, > ne, condicdo que confere ao cristal a denominacio de cristal uniaxial negativo, onde os
valores medidos para n, € n, obedecem as relacdes abaixo [22]:

2 0,01878 _ 2
g = 2,739+ 25 e 0,01354A2 ,

2 _ 001224 2
M =2.3753 4 (3 Gregy — 00151647

“4.7)

sendo A dado em micrdmetros. Na figura (9), mostramos a dependéncia de n, e n, de acordo
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com as equacdes de (4.7).

5 | | T T T T T
' : —n.'ﬁ (A) Indice ordindrio
el A T —H.? (A) indice extraordinario| | -
=
;:
— _4 ...................................................................................... .
S
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Figura 9: Dependéncia de n, ¢ n, para o cristal de B-BBO a temperatura de T=293K, [2].

4.1.1 Propriedades dpticas ndo lineares do 3-BBO

Para descricdo das propriedades 6pticas ndo lineares de segunda ordem é muito comum se
utilizar o tensor ndo linear contraido d. O tensor d € de segunda ordem e se constitui em uma

alternativa ao x(z) que é um tensor de terceira ordem. O tensor d € definido de forma que:

E.E,
E\E,
Px(Z) din dia diz dis dis die
(2) EZEZ
Py = do1 dy dyzs drs drs dyg| - 5 (4.8)
o) 2E.E,
P; d31 dy diz dis dizs dig
2E.E,
2E,E,
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onde os coeficientes d;; para 0 BBO sio tais que [23],[24]:

0 0 O 0 ds —d»n
d= —dzz d22 0 d15 0 0 ) (4-9)
dyy d3y dyz 0 0 O

comdyy =2,0pm/V.d31 =ds33 =0,04pm/V ed,s = dry =0,03pm/V. Desta forma, por exem-
plo, para um cristal macroscépico de 3-BBO os elementos que mais contribuem para a polari-

zac¢do nao linear de segunda ordem, P(z), sao:

2 2 2
PP = —2dyE,Ey; P = —dyE,Ey; ¢ P = dyE\E,, (4.10)
pois, dr; € muito maior que os demais elementos.
Por outro lado, considerando uma amostra constituida por nano cristais de f-BBO randomica-
mente orientados, é mais apropriado se utilizar o valor médio do coeficiente nao linear para se
descrever as propriedades ndo lineares de segunda ordem desta amostra, ou seja, <d2>. Para o

BBO, que possui mesma estrutura que o LiNbO3, <d2> serd dado por [14]:

6 92 8 32
(d*) = gds%"‘ﬁd%l +id§z+ﬁd31d33- 4.11)

4.2 Sintese das nanoparticulas de 3 - BaB,04

Para produzir as nanoparticulas foi utilizado o método polimérico de Pechini modificado.
Este método permite a sintese de 6xidos de metais, tais como os titanatos e zirconatos, por
meio de uma resina polimérica obtida através de um dcido policarboxilico e de um polidlcool
[25]. A metodologia bésica consiste na dissolu¢do do metal em dgua deionizada, em constante
agitacdo e sob temperatura que varia de 60° a 70° C. A solucdo de fons metdlicos é submetida
a um 4cido carboxilico adequado, onde comumente utiliza-se o 4cido citrico. O resultado desta

solucdo € um citrato metdlico, conhecido como quelato. Em seguida, € adicionado ao citrato
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metélico um polidlcool, como o etilenoglicol, onde este polidlcool pode variar de acordo com
0 6xido metdlico desejado. Aumentando-se a temperatura da solu¢do ocorre uma reagdo de
poliesterificagcdo resultando em um polimero. Assim, a solucao resultante é seca em uma estufa
e depois calcinada, para a remog¢do de dgua e de materiais organicos. O resultado da calcinagdo
¢ uma espuma, conhecida como "puff”, formada pelo aprisionamento de gases como o CO ¢
CO>. E nesta espuma que sdo produzidas as nanoparticulas. Logo apés, a espuma é moida e
novamente calcinada a temperaturas mais elevadas.

Para a sintese das nossas nanoparticulas, propriamente dita, inicialmente foi sintetizado, o ci-
trato de bdrio a partir da dissolucdo de carbonato de bério (99,0% de pureza) em uma solugdo
aquosa de 4cido citrico (99,5% de pureza). Apds a homogeneizacao da solucdo de citrato de
bério, uma solucao de 4cido bérico H3BO3 (99,5%) e o poliédlcool sorbitol (98% de pureza),
dissolvidos em 4gua, foi adicionada a solucdo de citrato de bario. O sorbitol foi adicionado
para promover a polimerizacao do citrato através da reacdo de poliesterificagdo. A razdo molar
entre o dcido citrico e o metal foi de 3:1, e a razdo de massa entre o 4cido citrico e o sorbitol
foi de 3:2. A mistura de solugdes foi entdo aquecida a 150° C por 12 horas para secar a resina.
A resina entdo foi sujeita ao tratamento térmico de aquecimento inicial a 400° C por 24 horas
a uma taxa de aquecimento de 5° C / min para decompor os materiais organicos. Por fim, a
espuma resultante do tratamento térmico, foi moida e calcinada por aquecimento a 750° C por
mais 2 horas sob atmosfera rica em oxigénio.

Por oportuno, destacamos que as nanoparticulas estudadas neste trabalho foram sintetizadas e
caracterizadas no laboratdrio do prof Lauro J. Q. Maia da Universidade Federal de Géias, UFG.
Consequentemente, os resultados descritos nesta se¢do 4.2 e também na 4.3 foram obtidos na

UFG.
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4.3 Caracterizacao das nanoparticulas

Em nossas amostras foram realizadas medi¢des de difrac@o de raio X (DRX), com o difratd-
metro (Shimadzu) com configuracdo Bragg - Brentano, de geometria 8 —26. Uma velocidade
de varredura continua de 1 °/ min de 10 a 60 ° ao passo de 0.01° foi utilizada na medida. A
fonte de raios-X foi a radiagdo K-alfa do cobre com emissiao em (1,54059 A). A figura (10)
mostra os padrdes de difragdo de raios-X da amostra em pd. Na mesma figura (10) foi incluido
o padrio de difracao do ndmero de cartdao JCPDS 80-1489 para o 8 -BaB,04 ( B - BBO ).
Nota-se que uma unica fase cristalina é observada. A fase § - BBO é uma estrutura romboé-
drica e grupo espacial R3c (161), sendo caracteristico de estruturas ndo centrossimétricas que

apresentam propriedades Opticas ndo lineares.

g p-BaB O, (B-BBO)
3 [y Grupo espacial R3c (161) ]
Romboédrico
i & i
y
i 5 = - 4
= s 8§ g

| |
220
104
410)

Intensidade (unidades arb)

' JCPDS # 80-1489
I 1 .I.I

TOI B I15 20 25 30 35 40 45 50 55 60
26 (graus)

Figura 10: Padrdo de difracao de raios X para o p6 de B -BaB,04, ¢ o padrio de difracao do
JCPDS - 80-1489 para comparagao.

As amostras também foram caracterizadas utilizando um microscépio eletronico de transmis-
sdo de alta resolucdo, JEOL JEM 2010, operando a 200 keV. A figura (11) mostra a microscopia
eletronica de transmissdo (MET), a microscopia de eletronica de alta resolucio (METAR) e a

difragdo eletronica de drea selecionada (DEAS) da amostra.
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Figura 11: (a) e (b) imagens de MET de algumas estruturas, (c) a imagem de DEAS para 3-
BBO p6 e (d) imagem METAR de uma estrutura individual.

Conforme podemos observar das imagens de microscopia, as particulas de BBO possuem for-
mato de agulha, figuras (11)(a) e (b). Uma estrutura individual ¢ mostrada na figura (11)(b)
exibindo aproximadamente 270 nm de comprimento e 15 nm de largura. Histogramas com
as distribuigdes de tamanhos, para o comprimento e largura, destas estruturas em agulha sdo
mostradas nas figuras (12)(a) e (b). De fato, estes histogramas foram montados a partir da
andlise de mais de 100 estruturas, onde € possivel se observar um comprimento médio de 150
nm e uma largura média de 15 nm para as nanoagulhas. Nota-se também que a distribui¢c@o de
comprimento € mais larga, enquanto a dispersdo das larguras € mais estreita.

Por outro lado, a imagem de DEAS, figura (11)(c), revela que as agulhas sdo policristalinas,
pois apresenta um anel continuo em torno da regido observada, sem exibir qualquer estrutura
de pontos brilhantes, caracteristica de amostras monocristalinas. Esta observacdao também ¢é
corroborada pela imagem de METAR, (11)(d) , onde se pode observar linhas de interferéncia

tipicas da difrac@o de diferentes planos cristalinos, revelando estruturas (cristalitos) de dimen-
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soes da ordem da espessura das agulhas. No caso particular da imagem (4.5)(d), o didmetro
aparenta ter dimensdes de 10 nm. Contudo vamos considerar que o diametro médio de nossos
cristalitos € de 15 nm, que foi o valor médio da largura das particulas, conforme mostrado na

figura (4.6)(b)
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Para a caracterizacdo das propriedades pticas lineares foi utilizado o equipamento PerkinEl-
mer 1050WD e o acessorio Praying Mantis para a medida da reflexdo difusa do p6 constituido
das nanoagulhas policristalinas de f-BBO. A figura (13) mostra o espectro de reflexdo obtido.
Pode-se observar um enorme “plateau”que se estende, aproximadamente, dos 400 nm para
além dos comprimentos de onda de telecomunicac¢des (~1550 nm) no infravermelho. Este
"plateau"na reflexdo difusa indica que a amostra € transparente ao longo de toda esta faixa
espectral, o que estd de acordo com o espectro de transmissd@o mostrado na figura (8) para o
cristal macroscépico de BBO.

Por outro lado, o decréscimo da refletdncia difusa, observado abaixo dos 400 nm, indica absor-
¢do dos nanocristais de BBO, o que também estd em concordancia com a figura (8). Observe
contudo que, aparentemente, o decréscimo da refletdncia dos nanocristais de $-BBO, no ultra-
violeta, ocorre ligeiramente antes do decréscimo da transmitancia mostrado na figura (8), o que

pode indicar possiveis defeitos de superficie nas amostras de f-BBO.
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Figura 12: Histograma da distribui¢do do comprimento (a) e largura (b) das particulas, montado
a partir de imagens de MET do pd. As linhas indicam um ajuste numérico considerando uma
distribui¢do Gaussiana.
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Figura 13: Espectro de refletincia difusa para as nanoparticulas de f- BBO
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Resultados

Neste capitulo, nds procuramos descrever os principais resultados obtidos no experimento
de EHR nos nanocristais de B-BBO, bem como também procuramos apresentar um modela-

mento tedrico para explicar os resultados observados.

5.1 Sistema experimental

Uma representagdo esquemadtica do sistema experimental utilizado em nosso trabalho encontra-
se na figura (14). O porta a amostra, consistia de um disco de latdo de 1,0 polegada de didmetro
com uma cavidade circular de 5,0 mm de didmetro, onde a amostra em pé era disposta. A
excitagdo da amostra foi feita em 2000 nm, com pulsos de 100 fs, a uma taxa de repeti¢do
de 1,0 kHz, com poténcia média variando entre 25 e 45 mW. Estes pulsos sao obtidos através
de um amplificador paramétrico dptico (OPA) bombeado por um amplificador regenerativo de
Ti:safira. Ao longo do caminho 6ptico temos: filtro de corte para comprimentos de onda in-
feriores a 850 nm (RG850 Schott Glass), um polarizador, placa de A /2, filtro de corte para
comprimentos de onda inferiores a 950 nm (7-56 da Corning), e lente bi-convexa com distan-
cia focal 5,0 cm. No foco a cintura do feixe infravermelho foi estimada em aproximadamente
55um. Para ajuste da intensidade foi utilizado o conjunto formado pela placa de A /2 e filtro
7-56, que encontra-se inclinado ligeiramente acima do angulo de Brewster. Logo ao passar por
este filtro o feixe é focalizado na amostra por uma lente bi-convexa de distancia focal 5,0 cm.
Para coletar a luz espalhada foi utilizado uma fibra 6ptica de 600 um de didmetro. Para analisar
o sinal coletado, utilizamos os espectrdmetros portiteis, Red Tide 650 USB, ideal para regido
do espectro visivel e UV, e o espectrometro HR4000CG-UV-NIR. O sinal por fim foi salvo no

computador.
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Figura 14: Montagem experimental utilizada para medir o EHR em nanoparticulas de BBO.
I-amplificador regenerativo de Ti-safira, 2- OPA, 3- filtro RG 850, 4-polarizador, 5-Placa de
A /2, 6- filtro 7-56, 7-lente bi-convexa (f=5,0 cm), 8-amostra, 9- fibra Gptica + espectrometro,
10- computador, 11- anteparos.

5.2 Resultados experimentais

Na figura (17) é mostrado o espectro de emissdo coletado do pé de BBO e as figuras (18)
mostram o sinal do harmdnico em fungao da intensidade de bombeio. Como em nossa anélise
era importante conhecer corretamente a amplitude relativa entre os harmonicos, os espectros
foram corrigidos por uma curva de normalizacdo obtida a partir de uma fonte de referéncia.
Em particular, a fonte de referéncia utilizada foi uma lampada incandescente de 100 W, com
filamento de tungsténio, fabricado pela OSRAM. De acordo com o fabricante o espectro de
emissao desta 1ampada, (15), deve corresponder ao espectro de emissdo de um corpo negro de
temperatura T=2700 K, mostrado na figura (16). Assim, a curva de normaliza¢do foi obtida
a partir da razdo do espectro da lampada de referéncia medida no espectrdmetro e espectro
esperado para emissdo de um corpo negro de temperatura T=2700 K. Deste modo através da
curva de normalizagao foi possivel corrigir o espectro de emissao detetado descontando-se, por
exemplo, os efeitos da resposta espectral do detetor, da eficiéncia da grade, das perdas na fibra,

etc.
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Figura 15: Espectro da lampada incandescente 100W - OSRAM medida por: espectrometro
Red Tide 650
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Figura 16: Espectro de radiac¢do de corpo negro para T=2700K.

A figura (15) € o espectro da lampada de 100W (OSRAM) que foi utilizada como fonte de



56

radiacdo de corpo negro para calibragdo dos espectrometros utilizados.
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Figura 17: Espectro dos harmonicos gerados nas nanoparticulas de BBO excitadas em 2000
nm, (a) escala logaritmica, (b) escala linear
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Figura 18: Sinal de (a) segundo, (b) terceiro, (c) quarto e (d) quinto harmodnico em fun¢do da
intensidade de bombeio.

A fim de inferirmos valores para hiperpolarizabilidades e também para testar a validade
do tratamento tedrico, foram realizadas medidas da dependéncia do sinal EHR em funcao da

poténcia de bombeamento. As figuras (19) (a), (b) e (c) mostram os resultados obtidos.
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As figuras (19) mostram que a razdo entre sinais dos harmdnicos, terceiro e segundo, quarto
e terceiro, quinto e quarto, exibem comportamento linear ao variar a intensidade incidente.
Podemos j4 concluir que de acordo com o nosso tratamento tedrico, se¢do 2.3, estes resultados

comprovam que € possivel gerar EHR para altas ordens e que cada hyperpolarizabilidade ndo
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Figura 19: Dependéncia relativa das intensidades entre os harmonicos em fungdo da poténcia
de bombeamento. Razao entre o 3° e 2° harmdnico (a), entre o 4° e 3° harmdnico (b), e entre o
5° e 4° harmonico (c).

linear € responsdvel pelo seu sinal HR.

5.3 Analise teorica dos resultados

Com estes resultados podemos prosseguir com nossa abordagem e calcular as susceptibili-
dades lineares x(l) e as polarizabilidades lineares a. A partir da equacao (4.7) (equagdo de
Sellmeier) e da (5.1) podemos obter as susceptibilidades lineares, pois de uma forma em geral

temos:

(@) = 1+Re{x(1)((o)} . (5.1)

Porém como as particulas estdo orientadas randomicamente, € preciso considerar um valor
médio. Para este fim, um indice de refracdo efetivo foi definido considerando que o volume do

elipsoide de indice de refracdo, equacgdo (4.5), fosse igual ao volume de uma esfera de indice
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de refragdo n, s, ou seja:
4 4 3
V= gﬂ:(no)zne =37 (nerr)” = nepp = / (n0)* ne . (5.2)

A tabela (1) exibe os valores de ng, n, € n. sy para as frequéncias relevantes em nosso problema.

Desta forma, considerando que x(gl)f = ng 7 f(a)) — 1 foi calculado o valor efetivo para a suscep-

tibilidade linear das nanoparticulas, mostrado na tabela (2).

Frequéncia Comprimento de Indice de refracdo Indice de refragdo Indice de refracao

(nw) onda (um) ordindrio n, extraordindrio n, efetivo n, ¢
0] 2,00 1,6335 1,5169 1,5937
20 1,00 1,6501 1,5348 1,6108
3w 0,66 1,6598 1,5428 1,6198
40 0,50 1,6702 1,5504 1,6292
5m 0,40 1,6831 1,5597 1,6409

Tabela 1: Tabela de indices de refragao no, n, € n. s para diferentes frequéncias harmonicas.

Com o auxilio da equacgio (5.1) calculamos a parte real da susceptibilidade linear do segundo,

terceiro, quarto e quinto harmoénico, como mostra a tabela (2)

Susceptibilidade linear

Frequéncia
(0] 1,54
2m 1,59
3w 1,62
4o 1,65
Sw 1,69

Tabela 2: Tabela de valores da susceptibilidade linear para diferentes frequéncias harmonicas.

()

Por sua vez, as polarizabilidades lineares efetivas das nanoparticulas o, i podem ser calcula-

das a partir dos valores da susceptibilidades lineares efetivas através da relacao:

oy = eoVack - (5.3)

onde & = 8,85.10712C2N~!'m~2 é a permissividade elétrica no vicuo e V,. o volume médio

das nanoparticulas. Na tabela (3), apresentamos os valores calculados das polarizabilidades
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lineares das nanoparticulas para as diferentes frequéncias de interesse.

Polarizabilidade linear

Frequéncia afl.) (@) * (1073C.m?>.v—1)
(0] 2,40
2m 2,48
3w 2,53
40 2,58
Sm 2,64

Tabela 3: Tabela de valores da polarizabilidade linear das nanoparticulas.

Vale a pena verificar a dimensionalidade da quantidade fisica & no sistema SI. Desta forma

partimos da definicado de momento de dipolo:

p=ex=oFE — |a]= [C%;\# = [C][m]*[V] ™", (5.4)

sendo assim, as unidades C ¢ coulomb, m metro, N newton ¢ V volt. Analisando agora a
dimenséo de o'V na equacdo (5.3) temos que:
= [eo][m’] = [C*) [N~ "] [m 2] [m’)]

(5.5
= [C][N"][m] = [C)m v,

onde a susceptibilidade linear xe(}} ¢ adimensional.

5.3.1 Cadlculo da polarizabilidade de 2° ordem

Para calcular a susceptibilidade de segunda ordem utilizaremos dos coeficientes ndo lineares
do BBO fornecidos por [24], dyp =2,0pm/V,d3; = d3z = 0,04pm/V,d\s = drg = 0,03pm/V
substituindo na equagdo (4.11), obtemos (d*) = 1,53 (pm/ V)2, A relacdo entre a susceptibili-

dade efetiva, xe(z}, e (d*) é dada por:

1
1igr = 3desss degr =/ (), (5.6)
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onde xe(?} =0,618pm/V.

Das expressoes (3.37) e (3.38), € facil mostrar que para uma Unica particula temos:

") = eontVoex ) (5.7)

Assim, relacionando o B, de uma tinica particula com a susceptibilidade de segunda or-

dem xe(/%}, teremos:

Berr =21 €0Vc X3 (5.8)

Desta forma encontramos que: B,/ =1,9- 10747 C.m?.vV—2

5.3.2 Cdlculo das hiperpolarizabilidades

Prosseguindo, com a andlise dos resultados da figura (19) utilizaremos o método de refe-
réncia interna (MRI), como foi mencionado anteriormente na Secdo 4.5, tendo como referéncia

o valor de S, rf calculado pela equagéo (5.8). Assim sendo, teremos:

0-2(8) (). (1)
2 20 L

(8) (=) (22

onde c1,¢; € ¢3 s@o os coeficientes angulares dos ajustes lineares da figura (19).

Considerando as condicdes experimenntais do nosso trabalho, onde a excitacao foi feita dire-
tamente sobre o pd dos nanocristais de 3-BBO, claramente haverd contribui¢do de multiplos
espalhamentos. Neste caso, devido ao espalhamento Rayleigh, comprimentos de onda menores
serdo mais espalhados que os comprimentos maiores. Como o sinal detetado € da luz espalhada,

¢ de se esperar que as constantes G),s tém a seguinte dependéncia:

G =g.(no)*, (5.10)
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onde g seria uma constante dependente apenas da geometria da colecdo do sinal e o termo de

(nw)* estaria relacionado ao espalhamento Rayleigh. Assim, teremos:

4
& =(3)"~5,06
G- (9)'~316 (5.11)
G = (3) ~2,44

Calculando agora o quociente das hiperpolarizabilidades, teremos:

Tl — 4.4.10710

Bess

Ot — ~10 5.12
L =2,0.107 1, (5.12)
Sl —1,3,1079

Sfy T

onde utilizando o valor de ﬁef » obtemos:

Yerf = 8,5.107C2.m*. v 3
Sefr =1,7.107%°C2.m>. V4. (5.13)
Eopp =2,2.1077°C2.m0. V=3

Por sua vez, a partir destes valores de hiperpolarizabilidades podemos estimar valores para as

susceptibilidades de ordem superior, de forma que:

2 =9,1.10"5(m.y )2

2= 4510 F(my ). (5.14)
25 =1,210"2(n.y 1y

A fim de fazermos uma comparacio com alguns resultados da literatura para outros materiais,
vamos converter nossos resultados para a unidade esu. De acordo com a referéncia [7] a relagdo

entre as susceptibilidades x(")(SI) no sistema SI e (¢ no sistema esu, é dada por:

(1074.¢)n!

. ()
P AL G (5.15)

%" (esu) =
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portanto:

Letra grega Susceptibilidade (esu) Hiperpolarizabilidade (esu)

B 1,5-107° 5,2-107%
y 6,5-1071 6,9-10732
5 9,7-1072! 4,1-107%7
& 7,5-10726 1,6-10~4

Tabela 4: Tabela com valores da susceptibilidade e hiperpolarizabilidade no sistema de unida-
des (esu)

Por fim, na tabela (5.5) comparamos o valor da primeira hiperpolarizabilidade considerando

para as nossas particulas com outros resultados reportados na literatura.

Material Diametro das Hiperpolarizabilidade Referéncias
nanoparticulas ,D < B > [esu] / D3 [cm?]
BaBO; 91 nm 6,8-107° [14]
LiNbO3 125 nm 8,3-107° [14]
BaTiO3 50 nm 8,0-107° [13]
PbTiO3 52 nm 7,8-107° [13]
Nosso sistema 15 nm 1,5-107° —

Tabela 5: Tabela com diferentes valores da hiperpolarizabilidade 3, para diferentes materiais
caracterizados pela técnica de EHR empregando o método de referéncia interna.
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Conclusao

Nesta Dissertacao foi apresentado um estudo de espalhamento hiper-Rayleigh de alta ordem
em poés constituidos de nanoagulhas de borato de bdrio na fase f (8-BBO). Da caracterizacdo
do pé de B-BBO, foi possivel observar que as nanoagulhas, que apresentam um comprimento
médio de 150 nm por uma largura média de 15 nm, sdo estruturas policristalinas, com dominios
monocristalinos de diametro aproximado de 10 nm. Ao ser irradiada por pulsos ultracurtos no
infravermelho, a amostra exibiu emissao do segundo, terceiro, quarto e quinto harmdnico do
fundamental. Variando-se a poténcia do laser de bombeamento, observamos que a razdo das
intensidades espalhadas I /by, l40/Be € 1o /11w apresentou uma dependéncia linear com a
intensidade da luz incidente. A fim de se explicar o resultado obtido, fizemos uma expansao
da abordagem tedrica usada no tratamento de espalhamento hiper-Rayleigh para incluir termos
de ordens mais altas e utilizamos o modelo do oscilador ndo linear para estender a regra de
Miller para relacionar as polarizabilidades ndo lineares em termos da polarizabilidade linear
dos nanocristais de B-BBO. Do tratamento teérico desenvolvido, foi possivel a aferi¢do das
susceptibilidades ndo lineares de terceira, quarta e quinta ordens dos nanocristais, utilizando
como referéncia os coeficientes nio lineares de segunda ordem do cristal macroscépico de
BBO. Os resultados mostraram que a amostra estudada além de ser bastante promissora do
ponto de vista de estudos elementares de processos nao lineares em meios nanométricos, possui
um bom potencial de aplicabilidade para microscopia de alta resolucdo, pois uma emissdo ndao
linear de quinta ordem € bastante sensivel a intensidade de bombeamento sendo mais provavel
de ocorrer apenas numa vizinhanca muito pequena em torno do pico de intensidade do laser de
bombeamento. Assim, esta vizinhanga onde os processos de quinta ordem ocorrem € menor
que a cintura do feixe de excitacdo. Além disto, por se tratar de um processo paramétrico, a
amostra nao se degrada por aquecimento, como ocorre nos corantes organicos, € também nao

exibe o comportamento de "blinking"tipico dos "quantum dots"semicondutores.
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