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Abstract

In this thesis we present a study about the modeling of multiscale fluctuation phe-
nomena and its applications to different problems in econophysics and turbulence. The
thesis was organized in three parts according to the different problems considered. In
the first part, we present an empirical study of the Brazilian option market in light of
three option pricing models, namely the Black-Scholes model, the exponential model,
and a model based on a power law distribution, the so-called q-Gaussian distribution
or Tsallis distribution. It is found that the q-Gaussian performs better than Black-
Scholes in about one-third of the option chains analyzed. But among these cases,
the exponential model performs better than the q-Gaussian in 75% of the time. The
superiority of the exponential model over the q-Gaussian model is particularly impress-
ive for options close to the expiration date. In the second part, we study a general
class of hierarchical models for option pricing with stochastic volatility. We adopt the
idea of an information cascade from long to short time scales, aiming to implement
a hierarchical stochastic volatility model whose dynamics is described by a system of
coupled stochastic differential equations. Assuming that the time scales of the different
processes in the hierarchy are well separated, the stationary probability distribution
for the volatility is obtained analiticaly in terms of a Meijer G-function. The option
price is then computed as the average of the Black-Scholes formula over the volatility
distribution, resulting in an explicit formula for the price in terms of a bivariate Meijer
G-function. We also analyze the behavior of the theoretical price with the parameters
of the model and we briefly compare it to empirical data from the Brazilian options
market. In the third part, we study a stochastic model for the distribution of velocity
increments in turbulent flows. As a basic hypothesis, we assume that the velocity incre-
ments distribution conditioned on a given energy transfer rate is a normal distribution
whose variance is proportional to the energy transfer rate and whose mean depends
linearly on the variance. The dynamics of the energy flux among the different scales
of the hierarchy is described by a hierarchical stochastic process similar to that used
in the second part of this thesis for the volatility. Therefore, the stationary distribu-
tion of the energy transfer rate is also expressed in terms of a Meijer G-function. The
marginal probability distribution for the velocity increments is obtained as a statistical
composition of the conditional distribution (Gaussian) with the distribution of the en-
ergy transfer rate (a G-function), which results in an asymmetric distribution written



in terms of a bivariate Meijer G-function. Our model describes very well the asym-
metry observed in empirical velocity increments distributions both from experimental
data and numerical simulations of the Navier-Stokes equation.

Keywords: Hierarchical Complex Systems. Econophysics. Options. Stochastic Volatility.

Turbulence. Intermittency. Non-Gaussian Distributions.



Resumo

Nesta tese apresentamos um estudo sobre a modelagem de fenômenos de flutuação com

múltiplas escalas e suas aplicações a diversos problemas em econofísica e turbulência. A tese

foi organizada em três partes de acordo com os diferentes problemas tratados. Na primeira

parte, apresentamos um estudo empírico do mercado brasileiro de opções em que compara-

mos três modelos para precificação de opções, a saber: o modelo padrão de Black-Scholes,

o modelo exponencial e o modelo baseado em uma distribuição q-Gaussiana ou distribuição

de Tsallis. Encontramos que em aproximadamente 1/3 do total das cadeias de opções anal-

isadas o modelo q-Gaussiano ajusta melhor os dados empíricos que o modelo Black-Scholes.

Entretanto, entre esses casos, o modelo exponencial mostra melhores resultados que o mod-

elo q-Gaussiano em 75 % das vezes. A superioridade do modelo exponencial sobre o modelo

q-Gaussiano é particularmente notável para opções próximas da data de vencimento. Na se-

gunda parte, estudamos uma classe geral de modelos hierárquicos para precificação de opções

com volatilidade estocástica. Adotamos a ideia de uma cascata de informação de escalas

longas de tempo para escalas curtas, com o objetivo de implementar um modelo hierárquico

para a volatilidade em que a dinâmica da volatilidade é descrita por um sistema de equações

diferenciais estocásticas acopladas. Sob a hipótese de que as escalas de tempo dos diferentes

processos da hierarquia são bem separadas, a distribuição estacionária de probabilidade para

a volatilidade é obtida de forma analítica em termos das funções G de Meijer. O preço da

opção é então calculado como uma média da fórmula de Black-Scholes sobre a distribuição

da volatilidade, resultando em uma fórmula explícita para o preço em termos de uma função

G de duas variáveis. Estudamos ainda o comportamento do preço teórico com os diversos

parâmetros do modelo e fazemos uma breve comparação com dados empíricos do mercado

brasileiro de opções. Na terceira parte da tese, estudamos um modelo estatístico para a

distribuição dos incrementos de velocidades em fluidos turbulentos. Como hipótese básica

do modelo, assumimos que a distribuição de incrementos de velocidade condicionada a um

dado fluxo de energia é uma gaussiana com uma variância proporcional ao fluxo de energia e

uma média que depende linearmente da variância. A dinâmica do fluxo de energia entre as

diferentes escalas da hierarquia é descrita por um processo estocástico hierárquico semelhante

áquele usado para o modelo de volatilidade estudado na parte dois da tese. Desse modo, a

distribuição estacionária do fluxo de energia também é escrita em termos de uma função G

de Meijer. A distribuição de probabilidade marginal dos incrementos de velocidade é obtida

como uma composição estatística da distribuição condicional (gaussiana) com a distribuição

do fluxo de energia (função G). Como resultado dessa composição, obtemos uma distribuição

de probabilidade assimétrica que é escrita em termos de uma função G de Meijer de duas



variáveis. O nosso modelo descreve muito bem a assimetria observada nas distribuições em-

píricas dos incrementos de velocidade, tanto para dados experimentais quanto para dados de

simulações númericas das equações de Navier-Stokes.

Palavras-chave: Sistemas Complexos Hierárquicos. Econofísica. Opções. Volatilidade Es-

tocástica. Turbulência. Intermitência. Distribuições Não Gaussianas.
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1 General Introduction

In this thesis we shall discuss some generic statistical properties exhibited by so-called

complex systems. One can find complex systems in several disciplines, such as physics, com-

puter science, meteorology, sociology, economics, psychology, chemistry and biology [Friedrich

et al., 2011]. In such systems all the components may interact with each other in different

ways, leading to effects such as non-linearity, complexity, together with chaotic characteristics

(e.g., sensibility to initial conditions), which makes it difficult to predict the dynamics of the

system. One of the ways in which these systems can be studied is from the statistical physics

point of view. In this framework, one can explore the prediction of the statistical properties

of the system and, in addition, take advantage of the fact that there are different complex

systems that exhibit the same statistical properties. These statistical resemblances among

distinct complex systems have suggested the idea of certain universality between the different

models and the methodologies to analyze these systems. For instance, a characteristic shared

by these systems is that large events do happen more frequently than predicted by a Gaussian

or normal distribution. Such deviations from Gaussianity are indeed observed in several phe-

nomena [Bogachev et al., 2017,Rouse and Willitsch, 2017,Friedrich et al., 2011, Silva et al.,

2004, Ghashghaie et al., 1996, Frever et al., 2011, Nakamura et al., 2016, Andersona et al.,

2017, Sornette, 2002]. That is, the relevant variables in such systems follows non-Gaussian

statistics displaying heavy tails, skewness and peaked probability density functions (PDFs).

In this thesis we will deal with these so-called stylized facts in finance and turbulence data

through different methodologies. In particular, we will propose some new theoretical models

to describe certain important statistical features in these two areas.

A great deal of effort has been devoted to constructing physical models to explain the

origin of non-Gaussianity. Two approaches along this line, which are both used in this thesis,

are the so-called nonextensive statistical mechanics formalism [Beck, 2001,Beck, 2000,Tsallis,

1988, Tsallis, 2009] and the superposition of conventional statistics, a procedure known as

superstatistics [C.Beck, 2004,Castaing et al., 1990,Beck, 2011,Wilczek, 2016]. In the first case

we deal with the so-called q-Gaussian or Tsallis distribution, which is a type of generalized

statistics that yields probability distributions with power law tails. On the other hand, the

superstatistics approach can also be used to generate non-Gaussian distributions. The idea

behind the superposition of probability densities has found empirical application in several

areas, such as finance [Aas and Haff, 2006, Muzy et al., 2000, Dragulescu and Yakovenko,

2002], turbulence [Beck, 2001, Beck, 2000,Castaing et al., 1990, Chevillard et al., 2012] and

other complex systems [Bogachev et al., 2017, Rouse and Willitsch, 2017, Friedrich et al.,
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2011, Ghashghaie et al., 1996, Frever et al., 2011, Nakamura et al., 2016, Andersona et al.,

2017]. More recently [Salazar and Vasconcelos, 2012,Macêdo et al., 2017], the superstatistical

approach has been extended to multiscale systems—i.e., systems with multiple time and

length scales—, giving rise to a large family of heavy-tailed distributions. In this formalism,

a system can be considered as composed of several smaller subsystems, each one being in a

local quasi-equilibrium with its immediate vicinity. Each of these subsystems is characterized

by a time scale that differs considerably from that of the other subsystems [Vasconcelos

et al., 2018,Salazar and Vasconcelos, 2012,Castaing et al., 1990]. Ordering these subsystems

according to their time scales, from largest to shortest, the PDF of the subsystem with the

shortest scale can be obtained by averaging its quasi-equilibrium distribution, say a Gaussian,

over the distribution of the subsystems with the longer time scales. This procedure thus gives

rise to non-Gaussian distributions.

The description of asymmetric or skewed distributions is a little more complicated. Be-

sides the multiscale superstatistics, several other approaches have been used in physics and

finance to generate skewed distributions, such as piecewise functions, mixtures of functions

and conventional PDFs with argument modified [Borland and Bouchaud, 2007, Chevillard

et al., 2006,Chevillard et al., 2012,Aas and Haff, 2006,Beck, 2000,Barndorff-Nielsen et al.,

2004, Rouse and Willitsch, 2017,McCauley and Gunaratne, 2003]. In the turbulence case,

where the skewness is an essential issue, elucidating its physical origins persists as a long-

standing open question. Part of this thesis will be dedicated to obtaining theoretical models

to describe non-Gaussianity and skewness in turbulence. In finance the problem lies in the fact

that the prices of certain financial instruments, the so-called derivatives — because its value

derives of the value of an underlying asset —, are evaluated averaging over the distribution

of the underlying asset that exhibits non-Gaussian behavior. The non-Gaussianity together

with the skewness lead to pricing models for these derivatives that are quite complex and in

non-closed forms.

The main theme of this thesis will be concerned with developing theoretical models to

describe non-Gaussian effects in both turbulent flows and the stock markets dynamics. A

comparison between empirical data and our theoretical predictions will be presented whenever

possible, and we shall also discuss the most important improvements of our approach in

relation to previous models.

In the context of finance we shall study certain financial instruments called "options" which

can be used for both investment strategies and risk management, representing nowadays a

multi-trillion market. An option is a derivative contract that gives its holder the right, but

not the obligation, to buy (call option) or sell (put option) an underlying asset at a specified

strike price on a specified maturity date. Because the price of an option depends not only
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on the spot price of the underlying asset but also on the intensity of its fluctuations (i.e., the

volatility), it is paramount to have a good model for the underlying asset price dynamics in

order to obtain a reliable model for the option fair price.

The standard model of finance, namely the Black-Scholes model, surmises that risky asset

prices can be described by a geometric Brownian motion, implying that the asset’s logar-

ithmic returns follow an uncorrelated Gaussian process. Within this Gaussian framework, an

analytical expression for the price of a European call option—the celebrated Black-Scholes

formula—can be obtained [Black and Scholes, 1973]. In the last two decades or so, however,

empirical evidence has accumulated showing that financial markets often display heavy-tailed

distributions [Mantegna and Stanley, 2007,Cont, 2001,Vasconcelos, 2004], meaning that large

price fluctuations occur more frequently than predicted by Gaussian statistics. These findings

led to the consideration of non-Gaussian distributions as alternative models to describe price

fluctuations [Malevergne et al., 2005,Malevergne and Sornette, 2006].

One such distribution that has attracted considerable attention is the so-called Tsallis

distribution [Tsallis, 1988, Tsallis, 2009], also known as the q-Gaussian distribution, which

has the interesting feature of decaying with power law tails (the q-Gaussian recovers the

standard Gaussian distribution when its parameter q is taken equal to 1.) An option pricing

model within the framework of the q-Gaussian distribution has been introduced by Borland

[Borland, 2002a,Borland, 2002b], who derived an analytic expression for the option price which

generalizes the Black-Scholes formula. Another important non-Gaussian option pricing model

is the empirical model introduced by McCauley and Gunaratne [McCauley and Gunaratne,

2003] which assumes that the returns follow an exponential distribution. Other non-Gaussian

approaches to pricing options include models based on Lèvy stable distributions [Matacz,

2000,Miranda and R.Riera, 2001], which also have power law tails, and the so-called stochastic

volatility models where the volatility of the underlying asset price is regarded as a randomly

fluctuating quantity [Heston, 1993,Hull and White, 1987]. Option pricing strategies based on

a variational minimization of the risk over the option duration have been used in [Bouchaud

and Sornette, 1994,Bouchaud et al., 1995].

Another important stylized fact of financial data is a phenomenon akin to intermittency in

turbulent flows [Cont, 2001,Ghashghaie et al., 1996,Arneodo et al., 1996]. Fluid intermittency

is characterized by the tendency of the distribution of velocity differences between two points

to develop long non-Gaussian tails at short distances. Similarly, in financial markets inter-

mittency is manifest in the fact that the empirical PDF of price returns—i.e., the logarithmic

differences between prices at two instants separated by a given time lag—often depends on

the time lag. For time lags of the order of minutes or less the empirical PDFs tend to display

power-law tails, whereas for lags of the order of hours or a few days the central part of the PDF
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is better described by an exponential distribution, with a Gaussian regime being recovered

for longer time scales; see, e.g., references [Silva et al., 2004,Matia et al., 2004,Kleinert and

Chen., 2007,A.A.G.Cortines and R.Riera, 2007,Ramos et al., 2016] for discussions of this phe-

nomenon. The change in shape of the empirical return distributions from an exponential law

at the daily scale to a Gaussian distribution for larger time lags has also been studied in the

context of the Heston model for stochastic volatility [Dragulescu and Yakovenko, 2002]. The

convergence from power-law tails to a Gaussian distribution has been empirically investigated

in several stock indices, such as the Dow Jones and the NYSE [Queirós, 2005]. Intermittency

effects in finance have also been studied by means of the Kramers-Moyal coefficients associated

with the evolution equation for the PDF of the price returns, see, e.g., references [Sornette,

2001,Cortines et al., 2007,Cortines et al., 2008].

Intermittency effects pose a serious problem for option pricing: since options have a

lifespan of a couple of months but are frequently traded on relatively short-time scales, it

is not clear a priori which type of model one should use to price options in markets where the

empirical PDFs vary considerably with the time scale. It is thus important to pursue empirical

analyses of option markets in light of different pricing models—Gaussian and non-Gaussian

ones. In this context, it is of particular interest to investigate how these pricing models fare

with respect to the time to maturity. For instance, in a recent comparative study of the

exponential and the Black-Scholes models as applied to the Brazilian option market [Ramos

et al., 2016], it was found that close to maturity the exponential model performs better than

the Black-Scholes model.

In the first part of this thesis we investigate the applicability of the q-Gaussian model to

the Brazilian market. First we analyze the statistics of the Ibovespa index, which is the main

stock index of the São Paulo Stock Exchange. We study historical series of both daily closing

prices and intraday quotes at 15 minutes intervals. We observe that the empirical distribution

of the intraday returns is well described by a q-Gaussian, whereas the daily returns follow an

exponential distribution. After detecting this intermittency effect in the Ibovespa, we then

proceed to analyze the option market on the Ibovespa index by studying a set of 345 option

chains covering a period of two years of trading.

First we compared the q-Gaussian model (with q > 1) to the Black-Scholes formula (q = 1)

and found that the former provides an improvement over the latter in only 30% of the cases.

We then applied the exponential model to the option chains for which the q-Gaussian model

surpasses the Black-Scholes model. Here we found that the exponential model better fits

the data in 75% of the cases, implying that the q-Gaussian model performs simultaneously

better than the Black-Scholes and the exponential models in less than 10% of all option chains

analyzed here. Furthermore, we observe that the exponential model works significantly better
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than the q-Gaussian model for option chains close to the expiration date, confirming a trend (in

favor of the exponential model near maturity) that was seen in a previous comparison [Ramos

et al., 2016] between the exponential model and the Black-Scholes model, as mentioned above.

In view of the intermittency exhibited by the market data, we propose an intermittency

model to introduce this effect in the problem of option pricing. In other words, we include

the stochastic nature of the volatility in a model for option pricing. For this, we consider a

multiscale dynamical model to describe the dynamics of the stochastic volatility process. The

model is justified by the idea of an information cascade between the different agents of financial

markets, a notion which has been employed in previous works, such as [Ghashghaie et al.,

1996,Cont and Bouchaud, 2000,Breymann et al., 2000,Muzy et al., 2000,Arnéodo et al., 1998,

Lux, 2001,Bacry et al., 2013]. So we can use an analogy between energy cascades in physical

phenomena (as the Kolmogorov energy cascade in turbulence) and information cascades in

finance. Under this parallel, the volatility is assumed to be described by a multiscale model for

complex systems recently developed by [Macêdo et al., 2017,Salazar and Vasconcelos, 2012].

With this model, the stationary PDF for the volatility is obtained in closed form in terms

of the Meijer G-function [Prudnikov et al., 1989]. Macêdo et al., used this distribution to

obtain a model for the returns distribution and applied it to analyze Ibovespa time series of

intraday quotes at every 30 seconds. To do this, they used the procedure known as statistical

composition, or superstatistics [C.Beck, 2004], assuming that the dynamics of returns is faster

than that of the variance (the volatility). Consequently, it is possible to write the marginal

distribution of returns as a statistical superposition of the variance distribution and a quasi-

equilibrium distribution for the returns conditioned to a variance value. A more detailed

discussion is presented in chapter 4.

Our approach to include the random nature of volatility in the context of option pricing

is to consider it as a stochastic variable in the Black-Scholes formula. The stochastic process

describing it is the multiscale model discussed above and therefore its stationary distribution

can be written in terms of the G-function. Assuming that the volatility is a slowly fluctuating

variable, we are able to compute the option price as an average of the Black-Scholes formula

over this variable distribution. With this procedure we find an expression for the option price,

at least formally, which is written in terms of a definite integral of the bivariate Meijer G-

function [Mittal and Gupta, 1972]. We present some results of the model as a function of the

different parameters and compare it with the results yielded from the Black-Scholes formula.

In particular, we notice that it behaves similarly to classical models for stochastic volatility

such as the Heston and Hull-White models. For instance, it displays the so-called volatility

smiles, which can be customized by the variation of the different parameters. We also apply

our model to fit some options data of the Brazilian market showing that our results are always
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better than those of the Black-Scholes formula. The preliminary results shown here suggest

further analyses including more data, the direct comparison with other stochastic volatility

models and improvements of the numerical implementation of the bivariate Meijer G-function.

As to turbulent flows, we study the PDF of velocity differences between two points separ-

ated by a given distance. Our research aims to reproduce two critical properties of the velocity

increments statistics: i) The strongly non-Gaussian behavior and ii) the skewness shown by

its distribution. In this context, several models have been proposed. For example [Beck,

2000] employed a distribution of the Tsallis class, and a model based in the approximate

log-normality of the energy dissipation has been proposed in [Castaing et al., 1990]. Likewise,

in [Chevillard et al., 2006] the distribution of velocity increments is written as a superpos-

ition of the derivatives of a Gaussian function. Despite all this, a quantitative description

of intermittency and skewness in velocity increments distributions is still a challenge. Here

we propose a way to obtain a distribution maintaining the main statistical features observed

empirically. Our model is built considering the hierarchical model for intermittency proposed

in [Macêdo et al., 2017] and discussed above in the context of volatility in financial markets,

but in this case the stochastic variable is the energy dissipation rate. In the same paper,

Macêdo et al. dealt with the velocity increments distributions in a symmetric fashion. This

was attained with the statistical composition of a zero-mean Gaussian distribution with slowly

fluctuating variance, and the distribution of these variances obtained from the hierarchical

model. Here we also adopted the superstatistics procedure with the same distribution for the

energy dissipation rate but with a conditional Gaussian distribution with a slowly fluctuating

variance and with an average depending linearly on the variance. In this way, by performing

the statistical composition we obtain an asymmetric distribution written in terms of a bivari-

ate Meijer G-function. We analyze some properties of the model, such as the particular case

when only one scale is considered in the stochastic hierarchy driving the energy flux. In this

circumstance, the distribution is found to be expressed in terms of a Bessel function of the

second kind, similar to the Generalized Hyperbolic Skew Student’s t-distribution (GH) in [Aas

and Haff, 2006,Ernst and v. Hammerstein Ernst August, 2004]. This kind of distribution ap-

pears in applications of turbulence and financial markets. Their asymptotic analysis exhibits

different behaviors in each of the tails, being one heavy and one semi-heavy tail. The general

case with several scales in the hierarchy driving the energy flux also shows this behavior, as

discussed in this thesis.

This thesis is organized as follows. In chapter 2 we present a brief review of the main con-

cepts related to the problem of option pricing as well as three statistical models proposed with

this end, namely the Black-Scholes model, the exponential model, and the option model based

on the q-Gaussian distribution. The Hull-White and Heston models for stochastic volatility
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are also briefly discussed. In chapter 3 an empirical analysis of both daily and intraday returns

of the Ibovespa is performed in light of the Gaussian, exponential and q-Gaussian models,

alongside with an analysis of the Brazilian option market using three option pricing formulas:

the Black-Scholes, exponential and the Borland q-Gaussian model. In chapter 4 we put for-

ward our hierarchical model for option pricing. We start reviewing the dynamical model for

the volatility and the underlying assumptions of our approach. Also, the model results are

computed as a function of the different parameters and a brief comparison with empirical data

is done. Chapter 5 is an introduction to the concepts related to fluid turbulence phenomena.

A review of the hierarchical model for the energy dissipation rate is presented along with the

symmetrical version for the distribution of velocity increments proposed by [Macêdo et al.,

2017]. In chapter 6 we discuss our asymmetric statistical model for the velocity increments

in turbulence. We compare the model predictions with numerical data from direct numer-

ical simulations (DNS) of the Navier-Stokes equations as well as with experimental data. In

chapter 7 we summarize our main findings, drawing conclusions and perspectives.
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2 Option and Derivatives: An Introduction

2.1 Random Nature of Stock Prices

Before beginning with the mathematical theory of options and derivatives we need to

introduce several economic concepts about financial markets. We shall also discuss some

mechanisms by which financial instruments are exchanged or traded and some features of the

fluctuating nature of financial markets. In financial markets different financial instruments

or assets are traded such as stocks, commodities and exchange rate of money. The chance to

obtain a profit on an investment in an asset depends on the risk level of the asset. Assets

therefore can be risk-free or can carry some risk. For example, a bank account may be

considered risk free since the bank pays a specific interest rate and the holder has a predictable

profit. On the other hand, goods like stocks involve a certain degree of risk because their

prices are subjected to unpredictable fluctuations. In this case, the chances of earning or

losing depend for example on the investment strategy, the risk tolerance, or our ability to

predict the market behavior. For this reason, trading with stocks is attractive to aggressive

investors who take advantage of the fluctuating nature of the prices through transactions from

which they hope to make some profit.

The trading of stocks are usually done in organized exchanges, such as, the New York Stock

Exchange (NYSE) and the Sao Paulo Stock Exchange (BOVESPA). The average behavior of

a market is given by the so-called indexes. For example, a stock index represents the mean

price of a set of stocks. Each index is calculated with a specific methodology. For example

the Bovespa Index (Ibovespa) is a total return index which measures the price movements of

its stock components and in addition assumes that all gains are reinvested into the index. In

general, the eligible stocks which may be selected as index constituents are those that meet

an inclusion criteria (usually, the more actively traded and better representative stocks).

The current price of a stock reflects the overall value of a company and also depends on the

future performance of this company. Thus, it is expected that an investor would like to know

if it is worth investing in determined stock when he only has the information at present time.

The difficulty here lies in the fact that stock prices show a certain degree of uncertainty. This

is observed, for instance, when the historical series of a stock index is plotted as a function of

time, as shown figure 2-1 for the Bovespa index from July 2012 to July 2017 (data downloaded

from [BM&FBOVESPA, 2018]).
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Figure 2-1 : Historical series of the Bovespa Index from July 2012 to July 2017.

It seems difficult to make a prediction about the future behavior of stock prices on the

basis of the present information. However, it is possible to describe the dynamics of the

prices using probabilistic ideas. To understand that, let us introduce some basic ideas and

applications, including the modeling of option prices.

We can first consider the case of a bank account. If you have one dollar in a bank account,

that pays an interest rate r, then the money B = B(t) you have at time t increases at a rate

dB

dt
= rB. (2.1)

Therefore, the money in the account at time t is given by the solution of the differential

equation (2.1), with the initial condition B(0) = 1. So that,

B(t) = ert. (2.2)

In an analogous way, for the case of a stock with value S, its growth rate can be written as

dS

dt
= R(t)S, (2.3)

where R(t) is the rate of return of the stock. Due to the random nature of financial markets,

the rate R(t) can be considered as composed of two parts. The first part, like the interest

rate of a bank account is of predictable nature, and here it is denoted by µ. The second one,
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which contains the fluctuating nature of the stock value, is introduced as a probabilistic noise

ξ(t). So the rate of return is expressed as the sum of these terms, i.e. R(t) = µ + ξ(t), and

the variation of the stock price becomes

dS

dt
= [µ+ ξ(t)]S. (2.4)

The noise term ξ(t), which is also associated to the risk of the stock price, is written as a

white noise, like in the Brownian motion (see Appendix B).

2.2 Options Contracts

Besides stocks and commodities, there are other types of financial instruments which are

traded in the same way. These securities are generically called derivatives because they derive

their value from the price of some primary underlying asset. This is the case of the options

contracts of which there are several kinds. Here we only consider option contracts known as

European options. The characteristic of a European option is that it can only be exercised at

the future date specified in the contract. Another case is, for example, an American option,

which can be exercised at any time up to maturity. Below we give a formal definition of a

European option.

A European call (put) option with exercise price K and expiration date T , written on an

underlying asset with price S, is a contract that gives the holder the right to buy (sell) the

underlying asset for the price K at time T .

Trading with these contracts is of great interest because through its selling and buying it is

possible to design financial operations to obtain earnings or reduce the risk in an investment.

To understand this, let us explain how an option works. Consider a call option with expiration

time T on a stock whose price ST at maturity is above the strike price K. In this case, the

holder of the option will exercise his right to buy the stock from the underwriter at price K

and sell it in the market at the spot price ST , earning a profit equal to the difference ST −K.

On the other hand, if the price ST is lower than the strike K, then the holder of the option

would rather buy the asset in the current market if he so wishes. Thus the holder will not

exercise his right and the option expires worthless. The payoff of a call option at maturity is

therefore given by

Payoffcall = max(ST −K, 0). (2.5)

The behavior of Payoffcall as a function of S can be seen in figure 2-2. Here we can say,

that if the stock price ST is less than the strike K, then the call function is equal to zero;

otherwise, the function has the value given by the line with unitary slope, as indicated in

equation (2.5). The thin line indicated for t < T is the call option price at time t before of
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expiration. This price is greater than the price at time T owing to considerations about the

risk of the investment. In other words, the farther in time is the expiration date of the option,

the more uncertain is the behavior of the stock and thus more risky is the option. Hence its

price is higher for t < T as compared to the payoff at t = T .

Figure 2-2 : Call payoff as a function of the stock price S.

In a similar way, the payoff of put options is written as

PayoffPut = max(K − ST , 0). (2.6)

This means that if the market stock price at the expiration time T is less than the strike K,

the holder can buy the stock in the market at price S and sell to the option underwriter at

price K pocketing a profit equal to the difference into (2.6). If otherwise, ST > K, the option

worth is zero. This is illustrated in figure 2-3.
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Figure 2-3 : Put payoff as a function of the stock price S.

We have omitted the fact that the holder of an option must pay a premium C for this

contract. Thus, the net profit which the holder gets only occurs if ST > K+C. So, the graph

that represents the profit of an option must be modified by subtracting the premium C from

the payoff graph, which is shown in figures 2-4 and 2-5 for the call option and put option

respectively.

Figure 2-4 : Profit of a call option as function of the asset price S.
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Figure 2-5 : Profit of a put option as function of the asset price S.

As already mentioned, the holder of an option must pay a price C for the option, since it

entitles him to a right and hence a chance to make a profit. The question then is: What is the

fair price C for both holder and the underwriter of the option?. For example, let us consider

a transaction where a call option is traded. Here, it is expected that the buyer of the option

would like to pay the lowest possible price for the option, which implies that he will have the

greater profit on the investment. Contrarily, the underwriter of the option would like to receive

the highest possible price for the premium of the option, so if the stock price in the market at

time of maturity is higher, he would lose little money. Thus, the problem now is to determine

the fair price of the option. Clearly, this depends on K and ST , and intuitively on our ability

to predict the future states of the market. A solution to this problem was given in 1973

in the famous papers by Black and Scholes [Black and Scholes, 1973] and Merton [Merton,

1973], for which Scholes and Merton won the Nobel prize in Economics in 1997. The main

improvement of the so-called Black-Scholes model is that includes the random nature of the

prices of the underlaying asset. However, due to some unrealistic assumptions about the

market, generalizations of this model and other approaches have emerged. For instance, a

strong assumption in the Black-Scholes model is that the volatility of prices is a constant,

but empirical evidence shows that it also has a random nature. In order to deal with this

problem, the so-called stochastic volatility models were introduced, such as the Hull-White

and Heston models [Hull and White, 1987, Heston, 1993], and others derived directly from

empirical analysis of the market. In the remainder of this chapter, we will review some of

these approaches to the problem of option pricing. In the next chapter we will discuss the

application of these models to perform a statistical analysis of the Brazilian stock and option
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markets.

2.3 Gaussian Approach

2.3.1 The Black-Scholes model

The goal of Black and Scholes [Black and Scholes, 1973] was to calculate the price of

options and other derivatives written on an underlying stock with market price S(t). The

model presupposes that in the market there are two assets, a bank account with a value B(t)

and a stock with price S(t). The bank account is a risk-free asset which follows the stochastic

differential equation (SDE) (2.1), which we rewrite as

dB = rBdt. (2.7)

where r is the risk-free interest rate. The stock price S(t) follows a Langevin type SDE like

(2.4).

dS = µSdt+ σSdW, (2.8)

where µ > 0 is the stock expected mean rate of return, σ > 0 is the volatility and W (t) is the

standard Brownian motion or Wiener process. The process (2.8) is known as the Geomet-

rical Brownian Motion (GBM). It is worth to mention that the standard Brownian motion or

Wiener process {W (t), t ≤ 0} satisfies the following properties:

i) W(0)=0.

ii) The increments W (t)−W (s) are stationary and independent.

iii) For t > s, W (t)−W (s) has a Gaussian distribution N(0,
√
t− s).

iv) The trajectories are continuous.

The conditions (ii) and (iii) indicate that the processW (t) is distributed according toN(0,
√
t).

Let us now define the process

x = ln
S(t+ ∆t)

S(t)
. (2.9)

The variable x(t) is called the logarithmic return of the price S at time lag ∆t. (We shall

refer to x simply as the return.) Using Ito’s Lemma (see Appendix A), one can show that the

stochastic process for the return is given by,

dx =

(
µ− σ2

2

)
dt+ σdW. (2.10)

The stochastic integration of this process results,

x(t) = x(t0) +

(
µ− σ2

2

)
(t− t0) + σ[W (t)−W (t0)]. (2.11)
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Therefore, taking into account the properties of W (t), we can conclude that the returns x(t)

are distributed according to a normal distribution with mean µ′ = (µ− 1
2σ

2)∆t and variance

σ2∆t:

f(x, t;µ, σ) =
1

σ
√

2π∆t
exp

(
−

[x− (µ− 1
2σ

2)∆t]2

2σ2∆t

)
, (2.12)

The equivalent distribution of the price S is obtained using f̃(S)dS = f(lnS)d(lnS). So, we

obtain

f̃(S, t;µ, σ) =
1√

2σ2∆t

1

S
exp


[
ln S

S0
−
(
µ− σ2

2

)
∆t
]2

2σ2∆t

 . (2.13)

The option price in the Black-Scholes model achieves a closed formula denoted by

C(S, t;K,T ) ≡ C(S, t), which represents the present value for a European call option with

strike price K, expiration date T , for a given price S of an underlying stock. Then, given the

process (2.8) for the underlying stock, it is possible to write a SDE for the corresponding call

option C by the Itô equation in the Appendix A, which reads

dC =

[
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2

]
dt+ σS

∂C

∂S
dW. (2.14)

A second order partial differential equation so-called Black-Scholes equation can be written

for the option price C following the stochastic process above. There are two alternative

derivations of the Black-Scholes equation (BSE), the first considering a delta-hedging portfolio

and the second one assuming a replicating portfolio [Vasconcelos, 2004]. Here we only discuss

the case considering a delta-hedging portfolio with which the risk of the investment can be

eliminated, see appendix D. By assuming a delta-hedge strategy, the portfolio consists on

taking a long position on the option C(t) and a short position on a number ∆ of stocks with

price S. Here, ∆ is the quantity of stocks for which the value of our portfolio will be protected.

In addition, if the portfolio is self-financed, i.e. all trades are financed by selling or buying

assets of the portfolio, its value Π takes the form

Π = C(S, t)−∆ · S. (2.15)

Such that the dynamics of portfolio obeys the relation

dΠ = dC −∆ dS. (2.16)

The dynamics of the portfolio can be written by substituting (2.8) and (2.14) into equation

(2.16), yielding

dΠ =

[
∂C

∂t
+ µS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
−∆µS

]
dt+ σS

[
∂C

∂S
−∆

]
dW. (2.17)
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Therefore, the risk is eliminated if the probabilistic term which contains dW is equal to zero,

or in other words by choosing
∂C

∂S
= ∆. (2.18)

In this case, equation (2.17) simplifies to

dΠ =

[
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

]
dt. (2.19)

Since the portfolio is risk-free or purely deterministic, it must yield the same rate of return

as the bank account. This means that the rate of change of the portfolio value follows the

relation

dΠ = rΠdt. (2.20)

Comparing with (2.19) one finds that

rΠ =
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
. (2.21)

Now integrating (2.16) and using (2.18), we have

Π = C − ∂C

∂S
S. (2.22)

After substituting the relation above into (2.21), we finally obtain

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0, (2.23)

which is known as the Black-Scholes differential equation. Its solution with the boundary

condition

C(S, T ) = max(S −K, 0), (2.24)

can be found by transforming (2.23) into a linear parabolic equation, which can in turn be

transformed into the heat equation whose solution is known. Thus, this solution gives the

price of a European option depending on the maturity T , the strike K, the underlying asset

price S, the interest rate r and also on the volatility σ (variance of the Gaussian distribution

of logarithmic return). After performing the calculations outlined above, one finds that the

call option price predicted by the Black-Scholes model reads

CBS(S,K, r, t;σ) = S N(d1)−K e−r(T−t)N(d2), (2.25)

where N(x) is the cumulative distribution of a normal random variable

N(x) =
1

2π

∫ x

−∞
e−

y2

2 dy (2.26)

and

d1 =
ln(S/K) +

(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

(2.27)

d2 =
ln(S/K) +

(
r − 1

2σ
2
)

(T − t)
σ
√
T − t

(2.28)
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2.3.2 Risk-neutral valuation

The result in (2.25) can be also obtained by using the risk neutral valuation [Cox and

Ross, 1976]. In this approach, the expected return of the option value should be the same

as that of a risk-free asset or a bank account. Thus, given the option on an underlying asset

S and maturity T , whose value at time t < T is C(S, t), its expected value at maturity

C(S(T ), T ) = 〈max(S(T )−K, 0)〉Q, will be

〈max(S(T )−K, 0)〉Q = C(S, t) er∆t. (2.29)

Here, 〈. . . 〉Q denotes the average under the appropriate measure Q where the discounted

price S̃(t) = e−r∆t S(t) is a martingale [Vasconcelos, 2004]. The risk-free interest rate is r

and ∆t = T − t.
Now, we can determine the option price at time t < T discounting its mean value C(S, T )

from the maturity T with an interest rate r,

C(S,K, r, t) = e−r∆t〈max(S −K, 0)〉Q. (2.30)

The martingale measure Q is such that the price follows the log-normal distribution (2.13)

with the rate of return being equal to the the interest rate of a risk-free asset µ = r. Thus,

according to this measure the returns follow a normal distribution:

p(x, t; r, σ) =
1√

2π∆tσ2
exp

(
−

[x− (r − σ2

2 )∆t]2

2σ2∆t

)
. (2.31)

The payoff of the option written as a function of the return x = ln S(t+T )
S(t) = ln S

S0
, take

the form

C(S,K, r, t) = max(S0e
x −K, 0), (2.32)

and consequently the mean price of the option as shown in (2.30), becomes

C(r,K, S0;σ) = e−r∆t
∞∫
−∞

max(S0e
x −K, 0) p(x, t;µ, σ) dx. (2.33)

The option is worth only if S0e
x −K > 0, hence the integral above can be written as

C(r,K, S0;σ) = e−r∆t
∞∫

ln( K
S0

)

(S0e
x −K)

1√
2π∆tσ2

exp

(
−

[x− (r − σ2

2 )∆t]2

2σ2∆t

)
dx. (2.34)

Performing the integration we obtain

CBS(S0,K, r, t;σ) = S0N(d1)−K e−r(T−t)N(d2). (2.35)
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where N(x) is the cumulative distribution (2.26) and d1, d2 are given by (2.27) and (2.28)

respectively. This is, we have obtained the same Black-Scholes formula in (2.25), but now

using only the risk-neutral approach and the assumption that the logarithmic returns follows

a Gaussian statistics. In a similar way, the risk-neutral valuation can be also used in cases

when the logarithmic returns follows non-Gaussian statistics. In the following sections we

analyze particular cases of the exponential and power law distribution.

2.4 An Empirical Exponential Model

Among the non-Gaussian approaches to describe the dynamics of logarithmic returns in

financial markets, we shall mention the empirical exponential model introduced by [McCauley

and Gunaratne, 2003]. In this section, we review this exponential model for the distribution

of returns and also the corresponding option formula obtained from the risk-neutral valuation.

2.4.1 Exponential distribution of returns

The proposal of McCauley and Gunaratne in [McCauley and Gunaratne, 2003] uses an

exponential distribution f(x) written in the form

f(x) =

Aeγ(x−δ) if x < δ

B e−ν(x−δ) if x > δ
(2.36)

where A, B and δ are constants. In this case, the normalization condition
∫∞
−∞ f(x)dx = 1,

after imposing the condition 〈x〉 = δ, leads to the following normalization constants:

A =
γ2

γ + ν
(2.37)

B =
ν2

γ + ν
. (2.38)

And the variance of the exponential distribution is found to be

Var[x] =
2

γν
. (2.39)

2.4.2 Exponential option pricing

A closed formula for a European call option can also be obtained under the assumption

that the returns of the underlying asset follow the exponential distribution given in (2.36). The

option price can be found using the risk neutral valuation, discounting the expected option

value C(T ) from the maturity T with a constant rate r [McCauley and Gunaratne, 2003]. So,
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employing the equation (2.30) and using the exponential distribution (2.36) to calculate the

average of the payoff, the exponential model for option pricing yields the following expression

for the price C of a European call option:

C er∆t =


Seδ γ

2(ν−1)+ν2(γ+1)
(γ+ν)(γ+1)(ν−1) + Kγ

(γ+1)(γ+ν)

(
K
S e
−δ)γ , S > Ke−δ

Kν
(ν−1)(γ+ν)

(
K
S e
−δ)−ν , S < Ke−δ

(2.40)

Using the risk-neutral condition where the expected stock price 〈S(t)〉 behaves like a risk-

free investment increasing exponentially at the rate of carrying r, we can write a relation for

δ as a function of γ and ν as

r =
1

∆t

∫ T

t
µ(s)ds =

1

∆t
ln

(
〈S(t+ ∆t)〉

S(t)

)
=

1

∆t

(
δ + ln

(
γν + (ν − γ)

(γ + 1)(ν − 1)

))
(2.41)

where r is the risk-free interest rate, ∆t = T − t and µ is the expected rate of return of the

stock. In this way, as r is known by the investors, δ can be fixed by determination of the

parameters γ and ν.

2.5 A Power Law Model for Option Pricing

Other non-Gaussian alternative is to consider that the logarithmic returns follow a power-

law distribution. Using this assumption Borland in [Borland, 2002a] presented a model for

option pricing where the distribution of return is given by the q-Gaussian or Tsallis distribution

[Tsallis, 1988]. Here we summarize the main ideas of the model, more details can be found

for instance in [Borland, 2002a,Borland, 2002b].

2.5.1 Power law distribution

The q-Gaussian statistics arises by considering a stochastic process for the logarithmic

returns Y (t) = ln
(
S(t+∆t)
S(t)

)
given by the following Itô-Langevin equation:

dY = µdt+ σPq(Y, t)
1−q
2 dW (t). (2.42)

where W (t) is the Wiener process and Pq(Y, t) is the macroscopic probability of the process

Y . The parameters q, µ and σ are constants of the model.

Using the Chapman-Kolmogorov theorem [Gardiner, 1985], it is possible to prove that this

process has an associated Fokker-Planck equation (FPE) given by

∂P (Y, t)

∂t
= −µ∂[P (Y, t)]

∂Y
+
σ2

2

∂2[P (Y, t)2−q]

∂Y 2
. (2.43)
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The solution of this equation results in a power law distribution:

P (Y, t) =
1

Z(t)

[
1− β(t)

σ2
(1− q)(Y − Y0 − µt)2

] 1
1−q

, (2.44)

where

Z(t) = [(2− q)(3− q)ct]
1

3−q (2.45)

and

β(t) =
c

Z2(t)
. (2.46)

Defining the variable

Ω(t) =
Y − µt
σ

(2.47)

the SDE in (2.42) can be written as

dY = µdt+ σdΩ (2.48)

with

dΩ = Pq(Ω, t)
1−q
2 dW (t). (2.49)

From (2.47) we immediately have

dΩ = d

(
Y − µt
σ

)
. (2.50)

Thus, the new variable Ω obeys the following Fokker-Planck equation:

∂

∂t
Pq(Ω, t|Ω′, t′) =

1

2

∂2

∂Ω2
Pq(Ω, t|Ω′, t′)2−q. (2.51)

It is easy to show that this equation has the solution

Pq(Ω, t|Ω′, t′) =
1

Zq(t)

[
1− βq(t)(1− q)(Ω− Ω′)2

] 1
1−q (2.52)

where Zq(t) is related to the normalization of the distribution (2.52) and βq(t) is related to

the definition of the variance of this distribution. They can be written as

Zq(t) =
[
(2− q)(3− q)cq(t− t′)

] 1
3−q (2.53)

and

βq(t) =
cq

Z2
q (t)

. (2.54)

We can also write these in the form

Z(t) =

√
π Γ
(

3−q
2q−2

)
Γ
(

1
q−1

)√
(q − 1)β(t)

(2.55)
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βq(t) =
1

2σ2
q (t)Z(t)q−1

. (2.56)

So, using (2.54), (2.55) and (2.56), we have

cq =
π Γ2

(
3−q
2q−2

)
(q − 1) Γ2

(
1
q−1

) . (2.57)

Considering Ω′ = 0 at t′ = 0, then it is possible to write (2.52) in the way

Pq(Ω, t) =
1

Zq(t)

[
1− βq(t)

σ2
(1− q)(Y − µt)2

] 1
1−q

, (2.58)

whose variance is

〈(Y − µt)2〉 =

{
σ2

(5−3q)β(t) , q < 5
3

∞ , q ≥ 5
3

. (2.59)

Therefore, the variance of the q-Gaussian distribution is only finite for q < 5
3 .

Now that we have a model for the returns based on the q-Gaussian statistics, we can derive

a corresponding formula for the price of an option. This is done in the next section.

2.5.2 Call options pricing

An option pricing model has been obtained by Borland [Borland, 2002b] considering that

the distribution of the logarithmic returns Y (t) is described by a q-Gaussian distribution. In

this model the stock price S(t) should be calculated in some measured Q, where it becomes

a martingale, yielding

S(T ) = S0 exp

rT − σ2

2

T∫
0

P 1−q
q dt+ σΩ(T )

 . (2.60)

Here S(T ) ≡ S(t + ∆t) is the stock price at maturity T , S0 ≡ S(t) is the price at present

time and r is the risk-free rate, and Ω(t) is a stochastic process which follows the q-Gaussian

distribution (2.52). Now the integral involved into (2.60) can be calculated choosing t′ = 0

and Ω′ = 0, yielding
T∫

0

P 1−q
q dt =

T∫
0

[(2− q)(3− q)ct]
q−1
3−q dt− (1− q)

T∫
0

β(t)Ω(t)2

Z(t)1−q dt

= [(2− q)(3− q)c]
q−1
3−q

T∫
0

t
q−1
3−q dt− (1− q)

T∫
0

β(t)Ω(t)2

Z(t)1−q dt

=
3− q

2
[(2− q)(3− q)c]

q−1
3−q t

2
3−q − (1− q)

T∫
0

β(t)Ω(t)2

Z(t)1−q dt. (2.61)
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Using (2.53) and defining

α =
1

2
(3− q) [(2− q)(3− q)c]

q−1
3−q

=
1

2
(3− q)Zq−1t

q−1
3−q , (2.62)

equation (2.61) can be written as

T∫
0

P 1−q
q dt = αT

2
3−q − (1− q)

T∫
0

β(t)Ω(t)2

Z(t)1−q dt. (2.63)

As Pq(Ω(s), s) is the distribution of variable Ω(s) in the scale of time s, an equivalent

distribution in a scale T can be written, such that the variable Ω(T ) =
√

β(s)
β(T )Ω(s) also

follows a Tsallis distribution like (2.52). So the integral in (2.63) becomes,

T∫
0

P 1−q
q dt = αT

2
3−q − (1− q)

T∫
0

β(T )Ω(T )2

Z(t)1−q dt. (2.64)

The product β(T )Ω(T )2 is a constant and therefore it can be excluded from the integral in

the second term, i.e.

T∫
0

P 1−q
q dt = αT

2
3−q − (1− q)β(T )Ω(T )2

T∫
0

dt

Z(t)1−q . (2.65)

The integral into (2.65) is computed using the definition for Z(t) in (2.53) and the definition

of α in (2.62). So, it results

T∫
0

P 1−q
q dt = αT

2
3−q
[
1− (1− q)β(T )Ω(T )2

]
, (2.66)

which implies that the equation for the price S(t) in (2.60) can be write in the form

S(T ) = S0 exp

(
rT + σΩ(T )− σ2

2
αT

2
3−q
[
1− (1− q)β(T )Ω(T )2

])
. (2.67)

Choosing q = 1 one obtains the same martingale used in the Black-Scholes model, where S

follows a driftless geometric Brownian motion and Ω(t) is a Wiener process W (t). With q > 1

(power law case) there appears the term depending on Ω(T )2 in addition to terms into the

Black-Scholes case, as a consequence of the noise-induced drift.

Now we can use the risk-neutral valuation to write the option price in the form

C = 〈e−rT (S(T )−K)〉, for S(T ) > K, (2.68)
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where the stock price S(T ) at maturity T is given by (2.67). Equation (2.68) can also be

written as

C = 〈e−rTS(T )〉 − 〈e−rTK〉. (2.69)

Then, using the condition S(T ) > K, we can use (2.67) to obtain

rT + σΩ(T )− σ2

2
αT

2
3−q
[
1− (1− q)β(T )Ω(T )2

]
− ln

K

S0
> 0. (2.70)

The inequality above is satisfied between the two roots of Ω,

Ω1,2 =
−1

(1− q)αT
2

3−q σβ(T )
±

[
1

(1− q)α2T
4

3−q (1− q)2σ2β(T )2

− 2

(1− q)αT
2

3−q σ2β(T )

(
rT + ln

S

K
− σ2

2
αT

2
3−q

)] 1
2

. (2.71)

Using (2.71), the first average in (2.69) is:

〈e−rTS(T )〉 =
S

Z(T )

Ω2∫
Ω1

exp

(
σΩ(T )− σ2

2
αT

2
3−q
[
1− (1− q)β(T )Ω(T )2

])

×
[
1− (1− q)β(T )Ω(T )2

] 1
1−q dΩ(T ). (2.72)

The second term yields

〈e−rTK〉 =
e−rtK

Z(T )

∫ Ω2

Ω1

(
1− β(T )(1− q)Ω2

) 1
1−q dΩ. (2.73)

Here β(T ), Z(T ), cq and α were defined in relations (2.54),(2.57), (2.61) and (2.62), respect-

ively.

The relations (2.72) and (2.73) can be written in terms of a normalized noise process with

mean equal to zero and unit variance. This can be made using the following transformation

of variable

ΩN = Ω(T )

√
β(T )

βN
. (2.74)

Choosing the condition of normalized variance we obtain βN = 1/(5 − 3q) and the option

price finally results

C(S,K, T ;σ, q) = S(t)Mq(d1, d2, b(ΩN ))− e−rTKNq(d1, d2), (2.75)

where

Mq(d1, d2, b(ΩN )) =
1

ZN

∫ d2

d1

eb(ΩN )
[
1− (1− q)βNΩ2

N

] 1
1−q dΩN , (2.76)

Nq(d1, d2) =
1

ZN

∫ d2

d1

[
1− (1− q)βNΩ2

N

] 1
1−q dΩN (2.77)
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and

b(ΩN ) = σ

√
βN
β(T )

ΩN −
σ2

2
αT

2
3−q
(
1− (1− q)βNΩ2

N

)
. (2.78)

The limits of integration d1,2 are given by

d1,2 = Ω1,2

√
β(T )

βN
(2.79)

So far, we have introduced the formalism of three statistical approaches for the description

of returns and option prices in financial markets. We show in the next chapter that by using

them, we can make a detailed analysis of the Brazilian stock and option markets. This will

give us a better understanding of the market, which can be useful to think about investment

strategies.

2.6 Stochastic Volatility Models

It is observed in financial markets data that when the volatility is plotted as a function

of time, it exhibits a random behavior like that shown by the prices. Because of this, it is

necessary to consider the dynamics of the volatility to be described by a stochastic process,

i.e., now the volatility is regarded as a randomly fluctuating quantity. As a consequence of

this, the dynamics of prices is also affected, which makes the distribution of returns non-

Gaussian as observed in empirical data. Furthermore, the price of derivatives which depends

on the asset price becomes dependent also on the volatility distribution. Therefore, it is

expected that also affects for instance the prices of the options. To introduce the effect of

the stochastic volatility in the option prices we shall discuss two classical models in finance,

namely the Hull-White and Heston models [Hull and White, 1987, Heston, 1993]. Here we

review the main features of these models and some preliminary ideas, which we will use for

the development of the hierarchical model for option pricing in chapter 4. We also recall the

result in [Vicente et al., 2006], in which a Heston model for volatility with two different time

scales is considered.

2.6.1 Hull-White model

In the Hull-White model, the dynamics of a security price S and its instantaneous variance

v = σ2, is described by the following stochastic processes,

dS = µS dt+
√
v S dW1, (2.80)

dv = −γ (v − v0) dt+ κ v dW2. (2.81)
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Here dW1 and dW2 are two Winner processes, which are assumed in general to be correlated

and so obey the relation

〈dW1dW2〉 = ρ dt. (2.82)

The parameters µ, γ and κ may be dependent on time t and the volatility v, and ρ is the

correlation between the Wiener processes dW1 and dW2.

To obtain a partial differential equation for the price of a derivative asset f(S, v, t), on

a stock S following the dynamics discussed above, Hull and White [Hull and White, 1987]

assumed that the volatility is not a traded asset. They showed that the price of the derivative

security f , depending on the state variables S and v, must satisfy the differential equation,

∂f

∂t
+

1

2

[
v S2 ∂

2f

∂S2
+ 2ρv3/2κS

∂2f

∂S∂v
+ κ2v2∂

2f

∂v2

]
− rf = −rS ∂f

∂S
− γv2∂f

∂v
. (2.83)

This derivative asset can be for example an option with payoff f(ST , v
2
T , T ) = max(ST −

K, 0). Thus, the solution to (2.83) for this option at time t, may be derived by using the

risk-neutral valuation procedure. So, Hull and White proposed the solution

f(S, v, t) = e−r(T−t)
∫
f(ST , vT , T )p(ST |S, v)dST , (2.84)

where p(ST |S, v) is the conditional distribution of ST at expiration given the security price

S and variance v at time t. The conditional distribution of ST depends on both the process

driving S and the process driving v. As it is not possible to obtain this distribution depending

on the two variables, p(ST |S, v) is obtained by the statistical composition

p(ST |S, v) =

∫
g(ST |S, v̄)h(v̄|v)dv̄, (2.85)

where h(v̄|v) is the distribution of the mean variance v̄ given the value of the variance v at

time t. The price distribution conditioned to the mean volatility g(ST |S, v̄) is a log-normal

distribution when the correlation ρ between the volatility and the price ST is equal to zero.

The mean variance v̄ over the life time of the derivative security is defined by the stochastic

integral,

v̄ =
1

T − t

T∫
t

v(τ)dτ. (2.86)

Thus, the solution suggested by Hull and White is obtained substituting (2.85) into (2.84)

yielding,

f(S, v, t) =

∫ [
e−r(T−t)

∫
f(ST , vT , T )g(ST |v̄)dST

]
h(v̄|v)dv̄. (2.87)

Note that the term in square bracket is the Black-Scholes price for a given v̄:

CBS(S,K, t|v̄) = e−r(T−t)
∫
f(ST , v̄, T )g(ST |v̄)dST (2.88)
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One can thus write

f(S, v, t) =

∫
CBS(S,K, t|v̄)h(v̄)dv̄ (2.89)

where we omitted the dependence of the distribution h on v.

The problem in the Hull-White’s formulation is that the distribution of v̄ is unknown.

To circumvent this, they performed a series expansion of the Black-Scholes price about the

expected value of v̄. This allowed them to write an approximate formula for the option price as

a function of the moments of v̄, which can be calculated assuming that γ and k are constants

in the stochastic process driving the volatility. Later in this thesis, we shall use a similar

idea to obtain our hierarchical model for the volatility dynamics. But, instead of using the

distribution of the mean volatility v̄, we used the equilibrium distribution of the volatility v

at the shortest time scale. In other words, the option price will be given as the average of the

Black-Scholes price over the distribution of the volatility v. But, first, let us in the following

section review another classical model for stochastic volatility namely the Heston model.

2.6.2 Heston model

Another model of stochastic volatility was presented by Heston [Heston, 1993]. In this

model, the dynamics of an asset with price S and stochastic volatility v is described by the

following system of SDEs [Cox et al., 1985],

dS = µS dt+
√
v S dW1, (2.90)

dv = −γ [v − v0] dt+ κ
√
v0 v dW2, (2.91)

with

〈dW1dW2〉 = ρ dt. (2.92)

In the stochastic process (2.90) for the asset price S, µ is the drift rate of S, v is the stochastic

volatility and dW1 is a Brownian motion process. In the process (2.91) for the volatility, v0

is the long-run mean of v, γ is the rate of reversion and κ is called the volatility of volatility.

Here, the correlation between the two variables S and v is given by ρ.

As in the case of the Hull-White model and using standard arbitrage arguments, it can

be proved that the value of a derivative asset f must satisfy the partial differential equation,

1

2
vS2 ∂

2f

∂S2
+ ρ κ v S

∂2f

∂S∂v
+

1

2
κ2v

∂2f

∂v2
+ rS

∂f

∂S

+ [γ(θ − v)− λ(S, v, t)]
∂f

∂v
− rf +

∂f

∂t
= 0,

(2.93)

where the term λ(S, v, t) represents the price of volatility risk which is proportional to the

volatility v. Heston assumed that if the derivative f is a call option C(S, v, t), with strike K
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and maturity at time T , thus it must satisfy the differential equation (2.93). Therefore, by

analogy with the Black-Scholes model Heston uses a trial solution in the form

C(S, ν, t) = SP1 −KP (t, T )P2. (2.94)

Here, the first term is the spot asset upon optimal exercise and the second term is the present

value of the strike price. Using the logarithmic return x = ln(S) and replacing (2.94) into

(2.93), one finds that the equation above satisfies (2.93), if the functions Pj (with j = 1, 2),

are written as

Pj(x, v, T ; ln[K]) =
1

2
+

1

π

∞∫
0

Re

[
e−iφ ln[K]fj(x, v, T ;φ)

iφ

]
dφ. (2.95)

The function fj(x, v, T ;φ) is the characteristic function of Pj , which satisfies the same

partial differential equation (2.93). This integral is difficult to evaluate because of its limits

of integration. However, methods such as the one proposed by Carr and Madan in [Carr and

Madan, 1999] using the Fourier transform can be used to estimate the price of an option in

this model.

2.6.3 Heston model with two relaxation times

Empirical evidence that suggests a Heston model with more than one time scale is found

in the work of [Vicente et al., 2006]. In this, the Heston model is applied to study the

dynamics of market prices fluctuation in the Brazilian market. In particular, they studied the

autocorrelation function of the logarithmic returns variance of the Bovespa index data from

January 1990 to January 2005.

The stationary autocorrelation function of the volatility for the standard Heston model is

found to be,

C(τ |γ, v0, κ) =
e−γτ

β
, (2.96)

where γ is the rate of reversion, v0 is the long run mean, β = 2γ
κ2

and κ is the volatility of

volatility.

They found however that the empirical autocorrelation of the volatility function is not well

described by formula (2.96). They observed, by fitting the data, that this autocorrelation is

better described by a sum of two exponentials:

C(τ |γ, v0, κ) = c1 e
−γ2τ + c2 e

−γ2τ . (2.97)

Based on this finding, they suggested that a Heston model with two scales of relaxation times

should be used to describe the volatility process. The resulting dynamics can then be written
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as

dS = µS dt+
√
v2 S dW0, (2.98)

dv1 =− γ1 [v1 − v0] dt+ κ1
√
v0 v1 dW1

dv2 =− γ2 [v2 − v1] dt+ κ2
√
v1 v2 dW2.

(2.99)

This result is an important starting point for our aim to introduce a hierarchical model for

volatility and therefore a hierarchical model of option pricing. In chapter 4, we consider

models where the dynamics of the asset prices S follows a stochastic process like (2.98) and

the dynamics of the volatility v is described for a system of several stochastic processes as

those given in (2.99). In our model each process has a characteristic relaxation time and

assuming that the relaxation times are considerably different (time scales well separated), we

can obtain an analytical model for the option price as will be discussed in detail in chapter 4.

2.7 Implied Volatility

According to the Black-Scholes model, a single volatility value would be sufficient to

describe the prices of a set of options with same maturity time and traded the same day.

However, the market option prices differ slightly from the prediction of the Black-Scholes

model. In other words, this means that the volatility cannot be the same for all the options

in the set. An estimate of the volatility for the price of the underlying asset of an option is

the so-called implied volatility. This is defined as the value of the volatility of the underlying

asset that when is replaced into the Black-Scholes formula it gives a theoretical value equal

to the current market price of the option. In other words, the implied volatility σimp is the

value of the volatility σ obtained by solving it into the equation

CBS(S,K, r, t;σ)− CMarket = 0. (2.100)

When the implied volatility σimp of a set of options with same maturity (see figure 2-6a) is

plotted as a function of the strike K, a smile-like curve emerges, an effect known as "volatility

smile" and depicted in figure 2-6b. There are two hypotheses as to why this effect appears.

From a practical viewpoint this is explained considering that in-the-money (K < S) and out-

of-the-money (K > S) options have a higher demand. So, the price of the option increases and

also its implied volatility. A more technical explanation involves the non-Gaussian character

of the distribution of returns of the asset price. In other words, this may explain why extreme

fluctuations are very probable in financial markets.

In the course of this thesis, we will use this concept as a criterion to establish discrepan-

cies between empirical data and the theoretical predictions of the different models for option
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(a) (b)

Figure 2-6 : (a) Set of options with same maturity and (b) corresponding smile of volatility.

pricing considered here. For example, in the following chapter where we will discuss the ap-

plication of the non-Gaussian models reviewed in sections 2.4 and 2.5 to analyze the statistics

of the Brazilian option markets. Later in chapter 4, we will also use this concept to determine

the properties of our hierarchical model for option pricing.
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3 Non-Gaussian Option Models in the Brazilian Market

3.1 Introduction

In this chapter, we show an analysis of Ibovespa data in the light of the non-Gaussian

models presented in chapter 2. In section 3.2, an empirical analysis of both the daily and

intraday returns of the Ibovespa is performed in light of these three models. In section 3.3 we

briefly describe our option data and the methodology used to study them. The results of our

analysis of the Brazilian option market are presented in section 3.4.

3.2 Statistical Analysis of the Ibovespa Returns

To begin our analysis of the Brazilian market, let us recall that the logarithmic return

x(t) of the price S at time lag τ is defined as

xτ (t) = lnS(t+ τ)− lnS(t). (3.1)

So, for example, if we have a daily data series for the prices of a stock, the daily logarithmic

return (τ = 1 day) is given by the difference between the logarithm of the prices computed

at successive days. Here, we have analyzed logarithmic returns obtained from two historical

series of the Ibovespa: i) a series of daily closing prices from January 1968 up to February

2004, totaling 8889 data points, and ii) a series of intraday quotes at every 15 minutes cov-

ering the years from 1998 to 2001, containing 19995 data points. We fitted the empirical

distributions for both series with the three theoretical distributions given in equations (2.31,

2.36, 3.5). Analyzing the quality of the respective fit, we determined which model best de-

scribes the empirical data in each case. When performing empirical analyses of returns, it is

often convenient to normalize the returns to unit variance. With this is possible to fix some

parameters in the models analyzed. Let us discuss briefly this:

For example, in the Gaussian case (2.31), with returns of unit variance, we define a new

variable:

x =
Y√

Var[Y ]
=

Y√
σ2t

, (3.2)

whose PDF then becomes

p(x, t) =
1√
2π

exp

(
−(x− µ′)2

2

)
, (3.3)

where

µ′ =

(
µ− 1

2σ
2
)√

t

σ
.
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One then sees that the normalized mean µ′ is proportional to
√
t, which becomes negligibly

small for small timescales. Because of this property, we shall often assume that the normalized

returns at short time lags have zero mean, which is a valid approximation for the empirical

data, as we will see later.

For the exponential case, the original distribution (2.36) can be easily normalized to unit

variance by setting

γν = 2. (3.4)

In applying formula (2.36) to the normalized empirical returns, we shall consider that the

returns have zero mean, i.e., δ = 0, in which case the exponential distribution (with unity

variance) is left with only one free parameter (either γ or ν) to be determined from the fitting

procedure.

Now consider the power law distribution with normalized returns, x = (Y −
µt)/

√
〈(Y − µt)2〉. One then has β = 1/(5 − 3q), Z is given by (2.54) and so one has

the following normalized distribution:

Pq(x) =
Γ
(

1
q−1

)
√
π Γ
(

3−q
2q−2

)√ q − 1

5− 3q

[
1−

(
1− q
5− 3q

)
x2

] 1
1−q

. (3.5)

One then sees that the q-Gaussian with zero mean and unity variance has only one free

parameter, namely the parameter q.

Using the data series of daily closing prices from January 1968 up to February 2004 we

proceed to calculate the logarithmic returns series by using the relation (3.1), in the scale

τ = 1 day and the corresponding PDF of this set data. We chose to calculate a normalized to

variance and centered PDF, by which, we subtracted the arithmetic mean of returns to the

data series and we divided by its variance. To contrast the PDF with the statistical models

(Gaussian an non-Gaussian) the least squares fit was used as presented in Appendix E.

Figure 3-1 shows the empirical distribution of daily returns (circles) and the respective

fits by the exponential distribution (thick blue line) and the q-Gaussian (thin red line); also

shown for comparison is a Gaussian of unity variance (dashed black line). It is clear from

this figure that the empirical distribution deviates quite significantly from a Gaussian, whilst

both the exponential and q-Gaussian distributions are in good agreement with the data. The

exponential distribution, however, gives a better fit to the data in the sense that it yields a

greater coefficient of determination (see Appendix E ): R2 = 0.9917 for the exponential dis-

tribution, whereas R2 = 0.9889 for the q-Gaussian. In figure 3-1 the exponential distribution

was fitted with formula (2.36) after setting δ = 0 (zero mean) and ν = 2/γ (unity variance),

which leaves γ as the only fitting parameter, whereas for the q-Gaussian we used (3.5) which
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Figure 3-1 : Empirical distribution of daily returns of the Ibovespa index (circles) and respective
fits with exponential (thick blue line) and q-Gaussian (thin red line) distributions.
The dashed line represents a Gaussian with unity variance. The fitting parameters
are γ = 1.47± 0.01 (exponential distribution) and q = 1.473± 0.008 (q-Gaussian).

has q as the only parameter. In both fitting procedures we have used the method of the golden

section search [Press et al., 2007] to determine the respective values of γ and q that minimize

the sum of squared residuals for each distribution; the corresponding fitting parameters are

γ = 1.47± 0.01 and q = 1.473± 0.008.

Using a similar procedure that for daily return, we analyze the logarithmic returns for

the intraday quotes at 15 minute intervals. This is shown in figure 3-2 with the same plot

convention as in figure 3-1. Here the empirical distribution shows much heavier tails than

in the case of daily returns. From the visual inspection of figure 3-2 one clearly sees that

the q-Gaussian gives a better description of the data in comparison with the exponential

distribution. This is confirmed by the fact that R2 = 0.9982 for the q-Gaussian, while

R2 = 0.9359 for the exponential fit. Here one finds q = 1.572 ± 0.002, which is considerably

larger than the value for q obtained for the daily returns, thus showing that the distribution

of returns at shorter scales does indeed have more pronounced tails. Evidence of power

law tails in the intraday quotes of the Ibovespa has also been observed, e.g., in references

[A.A.G.Cortines and R.Riera, 2007,Tabak et al., 2009].

As the time lag increases, the power law distribution should converge to a Gaussian,

i.e., q → 1, with an exponential distribution appearing at some intermediate crossover scale.

In order to study this effect, we have computed the empirical returns at time lags τ =

2n × 15min with n = 1, . . . , 10 and fitted each data set with the q-Gaussian distribution.

Examples of some empirical distributions and respective fits are shown in figure 3-3a for



50

Figure 3-2 : Empirical distribution of intraday returns of the Ibovespa index at a time lag of 15
minutes, with the same plot convention as in Fig. 3-1. Here the fitting parameters
are γ = 1.43± 0.04 and q = 1.572± 0.002.

τ = 15, 60, 240, 480, 960, 3840 min. A plot of q as a function of τ is shown in Fig. 3-3b. One

sees from this figure that q decreases toward unity as τ increases. That is, for long time lags

such that the correlations between the logarithmic returns vanish, we recover the Gaussian

case as expected from the central limit theorem. (Note that the resulting series of returns

become increasingly less representative as τ increases which makes the fitting procedure less

reliable for large τ , but nonetheless the trend q → 1 is clearly verified.)

For comparison, we have also fitted the distribution of returns at different time lags τ with

the exponential model. In figure 3-4 we plot the respective figure of merit R2 as a function

of the lag τ for both the q-Gaussian model (circles) and the exponential model (crosses).

One sees from this figure that the exponential model gives a very good fit to the data for

scales of the order of a few hours, where its R2 value is approximately the same as that

obtained from the q-Gaussian model (and both very close to 1). Here the q-Gaussian model

performs slightly better than the exponential model at this scale, while the opposite occurs

for the daily data shown in figure 3-1. This is probably because the intraday series covers a

relatively small period of time (three years), which makes the return distributions for larger

time lags statistically less significant. Nevertheless, it is evident from the combined analysis

of the daily and intraday quotes that the empirical distribution of the Ibovespa at scales from

a few hours to a few days is well described by an exponential distribution.

The analysis above confirms the fact that the shape of the distribution of the Ibovespa

returns varies with the time scale: it exhibits power law tails at short time scales (of the
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(a) (b)

Figure 3-3 : (a) Distributions of returns (open circles) for time-lags of length τ = 15, 60, 240,
480, 960, 3840 minutes (from top to bottom) calculated from the intraday quotes at
15 minutes of the Ibovespa index, together with the respective fits (solid curves) by
the q-Gaussian model. The dashed line indicates the fit by the exponential model
for τ = 240 min. The curves have been arbitrarily shifted vertically for clarity. (b)
Time evolution of q-parameter as a function of the time lag τ = 2n × 15 min, for
n = 0, 1, ..., 10.

order of minutes or less), follows an exponential decay at mesoscales (from hourly to daily

scale), and then tends to a Gaussian at large (monthly) scales as one would expect from the

central limit theorem. Similar behavior was observed for example for data of Intel (INTC)

and Microsoft (MSFT) traded at NASDAQ, and IBM and Merck (MRK) traded at NYSE

in [Silva et al., 2004]. Also for The Dow-Jones index data, S&P 500, NYSE index daily

data and Ibovespa data for other periods [Dragulescu and Yakovenko, 2002,Cortines et al.,

2007,Mantegna and Stanley, 2002,Miranda and R.Riera, 2001].

3.3 Option Data and Methodology

Since the main stock index of the São Paulo Stock Exchange is the Ibovespa index, we

analyze data series of options whose underlying asset is that index. Our study includes market

prices of European call options traded daily in the period spanning two years of trading

(2005-2006). Options on the Ibovespa index are of the European type and are denoted by the

symbol IBOV followed by a letter and a number. The letter indicates the date of expiration

according to the following convention: letters from A to L indicate call options expiring

on the months from January to December, respectively. Options on the Ibovespa always
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Figure 3-4 : Figure of merit R2 for the fits of the returns at time lag τ by the q-Gaussian model
(circles) and the exponential model (crosses).

expire on the Wednesday closest to the 15th day of the corresponding month of expiration.

The number following the letter corresponds to the exercise price. For instance, the option

IBOVL37 of year 2006 denotes the option whose expiration date was December 13, 2006 (the

closest Wednesday to December 15, 2006), and whose strike price was BRL 37000.

The traded options that have the same expiration date form what is called an option series.

A set of options belonging to the same series that are traded on a particular day is called an

option chain [Ramos et al., 2016]. Each option chain has a set of premiums (closed market

price) as a function of the strike price. For instance, figure 3-5 shows the option chain of

the IBOVL series for year 2006 at 38 days before expiration. The circles indicate the market

prices, the dashed red line represents the intrinsic value of the option, corresponding to the

difference between the current price (indicated by the blue arrow) and the strike price.

In the two-year period analyzed in our study there were 850 option chains, each containing

a number of points (i.e., traded strikes) ranging from 1 to 11. Here, however, we considered

only option chains with at least five strikes, so as to make the statistical analysis more sig-

nificant. This subset contains 345 option chains. To analyze the option data we adopted a

methodology similar to that used in [Ramos et al., 2016], which we briefly summarize here.

For a given admissible option chain (i.e., with 5 or more strikes), we fit the corresponding set

of prices Ci versus strike Ki with the theoretical formulas predicted by the models described

in section 2.2. For instance, in fitting the Black-Scholes formula (2.25) to a given option

chain we assume that the volatility σ is the same for all options in the chain and determine σ

by a least-square fit using the golden section search method [Press et al., 2007]. Similarly, for
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Figure 3-5 : Option chain of the IBOVL series for year 2006 at 38 days before expiration.

the exponential and q-Gaussian models we fit formulas (2.40) and (2.75) to the option data

using the Nelder-Mead optimization method [Nelder and Mead, 1965] to obtain the optimal

values of the parameters (γ, ν) and q, respectively. In all fits performed here, the risk-free

interest rate r was assumed to be the Brazilian Interbank Deposit Rate [BM&FBOVESPA,

2018] valid at the time of the option chain.

In comparing the performances of the models for a given option chain, we look at the

respective coefficients of determination R2 produced by the corresponding best fits (see Ap-

pendix E). We recall that the closer R2 is to unity the better is the fit. Thus, we shall say that

a model that yields a higher R2 performs better than a model whose best fit has a lower R2.

In the next section we shall present a comparative analysis of how the three option pricing

models discussed in section 2.2 apply to the Brazilian market.

3.4 Empirical Analysis of Option Prices

As mentioned above, from our original database we selected the option chains with 5 or

more strikes and for each one of them we fitted the option premiums with the theoretical

formulas predicted by the three option pricing models discussed above and then compared

the respective fits. First we discuss the performance of the q-Gaussian option model with

respect to the standard Black-Scholes model.

We recall that the q-Gaussian distribution recovers the Gaussian for q = 1. Thus, if the

fit of the option pricing formula (2.75) for a given option chain returns a value of q that is
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Figure 3-6 : Market prices (circles) for the option chain of the IBOVL series for year 2006 at
38 days before expiration. Also shown are the respective fits by the Black-Scholes
formula (dashed black line) and by the option pricing formula based on the q-Gaussian
distribution (solid red line). The arrow indicates the corresponding spot price.

sufficiently close to unity, i.e., q ≈ 1, we conclude that the Black-Scholes model describes well

this option chain. As a practical rule we adopt the following criterion: if the q-value obtained

from the fitting procedure is within 5% from unity, we shall assume that the Black-Scholes

model is more suitable in such cases (and effectively consider q = 1). One example of this case

is given in figure 3-6, where we show the market prices (circles) for the option chain belonging

to the IBOVL series for the year 2006 at 38 days prior to maturity. Here the fit by the q-

Gaussian model (red solid line) yields q = 1.009, meaning that in practice the Black-Scholes

formula describes the data better than the general formula for any q > 1. Also shown for

comparison in figure 3-6 is the fit obtained by directly employing the Black-Scholes formula

(dashed line), which is indeed indistinguishable from the fit found using the general formula

based of the q-Gaussian model.

If a value q > 1 is obtained for a given option chain, we then conclude that in this case

it is more advantageous to use the general q-Gaussian model as it fits better the data than

does the Black-Scholes formula (q = 1). One example of this case is presented in figure 3-7

where we show the option chain belonging to the IBOVL series for year 2005 at 49 days

prior to maturity. The best fit by the q-Gaussian model (red line) yields q = 1.422. For

comparison, we also show in figure 3-7 the fit with the Black-Scholes formula (dashed line).

Although both models agree reasonably well with the empirical data, the q-Gaussian model
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provides a slightly better fit, which is confirmed by comparing the respective coefficients of

determination: R2 = 0.9992 for the q-Gaussian model, whereas and R2 = 0.9984 for the

Black-Scholes model. Although both models give a value of R2 very close to one another (and

close to unity), it is nonetheless legitimate to discern between the two models on the basis

of this figure of merit; see, e.g., reference [Ramos et al., 2016] for further discussion on this

point.

An alternative way to display the results presented in figure 3-7a is shown in figure 3-7b,

where we plot the corresponding implied volatilities for the empirical data (open circles), the

Black-Scholes model (black dashed line) and the q-Gaussian model (red solid curve). It is

clear from this figure that the q-Gaussian model adjusts better the implied volatilities, and

so it does indeed give a better description of the market option prices in comparison with the

Black-Scholes model.

(a) (b)

Figure 3-7 : (a) Market prices (circles) for the option chain of the IBOVL series for year 2005 at 49
days before the expiration date, together with fits by the Black-Scholes and q-Gaussian
models. (b) Corresponding implied volatilities for the option chain shown in panel (a).

In order to make a more extensive comparison between the Black-Scholes and the q-

Gaussian models, we have performed least-square fits of formula (2.75) for all 345 admissible

option chains in our data set. In figure 3-8a we show the values of q as a function of the time

to expiration, ∆t, of the corresponding option chain. Values of q > 1 are denoted by blue

crosses, whereas the cases with q = 1 (according to the criterion above) are indicated in red

circles. In figure 3-8b we show the histogram corresponding to the values q > 1 obtained in

figure 3-8a. Although larger values of q (implying heavier tails) tend to be favored—notice

that the mode lies in the interval [1.56, 5/3),— there is nonetheless a considerable spread in

the values of q > 1. This implies that, in general, different option chains may require different
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(a) (b)

Figure 3-8 : (a) Values of the q parameter as a function of the time ∆t to expiration. Values with
q > 1 are indicated by blue crosses and q = 1 by red circles. (b) Corresponding
histogram of q values for the cases where q > 1.

values of q. This is in contrast with the approach adopted in [Borland, 2002a,Borland, 2002b]

where the value of q is estimated from the return distribution of the underlying asset and

hence it is assumed to be the same for all options on this asset.

To make a comparative analysis of the performance of the two models as a function of

the time to maturity, we plot in figure 3-9 the percentage of cases with q > 1 among all

option chains for each ∆t (red squares). The dashed horizontal line in the figure corresponds

to the 50% line. One sees from this plot that the q-Gaussian model tends to perform better

than the Black-Scholes model for options close to maturity, since for ∆t < 9 days the points

(squares) lie above or at the 50% line. This trend is more clearly seen when one looks at the

cumulative frequency of the cases with q > 1, as shown by the black circles in figure 3-9. This

curve gives the percentage of the cases with q > 1 among all option chains with a time to

maturity less than or equal to a given ∆t. One sees from this plot that the q-Gaussian model

performs better in the majority of the cases for all times up to 8 days prior to maturity, as the

cumulative frequency remains above 50% up to this point. For larger ∆t the Black-Scholes

model adjusts better the data in the majority of cases. This analysis shows furthermore that

among all options chains analyzed the q-Gaussian model (with q > 1) gives a better fit to the

data, as compared to the Black-Scholes formula, in only 27% of the cases; see the last circle

in figure 3-9.

For the cases where the q-Gaussian model yields q > 1, thus surpassing the Black-Scholes

model, we have investigated how it compares to the exponential model. To this end, we have
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Figure 3-9 : Percentage of option chains fitted by the q-Gaussian model with q > 1 as a function
of the time ∆t to maturity. The red squares are the results for each ∆t and the black
circles are the cumulative frequency from 0 to ∆t; see text.

also fitted the option chains in this class (q > 1) with the price formula from the exponential

model and compared the corresponding fits by both models. The result of this comparison is

shown in figure 3-10, where we plot the percentage of cases for which the exponential model

gives a better fit to the option data. As in figure 3-9, the red squares correspond to the

frequency for each ∆t, whereas the black circles are the cumulative frequency from 0 to ∆t.

One first result from this analysis is that the exponential model adjusts better the option

data in 75% of all cases; see last circle in figure 3-10. The superiority of the exponential

model over the q-Gaussian model is particularly striking for option chains near maturity. For

instance, one sees from figure 3-10 that the exponential model fits better the data in 90% of

all options chains with less than 16 days to expiration and in 100% of the cases within 6 days

to maturity or less.

One example of an option chain very close to maturity is shown in figure 3-11a for the

IBOVJ series of year 2005 at 6 days before expiration. Here one sees that the exponential

model does indeed provide a much better fit to the option prices than the q-Gaussian model.

Notice, in particular, that the q-Gaussian model performs rather poorly for in-the-money

options, whereas the exponential model seems to have more ‘flexibility’ in that it describes well

both in-the-money and out-of-the-money options. This flexibility of the exponential model is

also clearly seen in figure 3-11b, where we plot the market implied volatilities together with

the respective implied volatility computed from both models. Notice that the market implied

volatility is highly asymmetrical in this case. In contrast to the q-Gaussian model which is
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Figure 3-10 : Percentage of option chains better fitted by the exponential model in comparison to
the q-Gaussian model as a function of the time ∆t to maturity. The red squares are
the results for each ∆t and the black circles are the cumulative frequency from 0 to
∆t.

symmetric, the exponential model is non-symmetric by definition, see eq. (2.36), and hence it

is more capable of describing the skewed volatility smile.

For option chains farther from expiration the discrepancy between the two models is in

general less pronounced, as illustrated in figure 3-12a for the IBOVL series of year 2006 at 26

days prior to maturity. Here both models provide reasonably good fits to the empirical data,

with the exponential model performing slightly better in the sense that it yields a higher

coefficient of determination, namely R2 = 0.9991, as compared to R2 = 0.9989 for the q-

Gaussian model. In this case the volatility smile has a more symmetrical pattern, as shown

in figure 3-12b, thus explaining why both models give reasonably good descriptions of the

market option prices. Overall, however, the exponential model has a much better performance

than the q-Gaussian model, as discussed above.
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(a) (b)

Figure 3-11 : (a) Comparison between best fits to the market option prices (circles) by the q-
Gaussian model (red dashed line) and the exponential model (solid blue line) for the
option chain of the IBOVJ series for year 2005 at 6 days before expiration. The arrow
indicates the corresponding spot price. (b) Corresponding implied volatilities for the
empirical data (circles), the q-Gaussian model (red dashed line), and the exponential
model (solid blue line).

(a) (b)

Figure 3-12 : (a) Best fits to the market option prices (circles) by the q-Gaussian model (red
dashed line) and the exponential model (solid blue line) for the option chain of the
IBOVL series of year 2006 at 26 days before expiration. (b) Corresponding implied
volatilities for the empirical data (circles), the q-Gaussian model (red dashed line),
and the exponential model (solid blue line).
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4 Hierarchical Models for Option Pricing

4.1 Introduction

In this chapter, we develop a hierarchical model for option pricing, where the volatility of

the price of the underlying asset is described as a multi-scale stochastic process. This can be

made considering the empirical evidence that shows the existence of hierarchical structures

in the data series of financial markets. This kind of hierarchical behavior is also found for

example in the turbulence phenomenon. This is a reason why methods from turbulence have

been used to study financial markets. Some examples of this can be found for example in

the papers of [Macêdo et al., 2017, Ausloos and Ivanova, 2003, Dragulescu and Yakovenko,

2002,Ghashghaie et al., 1996,Arnéodo et al., 1998]. The idea to use concepts from turbulence

is justified by the fact that there are some similar features between the two phenomena:

fluctuations in turbulent flows (of velocity increments and energy dissipation rate) and in

financial markets (of returns and volatility). For example, in fully developed turbulence, the

dissipation rate displays intermittent high fluctuations, yielding fat tails in the distribution of

velocity increments. Similarly, financial time series exhibits switching between quiet phases

with low volatility and turbulent phases with bursts of volatility. These bursts, known as

clustering volatility tend to persist in time giving rise to heavy tails in the distribution of

financial data, indicating that extreme variations of price are much more probable than one

would expect from a Gaussian-like distribution. Also in finance, price and volatility are

negatively correlated, i.e. when price decreases the volatility increases. This effects called

leverage leads to a negative skewness in the distribution of returns [Vulpiani and Livi, 2003].

Similarly, in turbulence the distribution of longitudinal velocity increments is also skewed

toward negative values.

The features above suggest that we can consider the volatility in financial markets to be

equivalent of the energy flux in turbulence and therefore its dynamics can be described by

cascading processes as is usual in its mechanical analog. Here, instead of an energy cascade,

we have an information cascade from longer to shorter time scales [Muzy et al., 2000,Chunxia

et al., 2007]. Indeed, the idea of information cascades is not new, this appeared with the

hypothesis of a heterogeneous market [Müller et al., 1997]. This hypothesis considers the fact

that in markets there are many agents that differ in several aspects, which have an effect on the

market volatility. Some of these aspects can be their risk aversions, economic expectations,

market information and time horizons. For example, the daily trader will observe market

volatility on a very short time scale while a long-term investor will not watch the market

often enough to even perceive short-term volatility. This generates a ‘flux of information’
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from large to small time scales, which can be modeled by a cascading process [Breymann

et al., 2000]. In this thesis, such a cascade process will be described using a hierarchical

model consisting of several coupled stochastic differential equations, where the dynamics at a

given scale is coupled only to the dynamics of the scale immediately above it.

In what follows, we adopt the idea of cascades of information to obtain the multi-scale

model of volatility that will lead us to introduce a hierarchical model in the context of options

and derivatives. For this, we first show our general assumptions to propose our approach for

option pricing. Then, we review the hierarchical model used to describe the dynamics of the

volatility process. With this, we obtain expressions for the price of options and we show some

theoretical results as a function of the parameters of the model. Finally, we make a brief

comparison with empirical data and some of the conventional models analyzed in chapter 2.

4.2 General Approach for Option Pricing

Here we show a general approach to solve the problem of options pricing in the case where

the volatility of prices is described by more than one stochastic process. Let us consider an

asset whose dynamics of its price S is described by the process,

dS = µSdt+ S
√
vdW, (4.1)

where µ is the expected return, v is the volatility of the price and W (t) is the Wiener process.

We shall consider a general case when the volatility v is described by some stochastic process

whose stationary PDF is given by f(v). (The specific form of the stochastic process followed

by the volatility v will be discussed later). Furthermore, if we suppose that the dynamics

of the asset price (4.1) is much faster than the dynamics of the volatility, we can consider

that over short time periods, the statistics of the price S achieves a local equilibrium for the

corresponding value of v. In other words, the short-time distribution of the price is given by

the conditional distribution g(S|v). We shall assume that g(S|v) is the log-normal distribution

corresponding to the solution of the stationary Fokker-Planck equation associated with the

process (4.1), as we showed in section 2.3.

This assumption known as hypothesis of time scales separation, allows us to calculate the

marginal distribution of the asset price in the form

p(S) =

∫
g(S|v)f(v) dv. (4.2)

With this, we can apply the risk-neutral approach to obtain the price of the option on the

underlying asset as

C(S,K, r, t) = e−r(T−t)
∫
C(S,K)p(S)dS. (4.3)



62

Here C(S,K) = max(S − K, 0) and r is the risk-free interest rate. Substituting (4.2) into

(4.3), we can write our approach for the price C(S,K, r, t) of an option as

C(S,K, r, t) =

∫ [
e−r(T−t)

∫
C(S,K)g(S|v)dS

]
f(v)dv

=

∫
CBS(S,K, r, t|v) f(v) dv.

(4.4)

where CBS(S,K, r, t|v) may be seen as the Black-Scholes price conditioned to the volatility v.

The next step to solve the problem raised in (4.4) is to determine a hierarchical physical

model for the dynamics of the volatility and with this the stationary distribution f(v). To this

end, we adopt the hierarchical model for fluctuations introduced in [Salazar and Vasconcelos,

2012,Macêdo et al., 2017] and the concept of information cascades in finance to describe the

dynamics of the volatility v.

To conclude this general discussion, let us emphasize that similar approaches have been

used for example by Hull-White and Scott [Hull and White, 1987,Scott, 1987]. The difference

with respect to their approaches is that in (4.4) they use the distribution f(v̄) of the mean

volatility over time v̄, which cannot be written in analytical form, whereas here we average

the Black-Scholes price over the equilibrium distribution f(v) of the volatility, which can be

solved exactly; see below. Since the previous authors [Hull and White, 1987, Scott, 1987]

did not have an explicit formula for the distribution of the mean volatility f(v̄), they had to

use approximations. Another similar approach was considered by Madan-Carr-Chang for the

variance gamma model for option pricing in [Madan et al., 1998]. In this case, they compute

the average of the Black-Scholes formula over the distribution of a random time, which is

distributed as a gamma process. They obtain a close formulation for the option price as a

hypergeometric function of two variables, namely the Humbert function. Here, instead, we

have adopted the idea of [Macêdo et al., 2017], who used the equilibrium distribution of the

volatility (for a certain class of hierarchical stochastic process; see below), to compute the

distribution of the logarithmic returns x = lnS using the integral (4.2). Using this approach,

they obtain excellent agreement with the empirical data of Ibovespa index. The difference with

our model is that they used for the conditional probability g(x|v) of the logarithmic returns

a normal distribution with zero mean. Furthermore, they only analyzed the distribution of

returns. Here we are interested in option pricing in a multi-scale setting. We shall therefore

compute directly the average of the Black-Scholes price, which implies that our conditional

distribution for the returns is a normal distribution with mean different to zero.
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4.3 Multi-Scale Model for Fluctuations

In this section, we discuss the generalized hierarchical model that will be useful in the

remainder of this work. We start by presenting the model in the general context of complex

systems as was developed by [Salazar and Vasconcelos, 2012,Macêdo et al., 2017] and in the

course of this we will discuss how it will be useful for our purposes. We consider a system that

has N well-separated time scales τi, i = 1, . . . , N , in addition to the large scale τ0, which are

sorted from smallest to the largest τi << τi−1. In this model, the dynamics of an arbitrary

variable ε is described by a generalized stochastic process, which is written as a set of SDEs

in the form

dεi = Fi(ε0, ..., εN , t)dt+Gi(ε0, ..., εN , t)dWi, i = 1, . . . , N. (4.5)

Each level i = 1, . . . , N of the hierarchy has associated with it a random variable εi and an

independent Wiener process Wi. For instance, in turbulence the variable εi represents the

energy flux at each level of energy cascade, whereas in finance it describes the volatility at

each time scale, as we will see later.

The terms Fi(ε0, ..., εN , t) and Gi(ε0, ..., εN , t) are functionals chosen in such a way that

they must satisfy some dynamical constrains [Salazar and Vasconcelos, 2010]. These are:

i) Time translation symmetry.

∂tGi(ε0, · · · , εN , t) = ∂tFi(ε0, · · · , εN , t) = 0 (4.6)

ii) Local interaction.

Gi(ε0, · · · , εN , t) = Gi(εi−1, εi) (4.7)

Fi(ε0, · · · , εN , t) = Fi(εi−1, εi) (4.8)

iii) Scale invariance.

Gi(λεi−1, λεi) = λGi(εi−1, εi) (4.9)

Fi(λεi−1, λεi) = λFi(εi−1, εi) (4.10)

iv) Condition of equilibrium.

〈εi〉 = ε0 for t→∞ (4.11)

v) Positivity of εi.

P (εi < 0) = 0, ∀ t, if εj(t = 0) ≥ 0 (4.12)

Indeed it is possible to show that such a system of equations under the conditions above

exists only if it is written as

dεi = −γi(εi − εi−1)dt+ κiε
α
i ε

1−α
i−1 dW, (4.13)
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where γi, κi are positive real constants. The stochastic process written in this form guarantees

that overall conditions above are satisfied. The first three conditions are easily verified. The

condition (iv) establishes that for t → ∞ the mean 〈εi〉 relaxes to its equilibrium value ε0
for all i = 1, ..., N ; this is guaranteed by the linear deterministic term in (4.13), as one can

easily verify. To verify that condition (v) is satisfied, suppose that εi = 0 at some point in

time, with εi−1 6= 0. Then, the second term in (4.13) vanishes and the first one ensures a

positive increment, which guarantees that εi never becomes negative. The parameter α is

required to be 0 ≤ α ≤ 1 to avoid the divergence of the stochastic process (G(0, 0) = 0). In

addition, we shall require that the coefficients of the Fokker-Planck equation associated with

the stochastic process (4.13) are analytic functions of εi, which is only satisfied by certain

values of the parameter α. These values are:

i) α = 1α = 1α = 1. With this value the stochastic variable εi of each scale of the hierarchy follows a

SDE in the form:

dεi = −γi(εi − εi−1)dt+ κiεidWi(t), i = 1, . . . , N. (4.14)

Assuming the hypothesis that the characteristic times of the different scales are well separated,

the variable εi of the i-th scale fluctuates much faster that the variable εi−1 of the scale above

it. Thus, we can use the Itô lemma to find the associated Fokker-Planck equation for the

conditional distribution f(εi|εi−1) of εi for a fixed value of εi−1, which in this case is given by

∂tfi − ∂εi [γi(εi − εi−1)fi]−
1

2
∂2
εi [κ

2
i ε

2
i fi] = 0. (4.15)

The stationary solution of (4.15) is an inverse gamma PDF fi(εi|εi−1) as shown in Appendix

F, which reads

fi(εi|εi−1) =
(βiεi−1)βi+1

Γ(βi + 1)
ε−βi−2
i e−βiεi−1/εi , (4.16)

where βi = 2γi
κ2i

and Γ(x) is the gamma function.

The particular case with N = 1, where the stochastic variable is described by only one

process of the form shown in (4.14) is just the Hull-White process for volatility discussed

in section 2.6.1. The general case with N > 1 has not, to the best of our knowledge, been

considered before. We shall refer to this case (N > 1) as the hierarchical Hull-White model;

see section 4.4.

ii) α = 1
2

α = 1
2α = 1
2 . Now the stochastic process for the variable εi becomes

dεi = −γi(εi − εi−1)dt+ κi
√
εi εi−1dWi(t), i = 1, . . . , N. (4.17)

Here we also have a stochastic process (4.17) for each level i of the hierarchy. So, with the

same assumption of well-separated time scales like in the previous case, the Fokker-Planck
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equation for the conditional distribution fi(εi|εi−1) is given by

∂tfi − ∂εi [γi(εi − εi−1)fi]− ∂2
εi [κ

2
i εiε0fi] = 0. (4.18)

The stationary solution fi(εi|εi−1) in this case is the gamma distribution (see Appendix F):

fi(εi|εi−1) =
(βi/εi−1)βi

Γ(βi)
εβi−1
i e−βiεi/εi−1 . (4.19)

with βi = 2γi
κ2i

.

Now if we compare the stochastic process (4.17) with the stochastic model for volatility by

Heston as shown (2.91), we find that with the appropriated variables the latter is a particular

case of the hierarchical model (4.17) with N = 1. We shall therefore refer to the general

model (4.17) with N > 1 as the hierarchical Heston model; see section 4.5. We shall mention

that the original Heston model (i.e, with N = 1) has also been used as a dynamical model

for the evolution of ecological systems in [Azaele et al., 2006], where it is obtained an exact

solution for the Fokker-Planck equation (4.18). However, here we are only interested in the

stationary solution of the Fokker-Planck equation.

4.4 Hierarchical Hull-White Model

4.4.1 Hierarchical Hull-White model for the volatility

As discussed above, adopting the idea of an information cascade in the problem of financial

markets we can justify a hierarchical model for the dynamics of the volatility. From the

generalized stochastic process (4.13) we showed that this can be used to introduce a multi-scale

Hull-White process considering the case when the parameter α = 1. Thus, let us introduce

our cascade model as consisting of a set of Hull-White processes of volatility v1, ..., vN , that

follow the SDEs:
dv1 = −γ1(v1 − v0)dt+ κ1v1dW1

dv2 = −γ2(v2 − v1)dt+ κ2v2dW2

...
...

dvN = −γN (vN − vN−1)dt+ κNvNdWN .

(4.20)

We assume furthermore that the process vi is much faster than the process vi−1, in other

words, we consider that γi � γi−1. This means that the variable vi at a small scale i

achieves the equilibrium so quickly, that the variable vi−1 in the next larger scale i − 1 is

approximately constant. In this case, as discussed in section 4.3, the stationary marginal
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distribution f(vi|vi−1) is given by an inverse gamma distribution:

fi(vi|vi−1) =
(βivi−1)βi+1

Γ(βi + 1)
v−βi−2
i e−βivi−1/vi . (4.21)

Also, the distribution of volatilities fN (vN ) can be calculated as a statistical composition with

the distributions of all the other scales i = 1, . . . , N − 1, by using the relation:

fN (vN ) =

∞∫
0

dvN−1 . . .

∞∫
0

dv1 fN (vN |vN−1) . . . f1(v1|v0). (4.22)

We show in the Appendix G that the successive integration of (4.22) with f(vi|vi−1) as

given in (4.21) can be done using the method of the Mellin transform. With this procedure,

the PDF for the hierarchical system of N scales (4.20), can be written in terms of the Meijer

G-function as

fN (vN ) =
Ω

v0ω
G0,N
N,0

(
−βNβNβN − 111

−

∣∣∣∣ vNv0ω

)
(4.23)

where we use bold font to denote the vector of parameters βNβNβN = (β1, . . . , βN ). Also Ω =

1/
∏N
i=1 Γ(βi+1) and ω =

∏N
i=1 βi. An empty line (-) in the argument of the Meijer G-function

means that as m = q = 0, the elements vector ~bq is empty (see definition in Appendix H,

equation (H.1)).

We emphasize that this hierarchical model converges to the log-normal distribution in the

limit N → ∞, as shown in [Salazar and Vasconcelos, 2010]. So, the distribution of volatility

recovers the stationary limit of the exponential Ornstein-Uhlenbeck process introduced by

Scott, in which case it becomes log-normal [Scott, 1987,Masoliver and Perelló, 2006].

4.4.2 Option pricing in the hierarchical Hull-White model

In section 2.6.1 we reviewed the original Hull-White model for option pricing where the

dynamics of the underlying asset of the option S and its volatility v is described by a geo-

metrical Brownian motion (2.80) and a Hull-White process (2.81), respectively. Now in its

hierarchical version, the dynamics of the asset price S is also described by a geometrical

Brownian motion but its volatility is driven by the hierarchical process (4.20). So, we have

the following system of SDE:

dS = µSdt+ S
√
vNdW

dvN = −γN (vN − vN−1)dt+ κNvNdWN

...
...

dv2 = −γ2(v2 − v1)dt+ κ2v2dW2

dv1 = −γ1(v1 − v0)dt+ κ1v1dW1

(4.24)
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where we write the process beginning from the smallest to the largest scale and assuming that

these are well-separated.

As discussed in section 4.2, in order to obtain the price of an option in our hierarchical

Hull-White model we need to perform the integral (4.4), substituting fN (vN ) by equation

(4.23), which corresponds to the stationary PDF of the volatility vN , that now is described

by a multi-scale process. This reads

C(S,K, r, t,N) =
Ω

v0ω

∞∫
0

C(S,K, r, t|vN )G0,N
N,0

(
−βNβNβN − 111

−

∣∣∣∣ vNv0ω

)
dvN , (4.25)

with Ω = 1/
∏N
i=1 Γ(βi + 1) and ω =

∏N
i=1 βi.

Using that C(S,K, r, t|vN ) is the Black-Scholes price for the option conditioned on the

volatility vN , it is possible to carry out the integral in (4.25) explicitly. The final result as

a function of the spot price S, the strike K, the risk-free interest rate r, the time t and the

number N of scales in the hierarchy, can be written as (see Appendix I):

C(S,K, r, t,N) = SΘ1(a, b)−Ke−rτ Θ2(a, b) + SΨ1(b)−Ke−rτ Ψ2(b), (4.26)

where τ = T − t and

a =
[ln
(
S
K

)
+ rτ ]

√
ωv0τ

b =

√
ωv0τ

2
.

(4.27)

We have also defined the generalized functions:

Θ1(a, b) =
Ω√
2π
×

a∫
0

da′ e−a
′b
GNGNGN

(
2

b2
,
a′2

2

)
, (4.28)

Θ2(a, b) =
Ω√
2π
×

a∫
0

da′ ea
′b
GNGNGN

(
2

b2
,
a′2

2

)
, (4.29)

where GNGNGN (x, y) is a short-hand notation for the bivariate Meijer G-function:

GNGNGN (x, y) = G0,N :0,1:1,0
N,0:1,0:0,1

(
(−βββ − 1

2
1
2
1
2) : (1) : (−−)

(−−) : (−−) : (0)

∣∣∣∣∣x, y
)
. (4.30)

The bold notation (−βββ− 1
2
1
2
1
2) denotes the vector with N elements ((−β1− 1

2), . . . , (−βN − 1
2)).

In addition, we have introduced the functions Ψ1,2(b) defined respectively by

Ψ1,2(b) =
1

2

[
1± Ω√

π
G1,N+1
N+2,1

(
(−βββ, 1

2 ; 1)

0

∣∣∣∣ 2

b2

)]
, (4.31)
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where βββ = (β1, . . . , βN ).

An alternative form for the option price in terms of a series expansion is calculated in

the appendix I. Although we did not use this result in our calculations, it is obtained as an

infinite series of univariate Meijer G-functions. Explicitly, it reads:

C(S,K, r, t,N) = SΨ1(a, b)−Ke−rτΨ2(a, b). (4.32)

where

Ψ1(a, b) = − Ω√
2π

∞∑
l=1

(−1)l

l!

(
1

2

)l 1

b2l+1
Γ(2l + 1, ab)

×G0,N+1
N+1,0

(
1,−lll − βββ − 1

2
1
2
1
2

−

∣∣∣∣ 2

b2

)
,

(4.33)

Ψ2(a, b) =
Ω√
2π

∞∑
l=1

(−1)l

l!

(
1

2

)l 1

b2l+1
Γ(2l + 1,−ab)

×G0,N+1
N+1,0

(
1,−lll − βββ − 1

2
1
2
1
2

−

∣∣∣∣ 2

b2

) (4.34)

with Ω, a, b and βββ defined as in (4.26).

4.5 Hierarchical Heston Model

4.5.1 Hierarchical Heston model for the volatility

Under the same assumptions used for the hierarchical Hull-White model, a cascade process

for volatility can be described by a hierarchical Heston model. Remember that the Heston

model in finance is one particular case of the cases discussed in section 4.3. Now we can write

a hierarchical model composed by a set of independent Heston processes:

dv1 = −γ1(v1 − v0)dt+ κ1
√
v1 v0dW1

dv2 = −γ2(v2 − v1)dt+ κ2
√
v2 v1dW2

...
...

dvN = −γN (vN − vN−1)dt+ κN
√
vN vN−1dWN .

(4.35)

In this case, the stationary conditional distribution of volatility f(vi|vi−1) is given by a

gamma distribution:

fi(vi|vi−1) =
(βi/vi−1)βi

Γ(βi)
vβi−1
i e−βivi/vi−1 . (4.36)

The generalized PDF for the scale vN is obtained by integrating successively over all the

smaller scales i = 1, . . . , N − 1 in (4.22). As we show in Appendix G, the integral can be
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made solving the integration of two scales by using only the Mellin transform and writing the

result in the form of a Meijer G-function. The following integrals into (4.22) are solved by

using the properties of Meijer G-function in Appendix H. Finally, with this it is obtained the

distribution of volatilities for the scale N :

f(vN ) =
ωΩ

v0
GN,00,N

(
−

βNβNβN − 111

∣∣∣∣ωvNv0

)
, (4.37)

with ω =
N∏
j=1

βj , Ω =
N∏
j=1

1/Γ(βj) and βNβNβN = (β1, . . . , βN ).

4.5.2 Option pricing in the hierarchical Heston model

Now let us introduce the multi-scale version of the Heston model for option pricing dis-

cussed in section 2.6.2. Here the dynamical process for the price of the underlying asset is

the same that in the case above but the dynamics process for the volatility is given by the

hierarchical stochastic process with N scales (4.35). Thus, the complete model for the asset

price is
dS = µSdt+ S

√
vNdW

dvN = −γN (vN − vN−1)dt+ κN
√
vN vN−1dWN .

...
...

dv2 = −γ2(v2 − v1)dt+ κ2
√
v2 v1dW2

dv1 = −γ1(v1 − v0)dt+ κ1
√
v1 v0dW1.

(4.38)

Using the same hypothesis that in the Hull-White case, the option price in the above

model is obtained by performing the integral (4.4), but where now the distribution fN (εN )

of the stochastic volatility is the generalized function given in (4.37). With this, the integral

(4.4) becomes

C(S,K, r, t,N) =
ωΩ

v0

∞∫
0

C(S,K, r, t|vN )GN,00,N

(
−

βββ − 111

∣∣∣∣ωvNv0

)
dvN , (4.39)

where ω =
N∏
j=1

βj , Ω = 1/
N∏
j=1

Γ(βj). As we show in Appendix J, by a procedure similar to the

previous case, the final result for the integral above can be expressed in the form

C(S,K, r, t,N) = SΘ1(a, b)−Ke−rτ Θ2(a, b) + SΨ1(b)−Ke−rτΨ2(b), (4.40)
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where τ = T − t and
a =

√
ω

v0τ

[
ln

(
S

K

)
+ rτ

]
,

b =
1

2

√
v0τ

ω
.

(4.41)

We defined the function Θ1(a, b) as

Θ1(a, b) =
Ω√
2π

a∫
0

da′ e−a
′b
GNGNGN

(
2

a2
,
b2

2

)
, (4.42)

while the function Θ2(a, b) is given by

Θ2(a, b) =
Ω√
2π

a∫
0

da′ ea
′b
GNGNGN

(
2

a′2
,
b2

2

)
. (4.43)

Here again we use de symbol GNGNGN (x, y) to denote the bivariate Meijer G-function

GNGNGN (x, y) = G0,N :0,1:1,0
N,0:1,0:0,1

(
(−βββ + 3

2
3
2
3
2) : (1) : (−−)

(−−) : (−−) : (0)

∣∣∣∣∣x, y
)
. (4.44)

where (−βββ+ 3
2
3
2
3
2) represents the vector with N elements ((−β1 + 3

2), . . . , (−βN + 3
2)). Also, the

functions Ψ1,2(b) are given respectively by

Ψ1,2(b) =
1

2

[
1± Ω√

π
GN+1,1

2,N+1

(
1
2 ; 1

βββ, 0

∣∣∣∣ 2

b2

)]
, (4.45)

with βββ = (β1, . . . , βN ).

Therefore, the solution for a European call option calculated as the average of the Black-

Scholes formula under the assumption that the volatility follows a hierarchical Heston process

reads as in (4.40), with the respective terms defined by (4.42), (4.43) and (4.45).

4.6 Properties of the Hierarchical Heston Model

In this section we show results generated by our model for the option prices as a function of

the different parameters, such as the maturity T , the strike price K, the β parameter and the

number N of scales considered in the hierarchical process for the volatility. Also, we analyze

the implied volatility of the hierarchical model, which is defined as the value of volatility

that when used into the Black-Scholes formula will give the same option price as that of our

model. With this, we show that our model yields the so called implied volatility surface that

represents the implied volatility as a function of the maturity and the strike price. This is
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an important issue in modeling option prices because the implied volatility is a measure to

estimate the future variability of the asset price underlying an option.

For the results discussed in the rest of this section, we computed the option price using

formula (4.40). The bivariate Meijer G-function that appears was computed by implementing

its definition as a double Mellin-Barnes-type contour integral via computer routines written

in Python and Matlab like in [Chergui et al., 2016]. To the univariate Meijer G-function that

appears in Ψ1,2 we used the package of arbitrary precision mpmath of Python [Johansson

et al., 2013].

First, we present the dependence of the option price on the number N of scales considered

in the hierarchical model. In this case, we evaluated (4.40) using as test parameters the rate

of interest r = 0.01, the spot price S = 1, the long-time mean σ2 = v0 of the volatility

as v0 = 0.06, and the parameter β = 1.78. The maturity was evaluated in the interval

T ∈ (0.2, 2.0) years and the strikes in the interval K ∈ (0.45, 1.60).

Results of our model are shown in figure 4-1. For example, figure 4-1a shows the call

price as a function of the strike K at maturity T = 0.2, including several scales in the model

(N = 1,. . . ,8). The dashed straight line represents the option price at the maturity T , which

is often called the intrinsic value of the option. The result from the Black-Scholes formula

with volatility equal to the square root of the long-range mean σ =
√
v0 (red dashed line)

is also shown for comparison . Note in this figure that for an “at the money” option (i.e,

with price K = S) and options whose price is near the spot price, our hierarchical model

gives lower prices than the Black-Scholes formula being this difference more prominent as the

number of scales increases. For “out of the money” options (with strike higher than the spot

price S), where the option is essentially worthless (above K ∼ 1.15), the model with several

scales leads to higher prices than those computed by the Black-Scholes. A similar behavior,

although not as visible, occurs for “in the money” options (K < S, far from the spot price S).

Let us now consider figure 4-1b where we show the call prices in the case of a long

maturity, namely T = 2.0. In this case, we can see that the prices generated by our model

are further from the Black-Scholes formula. That is, the difference between the Black-Scholes

price and the hierarchical model value is higher than in the case with T = 0.2. In addition,

this difference extends to values far from the spot price.

The effects described above are better seen in figure 4-2, where we have plotted the price

difference between our model and the Black-Scholes formula ChH − CBS , for the two cases

shown in figure 4-1. In the case of short maturity (T = 0.2), see figure 4-2a, our formula (4.40)

gives lower prices than the Black-Scholes model for strikes in the interval K ∈ (0.90, 1.15).

Therefore the difference between the prices becomes negative ChH − CBS < 0. Out of this

interval (K < 0.90 and K > 1.15), the price generated by our hierarchical model crosses the
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Black-Scholes price yielding higher values and hence ChH − CBS > 0.

(a) (b)

Figure 4-1 : Option price on the hierarchical Heston model as a function of the strikeK for different
values of N . In all the cases we used S = 1. We show the case with maturity: (a)
T = 0.2. (b) T = 2.0.

(a) (b)

Figure 4-2 : Difference between the option prices generated by the hierarchical model and those
generated by the Black Scholes formula: (a) For the same conditions of the prices
shown in figure 4-1a. (b) For the same conditions of the prices shown in figure 4-1b.

Figure 4-2b shows price differences ChH − CBS for the case T = 2.0. Here, we can see

that near the spot price the difference between the hierarchical model and the Black-Scholes

formula becomes higher than in the case T = 0.2. That is, for long maturity our model gives

much lower prices than the Black Scholes price. Also, here the crossing point between the
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prices are in K ∼ 0.7 to the left and K ∼ 1.50 to the right, much further from the spot price

than in the case T = 0.2. Therefore, comparing figures 4-2a and 4-2b we can conclude that

the difference ChH − CBS is more noticeable as the maturity increases.

As we have shown above, the option price given by our model differs from the prediction

of the Black-Scholes formula. This difference yields the “volatility smile” discussed in section

2.7, which is an effect only due to the stochastic nature of the volatility. Therefore, it is

interesting to analyze the behavior of the implied volatility generated by the hierarchical

model as a function of the number of scales. For this, let us compute the implied volatility of

the hierarchical Heston model (4.40), as the value of σ obtained by solving it into the equation

CBS(r, T, S, σ)− Cmodel(N, v0, β) = 0 (4.46)

where CBS(r, T, S, σ) is the Black-Scholes formula for the option price and Cmodel(N, v0, β)

the price generated by our model with the parameters v0, β in the different scales N . So, we

computed the implied volatility for the corresponding cases in figures 4-1a and 4-1b, which

is shown in figures 4-3 and 4-4, respectively. The model produces volatility smiles since the

implied volatility varies as a function of the strike K. In addition, we observe that indeed the

’strength’ of the smile depends on the number of scales included in the stochastic volatility

process. Figure 4-3 for example shows the implied volatility as a function of the strike K and

N = 1, . . . , 8, for an option with expiration at time T = 0.2. Here the Black-Scholes volatility

defined as σ =
√
v0 is represented by the red dashed line. We can see that the smile volatility

is more prominent as N increases. The minimum of the smile appears at K = 1 and then

it increases as K achieves values far from S. Note in particular that there is a small region

near the spot price where the implied volatility achieves lower values than the volatility used

in the Black-Scholes formula. For in and out of the money options (far from S), the implied

volatility is higher than the Black-Scholes volatility. Figure 4-4 shows the implied volatility

curves generated for an option with expiration at T = 2.0, which shows a similar behavior,

in the sense that the volatility smiles are more pronounced as N increases, but now these are

flatter than in the case with short maturity.

The results above then show that our model yields similar results to those of the original

Heston model, since the differences with respect to the Black-Scholes model have the same

behavior as shown in [Heston, 1993]. Furthermore, the improvement of our formulation is

that by including several scales in the dynamics of the volatility, the model is able to enhance

the difference of prices and therefore generates richer patterns of implied volatility.
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Figure 4-3 : Implied volatilities of the hierarchical Heston model as a function of strike K and N .
Here we use T = 0.2.

Figure 4-4 : Implied volatilities of the hierarchical Heston model as a function of strike K and N .
Here we use T = 2.0.
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4.7 Properties of the Hierarchical Hull-White Model

In this section, we discuss the features of our model by considering a Hull-White stochastic

process for the volatility. We have used the same test parameters than in the previous case,

which will help us later to establish differences between the results generated by the hier-

archical Heston model and the hierarchical Hull-White models. But first, let us show the

properties of this latter and its comparison with the Black-Scholes model.

Now the option prices are computed using the hierarchical Hull-White model given by

equation (4.26) together with expressions (4.28), (4.29) and (4.31). Results of this are shown

in figure 4-5, where we have plotted a set of option prices with maturity T = 0.2 (figure

4-5a) and T = 2.0 (figure 4-5b). The behavior of the prices in this model is similar to the

case based in a Heston model since in this case our model also gives higher prices than the

Black-Scholes formula for in and out of the money options and lower values near the spot

price S = 1. This is clearly noticed in figures 4-6a and 4-6b where we show the differences

between the results of our model (4.26) and the Black-Scholes formula for the same cases in

figure 4-5. Therefore, our results also agree with the general behavior shown by the original

Hull-White model for the case when the correlation between the asset price and its volatility

is equal to zero [Hull and White, 1987].

(a) (b)

Figure 4-5 : Hull-White option price on an asset of value S = 1 as a function of the strike K and
the number of scales N . (a) Maturity T = 0.2. (b) Maturity T = 2.0.
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(a) (b)

Figure 4-6 : Difference between the option price generated by the hierarchical model with a Hull-
White stochastic process and those generated by the Black Scholes formula: (a) For
the same parameters of figure 4-5a. (b) For the same parameters of figure 4-5b.

The corresponding implied volatilities of the cases shown in figure 4-5 are plotted in

figures 4-7 and 4-8, for the maturities T = 0.2 and T = 2.0, respectively. Here we show

that our model exhibits different volatility smiles depending on the number of scales in the

hierarchical stochastic process. In fact, the implied volatility patterns are more pronounced

as N increases. In the first case, where T = 0.2, our model yields implied volatility less than

the Black-Scholes volatility σ near the spot price, i.e. for K ∈ (0.90, 1.15). On the other

hand, outside this interval, i.e. for in and out of the money options, the implied volatility

obtained with the hierarchical model becomes higher than the volatility σ used in the Black-

Scholes formula. For the case of long maturity, i.e. T = 2.0, the patterns of volatility are

smoother than those displayed when T = 0.2. In this case, our model gives implied volatility

less than the Black-Scholes volatility in a larger interval of the strike prices, K ∈ (0.70, 1.50).

Outside this interval, the implied volatility of our model becomes higher than the Black-

Scholes volatility. In other words, as maturity increases the implied volatility of our model

tends to the constant value σ. However, we can also customize the concavity of the implied

volatility curve including more scales in our model.

As we saw above, our models yield the main features shown for the classical models for

stochastic volatility. In particular, these give lower prices than the Black-Scholes model for

strikes near to the spot price and higher option prices for in and out of the money options. In

addition, we showed that our models produce the so-called volatility smiles patterns, which

can be customized by the number of scales N in the model. Looking at the results of our

two hierarchical models, we see similar properties, but now we want to know the difference

between them. For this, in the next section, we compute their differences in the option prices
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and in the volatility smiles.

Figure 4-7 : Implied volatilities of hierarchical Hull-White model as a function of strike K and the
number of scales N . Here we considered the case with maturity T=0.2

Figure 4-8 : Implied volatilities of the hierarchical Hull-White model as a function of strike K and
the number of scales N . Here we considered the case with maturity T=2.0.
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4.8 Comparison Between the Hierarchical Hull-White and Heston Models

As was noticed in the previous section, the two hierarchical models give a relatively similar

behaviour for the option price as a function of K and T . However, a closer look reveals

differences that are directly related to the PDF of the volatility used to obtain the respective

models, i.e. a gamma or inverse gamma distribution. It is expected that a different stochastic

process for the volatility v yields a different contribution to the stochastic process of the asset

price S. Therefore, the distribution of returns implicitly used to average the Black-Scholes

formula gives different results for the option price (4.4).

The deviations between our two hierarchical models are more visible when we compute the

differences between the call prices generated by the Hull-White and the Heston approaches

(ChHW−ChH). Using the results of sections 4.6 and 4.7, we have obtained the figures 4-9a and

4-9b where ChHW−ChH is plotted as a function of the strike for the cases T = 0.2 and T = 2.0,

respectively. In fact, we can see that in both cases the quantity ChHW−ChH becomes negative

near the spot price, meaning that the hierarchical Heston model yields slightly higher prices

than those obtained from the hierarchical Hull-White model. Contrarily, far from the spot

price, i.e. for in and out of the money options, the difference becomes positive, indicating that

the hierarchical Hull-White formula ChHW gives higher values than the Heston model ChH .

Note that at spot price the two models give approximately the same price for short maturity

(see figure 4-9a), whereas for longer maturity (figure 4-9b), they differ considerably. This

can be explained as follows. We have from the Black-Scholes formula (2.25) that for K = S

the term ln(S/K) → 0 and therefore the price becomes only dependent on the maturity T

and the volatility v. Thus, for short maturity the difference between the two terms of the

Black-Scholes formula is negligible. Conversely, as maturity increases the difference between

the two terms in the Black-Scholes model becomes greater and therefore in this case the

option price is more affected by the process driving the volatility. Now recall that in both of

our models, the final option price is obtained as an average of the Black-Scholes formula over

the corresponding distribution f(vN ) of the volatility. The preceding argument then shows

that the difference ChHW − ChH between the predicted prices of the hierarchical Hull-White

and Heston models is negligible for options with short maturity. This can be seen in figure

4-9a, where there seems to be no difference between the prices of both models for K = S.

Contrarily, if the maturity of the option is greater, the difference between the terms of the

Black-Scholes formula is more affected by the process of volatility and as consequence we can

see noticeable differences between the two models when K = S, as shown in figure 4-9b.
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(a) (b)

Figure 4-9 : Difference between the option prices generated by the hierarchical Hull-White and
Heston models. (a) Price differences between figures 4-5a and 4-1a. Maturity T= 0.2
and (b) Price differences between figures 4-5b and 4-1b. T=2.0.

(a) (b)

Figure 4-10 : Difference between the implied volatility generated by the hierarchical Hull-White
and the Heston formulas. (a) Implied volatility differences between figures 4-7 and
4-3. Maturity T = 0.2 and (b) Implied volatility differences between figures 4-8 and
4-4. T=2.0

Another form to determine differences in our models is by comparing their implied volat-

ility patterns. So, for example, we can compute the difference between the implied volatility

of the two models ImpV olhHW − ImpV olhH . These differences are plotted as a function of

the strike K in figures 4-10a and 4-10b for the maturities T = 0.2 and T = 2.0, respectively.

Here we can see that near the spot price K ∼ S, the difference in implied volatility between

our models becomes negative, i.e. ImpV olhHW − ImpV olhH < 0. By comparing with the
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difference of prices shown in figure 4-9, we notice that this is the same region where the prices

are negative ChHW − ChH < 0. Conversely, for in and out of the money options (K far from

S), where ChHW > ChH , the difference between the implied volatilities becomes positive,

that is, ImpV olhHW > ImpV olhH . This can be explained by noting that the call price in

the Black-Scholes model is a growing function of the volatility. Thus, if the price difference

between our models is positive, the implied volatility difference will also be positive. Simil-

arly, if the difference in price between our models becomes negative, the difference of their

volatilities will also be negative.

To gain a better understanding of the dependence of these two models on the parameters

K and T , we analyzed the implied volatility surface corresponding to the function of implied

volatility σimp(K,T ) for both models. A volatility surface in addition to displaying the volat-

ility smile also shows the so-called term structure of volatility, which puts on view how the

implied volatility changes for options on the same asset but with a different maturity. The

volatility surfaces of our two models are shown in figure 4-11, where we have plotted the

implied volatility as a function of the strike K ∈ (0.45, 1.60) and the maturity T ∈ (0.2, 2.0),

for N = 1. The results for the Hull-White and Heston models are shown in figures 4-11a

and 4-11b, respectively. These display clearly some differences between the volatility surfaces

generated by the two models. For instance, for in and out of the money options, the hierarch-

ical Hull-White model achieves higher values of implied volatility than the hierarchical Heston

model. This is more evident if we look at volatility smiles corresponding to short maturities

(for example T = 0.2). For long maturity the surfaces in both cases becomes flatter (see for

example at T = 2.0). Other difference between the results for the implied volatility of our

models is that the surfaces generated by the hierarchical Hull-White model seems flatter than

the those obtained from the hierarchical Heston model. Similar effects are seen when we use

several scales, for example N = 8, which is shown in figures (4-12a) and (4-12b) for the

Hull-White and Heston models, respectively, although the differences between these are more

difficult to notice by simple inspection.
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(a) (b)

Figure 4-11 : Implied volatility as a function of the strike K and the maturity T from the model
with (a) the Hull-white and (b) the Heston process. The parameters used were
S0 = 1, N = 1, T = 0.2− 2.0 and K = 0.45− 1.60.

(a) (b)

Figure 4-12 : Implied volatility as a function of the strike K and the maturity T from the model
with (a) the Hull-white and (b) the Heston process. The parameters used were
S0 = 1, N = 8, T = 0.2− 2.0 and K = 0.45− 1.60
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4.9 Dependence on the β Parameter

Here we show the effect of the parameter β on the prices generated by our models. The

parameter β appears when we solve the Fokker-Planck equation associated with the SDE

for each case in section 4.3. Let us remember that there we defined β = 2γ
κ2
, where γ is the

reversion rate of the stochastic process and κ is related to the volatility of volatility. Therefore,

the information about each stochastic process is in the value assigned to the parameter β. We

also recall that the value of β governs the heavy-tail behavior of the probability distribution

of the price returns, as discussed in [Macêdo et al., 2017].

(a) (b)

Figure 4-13 : Option price as a function of β obtained by using: (a) The hierarchical Hull-White
model and (b) The hierarchical Heston model. The parameters used were S = 1,
N = 5 and maturity T = 0.4. Here BS denotes the Black-Scholes model and IntVal
is the intrinsic value of the option.

We compute option prices by our hierarchical models as a function of the strike K, for

different values of β using as test parameters S = 1, N = 1, T = 0.4. The strike ranges in the

interval K ∈ (0.7, 1.3) and the chosen β values were β = (0.1, 0.5, 1.0, 3.0, 6.0). In figure 4-13

we show the prices generated by the hierarchical Hull-White model (left) and the hierarchical

Heston model (right) with the different values of β. Here we find that for small values of β the

option price generated by our models tends to the intrinsic value of the option. Contrarily,

for large values of β (β → ∞) the price given by our models tends to the Black-Scholes

value. This behavior can be understood in terms of the reversion rate γ and the volatility

of volatility κ. For example, a large value of β means a small value of κ, and therefore the

volatility becomes less volatile. Large β also means that the reversion rate γ takes a large

value, thus the volatility process relax quickly to its mean value v0. So, according to the
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two previous situations described, a high β value implies that the volatility process does not

fluctuate and therefore the volatility becomes constant, and so we recover the Black-Scholes

model as shown in figure 4-13. The limit β → 0 means that the reversion rate γ takes a small

value or the volatility of volatility parameter κ takes high values. In this situation, volatility

hardly moves back towards the average value v0, extreme events of the market will be more

probable and the volatility smile becomes more pronounced. This implies that far from the

spot price S, i.e. for in and out of the money options, the option price increases, whereas for

options with strike close to the spot price, the price decreases tending to the intrinsic value,

as shown figure 4-13.

4.10 Comparison with Market Prices

In this section we present a brief comparison between our hierarchical option pricing

models and the market prices. To this end, we select some option chains of the Brazilian

options market analyzed in chapter 3 and in a similar way we applied the least squares method

to determine the parameters of the hierarchical models. The goodness of fit is determined

by the standard error SER =
√
χ2/n, where n is the number of strikes in the chain. The

standard error SER is used to compare the results given by the hierarchical models with the

fit made by the conventional models, namely the Black-Scholes and the exponential models.

For example, we select a chain of options on the Ibovespa index traded on 05/25/06,

corresponding to fifteen days before the maturity date on 06/14/06. The risk-free interest

on 05/25/06 was r = 0.0006 and the spot price was S = 37568.66. Then, we fitted this

options chain using the two hierarchical models presented above, which is shown in figure

4-14. For the hierarchical Heston model we fitted up to N = 7 obtaining the parameters

σhH =
√
v0 = 0.014 and β = 7.718. With these optimal parameters, we plotted the prices

chain of our model, which is shown in figure 4-14a (red line). Fitting by the hierarchical Hull-

White approach we found for N = 1 the parameters σhHW =
√
v0 = 0.014 and β = 0.737.

The corresponding theoretical prediction is shown in figure 4-14b (red line). In order to

compare with the conventional models analyzed in chapter 3, we have also plotted the Black-

Scholes fit (dashed black line) from which we obtained the volatility value σBS = 0.013 and

the exponential model (blue line) whose optimal parameters were ν = 0.124 and γ = 22.509.

Between the hierarchical models, we found that the Hull-White model fits the market prices

slightly better than the Heston model, in the sense that it yields a lower standard error,

namely SERhHW = 57.928, as compared to SERhH = 58.001 for the hierarchical Heston

model. Both of our models provide better fits than the Black-Scholes formula for which

we found SERBS = 65.094, but they are not as good as the exponential model for which
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SERExp = 32.447. In fact we can see that the curves corresponding to the hierarchical

models (red line) in figures 4-14a and 4-14b seem to yield similar results that are reflected

in their standard errors closed to each other.

(a) (b)

Figure 4-14 : Bovespa option chain traded on 05/25/06 at 15 days before expiration (dots) and
fit by methods: Black-Scholes (dashed black line); Exponential (blue line). And
comparison with: (a) Heston model fit with N = 7 ; (b) Hull-White fit with N = 1

(red lines).

An alternative way to display the results presented in figure 4-14 is to plot the implied

volatilities of each model as a function of the strike K. For this, we computed the implied

volatilities by equating the price values generated by a given model Cmodel(x) to the Black-

Scholes formula CBS(K,S, T, r, σ) and solving for the volatility σImp. In other words, we solve

the equation:

CBS(K,S, T, r, σImp)− Cmodel(x) = 0, (4.47)

where x is the set of optimal fit parameters corresponding to each model.

Using the procedure described above we obtain the corresponding implied volatilities of

the option prices in figure 4-14, which is shown in figure 4-15. In this figure we used the

same convention of colors as in figure 4-14, i.e we used points for the implied volatilities of

the empirical data, black dashed line for the Black-Scholes volatility, blue line for the implied

volatility of the exponential model and red line for the implied volatility of our hierarchical

model. It is clear from this figure that our hierarchical models try to adjusts better the implied

volatilities in comparison with the Black-Scholes formula, but the exponential model describes

better the market data. We note however that the exponential model has the disadvantage

that it is an empirical model in the sense that the exponential distribution is not obtained
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from a dynamical process, contrarily to our hierarchical models whose associated distributions

are derived from a set of stochastic differential equations.

(a) (b)

Figure 4-15 : (a) Smile of volatility corresponding to data in figure 4-14a; (b) Smile of volatility
corresponding to data in figure 4-14b.

Another example where we have applied our models is shown in figure 4-16. As in the

former case, we analyze an option chain traded on 09/11/06 on a stock with spot price S =

40815.5, interest rate r = 0.0005 and with time to expiration of 24 days on 13/12/06. Figure

4-16a shows a comparison between the market prices (points) and the fits performed using the

hierarchical Heston (red line), the Black-Scholes (black dashed line) and exponential (blue line)

models. In this case, fitting the hierarchical Heston model up to N = 6 yields the parameters,

σhH =
√
v0 = 0.060 and β = 0.478. Using the Black-Scholes formula we found σBS = 0.019,

while for the exponential fit the parameters were γ = 1.039 and ν = 20.118. On the other

hand, figure 4-16b shows a similar comparison but now with the fit performed employing the

hierarchical Hull-White model. With this model we found the optimal parameters N = 6,

σhHW = 0.087 and β = 0.393. Here both our models provide better fits compared to the

Black-Scholes formula for options in and at the money. For options out of the money both

models overestimate the option prices. By visual inspection of figure 4-16 the hierarchical

Heston model shows good agreement with the empirical data for options in and at the money

and similar results to those given by the exponential formula. For options out of the money

our Heston formula becomes worse than the Hull-White one. The empirical exponential

model again proves to be better, which it is confirmed by the fact that SERExp = 79.364,

whereas the hierarchical Heston model yields SERhH = 252.437 and the hierarchical Hull-

White model gives SERhHW = 259.458. For the fit by the Black-Scholes model we found
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SERBS = 366.839, worse than the hierarchical and exponential models. In conclusion, we

can say that although our models improve the goodness of fit in comparison to the Black-

Scholes model, the exponential model is capable of providing a better agreement with the

data due to its asymmetric character as discussed in chapter 3. We recall however that the

exponential model has the drawback that it is an empirical approach without a dynamical

origin, as mentioned above.

(a) (b)

Figure 4-16 : Ibovespa option chain traded on 09/11/06 at 24 days before expiration. (a) hierarch-
ical Heston model fit and conventional methods. (b) hierarchical Hull-White fit and
conventional methods.

In figure 4-17 we show the corresponding volatility smiles of the fits in figure 4-16. Here it

is more noticeable that the hierarchical Heston model better describes the empirical volatility

than the hierarchical Hull-White does. Both hierarchical models represent an improvement

with respect to the Black-Scholes formula for in and at the money options, but for out of the

money options they overestimate the value of the implied volatility. Overall, however, in this

case, the hierarchical Hull-White model performs more poorly than the hierarchical Heston

model.
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(a) (b)

Figure 4-17 : (a) Smile of volatility corresponding to data in figure 4-16a; (b) Smile of volatility
corresponding to data in figure 4-16b.
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5 Introduction to Statistical Turbulence

5.1 Turbulence Bases

Turbulence is a complex phenomenon that is commonly considered a chaotic or random

motion of fluids. But actually turbulent fluids involve a lot of interesting features and

concepts that define turbulence from the physics viewpoint. In order to give a definition of

turbulence, let us mention the concept introduced in [McComb, 2014]. This reads:

Turbulence is the manifestation of the spatial-temporal chaotic behavior of fluid flows

at large Reynolds numbers, i.e., of a strongly nonlinear dissipative system with an extremely

large number of degrees of freedom (most probably) described by the Navier-Stokes equations.

To better understand this concept let us illustrate some of the characteristic features

of fluid turbulence next:

1. From common observations, turbulence is seen as a motion of eddies of different sizes

and speeds. Its study goes back to early times appearing for example in sketches of the

water near a fall, in Leonardo Da Vinci water studies. In fact, it was there that the term

turbolenza appeared for the first time [Yaglom, 2001]. From detailed experimental setups

and in the language of physics, we can say that turbulence is a problem of many lengths

and time scales. Experiments by Reynolds with laminar flow through a pipe show different

regimes of turbulence which are characterized by a single velocity (e.g. the velocity at the

center of the pipe) and a single length (e.g. the radius of the pipe), as shown in figure 5-1.

The dimensionless quantity which defines the different regimes of flow is named the Reynolds

number

Re = Ud/ν, (5.1)

where U is the mean velocity, d is the diameter of the pipe and ν is the kinematic viscosity

of the fluid [Tsinober, 2009].



89

Figure 5-1 : Reynolds experiment in a circular pipe. The smallest mean velocity corresponds to the
upper frame where the flow regime is laminar, the largest mean velocity corresponds
to the lower frame where the flow regime is turbulent [Tsinober, 2009].

2. Turbulent flows are found to be highly dissipative. For example, in the laminar regime

the pressure difference ∆p at a distance, l, along the pipe of diameter d is proportional to

the mean velocity, U , whereas in the turbulent regime it is much larger and is approximately

proportional to U7/4 in pipes with smooth walls and to U2 in pipes with rough walls. The

latter means that the rate of energy losses, ∆pd2U , i.e., the rate of energy dissipation in the

turbulent regime in pipes with rough walls is proportional to U3/d and is independent of

viscosity. In the turbulent regime the dissipation may be orders of magnitude larger than

their laminar counterparts at the same Reynolds number.

3. Turbulent flows are strongly mixing in nature. The classic experiment by Reynolds

shows that a dye-line injected at the center of a laminar pipe-flow becomes broken up in

turbulence and rapidly spreads across the pipe. This mixing property is naturally associated

with high rates of radial heat and mass transfer and resistance to flow because of radial

momentum transfer. Another example is the figure 5-2 where the evolution of a jet coming
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out of an orifice on the left is shown. It can be observed that the flow develops large scale

structures which further break down resulting in fully developed turbulence.

Figure 5-2 : Coexistence of different flow regimes: Laminar, transitional and turbulent regimes in
a circular jet [Lawrence Livermore National Laboratory, 2018].

4. The fluid velocity is a random function of space and time. Experimental and theoretical

evidence shows that the PDF of the velocity increments is non-Gaussian. For example figures

5-3 and 5-4 show the histogram of velocity increments generated from experimental data

measured by [Chanal et al., 1997] and numerical simulations of the Navier-Stokes equations

done by [Li et al., 2008]. In these figures we have also plotted the corresponding Gaussian fit

(red line), where it is evident that it does not describe the data histogram. In addition, these

figures show a slight skewness as expected from the Kolmogorov’s 4/5 law (see above), which

will be an important issue for our proposal of a theoretical model for the PDF of velocity

increments in turbulence.

5. Due to the continuum nature of fluids, there are correlations between fluid motions

at different points and times. These correlations vanish when increases the separation of

measuring points or the time lag, and are characterized by correlation lengths and correlation

times.

6. The nonlinearity of the flow motion produces as a result an interaction between the

many degrees of freedom and scales (of time or space). For example, in atmospheric flows the

relevant scales range from hundreds of kms to parts of a mm, i.e., there exist many degrees

of freedom which are strongly interacting.

These and other features are discussed in many bibliographic sources, such as [Frisch,

1995,McComb, 2014,Tsinober, 2009], some of these additional features include, for example,

notions of similarity and isotropy, which will be reviewed in the following sections.
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Figure 5-3 : Empirical distribution of velocity increments (dots) and Gaussian fit (red line).

Figure 5-4 : Histogram of velocity increments generated by simulations of the Navier-Stokes equa-
tions (dots) and Gaussian fit (red line).
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5.2 Navier-Stokes Equations

As an introduction, we present in this section the Navier-Stokes equations, which describe

the dynamics of an incompressible Newtonian viscous fluid and are obtained by the following

physical assumptions: conservation of mass, Newton’s second law and the constitutive rela-

tions of the fluid. The state of the fluid is characterized by its density ρ(t, ~r) and fluid velocity

~v(t, ~r). Under the assumption of incompressibility (constant density), the equations of mo-

tion (Newton’s second law) that govern for a Newtonian fluid simplify to the incompressible

Navier-Stokes equations:

∂t~v + ~v · ~∇~v = −~∇p+ ν∇2~v, (5.2)

and
~∇ · ~v = 0, (5.3)

where ∂t = ∂
∂t , ~v = ~v(x, y, z, t) is the velocity field in the 3-dimensional space p = p(x, y, z, t)/ρ

is the pressure divided by the density ρ and ν is the kinematic viscosity of the fluid ν = η/ρ.

The Navier-Stokes equations have a symmetry group, which consists of the following

transformation group g ∈ G of ~v

Space translations : gspace~a ~v(~r, t) = ~v(~r − ~a, t) (5.4)

Time translations : gtimeτ ~v(~r, t) = ~v(~r, t− τ) (5.5)

Galilean transformation : gGal~u ~v(~r, t) = ~v(~r − ~ut, t) + ~u (5.6)

Space reflection : P~v(~r, t) = −~v(−~r, t), P ≡ parity operator (5.7)

Space rotations : grotR ~v(~r, t) = R~v(R−1~r, t), R ∈ (SO)3 (5.8)

Scale invariance : gscale,hλ ~v(~r, t) = λh~v(λ−1~r, λh−1t), λ ∈ <. (5.9)

The pressure does not appear above since it can be expressed as a function of v in the Navier-

Stokes equations. In fact, its transformations are the same as those for the scalar variable

v2 = |~v|2. The proof of some of the properties above is immediate such as the spatial and

temporal translations which do not depend explicitly on time and space coordinates.

The Galilean transformation can be proved as follows. Using ~v′ = ~v(~r − ~ut) + ~u we get

∂t~v′(~r, t) = ∂t~v(~r − ~ut, t)− (~u · ~∇)~v(~r − ~ut, t) (5.10)

(~v′(~r, t) · ~∇)~v′(~r, t) = [~v(~r − ~ut, t) + ~u] · ~∇~v(~r − ~ut, t). (5.11)

adding these equations amounts to the left-hand side of the Navier-Stokes equations, and since

the right-hand side is straightforwardly invariant, this proves the Galilean symmetry. The
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scale invariance is demonstrated in the same way. Setting ~v′ = λh~v(λ−1~r, λh−1t), we obtain

∂t~v′(~r, t) = λ2h−1∂t~v(λ−1~r, λh−1t) (5.12)

(~v′(~r, t) · ~∇)~v′(~r, t) = λ2h−1~v(λ−1~r, λh−1t) · ~∇~v(λ−1~r, λh−1t) (5.13)

~∇p′(~r, t) = λ2h−1~∇p(λ−1~r, λh−1t) (5.14)

ν∇2~v′(~r, t) = λh−2ν∇2~v(λ−1~r, λh−1t). (5.15)

For finite viscosity ν > 0, only h = −1 removes the factors involving the scaling factor λ.

This allows us to define the Reynolds number keeping it the same for different scales, that is

Re =
UL

ν
, (5.16)

where L is the domain size and U is the characteristic velocity. Now choosing L′ = λL and

U ′ = λhU , the Reynold’s number with this scaling becomes

Re′ = λh+1UL

ν
= λh+1Re = Re, if h = −1. (5.17)

This scale invariance is equivalent to the principle of hydrodynamic similarity by which two

flows with the same geometry and same Reynolds number but different scale of longitude and

velocity are similar and related only by a scaling transformation.This also has as consequence

that at sufficiently high Reynolds number, the viscosity term is neglected and therefore any

exponent h may be chosen.

Other results derived from the Navier-Stokes equations are for instance some conservation

laws [Frisch, 1995]. Considering periodic boundary conditions for the quantities involved in

the dynamic of the system, it is possible to demonstrate that the Navier-Stokes equations

satisfy the following conservation laws:

i) Conservation of moment.
d

dt
〈~v〉 = 0 (5.18)

ii) Conservation of energy.
d

dt
〈1
2
v2〉 = −ν〈|~ω|2〉, (5.19)

where 〈〉 is the spatial average and ~ω = ~∇ × ~v is the vorticity. The mass does not appear

since the Navier-Stokes equations are normalized to the density. Equation (5.19) gives the

conservation of the overall system energy and shows the dissipation of energy as a consequence

of the viscosity, as expected.

The energy balance equation (5.19) does not contain any contribution from the nonlinear

term in the Navier-Stokes equation because this term vanishes since we have periodic func-

tions whose spatial average is equal to zero. Up to this point, we do not know the role of
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nonlinearities in relation to the energy. For that, it is necessary to define the concept of scale

and to analyze the energy flux among different scales of motion without affecting the global

energy budget.

5.3 Energy Budget Scale by Scale.

The energy budget in the fluid may be understood from the spectral analysis of the

dynamical variables which describe the state of the fluid. It is done by the decomposition

of these variables in a discrete Fourier representation considering periodic conditions for the

fluid. So, applying this treatment to de Navier-Stokes equations with an external force ~f ,

it is possible to obtain de so-called scale-by-scale energy budget equation, that describes the

dynamics of the energy in the fluid. From this treatment, the concept of scale is defined to be

related to the cutoff wavenumber (maximum and minimum) considered in the Fourier series,

this is l ∼ K−1. So, for a given scale, or considering up to a specific wavenumber cutoff it is

possible to obtain the dynamics for the energy in this scale. As shown in [Frisch, 1995], this

reads

∂tEK + ΠK = −2νΩK + FK (5.20)

where the total energy EK , accumulated up to the wavenumber K is defined as

EK =
1

2

∑
k≤K
|~v~k|

2; (5.21)

ΩK is the enstrophy accumulated up to K:

ΩK =
1

2

∑
k≤K

k2|~v~k|
2; (5.22)

FK is the rate of energy injected up to K

FK =
1

2

∑
k≤K

~f~k · ~v ~−k. (5.23)

Finally, the energy flux through the scale K−1 toward smaller scales is defined as:

ΠK = 〈~v<K · (~v
<
K · ~∇~v

>
K)〉+ 〈~v<K · (~v

>
K · ~∇~v

>
K)〉, (5.24)

where the symbols “ > ” and “ <” indicate wave vectors k > K and k ≤ K in the Fourier

decomposition of the velocity function.

Equation (5.20) means that the rate of change of the energy at scales down to l ∼ K−1 is

equal to the energy injected into these scales by the force (FK) minus the energy dissipated

within such scales (2νΩK) minus the flux of energy (ΠK) to smaller scales due to nonlinear
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terms into the Navier-Stokes equations. This last term appears as a mechanism of interaction

between successive scales and directly connects the description given by the Navier-Stokes

equations and the common hypothesis in turbulence theory such as the assumption of the

energy cascade. In particular, such energy cascade allows describing the variation of the

energy flux from long to short scales in the so-called inertial range. This phenomenon known

as intermittency can be seen as the variability of the turbulence with the scale, that is, as the

existence of a multi-scale process [Batchelor and Townsend, 1949].

The construction of a hierarchical model of intermittency is done by [Salazar, 2010,Salazar

and Vasconcelos, 2010] starting from equation (5.20). They assumed that in the limit of

infinite Reynolds number the contribution of the viscosity becomes negligible. In addition,

considering that the energy is injected only in the integral scale l0, the dynamics of the energy

in a scale is only determined by differences between the incoming and outgoing energy flux

ΠK in that scale, in other words by the energy flux through a scale or cascade level.

5.4 Kolmogorov’s 1941 Theory (K41)

In 1941 Kolmogorov, after having done many contributions to mathematics and the theory

of stochastic processes, decided to venture into the study of turbulent flows. Kolmogorov’s

theory is based on three important hypotheses combined with dimensional arguments and

experimental observations [Kolmogorov, 1941b,Kolmogorov, 1941a].

For homogenous turbulence, the turbulent kinetic energy is on average the same every-

where. For isotropic turbulence, eddies also behave similarly in all directions. Kolmogorov

argued that the directional biases of the large scales are lost in the chaotic scale-reduction

process as energy is transferred to successively smaller eddies. Hence Kolmogorov’s hypothesis

of local isotropy states that at sufficiently high Reynolds numbers, the small-scale turbulent

motions (l � l0) are statistically isotropic [Pope, 2000]. Here l0 is the scale used as the ref-

erence to define the smaller scales and is called the integral scale. In practice, this is related

to the dimensions of the system where the fluid is flowing. The term local isotropy means

isotropy at small scales, whereas at large scale the turbulence may still be anisotropic.

The observable quantity to be studied in an experimental setup of turbulence is the velocity

increment, δ~v, between two spatial points separated by a distance l,

δ~v(~r,~l) = ~v(~r +~l)− ~v(~r). (5.25)

Kolmogorov’s hypotheses of homogeneous and isotropic turbulence mean that there is no

preferential direction, hence the velocity increments depend only on the modulus of ~l:

δ~v(~r,~l) = δ~v(~r, l). To simplify the notation we shall denote δ~v(l) ≡ δ~v(~r, l).
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Kolmogorov also argued that the statistics of the small-scale motions are universal: they

are similar in every high Reynolds number turbulent flow, independent of the mean flow field

and the boundary conditions. These constitute the result of two hypothesis, as discussed next.

“The first similarity hypothesis which states that in every turbulent flow at sufficiently high

Reynolds number, the statistics of the small scale motions (l� l0) have a universal form that

is uniquely determined by the dissipation rate ε and the kinematic viscosity ν" [Pope, 2000].

This theory implicitly assumes that turbulence is statistically self-similar at smaller scales.

This essentially means that the statistics is scale-invariant in the inertial range. Statistical

scale-invariance implies that the scaling of the velocity increments should occur with a unique

scaling exponent h, so that when l is scaled by a factor λ, δ~u should have the same statistical

distribution as λhδ~u(l), where h does not depend on the scale.

The second hypothesis as described in [Tsinober, 2009,Pope, 2000], reads:

“Kolmogorov’s second similarity hypothesis states that in every turbulent flow at sufficiently

high Reynolds number, the statistics of the smaller scale motions (η � l� l0) have a universal

form that is uniquely determined by the average rate of dissipation ε and by the specific scale

l".

Here

η = ν3/4/〈ε〉1/4 (5.26)

is the so-called Kolmogorov dissipation scale. From these hypotheses, using dimensional

arguments one can obtain a relation for the second order structure function, defined as the

second moment of the velocity increments 〈(δ~v(l))2〉. As this quantity has dimensions of

[L]2[T ]−2 the only combination of ε and l which results in a quantity with the same dimension

is ε2/3l2/3, therefore

〈(δv(l))2〉 = Cε2/3l2/3 (5.27)

for longitudinal increments δv(l) = d~v(~r, l) · l̂, where C is a dimensionless constant. From the

Kolmogorov theory it also follows a result for the high-order structure functions, which scale

as

〈(δv(l))p〉 ∼ lζp , (5.28)

where ζp is known as the scaling exponent and it gets the value ζp = p/3 for the K41 theory.

This model was not able to reflect the observed phenomenon of intermittency, and therefore

new models were devised in which the exponents ζp did present a non-linear dependency on p.

Thus, it was necessary a modification of the K41 Kolmogorov’s theory, known as Kolmogorov’s

K62 theory [Kolmogorov, 1941a,Kolmogorov, 1941b].

In his first 1941 paper [Kolmogorov, 1941a], Kolmogorov only treated (at least explicitly)

the second-order function, although all his hypotheses were formulated for statistical proper-
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ties of velocity increments and therefore for structure functions of higher order. Instead, the

1941a paper was followed by the most remarkable quantitative prediction obtained as a direct

consequence of the Navier-Stokes equations for the inertial range l0 � l � η [Kolmogorov,

1941b]. An exact formula for the third moment of the velocity increments known as the 4/5

law:

〈(δv(l))3〉 = −4

5
ε l. (5.29)

This result will serve later as part of the justification for our statistical asymmetric model for

turbulence. Although this relation introduces the idea of universality for the multiplicative

constant −4/5, experimental results exhibit large variability from the range of l in which this

is valid, even at rather high Reynolds numbers [Tsinober, 2009,Kholmyansky and Tsinober,

2008]. Several possible causes for deviations from the 4/5 law are discussed for example

in [Frisch, 1995,Tsinober, 2009]. In fact this is one of the issues in turbulence which has kept

the turbulence community quite busy until now.

5.5 Kolmogorov-Obukhov (K62) theory

In 1962 Kolmogorov presented his theory of intermittency, since then called K62, in re-

sponse to criticisms from Landau about the assumption in the K41 theory in which he con-

sidered constant energy dissipation [Landau and Lifshitz, 1987]. Landau argued that due to

the random nature of energy transfers to smaller scales, the fluctuation of energy dissipation

should increase as the ratio l/l0 decreases. In addition, there was experimental evidence which

showed that the amplitude of temporal fluctuations of the velocity field exhibited abrupt vari-

ations [Obukhov, 1962,Gurvich, 1960]. Then, Obukhov, a doctoral student of Kolmogorov

adduced that such variations could be explained if the rate of dissipation ε had a certain

variance about the mean [Obukhov, 1941]. With this, Kolmogorov introduced into his the-

ory a modified form of the dissipation rate averaged over a sphere of radius l, denoted by

εr(~r0, t) [McComb, 2014]. This was defined as

εr(~r0, t) =
3

4πr3

∫
r′≤r

d3r′ε(~r0 + ~r′) (5.30)

where the sphere is centered in ~r0 and ε(~r0 + ~r′) ≡ ε is the instantaneous energy dissipation

rate, given by

ε =
ν

2

∑
i,j

(
∂vj
∂xi

+
∂vi
∂xj

)2

. (5.31)

Kolmogorov also proposed that for small scales, l � l0, the logarithm of εr(~r0, t) had a

normal distribution, with variance given by

σ2
l = A+ µ ln

(
l0
l

)
, (5.32)
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where µ is a universal constant. This assumption in the literature is known as the log-normal

hypothesis or hypothesis of log-normality. As result of this hypothesis, the statistical moments

of the energy dissipation and the velocity fluctuations, which characterize the turbulent re-

gime, should be replaced by

〈εql 〉 = εq0(l/l0)τq (5.33)

and

〈(δv(l))p〉 = (ε0l)
p/3(l/l0)ζp , (5.34)

respectively, where the scaling exponents τq and ζp are given by

τq =
µ

2
(q − q2) (5.35)

and

ζp =
p

3
+

µ

18
(3p− p2). (5.36)

For Lagrangian turbulence, in which the velocity fluctuations are measured over the same

particle in different instants of time, the structure functions for the increments of velocity are

described as a function of the temporal scale in which the increments are measured. In this

case the Kolmogorov similarity hypothesis is written as

〈δvpτ 〉 = (ε0τ)p/3(τ/T )ζp , (5.37)

where the scaling exponent for the log-normal model reads

ζp =
p

2
+
λ2

2
(2p− p2), (5.38)

and λ is a free parameter of the model. An example of the behavior of these scaling exponents

is shown in figure 5-5.

The log-normal hypothesis presents some conceptual difficulties [Frisch, 1995,Mandelbrot,

1999]. For instance, it violates the condition which states that the scaling exponent ζp is a

nondecreasing function of p, related to obtaining the incompressible Navier-Stokes equation.

Despite the critiques to this model, it would lead to further models of intermittency such as

the β model and fractal models discussed in [Parisi and Frisch, 1983,Mandelbrot, 1999,Frisch

et al., 1978,She and Lévêque, 1994], which are not considered in this work.
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Figure 5-5 : Lagrangian scaling exponents ζp as measured by [Xu et al., 2006] and as predicted
by the Beck’s superstatistical model for λ2 = 0.085 (solid line) [Beck, 2007]. No
intermittency (dashed line).

Up to here, we have given a brief introduction to the theory of turbulence. Our mo-

tivation is to give enough background material to justify the following sections where we

introduce a hierarchical model of turbulence. In our formalism we regard the hypothesis of

Kolmogorov and the concept of intermittency, but considering a multiscale dynamical model

for the stochastic fluctuations of the energy fluxes between scales.

5.6 Hierarchical Model for the Energy Flux.

Here we recall the hierarchical model presented in section 4.3, but now in the context

of turbulence. In this case, the fluctuating variable is the energy dissipation rate and its

dynamics described by a system of N stochastic processes as in the case of the volatility

in the previous chapter. In section 5.7 we review the symmetric statistical model for the

distribution of velocity increments obtained by [Macêdo et al., 2017,Salazar and Vasconcelos,

2010]. Later in chapter 6 we will develop these concepts to introduce an asymmetric model.
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5.6.1 Inverse gamma class.

A hierarchical model can be introduced based on the concept of energy cascades proposed

by [Richardson, 1922]. A turbulent flow represented as an energy cascade including several

scales (N) is illustrated in the picture below. The initial cascade level ε0 is the scale where

the energy flux is injected and where the flow exhibits its largest eddies. These eddies, in

turn, transfers energy to smaller eddies in the following level ε1 (process explained by the

non-linear terms in the equation of motion) and so on to the smallest scale εN , after which

energy is dissipated into heat by viscous effects. Mathematically, the model can be described

by a system of N SDEs similar to those in (4.14). We then consider the following model

ε0

ε1

ε2

...
εN

dε1 = −γ1(ε1 − ε0)dt+ κ1ε1dW1

dε2 = −γ2(ε2 − ε1)dt+ κ2ε2dW2

...
...

dεN = −γN (εN − εN−1)dt+ κN εNdWN ,

(5.39)
with the characteristic times satisfying γ−1

i � γ−1
i−1. This means that the processes in smaller

scales occur faster than in the larger scales. Using this hypothesis, we can assume that the

energy flux of a smaller scale i achieves the equilibrium so quickly that the energy flux in a

larger scale i− 1 is approximately constant. So, the marginal PDF of the energy flux in scale

N under the hypothesis above is given by the general integral

fN (εN ) =

∞∫
0

dεN−1 . . .

∞∫
0

dε1 fN (εN |εN−1) . . . f1(ε1|ε0), (5.40)

where the conditional probability f(εi|εi−1) for the scale i is given by an inverse gamma

distribution (4.16 ); see [Salazar, 2010] for further discussions.

Particular case: Two scales model

Now we consider the hierarchical model (5.39) for the particular case when there are only

two scales, i.e., N = 2. In this case the two stochastic processes ε2 and ε1 are related by the

following system of equations:

dε2 = −γ2(ε2 − ε1)dt+ κ2ε2dW2

dε1 = −γ1(ε1 − ε0)dt+ κ1ε1dW1.
(5.41)

Each process above has an associated Fokker-Planck equation whose stationary solution

is given by an inverse gamma distribution, see Appendix F for more details. For example, the
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solution for the PDF of the stochastic process ε2 conditioned on ε1 = cte is an inverse gamma

distribution in the form

f2(ε2|ε1) =
(β2ε1)β2+1

Γ(β2 + 1)
ε−β2−2
2 e−β2ε1/ε2 , (5.42)

and similarly, for the distribution of ε1 conditioned on ε0 we have

f1(ε1|ε0) =
(β1ε0)β1+1

Γ(β1 + 1)
ε−β1−2
1 e−β1ε0/ε1 . (5.43)

Assuming that the time scales of the processes are well separated, which is satisfied if

γ2 >> γ1, the marginal PDF, f2(ε2), for the process ε2 reads

f2(ε2) =

∞∫
0

f2(ε2|ε1)f1(ε1|ε0)dε1. (5.44)

Replacing (5.42) and (5.43) into (5.44) and performing the integration gives

f2(ε2) = Cε
−2−β2+β1

2
2 Kβ2−β1

(
2

√
β2β1ε0
ε2

)
, (5.45)

where the normalization constant is given by

C = 2

(
β1ε0
β2

)β2−β1
2

[
ββ2+1

2

Γ(β2 + 1)

] [
(β1ε0)β1+1

Γ(β1 + 1)

]
. (5.46)

This expression has an equivalent and more convenient representation as a Meijer G-function

in the following form (see Appendix G):

f2(ε2) =
1

ε0β1β2Γ(β1 + 1)Γ(β2 + 1)
G0,2

2,0

(
−β1 − 1,−β2 − 1

−

∣∣∣∣ ε2
β1β2ε0

)
. (5.47)

To illustrate the complexity of the model, consider the next scale involving the process ε3,

whose conditional PDF is

f3(ε3|ε2) =
(β3ε2)β3+1

Γ(β3 + 1)
ε−β3−2
3 e−β3ε2/ε3 . (5.48)

The marginal distribution f3(ε3) is obtained by integrating the product of (5.45) and (5.48)

with respect to ε2, i.e., the expression

f3(ε3) =
C (β3)β3+1 ε−β3−2

3

Γ(β3 + 1)

∞∫
0

ε
β3−1−β2+β1

2
2 e−β3ε2/ε3Kβ2−β1

(
2

√
β2β1ε0
ε2

)
dε2. (5.49)

This integral is easier to solve using the Meijer G-function notation of f2(ε2) in (5.47) and the

properties of the Meijer G-function shown in Appendix H. So the integral above becomes an
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integral of the product of two G-functions, which can be solved using property (G.17). With

this procedure, the final result for f3(ε3) is given in terms of another Meijer G-function (for

details see Appendix G), in the form:

f3(ε3) =
1

ε0β1β2β3Γ(β1 + 1)Γ(β2 + 1)Γ(β3 + 1)

×G0,3
3,0

(
−β1 − 1,−β2 − 1,−β3 − 1

−

∣∣∣∣ ε3
β1β2β3ε0

)
.

(5.50)

Model with N scales

We show in appendix G that the successive integration of (5.40) can be done using the

Mellin transform and the Meijer G-function. In this representation, we take advantage of

some Meijer G-function properties. In particular, we use the so-called convolution property

which states that when a product of two G-functions is integrated, the result is another Meijer

G-function, as shown in (G.17). In this way, the PDF for the hierarchical system with N scales

(5.39) can be written in terms of the Meijer G-function, proceeding as in (5.47) and (5.50).

So the stationary distribution fN (εN ) of the inverse gamma class becomes:

fN (εN ) =
Ω

ε0ω
G0,N
N,0

(
−βNβNβN − 111

−

∣∣∣∣ εNε0ω
)

(5.51)

where Ω =
∏N
i=1

1
Γ(βi+1) , ω =

∏N
i=1 βi and βNβNβN = (β1, . . . , βN ).

5.6.2 Gamma class

In reference [Macêdo et al., 2017] it was shown that in addition to the model (5.39),

another class of dynamical model for the energy flux is allowed. In this case, the system of

SDEs consists of N processes of the type shown in equation (4.17). More specifically, we have

the following set of SDEs

dε1 = −γ1(ε1 − ε0)dt+ κ1
√
ε1 ε0dW1

dε2 = −γ2(ε2 − ε1)dt+ κ2
√
ε2 ε1dW2

...
...

dεN = −γN (εN − εN−1)dt+ κN
√
εN εN−1dWN .

(5.52)

The marginal probability density fN (εN ) at the smallest scales can be written in the same

way as (5.40), with f(εi|εi−1) following a gamma distribution like (4.19),

fi(εi|εi−1) =
(βi/εi−1)βi

Γ(βi)
εβi−1
i e−βiεi/εi−1 . (5.53)
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The successive integration of fN (εN ) in (5.40) may also be given through the Mellin

transformation and the Meijer G-function. To illustrate this, we first solve the integration of

two scales (i.e., N = 2) in the appendix G using only the Mellin transformation, obtaining a

result in the form of a Meijer G-function. The subsequent integrals for N > 2, see (5.40), are

solved by using the properties of the Meijer G-function. The final result for the distribution

fN (εN ) for an arbitrary number N of scales is

fN (εN ) =
ωΩ

ε0
GN,00,N

(
−

βNβNβN − 111

∣∣∣∣ω εNε0
)
, (5.54)

with ω =
N∏
j=1

βj , Ω =
N∏
j=1

1/Γ(βj) and βββ = (β1, . . . , βN ).

5.7 Hierarchical Model for Velocity Increments: Symmetric Version.

We have shown in figures 5-3 and 5-4, that the distribution of longitudinal velocity

increments δvr(x) ≡ δv = v(x+r)−v(x) measured at a small separation r, for a turbulent fluid

does not follow a Gaussian distribution. In the Landau picture this occurs due to fluctuations

of the dissipation rate ε for r from the inertial range going down to the dissipative scale

η. As an improvement, Kolmogorov considered in 1962 the fluctuations of the energy flux,

making a hypothesis about the probability density for the rate of dissipation. His original

hypothesis consists in assuming that the rate of dissipation follows a log-normal distribution,

but without deriving it from a dynamical model for the dissipation [Landau and Lifshitz,

1987,Kolmogorov, 1962].

In more recent works [Castaing et al., 1990, Beck, 2001, C.Beck, 2004, Macêdo et al.,

2017, Salazar and Vasconcelos, 2010], the concept of compounding, or superstatistics was

introduced in turbulence modeling. Under this idea, the fluctuations of the local energy flux

ε have a distribution f(ε) and are assumed to occur on a long timescale, such that locally the

system can achieve a quasi-equilibrium with an approximately constant value of ε. In this

scenario, one can assume that locally the system exhibits a Gaussian conditional probability

distribution for the velocity increments P (δv|ε):

P (δv|ε) =
1√
2πε

exp

(
−(δv)2

2ε

)
. (5.55)

The marginal distribution of δv can then be obtained after integration over the PDF of

the energy flux f(ε) in the form

P (δv) =

∫ ∞
0

P (δv|ε)f(ε)dε. (5.56)
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As we have argued in the previous section, the statistics of ε can be obtained from a general

class of stochastic processes justified by general physical assumptions [Macêdo et al., 2017,

Salazar and Vasconcelos, 2010]. Hence, as said before, there are two possible PDFs for the

energy flux given by relations (5.51) and (5.54). So now we can employ these distributions

together with (5.55) to compute the marginal distribution of the velocity increments in (5.56).

In following the sections, we review this procedure which yields the symmetric distribution

P (δv) proposed in [Macêdo et al., 2017,Salazar and Vasconcelos, 2010].

5.7.1 Power-law class

In this case, the symmetric distribution of the velocity increments is obtained by consider-

ing the conditional distribution P (δv|εN ) to be a Gaussian (5.55). The energy flux εN is then

given by the distribution fN (εN ), such that the marginal PN (δv) written as the statistical

composition (5.56) becomes

PN (δv) =
1√
2π

∫ ∞
0

ε
−1/2
N exp

(
−(δv)2

2εN

)
fN (εN )dεN . (5.57)

The distribution of the energy flux fN (εN ) is given by the inverse gamma class function (5.51),

which yields

PN (δv) =
1√
2π

Ω

ε0w

∫ ∞
0

ε
−1/2
N exp

(
−(δv)2

2εN

)
G0,N
N,0

(
−βNβNβN − 111

−

∣∣∣∣ εNε0w
)
dεN . (5.58)

The exponential in this integral can be written as a Meijer G-function, see (H.3), and

the term
(
εN
ε0w

)−1/2
can be incorporated into the last G-function using property (H.5). With

these changes, we have

PN (δv) =
1√
2π

Ω

(ε0w)3/2

∫ ∞
0

G1,0
0,1

(
−
0

∣∣∣∣(δv)2

2εN

)
G0,N
N,0

(
−βNβNβN − 333

222

−

∣∣∣∣ εNε0w
)
dεN . (5.59)

Now, we can invert the argument in the first G-function using property (H.7):

PN (δv) =
1√
2π

Ω

(ε0w)3/2

∫ ∞
0

G0,1
1,0

(
1

−

∣∣∣∣ 2εN
(δv)2

)
G0,N
N,0

(
−βNβNβN − 333

222

−

∣∣∣∣ εNε0w
)
dεN . (5.60)

Using property (H.6) to integrate the expression above, we can write

PN (δv) =
Ω√

2πε0w
GN,11,N

(
1

βNβNβN + 333
222

∣∣∣∣ 2ε0w(δv)2

)
. (5.61)

Finally using again the property (H.7), the argument of this function can be inverted, and we

have the solution:

PN (δv) =
Ω√

2πε0w
G1,N
N,1

(
−βNβNβN − 111

222

0

∣∣∣∣(δv)2

2ε0w

)
. (5.62)
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This is one of the models proposed in [Macêdo et al., 2017] named power law class because

its asymptotic behavior shows power law tails (see appendix K). In the particular case when

N = 1, it yields the known Tsallis distribution [Tsallis, 1988] that indeed is a power law

distribution.

5.7.2 Stretched exponential class

Proceeding similarly to the previous subsection, but now replacing fN (εN ) by (5.54) into

the statistical composition (5.57), the marginal distribution PN (δv) can be written as

PN (δv) =
1√
2π

wΩ

ε0

∫ ∞
0

ε
−1/2
N exp

(
−(δv)2

2εN

)
GN,00,N

(
−

βNβNβN − 111

∣∣∣∣wεNε0
)
dεN . (5.63)

The exponential function is again written as a Meijer G-function using (H.3) and a term(
wεN
ε0

)−1/2
can be absorbed into the lastG-function using property (H.5). With these changes,

we have

PN (δv) =
Ω√
2π

(
w

ε0

)3/2 ∫ ∞
0

G1,0
0,1

(
−
0

∣∣∣∣(δv)2

2εN

)
GN,00,N

(
−

βNβNβN − 333
222

∣∣∣∣wεNε0
)
dεN . (5.64)

The argument of the first G-function can be inverted using property (H.7), resulting in

PN (δv) =
Ω√
2π

(
w

ε0

)3/2 ∫ ∞
0

G0,1
1,0

(
1

−

∣∣∣∣ 2εN
(δv)2

)
GN,00,N

(
−

βNβNβN − 333
222

∣∣∣∣wεNε0
)
dεN . (5.65)

Now the integral involving the product of two Meijer G-functions (H.6), gives us

PN (δv) =
Ω√
2π

(
w

ε0

)1/2

G0,N+1
N+1,0

(
−βNβNβN + 333

222 , 1

−

∣∣∣∣ 2ε0
w(δv)2

)
. (5.66)

After inverting the argument of the G-function with property (H.7), the solution finally reads

PN (δv) =
Ω√
2π

(
w

ε0

)1/2

GN+1,0
0,N+1

(
−

βNβNβN − 111
222 , 0

∣∣∣∣w(δv)2

2ε0

)
. (5.67)

This class of model was named the stretched exponential class in [Macêdo et al., 2017] because

its asymptotic behavior is a stretched exponential, as shown in appendix K.
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6 Asymmetric Statistical Model for Turbulence

6.1 Introduction

In the previous chapter we presented the main ideas necessary for the development of the

following sections, namely a hierarchical model for the intermittency of the dissipation rate

and the concept of superstatistics or statistical composition. We also reviewed the symmetric

model for the distribution of the velocity increments proposed by [Macêdo et al., 2017]. Now

we want to introduce an asymmetric version of the hierarchical model for the statistics of

velocity increments, starting from some basic physical facts about the turbulent state.

When energy is forcefully injected into a fluid, e.g., by pumping, stirring or heating it,

a series of instabilities take place in the ensuing flow which lead to a turbulent state where

the fluid velocity fluctuates wildly in time and space. It has long been recognized, since

Kolmogorov’s pioneer work [Kolmogorov, 1941a], that the probability distribution of the ve-

locity differences in isotropic turbulence is skewed toward negative values. Physically, this

asymmetry is believed to stem from vortex stretching, but obtaining the form of the distri-

bution remains a challenge. Here we introduce a stochastic model of turbulence that yields

an analytic expression for the skewed distribution of the velocity increments. The model is

based on the experimental observation that, locally, the velocity distribution is a Gaussian

with slowly fluctuating mean and variance [Naert, 2005]. Properly averaging over the slow

variables then yields the desired velocity distribution, which is shown to be in agreement with

both experimental and numerical data.

6.2 Conditional and Marginal PDF for the Velocity Increments

In section 5.7 we reviewed a symmetric version of the distribution of velocity increments.

In that case a conditional Gaussian distribution with zero mean is considered as the kernel

of the statistical composition (5.56). Such a composition of centered Gaussian PDFs can

only yield a centered fat tailed distribution. Here instead we are interested in asymmetric

distributions. We shall thus consider the more general case when the conditional distribution

of the velocity increments P (δvr|εr) is assumed to be described by a Gaussian distribution of

the form:

P (δvr|εr) =
1√

2πσ2
δvr|εr

exp

[
−(δvr − 〈δvr|εr〉)2

2σ2
δvr|εr

]
, (6.1)

where the variance of the distribution is given by

σ2
δvr|εr ≡ 〈(δvr)

2|εr〉 − 〈δvr|εr〉2.
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The specific forms of the random variables 〈δvr|εr〉 and σ2
δvr|εr are dictated by physical argu-

ments. For instance, first we write the conditional expectation 〈δvr|εr〉 in the form:

〈δvr|εr〉 = µ (εr − ε0) , (6.2)

where µ is a constant and the mean value of εr is required to be ε0 = 〈εr〉. Equation (6.2) is

to be understood in the measure-theoretic sense, meaning that the random variable 〈δvr|εr〉
is a coarser version of δvr [Feller, 1968]. Relation (6.2) automatically ensures that the (un-

conditional) mean of δvr is zero:

〈δvr〉 = 0,

as required by isotropy. Furthermore, it is reasonable to assume that the conditional variance

σ2
δvr|εr is associated with the energy flux rate into scale r, and so we identify

σ2
δvr|εr = εr. (6.3)

Note that eqs. (6.2) and (6.3) imply the following relation between the conditional expectation

〈δvr|εr〉 of the velocity increments and the conditional variance σ2
δvr|εr :

〈δvr|εr〉 = µ
(
σ2
δvr|εr − ε0

)
. (6.4)

In view of (5.56), the marginal PDF of the velocity increments is then given by

P (δvr) =

∫ ∞
0

1√
2πεr

exp

[
−(δvr − µ(εr − ε0))2

2εr

]
f(εr)dεr, (6.5)

or alternatively

P (δvr) =

∫ ∞
0

1√
2πεr

exp

[
−1

2

(
δvr + µε0√

εr
− µ
√
εr

)2
]
f(εr)dεr

=
eµ(δvr+µε0)

√
2π

∫ ∞
0

εr
−1/2 exp

[
−(δvr + µε0)2

2εr
− µ2εr

2

]
f(εr)dεr. (6.6)

Note that

var[δvr] = 〈(δvr)2〉 = 〈εr〉+ µ2〈(εr − ε0)2〉

= (1− 2µ2)ε0 + µ2(〈ε2r〉+ 1). (6.7)

Furthermore, as the moments of a Gaussian distribution are known, the unconditioned mo-

ments of P (δvr) are easily computed. For instance, the third and fourth moments are

〈(δvr)3〉 = µ3〈(εr − ε0)3〉+ 3µ〈εr(εr − ε0)〉

= µ3〈ε3r〉+ 3µ(1− µ2ε0)〈εr2〉+ µε20(2µε0 − 3) (6.8)
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〈(δvr)4〉 = µ4〈(εr − ε0)4〉+ 6µ2〈εr(εr − ε0)2〉+ 3〈ε2r〉

= µ4〈ε4r〉+ 2µ2(3− 2µ2ε0)〈ε30〉+ 3(3µ4ε20 − 4µ2ε0 + 1)〈ε2r〉 − 3µ2ε30(2µ2ε0 − 2)(6.9)

where 〈εn〉 is the n-th moment of the distribution of ε.

As in the symmetric model discussed in section 5.7, here we also consider two types of

distribution for the function f(εr): (i) the inverse gamma class given by the expression (5.51)

and (ii) the gamma class given by (5.54). The moments of these functions are easily computed,

resulting in [Salazar and Vasconcelos, 2010]

〈εpN 〉 = 〈εp0〉
p−1∏
j=1

(
β

β − j

)N
, (6.10)

for the inverse gamma case, and

〈εpN 〉 = 〈εp0〉
p−1∏
j=1

(
β + j

β

)N
(6.11)

for the gamma case.

6.3 Distribution of Velocity Increments: Particular Case N = 1

6.3.1 Inverse gamma class

Considering the particular case whenN = 1, we have seen that the distribution of variances

f(εr) becomes an inverse gamma distribution given by the relation

f(εr) =
(ε0β)β+1

Γ(β + 1)
εr
−β−2e−

βε0
εr . (6.12)

Replacing this into (6.6) the PDF P (δvr), becomes

P (δvr) =
(ε0β)β+1eµ(δvr+µε0)

√
2πΓ(β + 1)

∞∫
0

εr
−β− 5

2 exp

[
− 1

εr

(
(δvr + µε0)2

2
+ βε0

)
− µ2εr

2

]
dεr.

(6.13)

This integral looks like the following Bessel integral:
∞∫

0

xν−1e−
α
x
−γxdx = 2

(
α

γ

) ν
2

Kν(2
√
αγ) (6.14)

Hence we can rewrite (6.13) as

P (δvr) =

√
2

π

(ε0β)β+1eµ(δvr+µε0)

Γ(β + 1)

[
|µ|√

(δvr + µε0)2 + 2βε0

]β+ 3
2

Kβ+ 3
2

(
|µ|
√

(δvr + µε0)2 + 2βε0

)
,

(6.15)
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where we recall that K−ν(z) = Kν(z).

It is possible to show that the distribution (6.15) has a different functional form for the

tails, having a semi-heavy tail to the right and a heavy tail to the left for the case µ < 0, as

discussed next. We recall that the Bessel function of the second kind Kν has the following

asymptotic behavior:

Kv(z) ∼
√

π

2z
e−z, z →∞. (6.16)

Using this in (6.15) and defining δvr ≡ x, we find that

P (x) ∼ 1

|x|β+2
eµxe−|µ||x|, for |x| → ∞ (6.17)

Therefore, we obtain two different asymptotic behaviors depending on µ. More explicitly, we

have the following cases: i) µ < 0

P (x) ∼


1

|x|β+2 , if x→ −∞
1

|x|β+2 e
−2|µ|x , if x→ +∞

(6.18)

ii) µ > 0

P (x) ∼


1

|x|β+2 e
−2µ|x| , if x→ −∞

1
|x|β+2 , if x→ +∞

(6.19)

6.3.2 Gamma class

Now we consider the variances distributed as a gamma distribution

f(εr) =
(β/ε0)β

Γ(β)
εr
β−1e

−βεr
ε0 . (6.20)

The PDF P (δvr) of the velocity increments is obtained, in analogy to the previous case, by

integration of (6.6), with (6.20) being the distribution of the variances. We then have

P (δvr) =
(β/ε0)βeµ(δvr+µε0)

√
2π Γ(β)

∞∫
0

εr
β− 3

2 exp

[
−(δvr + µε0)2

2εr
− εr

(
µ2

2
+
β

ε0

)]
dεr. (6.21)

Now, using the Bessel integral (6.14) again, we obtain the following solution for P (δvr):

P (δvr) =

√
2

π

(β/ε0)βeµ(δvr+µε0)

Γ(β)

[
|δvr + µε0|√
µ2 + 2β/ε0

]β− 1
2

Kβ− 1
2

(√
µ2 + 2β/ε0 |δvr + µε0|

)
.

(6.22)

As in the previous case, by using (6.16) and δrv ≡ x, it is possible to show that the

asymptotic behavior of this distribution is now given by

P (x) ∼ |x|β−1eµxe−
√
µ2+2β/ε0 |x|, (6.23)
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which implies the following two cases:

P (x) ∼

|x|β−1e−(
√
µ2+2β/ε0± |µ|)|x| , if µ < 0 and x→ ±∞

|x|β−1e−(
√
µ2+2β/ε0∓µ)|x| , if µ > 0 and x→ ±∞

(6.24)

6.4 Distribution of Velocity Increments: General Case N > 1

6.4.1 Inverse gamma class

We have seen in the section (5.6.1) that the distribution f(εr) of the energy flux can be

written as a generalized inverse gamma distribution. So, denoting fN (εN ) ≡ f(εr) we can

write

fN (εN ) =
1

ε0 ω Γ(βββ + 111)
G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ εNε0 ω
)

(6.25)

with

ω =

N∏
j=1

βj (6.26)

and

Γ(βββ + 111) =

N∏
j=1

Γ(βj + 1). (6.27)

Using this definition, the integral (6.6) becomes

PN (δvr) =
eµ(δvr+µε0)

√
2π

∫ ∞
0

εN
−1/2 exp

[
−(δvr + µε0)2

2εN
− µ2εN

2

]
f(εN )dεN , (6.28)

or

PN (δvr) =
eµ(δvr+µε0)

√
2π ε0 ω Γ(βββ + 111)

∞∫
0

εN
−1/2 exp

[
−(δvr + µε0)2

2εN
− µ2εN

2

]

×G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ εNε0 ω
)
dεN .

(6.29)

The exponential term in this integral can be written as a product of two exponentials, which

in turn can be expressed as a Meijer G-function. Doing this, we obtain

PN (δvr) =
eµ(δvr+µε0)

√
2π ε0 ω Γ(βββ + 111)

∞∫
0

ε
− 1

2
N G1,0

0,1

(
−
0

∣∣∣∣(δvr + µε0)2

2 εN

)
G1,0

0,1

(
−
0

∣∣∣∣µ2εN
2

)

×G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ εNε0 ω
)
dεN .

(6.30)
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For convenience it is better to write this expression as a function of 1/εN . So, we can use

the property (H.7) to write the last two Meijer G-functions as a function of the inverse of

their arguments. With this equation (6.30) becomes

PN (δvr) =
eµ(δvr+µε0)

√
2π ε0 ω Γ(βββ + 111)

∞∫
0

ε
− 1

2
N G1,0

0,1

(
−
0

∣∣∣∣(δvr + µε0)2

2 εN

)
G0,1

1,0

(
1

−

∣∣∣∣ 2

µ2εN

)

×GN,00,N

(
−

βββ + 222

∣∣∣∣ε0 ωεN
)
dεN .

(6.31)

Then using the change of variable y = 1/εN and re-ordering the integrand, one has

PN (δvr) =
eµ(δvr+µε0)

√
2π ε0 ω Γ(βββ + 111)

∞∫
0

y−
3
2 GN,00,N

(
−

βββ + 222

∣∣∣∣ε0 ω y
)
G0,1

1,0

(
1

−

∣∣∣∣ 2

µ2
y

)

×G1,0
0,1

(
−
0

∣∣∣∣(δvr + µε0)2

2
y

)
dy.

(6.32)

Now, a term of the form (ε0ω y)−
3
2 can be included into the first Meijer G-function by the

property (H.5), yielding

PN (δvr) =

√
ε0 ω

2π

eµ(δvr+µε0)

Γ(βββ + 111)

∞∫
0

GN,00,N

(
−

βββ + 1
2
1
2
1
2

∣∣∣∣ε0 ω y
)
G0,1

1,0

(
1

−

∣∣∣∣ 2

µ2
y

)

×G1,0
0,1

(
−
0

∣∣∣∣(δvr + µε0)2

2
y

)
dy

(6.33)

This integral has a solution as a bivariate Meijer G-function. Using the definition (H.12) and

the property (H.15) [Mittal and Gupta, 1972], the integral above becomes

PN (δvr) =
eµ(δvr+µε0)

√
2πΓ(βββ + 111)

1
√
ε0 ω

GNGNGN

(
2

µ2 ε0 ω
,
(δvr + µε0)2

2ε0 ω

)
, (6.34)

where we have used GNGNGN (x, y) to denote the bivariate Meijer G-function, which reads

GNGNGN (x, y) = G0,N :0,1:1,0
N,0:1,0:0,1

(
(−βββ − 1

2
1
2
1
2) : (1) : (−−)

(−−) : (−−) : (0)

∣∣∣∣∣x, y
)
. (6.35)

Asymptotic behaviour

The asymptotic expansion of our function (6.34) can be obtained by using the saddle

point method to approximate the integral (6.28). The details of this calculations are shown in

Appendix K. Here we only show briefly the main steps. The function (6.25) can be expanded
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when ε→∞ as:

f(εN ) ∼ G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ εNε0ω
)

= GN,00,N

(
−

βββ + 222

∣∣∣∣ε0ωεN
)
∼

N∑
k=1

Ck

(
εN
ε0 ω

)−β−2

. (6.36)

Replacing this approximation into (6.28) and using the saddle point method to expand the

integral, we find that for µ < 0 the asymptotic behavior of our model is given by

PN (δvr) ∼

 N∑
j=1

cj

|δvr|βj+2

×{ 1 , for δvr → −∞
e−2|µ|δvr , for δvr →∞

. (6.37)

Therefore, the result (6.37) shows that, for µ < 0, our distribution exhibits a power-law

behavior for δvr < 0 and an exponentially tempered power-law behavior for δvr > 0.

6.4.2 Gamma class

Now we want to use the generalized gamma class distribution for the energy flux (5.54)

to replace f(εr) in the integral (6.6). Let us recall that the distribution of the energy flux in

this case is given by

f(εN ) =
ω

ε0 Γ(βββ)
GN,00,N

(
−

βββ − 111

∣∣∣∣ωεNε0
)
, (6.38)

where

ω =

N∏
j=1

βj and Γ(βββ) =

N∏
j=1

Γ(βj). (6.39)

The integral (6.6) can thus be written as

PN (δṽr) =

(
ω

ε0

) 3
2 eµ(δṽr+µε0)

√
2π Γ(βββ)

∞∫
0

GN,00,N

(
−(

βββ − 3
2
3
2
3
2

)∣∣∣∣ω εNε0
)
G0,1

1,0

(
(1)

−

∣∣∣∣ 2εN
(δṽr + µε0)2

)

×G1,0
0,1

(
−
(0)

∣∣∣∣µ2 εN
2

)
dεN .

(6.40)

This integral resembles the previous one in (6.33) and can also be written in terms of the

bivariate Meijer G-function, in the form

PN (δṽr) =

√
ω

2πε0

eµ(δṽr+µε0)

Γ(βββ)
GNGNGN

(
2ε0

ω(δṽr + µε0)2
,
µ2ε0
2ω

)
, (6.41)

where

GNGNGN (x, y) = G0,N :0,1:1,0
N,0:1,0:0,1

(
(−βββ + 3

2
3
2
3
2) : (1) : (−−)

(−−) : (−−) : (0)

∣∣∣∣∣x, y
)
. (6.42)
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Asymptotic behaviour

As in the case N = 1, it is possible to show that the distribution (6.41) has different

behaviors in the tails. For this, first we write the asymptotic form (x → ∞) of the Meijer

G-function in (6.38). As shown in [Kilbas and Saigo, 2004],

GN,00,N

(
−

(βββ − 111)

∣∣∣∣x
)
∼ x

1
N (N(β− 3

2)+ 1
2)e−Nx

1
N . (6.43)

Inserting this into (6.6) and using the saddle point method, the resulting integral may be

approximated as

PN (δṽr) ∼ |δṽr|β−
3
2

+ 1
N exp

[
−N

(
ω|δṽr|
ε0|µ|

)1/N
]
×

{
1 , for δṽr → −∞
e−2|µ|δṽr , for δṽr →∞

, (6.44)

for µ < 0. The details of calculation are shown in Appendix K.

6.5 Other Approaches to Describe Intermittency and Skewness

The aim of this section is to review other models that have been used in the literature

to deal with the non-Gaussian character and the skewness of the distribution of velocity

increments P (δvr). Let us for example discuss the model proposed by [Castaing et al., 1990].

To do this, let us first briefly mention the symmetric version of their model. In such a model,

the PDF P (δvr) is also constructed as a statistical composition of a Gaussian distribution

of velocity increments conditioned to a given value of variance, and the distribution of the

variance fluctuations, like in (5.56). The variance is also related to the energy transfer rate

ε, which is assumed to be log-normality distributed. Thus, in this approach, the symmetric

distribution of velocity increments reads

Pλ(δvr) =
1

2πλ

∞∫
0

e−
(δvr)

2

2σ2 e−
ln2(σ/σ0)

2λ2
dσ

σ2
, (6.45)

where σ0 = 〈σ〉 and λ is the variance of lnσ. The asymmetric version of the model (6.45) is

introduced as an ansatz, under certain physical assumptions. In particular, they considered

that there exists a direct relationship between the variance fluctuations and the scale r. This

allows them to write the conditional Gaussian distribution in (6.45) as

P (δvr|σ) ∝ e−
(δvr)

2

2σ2
(1− d lnσ

dr
l(δvr)), (6.46)

where l(δvr) is the separation between the measurement points of the velocity increments.

Using dimensional arguments, it is possible to write the second term in the exponential above,

in the form
d lnσ

dr
l(δvr) = as

δvr/σ

(1 + δv2
r/σ

2)1/2
(6.47)
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where as is an universal positive number, independent of σ and r in the inertial range. With

this modification, the statistical composition for P (δvr) becomes

Pλ(δvr) =
A(as)

2πλ

∞∫
0

e
− (δvr)

2

2σ2

(
1−as δvr/σ

2

(1+δv2r/σ
2)1/2

)
e−

ln2(σ/σ0)

2λ2
dσ

σ2
, (6.48)

The model above showed good agreement with experimental data, however, it presents some

problems related to the main features characterizing the empirical distribution of velocity

increments. For instance, the mean value 〈δvr〉 is different from zero, while the isotropy

requires that the distribution has zero average. The explanation for the skewness is introduced

considering a particular space dimension, therefore it cannot be applied to two and three

dimensions, where the skewness origin is different. In addition, we emphasize that this model

does not have an analytical closed form, as in our proposal presented in previous sections.

An additional approach to address the asymmetry problem is presented by [Beck, 2000].

There, the model derived by considering a dynamical model of the velocity increments δvr ≡ u,
where this stochastic variable follows the Langevin type equation in the form:

du

dt
= −γu+ Fchaot(t), (6.49)

where γ is a damping constant and Fchaot(t) is not a Gaussian noise but something determ-

inistic chaotic, which changes on a typical time scale τ << −γ. Under this assumption, it

can be shown that the rescaled variable u′ = 2u→ u follows the invariant probability density

function with unity variance

P (u) =
1√
2π
e−

1
2
u2+c

√
γτ(u− 1

3
u3) +O(γτ). (6.50)

Notice the term c
√
γτ
(
u− 1

3u
3
)
correcting the Gaussian term in the equation above, which

is responsible for the asymmetric of the distribution. The constant c is a constant which is

not dimensionless and therefore is not universal.

In addition, Beck [Beck, 2000] dealt with the non-Gaussian behavior using a generalized

distribution of the Tsallis or q-Gaussian kind as those discussed in section 2.5. Using such

a distribution it is possible to obtain stretched distributions as well as concave distributions,

as the Gaussian limit when q = 1. Then, he used the same correction term as in (6.50) into

the argument of the q-Gaussian distribution. With these changes, Beck’s asymmetric model

becomes

P (u) =
1

Zq

[
1− β(1− q)

(
1

2
u2 − c√

Rλ

(
u− 1

3
u3

))]− 1
1−q

, (6.51)

where Zq is related to the normalization condition of P (u), the parameter β is determined

by the condition that the distribution should have unity variance. The Taylor scale Reynolds
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number Rλ is related to the dimensionless parameter γτ in the form √γτ ∼ R−1
λ . This is so,

since γ is related to the kinematic viscosity ν and τ can be computed as the ratio between the

Taylor scale λ and the mean velocity. The symmetric case is recovered when the Reynolds

number Rλ →∞, case in which the unity variance condition is satisfied if β = 2/(5− 3q), as

discussed in section 2.5.

This model seems to match the empirical data, and the parameter q can be seen as a

measurement of the cascade level in a turbulent flow. However, later in 2001 Beck published

a symmetric version of the model, where the power law distribution (q-Gaussian) is computed

using the concept of superstatistics [Beck, 2001]. The symmetric model has however been

criticized because it is in disagreement with experimental observations for example when it

is applied to some Lagrangian turbulence data [Crawford et al., 2002]. It is observed that

generalizations are needed to fit the empirical data [Salazar, 2010, Salazar and Vasconcelos,

2010]. Therefore, one could think that the asymmetric expression (6.51) may present similar

problems as those of the symmetric case.

Finally, let us briefly comment a more recent model proposed by [Chevillard et al., 2006].

This model brings together various approaches to obtain a PDF of the velocity increments. In

the first place, the overall distribution of velocity increments Pl(δvl) related to the scale l is

constructed by the mixture of a distribution for the symmetric part P+
l (∆l) (even function)

and other for the asymmetric part P−l (∆l) (odd function). Such that the overall distribution

becomes

Pl(δvl) = P+
l (δvl) + P−l (δvl). (6.52)

The distributions P+
l (δvl) and P−l (δvl) are constructed using the multifractal picture of the

turbulence dynamics [Chevillard et al., 2012,Chevillard et al., 2006,Borgas, 1993], besides the

superstatistics approach like in the first case presented in this section.

The alternatives approaches to generate asymmetric distributions reviewed above all have,

unfortunately, some problems either due to its own formalism or because of some missing in-

formation that the model does not consider. This is why the goal of deriving asymmetric

distributions from physically reasonable assumptions remains a long-standing problem. In

this sense, our motivation was to develop an alternative description of the PDF of velocity

increments to incorporate the idea of an energy cascade into a dynamical model, so as to

explain the emergence of non-Gaussian effects, such as skewness and heavy tails. Our model

was constructed in such a way that we can obtain an analytical expression in terms of cer-

tain special functions for the distribution of velocity increments, as discussed in the previous

section. In the following section, we will test our model against turbulence data, both exper-

imental and numerical. A more direct comparison between our model and other asymmetric

models, such as those discussed in this section, will be however left for future research.
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6.6 Applications to Turbulence Data

Here we will analyze two sets of data and compare the empirical distributions of velocity

increments in both cases with the theoretical prediction of our models proposed above. The

first data set is obtained from numerical simulations of the Navier-Stokes equations and the

second one is obtained from velocity measurements in a turbulent flow of an axisymmetric jet

with helium at low temperature.

6.6.1 Construction of the series of variances

To compare our theory with turbulence data, we adopt a similar procedure as in [Macêdo

et al., 2017,Gonzalez et al., 2007] with the aim of choosing the best parameters in our model

by using quantities obtained from the available data. As the integral (6.5) contains the

distribution f(εr), we first need to compute, from the original velocity data, a subsidiary

data set for the variable εr. To do that, first we divide the time series of velocity increments

δv(t) = v(t) = v(t+ τ)− v(t) (τ is the smallest scale) into overlapping intervals (or boxes) of

size M , and for each such interval we compute an estimator of the variance:

ε(t) =
1

M

M−1∑
j=0

[δv(t− jδt)− δv(t)]2, (6.53)

where

δv(t) =
1

M

M−1∑
j=0

δv(t− jδt). (6.54)

So, for each choice of M we have a data set of variances from which one can compute the

distribution f(εr). We then numerically compound the distribution of the series ε(t) with a

Gaussian function of nonzero mean, as suggested by (6.5), for various values of µ, and select

the value of µ for which the corresponding superposition integral best fits the distribution

P (δv) of the original series δv(t). We repeat this procedure for several M and select the

optimalM and µ that give the best overall fit to P (δv). With this, we can fix two parameters

into (6.5), µ and ε0, where the latter is the arithmetic mean of the ε series corresponding to

the optimal M .

Now for a given choice of N and depending on the type of model (gamma or inverse

gamma class), the parameter β is fixed from the second moment of fN (εN ), which is given by

〈ε2N 〉 = ε0
2

(
β + 1

β

)N
, (6.55)

for the case when fN (εN ) is a gamma class distribution in the form of (6.38), and by

〈ε2N 〉 = ε0
2

(
β

β − 1

)N
, (6.56)
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if fN (εN ) is an inverse gamma type distribution in the form of (6.25).

In other words, once obtained the parameters (M , µ and ε0), the next step is to determine

the parameter β by solving it in (6.55) or (6.56) for different values of N . The second

moment 〈ε2N 〉 of the distribution of ε is also computed directly from the data set corresponding

to the optimal M . With this we complete a set of parameters (N,µ, β, ε0) where N =

{1, 2, 3, . . . }. Finally, using these parameters, we plot and compare the prediction of the two

models for fN (ε) and PN (δv) up to the value of N that gives the best performance in both,

the distribution of variances and the distribution of velocity increments.

6.6.2 Application to numerical data

Let us first consider the DNS data obtained from the Johns Hopkins University turbulence

research group’s database [Li et al., 2008]. It consists of about ∼ 3×108 points obtained from

the simulation of an homogeneous and isotropic turbulent flow with Taylor based Reynolds

number Rλ ≈ 418 simulated in a periodic cube of 10243 lattice points over five large eddy

turnover times and whose smallest resolved scale corresponds to roughly twice the Kolmogorov

dissipative scale.
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Figure 6-1 : Numerical statistical composition of empirical distribution of εr and the Gaussian
kernel as shown by (6.5).

With the methodology discussed in the previous section we found an excellent agreement of

our model and the empirical distribution of velocity increments δv forM = 19 and µ = −2.124.

In figure 6-1 we plot the statistical numerical composition (6.6) obtained by integrating the

empirical distribution of ε and a numerical Gaussian kernel. The optimal value of M can

be interpreted as an estimation of the scale associated with fluctuations in the background

variable εN .

Our model was developed under certain assumptions about the distribution of velocity

increments conditioned on the value of the energy flux rate ε. Let us now analyze in more

detail our assumptions about the conditional probability density and its parameters. It is

worth emphasizing that no fit is performed in figure 6-1. Here we are merely plotting the

theoretical prediction for P (δvr) obtained from the superposition of the subsidiary series ε(x)

with the Gaussian kernel, as described in the preceding paragraph, for the optimal values

of M and µ. The fact that very good agreements are obtained for the distributions of both

δvr and ε (as will be shown in figure 6-3) is a strong testament to the overall validity and
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self-consistency of the model. To further test the assumptions of our model, we plot in figure

6-2a the conditional distribution P (δv|ε) for various values of ε, where we have rescaled and

shifted the different distributions so that they would have the same mean (zero) and variance

(unit). One sees from the figure that all such rescaled distributions collapse fairly well onto a

Gaussian (red curve), in agreement with (6.1). In figure 6-2b, the conditional average 〈δv|ε〉
(top) and variance σ2

δv|ε as functions of ε are also shown (bottom). While the behaviour of

〈δv|ε〉 does not seem linear as assumed, there is a consistent decay to which (6.2) may be

seen as an approximation in the region where ε is more frequent. The linear behaviour of the

conditional variance σ2
δv|ε with ε assumed in (6.3) is, on the other hand, well verified.

Once we have determined the optimal M and µ, and thus obtained the auxiliary series

of variances ε, we then need to investigate what is the value of N (number of scales) that

best describes the empirical distribution of both velocity increments and energy flux. This

procedure is described next.

(a) (b)

Figure 6-2 : (a) Probability function of velocity increments conditioned to ε. (b) Conditional av-
erage 〈δv|ε〉 as a function of ε (upper) and conditional variance σ2

δv|ε as a function of
ε (lower).

For each chosen N , the corresponding value of the parameter β was determined by re-

quiring that the theoretical (gamma or inverse gamma) and empirical distributions have the

same second moment 〈ε2r〉 and mean ε0, where ε0 = 1.086 × 10−3 is the arithmetic mean of

the variances series calculated for M = 19. With this procedure, we find that the best per-

formance is given by the model for the gamma class. To see this, we compared the theoretical

predictions for both the velocities distribution (6.41) and the variances distribution (6.38)

with their corresponding equivalent empirical histograms. This is shown in figure 6-3, where

the cases N = 3, 4, 5 (up-bottom) are plotted for the velocities distribution (left panels), and
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for the distribution of the background variable εr (right panels). By comparing the different

cases, we find that the case N = 4 better fits both the PDF of velocity increments and the

distribution of variances, as shown in figures 6-3c and 6-3d, respectively. For this case, the

corresponding parameter β obtained from the second moment of the distribution of εr was

β = 2.981. The case N = 3 in figures 6-3a and 6-3b, fits reasonably the distribution of

velocity increments but does not fit the distribution of variances in the tails, especially for

small ε. Similarly, the case N = 5 shows good agreement with the distribution of the velocity

increments (see figure 6-3e) but for the distribution of variances the model gives lower values

than the empirical distribution for small ε (see figure 6-3f). Thus, we conclude that N = 4

yields the best fit for both the velocity increments and variances distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-3 : Distribution of velocity increments (left) and variances (right), for N = 3, 4, 5 (top-
bottom). The parameters ε0 = 1.086× 10−3 and µ = −2.124 were obtained from the
numerical composition of the empirical distribution of variances and a non-zero mean
Gaussian distribution as in (6.5). β = 2.981 was determined by equating the second
moment of the empirical f(εr) to the expression (6.55).
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(a) (b)

(c) (d)

(e) (f)

Figure 6-4 : Fitting of the velocity increments distribution using the gamma class model (left pan-
els). Theoretical predictions for the distribution of variances (right panels).
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(g) (h)

(i) (j)

Figure 6-4 : Fitting of the velocity increments distribution using the gamma class model (left pan-
els). Theoretical predictions for the distribution of variances (right panels).

As we anticipated using the methodology explained above, the hierarchical model of the

gamma class gives the best description of the empirical histograms. Another form to see that

is, for instance, by directly fitting the empirical distribution of the velocity increments with

both models (6.34) and (6.41). In this way, for a given N we obtain the optimal values of β, ε0
and µ that provide the best performance of the velocity increments histogram. The distribu-

tion of the variances is then plotted using the optimal values of β and ε0 in the corresponding

formula for f(εr). The model that best describes the data series is determined by comparing

simultaneously the theoretical predictions for the PDFs of velocity increments and variances

with its corresponding empirical counterpart. Results of this different methodology are shown

in figure 6-4, where we have fitted the distribution of velocity increments (left panels) with

the gamma class (6.41), for the cases N = 1, 2, 3, 4, 5 (top-bottom). In this figure, we also

show the corresponding prediction for the distribution of variances given by the model (6.38),
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(right panels). It is clear the improvement of the fit as N increases, particularly at the center

of the distribution. As when computing the parameter β from the second moment of the

distribution of variances, the best fit is achieved for the case N = 4 in figures 6-4g and 6-4h.

For this case, the parameters obtained were ε0 = 1.120 × 10−3, µ = −2.027 and β = 2.920,

very close to those determined by the former methodology.

So far, we have found similar results with the two methodologies for the estimation of the

best N . In both cases we found good agreement between our model (6.41) and the empirical

distribution obtained from the DNS. Let us now investigate the model based on the inverse

gamma class for the distribution fN (εr). For this, a free fit of the data using the model in

(6.34) was performed, which is shown in figure 6-5. We have plotted the cases N = 1, 2, 3, 4, 5

(top-bottom) for the distribution of velocity increments (left panels) and the corresponding

model (6.25) for the distribution fN (εr) (right panels). Here we can see that although the

distribution of the velocity increments is reasonably well fitted, especially for large N , we have

a rather poor fit of the distribution of variances, where only the right tail of the empirical

distribution f(εr) is properly reproduced. We thus conclude that the hierarchical model of

the inverse gamma class does not give a good description of the numerical data. In other

words, the hierarchical model of the gamma class performs better in this case.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-5 : Fitting of the velocity increments distribution using the inverse gamma class model
(left panels). Theoretical predictions for the distribution of variances (right panels).
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(g) (h)

(i) (j)

Figure 6-5 : Fitting of the velocity increments distribution using the inverse gamma class model
(left panels). Theoretical predictions for the distribution of variances (right panels).

6.6.3 Application to experimental data

We now turn to the analysis of experimental turbulence data. In figure 5-3 we showed

the distribution of velocity increments (points) measured by a hot-wire probe in a low tem-

perature gaseous helium jet [Chanal et al., 1997]. The data set contains 107 points obtained

from an experimental run performed at the Taylor-scale Reynolds number Rλ = 703, with a

sampling rate of 271.5 kHz which corresponds to r = 6.5 µm (as obtained from Taylor’s frozen

turbulence hypothesis); for more details about the experiments see [Chanal et al., 1997]. In

this case, the model based on the inverse gamma class (6.34) gives a better description of the

experimental data, as will be shown below.

The parameters of the model were obtained from the series of variances ε(t), as explained

in the previous section for the case of the DNS data. The first part of the procedure to
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determine the parameters, as described in section 6.6.1, is to make the statistical composition

(6.5) of the empirical distribution f(εr) of variances with the Gaussian kernel for different box

sizes M and find the µ value that fits better the empirical PDF of the velocity increments

δrv. We then select the value of M and corresponding µ that yield the overall best fit. With

this procedure, a optimal box size M = 19 was determined and the parameters showing the

best agreement with the empirical PDF for the velocity increments were µ = −4.535 and

ε0 = 4.896× 10−4.

Once the optimal M and the values of µ and ε0 are obtained, we need to determine the

parameter β for a given N . For each chosen N , β is calculated requiring that the second

moment of (6.25), given by (6.56), should be equal to the second moment computed from the

series of variances. Figure 6-6 shows the model predictions for P (δvr) given by (6.34) (left

panels) and the corresponding distribution fN (εr) given by (6.25) (right panels) for several

N values. In the distribution of velocity increments PN (δvr), we see improvements as N

increases, especially in the tails. However, while the left tail of the variances distribution

improves as N increases, the right tail gets worse. So in view of these overall considerations,

we select N = 5 as the best choice for N in this case; see figures 6-6i and 6-6j. The value of

β in this case is β = 12.016.

As a test of the results above a free fit of the empirical distribution of velocity increments

was performed using both models (6.34) and (6.41). First we consider the case of the model

based on the inverse gamma process, whose results are shown in figure 6-7. Here, in the left

column, we plot the empirical PDF of the velocity increments together with the theoretical

fit. In the right column we show the empirical PDF for the series of variances with the

corresponding prediction of the inverse gamma model from (6.25), employing the parameters

obtained from the fits in the left panels. The fits show good results for the distribution of

velocity increments P (δrv) in all cases N = 1, 2, 3, 4, 5, describing very well the skewness of

the empirical distribution. However, by looking at the distribution of variances fN (εr) we

notice that the agreement is not as good. For example, the case N = 1 poorly fits the left tail,

which improves when N = 2 and so on until N = 5. In other words, using a free fit procedure

to determine the model parameters, we also observe that N = 5 gives the best description of

the experimental data. In fact, we found similar values of the parameters when determined

by the two procedures described above. For the case N = 5 we found β = 12.016 by fitting

the second moment of the variances and β = 10.008 by the free fit methodology.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-6 : Left panels: PDF of the velocity increments for the experimental data (circles) and fit
by the hierarchical model of the inverse gamma class . Here we fit the second moment
of the series of variance with the theoretical formula (6.56). Right panels: Empirical
distribution of variances (circles) and theoretical prediction (curves) corresponding to
the left panel.
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(g) (h)

(i) (j)

Figure 6-6 : Left panels: PDF of the velocity increments for the experimental data (circles) and fit
by the hierarchical model of the inverse gamma class . Here we fit the second moment
of the series of variance with the theoretical formula (6.56). Right panels: Empirical
distribution of variances (circles) and theoretical prediction (curves) corresponding to
the left panel.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-7 : Left panels: Free fits of the velocity increments histogram of the experimental data
using the model based on the inverse gamma distribution. Right panels: Theoretical
prediction for the variances distribution corresponding to the left panels.
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(g) (h)

(i) (j)

Figure 6-7 : Left panels: Free fits of the velocity increments histogram of the experimental data
using the model based on the inverse gamma distribution. Right panels: Theoretical
prediction for the variances distribution corresponding to the left panels.

To illustrate why the gamma type model does not fit very well the distribution of velocity

increments, a free fit using equation (6.41) was carried out, where for each given N all the

parameters (µ, ε0, β) are obtained directly. For example, in the left column of figure 6-

8 we show the empirical distribution of velocity increments and the corresponding fits for

N = 1, 2, 3, 4, 5 (top-bottom). While in the right column the corresponding PDFs of variances

predicted by the model (6.38) with the parameters ε0 and β obtained from the fits on the

left. Notice that the theoretical distribution of velocity increments for this model is rather

sharp-pointed, specially for small N , and does not give a good match to the empirical data.

As the value of N increases the performance of the model improves. However, at the top

part of the distribution P (δvr) the agreement remains somewhat poor. Furthermore, for the

variance distribution fN (εN ) the model does not show a good agreement with the empirical
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distribution, not even for large N .

In summary, the hierarchical model of the gamma class does not seem capable to describe

the experimental data analyzed above. This confirms the result anticipated earlier that the

model based on the inverse gamma distribution of variances is more appropriated in this case.

(a) (b)

(c) (d)

Figure 6-8 : Left panels: Free fits of the velocity increments histogram of the experimental data us-
ing the model based on the gamma distribution. Right panels: Theoretical prediction
for the variances distribution corresponding to the left panels.
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(e)

(f) (g)

(h) (i)

Figure 6-8 : Left panels: Free fits of the velocity increments histogram of the experimental data us-
ing the model based on the gamma distribution. Right panels: Theoretical prediction
for the variances distribution corresponding to the left panels.
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7 Conclusions and Perspectives

7.1 Analysis of Brazilian Markets

We have performed an empirical analysis of the Brazilian market option in light of three

option pricing models, namely the standard Black-Scholes model, which assumes that the

returns are Gaussian distributed, and two non-Gaussian models based on the exponential and

the q-Gaussian distributions, respectively. As the q-Gaussian distribution (with q > 1) has

power law tails—a common feature of financial data—, particular emphasis was given to the

comparison between this model and the other two models whose underlying distributions have

exponential decays.

First we analyzed how the q-Gaussian model compares to the Black-Scholes model (q = 1).

This comparison was made by fitting the pricing formula given by the q-Gaussian model to

each option chain in our database and then analyzing the returned q-value for each case. If

the best fit yields q ≈ 1 for a given option chain, it means that the Black-Scholes describes

well the corresponding empirical data, whilst a value of q > 1 indicates that the q-Gaussian

model better fits the data. We found that the value q = 1 is observed in over 70% of all

option chains analyzed, thus meaning that in only about 30% of the cases the q-Gaussian

model (with q > 1) represents an improvement with respect to the Black-Scholes formula.

For the cases when q > 1, we then compared the q-Gaussian model with the exponential

model. Here we found that in only 25% of these cases the q-Gaussian model gives a better

fit to the data than the exponential model. The two results above combined thus show that

the overall performance of the q-Gaussian model is rather poor, for in only about 7% of all

option chains analyzed it performs simultaneously better than both the Black-Scholes and the

exponential models.

We have found, in particular, that for options near maturity the exponential model per-

forms much better than the q-Gaussian model. For example, we found that the former model

better fits the empirical data for all option chains within 6 days to maturity. A previous

comparative study of the exponential and Black-Scholes models [Ramos et al., 2016] revealed

a similar trend, with the exponential model performing better than the Black-Scholes model

for times closer to the expiration date. These two results, in combination, thus show that

for options near maturity the exponential model gives the best overall description of the op-

tion prices. This finding is in line with the observation that the empirical distribution of the

daily Ibovespa returns is better described (particularly in its central part) by an exponential

distribution.

In light of the results above, one is led to conclude that option pricing models based on
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power-law distributions appear to be less relevant for real markets. This might be related

to the fact that heavy-tailed distributions usually occur at shorter time scales as compared

to the typical option trading frequency. Another reason for the poor performance of the

q-Gaussian model in comparison with the exponential model is related to the fact that the

market implied volatility for option chains near maturity exhibits a strongly nonsymmetric

pattern as a function of the strike price—i.e, the volatility smile is skewed. The q-Gaussian

model, being symmetric, cannot describe such asymmetric patterns, whereas the exponential

model is asymmetric by definition and hence can cope with skewed volatility smiles.

Although we have restricted our study of the Brazilian options market to the years 2005

and 2006, we believe that our main result, namely that options near maturity are better de-

scribed by the exponential model, should hold in present times. In this regard, it is perhaps

worth pointing out that the Brazilian stock market has become relatively more efficient after

the liberalization reforms of the early 1990’s [Costa and Vasconcelos, 2003], although short

periods of increased inefficiency may eventually occur [Cajueiro and Tabak, 2004]. The stat-

istical features of the Ibovespa index should thus be somewhat robust in recent times, and so

the results reported here are expected to be of general validity.

Here we have analyzed only options on a stock index, namely the Ibovespa index. It would

be interesting to perform a similar analysis of options on individual stocks to verify whether

the exponential model applies to these options as well. For example, options on the stocks of

Petrobras and Vale (two of the largest companies listed on the São Paulo Stock Exchange) are

very liquid and hence are natural candidate for future investigation. The results described

here should also apply to other financial markets where exponential distributions have been

observed [Silva et al., 2004, Matia et al., 2004, Kleinert and Chen., 2007, Dragulescu and

Yakovenko, 2002].

Another important point for further studies concerns the question of developing invest-

ment strategies based on the exponential model which may allow one to trade options more

efficiently. Such trading strategies should be particularly relevant near the expiration date,

since in this case the exponential model has been shown to perform significantly better than

the two other models analyzed here.

As already mentioned, we have found evidence that the superiority of the exponential

model over the q-Gaussian model seems to stem from the fact that the market implied volatility

smile is skewed to the left—a feature that cannot be captured by the symmetric q-Gaussian

model. It would be interesting therefore to compare the exponential model with other option

pricing models with skew, such as the constant elasticity of variance model [Cox and Ross,

1976,Beckers, 1980] and the q-Gaussian model with skew [Borland and Bouchaud, 2007]. It has

been observed, however, that the q-Gaussian model allows arbitrage, and a corrected version
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has been proposed [Vellekoop and Nieuwenhuis, 2007] but where explicit pricing formulas

are no longer available. It would nevertheless be interesting to include this modified model

as well in future studies. It would also be useful to consider other non-Gaussian option

pricing models, such as models based on the stretched exponential distribution [Malevergne

et al., 2005,Malevergne and Sornette, 2006] and nonparametric pricing strategies based on the

minimization of risk [Bouchaud and Sornette, 1994,Bouchaud et al., 1995]. Such an extended

comparison between different option models will be left for future studies.

7.2 Hierarchical Model for Option Pricing

In chapter 4, we introduced a general class of hierarchical models for option pricing defined

as an average of the Black-Scholes price over the stationary distribution of the stochastic

volatility v. The dynamics of the volatility is described by a hierarchical stochastic process

composed by a set of coupled Heston or Hull-White processes. Using the hypothesis of time

scales separation, we can write the functional form of the stationary distribution of the volat-

ility at short scales in terms of a Meijer G-function. With this, we can use our approach

(4.4) to compute the average of the Black-Scholes formula, whose result can be expressed as

a sort of cumulative function of the bivariate Meijer G-function. In this way, we introduced

a hierarchical theory to the problem of option pricing in financial markets.

We found that our model shows similar effects in the prices and in the implied volatility

surfaces to those yielded from the original Heston and Hull-White models. In particular, we

have shown that the hierarchical models considered here generate lower prices for options

at the money than the model Black-Scholes and higher prices for options in the money and

out of the money than the Black-Scholes model. This behavior is also shown in the original

articles [Hull and White, 1987,Heston, 1993] and it solves one of the known problems of the

Black-Scholes model reporting the so-called volatility smile. In addition, we have shown that

our models have the advantage that this effect (volatility smile) can be customized by the

inclusion of different scales (N > 1) or by variation of the β parameter. Therefore our model

provides a richer description of the features of the option chains and the surfaces of volatility.

7.3 Asymmetric Statistical Model for Turbulence

In conclusion, an asymmetric hierarchical model for the velocity increments was developed

in closed form, using the procedure known as statistical composition. The theoretical formula

was obtained from the statistical composition of a Gaussian distribution with non-zero mean

and either one of two distributions: the gamma and the inverse gamma class. We have shown

that the Gaussian distribution is indeed a reasonable approximation for the distribution of
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velocity increments conditioned on the energy flux (variance). For the experimental and

numerical data the inverse gamma and gamma distributions, respectively, describe the distri-

bution of the variances of the velocity increments. Our model thus shows a good agreement

with the empirical distribution of velocity increments in turbulent flows and, in addition, it is

able to explain the crucial negative skewness of velocity increments while maintaining a zero

mean.

The model was built considering the distribution of velocity increments, P (δv|ε), condi-
tioned on the energy transfer rate ε to be a Gaussian with non-zero mean. A linear model

for the conditional average ensured a vanishing average for the increments, regardless of the

model considered for the energy transfer rate. We then coupled the Gaussian model to a

previously developed hierarchical model for the energy transfer over different scales, which

allowed us to obtain closed analytical expressions for the velocity increment distribution in

terms of the bivariate Meijer G-functions. Asymptotic analysis shows that the model based

on the inverse gamma distribution exhibits an exponentially tempered power-law decay in the

right tail and a power-law one in the left tail. On the other hand, the model obtained using

the gamma class distribution displays stretched exponential behavior in both tails. These two

behaviors are associated with ‘universality classes’ of the hierarchical model and both have

been observed in our study. Although it is not clear which class should be used a priori, we

may conjecture that it depends on the Reynolds number as well as on the scale over which

the velocity increments are computed. However, further investigations are needed in this

direction.

7.4 Perspectives

1. Other asymmetric models

As discussed in chapter 6, our asymmetric distribution is capable of describing the

main features of the empirical histograms of the velocity increments and the energy

dissipation rate. To attain a closed formula, we assume that the conditioned distribution

of the velocity increments is a Gaussian with variance proportional to the dissipation

rate and mean depending linearly on the variance. We found that in fact the first

hypothesis is verified in the available series as shown in figure 6-2 , i.e., σ2
δv|ε ∼ ε.

However, the assumption for the conditional mean 〈δv|ε〉 ∼ ε, although may be seen as

a reasonable approximation, does not match the behavior estimated from data. To cope

with this, it would be worth to analyze other functional forms for 〈δv|ε〉. For example,

we can consider models like that discussed in Appendix L, where the conditional mean

depends on the square-root of ε, i.e., 〈δv|ε〉 ∼
√
ε. Using this hypothesis, it is possible to
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derive a formula for the distribution of velocity increments as a bivariate FoxH-function.

More studies on similar models, including arbitrary powers for the conditional variance

and mean, are very interesting perspectives.

Another improvement may be achieved by considering alternative models for the dis-

tribution of the dissipation rate providing a better description of the empirical data,

mainly in the tails. This means finding other classes of hierarchical stochastic processes

to describe the dynamics of the energy flux which meet the dynamical constraints dis-

cussed in section 4.3, and deriving analytical expressions for its corresponding stationary

distribution. With such results, one must be able to compute the marginal PDF by the

statistical composition procedure like in the cases considered in this thesis, i.e., attain-

ing closed formulas. Also, we are interested in applying our models to other systems

exhibiting intermittency or where our asymmetrical distributions may be used.

Another very interesting perspective for future investigations is for instance the pos-

sibility of bridging our asymmetrical model to the field-theoretical approach developed

in [Wilczek, 2016], where Gaussian fields are combined to create intermittent (but still

symmetric) fields.

2. Hierarchical model for option pricing

In chapter 4, we obtained expressions for the option premium which we wrote as definite

integrals of the bivariate Meijer G-function. We also presented some results computed

with our formulation and the comparison with empirical data where we showed the

different effects on the prices and the implied volatility. We are now interested in

forming a more detailed analysis of the model, applying it to different option chains

as we did to analyze the Brazilian market in chapter 3. However, to this end, the

numerical evaluation of the bivariate Meijer G-function via the Mellin-Barnes integral or

another method should be improved. In other words, we need to develop computational

routines that allow us to evaluate expressions such as (4.44) and (4.30) for a wide range

of parameter with satisfactory precision and in reasonable computing time. Once the

numerical issues are properly dealt with, the strengths and weaknesses of our theory

will become more clear as compared to the Black-Scholes, exponential, power-law, and

even the classical models for stochastic volatility such as Heston, CEV and VG [Carr

and Madan, 1999,Beckers, 1980,Madan et al., 1998].
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Appendix A - Itô Equation

Consider the stochastic differential equation for the generic process x(t)

dx(t) = a(x, t)dt+ b(x, t)dW. (A.1)

Let us now suppose that we have a new stochastic process z defined by

z(t) = F (x(t), t), (A.2)

for which, we need to determine the local dynamics followed by the process z(t), i.e., the SDE

whose solution corresponds to the process z(t). This can be released using the Itô formula,

which we will review next.

Expanding the generalized function F (x, t) in a Taylor series

dF (x(t)) = F [x(t) + dx(t)]− F [x(t)]

=

(
∂F

∂t

)
dt+

(
∂F

∂x

)
dx+

1

2

(
∂2F

∂t2

)
(dt)2 +

1

2

(
∂2F

∂x2

)
(dx)2

+
1

2

(
∂2F

∂x∂t

)
dxdt+ ...

(A.3)

From (A.1) we have

(dx(t))2 = a2(dt)2 + b2(dW )2 + 2ab dt dW. (A.4)

As W (t) is a Wiener process, we find terms (dt)2 and (dt)3/2 that can be vanished since these

are smaller than dt, and the expression (A.4) becomes

(dx(t))2 = b2dt. (A.5)

Using the result above into (A.3) and retaining only terms up to first order, results

dF =

(
∂F

∂t

)
dt+

(
∂F

∂x

)
dx+

1

2

(
∂2F

∂t2

)(
b2dt+O((dt)3/2)

)
. (A.6)

Ordering terms, can be written

dF =

(
∂F

∂t
+

1

2
b2
∂2F

∂t2

)
dt+

∂F

∂x
dx. (A.7)

Using again equation (A.1) in the second term, finally we obtain

dF =

(
∂F

∂t
+ a

∂F

∂x
+

1

2
b2
∂2F

∂t2

)
dt+ b

∂F

∂x
dW (A.8)
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Appendix B - Geometrical Brownian Motion (GBM)

The Geometrical Brownian Motion or Brownian motion with drift is defined as the solution

for a stochastic process S(t) obeying the SDE,

dS = µSdt+ σSdW (B.1)

and subjects to the initial condition S(t0) = S0. The first term in the equation above is the

deterministic part of the process and the second term is the unpredictable or probabilistic

part. The constants µ and σ represent the mean drift velocity and the fluctuation amplitude

of the Wiener process W (t), respectively.

The process S can be replaced for an equivalent process x = lnS, which considering the

Itô equation (A.8) is described by the SDE

dx =

(
µ− σ2

2

)
dt+ σdW. (B.2)

The exact stochastic integration for this process results

x(t) = x0 +

(
µ− σ2

2

)
(t− t0) + σ(W (t)−W (t0)), (B.3)

with the initial condition x0 = lnS0. On the other hand, the solution for the initial process

S(t) with initial value S(t0) = S0, becomes

S(t) = S0e

(
µ−σ

2

2

)
(t−t0)+σ(W (t)−W (t0))

. (B.4)

The process described for (B.3) can also be written as

ln
S(t)

S0
=

(
µ− σ2

2

)
(t− t0) + σ(W (t)−W (t0)). (B.5)

This process has associated a distribution N
[(
µ− σ2

2

)
τ, σ
√
τ
]
with τ = t− t0 [Vasconcelos,

2004]. Or in other words, we say that S(t) follows a log-normal distribution:

f(S, t;S0, t0) =
1√

2σ2τ

1

S
exp


[
ln S

S0
−
(
µ− σ2

2

)
τ
]2

2σ2τ

 . (B.6)
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Appendix C - Fokker Plank Equation

In order to derive the Fokker-Planck equation, let us consider the generalized function

F [x(t)]. By using the Itô equation (A.8), we can write

dF [x(t)] =

(
a[x(t), t]f ′[x(t)] +

1

2
b[x(t), t]2f ′′[x(t)]

)
dt+ b[x(t), t]f ′[x(t)]dW (t) (C.1)

or

dF [x(t)]

dt
= a[x(t), t]f ′[x(t)] +

1

2
b[x(t), t]2f ′′[x(t)] + b[x(t), t]f ′[x(t)]

dW (t)

dt
. (C.2)

Calculating the average of this stochastic process and remember thatW (t) is a Wiener process,

results
d〈f [x(t)]〉

dt
= 〈a[x(t), t]f ′[x(t)] +

1

2
b[x(t), t]2f ′′[x(t)]〉. (C.3)

Now let us consider the variable x(t) which follows a conditional probability density

p(x, t|x0, t0). The averages into (C.3) take the form

d〈f [x(t)]〉
dt

=

∫
dxf(x)∂tp(x, t|x0, t0)

=

∫
dx

[
a[x(t), t]∂xf +

1

2
b[x(t), t]2∂2

xf

]
p(x, t|x0, t0).

(C.4)

Integrating by parts,∫
dxf(x)∂tp(x, t|x0, t0) =

=

∫
dxf(x)

[
−∂xa[x(t), t]p(x, t|x0, t0) +

1

2
∂2
xb[x(t), t]2p(x, t|x0, t0)

]
+ surface terms.

(C.5)

The surface terms vanish and as f(x) is an arbitrary function, we have finally,

∂tp(x, t|x0, t0) = −∂xa(x, t)p(x, t|x0, t0) +
1

2
∂2
xb(x, t)

2p(x, t|x0, t0). (C.6)

This relations is known as the Fokker-Plank equation (FPE).
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Appendix D - Delta Hedging Strategy

Before to explain the delta hedge strategy, let us give the following definitions:

Portfolio: Is a set of different financial assets (investments) such as stocks, commodit-

ies, currency or derivatives. These investments generally have different financial risk and the

overall risk of the portfolio is influenced by the value of individual assets. The type of port-

folio depends principally on the risk which the holder is willing to assume or the investment

objectives.

Short position : A Short position means that the investor lacks or sold a determined

physic or financial asset.

Long position: A long position means that the investor bought a determined physic or

financial asset.

Now let us review the delta hedging strategy by using a simple example. Consider and

stock with a current price S0 = 57, which at time t could have two prices, the upper price Sut
or the lower price Sdt , each one with probability p = 1/2. This is

Sut =65 or Sdt = 53. (D.1)

We can also consider a call option for this stock with an exercise price K = 57 and with

maturity equal to t. Thus, at time t the payoff of the call option could have two prices with

the same probability. According to the two possible stock prices, the two possibilities for the

call price may be
Cut = max(65− 57, 0) = 8 , or

Cdt = max(53− 57, 0) = 0.
(D.2)

Furthermore, let us consider a portfolio made up of an option C and a short position on

∆ stocks. ∆ is an undetermined quantity of stocks which will be calculated from the delta-

hedging argument. Thus, the value of the portfolio at time t, denoted as Vt, can be computed

as

Vt = Ct −∆ · St. (D.3)

where the signal (−) is due to the assumption of a short position in stocks. So, at time t = 0

the value of the portfolio is given by

V0 = C0 −∆S0 = C0 − 57 ·∆. (D.4)

On the other hand, at time equal t, the value of the portfolio could have one of the following
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two values with a probability p = 1/2 each one. These are

V u
t =Cut −∆ · Sut = 8− 65 ·∆ or

V d
t =Cdt −∆ · Sdt = −53 ·∆

(D.5)

Thus, we want that the final value of the portfolio becomes the same in the two situations

V u
t = V d

t . It leads us to find the value ∆ = 2
3 for which the value of our portfolio will be

protected.
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Appendix E - Least Squares Method

Given a dataset of N points (xi, yi) (with i = 1, 2, ..., N) and a function model f(x, α),

where α can be one or a set of constant parameters, the least squares method consists in to

find the optimal values for the parameters into the model that provide the best fit of data.

This is, we find the minimum of the sum of squared residuals SR which reads

SR =
N∑
i=1

[yi − f(xi, α)]2 . (E.1)

The minimization is reached when the gradient of the sum of squared residuals related to the

αi parameters achieves zero value. That is

∂[SR]

∂αi
= 0. (E.2)

Depending on the number of parameters α there are different methods for the minimization of

the residual function as those used during the development of this thesis, namely the Golden

Search and Nelder-Mead methods.

The goodness of fit is determined by some criteria and parameters. Here, for example is

used the coefficient of determination define as

R2 = 1− SR(αmin)

SStotal
(E.3)

where SR(αmin) is the sum of squared residuals computed with the optimal parameters αmin
which satisfy the relation (E.2). The quantity SStotal is the total sum of squared differences

related to the arithmetic mean of dataset yi, i.e.,

SStotal =

N∑
i=1

(yi − 〈y〉)2 (E.4)
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Appendix F - Hull-White and Heston model: Stationary Solution

Appendix F.1 - Hull-White

Consider the Hull-White stochastic process, which is given by

dε1 = −γ1(ε1 − ε0)dt+ κ1ε1dW (t). (F.1)

Using Appendix C, we can show that the process (F.1) has the associate Fokker-Planck

equation in the form

∂tf1 − ∂ε1 [γ1(ε1 − ε0)f1]− 1

2
∂2
ε1 [κ2

1ε
2
1f1] = 0. (F.2)

Considering long times, when the system achieves the statistical equilibrium, the probability

distribution f1(ε1, t) satisfies

f1(ε1) = lim
t→∞

f(ε1, t). (F.3)

Using this condition in equation (F.2), the first term vanishes and the Fokker-Planck equation

becomes

∂ε1 [γ1(ε1 − ε0)f1] +
1

2
∂2
ε1 [κ2

1ε
2
1f1] = 0. (F.4)

Defining the parameter β1 = 2γ1
κ21

, the equation above transforms as

β1∂ε1 [(ε1 − ε0)f1] + ∂2
ε1 [ε21f1] = 0. (F.5)

Integrating (F.5) once, we get

β1(ε1 − ε0)f1 + ∂ε1 [ε21f1] = 0. (F.6)

Let us make the change of variable f̃1 = ε21f1. In terms of this new variable we can write

(F.6) as
∂f̃1

∂ε1
= −β1(ε1 − ε0)

ε21
f̃1. (F.7)

The equation above can be integrated, from which we obtain

ln[f̃1] = −β1

∫
(ε1 − ε0)

ε21
dε1 + C̃ (F.8)

or as a function of f1 and applying the exponential

ε21f1(ε1) = C exp

[
−β1

∫
(ε1 − ε0)

ε21
dε1

]
. (F.9)
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Therefore, we can write

f1(ε1) =
C

ε21
exp

[
−β1 ln(ε1)− β1ε0

ε1

]
f1(ε1) =

C

εβ1+2
1

exp

[
−β1ε0

ε1

]
.

(F.10)

In addition, we require a normalized PDF, such that

∞∫
0

f1(ε1)dε1 = 1 (F.11)

C

∞∫
0

ε−β1−2
1 exp

(
−β1ε0

ε1

)
dε1 = 1. (F.12)

Defining de variable t = β1ε0
ε1

, we can write (F.12 ) as

C

(β1ε0)β1+1

∞∫
0

tβ1e−tdt = 1. (F.13)

Using the definition of the gamma function

Γ(z) =

∞∫
0

tz−1e−tdt (F.14)

in equation (F.13) and solving for C, we obtain

C =
(β1ε0)β1+1

Γ(β1 + 1)
. (F.15)

So, the solution for the Fokker-Planck (F.4) is given by (F.10) with C given by (F.15).

Therefore, we can finally write

f1(ε1) =
(β1ε0)β1+1

Γ(β1 + 1)
ε−β1−2
1 e−β1ε0/ε1 . (F.16)

This function is called the inverse gamma PDF.

Appendix F.2 - Heston Model

In the Heston model the variable ε1 follows the SDE

dε1 = −γ1(ε1 − ε0)dt+ κ1
√
ε1 ε0 dW (t). (F.17)

The Fokker-Planck equation in the stationary regime for this stochastic process reads

β1∂ε1 [(ε1 − ε0)f1] + ∂2
ε1 [ε1ε0f1] = 0, (F.18)
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where β1 = 2γ1
κ21

. Integrating (F.18) once

β1(ε1 − ε0)f1 + ∂ε1 [ε1ε0f1] = 0. (F.19)

Making the change of variable f̃1 = ε1ε0f1, we can write (F.19) in the form

∂f̃1

∂ε1
= −β1(ε1 − ε0)

ε1ε0
f̃1. (F.20)

Integrating the equation above, results

ln[f̃1] = −β1

∫
(ε1 − ε0)

ε1ε0
dε1 + C̃. (F.21)

This can be written in terms of the PDF f1(ε1) as

ε1ε0f1(ε1) = C exp

[
−β1

∫
(ε1 − ε0)

ε1ε0
dε1

]
(F.22)

f1(ε1) =
C

ε1ε0
exp

[
β1 ln(ε1)− β1ε1

ε0

]
f1(ε1) = C

εβ1−1
1

ε0
exp

[
−β1ε1

ε0

]
.

(F.23)

Normalizing f1(ε1), we have

f1(ε1) =
(β1/ε0)β1

Γ(β1)
εβ1−1
1 e−β1ε1/ε0 . (F.24)

This function is known as the gamma PDF.
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Appendix G - Mellin Transform Application to Hierarchical Model for the Energy Flux

Appendix G.1 - Hierarchical Inverse Gamma Class Distribution

Now let us demonstrate how the Mellin transform can be used for the calculations of the

integral

fN (εN ) =

∞∫
0

dεN−1 . . .

∞∫
0

dε1 fN (εN |εN−1) . . . f1(ε1|ε0), (G.1)

where de conditional PDF f(εi|εi−1) for an inverse gamma PDF takes the form

f(εi|εi−1) =
(βiεi−1)βi+1

Γ(βi + 1)
ε−βi−2
i e−βiεi−1/εi . (G.2)

The successive integration of (G.1) can be made in a general way as in [Macêdo et al.,

2017] or using the definitions of the Mellin transform and the Meijer G-function as we show

here. To describe de procedure, let us write the Mellin transform for the function f(x) as

M{f(x)}(s) = F (s) =

∞∫
0

xs−1f(x)dx, (G.3)

and some of its properties:

M{f(ax)}(s) = a−sF (s)

M{f(a/x)}(s) =M{f(ax)}(−s) = asF (−s)

M{xbf(x)}(s) = F (s+ b)

M{e−αx}(s) = α−sΓ(s).

(G.4)

Also, let us introduce the Parseval’s formula:

∞∫
0

f(x)g(x)dx =
1

2πi

c+i∞∫
c−i∞

F (s)G(1− s)ds, (G.5)

where F (s) and G(1 − s) are the Mellin transformations of the functions f(x) and g(x)

respectively.

As an example, we consider the marginal PDF for f(ε2). This is defined as the integral with

respect to dε1 of the conditional probability f(ε2|ε1), assuming that the stochastic variable ε1
is distributed as f(ε1|ε0). The result is proved to be written as a Meijer G-function. To do

this, we use the Mellin transform to solve the integral

f2(ε2) =

∞∫
0

f2(ε2|ε1)f1(ε1|ε0)dε1. (G.6)



160

Using (G.2), the integral above explicitly reads

f2(ε2) =
ββ2+1

2 ε−β2−2
2

Γ(β2 + 1)

(β1ε0)β1+1

Γ(β1 + 1)

∞∫
0

εβ2+1
1 e−β2ε1/ε2ε−β1−2

1 e−β1ε0/ε1dε1. (G.7)

Defining the variable ε1 ≡ x, we can write the functions g(x) = xβ2+1e−β2x/ε2 and f(x) =

x−β1−2e−β1ε0/x. Using the third property in (G.4), the Mellin transform for g(x) looks like

M{g(x)}(1− s) =M{xβ2+1e−β2x/ε2}(1− s) =M{e−β2x/ε2}(2 + β2 − s). (G.8)

Now we can use the fourth line in equation (G.4) to obtain

M{g(x)}(1− s) =

(
β2

ε2

)−(2+β2−s)
Γ(2 + β2 − s). (G.9)

Similarly, for the Mellin transform of the function f(x), we use the second line in (G.4),

which reads

M{f(x)}(s) =M{x−β1−2e−β1ε0/x}(s) =M{xβ1+2e−β1ε0x}(−s). (G.10)

Now we can use the third and fourth line in (G.4) to obtain

M{f(x)}(s) =M{e−β1ε0x}(2 + β1 − s) = (β1ε0)−(2+β1−s)Γ(2 + β1 − s). (G.11)

Replacing (G.9) and (G.11) into (G.5), the integral ( G.6) can be written as

∞∫
0

f2(ε2|ε1)f1(ε1|ε0)dε1

=
1

ε0β1β2Γ(β1 + 1)Γ(β2 + 1)

1

2πi

c+i∞∫
c−i∞

(
ε2

β1β2ε0

)−s
Γ(2 + β1 − s)Γ(2 + β2 − s)ds.

(G.12)

Now, let us introduce the definition of the Meijer G-function

Gm,np,q

(
~ap
~bq

∣∣∣∣x
)

=
1

2πi

c+i∞∫
c−i∞

∏m
j=1 Γ(bj + s)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(aj + s)
∏q
j=m+1 Γ(1− bj − s)

x−sds, (G.13)

where ~ap = (a1 . . . , ap) and ~ap = (b1 . . . , bq). Comparing this definition with (G.12) we can

write
∞∫

0

f2(ε2|ε1)f1(ε1|ε0)dε1

=
1

ε0β1β2Γ(β1 + 1)Γ(β2 + 1)
G0,2

2,0

(
−β1 − 1,−β2 − 1

−

∣∣∣∣ ε2
β1β2ε0

)
.

(G.14)
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The result above is the first integral in (G.1). Now consider the case with three scales. In

this case, we need to solve the integral with respect to ε2 in (G.2). Using the result (G.14)

and the relation (G.2), the integral (G.1) for three scales becomes

f3(ε3) =

1

ε0β1β2Γ(β1 + 1)Γ(β2 + 1)

∞∫
0

(β3ε2)β3+1 ε−β3−2
3 e−β3ε2/ε3

Γ(β3 + 1)
G0,2

2,0

(
−β1 − 1,−β2 − 1

−

∣∣∣∣ ε2
β1β2ε0

)
dε2.

(G.15)

This integral can be solved using the next properties of the Meijer G-function

xρGm,np,q

(
~ap
~bq

∣∣∣∣x
)

= Gm,np,q

(
~ap + ρ

~bq + ρ

∣∣∣∣x
)
, (G.16)

∞∫
0

Gm,np,q

(
~ap
~bq

∣∣∣∣ηx
)
Gµ,νσ,τ

(
~cσ
~dτ

∣∣∣∣wx
)
dx =

1

w
Gm+ν,n+µ
p+τ,q+σ

(
~an,−~dτ ,~ap
~bm, ~−cσ,~bq

∣∣∣∣ ηw
)
, (G.17)

and the representation of the exponential function as a Meijer G-function

e−x = G1,0
0,1

(
−
0

∣∣∣∣x
)
. (G.18)

With the aid of the previous properties, the integral (G.15) reads

f3(ε3) =
1

ε0ε3β1β2Γ(β1 + 1)Γ(β2 + 1)Γ(β3 + 1)

×
∞∫

0

(
β3ε2
ε3

)β3+1

G0,1
1,0

(
−
0

∣∣∣∣β3ε2
ε3

)
G0,2

2,0

(
−β1 − 1,−β2 − 1

−

∣∣∣∣ ε2
β1β2ε0

)
dε2

=
1

ε0ε3β1β2Γ(β1 + 1)Γ(β2 + 1)Γ(β3 + 1)

×
∞∫

0

G0,2
2,0

(
−β1 − 1,−β2 − 1

−

∣∣∣∣ ε2
β1β2ε0

)
G0,1

1,0

(
−

β3 + 1

∣∣∣∣β3ε2
ε3

)
dε2.

(G.19)

Using the so-called convolution property of the Meijer G-function (G.17), the stationary

distribution of the variable ε3 is given by

f3(ε3) =
1

ε0β1β2β3Γ(β1 + 1)Γ(β2 + 1)Γ(β3 + 1)

×G0,3
3,0

(
−β1 − 1,−β2 − 1,−β3 − 1

−

∣∣∣∣ ε3
β1β2β3ε0

) (G.20)

It is easy to note that for the fourth scale we have the integral with respect to ε3 of the

product between the corresponding conditional distribution f(ε4|ε3) (obtained by substituting
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i = 4 into (G.2)) and the result (G.20). It leads to an integral of the product of two Meijer

G-functions like in the case of f3(ε3). Solving the integral by using the properties of the

Meijer G-function, we add the parameter (−β4 − 1) to the vector ~an in the Meijer function,

the gamma function Γ(β4 + 1) in the product of gamma functions and β4 in the product of

βs. The integral corresponding to the fifth scale will follow a similar pattern, such that the

PDF for an arbitrary scale N can be written in the form

fN (εN ) =
Ω

ε0 ω
G0,N
N,0

(
−βNβNβN − 111

−

∣∣∣∣ εNε0 ω
)

(G.21)

where βNβNβN − 111 = (β1 − 1, β2 − 1, . . . , βN − 1), Ω =
∏N
i=1

1
Γ(βi+1) and ω =

∏N
i=1 βi .

Appendix G.2 - Hierarchical Gamma Class Distribution

Consider now the hierarchical Heston process with N scales (4.35). The marginal distri-

bution fN (εN ) for a given scale N is given by the integral (G.1), but now de conditional PDF

f(εi|εi−1) is given by the gamma distribution. Let us write the gamma distribution for εi
conditioned to εi−1 as

f(εi|εi−1) =
(βi/εi−1)βi

Γ(βi)
εβi−1
i e−βiεi/εi−1 . (G.22)

The successive integration in the expression for fN (εN ) can be done using the Mellin

transform and the Meijer G-function. For this, first we compute the marginal distribution

f(ε2) solving the integral for two scales

f(ε2) =

∞∫
0

f2(ε2|ε1)f1(ε1)dε1 =
ββ22 εβ2−1

2

Γ(β2)

(β1/ε0)β1

Γ(β1)

∞∫
0

dε1ε
−β2
1 e−β2ε2/ε1εβ1−1

1 e−β1ε1/ε0 . (G.23)

Using the change of variable x = ε1, we can write g(x) = x−β2e−β2ε2/x and f(x) =

xβ1−1e−β1x/ε0 . Applying the second, third and fourth equations into (G.4), we can write

the Mellin transform for g(x) in the form

M{x−β2e−β2ε2/x}(1− s) =M{xβ2e−β2ε2/x}(s− 1) =M{e−β2ε2/x}(β2 + s− 1)

= (β2ε2)−(β2−1+s)Γ(β2 − 1 + s). (G.24)

Similarly the corresponding Mellin transform for f(x) is

M{xβ1−1e−β1x/ε0}(s) =M{e−β1x/ε0}(β1 + s− 1)

=

(
β1

ε0

)−(β1−1+s)

Γ(β1 − 1 + s) (G.25)
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Then we can use the Parseval formula (G.5) to write the integral (G.23) in the form

∞∫
0

f2(ε2|ε1)f1(ε1)dε1 =
β1β2

ε0Γ(β1)Γ(β2)

1

2πi

c+i∞∫
c−i∞

Γ(β1 − 1 + s)Γ(β2 − 1 + s)

(
β1β2ε2
ε0

)−s
ds.

(G.26)

Comparing this with the definition of the Meijer G-function (G.13), results

f2(ε2) =

∞∫
0

f2(ε2|ε1)f1(ε1)dε1 =
β1β2

ε0Γ(β1)Γ(β2)
G2,0

0,2

(
−

β1 − 1, β2 − 1

∣∣∣∣β1β2ε2
ε0

)
. (G.27)

The following integrals in equation (G.1) are solved using the properties of the Meijer

G-function, such that for the case with N scales we obtain the solution

fN (εN ) =
ωΩ

ε0
GN,00,N

(
−

βββ − 111

∣∣∣∣ω εNε0
)
, (G.28)

where ω =

N∏
j=1

βj , Ω =

N∏
j=1

1/Γ(βj) and βββ = (β1 − 1, . . . , βN − 1)
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Appendix H - Properties of the Meijer G and Fox H functions

1. The Meijer G-function is defined as the Mellin-Barnes integral:

Gm,np,q

(
~ap
~bq

∣∣∣∣x
)

=
1

2πi

c+i∞∫
c−i∞

m∏
j=1

Γ(bj + s)
n∏
j=1

Γ(1− aj − s)

p∏
j=n+1

Γ(aj + s)

q∏
j=m+1

Γ(1− bj − s)
x−sds. (H.1)

2. The Fox H-function can be written in terms of the Meijer G-function in the form:

Hm,n
p,q

[
x

∣∣∣∣(a1, C), . . . , (ap, C)

(b1, C), . . . , (bq, C)

]
=

1

C
Gm,np,q

(
(a1, . . . , ap)

(b1, . . . , bq)

∣∣∣∣x1/C

)
(H.2)

3. Exponential as a Meijer G-function

e−x = G1,0
0,1

(
−
0

∣∣∣∣x
)
. (H.3)

4. Error function as a Meijer G-function

erf(x) =
1√
π
G1,1

1,2

(
1

1
2 , 0

∣∣∣∣x2

)
. (H.4)

5. Power absorption

xρGm,np,q

(
~ap
~bq

∣∣∣∣x
)

= Gm,np,q

(
~ap + ρ

~bq + ρ

∣∣∣∣x
)
. (H.5)

6. Integral involving the product of two Meijer G-functions

∞∫
0

Gm,np,q

(
~ap
~bq

∣∣∣∣ηx
)
Gµ,νσ,τ

(
~cσ
~dτ

∣∣∣∣wx
)
dx =

1

w
Gm+ν,n+µ
p+τ,q+σ

(
~an,−~dτ ,~ap
~bm, ~−cσ,~bq

∣∣∣∣ ηw
)
. (H.6)

7. Argument inversion

Gm,np,q

(
~ap
~bq

∣∣∣∣x
)

= Gn,mq,p

(
1−~bq
1− ~ap

∣∣∣∣1x
)
. (H.7)

8. Bivariate Fox H-function and bivariate Meijer G-function:
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The bivariate Fox H-function is defined as a double Mellin-Barnes integral, which can

be found in references as [Mittal and Gupta, 1972,S.P.Goyal and S.L.Mathur, 1976]. In

this representation the bivariate Fox H-function is given by

H[x, y] =

(
1

2πi

)2 ∫
L1

∫
L2

φ(s, t)θ1(s)θ2(t)xs ytds dt. (H.8)

where

φ(s, t) =

n1∏
j=1

Γ(1− aj + αj s+Aj t)

p1∏
j=n1+1

Γ(aj − αj s−Aj t)
q1∏
j=1

Γ(1− bj + βj s+Bj t)

, (H.9)

θ1(s) =

m2∏
j=1

Γ(dj − δj s)
n2∏
j=1

Γ(1− cj + γj s)

q2∏
j=m2+1

Γ(1− dj + δj s)

p2∏
j=n2+1

Γ(cj − γj s)
, (H.10)

and

θ2(t) =

m3∏
j=1

Γ(fj − Fj t)
n3∏
j=1

Γ(1− ej + Ej t)

q3∏
j=m3+1

Γ(1− fj + Fj t)

p3∏
j=n3+1

Γ(ej − Ej t)
, (H.11)

The Fox H-function H[x, y] is denoted as

H(x, y) = H0,n1:m2,n2:m3,n3
p1,q1:p2,q2:p3,q3

[
(ap1 ;αp1 , Ap1) : (cp2 , γp2) : (ep3 , Ep3)

(bq1 ;βq1 , Bq1) : (dq2 , δq2) : (fq3 , Fq3)

∣∣∣∣∣x, y
]
, (H.12)

or also in the form

H [x, y] = H



(
0 n1

p1 q1

)
(
m2 n2

p2 q2

)
(
m3 n3

p3 q3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a1;α1, A1), . . . , (ap1 ;αp1 , Ap1)

(b1;β1, B1), . . . , (bq1 ;βq1 , Bq1)

(c1, γ1), . . . , (cp2 , γp2)

(d1, δ1), . . . , (dq2 , δq2)

(e1, E1), . . . , (ep3 , Ep3)

(f1, F1), ..., (fq3 , Fq3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x

y


. (H.13)

The bivariate Meijer G-function is a particular case of the bivariate FoxH-function,

where the elements αj , βj , Aj , Bj , γj , δj , Ej , Fj are all equal to one. This is denoted as

G(x, y) = H0,n1:m2,n2:m3,n3
p1,q1:p2,q2:p3,q3

(
(ap1) : (cp2) : (ep3)

(bq1) : (dq2) : (fq3)

∣∣∣∣∣x, y
)
, (H.14)
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9. Integral involving the product of three Fox H-functions. Solution as a bivariate Fox

H-function:
∞∫

0

xλ−1Hm,0
p,q

[
ax

∣∣∣∣(ap, αp)
(bq, βq)

]
Hm2,n2
p2,q2

[
βxh

∣∣∣∣(cp2 , γp2)

(dp2 , δp2)

]
Hm3,n3
p3,q3

[
δxk
∣∣∣∣(ep3 , Ep3)

(fp3 , Fp3)

]
dx

= a−λH0,m:m2,n2:m3,n3
q,p:p2,q2:p3,q3

[
(1− bq − λβq;hβq, κβq) : (cp2 , γp2) : (ep3 , Ep3)

(1− ap − λαp;hαp, καp) : (dq2 , δq2) : (fq3 , Fq3)

∣∣∣∣∣ βah , δak
]
.

(H.15)

10. Integral involving the product of three Fox H-functions. Solution as a series of univari-

ate Fox H-function:
∞∫

0

xρ−1Hm,n
p,q

[
axu

∣∣∣∣(gj , Gj)1,p1

(hj , Hj)1,q

]
Hk,0
f,l

[
bx

∣∣∣∣(rj , Rj)1,f

(uj , Uj)1,l

]
Hm1,n1
p1,q1

[
yxλ

∣∣∣∣(aj , αj)1,p1

(bj , βj)1,q1

]
dx

=
1

bρ

m∑
h=1

∞∑
r=1

(−1)r
m∏

j=1,j 6=h
Γ(hj −Hjρr)

n∏
j=1

Γ(1− gj +Gjρr) a
ρr

r!

q∏
j=m+1

Γ(1− hj +Hjρr)

p∏
j=n+1

Γ(gj −Gjρr) bρurHh

×Hm1,n1+k
p1+l,q1+f

 ybλ
∣∣∣∣∣∣∣∣
(aj , αj)1,n1 , (1− uj − (ρ+ uρr)Uj , λUj)1,l , (aj , αj)n1+1,p1

(bj , βj)1,q1 , (1− rj − (ρ+ uρr)Rj , λRj)1,f

 ,
(H.16)

where ρr = hh+r
Hh

.
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Appendix I - Hierarchical Hull-White Model for Option Pricing

The hierarchical Hull-White model for option pricing with N scales can be obtained resolv-

ing the integral (4.25). In other words, this is the average of the Black-Scholes formula com-

puted over the distribution of the volatility fN (vN ) that in this case is a function like (G.21).

So, the expression for the option price becomes

C(S,K, r, t,N) =
Ω

v0 ω

∞∫
0

C(S,K, r, t|vN )G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ vNv0 ω

)
dvN , (I.1)

where Ω = 1/
∏N
i=1 Γ(βi + 1) and ω =

∏N
i=1 βi. The Black-Scholes price C(S,K, r, t|vN ) is

given by,
C(S,K, r, t|vN ) = SΦ(d1)−Ke−rτΦ(d2)

= C1(S,K, r, t|vN )− C2(S,K, r, t|vN ),
(I.2)

where d1 and d2 are define as

d1 =
ln
(
S
K

)
+ (r + σ2/2)τ

σ
√
τ

d2 = d1 − σ
√
τ .

(I.3)

Choosing v = σ2, like in the original work of Hull-White [Hull and White, 1987] and reordering

terms, we have

d1 =
ln
(
S
K

)
+ rτ

√
v τ

+

√
v τ

2

d2 =
ln
(
S
K

)
+ rτ

√
v τ

−
√
v τ

2
.

(I.4)

Defining

a = ln

(
S

K

)
+ rτ and

b =
1

2
,

(I.5)

we can write
d1 =

a√
v τ

+ b
√
v τ

d2 =
a√
v τ
− b
√
v τ .

(I.6)

In addition, we can write the first term in (I.2) as

〈C1(S,K, r, t|vN )〉 ≡ SΨ1(a, b). (I.7)
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So, with the changes made in (I.6), Ψ1 can be written in the form

Ψ1(a, b) =
Ω

v0 ω

∞∫
0

Φ

(
a

√
vNτ

+ b
√
vNτ

)
G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ vNv0 ω

)
dvN . (I.8)

This integral can be solved making the partial derivation respect to a. We then integrate

the result with respect to vN . Finally, we integrate again the last result with respect to a.

Explicitly, this is written in the way

Ψ1(a, b) =

a∫
0

∂Ψ1(a′)

∂a′
da′ + Ψ1(a = 0)

= Θ1(a, b) + Ψ1(a = 0).

(I.9)

So, following this procedure, the partial derivative of (I.8) with respect to a reads

Ψ1a =
∂Ψ1(a, b)

∂a
(I.10)

Ψ1a =
e−ab√

2π

Ω

v0 ω

∞∫
0

1
√
vNτ

e
− 1

2

(
a2

vNτ
+b2vN τ

)
G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ vNv0 ω

)
dvN . (I.11)

Writing the exponential function as a Meijer G-function

e−x = G1,0
0,1

(
−
0

∣∣∣∣x
)

(I.12)

the integral (I.11) takes the form

Ψ1a =
e−ab√

2π

Ω

v0 ω

∞∫
0

1
√
vNτ

G1,0
0,1

(
−
0

∣∣∣∣ a2

2vNτ

)
G0,1

1,0

(
1

−

∣∣∣∣ 2

b2vNτ

)

×GN,00,N

(
−

βββ + 222

∣∣∣∣v0 ω

vN

)
dvN

(I.13)

Using the change of variable yN = 1
vN

, the integral above can be written as

Ψ1a =
e−ab√

2π

Ω

v0 ω
√
τ

∞∫
0

y
−3/2
N G1,0

0,1

(
−
0

∣∣∣∣a2yN
2τ

)
G0,1

1,0

(
1

−

∣∣∣∣2yNb2τ
)

×GN,00,N

(
−

βββ + 222

∣∣∣∣v0 ω yN

)
dyN .

(I.14)

It is more convenient to write this expression as

Ψ1a =
Ωe−ab√

2π

(v0 ω

τ

)1/2
∞∫

0

(v0 ωyN )−3/2G1,0
0,1

(
−
0

∣∣∣∣a2yN
2τ

)
G0,1

1,0

(
1

−

∣∣∣∣2yNb2τ
)

×GN,00,N

(
−

βββ + 222

∣∣∣∣v0 ω yN

)
dyN .

(I.15)
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So, using property (H.5) of Meijer G-function, the factor (v0 ω yN )−3/2 can be included into

the last Meijer G-function. With this change we have

Ψ1a =
Ωe−ab√

2π

(v0 ω

τ

)1/2
∞∫

0

G1,0
0,1

(
−
0

∣∣∣∣a2yN
2τ

)
G0,1

1,0

(
1

−

∣∣∣∣2yNb2τ
)

×GN,00,N

(
−

βββ + 1
2
1
2
1
2

∣∣∣∣v0 ω yN

)
dyN .

(I.16)

This can be rewritten as

Ψ1a =
Ωe−ab√

2π

(v0 ω

τ

)1/2
∞∫

0

GN,00,N

(
−

βββ + 1
2
1
2
1
2

∣∣∣∣v0 ω yN

)
G0,1

1,0

(
1

−

∣∣∣∣2yNb2τ
)

×G1,0
0,1

(
−
0

∣∣∣∣a2yN
2τ

)
dyN

(I.17)

or using the Fox H-representation in (H.2)

Ψ1a =
Ωe−ab√

2π

(v0 ω

τ

)1/2
∞∫

0

HN,0
0,N

(
−

βββ + 1
2
1
2
1
2 ,111

∣∣∣∣v0 ω yN

)
H0,1

1,0

(
1, 1

−

∣∣∣∣2yNb2τ
)

×H1,0
0,1

(
−

0, 1

∣∣∣∣a2yN
2τ

)
dyN

(I.18)

The solution for the integral (I.18) can be obtained using the Fox H-function in two

dimensions or its special case the bivariate Meijer G-functions defined in the properties (H.12)

and (H.13). The general result was obtained by P. K. Mittal and K.C. Gupta in [Mittal and

Gupta, 1972]. With this result the integral above becomes

Ψ1a =
Ωe−ab√

2π

1
√
v0 ω τ

GNGNGN

(
2

b2 τ v0 ω
,

a2

2τ v0 ω

)
(I.19)

where

GNGNGN (x, y) = G0,N :0,1:1,0
N,0:1,0:0,1

(
(−βββ − 1

2
1
2
1
2) : (1) : (−−)

(−−) : (−−) : (0)

∣∣∣∣∣x, y
)
. (I.20)

Thus, the first term in (I.9) is given by the integral with respect to a of the function (I.19)

evaluated in the interval [0, a]. This integral cannot be computed analytically but an ap-

proximate result can be obtained by numerical integration. Therefore, we define the function

Θ1(a) which is given by

Θ1(a, b) =
Ω√
2π

1
√
v0 ω τ

a∫
0

da′ e−a
′b
GNGNGN

(
2

b2τv0 ω
,

a′2

2τv0 ω

)
. (I.21)
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The result above can be simplified using the following change of variable

a = ln

(
S

K

)
+ rτ → 1

√
v0 ω τ

[
ln

(
S

K

)
+ rτ

]
b =

1

2
→
√
v0 ω τ

2

(I.22)

with which is possible to write GNGNGN

(
2

b2τv0 ω
, a′2

2τv0 ω

)
→ GNGNGN

(
2
b2
, a
′2

2

)
and the integral (I.21)

becomes

Θ1(a, b) =
Ω√
2π

a∫
0

da′e−a
′b
GNGNGN

(
2

b2
,
a′2

2

)
. (I.23)

The second average of the Black-Scholes price in (I.1) is given by the relation

〈C2(S,K, r, T |vN )〉 = Ke−rτΨ2(a, b), (I.24)

with

Ψ2(a, b) =
Ω

v0 ω

∞∫
0

Φ

(
a

√
vNτ

− b
√
vNτ

)
G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ vNv0 ω

)
dvN . (I.25)

The solution of (I.25) can be written as

Ψ2(a, b) =

a∫
0

∂Ψ2(a′)

∂a′
da′ + Ψ2(a = 0)

= Θ2(a, b) + Ψ2(a = 0),

(I.26)

where the partial derivative respect to a of (I.25) is

Ψ2a =
∂Ψ2(a, b)

∂a
. (I.27)

The solution for Θ2 is obtained using a similar procedure to the one used in the case of Θ1.

So, the final result for the function Θ2 becomes

Θ2(a, b) =
Ω√
2π

a∫
0

da′ea
′b
GNGNGN

(
2

b2
,
a′2

2

)
. (I.28)

In view of the relations (I.9) and (I.26), the solution for our hierarchical Hull-White model

(I.1) can be written as

C(S,K, r, t,N) = SΘ1(a, b)−K e−rτΘ2(a, b) + SΨ1(a = 0)−K e−rτΨ2(a = 0), (I.29)

where functions Θ1(a, b) and Θ2(a, b) are given by the expressions (I.21) and (I.21), respect-

ively.



171

The solution for Ψ1(a = 0) is obtained from expression (I.7) and (I.8) solving the integral

Ψ1(a = 0) =

∞∫
0

Φ (b
√
vNτ) f(vN )dvN . (I.30)

Using the expression for fN (vN ), this integral reads

Ψ1(a = 0) =
Ω

v0 ω

∞∫
0

Φ (b
√
vNτ)G0,N

N,0

(
−βββ − 111

−

∣∣∣∣ vNω v0

)
dvN . (I.31)

The cumulative function Φ
(
b
√
vNτ

)
can be expressed in term of a Meijer G-function using

the property (H.4). So the integral above looks in the form

Ψ1(a = 0) =
Ω

v0 ω

∞∫
0

1

2

[
1 +

1√
π
G1,1

1,2

(
1

1
2 ; 0

∣∣∣∣b2vNτ2

)]

×G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ vNv0 ω

)
dvN .

(I.32)

Using the properties of integration of the Meijer G-function, results

Ψ1(a = 0) =
1

2
+

Ω

2
√
π

2

b2
G1,N+1
N+2,1

(
−βββ − 111,−1

2 ; 0

−1

∣∣∣∣ 2

b2

)
, (I.33)

where now we have defined b =
√
v0ω τ
2 . The factor 2/b2 in the second term can be absorbed

into the Meijer G - function using the property (H.5), with which we finally obtain

Ψ1(a = 0) =
1

2

[
1 +

Ω√
π
G1,N+1
N+2,1

(
−βββ, 1

2 ; 1

0

∣∣∣∣ 2

b2

)]
. (I.34)

Similarly Ψ2(a = 0) in the the last term of (I.29) is

Ψ2(a = 0) =
1

2

[
1− Ω√

π
G1,N+1
N+2,1

(
−βββ, 1

2 ; 1

0

∣∣∣∣ 2

b2

)]
, (I.35)

where we recall that ω =

N∏
j=1

βj , Ω = 1/

N∏
j=1

Γ(βj + 1) and βββ = (β1, . . . , βN ).

Alternatively, the functions (I.9) and (I.26) can be expressed as a series of univariate

Meijer G-functions. To obtain a solution in this representation, we can write the average of

the Black-Scholes price as

C(S,K, r, t,N) = SΨ1(r,K, a)−Ke−rτΨ2(r,K, a) (I.36)
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where Ψ1(r,K, a) and Ψ2(r,K, a) are the functions (I.9) and (I.26) respectively. Let us write

Ψ1(r,K, a) = Ψ1 and Ψ2(r,K, a) = Ψ2 as

Ψ1(a) =

a∫
−∞

∂Ψ1(a′)

∂a′
da′

Ψ2(a) =

a∫
−∞

∂Ψ2(a′)

∂a′
da′.

(I.37)

These integrals are easily calculated using the result in [S.P.Goyal and S.L.Mathur, 1976],

which we have summarized in the property (H.16). The final result is

Ψ1 = − Ω√
2π

∞∑
l=1

(−1)l

l!

(
1

2

)l 1

b2l+1
Γ(2l + 1, ab)

×G0,N+1
N+1,0

(
1,−lll − βββ − 1

2
1
2
1
2

−

∣∣∣∣ 2

b2

) (I.38)

and

Ψ2 =
Ω√
2π

∞∑
l=1

(−1)l

l!

(
1

2

)l 1

b2l+1
Γ(2l + 1,−ab)

×G0,N+1
N+1,0

(
1,−lll − βββ − 1

2
1
2
1
2

−

∣∣∣∣ 2

b2

)
,

(I.39)

where Γ(a, x) =

∞∫
x

ts−1e−tdt is the incomplete upper gamma function. Ω, a, b and βββ are

defined in the same way as in the representation of bivariate Meijer G-functions.
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Appendix J - Hierachical Heston Model for Option Pricing

Here we compute the average of the Black-Scholes price assuming the distribution of

volatility to be a distribution of the gamma class (G.28). Now the first integral in the average

of the call price (I.7), can be written as

〈C1(S,K, r, t|vN )〉 = SΨ1 = S

∞∫
0

Φ

(
a

√
vNτ

+ b
√
vNτ

)
f(vN )dvN , (J.1)

where the statistical distribution of the stochastic volatility fN (vN ) is given by a gamma class

distribution as equation (G.28). So, the integral (J.1) becomes

Ψ1 =
ωΩ

v0

∞∫
0

Φ

(
a

√
vNτ

+ b
√
vNτ

)
GN,00,N

(
−

βββ − 111

∣∣∣∣ω vNv0

)
dvN , (J.2)

where ω =

N∏
j=1

βj , Ω = 1/

N∏
j=1

Γ(βj) and βββ = (β1, . . . , βN ).

As in the case of the previous appendix, we can write Ψ1 as

Ψ1(a) =

a∫
0

∂Ψ1(a′)

∂a′
da′ + Ψ1(a = 0)

=

a∫
0

Ψ1a da
′ + Ψ1(a = 0)

= Θ1(a) + Ψ1(a = 0),

(J.3)

where the partial derivative of (J.2) respect to a is

Ψ1a =
e−ab√

2π

ωΩ

v0

∞∫
0

1
√
vNτ

e
− 1

2

(
a2

vNτ
+b2vN τ

)
GN,00,N

(
−

βββ − 111

∣∣∣∣ω vNv0

)
dvN . (J.4)

Writing the exponential functions as a Meijer G-functions (see eq (I.12)), the expression (J.4)

becomes

Ψ1a =
e−ab√

2π

ωΩ

v0

∞∫
0

1
√
vNτ

G1,0
0,1

(
−
0

∣∣∣∣ a2

2vNτ

)
G1,0

0,1

(
−
0

∣∣∣∣b2vNτ2

)

×GN,00,N

(
−

βββ − 111

∣∣∣∣ω vNv0

)
dvN .

(J.5)
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Conveniently we write this equation in the form

Ψ1a =
e−abΩ√

2πτ

(
ω

v0

) 3
2

∞∫
0

(
ω vN
v0

)− 1
2

G1,0
0,1

(
−
0

∣∣∣∣ a2

2vNτ

)
G1,0

0,1

(
−
0

∣∣∣∣b2vNτ2

)

×GN,00,N

(
−

βββ − 111

∣∣∣∣ω vNv0

)
dvN .

(J.6)

The factor
(
ω vN
v0

)− 1
2 can be included into the third G-function by using the property (H.5).

In addition, the argument in the first G-function can be inverted by using property (H.7).

With this changes and ordering the G-functions, the expression above finally reads

Ψ1a =
e−abΩ√

2πτ

(
ω

v0

) 3
2

∞∫
0

GN,00,N

(
−

βββ − 3
2
3
2
3
2

∣∣∣∣ω vNv0

)
G1,0

0,1

(
−
0

∣∣∣∣b2vNτ2

)

×G0,1
1,0

(
1

−

∣∣∣∣2vNτa2

)
dvN ,

(J.7)

or in the H-Fox representation (see equation (H.2))

Ψ1a =
e−abΩ√

2πτ

(
ω

v0

) 3
2

∞∫
0

HN,0
0,N

[
ω vN
v0

∣∣∣∣ −
(βββ − 3

2
3
2
3
2 ,111)

]
H1,0

0,1

[
b2vNτ

2

∣∣∣∣ −
(0, 1)

]

×H0,1
1,0

[
2vNτ

a2

∣∣∣∣(1, 1)

−

]
dvN .

(J.8)

The integral above can be solved using the property (H.15) and the equivalence between

the Fox-H function and the Meijer G-function. So we can write

Ψ1a =
e−abΩ√

2πτ

(
ω

v0

) 1
2

GNGNGN

(
2τv0

a2 ω
,
b2τv0

2ω

)
, (J.9)

where GNGNGN (x, y) is used to denote the bivariate Meijer G-function

GNGNGN (x, y) = G0,N :0,1:1,0
N,0:1,0:0,1

(
(−βββ + 3

2
3
2
3
2) : (1) : (−−)

(−−) : (−−) : (0)

∣∣∣∣∣x, y
)
. (J.10)

Therefore, the first term in (J.3) is given by the integral with respect to a of the result

(J.9). This is

Θ1 =
Ω√
2πτ

(
ω

v0

) 1
2

a∫
0

da′ e−a
′b
GNGNGN

(
2τv0

a′2 ω
,
b2τv0

2ω

)
. (J.11)
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It can be simplified by the change of variable,

a = ln

(
S

K

)
+ rτ →

√
ω

v0τ

[
ln

(
S

K

)
+ rτ

]

b =
1

2
→ 1

2

√
v0τ

ω
.

(J.12)

So, the integral (J.11) becomes

Θ1(a, b) =
Ω√
2π

a∫
0

da′e−a
′b
GNGNGN

(
2

a′2
,
b2

2

)
. (J.13)

The second average of the Black-Scholes price is given by the relation

〈C2(S,K, r, t|vN )〉 = Ke−rτΨ2(a). (J.14)

Applying an analogous procedure to that of the case to compute Θ1, we have

Θ2(a, b) =
Ω√
2πτ

(
ω

v0

) 1
2

a∫
0

da′ ea
′b
GNGNGN

(
2

a′2
,
b2

2

)
. (J.15)

Here GNGNGN (x, y) is given by the expression (J.10). So, the solution for the hierarchical Heston

model for option pricing results,

C(r,K, S,N) = SΘ1(a, b)−Ke−rτΘ2(a, b) + SΨ1(a = 0)−Ke−rτΨ2(a = 0). (J.16)

Now for the calculation of Ψ1(a = 0), we write the expression (J.1) as

Ψ1(a = 0) =

∞∫
0

Φ (b
√
vNτ) fN (vN )dvN . (J.17)

Replacing fN (vN ) by the distribution of the gamma class (G.28),

Ψ1(a = 0) =
ωΩ

v0

∞∫
0

Φ (b
√
vNτ)GN,00,N

(
−

βββ − 111

∣∣∣∣ω vNv0

)
dvN . (J.18)

The cumulative function Φ(x) can be expressed as Meijer G-function by using the property

(H.4). So, the integral (J.18) reads

Ψ1(a = 0) =
ωΩ

v0

∞∫
0

1

2

[
1 +

1√
π
G1,1

1,2

(
1

1
2 ; 0

∣∣∣∣b2vNτ2

)]

×GN,00,N

(
−

βββ − 111

∣∣∣∣ω vNv0

)
dvN .

(J.19)
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Using the convolution property (H.6) of the Meijer G-function, we finally obtain the solution

Ψ1(a = 0) =
1

2

[
1 +

Ω√
π
GN+1,1

2,N+1

(
1
2 ; 1

βββ, 0

∣∣∣∣ 2

b2

)]
, (J.20)

where we have defined b = 1
2

√
v0τ
w in the equation above. Similarly for Ψ2(a = 0) in the last

term of (J.16), we obtain

Ψ2(a = 0) =
1

2

[
1− Ω√

π
GN+1,1

2,N+1

(
1
2 ; 1

βββ, 0

∣∣∣∣ 2

b2

)]
, (J.21)

Therefore, the solution for te call option price calculated as the average of the Black-Scholes

formula under the assumption that the volatility follows a hierarchical Heston process can be

computed by using (J.16) together with (J.13), (J.15), (J.20) and (J.21).
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Appendix K - Asymptotic Behavior of the Hierarchical Distributions

Appendix K.1 - Symmetric Power Law Class or Symmetric Inverse Gamma Class
Distribution of Velocity Increments

In this section we analyze the asymptotic behaviour of the symmetric power-law class

distribution shown in section 5.7.1. For this, let us write the Meijer G-function for small

argument as

Gm,np,q

(
~ap
~bq

∣∣∣∣x
)
∼

m∑
k=1

Ckx
bk , forx→ 0. (K.1)

Using (H.7) to invert the argument of the Meijer G-function into (G.21) and considering

εN →∞, we can write

G0,N
N,0

(
−βββ − 111

−

∣∣∣∣ εNε0w
)

= GN,00,N

(
−

βββ + 222

∣∣∣∣ε0wεN
)
∼

m∑
k=1

Ck

(
εN
ε0w

)−bk
, (K.2)

with bk = βk + 2. Thus, replacing into (5.57), it is possible to write

PN (δv) ∼
m∑
k=1

Ck

∫ ∞
0

ε
−1/2
N exp

(
− δv

2

2εN

)(
εN
ε0w

)−bk
dεN . (K.3)

Using the change of variable u = δv2

2εN
, we can write the expression above in the form

PN (δv) ∼
m∑
k=1

Ck(δv
2)1/2−bk

∫ ∞
0

ubk−3/2e−udu. (K.4)

The integral in (K.4) gives the gamma function Γ(bk − 1/2) that does not depend on δv, i.e.

the result is a constant. Therefore, using this fact and substituting bk, we finally have

PN (δv) ∼
m∑
k=1

Ck(δv
2)1/2−βk−2 =

m∑
k=1

Ck|δv|−2βk−3 (K.5)

Therefore, this model exhibits power-law tails that decay as 1
|δv|2β+3 .

Appendix K.2 - Asymmetric Distribution of Velocity Increments. Inverse Gamma
Class

This is the asymmetric version of the case in previous section. In this case, we substitute

(K.2) into (6.6). Using the change of variable y = δv + µε, this reads

PN (y) ∼
m∑
k=1

Cke
µy

∫ ∞
0

ε
−1/2
N exp

(
− y2

2εN
− µ2εN

2

)(
εN
ε0w

)−bk
dεN . (K.6)
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Writing εNu = |y| and making the algebraic operations we have

PN (y) ∼
m∑
k=1

Ck e
µy |y|−1/2−bk

∫ ∞
0

ubk−3/2 exp

[
−
(
u

2
+
µ2

2
u−1

)
|y|
]
du (K.7)

The asymptotic behavior of the integral above can be obtained using the saddle point

method. To do this, we need to define the functions:

A =|y|

f(u) =ubk−3/2

g(u) =
u

2
+
µ2

2
u−1

g′(u) =
1

2
− µ2

2
u−2

g′′(u) =µ2 u−3.

(K.8)

The function g(u) has a maximum in u0 for which we must do g′(u0) = 0. So, we find u0 = |µ|.
With this results and using the approximation of the saddle point method for the integral in

the expression (K.7), we can write

PN (y) ∼
m∑
k=1

Ck e
µy |y|−1/2−bkf(u0)e−Ag(u0)

√
2π

Ag′′(u0)
. (K.9)

Using the definitions in (K.8) into expression (K.9), we can write

PN (y) ∼
m∑
k=1

Ck |y|−bkeµy e−|µ||y|. (K.10)

Therefore, the asymptotic behavior of the asymmetric model obtained of using the inverse

gamma class distribution for the energy dissipation rate ε can displays different tails on each

side of the distribution. Depending on the value of µ, we have the two cases:

i) Considering µ > 0 we have

PN (y) ∼

(
N∑
k=1

Ck
|y|βk+2

)
×

{
1 , for y →∞,
e−2µ|y| , for y → −∞.

(K.11)

ii) For µ < 0, as is the case for turbulent flows, we obtain

PN (y) ∼

(
N∑
k=1

Ck
|y|βk+2

)
×

{
1 , for y → −∞,
e−2|µ|y , for y →∞.

(K.12)
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Appendix K.3 - Symmetric Stretched Exponential Class or Symmetric Gamma Class
Distribution of Velocity Increments

Let us start from the relation (5.63) and then we use the expansion of the MeijerG-function

when εN →∞ [Kilbas and Saigo, 2004]

GN,00,N

(
−

βNβNβN − 111

∣∣∣∣wεNε0
)
∼ (α εN )β̄−

3
2

+M
2 exp

(
− 1

M
(α εN )M

)
. (K.13)

With M = 1
N , β̄ = 1

N

∑N
k=1 βk and α = w

ε0
. Replacing the result above into (5.63), results

PN (δv) ∼
∫ ∞

0
ε
β̄−2+M

2
N exp

(
− δv

2

2εN
− 1

M
(αεN )M

)
dεN . (K.14)

Defining the variable uεN = δv
2

M+1 , the integral above becomes

PN (δv) ∼ y
2

M+1
(β−1+M/2)

∫ ∞
0

u−β̄−
M
2 exp

[(
−u

2
− 1

M
αMu−M

)
δv

2M
M+1

]
du. (K.15)

So, with |δv| >> 1 we can use the saddle point method to approximate the integral. For this

end, we define the functions
A =δv

2M
M+1

f(u) =u−β̄−
M
2

g(u) =
u

2
+

1

M
αMu−M

g′(u) =
1

2
− αMu−M−1

g′′(u) =(M + 1)αMu−M−2

u0 =
(
2αM

) 1
M+1

f(u0) =constant

g(u0) =
M + 1

M

(α
2

) M
M+1

g′′(u0) =constant

(K.16)

Using the results (K.16), we can approximate the integral (K.15) as

PN (δv) ∼ δv
2

M+1
(β̄−1+M/2)f(u0)e−Ag(u0)

√
2π

Ag′′(u0)

= δv
2N
N+1

(β̄−1) exp

[
−(N + 1)

(
w δv2

2ε0

) 1
N+1

]
.

(K.17)

This is a stretched exponential type function.
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Appendix K.4 - Asymmetric Distribution of Velocity Increments. Gamma Class

In this case, we study the asymptotic behavior of the integral (6.6). Thus, using (K.13)

as asymptotic approximation for f(εN ), this integral becomes

PN (y) ∼ eµy
∫ ∞

0
εβ̄−2+M

2 exp

(
−y

2

2ε
− µ2ε

2
− 1

M
(αε)M

)
dε, (K.18)

where M = 1
N , β̄ = 1

N

∑N
k=1 βk, α = w

ε0
and y = δṽ + µε. Defining the variable εN = |y| t,

with |y| >> 1, we obtain

PN (y) ∼ eµy|y|β̄−1+M
2

∫ ∞
0

tβ̄−2+M
2 exp

(
−|y|

2t
− µ2 |y| t

2
− 1

M
(α |y| t)M

)
dt. (K.19)

To apply the asymptotic approximation for the integral (K.19), we define the functions

f(t) = tβ̄−2+M
2 .

g(t) =
|y|
2t

+
µ2 |y| t

2
+

1

M
(α |y| t)M and its derivatives,

g′(t) = − |y|
2t2

+
µ2 |y|

2
+ (α |y|)M tM−1,

g′′(t) =
|y|
t3

+ (M − 1)(α |y|)M tM−2.

(K.20)

We require that g′(t0) = 0, so we can write

0 = − |y|
2t20

+
µ2 |y|

2
+

1

M
(α |y|)M tM−1

0 , (K.21)

solving to t0 in this expression, we obtain

t0 =
1

|µ|

[
1 +

2αM

µ2
(|y| t0)M−1

]−1/2

. (K.22)

Since 1
N < 1 and |y| >> 1, it is possible to approximate the transcendental function t0 as

t0 ∼
1

|µ|

[
1− αM |y|M−1

|µ|M+1

]
,

t−1
0 ∼|µ|

[
1 +

αM |y|M−1

|µ|M+1

]
and

tM0 ∼
1

|µ|M

[
1−MαM |y|M−1

|µ|M+1

]
.

(K.23)

With this result, when the functions g′(t) and g′′(t) defined in (K.20) are evaluated in t = t0

become

g(t0) =|µ||y|+ 1

M

(
α |y|
|µ|

)M
g′′(t0) ∼|µ|−3/2|y|−1/2

(K.24)
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Using the expressions in (K.24) and the first equation in (K.20), the integral (K.19) can

be written approximately as

PN (y) ∼ eµy|y|β̄−1+M
2 f(t0)e−g(t0) |g′′(t0)|−1/2 (K.25)

PN (y) ∼ eµy |y|β̄−
3
2

+M
2 exp

(
−|µ||y| − 1

M

(
α |y|
|µ|

)M)
. (K.26)

Therefore, the asymptotic analysis shows that our asymmetric model based on the gamma

class distribution for ε has different tails on each side of the distribution, as in the case shown

in Appendix K. Let us see this as follows:

i) For µ > 0 it results:

PN (δv) ∼ |y|β̄−
3
2

+M
2 ×


exp

(
−2|µ||y| − 1

M

(
α |y|
|µ|

)M)
, for y → −∞,

exp

(
− 1
M

(
α |y|
|µ|

)M)
, for y →∞,

(K.27)

ii) For µ < 0 we obtain

PN (δv) ∼ |y|β̄−
3
2

+M
2 ×


exp

(
− 1
M

(
α |y|
|µ|

)M)
, for y → −∞,

exp

(
−2|µ||y| − 1

M

(
α |y|
|µ|

)M)
, for y →∞.

(K.28)
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Appendix L - Asymmetric Distributions: Square-Root Model

In chapter 6 we found an asymmetric model for the distribution of velocity increments in

turbulence. This distribution is written in terms of a bivariate function namely the Meijer

G-function. There, we assumed the conditional PDF of velocity increments to be a Gaussian

distribution with conditional average proportional to ε, this is 〈δv|ε〉 ∼ ε and with condi-

tional variance σ2
δv|ε ∼ ε. An alternative model is found if we consider for example that the

conditional average of the velocity increments is proportional to the square root of ε, that

is 〈δv|ε〉 ∼
√
ε, and variance σ2

δv|ε ∼ ε. Like in the models of chapter 6, the particular case

with a scale N = 1 can be written using a known function, at less for the case in which we

use an inverse gamma class for the distribution of ε. To show this, let us write the marginal

distribution of velocity increments P (δvr) as

P (δvr) =

∞∫
0

1√
2πεr

exp

[
−
(
δvr − µ(

√
εr − 〈

√
εr〉)

)2
2εr

]
f(εr)dεr. (L.1)

Replacing the distribution f(εr) by an inverse gamma function like (5.51), the integral above

can be written as

P (δvr) =
e−µ

2/2

√
2π

(ε0β)β+1

Γ(β + 1)

∞∫
0

ε−β−5/2
r exp

[
−
(
(δvr + µ〈√εr〉)2 + 2βε0

)
2εr

]
exp

[
µ(δvr + µ〈√εr〉)√

εr

]
dεr.

(L.2)

This integral can be solved by using the following property:
∞∫

0

xν−1 eβx
2
e−γxdx = (2β)−ν/2Γ(ν)e

γ2

8βD−ν

(
γ√
2β

)
, (L.3)

where Dν is the parabolic cylinder function , and the constants β and ν must satisfy the

conditions Re(β) > 0 and Re(ν > 0), respectively [Gradshteyn and Ryzhik, 1996]. Thus,

defining the variables x = 1/εr and y = δvr + µ〈√εr〉, and using property (L.3), the solution

for (L.2) becomes

P (y) =

√
2

π
e−µ

2/2 Γ(2β + 3)(ε0β)β+1

Γ(β + 1)

(
y2 + 2βε0

)− (2β+3)
2 e

µ2y2

4(y2+2βε0)D−(2β+3)

(
−µy√

2(y2 + 2βε0)

)
.

(L.4)

Therefore, under the assumptions considered above we obtain a new PDF for the velocity

increments given by (L.4). The integral (L.1) for the general case with N scales can be

written again in terms of a bivariate Fox H-function as shown in the next section.
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Appendix L.1 - General Case with N Scales

Gamma inverse class

Replacing the distribution f(εr) by the inverse gamma class distribution with N scales

(5.51) in the integral (L.1), we can write this as an integral involving the product of three Fox

H-functions. Using the properties in Appendix H we can write (L.1) in the form

PN (y) =
Ω e−

µ2

2

√
2πε0 ω

∞∫
0

HN,0
0,N

[
ε0 ω

εN

∣∣∣∣ (−,−)(
βββ + 5

2
5
2
5
2 ,111
)]H1,0

0,1

[
y2

2 εN

∣∣∣∣(−,−)

(0, 1)

]
H1,0

0,1

−µ√ y2

εN

∣∣∣∣(−,−)

(0, 1)

 dεN .
(L.5)

where Ω =
∏N
i=1

1
Γ(βi+1) , w =

∏N
i=1 βi and βββ = (β1, . . . , βN ). Applying the property (H.15),

the distribution PN (y) can be written in terms of a bivariate Fox H-function as

PN (y) =
Ω e−

µ2

2

√
2πε0 ω

HNHNHN

 y2

2 ε0 ω
,−µ

√
y2

ε0 ω

 , (L.6)

where we have used the notation HNHNHN (x, y) to represent the bivariate Fox H-function:

HNHNHN (x, y) = H0,N :1,0:1,0
N,0:0,1:0,1

[
(−βββ − 1

2
1
2
1
2 ; 111, 111

222) : (−,−) : (−,−)

(−;−) : (0, 1) : (0, 1)

∣∣∣∣∣x, y
]
. (L.7)

Gamma class

Like in the previous case, if we substitute the distribution f(εr) in (L.1) by a generalized

gamma distribution in the (5.54), we can write again this as a product of three H-functions.

After using some properties of the fox H-function and simple calculations, we get the integral

PN (y) =
Ω e−

µ2

2

√
2π

(
ω

ε0

) 3
2

∞∫
0

HN,0
0,N

[
ω εN
ε0

∣∣∣∣ (−,−)(
βββ − 3

2
3
2
3
2 ,111
)]H0,1

1,0

[
2 εN
y2

∣∣∣∣ (1, 1)

(−,−)

]
H0,1

1,0

[
− 1

µ

√
εN
y2

∣∣∣∣ (1, 1)

(−,−)

]
dεN .

(L.8)

where w =
N∏
j=1

βj , Ω = 1/
N∏
j=1

Γ(βj) and βββ = (β1, . . . , βN ). Using the property (H.15), integral

above gives

PN (y) =
Ω e−

µ2

2

√
2π

√
ω

ε0
HNHNHN

(
2 ε0
y2 ω

,− 1

µ

√
ε0
y2 ω

)
, (L.9)

where now HNHNHN (x, y) denotes the Fox H-function

HNHNHN (x, y) = H0,N :0,1:0,1
N,0:1,0:1,0

[
(−βββ + 3

2
3
2
3
2 ; 111, 111

222) : (1, 1) : (1, 1)

(−;−) : (−,−) : (−,−)

∣∣∣∣∣x, y
]
. (L.10)


