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Abstract
Dynamic Ensemble Selection (DES) techniques aim to select only the most compe-

tent classifiers for the classification of each test sample. The key issue in DES is how to
estimate the competence of classifiers for the classification of each new test sample. Most
DES techniques estimate the competence of classifiers using a given criterion over the set of
nearest neighbors of the test sample in the validation set, these nearest neighbors compose
the region of competence. Despite achieving interesting results in several applications, DES
techniques can select locally incompetent classifiers for the classification of a test sample
because they do not consider di�erent types of regions of competence: safe regions (neigh-
borhood with homogeneous class labels), indecision regions (neighborhood surrounding
classes boundaries), and noisy regions (with at least one sample from one class in an area
of another class). In this work, we propose two dynamic selection frameworks for two-class
problems: Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES) and En-
hanced Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES++). Given
a test sample, FIRE-DES decides if it is located in an indecision region and, if so, prunes
the pool of classifiers, pre-selecting classifiers with decision boundaries crossing the region
of competence of the test sample (if such classifier exists), then, it uses a DES technique
to select the most competent classifiers from the pre-selected classifiers. FIRE-DES++ is
an improvement of FIRE-DES that uses prototype selection to remove noise and reduce
the overlap of classes in the validation set; defines the region of competence using an equal
number of samples from each class, avoiding selecting a region of competence with samples
of a single class; applies the pre-selection of classifiers crossing the region of competence of
the test sample (if such classifiers exist); and finally, uses a DES technique to select the
most competent classifiers from the pre-selected classifiers. Experiments were conducted
using FIRE-DES and FIRE-DES++ with 8 di�erent dynamic selection techniques on
40 classification datasets. Experimental results show that FIRE-DES and FIRE-DES++
increase the classification performance of all DES techniques considered in this work,
with FIRE-DES++ outperforming FIRE-DES in 6 out of the 8 DES techniques, and
FIRE-DES++ outperforming state-of-the-art DES techniques.

Keywords: Ensemble learning. Dynamic Classifier Selection. Dynamic Ensemble Selec-
tion.



Resumo
Técnicas de Seleção Dinâmica de Ensembles (DES) tem objetivo de selecionar os

classificadores mais competentes para classificação de cada padrão de teste. A questão
central em DES é como estimar a competência de classificadores para classificação de um
padrão de teste. A maioria das técnicas de DES estimam a competência dos classificadores
usando algum critério sobre o conjunto de vizinhos mais próximos do padrão de teste no
conjunto de validação, estes vizinhos mais proximos compõem a região de competência.
Apesar de alcançar resultados interessantes em várias aplicações, técnicas de DES podem
selecionar classificadores localmente incompetentes para a classificação de um padrão de
teste pelo fato de não considerar diferentes tipos de região de competência: regiões seguras
(vizinhança com amostras de classes homogêneas), regiões de indecisão (vizinhança nas
fronteiras de classes), regiões ruidosas (vizinhança com pelo menos um padrão de uma
classe na área de uma outra classe). Neste trabalho, nós propomos dois frameworks de
seleção dinâmica para problemas de classificação binários: Frienemy Indecision Region
Dynamic Ensemble Selection(FIRE-DES), and Enhanced Frienemy Indecision Region
Dynamic Ensemble Selection (FIRE-DES++). Dado um padrão de teste, FIRE-DES
verifica se o padrão está localizado em uma região de indecisão, se sim, FIRE-DES poda
o conjunto de classificadores, pre-selecionando classificadores com fronteiras de decisão
cruzando a região de competência do padrão de teste (se houver classificadores que
atendam este critério), e então, FIRE-DES usa uma técnica de DES para selecionar os
classificadores mais competentes dentre os classificadores pre-selecionados. FIRE-DES++
é uma versão melhorada do FIRE-DES que usa seleção de protótipos para remover ruidos e
reduzir a sobreposição de classes no conjunto de validação; define a região de competência
usando um número equivalente de amostras de cada classe, evitando a seleção de uma
região de competência composta de padrões pertencentes a uma única classe; aplica a pre-
seleção de classificadores cruzando a região de competência do padrão de teste (se houver
classificadores que atendam este critério); e finalmente, usa uma técnica de DES para
selecionar os classificadores mais competentes dentre os classificadores pre-selecionados.
Foram realizados experimentos usando FIRE-DES e FIRE-DES++ com 8 técnicas de DES
diferentes em 40 bases de dados de classificação. Os resultados experimentais mostram que
FIRE-DES e FIRE-DES++ aumentam a performance de classificação de todas as técnicas
de DES consideradas neste trabalho, com FIRE-DES++ sendo superior a FIRE-DES com
6 dentre as 8 técnicas de DES utilizadas, e FIRE-DES++ sendo superior ao estado da
arte em DES.

Palavras-chave: Aprendizagem baseada em Conjunto de Classificadores. Seleção Dinâmica
de Classificadores. Seleção Dinâmica de Conjuntos de Classificadores.
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1 INTRODUCTION

Multiple Classifiers Systems (MCS) combine classifiers expecting that several clas-
sifiers combined outperform any individual base classifier in classification performance.
Recently, MCS have been widely presented as an alternative for increasing classification
performance of several machine learning tasks and competitions (SINGH; SINGH, 2005)
(CRUZ et al., 2013) (BATISTA; GRANGER; SABOURIN, 2010) (JAHRER; TÖSCHER;
LEGENSTEIN, 2010) (BHATTACHARYYA et al., 2011) (TORRE et al., 2015) (PUU-
RULA; READ; BIFET, 2014) (KOREN, 2009) (BELL; KOREN, 2007). MCS has also
been widely studied as a promising approach for learning from challenging datasets such
as imbalanced datasets (GALAR et al., 2012) and noisy datasets (SÁEZ et al., 2013).

MCS has three general phases (BRITTO; SABOURIN; OLIVEIRA, 2014): (1)
Generation, in which the training set is used to generate a pool of classifiers; (2) Selection,
in which a subset of the pool of classifiers is selected to perform the classification, we refer
to this subset of classifiers as ensemble of classifiers; (3) Combination, in which the final
decision is made based on the predictions of the classifiers.

Figure 1 shows the general phases of MCS (BRITTO; SABOURIN; OLIVEIRA,
2014): generation, selection and combination.

Generation CombinationSelection

Figure 1 – MCS general phases: generation, selection and combination. (Adapted from
(BRITTO; SABOURIN; OLIVEIRA, 2014)).

In the generation phase, a pool of classifiers is generated using the training set.
The goal of ensemble generation techniques is to generate an ensemble of classifiers that is
both accurate and diverse. Diverse classifiers are classifiers that complement each other
in the sense that they are specialized in di�erent local regions of the feature space (they
misclassify di�erent samples), and therefore, the combination of their prediction is likely to
outperform any of them individually in classification accuracy (KUNCHEVA; WHITAKER,
2003) (TANG; SUGANTHAN; YAO, 2006). There are several ensemble generation methods
proposed in the literature such as Bagging (BREIMAN, 1996), Random Subspace (HO,
1998), AdaBoost (FREUND; SCHAPIRE, 1995), Random Forest (BREIMAN, 2001), and
Rotation Forest (RODRIGUEZ; KUNCHEVA; ALONSO, 2006).
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In the selection phase, a subset of competent classifiers is selected from the pool
of classifiers. A classifier is considered "competent" in a given local region if that local
region is its area of expertise. The selection phase can be either static or dynamic. Static
selection (GIACINTO; ROLI, 2001a) (PARTALAS; TSOUMAKAS; VLAHAVAS, 2008)
(SANTOS; SABOURIN; MAUPIN, 2006) (LU et al., 2010) techniques select globaly
competent classifiers in the training stage, and this selection is final for all test samples.
Dynamic selection (CRUZ; SABOURIN; CAVALCANTI, 2018) (BRITTO; SABOURIN;
OLIVEIRA, 2014) (KO; SABOURIN; JR, 2008) (GIACINTO; ROLI, 2000) (CAVALIN;
SABOURIN; SUEN, 2013) (XIAO; HE, 2009a) (XIAO et al., 2010a) (XIAO et al., 2012)
(CRUZ et al., 2015) (CRUZ; SABOURIN; CAVALCANTI, 2017b) (SANTOS; SABOURIN;
MAUPIN, 2008) (GIACINTO; ROLI, 2001b) (SANTANA et al., 2006) (GIACINTO; ROLI,
1999) (WOODS; KEGELMEYER; BOWYER, 1997) (WOLOSZYNSKI; KURZYNSKI,
2011) (CRUZ; CAVALCANTI; REN, 2011) (CRUZ; SABOURIN; CAVALCANTI, 2017a)
(CAVALIN; SABOURIN; SUEN, 2012) techniques select locally competent classifiers in
the testing stage, and a di�erent classifier (or ensemble of classifiers) is selected for each
test sample. A dynamic selection solution can be: Dynamic Classifier Selection (DCS)
(GIACINTO; ROLI, 2000), when only the best classifier is selected, or Dynamic Ensemble
Selection (DES) (KO; SABOURIN; JR, 2008), when one or more competent classifiers are
selected. Because DCS is a particular case of DES, in this work, we refer to all dynamic
selection techniques as DES techniques.

In the combination phase (also known as integration phase or fusion phase), the
predictions of classifiers for a given test sample are combined into a single prediction.
There are several approaches for combining the predictions of classifiers such as stacking
classifiers (DéEROSKI; éENKO, 2004), mixtures of local experts (JACOBS et al., 1991),
and, most commonly, applying rules such as majority vote, mean rule, median rule, min
rule and max rule to probabilistic models (KITTLER et al., 1998).

1.1 Problem Statement
The rationale behind DES techniques is that di�erent classifiers are competent

(or "experts") in di�erent local regions of the feature space (ZHU; WU; YANG, 2004),
meaning no classifier is competent for the classification of all test samples, hence, the idea
of selecting classifiers for the classification of each new test sample.

The crucial issue in DES is how to estimate the level of competence of a base
classifier for the classification of a new test sample. Most DES methods evaluate the
competence of base classifiers using some criterion on the region of competence of the
test sample xquery, usually defined by as K nearest neighbors of xquery in the validation
set DSEL. There are di�erent criteria of competence estimation such as local accuracy
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(WOODS; KEGELMEYER; BOWYER, 1997), probabilities (GIACINTO; ROLI, 1999),
ranking (SABOURIN et al., 1993), diversity (SANTANA et al., 2006), ambiguity (SANTOS;
SABOURIN; MAUPIN, 2008), oracle (KO; SABOURIN; JR, 2008), and meta-learning
(CRUZ et al., 2015).

Figure 2 shows three types of regions of competence: safe regions, indecision
regions, and noisy regions. Safe regions of competence are regions composed of safe samples
(neighborhood with homogeneous class labels). Indecision regions of competence are regions
composed of borderline samples (samples surrounding classes boundaries) from di�erent
classes. Noisy regions of competence are regions that contain noisy samples (samples from
one class label in an area of another class label).

x1 x2 x3

Figure 2 – Three test samples x1, x2, and x3 with a safe region, indecision region, and
noisy region, respectively. N’s are test samples, safe samples are labeled as S,
borderline samples are labeled as B, and noisy samples labeled as N. The dashed
line shows the decision boundary of classes, and the classes are represented
by the markers "¶" and "⌅" (Adapted from (OLIVEIRA; CAVALCANTI;
SABOURIN, 2017) and (GARCÍA; LUENGO; HERRERA, 2015)).

A problem arises with the fact that DES techniques do not take into account the
type of region of competence (that is, the type of samples that compose the region of
competence) when estimating the competence of classifiers for the classification of a test
sample.

In the example from Figure 2, the test sample x1 is located in a safe region, so
classifiers that classify all samples as being from the same class "¶" are expected to be
competent. The test sample x2 is located in an indecision region, so, classifiers that classify
all sample as being from the same class (either "¶" or "⌅") are not as competent as
classifiers that can distinguish samples from di�erent classes in this region. The test sample
x3 is located in a noisy region, so, classifiers that "correctly classify noisy samples" can be
the result of overfitting and are not as competent as classifiers that classify all samples
(except the noisy sample) correctly.

The "No Free Lunch" theorem (CORNE; KNOWLES, 2003) stipulates that there is
no algorithm that is better than all others over all possible classes of problems. Analogously,
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we can say that there is no single criterion to select classifiers is better than all others over
all possible types of regions of competence. However, DES techniques from the literature
seem to ignore this.

1.2 Objectives
The main objective of this thesis is to develop a dynamic selection framework

that takes into account di�erent types of regions of competence (especially indecision
regions, where most misclassifications occur) and the decision boundaries of the base
classifiers (whether they classify all samples to the same class or not), improving the
classification performance of DES techniques from the literature. Since ensemble learning
has been considered a solution for dealing with imbalanced datasets (GALAR et al., 2012)
an additional objective is that the proposed framework should be able to improve the
performance of DES techniques on such datasets.

To acomplish those objectives, in this thesis we propose two DES frameworks:
Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES) and Enhanced
Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES++). FIRE-DES
is a DES framework that, given a test sample, evaluates if the test sample is located in
an indecision region, if so, it uses the Dynamic Frienemy Pruning (DFP) to pre-select
classifiers with decision boundaries crossing the region of competence (if such classifiers
exist), and then, uses a DES technique to perform the final selection of classifiers for the
classification of that test sample.

FIRE-DES++ is an enhanced version of FIRE-DES that, given a test sample, it
removes noise from the validation set (tackling the noisy regions), defines the region of
competence of the test sample selecting an equal number of samples from each class from
the validation set (tackling safe regions), and applies the DFP to pre-select classifiers
with decision boundaries crossing the region of competence of the test sample (if such
classifiers exist). Finally, FIRE-DES++ uses a DES technique to perform the final selection
of classifiers for the classification of that test sample.

1.3 Contributions
The FIRE-DES and FIRE-DES++ frameworks are the main contributions of

this thesis. These frameworks have led to the following publications (Chapter 3 and 4,
respectively):

• OLIVEIRA, D. V.; CAVALCANTI, G. D.; SABOURIN, R. Online pruning of
base classifiers for Dynamic Ensemble Selection. Pattern Recognition, [S.l.], v.72,
p.44–58, 2017.
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• OLIVEIRA, D. V.; CAVALCANTI, G. D.; SABOURIN, R.; CRUZ R. M. O.; FIRE-
DES++: Enhanced online pruning of base classifiers for dynamic ensemble selection.
Submitted to Pattern Recognition, 2018.

Three additional contributions were made in the course of this doctoral work: (1)
Two dynamic selection techniques named K-Nearest Oracles Borderline (KNORA-B) and
K-Nearest Oracles Borderline Imbalanced (KNORA-BI). (2) Two ensemble generation
techniques named Iterative Classifier Selection Bagging (ICS-Bagging) and SMOTE Itera-
tive Classifier Selection Bagging (SICS-Bagging). (3) One prototype generation technique
named Evolutionary Adaptive Self-Generation Prototypes (EASGP). These additional
contributions have led to the following publications (Appendix A, B, C, respectively):

• OLIVEIRA, D. V. et al. K-nearest oracles borderline dynamic classifier ensemble
selection. Accepted to IJCNN, 2018.

• OLIVEIRA, D. V. et al. A bootstrap-based iterative selection for ensemble genera-
tion. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS
(IJCNN). Anais. . . [S.l.: s.n.], 2015. p.1–7. (OLIVEIRA et al., 2015)

• OLIVEIRA, D. V. et al. Evolutionary Adaptive Self-Generating Prototypes for
imbalanced datasets. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL
NETWORKS (IJCNN). Anais. . . [S.l.: s.n.], 2015. p.1–8. (OLIVEIRA et al., 2015)

1.4 Organization
This thesis is organized into five chapters. Figure 3 presents this thesis overview.

Boxes are chapters and appendixes, and arrows indicate the flow of the thsis (solid arrows
indicate required dependencies, dashed arrows indicate suggested dependencies). Chapters
inside the dotted region represent articles that were published or submitted during the
development of this thesis, chapters inside the blue box are contribution on the dynamic
selection topic, and chapters inside the red box are contributions on other machine learning
topics.

The thesis starts with Chapter 1 (current chapter) presenting the introduction of
the thesis. Chapter 2 presents a background of dynamic selection techniques for a better
understanding of the following chapters.

Chapter 3 introduces the FIRE-DES framework. First, a brief introduction is
presented, followed by a formalized problem statement. Then, the FIRE-DES framework
is presented, and its e�ectiveness is demonstrated through experiments with benchmark
datasets using 9 DES approaches. Finally, the remarks of FIRE-DES are listed as the



Chapter 1. INTRODUCTION 25

Chapter 1
Introduction

Chapter 2
Background

Chapter 3
Online Pruning of Base 
Classifiers for Dynamic 

Ensemble Selection

Chapter 4
FIRE-DES++: Enhanced 

Frienemy Indecision 
Region Dynamic 

Ensemble Selection

Appendix A:
K-Nearest Oracles 

Borderline Dynamic 
Classifier Ensemble 

Selection

Chapter 5
General Conclusion

Appendix B:
A Bootstrap-Based 

Iterative Selection for 
Ensemble Generation

Appendix C:
Evolutionary Adaptive 

Self-Generating 
Prototypes for 

Imbalanced Datasets

Dynamic Selection Contributions Other Contributions

Figure 3 – Thesis overview. The boxes are chapters and appendixes, and the arrows are
the flow of the thesis. Solid arrows indicate dependencies between the chapters
and apendixes. Dashed arrows indicate suggested readings either for a better
comprehension of the thesis. Chapters inside the dotted box represent articles
that were published or submitted during the development of this thesis, chapters
inside the blue box are contribution on the dynamic selection topic, and chapters
inside the red box are contributions on other machine learning topics.

chapter is concluded. The contents of this chapter have been published in the Pattern
Recognition journal (OLIVEIRA; CAVALCANTI; SABOURIN, 2017).

In Chapter 4, FIRE-DES++ is introduced. The chapter begins with a brief intro-
duction, followed by a detailed problem statement presenting two drawbacks of FIRE-DES:
(1) FIRE-DES mistakes noisy regions for indecision regions, and (2) FIRE-DES only
applies the DFP to test samples classified as being located in indecision regions, and
not to test samples classified as being located in safe regions (even if they are located
close to the borders of classes). Then, FIRE-DES++ is presented, followed by a series of
experiments that demonstrate that FIRE-DES++ outperforms FIRE-DES with statistical
confidence. Finally, the remarks of FIRE-DES++ over FIRE-DES are listed as the chapter
is concluded. The contents of this chapter have been submitted to the Pattern Recognition
journal.

In Chapter 5, a general conclusion and future works are presented.
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In addition, Appendix A, B, and C presents other contributions of this doctoral work.
Appendix A presents two new dynamic selection techniques: K-Nearest Oracles Borderline
(KNBORA-B) and K-Nearest Oracles Borderline Imbalanced (KNORA-BI). The problem
statement from FIRE-DES (Chapter 3) derived from the study in this appendix. The
contents of this appendix have been accepted for publication in the Internacional Joint
Conference of Neural Networks (IJCNN) 2018.

Appendix B presents two new ensemble generation techniques: Iterative Classifier
Selection Bagging (ICS-Bagging) and SMOTE Iterative Classifier Selection Bagging (SICS-
Bagging). ICS-Bagging and SICS-Bagging generate a pool of classifiers by generating
several classifiers for each new classifier to be added to the pool, and including only the one
that maximizes the global competence of the pool. Despite being an ensemble generation
work, the techniques proposed in this appendix served as inspiration for selecting competent
classifiers able to cope with the class imbalance problem. The contents of this appendix
have been published in the proceedings of the Internacional Joint Conference of Neural
Networks (IJCNN) 2015.

Appendix C presents a new Prototype Selection (PS) technique: Evolutionary
Adaptive Self-Generating Prototype for Imbalanced Datasets (EASGP). EASGP is an
"evolution" of the Adaptive Self-Generating Prototypes (ASGP) (OLIVEIRA et al., 2012)
and Self-Generating Prototypes (SGP) (FAYED; HASHEM; ATIYA, 2007). Given a
training set, EASGP generates a smaller training set by generating new samples from
the existing ones. It uses the SGP as its initial process, followed by an iterative merge
and evolutionary pruning. The contribution in this appendix is orthogonal to the main
contributions of this thesis, however, we include Appendix C in this thesis as this work
was the first of this doctoral work, serving as an inspiration for KNORA-BI (when keeping
minority class samples) and later FIRE-DES. The contents of this appendix have been
published in the proceedings of the Internacional Joint Conference of Neural Networks
(IJCNN) 2015.
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2 BACKGROUND

Dynamic selection (DS) consist in selecting base classifiers online for each new
test sample to be classified. Given a test sample xquery and a pool of classifiers C, DS
techniques find a subset of C composed of competent classifiers (C Õ) for the classification
of xquery.

The rationale behind DS techniques resides in the fact that di�erent classifiers are
competent (or "experts") in di�erent local regions of the feature space (ZHU; WU; YANG,
2004). That is to say, no classifier is competent for the classification of all test samples,
hence, selecting the most competent classifier (or an ensemble of the most competent
classifiers) for the classification of each test sample is an interesting approach.

The crucial issue in DS is how to estimate the level of competence of a base classifier
for the classification of a new test sample (CRUZ et al., 2015). Most DS techniques evaluate
the competence of base classifiers using some criterion on the region of competence of the
test sample.

In general, DS techniques have three main steps when classifying a test sample
(CRUZ; SABOURIN; CAVALCANTI, 2018) (Figure 4):

1. region of competence definition, in which the local region o� the test sample is
defined for competence level estimation.

2. selection criteria, in which the competence level of the base classifiers are estimated.

3. selection approach, in which the classifier (DCS) or ensemble of classifiers (DES)
are selected based on their competence level.

Each of the phases are detailed in the following sections.
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2.1 Region of Competence Definition
The region of competence of a test sample is the local region of the feature space

where the test sample is located that is used to evaluate the competence of classifiers for
the classification of the test sample. Several studies (CRUZ; SABOURIN; CAVALCANTI,
2017a) (CRUZ; SABOURIN; CAVALCANTI, 2016) (ROY et al., 2018) demonstrate that
DS techniques are very sensitive to the distribution of the region of competence, in fact,
many works in DS focus better defining the region of competence as a way of improving the
performance of DS techniques (CRUZ; CAVALCANTI; REN, 2011) (DIDACI; GIACINTO,
2004) (CRUZ; SABOURIN; CAVALCANTI, 2017a) (LIMA; LUDERMIR, 2013) (LIMA;
SERGIO; LUDERMIR, 2014) (ROY et al., 2018).

Usually, DS techniques define the region of competence using either a K-Nearest
Neighbors approach, a clustering approach, a potential function approach, or a decision
space approach. All these approaches require a set of labeled samples named validation
set (DSEL), where the region of competence is defined.

2.1.1 K-Nearest Neighbors

DS techniques that use the KNN approach to define the region of competence rely
on the assumption that a classifier that is competent for the classification of a test sample
is also competent for the classification of samples that are similar to the test sample. For
this reason, given a test sample xquery, these DS techniques define the region of competence
(�) as the K-nearest neighbors of xquery (samples that are most similar to xquery) in the
validation set.

Di�erent versions of the KNN algorithm have been used to define the region of
competence. In (CRUZ; SABOURIN; CAVALCANTI, 2016), the authors used the Adaptive
K-Nearest Neighbors (AKNN) (WANG; NESKOVIC; COOPER, 2007), which calculates
the distance of a test sample to a sample xa as the regular distance (i.e. Euclidean)
divided by the distance between xa and its nearest sample from a di�erent class. Using the
AKNN, the region of competence tends to be composed of samples in the classes centers,
minimizing the probability of selecting a noisy sample.

In (MENDIALDUA et al., 2015), the authors used the K-Nearest Neighbors Equality
(KNNE) (SIERRA et al., 2011) to define the region of competence. The KNNE is a KNN
extension that treats the classes independently by selecting the K nearest neighbors from
each class and uses a weighted majority vote (the closest to the test sample the more
relevant the vote). The results in (MENDIALDUA et al., 2015) show that using the KNNE
is an interesting approach when DS techniques consider the distances of the test sample
to each sample in the region of competence when estimating the competence of classifiers,
otherwise, using KNN achieved better results.
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In (DIDACI; GIACINTO, 2004), Didaci and Giacinto investigated the choice of
neighbourhood adaptive size, neighbourhood shape, and suitable distance metric and
concluded that tunning parameters can lead to classification performance improvement of
DS techniques.

2.1.2 Clustering

DS techniques that use the clustering approach (KUNCHEVA, 2000) (LIN et al.,
2014) (SOARES et al., 2006) (SOUTO et al., 2008) (SANTANA et al., 2006) to define
the region of competence rely on the assumption that a classifier that is competent for
the classification of a cluster (over all samples in that cluster), is competent for the
classification of test samples located in the local region defined by that cluster.

In training stage, these techniques apply a clustering technique to the validation
set DSEL and estimate the competence of base classifiers for each clusters (using the set
of samples in each cluster). In testing stage, given a test sample xquery, the classifier (or
ensemble of classifiers) that is competent in the nearest cluster of xquery is selected for the
classification of xquery.

DS techniques that use the clustering approach to define the region of competence
are usually faster than DS techniques that use the KNN approach. The reasons for such
are: (1) instead of calculating the distance between the test sample and all samples in
DSEL, DS techniques that use the clustering approach calculate the distance between the
test sample and the centroids of each cluster to define the region of competence (nearest
cluster); and (2) instead of estimating the competence of the classifiers in the pool after
defining the region of competence, the competence level of each classifier for all clusters
are estimated during training stage.

2.1.3 Potential Function

DS techniques that use a potential function model define the region of competence
as a weighted validation set (DW

SEL
). The weights, influence of each sample in the validation

set, are calculated using a potential function that gives the higher weights to samples
nearest to the test sample, and lower weights to samples distant from the test sample.
Most techniques use a gaussian potential function (Equation 2.1):

K(xi, xj) = exp(≠dist(xi, xj)2) (2.1)

where K is the potential function, xi and xj are a pair of samples (a test sample and a
sample from DSEL), and dist is the Euclidean distance between xi and xj.
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There are several DS techniques that use a potential function model to define
the region of competence: Dynamic Ensemble Selection based on Kullback-Leibler diver-
gence (DES-KL) (WOLOSZYNSKI et al., 2012), Random Reference Classifier (RRC)
(WOLOSZYNSKI; KURZYNSKI, 2011), and DS techniques that use exponential and
logarithmic functions (WOLOSZYNSKI; KURZYNSKI, 2009).

This approach for region of competence definition has been proven very e�ective,
considering the RRC technique achieved the third best classification performance in (CRUZ;
SABOURIN; CAVALCANTI, 2018). However, a major drawback for such techniques is
that the computational complexity for selecting classifiers for the classification of each new
test sample is high, since the competence of each base classifier in the pool of classifiers
has to be esimated using the entire DSEL instead of only a subset of DSEL (either a cluster
or a set of K nearest neighbors).

2.1.4 Decision Space

DS techniques that estimate the region of competence of classifiers using the
decision space approach transform the test sample (xquery) and the validation set (DSEL)
into output profiles. An output profile is a vector composed of predictions of the classifiers
in the pool of classifiers either (hard decision (HUANG; SUEN, 1995), or probabilities
(CAVALIN; SABOURIN; SUEN, 2013) (CAVALIN; SABOURIN; SUEN, 2012) (BATISTA;
GRANGER; SABOURIN, 2011)). Then, the samples in DSEL with the most similar output
profiles to the output profile of xquery are selected to compose the region of competence of
xquery.

Examples of techniques that use the decision space approach to define the region
of competence are: Multiple Classifier Behavior (MCB) (GIACINTO; ROLI, 2001b) K-
Nearest Output Profile (KNOP) (CAVALIN; SABOURIN; SUEN, 2013), and META-DES
(CRUZ et al., 2015).

2.2 Selection Criteria
There are several selection criteria to estimate the competence of classifiers for the

classification of a test sample given its region of competence. In (BRITTO; SABOURIN;
OLIVEIRA, 2014), the authors organized DS selection criteria in two groups: individual-
based and group-based. Individial-based techniques use the individual performance of base
classifiers to estimate their level of competence (the competence of one classifier depends
only on its own performance).
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2.2.1 Individual-Based

Individial-based techniques can be categorized into di�erent subgroups according
to the approach that is used to measure the competence of base classifiers such as local
accuracy (WOODS; KEGELMEYER; BOWYER, 1997), probabilities (GIACINTO; ROLI,
1999), ranking (SABOURIN et al., 1993), oracle (KO; SABOURIN; JR, 2008), behavior
(GIACINTO; ROLI, 2001b), complexity (BRUN et al., 2016), and meta-learning (CRUZ
et al., 2015).

• Accuracy: Accuracy-based measure DS techniques estimate the accuracy of base
classifiers in the region of competence of the test sample and selects the best (most
locally accurate) classifier. (most locally accurate) classifier. This accuracy is the
percentage of samples correctly classified (KO; SABOURIN; JR, 2008). Examples of
accuracy based DS techniques are Overall Local Accuracy (OLA) and Local Class
Accuracy (LCA) (WOODS; KEGELMEYER; BOWYER, 1997).

• Probabilistic: Probabilistic-based measure DS techniques are similar to accuracy-
based measures techniques, but they use probabilistic representations to better select
the most competent classifier (not only the most accurate, but the most confident
among the most accurate).

• Rank: Rank-based measure DS techniques exploit a rank of the base classifiers in
the pool of classifiers. One example of rank-based technique is the Modified Classifier
Rank (MCR) (SABOURIN et al., 1993) (WOODS; KEGELMEYER; BOWYER,
1997) that creates a ranking of the base classifiers using the number of correctly
classified samples in the region of competence of the test sample (the more samples,
the best the ranking). The classifier with best ranking in the region of competence
of a test sample is selected to classify the test sample.

• Oracle: Oracle-based measure DS techniques use the concept or oracle (the one
who may provide wise concil) to select competent classifiers (BRITTO; SABOURIN;
OLIVEIRA, 2014). These oracles can be either a classifier (KUNCHEVA; RO-
DRIGUEZ, 2007) or the samples in the region of competence (KO; SABOURIN; JR,
2008).

• Behavior: Behavior-based measure DS techniques perform a behavior analysis using
the classifier outputs as information sources (KO; SABOURIN; JR, 2008). The most
well known example that uses the behavior-based measure is Multiple Classifier
Behavior (MCB) (GIACINTO; ROLI, 2001b).

• Complexity Complexity-based measure DS techniques takes into account the data
complexity to dynamically select competent classifiers for the classification of each
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new test sample. In (BRUN et al., 2016), the authors proposed the Dynamic Selection
on Complexity (DSOC), a complexity-based DS technique that selects a base classifier
that (1) has high classification performance in the local region of the test sample; and
(2) was trained using samples that presents a distribution with similar complexity
measures (i.e. overlap between classes).

• Meta-learning: Meta-learning-based measure DS techniques treats the dynamic
selection problem as a meta-problem. For each new test sample, these techniques use
a meta-classifier to decide if, given a test sample (in the form of its meta-features)
and its region of competence (their meta-features), it decides if a given classifier is
competent for the classification of that test sample. Examples of such techniques
are META-DES (CRUZ et al., 2015), META-DES.H (CRUZ; SABOURIN; CAV-
ALCANTI, 2015b), and META-DES.Oracle (META-DES.O) (CRUZ; SABOURIN;
CAVALCANTI, 2017b). Despite its complexity, meta-learning techniques achieved
the best classification performance in (CRUZ; SABOURIN; CAVALCANTI, 2018),
proving to be a promising approach for for DS.

2.2.2 Group-Based

Group-based techniques take into account the predictions of other classifiers in the
pool when estimating the competence of a base classifier. The idea behind these techniques
is not to select the most individually competent classifiers, but rather the most relevant
classifiers (if a base classifier is relevant given the other pre-selected classifiers).

Group-based techniques can be categorized into three subgroups: diversity (SAN-
TANA et al., 2006) (SOARES et al., 2006) (SANTOS; SABOURIN; MAUPIN, 2009),
ambiguity (SANTOS; SABOURIN; MAUPIN, 2007), and data handling (XIAO et al.,
2012),

• Diversity: Dynamic-based measure DS techniques aim to select a set of classifiers
that are both accurate and diverse. In (SANTANA et al., 2006), the authors proposed
the DS-KNN, in which the N1 most accurate classifiers are selected, and then the
N2 most diverse classifiers are selected from the most accurate. This approach relies
on the assumption that selecting classifiers that are diverse will lead to a good
classification performance.

• Ambiguity: Ambiguity-based measure DS techniques are similar to diversity-based,
but they use ambiguity metrics instead of diversity metrics. The idea is to select from
a set of accurate classifiers an ensemble that minimizes the ambiguity in the ensemble
(SANTOS; SABOURIN; MAUPIN, 2007) (SANTOS; SABOURIN; MAUPIN, 2008).
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• Data handling: Data handling-based measure DS techniques use di�erent group
information. In (XIAO; HE, 2009b), the authors used an adaptive ensemble selection
based on the group method of data handling theory (GMDH) (IVAKHNENKO,
1970). The idea is to select an ensemble with optimal complexity (weights) for the
classification of each new test sample.

2.3 Selection Approach
There are two selection approaches for DS techniques: Dynamic Classifier Selection

(DCS) or Dynamic Ensemble Selection (DES).

DCS techniques select the most competent classifier for the classification of each
new test sample. Examples of DCS techniques are: Overall Local Accuracy (OLA)
(WOODS; KEGELMEYER; BOWYER, 1997), Local Class Accuracy (LCA) (WOODS;
KEGELMEYER; BOWYER, 1997), a Priori and a Posteriori (GIACINTO; ROLI, 1999),
and Multiple Classifier Behavior (MCB) (GIACINTO; ROLI, 2001b).

DES techniques select an ensemble of one or more competent classifiers for the
classification of each new test sample. Because they select several classifiers, DES tech-
niques can select classifiers that complement each other, outperforming any individual
single classifier of the pool. Examples of DES techniques are: K-Nearest Oracles Elimi-
nate (KNORA-E) (KO; SABOURIN; JR, 2008), K-Nearest Oracles Union (KNORA-U)
(KO; SABOURIN; JR, 2008), Randomized Reference Classifier (RRC) (WOLOSZYNSKI;
KURZYNSKI, 2011) META-DES (CRUZ et al., 2015), and META-DES.Oracle (CRUZ;
SABOURIN; CAVALCANTI, 2017b).

Because DCS is an specific case of DES (ensemble of one classifier), there are works
that use the term DES to both DCS and DES (OLIVEIRA; CAVALCANTI; SABOURIN,
2017).

2.4 Dynamic Selection Techniques
There are several Dynamic Classifier Selection (DCS) and Dynamic Ensemble

Selection (DES) techniques in the literature. This section presents what we believe to be
the most relevant ones.

2.4.1 Overall Local Accuracy

The Overall Local Accuracy (OLA) (WOODS; KEGELMEYER; BOWYER, 1997)
is a accuracy based DCS technique. OLA estimates the competence a base classifier from
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the pool of classifiers as the accuracy of the classifier on the local region of the test sample.
The best base classifier (most accurate) is selected.

Algorithm 1 presents the OLA method. Given a test sample xquery, OLA finds its
K-neighbors (Line 1), evaluates the classification performance of all classifiers using these
neighbors (Lines 2 - 4), and selects the best classifier (Lines 5 - 6).

Algorithm 1 OLA method
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the neighborhood

1: � Ω K-nearest neighbors of xquery in DSEL

2: for all Ci in C do

3: OLAi Ω accuracy of Ci over �
4: end for

5: Cbest Ω Cargmaxi(OLAi)
6: return Cbest

2.4.2 Local Class Accuracy

The Local Class Accuracy (LCA) (WOODS; KEGELMEYER; BOWYER, 1997)
technique is an accuracy based DS technique very similar to OLA. Given a test sample,
LCA estimates the competence of a classifier using the its accuracy in the region of
competence, but considering only the samples that the classifier classifies as being from
the same class that the classifier classified the test sample.

In other words, for all base classifiers, if a test sample is classified as Ê, LCA
estimates the local accuracy as the percentage of correctly classified samples in the local
region that were also classified as being from the class Ê by the classifier. The classifier
with higher accuracy is selected.

Algorithm 2 presents the LCA method. For a given test sample xquery, LCA finds
its K-neighbors � (Line 1). For each classifier Ci, Ci is used to classify xquery (Line 3), all
neighbors classified as the same class are selected � (Lines 5 - 9), and the classifier Ci is
evaluated using � (Line 10). Finally, the best classifier is selected (Lines 12 - 13).

2.4.3 A Priori

The A Priori technique is a probabilistic based DCS technique that estimates the
competence of a classifier as its accuracy within the local region of the test sample. This
accuracy is calculated as the class prior probability of the classifier on the K-neighbors
of the test sample in the validation set. This class prior probability is weighted by the
inverse of the distance between each neighbor and the test sample.
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Algorithm 2 LCA method
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the neighborhood

1: � Ω K-nearest neighbors of xquery in DSEL

2: for all Ci in C do

3: Ê Ω Ci(xquery)
4: � Ω 0
5: for all �i œ � do

6: if Ci(�i) = Ê then

7: � Ω � fi �i

8: end if

9: end for

10: LCAi Ω accuracy of Ci over �
11: end for

12: Cbest Ω Cargmaxi(LCAi)
13: return Cbest

Consider xquery the test sample, � the k-neighbors of xquery, and �j the j-th sample
in �, and Ê a given class. The p̂(Ê|�j, ci) is the measure of the classifier ci accuracy for
the test sample xquery based on its neighbor �j. Considering the N samples in �, the best
classifier is the one that maximizes the competence in Equation 2.2,

competence(ci) =
q

N

j=1 p̂(Ê|�j œ Ê, ci) ◊ ”j

q
N

j=1 ”j

(2.2)

where ”j is the inverse of the Euclidean distance between the xquery and �j.

2.4.4 A Posteriori

The A Posteriori technique is a probabilistic based DCS technique that estimates
the local accuracy of a given base classifier using the class posterior probabilities. Consider
N samples in �, and �j the j-th sample in �. The best classifier with the output Êl

assigned to the test sample xquery is the one that maximizes the competence in Equation
2.3,

competence(ci, Êl) =
q

�jœÊl
p̂(Êl|�j, ci) ◊ ”j

q
N

j=1 p̂(Êl|�j, ci) ◊ ”j

(2.3)

where ”j is the inverse of the Euclidean distance between the xquery and �j.
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2.4.5 K-Nearest Oracles Union (KNORA-U)

K-Nearest Oracles Union (KNORA-U) is an oracle-based DES technique that uses
the K-nearest neighbors of the test sample as oracles, and selects all classifiers that correctly
classify at least one of the oracles (the more oracles the classifier correctly classifies, the
more votes the classifier has in the prediction of the test sample).

For the classification of a test sample xquery, KNORA-U selects all classifiers that
correctly classify at least one of the samples in �. After the selection, the classifiers votes
are weighted, the more samples in � a classifier correctly classify, the more votes it has.

Algorithm 3 presents the KNORA-U method.

Algorithm 3 KNORA-Union
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the neighborhood

1: EoC Ω empty ensemble of classifiers
2: � Ω K-nearest neighbors of xquery in DSEL

3: for all Âi in � do

4: for all ci in C do

5: if ci correctly classify Âi then

6: EoC Ω EoC fici

7: end if

8: end for

9: end for

10: if EoC is empty then

11: EoC Ω C

12: end if

13: return EoC

KNORA-Union-W (KNORA-U-W) weights the samples in � by the inverse of
their distance to xquery, and each classifier vote is weighted, not by the number of samples
correctly classified, but by the weighted sum of samples correctly classified by the classifier.

The experiments in (KO; SABOURIN; JR, 2008) showed that KNORA-U-W was
not significantly better than KNORA-U.

2.4.6 K-Nearest Oracles Eliminate (KNORA-E)

K-Nearest Oracles Eliminate (KNORA-E) is an oracle-based DES technique that
uses the K-nearest neighbors of the test sample as oracles, and selects all classifiers that
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correctly classify all oracles (if no classifiers meet this criterion, one oracle is removed from
the region of competence).

For the classification of a test sample xquery, KNORA-E finds its region of compe-
tence �, and selects all classifiers that correctly classify all samples in �. If no classifiers
correctly classify all samples in �, the value of K is decreased, until at least one classifier
is selected. If K reaches 0, the most local accurate classifiers (using the original K) are
selected.

Algorithm 4 presents the KNORA-E technique.

Algorithm 4 KNORA-Eliminate
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the neighborhood

1: EoC Ω ensemble of classifiers
2: while K > 0 and EoC is empty do

3: � Ω K nearest neighbors of xquery in DSEL

4: for all ci in C do

5: if ci correctly classify all samples in � then

6: EoC Ω EoC fici

7: end if

8: end for

9: if EoC is empty then

10: K Ω K ≠ 1
11: end if

12: end while

13: if EoC is empty then

14: scoremax Ω accuracy of best classifier in C

15: EoC Ω all classifiers with accuracy scoremax

16: end if

17: return EoC

KNORA-Eliminate-W (KNORA-E-W) weights samples in � by the inverse of their
distance to xquery. The use of weights in KNORA-E-W does not make any di�erence,
unless the worst case scenario is reached (K = 0). In fact, in (KO; SABOURIN; JR, 2008),
KNORA-E had exactly the same classification accuracy of KNORA-E-W for all datasets.

In (VRIESMANN et al., 2015), the authors proposed the Dynamic Ensemble
Selection using Class and Overall Local Accuracies (DESCOLA), an oracle-based DES that
combines the Overall Local Accuracy (OLA), Local Class Accuracy (LCA) and ambiguity
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among classifiers to filter the pre-selection of classifiers done by the oracle. The OLA
and LCA are computed on the neighborhood of the test sample in the validation set to
filter out the classifiers selected by the KNORA. DESCOLA achieved interesting results,
outperforming other DS techniques in 5 out of 8 datasets used in the experiments.

2.4.7 Multiple Classifier Behavior (MCB)

Multiple Classifier Behavior (MCB) (GIACINTO; ROLI, 2001b) is a behavior-based
dynamic selection technique that estimates the competence of classifiers using a similarity
function to measure the degree of similarity of the output profiles of all base classifiers.

Algorithm 5 presents the MCB technique. For a given test sample xquery, MCB finds
the MCBt vector composed by the predictions of the classifiers in the pool of classifiers for
xquery (Line 1). Then, MCB finds � the K-neighbors of xquery in the validation set DSEL

(Line 2). Now, MCB finds the MCB vector of all samples in �, computes their similarities
with MCBt using Equation 2.4, and includes in �n all samples with similarity higher
than a parameter similarity_threshold (Lines 4 - 10). Now, MCB estimates the overall
local accuracy of the classifiers using �n (Lines 11 - 13) and selects the best classifier cbest

(Line 14). If the classifier cbest is significantly better than all other classifiers in C, cbest is
selected to perform the classification of xquery; otherwise, all classifiers in C are selected to
perform the classification of xquery.

similarity(A, B) = 1
M

◊
ÿ

j=1
MT (Aj, Bj) (2.4)

where A and B are vectors, M is the size of the vectors A and B, and T is the XNOR

function (1 when Aj = Bj, otherwise 0).

2.4.8 DS-KNN

DS-KNN (SANTANA et al., 2006) is a diversity-based DES technique that combines
the accuracy and diversity of the classifiers in the local region of the test sample to select
an ensemble of classifiers for the classification of the test sample.

Algorithm 6 presents the DS-KNN algorithm. For the classification of a given
test sample xquery, DS-KNN finds its K-nearest neighbors � (Line 1) and estimates the
accuracy of the classifiers in C on � (Lines 2 - 4). Now, DS-KNN calculates the diversity of
the classifiers in C in a pairwise fashion using the double fault diversity measure (TANG;
SUGANTHAN; YAO, 2006) (Lines 5 - 10). Now, DS-KNN selects the N1 most accurate
classifiers (Line 11) and, among them, selects the N2 most diverse classifiers (Line 12),
and, finally, returns the final ensemble (Line 13).
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Algorithm 5 MCB
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the neighborhood

1: MCBt Ω class labels assigned to xquery by all classifiers in C
2: � Ω K nearest neighbors of xquery in DSEL

3: �n
Ω �

4: for all �i œ � do

5: MCB�i Ω class labels assigned to �i by all classifiers in C
6: sim Ω similarity(MCBt, MCB�i

7: if sim Ø similarity_threshold then

8: �n
Ω �n

fi �i

9: end if

10: end for

11: for all ci in C do

12: OLAi Ω OLA(ci, �n)
13: end for

14: cbest Ω argmax(OLA), best classifier in C
15: if cbest is significantly better than the other classifiers then

16: return cbest
17: end if

18: return C

Algorithm 6 DS-KNN
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the neighborhood

1: � Ω K-nearest neighbors of xquery in DSEL

2: for all Ci in C do

3: OLAi Ω accuracy of Ci over �
4: end for

5: for all ci in C do

6: for all cj in C do

7: DIVi Ω DIVi + double_fault(ci, cj)
8: end for

9: DIVi Ω DIVi/len(C)
10: end for

11: EoC Ω N1 most accurate classifiers in C based on OLA

12: EoC Ω N1 most accurate classifiers in EoC based on DIV

13: return EoC
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2.4.9 META-DES

In (CRUZ et al., 2015), the authors proposed the META-DES, a novel dynamic
ensemble selection framework using meta-learning. META-DES considers the task of
selecting competent classifiers as another classification problem (classifiers are classified as
being either competent or incompetent for the classification of each new test sample).

META-DES is divided into three phases: (1) Overproduction, (2) Meta-Training,
and (3) Generalization.

1. Overproduction: In this phase, META-DES generates a pool of classifiers using
the training set. In (CRUZ et al., 2015), the authors used Bagging (BREIMAN,
1996), but any ensemble generates method can be used in this phase.

2. Meta-Training: This phase of META-DES is divided into three steps: selection,
extraction, and training. In the selection step, META-DES selects from the training
set samples in which the pool of classifiers has a low consensus degree (less than
a threshold hc), and divides the selected samples into meta-training and meta-
validation. In the extraction step, META-DES extracts meta-features from the
selected samples. In the training step, META-DES trains a selector ⁄ using the
meta-training partition of the selected samples (in (CRUZ et al., 2015), the authors
used a Multi-Layer Perceptron neural network as the selector ⁄).

3. Generalization: In this phase, given a test sample xquery, its region of competence
is extracted using the samples from the validation set and the meta-features are
computed. The meta-features are passed to the selector ⁄ and, for each classifier ci

in the pool of classifiers, the selector ⁄ decides if ci is competent for the classification
of xquery. All competent classifiers are added to the final ensemble C Õ that classifies
xquery using majority vote rule.

In (CRUZ; SABOURIN; CAVALCANTI, 2015a), the authors performed a deep
analysis of the META-DES framework using linear classifiers, and demonstrated that
META-DES can approximate complex non-linear distributions using few linear classifiers,
outperforming all other DES techniques.

In (CRUZ; SABOURIN; CAVALCANTI, 2015b), the authors evaluated di�erent
models as meta-classifiers: Multi-Layer Perceptron (MLP), Random Forest, Support Vector
Machines with Gaussian Kernel (SVM), and Naive Bayes (FERNÁNDEZ-DELGADO et
al., 2014); and also proposed three versions of the META-DES framework: (1) META-
DES.S, where all base classifiers with estimated competence higher than a threshold �
are selected to submit a vote for the classification of the test sample. (2) META-DES.W,
where all base classifiers submit weighted vote for the classification of the test sample,
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where the weights are the estimated competence by the meta-classifier. (3) META-DES.H,
combines the META-DES.S and META-DES.H, all classifiers with estimated competence
higher than a threshold � submit a weighted vote for the classification of the test sample.
The authors concluded that Naive Bayes was statistically better than MLP (meta-classifier
used in (CRUZ et al., 2015)) and that META-DES.H was the best selection/voting scheme.

In (CRUZ; SABOURIN; CAVALCANTI, 2017b), the authors proposed an improve-
ment to META-DES framework, named META-DES.Oracle framework. META-DES.Oracle
uses 15 sets of meta-features and applies a meta-feature selection scheme using Binary
Particle Swarm Optimization (BPSO) in order to optimize the performance of the meta-
classifier. The BPSO algorithm uses a fitness function to be minimized defined as the
di�erence between the competence estimated by the meta-classifier and the competence
estimated by the Oracle. Experimental results demonstrated that META-DES.Oracle
outperformed 10 state-of-the-art techniques, include META-DES.

To our knowledge, META-DES and META-DES.Oracle are the state-of-art in DS.

2.4.10 Randomized Reference Classifier (RRC)

The RRC technique is a randomized reference classifier based approach that decides
if a given base classifier is significantly better than a random classifier. The competence
level of a given classifier is estimated in two steps: (1) a gaussian potential function
(Equation 2.1); and (2) a source of competence Csrc estimated based on the RRC concept
proposed in (WOLOSZYNSKI; KURZYNSKI, 2010).

The gaussian potential function is used to give higher relevance to samples in DSEL

nearest to the test sample, and lower relevance to samples furthest to the test sample. The
competence level of each base classifier can be estimated as follows:

” =
ÿ

xiœDSEL

CsrcK(xquery, xi) (2.5)

where xquery is the test sample, DSEL is the validation set, Csrc is the source of competence,
and K is the potential function defined in Equation 2.1.

A given classifier is selected if it has estimated competence level ” higher than the
competence level of a random classifier.

The RRC technique achieved interesting results. In fact, in (CRUZ; SABOURIN;
CAVALCANTI, 2018), the authors evaluated the classification performance of 18 state-of-
the-art DS techniques, and RRC achieved the third best performance, being outperformed
only by META-DES and META-DES.Oracle.
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2.4.11 Others

In (XIAO; HE, 2008), the authors introduced group method of data handling
(GMDH) theory into MCS, proposing the Algorithm Adaptive Classifier Ensemble Selection
based on GMDH (GAES). The GAES method uses GMDH to select an ensemble from the
pool of classifiers and determine the combination weights. The multilayer algorithm in
GMDH builds a structure of feedforward neural networks where each layer builds candidate
models through the combination of two of the pre-selected models. Next, the external
criterion is used to evaluate and select the best base classifiers for the next layer.

In (XIAO; HE, 2009b), the authors proposed the GMDH-based Dynamic Classifier
Ensemble Selection (GDES), an extended GAES method that performs dynamic selection
of classifiers. GDES selects a subset of classifiers from the pool of classifiers and determines
the optimal weights for the classification of each new test sample. For a given test sample
xquery, GDES finds the K-nearest neighbors of xquery in the validation set (the paper uses
the training set), �; uses all classifiers to classify the samples in �; applies GAES to find
the combination model; finally, uses the combination model to classify xquery.

In (XIAO et al., 2010b), the authors proposed the GMDH-based dynamic classifier
ensemble selection according to accuracy and diversity (GDES-AD), which is a GDES
that takes into consideration both accuracy and diversity of ensembles in the process
of selecting classifiers. Experiments show that the GDES-AD is robust to noise when
compared to other DES techniques due the fact that GDES-AD can better reduce the
bias in classification error.

In (XIAO et al., 2012), the authors propose the Dynamic Classifier Ensemble
Method for Imbalanced Data (DCEID), which is a DS technique that decides between
selecting using the OLA or selecting using GDES (XIAO; HE, 2009b) and uses a cost-
sensitive evaluation criteria to increase classification performance on imbalanced datasets.
The authors in (XIAO et al., 2012) only evaluated DCEID using two customer classification
datasets, and, to our knowledge, there is no benchmark study that considers this technique
in its work.

There are other methods and categories outside of the scope of this work. An
excellent review and categorization of DES methods can be found in (CRUZ; SABOURIN;
CAVALCANTI, 2018) and (BRITTO; SABOURIN; OLIVEIRA, 2014).
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Abstract
Dynamic Ensemble Selection (DES) techniques aim to select only the most compe-

tent classifiers for the classification of each test sample. The key issue in DES is how to
estimate the competence of classifiers for the classification of each new test sample. Most
DES techniques estimate the competence of classifiers using a given criterion over the
set of nearest neighbors of the test sample in the validation set, these nearest neighbors
compose the region of competence. However, using local accuracy criteria alone on the
region of competence is not su�cient to accurately estimate the competence of classifiers
for the classification of all test samples. When the test sample is located in a region
with borderline samples of di�erent classes (indecision region), DES techniques can select
classifiers with decision boundaries that do not cross the region of competence, assigning
all samples in the region of competence to the same class. In this paper, we propose a
dynamic selection framework for two-class problems that detects if a test sample is located
in an indecision region and, if so, prunes the pool of classifiers, pre-selecting classifiers
with decision boundaries crossing the region of competence of the test sample (if such
classifiers exist). After that, the proposed framework uses a DES technique to select
the most competent classifiers from the set of pre-selected classifiers. Experiments are
conducted using the proposed framework with 9 di�erent dynamic selection approaches
on 40 classification datasets. Experimental results show that for all DES techniques used
in the framework, the proposed framework outperforms DES in classification accuracy,
demonstrating that our proposal significantly improves the classification performance of
DES techniques, achieving statistically equivalent classification performance to the current
state-of-the-art DES frameworks.
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3.1 Introduction
Multiple Classifier Systems (MCS) (WOèNIAK; GRAÑA; CORCHADO, 2014)

combine classifiers expecting that several classifiers outperform any single base classifier in
classification accuracy (KUNCHEVA, 2004) (DIETTERICH, 2000). Several studies present
MCS as an alternative to increase classification accuracy in many pattern recognition tasks,
such as image labeling (SINGH; SINGH, 2005), handwritten recognition (CRUZ et al.,
2013), signature verification (BATISTA; GRANGER; SABOURIN, 2010), recommendation
systems (JAHRER; TÖSCHER; LEGENSTEIN, 2010), banking (BHATTACHARYYA et
al., 2011), and face recognition (TORRE et al., 2015).

MCS has three general phases (BRITTO; SABOURIN; OLIVEIRA, 2014): (1)
generation, in which the training set is used to generate a pool of classifiers; (2) selection,
in which a subset of the pool of classifiers is selected to perform the classification, we refer
to this subset of classifiers as ensemble of classifiers; (3) combination (or integration), in
which the final decision is made based on the predictions of the classifiers.

The selection phase can be either static or dynamic. In static selection, the selection
of classifiers is performed in the training phase. In dynamic selection, the selection of
classifiers is performed for each new test sample in the classification phase. Recent works
have shown that dynamic selection techniques achieve higher classification accuracy than
static selection techniques, especially on ill-defined problems (KO; SABOURIN; JR, 2008)
(BRITTO; SABOURIN; OLIVEIRA, 2014) (CRUZ; SABOURIN; CAVALCANTI, 2015b).
Dynamic selection can be either Dynamic Classifier Selection (DCS) (GIACINTO; ROLI,
2000) or Dynamic Ensemble Selection (DES) (KO; SABOURIN; JR, 2008). DCS selects
one single classifier for the classification of each new test sample, and DES selects one or
more classifiers for the classification of each new test sample. Since DCS is a specific case
of DES, in this paper, we refer both as DES.

DES techniques rely on the assumption that di�erent classifiers are competent
("experts") in di�erent local regions of the feature space. For this reason, given a test
sample xquery and a pool of classifiers C, dynamic selection techniques try to select the
most competent classifier c, or an ensemble of competent classifiers C’, C Õ

œ C, for the
classification of xquery. The key issue in DES is how to estimate the competence of a base
classifier for the classification of a new test sample. Many DES techniques (WOODS;
KEGELMEYER; BOWYER, 1997) (GIACINTO; ROLI, 1999) (GIACINTO; ROLI, 2001b)
(SANTANA et al., 2006) (KO; SABOURIN; JR, 2008) estimate the competence of a
classifier c for the classification of a test sample xquery using the accuracy of the classifier
c on a set of labeled samples similar to xquery, obtained using the K-Nearest Neighbors
(KNN) on the validation set DSEL. The set of K nearest neighbors of xquery in DSEL is
called the region of competence (�) of xquery.
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According to Britto et al. (BRITTO; SABOURIN; OLIVEIRA, 2014), most DES
techniques use some criteria on the region of competence of the test samples to estimate the
competence of base classifiers. META-DES (CRUZ et al., 2015), a recent DES framework
published after the survey (BRITTO; SABOURIN; OLIVEIRA, 2014), achieved the highest
DES classification performance to this date, and it also uses the region of competence to
extract meta-features that are used to predict the competence of base classifiers. So, a
crucial issue in the design of DES techniques is the definition of the region of competence.
We expect that the better the region of competence, the higher the precision of DES
systems.

State-of-the-art DES techniques do not take into account the existence of di�erent
scenarios when estimating the competence of a classifier for the classification of a test
sample using its region of competence. Given a test sample and a classifier, the test sample
can be located in a region where almost all samples belong to the same class (safe region),
or in a region where samples belong to more than one class (indecision region), and the
classifier can have its decision boundary crossing or not crossing the region of competence
of the test sample. Based on that, Figure 5 presents 4 scenarios, given a test sample xquery,
a region of competence �, and a classifier c: (I) xquery located in a safe region, and c’s
decision boundary crossing �. (II) xquery located in a safe region, and c’s decision boundary
not crossing �. (III) xquery located in an indecision region, and c’s decision boundary
crossing �. (IV) xquery located in an indecision region, and c’s decision boundary not
crossing �. Where N is the test sample (xquery), the dotted circle delimits the region of
competence, the markers "¶" and "⌅" are samples from di�erent classes, the continuous
straight line is the decision boundary of the classifier c.

Scenarios I and II (Figure 5(a) and 5(b)) show a test sample N located in a safe
region (all samples in the region of competence of the test sample are from the class "¶").
In Scenario I, the decision boundary of the classifier c crosses the region of competence,
and c correctly classifies 20% of the samples in the region of competence. In Scenario
II, the decision boundary of the classifier c does not cross the region of competence,
and c correctly classifies 100% of the samples in the region of competence. A scenario
with the classifier c not crossing the region of competence of the test sample N and c

misclassifying all samples in the region of competence of the test sample was not detailed
because any accuracy based DES technique estimates the competence of such classifier
as 0.0, and therefore, such classifier is never selected. This shows that, in safe regions,
classifiers with decision boundaries not crossing the region of competence have higher
competence estimation, meaning accuracy based DES techniques are su�cient to estimate
the competence of base classifiers when the test sample is located in a safe region.

Scenarios III and IV (Figures 5(c) and 5(d)) show a test sample N located in an
indecision region (samples from di�erent classes "¶" and "⌅" in the region of competence



Chapter 3. ONLINE PRUNING OF BASE CLASSIFIERS FOR DYNAMIC ENSEMBLE SELECTION 47

(a) Scenario I: test sample (N) located in

a safe region, and classifier c with deci-

sion boundary crossing the region of com-

petence of N. The classifier c correctly

classifies 20% of the samples in the region

of competence.

(b) Scenario II: test sample (N) located

in a safe region, and classifier c with de-

cision boundary not crossing the region

of competence of N. The classifier c cor-

rectly classifies 100% of the samples in

the region of competence.

(c) Scenario III: test sample (N) located

in an indecision region, and classifier c
with decision boundary crossing the re-

gion of competence of N. The classifier c
correctly classifies 60% of the samples in

the region of competence.

(d) Scenario IV: test sample (N) located

in an indecision region, and classifier c
with decision boundary not crossing the

region of competence of N. The classifier

c correctly classifies 60% of the samples

in the region of competence.

Figure 5 – Four possible scenarios for a given test sample and a classifier: (a) Scenario
I, where the test sample N is located in a safe region, and the classifier c has
its decision boundary crossing the region of competence of N. (b) Scenario II,
where the test sample N is located in a safe region, and the classifier c has its
decision boundary not crossing the region of competence of N. (c) Scenario III,
where the test sample N is located in an indecision region, and the classifier c
has its decision boundary crossing the region of competence of N. (d) Scenario
IV, where the test sample N is located in an indecision region, and the classifier
c has its decision boundary not crossing the region of competence of N. In
these scenarios, N is the test sample, the continuous straight line is the decision
boundary of the classifier c, the dotted circle delimits the region of competence
of the test sample, and the markers ¶ and ⌅ are samples of di�erent classes.
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of the test sample). In Scenario III, the decision boundary of the classifier c crosses the
region of competence of the test sample, and c correctly classifies 60% of the samples in
the region of competence. In Scenario IV, the decision boundary of the classifier c does
not cross the region of competence of the test sample, and c correctly classifies 60% of the
samples in the region of competence. Since the classifiers from Scenarios III and IV have
the same classification accuracy (60%), accuracy based competence estimation schemes
gives the same competence estimative to them, even though the classifier c from Scenario
III is more competent because it correctly classifies samples of the di�erent classes in the
region of competence, and the classifier c from Scenario IV classifies all samples in the
region of competence as being from the same class ("¶").

The scenarios from Figure 5 show that depending on the type of region in which the
test sample xquery is located and whether the decision boundary of the classifier c crosses
the region of competence or not, the criteria used by DES techniques are not enough to
decide if c is locally competent for the classification of xquery. Our hypothesis is that, when
the test sample is located in an indecision region, performing the selection of classifiers
from a subset of the pool containing only classifiers with decision boundaries that cross the
region of competence of the test sample (if such classifiers exist) is a promising dynamic
selection approach.

In this paper, we propose a dynamic ensemble selection framework for two-class
classification problems. The framework is divided into three phases: (1) Overproduction,
where the framework generates the pool of classifiers; (2) Region of Competence Definition,
where the framework defines the region of competence of each new test sample; (3) Selection,
where the framework selects locally competent classifiers for the classification of each
new test sample. The Selection phase is divided in three main steps: Indecision Region
Detection, Dynamic Pruning, and Dynamic Selection. The Indecision Region Detection
step decides if the test sample is located in an indecision region. The Dynamic Pruning
step pre-selects locally competent classifiers by removing (or "pruning") classifiers with
decision boundaries that do not cross the region of competence of the test sample when
the test sample is located in an indecision region, if no classifier has decision boundaries
crossing the region of competence, the Dynamic Pruning step pre-selects all classifiers. The
Dynamic Selection step selects the most competent classifiers from the set of pre-selected
classifiers for the classification of the test sample using any DES technique.

In the experiments, we evaluated the proposed framework with 9 dynamic selection
schemes from the literature using 40 datasets from KEEL (ALCALÁ et al., 2010), and
compared the framework with 3 state-of-the-art DES approaches, named: Randomized
Reference Classifier (RRC) (WOLOSZYNSKI; KURZYNSKI, 2011), META-DES (CRUZ
et al., 2015), and META-DES.Oracle (CRUZ; SABOURIN; CAVALCANTI, 2017b). The
results showed that the proposed framework outperforms DES, for all DES techniques
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used in our experiments, demonstrating that the framework significantly improves the
classification accuracy of Multiple Classifier Systems. Also, using simple DES techniques
in the dynamic selection step, the proposed framework was able to achieve statistically
equivalent performance to the current state-of-the-art DES frameworks from the literature.
These results were confirmed by Wilcoxon Signed Rank Test (WILCOXON, 1945), Sign
Test (DEMäAR, 2006), Friedman test (FRIEDMAN, 1937), and Nemenyi post hoc test
(NEMENYI, 1962).

This paper is organized as follows: Section II presents the problem statement.
Section III presents the proposed framework. Section IV presents the experimental study.
Finally, Section V presents the conclusion.

3.2 Problem Statement
In this section, we define indecision regions (Section 3.2.1), and show that DCS

(Section 3.2.2) and DES (Section 3.2.3) techniques have problems evaluating the competence
of classifiers and selecting competent classifiers for the classification of test samples located
in indecision regions.

3.2.1 Indecision Regions

According to García et al. (GARCÍA; LUENGO; HERRERA, 2015), there are three
types of test samples (Figure 6): safe samples, borderline samples, and noisy samples. Safe
samples (labeled as S) are located in a neighborhood of samples with relatively homogeneous
class labels. Borderline samples (labeled as B) are located in areas surrounding classes
boundaries, where di�erent classes overlap, or the samples of di�erent classes are very
close to each other. Noisy samples (labeled as N) are samples from one class occurring
in areas of another class. Indecision regions (continuous line) are regions with borderline
samples of di�erent classes.

In the context of DES, we state that a test sample is located in an indecision region
when its region of competence is crossed by one or more classes boundaries, that is, when
its region of competence has borderline samples of di�erent classes.

Correctly classifying test samples located in indecision regions is a di�cult task
because most misclassifications occur in areas near classes boundaries (NAPIERA£A;
STEFANOWSKI; WILK, 2010). In fact, the classification performance of classifiers is
strongly a�ected by the number of borderline samples (GARCÍA et al., 2006).
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Figure 6 – Three types of samples: safe samples (labeled as S), borderline samples (labeled
as B), and noisy samples (labeled as N). The continuous line shows the indecision
region, where the classes are represented by the markers ¶ and ⌅ (Adapted
from (GARCÍA; LUENGO; HERRERA, 2015)).

3.2.2 DCS in Indecision Regions

The Overall Local Accuracy (OLA) (WOODS; KEGELMEYER; BOWYER, 1997)
technique estimates the competence of a classifier using its accuracy in the region of
competence of the test sample, meaning OLA selects the classifier that correctly classifies
most samples in the region of competence of the test sample. When the test sample is
located in an indecision region, OLA can select a classifier that assigns all samples in the
region of competence to the same class.

The Local Class Accuracy (LCA) (WOODS; KEGELMEYER; BOWYER, 1997)
technique estimates the competence of a classifier that assigns a test sample to the Ê class
as the classification accuracy of the classifier considering only the samples in the region of
competence that were also assigned to the Ê class. When the test sample is located in an
indecision region, LCA can also select a classifier that assigns all samples in the region of
competence of the test sample to the same class.

Figure 7 shows a test sample (N) located in an indecision region, the region of
competence of the test sample (5 nearest neighbors named A, B, C, D, and E), and
the decision boundaries of two classifiers c1 and c2 (continuous straight lines). In this
figure, the classifier c1 has its decision boundary crossing the region of competence of
the test sample, and the classifier c2 has its decision boundary not crossing the region of
competence (classifying all samples in the region of competence as "⌅").

Table 1 presents the true class and assigned classes by c1 and c2 of the samples A,
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B, C, D and E from Figure 7. This table also shows the competence estimation of each
classifier using OLA and LCA.

Figure 7 – Test sample located in an indecision region, where N is the test sample, the
dotted region is the region of competence (composed by the samples A, B, C,
D and E), the markers ¶ and ⌅ are samples from di�erent classes, c1 and c2
are the classifiers and the continuous lines their decision boundaries, and the
true class of the test sample is ¶.

Table 1 – Outputs and competence estimatives of classifiers from Figure 7, where the line
true shows the true class labels, and the lines c1 and c2 are the classifications
of A, B, C, D, E, and the test sample (N). Columns OLA and LCA are the
competence estimatives of the classifiers using OLA and LCA.

Classifiers A B C D E N OLA LCA
true ¶ ⌅ ⌅ ⌅ ⌅ ¶ - -
c1 ¶ ¶ ¶ ⌅ ⌅ ¶ 0.60 0.33
c2 ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ 0.80 0.80

In the example from Figure 7 and Table 1, OLA and LCA estimate the competence
of c2 higher than the competence of c1, selecting c2, and misclassifying the test sample.
OLA and LCA select c2, despite the fact that the classifier c2 classifies all samples in the
region of competence as being from the same class ("⌅") and c1 correctly classifies samples
of di�erent classes in the region of competence ("¶" and "⌅").

This shows that classifiers with decision boundaries not crossing the region of
competence of a test sample located in an indecision region are not locally competent for
the classification of the test sample. These classifiers might be biased classifiers (always
assign samples to the same class) or competent for other local regions.

These same drawbacks are present in other DCS techniques, since none of them
specifically handles the di�erent scenarios presented in Figure 5. The A Priori (GIACINTO;
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ROLI, 1999) and A Posteriori (GIACINTO; ROLI, 1999) techniques, for example, have
the same problem of selecting classifiers that are not locally competent when the test
sample is located in an indecision region as OLA and LCA. This is due to the fact that A
Priori and A Posteriori methods are very similar to OLA and LCA, respectively, except
for using the probabilistic representations defined in Equations 3.1 and 3.2,

competencea priori(ci) =
q

N

j=1 p̂(Ê|�j œ Ê, ci) ◊ ”j

q
N

j=1 ”j

(3.1)

competencea posteriori(ci, Êl) =
q

�jœÊl
p̂(Êl|�j, ci) ◊ ”j

q
N

j=1 p̂(Êl|�j, ci) ◊ ”j

(3.2)

where xquery is the test sample, � is the set of samples in the region of competence of
xquery, �j the j-th sample in �, N is the number of samples in �, Ê a given class, Êl is
the class ci assigned to xquery, ”j is the inverse of the distance between xquery and �j, and
p̂(Ê|�j, ci) and p̂(Êl|�j, ci) are, respectively, the A Priori and A Posteriori measures of
the classifier ci accuracy for the test sample xquery based on �j,

3.2.3 DES in Indecision Regions

In order to show that DES techniques can select classifiers that are not locally
competent for the classification of a test sample when the test sample is located in an
indecision region, we use K-Nearest Oracles Union (KNORA-U) (KO; SABOURIN; JR,
2008) and K-Nearest Oracles Eliminate (KNORA-E) (KO; SABOURIN; JR, 2008) DES
techniques. KNORA-U and KNORA-E were selected because they are simple (facilitating
the graphical representation of the problem) and provide equal or better classification
performances than other more sophisticated DES techniques (BRITTO; SABOURIN;
OLIVEIRA, 2014).

3.2.3.1 KNORA-Union in Indecision Regions

KNORA-U selects all classifiers that correctly classify at least one sample in the
region of competence of the test sample. The more samples a classifier correctly classifies,
the more votes it has.

Figure 8 shows a test sample (N) located in an indecision region, the region
of competence of the test sample (markers within the dotted circle),and the decision
boundaries of four classifiers c1, c2, c3, and c4 (continuous straight lines). In this figure,
the classifier c2 and c3 have decision boundaries crossing the region of competence, while
c1 and c4 have decision boundaries not crossing the region of competence (classify all
samples as "¶" and "⌅", respectively).
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In the example from Figure 8, KNORA-U selects all classifiers (c1, c2, c3, and
c4) for the classification of the test sample, despite the fact that c1 and c4 have decision
boundaries not crossing the region of competence.

Figure 8 – Test sample located in an indecision region, where N is the test sample, the
dotted region is the region of competence, the markers ¶ and ⌅ are samples
from di�erent classes, the continuous straight lines are the classifiers (c1, c2,
c3, and c4).

When the test sample is located in an indecision region, an ideal classifier would
be able to correctly distinguish samples of di�erent classes in the region of competence of
the test sample. Hence, classifiers that classify all samples in the region of competence of
a test sample located in an indecision region as being from the same class are not locally
competent for the classification of that test sample. The example from Figure 8 shows
that DES techniques can select classifiers that are not locally competent (c1 and c4) when
the test sample is located in an indecision region.

3.2.3.2 KNORA-Eliminate in Indecision Regions

KNORA-E selects all classifiers that correctly classify all samples in the region of
competence of the test sample. If no classifiers are selected, the region of competence is
reduced until at least one classifier is selected.

Figure 9 presents the iterations of KNORA-E (K=5) in an example in which no
classifiers correctly classify all samples in the region of competence of the test sample
until the last iteration. In the first three iterations, no classifiers correctly classify all
K-nearest neighbors of the test sample, then, the region of competence is reduced (value of
K is decreased). In the last iteration (Figure 9(d)), KNORA-E removed the third nearest
sample (the last remaining sample from the class "⌅"), leaving only two samples of the
class "¶" in the region of competence. This behavior is not optimal because classifiers that
classify all samples in the original region of competence as "¶" class are selected.
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(a) 1st iteration of KNORA-E. (b) 2nd iteration of KNORA-E.

(c) 3rd iteration of KNORA-E. (d) 4th iteration of KNORA-E.

Figure 9 – Decreasing neighborhood of KNORA-E when no classifiers correctly classify
all samples in the region of competence of the test sample. The N is the test
sample, the markers ¶ and ⌅ are samples from di�erent classes in the region of
competence of the test sample.

The example from Figure 9 shows that, when the test sample is located in an
indecision region, KNORA-E can reduce the region of competence until the region that was
composed of borderline samples of di�erent classes is composed of borderline samples of a
single class. This is an issue because instead of selecting classifiers with decision boundaries
crossing the region of competence of a given test sample located in an indecision region,
KNORA-E changes the region of competence until it is no longer an indecision region,
and selects classifiers with decision boundaries not crossing the region of competence.

3.3 The Proposed Framework: FIRE-DES
The Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES) frame-

work is divided into three phases (Figure 10):
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1. Overproduction phase, where the pool of classifiers C is generated using the training
set (T ).

2. Region of Competence (RoC) Definition phase, where the region of competence � of
a given test sample xquery is extracted.

3. Selection phase, where the ensemble of classifiers for the classification of each new
test sample is selected. Given a test sample xquery, the framework decides if xquery

is located in an indecision region; if so, the framework pre-selects classifiers with
decision boundaries crossing the region of competence of xquery if such classifiers
exist, otherwise, all classifiers are pre-selected. Finally, the framework selects locally
competent classifiers for the classification of xquery from the pre-selected classifiers;
and finally, uses a combination rule to combine the predictions of the selected
classifiers into a single prediction.

In Figure 10, T is the training set, Generation is an ensemble generation process
(i.e. Bagging (BREIMAN, 1996)), and C is the generated pool of classifiers; G is the test
set, xquery is the test sample; DSEL is the validation set, Region of Competence is the
process of selecting the region of competence of xquery, � is the region of competence of
xquery; Indecision Region is the Indecision Region Detection step, Dynamic Pruning is
the Dynamic Pruning step, Cpruned is the pre-selected ensemble of classifiers, Dynamic
Selection is the Dynamic Selection step; C Õ is the final selected classifiers, Combination
is the process of combining the prediction of the classifiers in C Õ, and class(xquery) is the
final prediction of xquery.
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Figure 10 – Overview of the proposed FIRE-DES framework, where G is the test set, xquery is the test sample, T is the training set,
Generation is a ensemble generation process (i.e. Bagging) used to generate the pool of classifiers C, DSEL is the validation
set, Region of Competence is the process that selects the region of competence � of xquery with size K, Indecision Region is
the Indecision Region Detection step, Dynamic Pruning is the Dynamic Pruning step, Dynamic Selection is the Dynamic
Selection step, Cpruned is the set of pre-selected classifiers, C Õ is the ensemble of selected classifiers for the classification of xquery,
Combination is a combination rule, and class(xquery) is the final classification of xquery.
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3.3.1 Overproduction

The overproduction phase generates the pool of classifiers C using any ensemble
generation technique. In this work, we use the Bagging technique (BREIMAN, 1996)
(SKURICHINA; DUIN, 1998). The idea behind Bagging is to build an ensemble of diverse
classifiers by "bootstrapping" or randomly sampling (with replacement) samples from the
training set, and use each bootstrap to train a new base classifier. Since the focus of this
paper is on ensemble selection, and not on ensemble generation, only the bagging technique
is considered.

3.3.2 Region of Competence (RoC) Definition

The region of competence definition phase defines the region of competence � of
the test sample xquery. In this work, � is defined as the set of K nearest neighbors of xquery

in the validation set DSEL.

3.3.3 Selection

The selection phase performs the selection of locally competent classifiers for the
classification of each new test sample. This phase has three main steps:

1. The Indecision Region Detection step (Indecision Region), where the framework
evaluates the region of competence of xquery (�) in order to decide if it is located in
an indecision region. If xquery is located in an indecision region, the framework goes
to step 2, otherwise, step 3.

2. The Dynamic Pruning step, where the framework pre-selects locally competent
classifiers with decision boundaries crossing the region of competence (Cpruned) from
the pool of classifiers C.

3. The Dynamic Selection step, where a DS technique is used to select the final ensemble
of classifiers for the classification of xquery from Cpruned (if xquery is located in an
indecision region) or from C (if xquery is not located in an indecision region). Any
DS technique can be used in this step.

3.3.3.1 Indecision Region Detection

The task of deciding if a test sample is located in an indecision region is di�cult
because indecision regions are regions that have borderline samples of di�erent classes, and
borderline samples and noisy samples are commonly mistaken for each other (GARCÍA;
LUENGO; HERRERA, 2015). In fact, many prototype selection techniques aimed at
removing noisy samples also remove borderline samples (GARCIA et al., 2012).
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In this paper, we propose that a given test sample is located in an indecision region
if its region of competence has samples of more than one class.

3.3.3.2 Dynamic Pruning

In order to explain this step, we first introduce the frienemy samples concept, and
then present the Dynamic Frienemy Pruning (DFP) method.

For the classification of a test sample xquery, two samples xa and xb are frienemies
if: (1) xa and xb are located in the region of competence of xquery; and (2) xa and xb have
di�erent classes.

Figure 11 shows the test sample N and its region of competence defined by the
samples A, B, C, D and E. In this example, the combination of pairs of opposite classes
(¶,⌅), named (A, C), (A, D), (A, E), (B, C), (B, D), (B, E), are the frienemy samples,
or frienemies, in relation to the test sample.

Figure 11 – Figure presenting the pairs of frienemies (A, C), (A, D), (A, E), (B, C), (B, D),
(B, E) in the region of competence of the test sample N

Independently of which samples in the region of competence of a test sample are
from the same class of the test sample (friends) or from a di�erent class (enemies) the
ideal classifier would be able to distinguish all frienemies in the region of competence of
the test sample.

The DFP method pre-selects locally competent classifiers from the pool of classifiers
for each new test sample. The general idea is, for each test sample xquery, to pre-select
classifiers that correctly classify at least one pair of frienemies in the region of competence
of xquery. When pre-selecting classifiers, DFP dynamically prunes the pool of classifiers,
temporally removing locally incompetent classifiers for the classification of xquery.
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Algorithm 7 presents the DFP method for the pre-selection of classifiers given the
region of competence (�) of a test sample.

Algorithm 7 DFP Method
Require: C: pool of classifiers
Require: �: region of competence of the test sample

1: Cpruned Ω empty ensemble of classifiers
2: F Ω all pair of frienemies in �
3: for all ci in C do

4: � Ω samples in � correctly classified by ci

5: Fi Ω frienemies in �
6: if |Fi| Ø 1 then

7: Cpruned Ω Cpruned fi ci

8: end if

9: end for

10: if |Cpruned| = 0 then

11: Cpruned Ω C

12: end if

13: return Cpruned

In Algorithm 7, first, DFP creates an empty set of classifiers Cpruned where all
selected classifiers are added (Line 1), and finds F , all pairs of frienemies in the region of
competence of the test sample (Line 2). After that, DFP selects all classifiers that correctly
classify at least 1 pair of frienemy samples (Lines 3 - 9). If no classifier correctly classifies
at least one pair of frienemy samples, DFP includes all classifiers from C in Cpruned (Lines
10 - 12). Finally, the set of selected classifiers Cpruned is returned (Line 13).

The DFP method can be used as a pre-selector in order to keep only base classifiers
with decision boundaries crossing the region of competence of a test sample, helping to
define more precisely the concept of "local competence" evaluation of base classifiers for
the classification of the test sample. However, if no DS method is used after the DFP,
the DFP method works as a DS method that selects classifiers with decision boundaries
crossing the region of competence of the test sample (if such classifiers exist).

3.3.3.3 Dynamic Selection

Section 3.2 presented the problems of DCS and DES methods when the test sample
is located in an indecision region (they select locally incompetent classifiers, i.e., classifiers
with decision boundaries not crossing the region of competence).

The FIRE-DES framework handles these problems by detecting when the test
sample is located in an indecision region, using the DFP method to pre-select classifiers
with decision boundaries crossing the region of competence, and finally, selecting the best
classifiers from the classifiers pre-selected by the DFP method.
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Using the FIRE-DES with OLA, LCA, A Priori, A Posteriori, KNORA-U and
KNORA-E in the dynamic selection step, we now have: FIRE-OLA, FIRE-LCA, FIRE-A-
Priori, FIRE-A-Posteriori, FIRE-KNORA-Union and FIRE-KNORA-E. FIRE-Bagging is
the FIRE-DES without dynamic selection step (DFP is the final selector).

In the example of Figure 7 and Table 1, OLA and LCA selected the classifier c2, a
classifier strongly biased towards the class "⌅", misclassifying the test sample. In this same
example, FIRE-OLA and FIRE-LCA would not select c2, because the DFP would remove
c2 before de final dynamic selection step, leaving only c1, and correctly classifying the test
sample. The same thing would happen in FIRE-A-Priori and FIRE-A-Posteriori since the
removal of c2 is performed by the DFP, and the A Priori and A Posteriori methods are
basically OLA and LCA, respectively, except for using the probabilistic representations
defined in Equations 3.1 and 3.2

In the example of Figure 8, KNORA-U selects all classifiers to submit a vote for
the classification of the test sample. On the other hand, FIRE-KNORA-U selects only
classifiers c2 and c3, discarding classifiers with decision boundaries outside the region of
competence (c1 and c2 ) in the Dynamic Pruning step.

In the example of Figure 9, KNORA-E selects all classifiers that classify the last
two samples in the region of competence as "¶" class, including classifiers with decision
boundaries outside of the original region of competence (region of competence in the first
iteration). FIRE-KNORA-E handles this issue by removing all classifiers with decision
boundaries outside of the original region of competence, ensuring all selected classifiers
have decision boundaries crossing the radius defined by the K nearest neighbors (inside
the original region of competence), if such classifiers exist.

3.4 Experiments
This section presents the methodology used in the experiments, the results, and its

analysis.

3.4.1 Dynamic Selection Techniques

In our experiments, we evaluated the FIRE-DES framework using 9 dynamic
selection approaches, where 5 were DCS techniques, 3 were DES techniques, and 1 majority
vote (no selection). Table 2 presents the dynamic selection techniques considered in this
work: Overall Local Accuracy (OLA), Local Class Accuracy (LCA), A Priori (APri), A
Posteriori (APos), Multiple Classifier Behavior (MCB), Dynamic Selection KNN (DSKNN),
K-Nearest Oracles Union (KNORA-U), K-Nearest Oracles Eliminate (KNORA-E), and
Bagging (no selection). Respectively, the FIRE-DES using these techniques are: FIRE-
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Table 2 – Dynamic selection techniques considered in the experiment.

Technique Category Reference
DCS
Overall Local Accuracy (OLA) Accuracy Woods et al. (WOODS; KEGELMEYER; BOWYER, 1997)
Local Class Accuracy (LCA) Accuracy Woods et al. (WOODS; KEGELMEYER; BOWYER, 1997)
A Priori (APri) Probabilistic Giacinto et al. (GIACINTO; ROLI, 1999)
A Posteriori (APos) Probabilistic Giacinto et al. (GIACINTO; ROLI, 1999)
Multiple Classifier Behavior (MCB) Behavior Giacinto et al. (GIACINTO; ROLI, 2001b)
DES
Dynamic Selection KNN (DSKNN) Diversity Santana et al. (SANTANA et al., 2006)
K-Nearests Oracles Union (KNORA-U) Oracle Ko et al. (KO; SABOURIN; JR, 2008)
K-Nearests Oracles Eliminate (KNORA-E) Oracle Ko et al. (KO; SABOURIN; JR, 2008)

OLA, FIRE-LCA, FIRE-A Priori, FIRE-A Posteriori, FIRE-MCB, FIRE-DSKNN, FIRE-
KNORA-U, FIRE-KNORA-E, and FIRE-Bagging.

We also present the classification performance of the Single Best Classifier and
the Oracle. The Single Best Classifier is a model that selects the classifier that correctly
classify most samples in the test set. The Oracle is an abstract model which always selects
the classifier that correctly classify a given test sample, if such classifier exists.

We also compare the FIRE-DES approach that achieved the highest classification
performance with state-of-the-art DES approaches: Randomized Reference Classifier (RRC)
(WOLOSZYNSKI; KURZYNSKI, 2011), META-DES (CRUZ et al., 2015), and META-
DES.Oracle (CRUZ; SABOURIN; CAVALCANTI, 2017b).

3.4.2 Datasets

We evaluated FIRE-DES using 40 datasets from the Knowledge Extraction based on
Evolutionary Learning (KEEL) repository (ALCALÁ et al., 2010). Since dynamic selection
techniques have been shown to be an e�ective approach for small datasets (CAVALIN;
SABOURIN; SUEN, 2013), and ensemble learning has recently become popular in dealing
with the class imbalance problem (GALAR et al., 2012) (NANNI; FANTOZZI; LAZZARINI,
2015) (GALAR et al., 2016), our experiments focused on small sized binary imbalanced
datasets. Table 3 presents the summary of the datasets used in this experiment: label,
name, number of features, number of samples, and imbalance ratio (IR).

3.4.3 Evaluation

The datasets were partitioned using stratified 5-fold cross-validation (1 fold for
test, 4 folds to training/validation) followed by a stratified 4-fold cross-validation (the 4
folds in training/validation divided in 3 folds for training, 1 fold for validation), that is, 20
executions using stratified partitions with 3 folds for training, 1 fold for validation, and 1
fold for test. With the results of the 20 executions, we got the mean and standard deviation
for each dataset. Since the META-DES and META-DES.Oracle techniques require two
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Table 3 – Summary of the 40 datasets used in the experiments: label, name, number of
features, number of samples, and imbalance ratio.

Label Name #Feats. #Samples IR
1 glass1 9 214 1.82
2 ecoli0vs1 7 220 1.86
3 wisconsin 9 683 1.86
4 pima 8 768 1.87
5 iris0 4 150 2.00
6 glass0 9 214 2.06
7 yeast1 8 1484 2.46
8 vehicle2 18 846 2.88
9 vehicle1 18 846 2.90
10 vehicle3 18 846 2.99
11 glass0123vs456 9 214 3.20
12 vehicle0 18 846 3.25
13 ecoli1 7 336 3.36
14 new-thyroid1 5 215 5.14
15 new-thyroid2 5 215 5.14
16 ecoli2 7 336 5.46
17 segment0 19 2308 6.00
18 glass6 9 214 6.38
19 yeast3 8 1484 8.10
20 ecoli3 7 336 8.60
21 yeast-2vs4 8 514 9.08
22 yeast-05679vs4 8 528 9.35
23 vowel0 13 988 9.98
24 glass-016vs2 9 192 10.29
25 glass2 9 214 11.59
26 shuttle-c0vsc4 9 1829 13.87
27 yeast-1vs7 7 459 14.30
28 glass4 9 214 15.47
29 ecoli4 7 336 15.80
30 page-blocks-13vs4 10 472 15.86
31 glass-0-1-6_vs_5 9 184 19.44
32 shuttle-c2-vs-c4 9 129 20.50
33 yeast-1458vs7 8 693 22.10
34 glass5 9 214 22.78
35 yeast-2vs8 8 482 23.10
36 yeast4 8 1484 28.10
37 yeast-1289vs7 8 947 30.57
38 yeast5 8 1484 32.73
39 ecoli-0137vs26 7 281 39.14
40 yeast6 8 1484 41.40
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validation sets, we divided the training set in two parts to obtain the second validation set
for the meta-training set.

For evaluation metric, we used the Area Under the ROC Curve (AUC) (BRADLEY,
1997). We used the AUC because it is a suitable metric for imbalanced datasets, especially
for binary problems (LÓPEZ et al., 2013).

For individual dataset pairwise performance comparison, we used the Wilcoxon
Signed Rank Test (WILCOXON, 1945). For overall datasets pairwise performance com-
parison, we used the Wilcoxon Signed Rank Test, and the Sign Test (DEMäAR, 2006).
For general evaluation, we used the Friedman test (FRIEDMAN, 1940) and the Nemenyi
post-hoc test (NEMENYI, 1962).

3.4.4 Parameters setting

The performance of the proposed system depends on the following parameters: the
dynamic selection procedure, the region of competence size (K), and the size of the pool
(N).

The value of the parameter K was selected based on the results in (CRUZ; CAV-
ALCANTI; REN, 2011). In this case, K = 7 presented the best average results for most
dynamic selection techniques.

The value of the parameter N (size of the pool) was selected considering the results
in (KO; SABOURIN; JR, 2008) (the higher the N value, the higher the classification
accuracy until the pool converges). Following the strategy in (CRUZ et al., 2015), we
generated a pool of N = 100 Perceptrons using the Bagging (BREIMAN, 1996) technique.

3.4.5 Indecision Regions

Figure 12 presents the proportion of test samples classified as being located in
indecision regions (blue bars), and the proportion of test samples that had classifiers
pre-selected by the Dynamic Frienemy Pruning (DFP) procedure (red bars). This figure
shows that 25% of the samples are located in indecision regions and 23% of the samples
had classifiers pre-selected by the DFP procedure, meaning that only 2% of the samples
were located in indecision regions and had no classifiers with decision boundaries crossing
the region of competence.

In (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014), the authors estimated data
complexity using average instance hardness. Instance hardness is metric that defines the
di�culty of correctly classifying a given test sample (the higher the instance hardness, the
higher the probability of being a noisy sample), the average instance hardness evaluates
indicates the level of noise and overlap of classes in a given dataset. Figure 13 presents the
scatter plot of the datasets (markers), where the horizontal axis is the average instance
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Figure 12 – Test samples a�ected by the FIRE-DES framework with Perceptrons as base
classifiers. Where the blue bars represent the proportion of test samples
classified as being located in indecision regions, and ird average its average,
the red bars represent the proportion of test samples that had classifiers
pre-selected by the DFP procedure for its classification, and dfp average its
average.

hardness of the samples in the validation set, and the vertical axis is the proportion of
test samples classified as being located in indecision regions. The instance hardnesses were
estimated using K-Nearest Neighbors Classifiers (K=5) trained with the training sets.
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Figure 13 – Scatter plots of datasets, where the datasets are the markers, the horizontal
axis is the average instance hardness of the datasets, and the vertical axis is
the proportion of test samples classified as being located in indecision regions.
Pearson correlation coe�cient r = 0.9829.

The Pearson correlation coe�cient of the percentage of samples classified as being
located in an indecision region and the average instance hardness is r = 0.9829, meaning a
positive linear correlation between percentage of samples located in indecision regions and
average instance hardness. Figure 13 and the calculated Pearson correlation coe�cient
show that the di�erence between the proportion of test samples classified as being located
in indecision regions in di�erent datasets is simply due data distribution, meaning, the
more "di�cult" the dataset, the more samples classified as being located in indecision
regions.

3.4.6 FIRE-DES vs. DES

Table 4 presents the average AUC of OLA, FIRE-OLA, LCA, FIRE-LCA, A Priori,
FIRE-A Priori, KNORA-U, FIRE-KNORA-U, KNORA-E, FIRE-KNORA-E, Bagging
(not using the validation set), FIRE-Bagging, Single Best Classifier, and Oracle. For each
dataset, the best results are highlighted in bold, and significantly better results are marked
with • (p-value Æ 0.10) and •• (p-value Æ 0.05), where p-value is obtained with the
Wilcoxon Signed Rank Test. In the last three lines, ranking is the average ranking, p-value
is the result of the Wilcoxon Signed Rank Test comparing the FIRE-DES approaches with
the respective DES approaches on all datasets, and W/T/L is the counts of wins, ties and
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Table 4 – Mean results of the accuracy obtained for OLA, FIRE-OLA, LCA, FIRE-LCA, A Priori, FIRE-A Priori, MCB, FIRE-MCB,
DSKNN, FIRE-DSKNN, KNORA-U, FIRE-KNORA-U, KNORA-E, FIRE-KNORA-E, Bagging, FIRE-Bagging, Single Best
Classifier, and Oracle. A pool of 100 perceptrons as base classifiers is used for all techniques. Comparing FIRE-DES with DES
techniques, the best results are in bold, and significantly better results are marked with • (p-value Æ .10) and •• (p-value Æ .05),
where p-value is obtained with the Wilcoxon Signed Rank Test. In the last three lines, ranking is the average ranking, p-value is
the result of the Wilcoxon Signed Rank Test compairing the the average classification performance of FIRE-DES and DES on all
datasets, and W/T/L is counts of wins, ties and losses of FIRE-DES compared to DES.

Label OLA F-OLA LCA F-LCA APri F-APri APos F-APos MCB F-MCB DSKNN F-DSKNN KNU F-KNU KNE F-KNE Bag F-Bag SB Oracle
1 0.6269 0.6179 ••0.6439 0.6271 ••0.6434 0.6114 0.6473 0.6309 0.5303 ••0.5821 0.6278 0.6070 0.5958 0.6100 ••0.6701 0.6439 0.5198 ••0.5738 0.6985 1.0000
2 •0.9566 0.9497 0.9549 0.9488 •0.9618 0.9494 0.9506 0.9443 ••0.9750 0.9628 ••0.9749 0.9603 ••0.9733 0.9602 •0.9656 0.9587 ••0.9764 0.9602 0.9883 1.0000
3 ••0.9573 0.9489 ••0.9601 0.9514 ••0.9685 0.9538 ••0.9614 0.9519 ••0.9697 0.9544 ••0.9684 0.9576 ••0.9702 0.9568 ••0.9601 0.9527 ••0.9725 0.9510 0.9854 0.9981
4 •0.6899 0.6840 0.7106 0.7094 0.6954 0.6864 0.6726 0.6831 ••0.7213 0.6865 0.6951 0.6897 ••0.7206 0.6947 0.6802 0.6810 ••0.7241 0.6864 0.7751 0.9976
5 0.9912 0.9912 0.9975 0.9975 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9950 0.9950 1.0000 1.0000 1.0000 1.0000 0.9975 1.0000 1.0000 1.0000
6 ••0.7171 0.6879 ••0.7268 0.7081 ••0.7439 0.6780 •0.7520 0.7269 0.6562 ••0.6880 ••0.7387 0.6753 •0.7245 0.6880 ••0.7154 0.6904 0.7013 0.6871 0.8126 1.0000
7 ••0.6636 0.6479 0.6607 0.6554 0.6528 0.6557 0.6449 0.6471 0.6265 0.6347 0.6582 0.6528 0.6430 0.6484 0.6481 0.6513 0.6204 •0.6343 0.7274 0.9992
8 ••0.9292 0.9225 ••0.9334 0.9275 0.9300 0.9232 0.9265 0.9272 0.9018 0.9014 ••0.9448 0.9333 ••0.9276 0.9192 ••0.9442 0.9348 0.9008 0.9005 0.9364 0.9992
9 0.6959 0.6973 0.7079 0.7163 0.6558 ••0.6898 0.6488 ••0.6670 0.6489 ••0.7186 0.6709 •0.6890 0.6486 ••0.7152 0.6936 ••0.7059 0.6693 ••0.7162 0.7601 1.0000
10 0.6736 0.6788 0.6818 ••0.6957 0.6367 ••0.6683 0.6327 ••0.6662 0.5974 ••0.6598 0.6550 ••0.6834 0.6102 ••0.6646 0.6797 ••0.6902 0.5998 ••0.6576 0.7410 0.9970
11 0.9033 0.9025 0.8985 0.8977 0.8615 0.8714 0.8635 •0.8733 0.8892 ••0.9074 0.8894 0.8887 0.8867 ••0.9049 0.8918 0.8920 0.8979 0.9067 0.9646 0.9992
12 0.9381 0.9374 0.9402 0.9389 0.9234 ••0.9384 0.8983 ••0.9090 0.9482 ••0.9533 0.9433 0.9473 0.9521 0.9535 0.9447 0.9440 0.9500 0.9546 0.9760 1.0000
13 ••0.8453 0.8301 ••0.8446 0.8321 0.8345 0.8280 0.8364 0.8364 ••0.8240 0.7947 •0.8506 0.8311 ••0.8320 0.8051 ••0.8367 0.8220 ••0.8279 0.7952 0.9199 1.0000
14 0.9623 0.9623 0.9523 0.9523 0.8950 ••0.9308 0.8464 ••0.8714 0.9586 ••0.9836 0.9773 0.9809 0.9586 ••0.9836 0.9858 0.9858 0.9665 ••0.9836 1.0000 1.0000
15 0.9622 0.9622 0.9515 0.9515 0.8993 ••0.9336 0.8393 ••0.8607 0.9658 •0.9758 0.9687 0.9615 0.9729 0.9758 0.9687 0.9687 0.9687 0.9758 1.0000 1.0000
16 ••0.8857 0.8322 ••0.8876 0.8561 ••0.9027 0.8620 ••0.9142 0.8747 •0.7893 0.7498 ••0.9115 0.8323 ••0.8607 0.7995 ••0.8726 0.8327 ••0.8007 0.7493 0.9274 0.9841
17 0.9889 0.9891 0.9905 0.9907 ••0.9903 0.9891 0.9912 0.9910 0.9902 0.9908 0.9899 0.9904 0.9906 0.9912 0.9908 0.9907 0.9909 0.9908 0.9931 0.9994
18 0.8530 0.8516 0.8480 0.8466 0.8510 0.8668 0.8697 0.8655 0.8543 •0.8697 0.8534 0.8520 0.8585 •0.8697 0.8667 0.8653 0.8436 •0.8697 0.9630 0.9875
19 0.8445 0.8396 0.8445 0.8407 0.8190 0.8272 0.8197 0.8247 0.8091 ••0.8292 0.8427 0.8381 0.8275 0.8360 0.8212 •0.8287 0.8165 •0.8297 0.9231 0.9996
20 0.7818 0.7855 0.7740 0.7801 0.7825 0.7966 0.7798 0.7938 0.7172 ••0.7857 0.7769 0.7873 0.7560 ••0.7969 0.7536 0.7665 0.7413 ••0.7925 0.9295 0.9964
21 0.8133 0.8143 0.8192 0.8202 0.7863 •0.8092 0.7609 0.7752 0.7999 ••0.8235 0.7994 0.8239 0.8075 0.8263 0.8126 0.8168 0.8178 0.8224 0.9245 0.9727
22 0.6981 0.7082 0.6890 0.7012 0.6363 ••0.6925 0.5989 ••0.6437 0.6362 ••0.7320 0.6626 ••0.7088 0.6354 ••0.7324 0.6860 0.6975 0.6726 ••0.7381 0.8490 0.9625
23 0.9180 0.9233 0.9058 0.9097 0.9183 0.9310 0.8893 0.9037 0.8411 ••0.9147 0.8801 ••0.9197 0.8471 ••0.9193 0.9272 0.9269 0.8515 ••0.9143 0.9558 1.0000
24 0.5091 0.5489 0.5246 0.5565 0.4986 ••0.5796 0.4986 0.5360 0.5000 ••0.5682 0.5000 •0.5568 0.5000 •0.5508 0.5379 0.5477 0.5000 •0.5513 0.7490 1.0000
25 0.4934 ••0.6045 0.4916 ••0.5899 0.4994 ••0.6222 0.4994 ••0.5932 0.5000 ••0.6208 0.4974 ••0.6097 0.5000 ••0.6223 0.5592 ••0.6140 0.4994 ••0.6216 0.7910 1.0000
26 0.9959 0.9959 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9960 0.9989 0.9990
27 0.6131 ••0.6425 0.5868 ••0.6178 0.5414 ••0.6266 0.5164 ••0.5819 0.5629 ••0.6598 0.5643 ••0.6077 0.5622 ••0.6541 0.6058 0.6214 0.5626 ••0.6578 0.8179 1.0000
28 0.7236 0.7365 0.6707 0.6700 0.6106 ••0.7123 0.5856 0.5806 0.5586 ••0.7414 0.6478 ••0.7249 0.5586 ••0.7561 0.7523 0.7671 0.5617 ••0.7639 0.9703 1.0000
29 0.8999 0.8987 0.9082 0.9132 0.8488 0.8652 0.8434 0.8543 0.8847 0.9155 0.9023 0.9015 0.8976 0.9116 0.9007 0.9003 0.9093 0.9151 0.9968 1.0000
30 0.8571 ••0.9265 0.8485 ••0.9310 0.7925 ••0.9087 0.7941 ••0.8743 0.7208 ••0.9181 0.7397 ••0.9137 0.7213 ••0.8998 ••0.9468 0.9420 0.7183 ••0.9031 0.9314 1.0000
31 0.8079 0.8368 0.7504 •0.8100 0.6118 ••0.8064 0.5500 ••0.6936 0.5375 ••0.8421 0.5700 ••0.8382 0.5375 ••0.8421 0.8239 0.8418 0.5500 ••0.8504 0.9807 1.0000
32 0.9460 0.9460 0.7500 0.7500 0.7845 0.7855 0.6500 0.7000 0.8855 •0.9480 0.9470 0.9470 0.8970 0.9470 0.9480 0.9480 0.8960 ••0.9480 1.0000 1.0000
33 0.4996 ••0.5561 0.4968 ••0.5488 0.4996 ••0.5585 0.4992 ••0.5504 0.5000 ••0.5638 0.5000 ••0.5576 0.5000 ••0.5652 0.5560 0.5671 0.5000 ••0.5714 0.7111 0.9958
34 0.7314 •0.8073 0.6927 0.7704 0.5125 ••0.7479 0.5238 ••0.6896 0.5375 ••0.8226 0.5500 ••0.7591 0.5375 ••0.8125 0.7195 0.7716 0.5500 ••0.8213 0.9622 1.0000
35 0.7592 0.7604 0.7546 0.7558 0.7370 0.7563 0.7122 0.7321 0.7614 0.7810 0.7552 0.7685 0.7677 0.7810 0.7764 0.7789 0.7739 0.7873 0.8418 0.9375
36 0.6409 ••0.6913 0.6349 ••0.6889 0.5470 ••0.6831 0.5454 ••0.6230 0.5523 ••0.7146 0.5981 ••0.6779 0.5608 ••0.7035 0.6478 ••0.6961 0.5580 ••0.7188 0.8474 0.9500
37 0.5470 •0.5749 0.5432 0.5696 0.4997 ••0.5695 0.4997 ••0.5408 0.5208 ••0.5866 0.5206 ••0.5598 0.5083 ••0.5842 0.5477 0.5738 0.5333 ••0.5837 0.7527 0.9708
38 0.8200 0.8385 0.8053 0.8210 0.7708 ••0.8183 0.7484 ••0.7857 0.6635 ••0.8490 0.8165 0.8213 0.7107 ••0.8523 0.7871 •0.8107 0.6728 ••0.8541 0.9825 1.0000
39 0.7811 0.7784 0.7347 0.7816 0.8477 0.8316 0.7611 0.7959 •0.8463 0.8427 0.8472 0.8436 •0.8463 0.8422 0.8454 0.8431 ••0.8477 0.8427 0.9078 0.9375
40 0.7218 •0.7593 0.7252 ••0.7596 0.6542 ••0.7616 0.6583 ••0.7307 0.5948 ••0.7615 0.6848 ••0.7346 0.6376 ••0.7531 0.7449 0.7557 0.6090 ••0.7562 0.9075 0.9679

Mean 0.7911 0.8017 0.7809 0.7946 0.7560 0.7930 0.7407 0.7681 0.7443 0.8058 0.7728 0.8006 0.7560 0.8081 0.8003 0.8055 0.7516 0.8058 0.8975 0.9913
ranking 9.74 9.40 9.76 8.61 12.00 9.39 13.26 11.57 13.11 6.14 9.75 8.01 11.54 5.89 7.54 7.08 11.66 6.55 NA NA
p-value 0.0406 0.0098 0.0001 2.37 ◊ e≠5 4.40 ◊ e≠6 0.0080 4.53 ◊ e≠5 0.0234 3.36 ◊ e≠5 NA NA
W/T/L 20/5/15 21/5/14 28/2/10 29/3/8 31/2/7 22/3/15 30/2/8 21/5/14 30/1/9 NA NA
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losses of FIRE-DES for each DES technique.

Using the Wilcoxon Signed Rank Test, we confirm that FIRE-DES outperforms
DES. Using – = 0.05, we confirm with statistical confidence that: FIRE-OLA outperformed
OLA (p-value = 0.0406), FIRE-LCA outperformed LCA (p-value = 0.0098), FIRE-APri
outperformed A Priori (p-value = 0.0001), FIRE-APos outperformed A Posteriori (p-
value= 2.37 ◊ e≠5), FIRE-MCB outperformed MCB (p-value= 4.40 ◊ e≠6), FIRE-DSKNN
outperformed DSKNN (p-value= 0.0080), FIRE-KNORA-U outperformed KNORA-U
(p-value = 4.53 ◊ e≠5), FIRE-KNORA-E outperformed KNORA-E (p-value = 0.0234),
and FIRE-Bag outpeformed Bagging (p-value = 3.36 ◊ e≠5).

Figure 14 presents a pairwise comparison of FIRE-DES and the respective DES
techniques. This comparison used the sign test calculated on the computed wins, ties and
losses from the last line in Table 4. The null hypothesis H0 was that the classification
performances of FIRE-DES and the respective DES were equivalent, and a rejection in H0

meant that FIRE-DES significantly outperformed the respective DES. In this evaluation,
we used significance level – = 0.05. To reject H0, the number of wins plus half of the
number of ties needs to be greater or equal to nc (Equation 3.3):

nc = nexp

2 + z– ◊

2
Ô

nexp

2 (3.3)

where nexp = 40 (the number of experiments), and z– = 1.645, hence, nc = 25.20.

Figure 14 shows that FIRE-DES achieved significant classification performance
gain over DES for A Priori, A Posteriori, MCB, KNORA-U and Bagging.

Figure 14 – Performance of the each DES using FIRE-DES in terms of wins, ties and
losses. The dashed line illustrates the critical value nc = 25.20.
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Figure 15 shows the scatter plot of FIRE-DES (vertical axis) and DES (horizontal
axis). In this figure, all markers are above the diagonal line, meaning that FIRE-DES
caused an improvement in the average classification performance of all DES techniques
used in our experiments.

Figure 15 – Scatter plots of FIRE-DES (vertical axis) and DES (horizontal axis). Markers
above the diagonal line indicates that FIRE-DES caused a classification
performance gain.

Furthermore, the Friedman test was used to compare the results all DES techniques
(with and without FIRE-DES) over the 40 classification datasets. The result of the
Friedman test (p-value = 4.08◊e≠20) indicates that there is a di�erence in the classification
performances, so we can proceed with the Nemenyi test.

Figure 16 presents the Nemenyi test, in which the lower the ranking the better
the technique, and connected (CD = 3.8933) techniques have no significant statistical
di�erence. In this figure, FIRE-DES achieved a better ranking than DES for all dynamic
selection approaches, and, with statistically significant di�erence, FIRE-KNORA-U (5.89)
outperformed KNORA-U (11.54), FIRE-MCB (6.14) outperformed MCB (13.11), and
FIRE-BAG (6.55) outperformed Bagging (11.66).
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Figure 16 – CD diagram of Nemenyi post-hoc test considering all dynamic selection
approaches, where CD = 3.8933, and Friedman p-value = 4.08 ◊ e≠20.

3.4.7 FIRE-DES vs. State-of-the-art

Table 5 presents the average AUC of the FIRE-DES technique that achieved
the highest classification performance, named FIRE-KNORA-U, KNORA-U, and the
state-of-the-art DES techniques: Randomized Reference Classifier (RRC) (WOLOSZYN-
SKI; KURZYNSKI, 2011), META-DES (META-DES) (CRUZ et al., 2015), and META-
DES.Oracle (META-DES.O) (CRUZ; SABOURIN; CAVALCANTI, 2017b). For each
dataset, the best results are highlighted in bold, and significantly better results are marked
with • (p-value Æ 0.10) and •• (p-value Æ 0.05), where p-value is obtained with the
Wilcoxon Signed Rank Test.

Table 5 shows that the DES technique that achieved the highest classification
performance was the META-DES (.8100), followed by FIRE-KNORA-U (.8081), META-
DES.Oracle (.8067), RRC (.7934), and finally KNORA-U (0.7560).

Figure 17 presents the Nemenyi test, in which the lower the ranking the better
the technique, and connected techniques (CD = 0.9644) have no significant statistical
di�erence. In this test, the highest ranking was achieved META-DES (2.23), followed by
META-DES.Oracle (2.64), FIRE-KNORA-U (2.70), RRC (3.39), and KNORA-U (4.05).
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Table 5 – Mean results of the accuracy obtained for FIRE-KNORA-U, KNORA-U, RRC,
META-DES, and META-ORACLE-DES. A pool of 100 perceptrons as base
classifiers is used for all techniques. Best results are in bold, and significantly
better results are marked with • (p-value Æ .10) and •• (p-value Æ .05), where
p-value is obtained with the Wilcoxon Signed Rank Test.

Label FKNU KNU RRC META-DES META-DES.Oracle
1 0.6100(0.0789) 0.5958(0.0643) 0.5693(0.0722) 0.7254(0.0589) 0.7263 (0.0605)

2 0.9602(0.0351) 0.9733 (0.0237) 0.9535(0.0310) 0.9671(0.0288) 0.9680(0.0270)
3 0.9568(0.0243) 0.9702 (0.0069) 0.9614(0.0116) 0.9636(0.0187) 0.9671(0.0146)
4 0.6948(0.0365) 0.7206 (0.0247) 0.7179(0.0287) 0.7127(0.0282) 0.7095(0.0340)
5 1.0000 (0.0000) 1.0000 (0.0000) 0.9975(0.0075) 1.0000 (0.0000) 1.0000 (0.0000)

6 0.6880(0.0789) 0.7245(0.0759) 0.7196(0.0613) 0.7853 (0.0766) 0.7753(0.0716)
7 0.6484(0.0374) 0.6430(0.0299) 0.6161(0.0458) 0.6487 (0.0216) 0.6333(0.0213)
8 0.9192(0.0260) 0.9276(0.0212) 0.9223(0.0217) ••0.9559 (0.0142) 0.9504(0.0159)
9 ••0.7152 (0.0418) 0.6485(0.0437) 0.6949(0.0285) 0.6930(0.0300) 0.6685(0.0325)

10 0.6646(0.0510) 0.6102(0.0370) ••0.7027 (0.0276) 0.6773(0.0464) 0.6733(0.0484)
11 0.9049 (0.0625) 0.8867(0.0753) 0.8936(0.0615) 0.8871(0.0672) 0.9041(0.0631)
12 0.9535(0.0122) 0.9521(0.0125) 0.9476(0.0299) •0.9590 (0.0175) 0.9512(0.0226)
13 0.8051(0.0735) 0.8320(0.0497) 0.8351(0.0492) 0.8408(0.0600) 0.8460 (0.0579)

14 0.9836 (0.0279) 0.9586(0.0416) 0.9802(0.0287) 0.9809(0.0272) 0.9787(0.0295)
15 0.9758(0.0313) 0.9729(0.0329) 0.9858 (0.0285) 0.9758(0.0448) 0.9700(0.0519)
16 0.7995(0.0810) 0.8607(0.0540) 0.8304(0.0730) 0.8898 (0.0455) 0.8828(0.0525)
17 0.9911(0.0067) 0.9906(0.0071) 0.9875(0.0096) 0.9912 (0.0080) 0.9911(0.0080)
18 0.8697(0.0645) 0.8585(0.0597) 0.9156(0.0584) 0.9180(0.0577) 0.9214 (0.0560)

19 0.8360(0.0610) 0.8275(0.0517) 0.8308(0.0601) 0.8406 (0.0350) 0.8376(0.0388)
20 0.7969 (0.1255) 0.7560(0.0929) 0.7623(0.1062) 0.7475(0.0998) 0.7630(0.0863)
21 0.8263(0.0564) 0.8075(0.0609) 0.8329(0.0515) 0.8427 (0.0608) 0.8339(0.0685)
22 0.7323 (0.0698) 0.6354(0.0591) 0.6726(0.0624) 0.7218(0.0782) 0.6923(0.0745)
23 0.9193(0.0439) 0.8471(0.0492) 0.9144(0.0415) 0.9749 (0.0220) 0.9732(0.0266)
24 0.5508 (0.1244) 0.5000(0.0000) 0.4953(0.0413) 0.5346(0.0738) 0.5465(0.0779)
25 ••0.6223 (0.1537) 0.5000(0.0000) 0.5560(0.1135) 0.5579(0.1359) 0.5469(0.1234)
26 0.9960(0.0080) 0.9960(0.0080) 0.9936(0.0095) 0.9947(0.0088) 0.9969 (0.0071)

27 ••0.6541 (0.0837) 0.5622(0.0581) 0.5770(0.0812) 0.5587(0.0663) 0.5423(0.0482)
28 0.7562(0.2035) 0.5586(0.0887) 0.7650 (0.1917) 0.7246(0.1701) 0.7608(0.1946)
29 0.9116(0.0553) 0.8976(0.0827) 0.9198(0.0569) 0.9203 (0.0565) 0.9144(0.0669)
30 0.8998(0.0776) 0.7213(0.1221) 0.8301(0.0866) •0.9744 (0.0393) 0.9524(0.0517)
31 0.8421(0.1845) 0.5375(0.0893) 0.8421(0.1677) 0.8450 (0.1679) 0.8186(0.1816)
32 0.9470(0.0987) 0.8970(0.1642) 0.9710(0.0741) 0.9710(0.0741) 0.9835 (0.0542)

33 ••0.5652 (0.0805) 0.5000(0.0000) 0.5028(0.0187) 0.5078(0.0365) 0.5040(0.0182)
34 0.8125(0.2174) 0.5375(0.0893) 0.8503(0.1871) 0.8534 (0.2028) 0.8296(0.2010)
35 0.7810 (0.1097) 0.7677(0.0895) 0.7731(0.0923) 0.7674(0.0892) 0.7796(0.0946)
36 ••0.7035 (0.0915) 0.5608(0.0372) 0.5968(0.0677) 0.6126(0.0434) 0.6080(0.0498)
37 0.5842 (0.1018) 0.5083(0.0250) 0.5577(0.0655) 0.5348(0.0462) 0.5446(0.0756)
38 ••0.8523 (0.0577) 0.7107(0.0859) 0.7406(0.0852) 0.7920(0.0709) 0.7869(0.0731)
39 0.8422(0.1968) 0.8463(0.1996) 0.8445(0.1989) 0.8472 (0.2003) 0.8463(0.1996)
40 •0.7531 (0.0901) 0.6376(0.0799) 0.6767(0.0970) 0.7040(0.1122) 0.6906(0.1153)

Mean 0.8081(0.0765) 0.7560(0.0548) 0.7934(0.0658) 0.8100(0.0635) 0.8067(0.0649)
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Figure 17 – CD diagram of Nemenyi post-hoc test considering FIRE-KNORA-U, RRC,
META-DES, and META-DES.Oracle, where CD = 0.9644, and Friedman
p-value = 8.58 ◊ e≠7.

Figure 17 shows that while KNORA-U had the worst ranking, being outperformed
by all other DES techniques, and statistically outperformed by META-DES, and META-
DES.Oracle. However, FIRE-KNORA-U achieved the third best ranking, outperforming
RRC, and being statistically equivalent to META-DES and META-DES.Oracle.

Table 5 and Figure 17 show that the FIRE-DES framework was able to achieve
equivalent performance to the state-of-the-art DES framework using a simple DES technique
(KNORA-U) as dynamic selection strategy.

3.5 Conclusion
In this work, we presented 4 scenarios that dynamic selection techniques from

the literature do not consider when estimating the competence of a classifier c for the
classification of a test sample xquery: (1) xquery located in a safe region and c crossing the
region of competence, (2) xquery located in a safe region and c not crossing the region
of competence, (3) xquery located in an indecision region and c crossing the region of
competence, (4) xquery located in an indecision region and c not crossing the region of
competence. We also showed that, because they do not consider these scenarios, dynamic
selection techniques from the literature can select locally incompetent classifiers for the
classification of test samples located in indecision regions (i.e. classifiers that classify all
samples in the region of competence as being from the same class).

In order to avoid the selection of such incompetent classifiers, we proposed the
Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES) framework. The
FIRE-DES framework pre-selects classifiers with decision boundaries crossing the region
of competence of test samples located in indecision regions (if such classifiers exist).

The selection scheme of FIRE-DES is divided into three steps: (1) Indecision
Region Detection step: identifies when the test sample is located in an indecision region;
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(2) Dynamic Pruning step, pre-selects classifiers with decision boundaries within the region
of competence of the test sample using the Dynamic Frienemy Pruning (DFP) method;
(3) Dynamic Selection step: selects the best classifier (or classifiers) for the classification of
the test sample.

Experiments were conducted using 40 datasets from KEEL, evaluating FIRE-DES
using 9 dynamic selects schemes: Overall Local Accuracy (OLA), Local Class Accuracy
(LCA), A Priori, A Posteriori, Multiple Classifier Behavior (MCB), Dynamic Selection
KNN (DSKNN), K-Nearests Oracles Union (KNORA-U), K-Nearests Oracles Eliminate
(KNORA-E), and Bagging (DFP as final selector). Experimental results show that FIRE-
DES significantly improved the classification accuracy of all DS techniques in the majority
of datasets. These results were confirmed by statistical tests. We also compared FIRE-
KNORA-U with META-DES, META-DES.Oracle and RRC, and the results show that
FIRE-DES outperformed RRC, and achieved statistically equivalent performance to
META-DES and META-DES.Oracle.

Future works on this topic will involve evolving the framework for multi-class
problems, adapting the framework so it can be combined with other DES frameworks,
the improvement of the indecision region detection mechanism to cope with noisy data,
and the development of an ensemble generation mechanism that maximizes the number
of classifiers with decision boundaries within the region of competence of test samples
located in indecision regions.
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Abstract
Dynamic Ensemble Selection (DES) techniques aim to select one or more competent

classifiers for the classification of each new test sample. Most DES techniques estimate
the competence of classifiers using a given criterion over the region of competence of
the test sample, usually defined as the set of nearest neighbors of the test sample in the
validation set. Despite being very e�ective in several classification tasks, DES techniques
can select classifiers that classify all samples in the region of competence as being from
the same class. The Frienemy Indecision REgion DES (FIRE-DES) tackles this problem
by pre-selecting classifiers that correctly classify at least one pair of samples from di�erent
classes in the region of competence of the test sample. However, FIRE-DES applies the
pre-selection for the classification of a test sample if and only if its region of competence is
composed of samples from di�erent classes (indecision region), even though this criterion
is not reliable for determining if a test sample is located close to the borders of classes
(true indecision region) when the region of competence is obtained using classical nearest
neighbors approach. Because of that, FIRE-DES mistakes noisy regions for true indecision
regions, leading to the pre-selection of incompetent classifiers, and mistakes true indecision
regions for safe regions, leaving samples in such regions without any pre-selection. To tackle
these issues, we propose the FIRE-DES++, an enhanced FIRE-DES that removes noise
and reduces the overlap of classes in the validation set; and defines the region of competence
using an equal number of samples of each class, avoiding selecting a region of competence
with samples of a single class. Experiments are conducted using FIRE-DES++ with 8
di�erent dynamic selection techniques on 40 classification datasets. Experimental results
show that FIRE-DES++ increases the classification performance of all DES techniques
considered in this work, outperforming FIRE-DES with 6 out of the 8 DES techniques,
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and outperforming state-of-the-art DES frameworks.

4.1 Introduction
Dynamic Ensemble Selection (DES) has become an important research topic in

the last few years (CRUZ; SABOURIN; CAVALCANTI, 2018). Given a test sample and
a pool of classifiers, DES techniques select one or more competent classifiers for the
classification of that test sample. The most crucial part in DES techniques is how to
evaluate the competence level of each base classifier for the classification of a given test
sample (CRUZ; SABOURIN; CAVALCANTI, 2016). In general, DES techniques evaluate
the competence level of base classifiers for the classification of a test sample xquery based
on the classification accuracy on a set of samples similar to xquery, named the region of
competence of xquery. Most DES techniques select the region of competence of test samples
using the K-Nearest Neighbors of the test sample in the validation set, we refer to this
validation set as DSEL (BRITTO; SABOURIN; OLIVEIRA, 2014).

Despite being very e�ective in several classification tasks, DES techniques can
select classifiers that classify all samples in the region of competence of a test sample to
the same class, even when the test sample is located close to a decision border (indecision
region) (OLIVEIRA; CAVALCANTI; SABOURIN, 2017). Oliveira et al. (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017) proposed the Frienemy Indecision Region Dynamic
Ensemble Selection (FIRE-DES), a DES framework that pre-selects classifiers with decision
boundaries crossing the region of competence (correctly classifying samples from di�erent
classes) when the test sample is located in an indecision region. Given a test sample xquery,
FIRE-DES decides if xquery is located in an indecision region, if so, FIRE-DES uses the
Dynamic Frienemy Pruning (DFP) to pre-select locally competent classifiers with decision
boundaries crossing the region of competence of xquery (if such classifiers exist, otherwise,
all classifiers are pre-selected). After the pre-selection, any DES technique can be used to
perform the final selection of classifiers for the classification of the test sample.

FIRE-DES achieved interesting results, increasing the classification performance of
several DES techniques, in fact, FIRE-DES using the K-Nearest Oracles Union (KNU)
(KO; SABOURIN; JR, 2008) technique achieved statistically equivalent classification
performance to state-of-the-art DES frameworks.

Despite being very e�ective in increasing the classification performance of DES
techniques, the FIRE-DES does not consider whether or not the region of competence is a
good representation of the type of region in which the test sample is located.

Figure 18 shows 4 test samples (x1, x2, x3 and x4) and their regions of competence
of size K = 3 (dotted circles), where x1 and x4 are located in indecision regions, x2 is
located in a safe region, and x3 is located in a noisy region; the markers "¶" and "⌅" are
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samples from di�erent classes; Samples labeled as S are safe samples, labeled as B are
borderline samples, and labeled as N are noise; and the true indecision region (region in
between two classes) is delimited by the continuous line.

Figure 18 – Four test samples (x1, x2, x3 and x4), where x1 and x4 are located in indecision
regions, x2 is located in a safe region, and x3 is located in a noisy region. The
markers represent safe samples (labeled as S), borderline samples (labeled
as B), and noisy samples (labeled as N). The continuous line shows the
indecision region, where the classes are represented by the markers ¶ and ⌅
(Adapted from (GARCÍA; LUENGO; HERRERA, 2015) and (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017)).

The test samples x1 and x2 from Figure 18 are located respectively in an indecision
region and in a safe region. FIRE-DES correctly decides that x1 is located in an indecision
region, because the region of competence of x1 is composed of samples from di�erent
classes. For this reason, FIRE-DES pre-selects classifiers crossing the region of competence
of x1 (if such classifiers exist). FIRE-DES also correctly decides x2 is located in a safe
region because the region of competence of x2 is composed of samples of a single class. For
this reason, FIRE-DES does not pre-select classifiers crossing the region of competence of
x2 (if such classifiers exist).

The test samples x3 and x4 from Figure 18 are located respectively in a noisy region
and in an indecision region. FIRE-DES mistakes x3 (located in a noisy region) as being
located in an indecision region because the region of competence of x3 is composed of
samples from di�erent classes. For this reason, FIRE-DES applies the DFP, pre-selecting
classifiers that cross the region of competence of x3 (if such classifiers exist), that is,
classifiers that correctly classify the sample N, even though N is a noisy sample. Also,
FIRE-DES mistakes x4 (located in an indecision region) as being located in a safe region
because the region of competence of x4 is composed of samples of a single class. For this
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reason, FIRE-DES does not apply the DFP, not pre-selecting classifiers that crosses the
region of competence (and are therefore, competent for the indecision region).

The test samples x3 and x4 from Figure 18 exemplify 2 drawbacks of FIRE-DES:
(1) Noise Sensitivity: FIRE-DES can mistake a noisy region for an indecision region,
because it does not consider noise and outliers. (2) Indecision Region Restriction:
FIRE-DES does not apply the DFP when the test sample has only samples of a single class
in its region of competence, even if is located in a true indecision region. A test sample
is located in a true indecision region when it is located close to the decision borders of
classes, regardless of the classes represented in its region of competence.

The noise sensitivity drawback is specially important because DES techniques are
highly sensitive to noise, outliers, and high level of overlap between classes in DSEL (CRUZ;
CAVALCANTI; REN, 2011). Cruz et al. (CRUZ; SABOURIN; CAVALCANTI, 2016)
proposed the use of Prototype Selection (PS) (GARCIA et al., 2012) to remove noise from
the validation set and achieved interesting results, where the proposed approach improved
the classification performance of all DES techniques considered in their work. Using PS in
the validation set is a good approach to attenuate the noise sensitivity problem of DES
techniques, but for FIRE-DES, PS techniques can remove important samples, making
indecision regions look like safe regions. For this reason, using PS with FIRE-DES is a
promissing approach, but a second step is required so that the number of samples in which
the DFP is applied is not reduced.

The indecision region restriction drawback limits the DFP to test samples classified
as being located in indecision regions based on the samples that compose their regions
of competence. The problem is that DSEL is not always a good representation of the
distribution of classes, meaning that a test sample can have a region of competence
composed of samples from a single class (being classified as located in a safe region) when
it is in fact located close to the decision borders, that is, a true indecision region (i.e. x4

from Figure 18).

The K-Nearest Neighbors Equality (KNNE) (SIERRA et al., 2011) is a KNN
approach that selects the K nearest neighbors from each class, and each sample submits a
vote (weighted by the inverse of the distance to the test sample) for the classification of
the test sample. Using the KNNE to select the region of competence of the test sample
avoids the selection of a region of competence composed of samples from a single class,
ensuring that all test samples are classified as being located in an indecision region, and
the DFP is applied to all test samples. Mendialdua et al. (MENDIALDUA et al., 2015)
proposed a framework that uses KNNE to select the region of competence of test samples.
However, their framework does not consider that the KNNE can include noise in the
region of competence, and the framework is also limited to the Overall Local Accuracy
(OLA) (WOODS; KEGELMEYER; BOWYER, 1997) DES technique, and the use of
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hybrid ensembles composed of classifiers from di�erent natures.

In this paper, we propose the FIRE-DES++, an enhanced FIRE-DES framework
that tackles the noise sensitivity drawback and indecision region restriction drawback. Like
FIRE-DES, FIRE-DES++ can be used with any dynamic selection technique that uses
the nearest neighbors to estimate the competence level of base classifiers.

The FIRE-DES++ is composed of four phases: (1) Overproduction, where the
pool of classifiers C is generated using the training set T . (2) Filtering phase, where a PS
technique is applied to the validation set DSEL in order to remove noise and outliers, and
reduce the level of overlap between classes in DSEL. (3) Region of competence definition
(RoCD) phase, where FIRE-DES++ defines the region of competence using the KNNE,
selecting an equal number of samples from each class from DSEL, avoiding the definition
of a region of competence with samples of a single class. (4) Selection phase, where
FIRE-DES++ pre-selects base classifiers with decision boundaries crossing the region
of competence (if such classifiers exist) using the DFP (OLIVEIRA; CAVALCANTI;
SABOURIN, 2017), avoiding the selection of classifiers that classify all samples in the
region of competence as being from the same class. After the pre-selection, any DES
technique is applied to perform the final selection.

In the experiments, we evaluated FIRE-DES++ with 8 dynamic selection tech-
niques from the literature over 40 datasets from the Knowledge Extraction based on
Evolutionary Learning (KEEL) repository (ALCALÁ et al., 2010). We also compared
FIRE-DES++ using the better performing dynamic selection technique with 3 state-of-
the-art DES approaches, named: Randomized Reference Classifier (RRC) (WOLOSZYN-
SKI; KURZYNSKI, 2011), META-DES (CRUZ et al., 2015), and META-DES.Oracle
(CRUZ; SABOURIN; CAVALCANTI, 2017b). The results showed that, in classification
performance, FIRE-DES++ outperformed DES in all 8 DES techniques, FIRE-DES++
outperformed FIRE-DES in 6 out of 8 DES techniques, and FIRE-DES++ statistically out-
performed all 3 state-of-the-art techniques. These results were confirmed by the Wilcoxon
Signed Rank Test (WILCOXON, 1945), Sign Test (DEMäAR, 2006), Friedman test
(FRIEDMAN, 1937), and Nemenyi post hoc test (NEMENYI, 1962).

This paper is organized as follows: Section 2 presents the problem statement,
Section 3 presents the proposed framework, Section 4 presents the experimental study,
and Section 5 concludes the paper.

4.2 Problem Statement
Dynamic Ensemble Selection (DES) techniques aim to select only the most com-

petent classifiers for the classification of each test sample. However, DES techniques can
select classifiers that classify all samples as being from the same class, even when the test
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sample is located close to the decision border of classes. The Frienemy Indecision Region
DES (FIRE-DES) handles this problem, avoiding the selection of locally incompetent
classifiers when the test sample is located close to the decision borders. Given a test sample
xquery, FIRE-DES decides if xquery is located in an indecision region (when its region of
competence is composed of samples from di�erent classes), if so, it uses the Dynamic
Frienemy Pruning (DFP) technique to pre-select classifiers with decision boundaries cross-
ing the region of competence (correctly classifying samples from di�erent classes), and
then FIRE-DES uses a DES technique to perform the final selection. If the test sample
is located in an indecision region and no classifier crosses the region of competence, all
classifiers are pre-selected by the DFP.

FIRE-DES achieved interesting results, outperforming all DES techniques consid-
ered in (OLIVEIRA; CAVALCANTI; SABOURIN, 2017) in classification performance,
achieving statistically equivalent classification performance to the current state-of-art in
DES frameworks. However, in this work we identified two drawbacks of the FIRE-DES
framework: the noise sensitivity drawback and the indecision region restriction drawback.
These drawbacks are detailed in the following subsections.

4.2.1 Drawback 1: Noise Sensitivity

Figure 19(a) shows a test sample (N) with true class ⌅ located in a noisy region,
and three classifiers c1, c2, and c3. In this figure, the region of competence (�) of the test
sample is composed of the samples A, B, C, and N (sample N is noise). In the example
from Figure 19(a), the classifier c1 correctly classifies 4 samples in � (A, B, C, and N), the
classifier c2 correctly classifies 2 samples in � (B, and C), and the classifier c3 correctly
classifies 3 samples in � (A, B, and C).

The Overall Local Accuracy (OLA) (WOODS; KEGELMEYER; BOWYER, 1997)
DES technique estimates the competence of classifiers using their accuracy in the region of
competence, that is, the more samples a classifier correctly classifies, the more competent it
is. OLA selects only the most competent classifier for the classification of the test sample.

In Figure 19(a), OLA selects c1 (the classifier that correctly classify most samples
in �) even though c1 was only considered the best because of a noisy sample (N). This
selection leads to the misclassification of the test sample as ¶. Also in this example, the
FIRE-DES will mistake the noisy region (region with noisy samples) for an indecision
region (region composed of samples from di�erent classes), and pre-select classifiers that
correctly classify at least one pair of samples from di�erent classes (frienemies), in this
case c1, also misclassifying the test sample as ¶.
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(a) Toy problem of noisy region

of competence (A, B, C, and N),

the markers ¶ (A, B, C, and D)

and ⌅ (N, E, and F) are samples

of di�erent classes, the sample

labeled N is a noisy sample.

(b) Toy problem of a test sample

N and a filtered - noisy sample

N was removed - region of com-

petence (A, B, C, and D), the

markers ¶ (A, B, C, and D) and

⌅ (E, and F) are samples of dif-

ferent classes.

Figure 19 – DES applied to the classification of a test sample N of class ⌅. The continuous
straight lines are the decision boundaries of classifiers c1, c2, and c3, the
markers ¶ (A, B, C, and D) and ⌅ (N, E, and F) are samples of di�erent
classes, N is a noisy sample, and samples connected to the test sample by a
dotted line define the region of competence of the test sample.

4.2.2 Drawback 2: Indecision Region Restriction

Figure 19(b) shows the scenario from Figure 19(a) without the noisy sample N .
Figure 19(b) shows a test sample (N) with true class ⌅ located in a true indecision region
(close to the borders), and three classifiers c1, c2, and c3. In this figure, the region of
competence (�) of the test sample is composed of the samples A, B, C, and D all from
class ¶. In the example from Figure 19(b), the classifier c1 correctly classify 3 samples in
� (A, B, and C), the classifier c2 correctly classify 2 samples in � (B, and C), and the
classifier c3 correctly classify 4 samples in � (A, B, C, and D).

In Figure 19(b), OLA selects the classifier that correctly classify the most samples
in �, that is, c3, even though c3 classify all samples in the region of competence of the
test sample as being from the same class ¶, misclassifying the test sample.

In the example from Figure 19(b), the FIRE-DES does not apply the DFP because
it considers xquery as being located in a safe region, even though it is located in a true
indecision region. Therefore, FIRE-DES with OLA also misclassifies the test sample as
being from the class ¶.
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4.3 The proposed framework
In this section we propose an enhanced Frienemy Indecision Region Dynamic

Ensemble Selection (FIRE-DES++). FIRE-DES++ is divided into four phases (Figure
20):

1. Overproduction phase, where the pool of classifiers C is generated using the
training set (T ). The overproduction phase is performed only once in the training
stage.

2. Filtering phase, where a Prototype Selection (PS) (GARCIA et al., 2012) technique
is applied to the validation set DSEL, removing noise and outliers, and reducing
the level of overlap between classes in DSEL. The improved validation set is named
D

Õ
SEL

. The filtering phase is performed only once in the training stage.

3. Region of competence definition (RoCD) phase, there the framework defines
the region of competence (�) using the K-Nearest Neighbors Equality (KNNE)
(SIERRA et al., 2011) to select samples from the improved validation set D

Õ
SEL

. The
KNNE is a nearest neighbor approach that selects an equal number of samples from
each class, avoiding the definition of a region of competence with samples of a single
class. The RoCD phase is performed in the testing stage for each new test sample.

4. Selection phase, where the ensemble of classifiers for the classification of each new
test sample is selected. Given a test sample xquery, this phase pre-selects base classifiers
with decision boundaries crossing the region of competence of xquery (Cpruned), if
such classifier exists, using the Dynamic Frienemy Pruning (DFP) (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017). The DFP pre-selects classifiers that correctly
classify at least one pair of samples from di�erent classes ("frienemies") in the region
of competence. The DFP avoids the selection of classifiers that classify all samples in
the region of competence as being from the same class. After the pre-selection, any
DES technique is applied to perform the final selection (C Õ). Finally, the framework
uses a combination rule to combine the predictions of the selected classifiers into a
single prediction.

In Figure 20, T is the training set, Generation is an ensemble generation process
(i.e. Bagging (BREIMAN, 1996)), and C is the generated pool of classifiers; G is the
test set, xquery is the test sample; DSEL is the validation set, Filtering is the process
of filtering DSEL using a prototype selection algorithm which results in the improved
validation set D

Õ
SEL

, Region of Competence Definition is the process of selecting the region
of competence of xquery using D

Õ
SEL

, � is the region of competence of xquery; Dynamic
Frienemy Pruning is the Dynamic Pruning step, Cpruned is the pre-selected ensemble of
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Figure 20 – Overview of FIRE-DES++, where G is the test set, xquery is the test sample, T

is the training set, Generation is an ensemble generation process (i.e. Bagging)
used to generate the pool of classifiers C, DSEL is the validation set, Filtering
is the process of filtering DSEL using a prototype selection algorithm which
results in the improved validation set D

Õ
SEL

, Region of competence definition
(RoCD) is the process of selecting the region of competence � of xquery with
size K, Dynamic Frienemy Pruning is the Dynamic Frienemy Pruning (DFP)
step, Dynamic Selection is the Dynamic Selection step, Cpruned is the set
of pre-selected classifiers, C Õ is the ensemble of selected classifiers for the
classification of xquery, Combination is a combination rule, and class(xquery) is
the final classification of xquery.
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classifiers, Dynamic Selection is the Dynamic Selection step; C Õ is the ensemble of selected
classifiers, Combination is the process of combining the prediction of the classifiers in C Õ,
and class(xquery) is the final prediction of xquery.

The phases of FIRE-DES++ complement each other as the filtering phase tackles
the noise sensitivity drawback, removing noise and reducing the level of overlap between
classes; the region of competence definition phase tackles the indecision region restriction
drawback, as it ensures that all classes are represented in the region of competence of the
test sample; and, finally, the selection phase pre-selects classifiers with decision boundaries
crossing the region of competence, without having to consider the e�ect of noise (since
noise is removed in the filtering phase), neither with deciding if a test sample is located in
an indecision region or not (as the region of competence definition phase always selects
regions of competence composed of samples of di�erent classes).

The phases of FIRE-DES++ are detailed in the following subsections.

4.3.1 Overproduction

The overproduction phase uses any ensemble generation technique to generate
the pool of classifiers C trained with the training set T . Since the focus of this work
is on dynamic selection, following the approach used in (OLIVEIRA; CAVALCANTI;
SABOURIN, 2017), for simplicity, we use the Bagging technique (BREIMAN, 1996)
(SKURICHINA; DUIN, 1998) to generate the pool of classifiers.

4.3.2 Filtering phase

The filtering phase tackles the noisy sensitivity drawback (Section 4.2.1), as remov-
ing noise from DSEL, preventing FIRE-DES from estimating the competence level of base
classifiers using noisy data. We expect the filtering phase to cause a high performance
gain to the FIRE-DES++, as in (CRUZ; SABOURIN; CAVALCANTI, 2016), the authors
show that state-of-the-art techniques fail to obtain a good approximation of the decision
boundaries of classes when noise is added to DSEL, and also demonstrate that using PS
increases the classification performance of DES techniques.

In the filtering phase, FIRE-DES++ applies a PS technique to the validation set
(DSEL), resulting in an improved validation set (DÕ

SEL
) with less noise, and less overlap

between classes.

In (GARCIA et al., 2012), the authors presented a taxonomy of prototype selection,
classifying prototype selection techniques in three categories: (1) Condensation techniques,
that remove samples in the center of classes, maintaining the borderline samples. (2)
Edition techniques, that remove sample in the borders of classes, maintaining safe samples
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(located in the center of classes). (3) Hybrid techniques, combines condensation and edition
approaches.

In (CRUZ; SABOURIN; CAVALCANTI, 2017a), the authors compared the use of
several PS techniques applied on the validation set for dynamic selection purposes, and
showed that using Relative Neighborhood Graph (RNG) (SÁNCHEZ; PLA; FERRI, 1997)
was the best approach, followed by the Edited Nearest Neighborhood (ENN) (WILSON,
1972).

Since our experimental study is focused on small datasets with di�erent levels of
class imbalance, only samples of the majority class are removed from the validation set.

4.3.2.1 Relative Neighborhood Graph (RNG)

The RNG technique uses the concept of Proximity Graph (PG) to select prototypes.
RNG builds a PG, G = (V, E), in which the vertices are samples (V = DSEL) and the set
of edges E contains an edge connecting two samples (xi, xj) if and only if (xi, xj) satisfy
the neighborhood criterion in Equation 4.1:

(xi, xj) œ E … dist(xi, xj) Æ max(dist(xi, xk), dist(xj, xk))

’xk œ X, k = i, j
(4.1)

where dist is the Euclidean distance between two samples, and X is the set of samples
in the validation set. The corresponding geometric is defined as the disjoint intersection
between two hyperspheres centered in xi and xj, and radius equal to dist(xi, xj). Two
samples are relative neighbors if and only if this intersection does not contain any other
sample from DSEL. The relative neighborhood of a sample is the set of all its relative
neighbors. After building the PG and defining all graph neighbors, all samples with class
label di�erent from the majority of their respective relative neighbors are removed from
DSEL.

Algorithm 8 presents the pseudo-code of the RNG technique used in this work.
Given the validation set DSEL (Line 1), all samples are added in the filtered validation set
D

Õ
SEL

(Line 2), and the proximity graph of the samples in DSEL are stored in PG (Line
3). Now, for each sample xi œ DSEL, the relative neighbors (RN) of xi are selected, and,
if the most common class label in RN is di�erent from the class label of xi, and xi is not
from the minority class, xi is removed from the filtered validation set D

Õ
SEL

(Line 3 - 10).
Finally, the filtered validation set D

Õ
SEL

is returned (Line 11).

4.3.2.2 Edited Nearest Neighbors (ENN)

The ENN is an edition prototype selection technique well-known for its e�ciency in
removing noise and producing smoother classes boundaries. Due its simplicity and e�ciency,
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Algorithm 8 Relative Neighborhood Graph (RNG)
Require: DSEL: validation set

1: D
Õ
SEL

Ω DSEL

2: PG Ω proximity-graph(DSEL)
3: for all xi œ DSEL do

4: RN Ω relative-neighbors(xi, PG)
5: labelpred Ω most frequent class in RN
6: label true Ω class(xi)
7: if label true ”= labelpred · label true ”= minorityclass then

8: D
Õ
SEL

Ω D
Õ
SEL

\ xi

9: end if

10: end for

11: return D
Õ
SEL

in this work we use the ENN in the filtering phase, however, with the changes proposed in
(LAURIKKALA, 2001), (implemented in (LEMAITRE; NOGUEIRA; ARIDAS, 2017)),
where only majority class samples are removed in order to reduce the class imbalance.

Algorithm 9 presents the pseudo-code of the ENN technique used in this work.
Given the validation set DSEL (Line 1), all samples are added in the filtered validation
set D

Õ
SEL

(Line 2), and for each sample xi œ DSEL, if xi is misclassified by its K nearest
neighbors in D

Õ
SEL

\xi and xi is not from the minority class, xi is removed from the filtered
validation set D

Õ
SEL

(Line 3 - 9). Finally, the filtered validation set D
Õ
SEL

is returned (Line
10).

Algorithm 9 Edited Nearest Neighbors (ENN)
Require: DSEL: validation set

1: D
Õ
SEL

Ω DSEL

2: for all xi œ DSEL do

3: labelpred Ω most frequent class in KNN(xi, DSEL\ xi)
4: label true Ω class(xi)
5: if label true ”= labelpred · label true ”= minorityclass then

6: D
Õ
SEL

Ω D
Õ
SEL

\ xi

7: end if

8: end for

9: return D
Õ
SEL

4.3.3 Region of competence definition phase

The region of competence definition phase of FIRE-DES tackles the indecision
region restriction drawback (Section 4.2.2) of FIRE-DES, as it ensures that all classes are
represented in the region of competence (since all test samples have samples of di�erent
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classes in the region of competence).

The nearest neighbor (NN) rule (COVER; HART, 1967) is one of the most well
known supervised learning techniques, the general idea is to classify a test sample as being
of the same class as its nearest sample from the training set. The K-nearest neighbor rule
(KNN) (PATRICK; FISCHER, 1969) is an extension of the NN rule in which the test
sample is classified as being from the most frequent class in the K nearest samples of
the test sample in the training set. The KNN is very simple, and yet, is one of the most
interesting and useful algorithm in pattern recognition (SHAKHNAROVICH; DARRELL;
INDYK, 2005a).

In the context of dynamic selection of classifiers, the KNN is used to define the
region of competence of the test sample which is used to evaluate the competence of base
classifiers (BRITTO; SABOURIN; OLIVEIRA, 2014). The rationale behind this approach
is that classifiers that are competent to classify a test sample xquery are the ones that are
competent to classify samples that are similar to xquery (that is, the nearest neighbors of
xquery).

In (MENDIALDUA et al., 2015), the authors proposed using the K-Nearest Neigh-
bors Equality (KNNE) (SIERRA et al., 2011) to select the region of competence of test
samples for the Overall Local Accuracy (OLA) (WOODS; KEGELMEYER; BOWYER,
1997) technique in a One versus One binarization approach. The KNNE selects the K
nearest neighbors of the test sample for each class, and classifies the test sample as being
from the class with lower mean distance.

In this work, we propose using the KNNE to select the region of competence of
test samples. This region of competence is later used in the selection phase to pre-select
classifiers with decision boundaries crossing the region of competence, and to perform the
final selection of classifiers for the classification of each new test sample.

4.3.4 Selection phase

In the selection phase, first, the framework pre-selects classifiers using the DFP,
and then, it uses a dynamic selection technique from the literature to perform the final
selection of classifiers for each new test sample.

4.3.4.1 Dynamic frienemy pruning

The Dynamic Frienemy Pruning (DFP) (OLIVEIRA; CAVALCANTI; SABOURIN,
2017) aims to pre-select competent classifiers (classifiers with decision boundaries crossing
the region of competence) for the classification of each new test sample, before the final
selection of classifiers. The DFP algorithm uses the frienemy samples concept: Given a
test sample xquery and its region of competence �, two samples �a and �b are frienemy
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samples in regards to xquery if, �a is in �, �b is in �, and �a and �b are from di�erent
classes. Figure 21 shows a test sample N and its region of competence (samples A, B, C,
D and E). In this example, the frienemy samples are the pairs of samples of opposite
classes (¶,⌅), named (A, C), (A, D), (A, E), (B, C), (B, D), (B, E).

Figure 21 – Pairs of frienemies (A, C), (A, D), (A, E), (B, C), (B, D), (B, E) in the re-
gion of competence of the test sample N. Image adapted from (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017).

For each new test sample, if the test sample is located in an indecision region,
the DFP algorithm pre-selects classifiers with decision boundaries crossing the region of
competence. That is, if the test sample have samples of di�erent classes in the region of
competence, DFP pre-selects classifiers that correctly classify at least one pair of frienemy
samples (if such classifier exists).

Algorithm 10 presents the DFP pseudo-code. Given the region of competence (�)
of the test sample, and the pool of classifiers (C), DFP creates an empty list Cpruned in
which the pre-selected classifiers will be stored (Line 1), finds the pairs of frienemy samples
(F) in � (Line 2), and, for each classifier c in C, c is included in Cpruned if c correctly
classify at least one pair of frienemies (Lines 3 - 8). If no classifier is pre-selected, DFP
includes all classifiers in C into Cpruned (lines 9 - 11). Finally, Cpruned is returned (Line 12).

4.3.5 Dynamic Selection

Section 4.2 presented the problems of FIRE-DES when the test sample is located
in a noisy region (Subsection 4.2.1) and when the test sample has samples of a single class
in its region of competence (Subsection 4.2.2).

Figure 22 shows the same scenario from Figure 19 (but without the noisy sample
N and using the KNNE to define the region of competence of the test sample). Figure 22
shows a test sample (N) with true class ⌅, and three classifiers c1, c2, and c3, and region
of competence (�) composed of the samples A, B, E, and F.
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Algorithm 10 Dynamic Frienemy Pruning
Require: �: region of competence of the test sample

Require: C: pool of classifiers

1: Cpruned Ω empty ensemble of classifiers

2: F Ω all pair of frienemies in �

3: for all ci in C do
4: Fi Ω pairs of samples in F correctly classified by ci.

5: if Fi is not empty then
6: Cpruned Ω Cpruned fi ci

7: end if
8: end for
9: if Cpruned is empty then

10: Cpruned Ω C

11: end if
12: return Cpruned

Figure 22 – DES applied to the classification of a test sample N of class ⌅. The continuous
straight lines are the decision boundaries of classifiers c1, c2, and c3, the
markers ¶ (A, B, C, and D) and ⌅ (E, and F) are samples of di�erent classes,
and samples connected to the test sample by a dotted line (A, B, E, and F)
define the region of competence of the test sample.

Figure 22 shows the region of competence considered by FIRE-DES++ when
applied to the problem from Figure 19. First, the FIRE-DES++ removes noise from the
validation set (the example from Figure 19(a) is turned into the example from Figure
19(b)), tackling the noisy sensitivity drawback of FIRE-DES. Then, the framework uses
the KNNE to define the region of competence of the test sample, selecting samples from
di�erent classes (the example from Figure 19(b) is turned into the example from Figure
22), tackling the indecision region restriction drawback of FIRE-DES. In the example from
Figure 22, the classifier c1 now correctly classifies 2 samples in �, the classifier c2 now
correctly classifies 3 samples in �, and the classifier c3 now correctly classifies 2 samples
in �. OLA now selects c2 correctly classifying the test sample.

By applying the DFP in this example (after the PS technique and the KNNE),
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FIRE-DES++ pre-selects the classifier c2 as it is the only classifier that correctly classify
at least one pair of frienemies, correctly classifying the test sample as being from the class
⌅. In this example, FIRE-DES++ performed optimal classification for OLA and the same
concept can be extended to other DES techniques.

4.4 Experiments
In this section, we evaluate FIRE-DES++ using di�erent dynamic selection tech-

niques, and the impact of the filtering phase using the Edited Nearest Neighbors (ENN),
the region of competence definition phase using the K-Nearest Neighbors Equality (KNNE),
and the selection phase, using the Dynamic Frienemy Pruning (DFP). We also compare
the filtering phase using the ENN and the Relative Neighborhood Graph (RNG).

In our evaluation, we used 8 dynamic classifier selection techniques from the
literature. We also compare FIRE-DES++ (using the DES technique that achieved the
highest classification performance) with state-of-the-art DES approaches: Randomized
Reference Classifier (RRC) (WOLOSZYNSKI; KURZYNSKI, 2011), META-DES (CRUZ
et al., 2015), and META-DES.Oracle (CRUZ; SABOURIN; CAVALCANTI, 2017b). These
3 state-of-the-art techniques have achieved the best classification performance in (CRUZ;
SABOURIN; CAVALCANTI, 2018).

The RRC technique does not use the KNN to define the region of competence,
rather, it uses the entire validation set to select the most competent classifier using a
potential function model, therefore, neither the KNNE nor the DFP steps in the proposed
framework can be applied to this technique. The META-DES and META-DES.Oracle use
meta-features based on the distance between the test sample and its neighbors, for this
reason, the KNNE can not be properly used, also, the META-DES and META-DES.Oracle
require an extra data partition (meta-training dataset) for training the meta-classifiers,
deviating from the experimental protocol of the other techniques used in this experiment.

4.4.1 Dynamic Selection Techniques

We considered a total of 8 dynamic selection techniques to be considered in the
proposed framework: Overall Local Accuracy (OLA), Local Class Accuracy (LCA), A Priori
(APRI), A Posteriori (APOS), Multiple Classifier Behavior (MCB), Dynamic Selection
KNN (DSKNN), K-Nearest Oracles Union (KNU), and K-Nearest Oracles Eliminate
(KNE).

Table 6 presents the 8 dynamic selection techniques considered in this work, 3 state-
of-the-art frameworks, their category according to the taxonomy in (CRUZ; SABOURIN;
CAVALCANTI, 2018), and their original references.
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Table 6 – Dynamic selection techniques considered in the experiments.

, 1997)
, 1997)

, 2011)

, 2017b)

The parameters were set following the strategy used in (CRUZ et al., 2015) and
(CRUZ; SABOURIN; CAVALCANTI, 2016). For each data partition, a pool of classifiers
C of 100 Perceptrons was generated using the Bagging technique (BREIMAN, 1996). For
all dynamic selection techniques, the region of competence size (K) was set to K = 7. The
parameters specific to individual dynamic selection techniques were set using the default
values within the range specified in the literature.

4.4.2 Datasets

We conducted the experiments on 40 datasets from the Knowledge Extraction
based on Evolutionary Learning (KEEL) repository (ALCALÁ et al., 2010). This experi-
mental study is focused on small datasets with di�erent levels of class imbalance, since
dynamic selection techniques have been shown to be e�ective on small datasets (CAVALIN;
SABOURIN; SUEN, 2013), and ensemble learning has recently become popular in dealing
with imbalanced datasets (GALAR et al., 2012) (NANNI; FANTOZZI; LAZZARINI,
2015) (GALAR et al., 2016). Table 7 shows the characteristics of the datasets used in this
experiment: label, name, number of features, number of samples, and imbalance ratio (IR).

Technique Category Reference

DCS

Overall Local Accuracy (OLA) Accuracy Woods et al. (WOODS; KEGELMEYER; BOWYER, 1997)

Local Class Accuracy (LCA) Accuracy Woods et al. (WOODS; KEGELMEYER; BOWYER, 1997)

A Priori (APri) Probabilistic Giacinto et al. (GIACINTO; ROLI, 1999)

A Posteriori (APos) Probabilistic Giacinto et al. (GIACINTO; ROLI, 1999)

Multiple Classifier Behavior (MCB) Behavior Giacinto et al. (GIACINTO; ROLI, 2001b)

DES

Dynamic Selection KNN (DSKNN) Diversity Santana et al. (SANTANA et al., 2006)

K-Nearests Oracles Union (KNU) Oracle Ko et al. (KO; SABOURIN; JR, 2008)

K-Nearests Oracles Eliminate (KNE) Oracle Ko et al. (KO; SABOURIN; JR, 2008)

State-of-the-art

Randomized Reference Classifier (RRC) Probabilistic Woloszynski et al. (WOLOSZYNSKI; KURZYNSKI, 2011)

META-DES Meta-learning Cruz et al. (CRUZ et al., 2015)

META-DES.Oracle Meta-learning Cruz et al. (CRUZ; SABOURIN; CAVALCANTI, 2017b)
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Table 7 – Characteristics of the 40 datasets used in the experiments: label, name, number
of features, number of samples, and imbalance ratio. The imbalance ratio (IR)
is the ratio between the number of majority class samples and minority class
samples.

Label Name #Feats. #Samples IR
1 glass1 9 214 1.82
2 ecoli0vs1 7 220 1.86
3 wisconsin 9 683 1.86
4 pima 8 768 1.87
5 iris0 4 150 2.00
6 glass0 9 214 2.06
7 yeast1 8 1484 2.46
8 vehicle2 18 846 2.88
9 vehicle1 18 846 2.90
10 vehicle3 18 846 2.99
11 glass0123vs456 9 214 3.20
12 vehicle0 18 846 3.25
13 ecoli1 7 336 3.36
14 new-thyroid1 5 215 5.14
15 new-thyroid2 5 215 5.14
16 ecoli2 7 336 5.46
17 segment0 19 2308 6.00
18 glass6 9 214 6.38
19 yeast3 8 1484 8.10
20 ecoli3 7 336 8.60
21 yeast-2vs4 8 514 9.08
22 yeast-05679vs4 8 528 9.35
23 vowel0 13 988 9.98
24 glass-016vs2 9 192 10.29
25 glass2 9 214 11.59
26 shuttle-c0vsc4 9 1829 13.87
27 yeast-1vs7 7 459 14.30
28 glass4 9 214 15.47
29 ecoli4 7 336 15.80
30 page-blocks-13vs4 10 472 15.86
31 glass-0-1-6_vs_5 9 184 19.44
32 shuttle-c2-vs-c4 9 129 20.50
33 yeast-1458vs7 8 693 22.10
34 glass5 9 214 22.78
35 yeast-2vs8 8 482 23.10
36 yeast4 8 1484 28.10
37 yeast-1289vs7 8 947 30.57
38 yeast5 8 1484 32.73
39 ecoli-0137vs26 7 281 39.14
40 yeast6 8 1484 41.40
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4.4.3 Evaluation

For each dataset, the experiments were carried out using 20 replications. Each
replication divided the samples using 20% as test set (G), 20% as validation set (DSEL),
and 60% as training set (T ). The datasets were partitioned using stratified 5-fold cross-
validation (1 fold for testing, 4 folds for validation/training) followed by a stratified 4-fold
cross-validation (the 4 folds in validation/training divided in 3 folds for training and 1 for
validation).

For evaluation metric, we used the Area Under the ROC Curve (AUC) (BRADLEY,
1997). We used the AUC because this metric has been widely used to evaluate the
performance of classifiers on imbalanced data (LÓPEZ et al., 2013).

For performance comparison, we used the Wilcoxon Signed Rank Test (WILCOXON,
1945), the Sign Test (DEMäAR, 2006), The Friedman test (FRIEDMAN, 1940), and the
Nemenyi post-hoc test (NEMENYI, 1962).

4.4.4 Filtering Phase: RNG vs. ENN

In (CRUZ; SABOURIN; CAVALCANTI, 2017a), the authors compared the perfor-
mance of di�erent prototype selection techniques applied on dynamic selection of classifiers
and the results showed that edition techniques, named Relative Neighborhood Graph
(RNG) (SÁNCHEZ; PLA; FERRI, 1997) and Edited Neighborhood Neighborhood (ENN)
(WILSON, 1972), achieved respectively the best and second best classification performance.
We evaluate FIRE-DES++ using RNG and ENN in the filtering phase, following the
approach of maintaining all samples of the minority class. This comparison is important
for verifying if FIRE-DES++ is sensitive to changes of PS techniques in the filtering phase,
and also for finding the PS technique that causes the highest classification performance
gain in FIRE-DES++.

Figure 23 shows the scatter plot of average AUC of FIRE-DES++ using the ENN
(vertical axis) and the RNG (horizontal axis). In this figure, all markers are above the
diagonal line, meaning that using the ENN was, on average, better than using the RNG
for all DES techniques in the proposed framework.

Using the Wilcoxon Signed Rank Test (– = 0.10), we can confirm that using the
proposed framework with the ENN is statistically better than using the RNG for all
techniques: OLA (p-value = 0.0121), LCA (p-value = 0.0011), APRI (p-value = 0.0040),
APOS (p-value = 0.0946), MCB (p-value = 0.0007), DSKNN (p-value = 0.0002), KNU
(p-value = 0.0010), and KNE (p-value = 0.0002).

Since FIRE-DES++ using ENN is statistically better than FIRE-DES++ using
RNG, we consider FIRE-DES++ using ENN for the rest of this paper.
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Figure 23 – Scatter plots of average AUC of FIRE-DES++ using the ENN (vertical axis)
and the RNG (horizontal axis). Markers above the diagonal line indicates that
the using the ENN had a better performance than using the RNG.

4.4.5 Comparison among di�erent scenarios

Table 8 presents eight di�erent scenarios for dynamic selection techniques considered
in this experiments.

Table 8 – Eight test scenarios considered this work.

Scenario KNNE ENN DFP

I No No No
II Yes No No
III No Yes No
IV No No Yes
V Yes Yes No
VI Yes No Yes
VII No Yes Yes
VIII Yes Yes Yes

For each scenario, we evaluated the classification performance of each DES technique
over the 40 datasets, a total of 320 experiments (40 datasets ◊ 8 techniques) per scenario.
For each dataset and dynamic selection technique, we ranked each scenario from rank 1 to
rank 8 (rank 1 is best), and calculated the average ranking. The result of the friedman
test was p-value = 2.39 ◊ e≠70, indicating that there is statistical di�erence between the
scenarios. Figure 24 presents the Nemenyi test (NEMENYI, 1962), where the lower the
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average ranking the better, and techniques significantly di�erent have a di�erence in
ranking higher than the critical di�erence (CD = 0.5383).

3.24
3.61

4.13
4.09

6.14
5.09

4.84
4.85

CD = 0.5382

Figure 24 – CD diagram of Nemenyi post-hoc test considering all dynamic selection
approaches, where CD = 0.5383, and Friedman p-value = 2.39 ◊ e≠70.

Figure 24 shows that:

• FIRE-DES++ (Scenario VIII) achieved the highest classification performance ranking
(3.24), statistically outperforming Scenarios I, II, III, IV, V, and VI.

• Using the three phases of FIRE-DES++ (Scenario VIII), have a positive impact in
the performance of DES techniques.

• Using any of the phases of FIRE-DES++ individually (Scenarios II, III, and IV) is
enough to statistically outperform DES (Scenario I) in classification performance
ranking.

• Using ENN and DFP (Scenario VII) had statistically equivalent ranking to using
ENN, KNNE, and DFP (Scenario VIII), however, Scenario VIII had a better ranking.

This shows that all steps of FIRE-DES++ are important, and using the three of them
combined leads to the highest overall improvement in classification performance of DES
techniques.

Figure 25 shows the classification performance gain caused appending phases to
regular DES, that is, the di�erence in classification performance (AUC) between Scenarios
IV, VI, VII, and VIII and Scenario I. This figure shows that the three phases combined
(DFP, KNNE, and ENN) causes the highest classification performance gain (0.0412),
followed by DFP and ENN combined (0.0385), DFP and KNNE combined (0.0354), and
finally DFP alone (0.0300). These results indicate that the filtering and the region of
competence definition phases in the FIRE-DES++ framework cause performance gain
over FIRE-DES.
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Figure 25 – Influence of each phase when compared to Scenario I, that is, the di�erence
between Scenarios IV, VI, VII and VIII and Scenario I. The bars represent av-
erage classification performance gain (AUC) over the 40 classification datasets
when adding DFP (0.0300), DFP+KNNE (0.0354), DFP+ENN (0.0385), and
finally, DFP+KNNE+ENN (0.0412).

4.4.6 Comparison with FIRE-DES

In this section, we compare FIRE-DES++ and FIRE-DES for each DES technique
considered in this work. The goal of this analysis is to investigate whether FIRE-DES++
significantly improves the performance of FIRE-DES.

Figure 26 presents the Nemenyi test comparing FIRE-DES++ (FOLA++, FLCA++,
FAPRI++, FAPOS++, FMCB++, FDSKNN++, FKNU++, and FKNE++) with FIRE-
DES (FOLA, FLCA, FAPRI, FAPOS, FMCB, FDSKNN, and FKNE). The result of the
Friedman test was p-value = 1.14 ◊ e≠31, and the critical di�erence was 3.4021.

CD = 3.4021

4.76
5.81
6.08
6.76
7.59
7.61
7.67
8.11

12.50
11.11
11.03
10.18

9.95
9.65
8.69
8.50

Figure 26 – CD diagram of Nemenyi post-hoc test considering all dynamic selection
approaches, where CD = 3.4021, and Friedman p-value = 1.14 ◊ e≠31.

In Figure 26, FIRE-DES++ outperformed FIRE-DES in 6 DES techniques (KNE,
APOS, DSKNN, LCA, OLA, APRI, APOS) and, with statistically significant di�er-
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ence, FKNE++ outperformed KNE, FAPOS++ outperformed FAPOS, FDSKNN++
outperformed FDSKNN, FLCA++ outperformed FLCA. FIRE-DES++ was outperformed
by FIRE-DES only for 2 DES techniques (KNU and MCB), and even still, they were
statistically equivalent.

Figure 27 presents a pairwise comparison of FIRE-DES++ and FIRE-DES for each
DES technique. This comparison used the sign test calculated on the computed wins, ties
and losses of FIRE-DES++. The null hypothesis H0 was that using the FIRE-DES++
did not make any di�erence compared to FIRE-DES, and a rejection in H0 meant that
FIRE-DES++ significantly outperformed FIRE-DES. In this evaluation, we considered
three levels of significance – = {0.10, 0.05, 0.01}. To reject H0, the number of wins plus
half of the number of ties needs to be greater or equal to nc (Equation 4.2):

nc = nexp

2 + z– ◊

2
Ô

nexp

2 (4.2)

where nexp = 40 (the number of experiments), nc = {24.05, 25.20, 27.37}, respectively for
– = {0.10, 0.05, 0.01}.

Figure 27 – Performance of FIRE-DES++ compared with FIRE-DES using di�erent DES
techniques in terms of wins, ties and losses considering the average AUC in the
40 datasets. The dashed lines (left to right) illustrates the critical values nc =
{24.05, 25.20, 27.37} considering significance levels of – = {0.10, 0.05, 0.01},
respectively.

Figure 27 shows that, for – = {0.10, 0.05} (first 2 lines left to right), with OLA,
LCA, APRI, APOS, DSKNN, and KNE, FIRE-DES++ caused a significant performance
gain over FIRE-DES. While for KNU and MCB, FIRE-DES++ and FIRE-DES had a



Chapter 4. FIRE-DES++: ENHANCED ONLINE PRUNING OF BASE CLASSIFIERS
FOR DYNAMIC ENSEMBLE SELECTION 96

statistically equivalent classification performance, FIRE-DES++ being slightly worse than
FIRE-DES. For – = 0.01, only with OLA, APRI, APOS, DSKNN, and KNE, FIRE-DES++
caused a significant performance gain over FIRE-DES.

The only DES techniques in which the FIRE-DES++ did not outperform FIRE-
DES were MCB and KNU. The reason for such behavior is because both MCB and
KNU can select multiple classifiers (MCB selects all classifiers if the di�erence between
the competence of the best classifier and all other classifiers is less than a predefined
threshold, and KNU selects all classifiers that correctly classify any of the samples in
the region of competence to submit a vote for the classification of the test sample - the
more samples a classifier correctly classifies, the more votes the classifier has - (BRITTO;
SABOURIN; OLIVEIRA, 2014)). Defining the region of competence of size K using the
KNNE has this property of expanding the radius of the local region due to the fact that the
selected samples are not necessarily the K closest patterns. With the region of competence
expanded, it is more di�cult to select a single classifier that is much better than all others
(either to be selected or to outvote all others), therefore, this might lead to the selection
of incompetent classifiers and the misclassification of test samples.

4.4.7 Comparison with state-of-the-art

Table 9 presents the average AUC of the FIRE-DES++ using KNE (FKNE++),
FIRE-DES with KNE (FKNE), KNE, and the state-of-the-art DES techniques: RRC,
META-DES, and META-DES.O. For each dataset, the best results are highlighted in
bold, and significantly better results are marked with • (p-value Æ 0.10) and •• (p-value
Æ 0.05), where p-value is obtained with the T-Student statistical test.

Table 9 shows that the FKNE++ achieved the highest AUC (0.8205), followed
by META-DES (.8100), META-DES.Oracle (.8067), FKNE (0.8055), KNE (.8003), and
RRC (.7934). Table 9 also shows that, considering – = 0.1, the proposed framework
outperformed the state-of-the-art dynamic selection techniques with statistical confidence.

Figure 28 presents the Nemenyi test comparing FKNE++, FKNE, KNE, META-
DES, META-DES.Oracle and RRC, where the Friedman result was p-value = 1.03 ◊ e≠5,
and the critical di�erence was CD = 1.0828. In this experiment, the best ranking was
achieved by FKNE++ (2.45), being statistically better than FKNE, KNE, and RRC, and
being statistically equivalent to META-DES and META-DES.Oracle.

Using the Wilcoxon Signed Rank Test (WILCOXON, 1945) (– = 0.10) to compare
the three best techniques (FKNE++, META-DES, and META-DES.Oracle), we can
confirm with confidence that FKNE++ statistically outperformed META-DES (p-value =
0.0595), and FKNE++ statistically outperformed META-DES.Oracle (p-value = 0.0240).

Table 9 and Figure 28 show that FIRE-DES++ outperformed state-of-the-art DES
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Table 9 – Mean results of the AUC obtained for FKNE++, KNE, RSS, META-DES, and
META-DES.Oracle. A pool of 100 perceptrons as base classifiers is used for all
techniques. Best results are in bold, and significantly better results are marked
with • (p-value Æ .10) and •• (p-value Æ .05), where p-value is obtained with
the T-Student. The last line presents the p-value resulted from the Wilcoxon
Signed Rank Test comparing the proposed framework (FKNE++) with FKNE,
KNE, RRC, META-DES, and META-DES.Oracle.

Label FKNE++ FKNE KNE RRC META META-O
1 0.6473(0.1067) 0.6439(0.0939) 0.6701(0.0775) 0.5693(0.0722) 0.7254(0.0589) ••0.7263 (0.0605)

2 0.9603(0.0288) 0.9587(0.0327) 0.9656(0.0214) 0.9535(0.0310) 0.9671(0.0288) 0.9680 (0.0270)

3 •0.9710 (0.0114) 0.9527(0.0228) 0.9601(0.0162) 0.9614(0.0116) 0.9636(0.0187) 0.9671(0.0146)
4 0.6999(0.0290) 0.6810(0.0361) 0.6802(0.0362) 0.7179 (0.0287) 0.7127(0.0282) 0.7095(0.0340)
5 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 0.9975(0.0075) 1.0000 (0.0000) 1.0000 (0.0000)

6 0.7425(0.0900) 0.6904(0.0805) 0.7154(0.0546) 0.7196(0.0613) ••0.7853 (0.0766) 0.7753(0.0716)
7 0.6743 (0.0322) 0.6513(0.0454) 0.6481(0.0316) 0.6161(0.0458) 0.6487(0.0216) 0.6333(0.0213)
8 0.9356(0.0184) 0.9348(0.0230) 0.9442(0.0192) 0.9223(0.0217) 0.9559 (0.0142) 0.9504(0.0159)
9 ••0.7173 (0.0321) 0.7060(0.0379) 0.6937(0.0311) 0.6949(0.0285) 0.6930(0.0300) 0.6685(0.0325)
10 0.6994(0.0353) 0.6902(0.0451) 0.6797(0.0412) 0.7027 (0.0276) 0.6773(0.0464) 0.6733(0.0484)
11 0.9067 (0.0538) 0.8920(0.0631) 0.8918(0.0634) 0.8936(0.0615) 0.8871(0.0672) 0.9041(0.0631)
12 0.9575(0.0140) 0.9440(0.0163) 0.9447(0.0166) 0.9476(0.0299) ••0.9590 (0.0175) 0.9512(0.0226)
13 0.8671 (0.0514) 0.8220(0.0495) 0.8367(0.0579) 0.8351(0.0492) 0.8408(0.0600) 0.8460(0.0579)
14 0.9894 (0.0211) 0.9858(0.0247) 0.9858(0.0247) 0.9802(0.0287) 0.9809(0.0272) 0.9787(0.0295)
15 0.9751(0.0310) 0.9687(0.0401) 0.9687(0.0401) 0.9858 (0.0285) 0.9758(0.0448) 0.9700(0.0519)
16 0.8875(0.0569) 0.8327(0.0859) 0.8726(0.0559) 0.8304(0.0730) 0.8898 (0.0455) 0.8828(0.0525)
17 0.9901(0.0065) 0.9906(0.0071) 0.9908(0.0073) 0.9875(0.0096) 0.9912 (0.0080) 0.9911(0.0080)
18 0.8768(0.0673) 0.8653(0.0629) 0.8667(0.0612) 0.9156(0.0584) 0.9180(0.0577) ••0.9214 (0.0560)

19 0.8663 (0.0395) 0.8287(0.0476) 0.8212(0.0347) 0.8308(0.0601) 0.8406(0.0350) 0.8376(0.0388)
20 0.8232 (0.0947) 0.7665(0.1180) 0.7536(0.1018) 0.7623(0.1062) 0.7475(0.0998) 0.7630(0.0863)
21 0.8364(0.0571) 0.8168(0.0698) 0.8126(0.0711) 0.8329(0.0515) 0.8427 (0.0608) 0.8339(0.0685)
22 •0.7264 (0.0693) 0.6975(0.0759) 0.6860(0.0739) 0.6726(0.0624) 0.7218(0.0782) 0.6923(0.0745)
23 0.9437(0.0516) 0.9269(0.0477) 0.9272(0.0478) 0.9144(0.0415) ••0.9749 (0.0220) 0.9732(0.0266)
24 0.5473(0.0873) 0.5477 (0.1317) 0.5379(0.1074) 0.4953(0.0413) 0.5346(0.0738) 0.5465(0.0779)
25 0.5843(0.1209) •0.6140 (0.1574) 0.5592(0.1087) 0.5560(0.1135) 0.5579(0.1359) 0.5469(0.1234)
26 0.9960(0.0080) 0.9960(0.0080) 0.9960(0.0080) 0.9936(0.0095) 0.9947(0.0088) 0.9969 (0.0071)

27 •0.6493 (0.0955) 0.6214(0.0812) 0.6058(0.0675) 0.5770(0.0812) 0.5587(0.0663) 0.5423(0.0482)
28 0.7643(0.1636) 0.7671 (0.1697) 0.7523(0.1636) 0.7650(0.1917) 0.7246(0.1701) 0.7608(0.1946)
29 0.9089(0.0534) 0.9003(0.0636) 0.9007(0.0633) 0.9198(0.0569) 0.9203 (0.0565) 0.9144(0.0669)
30 0.9436(0.0502) 0.9421(0.0521) 0.9469(0.0540) 0.8301(0.0866) 0.9744 (0.0393) 0.9524(0.0517)
31 •0.9175 (0.1331) 0.8418(0.1986) 0.8239(0.2136) 0.8421(0.1677) 0.8450(0.1679) 0.8186(0.1816)
32 0.9480(0.0992) 0.9480(0.0992) 0.9480(0.0992) 0.9710(0.0741) 0.9710(0.0741) 0.9835 (0.0542)

33 0.5759 (0.0757) 0.5670(0.0743) 0.5560(0.0662) 0.5028(0.0187) 0.5078(0.0365) 0.5040(0.0182)
34 0.7530(0.2241) 0.7716(0.2338) 0.7195(0.2349) 0.8503(0.1871) 0.8534 (0.2028) 0.8296(0.2010)
35 0.7772(0.0947) 0.7789(0.1105) 0.7764(0.0943) 0.7731(0.0923) 0.7674(0.0892) 0.7796 (0.0946)

36 ••0.7030 (0.0699) 0.6961(0.0919) 0.6478(0.0800) 0.5968(0.0677) 0.6126(0.0434) 0.6080(0.0498)
37 •0.5859 (0.0676) 0.5738(0.0940) 0.5477(0.0667) 0.5577(0.0655) 0.5348(0.0462) 0.5446(0.0756)
38 0.8633 (0.0765) 0.8107(0.0922) 0.7871(0.0976) 0.7406(0.0852) 0.7920(0.0709) 0.7869(0.0731)
39 0.8422(0.1970) 0.8431(0.1975) 0.8454(0.1990) 0.8445(0.1989) 0.8472 (0.2003) 0.8463(0.1996)
40 ••0.7684 (0.0905) 0.7557(0.0894) 0.7449(0.1009) 0.6767(0.0970) 0.7040(0.1122) 0.6906(0.1153)

Mean 0.8205(0.0676) 0.8055(0.0768) 0.8003(0.0703) 0.7934(0.0658) 0.8100(0.0635) 0.8067(0.0649)
p-value NA 3.80 ◊ e≠5 1.82 ◊ e≠6 0.0002 0.0595 0.0240
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Figure 28 – CD diagram of Nemenyi post-hoc test considering all dynamic selection
approaches, where CD = 1.0828, and Friedman p-value = 1.03 ◊ e≠5.

techniques META-DES, META-DES.Oracle, and RRC in classification performance and
ranking.

4.5 Conclusion
In this paper, we presented 2 drawbacks of the Frienemy Indecision REgion Dy-

namic Ensemble Selection (FIRE-DES) framework: (1) noise sensitivity drawback: the
classification performance of FIRE-DES is strongly a�ected by noise and outliers, as it
mistakes noisy regions for indecision regions and applies the pre-selection of classifiers. (2)
indecision region restriction drawback: FIRE-DES uses the region of competence to decide
if a test sample is located in an indecision region, and only pre-selects classifiers when
the region of competence of the test sample is composed of samples from di�erent classes,
restricting number of test samples in which the pre-selection is applied for its classification.

To tackle these drawbacks of FIRE-DES, we use the Edited Nearest Neighbors
(ENN) (WILSON, 1972) to remove noise from the validation set (tackling the noise
sensitivity drawback), and we use the K-Nearest Neighbors Equality (KNNE) (SIERRA
et al., 2011) to define the region of competence selecting the nearest neighbors from each
class (tackling the indecision region restriction drawback). We named this new framework
FIRE-DES++.

FIRE-DES++ is composed of 4 phases: (1) Overproduction, where the pool of
classifiers C is generated using the training set T . (2) Filtering phase, where the framework
removes noise and outliers from the validation set DSEL using the ENN. (3) Region of
competence definition phase, where FIRE-DES++ defines the region of competence by
selecting an equal number of samples from each class from the validation set using the
KNNE, avoiding the definition of a region of competence with samples of a single class. (4)
Selection phase, where the framework pre-selects base classifiers with decision boundaries
crossing the region of competence (if such classifiers exist) using the Dynamic Frienemy
Pruning (DFP) (OLIVEIRA; CAVALCANTI; SABOURIN, 2017), avoiding the selection
of classifiers that classify all samples in the region of competence as being from the same
class. After the pre-selection, any DES technique is applied to perform the final selection.
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In order to evaluate FIRE-DES++, we compared the results FIRE-DES++ with
DES and FIRE-DES with 8 dynamic selection techniques over 40 datasets. The experi-
mental results shows that the use of each individual phase (2, 3, and 4) causes significant
improvement in all 8 DES techniques, and significant improvement in 6 out of 8 FIRE-DES
techniques.

We also compared the proposed framework using the K-Nearest Oracles-Eliminate
(KNE) (KO; SABOURIN; JR, 2008) with state-of-the-art DES framework, named, Ran-
domized Reference Classifier (RRC) (WOLOSZYNSKI; KURZYNSKI, 2011), META-DES
(CRUZ et al., 2015), and META-DES.Oracle (CRUZ; SABOURIN; CAVALCANTI, 2017b).
The results showed that the proposed framework significantly outperformed these three
state-of-the-art techniques with statistical confidence.

Future works on this topic will involve evolving the framework for handling multi-
class problems, weighting the relevance of the samples in the region of competence selected
by the KNNE (following the original weighting approach of the technique), and finally,
developing an ensemble generation mechanism that generates diverse classifiers that
maximizes the number of classifiers crossing di�erent local regions in the feature-space.
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5 GENERAL CONCLUSION

This thesis brought important contributions to Dynamic Ensemble Selection (DES).
First we identified di�erent types of regions of competence that state-of-art DES techniques
from the literature do not take into account when selecting classifiers for the classification
of test samples. Then, we proposed two DES frameworks: Frienemy Indecision Region
Dynamic Ensemble Selection (FIRE-DES) and Enhanced Frienemy Indecision Region
Dynamic Ensemble Selection (FIRE-DES++). FIRE-DES and FIRE-DES++ consider the
di�erent types of regions of competence when selecting classifiers. The proposed frameworks
can be used with several DES techniques from the literature, improving their classification
performance.

The three types of regions of competence that we identified are: (1) safe regions,
composed of samples from the same class; (2) indecision regions, composed of samples
from di�erent classes; and (3) noisy regions, composed of samples from one class and
one or more noisy samples from another class. Through a set of illustrative examples, we
demonstrated that, by not considering these di�erent types of regions of competence, DES
techniques from the literature often select locally incompetent classifiers.

In Chapter 3, we proposed the FIRE-DES framework, a DES framework that
focuses on optimizing DES for the selection of classifiers for the classification of test
samples located in indecision regions. When the test sample is located in an indecision
region, DES techniques can select incompetent classifiers that classify all samples as being
from the same class. FIRE-DES avoids the selection of such incompetent classifiers by
pre-selecting classifiers with decision boundaries crossing the region of competence of
test samples located in indecision regions (if such classifiers exist). FIRE-DES obtained
interesting results, improving the performance of all DES techniques from the literature
considered in this study, achieving statistically equivalent classification performance to
complex state-of-art DES techniques.

In Chapter 4, we proposed the FIRE-DES++ framework. FIRE-DES++ is an
enhanced version of FIRE-DES that tackles two drawbacks of FIRE-DES (noise sensitivity
and indecision region restriction), as it also focus in noisy regions and safe regions. The
noise sensitivity drawback happens when noisy regions are often mistaken as indecision
regions by FIRE-DES. FIRE-DES++ tackles the noise sensitivity drawback by applying a
prototype selection technique to the validation set in order to remove noisy samples and
outliers. The indecision region restriction drawback happens when the region of competence
of a test sample is composed of samples from a single class, but the test sample is actually
located near the border of classes. FIRE-DES++ tackles the indecision region restriction
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drawback by defining the region of competence using an equal number of neighbors from
each class, so DFP is also applied to samples otherwise ignored by FIRE-DES. The results
of the experiments demonstrated that FIRE-DES++ outperforms DES and FIRE-DES
techniques with statistical confidence, and also outperforms state-of-art DES techniques
from the literature. Also, the experiments were performed in datasets of di�erent levels of
class imbalance, and the results demonstrate that FIRE-DES and FIRE-DES++ increased
the robustness of DES to class imbalance.

Overall, this thesis presented a framework that introduces three modifications to
DES systems that can be combined (FIRE-DES++) as proposed in this thesis, or used
individually (i.e. FIRE-DES) as also demonstrated in this work. FIRE-DES++ can be
used with several competence evaluation criteria (several DES techniques), making the
framework very relevant, since it can be used with DES techniques that will be proposed
in the future.

5.1 Future Works
The findings of this thesis suggests the following points for future works:

• An ensemble generation technique to be used with FIRE-DES and FIRE-DES++.
The analysis conducted in Subsection 3.4.5 showed that, on average, 8% of the test
samples classified as being located in an indecision region by FIRE-DES had no
classifiers crossing their regions of competence. This indicates that an ensemble
generation technique that maximizes the number of diverse classifiers crossing a local
region of a test sample (for any test sample located in an indecision region) is a
promissing approach.

• An instance hardness based DES technique. FIRE-DES++ tackles the noise issue
by applying a prototype selection to the validation set from which the region of
competence is selected. However, this binary approach (samples in the validation set
are either removed or maintained) can be problematic because prototype selection
techniques can remove important samples (samples that are not actually noise) and
maintain noisy samples (samples with attribute noise that are harder to identify).
This indicates that a DES technique that uses instance hardness to weight samples
in the region of competence can achieve interesting results in datasets with di�erent
levels of noise.

• Using meta-learning to define when the Dynamic Frienemy Pruning (DFP) should
be applied. FIRE-DES applies the DFP whenever the test sample has samples from
di�erent classes in the region of competence, FIRE-DES++ always applies the DFP
as it defines all regions of competence using samples from di�erent classes. In (CRUZ
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et al., 2015), the authors defined dynamic selection of classifiers as a meta-problem
and achieved interesting results. We believe that turning the decision of whether
applying the DFP or not into a meta-problem is a promissing approach.

• Evolving FIRE-DES and FIRE-DES++ to: handle multi-class problems, be combined
with META-DES; take the distance from the test sample to the samples in the
region of competence into account when deciding if the test sample is located in
an indecision region; and dismiss the need of a separate validation set for finding
classifiers crossing the region of competence.

• Evaluating the impact of using di�erent: techniques to generate the pool of classifiers;
sizes of the pool of classifiers; base classifiers; sizes of the region of competence; and
distance metrics when defining the region of competence.



103

AKBANI, R.; KWEK, S.; JAPKOWICZ, N. Applying support vector machines to
imbalanced datasets. In: Machine Learning. [S.l.]: Springer, 2004, (Lecture Notes in
Computer Science, v. 3201). p. 39–50. Citado na página 131.

ALCALÁ, J. et al. KEEL data-mining software tool: Data set repository, integration of
algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and
Soft Computing, Citeseer, v. 17, n. 2-3, p. 255–287, 2010. Citado 8 vezes nas páginas 48,
61, 77, 89, 123, 129, 138, and 157.

BATISTA, G. E.; CARVALHO, A. C.; MONARD, M. C. Applying one-sided selection to
unbalanced datasets. In: Proceedings of the Mexican International Conference on Artificial
Intelligence: Advances in Artificial Intelligence. [S.l.]: Springer, 2000. p. 315–325. Citado
na página 133.

BATISTA, L.; GRANGER, E.; SABOURIN, R. Improving performance of hmm-based
o�-line signature verification systems through a multi-hypothesis approach. International
Journal on Document Analysis and Recognition, Springer, v. 13, n. 1, p. 33–47, 2010.
Citado 3 vezes nas páginas 20, 45, and 115.

BATISTA, L.; GRANGER, E.; SABOURIN, R. Dynamic ensemble selection for o�-line
signature verification. In: SPRINGER. International Workshop on Multiple Classifier
Systems. [S.l.], 2011. p. 157–166. Citado na página 31.

BELL, R. M.; KOREN, Y. Lessons from the netflix prize challenge. ACM SIGKDD
Explorations Newsletter, ACM, v. 9, n. 2, p. 75–79, 2007. Citado 2 vezes nas páginas 20
and 115.

BENAVOLI, A.; CORANI, G.; MANGILI, F. Should we really use post-hoc tests based
on mean-ranks. Journal of Machine Learning Research, v. 17, n. 5, p. 1–10, 2016. Citado
na página 125.

BHATTACHARYYA, S. et al. Data mining for credit card fraud: A comparative study.
Decision Support Systems, Elsevier, v. 50, n. 3, p. 602–613, 2011. Citado 3 vezes nas
páginas 20, 45, and 115.

B£ASZCZY—SKI, J.; STEFANOWSKI, J.; IDKOWIAK, £. Extending bagging for
imbalanced data. In: SPRINGER. Proceedings of the International Conference on
Computer Recognition Systems. [S.l.], 2013. p. 269–278. Citado 2 vezes nas páginas 134
and 135.

BRADLEY, A. P. The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition, Elsevier, v. 30, n. 7, p. 1145–1159, 1997. Citado
3 vezes nas páginas 63, 91, and 125.

BREIMAN, L. Bagging predictors. Machine learning, Springer, v. 24, n. 2, p. 123–140,
1996. Citado 11 vezes nas páginas 20, 41, 55, 57, 63, 80, 82, 89, 125, 132, and 134.

REFERENCES



References 104

BREIMAN, L. Random forests. Machine Learning, Springer, v. 45, n. 1, p. 5–32, 2001.
Citado na página 20.

BRITTO, A. S.; SABOURIN, R.; OLIVEIRA, L. E. Dynamic selection of classifiers—a
comprehensive review. Pattern Recognition, Elsevier, v. 47, n. 11, p. 3665–3680, 2014.
Citado 13 vezes nas páginas 10, 20, 21, 31, 32, 43, 45, 46, 52, 74, 85, 96, and 115.

BRUN, A. L. et al. Contribution of data complexity features on dynamic classifier
selection. In: IEEE. Neural Networks (IJCNN), 2016 International Joint Conference on.
[S.l.], 2016. p. 4396–4403. Citado 2 vezes nas páginas 32 and 33.

CANO, J. R.; HERRERA, F.; LOZANO, M. Using evolutionary algorithms as instance
selection for data reduction in kdd: an experimental study. Evolutionary Computation,
IEEE Transactions on, IEEE, v. 7, n. 6, p. 561–575, 2003. Citado na página 148.

CARUANA, R. et al. Ensemble selection from libraries of models. In: Proceedings of the
International Conference on Machine Learning. [S.l.: s.n.], 2004. p. 18. Citado na página
132.

CAVALIN, P. R.; SABOURIN, R.; SUEN, C. Y. Logid: An adaptive framework combining
local and global incremental learning for dynamic selection of ensembles of hmms. Pattern
Recognition, Elsevier, v. 45, n. 9, p. 3544–3556, 2012. Citado 2 vezes nas páginas 21
and 31.

CAVALIN, P. R.; SABOURIN, R.; SUEN, C. Y. Dynamic selection approaches for
multiple classifier systems. Neural Computing and Applications, Springer, v. 22, n. 3-4, p.
673–688, 2013. Citado 4 vezes nas páginas 21, 31, 61, and 89.

CHAWLA, N. V. et al. Smote: Synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research, v. 16, n. 1, p. 321–357, 2002. Citado na página 133.

CHAWLA, N. V. et al. Smoteboost: Improving prediction of the minority class in boosting.
In: Knowledge Discovery in Databases. [S.l.]: Springer, 2003. p. 107–119. Citado na
página 132.

CIESLAK, D. A.; CHAWLA, N. V.; STRIEGEL, A. Combating imbalance in network
intrusion datasets. In: IEEE. Granular Computing, International Conference on. [S.l.],
2006. p. 732–737. Citado na página 131.

CORNE, D. W.; KNOWLES, J. D. No free lunch and free leftovers theorems for
multiobjective optimisation problems. In: SPRINGER. International Conference on
Evolutionary Multi-Criterion Optimization. [S.l.], 2003. p. 327–341. Citado na página 22.

COVER, T.; HART, P. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, IEEE, v. 13, n. 1, p. 21–27, 1967. Citado 2 vezes nas páginas 85
and 146.

CRUZ, R. M.; CAVALCANTI, G. D.; REN, T. I. A method for dynamic ensemble
selection based on a filter and an adaptive distance to improve the quality of the regions
of competence. In: IEEE. International Joint Conference on Neural Networks. [S.l.], 2011.
p. 1126–1133. Citado 4 vezes nas páginas 21, 29, 63, and 76.



References 105

CRUZ, R. M. et al. Feature representation selection based on classifier projection space
and oracle analysis. Expert Systems with Applications, Elsevier, v. 40, n. 9, p. 3813–3827,
2013. Citado 3 vezes nas páginas 20, 45, and 115.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. A DEEP analysis of the
META-DES framework for dynamic selection of ensemble of classifiers. arXiv preprint
arXiv:1509.00825, 2015. Citado na página 41.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. META-DES.H: a dynamic
ensemble selection technique using meta-learning and a dynamic weighting approach. In:
IEEE. International Joint Conference on Neural Networks. [S.l.], 2015. p. 1–8. Citado 3
vezes nas páginas 33, 41, and 45.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Prototype selection for dynamic
classifier and ensemble selection. Neural Computing and Applications, Springer, p. 1–11,
2016. Citado 5 vezes nas páginas 29, 74, 76, 82, and 89.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Analyzing di�erent prototype
selection techniques for dynamic classifier and ensemble selection. In: IEEE. International
Joint Conference on Neural Networks (IJCNN). [S.l.], 2017. p. 3959–3966. Citado 4 vezes
nas páginas 21, 29, 83, and 91.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. META-DES.Oracle: Meta-learning
and feature selection for dynamic ensemble selection. Information Fusion, Elsevier, v. 38,
p. 84–103, 2017. Citado 12 vezes nas páginas 21, 33, 34, 42, 48, 61, 69, 77, 88, 89, 99,
and 125.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Dynamic classifier selection: Recent
advances and perspectives. Information Fusion, Elsevier, v. 41, p. 195–216, 2018. Citado
11 vezes nas páginas 10, 21, 27, 28, 31, 33, 42, 43, 74, 88, and 115.

CRUZ, R. M. et al. META-DES: A dynamic ensemble selection framework using
meta-learning. Pattern Recognition, Elsevier, v. 48, n. 5, p. 1925–1935, 2015. Citado 20
vezes nas páginas 21, 22, 27, 31, 32, 33, 34, 41, 42, 46, 48, 61, 63, 69, 77, 88, 89, 99, 102,
and 125.

DEMäAR, J. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, v. 7, n. 1, p. 1–30, 2006. Citado 6 vezes nas páginas 49, 63,
77, 91, 125, and 127.

DERRAC, J.; GARCÍA, S.; HERRERA, F. Stratified prototype selection based on a
steady-state memetic algorithm: a study of scalability. Memetic Computing, Springer, v. 2,
n. 3, p. 183–199, 2010. Citado na página 148.

DERRAC, J. et al. Evolutionary-based selection of generalized instances for imbalanced
classification. Knowledge-Based Systems, Elsevier, v. 25, n. 1, p. 3–12, 2012. Citado na
página 149.

DIDACI, L.; GIACINTO, G. Dynamic classifier selection by adaptive k-nearest-
neighbourhood rule. In: SPRINGER. International Workshop on Multiple Classifier
Systems. [S.l.], 2004. p. 174–183. Citado 2 vezes nas páginas 29 and 30.



References 106

DIETTERICH, T. G. Ensemble methods in machine learning. In: SPRINGER.
International workshop on multiple classifier systems. [S.l.], 2000. p. 1–15. Citado 2 vezes
nas páginas 45 and 131.

DéEROSKI, S.; éENKO, B. Is combining classifiers with stacking better than selecting
the best one? Machine learning, Springer, v. 54, n. 3, p. 255–273, 2004. Citado na página
21.

ELKAN, C. The foundations of cost-sensitive learning. In: International Joint Conference
on Artificial Intelligence. [S.l.: s.n.], 2001. v. 17, n. 1, p. 973–978. Citado 3 vezes nas
páginas 131, 133, and 151.

FAYED, H. A.; HASHEM, S. R.; ATIYA, A. F. Self-generating prototypes for pattern
classification. Pattern Recognition, Elsevier, v. 40, n. 5, p. 1498–1509, 2007. Citado 3
vezes nas páginas 26, 147, and 149.

FERNÁNDEZ-DELGADO, M. et al. Do we need hundreds of classifiers to solve real world
classification problems. J. Mach. Learn. Res, v. 15, n. 1, p. 3133–3181, 2014. Citado na
página 41.

FERNÁNDEZ, F.; ISASI, P. Evolutionary design of nearest prototype classifiers. Journal
of Heuristics, Springer, v. 10, n. 4, p. 431–454, 2004. Citado na página 148.

FERNÁNDEZ, F.; ISASI, P. Local feature weighting in nearest prototype classification.
Neural Networks, IEEE Transactions on, IEEE, v. 19, n. 1, p. 40–53, 2008. Citado na
página 146.

FREUND, Y. Boosting a weak learning algorithm by majority. Information and
Computation, Elsevier, v. 121, n. 2, p. 256–285, 1995. Citado na página 134.

FREUND, Y.; SCHAPIRE, R. E. A desicion-theoretic generalization of on-line learning
and an application to boosting. In: SPRINGER. European Conference on Computational
Learning Theory. [S.l.], 1995. p. 23–37. Citado na página 20.

FRIEDMAN, M. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, Taylor & Francis,
v. 32, n. 200, p. 675–701, 1937. Citado 2 vezes nas páginas 49 and 77.

FRIEDMAN, M. A comparison of alternative tests of significance for the problem of m
rankings. The Annals of Mathematical Statistics, JSTOR, v. 11, n. 1, p. 86–92, 1940.
Citado 2 vezes nas páginas 63 and 91.

GALAR, M. et al. A review on ensembles for the class imbalance problem: bagging-,
boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), IEEE, v. 42, n. 4, p. 463–484, 2012.
Citado 10 vezes nas páginas 20, 23, 61, 89, 131, 132, 133, 134, 141, and 144.

GALAR, M. et al. Ordering-based pruning for improving the performance of ensembles of
classifiers in the framework of imbalanced datasets. Information Sciences, Elsevier, v. 354,
p. 178–196, 2016. Citado 2 vezes nas páginas 61 and 89.

GARAIN, U. Prototype reduction using an artificial immune model. Pattern analysis and
applications, Springer, v. 11, n. 3-4, p. 353–363, 2008. Citado na página 149.



References 107

GARCÍA, S.; CANO, J. R.; HERRERA, F. A memetic algorithm for evolutionary
prototype selection: A scaling up approach. Pattern Recognition, Elsevier, v. 41, n. 8, p.
2693–2709, 2008. Citado 4 vezes nas páginas 147, 148, 154, and 156.

GARCIA, S. et al. Prototype selection for nearest neighbor classification: Taxonomy and
empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE,
v. 34, n. 3, p. 417–435, 2012. Citado 6 vezes nas páginas 57, 76, 80, 82, 146, and 148.

GARCÍA, S.; LUENGO, J.; HERRERA, F. Dealing with noisy data. In: Data
Preprocessing in Data Mining. [S.l.]: Springer, 2015. p. 107–145. Citado 8 vezes nas
páginas 10, 11, 12, 22, 49, 50, 57, and 75.

GARCÍA, V. et al. Combined e�ects of class imbalance and class overlap on instance-based
classification. In: SPRINGER. International Conference on Intelligent Data Engineering
and Automated Learning. [S.l.], 2006. p. 371–378. Citado na página 49.

GIACINTO, G.; ROLI, F. Methods for dynamic classifier selection. In: IEEE. International
Conference on Image Analysis and Processing. [S.l.], 1999. p. 659–664. Citado 9 vezes nas
páginas 21, 22, 32, 34, 45, 52, 61, 89, and 125.

GIACINTO, G.; ROLI, F. Dynamic classifier selection. In: SPRINGER. International
Workshop on Multiple Classifier Systems. [S.l.], 2000. p. 177–189. Citado 2 vezes nas
páginas 21 and 45.

GIACINTO, G.; ROLI, F. Design of e�ective neural network ensembles for image
classification purposes. Image and Vision Computing, Elsevier, v. 19, n. 9, p. 699–707,
2001. Citado na página 21.

GIACINTO, G.; ROLI, F. Dynamic classifier selection based on multiple classifier
behaviour. Pattern Recognition, Pergamon, v. 34, n. 9, p. 1879–1881, 2001. Citado 9
vezes nas páginas 21, 31, 32, 34, 39, 45, 61, 89, and 125.

HANSEN, L. K.; SALAMON, P. Neural network ensembles. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, IEEE, v. 12, n. 10, p. 993–1001, 1990.
Citado na página 132.

HE, H.; GARCIA, E. A. Learning from imbalanced data. Knowledge and Data Engineering,
IEEE Transactions on, IEEE, v. 21, n. 9, p. 1263–1284, 2009. Citado na página 131.

HO, T. K. The random subspace method for constructing decision forests. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, IEEE, v. 20, n. 8, p. 832–844,
1998. Citado 2 vezes nas páginas 20 and 132.

HUANG, Y. S.; SUEN, C. Y. A method of combining multiple experts for the recognition
of unconstrained handwritten numerals. IEEE transactions on pattern analysis and
machine intelligence, IEEE, v. 17, n. 1, p. 90–94, 1995. Citado na página 31.

HULSE, J. V.; KHOSHGOFTAAR, T. M.; NAPOLITANO, A. Experimental perspectives
on learning from imbalanced data. In: Proceedings of the International Conference on
Machine Learning. [S.l.: s.n.], 2007. p. 935–942. Citado na página 131.

IVAKHNENKO, A. Heuristic self-organization in problems of engineering cybernetics.
Automatica, Elsevier, v. 6, n. 2, p. 207–219, 1970. Citado na página 34.



References 108

JACOBS, R. A. et al. Adaptive mixtures of local experts. Neural computation, MIT Press,
v. 3, n. 1, p. 79–87, 1991. Citado na página 21.

JAHRER, M.; TÖSCHER, A.; LEGENSTEIN, R. Combining predictions for accurate
recommender systems. In: ACM. International Conference on Knowledge Discovery and
Data Mining. [S.l.], 2010. p. 693–702. Citado 3 vezes nas páginas 20, 45, and 115.

KITTLER, J. et al. On combining classifiers. IEEE transactions on pattern analysis and
machine intelligence, IEEE, v. 20, n. 3, p. 226–239, 1998. Citado na página 21.

KO, A. H.; SABOURIN, R.; JR, A. S. B. From dynamic classifier selection to dynamic
ensemble selection. Pattern Recognition, Elsevier, v. 41, n. 5, p. 1718–1731, 2008. Citado
18 vezes nas páginas 13, 21, 22, 32, 34, 37, 38, 45, 52, 61, 63, 74, 89, 99, 115, 116, 117,
and 125.

KONONENKO, I.; KUKAR, M. Machine Learning and Data Mining: Introduction to
Principles and Algorithms. [S.l.]: Horwood Publishing Limited, 2007. ISBN 1904275214,
9781904275213. Citado na página 146.

KOREN, Y. The bellkor solution to the netflix grand prize. Netflix prize documentation,
v. 81, 2009. Citado 2 vezes nas páginas 20 and 115.

KUBAT, M.; MATWIN, S. Addressing the curse of imbalanced training sets: One-sided
selection. In: Proceedings of the International Conference on Machine Learning. [S.l.]:
Morgan Kaufmann, 1997. v. 97, p. 179–186. Citado na página 133.

KUNCHEVA, L. I. Clustering-and-selection model for classifier combination. In:
IEEE. Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000.
Proceedings. Fourth International Conference on. [S.l.], 2000. v. 1, p. 185–188. Citado na
página 30.

KUNCHEVA, L. I. A theoretical study on six classifier fusion strategies. IEEE
Transactions on pattern analysis and machine intelligence, IEEE, v. 24, n. 2, p. 281–286,
2002. Citado na página 116.

KUNCHEVA, L. I. Combining pattern classifiers: methods and algorithms. [S.l.]: John
Wiley & Sons, 2004. Citado 4 vezes nas páginas 45, 115, 131, and 137.

KUNCHEVA, L. I.; RODRIGUEZ, J. J. Classifier ensembles with a random linear oracle.
IEEE Transactions on Knowledge and Data Engineering, IEEE, v. 19, n. 4, p. 500–508,
2007. Citado na página 32.

KUNCHEVA, L. I.; WHITAKER, C. J. Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy. Machine learning, Springer, v. 51, n. 2, p.
181–207, 2003. Citado 3 vezes nas páginas 20, 131, and 137.

LAURIKKALA, J. Improving identification of di�cult small classes by balancing class
distribution. Artificial Intelligence in Medicine, Springer, p. 63–66, 2001. Citado na
página 84.

LEMAITRE, G.; NOGUEIRA, F.; ARIDAS, C. K. Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research, v. 18, n. 17, p. 1–5, 2017. Citado na página 84.



References 109

LIMA, T. P. F. D.; LUDERMIR, T. B. Optimizing dynamic ensemble selection procedure
by evolutionary extreme learning machines and a noise reduction filter. In: IEEE. Tools
with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on. [S.l.],
2013. p. 546–552. Citado na página 29.

LIMA, T. P. F. de; SERGIO, A. T.; LUDERMIR, T. B. Improving classifiers and
regions of competence in dynamic ensemble selection. In: IEEE. Brazilian Conference on
Intelligent Systems (BRACIS). [S.l.], 2014. p. 13–18. Citado na página 29.

LIN, C. et al. Libd3c: ensemble classifiers with a clustering and dynamic selection strategy.
Neurocomputing, Elsevier, v. 123, p. 424–435, 2014. Citado na página 30.

LIU, H.; MOTODA, H. On issues of instance selection. Data Mining and Knowledge
Discovery, Springer, v. 6, n. 2, p. 115–130, 2002. Citado na página 148.

LIU, Y.-H.; CHEN, Y.-T. Total margin based adaptive fuzzy support vector machines
for multiview face recognition. In: IEEE. International Conference o Systems, Man and
Cybernetics. [S.l.], 2005. v. 2, p. 1704–1711. Citado na página 131.

LÓPEZ, V. et al. An insight into classification with imbalanced data: Empirical results
and current trends on using data intrinsic characteristics. Information Sciences, Elsevier,
v. 250, p. 113–141, 2013. Citado 10 vezes nas páginas 63, 91, 116, 122, 125, 131, 132, 133,
134, and 147.

LU, Z. et al. Ensemble pruning via individual contribution ordering. In: ACM. Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. [S.l.], 2010. p. 871–880. Citado na página 21.

MAZUROWSKI, M. A. et al. Training neural network classifiers for medical decision
making: The e�ects of imbalanced datasets on classification performance. Neural networks,
Elsevier, v. 21, n. 2, p. 427–436, 2008. Citado na página 131.

MENDIALDUA, I. et al. Dynamic selection of the best base classifier in one versus one.
Knowledge-Based Systems, Elsevier, v. 85, p. 298–306, 2015. Citado 3 vezes nas páginas
29, 76, and 85.

NANNI, L.; FANTOZZI, C.; LAZZARINI, N. Coupling di�erent methods for overcoming
the class imbalance problem. Neurocomputing, Elsevier, v. 158, p. 48–61, 2015. Citado 2
vezes nas páginas 61 and 89.

NANNI, L.; LUMINI, A. Particle swarm optimization for prototype reduction.
Neurocomputing, Elsevier, v. 72, n. 4, p. 1092–1097, 2009. Citado na página 149.

NAPIERA£A, K.; STEFANOWSKI, J.; WILK, S. Learning from imbalanced data in
presence of noisy and borderline examples. In: SPRINGER. International Conference on
Rough Sets and Current Trends in Computing. [S.l.], 2010. p. 158–167. Citado na página
49.

NEMENYI, P. Distribution-free multiple comparisons. In: Biometrics. [S.l.: s.n.], 1962.
v. 18, n. 2, p. 263. Citado 5 vezes nas páginas 49, 63, 77, 91, and 92.

OLIVEIRA, D. V. et al. Evolutionary adaptive self-generating prototypes for imbalanced
datasets. In: IEEE. International Joint Conference on Neural Networks (IJCNN). [S.l.],
2015. p. 1–8. Citado na página 24.



References 110

OLIVEIRA, D. V.; CAVALCANTI, G. D.; SABOURIN, R. Online pruning of base
classifiers for dynamic ensemble selection. Pattern Recognition, Elsevier, v. 72, p. 44–58,
2017. Citado 23 vezes nas páginas 10, 12, 13, 14, 16, 22, 25, 34, 74, 75, 77, 78, 80, 82, 85,
86, 98, 115, 118, 121, 123, 124, and 125.

OLIVEIRA, D. V. et al. A bootstrap-based iterative selection for ensemble generation. In:
IEEE. International Joint Conference on Neural Networks (IJCNN). [S.l.], 2015. p. 1–7.
Citado na página 24.

OLIVEIRA, D. V. R. et al. Improved self-generating prototypes algorithm for imbalanced
datasets. In: IEEE. International Conference on Tools with Artificial Intelligence (ICTAI).
[S.l.], 2012. v. 1, p. 904–909. Citado 5 vezes nas páginas 26, 132, 147, 150, and 159.

PARTALAS, I.; TSOUMAKAS, G.; VLAHAVAS, I. P. Focused ensemble selection: A
diversity-based method for greedy ensemble selection. In: Proceeding of the 18th European
Conference on Artificial Intelligence. [S.l.: s.n.], 2008. p. 117–121. Citado na página 21.

PATRICK, E. A.; FISCHER, F. A generalization of the k-nearest neighbor rule. In:
MORGAN KAUFMANN PUBLISHERS INC. Proceedings of the International Joint
Conference on Artificial Intelligence. [S.l.], 1969. p. 63–63. Citado 2 vezes nas páginas 85
and 146.

PEREIRA, C. de S.; CAVALCANTI, G. D. C. Prototype selection: Combining
self-generating prototypes and gaussian mixtures for pattern classification. In: IEEE.
Proceedings on International Joint Conference on Neural Networks. [S.l.], 2008. p.
3505–3510. Citado 2 vezes nas páginas 147 and 149.

PUURULA, A.; READ, J.; BIFET, A. Kaggle lshtc4 winning solution. arXiv preprint
arXiv:1405.0546, 2014. Citado 2 vezes nas páginas 20 and 115.

RODRIGUEZ, J. J.; KUNCHEVA, L. I.; ALONSO, C. J. Rotation forest: A new classifier
ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence,
IEEE, v. 28, n. 10, p. 1619–1630, 2006. Citado na página 20.

ROY, A. et al. A study on combining dynamic selection and data preprocessing for
imbalance learning. Neurocomputing, Elsevier, 2018. Citado na página 29.

SABOURIN, M. et al. Classifier combination for hand-printed digit recognition. In: IEEE.
Document Analysis and Recognition, 1993., Proceedings of the Second International
Conference on. [S.l.], 1993. p. 163–166. Citado 2 vezes nas páginas 22 and 32.

SÁEZ, J. A. et al. Tackling the problem of classification with noisy data using multiple
classifier systems: Analysis of the performance and robustness. Information Sciences,
Elsevier, v. 247, p. 1–20, 2013. Citado na página 20.

SÁNCHEZ, J. S.; PLA, F.; FERRI, F. J. Prototype selection for the nearest neighbour
rule through proximity graphs. Pattern Recognition Letters, Elsevier, v. 18, n. 6, p.
507–513, 1997. Citado 2 vezes nas páginas 83 and 91.

SANTANA, A. et al. A dynamic classifier selection method to build ensembles using
accuracy and diversity. In: IEEE. Brazilian Symposium on Neural Networks. [S.l.], 2006. p.
36–41. Citado 9 vezes nas páginas 21, 22, 30, 33, 39, 45, 61, 89, and 125.



References 111

SANTOS, E. M. D.; SABOURIN, R.; MAUPIN, P. Single and multi-objective genetic
algorithms for the selection of ensemble of classifiers. In: IEEE. International Joint
Conference on Neural Networks (IJCNN). [S.l.], 2006. p. 3070–3077. Citado na página 21.

SANTOS, E. M. D.; SABOURIN, R.; MAUPIN, P. Ambiguity-guided dynamic selection of
ensemble of classifiers. In: IEEE. Information Fusion, 2007 10th International Conference
on. [S.l.], 2007. p. 1–8. Citado na página 33.

SANTOS, E. M. D.; SABOURIN, R.; MAUPIN, P. A dynamic overproduce-and-choose
strategy for the selection of classifier ensembles. Pattern Recognition, Elsevier, v. 41, n. 10,
p. 2993–3009, 2008. Citado 3 vezes nas páginas 21, 22, and 33.

SANTOS, E. M. D.; SABOURIN, R.; MAUPIN, P. Overfitting cautious selection of
classifier ensembles with genetic algorithms. Information Fusion, Elsevier, v. 10, n. 2, p.
150–162, 2009. Citado na página 33.

SCHAPIRE, R. E. The strength of weak learnability. Machine learning, Springer, v. 5,
n. 2, p. 197–227, 1990. Citado 2 vezes nas páginas 132 and 134.

SCHAPIRE, R. E. The boosting approach to machine learning: An overview. In: Nonlinear
Estimation and Classification. [S.l.]: Springer, 2003. p. 149–171. Citado na página 134.

SHAKHNAROVICH, G.; DARRELL, T.; INDYK, P. Nearest-neighbor methods in
learning and vision: theory and practice. [S.l.]: MIT press Cambridge, MA, USA:, 2005.
Citado na página 85.

SHAKHNAROVICH, G.; DARRELL, T.; INDYK, P. Nearest-neighbor methods in
learning and vision: theory and practice. [S.l.]: MIT press Cambridge, MA, USA:, 2005.
Citado na página 146.

SIERRA, B. et al. K-nearest neighbor equality: Giving equal chance to all existing classes.
Information Sciences, Elsevier, v. 181, n. 23, p. 5158–5168, 2011. Citado 5 vezes nas
páginas 29, 76, 80, 85, and 98.

SINGH, S.; SINGH, M. A dynamic classifier selection and combination approach to
image region labelling. Signal Processing: Image Communication, Elsevier, v. 20, n. 3, p.
219–231, 2005. Citado 3 vezes nas páginas 20, 45, and 115.

SKURICHINA, M.; DUIN, R. P. Bagging for linear classifiers. Pattern Recognition,
Elsevier, v. 31, n. 7, p. 909–930, 1998. Citado 2 vezes nas páginas 57 and 82.

SMITH, M. R.; MARTINEZ, T.; GIRAUD-CARRIER, C. An instance level analysis of
data complexity. Machine Learning, Springer, v. 95, n. 2, p. 225–256, 2014. Citado na
página 63.

SOARES, R. G. et al. Using accuracy and diversity to select classifiers to build ensembles.
In: IEEE. International Joint Conference on Neural Networks (IJCNN). [S.l.], 2006. p.
1310–1316. Citado 2 vezes nas páginas 30 and 33.

SOUTO, M. C. de et al. Empirical comparison of dynamic classifier selection methods
based on diversity and accuracy for building ensembles. In: IEEE. Neural Networks, 2008.
IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE International
Joint Conference on. [S.l.], 2008. p. 1480–1487. Citado na página 30.



References 112

STEFANOWSKI, J.; WILK, S. Selective pre-processing of imbalanced data for improving
classification performance. In: Data Warehousing and Knowledge Discovery. [S.l.]: Springer,
2008, (Lecture Notes in Computer Science, v. 5182). p. 283–292. Citado na página 133.

TANG, E. K.; SUGANTHAN, P. N.; YAO, X. An analysis of diversity measures. Machine
Learning, Springer, v. 65, n. 1, p. 247–271, 2006. Citado 3 vezes nas páginas 20, 39,
and 131.

TORRE, M. De-la et al. An adaptive ensemble-based system for face recognition in person
re-identification. Machine Vision and Applications, Springer, v. 26, n. 6, p. 741–773, 2015.
Citado 3 vezes nas páginas 20, 45, and 115.

TRIGUERO, I. et al. A taxonomy and experimental study on prototype generation for
nearest neighbor classification. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, IEEE, v. 42, n. 1, p. 86–100, 2012. Citado 3 vezes nas
páginas 146, 148, and 149.

TRIGUERO, I.; GARCÍA, S.; HERRERA, F. Di�erential evolution for optimizing the
positioning of prototypes in nearest neighbor classification. Pattern Recognition, Elsevier,
v. 44, n. 4, p. 901–916, 2011. Citado na página 149.

VRIESMANN, L. M. et al. Combining overall and local class accuracies in an oracle-based
method for dynamic ensemble selection. In: IEEE. Neural Networks (IJCNN), 2015
International Joint Conference on. [S.l.], 2015. p. 1–7. Citado na página 38.

WANG, J.; NESKOVIC, P.; COOPER, L. N. Improving nearest neighbor rule with a
simple adaptive distance measure. Pattern Recognition Letters, Elsevier, v. 28, n. 2, p.
207–213, 2007. Citado na página 29.

WANG, S.; YAO, X. Diversity analysis on imbalanced data sets by using ensemble models.
In: IEEE. Computational Intelligence and Data Mining, Symposium on. [S.l.], 2009. p.
324–331. Citado 2 vezes nas páginas 132 and 134.

WILCOXON, F. Individual comparisons by ranking methods. Biometrics bulletin, JSTOR,
v. 1, n. 6, p. 80–83, 1945. Citado 9 vezes nas páginas 49, 63, 77, 91, 96, 125, 139, 147,
and 158.

WILSON, D. L. Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on Systems, Man and Cybernetics, IEEE, n. 3, p. 408–421, 1972. Citado 3
vezes nas páginas 83, 91, and 98.

WILSON, D. R.; MARTINEZ, T. R. Reduction techniques for instance-based learning
algorithms. Machine learning, Springer, v. 38, n. 3, p. 257–286, 2000. Citado na página
146.

WOLOSZYNSKI, T.; KURZYNSKI, M. On a new measure of classifier competence
applied to the design of multiclassifier systems. In: SPRINGER. International Conference
on Image Analysis and Processing. [S.l.], 2009. p. 995–1004. Citado na página 31.

WOLOSZYNSKI, T.; KURZYNSKI, M. A measure of competence based on randomized
reference classifier for dynamic ensemble selection. In: IEEE. International Conference on
Pattern Recognition (ICPR). [S.l.], 2010. p. 4194–4197. Citado na página 42.



References 113

WOLOSZYNSKI, T.; KURZYNSKI, M. A probabilistic model of classifier competence for
dynamic ensemble selection. Pattern Recognition, Elsevier, v. 44, n. 10, p. 2656–2668,
2011. Citado 11 vezes nas páginas 21, 31, 34, 48, 61, 69, 77, 88, 89, 99, and 125.

WOLOSZYNSKI, T. et al. A measure of competence based on random classification for
dynamic ensemble selection. Information Fusion, Elsevier, v. 13, n. 3, p. 207–213, 2012.
Citado na página 31.

WOODS, K.; KEGELMEYER, W. P.; BOWYER, K. W. Combination of multiple
classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and
Machine Intelligence, v. 19, n. 4, p. 405–410, 1997. Citado 13 vezes nas páginas 21, 22,
32, 34, 35, 45, 50, 61, 76, 78, 85, 89, and 125.

WOèNIAK, M.; GRAÑA, M.; CORCHADO, E. A survey of multiple classifier systems as
hybrid systems. Information Fusion, Elsevier, v. 16, p. 3–17, 2014. Citado 3 vezes nas
páginas 45, 115, and 131.

XIAO, J.; HE, C. Adaptive selection of classifier ensemble based on gmdh. In: IEEE.
Future Information Technology and Management Engineering, 2008. FITME’08.
International Seminar on. [S.l.], 2008. p. 61–64. Citado na página 43.

XIAO, J.; HE, C. Dynamic classifier ensemble selection based on gmdh. In: IEEE.
International Joint Conference on Computational Sciences and Optimization. [S.l.], 2009.
v. 1, p. 731–734. Citado na página 21.

XIAO, J.; HE, C. Dynamic classifier ensemble selection based on gmdh. In: IEEE.
Computational Sciences and Optimization, 2009. CSO 2009. International Joint
Conference on. [S.l.], 2009. v. 1, p. 731–734. Citado 2 vezes nas páginas 34 and 43.

XIAO, J. et al. A dynamic classifier ensemble selection approach for noise data.
Information Sciences, Elsevier, v. 180, n. 18, p. 3402–3421, 2010. Citado na página 21.

XIAO, J. et al. A dynamic classifier ensemble selection approach for noise data.
Information Sciences, Elsevier, v. 180, n. 18, p. 3402–3421, 2010. Citado na página 43.

XIAO, J. et al. Dynamic classifier ensemble model for customer classification with
imbalanced class distribution. Expert Systems with Applications, Elsevier, v. 39, n. 3, p.
3668–3675, 2012. Citado 3 vezes nas páginas 21, 33, and 43.

YANG, Q.; WU, X. 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, World Scientific, v. 5, n. 04, p.
597–604, 2006. Citado 3 vezes nas páginas 131, 132, and 147.

ZHU, X.; WU, X.; YANG, Y. Dynamic classifier selection for e�ective mining from noisy
data streams. In: IEEE. Data Mining, 2004. ICDM’04. Fourth IEEE International
Conference on. [S.l.], 2004. p. 305–312. Citado 2 vezes nas páginas 21 and 27.



114

APPENDIX A – K-NEAREST ORACLES
BORDERLINE DYNAMIC CLASSIFIER

ENSEMBLE SELECTION

©2018 IEEE. Reprinted, with permission, from Dayvid V. R. Oliveira, George D. C.
Cavalcanti, Thyago N. Porpino, Rafael M. O. Cruz and Robert Sabourin. K-Nearest
Oracles Borderline Dynamic Classifier Ensemble Selection. 2018. Accepted for publication
in INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
2018.

In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of UFPE’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution, please go to http://www.ieee.org/publications_standards/publica
tions/rights/rights_link.html to learn how to obtain a License from RightsLink.

abstract
Dynamic Ensemble Selection (DES) techniques aim to select locally competent

classifiers for the classification of each new test sample. Most DES techniques estimate the
competence of classifiers using a given criterion over the region of competence of the test
sample (its the nearest neighbors in the validation set). The K-Nearest Oracles Eliminate
(KNORA-E) DES selects all classifiers that correctly classify all samples in the region
of competence of the test sample, if such classifier exists, otherwise, it removes from the
region of competence the sample that is furthest from the test sample, and the process
repeats. When the region of competence has samples of di�erent classes, KNORA-E can
reduce the region of competence in such a way that only samples of a single class remain
in the region of competence, leading to the selection of locally incompetent classifiers that
classify all samples in the region of competence as being from the same class. In this paper,
we propose two DES techniques: K-Nearest Oracles Borderline (KNORA-B) and K-Nearest
Oracles Borderline Imbalanced (KNORA-BI). KNORA-B is a DES technique based on
KNORA-E that reduces the region of competence but maintains at least one sample
from each class that is in the original region of competence. KNORA-BI is a variation of
KNORA-B for imbalance datasets that reduces the region of competence but maintains
at least one minority class sample if there is any in the original region of competence.
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Experiments are conducted comparing the proposed techniques with 19 DES techniques
from the literature using 40 datasets. The results show that the proposed techniques
achieved interesting results, with KNORA-BI outperforming state-of-art techniques.

A.1 Introduction
Multiple Classifier Systems (MCS) (WOèNIAK; GRAÑA; CORCHADO, 2014)

combine classifiers in the hope that several classifiers outperform any individual classifier in
classification accuracy (KUNCHEVA, 2004). MCS have been considered an interesting al-
ternative for increasing the classification accuracy in several studies (SINGH; SINGH, 2005)
(CRUZ et al., 2013) (BATISTA; GRANGER; SABOURIN, 2010) (JAHRER; TÖSCHER;
LEGENSTEIN, 2010) (BHATTACHARYYA et al., 2011) (TORRE et al., 2015) and ma-
chine learning competitions (PUURULA; READ; BIFET, 2014) (KOREN, 2009) (BELL;
KOREN, 2007).

Dynamic Ensemble Selection (DES) (KO; SABOURIN; JR, 2008) (CRUZ; SABOURIN;
CAVALCANTI, 2018) (BRITTO; SABOURIN; OLIVEIRA, 2014) techniques select one
or more classifiers for the classification of each new test sample. Relying on the assump-
tion that di�erent classifiers are competent ("experts") in di�erent local regions of the
feature space, most DES techniques estimate the level of competence of a classifier for the
classification of a test sample xquery, using some criteria over the region of competence of
xquery. The region of competence of xquery is the set of K nearest neighbors of xquery in
the validation set DSEL.

In (KO; SABOURIN; JR, 2008), Ko et al. proposed two DES techniques: K-Nearest
Oracles Eliminate (KNORA-E) and K-Nearest Oracles Union (KNORA-U). KNORA-E
selects all classifiers that correctly classify all samples in the region of competence of a
test sample. If no classifier is selected, KNORA-E removes from the region of competence
the sample that is furthest from the test sample until at least one classifier is selected.
KNORA-U selects all classifiers that correctly classify at least one sample in the region of
competence, the more samples a classifier correctly classifies, the more votes it has for the
classification of the test sample.

In (OLIVEIRA; CAVALCANTI; SABOURIN, 2017), Oliveira et al. showed that,
when the region of competence of a test sample is composed of samples from di�erent
classes (indecision region), DES techniques can select classifiers that classify all samples in
the region of competence as being from the same class. The authors then proposed the
Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES) framework. This
framework pre-selects classifiers with decision boundaries crossing the region of competence
of the test sample if the test sample is located in an indecision region, preventing DES
techniques from selecting classifiers that classify all samples in the region of competence
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to the same class.

Considering KNORA-E, if no classifiers correctly classify all samples in the region
of competence of a test sample, KNORA-E can change a region that was composed of
samples from di�erent classes into a smaller region composed of samples of a single class.
FIRE-DES tackles this issue ensuring that, if the test sample is located in an indecision
region, KNORA-E will select only classifiers with decision boundaries crossing the original
region of competence.

Even though FIRE-DES tackles the indecision region problem of KNORA-E, the
way in which KNORA-E reduces the region of competence can lead to the selection of
incompetent classifiers, even when using FIRE-DES, as the pre-selection of classifiers is
performed only once over the original region of competence. In this paper, we propose
two DES techniques: K-Nearest Oracles Borderline (KNORA-B) and K-Nearest Oracles
Borderline Imbalanced (KNORA-BI). KNORA-B is a DES technique based on KNORA-E
that prevents the underrepresentation of classes in the region of competence when it is
composed of samples from di�erent classes. KNORA-BI is a variation of KNORA-B for
imbalanced datasets that tackles the class imbalance problem (LÓPEZ et al., 2013) by
preventing only the underrepresentation of the minority class (class with few samples)
in the region of competence - but allowing the underrepresentation of the majority class
(class with many samples).

The remainder of this paper is organized as follows: Section II presents the KNORA-
E and KNORA-U. Section III presents the problem statement. Section IV presents the
proposed techniques KNORA-B and KNORA-BI. Section IV presents the experiments.
Finally, Section V presents the conclusion.

A.2 Background
The Oracle concept is a hypothetical dynamic selection approach that always selects

the classifier that correctly classifies the test sample, if such classifier exists (KUNCHEVA,
2002).

In (KO; SABOURIN; JR, 2008), Ko et al. introduced the concept of K-Nearest
Oracles and proposed two DES techniques: K-Nearest Oracles Union (KNORA-U) and K-
Nearest Oracles Eliminate (KNORA-E). For the classification of a test sample, KNORA-E
and KNORA-U find the region of competence of the test sample and use the samples
in this region as oracles to perform the selection of classifiers (knowing the classifiers
that correctly classify each sample in the region of competence). The following subsection
details the KNORA-Eliminate.
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A.2.1 KNORA-Eliminate

Given a test sample xquery to be classified, KNORA-E finds the region of competence
(�) of xquery by selecting the K nearest neighbors of xquery in the validation set DSEL.
After that, KNORA-E selects all classifiers that correctly classify all samples in �. If
no classifiers correctly classify all samples in �, KNORA-E reduces � by removing the
sample that is furthest from xquery, until at least one classifier is selected. If � gets empty,
and no classifier was selected, KNORA-E selects all classifiers with the same classification
accuracy as the single best classifier in the original �.

Fig. 29 shows a test sample N, its region of competence (darkened samples), and
regions of expertise of the classifiers (circles on the right side). KNORA-E selects all
classifiers that are experts for the classification of all samples in the region of competence
(intersection of correct classifiers).

Figure 29 – Selection of KNORA-E. On the left side, N is the test sample, and the darkened
samples are the region of competence of the test sample. On the right side,
the selected classifiers are darkened. (From (KO; SABOURIN; JR, 2008)).

A.3 Problem Statement
When no classifier correctly classifies all samples in the region of competence of a

test sample, KNORA-E reduces the region of competence by removing the sample that is
the furthest from xquery, regardless of its class. Because of that, KNORA-E can change a
region of competence that is composed of samples from di�erent classes into a region of
competence composed of samples from a single class.

Figure 30 presents the iterations of KNORA-E (K = 5) for the classification of
a test sample (xquery) when no classifier correctly classifies all samples in the region of
competence (�) of xquery. In this figure, N is the test sample, the dotted line delimits the
region of competence, A, B, C, D, and E are the K nearest neighbors of xquery in the
validation set, c1 and c2 are classifiers and the continuous straight lines are their decision
boundaries. The markers ¶ and ⌅ represent samples from di�erent classes, and the test
sample is from the class "¶".
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(a) 1st iteration of KNORA-E. (b) 2nd iteration of KNORA-E.

(c) 3rd iteration of KNORA-E. (d) 4th iteration of KNORA-E.

Figure 30 – KNORA-E iterations when no classifier correctly classifies all samples in the
region of competence of the test sample. The N is the test sample, the markers
¶ and ⌅ are samples from di�erent classes in the region of competence of the
test sample, and the class of the test sample is "¶". (Adapted from (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017)).

In the scenario from Figure 30, in the first and second iterations (Figure 30(a) and
30(b)) no classifier correctly classifies all samples in �, so KNORA-E removes the samples
E and D from �, in the first and second iterations, respectively.

In the third iteration (Figure 30(c)), again, no classifier correctly classifies all
samples in �, so KNORA-E removes the sample that is the furthest from xquery, C, (the
last remaining sample of class "¶" in �), leaving only two samples of the class "⌅" in �.
In the fourth iteration (Figure 30(d)), the classifier c2 correctly classifies all samples in �
(A and B), so KNORA-E selects c2, misclassifying the test sample.

This is an issue because when the region of competence of the test sample has
samples from di�erent classes, KNORA-E may change the region of competence in such
a way that it is no longer a good representation of the local region of the test sample.
This behavior is not ideal because classifiers that classify all samples in the region of
competence as "⌅" (such as c2) are selected. This is a problem especially when dealing



APPENDIX A. K-NEAREST ORACLES BORDERLINE DYNAMIC CLASSIFIER ENSEMBLE
SELECTION 119

with imbalanced dataset, where a region of competence with samples from the minority
class (class with few samples) can be changed into a region with only samples from the
majority class (class with many samples), even though the minority class is usually the
class of interest.

A.4 Proposed Techniques

A.4.1 KNORA-Borderline

The K-Nearest Oracles-Borderline (KNORA-B) is a DES technique based on
KNORA-E that maintains the classes represented in the original region of competence of
the test sample when reducing the region of competence.

Given a test sample xquery, KNORA-B finds its region of competence (�) by
selecting the K nearest neighbors of xquery in the validation set DSEL. Then, KNORA-B
selects all classifiers that correctly classify all K samples in �. If no classifier correctly
classifies all samples in �, KNORA-B reduces � by removing the sample that is the
furthest (�b) from xquery, only if all classes represented in � are still represented in �/�b,
otherwise, KNORA-B evaluates the removal of the next furthest sample (�b≠1). The
process repeats until at least one classifier is selected. If KNORA-B reaches a state in
which it is not possible to remove any sample from � while maintaining the set of classes,
KNORA-B uses the KNORA-E rule over the original region of competence.

Algorithm 11 presents the KNORA-B pseudocode. xquery is the test sample, C is the
pool of classifiers, DSEL is the validation set, and K is the size of the region of competence.
First, KNORA-B initializes EoC as an empty list to insert the selected classifiers (Line 1),
it then selects the region of competence � of xquery by applying the K-nearest neighbors
on DSEL (Line 2), and stores this initial region of competence in �original (Line 3). Next,
until at least one classifier is selected or until the region of competence is empty (Line
4), KNORA-B tries to select all classifiers that correctly classify all samples in � (Line
5 - 9), if no classifier is selected KNORA-B reduces the region of competence and the
process repeats (Lines 10 - 12). If the region of competence can no longer be reduced, and
no classifier was selected, KNORA-B performs the fallback selection (Lines 14 - 16) - the
fallback selection of KNORA-B is the KNORA-E procedure. Finally, KNORA-B returns
the selected ensemble of classifiers.

KNORA-B di�ers from KNORA-E in the reduced region of competence procedure
applied when no classifier correctly classifies all samples in the region of competence
(�). Algorithm 12 presents the region of competence reduction process. Given a test
sample xquery and the region of competence �, KNORA-B gets the size S of the region of
competence (Line 1), and assigns that to a variable b (Line 2). Now, until the region of
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Algorithm 11 KNORA-B
Require: C: pool of classifiers
Require: DSEL: validation set
Require: xquery: test sample
Require: K: size of the region of competence

1: EoC Ω ensemble of classifiers
2: � Ω K nearest neighbors of xquery in DSEL

3: �original Ω �
4: while Empty(EoC ) · ¬Empty(�) do

5: for all ci in C do

6: if ci correctly classifies all samples in � then

7: EoC Ω EoC fi ci

8: end if

9: end for

10: if EoC is empty then

11: � Ωreduced_region_of_competence(xquery, �)
12: end if

13: end while

14: if EoC is empty then

15: EoC Ω fallback_selection(C, �original, xquery, K)
16: end if

17: return EoC

competence is not reduced and b is greater than zero (Line 3), KNORA-B gets the b-th
nearest sample (starts with b = SizeOf(�), that is, from the furthest to the nearest) of
xquery (�b) in � (Line 4), and evaluates if all classes represented in � are still represented
if �b is removed from �. If so, �b is removed from �, otherwise, b is decreased (Lines 5 -
9). If no sample was removed from �, this means that no reduction was possible (there is
only one sample from each class that was represented in the original region of competence),
then � is assigned to an empty set (Lines 11 - 13) so that KNORA-B can use the fallback.
Finally, the reduced region of competence is returned (Line 14).

Figure 31 presents the iterations of KNORA-B (K = 5) for the classification of
a test sample (xquery) when no classifiers correctly classify all samples in the region of
competence (�) of xquery. In this figure, N is the test sample, the dotted line delimits the
region of competence, A, B, C, D, and E are the K nearest neighbors of xquery in the
validation set, c1 and c2 are classifiers and the continuous straight lines are their decision
boundaries. The markers ¶ and ⌅ are samples from di�erent classes, and the test sample
is from the class "¶".

In the scenario from Figure 31, in the first and second iterations (Figure 31(a) and
31(b)) no classifier correctly classifies all samples in �, so, KNORA-B removes the sample
that is the furthest from xquery, respectively, E and D, from �. In the third iteration
(Figure 31(c)), again, no classifier correctly classifies all samples in �, but instead of
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Algorithm 12 KNORA-B - Reduced Region of Competence
Require: xquery: test sample
Require: �: region of competence of xquery

1: S Ω SizeOf(�)
2: b Ω S
3: while SizeOf(�) = S and b > 0 do

4: �b Ω b-th nearest from xquery in �
5: if Set(classes(�/�b)) = Set(classes(�)) then

6: � Ω �/�b

7: else

8: b Ω b ≠ 1
9: end if

10: end while

11: if SizeOf(�) = S then

12: � Ω ÿ

13: end if

14: return �

(a) 1st iteration of KNORA-B. (b) 2nd iteration of KNORA-B.

(c) 3rd iteration of KNORA-B. (d) 4th iteration of KNORA-B.

Figure 31 – KNORA-B iterations when no classifier correctly classifies all samples in the
region of competence of the test sample. The N is the test sample, the markers
¶ and ⌅ are samples from di�erent classes in the region of competence of the
test sample, and the class of the test sample is "¶". (Adapted from (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017)).
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removing the furthest sample C, leaving only samples from the class "⌅" in �, KNORA-B
removes the second furthest sample B, maintaining samples from both classes "¶" and "⌅"
in �. In the fourth iteration (Figure 31(d)), the classifier c1 correctly classifies all samples
in � (A and C), so, KNORA-B selects c1 and correctly classifies the test sample as being
from the class "¶".

Comparing Figure 30 with Figure 31, we can see that KNORA-B is better in
selecting classifiers for the classification of the test sample that has a region of competence
with samples of di�erent classes. While KNORA-E selects c2, a base classifier that classifies
all samples in � as being from the same class "⌅", and misclassifies the test sample, KNORA-
B selects c1, a base classifier that correctly classifies samples from di�erent classes in �,
correctly classifying the test sample.

A.4.2 KNORA-Borderline-Imbalanced

When dealing with specific problems such as imbalanced datasets, KNORA-B can
remove a minority class sample that is closer to the test sample instead of a majority class
sample that is the furthest. This behavior is not desired in the context of imbalanced
datasets, in which the minority class (class with few samples) is the class of interest
(LÓPEZ et al., 2013).

KNORA-Borderline-Imbalanced (KNORA-BI) is a variation of KNORA-B that has
a di�erent reduced region of competence reduction procedure that allows the reduction of
a region of competence that is composed of samples from the majority and minority classes
into a region of competence composed only of samples from the minority class. By doing
so, KNORA-BI favors only the minority class when reducing the region of competence.

KNORA-BI region of competence reduction pseudocode is presented in Algorithm
13. Given a test sample xquery the region of competence �, and the minority class classmin,
KNORA-BI gets the size S of the region of competence (Line 1) and assigns that to a
variable b (Line 2). Now, until the region of competence is not reduced and b is greater
than zero (Line 3), KNORA-BI gets the b-th nearest sample (starts with b = SizeOf(�),
that is, from the furthest to the nearest) of xquery (�b) in � (Line 4), if �b is not from the
minority class or if all classes represented in � are still represented when �b is removed
from �, then, �b is removed from �, otherwise, b is decreased (Lines 5 - 9). If no sample
is removed from � and b reaches zero, � is assigned to an empty set (Lines 11 - 13). Thus,
KNORA-BI can use the fallback. Finally, the reduced region of competence is returned
(Line 14).

Considering the examples from Figure 30 and 31, KNORA-BI region of competence
reduction procedure reduces the region of competence in such a way that:

• if the class "¶" is the majority class, KNORA-BI acts as exemplified in Figure 30
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Algorithm 13 KNORA-BI - Reduced Region of Competence
Require: xquery: test sample
Require: �: region of competence of xquery

Require: classmin: minority class
1: S Ω SizeOf(�)
2: b Ω S
3: while SizeOf(�) = S and b > 0 do

4: �b Ω b-th nearest from xquery in �
5: if Class(�b) ”= classmin‚ Set(classes(�/�b)) = Set(classes(�)) then

6: � Ω �/�b

7: else

8: b Ω b ≠ 1
9: end if

10: end while

11: if SizeOf(�) = S then

12: � Ω ÿ

13: end if

14: return �

- as it allows the removal of all majority class samples, leaving all minority class
samples.

• if the class "¶" is the minority class, KNORA-BI acts as exemplified in Figure 31 -
as it does not allow the removal of all minority class samples.

A.5 Experiments
We evaluated KNORA-B and KNORA-BI using 40 datasets as proposed in

(OLIVEIRA; CAVALCANTI; SABOURIN, 2017). The datasets were taken from the
imbalanced datasets module in the Knowledge Experiments based on Evolutionary Learn-
ing (KEEL) repository (ALCALÁ et al., 2010). Table 10 presents the details about the
datasets used in our experiments: label, name, number of features, number of samples,
and imbalance ratio (IR).

For each dataset, the data was partitioned using the stratified 5-fold cross-validation
(1 fold used for testing, and 4 folds for validation/training) followed by a stratified 4-fold
cross-validation (the 4 folds into validation/training divided in 1 for validation and 3
for training), resulting in 20 replications for each dataset using 20% for testing, 20% for
validation, and 60% for training.

The analysis is conducted using 8 DES techniques from the literature, their respec-
tive FIRE-DES versions (using the F prefix), and 3 state-of-the-art DES techniques. Table
11 shows the dynamic selection techniques used in our experiments, their categories and
references. Following the approach using in (OLIVEIRA; CAVALCANTI; SABOURIN,
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Table 10 – Summary of the 40 datasets used in the experiments: label, name, number of
features, number of samples, and imbalance ratio (from (OLIVEIRA; CAVAL-
CANTI; SABOURIN, 2017)).

Label Name #Feats. #Samples IR
1 glass1 9 214 1.82
2 ecoli0vs1 7 220 1.86
3 wisconsin 9 683 1.86
4 pima 8 768 1.87
5 iris0 4 150 2.00
6 glass0 9 214 2.06
7 yeast1 8 1484 2.46
8 vehicle2 18 846 2.88
9 vehicle1 18 846 2.9
10 vehicle3 18 846 2.99
11 glass0123vs456 9 214 3.2
12 vehicle0 18 846 3.25
13 ecoli1 7 336 3.36
14 new-thyroid1 5 215 5.14
15 new-thyroid2 5 215 5.14
16 ecoli2 7 336 5.46
17 segment0 19 2308 6.00
18 glass6 9 214 6.38
19 yeast3 8 1484 8.10
20 ecoli3 7 336 8.60
21 yeast-2vs4 8 514 9.08
22 yeast-05679vs4 8 528 9.35
23 vowel0 13 988 9.98
24 glass-016vs2 9 192 10.29
25 glass2 9 214 11.59
26 shuttle-c0vsc4 9 1829 13.87
27 yeast-1vs7 7 459 14.30
28 glass4 9 214 15.47
29 ecoli4 7 336 15.80
30 page-blocks-13vs4 10 472 15.86
31 glass-0-1-6_vs_5 9 184 19.44
32 shuttle-c2-vs-c4 9 129 20.50
33 yeast-1458vs7 8 693 22.10
34 glass5 9 214 22.78
35 yeast-2vs8 8 482 23.10
36 yeast4 8 1484 28.10
37 yeast-1289vs7 8 947 30.57
38 yeast5 8 1484 32.73
39 ecoli-0137vs26 7 281 39.14
40 yeast6 8 1484 41.40
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2017), we use a pool of classifiers composed of 100 Perceptrons generated using the Boot-
strap AGGregatING (Bagging) technique (BREIMAN, 1996), and a region of competence
size K = 7.

Table 11 – Dynamic selection techniques considered in the experiments (From (OLIVEIRA;
CAVALCANTI; SABOURIN, 2017)).

Technique Category Reference
DES

Overall Local Accuracy (OLA) Accuracy Woods et al. (WOODS; KEGELMEYER; BOWYER, 1997)
Local Class Accuracy (LCA) Accuracy Woods et al. (WOODS; KEGELMEYER; BOWYER, 1997)
A Priori (APri) Probabilistic Giacinto et al. (GIACINTO; ROLI, 1999)
A Posteriori (APos) Probabilistic Giacinto et al. (GIACINTO; ROLI, 1999)
Multiple Classifier Behavior (MCB) Behavior Giacinto et al. (GIACINTO; ROLI, 2001b)
Dynamic Selection KNN (DSKNN) Diversity Santana et al. (SANTANA et al., 2006)
K-Nearests Oracles Union (KNORA-U) Oracle Ko et al. (KO; SABOURIN; JR, 2008)
K-Nearests Oracles Eliminate (KNORA-E) Oracle Ko et al. (KO; SABOURIN; JR, 2008)
State-of-the-art

Randomized Reference Classifier (RRC) Probabilistic Woloszynski et al. (WOLOSZYNSKI; KURZYNSKI, 2011)
META-DES Meta-learning Cruz et al. (CRUZ et al., 2015)
META-DES.Oracle Meta-learning Cruz et al. (CRUZ; SABOURIN; CAVALCANTI, 2017b)

Following the approach in (OLIVEIRA; CAVALCANTI; SABOURIN, 2017), we
used the Area Under the ROC Curve (AUC) (BRADLEY, 1997) for performance evalu-
ation since it is a suitable metric for binary imbalanced datasets (LÓPEZ et al., 2013)
(OLIVEIRA; CAVALCANTI; SABOURIN, 2017). We also used the Wilcoxon Signed Rank
Test (BENAVOLI; CORANI; MANGILI, 2016) (WILCOXON, 1945) and the Sign Test
(DEMäAR, 2006) to perform a pairwise comparison of the proposed techniques with the
techniques from the literature.

A.5.1 Results

Table 12 presents the overall results. For each technique, the table shows: the
mean AUC and standard deviation, the average ranking, and the p-value and result of
the Wilcoxon Signed Rank Test comparing KNORA-B and KNORA-BI with the DES
technique (+/=/≠ signs mean the proposed technique had statistically better, equal, and
worse classification performance considering a confidence level – = 0.05).

Table 12 show that KNORA-BI achieved the highest mean AUC (0.8136) and
the best average ranking (6.80), outperforming all techniques considered in this work.
Moreover, it statistically outperformed 18 out of 22 techniques according to the Wilcoxon
Signed Rank test. Table 12 also shows that KNORA-B was not as good as KNORA-BI,
achieving the 12th best AUC (0.7989), and being statistically equivalent to KNORA-E
(0.8003). However, it was only statistically outperformed by 7 out of 22 techniques, where 3
of those are variations of the techniques proposed in this paper (KNORA-BI, FKNORA-B,
and FKNORA-BI).
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Table 12 – Overall results.

DES AUC RANK KNORA-B (p-value) KNORA-BI (p-value)
KNORA-BI 0.8136 (0.0743) 6.80 0.9999 ≠ N/A
META.O 0.8067 (0.0649) 8.16 0.9509 ≠ 0.3454 =
META 0.8100 (0.0635) 8.20 0.9742 ≠ 0.4362 =
FKNORA-U 0.8081 (0.0765) 8.38 0.9712 ≠ 0.1009 =
FMCB 0.8058 (0.0760) 8.80 0.9235 = 0.0921 =
FKNORA-BI 0.8083 (0.0758) 9.01 0.9976 ≠ 0.0003 +
FKNORA-E 0.8055 (0.0768) 9.59 0.9962 ≠ 0.0002 +
FKNORA-B 0.8042 (0.0772) 10.34 0.9860 ≠ 0.0001 +
KNORA-E 0.8003 (0.0703) 10.66 0.8298 = 0.0002 +
KNORA-B 0.7989 (0.0721) 11.28 N/A 5.60 ◊ e≠6 +
FDSKNN 0.8006 (0.0767) 11.43 0.5250 = 2.00 ◊ e≠6 +
FLCA 0.7946 (0.0777) 11.84 0.5554 = 8.30 ◊ e≠6 +
RRC 0.7934 (0.0658) 12.26 0.1805 = 0.0057 +
FOLA 0.8017 (0.0767) 12.97 0.5026 = 3.80 ◊ e≠6 +
FAPRI 0.7930 (0.0802) 13.10 0.1940 = 1.60 ◊ e≠6 +
LCA 0.7809 (0.0737) 13.30 0.0332 + 7.20 ◊ e≠6 +
DSKNN 0.7728 (0.0602) 13.32 0.0107 + 6.10 ◊ e≠5 +
OLA 0.7911 (0.0709) 13.60 0.0623 = 1.40 ◊ e≠7 +
KNORA-U 0.7560 (0.0548) 15.39 0.0002 + 6.80 ◊ e≠6 +
FAPOS 0.7681 (0.0809) 15.86 0.0001 + 1.40 ◊ e≠7 +
APRI 0.7537 (0.0628) 16.38 3.20 ◊ e≠5 + 9.80 ◊ e≠7 +
APOS 0.7380 (0.0658) 18.01 1.10 ◊ e≠5 + 4.70 ◊ e≠7 +
MCB 0.7443 (0.0566) 17.32 2.10 ◊ e≠6 + 6.40 ◊ e≠7 +

In addition, FKNORA-B (0.8042) outperformed KNORA-B (0.7989) with statistical
confidence, meaning FIRE-DES caused a significant increase in classification performance
in KNORA-B. This increase in AUC is explained in the scenario that no classifier was
selected and the region of competence has only one sample from each class remaining.
In this scenario, KNORA-B applies KNORA-E on the entire pool of classifiers while
FKNORA-B applies KNORA-E on the set of pre-selected classifiers (avoiding the selection
of incompetent classifiers that classify all samples in the region of competence as being
from the same class).

On the other hand, KNORA-BI (0.8136) outperformed FKNORA-BI (0.8083) with
statistical confidence, meaning FIRE-DES caused a significant decrease in classification
performance in KNORA-BI. KNORA-BI allows the region of competence to be reduced
until there is only minority class samples, allowing to the selection of classifiers that classify
all samples in the region of competence as minority class samples, while FKNORA-BI does
not allow the selection of such classifiers. Because the minority class is so rare, preventing
a DES technique from selecting a classifier that classifies all samples in the region of
competence as minority class sample is not advantageous, specially because correctly
classifying 1 minority class sample has a higher impact than misclassifying 1 majority



APPENDIX A. K-NEAREST ORACLES BORDERLINE DYNAMIC CLASSIFIER ENSEMBLE
SELECTION 127

class sample, which explains why KNORA-BI was better without FIRE-DES.

Figure 32 presents a pairwise comparison using the Sign Test (DEMäAR, 2006),
calculated using the wins, ties, and losses achieved by the KNORA-B compared to other
techniques (Figure 32(a)) and by the KNORA-BI compared to other techniques (Figure
32(b)).

KNB

(a) Comparison of KNORA-B and other techniques.

KNBI

(b) Comparison of KNORA-BI and other techniques.

Figure 32 – Classification performance comparison of KNORA-B with di�erent DES
techniques (Figure 32(a)) and KNORA-BI with di�erent DES techniques
(Figure 32(b)) in terms of wins, ties and losses considering the average
AUC in the 40 datasets. The dashed lines (left to right) illustrates the
critical values nc = {24.05, 25.20, 27.37} considering significance levels of
– = {0.10, 0.05, 0.01}, respectively.

For a comparison between one of the proposed techniques and a technique T, the
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null hypothesis H0 was that the proposed technique is not statistically di�erent than T,
and a rejection of H0 meant that the proposed technique is statistically better than T. H0

is rejected if the number of wins plus half of the number of ties is greater or equal to nc

(Equation A.1):

nc = nexp

2 + z– ◊

2
Ô

nexp

2 (A.1)

where nexp = 40 (the number of experiments), nc = {24.05, 25.20, 27.37}, respectively for
the levels of significance – = {0.10, 0.05, 0.01}.

Figure 32(a) shows that, considering – = 0.05, KNORA-B statistically outperformed
7 out of the 8 regular DES techniques, being only statistically equivalent to KNORA-E.
Comparing with FIRE-DES framework, KNORA-B outperformed only FAPOS (the worst
of FIRE-DES in our experiments). KNORA-B was not better than any of the state-of-art
DES techniques.

On the other hand, Figure 32(b) shows that overall KNORA-BI statistically
outperformed a significant number of techniques studied (18 out of 22), considering a
significance level – = 0.05. The only exceptions being the FMCB, FKNORA-U, META-
DES, and META-DES.Oracle.

Figure 33 – AUC di�erence between KNORA-B and KNORA-E, and between KNORA-BI
and KNORA-E.

Figure 33 presents the average AUC di�erence from KNORA-B and KNORA-BI to
KNORA-E considering the datasets 1-10, 11-20, 21-30, and 31-40. This figure shows that
KNORA-B is better than KNORA-E optimally in 21-30 and slightly better in 31-40, while
KNORA-BI was always better than KNORA-E (the more the imbalance ratio the higher
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the di�erence). This confirms that for all imbalance levels KNORA-BI was better than
KNORA-E, while KNORA-B was only better than KNORA-B for high imbalance level.

Based on the results, we can state with confidence that KNORA-B achieved statis-
tically equivalent performance of KNORA-E, and KNORA-BI statistically outperformed
KNORA-E and all other techniques considered in this experiment.

A.6 Conclusion
In this paper, we proposed two DES techniques: K-Nearest Oracles Borderline

(KNORA-B) and K-Nearest Oracles Borderline Imbalanced (KNORA-BI). KNORA-B is a
DES technique based on KNORA-E that selects all classifiers that correctly classify all
samples in the region of competence. If no classifier is selected, KNORA-B reduces the
region of competence maintaining the at least one sample from each class in the original
region of competence. KNORA-BI is a variation of KNORA-B that reduces the region
of competence, but maintaining at least one sample of the minority class (if such sample
exists in the original region of competence).

We conducted experiments using 40 datasets from the KEEL software (ALCALÁ
et al., 2010) with di�erent levels of imbalance, and compared KNORA-B and KNORA-BI
with 8 regular DES techniques, 8 FIRE-DES techniques, and 3 state-of-the-art DES
techniques.

Results showed that KNORA-B had statistically equivalent performance of KNORA-
E, and KNORA-BI statistically outperformed KNORA-E in classification performance.
In fact, KNORA-BI achieved the best average classification performance over all DES
techniques considered in our experiments, including the state-of-the-art DES techniques.
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Abstract
We propose a bootstrap-based iterative method for generating classifier ensembles

called Iterative Classifier Selection Bagging (ICS-Bagging). Each iteration of ICS-Bagging
has two phases: i) bootstrap sampling to generate a pool of classifiers; and, ii) selection of
the best classifier of the pool using a fitness function based on the ensemble accuracy and
diversity. The selected classifier is added to the final ensemble. The bootstrap sampling
runs on each iteration and updates the probability of sampling per class based on the class
accuracy. This process is repeated until the number of classifiers in the final ensemble
is reached. For the specific case of imbalanced datasets, we also propose the SMOTE-
ICS-Bagging, a variation of the ICS-Bagging that runs SMOTE at the beginning of each
iteration in order to reduce the class imbalance before data sampling. We compared the
proposed techniques with Bagging, Random Subspace and SMOTEBagging, using 15
imbalanced datasets from KEEL. The results show the proposed techniques outperform
all other techniques in accuracy. Ranking diagrams revealed that the proposed algorithms
achieved the highest rankings in accuracy, outperforming SMOTEBagging, a renowned
ensemble generation method for imbalanced datasets.
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B.1 Introduction
In many real-world classification datasets, the instances of one class are greatly

outnumbered by the instances of the other classes. This imbalance gives rise to the so
called class imbalance problem, which is the problem of learning a class that has a small
set of examples when compared to the other classes. In recent years, the class imbal-
ance problem has emerged as one of the great challenges of data mining (YANG; WU,
2006), and it is very common in practice, being present in areas such as medical diagno-
sis (MAZUROWSKI et al., 2008), fraud detection (CIESLAK; CHAWLA; STRIEGEL,
2006), and face recognition (LIU; CHEN, 2005).

On imbalanced datasets, the underrepresented class, called the minority or positive
class, is usually the class of interest (i.e. higher misclassification cost), which makes it
essential that the few instances available for this class be appropriately learned by the
model. This is not usually the case for standard classification learning algorithms, as
most of them do not take class distribution into account and have a strong bias towards
the majority class. This results in poor learning of the minority class. As this class is
so important in these types of problems, it makes sense to explicitly deal with the class
imbalance problem.

Numerous methods exist to treat imbalanced datasets (HULSE; KHOSHGOF-
TAAR; NAPOLITANO, 2007) (HE; GARCIA, 2009) (LÓPEZ et al., 2013) (GALAR et al.,
2012), (LÓPEZ et al., 2013). These methods can be categorized into 3 major groups: (1)
data sampling, in which the dataset is preprocessed so that a standard learning method
can be used (AKBANI; KWEK; JAPKOWICZ, 2004); (2) algorithmic modification, which
involves adapting standard learning methods to take class distribution into account; (3)
cost-senstive learning (ELKAN, 2001), that uses approaches at the data level, at the
algorithmic level, or both.

Ensemble methods (DIETTERICH, 2000) (KUNCHEVA, 2004) (WOèNIAK;
GRAÑA; CORCHADO, 2014) (also known as Multiple Classifier Systems) are an impor-
tant area of research in machine learning, and have been proven in practice to increase the
accuracy of classifier systems (WOèNIAK; GRAÑA; CORCHADO, 2014). These methods
consist of training not just one classifier (i.e. expert), but several, and combining their
outputs (i.e. expert opinions) in the hope that the results will be better than any classifier,
or at least trying to avoid the choice of the worst classifier.

The process to generate good classifiers for an ensemble is not trivial, as the criteria
for a “good” ensemble is not only the accuracy of its classifiers, but that they are as uncor-
related as possible. To heuristically measure this degree of “uncorrelatedness”, the concept
of diversity (KUNCHEVA; WHITAKER, 2003) (TANG; SUGANTHAN; YAO, 2006) is
used. Since the training of each classifier already optimizes for accuracy, the ensemble
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designer must choose how to improve diversity in the ensemble. There are several methods
that do this, and they can be divided in: (1) training data manipulation (BREIMAN, 1996)
(SCHAPIRE, 1990) (HO, 1998), (2) randomization (HANSEN; SALAMON, 1990) and
(3) di�erent models/architectures (CARUANA et al., 2004). Ensemble methods are also
frequently adapted to imbalanced domains (GALAR et al., 2012), either by preprocessing
the data before training each classifier (WANG; YAO, 2009)(CHAWLA et al., 2003) or by
using a cost-sensitive framework.

In this paper, we proposed a technique for generating classifier ensembles called
Iterative Classifier Selection Bagging (ICS-Bagging). ICS-Bagging is a bootstrap-based
iterative method composed of two steps: first, a bootstrap sampling generates a pool of
classifiers, and, after, the best classifier of the pool is selected using a fitness function
based on the ensemble accuracy and diversity.

The main contributions of this paper are two new proposed methods: (1) ICS-
Bagging: an ensemble generation method that chooses what classifiers should be added in
the final ensemble by using ensemble accuracy and diversity; (2) SMOTE-ICS-Bagging
(SICS-Bagging): a variant of ICS-Bagging that explicitly deals with the class imbalance
problem. Both methods are shown to beat the state-of-the-art according to a recent survey
(GALAR et al., 2012).

This paper is organized as follows. Section 2 presents the background for the
proposed methods, going into more detail about imbalanced datasets solutions and ensemble
methods. Section 3 presents ICS-Bagging and SICS-Bagging. Next, in Section 4, we detail
the experiments, and in Section 5 we present the conclusions.

B.2 Background
In the field of classification, imbalanced datasets are a common occurrence and

dealing with such datasets is di�cult problem (OLIVEIRA et al., 2012) (YANG; WU,
2006). The main characteristic of such datasets is the fact that it has an imbalance in the
class distribution.

Most of the standard learning algorithms expect a balanced training set. Therefore,
good models for standard classification are not necessarily the best for imbalanced datasets.
Some of the reasons for this are (LÓPEZ et al., 2013):

• The use of performance metrics that do not take class imbalance into account, such
as the accuracy rate, may provide an advantage to the majority class.

• Classification rules that predict the minority class may be too specific, and so they
are discarded in favor of more general rules.
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• Very small clusters of minority class examples can be identified as noise, and therefore
they could be wrongly discarded by the classifier. Also, a few noisy examples can
degrade the identification of the minority class, since it has fewer examples to train
with.

Multiple methods exist to deal with the class imbalance problem, (LÓPEZ et al.,
2013) categorizes these methods into 3 major groups:

• Data sampling: training data is modified in such a way to produce a more or less
balanced class distribution that allow classifiers to perform in a similar manner to
standard classification.

• Algorithmic modification: adapts standard learning algorithms to be more at-
tuned to class imbalance issues.

• Cost-sensitive learning (ELKAN, 2001): This type of solutions incorporate ap-
proaches at the data level, at the algorithmic level, or at both levels combined,
considering higher costs for the misclassification of examples of the positive class
with respect to the negative class, and therefore, trying to minimize higher cost
errors.

B.2.1 Data sampling

One of the simpler alternatives (listed above) for dealing with imbalanced datasets,
is preprocessing the data so as to diminish or eliminate the imbalance. In this vein, there are
3 options: (1) oversampling the minority class (CHAWLA et al., 2002), (2) undersampling
the majority class (KUBAT; MATWIN, 1997) (BATISTA; CARVALHO; MONARD, 2000),
(3) combining oversampling and undersampling (STEFANOWSKI; WILK, 2008). In this
paper we focus on SMOTE (CHAWLA et al., 2002), which is an oversampling technique
that was shown to be very e�ective as a preprocessing step for dealing with the class
imbalance problem (GALAR et al., 2012).

SMOTE (CHAWLA et al., 2002) is an oversampling technique that creates synthetic
examples by interpolating between minority instances that are close to each other. Synthetic
instances are created along the line segment between each minority class instance and one
of its k nearest neighbors (from the same class). The procedure is basically this: for each
minority class example, randomly select one of its k nearest neighbors (from the same
class), take the di�erence between the two vectors, multiply the di�erence by a random
number (between 0 and 1) and add it to the minority class example.

The intuition on why SMOTE improves performance on imbalanced datasets is
that it provides more related minority class samples to learn from, thus allowing a learning
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algorithm to create broader decision regions, leading to more coverage of the minority
class. This of course, has an implicit locality bias, that is, it assumes that interpolating
two nearby samples of the same class, will generate a point in the same class. That is not
always the case, so one of the problems of SMOTE is its sensitivity to the complexity of
the dataset.

B.2.2 Ensemble generation

B.2.2.1 Bagging

Bagging (BREIMAN, 1996) is an ensemble meta-algorithm that was designed to
improve the accuracy and stability of supervised machine learning models. Its main concept
is bootstrap aggregation, where the training set for each classifier is constructed by random
uniform sampling (with replacement) instances from the original training set (usually
keeping the size of the original data) (B£ASZCZY—SKI; STEFANOWSKI; IDKOWIAK,
2013). The classifiers output is then combined in some way (for classification problems,
majority vote is generally used). The bootstrap sampling process generates a di�erent
training set for each classifier, which naturally increases ensemble diversity.

B.2.2.2 Boosting

Boosting (SCHAPIRE, 1990) (FREUND, 1995) is a general method for improving
the accuracy of any given learning algorithm (SCHAPIRE, 2003). The objective of boosting
methods is to produce a very accurate (i.e. "strong") classifier by combining rough and
somewhat inaccurate (i.e. "weak") classifiers. The boosting method works by iteratively
training each classifier, by feeding it a weighted training set. The weights in each instance
of the training set are higher for instances often misclassified by the preceding classifiers.
This e�ectively forces each classifier to focus on the current "hardest" examples. After the
ensemble is generated, a simple combination scheme may be used (e.g. majority voting).

B.2.3 Ensemble Generation for Imbalanced Datasets

The use of ensembles for dealing with imbalanced datasets is one common solution
(LÓPEZ et al., 2013), and (GALAR et al., 2012) roughly categorizes these techniques into:
(1) bagging-based; (2) boosting-based; (3) hybrid; and (4) cost-sensitive ensembles. Out of
these types, we’re interested in comparing our proposed technique with the bagging-based
SMOTEBagging, since it obtained slightly better results than the best (more robust)
techniques tested in (GALAR et al., 2012) and (LÓPEZ et al., 2013).

In SMOTEBagging (WANG; YAO, 2009), the bootstrapping procedure used in the
original Bagging, is modified so that even more diversity is introduced in the ensemble,
this is done by using SMOTE. This technique, at first, uses SMOTE for oversampling
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the minority class, and then its resampling rate is updated in each iteration (i.e. for
each classifier that is trained), from lower to higher values (e.g. 10% - 100%). This ratio
defines the number of minority instances to be additionally resampled in each iteration
(B£ASZCZY—SKI; STEFANOWSKI; IDKOWIAK, 2013).

B.3 Proposed Algorithms
This section presents the Iterative Classifier Selection Bagging (ICS-Bagging) and

the SMOTE Iterative Classifier Selection Bagging (SICS-Bagging).

B.3.1 ICS-Bagging

ICS-Bagging is a bootstrap-based iterative methods for generating classifier en-
sembles. Each iteration generates a set of classifiers and selects the best classifier to the
ensemble. The bootstrap sampling uses a probability of sampling from each class, with
this probability being derived from the class accuracy. Figure 34 presents the architecture
of the ICS-Bagging algorithm.

Figure 34 – Architecture of ICS-Bagging and SICS-Bagging. Where L is the final ensemble,
and Preprocessing is a step from the SICS-Bagging

Follows the explanation of each step:

Preprocessing: Before generating the classifiers, a preprocessing technique might
be applied to the training set. This preprocessing can consist of removing or generating
features, removing outliers, noisy and redundant data, or generating new data. ICS-Bagging
does not have this step, it is only used in the SICS-Bagging and is mentioned later in this
section.
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Generate K classifiers: This step generates K classifiers using bootstrap sampling
(with replacement). In the first step, the weights are the same for all classes, after the first
step the weights are updated to prioritize the class that has a lower accuracy.

The motivation for using the weights to guide the bootstrap process is that the
new generated classifiers are trained with instances that increase the accuracy of the class
with the lowest accuracy.

The motivation for generating K > 1 classifiers is to expand a region of search,
increasing the probability of finding a classifier that considerably increase the classification
accuracy and diversity.

Add the best classifier to the pool: For each of the K generated classifiers
the following steps are performed to find the best classifier. Algorithm 14 presents the
mechanism to find the classifier to be inserted into the pool.

Algorithm 14 Find Best Classifier
Require: V : validation set
Require: C: list of classifiers
Require: P : pool
Require: fitness: a fitness function

1: bestindex Ω ≠1
2: bestvalue Ω ≠1
3: for all i œ SizeOf(C) do

4: Add Ci to P

5: fiti Ω fitness(P)
6: if fiti > bestvalue then

7: bestvalue Ω fiti

8: bestindex Ω i

9: end if

10: Remove Ci from P

11: end for

12: return Cbestindex

In Algorithm 14, C is the list of K generated classifiers, V is the validation set
(in this work, we used the traning set as the validation set) and P is the current pool of
classifiers.

For all classifiers in C, the classifier is added to the pool (Line 4), and the the
fitness of the pool is calculated (Line 5). The fitness is given by

fitness = – ◊ ACC + (1 ≠ –) ◊ DIV (B.1)
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where ACC is the classification accuracy of the pool, DIV is the diversity metric, and – is
the balance parameter that regulates the objective function between high classification
accuracy and high diversity, and has a range of 0.51 to 0.99.

If the pool achieves the highest fitness with this classifier, the index of this classifier
is saved in bestindex (Line 6 - 9). The classifier is removed from the pool (Line 10) and the
process starts again with another classifier, until the best classifier is returned (Line 12).

For the classification of a test sample, any combination rule could be used. In this
paper, we used the majority vote rule (KUNCHEVA, 2004) to combine the outputs of the
classifiers in the pool.

Any classification and diversity metric can be used in Equation B.1, but both need to
be normalized (between 0 and 1). In this paper we used the AUC as classification accuracy
because of the imbalanced datasets issue, and the Entropy Measure E (KUNCHEVA;
WHITAKER, 2003) as the diversity metric because of the simplicity and running speed.

The Entropy Measure E is a non-pairwise diversity measure that has it’s highest
value when half classifiers correctly classify a pattern and the other half doesn’t. If all
classifiers have the same agree on a classification, the ensemble is not considered diverse.
The Entropy Measure E is described as

E = 1
N

Nÿ

j=1

1
(L ≠ Á

L

2 Ë)
min{l(zj), L ≠ l(zj)} (B.2)

where L is the number of classifiers of the ensemble, N is the number of samples to be
classified, l(zi) is a function that returns the number of classifiers that correctly classify
the sample zi. This diversity metric varies from 0 to 1, where 1 is the highest diversity
and 0 is the lowest, therefore, there is no need for normalization when using this metric.

The motivation for adding only one of the K generated classifiers is because the
accuracy of each class might change when the best classifier is inserted in the pool, which
means, the pool now has di�erent samples to prioritize in order to increase classification
accuracy and diversity.

|pool| = N: If the pool already contains the desired number of classifiers the pool
is returned.

Update the weight of each class: Since the accuracy of each class might have
changed after inserting the new classifier in the pool, the weights need to be updated using
Equation B.3,

weightclass = 1.0 ≠
accuracyclassq

cœclasses accuracyc

(B.3)
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where weightclass is the weight of the class, accuracyclass is the classification rate of the
class, and q

cœclasses accuracyc is the sum of the classification rate of all classes.

As previously stated, the motivation for updating the weights is to increase the
probability of training the new K classifiers with samples from the class with lower accuracy
of the pool.

Return the pool: The final pool of classifiers L is returned.

B.3.2 SMOTE-ICS-Bagging

SMOTE-ICS-Bagging (SICS-Bagging) is a variation of ICS-Bagging in which the
Synthetic Minority Over-sampling Technique (SMOTE) is used as a preprocessing phase
before generating the K classifiers. This step is performed to increase diversity and to
reduce the imbalance ratio when performing bootstrap sampling.

B.4 Experiments
This section presents the methodology used in the experiments, and the results of

ICS-Bagging and SICS-Bagging.

B.4.1 Methodology

The ICS-Bagging and SICS-Bagging methods are evaluated using 15 imbalanced
datasets from KEEL (ALCALÁ et al., 2010). The datasets are binary and have incremental
imbalance ratio (IR), given by the number of samples of the majority class divided by the
number of samples of the minority class. The datasets used in this study are summarised
in Table 13 that shows the number of samples, the number of attributes, the classes
distribution and the IR.

The datasets are partitioned using the 5-fold cross-validation procedure, which
means that the datasets are divided in 5 folds (each one with 20% of the samples) and the
experiments are performed 5 times, each time with one of the folds as the test set and the
remaining four folds as the training set. This partitioning is performed respecting class
proportion.

The evaluation metrics are: classification accuracy and diversity. For the classifica-
tion accuracy, the metric used was the Area Under the ROC Curve (AUC). This metric
was chosen because it is one of the most suitable metrics when dealing with imbalanced
datasets. For the diversity, the Entropy Measure E was used. This non-paired diversity
metric was used because it is not biased by the AUC (already considered in the fitness
function), and for simplicity, because it has the ideal range (from 0 to 1), where 1 is the
highest diversity possible.
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Table 13 – Datasets characteristics

Label Name Patterns Features % (min., maj.) IR
1 Glass1 214 9 (35.51, 64.49) 1.82
2 Pima 768 8 (34.84, 66.16) 1.90
3 Iris0 150 4 (33.33, 66.67) 2.00
4 Yeast1 1484 8 (28.91, 71.09) 2.46
5 Vehicle2 846 18 (28.37, 71.63) 2.52
6 Vehicle3 846 18 (28.37, 71.63) 2.52
7 Ecoli1 336 7 (22.92, 77.08) 3.36
8 Ecoli2 336 7 (15.48, 84.52) 5.46
9 Glass6 214 9 (13.55, 86.45) 6.38
10 Yeast3 1484 8 (10.98, 89.02) 8.11
11 Ecoli3 336 7 (10.88, 89.12) 8.19
12 Vowel0 998 13 (9.10, 90.9) 9.98
13 Glass4 214 9 (6.07, 93.93) 15.47
14 Ecoli4 336 7 (5.95, 94.05) 15.8
15 Page-blocks13vs4 472 10 (5.93, 94.07) 15.85

In order to evaluate the results, we used the statistical paired test One Sided
Wilcoxon Signed Rank Test (WILCOXON, 1945), comparing ICS-Bagging and SICS-
Bagging with the other techniques in this experiment. The level of significance used was
– = 0.05.

The techniques and parameters used in this experiments are presented in Table 14.

Table 14 – Algorithms and parameters

Algorithm Parameters

ICS-Bagging N = 40, repetition = True
K = 5, – = 0.75

SICS-Bagging N = 40, repetition = True
K = 5, – = 0.75, Ksmote = 5

SMOTEBagging N = 40, repetition = True
Ksmote = 5

Bagging N = 40, repetition = True
RandomSubspace N = 40, featuresmax = 0.3

The base classifier used in the experiments was the Decision Tree Classifier with
maximum depth of 9, and minimum number of samples required to be at a leaf node of 1.
The combination scheme used is a simple majority vote.
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B.4.2 Results

Tables 15 and 16 present the average and standard deviation for, respectively, the
AUC and Entropy Measure E. The best result in each dataset is highlighted in bold. The
last lines present the results of the Wilcoxon Test, the approximated p-value and the
result when compared with ICS-Bagging and SICS-Bagging. The symbol “+” when a
proposed technique outperformed, the symbol “≠” when it was outperformed, and “=”
when nothing can be concluded with statistical support (NA means not applicable).

Table 15 – Average, standard deviation AUC, and Wilcoxon Signed Rank Test

Dataset ICS-Bagging-40 SICS-Bagging-40 SMOTEBagging-40 Bagging-40 RandomSubspace-40
glass1 0.7923 0.0500 0.7829 0.0193 0.7816 0.0770 0.7521 0.0529 0.7576 0.0816
pima 0.7390 0.0194 0.7377 0.0189 0.6988 0.0307 0.7215 0.0227 0.6328 0.0295
iris0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

yeast1 0.7309 0.0343 0.7204 0.0237 0.7314 0.0282 0.6810 0.0187 0.5325 0.0148
vehicle2 0.9592 0.0168 0.9630 0.0159 0.9669 0.0127 0.9594 0.0225 0.9633 0.0129
vehicle3 0.7368 0.0188 0.7566 0.0162 0.7300 0.0083 0.6600 0.0226 0.6327 0.0278
ecoli1 0.8722 0.0497 0.8795 0.0444 0.8642 0.0414 0.8480 0.0454 0.7672 0.0887
ecoli2 0.8855 0.0495 0.8861 0.0439 0.8670 0.0529 0.8714 0.0464 0.7283 0.0357
glass6 0.8917 0.0190 0.8965 0.0643 0.8886 0.0361 0.8865 0.0624 0.8640 0.0836
yeast3 0.9089 0.0273 0.9045 0.0248 0.9055 0.0095 0.8434 0.0337 0.5030 0.0061
ecoli3 0.8047 0.0967 0.8223 0.0590 0.7525 0.0827 0.7724 0.0677 0.6279 0.0708
vowel0 0.9483 0.0573 0.9594 0.0546 0.9455 0.0547 0.9589 0.0540 0.9278 0.0572
glass4 0.8750 0.1877 0.8825 0.1915 0.8708 0.0982 0.7467 0.1654 0.6475 0.1362
ecoli4 0.8405 0.1143 0.8655 0.0721 0.8155 0.1194 0.8671 0.1326 0.7000 0.1000
page-blocks-1-3_vs_4 0.9978 0.0045 0.9978 0.0045 0.9978 0.0045 0.9766 0.0414 0.8733 0.0712
Average 0.8655 0.0497 0.8703 0.0435 0.8544 0.0438 0.8363 0.0526 0.7439 0.0544
P-value (ICS-Bagging) NA 0.9421 0.0044 0.0055 0.0006
Result (ICS-Bagging) NA = + + +
P-value (SICS-Bagging) 0.0579 NA 0.0054 0.0008 0.0006
result (SICS-Bagging) = NA + + +

Table 16 – Average, standard deviation Entropy Measure E, and Wilcoxon Signed Rank
Test

Dataset ICS-Bagging-40 SICS-Bagging-40 SMOTEBagging-40 Bagging-40 RandomSubspace-40
glass1 0.4445 0.0560 0.4314 0.0570 0.4177 0.0464 0.3786 0.0531 0.4604 0.0347

pima 0.4284 0.0133 0.4130 0.0197 0.4303 0.0174 0.4131 0.0196 0.4966 0.0216

iris0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0073 0.0060

yeast1 0.4342 0.0230 0.3926 0.0256 0.3779 0.0200 0.3410 0.0029 0.2727 0.0222
vehicle2 0.1006 0.0148 0.0809 0.0039 0.0849 0.0059 0.0886 0.0126 0.1699 0.0204

vehicle3 0.3900 0.0219 0.3774 0.0248 0.3757 0.0239 0.3661 0.0177 0.3349 0.0382
ecoli1 0.1542 0.0361 0.1555 0.0479 0.1474 0.0340 0.1456 0.0337 0.2965 0.0475

ecoli2 0.1556 0.0440 0.1377 0.0347 0.1174 0.0203 0.1216 0.0286 0.2174 0.0281

glass6 0.1108 0.0550 0.0894 0.0235 0.0708 0.0305 0.0613 0.0148 0.1265 0.0313

yeast3 0.0767 0.0076 0.0717 0.0110 0.0619 0.0086 0.0825 0.0086 0.1158 0.0119

ecoli3 0.1187 0.0364 0.1200 0.0339 0.1089 0.0361 0.1246 0.0290 0.1710 0.0476

vowel0 0.0346 0.0176 0.0309 0.0148 0.0237 0.0084 0.0299 0.0069 0.0994 0.0093

glass4 0.0684 0.0299 0.0623 0.0288 0.0557 0.0289 0.0944 0.0312 0.1026 0.0363

ecoli4 0.0460 0.0228 0.0476 0.0049 0.0253 0.0125 0.0333 0.0151 0.0984 0.0284

page-blocks-1-3_vs_4 0.0052 0.0065 0.0020 0.0035 0.0012 0.0013 0.0269 0.0090 0.0524 0.0152

Average 0.1712 0.0257 0.1608 0.0223 0.1533 0.0196 0.1538 0.0189 0.2015 0.0266

P-value (ICS-Bagging) NA 0.0018 0.0006 0.0320 0.9795
Result (ICS-Bagging) NA + + + ≠

P-value (SICS-Bagging) 0.9982 NA 0.0078 0.1501 0.9900
Result (SICS-Bagging) ≠ NA + = ≠
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B.4.2.1 Classification Accuracy

Table 15 shows that ICS-Bagging and SICS-Bagging outperformed all techniques in
classification accuracy. ICS-Bagging outperformed Bagging, Random Subspace, and one of
the top ensemble techniques for imbalanced datasets, SMOTEBagging. SICS-Bagging also
outperformed all the other techniques, but was statistically equivalent with ICS-Bagging.

SICS-Bagging was designed as an improvement of ICS-Bagging, with SMOTE
being applied before each iteration in order to increase the likelihood of creating balanced
classifiers (following the SMOTEBagging approach). The objective was achieved, and
SICS-Bagging was the best technique in 9 out of 15 datasets, and achieved the highest
average AUC (0.8703), followed by ICS-Bagging (0.8655).

Figure 35 – Average AUC ranking of the ensemble techniques

Figure 35 and Table 17 show the average and standard deviation AUC ranking
of the ensemble techniques in the experiments. The two techniques proposed in this
paper achieved the two highest performances. SICS-Bagging achieved the first place, and
ICS-Bagging the second place.

Table 15 and Figure 35 show that ICS-Bagging and SICS-Bagging had an excelent
performance in classification accuracy with imbalanced datasets, outperforming SMOTE-
Bagging, which was considered one of the best ensemble techniques for imbalanced domains
in (GALAR et al., 2012).

B.4.2.2 Diversity

Table 16 shows that ICS-Bagging outperformed all techniques in diversity, except
for the Random Subspace. Random Subspace achieved a high diversity because it only
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selects a subset of the features for each classifier, and it was confirmed to be a more
e�ective diversity generator than selecting a subset of samples for each classifier. This can
be confirmed when Random Subspace is compared with Bagging (with no preprocessing).

Statistically, SICS-Bagging outperformed only SMOTEBagging, but, on average, it
achieved the third highest diversity, losing only to Random Subspace and ICS-Bagging.
SICS-Bagging was outperformed by ICS-Bagging in diversity because the SMOTE pre-
processing improves the AUC of all classifiers, but does not necessarily generate diverse
classifiers. This can be confirmed because SMOTEBagging did not improve diversity over
Bagging (on average).

Figure 36 – Average Entropy Measure E ranking of the ensemble techniques

Figure 36 and Table 18 show the average and standard deviation ranking of the
ensemble techniques in the experiments. ICS-Bagging achieved the second highest diversity,
and SICS-Bagging the third highest. The highest diversity ranking was achieved by Random
Subspace, which achieved a low classification accuracy. This indicates that a high Entropy
E value does not necessarily result in a high classification accuracy.

The purpose of a diversity measure is to predict the accuracy of the ensemble
on new data. These results show that the Entropy E was not strongly correlated to
classification accuracy when using simple majority vote, this scenario could be di�erent if
another combination rule was used, or if we used dynamic ensemble selection.

B.4.2.3 Diversity vs. Classification

Figure 37 presents the dispersion graph (Diversity vs. AUC) of the ensemble
techniques used in this experiment. This figure shows that, on average, SICS-Bagging
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Table 17 – Ranking of AUC classification accuracy

Algorithm Average Std Ranking
ICS-Bagging 2.00 1.03 2
SICS-Bagging 1.60 0.80 1
SMOTEBagging 2.73 1.18 3
Bagging 3.33 1.13 4
Random Subspace 4.46 1.20 5

Table 18 – Ranking of Entropy Measure E diversity

Algorithm Average Std Ranking
ICS-Bagging 2.40 0.80 2
SICS-Bagging 3.13 1.02 3
SMOTEBagging 4.07 1.06 5
Bagging 3.47 1.15 4
Random Subspace 1.53 1.36 1

achieved the highest classification accuracy and the third highest diversity. ICS-Bagging
had the second highest classification accuracy and the second highest diversity.

Figure 37 – Dispersion (Diversity vs. AUC) of the ensemble algorithms used in the experi-
ment.

B.5 Conclusion
This paper proposed a new method of generating ensembles called Iterative Classifier

Selection Bagging (ICS-Bagging), and its extension for imbalanced datasets SMOTE
Iterative Classifier Selection Bagging (SICS-Bagging). An experimental study concluded
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that both ICS-Bagging and SICS-Bagging obtain state-of-the-art results in the datasets
tested (according with (GALAR et al., 2012)). Future works include: (1) comparing the
proposed techniques with other methods; (2) testing other preprocessing techniques and
(3) using other diversity metrics.
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Abstract
The nearest neighbor (NN) is one of the most well known classifiers in pattern

recognition. Despite the high classification accuracy, the NN has several drawbacks: high
storage requirements, bad time of response, and high noise sensitivity. Prototype Generation
(PG) is one of the most well-known solutions to tackle these shortcomings. In supervised
classification, many real world datasets do not have an equitable distribution among the
di�erent classes, these are called imbalanced datasets. Many PG techniques that have a
high classification accuracy in regular datasets, have a poor performance when dealing
with imbalanced datasets. The Self-Generating Prototypes (SGP) is one of these techniques.
The Adaptive Self-Generating Prototypes was proposed to tackle the SGP problem with
imbalanced datasets, but, in doing so, the reduction rate is compromised. This paper
proposes the Evolutionary Adaptive Self-Generating Prototypes (EASGP), a SGP based
technique with iterative merging and evolutionary pruning to help find the optimal solution.
An experimental analysis is performed with datasets of di�erent levels of imbalance ratio
and statistical tests are used to evaluate the proposed technique. The results obtained
show that EASGP outperforms previous SGP based algorithms in classification accuracy
and reduction.
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C.1 Introduction
The nearest neighbor (NN) rule (COVER; HART, 1967) is one of the most well

known supervised learning techniques. The general idea is to classify a new instance
as being of the same class as its nearest instance from the training set. The K-nearest
neighbor rule (KNN) (PATRICK; FISCHER, 1969) is a generalization of the NN rule that
considers the label of the K nearest instances of an instance to make it’s classification.
This technique is very simple, yet is one of the most interesting and useful algorithms in
Pattern Recognition (SHAKHNAROVICH; DARRELL; INDYK, 2005b).

Despite the high classification accuracy, the KNN has several drawbacks (KONONENKO;
KUKAR, 2007) (GARCIA et al., 2012) (TRIGUERO et al., 2012), the three most relevant
are:

1. high storage requirements: it needs to store all training set, because the decision
rule is defined by all training instances.

2. bad response time: for every new classification, the KNN needs to visit all instances
from the training set (O(n) complexity, where n is the size of the traning set).

3. low tolerance to noise: it considers all data from the training set to be relevant to
the classification task. Because of that, noisy data might compromise the classification
accuracy.

In the literature, many approaches have been proposed to solve these issues (FER-
NÁNDEZ; ISASI, 2008). One of these approaches is the use of instance reduction techniques
(WILSON; MARTINEZ, 2000). Techniques of instance reduction aim to select only relevant
instances from the training set, creating a smaller training set without compromising the
classification accuracy (WILSON; MARTINEZ, 2000). In doing so, the storage require-
ments and time of response are reduced, because less instances are saved and visited in
each classification, and also removes noisy data, improving classification and solving the
noise sensitivity problem.

Prototype selection (PS) is a process of instance reduction that removes instances
that are redundant or irrelevant to the classification, and selects the representative ones.
Prototype generation (PG) is the process of instance reduction that generates artificial
instances in order to achieve a higher generalization and create a more suitable training
set. Because of the limitations of the search space of PS techniques, PG techniques have
the potential of achieve a higher reduction rate than PS techniques.

Imbalanced datasets have many instances of one class, the majority class, and only
a few of the other, the minority class. Learning from such datasets is a di�cult task, being
considered an important problem in data mining and pattern recognition (YANG; WU,
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2006) (LÓPEZ et al., 2013). Despite the high performance in improving classification,
instance reduction techniques do not cope with imbalanced datasets, for they cannot
discriminate noisy instances from the minority class.

The Self-Generating Prototypes (SGP) (FAYED; HASHEM; ATIYA, 2007) is a
centroid-based prototype generation technique, it was even being combined with other
techniques to improve classification (PEREIRA; CAVALCANTI, 2008), but does not
work well with imbalanced datasets. The same thing happens with the Self-Generating
Prototypes 2 (SGP2).

Experiments have shown that, in some datasets, SGP and SGP2 consider all
minority class instances as noise or outliers that need to be removed in order to improve
generalization (OLIVEIRA et al., 2012). In order to solve this issue, in (OLIVEIRA et
al., 2012), the authors proposed the Adaptive Self-Generating Prototypes (ASGP) a SGP
based technique that is adaptive to di�erent levels of imbalance ratio. This technique
achieved interesting results, and the empirical experiments have shown that ASGP is a
better solution for imbalanced datasets (OLIVEIRA et al., 2012).

ASGP outperforms SGP2 in classification accuracy, but it is outperformed in
reduction rate because ASGP generates more minority class prototypes than needed
(increasing false positives in classification).

To solve the issues of SGP, SGP2 and ASGP, in this paper, we propose the
Evolutionary Adaptive Self-Generating Prototypes (EASGP), a PG technique composed
by a main loop and two new steps: incremental merging and evolutionary pruning. The
incremental merging expands the search space inserting new generalized samples that
might better represent the distribution of the classes. The evolutionary pruning uses a
memetic algorithm (MA) based on the Steady-State Memetic Algorithm (SSMA) (GARCÍA;
CANO; HERRERA, 2008) to explore the search space and find the optimal solution. The
evolutionary pruning uses the original training set as a validation set, instead of using
only the new generated samples.

The experiments showed that EASGP outperforms SGP, SGP2 and ASGP in
classification accuracy and reduction rate for datasets with di�erent levels of imbalance.
This result was confirmed with the One-Sided Wilcoxon Signed Rank Test (WILCOXON,
1945).

This paper is organized as follows: Section II gives a brief review of PG techniques
and presents the SGP, SGP2 and ASGP techniques. Section III presents the EASGP
technique. Section IV presents the experiments and results. Finally, Section V concludes
the paper.
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C.2 Background
This section presents the main concepts of prototype selection (PS) and proto-

type generation (PG), including the Self-Generating Prototypes (SGP), Self-Generating
Prototypes 2 (SGP2) and Adaptive Self-Generating Prototypes (ASGP).

C.2.1 Prototype Selection and Generation

PS methods are instance selection methods that, in order to improve the NN rule,
attempt to find the smallest subset of the training set that enable the KNN to correctly
classify a test sample (LIU; MOTODA, 2002).

The PS problem can be defined as follows: Let TR be the training set, and S ™ TR

be the subset of instances selected by a PS technique, where S has less noise or redundant
instances. The classification of a test sample xi is made using the KNN rule over S instead
of TR.

Since PS problems can be reduced to a combinatorial problem, it is possible to
use Evolutionary Algorithms (EAs) to solve them. In fact, a high number of the PS
algorithms recently proposed are based on EAs. Those methods were called evolutionary
prototype selection (EPS) methods (CANO; HERRERA; LOZANO, 2003). The Steady-
State Memetic Algorithm (SSMA) (GARCÍA; CANO; HERRERA, 2008) is a Memetic
Algorithm (MA) applied to PS. Studies have shown that this is one of the most successful
PS techniques (GARCIA et al., 2012). The use of stratified PS based on SSMA is an
alternative to solve the scalability issue, the problem of increasing the running time when
the number of instances increase (DERRAC; GARCÍA; HERRERA, 2010).

There are over 50 PS methods proposed in the literature. A complete study of PS,
including taxonomy, can be found in (GARCIA et al., 2012).

PG methods are instance reduction methods that attempt to find the smallest set
of artificial generated instances that improves the accuracy of the NN rule based on the
training set.

A PG problem can be defined as follows: Let TR be the training set, and TG a
set of prototypes generated or selected by a PG method based on TR, where Size(TG)
< Size(TR). The classification of a test sample xi is made using the KNN rule over TG,
instead of TR.

Most PG techniques that uses EAs are based on positioning adjustment, that means
that they move the prototypes around the m-dimensional space, adjusting them until it
finds an optimal solution (TRIGUERO et al., 2012). Examples of interesting positioning
adjustment PG techniques are the Evolutionary Nearest Prototype Classifier (ENPC)
(FERNÁNDEZ; ISASI, 2004) and the Particle Swarm Optimization (PSO) (NANNI;
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LUMINI, 2009). Other techniques such as Prototype Selection Clonal Selection Algorithm
(PSCSA) (GARAIN, 2008), and Di�erential Evolution (DE) (TRIGUERO; GARCÍA;
HERRERA, 2011) have also achieved interesting results.

For imbalanced datasets, the use of selection of evolutionary selection of generalized
examples (DERRAC et al., 2012) has achieved interesting results.

There are over 25 PG methods proposed in the literature. A complete study of PG,
including taxonomy, can be found in (TRIGUERO et al., 2012).

C.2.2 Self-Generating Prototypes Based Algorithms

The Self-Generating Prototypes (SGP) (FAYED; HASHEM; ATIYA, 2007) is an
interesting PG technique (PEREIRA; CAVALCANTI, 2008). The SGP method generates
prototypes using a combination of centroid based and space splitting mechanisms. The
SGP creates groups of instances generates a single prototype (the representant) for each
group.

In the beginning of the process, for each class, the SGP generates one group
containing all instances of that class. Then, the following steps are performed the until
the solution converge:

1. If, for all instances of a group, the closest prototype is the representant of the group
itself, then no modification is performed.

2. If, for all instances of a group, the closest prototype is from a di�erent class, then
the group is divided in two new subgroups. The separation is made by a hyperplane
that passes through the representant of the original group and is perpendicular to
the first principal component of the instances in the original group.

3. If, for some instances of a group, the closest prototype is a representant of a di�erent
group of the same class, these instances are moved from the original group to the
group of that closest prototype.

4. If, for some instances in a group, the closest prototype is the representant of a group
with di�erent class, the misclassified instances are removed from the original group
and form a new group.

After any of these procedures, each group representant is updated.

In order to improve the generation capability, the SGP implements a trade-o�
between training error and the model complexity using two parameters: Rmin and Rmis. If
the number of instances in a group divided by the number of instances of the largest group
is less than a threshold Rmin, the group is discarded. Also, along the SGP algorithm, if
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the number of misclassified instances in a group divided by the number of instances in
that group is less than a threshold Rmis, no modification is performed. This step is called
generalization step.

The SGP2 introduces two steps in order to reduce even more the number of
prototypes: A merging step and a pruning step. In the merging step, two groups A and
B are merged if both A and B are from the same class and the second closest prototype
to all instances in A is the representant of B, and the second closest prototype to all
instances in B is the representant of A. The pruning step removes redundant prototypes
using the following rule: if all instances of a group is correctly classified by their second
closest prototype, the group is discarded.

In (OLIVEIRA et al., 2012), the authors analyzed the SGP behavior when trained
with imbalanced datasets. Sometimes, the SGP returned no prototypes at all of the minority
class. The authors concluded that one of the major issues happens in the generalization
step, so they proposed a di�erent approach in the use of the generalization factor Rmin.

SGP eliminates the groups that have less than Rmin times L instances, L being the
size of the largest group in the dataset. The Adaptive Self-Generating Prototypes (ASGP)
suggests that this elimination is not fair with the minority class groups. To solve this
issue, the same Rmin is used for all groups, but L is the size of the largest group of the
same class, instead of the size of the largest group of all classes. This step is detailed in
Algorithm 15.

Algorithm 15 Generalization Step
Require: GP : a set of groups of instances
Require: H: a hashtable
Require: CS: a list of classes of the groups

1: for all Class C œ CS do

2: L Ω ≠1
3: for all Group G in GS do

4: if SizeOf(G) > L then

5: L Ω SizeOf(G)
6: end if

7: end for

8: H(C) Ω L
9: end for

10: for all Group G in GS do

11: C Ω ClassOf(G)
12: L Ω H(C)
13: if

SizeOf(G)
L

Æ Rmin then

14: Remove G from GS
15: end if

16: end for

17: return GS
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ASGP also proposes that the merge and pruning steps should be performed as
usual, but after both procedures, all prototypes of the minority class should be included
again, in case they were lost in the generalization procedure.

The ASGP method achieved interesting results with imbalanced datasets, but
there are other drawbacks to be tackled. When performing the merging step, the order
in which the merging occurs a�ects the final solution, making possible the algorithm to
find sub-optimal solutions. The same thing happens with the pruning step. Another issue
with the pruning step is that it removes a group only if all instances in that group are
well classified without the group representant. A higher generalization might be achieved
if there was a threshold that evaluated if a removal is an advantage or not.

When inserting all prototypes of the minority class, after the pruning step, the
ASGP method might also insert not needed prototypes, and even, prototypes that does
not fit the new data, generating an overlap between the prototypes of the minority and
majority classes.

The next section presents the proposed technique that handles all the mentioned
issues.

C.3 Evolutionary Adaptive Self-Generating Prototypes
This section presents the Evolutionary Adaptive Self-Generating Prototypes (EASGP),

a prototype generation (PG) that uses an iterative merge and evolutionary pruning.

C.3.1 Motivation

The Self-Generating Prototypes (SGP) has a poor performance when trained with
imbalanced datasets. The Adaptive Self-Generating Prototypes (ASGP) is an improved
SGP that handles imbalanced datasets. Despite the fact that ASGP achieved better results
than SGP2, ASGP has a lower reduction rate than SGP2. This behavior is acceptable,
because of high cost of misclassifying the minority class (ELKAN, 2001), but it is not
desired.

The following three flaws were found in the SGP2 and ASGP algorithms:

1. In the merging step, the order in which the groups are merged a�ects the resulting
prototypes. If two groups are merged, another important merge might not take place,
and a sub-optimal solution might be returned.

2. In the pruning step, the already reduced search space is not fully explored. Also,
when the order in which the groups are visited is changed, the resulting prototypes
also change. Because of that, a sub-optimal solution might be returned.
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3. After the merging and pruning steps, when introducing back the prototypes of the
minority class, the ASGP algorithm does not consider that the new set of majority
class prototypes were generated considering another group of the minority class
prototypes. This might cause overlapping between prototypes of di�erent classes.

In order to solve these issues, this paper proposes the EASGP method, an SGP
based PG technique that implements an incremental merging and evolutionary pruning
steps.

C.3.2 Architecture

Figure 38 shows the architecture of EASGP. First, ASGP is used to generate
the initial prototypes. These prototypes are used by the iterative merging algorithm,
generating new prototypes and expanding the search space. Finally, the evolutionary
pruning is applied to find the optimal subset of prototypes, and the best subset is returned.
The evolutionary pruning uses the original training set as a validation set to find the best
solution.

Figure 38 – Architecture of EASGP.

The EASGP steps are explained in the next subsections.

C.3.3 EASGP Initial Prototype Generation

Following the same approach of the SGP algorithm, In the beginning of the process,
a group containing all the instances within each class is created for all class labels, and
the mean of each group is elected representant. The ASGP main loop is executed once the
initial groups are formed until no changes in the groups occurs.

The generalization step follows the ASGP approach, removing a group only if it is
considerably smaller than the larger group of the same class.

The major inovations of EASGP are the iterative merging and evolutionary pruning,
presented in the next subsections.
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C.3.4 Iterative Merging

Di�erently than the merging step of ASGP, the iterative merging uses only the
generated prototypes to perform the merge between two groups, instead of using all
instances within the groups. This approach has a high performance e�ect on the algorithm,
since the number of representants is usually significantly smaller than the number of
instances in the training set.

In order to understand the iterative merging, the merging-links concept must be
defined. A pair of prototypes A and B is called a merging-link if they meet the 3 following
conditions:

• A and B belong to the same class.

• The closest prototype of A is B.

• The closest prototype of B is A.

The iterative merging also uses two lists: search list and final list. The search list
is the list of prototypes where the procedure searches for merging-links. The final list is
the list of prototypes to be returned by the procedure.

First, the iterative merging insert all prototypes from the EASGP initial prototypes
procedure in the search list and then finds all merging-links prototypes in that list. If at
least one merging-link is found, than this is not the last iteration. Each link is merged,
and a new prototype is generated (the mean of the each link). The merging-links are now
removed from search list and saved into the final list. The process is repeated until the
last generation (no merging-link is found), when all remaining prototypes are included in
the final list. Finally, all prototypes in final list are returned.

The iterative merging is detailed in Algorithm 16.
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Algorithm 16 Iterative Merging
Require: PS: a set of prototypes
Require: search list: a list to search for links
Require: final list: a list to save the prototypes

1: save all PS in search list
2: merging-links Ω all merging links in search list
3: while merging-links is not empty do

4: for all link œ merging-links do

5: P Ω mean(link)
6: insert P in the search list
7: remove the link prototypes from search list
8: insert the link prototypes in final list
9: end for

10: merging-links Ω all merging links in search list
11: end while

12: insert all prototypes in search list in final list
13: return the prototypes in final list

With this approach, the EASGP iterative merging expands the region of search
that was reduced by the initial prototypes procedure. The result of the iterative merging is
not a�ected by the order in which the prototypes are merged (di�erently than the ASGP
merge step).

C.3.5 Evolutionary Pruning

The pruning step aims to remove redundant prototypes without compromising the
classification accuracy. The problem of pruning can be considered a problem of prototype
selection (PS), which is to find the best subset of instances that better represent a training
set. As mentioned in the previous section, the problem of PS is a combinatorial problem,
and the current best approaches to solve this problem is to use evolutionary prototype
selection (EPS), especially memetic algorithms (MA).

The evolutionary pruning uses the Steady-State Memetic Algorithm (SSMA) (GAR-
CÍA; CANO; HERRERA, 2008) concept to find the best subset of generated prototypes,
the di�erence is the use of the whole traning set as a reference set. First, a population of
solutions is created using the chromosome representation. For each interection, two parent
chromosomes are selected and the genetic operators are applied to generate an o�spring.
A local search is used to optimize each solution with a given probability. The evolutionary
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pruning uses the fitness function detailed the Equation C.1.

Fitness(S) = – ◊ AUCrate + (1 ≠ –) ◊ reductionrate (C.1)

The value of the parameter – is within the interval [0.51, 0.99]. In the evolutionary
pruning, the classification rate used in the fitness when handling imbalanced dataset is
the Area Under the ROC Curve (AUC), avoiding over generalization and the possibility
of removing of all prototypes of the minority class.

Also, the fitness is estimated using the original training set as a validation set, not
only the prototypes from the merging step. Using this approach, the evolutionary pruning
finds better solutions and avoids the cost of misclassification of already removed samples
in the previous steps of the algorithm.

The Algorithm 17 presents the evolutionary pruning algorithm.

Algorithm 17 Evolutionary Pruning
1: Initialize Population.
2: while not termination-condition do

3: parents Ω Parent Selection (binary tournament)
4: O� 1, O� 2 Ω Crossover(parents)
5: Mutation(O�1, O�2)
6: for all O� i do

7: if local search decision then

8: local-search(O�i)
9: end if

10: end for

11: Standard Replacement for O�1 and O�2

12: end while

13: return The best chromosome

The evolutionary pruning, which is based on the SSMA, steps are detailed as
follows:

• Population Initialization: Each chromosome represents a subset of prototypes, a
gene is ’1’ when the prototype is in the subset and ’0’ when it is not. All chromo-
somes reference the same set of prototypes returned by the iterative merging. In
the population inicialization, the chromosomes are inicialized randomly, and each
chromosome is evaluated using the fitness function. Di�erently than other approaches,
the evaluation is performed using all instances in the training set as a validation set,
and not only the prototypes referenced by the chromosomes.
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• Parent Selection: In order to select two parents, a binary tournament selection is
employed. For each parent, two random candidates are selected from the population
of chromosomes, and the best one (the one with the higher fitness) is elected parent.

• Crossover: The parents are combined to generate the o�spring, two new individuals
with half of the genes from each parent.

• Mutation: The mutation changes each gene of the o�spring with a probability
P = 1/N , where N is the size of the chromosome.

• O�spring Evaluation: The o�spring is evaluated using the fitness function (Equa-
tion C.1) and the validation set (the original training set).

• Local Search Decision: This step decides if a local search is applied to an individual
in the o�spring. The local search is performed with a probability Pls which is detailed
in the Equation C.2.

Pls(S) =

Y
]

[
1 if fitness(S) > fitness(Sworse)

0.0625 otherwise
(C.2)

If the o�spring is better than the worst solution of the population of chromosomes
(has a higher fitness than the solution with lower fitness in the population), the
local search is performed, otherwise, the local search is performed with a probability
Pls = 0.0625. This value was found empirically in (GARCÍA; CANO; HERRERA,
2008).

• Local Search: For a given chromosome, it considers neighborhood solutions by
removing an instance from the current solution. A change is maintained if it improves
the classification accuracy of the current solution, otherwise, the change is reverted. If
a removal becomes permanent, the whole neighborhood is considered again. To avoid
local optimum, the local search also accepts solutions that decreases the classification
accuracy but increase the fitness.

• Standard Replacement: If the o�spring is better than the worst solution in the
population (has a higher fitness than the solution with lower fitness in the population),
the o�spring replaces the worst solution.

• Termination Condition: The algorithm stops when a convergence of the solutions
occurs, or when a number of evaluations NE (passed as parameter) is reached. In
other evolutionary algorithms, usually NE = 10000. Because of the high reduction
power of ASGP, NE = 100 is enough for EASGP.
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The evolutionary pruning procedure works as an optimization algorithm. Other
EPS can be used, but the local search of SSMA makes it possible to find optimal solutions
without reach the number of evaluations that a brute-force algorithm requires.

Compared to SSMA alone, one advantage of EASGP is that EASGP makes possible
a higher generalization and requires fewer evaluations than other evolutionary algorithms,
since the chromosomes only represent the previously generated prototypes and not the
whole original training set. In classification accuracy, EASGP pruning also works as a fixer
for the previous steps, removing any residual noisy data generated by the initial generation
(ASGP main procedure) and the iterative merging.

C.4 Experiments
This section presents the methodology used in the experiments, and the results of

the Evolutionary Adaptive Self-Generating Prototypes (EASGP).

C.4.1 Methodology

The EASGP method is evaluated using 15 imbalanced datasets from KEEL (AL-
CALÁ et al., 2010). The datasets are binary (2 classes) and have di�erent levels of
imbalance. Table 19 summarises the datasets used in this study, detailing the number of
samples, the number of attributes, the class distribution and the imbalance ratio (IR).
The datasets are partitioned using the five fold cross-validation procedure, respecting the
classes proportions.

Table 19 – Datasets characteristics

Label Dataset #Attributes #Instances IR

1 pima 8 768 1.87
2 yeast1 8 1484 2.46
3 vehicle2 18 846 2.88
4 vehicle1 18 846 2.9
5 vehicle3 18 846 2.99
6 vehicle0 18 846 3.25
7 ecoli2 7 336 5.46
8 segment0 19 2308 6.02
9 ecoli3 7 336 8.6
10 yeast05679vs4 8 528 9.35
11 vowel0 13 988 9.98
12 glass016vs2 9 192 10.29
13 glass2 9 214 11.59
14 shuttlec0vsc4 9 1829 13.87
15 yeast1vs7 7 459 14.3
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The evaluation metrics are: Area Under the ROC Curve (AUC) and reduction rate.
To compare the results, we use the One Sided Wilcoxon Rank Test (WILCOXON, 1945),
with significance level – = 0.1. Table 20 presents the techniques and parameters used in
this experiment. The 1NN was the base classifier used for all techniques.

Table 20 – Parameters used in the experiments.

Algorithm Parameters
SGP Rmin = 0.05, Rmis = 0.04
SGP2 Rmin = 0.05, Rmis = 0.04
ASGP Rmin = 0.05, Rmis = 0.04
EASGP Rmin = 0.05, Rmis = 0.04, – = 0.7

C.4.2 Results

Table 21 and Table 22 are grouped in columns by algorithms, and the best result
of each dataset is highlighted in bold. The last lines presents the results of the Wicoxon
Test, considering –wilcoxon = 0.1, the symbol “+” is used when EASGP outperforms the
algorithm in that column (NA means not applicable).

C.4.2.1 AUC

Table 21 shows the average and standard deviation of the classification accuracy
(given by the AUC). The results show that EASGP outperformed all previous version of
SGP with statistical confidence: SGP (p-value = 0.0004908), SGP2 (p-value = 0.001755)
and ASGP (p-value = 0.0659).

Figure 39 – Best of SGP, SGP2 and ASGP ◊ EASGP AUC rate graph, where the squares
are the datasets and the star is the average.
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Table 21 – Average, standard deviation and Wilcoxon Signed Rank Test p-value and result
of the SGP, SGP2, ASGP and EASGP AUC rate

Label SGP SGP2 ASGP EASGP
1 0.6503(0.0348) 0.6780(0.0507) 0.6548(0.0191) 0.6721(0.0107)
2 0.6329(0.0081) 0.6399(0.0219) 0.6316(0.0318) 0.6371(0.0265)
3 0.8508(0.0636) 0.8448(0.0705) 0.8606(0.0459) 0.8662(0.0174)

4 0.6364(0.0478) 0.6336(0.0472) 0.6687(0.0377) 0.6541(0.0339)
5 0.6403(0.0377) 0.6398(0.0177) 0.7076(0.0277) 0.6901(0.0161)
6 0.7702(0.1111) 0.7728(0.1085) 0.8570(0.0578) 0.8952(0.0342)

7 0.8761(0.0533) 0.8455(0.0212) 0.8443(0.0310) 0.9203(0.0386)

8 0.9672(0.0253) 0.9735(0.0226) 0.9684(0.0098) 0.9687(0.0114)
9 0.8189(0.0690) 0.8215(0.0504) 0.8169(0.0311) 0.8461(0.0965)

10 0.5864(0.1062) 0.5922(0.1135) 0.7667(0.0438) 0.8375(0.0215)

11 0.6828(0.2253) 0.6817(0.2238) 0.8431(0.1264) 0.9154(0.0753)

12 0.5710(0.0954) 0.6179(0.0664) 0.6702(0.1180) 0.6312(0.1436)
13 0.6356(0.1126) 0.6204(0.1083) 0.7260(0.1256) 0.6878(0.1879)
14 0.9960(0.0080) 0.9960(0.0080) 0.9960(0.0080) 0.9960(0.0080)

15 0.5744(0.0579) 0.5996(0.0808) 0.6224(0.0638) 0.7185(0.0929)

Mean 0.7260(0.0704) 0.7305(0.0674) 0.7756(0.0518) 0.7958(0.0543)

p-value 0.0004908 0.001755 0.0659 NA
Result + + + NA

Figure 39 shows EASGP compared with the best of the other techniques. This
figure shows that EASGP outperforms the best of SGP, SGP2 and ASGP in classification
accuracy, achieving the highest ranking in 8 out of the 15 datasets. Clearly, EASGP
achieved the best performance in classification accuracy (AUC).

C.4.2.2 Reduction

Table 22 shows the average and standard deviation of the reduction rate. The
results show that EASGP outperformed all previous versions of SGP with statistical
confidence: SGP (p-value = 0.0004908), SGP2 (p-value = 0.007827), and ASGP (p-value
= 0.0004908).

The impressive result is that EASGP outperformed SGP2 in reduction rate. Based
on previous studies (OLIVEIRA et al., 2012), we concluded that SGP2 have a high
reduction power, but sometimes it removes all samples of the minority class, which allows
the algorithm to leave only a prototype of the majority class. Despite of that, EASGP was
able to outperform SGP2 in reduction, without compromising classification accuracy.

Figure 40 shows EASGP compared with the best of the other techniques. This
figure shows that EASGP outperforms the best of SGP, SGP2 and ASGP in reduction
rate, losing in only 3 datasets. Even in the few datasets where EASGP was outperformed,
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we can see that the points are very close to the line, which means the di�erence is very
small.

We can conclude with confidence that EASGP achieved the best peformance in
reduction rate.

Table 22 – Average, standard deviation and Wilcoxon Signed Rank Test p-value and result
of the SGP, SGP2, ASGP and EASGP reduction rate

Dataset SGP SGP2 ASGP EASGP

1 0.8645(0.1893) 0.9127(0.1478) 0.7204(0.0815) 0.9505(0.0305)

2 0.7867(0.1586) 0.8760(0.1192) 0.7010(0.0604) 0.9212(0.0308)

3 0.9232(0.0432) 0.9548(0.0275) 0.9134(0.0198) 0.9749(0.0116)

4 0.7843(0.1549) 0.8502(0.1362) 0.7355(0.0623) 0.9250(0.0390)

5 0.7884(0.1055) 0.8623(0.0884) 0.7376(0.0440) 0.9241(0.0295)

6 0.9554(0.0451) 0.9734(0.0254) 0.9081(0.0253) 0.9722(0.0258)
7 0.8438(0.0514) 0.9301(0.0424) 0.8765(0.0224) 0.9769(0.0059)

8 0.9828(0.0033) 0.9916(0.0017) 0.9880(0.0020) 0.9927(0.0045)

9 0.9092(0.0409) 0.9680(0.0130) 0.8936(0.0178) 0.9524(0.0242)
10 0.9115(0.0952) 0.9597(0.0569) 0.8911(0.0397) 0.9654(0.0120)

11 0.9818(0.0195) 0.9899(0.0109) 0.9790(0.0046) 0.9901(0.0073)

12 0.7538(0.0646) 0.8632(0.0565) 0.8151(0.0187) 0.8867(0.0203)

13 0.7745(0.0835) 0.8890(0.0646) 0.8446(0.0192) 0.9054(0.0288)

14 0.9986(0.0000) 0.9986(0.0000) 0.9986(0.0000) 0.9986(0.0000)

15 0.7898(0.1006) 0.8791(0.0592) 0.8660(0.0399) 0.8726(0.0556)
Mean 0.8699(0.0770) 0.9266(0.0566) 0.8579(0.0305) 0.9472(0.0217)

p-value 0.0004908 0.007827 0.0004908 NA
Result + + + NA
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Figure 40 – Best of SGP, SGP2 and ASGP ◊ EASGP reduction rate graph, the squares
are the datasets and the star is the average.

C.4.2.3 Reduction vs. Classification

Figure 41 shows the dispersion graph (Reduction vs. AUC) of SGP, SGP2, ASGP
and EASGP. This figure shows that EASGP achieved the best classification accuracy and
reduction rate.

Figure 41 – Dispersion (Reduction vs. AUC) of EASGP, ASGP, SGP and SGP2.

We can state with confidence that EASGP outperformed all previous versions of
SGP (SGP, SGP2 and ASGP) in both, classification accuracy and reduction rate.

C.5 Conclusion
This paper presented the Evolutionary Adaptive Self-Generating Prototypes (EASGP),

a centroid based prototype generation (PG) algorithm for imbalanced datasets. EASGP
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uses an iterative merging to expand the search space, and evolutionary pruning to find
the optimal solution.

An experimental study was carried out to compare EASGP and the previous
versions of the Self-Generationg Prototupes (SGP). The main conclusions reached were:

1. EASGP outperformed all previous versions of SGP in classification accuracy on
imbalanced datasets.

2. EASGP outperformed all previous versions of the SGP in reduction rate on imbal-
anced datasets.

3. Di�erently than previous versions of SGP, EASGP can be adjusted to give preference
to the classification or reduction with the – parameter.

The use of an iterative merging and evolutionary pruning achieved excelent results.
Future works include the use of these algorithms with other PG techniques.
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