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ABSTRACT

Experiments play an essential role in evaluating solutions in software engineering.
A field of software engineering where experiments are frequently used is software devel-
opment. In this field, many solutions are proposed to foster coding activities, such as
different programming languages, developing techniques, tools, and other solutions. In
this context, this research has two primary goals. The first goal is to investigate experi-
ments performing coding activities (Coding Experiments). This investigation shall raise
the most common characteristics of such experiments, and how current solutions support-
ing experiments address such coding context. The second goal is to propose a solution to
support coding experiments according to their particular context characterization. This
research was divided in many sub-steps. Each sub-step adopted distinct method. In the
first step, we conducted a systematic analysis of coding experiments published in seven
renowned venues in software engineering from 2003 to 2016. In the next step, we systemat-
ically evaluated the current solutions to support experiments in SE according to previous
findings. Based on the results from previous steps, we proposed our solution. Finally, in
the final step, we carried out a case study on replicating coding experiments with the
proposed solution. The first study revealed many issues in coding experiments that can
be addressed to aid its execution. The second study brought to light which aspects of
coding experiments are covered by current solutions. In fact, the majority of general char-
acteristics of coding experiments are adequately addressed by current solutions. However,
some context-specific characteristics are not satisfactorily undertaken. Based on found
lacks, a metamodel was proposed to specify context-specific coding experiments char-
acteristics. This metamodel can be seen as a specialization of current solution focusing
only on coding context characterization. Also, a set of tools were developed to (i) specify
models according to the proposed metamodel and (ii) support the experiment execution
according to its specification. The last study assessed the proposed solution usage to help
researchers carrying out coding activities in experiments. From experiment planner’s per-
spective, the effort to conduct and collect data was reduced, even considering the extra
effort to specify the coding experiment. From participants’ perspective, the proposed so-
lution seemed reasonable to support experiments. However, some issues were identified.
Finally, although positive results, performing more assessments including different settings
is required to generalize these results. This research focuses only on supporting coding
experiments, more precisely planning and execution phases. This work does not deal with
other aspects such as data analysis, and we believe current solutions can deal with them.
By specifying coding context characteristics, many activities when carrying out a coding
experiment can be (semi-)automated, thus contributing to reduce effort to experiment.
Moreover, the proposed solution proved adequate for supporting coding experiments, and
it is available to support researches around the world through our repository.
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RESUMO

Experimentos desempenham um papel essencial na avaliação de soluções em engen-
haria de software (ES). Um campo da ES onde experimentos são frequentemente utilizados
é o de desenvolvimento de software. Nele, soluções são propostas para facilitar ou melhorar
as atividades de codificação, como diferentes linguagens de programação, desenvolvimento
de técnicas, ferramentas e outras soluções. Neste contexto, esta pesquisa tem dois objetivos
principais. O primeiro é investigar os experimentos que realizam atividades de codificação
(Experimentos de Codificação). Esta investigação deve levantar as características mais
comuns de tais experimentos, bem como as soluções atuais que auxiliam a sua realiza-
ção. O segundo objetivo é propor uma solução para auxiliar estes experimentos de acordo
com suas características particulares. Foram adotadas várias metodologias para cada fase
da pesquisa. No primeiro estudo, adotamos uma análise sistemática de experimentos de
codificação publicados em sete renomados fóruns científicos na engenharia de software
entre 2003 a 2016. Depois, realizamos uma avaliação sistemática das atuais soluções para
apoiar experimentos em SE. Baseado nos resultados da fases anteriores, propusemos nossa
solução. E por fim, conduzimos um quasi-experimento com a solução proposta. Nesse
experimento, replicamos um experimento externo que envolvia codificação. O primeiro
estudo revelou algumas limitações na realização de experimentos de codificação. Tais lim-
itações podem ser exploradas com o intuito de auxiliar a execução destes experimentos.
O segundo estudo identificou lacunas nas atuais soluções que dão apoio a realização de
experimentos na engenharia de software. Com base nos resultados anteriores, foi proposto
um metamodelo para explicitar as características dos experimentos de codificação que se-
jam específicas para os seus contextos particulares. Este metamodelo pode ser visto como
uma especialização das soluções atuais, focado apenas na caracterização do contexto de
codificação. Além disso, um conjunto de ferramentas foi desenvolvido para (i) especificar
modelos de acordo com o metamodelo proposto e (ii) apoiar a execução dos experimentos
de acordo com a especificação. O último estudo avaliou o uso da solução proposta para
auxiliar pesquisadores a realizar experimentos de codificação. Do ponto de vista de um
pesquisador, o esforço para conduzir e coletar dados foi reduzido, mesmo considerando o
esforço extra para modelar o experimento de codificação. Do ponto de vista dos partici-
pantes, a solução proposta aparenta ser útil para apoiar a realização do experimento. No
entanto, alguns problemas foram identificados. Finalmente, apesar de resultados positivos,
ainda se faz necessário à realização de mais avaliações, incluindo configurações diferentes,
para podermos generalizar os resultados obtidos. Esta pesquisa concentra-se apenas no
apoio a realização de experimentos de codificação, e mais precisamente as fases de plane-
jamento e execução. Este trabalho não trata de outros aspectos, como análise de dados, e
acreditamos que soluções atuais são satisfatórias para lidar com esses outros aspectos. Ao
especificar características de contexto de experimento de codificação, muitas atividades do
experimento podem ser (semi-) automatizadas, contribuindo assim para reduzir o esforço



de experimentação. Além disso, a solução proposta mostrou-se adequada para auxiliar
experimentos de codificação, e está disponível para apoiar pesquisas pelo mundo através
do nosso repositório.

Palavras-chaves: Engenharia de Software. Experimentação. Experimento de Codifi-
cação. Engenharia baseada em Modelos.
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1 INTRODUCTION

To apply an experimental test would be to show ignorance of the difference
between human nature and divine.

—Plato, Timaeus and Critias

Since the dawn of science, philosophers placed great emphasis on direct observation
of nature (ARISTOTLE, 350BCE; PLATO, 2012). They taught us about the importance of
developing theories based on facts. Many “natural sciences” (such as physics, biology, and
medicine) have followed this principle for centuries. In such sciences, empirical studies are
a useful way to observe “natural facts” and draw conclusions from them.

Not only in “natural sciences” empirical studies play an important role. Other fields
of knowledge, where we are unable to state any laws of nature like social sciences and
psychology, have a tradition in empirical studies. Moreover, such sciences are concerned
with human behavior. An important observation, in this context, is hence that software
engineering is very much governed by human behavior through the people developing
software. Thus, we cannot expect to find any formal rules or laws in software engineering
except perhaps when focusing on specific technical aspects.

It may be helpful to discuss the why experimentation in software engineering briefly
before going further. The primary reason for carrying out an experiment is the opportunity
of getting measurable and statistically significant results concerning the understanding,
controlling, prediction, and improvement of software development. In this context, exper-
iments study more than one treatment to analyze their outcomes. For instance, if it is
possible to control who is applying one technique and who is applying another, and when
and where they are used, then it is possible to perform an experiment. Such manipula-
tions can be made in an off-line situation, for example in a laboratory (under controlled
circumstances), where the events are organized to simulate their appearance in the real
world. On the other hand, experiments may alternatively be made online, which means
that the investigation is executed in the field in a real-life context (WOHLIN et al., 2012).

Regarding software engineering, Wohlin et al. (2012) classify experiment in software
engineering into two categories: human-oriented and technology-oriented experiments. In
human-oriented experiments, human beings apply different treatments to objects, while
in technology-oriented experiments, various technical treatments are applied to distinct
objects. According to Kitchenham et al. (2013), human-oriented experiments are often
challenging due to human factor involved in such experiments.
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1.1 PROBLEM OVERVIEW
According to Wohlin et al. (2012), the very first human-oriented experiments in software
engineering were conducted in the late 1960s by Sackman, Erikson e Grant (1968) about
online and offline work in testing. In the middle of the 1980s, Basili, Selby e Hutchens
(1986) exposed the need for systematic experiments in software engineering. Other arti-
cles stressing the need for empiricism in software engineering were published later (BASILI,
1993; FENTON; PFLEEGER; GLASS, 1994; GLASS, 1994; KITCHENHAM; PICKARD; PFLEEGER,
1995; POTTS, 1993; TICHY, 1998). The lack of empirical evidence in software engineering
research was emphasized by Tichy et al. (1995), Zelkowitz e Wallace (1998), Glass, Vessey
e Ramesh (2002). Sjøberg et al. (2005) surveyed ten notable venues in the period from
1993 to 2002. From 5,453 articles, the authors found only 103 experiments (corresponding
to about 2%). More recently, Falcao et al. (2015) conducted a similar study surveying
six renowned venues in the period 2003 and 2013. The authors observed an increase in
experiments in software engineering (6% of analyzed studies). However, the increase is not
significantly different from Sjøberg et al. (2005)’s results. Regarding quality of experiment
in software engineering, Kitchenham et al. (2013) noticed improvements in last decade.
However, Jørgensen et al. (2016) reported that the proportion of statistically significant
results in software engineering experiments is much higher than what should be expected
given the statistical power of the experiments.

In the previous paragraph, we exposed some issues for experiments in software engi-
neering. In fact, experiments are difficult because they face reality and reality is often
unpredictable and more complicated than anticipated (TICHY, 2000). Moreover, many
researchers have seen experiments as a risky and challenging study to plan and con-
duct (BUSE; SADOWSKI; WEIMER, 2011). Some arguments against the use of experiments
are that such empirical studies are expensive to run, and may lead to inconclusive or
negative results (KO; LATOZA; BURNETT, 2015). In particular to human-oriented experi-
ments, an issue is the fact that humans are the subjects applying several treatments to
objects. Jørgensen et al. (2016) suggest research practices to increase the trustworthiness
of software engineering experiments. According to the authors, a key to this improvement
is to avoid conducting studies with unsatisfactory low statistical power. And, one of the
most pragmatic ways to increase the statistical power is by increasing the experiment
sample size.

From the start of the 21st century, researchers involved in human-oriented experiments
in software engineering became concerned about the methodological standards of such
studies (KITCHENHAM et al., 2013). In response to this concern a number of researchers
proposed various approaches such as procedures, guidelines, instruments, methodologies,
and others (JURISTO; MORENO, 2013; WOHLIN et al., 2012; JEDLITSCHKA; CIOLKOWSKI;

PFAHL, 2008; KITCHENHAM et al., 2002; BASILI; SHULL; LANUBILE, 1999; CAMPBELL;

STANLEY, 2015; BASILI; SELBY; HUTCHENS, 1986; COOK; CAMPBELL; DAY, 1979; SJØBERG
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et al., 2002). Among these initiatives are general-purpose platforms to support experiments
in software engineering (FREIRE, 2015; ARISHOLM et al., 2002a; TRAVASSOS et al., 2004).
Such platform follows the Model-driven engineering (MDE) approach. With this approach,
researchers can specify their experiments, while a set of tools can support experiment ex-
ecution, based on its specification. Such platforms have proved to be a powerful tool for
supporting experiment execution. For instance, Wang e Arisholm (2009) conducted an
experiment where subjects had to modify legacy code. In this experiment, the subjects
used the web-based Simula Experiment Support Environment (SESE) (ARISHOLM et al.,
2002a) to download the legacy code and task-descriptions, upload task solutions, and
answer questionnaires. The main benefits in using SESE were that researchers employed
less effort in managing some operational procedures and collecting some variables.

Despite the general-purpose platform benefits, in certain circumstances, such platform
can not provide a complete support to some activities of experiments in software engi-
neering. For instance, Müller e Höfer (2007) carried out an experiment comparing experts
and novices when using test-driven development. General-purpose platforms only support
part of gathering observed data (time spent in each task and changed files). However, an
essential observed variable is the number of executed test methods, and how many of them
passed or failed. Besides, general-purpose platforms do not comprise such characteristics.
Therefore, the authors had to develop a tool only to collect this data. Tools developed
only for an experiment allow researchers to collect fine-grained data from subjects. Be-
sides, such tools lead to a less intrusive experiment, more integrated experiments in user’s
daily work, as recommended by Wohlin (2013), Sjøberg et al. (2002). On the other hand,
such tools require a significant programming effort, and frequently they cannot be reused
in similar experiments.

Even using different approaches, the Wang e Arisholm (2009) and Müller e Höfer (2007)
experiments have some characteristics in common. Both experiments required to complete
software development tasks. Moreover, these tasks had to be performed in a development
environment, or Integrated Development Environment (IDE). These experiments share
other characteristics such as source codes, libraries, and techniques. Considering all these
shared characteristics, we infer that these experiments have similar contexts. According
to Brézillon (1999), context is defined “as a set of relevant conditions and its in-
fluences that make a situation understandable and unique”. However, context
characterization in software engineering is still is a challenge (DYBÅ et al., 2012; CARTAXO

et al., 2015; CARTAXO, 2014). Cartaxo et al. (2015) argue that it is not possible to unify
the context characterization for the entire software engineering. However, it is reasonable
for sub-topics in software engineering (CARTAXO, 2014).

In summary, we define our research problem as: “Carrying out an experiment in soft-
ware engineering is challenging task. One of the most common problems when experi-
menting in software engineering is to increase the experiment sample size. Many solutions
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were proposed to mitigate this limitation. However, such solutions can not be used in
some experiments, since they did not provide a complete support to them. In particular,
experiments in the context of coding tasks (debugging legacy code, testing, etc.) are not
completely supported by general solutions. And, in such cases, many researchers have to
develop a specific support tool to support their experiments.”

1.2 STUDY GOALS AND RESEARCH QUESTIONS
Based on the discussion in the previous section, we define the scope, assumption, and
hypothesis of this thesis as follows:

• Scope – The scope of this work comprises those experiments when subjects have to
perform coding activities (maintenance, test, debugging, etc.). Furthermore, those
coding activities should be conducted in development environments;

• Assumption – We assume that there are characteristics particular to coding exper-
iment context. Where, such characteristics are intrinsically related to coding task
executability (such as artifacts, environment settings, and others.). Besides, such
characteristics can be identified, described, and standardized;

• Hypothesis – Based on coding experiment context descriptions, our hypothesis
is that it is feasible to automatize (entirely or partially) some procedures in such
experiments, so that this automation can aid executions of such experiments.

Based on the principles presented before, five research questions were defined:

• RQ1: How do the general-purpose platforms support experiments in software engi-
neering?

• RQ2: What are the characteristics particular to coding experiments?

• RQ3: How can the general-purpose platform approach (MDE approach) be extended
to (entirely or partially) automatize some procedures in coding experiments?

• RQ4: What are experiment facets aided by an extended MDE approach?

• RQ5: Does an MDE approach based on coding experiment specification aid the
execution of coding experiments?

1.3 CONTRIBUTIONS
By answering our research question, this work makes the following contributions:
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• Approach. We introduce the idea of, for a specific experiment context (coding exper-
iment), is possible to (entirely or partially) automatize some procedures when exe-
cuting such experiments. More precisely, we proposed a solution that synergistically
exploits context characterization and experiment environment to help researchers
to carry our coding experiments by configuring execution environments and collect
observed variables automatically. We implemented this idea to the context of cod-
ing experiments. However, our idea can be implemented in different SE topics, for
instance, Usability experiment, software management experiments, software process
experiments, and others.

• Implementation. We proposed a metamodel and developed two support tools. Our
metamodel evidences many relevant coding experiment characteristic (needed arti-
facts, tasks, and so forth.) required by our solution. Regarding platform tools, the
first tool is responsible for specifying coding experiment according to our metamodel.
Another tool is an Eclipse plugin that is built on our metamodel. It can automatize
some of the procedures in a coding experiment, according to its specification.

• Evaluation. We evaluated our solution by replicating a coding experiment from
literature (SANTOS; MENDONÇA; SILVA, 2013). We selected this experiment because:
(i) it is an experiment involving coding activities and (ii) it is a well documented
experiment 1, (iii) it is not too complicated; then a reader can comfortably experience
the benefits in specifying experiments and software development together.

1.4 ACHIEVEMENTS
This research has been developed under the co-supervision of Prof.Maria Teresa Baldas-
sarre (University of Bari) and supervision of Sergio Soares (Federal University of Pernam-
buco). The results currently achieved can be summarized as follows:

• The Ph.D. theme was proposed and presented in two Ph.D. Symposiums:

– Ferreira, W. (2014, May). Together we are stronger: facilitating the conduc-
tion of distributed human-oriented experiments. In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineer-
ing (p. 56). ACM.

– Falessi, D., Codabux, Z., Rong, G., Stamelos, I., Ferreira, W., Wiese, I. S.,
Tsirakidis, P. (2015). Trends in empirical research: the report on the 2014 Doc-
toral Symposium on Empirical Software Engineering. ACM SIGSOFT Software
Engineering Notes, 40(5), 30-35.

1 Article about the experiment (SANTOS; MENDONÇA; SILVA, 2013), experiment plan, and website:
http://wiki.dcc.ufba.br/LES/FindingGdoClassExperiment2012
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• A initial version of our metamodel was published at:

– Ferreira, W., Baldassarre, M. T., Soares, S., Visaggio, G. (2015, December).
Toward a Meta-Ontology for Accurate Ontologies to Specify Domain Specific
Experiments in Software Engineering. In Proceedings of the 16th International
Conference on Product-Focused Software Process Improvement-Volume 9459
(pp. 455-470). Springer-Verlag New York, Inc.

• The Systematic comparison of general-purpose approaches:

– Ferreira, W., Baldassarre, M. T., Soares, S., Cartaxo, B., Visaggio, G. (2017,
June). A Comparative Study of Model-Driven Approaches For Scoping and
Planning Experiments. In Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering (pp. 78-87). ACM.

• The collaboration with a preliminary analysis of human-oriented experiments in
software engineering resulted in:

– Master thesis: Falcão, L. C. T. (2016). Analysis of human-centric software
engineering experiments: a systematic mapping study.

– Falcao, L., Ferreira, W., Borges, A., Nepomuceno, V., Soares, S., Baldassare,
M. T. (2015, October). An analysis of software engineering experiments using
human subjects. In Empirical Software Engineering and Measurement (ESEM),
2015 ACM/IEEE International Symposium on (pp. 1-4). IEEE.

• The Ph.D research collaborated in an analysis of empirical studies published in
renowned Empirical Software Engineering Forums. This research resulted in:

– Borges, A., Ferreira, W., Barreiros, E., Almeida, A., Fonseca, L., Teixeira,
E., Soares, S. (2014, September). Support mechanisms to conduct empirical
studies in software engineering. In Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (p.
50). ACM.

– Borges, A., Ferreira, W., Barreiros, E., Almeida, A., Fonseca, L., Teixeira, E.,
Soares, S. (2015, April). Support mechanisms to conduct empirical studies in
software engineering: a systematic mapping study. In Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineer-
ing (p. 22). ACM.

• The Ph.D research collaborated in a research about context characterization in
software engineering:



Chapter 1. INTRODUCTION 24

– Cartaxo, B., Almeida, A., Barreiros, E., Saraiva, J., Ferreira, W., Soares,
S. (2015). Mechanisms to characterize context of empirical studies in software
engineering. In Experimental Software Engineering Latin American Workshop
(ESELAW 2015) (pp. 1-14).

• Preliminary analysis of context in Software Product Lines:

– Pires, Waldemar; Soares, Sergio . Modularity Metrics for Conditional Com-
pilation Software Product Lines. In: Latin American Workshop on Aspect-
Oriented Software Development, 2013, Brasilia. Proceedings of V Latin Amer-
ican Workshop on Aspect-Oriented Software Development, 2013. v. 5.

Works under evaluation:

• We submitted a paper about our systematic review of the coding experiments (Chap-
ter 5) to Journal of Information and Software Technology.

• We submitted a paper about our approach to specify coding experiments (Chapter 6)
to Journal of Computer Standards and Interfaces.

1.5 ORGANIZATION OF THE THESIS
Besides this introductory chapter, we organized this document as follows:

• Chapter 3 reviews fundamental concepts used throughout this study;

• Chapter 4 presents an systematic comparison of the general-purpose approaches;

• Chapter 5 presents a systematic mapping study to investigate coding experiments
in software engineering;

• Chapter 6 presents our metamodel to specify coding experiments;

• Chapter 7 presents the proposed tool support for coding experiments;

• Chapter 8 presents a case study conduced with the aim to demonstrate our solution
in a real experiment;

• Chapter 9 presents all related work regarding each chapter;

• Chapter 10 presents the final considerations of this work, and proposes future re-
search based on this work;



25

2 METHODOLOGY

Art and science have their meeting point in method.

—Edward G. Bulwer-Lytton, Caxtoniana

2.1 INTRODUCTION
As it is indicated in the title, this chapter includes the research methodology of the this
thesis. In more details, the author outlines the research strategy, the research method,
the research approach, the methods of data collection, the research process, the type of
data analysis, the ethical considerations and the research limitations.

2.2 RESEARCH METHODOLOGY
We present our research methodology based on the GQM approach (BASILI; ROMBACH,
1988). In Table 1, we define our goal based on the GQM template.

Aiming at this goal, we investigated a set of research questions. In GQM, metrics are
associated with every question in order to provide measureable answers. However, it is
too simplistic to be applied in our research. As so, instead of metrics, we are answering
our questions based on existing research.

Basili et al. (BASILI, 1993) and Wohlin et al. (WOHLIN et al., 2012) classify the scientific
researches in four categories:

• Scientific - The world is observed and a model is built based on the observation;

• Engineering - The current solutions are studied and changes are proposed, and then
evaluated;

• Empirical - A model is proposed and evaluated through empirical studies;

• Analytical - A formal theory is proposed and then compared with empirical obser-
vations.

Table 1 – Research goal in GQM template.

Object of study Experiments in SE
Purpose Characterize
Focus Precision
Stakeholder Researcher
Context factors Coding experiments
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Wohlin et al. (WOHLIN et al., 2012) also classify the research paradigms as:

• Exploratory research is concerned with studying objects in their natural setting and
letting the findings emerge from the observations.

• Explanatory research is mainly concerned with quantifying a relationship or to com-
pare two or more groups with the aim of identifying a cause-effect relationship.

Regarding the approach methods, Hayes (HAYES, 2013) classifies them as:

• Deductive methods use general principles to analyze specific results. Deductive rea-
soning starts from a general principle or theory, and then collecting data, finally
analyzing and interpreting it;

• Inductive methods. Specific observations are used to construct general scientific
principles, just the reverse of deductive methods;

• Hypothetico-deductive method starts with hypothesis formulation from generalized
principles or theory. This hypothesis is subjected to verification by deduction and
comparison with the available data. Then the hypothesis is further tested by a
series of step-by-step procedures finally leading to either adoption or rejection of
the formulated hypothesis.

Finally, we also present the specific strategy and nature of data analysis to answer
each question. All research questions and the specification of their scientific researches
are described in Table 2.
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Table 2 – Research methodology summary.

RQ1: How do the general-purpose platforms support experiments
in software engineering?
Research method Scientific
Research paradigms Exploratory
Approach method Inductive
Nature analysis Quantitative and qualitative
Specific method Systematic literature review
RQ2: What are the characteristics particular to coding experiments?
Research method Scientific
Research paradigms Exploratory
Approach method Hypothetico-deductive
Nature analysis Quantitative and qualitative
Specific method Grounded theory
RQ3: How can the general-purpose platform approach (MDE
approach) be extended to (entirely or partially) automatize some
procedures in coding experiments?
Research method Engineering
Research paradigms Explanatory
Approach method Deductive
Nature analysis Qualitative
Specific method Systematic comparison
RQ4: What are experiment facets aided by an extended MDE approach?
Research method Engineering
Research paradigms Explanatory
Approach method Deductive
Nature analysis Qualitative
Specific method Applied Science
RQ5: Does an MDE approach based on coding experiment
specification aid the execution of coding experiments?
Research method Empirical
Research paradigms Explanatory
Approach method Hypothetico-deductive
Nature analysis Quantitative and qualitative
Specific method Case Study
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2.3 RESEARCH CONSTRUCTION
In the previous section, we presented a research methodology for each research question.
To archive each research question’s answer, we followed a specific research task. In the
following, we present each research task conducted:

Step 1: A systematic mapping study to review primary studies on coding experiments in
SE.

In the middle of 2013, our research group (including this Ph.D. candidate) at UFPE
conducted a systematic mapping study to identify support mechanisms for empiri-
cal studies in software engineering. The mapping study analyzed papers published
at three well-known venues since their first editions. This partial result was an in-
put to this step. More precisely, we extended the mapping study by investigating
only specific empirical studies, which correspond to coding experiments. As a re-
sult, we provide a comprehensive state-of-the-art of the literature related to coding
experiments in software engineering. Our results include:

• Characteristics of coding experiments: Inspired on (SJØBERG et al., 2005; KO;

LATOZA; BURNETT, 2015), this result compiles the most common characteris-
tics reported by coding experiment;

• Overview of coding experiments: This result presents meta-information about
coding experiments, such as coding experiment growth over the years, most
production researchers, and most common topics.

Step 1 answers the second research question, and it took place in first and sec-
ond years of this research. Details about methodology and results are presented in
Chapter 5.

Step 2: A systematic comparison of general-purpose platforms to support experiments in
software engineering.

We used qualitative analysis methods inspired on grounded theory approach to an-
alyze four general-purpose platforms to support experiments. This study addressed
four main topics according to guidelines, namely, Wohlin et al. (2012) and Juristo
e Moreno (2013). During this step, we identified:

• Benefits and limitations of the general-purpose platforms;

• Opportunities that can be exploited to provide a better support to coding
execution.

Step 2 answers the first research question, and it took place in third year of this
research. Details about methodology and results are presented in Chapter 4.
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Step 3: Proposing coding experiment specification.

Based on first step result, we proposed a solution to specify the coding experiment
characteristics. This step aims to define a metamodel containing all relevant infor-
mation in coding experiment context characterization to provide automatic support
for coding experiment procedures. Our metamodel followed the principles:

• Compliant with all general-purpose platform;

• Focus on coding experiment context characteristics that allow certain automa-
tion of coding experiment procedures.

Step 3 answers the third research question, and it took place also at the third year
of this research. For details about the proposed metamodel, see Chapter 6.

Step 4: Developing tool support for coding experiments.

Based on the metamodel proposed in the last step, this step aims to develop a tool
suite to reduce the effort when conducting coding experiments. The current version
comprises two tools:

• Modeling tool where researchers can specify coding experiments based on our
metamodel. This specification has to be compliant with general-purpose plat-
forms. This compliance is fundamental to allow interactions between solutions.
So that, models from other solution may be used as input to our solution and
vice-versa;

• Enhanced IDE, our solution is integrated into a popular development tool,
Eclipse IDE (ECLIPSE, 2006). It allows coding experiments as close as possible
to real development environments. In principle, our solution is valid to other
IDE, such as NetBeans and VisualStudio. However, due to limited development
resources, we implemented it only to Eclipse.

Step 4 answers the fourth research question, and it took place at the third and
fourth years of this research. For more details, see Chapter 7.

Step 5: Assessing and adjusting our solution.

The model and tools were assessed by a coding experiment replication (SANTOS;

MENDONÇA; SILVA, 2013). The evaluation took in consideration:

• Capability to support a co-located coding experiment using post-graduate stu-
dents as subjects. We assess our solution by comparing the effort to carry out
the experiment replication against the effort reported by the original study;

• Comments, suggestions, and critics from subjects when using our solution to
carry out the replication;
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• We compiled the results and made adjustments and improvements on our so-
lution.

Step 5 answers the last research question, and it took place at the fourth and fifth
years of this research. Details about this step are presented in Chapter 8.

2.4 CHAPTER SUMMARY
In this chapter, the theoretical and philosophical assumptions underlying the research
methodology in the empirical field were reviewed. In addition, a discussion of the research
design for this study was made. However, details about each specific method is described
in each chapter.
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3 BACKGROUND

If I have seen further it is by standing on the shoulders of Giants.

—Isaac Newton

3.1 INTRODUCTION
The demand for empirical studies in Software Engineering (SE) is not new; there is a
growing need from the SE community to put it into practice. Basili, Selby e Hutchens
(1986) was one of the first studies to explore this area. In the following decades, this
study motivated many initiatives to improve, disseminate, and foster empirical strategies
in SE. This research is among these initiatives. However, before presenting the results
of our research, we have to present a brief but essential background for the reader to
understand the context in which this research is inserted. Firstly, Section 3.2 presents a
brief overview of empirical strategies in SE. After, we dedicated one section (Section 3.3)
only to presents the essential elements of the experiments in SE and experiments in other
fields (Section 3.3). Another concept fundamental for this research is context definition,
Section 3.4 presents the most common definitions of context in SE. In our work, models
are not only documentation artifacts, but they are also central artifacts that allows ex-
periment creation and execution driven by models. So that, according to (SILVA, 2015),
the most suitable approach for our context is Model-Driven Engineering (MDE). Sec-
tion 3.5 presents some basic concepts about MDE. Finally, the summary of this chapter
is described in Section 3.6.

3.2 EMPIRICAL STUDIES IN SOFTWARE ENGINEERING
The software engineering research investigates real-world events to foster the development
of new mechanisms (such as technologies, processes, methods, techniques, and languages)
to support their activities. It aims at improving the quality of software products and
it increases the development process productivity (WEYUKER, 2011). Summarily, soft-
ware engineering research is concerned in investigating how mechanisms work, understand
their limits, and propose solutions. In this context, empirical methods provide a consistent
method to validate the SE phenomena, generating more accurate evidence and facilitating
technology transfer to industry (SJOBERG; DYBA; JORGENSEN, 2007). SE is heavily influ-
enced by human factors (like social and behavioral sciences). Therefore, human factors
have a significant impact on software development process and on the quality of the soft-
ware produced. Moreover, despite the efforts to develop automatic tools and approaches,
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SE is still dependent on human influence (ROBSON; MCCARTAN, 2016). As a result, SE
and the empirical studies have faced several difficulties related to human factors.

As said before, human factors have a fundamental importance in SE. Therefore, the
most appropriated empirical methods are those from disciplines related to study human
behavior, such as the psychology (regarding the individual level of the human behavior)
or the sociology (regarding the team and organizational levels). Methods tailored for
these disciplines have known flaws, and can only provide limited, qualified evidence about
the phenomena being studied. However, each method is flawed differently, and viable
research strategies use multiple methods, applied in a complementary way to address the
weaknesses of each method (EASTERBROOK et al., 2008). In the following sections, we
present each empirical method adopted in SE.

3.2.1 Experiments

An experiment (or controlled experiment) is an inquiry into a testable hypothesis where
one or more variables are managed to measure their effect on one or more dependent vari-
ables. A precondition for experimenting is to have clear hypotheses. The hypothesis (and
any theory from which it is drawn) drive all steps of the experimental design, including
deciding which variables have to be covered and how to measure them.

3.2.2 Case studies

Yin (YIN, 2013) introduces the case study as “an empirical inquiry that investigates a
contemporary phenomenon within its real-life context, especially when the boundaries
between phenomenon and context are not evident.” Also, case studies offer in-depth un-
derstanding of how and why certain phenomena occur. A precondition for conducting
a case study is a to have clear research question concerned with how or why certain
phenomena occur.

3.2.3 Survey

Survey research is used to identify characteristics of a large population. It is most closely
linked with questionnaires for data collection. However, surveys can also use structured
interviews, or data logging techniques. The main characteristics of a survey research are
(i) the selection of a representative sample of a population, and (ii) the data analysis
techniques used to generalize the results from the sample to its population. A precondition
for conducting a survey is a to have clear research question that demands information
about the nature of a particular target population.
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3.2.4 Combination methods

Besides the previously mentioned methods, Easterbrook et al. (2008) cite another ap-
proach combining those methods. The choice of each method depends on investigation
prerequisites, research purpose, available resources, and how data has to be collected and
analyzed. Easterbrook et al. (2008) presents more details about this approach.

Notwithstanding prospects associated with empirical software engineering, studies ob-
served a low empirical evaluation in SE, hindering its progress as a science and delaying
adoption of new technologies (TICHY, 1998; JURISTO; VEGAS, 2009; SJØBERG et al., 2005;
FALCAO, 2016). Furthermore, Juristo e Moreno (2013) present some arguments against
the use of empirical methods: lack of training in those methods on the side of practitioners,
difficulties in understanding and analyzing empirical data; empirical studies conducted to
check ideas from others are not often published. In this context, Sjøberg et al. (2005)
identified a discrepancy between the numbers of experiments and the number of new
technologies arising in SE. Wohlin e Aurum (2015) cite other factors that make empirical
research in SE particularly challenging. For example, in addition to studying the tech-
nology usage, it is also necessary to investigate social and cognitive processes that are
associated with human activities. In this context, researchers must have a strong back-
ground when choosing methods and guidelines to perform an empirical study (WOHLIN;

AURUM, 2015).

3.3 EXPERIMENTS IN SOFTWARE ENGINEERING
Experimentation is a traditional scientific method for identifying cause-effect relation-
ships (BASILI; GREEN, 1994). Experiments (or controlled experiments) are carried out
when we want to control a situation and want to manage behavior directly, precisely and
systematically (BASKERVILLE; WOOD-HARPER, 1996). When conducting a formal experi-
ment, a researcher wants to study the outcome by varying some of the input variables to
a process. There are two kinds of variables in an experiment, independent and dependent
variables. Fig. 1 presents an overview of variable relationships in an experiment.

Figure 1 – Illustration of independent and dependent variables (Adapted from Wohlin et
al. (2012)).

Any variable that a researcher wants to study its changing effects in other variables is
called dependent variable (or response variable). An experiment can have many dependent
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variables, however, for the sake of simplicity, they usually have only one dependent vari-
able. On the other hand, any variable in the process that is manipulated and controlled
is called independent variable.

As said before, an experiment observes the effect of changing one or more independent
variables. Those variables are called factors. The other independent variables are con-
trolled at a fixed level throughout the experiment, or else the researcher cannot say if the
factor or another variable causes the effect. Treatment is one particular value of a factor.
The choice of treatment, and at which values the other independent variable shall have,
is part of the experiment design (Fig. 2). The design of experiments is the design of any
task that aims to describe or explain the variation of information under conditions that
are hypothesized to reflect the variation. The importance of the experiment is not only to
get an answer, but also experiment design is about getting right data so a researcher can
get an answer that’s valid. More details about design of experiment are found in Wohlin
et al. (2012).

Figure 2 – Illustration of an experiment (Adapted from Wohlin et al. (2012)).

In an experiment, the combination of objects and subjects is called as treatments.
An object can, for example, be a source code that shall be reviewed through different
inspection techniques. The people that administer the treatment are called subjects. The
characteristics of both objects and subjects are independent variables in an experiment.

An experiment consists of a set of tests (sometimes called trials) where each test is
a combination of treatment, subject, and object. This type of test should not be con-
fused with statistical tests. Statistical tests verify a hypothesis by statistically checking
the observed data. The number of tests affects the experimental error and provides an
opportunity to estimate the experimental factor effect. The experimental error helps us
to know how much confidence we can place in the experimental results.

According to Wohlin et al. (2012), experiments can be classified as human-oriented or
technology-oriented. In human-oriented experiments, humans apply different treatments
to objects. For example, two inspection methods are applied to two pieces of code. In
technology-oriented experiments, typically different tools are applied to different objects.
For example, two test cases are executed on the same program. The human-oriented
experiments have less control than the technology-oriented one, since humans behave
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differently at different occasions, while tools (mostly) are deterministic (WOHLIN et al.,
2012).

3.3.1 Experiment Process

In SE, processes offer a set of steps that support activities (for example, software develop-
ment process). Processes are essential since they can be used as checklists and guidelines
of what to do and how to do it. In experiments, several steps have to be taken, and they
have to be in a specific order. Thus, a process for how to perform experiments is needed.

Wohlin et al. (2012) proposed a experiment model. This experiment process was for-
mulated to make sure that the proper actions are taken to ensure a successful experiment.
It is unfortunately not uncommon that some factor is overlooked before the experiment,
and the oversight prevents researchers from doing the planned analysis and hence they
are unable to draw valid conclusions. The objective, of having a process, is to provide
support in setting up and conducting an experiment.

The starting point for an experiment is the insight. It represents the idea that an
experiment would be a possible way of evaluating whatever a researcher is interested in.
In other words, we have to realize whether an experiment is appropriate for the question we
are going to investigate. As we said before, this is by no means always evident, in particular
since empirical studies are not frequently used within computer science and software
engineering Sjøberg et al. (2005). Tichy (1998) present some argumentation regarding
why computer scientist have to perform more experiments. Assuming that an experiment
is appropriate for the research context, then it is essential to plan the experiment carefully
to avoid unnecessary mistakes.

The experiment process can be divided into the following main activities.

• Scoping is the first step, where we limit the experiment regarding problem, objective,
and goals;

• Planning comes next, where the design of the experiment is determined, the instru-
mentation is considered, and the threats to the experiment are evaluated;

• Operation of the experiment follows from the design. In the operational activity,
subjects apply each treatment and measurements are collected;

• During the analysis, the collected data is dissected and evaluated;

• In presentation and package, the results are presented and packaged.

An overview of the experiment process including the activities, is presented in Fig. 3.



Chapter 3. BACKGROUND 36

Figure 3 – Overview of the experiment process (Adapted from Wohlin et al. (2012)).

The process is not assumed to be a ’true’ waterfall model, therefore an activity must
necessarily be finished before starting the next activity. The process is partly iterative,
and it may be necessary to go back and refine a previous activity before continuing with
the experiment. The main exception is when the operation of the experiment has started;
then it is not possible to go back to the scoping and planning of the experiment. In
operation, the subjects are influenced by each treatment. Consequently, it is impossible
to use the same subjects when returning to the operation phase of the experiment process.

3.4 CONTEXT IN SOFTWARE ENGINEERING
A notion of context usually is used to indicate a phenomenon, event, action or discourse,
according to its environment and its consequences (DIJK, 2015). Another definition was
presented by Brézillon (1999), in which context is a set of relevant conditions and in-
fluences that make a situation unique and understandable. Finally, Dybå et al. (2012)
presents other context definition focusing on ubiquitous computing, any information that
can be used to characterize a situation of an entity. An entity may be a person, a place,
or even a relevant object. Moreover, it may be involved in the interaction between a user
and an application, including the user and application in itself.

Given the plurality of perspectives to define context, Dijk (2015) developed an exten-
sive multidisciplinary work that maps the concept of context in humanities, social sciences
and even disciplines like artificial intelligence in computer science. Through this study, it is
possible to see the context influences when analyzing discourse, literature, art, semiotics,
and language in general Dybå et al. (2012). In areas such as sociology and anthropology,
which intensively use ethnographic methods, approaches that take into account context
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are gaining notoriety (HYMES, 2005). An interesting fact emerges when Dijk (2015) shows
that there is more work about a context in areas like artificial intelligence and natural
language processing, than in psychology. Such approaches represent contexts as models, so
that such models are mainly used in areas like pervasive and context-sensitive ubiquitous
computing. A more deitailed discussion about this topic is presented by Zimmermann,
Lorenz e Oppermann (2007).

Many studies present a need for a correct and formal characterization of context in
empirical studies. In the following, we present some articles that make this claim and
their arguments:

• While attempting to replicate an experiment, Lung et al. (2008) mention a lack of
contextual information as one of the main difficulties encountered. Moreover, there
is a need for a good characterization of context when preparing a replication of
empirical studies;

• Jedlitschka e Ciolkowski (2004) observed a lack of rigor to report context in empir-
ical studies. This lack makes it difficult technology-transfer, as professionals do not
discern whether a result applies to their specific environment;

• Lopes et al. (2010) make it clear that poor context characterization in primary
studies creates problems for researchers conducting secondary studies;

• Basili, Shull e Lanubile (1999) mentions the importance of contextual information
to create families of controlled experiments.

There are many definitions and interpretations about a context in different knowledge
areas. Coupled with the fact that intuitively anything can be potentially relevant to the
investigation of a phenomenon, Dijk (2015) argues that theory about context can quickly
become a theory of everything. Moreover, Brézillon (1999) states that context is strongly
dependent on the domain investigated, and cannot be treated abstractly.

3.5 MODEL-DRIVEN ENGINEERING
In the previous sections, we presented concepts about the problem domain. More precisely,
since our work investigates limitations in designing and conducting experiments in SE,
therefore we presented the most relevant concepts about experimentation in SE. In this
section, we present concepts about the solution domain. In this context, due to researcher’s
expertise, our solution is based MDE approach. So that, for the sake of uniformity and
to void misconceptions, this section introduces essential concepts underlying the MDE
approach.
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Before presenting any MDE’s specific concept, we have to define MDE. Ten years ago,
the OMG proposed the Model Driven Architecture (MDA) approach to deal with the sep-
aration of platform dependent and independent aspects in information systems (KLEPPE;

WARMER; BAST, 2003). Since then, the initial idea of MDA evolved and Model Driven
Engineering (MDE) is being increasingly promoted to handle separation and combination
of various kinds of concerns in software or data engineering. MDE is more general than
the set of standards and practices recommended by the OMG’s MDA proposal. In MDE
the concept of model designates not only OMG models but a lot of other artifacts like
XML documents, Java programs, RDBMS data, etc. Moreover, among these artifacts are
included models that can be specified by languages like UML, ER, etc. But we include
also the Domain specific languages (DSL).

3.5.1 Model

In the lack of a common definition for “model”, in the following, we present some popular
attempts to define the concept of model:

1. A model is a collection of statements about the system under study (SEIDEWITZ,
2003);

2. A model is an abstraction of a (real or language-based) system providing predictions
or inferences to be made (KÜHNE, 2006);

3. A model is a reduced representation of a system that highlights its properties of
interest from a given viewpoint (SELIC, 2003);

4. A model is a simplification of a system to facilitate the answer to questions about
the original system (BÉZIVIN; GERBÉ, 2001);

5. A model is a system that helps to define and to give answers of the system under
study without the need to consider it directly (SILVA, 2015).

As we can see, there is some consensus that a model describes a system under study.
However, it does not mean that a model is the system in itself, with its identity, com-
plexity, elements, relations, and others. However, considering our research’s context, we
adopted the Silva (2015)’s definition. Regarding that the “system”, in our context, is the
experiment process to be modeled.

3.5.2 Metamodel

Like for model definition, there is no consensus about metamodel definition. Moreover,
some of them are unclear or too limited, for instance, the OMG defines it as “a metamodel
is a model of models” (Object Management Group (OMG), 2011). Other authors have thought
extensively about this concept. In the following we present the most popular definitions:
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• A metamodel is a model that defines the language for expressing models (SOLEY et

al., 2000);

• A metamodel is a model for languages of models (FAVRE; NGUYEN, 2005);

• A metamodel is a specification model for which the systems under study can be
specified as models in a certain modeling language (SEIDEWITZ, 2003).

We can summarize the metamodel definition as a basement to build any model. Kühne
(2006) presents an in-depth analysis of this topic. In the context of this research, a meta-
model represents the minimal set of all mandatory context information required to carry
out an experiment in SE.

3.5.3 Modeling Language

A modeling language is defined by a metamodel so that it is a set of all viable models that
are in conformance with its corresponding metamodel. Silva (2015) provides an accurate
definition of modeling language: “modeling language as a set of all possible models that
are conformant with the modeling language’s abstract syntax, represented by one or more
concrete syntax and that satisfy a given semantics. Additionally, the pragmatics (of a
modeling language) helps and guides how to use it in the most appropriate way”.

The modeling languages adopted to specify models and metamodels in this work are
UML (OMG, 2009) and Ecore (STEINBERG et al., 2008). We choose these languages due to
an expertise of our research group.

3.5.4 Software Products, Platforms, and Transformations

MDE approach alleges use of modeling languages help to specify models in a reliable
level of abstraction, and also those models can be used to support the development pro-
cess (ATKINSON; KUHNE, 2003; VÖLTER et al., 2013; SELIC, 2008). Silva (2015) go beyond
this pleading, they define MDE as “a system composed of a non-trivial integration of soft-
ware platforms, artifacts directly written by researchers, and eventually models directly
executable in the context of a particular software platform”. This same definition can be
applied to our domain.

In general, software platforms mean an integrated set of computational components
which can be used to develop and/or execute a class of software products (BRAMBILLA;

CABOT; WIMMER, 2012; VOELTER et al., 2013; GREENFIELD; SHORT, 2003). Usually, each
component provides different functionalities through reuse and extensibility mechanisms.
As a component, we refer to technologies such as middleware, software libraries, applica-
tion frameworks, and software components, but also database management systems, web
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servers, content management and document management systems, and workflow man-
agement systems. All this gamut of components may be used to support experiments in
SE.

The artifacts are also elements in MDE process. Some artifacts might be only rel-
evant during the design phase while other artifacts might be of interest at execution.
Nevertheless, any artifact is tightly dependent on the dedicated platforms. Many exam-
ples of these artifacts might be considered like source and binary codes, scripts, and even
documentation files, including the models themselves.

Models are a central concept of the MDE approach. On the one hand, a model can
be created directly by users (i.e., researchers) or can be produced automatically from
transformations and, then, still edited and refined. In our context, models are manually
created, however, it may be generated from other models. Nevertheless, it is important
to emphasize that, a useful MDE approach, models must be defined consistently and
rigorously.

3.6 CHAPTER SUMMARY
In this chapter, we have discussed the essential concepts in the SE area, including evidence
based on SE, empirical studies, and primarily controlled experiments. We also presented
a discussion about context, and how difficult is to define it. All concepts presented in this
chapter are fundamental to understand the thesis’ domain problem. On the other hand,
all basic concepts about MDE and its terminology and technologies are basements for a
full understanding of the solution proposed in this research. Finally, with this knowledge,
the reader will be able to understand the context in which this research is inserted.
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4 A COMPARATIVE STUDY OF MDE APPROACHES
TO SUPPORT EXPERIMENTS

In essence, science is a perpetual search for an intelligent and integrated
comprehension of the world we live in.

—Cornelius Bernardus Van Neil

4.1 INTRODUCTION
In software engineering (SE) community, there is an increasing need for experiments to
develop or improve SE solutions (JURISTO; MORENO, 2013). Since at least the 80s, this
community has been discussing how to provide better support to such empirical stud-
ies (BASILI; SELBY; HUTCHENS, 1986). With this goal in mind, many researchers have
proposed several approaches, such as guidelines (WOHLIN et al., 2012; JURISTO; MORENO,
2013; BASILI, 1993) and tools (ARISHOLM et al., 2002a; TRAVASSOS et al., 2004). Many
promising tools adopted a Model-driven Environment (MDE) approach to support ex-
perimentation is SE, assuming that the experimental protocol can be (partly or wholly)
considered as a model. We have to bear in mind that the experimental protocol serves as
a guideline for establishing information as what is expected from the experiment, what
it consists of, how it is going to be executed, the data to be collected, and so on. There-
fore, an MDE infrastructure can support an SE experiment based on a specification of its
experiment protocol as a model.

An important disclaimer has to be made, models are not the only manner to specify
experiments to provide support to them. For instance, experiment protocols in itself are a
valuable source of information to prove support to experiments. However, these documents
are written in natural language, and natural languages are ambiguous. This ambiguity
brings threats to a experiment support that a model based solution (i.e. MDE solution)
do not suffer such threats.

Freire et al. (2013) carried out a systematic literature review on automated support for
controlled experiments. Considering their results, we identified four MDE approaches that
support SE experiments: ESEML (CARTAXO et al., 2012), ExpDSL (FREIRE et al., 2013),
Exper Ontology (GARCIA et al., 2008), and eSEE (TRAVASSOS et al., 2004). The first two
solutions are based on Domain Specific Languages (DSL) (FOWLER, 2010). Besides, the
last two solutions are based on ontologies (CALERO; RUIZ; PIATTINI, 2006).

Each approach above have brought significant benefits in supporting SE experiments.
However, our experience in conducting experiments in SE suggests limitations and poten-
tial for future improvements in these approaches. Aiming at systematizing our impressions,
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this chapter presents a systematic analysis of MDE approaches regarding their capabil-
ities to support experimentation in SE. To guide our systematic analysis, we adopted
three essential guidelines to conduct experiments in SE (WOHLIN et al., 2012; JURISTO;

MORENO, 2013; JEDLITSCHKA; CIOLKOWSKI; PFAHL, 2008). From these guidelines, we
extracted eight comparison criteria: (i) standard empirical concepts, (ii) goals and tar-
gets, (iii) involved variables, (iv) subject description, (v) design of experiment, (vi) tasks
and activities, (vii) instruments and measurements, and (viii) the threats to research
validity. Our focus here is on individual experiments from the perspective a researcher.
However, our results are relevant to other contexts, like replication, family of experiment,
and meta-studies.

The rest of the chapter is composed as follows. Section 4.2 provides an overview of the
approaches to specifying SE experiments. Section 4.3 presents the criteria used to analyze
and compare the approaches. Section 4.4 presents an analyzes using the criteria previously
defined. Section 4.5 discusses the results from our analysis. Section 4.6 concludes and offers
suggestions for further research.

4.2 AN OVERVIEW OF EXPERIMENT SPECIFICATION MOD-
ELS

As mentioned in Section 4.1, some MDE approaches had emerged to support SE experi-
ment. We identified four models used by such MDE approaches (Table 3). For the sake of
clarity, we will present each approach regarding their support to an experiment comparing
two programming languages (PRECHELT, 2000). In this experiment, the authors asked to
students to develop a same problem in two different programming languages, Java and
Python. As results, the authors recorded the time to finish the development.

Table 3 – Models to specify SE experiments.

Reference Year Paradigm
ExpDSL Freire et al. (2013) 2013 DSL
ESEML Cartaxo et al. (2012) 2012 DSL
Exper Ontology Garcia et al. (2008) 2008 Ontology
eSEE Travassos et al. (2004) 2004 Ontology

• ExpDSL (Experiment Domain-Specific Language) also comprises a DSL and tool.
However, besides supporting the specification of the experimental procedure, the
tool only supports monitoring the execution of an experiment. The model for spec-
ifying experiments in ExpDSL has four views (process, metrics, experimental plan,
questionnaire). The process view is responsible for defining the activities, artifacts,
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and roles. The metric view describes the metrics collected during the experiment
execution. The experimental plan view describes information such as the factors
or the statistical design. Finally, the questionnaire view represents all surveys to
collect quantitative and qualitative data from participants. Many characteristics in
Prechelt (2000) can be specified with ExpDSL. Moreover, their tool could manage
activities in Prechelt (2000)’s experiment, such as, the observation of the time spent
in developing for each language.

• ESEML (Empirical Software Engineering Modeling Language) is a DSL and tool
that supports the specification of experimental plans in SE. The authors describe the
DSL following a model also called ESEML. According to the authors, the language
enables a researcher to represent all relevant information while the tool allows an
automated generation of the experimental plan in PDF. With ESEML, Prechelt
(2000) could specify part of experiment protocol.

• ExperOntology (Experiment Ontology) is an ontology whose concepts were created
to accommodate the representation of SE experiments. It aims to facilitate the re-
viewing and understanding of experimental lab packages. This ontology is composed
of two levels of detail. The first refers to the general concepts of controlled exper-
iments (similar to the experimental plan view of ExpDSL). The second level only
focuses on the laboratory package. Related to ESEML and ExpDSL, there is a tool
based on this ontology that supports the execution of SE experiments (SCATALON;

GARCIA; CORREIA, 2011). Similar to ExpDSL, in the context of Prechelt (2000),
ExperOntology tool can collect and configure the experiment environment.

• eSEE (Experimental Software Engineering Environment) is an infrastructure capa-
ble of instantiating SE environments to manage knowledge about the definition,
planning, execution, and packaging of SE experiments. There are two key compo-
nents to specify experiments in this infrastructure: the glossary and ontologies. The
first aims at establishing a standard terminology in Experimental SE area. The
ontologies represent the formalization of the knowledge expressed in the glossary’s
list of terms. This work focuses on the ontologies. Moreover their tool concerned
with supporting scientific workflows are mainly concerned with the execution and
analysis phase. In Prechelt (2000), their tool could support the specification of each
language and the problems to be solved.

Freire et al. (FREIRE et al., 2013) cited other four tools that support SE experiments
(SESE, FIRE, Ginger2, and Mechanical Turk). However, these tools do not follow an
MDE approach.
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4.3 COMPARISON CRITERIA
Proper criteria are needed to interpret and scrutinize the analysis of the models presented
in Section 4.2. We choose eight criteria that are relevant and complementary for addressing
our analysis. We extracted them from Wohlin et al. (2012). The first criterion is general
to any empirical study. Other two criteria concern scoping phase in (WOHLIN et al., 2012):
Goals and Involved Variables. The remaining five criteria concern planning phase: Subject
Description, Design of Experiment, Task, Instrument, and Validity Evaluation. In the
following paragraphs, we detail each criterion.

Criterion 1: Basic Concepts. Empirical studies share some standard features in
their description and research methodology. This information is an excellent means for
introducing the study, no matter what its field and theme (DONOVAN; LAUDAN, 2012).
There are some different definitions for most common concepts in empirical research. In
this study, we adopted as comparison guideline the APA Manual (ASSOCIATION et al.,
1994). The Chapter 2 of this manual describes the minimal information, which should be
presented in any empirical study. They are (i) title, (ii) authorship information (such as
name, institute affiliation, department, and contact), (iii) abstract. Moreover, according
to Jedlitschka, Ciolkowski e Pfahl (2008) other keywords standard features which are
fundamental in empirical studies are keywords and bibliography.

Criterion 2: Goal. Primarily, goals define the scope of an experiment. The purpose
of its clarity is to ensure that all relevant experiment’s aspects were identified before its
planning or execution phase. According to Wohlin et al. (2012), and Juristo e Moreno
(2013), goal identification is part of the scoping phase. However, this criterion is not
only restricted to goal specification. It also includes the research questions and hypoth-
esis. As guideline, we adopted the GQM (Goal-Question-Metric) manual (BASILI; ROM-

BACH, 1988) and PICO (Population, Intervention, Control, Outcome) frameworks (TRE-

FIL, 2001). The GQM paradigm is a mechanism for defining and evaluating a set of
operational goals, using measurement. In this paradigm, the goals are defined in an oper-
ational, traceable way by refining them into a set of quantifiable questions that are used
to extract the appropriate information. Therefore, solutions have to make a clear rela-
tionship among these concepts. For approaches closer to PICO frameworks, goals have
to be described as results of the description of Population, Intervention, Control, and
Outcomes.

Criterion 3: Involved Variables. When experimenting, we explore outcomes by
varying input variables (WOHLIN et al., 2012). Mostly, there are two kinds of variables in
experiments, independent and dependent variables. The independent variables are those
variables that we can control and change. The independent variable is designed to cause
an effect that is measured in the dependent variable. The specification of a variable in-
cludes choosing the measurement scales and ranges. Typically, changes in the dependent
variables are due to systematic changes in the independent variable, rather than to vari-
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ations in any uncontrolled extraneous variables (moderator-mediator variables) (BARON;

KENNY, 1986). Often there is only one dependent variable, and it should, therefore, be
derived directly from the hypothesis. A variable is mostly not directly measurable, and
we have to measure it via an indirect measure. The description of the variables is the
heart of experiments. Any solution to support experiments has to allow the specification
of experiment’s variables. However, there is a vast range of possibilities to specify the ex-
periment’s variables (WOHLIN et al., 2012). During the analysis, all this information have
to be taken into consideration.

Criterion 4: Subject Description. Typically in SE experiments, humans are the
subjects applying different treatments to objects. It implies several limitations to con-
trol an experiment (WOHLIN et al., 2012; JURISTO; MORENO, 2013). Firstly, humans have
different skills and abilities, which in itself may be an independent variable. Secondly,
people learn over time, which means that if one subject applies two methods, the order of
application of the methods may matter, and also the same object cannot be used for both
occasions. Thirdly, human-oriented experiments are impacted by all sorts of influences
and threats, due to the subject’s ability to guess what the experimenter expects, their
motivation for doing the tasks, and others. Hence it is critical for the outcome of the
experiment to know how subjects are selected and treated. We have to consider when an-
alyzing the models to describe the subject’s characteristics. Moreover, similar to involved
variables, there is a vast range of possibilities to specify this information (WOHLIN et al.,
2012).

Criterion 5: Design of Experiment. A key factor of any experiment is the Design
of Experiment (DoE). The statistical analysis is applied depending on the chosen design,
and the measurement scales. The designs range from a simple experiment with a single
factor to complex experiments with many factors. We adopted as references to analyze the
solutions two guidelines Montgomery (2008) and Juristo e Moreno (2013). The minimal
set of DoE is Completely Randomized, Randomized Complete Block; Factorial Design
2x2, and Factorial Design 2k. However, other DoE also can be supported (such as the
Taguchi method (PEACE, 1993)).

Criterion 6: Task. In general, an experiment task involves a change in a human
response while interacting with a computer (WOHLIN et al., 2012). A task is any activity
in an experiment that is being studied. The qualities of a useful task are representative
and discriminateive (ZIGURS; BUCKLAND, 1998; JURISTO; MORENO, 2013). Representa-
tive tasks mean that subjects perform a task most closely to reality. It improves external
validity (but it also may compromise internal validity). Besides, a task has to discriminate
among observed variables. It increases the likelihood of a statistically significant outcome
(i.e., the sought-after “change” occurs). Most experiment tasks are performance-based
(e.g., time, accuracy, and so forth) or skill-based (e.g., inserting an equation, program-
ming a destination location, or others). However, sometimes the task is knowledge-based
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(e.g., “Use an Internet search interface to find the birth date of Chico Buarque”). In
this case, subjects become contaminated (in a sense) after the first run of a task, since
they have acquired the knowledge. In this context, such information has to be taken into
considerations when designing an experiment. Therefore, an MDE approach to support
experiments in SE has to define it precisely.

Criterion 7: Instrument. There are three types of instruments in SE experiments,
namely objects, guidelines, and measurement instruments (WOHLIN et al., 2012). Experi-
ment objects may be, for example, specification or code documents. Guidelines are needed
to guide participants during the experiment. Guidelines include, for example, process de-
scriptions, and checklists. Finally, measurement instruments are any artifices used in an
experiment to collect data. An MDE approach to support experiments in SE has to specify
all instruments.

Criterion 8: Validity Evaluation. An important question concerning experiment
results is how valid are such results. It is essential to consider experiment validity already
in the planning phase to design an adequate validity of the experiment results. In principle,
adequate validity refers to the fact that results are valid for the population of interest. First
of all, the results should be accurate for the population from which the sample as drawn.
Secondly, it may be of interest to generalize the results to a broader population. Results
are said adequate regarding the validity if they are valid for the population to which the
researcher would like to generalize. There are four types of threats to validity: Internal,
external, conclusion, and construct (WOHLIN et al., 2012; JURISTO; MORENO, 2013). An
MDE approach for SE experiments has to specify all threats involved in the experiment.
Besides, it has to allow the specification of what actions were taken to mitigate each risk.
It is valid not only to MDE approaches, but to any other approach.

4.4 COMPARATIVE ANALYSIS
In this section, the MDE approaches presented in Section 4.2 are analyzed using the crite-
ria defined in Section 4.3. Each criterion is analyzed separately, namely Basic Concepts in
Section 4.4.1, Goals in Section 4.4.2, Involved Variables in Section 4.4.3, Subject Descrip-
tion in Section 4.4.4, Design of Experiment (DoE) in Section 4.4.5, Task in Section 4.4.6,
Instruments in Section 4.4.7, and Validity Evaluation in Section 4.4.8.

4.4.1 Basic Elements

There are many possibilities to satisfy the basic elements criteria presented in Section 4.3.
Table 4 summarizes the accuracy of each solution in representing it.

In ESEML, there is an absence of such entities to determine the basic elements. Pos-
sibly, this solution focuses essentially on experiment concepts. In the other hand, the
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Table 4 – Basic Element Comparison.

Basic Elements
ExpDSL title, abstract, authors, and keywords
ESEML -
Exper Ontology author
eSEE title, abstract, authors, keywords, and references

ExpDSL has an entire view only to describe the experimental plan. In this view, a re-
searcher specifies almost all basic elements presented in Section 4.3 (Table 4). However,
this DSL allows only the specification of authors name (it does not include other infor-
mation like the author’s affiliation and institution). The ExperOntology has two entities
to describe the researchers involved in an experiment (the Designer and the Replicator).
The Designer creates the original experiment, while the Replicators have their profiles
associated with the replicated experiment.

Only the eSEE allows the specification of all the concept presented in Section 4.3.
The entity Document of Experimental Study in the sub-ontology Experiment Package can
specify all basic elements. Besides, this ontology specifies some meta-information about
the experiment protocol: comments, date of last change, date of creation, idiom, file name,
links title, and version.

4.4.2 Objective

During the scoping phase, researchers determine fundamental information about their
experiments. Table 5 summarizes how each solution specifies experiment objectives.

Table 5 – Goal Specification Comparison.

Objective Definition Frameworks
ExpDSL Goal, Question, and Hypothesis GQM
ESEML Goal, Question, and Hypothesis GQM
Exper Ontology Goal and Hypothesis -
eSEE Goal, Question, and Hypothesis GQM and PICO

As presented in Table 5, the ExpDSL stisfy completly the criterion of experiment goal
specification. In Experimental Plan View, there are three sub-packages: Goal, Research
Question, and Research Hypothesis. Regarding the Goal package, there are two relevant
entities, the Simple Goal or Structured Goal. The first specifies the goal in a paragraph in
natural language. The Structured Goal defines the goal following the GQM template. The
entities Research Question and Research Hypothesis are similar to Simple Goal. They de-
fine their information in a paragraph in natural language. Besides, both Research Question
and Research Hypothesis are associated to a goal.



Chapter 4. A COMPARATIVE STUDY OF MDE APPROACHES TO SUPPORT EXPERIMENTS48

In ESEML, the goal specification follows only the GQM template. The goals are re-
fined into a set of quantifiable questions so that goals become operational and traceable.
Moreover, the questions define a particular set of metrics and provide a framework for
their interpretation. Besides, ESEML has the entity Hypothesis to specify each hypothesis
in natural language. However, there is no relationship between hypotheses and a question,
goal, or other elements (such as variables or instruments).

The ExperOntology has a sub-Ontology (Lab Packages Ontology) only to specify the
experiment objective. In this package, two classes represent the experiment hypothesis: the
Initial Hypothesis and the Formalized Hypothesis. The Initial Hypothesis is a preliminary
hypothesis proposed while the experiment scope is being explored. It comprises the objects
of study in agreement with the Purpose and Context. After, an Initial Hypothesis generates
a Formalized Hypothesis. This last entity includes the Null Hypothesis and Alternative
Hypothesis. Unfortunately, the ExperOntology does not provide an explicit support to
define questions and goals. However, the entity Purpose can be interpreted as a goal.

Finally, the eSEE has two sub-ontologies for defining goals, questions, and hypoth-
esis. The sub-ontology of Scientific Research specifies the experiment goals, which each
goal follows the GQM template. However, the eSEE does not make a clear relationship
between goals, questions, and metrics (as recommended by the GQM paradigm). On the
other hand, only this ontology specifies all elements required to specify research goal as
recommended by PICO. The sub-ontology of Controlled Study defines hypothesis (both
the null and alternative) and research questions. Finally, this ontology connects each
hypothesis to its goals and questions.

4.4.3 Involved Variables

An experiment can prevent its data analysis from masking effects of experimental ma-
nipulations upon the objects under study. Therefore, a precise description of such objects
and involved variables is fundamental. All MDE solutions specify the involved variables.
However, they differ in specification approach.

In Experimental Plan View, the ExpDSL proposes three entities for defining the exper-
iment variables. The DepVariable describes each dependent variable. Each DepVariable
includes at least one research question or hypothesis. This association is important to
allow data traceability. The Parameter is an entity used to characterize the experiment
context, which means that each trial results will be specific to their conditions defined
by these parameters. An experiment has a set of Parameter where each parameter has a
fixed value. Both Parameter and DepVariable has a scaleType and range. The last entity
is the Factor, defining the experiment’s factors.

ESEML has five entities to describe variables involved in an experiment. The Response
Variables entity outlines the experiment outputs. The Factor describes the features that
intentionally vary during the experiment executions. Moreover, the Treatment identifies
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one particular value of a Factor. The entity Parameter specifies fixed characteristics at
a given value in the experiment, so they should not vary throughout the experiment
execution process. Finally, the last entity is the Experimental Object. It represents the
objects that “suffers” the experiment performance. All these entities have to be in the
natural language.

In ExperOntology, the Ontology for Lab Package describes the involved variables. Two
entities represent the dependent and independent variables with homonym names. Both
dependent and independent variables have an association with a Formalized Hypothesis
(Section 4.4.2). This ontology identifies the factor by associating an Independent Variable
to the Experimental Design (Section 4.4.5). Besides, an Independent Variable can be linked
to Experiment Object. This association identifies the controlled variables as source codes
or involved tools. Finally, a Dependent Variable can have an association with the analysis
specification. This relationship specifies how observed data shall be analyzed.

The Sub-Ontology of Quantitative Method defines all the involved variables in eSEE.
As the previously presented models, the eSEE represents dependent and independent
variables with an entity with homonym names. This ontology also defines Block Variables
and Not-controlled variables. Besides, it defines how to manipulate all these variables
and their scales. Finally, the results of each dependent variable are associated with its
corresponding hypothesis.

4.4.4 Subject Description

The selection of participants is essential when experimenting. It represents the sample
from a population. The experiment results can only be generalized to the population
if the selection is representative of the desired population. Therefore, the participant
information has to be in its experiment specification. Moreover, as said in Section 4.3,
each MDE solution has a proper manner to specify the participant characteristics.

The ESEML has an entity to specify the participant characteristics, Subject. This
object describes the individuals who apply, the used techniques, and the methods in an
experimental unit. However, it not clear which participant characteristic were covered.
Besides, this entity is not associated with any other entity in the model.

Unfortunately, the ExpDSL does not allow to describe the experiment sample. How-
ever, MDE tool supports such information. In the tool, a researcher can register each
participant of the experiment (ALEIXO et al., 2010).

In ExperOntology, the entities Subject and Profile are responsible to describe the
subject characteristics. The Profile records each important characteristic of subject back-
ground. By taking subject background, a researcher can identify possible influence on
experiment results. Moreover, the Profile has a link to the class Questionnaire that spec-
ifies the instrument to collect such data (details in Section 4.4.4). Furthermore, Subject
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has an association with three other classes: Experimental Plan (details in Section 4.4.5),
Execution Plan (details in Section 4.4.6), and Results.

The eSEE adopts a different approach to describe the subjects involved in an SE
experiments. Two sub-ontologies specify such information: Sub-ontology of Participants,
roles, and responsibilities and Sub-ontology of the target study population. The first on-
tology defines experiment executors (professional researcher, student, and professional
developer), visitor, and a software engineer (or a researcher). This ontology also specifies
roles for each person involved in the experiment (such as average participant, replicator,
or a practitioner). The former sub-ontology determines population sampling strategies. It
follows the sampling strategies presented by Wohlin et al. (2012).

4.4.5 Design of Experiment (DoE)

Researchers apply statistical analysis methods on the collected data to interpret them so
that they may draw meaningful conclusions. Such method must be carefully planned and
designed to get the most out of the experiment. It is also important to know which statis-
tical analyses we can apply depending on the chosen design, and the used measurement
scales. Therefore, MDE solutions for SE experiments have to specify precisely Desing of
Experiment (DoE). Table 6 summarizes how each solution specifies this information. The
first column presents the standard DoE supported by each solution. The second column
shows if there are associations between DoE entities and other entities (factors, variables,
question, and forth).

Table 6 – DoE Specification Comparison.

Design of Experiments Associated with other entities

ExpDSL

Completely Randomized Design,
Randomized Complete Block

Design, Latin Square, and
Others

Yes

ESEML
One-Sample Comparison,

Two-Sample Comparison, Latin
Square, and Others

No

Exper Ontology General Description Yes

eSEE

Completely Randomized Design;
Randomized Complete Block
Design; Factorial Design 2x2;

and Factorial Design 2k

Yes

The entity Design in ESEML specifies experiment designs. This entity defines the fol-
lowing standard DoE: Latin square, one sample comparison, and two-sample comparison.
The ESEML proponents are not clear how Design entity is associated with other entities
in the model.
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In ExpDSL, the element DoE is responsible for defining the statistical design of the
experiment. Currently, the model supports three statistical models: Completely Random-
ized Design, Randomized Complete Block Design, or Latin Square. When a researcher
needs to set any other DoE, he/she should select the entity “Other”. This entity has a
text field to detail the DoE specificities.

The ExperOntology has Experimental Design entity to specify the standard DoEs. It
is built combining experiment objects, independent variables, and subjects, in conjunction
with their corresponding hypothesis. The authors do not make it clear if this ontology
supports all standard DoEs.

In eSEE, The sub-ontology Design Process is responsible for describing the Doe. In
principle, this sub-ontology supports four standard DoEs: Completely Randomized De-
sign, Randomized Complete Block Design, Factorial Design 2x2, and Factorial Design
2k. Besides, this sub-ontology can define DoE basic principles (Balanced, Blocking, or
Randomized) depending on sampling characteristics

4.4.6 Task

A precise task description is a key component in an experimental design. When describing
each action to be performed in the task, it is fundamental to describe the required artifacts
(including instruments - Section 4.4.7), variables to observe (Section 4.4.3), and task order.
Table 7 summarizes task representation analysis for each MDE approach.

Table 7 – Task Specification Comparison.

Association
Artifacts Variables Task Order

ExpDSL Yes Yes Sequential
ESEML No No Not Clear
Exper Ontology Yes Yes Sequential
eSEE Yes Yes Sequential

In ESEML, the Design entity specifies information about tasks. According to their
authors, the DoE, task description, and task order are closely related. Therefore, the
Design entity summarizes all this information. Moreover, this information is described in
natural language. A limitation in ESEML is that a task is not associated with any other
element in the model.

The ExpDSL provides extensive support to specify experiment tasks. The Task entity
has an association with other three entities: Artifact, Field, and Questionnaire. The first
defines all artifacts required to execute each task. The entities Field and Questionnaire
are somehow similar; they demand explicitly some information provided by each partici-
pant (details in Section 4.4.4). However, there is no particular entity for specifying task
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order. On the other hand, the association among tasks defines experiment task order. The
experiment ends when there are no more tasks associated.

The ExperOntology defines relevant information about the task execution in Execution
Plan entity. An Execution Plan has an association with Planned Task and the Performed
Task. These objects specify each task status whether a task was accomplished or not.
Regarding task order, the sequential association between the Execution Plan and the
Task specifies the sequential order. Finally, the Experiment Object defines each artifact
involved in each task. It can be a Technology (Technique, method, or tool) or an Artifact.

In eSEE, the Sub-ontology of the controlled study is responsible for defining experi-
mental tasks. Regarding task order, eSEE adopts a model similar to ExpDSL; each task
knows its next tasks. Moreover, eSEE has a complete description of all artifacts involved
in the experiment (details in Section 4.4.7). However, it is not clear how each artifact can
be associated with a particular task.

4.4.7 Instruments

There are three types instruments in an experiment, specifically objects, guidelines, and
measurement instruments. The objects (or experiment objects) may be, for example,
blueprint, source code, and documents. Guidelines are needed to conduct the participants
in the experiment. The measurement instruments are any artifice used in an experiment
to collect data. Table 8 summarizes the representation in each model for each type of
instrument.

Table 8 – Instrument Specification Comparison.

Objects Guidelines Instruments
ExpDSL Partially No No
ESEML Yes Partially Partially
Exper Ontology Partilly Yes Yes
eSEE Yes Yes Yes

The Object entity specifies a set of instruments in ESEML. As said before, the Object
defines the experimental unit. However, the concept of experimental unit sometimes does
not represent an instrument. For instance, the experimental unit in an SE experiment can
then be the software project as a whole. Regarding other types of instruments (guidelines
and questionnaires), the ESEML is not clear about whether it can or cannot be specified.

In ExpDSL, the Artifact entity is responsible for determining instruments. According
to the authors, an artifact is one of many kinds of tangible by-products produced during
the development of software. There is not a clear distinction between an object or a
guideline since an artifact can be either a piece of source code as a PDF with the task
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description. Besides, considering that each task has a description, we can interpret it also
as guidelines for a task.

Similar to ExpDSL, the ExperOntolotogy also define the instruments through an entity
called Artifacts. It is an abstract entity, it is realized by the following entities: Document,
Questionnaire, Form, or Tool. The Document can describe the guidelines. Furthermore,
the Forms or Questionnaires can describe some measurement instruments. Moreover, the
generic Artifacts can specify the other artifacts (such as source code or unit tests).

The eSEE has a whole sub-ontology to describe the experiment instruments. In this
sub-ontology, theDocument entity stores relevant information such as lists, questionnaires,
and observation notes. This class can represent both measurement instruments and guide-
lines. Another entity in this sub-ontology is the Software Artifacts. This class represents
any software document such as user’s documents, requirements documents, analysis doc-
uments, design documents, system documentation, business domain model, software pro-
cess model, and data test case. Finally, the Code Document represents the program text
document, function, and interface.

4.4.8 Validity Evaluation

A fundamental question concerning experiment results is how valid are these results. It is
important to consider the question of validity already in the planning phase to plan for
an adequate validity of the experiment results. As said in Section 4.3, we analyzed the
MDE solutions in the light of four threats to validity: construct, conclusion, internal, and
external validity. Table 9 summarizes how each solution specifies experiment validity.

Table 9 – Validity Specification Comparison.

Type of Treats Mitigation Actions
ExpDSL All No
ESEML Internal, and External Yes
Exper Ontology All No
eSEE All No

In ESEML, the Validity entity specifies risks in an experiment. However, this entity
covers only two types of validity, internal and external validity. Moreover, the authors are
not clear about whether there is a way for specifying actions to mitigate these threats.

Similar to ESEML, ExpDSL has also only one entity to define threats, Threat to
Validity. Each Theat To Validity has an identifier, description, type of threat (Conclu-
sion, Internal, Construct, External), and optionally a control action (in control action
attribute). The control action is described in natural language.

ExperOntology defines one abstract type to specify a general threat (Threat to Valid-
ity) and four subtypes to determine a particular type of validity. According to the authors,
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the conclusion validity refers to the relationship between the treatment and outcome; in-
ternal validity refers to the points that assure there is a causal relationship between the
factors and the outcome; the construct validity concerns with the relation between theory
and observation; and the external validity concerns with generalization. As ESEML, the
ExperOntology is not clear about how to document actions to mitigate threats.

Finally, the eSEE defines the threat to validity in the Sub-ontology of Experiment
Planning. The experimental plan entity has four attributes, one for each type of threat.
However, similar to ESEML and ExperOntology, the authors do not mention how to
specify actions to mitigate risks.

4.5 DISCUSSION
In this section, we discuss the results of our analysis. Our purpose is to identify some
improvements for each MDE solution. Besides, we also suggest in which scenarios each
solution is most suitable. Table 10 summarizes our analysis.

Table 10 – Comparative analysis summary.

Basic Goals Variables Subjects DoE Task Instrument Validity
eSEE X X X X X ∼ X X

Exper
Ontology ∼ X X X X ∼ ∼ X

ESEML 7 X X X ∼ ∼ ∼ X

ExpDSL ∼ X X 7 X ∼ ∼ X

X: It specifies all relevant characteristics
∼: It specifies some relevant characteristics

7: It does not specify the relevant characteristics

Basic Concepts. Different MDE solutions focus on the different aspects of basics
concepts. Firstly, we have to raise the question whether it is more profitable to cover more
and to be more extensive, or cover less and to be more precise. In our analysis, we realized
that ’completeness’ is a concept that must be associated both with vertical (i.e., the level of
detail) and horizontal (i.e., core elements) dimensions. None of the models evaluated were
both extensive and precise. There is always a trade-off in that sense. With that said, eSEE
is the most adequate to specify an experiment since it is the most extensive. However,
it is too complex. A complete specification of an experiment in eSEE is a challenging
work, and even with support tools. Besides, it has few spots to provide flexibility in the
specification. Regarding flexibility, ExpDSL is recommended. For instance, it allows a
researcher to specify abstracts as structured abstract or straightforward abstract.

Goals. As recommended by Wohlin et al. (2012), almost all MDE solutions provide
support to specify goals. Only ExperOntogy does not provide complete support for it.
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Similar to the Basic Concepts, the most extensive solution is the eSEE. However, the spec-
ification of an experiment is not a straightforward process. As recommended by Wohlin et
al. (2012), it is an incremental and iterative process. With that said, only the ExperOntol-
ogy takes care of documenting this process. All other solutions focus only on hypothesis’
final version. Regarding flexibility, ExpDSL allows a researcher to specify goals following
two methods, a simple specification or by GQM template.

Involved Variables. All MDE solutions describe this concept. It was expected since
the variable description is a fundamental concept in any experiment. However, there is
no consensus about a terminology about his concept in SE experiments. For instance, all
models agree with the term Dependent Variable. However, the ESEML and ExpDSL use
the terms Parameter, while the ExperOntology use the terms independent variable for
the same concept 1. The ExperOntology and eSEE specify the distinction between fac-
tors and parameters. Regarding the format to specify the involved variables, the ESEML
and ExperOntology specify it in natural language. The ExpDSL allows the description in
scales and ranges. However, this DSL makes some confusion between what is the variable
description and its measurement description2. The eSEE emphasizes this distinction be-
tween variable description and measurement. Variables and Measurements are specified
separately. Moreover, the eSEE also allows an association between these two concepts.

Subject Description. Similar to Variables, subject characterization is a core concept
in any experiment. Surprisingly, the ExpDSL does not provide support to specify it. Both
ESEML and ExperOntology support a limited specification of the experiment sample.
Only the eSEE provides a complete framework to specify almost all relevant characteristics
of the experiment sample.

Design of Experiment (DoE). All models provide excellent support to specify the
standard DoEs. However, only the eSEE supports design principles depending on the
population sampling. Besides, only the ExpDSL is flexible so that it supports uncom-
mon DoEs. For instance, the ExpDSL can specify a DoE following the Taguchi meth-
ods (PEACE, 1993).

Tasks. The ESEML is not clear about task execution. This model defines tasks, tri-
als, and DoE altogether (Section 4.4.5). The ExpDSL and eSEE specify the sequence of
tasks by each task referencing its next tasks. In ExperOntology, an entity has an ordered
association to identify the task order. Unfortunately, all these models fall in the same
limitation, only specify sequential execution is allowed. Wohlin et al. (2012) argue that a
random task order is desirable since it can avoid the learning effect. An example of exper-
iments that did not follow a sequential implementation of tasks (SANTOS; MENDONÇA;

SILVA, 2013).
Validity Evaluation. All solutions allow the specification of threats to validity. Some

1 According to Wohlin et al. (2012), factor and parameters are independent variables
2 Wohlin et al. (2012) discuss this distinction in Chapter 7.
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models specify it by one entity represent one type of threat (ExperOntology and eSEE).
Other models specify it as an attribute in the generic threat. Moreover, only the ExpDSL
can specify the actions to mitigate the threats.

Previously, we presented an analysis each approach regarding our selected criterion
separately. Below, we present a more general summary:

• ESEML. This model is the most simple way of specifying the experiment. Few
entities specify any experiment. Models in ESEML are used to generate an initial
version of the experimental protocol. However, it has to be enriched with more
precise information. We recommend this approach for simple or initial experiments
(proof of concept) performed by experienced researcher;

• ExpDSL. This approach is more expressible them the ESEML. The authors fo-
cused on a more practical perspective of the experiment. So that, the authors also
provide a tool that supports certain automation of some experiment management
tasks (FREIRE et al., 2013). Regarding extensibility, it falls in the same limitation as
for the ESEML, any extension of the model has to be mapped in changes in their
specific language (Ecore (STEINBERG et al., 2008)). This approach is recommended
to researcher that wants exploit the automation and management of experiment
tasks provided by their tool support;

• ExperOntology. This ontology provides (a full or partial) support to all criteria
evaluated in this work. Unlike the previous approaches, this model can be easily
extended, since there is no bound language. So that, any information not specified in
ExperOntology may be specified in other languages. We recommend ExperOntology
when the researcher wants traceability in some design decisions for the experiment.
This model has entities to specify historical data and information. For instance, this
model has entities like Initial Hypothesis and Final Hypothesis, and Planned Task
and Executed Task;

• eSEE. It is the most complete and expressive model. This model fulfill almost all
evaluated criteria (only arbitrary task execution cannot be specified and mitigation
tasks). Moreover, similar to ExpOntology, any extension of this model no need
updates in any bound language. However, any extension of this model is not a
simple task, since a change in one class may provoke a cascade change in many
other entities. We recommend such model for an inexperienced researcher, or for
researchers that want a precise experimental specification.
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4.6 CHAPTER SUMMARY
This chapter has presented an analytical study of the currently available MDE solutions
to support experiments in SE. We have introduced a set of perspectives based on fun-
damental elements of main guidelines for SE experiments. The selected criteria were (i)
basic concepts, (ii) goals, (iii) involved variables, (iv) subject description, (v) Design of
Experiment (DoE), (vi) tasks, (vii) instruments, and (viii) threats to research validity.
Other criteria could be used, such as, effort or time spent to perform an experiment. Such
criteria are interesting for future work.

We have identified several common deficiencies in these solutions, especially in task
description and instruments. Moreover, we identified the limitations and benefits of each
model. In summary, we can say that the most complete and expressive model is the eSEE.
On the other hand, the most simple approach is the ESEML. Besides, the ExpDSL focus
on the most a most practical perspective of experiment execution. Finally, we recommend
ExperOntology when the researchers want some tractability in their design decisions.

With the acknowledgement of strengths and limitations of each approach, we identify
what approach is most suitable to coding experiment context. Moreover, we can integrate
these approaches to provide a better support to coding experiments.
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5 AN ANALYSIS OF CODING EXPERIMENTS IN
SOFTWARE ENGINEERING

Whenever truth stands in the mind unaccompanied by the evidence upon
which it depends, it cannot properly be said to be apprehended at all.

—William Godwin

5.1 INTRODUCTION
Aiming at understanding and assisting empirical studies in SE, our research group (in-
cluding the thesis’s author) conducted a systematic mapping of the world literature on
empirical studies in SE (BORGES et al., 2015). More precisely, the venues covered were
Evaluation and Assessment in Software Engineering Conference (EASE), Empirical Soft-
ware Engineering and Measurement (ESEM), and Empirical Software Engineering Journal
(ESEJ). They were mapped since their first editions. As result of this research, we identi-
fied several mechanisms used to support empirical studies in SE. Moreover, we observed
an increased number of empirical studies over the years. However, a considerable quantity
of such studies did not report employing any specific empirical method (16% of analyzed
studies), and others did not report using any mechanism to guide their inquiries (53% of
total).

The main limitation of the previously mentioned research was data heterogeneity.
From a methodological perspective, diverse empirical methods report different data. On
the one hand, experiments and case studies share several concepts such as objectives,
research questions, and collected data. On the other hand, experiments focus on reporting
information like variables, control factors, etc. While case studies report case selection,
cases and units analysis, etc. In studies such as meta-analysis, the greater the study’s data
heterogeneity severity and the lower study’s reliability (KITCHENHAM, 2004). The same
is valid for other research methods (ethnography, action research, etc.) (EASTERBROOK

et al., 2008).
With the objective of overcoming the above limitation, our research group (including

the thesis’s author) carried out another research to refine and extend our first results. By
refining, we mean selecting from our previous dataset only those empirical studies that
performed experiments which humans were subjects (human-oriented experiments) (FAL-

CAO, 2016). Moreover, we only included papers published in the period between 2003
and 2013. Other venues also were included, namely, Information and Software Technol-
ogy Journal (IST), and IEEE Transactions on Software Engineering (TSE). This new
research allowed us to analyse more accurately human-oriented experiments in SE. More-
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over, we compared our results with a similar survey conducted ten years ago (SJØBERG

et al., 2005).
As a tangential conclusion from the research designed earlier, we observed that ex-

periments in SE are not as similar as we expected. Cartaxo et al. (2015) argue that
it is not possible to unify a precise context characterization for all experiments in SE.
To illustrate this issue, we can take as example two experiments, one on HCI (Human-
computer Interface) (BENBASAT; DEXTER; MASULIS, 1981) and other that evaluates two
coding techniques (VOKÁČ et al., 2004). While the previous experiment focuses on the user
interactions, and then its relevant variables are mouse clicks and screen records, in the
latter experiment, relevant variables are changed lines of code and time spent to develop
them.

Considering all limitations of our works mentioned earlier, we decided to investigate
a reduced set of experiments in SE. This set comprises those experiments with activities
involving coding, the scopus of this thesis. According to (IEEE Computer Society, 2014,
Chapter 6), coding activities can vary from developing an entirely new system to updating
a legacy system with new functionalities. In the last decades, many solutions (techniques,
methods, and tools) have been proposed to make coding activities less resource consuming
or to improve the overall code quality. In this scenario, experiments appear as a remarkable
strategy to provide an empirical basis for trustful comparisons among the solutions.

According to Wohlin et al. (2012), any experiment in SE follows a process divided into
five phases: Scoping, Planning, Operation, Analysis & Interpretation, and Presentation
& Package. In this research, we focus only on Planning and Operation.

In summary, the purpose of this chapter is (1) to provide an overview of coding experi-
ment characteristics and (2) to distinguish the general experiment characteristics and the
coding experiment characteristics. We believe that an outline of the coding experiments
state-of-the-art provides to SE community a better understanding of the current status
of coding experiments. Furthermore, it identifies new perspectives and gaps that foster
the development of mechanisms to aid such kind of experiment.

The remainder of the chapter is structured as follows: Section 5.2 presents our defi-
nition of coding experiments. Section 5.3 explains the used research method. The results
of mapping of systematic maps in coding experiments are presented in Section 5.4. Sec-
tion 5.5 discusses some findings of our research and Section 5.6 show a brief summary.

5.2 CODING EXPERIMENTS
There is no consensus about a definition of “experiment” in SE community. There are
slightly different definitions of experiments in SE, with the most appropriate depending
on the context and problem of interest (WOHLIN et al., 2012; JURISTO; MORENO, 2013).
In this study, we adopted the same operational definition used by Sjøberg et al. (2005) to
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avoid misunderstandings. We believe this definition is appropriated to the context of this
research.

“Controlled experiment in software engineering (operational definition): A ran-
domized experiment or a quasi-experiment in which individuals or teams (the
experimental units) conduct one or more software engineering tasks for the
sake of comparing different populations, processes, methods, techniques, lan-
guages, or tools (the treatments).”

As we see from the quote above, the adopted definition explicitly refers to tasks per-
formed by individuals or teams. Some authors classify such experiments as a human-
centric experiment (or human-oriented experiments) opposing to the technology-oriented
experiments. In the first, human beings apply the treatments to the experimental ob-
jects (WOHLIN et al., 2012; KITCHENHAM et al., 2013). In the technology-oriented experi-
ments, typically different tools are applied to different objects, for example, two test case
generation tools are applied to the same program. Kieburtz et al. (1996) is a case of
technology-oriented experiments.

5.2.1 Definition

As said before, our focus here is not on generic experiments, but on a smaller set of exper-
iments, the coding experiments. In such experiments, participants have to perform coding
activities. According to IEEE Computer Society (2014), coding or programming activities
comprise designing, writing, testing, debugging, or maintaining. Code designing activities
correspond to conception or invention of a scheme for turning a customer requirement
for computer software into the operational software. When performing such activities, de-
velopers link application’ requirements to coding artifacts. Code writing activities is the
actual coding of the design into an appropriate programming language. In code testing
activities, developers have to verify if the written code does what it was designed to do.
In code debugging activities, developers have to find and fix bugs (faults) in source codes
(or design) artifacts. In code maintenance activities, developers have to update, correct,
or enhance existing applications.

Usually, experiments with design activities only produce mechanisms to bridge a link
between requirements and source codes. Therefore, frequently participants do not have to
produce or change any source code. Then, due to this nature, we do not include them in
the scope of this work. On the other hand, we consider code inspection and comprehension
as coding activities. Code inspection refers to a code peer-review performed by trained
individuals, who looks for defects using a well-defined process. Besides, code comprehen-
sion (or application comprehension) corresponds to those activities which developers have
to perform a set of actions depending on their code understanding.
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5.3 METHOD
Following several systematic mapping studies guidelines (PETERSEN; VAKKALANKA; KUZ-

NIARZ, 2015; KEELE, 2007; PETERSEN et al., 2008), we undertook this study in distinct
stages: searching for relevant studies, identifying inclusion and exclusion criteria, critical
appraisal, data extraction, and synthesis. In the following, we present the search pro-
tocol, which has been developed by the thesis’ author and later it was reviewed by his
supervisors.

5.3.1 Data Sources and Search Strategy

One of the main difficulties in conducting systematic mapping studies is the effort search-
ing relevant research in literature (PETERSEN; VAKKALANKA; KUZNIARZ, 2015). Aiming
at reducing this effort, we reused existing databases from previous studies, as introduced
in Section 5.1. In the following, we present each adopted database and how they were
reused.

Initially, our research group 1 performed a systematic mapping study to identify sup-
port mechanisms (process, tool, guideline, and so forth) used to plan and conduct em-
pirical studies in SE community. It included all full papers published at EASE, ESEM,
and ESEJ since their first editions. We analyzed 1,098 articles, among primary, secondary,
and tertiary studies. We found 362 support mechanisms. A contribution of this systematic
mapping study was to provide a catalog of support mechanisms available to SE community
interested in empirical research. With this catalog, it is possible to know which resources
are being used as a reference to plan and support different kinds of empirical studies and
in which contexts they are applied. The complete catalog is available online2. The initial
results from this systematic mapping study were published in previous studies in ESEM
2014 (BORGES et al., 2014) and EASE 2015 (BORGES et al., 2015). The author collabo-
rated with searching, selecting, and analyzing part of the papers. More details can be
found in Borges et al. (2014).

The work mentioned above served as the baseline for another systematic mapping
study. In this new research, our goal was to characterize and analyze only human-oriented
experiments in SE. We included studies published at ESEJ, ESEM, EASE, ICSE, JSS,
and TSE from 2003 to 2013. As result of this mapping study, we found 216 human-
oriented experiments. We analyzed methods and procedures used by such experimenters.
Moreover, we compared these results with Sjøberg et al. (2005) to see if there have been
any changes or recent trends. Similar to the previous work, the Ph.D candidate only
collaborated in the review process. The results of work contributes marginally to this
1 https://sites.google.com/site/eseportal/
2 https://goo.gl/nOj4Tu
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Ph.D. research, however it cannot be considered as part of this research. A more detailed
analysis is reported in Falcao et al. (2015), Falcao (2016).

A preeminent critic to our previous work was the observation period (2003 to 2013).
Some argued that it is outdated. Therefore, we made an extra effort to extend it to 2016.
Moreover, we included another venue in our study, Information and Software Technology
Journal (IST). We carried out a “Two-Step” method inspired on Kitchenham et al. (2013)
to conduct such extension:

• Automatic search. Unlike Kitchenham et al. (2013), we searched the ScienceDirect
database instead of the SCOPUS. In SCOPUS, we could not limit the search by
venue. Besides, we used the search string “experiment”, while Kitchenham et al.
(2013) adopted a complex string. In fact, Dieste e Padua (2007) recommend complex
string. However, two years later the same authors refined the research recommending
only the string “experiment” (DIESTE; GRIMÁN; JURISTO, 2009). In this stage, we
identified 50 papers as possible human-oriented experiments in IST, and more 25
papers published during 2014, 2015, and 2016;

• Manual search. We performed a test-retest validity check (GEWANDTER et al., 2014).
Unlike Kitchenham et al. (2013), due to resource limitations, we did not inspect all
venue’s issues. We examined them by sampling. We selected randomly half of the
studies in each issue. After, we classified each of them. We did not found disagree-
ments between our results in this step and the previous step.

After finishing the previous steps, we identified 291 human-oriented experiments pub-
lished from 2003 to 2016. Finally, the effort in extending our previous research was almost
entirely performed by the Ph.D. candidate. Another researcher only collaborated in pair
reviewing and quality evaluating.

5.3.2 Inclusion and Exclusion Process

After identifying 291 human-oriented experiments, we had to distinguish which of them
correspond to coding experiments according to the adopted definition (Section 5.2.1).
Unfortunately, the process to determine if a study is a coding experiment is not straight-
forward. For instance, in Accioly, Borba e Bonifacio (2012) this information is “Method”
section. However, in Santos, Mendonça e Silva (2013), this information can appear in other
sections. Therefore, a process of including or excluding articles based only on titles and
abstracts was not possible. The adopted process followed a divide and conquered strategy.
The 291 human-oriented experiments were divided into two subsets (145 and 146 papers,
respectively). One researcher was responsible for reading each paper and include only
those papers in agreement with our coding experiment definition. One of the researchers
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was the Ph.D. candidate, the other researcher was Larissa Falcão, Ph.D. student at Center
of Informatics in Federal University of Pernambuco.

A process based on a single author to include or exclude articles poses a threat to
the reliability of our mapping study, as we also discuss at threats to validity section
(Section 5.5.1). Aiming at threat mitigation (KEELE, 2007), 86 papers were randomly
selected from each subset, and reanalyzed by another researcher. Table 11 provides data
used in our kappa analysis (WOOD, 2007). The raw data provided by each reviewer is
available on-line3.

Table 11 – Kappa statistic description.

Reviewer A Total
Accepted Rejected

Reviewer B Accepted 43 38 81
Rejected 4 131 135

Total 47 169 216

As presented in Table 11, we observed 174 agreements (43 acceptances and 131 re-
jections, 80.56% of papers). Moreover, the number of deals expected by chance is 123.3
(57.06% of the observations). Therefore, we obtain a Kappa value of 0.547, and a stan-
dard error equals to 0.058. In a 95% confidence interval (0.434 to 0.661), the strength of
agreement is considered to be “moderate”. Even with an average Kappa value, we find
this value low. Therefore, we revisited papers in disagreement. The majority of differ-
ences were experiments involving design tasks using DSLs instead of models (like UML,
ER, and so forth). Some authors discuss the distinction between DSL and programming
languages (FOWLER, 2010). Summarily, a DSL is a specialized computer language de-
signed for a specific task. On the other hand, general-purpose languages (like C, Python,
and Haskell) are designed to write programs with any logic. We focused only on general-
purpose languages. Therefore, we agreed in excluding these papers. Finally, we identified
99 articles as possible coding experiments.

5.3.3 Quality Assessment

We selected nine criteria to assess the 99 studies identified by the previous stage. These
criteria were adapted from Kitchenham et al. (2013). Table 12 presents the quality eval-
uation questionnaire.
3 http://bit.ly/1pXNiD7
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Table 12 – Quality Questionnaire adapted from Kitchenham et al. (2013)

# Question
Category: Questions on Aims

1 Do the authors clearly state the aims of the
research?

Category: Questions on Design, Data Collection, and Data Analysis

2 Do the authors describe the sample and
experimental units?

3 Do the authors describe the design of the
experiment?

4 Do the authors describe the data collection
procedure, and define the measures?

5 Do the authors define the data analysis
procedures?

6 Do the authors discuss potential
experimenter bias?

7 Do the authors discuss the limitations of
their studies?

Category: Question on Study Outcome
8 Do the authors state the findings clearly?

9
Is there evidence that other
researchers/practitioner can use the
experiment setup?

Score: 0=Not at all; 1=Somewhat; 2=Mostly; 3=Fully;

The measure of study quality was computed by summing the score on all items (total
score varies from 0 to 27). Similar to the last phase, the same two researchers measured
the quality of each study. On average, the 99 coding experiments obtained a score of
21.3. According to Kitchenham et al. (2013), high-quality works have a score better than
15. This high average score reflects the quality of selected venues. We excluded only two
papers due to its low score (score lower than 15). All raw data and questionnaires are
available on-line4. A secondary result of this phase was to identify 25 papers misclassified
as coding experiments. These papers performed experiments involving inspections on
design artifacts. Then, they are out of our scope (Section 5.2.1). Finally, we identified
72 papers reporting coding experiments. Among these papers, four papers reported two
experiments and other two papers reported three experiments. Therefore, we have in total
80 reported coding experiments.
4 Due to limitations in Google Spreadsheet™, we had to split our result into two spreadsheets:

http://bit.ly/1XMrqW3 and http://bit.ly/21GSZB3



Chapter 5. AN ANALYSIS OF CODING EXPERIMENTS IN SOFTWARE ENGINEERING 65

5.3.4 Data Extraction

We developed a data extraction instrument to obtain all relevant data from coding ex-
periments. Initially, our instrument was inspired on Sjøberg et al. (2005) and Falcao et
al. (2015). However, during the data extraction process, this spreadsheet evolved. This
practice is recommended by Keele (2007) because during the selection process the re-
searchers get involved in the problem domain. The final version of our instrument is
available online5. The extraction was performed by the Ph.D. candidate and reviewed by
Larissa Falcão. Having double-check process in data extraction is a common practice in
systematic reviews for social science (PETTICREW; ROBERTS, 2008).

5.3.5 Analysis and classification

The information for each item extracted was tabulated and analyzed. The derived strate-
gies were grouped and given a theme by the first author during analysis. Table 13 presents
eight identified themes and their sub-themes. The theme and sub-theme classification was
based on Petersen e Ali (2011).

Table 13 – Themes and Sub-themes identified in Coding Experiments.

Theme Sub-Themes Domain

1 Guidelines Planning and
Execution

2 Foundation Factor, Treatment, Goal, and
Hypothesis Planning

3 Subject Quantity, Category, Recruitment,
and Sampling

Planning and
Execution

4 Task Category, Duration, Order, and
Artifact

Planning and
Execution

5 Environment Execution
6 Data Collection Time, Resources, and Survey Execution
7 Replication Planning
8 Threats to Validity Planning

5.4 RESULTS

5.4.1 Overview of Studies

Figure 4 shows the number of coding experiments identified within the years 2003-2016.
We notice a constant interest in coding experiments during the period. It has a smooth
decay during 2006-2010, and a significant increase after 2010. A potential reason for this
interest in coding experiments may be the evaluation of emerging solutions like TDD and
Agile Methods.
5 available at http://bit.ly/2diQhEw
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Figure 4 – Distribution of publications over the years.

In this study, peer-reviewed venues (including journals, as well as peer-reviewed con-
ferences) were considered. Figure 5 provides an overview of articles distribution between
these sites. A similar number of articles was published in international conferences and
scientific journals. Overall, this indicates coding experiments are regarded as valuable
scientific contributions, given they are widely published in high-quality forums.
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Figure 5 – Distribution of publications by venues.

In total, 198 researchers authored at least one paper about coding experiments. Ta-
ble 14 presents the four researchers that authored more then three papers. Besides these
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authors, other six authors published three coding experiment, four published twice, and
the remaining authors published once.

Table 14 – Productive Authors
Ranking Researchers published papers

1 Dag i. k. Sjøberg 5
Erik Arisholm

2 Massimiliano di Penta 4
Matthias m. Muller

5.4.2 Guidelines

This section presents some results about the first theme at Table 13, Adopted Guidelines.
As stated by Costa (2015), experiments conducted under guidelines tend to have a higher
quality. Table 15 presents the ten most frequently cited guidelines. The remaining 11
guidelines were mentioned only once.

Table 15 – Most cited guidelines.

Guidelines #

1 Wohlin, Claes, et al. Experimentation in software engineering. Springer
Science & Business Media, 2012. 13

2 Juristo, Natalia, and Ana M. Moreno. Basics of software engineering
experimentation. Springer Science & Business Media, 2013. 7

3

Basili, Victor R., Forrest Shull, and Filippo Lanubile. Building
knowledge through families of experiments. IEEE Transactions on
Software Engineering, 1999. 6
Kitchenham, Barbara A., et al. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on software
engineering, 2002.

5

Basili, et al. Experimentation in software engineering. 1986

2

Jedlitschka et al. Reporting guidelines for controlled experiments in
software engineering 2008
Cook and Campbell. Quasi-experimentation: design & analysis issues
for field settings. 1979
Basili. The goal question metric approach. Encyclopedia of software
engineering. 1994

As we see in Table 15, the most commonly followed guidelines on experimentation are
Wohlin et al. (2012), Juristo e Moreno (2013), Basili, Shull e Lanubile (1999), Kitchenham
et al. (2002). Our results corroborate with Borges et al. (2015). Besides, other guidelines on
experimentation sub-topics also were cited (family of experiments and reporting) (JEDL-

ITSCHKA; CIOLKOWSKI; PFAHL, 2008; KITCHENHAM et al., 2008; BASILI; SHULL; LANU-
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BILE, 1999). Moreover, guidelines from outside SE have been also used (ASSOCIATION et

al., 2001; THE. . . , 2002; LINDSAY; EHRENBERG, 1993). The only guidelines not directly
related to experimentation were GQM technique guidelines (BASILI; ROMBACH, 1988;
BASILI, 1992; SOLINGEN et al., 2002).

It is noteworthy to observe that often many guidelines were combined to support
some coding experiments. On the other hand, more than half of coding experiments
(46 experiments) had not cited any guidance document. Thus, specific guidelines do not
appear to be complete enough to characterize a whole coding experiment. Moreover, we
had not found a guideline specific to coding experiments.

5.4.3 Foundations for Experimentation

The second emerging theme from coding experiments was classified as foundations for ex-
perimentation. When proposing any experimental design, some key components are factors
and treatments (WOHLIN et al., 2012). Table 16 shows the distribution of factor quantity
in coding experiments. Our findings indicate that the majority of coding experiments deal
with one or two factors. According to Jørgensen et al. (2015), simple experiment design is
desirable, since such studies usually achieve more reliable results. The coding experiment
with the higher quantity of factors was Ng et al. (2012). This experiment involved six
factors and each factor with two treatments. To reduce its experiment complexity, the
authors adopted the following strategy: each participant performed only a single coding
activity for each factor. Besides, all activities changed only one medium-sized program.

Table 16 – Factor Quantity.

Factors # of papers
One Factor 66
Two Factors 8
Three Factors 5
Six Factors 1
Total 80

Not only the number of factors impacts the experiment process. The number of treat-
ments by factors also affects it. Table 17 shows the distribution of treatments in coding
experiments. Jørgensen et al. (2015) claim that the number of treatments is a way to make
an experiment complex. We identified two studies with four treatments by factor Stärk,
Prechelt e Jolevski (2012) and Karahasanović, Levine e Thomas (2007). In both cases,
the authors mentioned their actions to reduce experiment complexity. Stärk, Prechelt e
Jolevski (2012) reduced its complexity by reducing the experiment control, each treatment
was a programming language, and each participant only used one of them. Moreover, a
small sample was recruited (16 participants). Therefore, a strong statistical analysis was
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not possible. Karahasanović, Levine e Thomas (2007) took a similar approach. However,
this study had a bigger sample (45 participants).

Table 17 – Treatments by Factors.

Treatments by Factor # of papers
Two Treatments 82
Three Treatments 10
Four Treatments 8
Total 103

Another element that affects the experiment design is the number of hypotheses.
Similar to factors and treatments, Jørgensen et al. (2015) also recommend investigating
few hypotheses. Table 18 shows the number of studied hypothesis in coding experiments.
As we can see, about 70% of coding experiments (52 experiments) examined up to four
hypotheses. Moreover, few variables are involved in each hypothesis. For instance, Huang e
Holcombe (2009) evaluated the number of tests produced by a set of students and the time
to write these tests. In the same experiment, there was a hypothesis about productivity,
which is the relation between the number of tests and time to produce them.

Table 18 – Hypothesis Frequency.

Quantity of Hypothesis # of papers
Two Hypothesis 24
One Hypotheses 10
Three Hypotheses 11
Four Hypothesis 7
Six Hypothesis 11
Ten Hypothesis 4
Five Hypothesis 2
Seven Hypothesis 1
Nine Hypothesis 1
Total 71

The study presented in this chapter found only one study without any reference to
factors or treatments. Regarding hypothesis, this mapping identified nine experiments not
mentioning their hypothesis. In one hand, these findings indicate that few coding experi-
ments did not report fundamental information. On the other hand, only the existence of
such works suggests there is a need for more effort in improving reports.

Considering format issues, we did not observe any pattern when reporting factors
and treatments. All identified experiments indicate this information in article’s body as
plain text. The majority of papers also state their hypothesis as sentences in a paragraph
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(about 75% of the papers). A guideline to experiments in science recommends the hy-
pothesis format as “if –, then – will happen” (STEFFE; THOMPSON, 2000). However, some
coding experiment defines their hypothesis as expressions (HUANG; HOLCOMBE, 2009;
CHOI; DEEK; IM, 2008; STURM; KRAMER, 2014; FUCCI et al., 2015; LUCIA et al., 2014).
Such format is suggested by other guidelines (WOHLIN et al., 2012; JURISTO; MORENO,
2013).

5.4.4 Subjects

This section presents our findings regarding subjects (Table 13). In theory, notions about
subjects are part of the topic foundations for experimentation (Section 5.4.3). However,
considering the diversity of information collected, we decided to create a theme only for
this topic.

5.4.4.1 Quantity and Categories of Subjects in Coding Experiments

In total, 3807 subjects were involved in the 80 coding experiments. From these 80, 56
were conducted only with students and 16 only with professionals. The reported subject
types are divided into categories presented by Table 19. The table also presents the same
classification used by Sjøberg et al. (2005) (general experiments in SE published between
1993 and 2003) and Falcao et al. (2015) (general experiments in SE published between
2003 and 2013).

Table 19 – Subject Category.

Falcao et al. (2015) Sjøberg et al. (2005)
Subject Category N % N % N %
Undergraduates 1387 26.25 5768 36.1 2969 54.1
Graduates 1434 30 2703 16.9 594 10.8
Students, type unknown 181 3.75 1023 6.4 1203 21.9
Under and graduates - - 2719 17 - -
Professionals 800 20 2531 15.8 517 9.4
Profess. and Students - - 1194 7.4 - -
Scientists 5 0.13 - - 74 1.3
Unknown 0 0 5 0 131 2.3
Total 3807 100 15943 100 5488 100

A conclusion draws from Table 20 is an increasing proportion of experiments involving
professionals rather than students. We observed about a double amount of experiments
involving professionals over Sjøberg et al. (2005)’s results. This increase is partially ex-
plained when comparing Falcao et al. (2015) and Sjøberg et al. (2005). However, our results
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are 5% higher than Falcao et al. (2015). An explanation for this result is the fact that fre-
quently coding experiments assess techniques that are valuable to practitioners (HUANG;

HOLCOMBE, 2009; MÜLLER; HÖFER, 2007; CHOI; DEEK; IM, 2008; PHONGPAIBUL; BOEHM,
2007). We also observe an increase in the proportion of coding experiments with gradu-
ate students when comparing with undergraduate students. Feitelson (2015) argue that
graduate students have a similar profile as practitioners.

Table 20 – Subject Categories meta-information.

Experiments Subjects
Category of subjects N % Mean Min Median Max Sum

Student only

Undergraduate 21 26.25 50.19 18 38 159 1054
Graduate 24 30 40.63 4 33 130 975
Undergraduates
and graduates

8 10 87.13 12 96 144 697

Student (Unknown) 3 3.75 17.16 10 18 25 53
56 70 49.63 4 38 159 2779

Professional Only 16 20 40.13 5 27.5 196 642
Mixed group of subjects 8 10 48.25 10 32.5 158 386
Total 10 100 47.59 4 31 196 3807

Table 20 presents some details about the sample size of coding experiments. In lit-
erature, there are several methods for determining the sample size. Williams, Onsman e
Brown (2010) consider five respondents per variable to be analyzed as the lower limit,
but the most acceptable way of determination is using a 10:1 ratio (10 samples for one
variable). In similar veins, Schreiber et al. (2006) also suggested that each parameter
should have at least 10 participants. However, there is not a priori fixed minimum sample
size (DYBÅ; KAMPENES; SJØBERG, 2006).

The experiments involving only students are the majority of the coding experiments
(70.%). It is similar to Sjøberg et al. (2005)’s results (72.6%). With respect to statistical
analysis of sample size, we also observed similarities Sjøberg et al. (2005)’s results, in
particular, mean (56) and median (36). Such results indicate a pattern for sample size in
experiments. However, some authors suggest attention in the adequacy of sample sizes in
experimental SE research to ensure acceptable power levels (DYBÅ; KAMPENES; SJØBERG,
2006; JØRGENSEN et al., 2015).

About the proportion of coding experiments involving professionals, we also observed
some similarities with Sjøberg et al. (2005) results. Both studies observed about 20%
of total experiments involved only professionals. However, concerning statistical analysis,
our results diverge. We observed a higher mean and median. This result indicates more at-
tention is given when performing coding experiments with professionals. The same can be
said when analyzing our results about those experiments with students and practitioners.
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The number of participants in coding experiment ranges from four to 196, with a
mean value of 47.6. Students participated in 64 (80.0%) experiments, either alone or
together with professionals. Professionals took part in 24 experiments, either alone or
jointly with students(30.0%). These numbers are similar to those found by Sjøberg et al.
(2005), where professionals were involved in 24% of the total. On the other hand, Ko,
LaToza e Burnett (2015) observed a clear result. In this study, 23% of the experiments
involved only students, 56% recruited software professionals. The remaining 23% had not
provided any detail about participants. We offer some explanations for these differences:
(1) slightly different scope; tool evaluation is near to industry (details in Section 9.3.1)
and (2) a broader definition of experiments, Ko, LaToza e Burnett (2015) included case
studies and correlational studies as experiments.

There is a considerable literature about differences between students and profession-
als in SE experiments (FEITELSON, 2015). We found nine coding experiments with both
students and practitioners. Only two of them measured the difference in performance
between these two groups. In one of them, authors compared pair development and soft-
ware inspection (PHONGPAIBUL; BOEHM, 2006), and they observed differences regarding
quality and effort between students and practitioners. In another experiment, the authors
compared experts and novices regarding their adherence to the test-driven development
(TDD) processes (MÜLLER; HÖFER, 2007). The authors only observed differences when
subjects were inexperienced in TDD.

Still, on the topic of students vs. professionals, we highlight a paper (RUNESON, 2003).
In fact, the authors used only graduated and first-year students as subjects in this coding
experiment. However, the authors compared their data and the data from a similar ex-
periment with professionals (HAYES; OVER, 1997). The conclusions drawn from the study
can neither reject nor accept the hypothesis if there is a clear difference among first-year
students, graduate students, and industry people. However, the authors observed a sig-
nificant difference between first-year students and graduate students. Their data was not
sufficient to evaluate similarities or differences between industry people and graduate stu-
dents. A more in-depth analysis of all these coding experiments is required to draw any
precise conclusion about this topic.

We agree with both Sjøberg et al. (2005), and Ko, LaToza e Burnett (2015) that using
students in coding experiments should not be avoided, but it should not be restricted to
students only studies. In particular, we believe students represent a good sample for initial
hypothesis, or for programming learning purposes. Besides, graduate students in Masters
or Ph.D. program may also be a representative sample representing junior professionals.
However, the precise role of student vs. professional is not defined, which is a topic for
further research.

Finally, all coding experiments reported the number of participants (Sjøberg et al.
(2005) observed the same). 19 experiments reported subject mortality (dropouts), it is
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about 24.% of the total. These 19 experiments reported 5.6% mortality, on average. These
numbers are also similar to those presented by Sjøberg et al. (2005). Besides, three out
of 19 papers explicitly said that no participant abandoned their experiments. However,
most articles did not report this information.

5.4.4.2 Information about Subjects

Making conclusions about a much wider population than the experiment sample need
some description of its sample (WOHLIN et al., 2012). Such description is any information
about various characteristics and their variation (both in the sample or the target popu-
lation). Sjøberg et al. (2005) observed there is no standard set of information to describe
experiment samples. Regarding only coding experiments, we observed some standard in
such information. However, the level of detail reported by coding experiments varies sub-
stantially. Some articles describe in details their sample characteristics with descriptive
statistics (STÄRK; PRECHELT; JOLEVSKI, 2012). Other studies describe the sample char-
acteristics in a paragraph.

In 2015, Siegmund e Schumann (2015) presented a catalog of 39 confounding param-
eters for program comprehension experiments based on a literature survey. This catalog
together with Wohlin et al. (2012) provides a precise compendium to describe proper
information about subjects involved in coding experiments. Next, we present the most
common sample parameters when describing students or professionals in coding experi-
ments.

In the coding experiment with students, the most regular information about the sam-
ple is the programming experience (11 experiments) and experience with Java (seven
experiments). Usually, it is measured in years, and students have on average 5.60 years of
programming experience and 3.25 years of Java experience. Some coding experiments also
involved other programming languages, such as C (two experiments) and PHP (one exper-
iment). Besides, four experiments with graduate student asked about any professional ex-
perience. Other cited parameters were: age (nine experiments), gender (six experiments),
and course semester (seven experiments). Regarding experiments involved graduate stu-
dents, just two experiments provided details about subjects’ postgraduate degree (Ph.D.
or MSc. Students).

For the 24 experiments with professionals, 12 experiments specified the nationality of
their samples. The majority of the experiments took place in Europe (the Spain, Norway,
Sweden, and the UK). Moreover, some other countries were cited: USA, Brazil, Thai-
land, India, and Korea. Similar to the experiments with students, five experiments with
professionals described the programming experience (on average, four years), and six ex-
periments cited experience with Java. The experience in industry was an issue in five
experiments (on average, four years).
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An alarming finding was that 30 coding experiments did not provide any information
about their sample characteristics. Sample characterization is critical when interpreting
experiment’s results. Such information is fundamental to studies based on the statistical
analysis combining results of multiple scientific studies, such as meta-analysis (KITCHEN-

HAM et al., 2002). In areas like social sciences and biology, standards to characterize the
sample are based on regulations and previous studies (SCHULZ et al., 2010). There are some
initiatives in adapting such techniques to SE context. For instance, Siegmund et al. (2014)
present an approach to measure experience in SE. Besides, for undergraduate students,
Feigenspan et al. (2012) found that a self-estimation of language experience on a scale
from 1 to 10 correlates moderately with performance on programming tasks. Moreover,
Host, Wohlin e Thelin (2005) proposed a classification for the experience of subjects in
experiments involving inspection and reading techniques.

5.4.4.3 Recruitment of Subjects

In general, a barrier to experiments in SE is recruiting participants (BUSE; SADOWSKI;

WEIMER, 2011; KO; LATOZA; BURNETT, 2015). In coding experiments, it is not different.
Next, we present some information about how subjects are being recruited and rewarded
in coding experiments.

Table 21 summarizes the data regarding subjects’ rewarding. Some experiments re-
warded professionals and students distinctly, so there are more reward occurrences in
Table 21 (83 reward occurrences) than coding experiments (80 experiments). Comparing
our data with Sjøberg et al. (2005)’s results, we notice in both works that many exper-
iments do not provide any information about rewards. Such works either do not reward
their subjects, or they do not cite this information. However, regarding the most common
reward, we observed payment, while Sjøberg et al. (2005) observed grade and extra credits.
We attribute this difference to the higher number of professionals in coding experiments.

Table 21 – Subject Reward Data

Reward Number of experiments
Paid 11
Mandatory 3
Grade 2
Competition 3
Extra credit 2
No Reward 21
Unknown 41
Total 83

The most common strategy to recruit subjects is inviting attendees of a course (60
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coding experiments). It is especially prevalent when recruiting students. However, we also
found some professionals being recruited in training and certification courses. Apart from
experiments during courses, 12 experiments were performed in vivo. In other words, they
were conducted in a real environment. However, in eight experiments, the authors did not
describe any recruiting strategy.

The participation was mandatory in four experiments with attendees at a course (un-
dergraduate courses). In two of them, their involvement determined their grades. Besides,
in other two experiments subjects had an incentive by earning extra credits for the course.
In two experiments, subjects were paid to take part of the experiment. Moreover, the pay-
ment usually is cash or a gift card. In three cases, subjects competed for a prize.

Usually, experiments with professionals were part of regular projects or training pro-
grams. We classified such experiments as No Reward (seven cases). In other six experi-
ments, the authors explicitly said that professionals were paid (an extra in their salaries).
Only in one experiment, professionals competed for a prize.

Performing power analysis and sample size estimation is an important aspect when
recruiting subjects. It is essential because, without these calculations, the sample size may
be too high or low (WOHLIN et al., 2012). If the sample size is too low, the experiment will
lack the precision to provide reliable answers to the questions under investigation. If the
sample size is too large, time and resources will be wasted, often for minimal gain. Only 16
experiments reported power analysis or sample size estimation (20%). Moreover, only two
experiments claimed to adopt random subject sampling. However, none described how
the random sampling was carried out. The dominant approach was convenience sampling.

In 2013, Kitchenham et al. (2013) observed an improvement in the quality of SE
experiments. However, Jørgensen et al. (2015) demonstrated an unbiased situation did not
match their observed proportion of statistically significant tests in SE experiments. Our
observations corroborate with Jørgensen et al. (2015) conclusions. Besides, Jørgensen et
al. (2015) proposed a list of research practices to support SE experiments with hypothesis
testing. We emphasize the importance of such practices also in coding experiments.

5.4.5 Tasks

In experiments, subjects have to allocate their efforts to diverse tasks according to the
experimental plan. In coding experiments, a task varies from building a software appli-
cation to implementing new features into an existing application. This section reports
theme and sub-themes related to tasks in coding experiments.

5.4.5.1 Task Categorization

We categorized coding tasks according to our definition of coding experiments (Sec-
tion 5.2.1), in which there are seven task categories: Design, Writing, Maintenance, De-
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bugging, Testing, Inspection, and Comprehension. Table 22 shows the results when cate-
gorizing coding tasks in coding experiments.

Table 22 – Task Categorization

Experiment Task
Task Category Quantity % Quantity %
Maintenance 33 41.25 39 31.45
Writing 19 23.75 34 27.42
Testing 9 11.25 19 15.3
Inspection 8 10.0 12 9.677
Comprehension 6 7.5 8 6.45
Debugging 3 3.75 7 5.65
Design 2 2.5 5 4.03
Total 80 100 124 100

The task categorization is not straightforward. A task in a category can also be clas-
sified in another category. For instance, Steffe e Thompson (2000) performed a coding
experiment in which participants have to maintain the test suite in a project. Therefore,
such task can be classified in both maintenance or testing categories. In such cases, an
expert (the supervisor and co-supervisor) was consulted.

As we see in Table 22, the maintenance tasks are the most common tasks. We observed
this phenomenon in both indexes (Experiment Quantity and Task Quantity). We
attribute this phenomenon to the fact that maintenance tasks are the most costly activities
in software development (PIGOSKI, 1996; SOMMERVILLE, 2004). Surprisingly, in Sjøberg et
al. (2005), such tasks appeared as the third most common, after inspection and document
comprehension.

Writing tasks are the second most common category (also in both indexes). Frequently,
writing tasks are carried out together with other tasks. Usually, such tasks are designed to
develop an initial version of a project in the experiment. After, subjects have to implement
new features in this early version.

We identified nine experiments involving testing tasks. As said before, many experi-
ments compared this technique with inspections. Several of them are also used to compare
testing techniques, such as Pančur e Ciglarič (2011). Our results are in agreement with
an SLR about testing (RAFI et al., 2012). However, it is contrasting with Sjøberg et al.
(2005). One reason for this disagreement may lie in differences in definitions of testing.

Inspection tasks occurred in 8 experiments. The majority of them compared inspec-
tions and testing (such as Wilkerson, Jr e Mercer (2012)). In some other experiments,
authors compared different inspection methods, such as Lucia et al. (2008)). In principle,
our finding regarding inspections is not in concordance with Sjøberg et al. (2005). They
observed inspections was the most common category. We propose an explanation for such
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discrepancy. During 1993-2002, software inspections were a new promising approach, re-
quiring experiments to evaluate it. Nowadays, This technique is well evaluated, and it is
considered reliable (GILB; GRAHAM; FINZI, 1993).

As we see in Table 22, comprehension task is the 5th most common coding task
category. This rate is not in agreement with Ko, LaToza e Burnett (2015). We attribute
this inconsistency to different definitions of experiments. Ko, LaToza e Burnett (2015)
include case studies and other empirical studies as experiments. Moreover, as observed
by Borges et al. (2015), case studies are the second most frequent empirical research
in SE (BORGES et al., 2015), and many case studies investigate coding comprehension
techniques. However, this result is a relevant issue for a meta-analysis.

In Table 22, debugging and design tasks had the lowest occurrences in both indexes. A
low occurrence of design tasks was expected since such activities are out of our scope. We
only found design tasks in experiments which such tasks did not take part of the evalua-
tion, such as Phongpaibul e Boehm (2006). However, a low occurrence of debugging task is
an alarming finding. Debugging activities are crucial in software development (LAWRANCE

et al., 2013).

5.4.5.2 Task Duration and Ordering

We identified 48 coding experiments that reported an accurate report of task duration
(60% of total). With this information, we classified each task in short-term and long-term
tasks. Short-term tasks are those performed in one session that lasted from some minutes
up to few hours. Long-term tasks are those in which participants were free to perform
the experimental tasks at any time. However, they had a deadline. This deadline could
be some days until up to months.

Figure 6 shows the distribution of the amount of time in the 25 experiments with
short-term tasks. Eight experiments of total was measured in minutes. The remaining
were measured in hours. On average, a task lasted 2.4 hours. The shorter task lasted
13 minutes, and the longer took 8 hours. We identified seven experiments with long-
term tasks. As we can observe, there is a predominance of short-term tasks in coding
experiments. It is desirable to avoid threats like tiring effect (WOHLIN et al., 2012).
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Figure 6 – Distribution of experiments with subject-level duration data to time intervals.

When designing an experiment, the number and order of tasks are crucial. In par-
ticular, the order is relevant since foreknowledge of next tasks may interfere in the time
required to finish the current task. Such conditions can bias experiment results (WYLIE;

ALLPORT, 2000). Regarding the number of tasks, a large section can also influence exper-
iment results (i.e., tiring effect). Table 23 presents the strategies to order tasks in coding
experiments.

Table 23 – Strategies to order tasks.

Ordering Strategy #
Sequential 44
Unique 17
Alternated 10
Randomized 7
Exclusive 2
Total 80

In 17 coding experiments, participants have to perform only one task. In half of coding
experiments, both treatment and control groups performed a set of tasks in a same order.
On other ten experiments, the treatment and control groups performed a set of task in
reverse order. It means if the control group performed the following task sequence T1,
T2, and T3; then the treatment group performed the sequence T3, T2, and T1. In other
seven experiments, participants executed the experimental tasks in a random order. Many
guidelines recommend an alternated or random order since it can mitigate some threats,
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such as learning effect and expertise (MOSHEIOV, 2001). Finally, in two experiments, tasks
performed by treatment and control group were different.

As said before, the quantity of tasks in an experiment affects experiment outcomes.
Excluding those 17 experiments with only one task, the quantity of tasks in an experiment
ranges from two to 19, however the majority of experiments has only two tasks. Finally,
not only the order and number of tasks influence tiring effect. Task complexity also has to
be taken into account. For instance, in the experiment reported by Wilkerson, Jr e Mercer
(2012), participants had to perform a single task, but such task lasted three weeks. The
authors observed an undesirable tiring effect in their results. However, more research is
needed when designing coding experiment tasks.

5.4.6 Environments

In Section 5.4.4, we presented some confounding factors related to the environment where
participants perform coding activities. However, a deep analysis of such factors is essential
since artificially designed environments can bias experiment results. So that, results from
experiments cannot be equivalent in industry. In this context, this section presents some
findings about environments in coding experiments.

5.4.6.1 Location

There is a trade-off between realism and control regarding experimental task environ-
ments. On the one hand, a laboratory set up promotes an easier controlling and monitoring
of experiment environment. On the contrary, in such a settings, the realism is decreased.
Running an experiment in a usual office environment of subjects that are professionals
allows a certain amount of realism, yet increases its fidelity due to breaks, phone calls,
and other interruptions.

Regarding the 24 experiments with professionals, only 12 did not describe the context
where the experimental tasks were performed. In other ten experiments, the authors
informed that it was in a regular office. And, in two experiments, the authors explicitly
stated that the experiment was in a laboratory.

In the 64 experiments with students, only four reports no explicit information about
experimental settings. The other 60 experiments explicitly stated that they were per-
formed in a laboratory or classroom.

All the experiments with students report the university/college’s name (usually one
of the author’s institutions). In seven experiments that include professionals, they cited
the involved companies’ names. Nine experiments did not report organization’s name.
However, they report organization’s business sector (transport, telephony, etc.). In fact,
some companies have policies to assure that they remain anonymous in experiment re-
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ports. Finally, in five cases, the authors describe professionals as coming from “several”
companies or organizations.

5.4.7 Observed Variables

A significant choice when designing an experiment is the definition of experimental task
outcomes. Such outcomes are the observed variables. There are widespread approaches
to specify them, such as GQM (SOLINGEN et al., 2002) or Six-Sigma (HARRY, 1998). In
this section, we focus only on defining and measuring observed variable in a clear and
accurate manner.

We found 318 observable variables in coding experiments. There is a broad range of
variables, including task completion, time on task, failure detection, the number of tests,
etc. Despite this broad range, we observed that three categories classify all of them: vari-
ables based on time, deliverables, and questionnaires. Table 24 presents the distribution
of the observed variables in these three categories. In some cases, more than one cate-
gory covers a single variable. Only variables based on questionnaires and deliverables are
mutually exclusive. The next section details each category and their combinations.

Table 24 – Observable Variable Category.

Category # %
Only deliverables 125 39.31
Only Time 66 20.75
Only Questioner 34 10.69
Deliverables and Time 19 5.97
Questioner and Time 44 10
Others 30 9.43
Total 318 100

5.4.7.1 Time

Many observed variables in coding experiments measure the amount of time spent on a
task. Some considerations are important when measuring them: (i) when the task starts
and ends, (ii) what to measure, (iii) how to determine when the participant has finished,
and (iv) data collection instruments.

First, experimenters have to determine the start and end point of each experimen-
tal task. For instance, the task starts immediately after delivering to subjects the task
description and artifacts. In such experiments, the time to finish the task includes the
time to read and comprehend the task description. It introduces some variability since
each participant has a different reading speed. Besides, it also produces an uncertainty on
whether they understand all the information, skimmed it or glanced at just the first few
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lines. Moreover, if the subjects have unlimited time to read the description task, they may
start to plan the solution during the reading time. Such behavior can decrease artificially
the time to finish the task. Usually, coding experiments measured the time after subject
finishes to read the task description. However, some experiments documented, separately,
the time to read and the time to perform an activity.

Time in coding experiments is not restricted to measure the time to finish a task.
Some coding experiments measured the time of editing each file in the source code. In
other experiments, authors made a distinction between the time dedicated to testing and
implementing new features.

A challenge when measuring variables based on time is to define task ends. Many
coding experiments solved this problem by providing a test suite. Therefore, a task only
can be considered as accomplished only when all tests pass. However, the majority of
the coding experiments did not adopt a particular approach to defining the end of their
tasks. In such experiments, either the subjects or the experimenters decide when the task
is completed.

Another important issue is to define means to measure time. Table 25 presents the
most common means. Often, participants have to record the timestamp of start and end
of each task. In some cases, they estimate how much time was spent on each task. In
17 cases, the experimenter measured the time by watching the participants. Finally, we
observed that the long-term experiments usually gauge time via questionnaires, forms,
etc. Only in eight experiments, we did not identify the mean used to measure the time.

Table 25 – Time Measurement Method.
Method #
Form 42
Automatic tool 24
Experimenter 14
Tool and Participant 4
Experimenter and Participant 3
Not clearly defined 8
Total 95

Regarding automatic support, we found some initiatives to support coding experi-
ments. Some researchers developed a complete tool to support their experiment (MUR-

PHY; KERSTEN; FINDLATER, 2006; MÜLLER; HÖFER, 2007; ACCIOLY; BORBA; BONIFACIO,
2012; RIBEIRO et al., 2011; SALMAN; MISIRLI; JURISTO, 2015; MEDEIROS et al., 2017). Other
researchers adapted general approaches, such as virtual machines, integrated development
environments (IDEs), repositories, or screen recorders. Four coding experiments used a
specific tool to support experiments in SE, the SESE (Simula Experiment Software En-
vironment) (ARISHOLM et al., 2002a).
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Finally, Wohlin et al. (2012) stated that it is desirable to use more than one means to
collect data. Many data sources improve precision. However, only seven experiments used
more than one ways to measure the time.

5.4.7.2 Resource

In coding experiments, many observed variables are measured by metrics calculated on
deliverables (144 variables). Usually, participants produce some artifacts (for instance,
source code). Based on these artifacts, metrics are calculated.

In 19 coding experiments, observed variables are a combination metrics over deliver-
ables and the time spent to produce them. Frequently, researchers compare the quality
of deliverables and time spent to produce them Wickelgren (1977). According to these
authors, the time spent in a task impacts in its success. Therefore, participants may work
faster and less carefully, reduce time, but also lower the quality of their work. Other
participants may work more slowly and carefully, increasing time and success. In coding
experiments, the majority of variables measured from deliverables are software metrics.
Classifying found metrics is out of our scope. However, there is an extensive literature on
this issue (CONTE; DUNSMORE; SHEN, 1986; BOEHM et al., 1981; KAN, 2002; PRESSMAN,
2005). Not all variables measured from deliverables are software metrics. In some cases,
for instance, observed variables were a score by an expert of the source code produced by
the participants.

5.4.7.3 Self-Reported Measurements

According to Wohlin et al. (2012), questionnaires are one the most common methods to
collect data. In general, there are two types of questionnaires pen-and-paper or electronic
(for example, e-mail or web pages) (WOHLIN et al., 2012). Table 26 reflects this fact.
However, some experiments mentioned interviews and video conferences. There is an
extensive literature about collecting data via questionnaires (FINK, 2003; JR, 2013).

Table 26 – Other Means to Collect Data.
Method #
Pen-and-paper questionnaire 41
Electronic questionnaire 4
Report 1
Interview 1
Total 47

As presented in Table 26, variables gathered from questionnaires correspond to only
14.8% of observed variables. This low frequency may suggest an oversight of qualitative
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analysis in coding experiments. However, we observed that about only half of coding
experiments perform qualitative analysis (44 experiments). To foster qualitative analy-
sis in coding experiments, researchers can reuse practices from other sciences, such as
usability (QUEIROZ; FERREIRA, 2009; BERNHAUPT; MIHALIC; OBRIST, 2008) or psychol-
ogy (ORNE, 1962).

5.4.8 Replications

In our study, we identified seven papers that performed replications. Table 27 presents
some characteristics of them, including their original experiments. This table is inspired
on Sjøberg et al. (2005).

Table 27 – Code Experiment Replication.

Paper Exp Stu. Pro. Con. Rej. Auth. Rep. Type

Phongpaibul e Boehm (2007)
0 X - - -
1 X X Same Different

Bergersen e Sjøberg (2012)
0 X - - -
1 X X Diff Different

Fucci e Turhan (2013)
0 X - - -
1 X X Diff. Close

Vokáč et al. (2004)
0 X - - -
1 X X Diff. Different

Arisholm e Sjøberg (2004)
0 X - - -
1 X X Same Different

Acuña et al. (2015)
0 X - - -
1 X X Same Close

Fucci et al. (2016)
0 X - - -
1 X X Diff. Close

As we see in 27 second and third columns, all replications performed by the same
authors confirmed the results of their original experiments. However, we observed dif-
ferent results when other researchers authored them. Our results corroborate with other
researches (SILVA et al., 2014; CARVER et al., 2014). They say that when the same people
are involved in both original and replication, the results tend to be confirmed. However,
we found a counterexample to this assumption (FUCCI; TURHAN, 2013).

In the last column, we see that among the seven replications only three were a close
replication (LINDSAY; EHRENBERG, 1993), i.e., one attempts to retain, as much as possible,
most of the known conditions of the original experiment. Other four replications were
differentiated replications (SILVA et al., 2014).
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5.4.9 Threats to Validity

A fundamental question concerns how valid are the results from coding experiments.
Table 28 presents our findings regarding the report of the threats to the validity of coding
experiments. As we see, 12 experiments (about 15.00% of all experiments) do not report
clearly how the threats to validity were mitigated. In other 13 experiments (about 16.25%),
the authors discuss this topic briefly.

Table 28 – Threats to Validity

Generic Specific Threat Not Clear
External Internal Construct Conclusion

# 13 56 54 36 18 12

In 68 coding experiments, we found a detailed analysis of their threats. Often, the au-
thors address the external and internal threats to validity. We found only one experiment
citing only the external validity and another citing only the internal validity. Moreover,
about half of the 68 coding experiments that address the threats include a discussion about
the construction validity. Also, only 26.47% of coding experiments discuss the conclusion
validity.

Sjøberg et al. (2005) observed that 69% and 63% of the SE experiments discussed
the threat to internal and external validity, respectively. Together with our findings in
Table 28, the Sjøberg et al. (2005), Falcao et al. (2015)’s results is an alarming finding.
Only an adequate mitigation of threats ensures valid results of an experiment for its
population.

5.5 DISCUSSION
In this section, we discuss some implications of our SMS results regarding coding exper-
iments in SE. We suggest strategies to aid future coding experiments, and we provide
recommendations for future research.

Despiting the referenced guidelines, we observed fewer articles citing them. For in-
stance, Wohlin et al. (2012) was the most cited guideline. However, it was adopted only
by 5% of coding experiments. Moreover, about 30% of coding experiments did not cite
any guideline. Some can argue that guidelines are common knowledge in SE commu-
nity. Therefore, coding experiments are following them implicitly. However, Jedlitschka,
Ciolkowski e Pfahl (2008) say that the quality of an experiment report decreases when
it does not cite the adopted guidelines, tools, etc. On the other hand, Kitchenham et al.
(2013) observed an improvement in the quality of some recent SE experiments. However,
a sound statistical analysis is a lack in a threat in coding experiments (JØRGENSEN et al.,
2015).
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Another finding was an absence of guidelines for sub-domains in SE. As we presented
in Section 5.4.4- 5.4.6, there are several characteristics specific only to coding experiments.
Therefore, there is a lack of guidelines that consider such characteristics when designing
and carrying out a coding experiment. Guidelines for sub-areas of acknowledgment is
standard in other sciences like health (SCHULZ et al., 2010).

Regarding the foundation in experimentation themes, coding experiments adopted
standard characteristics. Moreover, usually, coding experiments investigate a small num-
ber of factors, treatments, and hypothesis. Jørgensen et al. (2015) suggest avoiding studies
with sophisticated design and many statistical tests. In particular, Jørgensen et al. (2015)
incentive inclusion of few hypotheses and variables in the experimental study. A more
straightforward design may reduce opportunities for researcher bias.

We did not find an agreement when concerning subject characteristics in coding ex-
periments and generic SE experiments. About sample characteristics, we observed that
coding experiments involved more graduate students and professional. We speculate that
it is because many solutions evaluated in coding experiments regards problems from indus-
try. Moreover, we observed certain standardization in coding experiments when describing
their samples:

• Programming experience. Feigenspan et al. (2012) have found that self-estimation
of programming experience on a scale of 1 to 10 correlates moderately with per-
formance on Empirical Software Engineering Author’s copy programming tasks (at
least for undergraduate students). However, we believe that this estimation also may
be applied to experienced participants.

• Industry experience. It is typically an indicator for multiple kinds of skills and
knowledge, such as knowledge of version control systems, experience working with a
team, and expertise with languages. In some scenarios, this information is relevant.
However, the analysis cannot be restricted only to this information.

• Experience in a specific programming language. There are many programming lan-
guages and many paradigms of such languages. A previous acknowledgment of such
languages and paradigm may affect the experiment results.

Other cited information describing samples in coding experiments are: language pro-
ficiency, location, age, and gender.

As we said before, one approach to enhance statistical analysis in coding experiments
is performing uncomplicated experiments. Another approach is improving sample sizes.
Therefore, it is crucial to recruit the right number of participants in coding experiments.
However, recruiting is primarily a marketing problem of getting the attention of a set of
people with specific characteristics. Therefore, new strategies have to be developed, such
as distributed experiments (BUDGEN et al., 2013).
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Our definition of coding experiment implies in a specific task classification. In fact,
tasks in a coding experiment are quite flat. However, task design is at the heart of this
tradeoff, as tasks represent a distillation of realistic and messy SE work into brief, accessi-
ble, and actionable activities. In coding experiments, about 80% of tasks regards writing
new codes, maintaining them, or testing. Therefore, an interesting suggestion is to provide
standards exploiting the environments where these activities are performed.

The physical or virtual location in which participants complete a task is another
issue when designing experimental tasks. The task design affects the generalizability of
experiment results. For example, a study performed in developer’s actual workspace and
toolset is likely to be more realistic than another when a developer is not familiar with
the workspace and toolset. On the other hand, controlling developer’s workspaces is a
challenge. A well-known challenge is the influence of other participants. Considering an
experiment involving multiple participants in the same room, participants might “follow
the crowd” and finish early merely because other participants are leaving. If the study
allows remote or asynchronous participation, these problems can multiply, because the
experimenter might not be aware of interruptions or if the tool even worked correctly.

Another issue when designing coding task is the data and source code. Real projects
and data from open source repositories ensure that the study results reflect real benefits.
The downside to using realistic programs is that they can be disordered and complex. It
can make the task more challenging for the study participants. They have to understand
the project, requiring either more time in learning the system or introducing risks that the
system will be too complicated for participants to complete a task. To work around this
complexity, one can choose a real system, but focus participants attention (and tutorial
materials) on a piece of the scheme that is less complex.

Overall more than 20% of the reviewed papers lacked any analysis of validity threats.
It is an alarming finding. Empirical researchers should know that there is always several
threats to the validity of any research study. Moreover, these threats should be examined
both before and while designing the experiment as well as throughout other experimental
phases.

Regarding replications, we realize that coding experiments and generic SE experi-
ments do not diverge. Replications should be a general habit in SE community. Several
researchers claim the importance of making replications (SILVA et al., 2014). Some initia-
tives have already begun to emerge as the scientific forums focused in replication 6.

Finally, this work did not stress to the maximum coding experiments. However, some
interesting features were found. For example, we have identified a reliable standardization
in data collection and task characteristics. These standardizations can be exploited to au-
tomatize some activities in coding experiments, like configuring environment and calibrate
instruments to collect data. Some research in this sense has already been made (FREIRE
6 International Workshop on Replication in Empirical Software Engineering Research.
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et al., 2013).

5.5.1 Limitations

In the following, we present limitations and strategies to mitigate factors that may
threaten our study’s results.

5.5.1.1 Selection of Journals and Conferences

We surveyed six journals and conferences: Empirical Software Engineering Journal (ESEJ),
Information and Software Technology (IST), Journal of Systems and Software (JSS),
Transactions on Software Engineering (TSE), Evaluation and Assessment in Software
Engineering (EASE), and Empirical Software Engineering and Measurement (ESEM).
Some of them have a general-purpose in SE, other focus on the empirical studies in SE.
Our selection of venues is similar to other studies (BORGES et al., 2015; KITCHENHAM et

al., 2013). However, due to limited human resources, we could not cover the same venues
as Sjøberg et al. (2005). This threat may had affected our results, however, considering
a study with a broader set of venues (SJØBERG et al., 2005), our set of venues contained
about 90% of all identified experiments.

5.5.1.2 Selection of Articles

We used a well-established definition of experiment and coding experiment to ensure an
unbiased selection process (Section 5.3). Besides, we followed a strict multi-stage process
to select and extract data. It involved several researchers, and the entire process is well-
documented as suggested by Keele (2007).

Our search was organized as a manual search process of a specific set of journals and
conference proceedings. It was consistent with the practices of other researchers looking
at research trends as opposed to software technology evaluation. According to Kitchen-
ham (2004), a manual search is recommended when researchers aim to map a specific
acknowledgement area. Wohlin e Aurum (2015) obtained similar sets of primary studies
when applying automatic and manual search.

Finally, the aim of this study is not to be exhaustive in coding experiment area.
However, we believe that our research gives a good picture of the state-of-the-art.

5.5.1.3 Replicability

Replicability of systematic literature mapping studies is fundamental. It brings both
trustability to produced results , as well as, opportunities to extensions. In our con-
text, an important aspect is the reuse of previous studies (as presented in Section 5.3).
We adopted this approach, since, considering all papers published in selected venues’ set,
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they are about 50 thousands papers. Considering our available resources, it is not feasible
to analysis all these papers. Moreover, the same approach of reusing sources of previous
works was used in other researches (KITCHENHAM et al., 2013; KAMPENES et al., 2007).
Finally, we also invite other researchers to replicate our study, in order to verify if they
achieve same results.

5.5.1.4 Data Extraction

We presented the data extraction process in Section 5.3.4. The process was resource
consuming and error prone. To mitigate this threat, we applied some techniques from
Kitchenham et al. (2013). Besides, all data is available for auditing 7. Moreover, some
of our findings were analyzed via script in JavaScript (in particular the summing and
counting activities), and they are also available 8. A criticism to our data extraction
approach is bias in our script. Due to a high quantity of produced data only part of the
data produced by our scripts were verified manually, and no disagreement were found.
Moreover, as said before, all data is available and we invite any researcher to replicate
our analysis based on other approaches.

5.6 CHAPTER SUMMARY
This chapter provides a systematic analysis of the current status of the coding experiments
in SE. In summary, coding experiments are any experiment (or quasi-experiment) in
which individuals (or groups) have to conduct one or more coding activities. Coding
activities are any activity related to the creation of code, maintenance, testing, inspection,
comprehension, or debugging. We included articles published in renowned venues: two
conferences and four journals.

Comparing our findings with other works in literature, we observed some agreements
and disagreements. We believe our research reinforces conclusions from other works (SJØBERG

et al., 2005; KO; LATOZA; BURNETT, 2015; HOST; WOHLIN; THELIN, 2005; JØRGENSEN et

al., 2015) that the SE community needs mechanisms to provide better support to exper-
iments in SE. This support has to consider both general SE experiment characteristics
and those characteristics specific for a sub-area.

Our analysis did not stress the issues related to coding experiments. There is more
to characterize of such experiment than we have described. For example, we have not
addressed the characteristics of artifacts and instruments involved in coding experiments.
Besides, other empirical methods can be investigated regarding coding activities. For
example, case studies can produce a rich real-world data, such as how the industry handles
coding practice.
7 available at http://bit.ly/1LT7OPh
8 available at http://bit.ly/1LT7OPh
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Finally, this work contributes to thesis goals (Section 1.2) by providing a deep analysis
of the current status of coding experiments. In particular, this works presents a description
of how coding experiments are being carried out, specially regarding to subject description
(Section 5.4.4). Besides, with regards to other characteristics we did not observed specific
particularities in coding experiments. However, some fundamental findings were some
standards in coding experiments, specially for tasks (Section 5.4.5) and involved variables
(Section 5.4.7).
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6 A METAMODEL TO GUIDE CODING EXPERI-
MENTS

The theory of our modern technic shows that nothing is as practical as
theory.

—Julius Robert Oppenheimer

6.1 INTRODUCTION
In Chapter 4, we presented an analytical study of available MDE solutions to support
experiments in SE. In summary, we have identified some common deficiencies in these
solutions, especially in task description and instruments. On the other hand, Chapter 5
identified some existing practices in coding experiments, especially regarding data collec-
tion and tasks. So that, these standards can be exploited to automatize some activities
in coding experiments, like configuring environment and calibrate instruments to collect
data. However, models proposed by the MDE solutions did not specify adequately such
standards.

An alternative to specifying experiments involving software development are languages
tailored only to describe software development processes, such as BPMN (WHITE, 2004),
BPEL (ALVES et al., 2007), and SPEM (SCHUPPENIES; STEINHAUER, 2002). In fact, these
languages enable researchers to specify all experiment tasks involving coding activities
(code, artifacts, tests, documents, and so forth.). However, they fail in specifying relevant
information concerning experiment domain such as variables and measurements. In other
words, they lack what MDE solutions support.

Despite the importance of each solution for SE experiments or software developments,
to the best of our knowledge, there no modeling language that builds a bridge between
software development and experiment processes. In this chapter, we address the research
question of which concepts are common in these areas (SE experiment or software devel-
opment processes) and how concepts can be used to guide coding experiment execution
process. To this end, we investigate languages to specify SE experiments and languages to
specify software development processes. Our contribution is a metamodel specifying only
essential data to execute or replicate coding experiments according to their process speci-
fication. So that, our solution may allow (partial or fully) automation of some experiment
procedures (such as environment configuration and data collection).

In a previous work, we proposed a meta-ontology to specify domain-specific ontologies
for SE experiments (FERREIRA et al., 2015). As a proof of concept, we proposed an ontol-
ogy specific for coding experiments. This ontology merged all common concepts in MDE
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approaches to specifying experiments and software development. However, we noticed
that such specific ontology become easily verbose and redundant. Aiming at mitigating
this limitation, we simplified this ontology. We call this new approach as Coding Exper-
iment metamodel (CodEx metamodel). We decided to propose this new solution as a
metamodel instead of ontology since our approach focuses on solution domain (CALERO;

RUIZ; PIATTINI, 2006). We believe that models in compliance with our metamodels can
be used by Integrated Development Environments (IDEs) to simplify the configuration
and monitoring of coding activities. So that, leading to less intrusive coding experiment,
more integrated experiments in user’s daily work, as recommended by Wohlin (2013).

The rest of the chapter is composed as follows. Section 6.2 presents our research design.
Sections 6.3-6.5 presents our results and how they were used in our metamodel proposition.
Section 6.8 summarizes the chapter and offers suggestions for further research.

6.2 RESEARCH DESIGN
Considering the previous section, we conclude that there is a lack of standard specification
for SE experiment and software development process. Aiming at fulfilling this gap, we
analyzed coding experiments in literature and models for SE experiments and development
process (Chapter 5). With this result, (1) we elicited meaning and develop knowledge into
concepts used within both areas and (2) we identified patterns combining the identified
concepts.

6.2.1 Methods

To address the first point, we gathered coding experiments and we analyzed each of
them, together with the solutions presented in Chapter 4. Our goal in this phase was
looking for how such solutions are being used. As a result, we generate a set of clusters
which encapsulates all identified general concepts and their relationships. To address the
second point, we adopted an approach based on Muehlen e Recker (2008). We created
a spreadsheet, and we recorded each concept and its relationships with other concepts.
We encoded their usage with 1 or 0. After, we applied a hierarchical clustering on the
produced data to identify concepts that frequently or rarely occur together. Based on
these results, we propose the Codex metamodel.

Depending on the research perspective, research results may have different interpre-
tations. Our work targets the perspective of planning and carrying out a simple coding
experiment. However, we believe that our results are relevant to other research perspec-
tives, such as replications, family of experiments, and meta-studies.
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6.3 MODELING APPROACH
After analyzing coding experiments in literature together with models for SE experiments
and development process, we identified eight concept clusters:

1. standards in empirical studies: concepts shared by any empirical studies (DONOVAN;

LAUDAN, 2012);

2. goal: any information describing results or possible outcomes;

3. variables: all variables involved (controlled or observed) in experiment process (WOHLIN

et al., 2012);

4. subject description: experiment sample concepts;

5. design of experiment (DoE): concepts regarding the chosen DoE;

6. tasks and activities: any information describing experiment tasks;

7. artifacts and instruments: any objects used to carry out an experiment or any mea-
surement instruments;

8. validity evaluation: any information about threats to experimental validity. More
information about our clustering process is found in Ferreira et al. (2017a).

All previously cited concepts must be specified in any experiment (JEDLITSCHKA;

CIOLKOWSKI; PFAHL, 2008). However, despite their importance in SE experiment, only
some of them provide useful information for automation in coding experiment procedures.
After analyzing each cluster content, we identified three clusters describing useful infor-
mation for coding experiment procedure automation: variables, artifacts and instruments,
and tasks and activities.

Initially, our metamodel incorporated all concepts in each previously mentioned clus-
ter. They were organized in the same hierarchy level. The spreadsheet with concepts
relationships pointed out few relationships between artifacts and instruments and tasks
and activities clusters. On the other hand, these clusters are largely related with the
variables cluster. This information was crucial when proposing each sub-package in our
metamodel.

The following sections present the Codex metamodel concepts and architecture. Be-
sides, we motivate each metamodeling decision using an illustrative running example.
Finally, we take the opportunity to point out a mutual synergy between our solution and
other solutions (Chapter 4).
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6.3.1 Codex Metamodel Overview

Figure 7 gives an overview of Codex metamodel. The most basic entity in Codex meta-
model is Coding Experiment. It compiles all main concepts identified by our analysis.
As said before, we observed that all relationships between artifacts and instruments and
tasks and activities clusters are via the variables cluster. Therefore, we created a pack-
age comprising Artifacts and instruments concepts, the artifact package (Section 6.4),
and another package only for tasks and activities concepts, task description package
(Section 6.5). All concept in variables clusters were defined inside the two aforementioned
packages, and they build a bridge between these packages.

Figure 7 – Overview of Codex metamodel.

In Figure 7, the aux package does not define any particular experiment concept.
It supports model concepts in other packages. This package contains the abstract class
Nameable, which has only one attribute name. Therefore, any nameable concept in our
metamodel does not have to define an attribute called name. It has to extend only Name-
able class. Another abstract class is Identifiable (for classes with unique identification)
and Describable (for classes with a description). Other metamodels adopt this metamod-
eling pattern, such as SPEM (SCHUPPENIES; STEINHAUER, 2002) and BPEL (ALVES et

al., 2007).

6.4 ARTIFACT PACKAGE
When carrying out a coding experiment, a fundamental information is the artifact defi-
nition (such as source codes and tests). In a coding experiment, artifacts represents any
article required to carry out a coding experiment activity. Figure 8 presents our artifact
concept representation in Codex metamodel.
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Figure 8 – Overview of artifact metamodel.

As shown in Figure 8, our metamodel classifies artifacts as Artifact Container, Simple
Artifact, and Abstract Questionnaire. Next, we present the first two artifact types (Arti-
fact Container and Simple Artifact). Due to its complexity to describe all elements in a
questionnaire, we separated this concept in a specific package, questionnaire package.
Section 6.4.1 details this package.

The abstract class Artifact Container represents a grouping of other artifacts (child
artifacts). There are two means to assemble artifacts together, as a Simple Container or
a Project. The Simple Container assembles child artifacts without any meta-information.
For instance, in Stotts et al. (2003), participants had access to a zip file containing all
archives required to carry out each coding task. A Simple Container is enough to model
such cases. Another artifact arrangement is the abstract class Project. This class assem-
bles child artifacts according to their coding project characteristics in an IDE. This class
has two attributes: defaultName, it suggests an experiment project name; facet, it iden-
tifies each facet required to configure the subject IDE environment. Some facet examples
are languages (Java, C, Python, and others), frameworks (Junit, Rails, Cucumber, and
others), and infrastructures (Web development, mobile development, and others).

The abstract class Simple Artifact represents any atomic artifact. This class has two
attributes: content which serializes the artifact content following base64 scheme (BOREN-

STEIN, 1993) and directory structure which describes any required structure (folder hi-
erarchy) for an artifact. In Figure 8, we see our artifact classification. This classification
depicts every possible artifact role in an experiment. Our artifact classification is according
Cattaneo et al. (2000) and Silva e Oliveira (2011):
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• Source Code comprises a collection of computer instructions, written using a human-
readable programming language, usually as ordinary text. The attribute language
identifies the source code’s programming language (including tests);

• Library represents any artifact required to compile Source Codes. Usually, such
artifact are a set of low-level routines used by a compiler to invoke some run-time
environment behaviors;

• Document is an artifact to inform any crucial arrangement about the experiment.
For instance, Santos, Mendonça e Silva (2013) made available a task description for
each participant;

• Other File is any other artifact needed in any experiment task. For instance, in Stotts
et al. (2003), the researchers made available to each participant a configuration file
to start the experiment server.

Each source code class can seem like a compilation unit. In principle, a compilation
unit is a section of text that can be submitted to the compiler, to create one or more
modules of a program Venter (2007). We prefer to model this concept as a source code
since there are many programming paradigms where this definition is not validly (for
instance, logical paradigm). Moreover, we did not describe this concept in a fine-grained
description, since this description is also changed in different programming paradigms.
For instance, while OO programs have classes, methods, and attributes, logical programs
have only clauses and facts.

6.4.1 Questionnaire Package

As anticipated in the previous section, a questionnaire is a particular artifact type. Ques-
tionnaires are one of the most common data collection means (WOHLIN et al., 2012). Ques-
tionnaires can both be provided in paper form or electronic (such as e-mail or on-line).
We proposed three types of questionnaires:

• Physical Questionnaire. Those questionnaires has to be printed and filled manually
by participants;

• Virtual Questionnaire. Those questionnaires are filled in web pages (such as, Google
Forms and Survey Monkeys);

• Logical Questionnaire. In this type of questionnaire, each component in the ques-
tionnaire has to be described in details. Figure 9 summarizes our metamodeling
approach for basic questionnaire elements. Our metamodel follows survey guide-
lines in SE (PUNTER et al., 2003; PFLEEGER; KITCHENHAM, 2001).
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Figure 9 – Questionnaire metamodel overview.

Punter et al. (2003) define a questionnaire as a set of questions organized in a system-
atic way for the purpose of eliciting information from respondents. Moreover, question-
naires are classified as structured, semi-structured, or checklist (PUNTER et al., 2003). To
model this variability, we proposed the abstract class Abstract Component. Any Abstract
Component subclass shares some characteristic, such as a label. Unlike other solutions
(such as ExpDSL (FREIRE et al., 2013) and eSEE (TRAVASSOS et al., 2004), a question-
naire component can have more than one label. Allowing many labels for a same com-
ponent allows researchers to specify their questionnaire in different languages (KERSTEN;

KERSTEN; RAKOWSKI, 2002). Next, we explain each subclass in Abstract Component.
The first Abstract Component type is Block. It comprises a set of other Abstract Com-

ponents. Block organizes and modulates questionnaires. For instance, Santos, Mendonça
e Silva (2013) used questionnaire blocks to group questions about demography and user
experience.

The most fundamental Abstract Component type is Question. According to Azanza et
al. (2010), there are more than ten question types. However, in our analysis, we observed
two question types represent all questions in coding experiment questionnaires. Question
types are:

• Text Answer. Such questions are designed to encourage a full, meaningful answer us-
ing subject’s knowledge and feelings. The attribute isTextBox specifies if a response
should be in few words (a text field) or a full paragraph (text box);

• Multiple Choice Question. In such question, participants have to choose their answer
in a list of possible answers. The abstract class Choice specifies every possible answer.
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Our metamodel also allows some question Constraints. The first question constraint
is Dependent Question. This constraint in a question means this question requires specific
answers from other questions. For instance, we can cite the Crime and Safety Survey
Questionnaire (DEVOE et al., 2004). If the respondent is a female, she is given a Sexual
Victimization Block apart from the Base Questionnaire. The second question constraint
is Appendable Questions, which represents questions that can be answered many times.
For instance, in Santos, Mendonça e Silva (2013), the participants had to identify classes
in too much responsibilities, and for each class the participant had to answers a set of
questions.

6.4.2 Synergy with Other Solutions

Some authors proposed metamodels only to specify Artifacts. Cattaneo et al. (2000)
cover Web page artifacts, and Silva e Oliveira (2011) proposed an artifact metamodel
to represent artifact parts and their relationships. These works are a convenient way
to specify coding experiment artifacts. Such approaches inspired our concept of Simple
Artifact (Section 6.4). Some SPMLs also propose an artifact specification. BMPN and
SPEM classify artifacts according to their roles (input and output artifacts). The SPEM
is the most accurate artifact representation with FragmentDefinition and WorkProduct-
Definition (SCHUPPENIES; STEINHAUER, 2002). These definitions supported our concept
of Artifact Content and Simple Artifact.

Concerning models to support SE experiments (Section 9.4.1), they usually specify
artifacts as parameters or controlled variables. However, the ExpDSL and eSEE have
entities to specify coding experiment artifacts. In ExpDSL, there is an entity called Arti-
fact, which comprises a name, a description, and a type (input, output or input/output).
This representation is similar to artifact specification in BMPN and SPEM. On the other
hand, the eSEE proposed a complete sub-ontology to specify software artifacts (SANTOS;

TRAVASSOS, 2007). It details a software artifact in a fine-grained description, differen-
tiating interfaces, functions, and attributes. We have chosen not to follow this coding
artifact description since this description is too bound with OO and imperative software
paradigm.

To the best of our knowledge, there is no specific metamodel for questionnaires. How-
ever, some models to support SE experiments have some packages to specify question-
naires (Section 9.4.1). In ExperOntology, two classes (Questionnaire and Form) spec-
ify questionnaires. Questionnaire specifies demography data collection instruments and
Form represents other questionnaires for nondemography data collection (ROOT; DRAPER,
1983). eSEE designs questionnaires in a sub-ontology for qualitative methods. Finally, Ex-
pDSL proposes a view only for questionnaire specification. We tailored our metamodel to
minimize variations among these models. Moreover, Codex metamodel is compliant with



Chapter 6. A METAMODEL TO GUIDE CODING EXPERIMENTS 98

all these models. A simple M2M transformation can map our entities into other model
entities.

6.5 CODING TASK PACKAGE
According to Software Engineering Body of Knowledge (SWEBOK) (BOURQUE; FAIRLEY

et al., 2014), a coding or programming activity may vary from designing, writing, testing,
debugging, and maintaining a system. Besides, activity duration also may differ in coding
experiments. For instance, a coding inspection may be carried out on one occasion. On the
other hand, writing an entire system can be executed during a much longer time span. In
such cases, researchers cannot participate of all experiment activities and data collection.

Any coding task specification has to accommodate all possible contexts presented
before. Aiming at such goal, we propose Task package into Codex metamodel (Figure 10).
We defined one abstract class representing coding tasks and three sub-packages to describe
them:

• Task Order Package defines how coding tasks are ordered and organized in coding
experiment;

• Task Constraint Package specifies constraints on coding tasks, for instance, maxi-
mum amount of time spent performing a coding task;

• Task Data Tracking Package blueprints what data has been collected in each task.

The next sections detail each previously presented sub-package.

6.5.1 Task Order Package

This sub-package specifies task description, order, and organization. Figure 11 presents a
metamodel overview. The first abstract class is ExecutionGroup. This class identifies which

Figure 10 – Coding Task Overview.
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Figure 11 – Task Order Package Overview.

tasks has to be executed in each experiment trial. For instance, an experimental design
AB has two ExecutionGroup, one indicating tasks treatment A and another indicating
tasks with treatment B.

In our metamodel, task order specification is a BPEL and BPMN metamodel simpli-
fication (ALVES et al., 2007; WHITE, 2004). Therefore, there are two action types: Coding
Task and Composed Task. Coding Task specifies atomic tasks in coding experiments. This
class has an association called depends. This association identifies if a Coding Task requires
artifacts or results from other tasks.

When participants have to perform more than one task, experimenters have to specify
a Composed Task. This abstract class, in fact, is only an abstraction. We proposed two
concrete classes for this abstraction:

• Ordered Execution: In this composition, tasks follow a predetermined execution
sequence. This task composition is the most common composition type;

• Random Execution: This class represents executions without any predetermined or-
der. Random Task executions are desirable to avoid some experiment threats (WOHLIN

et al., 2012).

6.5.2 Task Data Tracking Package

In any experiment, data tracking is fundamental to control independent variables, as well
as, to observe results in dependent variables (WOHLIN et al., 2012). Our metamodel allows
tracking specification in most common coding experiment data sources. Figure 12 presents
an overview of Task Data Tracking package.
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Figure 12 – Overview of Task Data Tracking Package.

Our metamodel specifies two data tracking means:

• DataFromAction: When data sources are participant actions. Usually, in coding
experiments, two data types are tracked from participant actions: time stamp or
involved artifacts. In our metamodel, Track Enum enumeration represents such data
tracking types: Time and Artifact. Tracking Actions have another enumeration,
Moment Enum. This enumeration specifies what action has to be tracked:

– Editing File: Editing action in any (or a set of) Artifacts;

– Executing File: When participants execute any (or a set of) Artifacts;

– Executing Test: Similar to Executing File, when the participant executes test
(or set of tests);

– IDE Activity: Tracking any activity at coding development environment;

– Completed Task: Data is tracked only at task end.

• DataFromQuestionnaire: When participants provide responses to questionnaires.
The attribute allocation specifies when a questionnaire has to be administered.
Moreover, each DataFromQuestionnaire is associated to at least one Artifact Ques-
tionnaire. We detail Artifact Questionnaire in coding experiments at Section 6.4.1.

6.5.3 Task Constraints

There are some examples in literature, which some independent variables in coding ex-
periments may be specified as task constraints (SANTOS; MENDONÇA; SILVA, 2013; KO;

LATOZA; BURNETT, 2015; VOKÁČ et al., 2004). In our metamodel, the abstract class Task
Constraints specifies such constraints (Figure 13). In our analysis, we identified three
common constraints in coding experiment tasks:
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Figure 13 – Task Constraints Overview.

• Time Constraint. Time window constraint applied in any task in a coding experi-
ment. It also specifies task deadlines;

• IDE Constraint. Constraint employed into coding experiment environment. In the
current version, our metamodel only specifies required or forbidden Eclipse plug-ins.
However, some metamodel extensions can include more constraints;

• Test Constraint. Defining success on task is not easy. Some examples in literature,
researchers define a set of tests to ensure task success. Our metamodel implemented
such scenarios with Test Constraint. This constraint is associated with a Source
Coding (or a set of) identifying tests. Then, a participant only finishes a task when
all test pass.

6.5.4 Interactions with Other Solutions

As said in before, BPMN and BPEL are our task definition and composition basements. In
principle, Abstract Task is equivalent to Activity in BPMN. And, BPEL does not have any
task representation. However, there is a standard extension, BPEL4People (KLOPPMANN

et al., 2005) where Abstract Task is equivalent WS-HumanTask. Regarding the models to
specify experiments, only ExpDSL and eSEE allow task definition and order. Moreover,
similar to SPMLs, they are equivalent to Abstract Task. However, a surprising finding is a
lack of random task order specification in both SPML and models to specify experiments.

Regarding data tracking, measurement is a central role in many standards and mod-
els such as ISO 15504 (ISO, 2004), including SPML and models to specify experiments.
From the methodological perspective, software measurement is backed by a broad range of
proposals, like the Goal Question Metric (GQM) method (BASILI; ROMBACH, 1988), the
Practical Software & Systems Measurement (PSM) methodology (MCGARRY, 2002), and
the ISO 15539 (EMAM; CARD, 2002) and IEEE 1061-1998 (COMMITTEE et al., 1998) stan-
dards. However, these are no clear link between these standards and experiment concepts.
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Models to specify experiments (ESEML, ExpDSL, and ExpOntolofy) do not make a clear
distinction between the observed variables, their measurements. Only eSEE specifies such
information in Study Structure sub-ontology (SANTOS; TRAVASSOS, 2007). Furthermore,
our measurement definition is a simplification of eSEE definition.

6.6 METAMODEL ASSESSMENT
The main goal of this section is to assess the our metamodel with respect to the modeling
of coding experiments from the perspective of experimenters. To demonstrate the expres-
siveness of our metamodel, we developed a tool to model coding experiments according
to our metamodel, Codex Modelling Tool. As said in introduction, this tool is part of
a platform to support execution of coding experiments. Where, the Codex metamodel
implements at core the concepts of coding experiments.

6.6.1 Assessment Method

We selected three experiments as examples of coding experiments in literature.

• Santos, Mendonça e Silva (2013). In this experiment, researchers designed a con-
trolled experiment for investigating the concept of God Class, which is a class or
methods with a high complexity. According to Fowler e Beck (1999), who introduces
the concept of God Class is a class that tries to do much (i.e., it has many responsi-
bilities and instance variables). Moreover, Ratiu et al. (2004) suggests a God Class
detection technique considering those classes that use various data from the closer
classes having the high complexity or low cohesion between methods. Based on this
concepts, the objectives of In Santos, Mendonça e Silva (2013), this study is to find
empirical support to evaluate the impact of personal conceptualization in god class
detection;

• Accioly, Borba e Bonifacio (2012). This experiment were conducted with students
simulating a test execution environment. While executing test suites, they collected
time and reported change requests. This data was collected by an Eclipse plugin
developed by authors.

• Vokáč et al. (2004). In this experiment, the researchers replicated the experiment
performed by Prechelt et al. (2001), which investigated the question whether it
is useful (with respect to maintenance) to design programs using design patterns,
even if the actual design problem is simpler than that solved by the pattern. The
replication sought to increase experimental realism by using a real programming
environment instead of pen and paper, and by using paid professionals from multiple
consultancy companies as subjects.
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It is important to mention that our selection also considered the availability of docu-
mentation about experiment planning and conduction. The specifications of these exper-
iments following our metamodel are available on-line1.

We adopted one criterion for evaluating our metamodel, completeness. This crite-
rion analyzes whether all concepts of coding experiments can be expressed in the Codex
metamodel. For the completeness analysis, we investigated whether different aspects of
the selected experiments can be properly specified using our metamodel. The following
aspects from coding experiments were assessed during the specification process: Tasks,
Artifacts, and Measurements (the clusters presented in Section 6.3).

6.7 RESULTS
In this section, we present and discuss the results of our study. Section 6.7.1 examines
our findings regarding each cluster. Finally, Section 6.7.2 presents a discussion about our
study and how it can be used by other researchers.

6.7.1 Analysis of each Cluster

The modeling of controlled experiments in our study revealed that the investigated meta-
model satisfactorily addressed most of the evaluation criteria. On the other hand, it also
exposed improvement opportunities for specific elements and aspects of the Codex meta-
model.

This section presents results about the completeness criteria. We considered different
experimental aspects that were modeled using Codex metamodel. We show and discuss
how to model experiments in our metamodel. Also, we describe how the achieved results
can be used to propose improvements for our metamodel.

6.7.1.1 Artifacts

Our metamodel allowed to define all the artifacts required to perform coding activities
in each selected experiment. Figure 14 presents an overview of the model for artifacts in
Santos, Mendonça e Silva (2013). Two types of artifacts were involved in this experiment,
developing projects and questionnaires. Figure 14.1 presents a Project (Section 6.4). In this
case, a Java Project which comprises each required source code (each java file). Originally,
the researchers stored on-line all experiment artifacts. However, with a Codex model, it
was no longer necessary as the Codex model stores this information together with all
information required to carry out an experiment. The same approach was adopted by
Vokáč et al. (2004) to specify their artifacts.
1 https://github.com/netuh/DecodePlatformPlugin
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Figure 14 – Example of artifact specification.

Another artifact present in all selected experiments was questionnaires. Similar to
previous mentioned Java artifacts, questionnaires are also included in Codex. Moreover,
this model contains data about who and when to apply each questionnaire. Figure 14.2
presents how the questionnaires in Santos, Mendonça e Silva (2013) may be specified in our
metamodel. In this case, a Document represents each questionnaire. However, researchers
can specify each questionnaire element (according to Section 6.4.1).

6.7.1.2 Tasks

As we presented for artifacts, many relevant aspects of coding tasks were also defined
in our metamodel. Figure 15 presents how the tasks in Santos, Mendonça e Silva (2013)
are modeled in our metamodel. We decided to present the tasks in Santos, Mendonça
e Silva (2013), since, in this experiment, part of the participants had to inspect three
projects without any tool support and other three with a tool. These two set of tasks
were executed in sequence. However, the three inspections with or without the tool were
randomly executed. In Vokáč et al. (2004) and Accioly, Borba e Bonifacio (2012), all tasks
were executed in sequence.

As can be seen in Figure 15, the derivation execution has two sequential tasks rep-
resenting each trial in experiment design (Sequential Group 1 and Sequential Group 2 ).
For the sake of simplicity, Figure 15 only details the Sequential Group 1. However, all
comments about Sequential Group 1 are valid for Sequential Group 2. Moreover, each
group was specified as an OrderedExecution; each OrderedComposition comprised two
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Figure 15 – Task specification in case study.

Figure 16 – Task specification with test constraints.

RandomExecution. Finally, each RandomExecution included a set of Coding Tasks, con-
nected with corresponding Project artifacts (Section 6.4).

Only Accioly, Borba e Bonifacio (2012) had constraints to task execution. Figure 16
presents how such constraints are modeled considering our metamodel. As we can see,
researchers can attach a test suite to a task, Test Constraint. It means that the task may
be considered as finished only when such tests pass.
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6.7.1.3 Measurements

In Codex metamodel, we can define measurements for each task. During the data collection
procedure definition (process element), the researcher can choose to collect data related to
dependent variables using our metamodel in different ways, such as: (i) collecting artifacts
created or changed during the experiment that should be analyzed by the researcher; (ii)
requiring participants to inform the specific data (e.g. number of defects found) during
their tasks execution in the experiment; or (iii) including a field in a questionnaire (through
cross-reference) to be answered by the participants during the execution of the experiment.

Considering our example Santos, Mendonça e Silva (2013), Figure 15 presents how a
researcher can specify measurements in tasks. In this experiment, two kinds of data have
to be collected, (i) time spent to finish each task and (ii) quantity of actions executed by
each participant. The first measurement was specified by a DataFromAction, with Time
at track field and with IDE_Activity at moment field (details in Section 6.5.2). Similarly,
for the second measurement, the corresponding DataFromAction has Time at track field,
and Final Task at moment field.

The other two experiments (Accioly, Borba e Bonifacio (2012) and Vokáč et al. (2004))
collect almost the same kind of variables. However, they also collect the artifacts produced
during the experiment execution. Therefore, their models have an extra element: DataFro-
mAction which is attached to Artifacts and Completed Task. As so, once the tasks are
completed, all artifacts (produced and changed) during the task execution are part of the
results.

6.7.2 Discussions and Lessons Learned

In this section, we present and discuss lessons learned related to the results of our study.
Appropriateness Evaluation. In our study, we have tried to address such criterion by

specifying three different experiments, among which we modeled one replication Baldas-
sarre et al. (2014). Given this variability of experiments, we have modeled experiments:
with diverse experimental designs and executed by different research groups. This variety
of the chosen experiments supports us to conclude that the Codex metamodel provided an
appropriated characterization for the set of modeled experiments. However, we recognize
that it is crucial to model an extensive amount of additional experiments to enlarge the
variability of experiments that can be expressed by our metamodel.

Experiment Replication. In spite there are various guidelines for reporting experiments,
the fact that they have not been formalized according them limits their replicability Bal-
dassarre et al. (2014), Juristo e Vegas (2009). In collaborative experimental research,
results from previous studies are needed to transfer knowledge between the involved re-
searchers. In this context, our metamodel provides a mean to formalize the laboratory
package for coding experiments and their correspondent replicas. It is one of the tangential
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contributions of our approach. We believe that it could facilitate information communica-
tion and exchange among experimenters, contributing to fill the gap related to providing a
complete experiment definition. We modeled one experiment replication, and we observed
that when modeling a replica, a researcher can reuse almost all original experiment spec-
ification. The changes are localized and related to the following actions: to add or change
artifacts, tasks, and/or measurements. We intend to systematically evaluate and explore
the Codex metamodel benefits regarding replications in our future work.

Execution Environment. The experiment knowledge formalized with our metamodel is
used in our approach Ferreira (2014) as input to an experimentation support environment.
The environment allows executing an experiment as a workflow that guides the tasks of
each participant. The environment supports some experiment functionalities:

• Experiment Documentation – As said before, other approaches are most appro-
priated to document an experiment in SE (FERREIRA et al., 2017b). However, our
metamodel allows a precise description of many relevant characteristics in an exper-
iment plan. This description should provide a formal way to store the plan of several
kinds of experiments in software engineering to increase the documentation preci-
sion. For our execution environment, the experiment definition in Codex metamodel
itself represents this functionality.

• Participant Guiding – We developed a tool to aid participants in their experiment
execution. The environment guides participants through each task that have to be
performed by them. The participants have to finish one task after another (sequen-
tially). The experiment’s Codex model specifies the task order.

• Data Collection – Each participant produces data that are relevant for the experi-
ment. This data is automatically collected by the environment, such as changed files,
or project execution, test passes and failed, and so on. Besides, the environment may
provide a means for participants to answer questionnaires (according to their spec-
ification). Moreover, the environment is responsible for automatically collecting the
spent time for executing each experimental task.

• Gathering of feedback – It is fundamental to gather feedback from participants dur-
ing experiment execution. A questionnaire is a known instrument to collect feedback.
The participants are asked to answer online feedback questionnaires according to
the Codex questionnaire definition.

Limitations. Regarding the models to specify extensive experiments in SE. Our meta-
model is able to specify all characteristics identified in cluster. However, we should conduct
interviews with researchers from other companies and universities to try to understand
their views about these models, as well as in other fields, and carry out experiments in
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practice. For instance, an information relevant to be specified is that only code without
errors or faults cannot be accepted when finishing a task.

6.8 CHAPTER SUMMARY
Regarding the research questions under investigation, which concepts are in common with
these two areas (SE experiment or software development) and how they are related to each
other. Our study has initially identified a necessity for a unified metamodel for coding ex-
periments since other alternatives do not have enough expressiveness. After an individual
analysis of these alternatives together with real coding experiments, we have proposed
a new metamodel, Codex metamodel. This metamodel provides a precise panorama fo-
cusing only on coding experiment executability. This metamodel identifies core elements
that enable an automatic support to coding experiment execution. A customized model
following our metamodel emphasizes variables, tasks, and artifacts involved when carry-
ing out a coding experiment. It may foster coding experiments since experimentation is a
cost-intensive empirical method. Therefore, by facilitating the experiment execution, the
researchers may focus more efforts in improving samples, allowing more reliable conclu-
sions (JØRGENSEN et al., 2016). In next chapters, we present how a tool support can use
our metamodel to support coding experiments.
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7 CODEX PLATFORM: A PLATFORM TO SUPPORT
CODING EXPERIMENTS

He knew that all the hazards and perils were now drawing together to a
point: the next day would be a day of doom, the day of final effort or
disaster, the last gasp.

—J.R.R. Tolkien

7.1 INTRODUCTION
Experiments help researchers to make new and important discoveries in science. In SE, an
experiment may investigate factors which influence two aspects of the software mainte-
nance process; namely, understanding an existing program and accurately implementing
modifications to it. A tested hypothesis becomes part of scientific knowledge if it is suf-
ficiently well described and constructed, and if there is convincing evidence. However,
experiments are often unfeasible in SE due to the high cost of projects (ROST; GLASS,
2011).

As we presented in Chapter 4, over the last years, the SE community has proposed
different approaches to aid the growth of experiments. Such approaches include guidelines,
tools, infrastructure, and many others (BORGES et al., 2015; WOHLIN et al., 2012; JURISTO;

MORENO, 2013; BASILI, 1993). We focused on models and specification. However, these
models are only part of MDE platforms to support SE experiments.

The term “platform” is unclear in SE literature. In this work, we adopt Wolf (2003),
“a platform is a pre-designed architecture that designers can use to build systems for a
given range of applications”. In such platforms, models specify key design decisions about
the problem that primarily govern its structure, behavior, and quality. In our context,
such models are an experiment blueprint so that it can serve as the basis for experimen-
tation (WOHLIN et al., 2012).

As presented in Chapter 1, the focus of this thesis is on coding experiments. In some
coding experiments, the authors had to develop their own platform to run their trials. In
some coding experiments, the authors had to develop their own platform to run their trials.
For instance, Müller e Höfer (2007) compared test-driven development when performed
by experts and novices. The authors developed a platform that comprised two Eclipse
plug-ins. One plug-in captured timestamps and stores backup copies whenever a file is
modified. Another plug-in logged the time when each test was executed, the number of
executed tests, and whether it passed or failed. However, not all coding experiments had to
develop their platforms. For instance, Wang e Arisholm (2009) performed an experiment
where subjects had to perform some maintenance tasks. The authors used the Simula
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Experiment Support Environment (SESE) tool to manage experimental artifacts in the
subject environment. Each participant used the SESE to download experiment’s codes
and task descriptions. Moreover, the SESE was able to collect data some data relevant to
the coding experiment.

As we can see, coding experiments employ a range of platforms. However, each platform
plays a different role in different contexts. Some platforms usually are too specific and
restricted to a experiment in a particular contexts. Alternatively, some platforms are too
general that only generic information is collected and analyzed.

Considering these limitations, we propose Codex Platform, an extensible platform de-
signed to support only coding experiments. It brings together benefits from both general
and specific platforms. We offer an extensible and integrated representation for coding ex-
periments using Codex Metamodel (Chapter 6). This representation focuses on essential
information to configure and monitor coding activities. Moreover, Codex platform pro-
vides an environment for controlling and observing coding activities. Using our platform,
researchers can design and execute quantitative and exploratory coding experiments with
less efforts to configure and observe each trial.

7.2 CODEX PLATFORM OVERVIEW
In this section we present Codex Platform. We designed and implemented this platform,
an extensible platform targeted to aid in carrying out coding experiments. Figure 17
presents an overview of Codex platform’s architecture. This platform hinges around a
two-tier architecture to separate the concerns of design and experiment execution.

The numbers in Figure 17 represent the steps necessary for designing and conducting
a coding experiment in Codex platform. These steps are:

• Step 1: Experiment Modeling. The primary objective of this step is to allow re-
searchers endeavor to model conceptual aspects in coding experiments. Experiment
guidelines and documentation can support activities in this step. The final result is
a model, the Codex Experiment Model, specifying all operational characteristics to
execute or replicate each coding activity;

• Step 2: Loading Experiment. In this step, researchers have to recruit subjects
that should take part in the experiment. Defining and recruiting subjects are still
a researcher duty. After recruitment, each participant loads the Codex Experiment
Model provided by the researchers in our Codex Eclipse plugin. This plugin is re-
sponsible for configuring participant’s IDE automatically. Moreover, this plugin also
profiles the experiment coding activities performed by each participant. The Codex
Experiment Model provides parameters for tuning the configuration and profiling;
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Figure 17 – Codex Platform Overview.

• Step 3: Executing Experiment Tasks. After configuring participant’s IDE, the
participants can execute each coding task. The task’s characteristics and order follow
the loaded Codex Experiment Model (designed in Step 1);

• Step 4: Experiment Result. After all coding activities, the Codex Eclipse plugin
serializes the collected data. The serialized information has to be sent to researchers
start the analysis.

Regarding our layered architecture (Figure 17), only Step 1 is at modeling layer. The
remaining 2-4 steps are at Execution Layer. The next sections describe how our platform
details about each tool involved in our platform.

7.3 CODEX MODELING TOOL
Our platform comprises multiple plug-ins for Eclipse Platform. The first plug-in is the
Codex Modeling Tool. To develop and design this tool, we followed the Eclipse Modeling
Framework (EMF) (STEINBERG et al., 2008). Its basement is Ecore meta-modeling lan-
guage which is used to specify abstract syntaxes for arbitrary modeling languages. Thus,
our modeling solution space is not bound to any particular language, and existing EMF-
based modeling tools can easily be integrated. A Codex Model can be generated (partially
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Figure 18 – Codex Modeling Tool Screenshot.

or entirely) from other models to specify SE experiments such as eSEE (TRAVASSOS et al.,
2004) and ExpDSL (FREIRE et al., 2013).

Figure 18 shows the Codex Modeling Tool panel. Each number in Figure 18 corre-
sponds to a component:

1. Toolbar. It provides options to visualize Codex Models: Parent List, Tree, Table,
and Tree with Columns. The default visualization is in Tree. Details about each
option is in EMF guidelines (STEINBERG et al., 2008);

2. Workspace. It presents a graphical representation of a Codex Model. Each line rep-
resents an entity in our meta-model. In this view, researchers can expand each entity
to see its child entities. This model is in compliance Codex Metamodel (Chapter 6);

3. Drop-down Menu. This menu pop-up is activated by clicking at right button
mouse. The pop-up presents all available child entities according to with our Codex
metamodel. Besides creating child entities, this menu has an option to validate the
model under construction. In particular, it verifies if the model is syntactically valid-
ity regarding our metamodel. For instance, it verifies if an entity with an association
“1..*” has at least one child entity;

4. Property View. While the previous item creates new child entities, Property
View allows researchers to modify contents in an entity’s attribute. Some attributes
cannot be modified. For these attributes, this view presents only its content.
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7.4 CODEX EXECUTION PLUGIN
Once the researchers had completed the recruitment, each participant can proceed in the
experiment and start experimental tasks. Figure 19 presents the Codex Execution Plugin
interface to carry out a coding experiment task. In particular, the user interface (UI)
comprises four buttons. Each button implements one of the following activities:

1. Loading and Selecting Experiment. This button brings a new window presenting
all available coding experiments. In this window, a participant can start a previ-
ously loaded experiment or load a new experiment. Section 7.4.1 details experiment
loading process;

2. Configure Current Task. This button is only enabled after loading or selecting a
codex experiment by the previous UI. When enabled, this button is a trigger to a
set of actions to adjust the participant’s Eclipse Workspace according to task spec-
ification. For instance, it creates an Eclipse Java project for each project modeled
in the Codex model;

3. Start Current Task. This button is not enabled until a codex experiment is config-
ured (the previous UI action). When a participant presses this button, our plugin
starts to observe participant actions. What and how to observe participant action
are performed according to the Codex model.

4. Finish Current Task. This button has two duties. Firstly, it stops all observers
that were profiling participant activities. After, each monitor stores the collected
information. If there are remaining tasks to perform, our tool identifies the next task.
After identifying next task, our platform enables the button Configure Current Task
again. This process repeated until there is no more task remaining in Codex model.
When there are no more tasks to perform, our plugin presents a file selector window.
The chosen file has to store all data collected from participant trial. Section 7.4.2
details data collection and storage process. Finally, the researcher can gather the
file with the collected data from each participant separately.

Figure 19 – Codex Execution Plugin Screenshot.
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7.4.1 Loading and Selecting Experiment

This section presents the feature Loading and Selecting Experiment. The fourth button
in Figure 20 triggers this feature. After pressing this button, the window in Figure 20
appears. This window comprises three main graphic elements:

1. Load New Codex Experiment Button. This button is at the top-left in Loading
and Selecting Experiment window. When a user clicks on this button, a file selector
window is displayed. In this file selection, a user has to select the Codex Model
corresponding to experiment from the local file system;

2. Loaded Experiment Table. Each line in the table (Figure 20) represents a previously
loaded experiment. The information presented on each line is the experiment’s name
and its status icon. There are three available status icons: Experiment Loaded,
Experiment Started, and Experiment Finished;

3. Select and Cancel Buttons. These buttons are at the bottom-right in Loading and
Selecting Experiment window. The Select Experiment button is only enabled af-
ter a user selects one experiment at Loaded Experiment Table. After selecting the
corresponding Codex model, each participant has to choose an execution track. An
execution track corresponds to a trial at the design of experiment (DoE) (WOHLIN

et al., 2012). For instance, an experiment 2x2 usually has two tracks (control and
treatment tracks).

Figure 20 – Codex Execution Plugin Screenshot.

7.4.2 Collecting Data

Our platform monitors the experiments in real time. The collectible data depends on
experiment specification in its Codex model. It may range from the total time spent to
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complete a task to artifacts created during the experiment (Section 6.4). To support the
data collection, we used the Usage Data Collector (UDC) (FOUNDATION, 2018). It is a
framework for collecting usage data information. It is a lightweight framework that installs
listeners on various aspects of the Eclipse workbench, and—from those listeners—gathers
information about the kinds of things that the user is doing (i.e., activating views, editors,
and others). However, the current version of UDC is deprecated, so we had to update
almost all UDC source code.

Regarding data collection, the UDC is a core element in our platform. For instance,
considering Huang e Holcombe (2009)’s experiment, one of the variables observed in this
experiment was quantity of test executions. This variable can be modeled by the entity
DataFromAction in our metamodel (Chapter 6). We have to set track field to TIME and
momment field to TEST_EXECUTION. When this entity is loaded in our Eclipse plugin,
the UDC is set to listen all events about file execution and it has to record only those
when execution file is a Java test (JUnit sub-class). All this configuration is automatic,
the participant only have to load the experiment model before start a trial execution.

After a trial, the data collected from each participant is saved in a file. This file is
in JSON File Format (SMITH, 2015). We decided to use this format, because statistical
analysis tools handle such files, such as SPSS (GREEN; SALKIND, 2010) and R (DALGAARD,
2008).

7.4.3 Limitations

One of the criticisms of our design is creating two distinct buttons to configure and start
tasks. A simple button could implement both features. Then, pressing this button, it
triggered the operations for configuring and monitoring. We decided to divide these two
actions separately in two buttons, because, in some scenarios, the configuring operations
cannot be entirely automatic, for instance, Müller (2007). So that, we allow that after the
automatic configurations some procedures can be carried out before starting each task.
However, as we discuss in Chapter 8, usability is an issue in our platform. In particular,
usability is a vital component of product quality and it becomes increasingly important
once the initial excitement of a new technology dies down and customers look for effective
use rather than technological novelty.

Some also may criticize our adopted architecture. Our architecture did not exploit a
client-server Web architecture nor cloud computing. In such architectures, we need a set
of servers to host part of the platform. It brings an overhead to configure the experiment
platform. On the other hand, the goal of our platform is to reduce as much as possible
the effort to carry out a coding experiment. Moreover, in some coding experiments, access
to the internet is forbidden. In such cases, an offline platform is preferable. However, we
plan as future work make some tests with such architectures.
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In the context of Cloud Computing, the Eclipse Foundation released in 2016 the Eclipse
Che (Eclipse Foundation, 2016), an open-source Java-based developer workspace server and
cloud IDE which provides a remote development platform for multi-user purpose. It also
contains an SDK which can be used to create plug-ins for languages, frameworks or tools.
Unfortunately, the capability to create plug-ins in Eclipse Che was not available during
the development of our tools. However, we plan to redevelop our Codex Modeling and
Execution Plugins for the Eclipse Che.

7.5 DISCUSSION
As presented in previous sections, Decode Platform supports activities in planning and
executing a coding experiments. However, benefits from our platform are not confined
only in such activities. By adopting our platform, researcher mitigate some threats in
their coding experiments. This section presents some common threats to valid of coding
experiments and how our platform aims to mitigate such threats. Experimental validity
refers to the manner in which variables that influence both the results of the research and
the generalizability to the population at large.

In the following, we present some threats to validity and how our platform mitigate
them:

• Hawthorne effect. This threat is also called as observer effect, it is a type of reactivity
in which individuals modify an aspect of their behavior in response to their aware-
ness of being observed (MCCARNEY et al., 2007). Our platform aids to mitigate such
threat by automatically configuring and observing variables. So that, participants
may feel that their activities are part of their daily activities, since they are using
their common development context (IDE, projects, etc.). However, participants are
affected by this effect, since they have to install and load experiment package.

• Fatigue effect. In psychometric studies of cognitive performance that last several
hours, there are two major potential influences on performance (SUESS; SCHMIEDEK,
2000). Fatigue and loss of motivation may lead to a drop in performance while effects
of practice on similar tasks can possibly help to improve results. Besides the effects
on mean scores there is also the possibility of a change in the reliability or in the
relations between single tasks and the constructs intended to be measured, thus
an effect on validity. Our platform provides mechanisms to mitigate this effect,
since participants can pause the experiment execution. However, this feature is only
provided in the moment after finishing a task and before starting the next.

• Reliability of measures. The validity of an experiment is highly dependent on the
reliability of the measures (WOHLIN et al., 2012). A manner to mitigate this threat
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is by data triangulation. Data triangulation is any action toward validates data
and research by cross verifying the same information. This triangulation of data
strengthens a research paper because data has increased credibility and validity. And
our platform support this activity since, it collect data automatically via multiple
sources. Besides, researchers are motivated to use other data source instead of relying
only on the platform.

• Forecast Task Quantity. If participants know how many tasks they have to perform
in an experiment, they may perform the current task faster or slower (WOHLIN et

al., 2012). If a participant know that the current task is the last task, she/he may
perform faster than normal pace to finish the experiment trial. The same may occurs
if participants know that there are many other tasks. Our platform mitigate this
threat by not showing the task quantity to participants, they only know the current
task.

• Instrumentation. This is the effect caused by the artifacts used for experiment ex-
ecution, such as data collection forms, document to be inspected in an inspection
experiment, etc (WOHLIN et al., 2012). If these are badly designed, the experiment is
affected negatively. This threat is related to the previous threat. So that, the same
support provided for the previous threat also support the mitigation of this threat.

• Compensatory rivalry and Resentful demoralization. A subject receiving less de-
sirable treatments may, as the natural underdog, be motivated to reduce or re-
verse the expected outcome of the experiment (WOHLIN et al., 2012). This threat
is called compensatory rivalry. Resentful demoralization is the opposite of the pre-
vious threat (WOHLIN et al., 2012). A subject receiving less desirable treatments
may give up and not perform as good as it generally does. Depending on experi-
ment context, participants cannot know what is the treatment and the control. So
that, our platform may apply or not a treatment without participant’s interference.
For instance, Soares, Laureano e Borba (2002) carried out an experiment compar-
ing traditional development against aspect-oriented development. In our platform,
participants may not realize that the treatment and control are the development
paradigms. They have only to know what are the tasks.

7.6 CHAPTER SUMMARY
Analyzing and evaluating software development process and source code characteristics
is a major step towards achieving software product quality. The Codex is a platform
modeled around a pluggable, extensible architecture that aid the execution and replication
of coding experiments.
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8 EVALUATING CODEX PLATFORM: PERFORMING
A CODING EXPERIMENT AS A CASE STUDY

Science is facts; just as houses are made of stone, so is science made of
facts; but a pile of stones is not a house, and a collection of facts is not
necessarily science.

—Jules Henri Poincaré

8.1 INTRODUCTION
Chapter 6 and Chapter 7 presented the Codex metamodel and platform, respectively.
They offer a set of resources and models to support the execution of experiments involving
coding activities (coding experiments, for the sake of simplicity). Some pair reviews and
proof of concepts provided clues about the effectiveness of Codex platform (FERREIRA

et al., 2015; FERREIRA, 2014). However, it mandatory to demonstrate our platform in
practice.

In this context, a case study in software engineering is an empirical inquiry that draws
on multiple sources of evidence to investigate one instance (or a small number of instances)
of a contemporary software engineering phenomenon within its natural context (RUNE-

SON, 2003). This chapter presents and discusses the results obtained from a particular
case study with our platform. Moreover, the natural context of our platform is a coding
experiment, since Codex platform goal is to support coding experiment execution.

Other solutions to support SE experiments also were used in experiments (VOKÁČ

et al., 2004; BRITO; NETO, 2012; SVAHNBERG; AURUM; WOHLIN, 2008). However, to the
best of our knowledge, none of them treated their experiments as an exploratory case
study to investigate their solution in practice. In such works, their report focused on
presenting only the experiment’s design, results, and analysis. However, in this chapter,
our focus is to evaluate our solution, taking into account the perspective of researchers
and participants, when the Codex platform is used in an experiment. The case study was
carried out with researchers enrolled in Experimental Software Engineering Course at
the Federal University of Pernambuco. Our primary data sources were observations and
interviews with participants. Such data sources were triangulated with memos of observer-
participant and experiment protocol. The case study revealed that Codex platform is
a valuable resource for designing and executing coding experiments. However, it also
revealed limitations while using the platform.

The rest of the chapter is composed as follows. Section 8.2 presents the research design.
Section 8.3 presents some results of the case study. Section 8.4 discusses the results of our
case study. Section 8.5 summarizes and offers suggestions for further research.
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8.2 CASE STUDY
The primary goal of our case study is to investigate whether Codex Platform is useful
to support coding experiments. As introduced before, a case study is recommended since
it is a suitable way of managing an empirical investigation into a particular and current
phenomenon in its natural context (ROBSON; MCCARTAN, 2016). This case study followed
guidelines proposed by Runeson e Höst (2009) for conducting and reporting case study
research in SE. These guidelines establish necessary process steps to carry out a case
study. The following sections describe details of the activities included in each step.

8.2.1 Research Questions

This section presents the rationale for selecting each research questions. Based on the
primary goal, we proposed the following general research question:

“Does an MDE approach based on coding experiment specification aid the execution
of coding experiments”

To make concrete our case study scope, the general question was detailed into three
more specific questions, which guided this exploratory research work:

• RQ1. Can a coding experiment be executed with Codex platform?

Before analyzing any property of the Codex Platform, we have to ensure the platform
does not prevent coding experiment execution. As said in Chapter 6, the platform
is based on an extensive literature about coding experiment. However, the platform
effectiveness can only be attested in a practical experiment.

• RQ2. What are the benefits and limitation of using Codex Platform to support a
coding experiment?

Given that coding experiments may be executed with the Codex Platform, the
experience of carrying out it is a valuable source of information. They can be used
to identify benefits and limitation when using the Codex Platform.

• RQ3. Regarding the possible issues arising during the experiment, is there any issue
cased by Codex Platform?

In general, experiments have issues (HECKMAN; SMITH, 1995; HECKMAN; SMITH,
1999). When evaluating the Codex Platform in a coding experiment, the identified
issues have to be analyzed. So that, we can assess whether such issues are due to
platform use or not.
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8.2.2 Definition of the Case

Case study research is defined as “the in-depth study of instances of a phenomenon in its
natural context and from the perspective of the participants involved in the phenomenon”.
We decided to carry out a case study in an academic setting, since it is easier to recruit
subjects for experiments (HÖST; REGNELL; WOHLIN, 2000) and many coding experiments
are conducted in such contexts. The case was performed in the Software Engineering Ex-
perimentation Course at the Graduate Program in the Center for Informatics/UFPE. The
objective of this course is to teach how to design and carry out experiments using appro-
priate methods for a given problem. In this course, students have to develop their skills
in planning, analyzing and, reporting experimental data. The course had 13 attendees,
and it was organized in three parts: (i) The instructor lectures on concepts of designing
experiments in SE; (ii) students and instructor read and discuss each chapter of Juristo
e Moreno (2013); and (iii) students carry out a half semester-long experimental project,
write a report, and present the results. The case targets the third part of the course.

When performing a case study, two core concepts are the case and the unit (RUNESON;

HÖST, 2009). Researchers make a distinction between a case and the unit or units of
analysis in that case. Yin (2013) distinguishes between holistic case studies, where the
case is reviewed as a whole, and embedded case studies where multiple units of analysis
are examined within a case. The current study is bounded by time, participants and place,
therefore it can be viewed as a holistic case study.

8.2.3 Case Selection

Borges et al. (2015) identified several empirical studies including coding experiments.
In principle, such coding experiments are potential candidates for this case study. The
main constraint for selecting a case is the time-window available. The professor and the
author of this thesis identified 20 candidates from the studies identified in Chapter 5. Such
experiments could start in a short period and finish in about five months (the course time
window). Initially, two case studies were selected as units for the case study, however, as
the research progressed, it became apparent that it was not practical to plan and execute
two experiments. Finally, the experiment carried out by Santos, Mendonça e Silva (2013)
was selected to be replicated. Santos, Mendonça e Silva (2013) designed an experiment for
investigating the concept of God Class, which is a class or methods with a high complexity.
According to Fowler e Beck (1999), a god class is a class that tries to do much (i.e., it has
many responsibilities and instance variables). This experiment was selected because:

• It is well-documented. The authors reported their experiment in three documents:
the experiment protocol, an article (SANTOS; MENDONÇA; SILVA, 2013), and a web-
site 1. Most documents are in English. However, some are in Portuguese;

1 http://wiki.dcc.ufba.br/LES/FindingGdoClassExperiment2012
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• Its artifacts are available. As said before, the authors produced a website for exper-
iments. In this site, the authors provided reports and all relevant artifacts used to
experiment;

• Its experiment context. The coding activities were performed in Eclipse IDE. Besides,
the authors developed an Eclipse plug-in only to collect data from the participants.
With the Codex platform, this effort could be alleviated.

8.2.4 Data Collection Procedure

After executing all coding activities, each researcher that participated in of the experi-
ment had to answer a questionnaire. This questionnaire was designed to give information
about their experience in participating. The questionnaire was composed by few open-
ended questions. In summary, the participants were motivated to write all good and bad
experiences in designing and conducting the experiment using the Eclipse Plug-in to de-
tect God Class, and using the Codex platform. The full list of questionnaires is provided
in Appendix A. The answers of questionnaires were our primary data source. However,
as said before, we used other data sources to triangulate our findings. The other data
sources were:

• Participant-observer memos. A researcher supervised the experiment execution. The
main role of this researcher was to answer any doubt about the experiment, tools,
and platform. However, the researcher was forbidden from answering any questions
about the coding activity execution. During the experiment execution, the research
wrote down any relevant observation.

• Experiment protocol. As part of Software Engineering Experimentation Course, stu-
dents had to write a document describing the experiment protocol. An experiment
protocol describes the procedural method in formulating and implementing the ex-
periment. Protocols are written whenever it is desirable to standardize a laboratory
method to ensure successful replication of results by others in the same laboratory
or by other laboratories. A Detailed protocol facilitates the assessment of its results
through peer review.

A source of automatically-collected data were the Codex platform logs. One of our
goals with the Codex platform is to provide an automatic mean to collect data. We also
used this information as source of information, specially about the effort to configure and
execute coding experiments.
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8.2.5 Analysis Procedure

As said before, our primary data source was the questionnaire responses from researchers.
However, the number of responses was too low to generate any significant statistics. The
results are, however, significant when interpreted in case study’s context. Given the back-
ground, a qualitative data analysis method is recommended, since the fundamental objec-
tive of the study is to derive conclusions from data, keeping a clear chain of evidence. The
chain of evidence means that a reader should be able to follow the derivation of results
and conclusions achieved.

The objective of the qualitative analysis is to consolidate, reduce, and interpret data
obtained from various sources, and make sense of them (MERRIAM; TISDELL, 2015). It
involves labeling and coding all data to identify similarities and differences to describe
the phenomenon under study. We used coding techniques compiled by Seaman (1999) to
code, categorize, and synthesize data.

Data analysis followed the principles of coding technique (SALDAÑA, 2015). Initially,
it began with an open coding each transcript. Post-formed codes were constructed as
the coding progressed. Each code were attached to their original pieces of text. Then,
the codes arising were compared to codes in similar responses from other participants.
From a constant systematic comparison, we grouped them into categories that represent
factors affected by the use of Codex platform. As the data analysis process progressed,
relationships among categories were built.

All codes and categories discovered by the coding techniques were matched against
the data in experiment protocol A and observer memos. It is essential to (i) improve the
finding reliability and (ii) to identify points that were not cited by the codes. Such missing
points may be necessary to understand the use of Codex platform in practice.

8.2.6 Ethics

We followed the resolution 466/12 – CNS-MS of the Brazilian National Health Council
that regulates research with human subjects. The company signed a Term of Authoriza-
tion, and the researchers signed a Non-disclosure Agreement (covering access to sensitive
information). Both documents granted the researchers access to facilities, to the partic-
ipants, and to necessary documentation. They also authorized the subjects to use work
hours for the interviews. We believe this formalization reduced the possibility of partici-
pants concealing information that they would consider sensitive. Before the meetings, each
participant signed an Informed Consent Form that explained the overall objective and rel-
evance of the research, guaranteeing data confidentiality, anonymity, the non-obligatory
nature of the participation, and the right to withdraw from the study at any moment.
All invited individuals freely agreed to participate, and no participant withdrew from the
research.
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8.3 RESULTS
This section presents and discusses some results from the executed case study. Firstly,
we explain how the case was executed (Section 8.3.1). After, we present a description of
the researchers that participated of our experiment (Section 8.3.2). Finally, Section 8.3.3
presents all codes and categories obtained our analysis.

8.3.1 Case Execution

As mentioned, the case studied was part of the Experimental Software Engineering Course
at Center of Informatics, Federal University of Pernambuco. The experiment lasted for
ten weeks. Table 29 present each week in case execution. All participants were required to
be involved in a variety of activities of the experiment under study. Such activities include
design, carry out, and analyze the collected data. Some of these activities were performed
during the four-hour weekly class period, and some tasks were supposed to be completed
as homework. Each class was held in a classroom. In this classroom, each participant had
access to individual computers. The course took place during the university’s fall semester
and began in August 2016 and ended in December 2016.

During the first week, students were given an overview of the general experiment
process. After the class, the students had to read carefully Santos, Mendonça e Silva
(2013)’s work, as example of an experiment in SE. Besides, they had to identify all concepts
presented in the class to get involved in experiment context.

In the following week, any doubt about experimental concepts or about the original
experiment were clarified. Then, the researchers were split in groups. Each group was
responsible for designing and writing part of the experiment protocol. After the class, they
had to write a first version of the protocol. This preliminary protocol included information
such as variables, hypothesis, and context.

In the third week, more specific characteristics of the experiment were discussed. In
particular, it was discussed the experiment design and the design of each coding task.
After the class, students had to update and finish the experiment design.

In the next week, the Ph.D. candidate developed an experimental model draft, based
on the experiment design proposed by the students. The resulting model was discussed in
class. After discussion, the model was updated. At the same time, the group of students
responsible for writing the experiment execution description started to write each phase
of the experiment. Besides, one participant was sampled for conducting a pilot study. The
first pilot study activity evaluated the presentation about God class and Codex plug-in.
Some lacks and limitations were identified and treated.

In the sixth week, the Ph.D. candidate exposed the updated version of the presentation
about God class and Codex plug-in. After the presentation, each participant was asked
if there was any doubt about the plug-in. Besides, it was required to each participant to
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Table 29 – The derivation and execution of the Class.

Time Course Activities
In-class teaching In-class activity Out-of-class activity

Week 1 Experiment overview - Reading the paper and
protocol

Week 2 Clearing doubts about
the experiment

Splitting the students
in groups

Structuring the
document according to
the assigned duty and
proposing a first
version of experiment
design

Week 3 Clearing doubts about
the document

Discussing experiment
design and variation
from original

Finishing the
experiment design

Week 4

Presentation of the
Codex Model
according to the
protocol

Discussing the created
model

First experiment
execution draft

Week 5
Presentation about
god class concept and
support tools

Discussion about the
experiment execution

Finishing the
description of
experiment design

Week 6 Presentation about the
Codex Plugin

Discussion about the
Codex Plugin

Training on Codex
Plugin and
warming-up with pilot
experiment execution

Week 7 - Carrying out coding
activities Starting data analysis

Week 8-9 - Discussing data
analysis Finishing data analysis

Week 10 - Discussing final version
of the protocol -

perform a simple experiment case at home. The participants were encouraged to perform
such case to get immerse in the platform and raise possible doubts. At the same time,
the experiment execution was carried out with the updated experiment model (created
in the fourth week) in the pilot study. As result of the pilot execution, some issues were
fixed before experimenting with all participants.

In the seventh week, students were ready to experiment. They performed the activi-
ties in the classroom, seven of them performed it on lab computers, while four of them
performed it on their laptops. After the experiment, they were asked to answer the ques-
tionnaire presented in Section 8.2.4. This information is crucial to our case study.

The following weeks were dedicated to data analysis. The lecturer and the Ph.D.
candidate aided the researchers in this task. Besides, they had to report the results in the
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Table 30 – General participant profile.

Gender
7 males
5 females

Experience in
Industry or
Academia

4.11 years

Project Roles

11 programmers
3 requirement specifiers
3 project managers
2 technician Managers
2 quality specifiers

Experience
4.72 years of programming experience
3.13 years of OO programming paradigm

Table 31 – Experience participant profile

expert good low none
Java 1 7 2 1
Refactoring 0 4 6 1
God Class 0 3 3 5
Eclipse 1 6 4 0
JDeodorant 0 1 3 7

experiment documentation. As we already said in Section 1.2, this thesis aims at execution
and data collection in coding experiments, therefore data analysis and discussion about
results are out of case study’s scope. However, it can be found in Appendix A.

8.3.2 Subject Description

As discussed in Section 8.2.2, participants were selected by convenience sampling. The
sample consisted of 13 grad students enrolled in the post-grad program at CIn/UFPE.
From this sample, we had one drop-out. Moreover, one participant was removed from the
experiment sample to participate in the pilot experiment. Table 30 presents remaining
participant profile (11 grad students) complying with ethical norms regarding anonymity.
All the participants had experience in projects at Industry or Academia. Besides, the
same participant could have more than one role in the same project.

Regarding participant experience, Table 31 presents the self-estimated experience to
relevant characteristics. A self-estimated experience is an excellent indicator to specify
the experience (LAUGWITZ; HELD; SCHREPP, 2008).

Considering Table 30 and Table 31, participants are experienced in programming and
designing systems and Eclipse IDE. Moreover, they have a moderated experience in god
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class design. On the other hand, they had a limited knowledge on the treatment (JDeodor-
ant). We conclude that the sample represents a good picture of the target population
(people that perform coding experiment). Furthermore, the sample is not biased by the
treatment.

8.3.3 Categories and Codes

Based on coding techniques (Section 8.2.5), the answer of each participant was coded. The
codes were synthesized, key features of their experience were identified when participating
in an experiment with the Codex platform. Figure 21 presents identified categories and
sub-categories from the codes.

As Figure 21 presents, there are three main categories that synthesis all quotations
made by the participants:

• Codex Plug-in: This category synthesis all the references made by the participant’s
referent to Codex Plug-in issues;

• jDeodorant Plug-in: This category synthesis all the references made by the par-
ticipant’s referent to deodorant Plug-in issues;

• Experiment Execution: This category synthesis all the references made by the
participant’s referent to experiment execution.

The next sections details each category and its subcategories.

8.3.3.1 Codex Plug-in Category

Eight out of ten participants made comments about the Codex Platform. Following an
axial coding technique, we categorized each quotation in sub-categories. The identified
sub-categories are:

• Distributed vs Presential Execution groups. As said in Section 8.3.1, the par-
ticipants executed the pilot and training at their computer in their houses. However,
the experiment execution was implemented at the course’s laboratory. Six partic-
ipants commented on a co-located and distributed execution. Table 32 presents
the factors pinpoint by the participants. One participant said that a complete dis-
tributed execution would result in a catastrophe due to the bugs found in the Codex
Plug-in. Two other participants discourage a distributed execution since the doubts
could not be cleared up. However, three other participants commented that a dis-
tributed execution could be natural. Two participants asked if they could use our
platform in experiments of their researches;
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Table 32 – Factor evaluation according to the participants.

Factor Training Experiment
Bug - -
Clear doubting + -
Automatic Configuration + +

• Platform Improvements. Four subjects related limitations in Codex Plug-in. The
majority of the comments were about the tool’s usability (three participants). They
said that the icons and the order of buttons are not intuitive. One participant
also commented about the experiment activity tracking. He said that should be a
mechanism to know what is the current and next tasks.

The categories presented in this section were also mentioned in other data sources. The
Co-located or Distributed Experiment Execution was referred to in observer-participant
memos. As said in Section 8.3.1, the training, and pilot were executed distributed. In
some memos, the researcher observed that not all participants executed the training and
pilot. Besides, such participants had more doubts about the Codex plug-in. Regarding
the experiment protocol, there few information about this category. The participants only
mentioned that the training and pilot were executed distributed, while the experiment
execution was co-located.

One participant mentioned a critical bug that occurred during the experiment. This
bug was also reported in both experiment protocol and the observation report. The
observer-participant mentioned that during the experiment execution, some data col-
lected by the Codex Plug-in had was missed. Debugging the tool, we observed that a
stack overflow exception was thrown. Unfortunately, it could not be observed during the
pilot neither in the warm-up. Analyzing tool’s logs, we concluded that it happens due to
a restricted memory size of the laboratory machines. In the observer participant’s memos,
this bug occurrence was documented. In the experiment protocol, it can be seen indirectly.
In the original version of the protocol, there was one hypothesis regarding the informa-
tion that could not be collected. After the experiment execution, this assumption were
removed from the protocol.

Regarding other limitations, the other sources had few data about it. The usability
issues were observed by the participants that had not performed the training and warm-
up. However, some participant that had performed them also mentioned some problems
in the usability.

8.3.3.2 jDeodorant Category

As said in Section 8.2.3, the treatment in our experiment was the jDeodorant plug-in.
Four participants commented about the jDeodorant. In fact, the aim of our experiment
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was to evaluate the codex platform in place. However, the subject was free to comment
anything in the experiment. We did it to reduce bias in their answers.

Similar to Codex Plug-in, the majority of the comments were about the usability of
the tool. Three of four participants that mentioned the jDeodorant were concerned about
the usability of the plug-in. One of the participants said even that the results of the tools
were not reliable. However, another subject said that the tool was usefulness to find god
classes in source codes.

Regarding the other data sources, observer-participants memos mentioned that some
participants had doubts with the jDeodorant. As said in Section 8.3.1, in Week 5, the par-
ticipants had training with the jDeodorant tool. Unlike the Codex Platform, the training
was not distributed, it was in the laboratory.

8.3.3.3 Original Experiment Category

The last category identified by the coding technique is the Experiment Execution. This
category includes the codes and quotes about the way how the experiment was conducted.
Five participants made seven comments about it.

Two participants made a few remarks about the size of the project. The experiment
was carried out precisely as Santos, Mendonça e Silva (2013) documented it. However,
according to Chatzigeorgiou e Manakos (2010), the number of bad smells increases with
the size of the project. In the original experiment, only three of six scenarios had at
least one god classes. Moreover, these three projects had only one or two god class. Some
participants said to the participant-observed that they guessed that each project had to
have at least one god class by a project. However, before the experiment execution and
in the questionnaire, it is stated that some projects may not have god classes.

One remarkable comment is about the time between the training and the experiment
execution. There was a gap of one week between the training and the experiment execution
(Section 8.2.3). It was an extended period to ensure that the everything is fresh in the
memory of the participants. We mitigated this threat, a warm-up before the experiment
was performed with both the Codex plug-in and the jDeodorant.

The information cited in this category was mentioned in the experimental protocol.
However, the participants mentioned it as future work. We did not find any remark about
this category in the participant-observer memos.

8.4 DISCUSSION
The case study presented in this chapter explores the use of the Codex Platform in a coding
experiment. The platform provided support to design and configure the development
environment to perform the coding tasks. However, some issues were observed during the
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execution of such tasks. This information was found in the data sources and information
mining of them. The rest of this section presents a discussion on the results regarding
each research question based on the case study results. Besides, this section discusses
limitations and validity of this results and directions for future research.

8.4.1 RQ1. Can a coding experiment be executed with the Codex
Platform?

Regarding the whole case study, the coding experiment was successfully carried out sup-
ported by the Codex Platform. The platform supported the activities: coding activity
specification, coding environment configuration, and data collection. However, during the
experiment execution occurred some issues (Section 8.3.3.1).

The majority of the participant’s quotes regards enhancements. They include im-
provements in the Codex Platform, the jDeodorant, and the original experiment. The
next section details the found benefits and limitations (Section 8.4.2).

Comparing the effort reported by Santos, Mendonça e Silva (2013) and this replication,
we observed a some differences. In the original experiment, the authors had to implement
a plug-in to manage the experiment execution, and each participant had six versions of
Eclipse (one for each task). Such characteristics improve the effort required to experiment.
On the other hand, this replication did not require such effort since the platform could
manage all these activities. With the Codex Platform, such effort is not mandatory. How-
ever, there is an extra effort to model the experiment based on the experiment protocol
and artifacts.

Finally, this case study can be seem as a proof of concept. More experiments are needed
for a complete evaluation of the platform. Not only other replications of the experiment
presented here, but also other coding experiments in other contexts.

8.4.2 RQ2. What are the benefits and limitations in use the Codex
Platform?

The codes presented in Section 8.3.3 exhibit some benefits and limitations of the Codex
platform. One of them was the defects occurred in the experiment (especially, the error
during the collected data serialization). This issue is critical and treats the use of the
platform.

Many participant’s quotes are related to usability. It is a critical issue too in the Codex
Platform. A usability evaluation is required to foster the use of the platform in another
experiment. This assessment can follow the guidelines to usability evaluation (TURNELL;

QUEIROZ, 1996; QUEIROZ; FERREIRA, 2009). One of the participants recommends a panel
presenting the performed and following activities. However, according to Wohlin et al.
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(2012), such recommendation may not be beneficial. Knowing the next and quantity of
tasks tend to put pressure on the participant.

Distributed and co-located execution is an ambiguous issue, there is no consensus
about the realization of an experiment only in the platform, without being in a laboratory.
However, it is necessary fixing all bugs before executing a distributed experiment. Besides,
according to the literature on distance education (PORTER, 1997; MOORE; KEARSLEY,
2011), in a distributed execution, videos and web tutorials are recommended.

Another issue that comes from the codes in Section 8.3.3.1 is a co-located training and
supervision. We encourage such practice when using the Codex Platform. It does not mean
that all the participants have to experiment at the same time. However, we recommend
that a supervisor shall be available during the experiment execution, especially if it is the
first time with the platform. Ko, LaToza e Burnett (2015) observed the same in other tool
evaluations. More experiments may show that participants confident with the platform
may perform a whole distributed experiment.

8.4.3 RQ3. Comparing the original experiment and this replication,
are there exclusive issues due to the use of Codex Platform?

The code presented in Section 8.3.3.3 are not due to the Codex Platform. Such code is also
relevant to the original experiment. It may suggest that our platform does no influences
the execution of the experiment.

Both the Codex plug-in and the treatment (jDeodorant) are Eclipse plug-ins. Sec-
tion 8.3.3.2 presents many codes about the usability issues for the jDeodorant. Therefore,
usability is an issue for any tool (it is not strict to the Codex plug-in or the jDeodorant).
Moreover, as said in previous section (Section 8.4.2), a usability evaluation is required.

8.4.4 Addressing Limitations, Validity, and Reliability

The validity of a study denotes the trustworthiness of the results, to what extent the
results are true and not biased by the researchers’ subjective point of view. Threats are
divided into four classes: (i) Internal, (ii) External, (iii) Construction, and (iv) Reliabil-
ity (RUNESON, 2003) The next sections list identified threats and some actions to mitigate
them.

8.4.4.1 Construction Validity

Selection of participants: results are dependent on the people interviewed and the lack of
experience can lead to misconceptions. Aiming at mitigating this threat, we selected 12
researchers with various backgrounds. Therefore, our platform was evaluatued by diverse
perspectives.
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Reaction bias: there is a risk that the presence of the case study investigator influences
its result. So that, obtaining favorable results due to the biased behavior. To reduce
this problem, the researcher was present without commenting or interacting with any
participant during the experiment execution, only observing and annotating discreetly.

Timeliness of questionnaire: questions may be misunderstood or responses misinter-
preted, resulting in wrong answers. To avoid this, the questions in questionnarie were
transcribed and the experimenter had to validate the answers, making corrections if they
thought necessary.

8.4.4.2 Internal threats

Internal validity, or credibility, is related to the extent that the results match reality and
that the researchers were able to capture reality as close as possible. We collected direct
data from participants with different backgrounds. We then contrasted and compared di-
rectly collected data with observations of the observer-participant. We then used member
checking to verify the completeness of our findings.

8.4.4.3 External Threats

Specific researcher: the fact that the case study occurred with only 12 researchers. It
was impossible to find other researchers who fit the case selection requirements, however,
to minimize this threat, the context of the selected case was explained to facilitate the
understanding of how the results found here can apply to another specific context. In
addition, data from various data sources were used to validate the researcher’s opinion.
However, it is the extent to which the results of a study can be generalized to other
situations and to other people is still an issue.

8.4.4.4 Reliability

Interpretation of the data: the result can be influenced by the interpretation of the data
by the researcher of the case study, inserting a bias of interpretation. To mitigate this
threat, the study was designed to collect data from various sources and make it possible
to triangulate these data.

8.5 CHAPTER SUMMARY
We have presented an exploratory case study for evaluating Codex platform with a po-
tential users and practical tasks when carrying out a coding experiment. The design of
the case study has been done according to the methodological framework for defining
case studies presented in Runeson e Höst (2009). Although this small-scale case study
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will never provide general conclusions with statistical significance, the obtained results
can be relevant to support other coding experiments (RIBEIRO et al., 2012; VOKÁČ et al.,
2004; BRITO; NETO, 2012; SVAHNBERG; AURUM; WOHLIN, 2008). Moreover, the study
was beneficial as a proof of concept to support the assumptions presented in Section 1.2.
Moreover, from the Codex platform project’s point of view, we have also learned: (i) the
platform has shown to be useful within the context of a real coding experiment case, and
(ii) the platform has the ability to automate experimental configurations within an actual
coding experiment, and (iii) the platform has a potential ability to collect data from the
participants automatically.
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9 RELATED WORK

Talent wins games, but teamwork and intelligence win championships.

—Michael Jordan

9.1 INTRODUCTION
This chapter presents related work concerning the contributions of this thesis and the
state of the art in the empirical literature. Some works are the writings that inspired and
guided our research, while other studies although similar to what we performed, did not
completely satisfy our goals.

9.2 MDE APPROACHES TO SUPPORT SOFTWARE ENGINEER-
ING EXPERIMENTS

Despite the growing need for experiments in SE, carrying out such kind of empirical study
is still a challenging. Furthermore, such controlled studies need to be replicated because
a single controlled experiment may be insufficient and their results are limited concern-
ing conclusions’ generalization (JØRGENSEN et al., 2016). Conduction and replication of
large-scale experimental SE studies are even more complicated. Concerned about the
methodology of SE experiments, many researchers published procedures and guidelines
aimed at improving the rigor of conducting and reporting such experiments (WOHLIN et al.,
2012; JURISTO; MORENO, 2013; CARVER et al., 2014; JEDLITSCHKA; CIOLKOWSKI; PFAHL,
2008). Afterwards, some other researchers put some effort to identify and compile such
relevant publications (JEDLITSCHKA; CIOLKOWSKI; PFAHL, 2008; MONTGOMERY, 2008).
However, to the best of our knowledge, no effort has been directed towards cataloging and
analyzing the MDE approaches to support experiments in SE.

Borges et al. (2015) surveyed all the papers published in eight well-known venues in
empirical SE. Besides classifying each article according to the empirical method, that
work also identified the mechanisms used to aid each empirical method. According to the
authors, a mechanism is an artifice used to support the execution of the empirical method
(such as tools, guidelines, and processes). However, the authors only offer a catalog of
mechanisms; they do not present any comparison. Moreover, they do not focus in any
particular mechanism domain.

As mentioned before, Freire et al. (FREIRE et al., 2013) performed a systematic review
of the existing literature to identify the automated support tools for SE experiments. This
study identified and analyzed seven tools that support the execution of experiments in
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SE. However, only four of them allow to specify the experimental protocol as a model
(Section 4.2). Moreover, the authors do not analyze their finding in the light of guidelines
to conduct experiments in SE.

Use of modeled experiment protocol to support experimentation is commonplace in
other scientific areas. For instance, the Simulation Experiment Markup Language (SED-
ML) was developed to define models for biological experiment domains (WALTEMATH et

al., 2011). Such models are used to validate data or replicate experiments. To better of
our knowledge, there is no initiative in that direction for SE experiments.

9.3 EMPIRICAL STUDIES TO EVALUATE APPROACHES TO
SUPPORT EXPERIMENTS IN SOFTWARE ENGINEERING

Freire et al. (2013) conducted a systematic review of Tool support for planning and
conducting controlled experiments in general. They found out that tool support is mainly
limited to the planning phase. Moreover, as presented in Chapter 4, the experimenter,
is often backed up by some DSL or ontology for defining an experiment. Support means
either textual as presented by Garcia et al. (2008) and Siy e Wu (2009) or graphically as
of Cartaxo et al. (2012). The textual ontologies allow the formal definition of experiments
and checking constraints regarding the validity of such.

Freire (2015) proposed the first integrated environment supporting all required steps
of an experiment, i.e., planning, execution, and interpretation. The authors developed
the ExpDSL approach for sustaining the environment. Additionally, expressibility and
completeness were empirically evaluated Freire et al. (2014) in various case studies.

Various researchers also employed efforts in developing experiment environments.
Mostly they differ for their application domains. In the domain of high-performance
computing, Hochstein et al. (2008) developed a set of integrated tools for supporting
experiments. The ’Experiment Manager Framework’ is supporting almost all experiment
related activities but also has some limitations. Araújo et al. (2016) proposed a similar
tool; this tool focuses on experiments involving automatic execution of source code tests.
However, both tools were not evaluated in other experiments.

Arisholm et al. (2002a) developed SESE (Simula Experiment Support Environment),
a web-based experiment environment. Subjects are guided through the experiment with
assignments. For each assignment, the time to spend it is measured. Additional material
can be distributed centrally, and the framework allows the centralized collection of results
and generated artifacts such as source code. The solution is applicable in many different
domains introduces, however, lots of media breaks, as subjects have to switch between
applications and tools. As of now, automated metric capturing for domain-specific aspects
are not realizable in a web-based tool. Thus, using SESE for language related experiments
is not optimal.
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Similar to the SESE, the eSEE (Experimental Software Engineering Environment)
has been proposed to support software engineers in their experimentation and scien-
tific knowledge management needs (TRAVASSOS et al., 2004; LOPES; TRAVASSOS, 2010).
Together with the tool proposal, the authors reported experiments performed with the
eSEE. Moreover, similar to SESE, the authors published documents about the eSEE’s
architecture and use Brito e Neto (2012).

Considering the limitations of the previously presented approaches, Häser, Felderer e
Breu (2016) have decided to provide an integrated tool environment for DSL experimen-
tation. The authors re-used different tested languages and tools. The experiment planning
was done with the ExpDSL, with its forms the base template.

The works presented in this section were evaluated in real SE experiments. However,
the experiment reports focus on the experiment in detriment of how the tools support
the execution of the experiment. For instance, such articles present the hypothesis and
whether they were rejected or not rejected.

9.3.1 Secondary Studies to Investigate Experiments in Software En-
gineering

Many studies have been conducted to better understand SE experiments (BORGES et al.,
2015; FREIRE et al., 2013). However, despite their contribution, such studies focused only
on general aspects of SE experiments, overlooking specific dimensions of each SE sub-area,
such as coding experiments. Below, we present some studies focusing on SE sub-areas.

Ko, LaToza e Burnett (2015) systematically reviewed the literature to propose a
methodological guidance to design and carry out experiments that involve developers us-
ing tools. In fact, this field is similar to coding experiments, but they are not equivalent.
For instance, Phongpaibul e Boehm (2006) compare code inspections and pair program-
ming. If in one hand, it is a coding experiment, on another hand, it does not involve any
tool.

Briand et al. (1999) discussed state of the art in empirical studies of object-oriented
solutions. The authors present future research directions and important issues regarding
the methodology of conducting such studies. However, this study only summarized the
results of a working group at the Empirical Studies of Software Development and Evolu-
tion (ESSDE) workshop in May 1999. Their results are a good starting point to elucidate
benefits and limitations in empirical studies involving coding experiments. However, they
have a too strict scope for a more general conclusion.
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Table 33 – Models for SE experiment scoping and planning phases.

Reference Year Paradigm
ESEML Cartaxo et al. (2012) 2012 DSL
ExpDSL Freire et al. (2013) 2013 DSL
Exper Ontology Garcia et al. (2008) 2008 Ontology
eSEE Travassos et al. (2004) 2004 Ontology

9.4 MODELS TO SPECIFY EXPERIMENTS IN SOFTWARE EN-
GINEERING

We classified the related work into two categories: (i) models for SE experiments and (ii)
models for software development process. The following sections present works in each
category.

9.4.1 Experiment Models

We presented an extensive discussion about models that emerged to support SE experi-
ment in Chapter 4. In this section, we only summarize our finding focusing on character-
istics of interesting in our discussion. Table 33 presents the identified MDE approaches.
More details are in Chapter 4.

ESEML (Empirical Software Engineering Modeling Language) is a DSL and tool to
specify experiment plans in SE. The authors describe the DSL following a model also
called ESEML. According to the authors, the language enables a researcher to represent
all relevant information, while the tool allows an automated generation of experimental
plans in PDF (CARTAXO et al., 2012).

ExpDSL (Experiment Domain-Specific Language) also comprises a DLS and tool.
However, besides supporting experiment procedure specification, the tool also monitors
the experiment execution. The model to specify experiments in ExpDSL has four views.
The process view is responsible for defining the activities, artifacts, and roles. The metric
view describes the metrics collected during the experiment execution. The experimental
plan view describes information such as the factors or the statistical design. Finally, the
questionnaire view represents all surveys to collect quantitative and qualitative data from
participants.

ExperOntology (Experiment Ontology) is an ontology whose concepts were created
to accommodate SE experiment representation. It aims to facilitate the reviewing and
understanding of experimental lab packages. The ontology comprises two levels of details.
The first refers to the most general controlled experiment concepts (similar to ExpDSL’s
experimental plan view). The second level focuses only in laboratory package. Similar to
ESEML and ExpDSL, there is a tool based on this ontology to support SE experiment
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execution (SCATALON; GARCIA; CORREIA, 2011).
eSEE (Experimental Software Engineering Environment) is an infrastructure to man-

age knowledge about SE experiment definition, planning, execution, and packaging. There
are two critical components in this infrastructure: the glossary and ontologies. The first
aims at establishing a standard terminology in experimental SE area. The ontologies
represent the formalization of the knowledge expressed in the glossary’s list of terms.
Moreover, this work has tool support (TRAVASSOS et al., 2004).

All approaches presented in this section focus on describing general experiment char-
acteristics, such as variables, hypothesis, goals, etc. They do not have any mechanism to
specify precisely domain-specific characteristics of coding experiments, such as artifact
dependency, code, and tests. A precise specification of such characteristics is fundamental
to provide automatic support for coding experiments.

9.4.2 Software Process Modeling Languages

García-Borgoñon et al. (2014) performed a systematic mapping study to identify Software
Process Modeling Languages (SPML). The authors identified more than 40 languages. We
highlight only languages electable to specify coding experiment characteristics:

• Business Process Modeling Notation (BPMN) is a standardized notation for creating
visual models of business or organizational processes (WHITE, 2004);

• Software Process Engineering Metamodel (SPEM) is defined as a profile (UML) by
the Object Management Group (SCHUPPENIES; STEINHAUER, 2002);

• Business Process Execution Language (BPEL) is an OASIS standard (ALVES et al.,
2007). This language is an executable language for specifying actions within business
processes with web services.

All these languages were adopted by various enterprises to specify their development
process. However, regarding experiment process (as described by Wohlin et al. (2012)),
these languages may be considered as a nemesis to those approaches presented in Sec-
tion 9.4.1. The SPMLs are powerful enough to specify precisely all domain-specific char-
acteristic in coding experiments. However, they lack means to specify information related
to some experiment concepts, such as observed variables and treatments.

9.5 PLATFORMS TO SUPPORT EXPERIMENTS IN SOFTWARE
ENGINEERING

When comparing approaches to support SE experiments against our approach, we have to
consider not only the information provided in this chapter, but also information regarding
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our metamodel. This information is crucial, since all information modeled by our meta-
model is supported by the tool described in this chapter. Moreover, this chapter describes
how the coding experiment support is provided, instead of what is provided.

Controlled experiments are increasingly used to gain empirical evidence on software
engineering phenomena. A systematic literature review conducted by Freire et al. (2013)
reveals, however, that tool support for planning and conducting experiments is very lim-
ited. These limitations affect especially coding experiments, where conducting experiments
is not only relevant for researchers but especially also for practitioners (as pointed out in
Chapter 1). Most tools for experimentation are dedicated to planning phase, by support-
ing the experimenter with some language or ontology. That support is either graphical as
proposed by Cartaxo et al. (2012) in their empirical software engineering modeling lan-
guage or textual as of the approaches of Garcia et al. (2008) and Siy e Wu (2009). Both
existing ontologies that allow the definition of an experiment and checking predicates or
constraints regarding the validity of the experiment.

Based on their previous research Freire (2015) overcame the downsides that none
of the previous approaches provided an integrated environment for all required steps of
an experiment, i.e., planning, execution, and interpretation by developing their ExpDSL
approach. Additionally, in contrast to the other mentioned languages and ontologies,
completeness and expressibility were empirically evaluated (FREIRE et al., 2013).

On the contrary to approaches mentioned above, regarding the planning of experi-
ments and enabling its reproducibility, efforts in developing experiment environments for
different applications and domains have been taken.

Hochstein et al. (2008) developed a set of integrated tools to support experiments
in software engineering for the domain of high-performance computing. The proposed
Experiment Manager Framework supports quite all of the activities that are carried out in
a controlled experiment. However, this framework is not tailored to allow certain adaptions
for different SE domains. In particular to coding experiments, the framework cannot
capture automatically data from custom-built in source codes.

A web-based experiment environment, the SESE (Simula Experiment Support Envi-
ronment), was proposed by Arisholm et al. (2002b). The environment guides the subject
through the assignments of an experiment, measures the time spent on each task, allows
to download additional information and the centralized collection of generated artifacts
such as source code. The proposed solution allows a broad range of application in very dif-
ferent domains. It is however not entirely suited for experiments for coding experiments,
as those experiments not only rely on time measuring for executing a particular task.
Source code metrics, related to the use of a specific language, may include not only the
time. For automatically capturing such metrics a web-based tool is not suitable. It has to
reside in the actual language workbench.

A similar work was proposed by (ARAÚJO et al., 2016). This work proposes a framework
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called ARREST. This framework to encourage moreover, provide reproducible experimen-
tal artifacts. An experimenter uses ARRESTT to create, share and rerun experiments
with software testing techniques, such as test case selection and test suite minimisation
techniques.

9.6 CHAPTER SUMMARY
The main objective of this Chapter is to provide brief information about the related work
regarding each study carried out. Each related work offered guidance to our research,
either explicitly described in the studies or in terms of recommendations based on the
experience of the authors or through empirical evaluations results.
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10 CONCLUSION

Um poema nunca se acaba; apenas se abandona.

—Paul Valery

10.1 INTRODUCTION
This chapter presents the conclusions of this research, including answers to the research
questions 10.2, the main contributions (Section 10.3), the study limitations (Section 10.4),
the current activities (Section 10.5), and the future works based on the gaps found in the
results (Section 10.6).

10.2 ANSWERS TO THE RESEARCH QUESTIONS OF THE THE-
SIS

This section answers the Research Questions (RQs) raised by this thesis.

RQ1: How do general-purpose platforms support experiments in software engineering?

We aimed at performing an analytical study of the currently available MDE ap-
proaches to support the experiments in SE. We have introduced a set of perspec-
tives based on fundamental elements of main guidelines of the SE experiment. The
answer to this research question can be seen in Chapter 4.

RQ2: What are the characteristics particular to coding experiments?

The goal of this research question was to map the coding experiments carried out in
SE. Within this context, we synthesised the characteristics of the coding experiments
in well-known venues of the empirical software engineering community. The answer
to this research question can be seen in Chapter 5.

RQ3: How can the general-purpose platform approach (MDE approach) be extended to
(entirely or partially) automatize some procedures in coding experiments?

Based on the results of the previous research question, we collected data from the
reports of coding experiments to explore what they do when these experiments
are designed, and what kinds of problems/traps they usually fall. Based on this
information, we proposed a metamodel to specify coding experiment while it is
compliant with the results from the RQ 1. The answer to this research question can
be seen in Chapter 6.
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RQ4: What are experiment facets aided by an extended MDE approach?

Considering the threats involved in coding experiments, we present how the proposed
approach can mitigate these treats. We collected this threats from Wohlin et al.
(2012) and other threats cited in studies analyzed when answering RQ2. The answer
to this research question can be seen in Chapter 7.

RQ5: Does an MDE approach based on coding experiment specification aid the execution
of coding experiments?

By answering this research question, we verified how the proposed platform supports
coding experiment execution. In particular comparing the replication of a study with
the platform and our replication using the platform. Moreover, we evaluated the
platform from the distinct perspectives of a beginner as well as expert researchers.
The result can be seen in Chapter 8.

10.3 CONTRIBUTIONS
We present the main contributions of this Ph.D. thesis as follows:

1. An Analysis of the MDE approaches. See Chapter 4 and publication (FERREIRA et

al., 2017b)

2. An Analysis of the execution of coding experiments. See Chapter 5 and publica-
tion (FERREIRA et al., 2016).

3. A metamodel to describe all characteristics relevant to automate some actions when
executing a coding experiment. See Chapter 6 and publication (FERREIRA et al.,
2015).

4. A platform to aid the execution of coding experiments. See Chapter 7 and publica-
tion (FERREIRA, 2014; FALESSI et al., 2015).

5. Assessment of the proposed metamodel and platform. See Chapter 8.

10.4 STUDY LIMITATIONS
The following sections discuss limitations of our Ph.D. thesis research.

10.4.1 Systematic Mapping Study

The threats to validity of this research were described in Section 5.5.1in Chapter 5. In
summary, the threats are bias in the papers selection and low accuracy in data extraction.
The bias in the studies selection does not represent a threat to our work since we included
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all full paper published in the selected venues. We did not perform any automatic searches,
mitigating the risk of relevant studies has not been included. Another important limitation
relates to the studies not being available for download. Fortunately, we had access to all
paper published in the conference proceedings.

10.4.2 Metamodel Proposition

This research has two main limitations. First, although the analysis of how experts per-
form their coding experiments is a strong result, the findings of this study were not
empirically assessed. Second, regarding the models to specify extensive experiments in
SE, we should conduct interviews with researchers from other companies and universities
to try to understand their views about these models. This research can be extended to
other science areas that also carry out experiments in practice.

10.4.3 Platform

The main limitation of Codex platform is lack of completeness. As stated at Chapter 4,
other approaches are able to specify more information then Codex platform. However,
our platform is not design to specify all relevant information about a coding experiment.
This is the expereriment protocol’s role. The Codex platform focus only on automating
configuration and observation tasks. However, we believe that there are more tasks to
me automated, then those currently supported. For instance, during the evaluation, we
found many spots to improve the platform, such as configuring workspace according to
code repositories (Eclipse Foundation, 2016) or DevOps (HTTERMANN, 2012).

10.4.4 Platform Evaluation

Section 8.4.4 presents in detail the threats to validity regarding the four evaluation stud-
ies. However, we highlight two of them that limit this study, namely, the small sample size
and the representativeness of objects. First, although the small number of participants
in experiments is a current issue in software engineering assessments, the results cannot
be generalised. Therefore, it led us to consider the results only as indicators. Second,
the coding experiment selected as the object to be carried out in the same experimental
software engineering course, which means the characteristics of the selected coding exper-
iment may bias the experiment. Moreover, more coding experiments need to be executed
to evaluate the platform in different contexts.
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10.5 CURRENT ACTIVITIES
As mentioned in previous sections, we are working towards a web-based collaborative
platform for carrying out coding experiments. The proposal of this work is to provide
better support to automate the execution of coding experiments, assess whether it is
complete, and include all possible factors to minimise bias and maximise internal validity.
This web-based platform will combine the proposed metamodel and tools to facilitate the
execution of coding experiments. Also, it will permit the development of a repository of
coding experiments in software engineering. This study is being developed in collaboration
with the author of this thesis and a senior student of computer science at CIn UFPE.

We describe the main functionalities of the distributed collaborative platform as fol-
lows:

• All users have to access a distributed collaborative platform with a valid log-in and
password. After log-in, the experiment specification and the associated executions
with each user are displayed. A user can have profiles such as author, collaborator,
reviewer, visitor, and administrator of the coding experiment and their activities;

• The collaborative platform have to allow the author of the coding experiment plan
to include, edit, and remove information, such as "Name of the Experiment", “Name
of the authors”,“Name of the reviewers”, and “Date of the coding experiment spec-
ification”. Also, the tool must provide some information, including “Initial date”,
“Status that indicates where the collaboration stoped”, “the current status of each
execution”, “The present percentage of the experiment execution”, and “the access
to the experiment report, with the data collected from each participant”.

• The collaborative platform must allow the upload/download of the files to execute
the experiment, and it must be online to facilitate the collaboration between re-
searchers around the world.

Finally, the final version of the tool is similar to ExpDSl tool. In fact, our models
are similar, therefore, implementing transformations to create a Codex model from a
ExpDSL is not a challenging task. However, we plan to extend this idea to other solutions
(Chapter 4), just enriching this model with any missing information.

10.6 FUTURE WORK
We present some future work that can be developed based on the research conducted in
this thesis as follows:

• Updating the systematic mapping study by including more general software engi-
neering venues to compare our results with other software engineering communities.
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• Conducting a similar qualitative study with a greater number of researchers from
other companies and universities to try to understand how the empirical research
communities in software engineering as well as in other fields carry out experiments
in practice.

• Developing the distributed collaborative platform for carrying out coding experi-
ments using human subjects in SE based on the proposed metamodel and platform.
Moreover, creating a repository of previous coding experiments for performing repli-
cation.

• Performing additional assessments using a broader range of coding experiments with
different kinds of experts to confirm or not the previous results.
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1. Contextualização 
Uma parte importante do desenvolvimento de sistemas é o ​design de seus            

componentes. É preciso definir o grau de granularidade aceitável para o           
desenvolvimento de classes, interfaces e hierarquias. Geralmente o ​design é          
específico ao problema que iremos resolver, mas é importante analisar e           
implementar o sistema, de tal maneira, que o impacto de mudanças seja baixo.             
Existem vários padrões de projeto para serem utilizados e com objetivos diferentes            
como, por exemplo, ​Factory​, ​Builder ​ou ​Visitor​. Problemas de projeto no           
desenvolvimento de software orientado a objetos podem ser analisados em          
diferentes perspectivas. No que diz respeito à refatoração e manutenibilidade de           
código, apresenta-se o conceito ​code smell​, que, de acordo com Martin Fowler [1], é              
uma indicação superficial de um problema mais profundo no sistema. Este termo            
também pode se referir às más características do código, como código duplicado ou             
métodos longos. 

Recentemente, alguns estudos foram realizados para entender os efeitos do          
code smell ​[3,4,5], ​porém ainda são poucos os estudos empíricos sobre este            
assunto, principalmente no que se refere ao papel humano na identificação de tais             
problemas. ​Neste contexto, Santos et al. [2] fazem um estudo para entender um tipo              
específico de ​code smell​: ​god classes ​(i.e., classes que tem mais de uma             
responsabilidade no sistema). Mais especificamente, este estudo analisa como a          
conceitualização afeta a identificação de ​god classes​, isto é, como desenvolvedores           
percebem e identificam o conceito de ​god class ​e quais as características que             
podem influenciar essa percepção. 

As próximas seções descrevem uma replicação do experimento citado         
anteriormente para investigar se o uso da ferramenta JDeodorant reduz o tempo de             
identificação de ​god classes. Vale ressaltar que esta ferramenta é diferente daquela            
utilizada no trabalho original: a SourceMiner, que atualmente não é mais compatível            
com as versões mais recentes do Eclipse. 

2. Objetivos do experimento 

O objetivo deste artigo é apresentar o planejamento de uma replicação do            
experimento de Santos et al. [2] com alunos da disciplina de pós-graduação de             
Engenharia de Software Experimental da Universidade Federal de Pernambuco.         
Após a replicação, os resultados deste trabalho foram comparados com os dados            
obtidos no experimento original realizado por Santos et al. [2]. 

Nesta seção são detalhados os objetivos do experimento, assim como as           
das perguntas de pesquisa e, por fim, as métricas utilizadas. 

2.1. Objetivos gerais 
Analisar ​como diferentes pessoas percebem o conceito de ​god class​. 
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Com o propósito de comparar os resultados com os obtidos por Santos et             
al. [2]. 

No que diz respeito à ​identificação de ​god classes​ em aplicações Java. 

Do ponto de vista de alunos de pós-graduação de Ciência da Computação            
da disciplina de Engenharia de Software Experimental da Universidade Federal de           
Pernambuco. 

No contexto do desenvolvimento da tese de doutorado de Waldemar Pires           
Neto. 

2.2. Perguntas de Pesquisa 
São consideradas quatro perguntas de pesquisa neste experimento, descritas         

a seguir. As perguntas selecionadas são as mesmas do trabalho original, o qual             
este experimento visa replicar. 

● P​1​: Quanto esforço é usado para identificar ​god classes​? 
● P​2​: Qual o grau de concordância de desenvolvedores quanto a          

identificação de ​god classes​? 
● P​3​: Quais características levam desenvolvedores a identificarem uma        

god class​?  
● P​4​: Qual o grau de concordância entre desenvolvedores e o oráculo           

quanto a identificação de​ god classes​? 

2.3. Métricas 

Para responder às perguntas de pesquisa, três métricas são utilizadas. Cada           
métrica está diretamente associada a uma ou mais perguntas de pesquisa. 

● M​1​ (P​1​): Tempo, medido em minutos; 
● M​2 (P​2 e P​4​): Respostas dos formulários sobre a identificação de ​god            

classes​, que podem ser ​Sim​, ​Talvez ​e ​Não​; 
● M​3 (P​3​): Resposta dos formulários sobre as razões que levaram uma           

classe a ser identificada como um ​god class​. 
 

A estrutura do formulário utilizado será apresentada nas próximas seções. 
 
3. Planejamento do experimento 

Nesta seção, o planejamento do experimento será discutido. Inicialmente         
serão definidas as unidades experimentais, os participantes do experimento, as          
variáveis de resposta, as variáveis independentes, os fatores e tratamentos e, por            
fim, as variáveis de bloqueio. 

3.1. Unidades experimentais 
As unidades experimentais são os seis projetos utilizados no trabalho          

original. Estes projetos são de pequena escala e tratam de aplicações e jogos             
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implementados na linguagem Java; a lista completa dos projetos encontra-se na           
Seção 3.4. 

3.2. Sujeitos do experimento 
O experimento será executado por treze alunos da pós-graduação em ciência           

da computação da Universidade Federal de Pernambuco. Todos os alunos estão           
matriculados na disciplina de Engenharia de Software Experimental, oferecida no          
segundo semestre de 2016. 

3.3. Variáveis de resposta 
As variáveis de resposta a serem observadas no experimento são: 

● V​1​: Esforço para a identificação de ​god classes​, calculado em unidade           
de tempo (minutos); 

● V​2​: Grau de concordância entre desenvolvedores sobre a identificação         
de ​god classes​; 

● V​3​: Grau de concordância entre desenvolvedores sobre os motivos de          
uma classe ser identificada como ​god class​; 

● V​4​: Grau de concordância entre desenvolvedores e o oráculo sobre a           
identificação de ​god classes​. 

3.4. Variáveis Independentes 
● A linguagem de programação das aplicações avaliadas será Java; 
● As aplicações avaliadas no experimento serão: 

○ Tic Tac Toe; 
○ Monopoly; 
○ Chess; 
○ Tetris; 
○ Jackut; 
○ Solitaire. 

● O ambiente de execução do experimento será um laboratório de          
informática, do Centro de Informática da Universidade Federal de         
Pernambuco, no qual todas as máquinas apresentam a mesma         
configuração de ​hardware​ e ​software​; 

● A IDE na qual as aplicações serão avaliadas será o Eclipse Neon. 
3.5. Fatores e Tratamentos 
Este experimento analisará os efeitos de apenas um fator: a forma de            

identificação de ​god classes em uma aplicação. Os tratamentos desse fator são os             
seguintes: 

● T​1​: Utilizar o ​plugin ​JDeodorant para o Eclipse, que auxilia na           
identificação visual de ​god classes​; 

● T​2​: Realizar a identificação de ​god classes de forma manual, sem o            
auxílio do ​plugin ​citado. 
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3.5.1. Descrição do Tratamento 
O JDeodorant é um plugin para Eclipse com o objetivo de auxiliar na             

identificação de problemas relacionados ao design de sistemas como, por exemplo,           
code smells​. O plugin apresenta a identificação do problema e sugere algumas            
maneiras de refatorações para solucioná-lo. Atualmente, JDeodorant identifica cinco         
categorias de ​code smells​, entre elas, ​Feature Envy​, ​Type Checking​, ​Long Method​,            
God Class e ​Duplicated Code​. Esse ​plugin foi desenvolvido por um grupo de             
pesquisa do laboratório ​Software Refactoring Lab​, no departamento de ciência da           
computação e engenharia de software da Universidade Concordia, no Canadá, e           
pelo grupo de pesquisa ​Software Engineering Group do departamento de          
informática aplicada, da Universidade de Macedônia, ​Thessaloniki, ​na Grécia. 

3.6. Variáveis de Bloqueio 
Os sujeitos do experimento possuem diferentes níveis de experiência em          

desenvolvimento de software e na linguagem de programação Java. Como não           
desejamos avaliar o efeito dessa variável nas variáveis de resposta, ela será            
considerada como uma variável de bloqueio. 

3.7. Hipóteses 

3.7.1. Hipótese Nula (H​0​) 
Não há diferença de esforços e graus de concordância entre a utilização do             

plugin ​no Eclipse e a identificação manual de ​god classes​. 

● H0​1​: V​1​(T​1​)  V​1​(T​2​)=  
● H0​2​: V​2​(T​1​)  V​2​(T​2​)=  
● H0​3​: V​3​(T​1​)  V​3​(T​2​)=  
● H0​4​: V​4​(T​1​)  V​4​(T​2​)=  

 

3.7.2. Hipótese Alternativa (H​1​) 
A utilização do plugin no Eclipse reduz os esforços e aumenta os graus de              

concordância, quando comparado com a identificação manual de ​god classes​. 

● H1​1​: V​1​(T​1​)  V​1​(T​2​)<  
● H1​2​: V​2​(T​1​)  V​2​(T​2​)<  
● H1​3​: V​3​(T​1​)  V​3​(T​2​)>  
● H1​4​: V​4​(T​1​)  V​4​(T​2​)>  
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4. Desenho Experimental 
Tendo em vista que os participantes do experimento são estudantes e suas            

respectivas experiências na indústria podem influenciar os resultados do         
experimento, o desenho experimental aqui descrito foi adotado. 

O experimento foi realizado no Grad3, um dos laboratórios do Centro de            
Informática da Universidade Federal de Pernambuco. O tempo alocado para a           
execução foi de 1,5 horas. Dos treze alunos matriculados na disciplina, um deles             
participou do experimento piloto, ficando os outros doze alunos para a execução do             
experimento. 

Foram criados dois grupos, no qual os participantes foram distribuídos de           
forma aleatória, visando remover o efeito da experiência individual de cada um. A             
Equipe 1 ​e a Equipe 2 ​ficaram com 6 participantes, cada. Todos os participantes              
utilizaram uma máquina para realizar o experimento, sendo que todas as máquinas            
estavam configuradas igualmente de forma a viabilizar o processo. 

Todas as máquinas possuíam duas instâncias do Eclipse (I1 e I2): a instância             
1 possuía o plugin JDeodorant e a instância I2 não possuía o plugin instalado. Para               
facilitar o andamento do experimento, as diferentes aplicações foram divididas em 2            
grupos: 

Programas G1: Monopoly, Tetris e Tic Tac Toe. 

Programas G2: Chess, Jackut e Solitaire-FreeCell. 

Na execução do experimento, primeiramente a equipe 1 realizou o          
experimento nos programas G1 utilizando a instância 1 e a equipe 2 realizou o              
experimento nos programas G1 na instância 2. Posteriormente, a equipe 1 realizou            
o experimento nos programas G2 na I2, e a equipe 2 experimentou os programas              
G2 na I1, como relacionado no quadro abaixo. 

 G1 Programs G2 Programs 

Equipe 1 I1 (com plugin) I2 (sem plugin) 

Equipe 2 I2 (sem plugin) I1 (com plugin) 
 

Durante a realização do experimento, os participantes preencheram o         
formulário relativo à identificação de ​god classes​. Os formulários possuem uma           
estrutura padrão para todos os projetos, requisitando a posição do participante           
quanto ao status das classes (se é ou não uma ​god class​) e, se for uma ​god class​,                  
que motivos levaram a esta conclusão. O formulário também exige que o            
participante insira a hora de início e fim da avaliação de cada projeto. Um exemplo               
de formulário pode ser encontrado no Apêndice A. 
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5. Preparação 
Todo o experimento foi realizado em dois dias, nos quais ocorreram o            

treinamento das ferramentas utilizadas e a execução do experimento. No primeiro           
dia houve uma apresentação sobre ​code smell​, focada nos conceitos de ​god class​,             
além de um treinamento do plugin JDeodorant. E, por fim, no segundo dia houve a               
execução do experimento a partir das instruções dadas previamente pelo instrutor. 

5.1. Cronograma 

Data Evento 

02​ de Novembro de 2016 Preparação dos instrumentos 

09​ de Novembro de 2016 Execução do piloto 

10 de Novembro de 2016 Treinamento 

24 de Novembro de 2016 Execução do experimento 

08 de Dezembro de 2016 Resultado final 
 

5.2. Piloto 
O instrutor Waldemar Pires Neto preparou a primeira versão da apresentação           

de slides para todos os participantes do experimento. Logo após a apresentação,            
houve um treinamento sobre a utilização do plugin JDeodorant. O treinamento           
consistiu na apresentação de slides e um simples exemplo prático. 

Além da apresentação no piloto testamos os arquivos usados no na           
execução do experimento. Os bugs identificados foram corrigidos para a execução           
final do experimento. 

5.3. Treinamento 
O instrutor Waldemar Pires Neto preparou uma apresentação de slides para           

todos os participantes do experimento. A apresentação aconteceu de forma breve,           
totalizando 15 minutos, no laboratório Grad3 do Centro de Informática (UFPE). Logo            
após a apresentação, houve um treinamento sobre a utilização do plugin           
JDeodorant. O treinamento consistiu na apresentação de slides e um simples           
exemplo prático. Em seguida, o instrutor relatou uma sucinta explicação sobre o            
desenho do experimento. 

Dois dias antes do experimento, o instrutor enviou para os emails dos            
participantes um tutorial com o objetivo de prepará-los para o experimento. Este            
preparatório foi realizado remotamente, e cada participante utilizou suas respectivas          
máquinas para fazer as instalações necessárias para o aquecimento.  

APPENDIX A. EXPERIMENT REPORT 171



5.4. Preparação dos Instrumentos 
Com o objetivo de preparar o ambiente para conduzir o experimento da            

melhor forma, as máquinas utilizadas teriam que estar configuradas do mesmo           
modo. Todas as máquinas estavam localizadas no laboratório Grad 3 do Centro de             
Informática (UFPE) e possuíam as mesmas configurações: Sistema Operacional         
Windows 7 (64 bits), 8 GB de memória RAM e processador AMD Phenom II X4 B97.                
Porém, algumas modificações ainda precisavam ser feitas para a execução, então           
foram instaladas nas máquinas duas instâncias do Eclipse, na qual a primeira            
instância apresentava a instalação do plugin JDeodorant (versão 5.0.62) e a           
segunda instância não possuía o plugin. Após as devidas instalações, o ambiente            
estava preparado para a execução do experimento. 

5.5. Execução do Experimento 
O instrutor separou os doze participantes de forma aleatória a partir de um             

sorteio e, no final, foram formadas duas equipes. Um dos participantes, porém, não             
pode comparecer. Logo após a divisão das equipes, os participantes iniciaram a            
execução do experimento de acordo com o desenho experimental apresentado na           
fase de treinamento. 

6. Análise dos Dados 
Esta seção apresenta a análise dos dados obtidos com a execução do            

experimento. 

P​1​: Quanto esforço é usado para identificar ​god classes​? 
A avaliação do esforço foi feita seguindo uma metodologia parecida à de            

Santos et al. [2], com a diferença de que apenas o tempo marcado no formulário               
pelo participante durante o experimento será considerado (​quest_time​).  

Os tempos individuais para o ​quest_time estão expostos nos gráficos 1 e 2.             
Como temos 11 participantes, e cada um desses avaliou todos os 6 projetos, temos              
66 valores de tempo. Nestes, 33 estavam com uso do jDeodorant e 33 estavam sem               
jDeodorant .  
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Gráfico 1. Distribuição individual do tempo por projeto para o Grupo A. 

 

Gráfico 2. Distribuição individual do tempo por projeto para o Grupo B. 

 

É possível notar que os projetos 1, 3 e 5 aparentam ter uma menor dispersão               
quanto ao tempo entre os integrantes, para ambos os grupos. Já o projeto 4              
aparenta ser o que gerou as maiores variações de esforço. Um dos fatores que              
podem influenciar nessa variação é a diferença na quantidade de classes dos            
projetos. Essas afirmações podem ser vistas mais claramente nos seus respectivos           
boxplots (gráficos 3 e 4).  
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Gráfico 3. Boxplot do tempo por projeto para o Grupo A. 

 

 

Gráfico 4. Boxplot do tempo por projeto para o Grupo B. 

 

As distribuições de tempo dos grupos A e B aparentam ser similares, quando             
analisadas projeto a projeto. Com valores de mediana parecidos, os boxplots           
indicam que os grupos possuem esforço similar. Essa similaridade para ambos os            
grupos fica mais explícito no gráfico 5. 
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Gráfico 5. Comparação dos boxplots por grupo. 

 

Buscando verificar se existe diferença relevante no esforço empregado entre          
os grupos A e B, aplicamos o Teste de Wilcoxon para comparação de médias de               
distribuições não-paramétricas [H0​1​: V​1​(T​1​) V​1​(T​2​)]. Esse teste foi escolhido    =       
porque os dados de tempo dos grupos A e B não seguem uma distribuição normal,               
de acordo com o Teste de Shapiro-Wilk de normalidade (p-value-A = 0.0003651 e             
p-value-B = 0.01124).  

Aplicando o teste de Wilcoxon, de forma bilateral, obtivemos p-value =           
0.4636. Esse valor não é suficiente para rejeitar H0​1​. Logo, podemos afirmar que             
não há diferença de esforços de tempo entre a utilização do ​plugin ​no Eclipse e a                
identificação manual de ​god classes​. 

 

P​2​: Qual o grau de concordância dos participantes quanto a          
identificação de ​god classes​? 

A etapa de análise de concordância em que os participantes identificaram           
candidatas a ​god classes foi realizada utilizando o método de Joseph Fleiss [8],             
também utilizado no experimento realizado por Santos et al. [2]. Este método tem             
como objetivo verificar o coeficiente de concordância das respostas para um           
determinado teste composto por ​n​ sujeitos, ​m​ avaliadores e ​k​ categorias. 

A análise do ​Fleiss Kappa foi divida em duas etapas. Na primeira, foram             
coletadas as quantidades de ​god ​classes identificadas pelos participantes do          
experimento tanto do grupo A, quanto do grupo B, considerando as respostas dos             
campos de "​Yes​" e "​Yes or Maybe​" contidos no formulário. Em seguida, os dados              
obtidos através desta coleta foram catalogados, sendo separados por grupos,          
conforme podem ser observados descritos na Tabela 6.1 e na Tabela 6.2            
distribuídas abaixo: 
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Tabela 6.1: Quantidade de God Classes identificadas pelos participantes do Grupo A 

Grupo  A 

 Monopoly Tic Tac Toe Tetris Chess Solitaire Jackut 

PA1 1 0 0 4 1 3 

PA2 3 2 1 2 4 1 

PA3 3 2 3 1 3 0 

PA4 4 2 3 1 1 1 

PA5 2 0 0 2 2 1 

PA6 6 5 6    

 

Tabela 6.2: Quantidade de God Classes identificadas pelos participantes do Grupo B 

Grupo B 

 Monopoly Tic Tac Toe Tetris Chess Solitaire Jackut 

PB1 1 1 1 1 1 0 

PB2 4 0 1 2 2 2 

PB3 3 1 1 1 2 1 

PB4 1 0 1 4 0 3 

PB5 4 1 0 0 0 2 

PB6    6 5 6 

 

Observando os dados acima é possível perceber que os campos do           
Participante B6 e Participante A6 estão incompletos. Para que se tornasse possível            
realizar a análise ​Fleiss Kappa os campos com as respostas ausentes destes            
participantes foram preenchidos com o valor "0" (zero). Com ambas as tabelas            
dispostas com todos os dados, se deu início a segunda etapa em que foram              
calculados os coeficientes para cada grupo de maneira separada. 

Cada grupo (Grupo A e Grupo B) está composto por 6 sujeitos (projetos),             
localizados na primeira linha, 6 avaliadores localizados na primeira coluna e duas            
categorias. A primeira categoria adotada na análise consiste das respostas          
sugeridas por "​Yes​" e "​Yes or Maybe​" (quantidades) e a segunda categoria atribuída             
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foi a "​None​", formada pelos espaços vazios que tiverem de ser preenchidos com 0.              
Após a importação dos dados ter sido realizada na ferramenta estatística R,            
utilizando o pacote irr (​Interrater Reliability and Agreement​), foram obtidos os           
seguintes resultados, descritos na Tabela 6.3 e na Tabela 6.4: 

Tabela 6.4: Análise de concordância ​Fleiss Kappa​ para o grupo A 

Fleiss' Kappa for m Raters 

Subjects 6 

Raters 6 

Kappa 0.0144 

Z= 0.292 

p-value 0.77 

Interpretação Concordância leve 

 

Tabela 6.3: Análise de concordância ​Fleiss Kappa​ para o grupo B 

Fleiss' Kappa for m Raters 

Subjects 6 

Raters 6 

Kappa 0.0927 

Z= 1.7 

p-value 0.0893 

Interpretação Concordância leve 

 

Os coeficientes ​Kappa obtidos pelos Grupo A (​Kappa = 0.0144) e Grupo B             
(​Kappa = 0.0927) tiveram uma diferença pequena (​Kappa​B​- ​Kappa​A = 0.0749) em            
relação ao uso do jDeodorant para a identificação das ​god classes​. As análises             
replicam que o efeito causado com o uso da ferramenta, quando comparados o             
Grupo A e o Grupo B, é pequeno considerando as atividades desempenhadas pelos             
participantes nos testes que foram realizados. 

Outro fator importante a ser constatado é a interpretação dos resultados de            
cada grupo. Os valores obtidos nos testes obtiveram na escala ​Fleiss ​Kappa uma             
concordância leve​, o que significa dizer que os coeficientes têm um grau pequeno,             
mas que que não se torna suficiente para para rejeitar H0​2 ​. Portanto, pode-se              
concluir que não há diferença nos esforços de quantidade entre a utilização do             
plugin ​na IDE Eclipse e a perspectiva de buscar manualmente as ​god classes​. 
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P​3​: Quais características levam os participantes a identificarem        
uma ​god class​? 

Para saber quais características levavam um participante a achar que certa           
classe era uma ​God Class, ​foi pedido que ele assinalasse uma ou mais opções,              
para cada ​God Class identificada, de acordo com a lista abaixo. O participante             
também estava livre para determinar seu próprio motivo, através do campo aberto            
"Other".  

As opções disponíveis eram:  

M1 - Class is not used anymore. 

M2 - Class is highly complex. 

M3 - Class is misplaced. 

M4 - Class-Method lacks comments. 

M5 - Method is wrongly named. 

M6 - Method is wrongly named. 

M7 - Method is highly complex. 

M8 - Method is misplaced. 

M9 - Attribute is not used. 

M10 - Class is special (e. g. a necessary framework class). 

M11 - Other. 

 

Os motivos escolhidos por cada participante para a razão de identificar uma            
classe como ​God Class (tanto para ​Sim quanto para ​Talvez​) se encontram na tabela              
abaixo.  

 Motivos 
Participantes  M1  M2  M3  M4  M5  M6  M7  M8  M9  M10  M11 

P1    2     2     7 

P2  1  5.8   1  0.3   1  1    1.8 

P3   3  0.5     3.5  3     

P4   3.8  0.3      0.8     

P5   1      3  4   2   

P6   1.5      1.5      

P7   3.85  2.15     4.55  2.45  0.2   2.6 

P8   5  0.5     0.5  1    5 
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P9   10   2     1.5    2.5 

P10   0.5   1.5   0.5   1.5     

P11  0.55  5.25  2.2  2.95  0.95  1.9  3.35  1.95  2.95  4.45   
Total  1.55  39.7  7.65  7.45  1.25  2.4  19.4  17.2  3.15  6.45  18.9 

 

Para evitar que ocorresse um ​bias ​quando algum participante escolhesse          
múltiplos motivos para uma mesma classe, o peso dos motivos foi diminuído quando             
ocorrem múltiplas seleções. Por exemplo, se uma classe recebe apenas um motivo            
M1, M1 então ganha ​score 1. Entretanto, se uma outra classe fosse classificada             
pelos motivos M2 e M3, cada um dos motivos recebeu 0.5.  

O motivo mais usado, com ​score de 39.7, foi o ​"M2 - Class is highly complex​".                
Essa opção foi escolhida por 10 dos 11 participantes. Logo em seguida, as opções              
mais escolhidas foram "​M7 - Method is highly complex​" (​score 19.4), "M11 - Other"              
(​score​ 18.9) e "​M8 - Method is misplaced" (​score​ 17.2).  

Comparando com o experimento de Santos et al. [2]​, ​os três motivos mais             
escolhidos são os mesmos. Eles também encontraram a mesma frequência, sendo           
a complexidade da classe o motivo mais escolhido, seguido da complexidade dos            
métodos da classe. A replicação, então, confirmam as razões principais do           
experimento original. 

 

P​4​: Qual o grau de concordância entre participantes e o oráculo           
quanto a identificação de​ god classes​? 
Na quarta análise foram realizados os testes de concordância para identificação de            
god classes com o uso de oráculo dos Grupo A e Grupo B. Seguindo a mesma                
perspectiva de Santos et al. [2] foi utilizado o método ​Finn Test ​[9] que possibilita               
encontrar o ​Finn Coefficient através de uma matriz ​ratings​, composta por ​n sujeitos             
e ​m raters​, pelo ​s.levels​, composto pelo número de diferentes categorias de            
avaliação, e pelo ​model​, que estabelece a ordem de leitura e comparação de dados.  

O objetivo do teste é verificar em uma amostra ​n de classes avaliadas por              
cada participante quais delas replicam um coeficiente de confiabilidade para serem           
consideradas ​god classes​. Para que este objetivo fosse possível de ser alcançado            
foi necessário inicialmente coletar e identificar as classes sugeridas nos formulários           
e em seguida classificá-las por projeto.  

Na classificação, descrita nas Tabela 6.5 e Tabela 6.6, cada participante foi            
distribuído considerando em seu grupos seguindo como regra os projetos que foram            
avaliados com o uso e sem o uso do ​plugin​. Além disto, cada um deles ficou                
responsável por avaliar 3 projetos, conforme pode ser observado a seguir. 
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Tabela 6.5: Distribuição das god classes identificadas pelos participantes do Grupo A 

Grupo A 

 Monopoly Tic Tac Toe Tetris  Chess Solitary Jackut 

P1A monopoly.Jogo 
(Maybe) 

- - P7A Bishop; King 
(Maybe); 
Queen 
(Maybe); 
Rook (Maybe) 

Baralho FacadeJackut 
(Maybe); 
Jackut 
(Maybe); 
Usuario 

P2A easy.TestFacade 
(Maybe); 
UserStoriesFacade 
(Maybe); 
Comandos 
(Maybe); Jogador 
(Maybe); Jogo; 
Tabuleiro 

model. 
JogoVelha; 
view. 
JogoVelhaGui 

view. 
tetrisGUI 

P8A Board 
(Maybe); 
ChessGUI 
(Maybe) 

InterfacePacien
cia (Maybe); 
ControladorGlo
bal (Maybe); 
FrameFreeCell 
(Maybe); 
JanelaSobre 
(Maybe) 

UsuarioContro
ller (maybe) 

P3A UserStoriesFacade; 
Jogo; Tabuleiro 

Jogador; view. 
JogoVelhaGui 
(Maybe) 

model. 
Pecas; 
model. 
Tetris; 
TetrisGUI 
(Maybe) 

P9A Chess ControladorGlo
bal; 
FrameFreeCell 
(Maybe); 
InterfacePacien
cia (Maybe) 

- 

P4A UserStoriesFacade; 
Banco (Maybe); 
Jogador; Jogo 

model. 
JogoVelha 
(Maybe); 
view. 
JogoVelhaGui 

model. 
Pecas 
(Maybe); 
model. 
Tetris 
(Maybe); 
TetrisGUI 

P10
A 

Chess ControladorGlo
bal (Maybe) 

FacadeJackut 
(Maybe) 

P5A UserStoriesFacade; 
Jogo  (Maybe) 

- - P11
A 

King (Maybe); 
BoardGUI 
(Maybe) 

ControladorGlo
bal; 
FrameFreeCell 

Usuario 

  

Tabela 6.6: Distribuição das god classes identificadas pelos participantes do Grupo B 

  Grupo B 

  Monopoly Tic Tac Toe Tetris   Chess Solitary Jackut 

P7B Tabuleiro (Maybe) JogoVelhaGUI 
(Maybe) 

Peca P1B model.Chess 
(Maybe) 

gui. 
FrameFreeCell 

- 

P8B Jogo (Maybe); 
Jogador (Maybe); 
Banco (Maybe); 
Tabuleiro (Maybe) 

- TetrisGUI 
(Maybe) 

P2B pecas.King 
(Maybe); 
model.Chess 

InterfacePacien
cia (Maybe) 

UsuarioController
; FacedeJackut 
(Maybe) 

P9B Jogo; Jogador 
(Maybe); Tabuleiro 
(Maybe) 

JogoVelha Tetris 
(maybe) 

P3B model.Chess EstruturaBaralh
o (Maybe); 
FrameFreeCell 

model.Usuario 
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P10B Jogo - Tetris 
(Maybe) 

P4B pecas.King 
(Maybe); 
model.Chess; 
pecas.Queen 
(Maybe); 
pecas.Rock 
(Maybe) 

- Usuario 
Controller; 
FacedeJackut; 
model.Usuario 

P11B Banco; Jogador; 
Lugar; Tabuleiro 

JogoVelhaGUI 
(Maybe) 

- P5B - - UsuarioController 
(Maybe); 
FacedeJackut 

        P6B Board; Chess 
(Maybe); 
Piece; Player; 
Position; 
PlayerPieceTh
reat (Maybe) 

Baralho 
(Maybe); Main; 
ControladorGlob
al;GlobalConfigu
ration(Maybe);R
equestGlobal 

FacadeJackut; 
EasyTest(Maybe)
; Comando 
(Maybe); Jackut; 
Mensagem; Perfil 
(Maybe) 

 

Observando as Tabela 6.5 e Tabela 6.6 é possível notar que alguns            
participantes (P1A, P5A, P9A, P4B e P5B) ficaram com os campos dos formulários             
vazios na avaliação dos projetos. Diante desta condição apresentada na coleta, a            
montagem do oráculo utilizado por Santos et. al. [2] foi realizada neste experimento             
com a atribuição das categorias de avaliação para as classes, seguindo o padrão             
das respostas de "​Yes​" ou "​Yes or Maybe​" com peso 1 e das respostas das "​classes                
não citadas​" ou "​campos​ ​vazios​" com peso 0. 

Para cada grupo de 3 projetos, nos Grupo A e Grupo B, foram montados dois               
oráculos diferentes, conforme pode ser visualizado nos exemplos das Tabela 6.7 e            
Tabela 6.8. Nos oráculos são contabilizados o total de ​subjects (Nclasses = total de              
classes a serem avaliadas) por cada projeto e os ​raters (Or1 e Or2 = respostas Yes,                
Maybe ou não citadas) que equivalem as respostas informadas por cada           
participante avaliado. 

Tabela 6.7: Oráculo para avaliação dos projetos Monopoly, Tic Tac Toe e Tetris 

Program GodClass 

Oracle 

Or1 Or2 

Monopoly (10 classes)          

    Jogo 
- Maybe 

Tic Tac Toe (5 classes)       

   -     

Tetris (16 classes)           

    
- - - 
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Tabela 6.8: Oráculo para avaliação dos projetos Chess, Solitaire  e Jackut 

Program GodClass 

Oracle 

Or1 Or2 

Chess (15 classes)          

    Jogo 
- Maybe 

Solitaire (23 classes)       

   -     

Jackut (19 classes)           

    
- - - 

 

Após a realização dos testes na ferramenta estatística R, utilizando o pacote irr             
(​Interrater Reliability and Agreement​) foram obtidos os coeficientes ​Finn ​separados          
pelos Grupo A e Grupo B. Ao todo puderam ser comparados 11 participantes de              
cada grupo, totalizando 22 análises individuais conforme expressam os resultados          
descritos nas Tabela 6.9 e Tabela 6.10. 

Tabela 6.9: Coeficiente ​Finn​ com o uso do Oráculo do Grupo A 

Participante Finn 

P1A 0.935 

P2A 0.419 

P3A 0.484 

P4A 0.419 

P5A 0.871 

P6A 0.0968 (Negativo) 

P7A 0.719 

P8A 0.754 

P9A 0.86 

P10A 0.895 

P11A 0.825 
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Tabela 6.10: Coeficiente ​Finn​ com o uso do Oráculo do Grupo B 

Participante Finn 

P1B 0.93 

P2B 0.825 

P3B 0.86 

P4B 0.754 

P5B 0.93 

P6B 0.404 

P7B 0.806 

P8B 0.677 

P9B 0.677 

P10B 0.871 

P11B 0.677 

 

Comparando-se os resultados obtidos nos testes percebe-se que os índices          
dos coeficientes tiveram valores que variaram entre -0.0968 (P6A) e 0.935 (P1A)            
para o Grupo A e entre 0.404 (P6B) e 0.93 (P1B e P5B). A diferença entre estes                 
coeficientes para o Grupo A foi de 0.8382 e para o Grupo B de 0.531, o que significa                  
dizer que o Grupo B obteve uma concordância maior nas classes identificadas como             
god classes​ quando comparada ao Grupo A. 

Também é possível verificar que a maioria dos coeficientes dos grupos se            
aproximam de 1 (Concordância total), representando uma confiabilidade relevante         
dos avaliadores. Apesar de 1 dos 22 participantes ter obtido um valor negativo             
-0.0968 (P6A) (Discordância total) este fator não se torna suficiente para rejeitar a             
H0​4​. Portanto, pode-se concluir que não há diferença de esforços e graus de             
concordância entre a utilização do ​plugin ​no Eclipse e a identificação manual de ​god              
classes​. 

 

7. Ameaças à validade 
Nesta seção, iremos discutir a validade dos resultados obtidos. Iremos          

explanar os problemas referentes à validade dos experimentos considerando quatro          
categorias.  

7.1. Validade Interna 

Este estudo foi realizado com base no estudo anterior [2]. Os participantes            
são alunos de pós graduação, matriculados na disciplina de engenharia de software            
experimental e já haviam lido o estudo original antes de realizar a execução do              

APPENDIX A. EXPERIMENT REPORT 183



experimento. O fato de ter conhecimento prévio sobre como seria realizado o            
experimento e quais eram as classes que foram consideradas god classes pelos            
oráculos no estudo original pode influenciar a resposta dos participantes. 

A participação no experimento era voluntária, mas a participação no          
treinamento sobre as ferramentas que foram utilizadas era obrigatória, resultando na           
reprovação do aluno caso não participasse. Desta forma, a participação no           
experimento é vetada caso o aluno não tenha ido para o treinamento com as              
ferramentas, diminuindo as chances de ocorrer um enviesamento no experimento          
por conta da falta de conhecimento das ferramentas ou do conceito de ​god classes​.              
Somente um dos alunos realizou o treinamento e não conseguiu realizar o            
experimento. 

Foram utilizadas três ferramentas: A IDE Eclipse, o JDeodorant e o plugin            
(Decode) desenvolvido pelo pesquisador Waldemar Pires Neto para marcação dos          
tempos. A ferramenta Eclipse foi utilizada por ser uma IDE gratuita e é a mais               
utilizada para desenvolvimento Java, com 48.2% de adoção, seguido pelo IntelliJ           
com 43.6% [7]. Caso o usuário não fosse familiarizado com o Eclipse, o treinamento              
antes do experimento tinha como um dos objetivos apresentar as funcionalidades           
necessárias para a realização do experimento. ​O plugin Decode era responsável por            
atribuir unidades experimentais (projetos) aos participantes, informar quando o         
JDeodorant deveria ser utilizado, e contabilizar todo o tempo das atividades           
executadas pelos participantes. O treinamento realizado antes do experimento         
utilizando a IDE Eclipse diminui os impactos dessa ameaça. 

Como forma de minimizar o impacto de conhecimento prévio sobre os           
problemas e o aprendizado dos participantes durante a execução do experimento,           
todos os programas têm uma complexidade baixa, de forma que os participantes            
conseguissem entender o funcionamento do programa. 

 

7.2. Validade Externa 
O número de participantes é estatisticamente pequeno (onze participantes) e          

todos os participantes são alunos de pós-graduação, o que o diminui           
significativamente a capacidade de generalização dos resultados encontrados neste         
estudo. Contudo, os participantes possuem em sua maioria experiência profissional          
e todos possuem experiência no uso de Java, o que indica uma familiaridade com a               
linguagem e uma menor probabilidade de ignorar fatores importantes devido ao           
desconhecimento da linguagem utilizada. Finalmente, embora todos os participantes         
estivessem matriculados numa mesma disciplina de pós-graduação, eles possuem         
background/especializações diferentes. Há participantes com foco em estatística,        
até banco de dados, e não apenas desenvolvimento e engenharia de software, que             
o contribui para uma maior diversidade da amostra. 

Java foi escolhido como linguagem do experimento por se tratar de uma das             
linguagens orientadas à objeto mais utilizadas. Contudo, isso pode dificultar que           
generalizamos para todas as linguagens de programação. Trabalhos futuros podem          
replicar o experimento utilizando outras linguagens.  

Apesar de não refletir o software utilizado na prática, os programas são            
pequenos (<2kLOC), contam com poucas classes e os algoritmos utilizados são           
simples, foi considerado que se desenvolvedores têm dificuldade em identificar ​god           
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classes mesmo em programas simples, intuitivamente, eles também terão em          
programas mais complexos. 
 

7.3. Validade de Conclusão 
Para chegar a conclusão de que não há diferença significativa no esforço 

utilizado para encontrar ​god classes​ com relação a utilização do ​plugin​ ​jDeodorant 
foram utilizadas as informações de tempo anotadas no questionário. Infelizmente 
não foi possível ter respaldo também das medidas de tempo automáticas, devido a 
uma falha no ​plugin​ durante a execução do experimento. 

Houve cuidado para verificar a normalidade desses dados, feito com o teste 
de Shapiro-Wilk. Como foi identificado que as distribuições não são normais, foi-se 
então utilizado o teste não-paramétrico de Wilcoxon para comparação de médias.

Com relação à contabilização e rankeamento dos motivos mais utilizados 
para identificar as classes como ​god class​, foi utilizada uma estratégia de divisão de 
peso quando diferentes motivos eram utilizados em uma mesma classe. Isso diminui 
o ​bias ​para quando vários motivos são escolhidos para uma mesma classe. Apesar 
disso, ainda haverá a possibilidade de um mesmo motivo ser utilizado inúmeras 
vezes para classes diferentes, podendo assim haver um enviesamento caso algum 
participante utilize o mesmo motivo diversas vezes nas classes em que analisou. 
Contudo, as frequências encontradas no experimento estão de acordo com o do 
experimento original. Acreditamos assim que neste experimento, por conta do 
treinamento obrigatório, esse ​bias ​foi amenizado, não havendo assim um 
participante que marcasse de forma muito diferente que os demais, enviesando o 
experimento. 

7.4. Validade de Construção 
Em relação à validade de construção, observamos o fato dos participantes           

estarem cientes do objetivo dos experimentos, o que pode ter deixado os            
participantes mais atentos para identificação das ​god classes. Ressaltamos que          
mesmo em um experimento para encontrar ​god classes​, ​as respostas não foram            
homogêneas, o que indica a necessidade de melhor familiarização do conceito por            
parte dos desenvolvedores para que possam ser evitadas essas práticas. 

Todos os experimentos foram realizados com acompanhamento de um         
supervisor, o que garantia o foco dos participantes na realização do experimento,            
uma vez que distrações durante a realização dos experimento poderia distorcer o            
tempo consumido pelos participantes para realizar a tarefa. 

O questionário contou com um campo para indicar outros motivos além           
daqueles listados​. Caso o participante identificasse algum motivo que não estava           
listado, ele poderia descrever o motivo que ele achasse adequado. Apesar do            
enviesamento inerente da ordem das respostas de um questionário, ao deixar uma            
alternativa aberta, tentamos minimizar o enviesamento das respostas.  
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Apêndice A 
Experimento para descoberta de god classes CIn -        
UFPE 

FORMULÁRIO DE RESPOSTAS - TETRIS 

 

 

Você deve preencher apenas com as classes que você suspeita que sejam ​god             
classes​. 

Nome do participante:​________________________________________________ 

Hora de início: ​__________                    ​Hora de término: ​__________ 

 

1. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

2. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 
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Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

3. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

4. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

5. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 
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Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

6. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

7. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

8. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 
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Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

9. Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 

 

10.Pacote + Nome da classe:​ _________________________________________ 

É uma ​god class​? ​(  ) Sim           (  ) Talvez            (  ) Não 

Por quê? 

Classe não é mais usada [  ] Classe é muito complexa    [  ] 

Classe está mal localizada [  ] Classe-Método sem comentários    [  ] 

Método é muito complexo [  ] Método está mal localizado    [  ] 

Atributo não é usado [  ] Método foi nomeado erroneamente [  ] 

Classe é especial (ex.: uma classe do framework) [  ] 

Outro: ______________________________________________________________ 
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